<table>
<thead>
<tr>
<th>Date</th>
<th>Events</th>
<th>Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 1993</td>
<td>First printing</td>
<td>Version 1.0</td>
</tr>
<tr>
<td>March 1996</td>
<td>Second printing</td>
<td>Version 2.0</td>
</tr>
<tr>
<td>January 1997</td>
<td>Third printing</td>
<td>Version 2.11</td>
</tr>
<tr>
<td>November 2000</td>
<td>Fourth printing</td>
<td>Revised for Version 3.0 (Release 12)</td>
</tr>
<tr>
<td>May 2001</td>
<td>Fifth printing</td>
<td>Minor revisions</td>
</tr>
<tr>
<td>July 2002</td>
<td>Sixth printing</td>
<td>Revised for Version 4.0 (Release 13)</td>
</tr>
<tr>
<td>February 2003</td>
<td>Online only</td>
<td>Revised for Version 4.1 (Release 13.0.1)</td>
</tr>
<tr>
<td>June 2004</td>
<td>Seventh printing</td>
<td>Revised for Version 5.0 (Release 14)</td>
</tr>
<tr>
<td>October 2004</td>
<td>Online only</td>
<td>Revised for Version 5.0.1 (Release 14SP1)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 5.0.2 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Online only</td>
<td>Revised for Version 5.1 (Release 14SP3)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 5.2 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 5.3 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Eighth printing</td>
<td>Revised for Version 6.0 (Release 2007a)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 6.2 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 7.0 (Release 2008b)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 7.1 (Release 2009a)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 7.2 (Release 2009b)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 7.3 (Release 2010a)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 7.4 (Release 2010b)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 7.5 (Release 2011a)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 7.6 (Release 2011b)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 8.0 (Release 2012a)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 8.1 (Release 2012b)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 8.2 (Release 2013a)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 8.3 (Release 2013b)</td>
</tr>
<tr>
<td>March 2014</td>
<td>Online only</td>
<td>Revised for Version 9.0 (Release 2014a)</td>
</tr>
<tr>
<td>October 2014</td>
<td>Online only</td>
<td>Revised for Version 9.1 (Release 2014b)</td>
</tr>
<tr>
<td>March 2015</td>
<td>Online only</td>
<td>Revised for Version 10.0 (Release 2015a)</td>
</tr>
<tr>
<td>September 2015</td>
<td>Online only</td>
<td>Revised for Version 10.1 (Release 2015b)</td>
</tr>
<tr>
<td>March 2016</td>
<td>Online only</td>
<td>Revised for Version 10.2 (Release 2016a)</td>
</tr>
<tr>
<td>September 2016</td>
<td>Online only</td>
<td>Revised for Version 11 (Release 2016b)</td>
</tr>
<tr>
<td>March 2017</td>
<td>Online only</td>
<td>Revised for Version 11.1 (Release 2017a)</td>
</tr>
<tr>
<td>September 2017</td>
<td>Online only</td>
<td>Revised for Version 11.2 (Release 2017b)</td>
</tr>
<tr>
<td>March 2018</td>
<td>Online only</td>
<td>Revised for Version 11.3 (Release 2018a)</td>
</tr>
<tr>
<td>September 2018</td>
<td>Online only</td>
<td>Revised for Version 11.4 (Release 2018b)</td>
</tr>
</tbody>
</table>
Merge Category Levels .. 2-21
Add and Drop Category Levels 2-24
Plot Data Grouped by Category 2-28
Test Differences Between Category Means 2-33
Summary Statistics Grouped by Category 2-43
Sort Ordinal Arrays .. 2-45
Nominal and Ordinal Arrays 2-47
Advantages of Using Nominal and Ordinal Arrays 2-49
Index and Search Using Nominal and Ordinal Arrays 2-52
Grouping Variables .. 2-57
Dummy Indicator Variables 2-60
Regression with Categorical Covariates 2-63
Create a Dataset Array from Workspace Variables 2-69
Create Dataset Array from Heterogeneous Workspace Variables .. 2-72

Create a Dataset Array from a File .. 2-75
Create a Dataset Array from a Tab-Delimited Text File 2-75
Create a Dataset Array from a Comma-Separated Text File 2-78
Create a Dataset Array from an Excel File 2-80

Add and Delete Observations ... 2-82

Add and Delete Variables ... 2-86

Access Data in Dataset Array Variables 2-90

Select Subsets of Observations .. 2-96

Sort Observations in Dataset Arrays 2-100

Merge Dataset Arrays .. 2-104

Stack or Unstack Dataset Arrays 2-108

Calculations on Dataset Arrays .. 2-113

Export Dataset Arrays .. 2-116

Clean Messy and Missing Data .. 2-118

Dataset Arrays in the Variables Editor 2-123
Open Dataset Arrays in the Variables Editor 2-123
Modify Variable and Observation Names 2-124
Reorder or Delete Variables ... 2-126
Add New Data .. 2-128
Sort Observations .. 2-130
Select a Subset of Data .. 2-131
Create Plots ... 2-134

Dataset Arrays .. 2-137
What Are Dataset Arrays? .. 2-137
Dataset Array Conversion .. 2-137
Dataset Array Properties ... 2-138

vii
Index and Search Dataset Arrays .. 2-140
 Ways To Index and Search .. 2-140
 Examples ... 2-140

Descriptive Statistics

3

Measures of Central Tendency ... 3-2
 Measures of Central Tendency .. 3-2

Measures of Dispersion .. 3-4
 Compare Measures of Dispersion 3-5

Quantiles and Percentiles .. 3-6

Exploratory Analysis of Data ... 3-10

Resampling Statistics .. 3-15
 Bootstrap Resampling .. 3-15
 Jackknife Resampling .. 3-18
 Parallel Computing Support for Resampling Methods 3-19

Data with Missing Values ... 3-20
 Working with Data with Missing Values 3-20

Statistical Visualization

4

Create Scatter Plots Using Grouped Data 4-2

Box Plots .. 4-6
 Compare Grouped Data Using Box Plots 4-6

Distribution Plots .. 4-9
 Normal Probability Plots .. 4-9
 Probability Plots ... 4-12
 Quantile-Quantile Plots .. 4-13
Probability Distributions

Working with Probability Distributions
- Probability Distribution Objects
- Probability Distribution Functions
- Probability Distribution Apps and User Interfaces

Supported Distributions
- Continuous Distributions (Data)
- Continuous Distributions (Statistics)
- Discrete Distributions
- Multivariate Distributions
- Nonparametric Distributions
- Flexible Distribution Families

Maximum Likelihood Estimation

Negative Loglikelihood Functions
- Find MLEs Using Negative Loglikelihood Function

Random Number Generation

Nonparametric and Empirical Probability Distributions
- Overview
- Kernel Distribution
- Empirical Cumulative Distribution Function
- Piecewise Linear Distribution
- Pareto Tails
- Triangular Distribution

Fit Kernel Distribution Object to Data

Fit Kernel Distribution Using ksdensity

Fit Distributions to Grouped Data Using ksdensity

Fit a Nonparametric Distribution with Pareto Tails
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Random Numbers Using the Triangular Distribution</td>
<td>5-63</td>
</tr>
<tr>
<td>Model Data Using the Distribution Fitter App</td>
<td>5-68</td>
</tr>
<tr>
<td>Explore Probability Distributions Interactively</td>
<td>5-68</td>
</tr>
<tr>
<td>Create and Manage Data Sets</td>
<td>5-69</td>
</tr>
<tr>
<td>Create a New Fit</td>
<td>5-74</td>
</tr>
<tr>
<td>Display Results</td>
<td>5-79</td>
</tr>
<tr>
<td>Manage Fits</td>
<td>5-81</td>
</tr>
<tr>
<td>Evaluate Fits</td>
<td>5-83</td>
</tr>
<tr>
<td>Exclude Data</td>
<td>5-87</td>
</tr>
<tr>
<td>Save and Load Sessions</td>
<td>5-92</td>
</tr>
<tr>
<td>Generate a File to Fit and Plot Distributions</td>
<td>5-92</td>
</tr>
<tr>
<td>Fit a Distribution Using the Distribution Fitter App</td>
<td>5-95</td>
</tr>
<tr>
<td>Step 1: Load Sample Data</td>
<td>5-95</td>
</tr>
<tr>
<td>Step 2: Import Data</td>
<td>5-95</td>
</tr>
<tr>
<td>Step 3: Create a New Fit</td>
<td>5-97</td>
</tr>
<tr>
<td>Step 4: Create and Manage Additional Fits</td>
<td>5-103</td>
</tr>
<tr>
<td>Custom Distributions Using the Distribution Fitter App</td>
<td>5-107</td>
</tr>
<tr>
<td>Opening the Distribution Fitter App</td>
<td>5-107</td>
</tr>
<tr>
<td>Defining Custom Distributions</td>
<td>5-108</td>
</tr>
<tr>
<td>Importing Custom Distributions</td>
<td>5-108</td>
</tr>
<tr>
<td>Explore the Random Number Generation UI</td>
<td>5-109</td>
</tr>
<tr>
<td>Compare Multiple Distribution Fits</td>
<td>5-112</td>
</tr>
<tr>
<td>Fit Probability Distribution Objects to Grouped Data</td>
<td>5-119</td>
</tr>
<tr>
<td>Multinomial Probability Distribution Objects</td>
<td>5-123</td>
</tr>
<tr>
<td>Multinomial Probability Distribution Functions</td>
<td>5-127</td>
</tr>
<tr>
<td>Generate Random Numbers Using Uniform Distribution Inversion</td>
<td>5-130</td>
</tr>
<tr>
<td>Represent Cauchy Distribution Using t Location-Scale</td>
<td>5-134</td>
</tr>
<tr>
<td>Generate Cauchy Random Numbers Using Student's t</td>
<td>5-137</td>
</tr>
<tr>
<td>Generate Correlated Data Using Rank Correlation</td>
<td>5-139</td>
</tr>
</tbody>
</table>
Fully Independent Conditional Approximation for GPR Models .. 6-29
 Approximating the Kernel Function ... 6-29
 Parameter Estimation ... 6-30
 Prediction ... 6-31

Block Coordinate Descent Approximation for GPR Models 6-34
 Fit GPR Models Using BCD Approximation 6-35

Random Number Generation

7

Generating Pseudorandom Numbers 7-2
 Common Pseudorandom Number Generation Methods 7-2

Representing Sampling Distributions Using Markov Chain Samplers .. 7-12
 Using the Metropolis-Hastings Algorithm 7-12
 Using Slice Sampling ... 7-13
 Using Hamiltonian Monte Carlo 7-13

Generating Quasi-Random Numbers 7-16
 Quasi-Random Sequences .. 7-16
 Quasi-Random Point Sets .. 7-17
 Quasi-Random Streams ... 7-24

Generating Data Using Flexible Families of Distributions ... 7-26

Bayesian Linear Regression Using Hamiltonian Monte Carlo .. 7-33

Hypothesis Tests

8

Hypothesis Test Terminology 8-2

Hypothesis Test Assumptions 8-4
Hypothesis Testing

[8-6]

Available Hypothesis Tests

[8-12]

Analysis of Variance

Introduction to Analysis of Variance

[9-2]

One-Way ANOVA

[9-3]
- Introduction to One-Way ANOVA
- Prepare Data for One-Way ANOVA
- Perform One-Way ANOVA
- Mathematical Details

Two-Way ANOVA

[9-15]
- Introduction to Two-Way ANOVA
- Prepare Data for Balanced Two-Way ANOVA
- Perform Two-Way ANOVA
- Mathematical Details

Multiple Comparisons

[9-26]
- Introduction
- Multiple Comparisons Using One-Way ANOVA
- Multiple Comparisons for Three-Way ANOVA
- Multiple Comparison Procedures

N-Way ANOVA

[9-36]
- Introduction to N-Way ANOVA
- Prepare Data for N-Way ANOVA
- Perform N-Way ANOVA

ANOVA with Random Effects

[9-48]

Other ANOVA Models

[9-56]

Analysis of Covariance

[9-58]
- Introduction to Analysis of Covariance
- Analysis of Covariance Tool
- Confidence Bounds
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Comparisons</td>
<td>9-66</td>
</tr>
<tr>
<td>Nonparametric Methods</td>
<td>9-68</td>
</tr>
<tr>
<td>Introduction to Nonparametric Methods</td>
<td>9-68</td>
</tr>
<tr>
<td>Kruskal-Wallis Test</td>
<td>9-68</td>
</tr>
<tr>
<td>Friedman's Test</td>
<td>9-69</td>
</tr>
<tr>
<td>MANOVA</td>
<td>9-71</td>
</tr>
<tr>
<td>Introduction to MANOVA</td>
<td>9-71</td>
</tr>
<tr>
<td>ANOVA with Multiple Responses</td>
<td>9-71</td>
</tr>
<tr>
<td>Model Specification for Repeated Measures Models</td>
<td>9-78</td>
</tr>
<tr>
<td>Wilkinson Notation</td>
<td>9-78</td>
</tr>
<tr>
<td>Compound Symmetry Assumption and Epsilon Corrections</td>
<td>9-80</td>
</tr>
<tr>
<td>Mauchly’s Test of Sphericity</td>
<td>9-82</td>
</tr>
<tr>
<td>Multivariate Analysis of Variance for Repeated Measures</td>
<td>9-84</td>
</tr>
<tr>
<td>Bayesian Optimization</td>
<td></td>
</tr>
<tr>
<td>Bayesian Optimization Algorithm</td>
<td>10-2</td>
</tr>
<tr>
<td>Algorithm Outline</td>
<td>10-2</td>
</tr>
<tr>
<td>Gaussian Process Regression for Fitting the Model</td>
<td>10-3</td>
</tr>
<tr>
<td>Acquisition Function Types</td>
<td>10-4</td>
</tr>
<tr>
<td>Acquisition Function Maximization</td>
<td>10-7</td>
</tr>
<tr>
<td>Parallel Bayesian Optimization</td>
<td>10-9</td>
</tr>
<tr>
<td>Optimize in Parallel</td>
<td>10-9</td>
</tr>
<tr>
<td>Parallel Bayesian Algorithm</td>
<td>10-9</td>
</tr>
<tr>
<td>Settings for Best Parallel Performance</td>
<td>10-10</td>
</tr>
<tr>
<td>Differences in Parallel Bayesian Optimization Output</td>
<td>10-12</td>
</tr>
<tr>
<td>Bayesian Optimization Plot Functions</td>
<td>10-14</td>
</tr>
<tr>
<td>Built-In Plot Functions</td>
<td>10-14</td>
</tr>
<tr>
<td>Custom Plot Function Syntax</td>
<td>10-15</td>
</tr>
<tr>
<td>Create a Custom Plot Function</td>
<td>10-16</td>
</tr>
</tbody>
</table>
Bayesian Optimization Output Functions

- What Is a Bayesian Optimization Output Function? 10-23
- Built-In Output Functions 10-23
- Custom Output Functions 10-23
- Bayesian Optimization Output Function 10-24

Bayesian Optimization Workflow

- What Is Bayesian Optimization? 10-30
- Two Ways to Perform Bayesian Optimization 10-30
- Bayesian Optimization Using a Fit Function 10-31
- Bayesian Optimization Using bayesopt 10-32
- Bayesian Optimization Characteristics 10-32
- Parameters Available for Fit Functions 10-34
- Hyperparameter Optimization Options for Fit Functions 10-36

Variables for a Bayesian Optimization

- Syntax for Creating Optimization Variables 10-40
- Variables for Optimization Examples 10-41

Bayesian Optimization Objective Functions

- Objective Function Syntax 10-43
- Objective Function Example 10-43
- Objective Function Errors 10-44

Constraints in Bayesian Optimization

- Bounds 10-45
- Deterministic Constraints — XConstraintFcn 10-45
- Conditional Constraints — ConditionalVariableFcn 10-46
- Coupled Constraints 10-48
- Bayesian Optimization with Coupled Constraints 10-49

Optimize a Cross-Validated SVM Classifier

- Using bayesopt 10-55

Optimize an SVM Classifier Fit Using Bayesian Optimization

- 10-68

Optimize a Boosted Regression Ensemble

- 10-78
Coefficient of Determination (R-Squared) 11-79
 Purpose 11-79
 Definition 11-79
 How To 11-79
 Display Coefficient of Determination 11-80

Delete-1 Statistics 11-82
 Delete-1 Change in Covariance (covratio) 11-82
 Determine Influential Observations Using CovRatio 11-83
 Delete-1 Scaled Difference in Coefficient Estimates
 (Dfbetas) 11-85
 Determine Observations Influential on Coefficients
 Using Dfbetas 11-85
 Delete-1 Scaled Change in Fitted Values (Dffits) 11-86
 Determine Observations Influential
 on Fitted Response Using Dffits 11-86
 Delete-1 Variance (S2_i) 11-89
 Compute and Examine Delete-1 Variance Values 11-90

Durbin-Watson Test 11-93
 Purpose 11-93
 Definition 11-93
 How To 11-93
 Test for Autocorrelation Among Residuals 11-93

F-statistic and t-statistic 11-95
 F-statistic 11-95
 Assess Fit of Model Using F-statistic 11-96
 t-statistic 11-98
 Assess Significance of Regression Coefficients Using
 t-statistic 11-99

Hat Matrix and Leverage 11-101
 Hat Matrix 11-101
 Leverage 11-102
 Determine High Leverage Observations 11-103

Residuals .. 11-105
 Purpose 11-105
 Definition 11-105
 How To 11-106
 Assess Model Assumptions Using Residuals 11-106
Summary of Output and Diagnostic Statistics ... 11-114

Wilkinson Notation ... 11-116
 Overview ... 11-116
 Formula Specification ... 11-117
 Linear Model Examples .. 11-120
 Linear Mixed-Effects Model Examples ... 11-122
 Generalized Linear Model Examples .. 11-123
 Generalized Linear Mixed-Effects Model Examples ... 11-124
 Repeated Measures Model Examples .. 11-125

Stepwise Regression ... 11-126
 Stepwise Regression to Select Appropriate Models ... 11-126
 Compare large and small stepwise models .. 11-126

Robust Regression — Reduce Outlier Effects ... 11-132
 What Is Robust Regression? ... 11-132
 Robust Regression versus Standard Least-Squares Fit .. 11-132

Ridge Regression ... 11-135
 Introduction to Ridge Regression .. 11-135
 Ridge Regression ... 11-135

Lasso and Elastic Net .. 11-140
 What Are Lasso and Elastic Net? .. 11-140
 Lasso and Elastic Net Details ... 11-140
 References .. 11-142

Wide Data via Lasso and Parallel Computing ... 11-143

Lasso Regularization .. 11-149

Lasso and Elastic Net with Cross Validation ... 11-153

Partial Least Squares .. 11-157
 Introduction to Partial Least Squares .. 11-157
 Partial Least Squares .. 11-158

Linear Mixed-Effects Models ... 11-162

Prepare Data for Linear Mixed-Effects Models ... 11-167
 Tables and Dataset Arrays ... 11-167
 Design Matrices ... 11-169
Relation of Matrix Form to Tables and Dataset Arrays 11-171

Relationship Between Formula and Design Matrices 11-173
 Formula 11-173
 Design Matrices for Fixed and Random Effects 11-175
 Grouping Variables 11-177

Estimating Parameters in Linear Mixed-Effects Models 11-180
 Maximum Likelihood (ML) 11-181
 Restricted Maximum Likelihood (REML) 11-182

Linear Mixed-Effects Model Workflow 11-185

Fit Mixed-Effects Spline Regression 11-199

Generalized Linear Models 12

Multinomial Models for Nominal Responses 12-2

Multinomial Models for Ordinal Responses 12-5

Hierarchical Multinomial Models 12-9

Generalized Linear Models 12-12
 What Are Generalized Linear Models? 12-12
 Prepare Data 12-13
 Choose Generalized Linear Model and Link Function 12-15
 Choose Fitting Method and Model 12-18
 Fit Model to Data 12-23
 Examine Quality and Adjust the Fitted Model 12-23
 Predict or Simulate Responses to New Data 12-34
 Share Fitted Models 12-38

Generalized Linear Model Workflow 12-40

Lasso Regularization of Generalized Linear Models 12-45
 What is Generalized Linear Model Lasso Regularization? 12-45
 Generalized Linear Model Lasso and Elastic Net 12-45
 References 12-47
Regularize Poisson Regression .. 12-48
Regularize Logistic Regression .. 12-51
Regularize Wide Data in Parallel 12-59

Generalized Linear Mixed-Effects Models 12-65
 What Are Generalized Linear Mixed-Effects Models? 12-65
 GLME Model Equations .. 12-65
 Prepare Data for Model Fitting 12-67
 Choose a Distribution Type for the Model 12-67
 Choose a Link Function for the Model 12-68
 Specify the Model Formula .. 12-69
 Display the Model ... 12-72
 Work with the Model .. 12-74

Fit a Generalized Linear Mixed-Effects Model 12-77

Nonlinear Regression

Nonlinear Regression ... 13-2
 Prepare Data .. 13-3
 Represent the Nonlinear Model 13-4
 Choose Initial Vector beta0 ... 13-6
 Fit Nonlinear Model to Data 13-7
 Examine Quality and Adjust the Fitted Nonlinear Model 13-7
 Predict or Simulate Responses Using a Nonlinear Model 13-10

Nonlinear Regression Workflow 13-15

Mixed-Effects Models .. 13-22
 Introduction to Mixed-Effects Models 13-22
 Mixed-Effects Model Hierarchy 13-23
 Specifying Mixed-Effects Models 13-24
 Specifying Covariate Models 13-27
 Choosing nlmefit or nlmefitsa 13-28
 Using Output Functions with Mixed-Effects Models 13-31
Survival Analysis

What Is Survival Analysis?
- Introduction .. 14-2
- Censoring ... 14-2
- Data .. 14-3
- Survivor Function 14-4
- Hazard Function 14-7

Kaplan-Meier Method 14-11

Hazard and Survivor Functions for Different Groups 14-18

Survivor Functions for Two Groups 14-25

Cox Proportional Hazards Model 14-30
- Introduction .. 14-30
- Hazard Ratio 14-30
- Extension of Cox Proportional Hazards Model 14-31
- Partial Likelihood Function 14-32
- Partial Likelihood Function for Tied Events 14-33
- Frequency or Weights of Observations 14-34

Cox Proportional Hazards Model for Censored Data 14-37

Cox Proportional Hazards Model with Time-Dependent Covariates 14-42
Multivariate Methods

15

Multivariate Linear Regression .. 15-3
 Introduction to Multivariate Methods 15-3
 Multivariate Linear Regression Model 15-4
 Solving Multivariate Regression Problems 15-4

Estimation of Multivariate Regression Models 15-7
 Least Squares Estimation ... 15-7
 Maximum Likelihood Estimation 15-11
 Missing Response Data ... 15-13

Set Up Multivariate Regression Problems 15-16
 Response Matrix .. 15-16
 Design Matrices ... 15-21
 Common Multivariate Regression Problems 15-22

Multivariate General Linear Model 15-30

Fixed Effects Panel Model with Concurrent Correlation 15-36

Longitudinal Analysis .. 15-44

Multidimensional Scaling ... 15-51

Nonclassical and Nonmetric Multidimensional Scaling 15-52
 Nonclassical Multidimensional Scaling 15-52
 Nonmetric Multidimensional Scaling 15-54

Classical Multidimensional Scaling 15-58

Procrustes Analysis .. 15-61
 Compare Landmark Data .. 15-61
 Data Input .. 15-61
 Preprocess Data for Accurate Results 15-62

Compare Handwritten Shapes Using Procrustes Analysis 15-63

Feature Selection .. 15-70
 Introduction to Feature Selection 15-70
 Sequential Feature Selection 15-70
Select Subset of Features with Comparative Predictive Power 15-71

Nonnegative Matrix Factorization 15-75
Perform Nonnegative Matrix Factorization 15-76
Principal Component Analysis (PCA) 15-79
Analyze Quality of Life in U.S. Cities Using PCA 15-81
Factor Analysis .. 15-93
Analyze Stock Prices Using Factor Analysis 15-94
Robust Feature Selection Using NCA for Regression 15-102

Neighborhood Component Analysis (NCA) Feature Selection ... 15-121
NCA Feature Selection for Classification 15-121
NCA Feature Selection for Regression 15-125
Impact of Standardization 15-127
Choosing the Regularization Parameter Value 15-127

t-SNE .. 15-128
What Is t-SNE? .. 15-128
t-SNE Algorithm ... 15-129
Barnes-Hut Variation of t-SNE 15-132
Characteristics of t-SNE ... 15-132

t-SNE Output Function ... 15-136
t-SNE Output Function Description 15-136
tsne optimValues Structure 15-137
t-SNE Custom Output Function 15-137

Visualize High-Dimensional Data Using t-SNE 15-140

tsne Settings ... 15-145

Feature Extraction .. 15-159
What Is Feature Extraction? 15-159
Sparse Filtering Algorithm 15-159
Reconstruction ICA Algorithm 15-162
Cluster Analysis

Introduction to Cluster Analysis ... 16-2

Hierarchical Clustering .. 16-4
 Introduction to Hierarchical Clustering 16-4
 Algorithm Description .. 16-4
 Similarity Measures .. 16-5
 Linkages .. 16-7
 Dendrograms .. 16-9
 Verify the Cluster Tree ... 16-10
 Create Clusters ... 16-16

k-Means Clustering .. 16-22
 Introduction to k-Means Clustering 16-22
 Create Clusters and Determine Separation 16-22
 Determine the Correct Number of Clusters 16-24
 Avoid Local Minima .. 16-27

Cluster Using Gaussian Mixture Models 16-29

Cluster Gaussian Mixture Data Using Hard Clustering 16-38

Cluster Gaussian Mixture Data Using Soft Clustering 16-48

Tune Gaussian Mixture Models 16-55

Parametric Classification

Parametric Classification ... 17-2
Train Classification Ensemble .. 18-66

Train Regression Ensemble ... 18-69

Select Predictors for Random Forests 18-72

Test Ensemble Quality .. 18-79
 Test Ensemble Quality ... 18-79

Ensemble Regularization ... 18-86
 Regularize a Regression Ensemble 18-87

Classification with Imbalanced Data 18-99

Handle Imbalanced Data or Unequal Misclassification Costs in
 Classification Ensembles ... 18-105
 Train Ensemble With Unequal Classification Costs 18-106

Classification with Many Categorical Levels 18-113

Surrogate Splits .. 18-119

LPBoost and TotalBoost for Small Ensembles 18-122

Tune RobustBoost ... 18-129

Random Subspace Classification 18-133

Bootstrap Aggregation (Bagging) of Regression Trees 18-139
 Regression of Insurance Risk Rating for Car Imports Using
 TreeBagger ... 18-139

Bootstrap Aggregation (Bagging) of Classification Trees 18-152
 Classifying Radar Returns for Ionosphere Data Using
 TreeBagger ... 18-152
Detect Outliers Using Quantile Regression ... 18-167

Conditional Quantile Estimation Using Kernel Smoothing ... 18-174

Tune Random Forest Using Quantile Error and Bayesian Optimization 18-178

Support Vector Machines for Binary Classification .. 18-183
 Understanding Support Vector Machines ... 18-183
 Using Support Vector Machines .. 18-189
 Train SVM Classifiers Using a Gaussian Kernel ... 18-192
 Train SVM Classifier Using Custom Kernel .. 18-196
 Optimize an SVM Classifier Fit Using Bayesian Optimization .. 18-202

Plot Posterior Probability Regions for SVM Classification Models ... 18-212
 Analyze Images Using Linear Support Vector Machines ... 18-215

Bibliography ... 18-221

Decision Trees

Decision Trees ... 19-2
 Train Classification Tree ... 19-2
 Train Regression Tree ... 19-3

View Decision Tree .. 19-5

Growing Decision Trees ... 19-9

Prediction Using Classification and Regression Trees .. 19-11

Predict Out-of-Sample Responses of Subtrees ... 19-13

Improving Classification Trees and Regression Trees ... 19-17
 Examining Resubstitution Error .. 19-17
 Cross Validation .. 19-18
 Choose Split Predictor Selection Technique .. 19-19
Control Depth or “Leafiness” 19-21
Pruning .. 19-26

Splitting Categorical Predictors 19-31
Challenges in Splitting Multilevel Predictors 19-31
Pull Left By Purity 19-32
Principal Component-Based Partitioning 19-32
One Versus All By Class 19-32

Discriminant Analysis

Discriminant Analysis Classification 20-2
Create Discriminant Analysis Classifiers 20-2

Creating Discriminant Analysis Model 20-4
Weighted Observations 20-4

Prediction Using Discriminant Analysis Models 20-7
Posterior Probability 20-7
Prior Probability 20-8
Cost .. 20-8

Create and Visualize Discriminant Analysis Classifier 20-11

Improving Discriminant Analysis Models 20-20
Deal with Singular Data 20-20
Choose a Discriminant Type 20-21
Examine the Resubstitution Error and Confusion Matrix 20-22
Cross Validation 20-23
Change Costs and Priors 20-24

Regularize a Discriminant Analysis Classifier 20-28

Examine the Gaussian Mixture Assumption 20-36
Bartlett Test of Equal Covariance Matrices for Linear
Discriminant Analysis 20-36
Q-Q Plot .. 20-37
Mardia Kurtosis Test of Multivariate Normality 20-41
Naive Bayes

Naive Bayes Classification ... 21-2
Supported Distributions ... 21-2

Plot Posterior Classification Probabilities 21-7

Classification and Regression for High-Dimensional Data

Classification Learner

Machine Learning in MATLAB .. 23-2
Selecting the Right Algorithm 23-3
Train Classification Models in Classification Learner App ... 23-7
Train Regression Models in Regression Learner App 23-8
Train Neural Networks for Deep Learning 23-10

Train Classification Models in Classification Learner App .. 23-11
Automated Classifier Training 23-12
Manual Classifier Training 23-14
Parallel Classifier Training 23-15
Compare and Improve Classification Models 23-16

Select Data and Validation for Classification Problem 23-20
Select Data from the Workspace 23-20
Import Data from File .. 23-21
Example Data for Classification 23-21
Choose Validation Scheme 23-23
Choose Classifier Options .. 23-26
 Choose a Classifier Type .. 23-26
 Decision Trees .. 23-30
 Discriminant Analysis .. 23-35
 Logistic Regression ... 23-35
 Support Vector Machines 23-36
 Nearest Neighbor Classifiers 23-40
 Ensemble Classifiers ... 23-43

Feature Selection and Feature Transformation Using
Classification Learner App 23-48
 Investigate Features in the Scatter Plot 23-48
 Select Features to Include 23-50
 Transform Features with PCA in Classification Learner ... 23-51
 Investigate Features in the Parallel Coordinates Plot 23-51

Assess Classifier Performance in Classification Learner ... 23-55
 Check Performance in the History List 23-55
 Plot Classifier Results 23-55
 Check Performance Per Class in the Confusion Matrix 23-57
 Check the ROC Curve ... 23-60

Export Classification Model to Predict New Data 23-62
 Export the Model to the Workspace to Make Predictions for New
 Data ... 23-62
 Make Predictions for New Data 23-63
 Generate MATLAB Code to Train the Model with New
 Data ... 23-64
 Generate C Code for Prediction 23-65

Train Decision Trees Using Classification Learner App 23-68

Train Discriminant Analysis Classifiers Using Classification
Learner App ... 23-81

Train Logistic Regression Classifiers Using Classification
Learner App .. 23-85

Train Support Vector Machines Using Classification
Learner App .. 23-89

Train Nearest Neighbor Classifiers Using Classification
Learner App ... 23-93
Train Ensemble Classifiers Using Classification Learner App

Regression Learner

Train Regression Models in Regression Learner App

- Automated Regression Model Training 24-3
- Manual Regression Model Training 24-4
- Parallel Regression Model Training 24-6
- Compare and Improve Regression Models 24-6

Select Data and Validation for Regression Problem

- Select Data from Workspace 24-10
- Import Data from File ... 24-11
- Example Data for Regression 24-11
- Choose Validation Scheme 24-12

Choose Regression Model Options

- Choose Regression Model Type 24-15
- Linear Regression Models 24-18
- Regression Trees .. 24-21
- Support Vector Machines 24-23
- Gaussian Process Regression Models 24-26
- Ensembles of Trees ... 24-29

Feature Selection and Feature Transformation Using Regression Learner App

- Investigate Features in the Response Plot 24-32
- Select Features to Include 24-33
- Transform Features with PCA in Regression Learner 24-34

Assess Model Performance in Regression Learner App

- Check Performance in History List 24-36
- View Model Statistics in Current Model Window 24-37
- Explore Data and Results in Response Plot 24-38
- Plot Predicted vs. Actual Response 24-40
- Evaluate Model Using Residuals Plot 24-41
Plackett-Burman Designs .. 27-5
General Fractional Designs 27-6

Response Surface Designs .. 27-9
- Introduction to Response Surface Designs 27-9
- Central Composite Designs 27-9
- Box-Behnken Designs ... 27-13

D-Optimal Designs .. 27-16
- Introduction to D-Optimal Designs 27-16
- Generate D-Optimal Designs 27-17
- Augment D-Optimal Designs 27-19
- Specify Fixed Covariate Factors 27-20
- Specify Categorical Factors 27-21
- Specify Candidate Sets .. 27-22

Improve an Engine Cooling Fan Using Design for Six Sigma Techniques .. 27-25

Statistical Process Control

28

Control Charts ... 28-2
Capability Studies .. 28-5

Tall Arrays

29

Tall Array Support, Usage Notes, and Limitations 29-2
- Descriptive Statistics and Visualization 29-2
- Probability Distributions 29-8
- Cluster Analysis .. 29-9
- Regression ... 29-10
- Classification .. 29-21
- Dimensionality Reduction 29-40

xxxiii
Logistic Regression with Tall Arrays 29-42
Bayesian Optimization with Tall Arrays 29-52

Parallel Statistics

Quick Start Parallel Computing for Statistics and Machine
 Learning Toolbox ... 30-2
 How To Compute in Parallel 30-5

Use Parallel Processing for Regression TreeBagger Workflow ... 30-7

Concepts of Parallel Computing in Statistics and Machine
 Learning Toolbox .. 30-9
 Subtleties in Parallel Computing 30-9
 Vocabulary for Parallel Computation 30-9

When to Run Statistical Functions in Parallel 30-10
 Why Run in Parallel? ... 30-10
 Factors Affecting Speed 30-10
 Factors Affecting Results 30-11

Working with parfor .. 30-12
 How Statistical Functions Use parfor 30-12
 Characteristics of parfor 30-13

Reproducibility in Parallel Statistical Computations 30-15
 Issues and Considerations in Reproducing Parallel
 Computations .. 30-15
 Running Reproducible Parallel Computations 30-15
 Parallel Statistical Computation Using Random Numbers 30-16

Implement Jackknife Using Parallel Computing 30-20

Implement Cross-Validation Using Parallel Computing 30-22
 Simple Parallel Cross Validation 30-22
 Reproducible Parallel Cross Validation 30-23
Implement Bootstrap Using Parallel Computing 30-25
Bootstrap in Serial and Parallel 30-25
Reproducible Parallel Bootstrap 30-27

Code Generation

31

Introduction to Code Generation 31-2
Code Generation Workflows 31-2
Code Generation Applications 31-4

General Code Generation Workflow 31-5
Define Entry-Point Function 31-5
Generate Code .. 31-6
Verify Generated Code 31-8

Code Generation for Prediction of Machine Learning Model at Command Line ... 31-10

Code Generation for Nearest Neighbor Searcher 31-15

Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App 31-20

Code Generation and Classification Learner App 31-31
Load Sample Data .. 31-31
Enable PCA ... 31-33
Train Models ... 31-33
Export Model to Workspace 31-38
Generate C Code for Prediction 31-38

Predict Class Labels Using MATLAB Function Block .. 31-43

Code Generation Support, Usage Notes, and Limitations .. 31-49

Specify Variable-Size Arguments for Code Generation 31-57

System Objects for Classification and Code Generation ... 31-64

Predict Class Labels Using Stateflow 31-75
<table>
<thead>
<tr>
<th>Distribution</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birnbaum-Saunders Distribution</td>
<td>B-13</td>
</tr>
<tr>
<td>Burr Type XII Distribution</td>
<td>B-15</td>
</tr>
<tr>
<td>Chi-Square Distribution</td>
<td>B-28</td>
</tr>
<tr>
<td>Exponential Distribution</td>
<td>B-32</td>
</tr>
<tr>
<td>Extreme Value Distribution</td>
<td>B-36</td>
</tr>
</tbody>
</table>

- Parameters .. B-9
- Probability Density Function B-9
- Mean and Variance B-10
- Relationship to Other Distributions B-10
- Example .. B-10

- Birnbaum-Saunders Distribution B-13
 - Definition .. B-13
 - Background B-13
 - Parameters B-14

- Burr Type XII Distribution B-15
 - Definition B-15
 - Background B-16
 - Parameters B-17
 - Fit a Burr Distribution and Draw the cdf . B-18
 - Compare Lognormal and Burr pdfs B-20
 - Burr pdf for Various Parameters B-21
 - Survival and Hazard Functions of Burr Distribution B-23
 - Divergence of Parameter Estimates B-25

- Chi-Square Distribution B-28
 - Overview B-28
 - Parameters B-28
 - Probability Density Function B-28
 - Cumulative Distribution Function B-29
 - Descriptive Statistics B-29
 - Relationship to Other Distributions B-29
 - Examples B-30

- Exponential Distribution B-32
 - Definition B-32
 - Background B-32
 - Parameters B-32
 - Examples B-33

- Extreme Value Distribution B-36
 - Definition B-36
 - Background B-36
 - Parameters B-38
 - Examples B-39
<table>
<thead>
<tr>
<th>Distribution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Distribution</td>
<td>B-42</td>
</tr>
<tr>
<td>Definition</td>
<td>B-42</td>
</tr>
<tr>
<td>Background</td>
<td>B-42</td>
</tr>
<tr>
<td>Examples</td>
<td>B-43</td>
</tr>
<tr>
<td>Gamma Distribution</td>
<td>B-45</td>
</tr>
<tr>
<td>Definition</td>
<td>B-45</td>
</tr>
<tr>
<td>Background</td>
<td>B-45</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-46</td>
</tr>
<tr>
<td>Examples</td>
<td>B-47</td>
</tr>
<tr>
<td>Generalized Extreme Value Distribution</td>
<td>B-50</td>
</tr>
<tr>
<td>Definition</td>
<td>B-50</td>
</tr>
<tr>
<td>Background</td>
<td>B-50</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-51</td>
</tr>
<tr>
<td>Examples</td>
<td>B-52</td>
</tr>
<tr>
<td>Generalized Pareto Distribution</td>
<td>B-55</td>
</tr>
<tr>
<td>Definition</td>
<td>B-55</td>
</tr>
<tr>
<td>Background</td>
<td>B-55</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-56</td>
</tr>
<tr>
<td>Examples</td>
<td>B-58</td>
</tr>
<tr>
<td>Geometric Distribution</td>
<td>B-61</td>
</tr>
<tr>
<td>Overview</td>
<td>B-61</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-61</td>
</tr>
<tr>
<td>Probability Distribution Function</td>
<td>B-61</td>
</tr>
<tr>
<td>Cumulative Distribution Function</td>
<td>B-64</td>
</tr>
<tr>
<td>Mean and Variance</td>
<td>B-66</td>
</tr>
<tr>
<td>Example</td>
<td>B-67</td>
</tr>
<tr>
<td>Half-Normal Distribution</td>
<td>B-69</td>
</tr>
<tr>
<td>Overview</td>
<td>B-69</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-69</td>
</tr>
<tr>
<td>Probability Density Function</td>
<td>B-70</td>
</tr>
<tr>
<td>Cumulative Distribution Function</td>
<td>B-72</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>B-73</td>
</tr>
<tr>
<td>Relationship to Other Distributions</td>
<td>B-74</td>
</tr>
<tr>
<td>Hypergeometric Distribution</td>
<td>B-75</td>
</tr>
<tr>
<td>Definition</td>
<td>B-75</td>
</tr>
<tr>
<td>Background</td>
<td>B-75</td>
</tr>
<tr>
<td>Examples</td>
<td>B-76</td>
</tr>
<tr>
<td>Distribution</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Inverse Gaussian Distribution</td>
<td>B-78</td>
</tr>
<tr>
<td>Definition</td>
<td>B-78</td>
</tr>
<tr>
<td>Background</td>
<td>B-78</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-78</td>
</tr>
<tr>
<td>Inverse Wishart Distribution</td>
<td>B-79</td>
</tr>
<tr>
<td>Definition</td>
<td>B-79</td>
</tr>
<tr>
<td>Background</td>
<td>B-79</td>
</tr>
<tr>
<td>Example</td>
<td>B-79</td>
</tr>
<tr>
<td>Kernel Distribution</td>
<td>B-81</td>
</tr>
<tr>
<td>Overview</td>
<td>B-81</td>
</tr>
<tr>
<td>Kernel Density Estimator</td>
<td>B-81</td>
</tr>
<tr>
<td>Kernel Smoothing Function</td>
<td>B-81</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>B-87</td>
</tr>
<tr>
<td>Logistic Distribution</td>
<td>B-91</td>
</tr>
<tr>
<td>Overview</td>
<td>B-91</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-91</td>
</tr>
<tr>
<td>Probability Density Function</td>
<td>B-91</td>
</tr>
<tr>
<td>Relationship to Other Distributions</td>
<td>B-92</td>
</tr>
<tr>
<td>Loglogistic Distribution</td>
<td>B-93</td>
</tr>
<tr>
<td>Overview</td>
<td>B-93</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-93</td>
</tr>
<tr>
<td>Probability Density Function</td>
<td>B-93</td>
</tr>
<tr>
<td>Relationship to Other Distributions</td>
<td>B-94</td>
</tr>
<tr>
<td>Lognormal Distribution</td>
<td>B-95</td>
</tr>
<tr>
<td>Overview</td>
<td>B-95</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-95</td>
</tr>
<tr>
<td>Probability Density Function</td>
<td>B-96</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>B-96</td>
</tr>
<tr>
<td>Relationship to Other Distributions</td>
<td>B-96</td>
</tr>
<tr>
<td>Examples</td>
<td>B-97</td>
</tr>
<tr>
<td>Multinomial Distribution</td>
<td>B-99</td>
</tr>
<tr>
<td>Overview</td>
<td>B-99</td>
</tr>
<tr>
<td>Parameter</td>
<td>B-99</td>
</tr>
<tr>
<td>Probability Density Function</td>
<td>B-99</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>B-100</td>
</tr>
<tr>
<td>Relationship to Other Distributions</td>
<td>B-100</td>
</tr>
<tr>
<td>Distribution</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Multivariate Normal Distribution</td>
<td>B-102</td>
</tr>
<tr>
<td>Definition</td>
<td>B-102</td>
</tr>
<tr>
<td>Background</td>
<td>B-102</td>
</tr>
<tr>
<td>Examples</td>
<td>B-103</td>
</tr>
<tr>
<td>Multivariate t Distribution</td>
<td>B-108</td>
</tr>
<tr>
<td>Definition</td>
<td>B-108</td>
</tr>
<tr>
<td>Background</td>
<td>B-108</td>
</tr>
<tr>
<td>Example</td>
<td>B-109</td>
</tr>
<tr>
<td>Nakagami Distribution</td>
<td>B-114</td>
</tr>
<tr>
<td>Definition</td>
<td>B-114</td>
</tr>
<tr>
<td>Background</td>
<td>B-114</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-114</td>
</tr>
<tr>
<td>Negative Binomial Distribution</td>
<td>B-116</td>
</tr>
<tr>
<td>Definition</td>
<td>B-116</td>
</tr>
<tr>
<td>Background</td>
<td>B-116</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-117</td>
</tr>
<tr>
<td>Example</td>
<td>B-118</td>
</tr>
<tr>
<td>Noncentral Chi-Square Distribution</td>
<td>B-121</td>
</tr>
<tr>
<td>Definition</td>
<td>B-121</td>
</tr>
<tr>
<td>Background</td>
<td>B-121</td>
</tr>
<tr>
<td>Examples</td>
<td>B-122</td>
</tr>
<tr>
<td>Noncentral F Distribution</td>
<td>B-124</td>
</tr>
<tr>
<td>Definition</td>
<td>B-124</td>
</tr>
<tr>
<td>Background</td>
<td>B-124</td>
</tr>
<tr>
<td>Examples</td>
<td>B-125</td>
</tr>
<tr>
<td>Noncentral t Distribution</td>
<td>B-127</td>
</tr>
<tr>
<td>Definition</td>
<td>B-127</td>
</tr>
<tr>
<td>Background</td>
<td>B-127</td>
</tr>
<tr>
<td>Examples</td>
<td>B-128</td>
</tr>
<tr>
<td>Normal Distribution</td>
<td>B-130</td>
</tr>
<tr>
<td>Definition</td>
<td>B-130</td>
</tr>
<tr>
<td>Background</td>
<td>B-130</td>
</tr>
<tr>
<td>Parameters</td>
<td>B-130</td>
</tr>
<tr>
<td>Examples</td>
<td>B-132</td>
</tr>
</tbody>
</table>
Piecewise Linear Distribution .. B-135
 Overview .. B-135
 Parameters ... B-135
 Cumulative Distribution Function B-135
 Relationship to Other Distributions B-135

Poisson Distribution .. B-137
 Definition ... B-137
 Background .. B-137
 Parameters ... B-138
 Examples ... B-138

Rayleigh Distribution .. B-140
 Definition ... B-140
 Background .. B-140
 Parameters ... B-140
 Examples ... B-141

Rician Distribution ... B-143
 Definition ... B-143
 Background .. B-143
 Parameters ... B-143

Stable Distribution ... B-145
 Overview .. B-145
 Parameters ... B-146
 Probability Density Function B-146
 Cumulative Distribution Function B-150
 Descriptive Statistics .. B-153
 Relationship to Other Distributions B-154

Student’s t Distribution .. B-158
 Overview .. B-158
 Parameters ... B-158
 Probability Density Function B-158
 Cumulative Distribution Function B-161
 Mean and Variance ... B-163
 Example ... B-163

t Location-Scale Distribution ... B-166
 Overview .. B-166
 Parameters ... B-166
 Probability Density Function B-166
Bibliography
Getting Started

- “Statistics and Machine Learning Toolbox Product Description” on page 1-2
- “Supported Data Types” on page 1-4
- “Functions with gpuArray Arguments” on page 1-6
Statistics and Machine Learning Toolbox Product Description

Analyze and model data using statistics and machine learning

Statistics and Machine Learning Toolbox provides functions and apps to describe, analyze, and model data. You can use descriptive statistics and plots for exploratory data analysis, fit probability distributions to data, generate random numbers for Monte Carlo simulations, and perform hypothesis tests. Regression and classification algorithms let you draw inferences from data and build predictive models.

For multidimensional data analysis, Statistics and Machine Learning Toolbox provides feature selection, stepwise regression, principal component analysis (PCA), regularization, and other dimensionality reduction methods that let you identify variables or features that impact your model.

The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, \(k \)-nearest neighbor, \(k \)-means, \(k \)-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory.

Key Features

- Regression techniques, including linear, generalized linear, nonlinear, robust, regularized, ANOVA, repeated measures, and mixed-effects models
- Big data algorithms for dimension reduction, descriptive statistics, \(k \)-means clustering, linear regression, logistic regression, and discriminant analysis
- Univariate and multivariate probability distributions, random and quasi-random number generators, and Markov chain samplers
- Hypothesis tests for distributions, dispersion, and location, and design of experiments (DOE) techniques for optimal, factorial, and response surface designs
- Classification Learner app and algorithms for supervised machine learning, including support vector machines (SVMs), boosted and bagged decision trees, \(k \)-nearest neighbor, Naïve Bayes, discriminant analysis, and Gaussian process regression
- Unsupervised machine learning algorithms, including \(k \)-means, \(k \)-medoids, hierarchical clustering, Gaussian mixtures, and hidden Markov models
• Bayesian optimization for tuning machine learning algorithms by searching for optimal hyperparameters
Supported Data Types

Statistics and Machine Learning Toolbox supports the following data types for input arguments:

- Numeric scalars, vectors, matrices, or arrays having single- or double-precision entries. These data forms have data type `single` or `double`. Examples include response variables, predictor variables, and numeric values.

- Cell arrays of character vectors; character, string, logical, or categorical arrays; or numeric vectors for categorical variables representing grouping data. These data forms have data types `cell` (specifically `cellstr`), `char`, `string`, `logical`, `categorical`, and `single` or `double`, respectively. An example is an array of class labels in machine learning.

- You can also use nominal or ordinal arrays for categorical data. However, the `nominal` and `ordinal` data types might be removed in a future release. To work with nominal or ordinal categorical data, use the `categorical` data type instead.

- You can use signed or unsigned integers, e.g., `int8` or `uint8`. However:
 - Estimation functions might not support signed or unsigned integer data types for nongrouping data.
 - If you recast a `single` or `double` numeric vector containing `NaN` values to a signed or unsigned integer, then the software converts the `NaN` elements to 0.

- Some functions support tabular arrays for heterogeneous data (for details, see “Tables” (MATLAB)). The `table` data type contains variables of any of the data types previously listed. An example is mixed categorical and numerical predictor data for regression analysis.

- For some functions, you can also use dataset arrays for heterogeneous data. However, the `dataset` data type might be removed in a future release. To work with heterogeneous data, use the `table` data type if the estimation function supports it.

- Functions that do not support the `table` data type support sample data of type `single` or `double`, e.g., matrices.

- Some functions accept `gpuArray` input arguments so that they execute on the GPU. For the full list of Statistics and Machine Learning Toolbox functions that accept `gpuArrays`, see “Functions with gpuArray Arguments” on page 1-6.
• Some functions accept tall array input arguments to work with large data sets. For the full list of Statistics and Machine Learning Toolbox functions that accept tall arrays, see “Tall Array Support, Usage Notes, and Limitations” on page 29-2.

• Some functions accept sparse matrices, i.e., matrix A such that issparse(A) returns 1. For functions that do not accept sparse matrices, recast the data to a full matrix by using full.

Statistics and Machine Learning Toolbox does not support the following data types:

• Complex numbers.
• Custom numeric data types, e.g., a variable that is double precision and an object.
• Signed or unsigned numeric integers for nongrouping data, e.g., uint8 and int16.

Note If you specify data of an unsupported type, then the software might return an error or unexpected results.
Functions with gpuArray Arguments

The following functions are enhanced to accept gpuArray input arguments so that they execute on the GPU:

<table>
<thead>
<tr>
<th>A - D</th>
<th>E - F</th>
<th>G - L</th>
<th>M - O</th>
<th>P - S</th>
<th>T - Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>betacdf</td>
<td>evcdf</td>
<td>gamcdf</td>
<td>mad</td>
<td>pdist</td>
<td>tcdf</td>
</tr>
<tr>
<td>betainv</td>
<td>evpdf</td>
<td>gaminv</td>
<td>margin</td>
<td>pdist2</td>
<td>tinv</td>
</tr>
<tr>
<td>betapdf</td>
<td>evinv</td>
<td>gamlike</td>
<td>moment</td>
<td>poisscdf</td>
<td>tpdf</td>
</tr>
<tr>
<td>betastat</td>
<td>evrlike</td>
<td>gampdf</td>
<td>mvcdf</td>
<td>poissinv</td>
<td>tstat</td>
</tr>
<tr>
<td>binofit</td>
<td>evrnd</td>
<td>gamrnd</td>
<td>mvnpdf</td>
<td>poispdf</td>
<td>ttest</td>
</tr>
<tr>
<td>binoinv</td>
<td>evstat</td>
<td>gamstat</td>
<td>mvrnd</td>
<td>poisstat</td>
<td>ttest2</td>
</tr>
<tr>
<td>binopdf</td>
<td>expcdf</td>
<td>geocdf</td>
<td>nanmax</td>
<td>prctile</td>
<td>trimmean</td>
</tr>
<tr>
<td>binornd</td>
<td>exppdf</td>
<td>geoinv</td>
<td>nanmean</td>
<td>predict</td>
<td>unidcdf</td>
</tr>
<tr>
<td>binostat</td>
<td>expinv</td>
<td>geopdf</td>
<td>nanmedian</td>
<td>quantile</td>
<td>unidinv</td>
</tr>
<tr>
<td>chi2cdf</td>
<td>expfit</td>
<td>geostat</td>
<td>nanmin</td>
<td>randg</td>
<td>unidpdf</td>
</tr>
<tr>
<td>chi2gof</td>
<td>geostat</td>
<td>harmmean</td>
<td>nanstd</td>
<td>range</td>
<td>unidrnd</td>
</tr>
<tr>
<td>chi2inv</td>
<td>harmmean</td>
<td>iqr</td>
<td>nansum</td>
<td>raylcdf</td>
<td>unidstat</td>
</tr>
<tr>
<td>chi2inv</td>
<td>iqr</td>
<td>kmeans</td>
<td>nanvar</td>
<td>raylfit</td>
<td>unifinv</td>
</tr>
<tr>
<td>chi2inv</td>
<td>kmeans</td>
<td>knnsearch</td>
<td>normcdf</td>
<td>raylinv</td>
<td>unifrnd</td>
</tr>
<tr>
<td>chi2stat</td>
<td>knnsearch</td>
<td>kurtosis</td>
<td>normfit</td>
<td>raylpdf</td>
<td>unifstat</td>
</tr>
<tr>
<td>cholcov</td>
<td>kurtosis</td>
<td>logncdf</td>
<td>norminv</td>
<td>rayldrnd</td>
<td>vartest</td>
</tr>
<tr>
<td>corrcov</td>
<td>logncdf</td>
<td>lognfit</td>
<td>normlike</td>
<td>raylstat</td>
<td>vartest2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logninv</td>
<td>normpdf</td>
<td>resume</td>
<td>zscore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognlike</td>
<td>normrnrd</td>
<td>skewness</td>
<td>ztest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognpdf</td>
<td>normstat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognrnd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognstat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>loss</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Organizing Data

- “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page 2-3
- “Create Nominal and Ordinal Arrays” on page 2-4
- “Change Category Labels” on page 2-9
- “Reorder Category Levels” on page 2-11
- “Categorize Numeric Data” on page 2-17
- “Merge Category Levels” on page 2-21
- “Add and Drop Category Levels” on page 2-24
- “Plot Data Grouped by Category” on page 2-28
- “Test Differences Between Category Means” on page 2-33
- “Summary Statistics Grouped by Category” on page 2-43
- “Sort Ordinal Arrays” on page 2-45
- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52
- “Grouping Variables” on page 2-57
- “Dummy Indicator Variables” on page 2-60
- “Regression with Categorical Covariates” on page 2-63
- “Create a Dataset Array from Workspace Variables” on page 2-69
- “Create a Dataset Array from a File” on page 2-75
- “Add and Delete Observations” on page 2-82
- “Add and Delete Variables” on page 2-86
- “Access Data in Dataset Array Variables” on page 2-90
- “Select Subsets of Observations” on page 2-96
- “Sort Observations in Dataset Arrays” on page 2-100
- “Merge Dataset Arrays” on page 2-104
- “Stack or Unstack Dataset Arrays” on page 2-108
• “Calculations on Dataset Arrays” on page 2-113
• “Export Dataset Arrays” on page 2-116
• “Clean Messy and Missing Data” on page 2-118
• “Dataset Arrays in the Variables Editor” on page 2-123
• “Dataset Arrays” on page 2-137
• “Index and Search Dataset Arrays” on page 2-140
Other MATLAB Functions Supporting Nominal and Ordinal Arrays

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Notable functions that operate on nominal and ordinal arrays are listed in `nominal` and `ordinal`. In addition to these, many other functions in MATLAB operate on nominal and ordinal arrays in much the same way that they operate on other arrays. A few functions might exhibit special behavior when operating on nominal and ordinal arrays:

- If multiple input arguments are nominal or ordinal arrays, the function often requires that they have the same set of categories, including order if ordinal.
- Relational functions, such as `max` and `gt`, require that the input arrays be `ordinal`.

The following table lists MATLAB functions that operate on nominal and ordinal arrays in addition to other arrays.

<table>
<thead>
<tr>
<th>size</th>
<th>isequal</th>
<th>intersect</th>
<th>histogram</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>isequaln</td>
<td>ismember</td>
<td>pietimes</td>
<td>single</td>
</tr>
<tr>
<td>ndims</td>
<td>eq</td>
<td>setdiff</td>
<td>sort</td>
<td>int8</td>
</tr>
<tr>
<td>numel</td>
<td>ne</td>
<td>setxor</td>
<td>sortrows</td>
<td>int16</td>
</tr>
<tr>
<td>isrow</td>
<td>lt</td>
<td>unique</td>
<td>issorted</td>
<td>int32</td>
</tr>
<tr>
<td>iscolumn</td>
<td>le</td>
<td>union</td>
<td>permute</td>
<td>int64</td>
</tr>
<tr>
<td>cat</td>
<td>ge</td>
<td></td>
<td>reshape</td>
<td>uint8</td>
</tr>
<tr>
<td>horzcat</td>
<td>gt</td>
<td></td>
<td>transpose</td>
<td>uint16</td>
</tr>
<tr>
<td>vertcat</td>
<td></td>
<td></td>
<td>ctranspose</td>
<td>uint32</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td></td>
<td></td>
<td>uint64</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td></td>
<td></td>
<td>char</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td></td>
<td></td>
<td>cellstr</td>
</tr>
</tbody>
</table>

See Also

`nominal` | `ordinal`
Create Nominal and Ordinal Arrays

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Create Nominal Arrays” on page 2-4</td>
</tr>
<tr>
<td>“Create Ordinal Arrays” on page 2-6</td>
</tr>
</tbody>
</table>

Create Nominal Arrays

This example shows how to create nominal arrays using `nominal`.

Load sample data.

The variable `species` is a 150-by-1 cell array of character vectors containing the species name for each observation. The unique species types are setosa, versicolor, and virginica.

```MATLAB
t = load fisheriris
unique(species)
```

```
ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }
```

Create a nominal array.

Convert `species` to a nominal array using the categories occurring in the data.

```MATLAB
speciesNom = nominal(species);
class(speciesNom)
```

```
ans =
    'nominal'
```
Explore category levels.

The nominal array, `speciesNom`, has three levels corresponding to the three unique species. The levels of a nominal array are the set of possible values that its elements can take.

```matlab
getlevels(speciesNom)
ans = 1x3 nominal array
       setosa     versicolor     virginica
```

A nominal array can have more levels than actually appear in the data. For example, a nominal array named `AllSizes` might have levels small, medium, and large, but you might only have observations that are medium and large in your data. To see which levels of a nominal array are actually present in the data, use `unique`, for instance, `unique(AllSizes)`.

Explore category labels.

Each level has a label. By default, `nominal` labels the category levels with the values occurring in the data. For `speciesNom`, these labels are the species types.

```matlab
getlabels(speciesNom)
ans = 1x3 cell array
    {'setosa'}    {'versicolor'}    {'virginica'}
```

Specify your own category labels.

You can specify your own labels for each category level. You can specify labels when you create the nominal array.

```matlab
speciesNom2 = nominal(species,{'seto','vers','virg'});
getlabels(speciesNom2)
ans = 1x3 cell array
    {'seto'}    {'vers'}    {'virg'}
```

You can also change category labels on an existing nominal array using `setlabels`
Verify new category labels.

Verify that the new labels correspond to the original labels in `speciesNom`.

```matlab
isequal(speciesNom=='setosa',speciesNom2=='seto')
```

```matlab
ans = logical
   1
```

The logical value 1 indicates that the two labels, 'setosa' and 'seto', correspond to the same observations.

Create Ordinal Arrays

This example shows how to create ordinal arrays using `ordinal`.

Load sample data.

```matlab
AllSizes = {'medium','large','small','small','medium','large','medium','small'};
```

The created variable, `AllSizes`, is a cell array of character vectors containing size measurements on eight objects.

Create an ordinal array.

Create an ordinal array with category levels and labels corresponding to the values in the cell array (the default levels and labels).

```matlab
sizeOrd = ordinal(AllSizes);
getlevels(sizeOrd)
```

```matlab
ans = 1x3 ordinal array
   large     medium     small
```

Explore category labels.

By default, `ordinal` uses the original character vectors as category labels. The default order of the categories is ascending alphabetical order.

```matlab
getlabels(sizeOrd)
```
ans = 1x3 cell array
 {'large'} {'medium'} {'small'}

Add additional categories.

Suppose that you want to include additional levels for the ordinal array, xsmall and xlarge, even though they do not occur in the original data. To specify additional levels, use the third input argument to `ordinal`.

```
sizeOrd2 = ordinal(AllSizes,{},...
    {'xsmall','small','medium','large','xlarge'});
```

```
getlevels(sizeOrd2)
ans = 1x5 ordinal array
    xsmall      small      medium      large      xlarge
```

Explore category labels.

To see which levels are actually present in the data, use `unique`.

```
unique(sizeOrd2)
ans = 1x3 ordinal array
    small      medium      large
```

Specify the category order.

Convert `AllSizes` to an ordinal array with categories small < medium < large. Generally, an ordinal array is distinct from a nominal array because there is a natural ordering for levels of an ordinal array. You can use the third input argument to `ordinal` to specify the ascending order of the levels. Here, the order of the levels is smallest to largest.

```
sizeOrd = ordinal(AllSizes,{},{'small','medium','large'});
```

```
getlevels(sizeOrd)
ans = 1x3 ordinal array
    small      medium      large
```

The second input argument for `ordinal` is a list of labels for the category levels. When you use braces `{}` for the level labels, `ordinal` uses the labels specified in the third input argument.
argument (the labels come from the levels present in the data if only one input argument is used).

Compare elements.

Verify that the first object (with size medium) is smaller than the second object (with size large).

```matlab
sizeOrd(1) < sizeOrd(2)
```

```matlab
ans = logical
1
```

The logical value 1 indicates that the inequality holds.

See Also

`getlabels` | `getlevels` | `nominal` | `ordinal`

Related Examples

- “Change Category Labels” on page 2-9
- “Reorder Category Levels” on page 2-11
- “Merge Category Levels” on page 2-21
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

More About

- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Change Category Labels

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Change Category Labels

This example shows how to change the labels for category levels in categorical arrays using `setlabels`. You also have the option to specify labels when creating a categorical array.

Load sample data.

The variable `Cylinders` contains the number of cylinders in 100 sample cars.

```matlab
load carsmall
unique(Cylinders)
```

```
ans = 3×1
   4
   6
   8
```

The sample has 4-, 6-, and 8-cylinder cars.

Create an ordinal array.

Convert `Cylinders` to a nominal array with the default category labels (taken from the values in the data).

```matlab
cyl = ordinal(Cylinders);
getlabels(cyl)
```

```
ans = 1x3 cell array
    {'4'}    {'6'}    {'8'}
```

`ordinal` created labels using the integer values in `Cylinders`, but you should provide labels for numeric data.
Change category labels.

Relabel the categories in cyl to Four, Six, and Eight.

cyl = setlabels(cyl ,{'Four','Six','Eight'});
getlabels(cyl)

ans = 1x3 cell array
 {'Four'} {'Six'} {'Eight'}

Alternatively, you can specify category labels when you create a nominal or ordinal array using the second input argument, for example by specifying ordinal(Cylinders, {'Four','Six','Eight'}).

See Also
getlabels | nominal | ordinal | setlabels

Related Examples
- “Reorder Category Levels” on page 2-11
- “Add and Drop Category Levels” on page 2-24
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

More About
- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Reorder Category Levels

The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

In this section...

“Reorder Category Levels in Ordinal Arrays” on page 2-11
“Reorder Category Levels in Nominal Arrays” on page 2-12

Reorder Category Levels in Ordinal Arrays

This example shows how to reorder the category levels in an ordinal array using reorderlevels.

Load sample data.

AllSizes = {'medium','large','small','small','medium',
 'large','medium','small'};

The created variable, AllSizes, is a cell array of character vectors containing size measurements on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array without specifying the order of the category levels.

size = ordinal(AllSizes);
getlevels(size)

ans = 1x3 ordinal array
 large medium small

By default, the categories are ordered by their labels in ascending alphabetical order, large < medium < small.
Compare elements.

Check whether or not the first object (which has size medium) is smaller than the second object (which has size large).

\[\text{size}(1) < \text{size}(2) \]

\[\text{ans} = \text{logical} \]

\[0 \]

The logical value 0 indicates that the medium object is not smaller than the large object.

Reorder category levels.

Reorder the category levels so that small < medium < large.

\[\text{size} = \text{reorderlevels}(\text{size},\{'\text{small}',\'\text{medium}',\'\text{large}'\}); \]

\[\text{getlevels}(\text{size}) \]

\[\text{ans} = 1x3 \text{ ordinal array} \]

\[\begin{array}{ccc}
\text{small} & \text{medium} & \text{large} \\
\end{array} \]

Compare elements.

Verify that the first object is now smaller than the second object.

\[\text{size}(1) < \text{size}(2) \]

\[\text{ans} = \text{logical} \]

\[1 \]

The logical value 1 indicates that the expected inequality now holds.

Reorder Category Levels in Nominal Arrays

This example shows how to reorder the category levels in nominal arrays using `reorderlevels`. By definition, nominal array categories have no natural ordering. However, you might want to change the order of levels for display or analysis purposes. For example, when fitting a regression model with categorical covariates, `fitlm` uses the first level of a nominal independent variable as the reference category.
Load sample data.

The dataset array, hospital, contains variables measured on 100 sample patients. The variable Weight contains the weight of each patient. The variable Sex is a nominal variable containing the gender, Male or Female, for each patient.

load hospital
getlevels(hospital.Sex)

ans = 1x2 nominal array
 Female Male

By default, the order of the nominal categories is in ascending alphabetical order of the labels.

Plot data grouped by category level.

Draw box plots of weight, grouped by gender.

figure
boxplot(hospital.Weight,hospital.Sex)
title('Weight by Gender')
The box plots appear in the same alphabetical order returned by `getlevels`.

Change the category order.

Change the order of the category levels.

```matlab
hospital.Sex = reorderlevels(hospital.Sex,{'Male','Female'});
getlevels(hospital.Sex)
```

```
ans = 1x2 nominal array
    Male    Female
```

The levels are in the newly specified order.
Plot data in new order.

Draw box plots of weight by gender.

```matlab
figure
boxplot(hospital.Weight,hospital.Sex)
title('Weight by Gender')
```

The order of the box plots corresponds to the new level order.

See Also
fitlm | getlevels | nominal | ordinal | reorderlevels
Related Examples

• “Change Category Labels” on page 2-9
• “Merge Category Levels” on page 2-21
• “Add and Drop Category Levels” on page 2-24
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

More About

• “Nominal and Ordinal Arrays” on page 2-47
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Categorize Numeric Data

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Categorize Numeric Data

This example shows how to categorize numeric data into a categorical ordinal array using `ordinal`. This is useful for discretizing continuous data.

Load sample data.

The dataset array, `hospital`, contains variables measured on a sample of patients. Compute the minimum, median, and maximum of the variable `Age`.

```matlab
load hospital
quantile(hospital.Age,[0,.5,1])
```

```matlab
ans = 1×3
     25    39    50
```

The patient ages range from 25 to 50.

Convert a numeric array to an ordinal array.

Group patients into the age categories Under 30, 30-39, Over 40.

```matlab
hospital.AgeCat = ordinal(hospital.Age,{'Under 30','30-39','Over 40'},... [] ,[25,30,40,50]);
getlevels(hospital.AgeCat)
```

```matlab
ans = 1x3 ordinal array
Under 30    30-39    Over 40
```

The last input argument to `ordinal` has the endpoints for the categories. The first category begins at age 25, the second at age 30, and so on. The last category contains ages 40 and above, so begins at 40 and ends at 50 (the maximum age in the data set). To
specify three categories, you must specify four endpoints (the last endpoint is the upper bound of the last category).

Explore categories.

Display the age and age category for the second patient.

dataset({hospital.Age(2), 'Age'}, ...
 {hospital.AgeCat(2), 'AgeCategory'}

ans =
 Age AgeCategory
 43 Over 40

When you discretize a numeric array into categories, the categorical array loses all information about the actual numeric values. In this example, AgeCat is not numeric, and you cannot recover the raw data values from it.

Categorize a numeric array into quartiles.

The variable Weight has weight measurements for the sample patients. Categorize the patient weights into four categories, by quartile.

\[
p = 0:.25:1;
\]

breaks = quantile(hospital.Weight, p);

hospital.WeightQ = ordinal(hospital.Weight, {'Q1', 'Q2', 'Q3', 'Q4'}, ...
 [], breaks);

getlevels(hospital.WeightQ)

ans = 1x4 ordinal array
 Q1 Q2 Q3 Q4

Explore categories.

Display the weight and weight quartile for the second patient.

dataset({hospital.Weight(2), 'Weight'}, ...
 {hospital.WeightQ(2), 'WeightQuartile'}

ans =
 Weight WeightQuartile
 163 Q3
Summary statistics grouped by category levels.

Compute the mean systolic and diastolic blood pressure for each age and weight category.

```
grpstats(hospital,{'AgeCat','WeightQ'},'mean','DataVars','BloodPressure')
```

```
ans =

<table>
<thead>
<tr>
<th>AgeCat</th>
<th>WeightQ</th>
<th>GroupCount</th>
<th>mean_BloodPressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 30_Q1</td>
<td>Under 30</td>
<td>Q1</td>
<td>6</td>
</tr>
<tr>
<td>Under 30_Q2</td>
<td>Under 30</td>
<td>Q2</td>
<td>3</td>
</tr>
<tr>
<td>Under 30_Q3</td>
<td>Under 30</td>
<td>Q3</td>
<td>2</td>
</tr>
<tr>
<td>Under 30_Q4</td>
<td>Under 30</td>
<td>Q4</td>
<td>4</td>
</tr>
<tr>
<td>30-39_Q1</td>
<td>30-39</td>
<td>Q1</td>
<td>12</td>
</tr>
<tr>
<td>30-39_Q2</td>
<td>30-39</td>
<td>Q2</td>
<td>9</td>
</tr>
<tr>
<td>30-39_Q3</td>
<td>30-39</td>
<td>Q3</td>
<td>9</td>
</tr>
<tr>
<td>30-39_Q4</td>
<td>30-39</td>
<td>Q4</td>
<td>11</td>
</tr>
<tr>
<td>Over 40_Q1</td>
<td>Over 40</td>
<td>Q1</td>
<td>7</td>
</tr>
<tr>
<td>Over 40_Q2</td>
<td>Over 40</td>
<td>Q2</td>
<td>13</td>
</tr>
<tr>
<td>Over 40_Q3</td>
<td>Over 40</td>
<td>Q3</td>
<td>14</td>
</tr>
<tr>
<td>Over 40_Q4</td>
<td>Over 40</td>
<td>Q4</td>
<td>10</td>
</tr>
</tbody>
</table>
```

The variable `BloodPressure` is a matrix with two columns. The first column is systolic blood pressure, and the second column is diastolic blood pressure. The group in the sample with the highest mean diastolic blood pressure, 87.273, is aged 30-39 and in the highest weight quartile, 30-39_Q4.

See Also

- `grpstats`
- `ordinal`

Related Examples

- “Create Nominal and Ordinal Arrays” on page 2-4
- “Merge Category Levels” on page 2-21
- “Plot Data Grouped by Category” on page 2-28
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

More About

- “Nominal and Ordinal Arrays” on page 2-47
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Merge Category Levels

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Merge Category Levels

This example shows how to merge categories in a nominal or ordinal array using `mergelevels`. This is useful for collapsing categories with few observations.

Load sample data.

load carsmall

Create a nominal array.

The variable `Origin` is a character array containing the country of origin for 100 sample cars. Convert `Origin` to a nominal array.

Origin = nominal(Origin);
getlevels(Origin)

ans = 1x6 nominal array
 France Germany Italy Japan Sweden USA

There are six unique countries of origin in the data.

Tabulate category counts.

Explore the elements of the nominal array.

tabulate(Origin)

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>4</td>
<td>4.00%</td>
</tr>
<tr>
<td>Germany</td>
<td>9</td>
<td>9.00%</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>1.00%</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>15.00%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>2.00%</td>
</tr>
<tr>
<td>USA</td>
<td>69</td>
<td>69.00%</td>
</tr>
</tbody>
</table>
There are relatively few observations in each European country.

Merge categories.

Merge the categories France, Germany, Italy, and Sweden into one category called Europe.

```matlab
Origin = mergelevels(Origin,{'France','Germany','Italy','Sweden'},...
                   'Europe');
```

```matlab
getlevels(Origin)
```

```
ans = 1x3 nominal array
     Europe   Japan    USA
```

The variable `Origin` now has only three category levels.

Tabulate category counts.

Explore the elements of the merged categories.

```matlab
tabulate(Origin)
```

```
Value | Count | Percent
-----|-------|--------
Europe | 16 | 16.00%
Japan  | 15  | 15.00%
USA    | 69  | 69.00%
```

The category `Europe` has the 16% of observations that were previously distributed across four countries.

See Also
mmergelevels | nominal

Related Examples
- “Create Nominal and Ordinal Arrays” on page 2-4
- “Add and Drop Category Levels” on page 2-24
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52
More About

- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Add and Drop Category Levels

This example shows how to add and drop levels from a nominal or ordinal array.

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Load sample data.

```matlab
load('examgrades')
```

The array `grades` contains exam scores from 0 to 100 on five exams for a sample of 120 students.

Create an ordinal array.

Assign letter grades to each student for each test using these categories.

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>A+</td>
</tr>
<tr>
<td>90–99</td>
<td>A</td>
</tr>
<tr>
<td>80–89</td>
<td>B</td>
</tr>
<tr>
<td>70–79</td>
<td>C</td>
</tr>
<tr>
<td>60–69</td>
<td>D</td>
</tr>
</tbody>
</table>

```matlab
letter = ordinal(grades,{['D','C','B','A','A+']},[],[60,70,80,90,100,100]);
getlevels(letter)
```

```matlab
ans =
    D    C    B    A    A+
```

There are five grade categories, in the specified order D < C < B < A < A+.
Check for undefined categories.

Check whether or not there are any exam scores that do not fall into the five letter categories.

```matlab
any(isundefined(letter))
```

```matlab
ans =
    1     0     1     1     0
```

Recall that there are five exam scores for each student. The previous command returns a logical value for each of the five exams, indicating whether there are any scores that are `<undefined>`. There are scores for the first, third, and fourth exams that are `<undefined>`, that is, missing a category level.

Identify elements in undefined categories.

You can find the exam scores that do not have a letter grade using the `isundefined` logical condition.

```matlab
grades(isundefined(letter))
```

```matlab
ans =
    55
    59
    58
    59
    54
    57
    56
    59
    59
    50
    59
    52
```

The exam scores that are in the 50s do not have a letter grade.

Add a new category.

Put all scores that are `<undefined>` into a new category labeled D-.
letter(isundefined(letter)) = 'D-';
getlevels(letter)

Warning: Categorical level 'D-' being added.
> In categorical.subsasgn at 55

ans =
 D C B A A+ D-

The ordinal variable, letter, has a new category added to the end.

Reorder category levels.

Reorder the categories so that D- < D.

letter = reorderlevels(letter,{'D-','D','C','B','A','A+'});
getlevels(letter)

ans =
 D- D C B A A+

Compare elements.

Now that all exam scores have a letter grade, count how many students received a higher letter grade on the second test than on the first test.

sum(letter(:,2) > letter(:,1))

ans =
 32

Thirty-two students improved their letter grade between the first two exams.

Explore categories.

Count the number of A+ scores in each of the five exams.

sum(letter=='A+')

ans =
 0 0 0 0 0 0
There are no A+ scores on any of the five exams.

Drop a category.

Drop the category A+ from the ordinal variable, `letter`

```matlab
letter = droplevels(letter,'A+');
getlevels(letter)
```

```
ans =
    D-    D    C    B    A
```

Category A+ is no longer in the ordinal variable, `letter`.

See Also
droplevels | ordinal | reorderlevels

Related Examples

- “Create Nominal and Ordinal Arrays” on page 2-4
- “Reorder Category Levels” on page 2-11
- “Merge Category Levels” on page 2-21
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

More About

- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Plot Data Grouped by Category

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Plot Data Grouped by Category

This example shows how to plot data grouped by the levels of a categorical variable.

Load sample data.

load carsmall

The variable `Acceleration` contains acceleration measurements on 100 sample cars. The variable `Origin` is a character array containing the country of origin for each car.

Create a nominal array.

Convert `Origin` to a nominal array.

```
Origin = nominal(Origin);
getlevels(Origin)
```

```
ans = 1x6 nominal array
      France    Germany    Italy    Japan    Sweden    USA
```

There are six unique countries of origin in the sample. By default, nominal orders the countries in ascending alphabetical order.

Plot data grouped by category.

Draw box plots for `Acceleration`, grouped by `Origin`.

```
figure
boxplot(Acceleration,Origin)
title('Acceleration, Grouped by Country of Origin')
```
The box plots appear in the same order as the categorical levels (use `reorderlevels` to change the order of the categories).

Few observations have Italy as the country of origin.

Tabulate category counts.

Tabulate the number of sample cars from each country.

```
tabulate(Origin)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>4</td>
<td>4.00%</td>
</tr>
<tr>
<td>Germany</td>
<td>9</td>
<td>9.00%</td>
</tr>
<tr>
<td>Country</td>
<td>Count</td>
<td>Percent</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>1.00%</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>15.00%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>2.00%</td>
</tr>
<tr>
<td>USA</td>
<td>69</td>
<td>69.00%</td>
</tr>
</tbody>
</table>

Only one car is made in Italy.

Drop a category.

Delete the Italian car from the sample.

```matlab
Acceleration2 = Acceleration(Origin~='Italy');
Origin2 = Origin(Origin~='Italy');
getlevels(Origin2)
```

```plaintext
ans = 1x6 nominal array
      France  Germany      Italy      Japan      Sweden      USA
```

Even though the car from Italy is no longer in the sample, the nominal variable, `Origin2`, still has the category `Italy`. Note that this is intentional—the levels of a categorical array do not necessarily coincide with the values.

Drop a category level.

Use `droplevels` to remove the `Italy` category.

```matlab
Origin2 = droplevels(Origin2,'Italy');
tabulate(Origin2)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>4</td>
<td>4.04%</td>
</tr>
<tr>
<td>Germany</td>
<td>9</td>
<td>9.09%</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>15.15%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>2.02%</td>
</tr>
<tr>
<td>USA</td>
<td>69</td>
<td>69.70%</td>
</tr>
</tbody>
</table>

The `Italy` category is no longer in the nominal array, `Origin2`.

Plot data grouped by category.

Draw box plots of `Acceleration2`, grouped by `Origin2`.

```matlab
figure
boxplot(Acceleration2,Origin2)
title('Acceleration, Grouped by Country of Origin')
The plot no longer includes the car from Italy.

**See Also**

boxplot | droplevels | nominal | reorderlevels

**Related Examples**

- “Test Differences Between Category Means” on page 2-33
- “Summary Statistics Grouped by Category” on page 2-43
- “Regression with Categorical Covariates” on page 2-63
More About

- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
- “Grouping Variables” on page 2-57
Test Differences Between Category Means

This example shows how to test for significant differences between category (group) means using a $t$-test, two-way ANOVA (analysis of variance), and ANOCOVA (analysis of covariance) analysis.

The goal is determining if the expected miles per gallon for a car depends on the decade in which it was manufactured, or the location where it was manufactured.

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Load sample data.**

```matlab
load('carsmall')
unique(Model_Year)
```

```
an =
 70
 76
 82
```

The variable MPG has miles per gallon measurements on a sample of 100 cars. The variables Model_Year and Origin contain the model year and country of origin for each car.

The first factor of interest is the decade of manufacture. There are three manufacturing years in the data.

**Create a factor for the decade of manufacture.**

Create an ordinal array named Decade by merging the observations from years 70 and 76 into a category labeled 1970s, and putting the observations from 82 into a category labeled 1980s.

```matlab
Decade = ordinal(Model_Year,{'1970s','1980s'},[],[70 77 82]);
getlevels(Decade)
```
Plot data grouped by category.

Draw a box plot of miles per gallon, grouped by the decade of manufacture.

```matlab
figure()
boxplot(MPG,Decade)
title('Miles per Gallon, Grouped by Decade of Manufacture')
```

The box plot suggests that miles per gallon is higher in cars manufactured during the 1980s compared to the 1970s.

Compute summary statistics.

Compute the mean and variance of miles per gallon for each decade.

```matlab
[xbar,s2,grp] = grpstats(MPG,Decade,{'mean','var','gname'})
```
This output shows that the mean miles per gallon in the 1980s was 31.71, compared to 19.79 in the 1970s. The variances in the two groups are similar.

**Conduct a two-sample t-test for equal group means.**

Conduct a two-sample $t$-test, assuming equal variances, to test for a significant difference between the group means. The hypothesis is

\[
H_0 : \mu_{70} = \mu_{80} \\
H_A : \mu_{70} \neq \mu_{80}.
\]

```matlab
MPG70 = MPG(Decade=='1970s');
MPG80 = MPG(Decade=='1980s');
[h,p] = ttest2(MPG70,MPG80)
```

$h = 1$

$p = 3.4809e-15$

The logical value 1 indicates the null hypothesis is rejected at the default 0.05 significance level. The p-value for the test is very small. There is sufficient evidence that
the mean miles per gallon in the 1980s differs from the mean miles per gallon in the 1970s.

**Create a factor for the location of manufacture.**

The second factor of interest is the location of manufacture. First, convert `Origin` to a nominal array.

```
Location = nominal(Origin);
tabulate(Location)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>4</td>
<td>4.00%</td>
</tr>
<tr>
<td>Germany</td>
<td>9</td>
<td>9.00%</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>1.00%</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>15.00%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>2.00%</td>
</tr>
<tr>
<td>USA</td>
<td>69</td>
<td>69.00%</td>
</tr>
</tbody>
</table>

There are six different countries of manufacture. The European countries have relatively few observations.

**Merge categories.**

Combine the categories `France`, `Germany`, `Italy`, and `Sweden` into a new category named `Europe`.

```
Location = mergelevels(Location, ...)
 {'France','Germany','Italy','Sweden'},'Europe');
tabulate(Location)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>15</td>
<td>15.00%</td>
</tr>
<tr>
<td>USA</td>
<td>69</td>
<td>69.00%</td>
</tr>
<tr>
<td>Europe</td>
<td>16</td>
<td>16.00%</td>
</tr>
</tbody>
</table>

**Compute summary statistics.**

Compute the mean miles per gallon, grouped by the location of manufacture.

```
[xbar,grp] = grpstats(MPG,Location,{'mean','gname'})
xbar =
```
This result shows that average miles per gallon is lowest for the sample of cars manufactured in the U.S.

**Conduct two-way ANOVA.**

Conduct a two-way ANOVA to test for differences in expected miles per gallon between factor levels for Decade and Location.

The statistical model is

\[ MPG_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad i = 1, 2; j = 1, 2, 3, \]

where \( MPG_{ij} \) is the response, miles per gallon, for cars made in decade \( i \) at location \( j \). The treatment effects for the first factor, decade of manufacture, are the \( \alpha_i \) terms (constrained to sum to zero). The treatment effects for the second factor, location of manufacture, are the \( \beta_j \) terms (constrained to sum to zero). The \( \epsilon_{ij} \) are uncorrelated, normally distributed noise terms.

The hypotheses to test are equality of decade effects,

\[
H_0 : \alpha_1 = \alpha_2 = 0 \\
H_A : \text{at least one } \alpha_i \neq 0,
\]

and equality of location effects,

\[
H_0 : \beta_1 = \beta_2 = \beta_3 = 0 \\
H_A : \text{at least one } \beta_j \neq 0.
\]

You can conduct a multiple-factor ANOVA using anovan.
This output shows the results of the two-way ANOVA. The p-value for testing the equality of decade effects is $2.88503 \times 10^{-18}$, so the null hypothesis is rejected at the 0.05 significance level. The p-value for testing the equality of location effects is $7.40416 \times 10^{-10}$, so this null hypothesis is also rejected.

**Conduct ANOCOVA analysis.**

A potential confounder in this analysis is car weight. Cars with greater weight are expected to have lower gas mileage. Include the variable `Weight` as a continuous covariate in the ANOVA; that is, conduct an ANOCOVA analysis.

Assuming parallel lines, the statistical model is

$$MPG_{ijk} = \mu + \alpha_i + \beta_j + \gamma Weight_{ijk} + \epsilon_{ijk}, \ i = 1,2; \ j = 1,2,3; \ k = 1,...,100.$$

The difference between this model and the two-way ANOVA model is the inclusion of the continuous predictor, `Weight_{ijk}`, the weight for the $k$th car, which was made in the $i$th decade and in the $j$th location. The slope parameter is $\gamma$.

Add the continuous covariate as a third group in the second `anovan` input argument. Use the name-value pair argument `Continuous` to specify that `Weight` (the third group) is continuous.

```matlab
anovan(MPG,{Decade,Location,Weight},'Continuous',3,...
 'varnames',{'Decade','Location','Weight'});
```
This output shows that when car weight is considered, there is insufficient evidence of a manufacturing location effect (\( p\)-value = 0.1044).

**Use interactive tool.**

You can use the interactive `aoctool` to explore this result.

```
aoctool(Weight,MPG,Location);
```

This command opens three dialog boxes. In the ANOCOVA Prediction Plot dialog box, select the **Separate Means** model.
This output shows that when you do not include Weight in the model, there are fairly large differences in the expected miles per gallon among the three manufacturing locations. Note that here the model does not adjust for the decade of manufacturing.

Now, select the Parallel Lines model.
When you include Weight in the model, the difference in expected miles per gallon among the three manufacturing locations is much smaller.

See Also
anovan | aoctool | boxplot | grpstats | nominal | ordinal | ttest2

Related Examples
- “Plot Data Grouped by Category” on page 2-28
- “Summary Statistics Grouped by Category” on page 2-43
- “Regression with Categorical Covariates” on page 2-63
More About

- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
- “Grouping Variables” on page 2-57
Summary Statistics Grouped by Category

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Summary Statistics Grouped by Category

This example shows how to compute summary statistics grouped by levels of a categorical variable. You can compute group summary statistics for a numeric array or a dataset array using `grpstats`.

**Load sample data.**

```matlab
load hospital
```

The dataset array, `hospital`, has 7 variables (columns) and 100 observations (rows).

**Compute summary statistics by category.**

The variable `Sex` is a nominal array with two levels, Male and Female. Compute the minimum and maximum weights for each gender.

```matlab
stats = grpstats(hospital,'Sex',{'min','max'},'DataVars','Weight')
```

```plaintext
stats =

 Sex GroupCount min_Weight max_Weight
 Female Female 53 111 147
 Male Male 47 158 202
```

The dataset array, `stats`, has observations corresponding to the levels of the variable `Sex`. The variable `min_Weight` contains the minimum weight for each group, and the variable `max_Weight` contains the maximum weight for each group.

**Compute summary statistics by multiple categories.**

The variable `Smoker` is a logical array with value `1` for smokers and value `0` for nonsmokers. Compute the minimum and maximum weights for each gender and smoking combination.
stats = grpstats(hospital,{'Sex','Smoker'},{'min','max'},... 'DataVars','Weight')

stats =

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>Smoker</th>
<th>GroupCount</th>
<th>min_Weight</th>
<th>max_Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female_0</td>
<td>Female</td>
<td>false</td>
<td>40</td>
<td>111</td>
<td>147</td>
</tr>
<tr>
<td>Female_1</td>
<td>Female</td>
<td>true</td>
<td>13</td>
<td>115</td>
<td>146</td>
</tr>
<tr>
<td>Male_0</td>
<td>Male</td>
<td>false</td>
<td>26</td>
<td>158</td>
<td>194</td>
</tr>
<tr>
<td>Male_1</td>
<td>Male</td>
<td>true</td>
<td>21</td>
<td>164</td>
<td>202</td>
</tr>
</tbody>
</table>

The dataset array, stats, has an observation row for each combination of levels of Sex and Smoker in the original data.

See Also

dataset | grpstats | nominal

Related Examples

- “Plot Data Grouped by Category” on page 2-28
- “Test Differences Between Category Means” on page 2-33
- “Calculations on Dataset Arrays” on page 2-113

More About

- “Grouping Variables” on page 2-57
- “Nominal and Ordinal Arrays” on page 2-47
- “Dataset Arrays” on page 2-137
Sort Ordinal Arrays

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

This example shows how to determine sorting order for ordinal arrays.

Load sample data.

AllSizes = {'medium','large','small','small','medium','large','medium','small'};

The created variable, AllSizes, is a cell array of character vectors containing size measurements on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array with levels small < medium < large.

AllSizes = ordinal(AllSizes,{},{'small','medium','large'});

getlevels(AllSizes)

ans = 1x3 ordinal array
    small    medium    large

Sort the ordinal array.

When you sort ordinal arrays, the sorted observations are in the same order as the category levels.

sizeSort = sort(AllSizes);
sizeSort(:)

ans = 8x1 ordinal array
    small
    small
    small
    medium
The sorted ordinal array, `sizeSort`, contains the observations ordered from small to large.

**See Also**
- `ordinal`

**Related Examples**
- “Reorder Category Levels” on page 2-11
- “Add and Drop Category Levels” on page 2-24

**More About**
- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Nominal and Ordinal Arrays

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

In this section...

“What Are Nominal and Ordinal Arrays?” on page 2-47
“Nominal and Ordinal Array Conversion” on page 2-47

What Are Nominal and Ordinal Arrays?

Nominal and ordinal arrays are Statistics and Machine Learning Toolbox data types for storing categorical values. Nominal and ordinal arrays store data that have a finite set of discrete levels, which might or might not have a natural order.

- ordinal arrays store categorical values with ordered levels. For example, an ordinal variable might have levels {small, medium, large}.
- nominal arrays store categorical values with unordered levels. For example, a nominal variable might have levels {red, blue, green}.

In experimental design, these variables are often called factors, with ordered or unordered factor levels.

Nominal and ordinal arrays are convenient and memory efficient containers for storing categorical variables. In addition to storing information about which category each observation belongs to, nominal and ordinal arrays store descriptive metadata including category labels and order.

Nominal and ordinal arrays have associated methods that streamline common tasks such as merging categories, adding or dropping levels, and changing level labels.

Nominal and Ordinal Array Conversion

You can easily convert to and from nominal or ordinal arrays. To create a nominal or ordinal array, use nominal or ordinal, respectively. You can convert these data types to nominal or ordinal arrays:
• Numeric arrays
• Logical arrays
• Character arrays
• String arrays
• Cell arrays of character vectors

**See Also**
nominal | ordinal

**Related Examples**
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Summary Statistics Grouped by Category” on page 2-43
• “Plot Data Grouped by Category” on page 2-28
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

**More About**
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
• “Grouping Variables” on page 2-57
Advantages of Using Nominal and Ordinal Arrays

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

## In this section...

| “Manipulate Category Levels” on page 2-49 |
| “Analysis Using Nominal and Ordinal Arrays” on page 2-49 |
| “Reduce Memory Requirements” on page 2-50 |

### Manipulate Category Levels

When working with categorical variables and their levels, you’ll encounter some typical challenges. This table summarizes the functions you can use with nominal or ordinal arrays to manipulate category levels. For additional functions, type `methods nominal` or `methods ordinal` at the command line, or see the nominal and ordinal reference pages.

<table>
<thead>
<tr>
<th>Task</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add new category levels</td>
<td><code>addlevels</code></td>
</tr>
<tr>
<td>Drop category levels</td>
<td><code>droplevels</code></td>
</tr>
<tr>
<td>Combine category levels</td>
<td><code>mergelevels</code></td>
</tr>
<tr>
<td>Reorder category levels</td>
<td><code>reorderlevels</code></td>
</tr>
<tr>
<td>Count the number of observations in each category</td>
<td><code>levelcounts</code></td>
</tr>
<tr>
<td>Change the label or name of category levels</td>
<td><code>setlabels</code></td>
</tr>
<tr>
<td>Create an interaction factor</td>
<td><code>times</code></td>
</tr>
<tr>
<td>Find observations that are not in a defined category</td>
<td><code>isundefined</code></td>
</tr>
</tbody>
</table>

### Analysis Using Nominal and Ordinal Arrays

You can use nominal and ordinal arrays in a variety of statistical analyses. For example, you might want to compute descriptive statistics for data grouped by the category levels,
conduct statistical tests on differences between category means, or perform regression analysis using categorical predictors.

Statistics and Machine Learning Toolbox functions that accept a grouping variable as an input argument accept nominal and ordinal arrays. This includes descriptive functions such as:

- `grpstats`
- `gscatter`
- `boxplot`
- `gplotmatrix`

You can also use nominal and ordinal arrays as input arguments to analysis functions and methods based on models, such as:

- `anovan`
- `fitlm`
- `fitglm`

When you use a nominal or ordinal array as a predictor in these functions, the fitting function automatically recognizes the categorical predictor, and constructs appropriate dummy indicator variables for analysis. Alternatively, you can construct your own dummy indicator variables using `dummyvar`.

**Reduce Memory Requirements**

The levels of categorical variables are often defined as text, which can be costly to store and manipulate in a cell array of character vectors or `char` array. Nominal and ordinal arrays separately store category membership and category labels, greatly reducing the amount of memory required to store the variable.

For example, load some sample data:

```matlab
load('fisheriris')
```

The variable `species` is a cell array of character vectors requiring 19,300 bytes of memory.
Convert `species` to a nominal array:

```markdown
species = nominal(species);
```

There is a 95% reduction in memory required to store the variable.

**See Also**

nominal | ordinal

**Related Examples**

- “Create Nominal and Ordinal Arrays” on page 2-4
- “Test Differences Between Category Means” on page 2-33
- “Regression with Categorical Covariates” on page 2-63
- “Index and Search Using Nominal and Ordinal Arrays” on page 2-52

**More About**

- “Nominal and Ordinal Arrays” on page 2-47
- “Grouping Variables” on page 2-57
- “Dummy Indicator Variables” on page 2-60
Index and Search Using Nominal and Ordinal Arrays

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Index By Category**

It is often useful to index and search data by its category, or group. If you store categories as labels inside a cell array of character vectors or char array, it can be difficult to index and search the categories. When using nominal or ordinal arrays, you can easily:

- **Index elements from particular categories.** For both nominal and ordinal arrays, you can use the logical operators == and ~= to index the observations that are in, or not in, a particular category. For ordinal arrays, which have an encoded order, you can also use inequalities, >, >=, <, and <=, to find observations in categories above or below a particular category.

- **Search for members of a category.** In addition to the logical operator ==, you can use ismember to find observations in a particular group.

- **Find elements that are not in a defined category.** Nominal and ordinal arrays indicate which elements do not belong to a defined category by <undefined>. You can use isundefined to find observations missing a category.

- **Delete observations that are in a particular category.** You can use logical operators to include or exclude observations from particular categories. Even if you remove all observations from a category, the category level remains defined unless you remove it using droplevels.

**Common Indexing and Searching Methods**

This example shows several common indexing and searching methods.

Load the sample data.

```matlab
load carsmall;
```

Convert the char array, Origin, to a nominal array. This variable contains the country of origin, or manufacture, for each sample car.
Origin = nominal(Origin);

Search for observations in a category. Determine if there are any cars in the sample that were manufactured in Canada.

any(Origin=='Canada')
ans = logical
  0

There are no sample cars manufactured in Canada.

List the countries that are levels of Origin.

getlevels(Origin)
ans = 1x6 nominal array
       France    Germany     Italy     Japan     Sweden      USA

Index elements that are in a particular category. Plot a histogram of the acceleration measurements for cars made in the U.S.

figure();
histogram(Acceleration(Origin=='USA'))
title('Acceleration of Cars Made in the USA')
Delete observations that are in a particular category. Delete all cars made in Sweden from `Origin`.

```matlab
Origin = Origin(Origin~='Sweden');
any(ismember(Origin,'Sweden'))
```

```
ans = logical
 0
```

The cars made in Sweden are deleted from `Origin`, but Sweden is still a level of `Origin`.

```matlab
getlevels(Origin)
```
ans = 1x6 nominal array
    France    Germany   Italy    Japan    Sweden    USA

Remove Sweden from the levels of Origin.

Origin = droplevels(Origin,'Sweden');
getlevels(Origin)
ans = 1x5 nominal array
    France    Germany   Italy    Japan    USA

Check for observations not in a defined category. Get the indices for the cars made in France.

ix = find(Origin=='France')
ix = 4x1
    11
    27
    39
    61

There are four cars from France. Remove France from the levels of Origin.

Origin = droplevels(Origin,'France');

This returns a warning indicating that you are dropping a category level that has elements in it. These observations are no longer in a defined category, indicated by undefined.

Origin(ix)
ans = 4x1 nominal array
<undefined>
<undefined>
<undefined>
<undefined>

You can use isundefined to search for observations with an undefined category.

find(isundefined(Origin))
These indices correspond to the observations that were in category France, before that category was dropped from Origin.

**See Also**
droplevels | nominal | ordinal

**Related Examples**
- “Create Nominal and Ordinal Arrays” on page 2-4
- “Reorder Category Levels” on page 2-11
- “Merge Category Levels” on page 2-21
- “Add and Drop Category Levels” on page 2-24

**More About**
- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
What Are Grouping Variables?

Grouping variables are utility variables used to group, or categorize, observations. Grouping variables are useful for summarizing or visualizing data by group. A grouping variable can be any of these data types:

- Numeric vector
- Logical vector
- Character array
- String array
- Cell array of character vectors
- Categorical vector

A grouping variable must have the same number of observations (rows) as the table, dataset array, or numeric array you are grouping. Observations that have the same grouping variable value belong to the same group.

For example, the following variables comprise the same groups. Each grouping variable divides five observations into two groups. The first group contains the first and fourth observations. The other three observations are in the second group.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Grouping Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric vector</td>
<td>[1 2 2 1 2]</td>
</tr>
<tr>
<td>Logical vector</td>
<td>[0 1 1 0 1]</td>
</tr>
<tr>
<td>String array</td>
<td>[&quot;Male&quot;, &quot;Female&quot;, &quot;Female&quot;, &quot;Male&quot;, &quot;Female&quot;]</td>
</tr>
</tbody>
</table>
Data Type | Grouping Variable
---|---
Cell array of character vectors | {'Male','Female','Female','Male','Female '}
Categorical vector | Male Female Female Male Female

Use grouping variables with labels to give each group a meaningful name. A categorical vector is an efficient and flexible choice of grouping variable.

**Group Definition**

Typically, there are as many groups as unique values in the grouping variable. However, categorical vectors can have levels that are not represented in the data. The groups and the order of the groups depend on the data type of the grouping variable. Suppose \( G \) is a grouping variable.

- If \( G \) is a numeric or logical vector, then the groups correspond to the distinct values in \( G \), in the sorted order of the unique values.
- If \( G \) is a character array, string array, or cell array of character vectors, then the groups correspond to the distinct elements in \( G \), in the order of their first appearance.
- If \( G \) is a categorical vector, then the groups correspond to the unique category levels in \( G \), in the order returned by `categories`.

Some functions, such as `grpstats`, accept multiple grouping variables specified as a cell array of grouping variables, for example, \{\( G_1, G_2, G_3 \}\}. In this case, the groups are defined by the unique combinations of values in the grouping variables. The order is decided first by the order of the first grouping variable, then by the order of the second grouping variable, and so on.

**Analysis Using Grouping Variables**

This table lists common tasks you might want to perform using grouping variables.

<table>
<thead>
<tr>
<th>Grouping Task</th>
<th>Function Accepting Grouping Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw side-by-side boxplots for data in different groups.</td>
<td><code>boxplot</code></td>
</tr>
<tr>
<td>Draw a scatter plot with markers colored by group.</td>
<td><code>gscatter</code></td>
</tr>
</tbody>
</table>
Grouping Task | Function Accepting Grouping Variable
--- | ---
Draw a scatter plot matrix with markers colored by group. | gplotmatrix
Compute summary statistics by group. | grpstats
Test for differences between group means. | anovan
Create an index vector from a grouping variable. | grp2idx

**Missing Group Values**

Grouping variables can have missing values provided you include a valid indicator.

Grouping Variable Data Type	Missing Value Indicator
Numeric vector | NaN
Logical vector | (Cannot be missing)
Character array | Row of spaces
String array | <missing> or ""
Cell array of character vectors | '
Categorical vector | <undefined>

**See Also**
categorical

**Related Examples**
- “Plot Data Grouped by Category” on page 2-28
- “Summary Statistics Grouped by Category” on page 2-43

**More About**
- “Nominal and Ordinal Arrays” on page 2-47
- “Advantages of Using Nominal and Ordinal Arrays” on page 2-49
Dummy Indicator Variables

In this section...

“What Are Dummy Variables?” on page 2-60
“Creating Dummy Variables” on page 2-61

What Are Dummy Variables?

When performing regression analysis, it is common to include both continuous and categorical (quantitative and qualitative) predictor variables. When including a categorical independent variable, it is important not to input the variable as a numeric array. Numeric arrays have both order and magnitude. A categorical variable might have order (for example, an ordinal variable), but it does not have magnitude. Using a numeric array implies a known “distance” between the categories.

The appropriate way to include categorical predictors is as dummy indicator variables. An indicator variable has values 0 and 1. A categorical variable with $c$ categories can be represented by $c - 1$ indicator variables.

For example, suppose you have a categorical variable with levels \{Small, Medium, Large\}. You can represent this variable using two dummy variables, as shown in this figure.
In this example, $X_1$ is a dummy variable that has value 1 for the Medium group, and 0 otherwise. $X_2$ is a dummy variable that has value 1 for the Large group, and 0 otherwise. Together, these two variables represent the three categories. Observations in the Small group have 0s for both dummy variables.

The category represented by all 0s is the reference group. When you include the dummy variables in a regression model, the coefficients of the dummy variables are interpreted with respect to the reference group.

Creating Dummy Variables

Automatic Creation of Dummy Variables

Most classification and regression fitting functions accept categorical predictors.

- If the predictor data is in a table, the function assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors.
- If the predictor data is a matrix, the function assumes all predictors are continuous. To identify any categorical predictors, use the 'CategoricalPredictors' or 'CategoricalVars' name-value pair argument.

For parametric regression fitting functions such as fitlm and fitglm, if there are $c$ unique levels in the categorical array, then the fitting function estimates $c - 1$ coefficients for the categorical predictor.

Manual Creation of Dummy Variables

If you prefer to create your own dummy variable design matrix, use dummyvar. This function accepts a numeric or categorical column vector, and returns a matrix of indicator variables. The dummy variable design matrix has a column for every group, and a row for every observation.

For example,

```matlab
gender = nominal({'Male';'Female';'Female';'Male';'Female'});
dv = dummyvar(gender)
```

```
dv =
 0 1
 1 0
```
There are five rows corresponding to the number of rows in `gender`, and two columns for the unique groups, Female and Male. Column order corresponds to the order of the levels in `gender`. For nominal arrays, the default order is ascending alphabetical.

To use these dummy variables in a regression model, you must either delete a column (to create a reference group), or fit a regression model with no intercept term. For the gender example, only one dummy variable is needed to represent two genders. Notice what happens if you add an intercept term to the complete design matrix, `dv`.

\[
X = [\text{ones}(5,1) \ dv]
\]

\[
X = \\
1 \ 0 \ 1 \\
1 \ 1 \ 0 \\
1 \ 1 \ 0 \\
1 \ 0 \ 1 \\
1 \ 1 \ 0
\]

\[\text{rank}(X)\]

\[\text{ans} = \]

\[2\]

The design matrix with an intercept term is not of full rank, and is not invertible. Because of this linear dependence, use only \(c - 1\) indicator variables to represent a categorical variable with \(c\) categories in a regression model with an intercept term.

**See Also**
categorical | dummyvar | fitglm | fitlm

**Related Examples**
-  “Regression with Categorical Covariates” on page 2-63
-  “Test Differences Between Category Means” on page 2-33
Regression with Categorical Covariates

This example shows how to perform a regression with categorical covariates using categorical arrays and fitlm.

**Load sample data.**

```matlab
load carsmall
```

The variable MPG contains measurements on the miles per gallon of 100 sample cars. The model year of each car is in the variable Model_Year, and Weight contains the weight of each car.

**Plot grouped data.**

Draw a scatter plot of MPG against Weight, grouped by model year.

```matlab
figure()
gscatter(Weight,MPG,Model_Year,'bgr','x.o')
title('MPG vs. Weight, Grouped by Model Year')
```
The grouping variable, `Model_Year`, has three unique values, 70, 76, and 82, corresponding to model years 1970, 1976, and 1982.

**Create table and categorical array.**

Create a table that contains the variables `MPG`, `Weight`, and `Model_Year`. Convert the variable `Model_Year` to a categorical array.

```matlab
cars = table(MPG,Weight,Model_Year);
cars.Model_Year = categorical(cars.Model_Year);
```

**Fit a regression model.**

Fit a regression model using `fitlm` with `MPG` as the dependent variable, and `Weight` and `Model_Year` as the independent variables. Because `Model_Year` is a categorical covariate with three levels, it should enter the model as two indicator variables.

The scatter plot suggests that the slope of `MPG` against `Weight` might differ for each model year. To assess this, include weight-year interaction terms.

The proposed model is

\[ E(MPG) = \beta_0 + \beta_1 Weight + \beta_2 I[1976] + \beta_3 I[1982] + \beta_4 Weight \times I[1976] + \beta_5 Weight \times I[1982], \]

where \( I[1976] \) and \( I[1982] \) are dummy variables indicating the model years 1976 and 1982, respectively. \( I[1976] \) takes the value 1 if model year is 1976 and takes the value 0 if it is not. \( I[1982] \) takes the value 1 if model year is 1982 and takes the value 0 if it is not. In this model, 1970 is the reference year.

```matlab
fit = fitlm(cars,'MPG~Weight*Model_Year')
```

```
fit =

Linear regression model:
 MPG ~ 1 + Weight*Model_Year

Estimated Coefficients:
 Estimate SE
 _________ _______
(Intercept) 37.399 2.1466
Weight -0.0058437 0.00061765
Model_Year_76 4.6903 2.8538
```
The regression output shows:

- `fitlm` recognizes `Model_Year` as a categorical variable, and constructs the required indicator (dummy) variables. By default, the first level, 70, is the reference group (use `reordercats` to change the reference group).
- The model specification, `MPG~Weight*Model_Year`, specifies the first-order terms for `Weight` and `Model_Year`, and all interactions.
- The model $R^2 = 0.886$, meaning the variation in miles per gallon is reduced by 88.6% when you consider weight, model year, and their interactions.
- The fitted model is

$$ \hat{MPG} = 37.4 - 0.006Weight + 4.7I[1976] + 21.1I[1982] - 0.0008Weight \times I[1976] - 0.005Weight \times I[1982] $$

Thus, the estimated regression equations for the model years are as follows.

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Predicted MPG Against Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>$\hat{MPG} = 37.4 - 0.006Weight$</td>
</tr>
<tr>
<td>Model Year</td>
<td>Predicted MPG Against Weight</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>1976</td>
<td>$\hat{MPG} = (37.4 + 4.7) - (0.006 + 0.0008)\text{Weight}$</td>
</tr>
<tr>
<td>1982</td>
<td>$\hat{MPG} = (37.4 + 21.1) - (0.006 + 0.005)\text{Weight}$</td>
</tr>
</tbody>
</table>

The relationship between MPG and Weight has an increasingly negative slope as the model year increases.

**Plot fitted regression lines.**

Plot the data and fitted regression lines.

```matlab
w = linspace(min(Weight),max(Weight));
figure()
gscatter(Weight,MPG,Model_Year,'bgr','x.o')
line(w,feval(fit,w,'70'),'Color','b','LineWidth',2)
line(w,feval(fit,w,'76'),'Color','g','LineWidth',2)
line(w,feval(fit,w,'82'),'Color','r','LineWidth',2)
title('Fitted Regression Lines by Model Year')
```
Test for different slopes.

Test for significant differences between the slopes. This is equivalent to testing the hypothesis

\[ H_0 : \beta_4 = \beta_5 = 0 \]
\[ H_A : \beta_i \neq 0 \text{ for at least one } i. \]

\[
\text{anova}(\text{fit})
\]

\[
\text{ans = }
\begin{array}{cccccc}
\text{SumSq} & \text{DF} & \text{MeanSq} & \text{F} & \text{pValue} \\
\text{Weight} & 2050.2 & 1 & 2050.2 & 263.87 & 3.2055e-28 \\
\text{Model Year} & 807.69 & 2 & 403.84 & 51.976 & 1.2494e-15 \\
\text{Weight:Model Year} & 81.219 & 2 & 40.609 & 5.2266 & 0.0071637 \\
\text{Error} & 683.74 & 88 & 7.7698 & & \\
\end{array}
\]
This output shows that the $p$-value for the test is $0.0072$ (from the interaction row, Weight:Model_Year), so the null hypothesis is rejected at the 0.05 significance level. The value of the test statistic is $5.2266$. The numerator degrees of freedom for the test is 2, which is the number of coefficients in the null hypothesis.

There is sufficient evidence that the slopes are not equal for all three model years.

**See Also**
categorical | fitlm | reordercats | table

**Related Examples**
* “Test Differences Between Category Means” on page 2-33

**More About**
* “Grouping Variables” on page 2-57
* “Dummy Indicator Variables” on page 2-60
Create a Dataset Array from Workspace Variables

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB table data type instead. See MATLAB table documentation for more information.

### In this section...

| “Create a Dataset Array from a Numeric Array” on page 2-69 |
| “Create Dataset Array from Heterogeneous Workspace Variables” on page 2-72 |

### Create a Dataset Array from a Numeric Array

This example shows how to create a dataset array from a numeric array existing in the MATLAB® workspace.

**Load sample data.**

```matlab
tload fisheriris
```

Two variables load into the workspace: `meas`, a 150-by-4 numeric array, and `species`, a 150-by-1 cell array of species labels.

**Create a dataset array.**

Use `mat2dataset` to convert the numeric array, `meas`, into a dataset array.

```matlab
des = mat2dataset(meas);
des(1:10,:)
```

```plaintext
ans =
 meas1 meas2 meas3 meas4
 5.1 3.5 1.4 0.2
 4.9 3.0 1.4 0.2
 4.7 3.2 1.3 0.2
 4.6 3.1 1.5 0.2
 5.0 3.6 1.4 0.2
 5.4 3.9 1.7 0.4
 4.6 3.4 1.4 0.3
 5.0 3.4 1.5 0.2
 4.4 2.9 1.4 0.2
```
The array, `meas`, has four columns, so the dataset array, `ds`, has four variables. The default variable names are the array name, `meas`, with column numbers appended.

You can specify your own variable or observation names using the name-value pair arguments `VarNames` and `ObsNames`, respectively.

If you use `dataset` to convert a numeric array to a dataset array, by default, the resulting dataset array has one variable that is an array instead of separate variables for each column.

**Examine the dataset array.**

Return the size of the dataset array, `ds`.

```matlab
size(ds)
```

```matlab
ans = 1×2
 150 4
```

The dataset array, `ds`, is the same size as the numeric array, `meas`. Variable names and observation names do not factor into the size of a dataset array.

**Explore dataset array metadata.**

Return the metadata properties of the dataset array, `ds`.

```matlab
ds.Properties
```

```matlab
ans = struct with fields:
 Description: ''
 VarDescription: {}
 Units: {}
 DimNames: {''Observations'' ''Variables''}
 UserData: []
 ObsNames: {}
 VarNames: {'meas1' 'meas2' 'meas3' 'meas4'}
```

You can also access the properties individually. For example, you can retrieve the variable names using `ds.Properties.VarNames`. 

---

2-70
Access data in a dataset array variable.

You can use variable names with dot indexing to access the data in a dataset array. For example, find the minimum value in the first variable, `meas1`.

```matlab
min(ds.meas1)
ans = 4.3000
```

Change variable names.

The four variables in `ds` are actually measurements of sepal length, sepal width, petal length, and petal width. Modify the variable names to be more descriptive.

```matlab
ds.Properties.VarNames = {'SLength','SWidth','PLength','PWidth'};
```

Add description.

You can add a description for the dataset array.

```matlab
ds.Properties.Description = 'Fisher iris data';
ds.Properties
```

```
ans = struct with fields:
 Description: 'Fisher iris data'
 VarDescription: {}
 Units: {}
 DimNames: {'Observations' 'Variables'}
 UserData: []
 ObsNames: {}
 VarNames: {'SLength' 'SWidth' 'PLength' 'PWidth'}
```

The dataset array properties are updated with the new variable names and description.

Add a variable to the dataset array.

The variable `species` is a cell array of species labels. Add `species` to the dataset array, `ds`, as a nominal array named `Species`. Display the first five observations in the dataset array.

```matlab
ds.Species = nominal(species);
ds(1:5,:)
```

```
ans =
 SLength SWidth PLength PWidth Species
 5.8 2.7 4.1 1.9 Setosa
 5.7 2.8 4.1 1.8 Setosa
 5.4 3.0 4.5 1.5 Setosa
 6.3 3.3 6.1 2.5 Setosa
 5.8 2.7 4.0 1.9 Setosa
```
Create Dataset Array from Heterogeneous Workspace Variables

This example shows how to create a dataset array from heterogeneous variables existing in the MATLAB® workspace.

Load sample data.

load carsmall

Create a dataset array.

Create a dataset array from a subset of the workspace variables.

ds = dataset(Origin,Acceleration,Cylinders,MPG);
ds.Properties.VarNames(:)

ans = 4x1 cell array
    {'Origin'      }
    {'Acceleration'}
    {'Cylinders'   }
    {'MPG'         }

When creating the dataset array, you do not need to enter variable names. dataset automatically uses the name of each workspace variable.

Notice that the dataset array, ds, contains a collection of variables with heterogeneous data types. Origin is a character array, and the other variables are numeric.

Examine a dataset array.

Display the first five observations in the dataset array.

ds(1:5,:)
Apply a function to a dataset array.

Use `datasetfun` to return the data type of each variable in `ds`.

```matlab
defclass = datasetfun(@class,ds,'UniformOutput',false);
defclass(:)
an
```

You can get additional information about the variables using `summary(ds)`.

Modify a dataset array.

Cylinders is a numeric variable that has values 4, 6, and 8 for the number of cylinders. Convert Cylinders to a nominal array with levels four, six, and eight.

Display the country of origin and number of cylinders for the first 15 cars.

```matlab
dc.Cylinders = nominal(dc.Cylinders,{'four','six','eight'});
dc(1:15,{'Origin','Cylinders'})
an
```
The variable Cylinders has a new data type.

**See Also**

dataset | datasetfun | mat2dataset | nominal

**Related Examples**
- “Create a Dataset Array from a File” on page 2-75
- “Export Dataset Arrays” on page 2-116
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140

**More About**
- “Dataset Arrays” on page 2-137
Create a Dataset Array from a File

**Note** The `dataset` data type might be removed in a future release. To work with heterogeneous data, use the MATLAB `table` data type instead. See MATLAB `table` documentation for more information.

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Create a Dataset Array from a Tab-Delimited Text File” on page 2-75</td>
</tr>
<tr>
<td>“Create a Dataset Array from a Comma-Separated Text File” on page 2-78</td>
</tr>
<tr>
<td>“Create a Dataset Array from an Excel File” on page 2-80</td>
</tr>
</tbody>
</table>

**Create a Dataset Array from a Tab-Delimited Text File**

This example shows how to create a dataset array from the contents of a tab-delimited text file.

**Create a dataset array using default settings.**

Import the text file `hospitalSmall.txt` as a dataset array using the default settings.

```matlab
ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.txt'))
ds =
```

```
<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>wgt</th>
<th>smoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SMITH'</td>
<td>'m'</td>
<td>38</td>
<td>176</td>
<td>1</td>
</tr>
<tr>
<td>'JOHNSON'</td>
<td>'m'</td>
<td>43</td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td>'WILLIAMS'</td>
<td>'f'</td>
<td>38</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>'JONES'</td>
<td>'f'</td>
<td>40</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>'BROWN'</td>
<td>'f'</td>
<td>49</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>'DAVIS'</td>
<td>'f'</td>
<td>46</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>'MILLER'</td>
<td>'f'</td>
<td>33</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>'WILSON'</td>
<td>'m'</td>
<td>40</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>'MOORE'</td>
<td>'m'</td>
<td>28</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>'TAYLOR'</td>
<td>'f'</td>
<td>31</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>'ANDERSON'</td>
<td>'f'</td>
<td>45</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>'THOMAS'</td>
<td>'f'</td>
<td>42</td>
<td>137</td>
<td>0</td>
</tr>
<tr>
<td>'JACKSON'</td>
<td>'m'</td>
<td>25</td>
<td>174</td>
<td>0</td>
</tr>
<tr>
<td>'WHITE'</td>
<td>'m'</td>
<td>39</td>
<td>202</td>
<td>1</td>
</tr>
</tbody>
</table>
```
By default, dataset uses the first row of the text file for variable names. If the first row does not contain variable names, you can specify the optional name-value pair argument 'ReadVarNames',false to change the default behavior.

The dataset array contains heterogeneous variables. The variables id, name, and sex are cell arrays of character vectors, and the other variables are numeric.

**Summarize the dataset array.**

You can see the data type and other descriptive statistics for each variable by using summary to summarize the dataset array.

```matlab
summary(ds)
```

```plaintext
name: [14x1 cell array of character vectors]
sex: [14x1 cell array of character vectors]
age: [14x1 double]
 min 1st quartile median 3rd quartile max
 25 33 39.5 43 49
wgt: [14x1 double]
 min 1st quartile median 3rd quartile max
 119 132 142 176 202
smoke: [14x1 double]
 min 1st quartile median 3rd quartile max
 0 0 0 0 1
```

**Import observation names.**

Import the text file again, this time specifying that the first column contains observation names.

```matlab
ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.txt'),'ReadObsNames',true)
ds =
```

```plaintext
 sex age wgt smoke
SMITH 'm' 38 176 1
JOHNSON 'm' 43 163 0
```
The elements of the first column in the text file, last names, are now observation names. Observation names and row names are dataset array properties. You can always add or change the observation names of an existing dataset array by modifying the property ObsNames.

### Change dataset array properties.

By default, the DimNames property of the dataset array has name as the descriptor of the observation (row) dimension. dataset got this name from the first row of the first column in the text file.

Change the first element of DimNames to LastName.

```matlab
ds.Properties.DimNames{1} = 'LastName';
ds.Properties
```

```
ans =

 Description: ''
 VarDescription: {}
 Units: {}
 DimNames: {Last Name 'Variables'}
 UserData: []
 ObsNames: {14x1 cell}
 VarNames: {'sex' 'age' 'wgt' 'smoke'}
```

### Index into dataset array.

You can use observation names to index into a dataset array. For example, return the data for the patient with last name BROWN.

```matlab
ds('BROWN',:)
```
Create a Dataset Array from a Comma-Separated Text File

This example shows how to create a dataset array from the contents of a comma-separated text file.

Create a dataset array.

Import the file hospitalSmall.csv as a dataset array, specifying the comma-delimited format.

```matlab
ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.csv'),'Delimiter',',')
```

```
ans =

 id name sex age wgt smoke
 _____ ____ ____ ___ ____ ______
 BROWN 'SMITH' 'm' 38 176 1
 'GLI-532' 'JOHNSON' 'm' 43 163 0
 'PNI-258' 'WILLIAMS' 'f' 38 131 0
 'MIJ-579' 'JONES' 'f' 40 133 0
 'XLK-030' 'BROWN' 'f' 49 119 0
 'TFP-518' 'DAVIS' 'f' 46 142 0
 'LPD-746' 'MILLER' 'f' 33 142 1
 'ATA-945' 'WILSON' 'm' 40 180 0
 'VNL-702' 'MOORE' 'm' 28 183 0
 'LQW-768' 'TAYLOR' 'f' 31 132 0
 'QFY-472' 'ANDERSON' 'f' 45 128 0
 'UJG-627' 'THOMAS' 'f' 42 137 0
 'XUE-826' 'JACKSON' 'm' 25 174 0
 'TRW-072' 'WHITE' 'm' 39 202 1
```

Note that observation names must be unique.

By default, dataset uses the first row in the text file as variable names.

Add observation names.

Use the unique identifiers in the variable id as observation names. Then, delete the variable id from the dataset array.
ds.Properties.ObsNames = ds.id;
ds.id = []

ds =

<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>wgt</th>
<th>smoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPL-320</td>
<td>'m'</td>
<td>38</td>
<td>176</td>
<td>1</td>
</tr>
<tr>
<td>GLI-532</td>
<td>'m'</td>
<td>43</td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td>PNI-258</td>
<td>'f'</td>
<td>38</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>MIJ-579</td>
<td>'f'</td>
<td>40</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>XLK-030</td>
<td>'f'</td>
<td>49</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>TFP-518</td>
<td>'f'</td>
<td>46</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>LPD-746</td>
<td>'f'</td>
<td>33</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>ATA-945</td>
<td>'m'</td>
<td>40</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>VNL-702</td>
<td>'m'</td>
<td>28</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>LQW-768</td>
<td>'f'</td>
<td>31</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>QFY-472</td>
<td>'f'</td>
<td>45</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>UJG-627</td>
<td>'f'</td>
<td>42</td>
<td>137</td>
<td>0</td>
</tr>
<tr>
<td>XUE-826</td>
<td>'m'</td>
<td>25</td>
<td>174</td>
<td>0</td>
</tr>
<tr>
<td>TRW-072</td>
<td>'m'</td>
<td>39</td>
<td>202</td>
<td>1</td>
</tr>
</tbody>
</table>

**Delete observations.**

Delete any patients with the last name BROWN. You can use `strcmp` to match 'BROWN' with the elements of the variable containing last names, `name`.

toDelete = strcmp(ds.name,'BROWN');
ds(toDelete,:) = []

ds =

<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>wgt</th>
<th>smoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPL-320</td>
<td>'m'</td>
<td>38</td>
<td>176</td>
<td>1</td>
</tr>
<tr>
<td>GLI-532</td>
<td>'m'</td>
<td>43</td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td>PNI-258</td>
<td>'f'</td>
<td>38</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>MIJ-579</td>
<td>'f'</td>
<td>40</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>TFP-518</td>
<td>'f'</td>
<td>46</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>LPD-746</td>
<td>'f'</td>
<td>33</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>ATA-945</td>
<td>'m'</td>
<td>40</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>VNL-702</td>
<td>'m'</td>
<td>28</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>LQW-768</td>
<td>'f'</td>
<td>31</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>QFY-472</td>
<td>'f'</td>
<td>45</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>UJG-627</td>
<td>'f'</td>
<td>42</td>
<td>137</td>
<td>0</td>
</tr>
<tr>
<td>XUE-826</td>
<td>'m'</td>
<td>25</td>
<td>174</td>
<td>0</td>
</tr>
<tr>
<td>TRW-072</td>
<td>'m'</td>
<td>39</td>
<td>202</td>
<td>1</td>
</tr>
</tbody>
</table>
One patient having last name BROWN is deleted from the dataset array.

**Return size of dataset array.**

The array now has 13 observations.

```matlab
size(ds)
```

```
ans =
 13 5
```

Note that the row and column corresponding to variable and observation names, respectively, are not included in the size of a dataset array.

## Create a Dataset Array from an Excel File

This example shows how to create a dataset array from the contents of an Excel® spreadsheet file.

**Create a dataset array.**

Import the data from the first worksheet in the file hospitalSmall.xlsx, specifying that the data file is an Excel spreadsheet.

```matlab
ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'))
```

```
id name sex age wgt smoke
'YPL-320' 'SMITH' 'm' 38 176 1
'GLI-532' 'JOHNSON' 'm' 43 163 0
'PNI-258' 'WILLIAMS' 'f' 38 131 0
'MIJ-579' 'JONES' 'f' 40 133 0
'XLK-030' 'BROWN' 'f' 49 119 0
'TFP-518' 'DAVIS' 'f' 46 142 0
'LPD-746' 'MILLER' 'f' 33 142 1
'ATA-945' 'WILSON' 'm' 40 180 0
'VNL-702' 'MOORE' 'm' 28 183 0
'LQW-768' 'TAYLOR' 'f' 31 132 0
'QFY-472' 'ANDERSON' 'f' 45 128 0
'UJG-627' 'THOMAS' 'f' 42 137 0
'XUE-826' 'JACKSON' 'm' 25 174 0
'TRW-072' 'WHITE' 'm' 39 202 1
```
By default, `dataset` creates variable names using the contents of the first row in the spreadsheet.

**Specify which worksheet to import.**

Import the data from the second worksheet into a new dataset array.

```matlab
ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2)
ds2 =

 id name sex age wgt smoke
 'TRW-072' 'WHITE' 'm' 39 202 1
 'ELG-976' 'HARRIS' 'f' 36 129 0
 'K00-996' 'MARTIN' 'm' 48 181 1
 'YUZ-646' 'THOMPSON' 'm' 32 191 1
 'XBR-291' 'GARCIA' 'f' 27 131 1
 'K0W-846' 'MARTINEZ' 'm' 37 179 0
 'XBA-581' 'ROBINSON' 'm' 50 172 0
 'BKD-785' 'CLARK' 'f' 48 133 0
```

**See Also**

dataset | summary

**Related Examples**

- “Create a Dataset Array from Workspace Variables” on page 2-69
- “Clean Messy and Missing Data” on page 2-118
- “Export Dataset Arrays” on page 2-116
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140

**More About**

- “Dataset Arrays” on page 2-137
Add and Delete Observations

This example shows how to add and delete observations in a dataset array. You can also edit dataset arrays using the Variables editor.

Load sample data.

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
size(ds)
ans =
 14    6

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add observations by concatenation.

The second worksheet in hospitalSmall.xlsx has additional patient data. Append the observations in this spreadsheet to the end of ds.

ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);
dsNew = [ds;ds2];
size(dsNew)
ans =
 22    6

The dataset array dsNew has 22 observations. In order to vertically concatenate two dataset arrays, both arrays must have the same number of variables, with the same variable names.

Add observations from a cell array.

If you want to append new observations stored in a cell array, first convert the cell array to a dataset array, and then concatenate the dataset arrays.

cellObs = {'id','name','sex','age','wgt','smoke';
          'YQR-965','BAKER','M',36,160,0;
          'LFG-497','WALL','F',28,125,1;
          'KSD-003','REED','M',32,187,0};
dsNew = [dsNew; cell2dataset(cellObs)];
size(dsNew)

ans =

25     6

Add observations from a structure.

You can also append new observations stored in a structure. Convert the structure to a dataset array, and then concatenate the dataset arrays.

structObs(1,1).id = 'GHK-842';
structObs(1,1).name = 'GEORGE';
structObs(1,1).sex = 'M';
structObs(1,1).age = 45;
structObs(1,1).wgt = 182;
structObs(1,1).smoke = 1;

structObs(2,1).id = 'QRH-308';
structObs(2,1).name = 'BAILEY';
structObs(2,1).sex = 'F';
structObs(2,1).age = 29;
structObs(2,1).wgt = 120;
structObs(2,1).smoke = 0;

dsNew = [dsNew; struct2dataset(structObs)];
size(dsNew)

ans =

27     6

Delete duplicate observations.

Use unique to delete any observations in a dataset array that are duplicated.

dsNew = unique(dsNew);
size(dsNew)

ans =

21     6

One duplicated observation is deleted.
**Delete observations by observation number.**

Delete observations 18, 20, and 21 from the dataset array.

```matlab
dsNew([18,20,21],:) = [];
size(dsNew)
ans =
 18 6
```

The dataset array has only 18 observations now.

**Delete observations by observation name.**

First, specify the variable of identifiers, id, as observation names. Then, delete the variable id from dsNew. You can use the observation name to index observations.

```matlab
dsNew.Properties.ObsNames = dsNew.id;
dsNew.id = [];
dsNew('KOQ-996',:) = [];
size(dsNew)
ans =
 17 5
```

The dataset array now has one less observation and one less variable.

**Search for observations to delete.**

You can also search for observations in the dataset array. For example, delete observations for any patients with the last name WILLIAMS.

```matlab
toDelete = strcmp(dsNew.name,'WILLIAMS');
dsNew(toDelete,:)=[];
size(dsNew)
ans =
 16 5
```
The dataset array now has one less observation.

**See Also**
cell2dataset | dataset | struct2dataset

**Related Examples**
- “Add and Delete Variables” on page 2-86
- “Select Subsets of Observations” on page 2-96
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140

**More About**
- “Dataset Arrays” on page 2-137
Add and Delete Variables

This example shows how to add and delete variables in a dataset array. You can also edit dataset arrays using the Variables editor.

**Load sample data.**

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

```matlab
ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
ds.Properties.VarNames{end}
```

```matlab
ans =
 hgt
```

The dataset array, `ds`, has 14 observations (rows) and 6 variables (columns).

**Add variables by concatenating dataset arrays.**

The worksheet Heights in hospitalSmall.xlsx has heights for the patients on the first worksheet. Concatenate the data in this spreadsheet with `ds`.

```matlab
ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet','Heights');
ds = [ds ds2];
ds.Properties.VarNames{end}
```

```matlab
ans =
 hgt
```

The name of the last variable in `ds` is `hgt`, which `dataset` read from the first row of the imported spreadsheet.
Delete variables by variable name.

First, specify the unique identifiers in the variable id as observation names. Then, delete the variable id from the dataset array.

```matlab
ds.Properties.ObsNames = ds.id;
ds.id = [];
size(ds)
ans =
 14 6
```

The dataset array now has six variables. List the variable names.

```matlab
ds.Properties.VarNames(:)
ans =
 'name'
 'sex'
 'age'
 'wgt'
 'smoke'
 'hgt'
```

There is no longer a variable called id.

Add a new variable by name.

Add a new variable, bmi—which contains the body mass index (BMI) for each patient—to the dataset array. BMI is a function of height and weight. Display the last name, gender, and BMI for each patient.

```matlab
ds.bmi = ds.wgt*703./ds.hgt.^2;
ds(:,{'name','sex','bmi'})
ans =
 name sex bmi
YPL-320 'SMITH' 'm' 24.544
GLI-532 'JOHNSON' 'm' 24.068
PNI-258 'WILLIAMS' 'f' 23.958
MIJ-579 'JONES' 'f' 25.127
XLK-030 'BROWN' 'f' 21.078
The operators ./ and .^ in the calculation of BMI indicate element-wise division and exponentiation, respectively.

Delete variables by variable number.

Delete the variable `wgt`, the fourth variable in the dataset array.

```matlab
ds(:,4) = [];
ds.Properties.VarNames(:)
```

```matlab
ans =
    'name'
    'sex'
    'age'
    'smoke'
    'hgt'
    'bmi'
```

The variable `wgt` is deleted from the dataset array.

See Also

`dataset`

Related Examples

- “Add and Delete Observations” on page 2-82
- “Merge Dataset Arrays” on page 2-104
- “Calculations on Dataset Arrays” on page 2-113
- “Dataset Arrays in the Variables Editor” on page 2-123
• “Index and Search Dataset Arrays” on page 2-140

More About
• “Dataset Arrays” on page 2-137
Access Data in Dataset Array Variables

This example shows how to work with dataset array variables and their data.

Access variables by name.

You can access variable data, or select a subset of variables, by using variable (column) names and dot indexing. Load a sample dataset array. Display the names of the variables in `hospital`.

```matlab
load hospital
hospital.Properties.VarNames(:)
```

```
ans = 7x1 cell array
    {'LastName'     }
    {'Sex'          }
    {'Age'          }
    {'Weight'       }
    {'Smoker'       }
    {'BloodPressure'}
    {'Trials'       }
```

The dataset array has 7 variables (columns) and 100 observations (rows). You can double-click `hospital` in the Workspace window to view the dataset array in the Variables editor.

Plot histogram.

Plot a histogram of the data in the variable `Weight`.

```matlab
figure
histogram(hospital.Weight)
```
The histogram shows that the weight distribution is bimodal.

Plot data grouped by category.

Draw box plots of Weight grouped by the values in Sex (Male and Female). That is, use the variable Sex as a grouping variable.

```matlab
goto figure
boxplot(hospital.Weight,hospital.Sex)
```
The box plot suggests that gender accounts for the bimodality in weight.

Select a subset of variables.

Create a new dataset array with only the variables LastName, Sex, and Weight. You can access the variables by name or column number.

```matlab
ds1 = hospital(:,{'LastName','Sex','Weight'});
ds2 = hospital(:,[1,2,4]);
```

The dataset arrays `ds1` and `ds2` are equivalent. Use parentheses () when indexing dataset arrays to preserve the data type; that is, to create a dataset array from a subset of a dataset array. You can also use the Variables editor to create a new dataset array from a subset of variables and observations.
Convert the variable data type.

Convert the data type of the variable Smoker from logical to nominal with labels No and Yes.

```matlab
hospital.Smoker = nominal(hospital.Smoker,{'No','Yes'});
class(hospital.Smoker)
```

```
ans =
'venominal'
```

Explore data.

Display the first 10 elements of Smoker.

```matlab
hospital.Smoker(1:10)
```

```
ans = 10x1 nominal array
  Yes
  No
  No
  No
  No
  No
  Yes
  No
  No
  No
```

If you want to change the level labels in a nominal array, use `setlabels`.

Add variables.

The variable BloodPressure is a 100-by-2 array. The first column corresponds to systolic blood pressure, and the second column to diastolic blood pressure. Separate this array into two new variables, SysPressure and DiaPressure.

```matlab
hospital.SysPressure = hospital.BloodPressure(:,1);
hospital.DiaPressure = hospital.BloodPressure(:,2);
hospital.Properties.VarNames(:)
```

```
an = 9x1 cell array
    {'LastName'    }
    {'Sex'         }
```
The dataset array, hospital, has two new variables.

Search for variables by name.

Use regexp to find variables in hospital with 'Pressure' in their name. Create a new dataset array containing only these variables.

```matlab
bp = regexp(hospital.Properties.VarNames,'Pressure');
bpIdx = cellfun(@isempty,bp);
bpData = hospital(:,~bpIdx);
bpData.Properties.VarNames(:)
```

ans = 3x1 cell array

```matlab
{ 'BloodPressure' }
{ 'SysPressure'  }
{ 'DiaPressure'  }
```

The new dataset array, bpData, contains only the blood pressure variables.

Delete variables.

Delete the variable BloodPressure from the dataset array, hospital.

```matlab
hospital.BloodPressure = [];
hospital.Properties.VarNames(:)
```

ans = 8x1 cell array

```matlab
{ 'LastName'   }
{ 'Sex'        }
{ 'Age'        }
{ 'Weight'     }
{ 'Smoker'     }
{ 'Trials'     }
{ 'SysPressure'}
{ 'DiaPressure' }
```
The variable `BloodPressure` is no longer in the dataset array.

See Also

`dataset`

Related Examples

- “Add and Delete Variables” on page 2-86
- “Calculations on Dataset Arrays” on page 2-113
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140

More About

- “Dataset Arrays” on page 2-137
- “Grouping Variables” on page 2-57
Select Subsets of Observations

This example shows how to select an observation or subset of observations from a dataset array.

Load sample data.

Load the sample dataset array, hospital. Dataset arrays can have observation (row) names. This array has observation names corresponding to unique patient identifiers.

```matlab
load hospital
hospital.Properties.ObsNames(1:10)
ans = 10x1 cell array
     {'YPL-320'}    {'GLI-532'}    {'PNI-258'}    {'MIJ-579'}    {'XLK-030'}
     {'TFP-518'}    {'LPD-746'}    {'ATA-945'}    {'VNL-702'}    {'LQW-768'}
```

These are the first 10 observation names.

Index an observation by name.

You can use the observation names to index into the dataset array. For example, extract the last name, sex, and age for the patient with identifier XLK-030.

```matlab
hospital('XLK-030', {'LastName', 'Sex', 'Age'})
ans =
     X    S     A
     49
     49
```

Index a subset of observations by number.

Create a new dataset array containing the first 50 patients.
ds50 = hospital(1:50,:);
size(ds50)

ans = 1x2
 50 7

Search observations using a logical condition.

Create a new dataset array containing only male patients. To find the male patients, use a logical condition to search the variable containing gender information.

dsMale = hospital(hospital.Sex=='Male',:);
dsMale(1:10,{'LastName','Sex'})

ans =

<table>
<thead>
<tr>
<th>LastName</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPL-320</td>
<td>'SMITH'</td>
</tr>
<tr>
<td>GLI-532</td>
<td>'JOHNSON'</td>
</tr>
<tr>
<td>ATA-945</td>
<td>'WILSON'</td>
</tr>
<tr>
<td>VNL-702</td>
<td>'MOORE'</td>
</tr>
<tr>
<td>XUE-826</td>
<td>'JACKSON'</td>
</tr>
<tr>
<td>TRW-072</td>
<td>'WHITE'</td>
</tr>
<tr>
<td>KOQ-996</td>
<td>'MARTIN'</td>
</tr>
<tr>
<td>YUZ-646</td>
<td>'THOMPSON'</td>
</tr>
<tr>
<td>KPW-846</td>
<td>'MARTINEZ'</td>
</tr>
<tr>
<td>XBA-581</td>
<td>'ROBINSON'</td>
</tr>
</tbody>
</table>

Search observations using multiple conditions.

You can use multiple conditions to search the dataset array. For example, create a new dataset array containing only female patients older than 40.

dsFemale = hospital(hospital.Sex=='Female' & hospital.Age > 40,:);
dsFemale(1:10,{'LastName','Sex','Age'})

ans =

<table>
<thead>
<tr>
<th>LastName</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLK-030</td>
<td>'BROWN'</td>
<td>49</td>
</tr>
<tr>
<td>TFP-518</td>
<td>'DAVIS'</td>
<td>46</td>
</tr>
<tr>
<td>QFY-472</td>
<td>'ANDERSON'</td>
<td>45</td>
</tr>
<tr>
<td>UJG-627</td>
<td>'THOMAS'</td>
<td>42</td>
</tr>
<tr>
<td>BKD-785</td>
<td>'CLARK'</td>
<td>48</td>
</tr>
</tbody>
</table>
Select a random subset of observations.

Create a new dataset subset containing a random subset of 20 patients from the dataset array hospital.

```matlab
rng('default') % For reproducibility
dsRandom = hospital(randsample(length(hospital),20),:);
dsRandom.Properties.ObsNames
ans = 20x1 cell array
{ 'DAU-529' }
{ 'AGR-528' }
{ 'RBO-332' }
{ 'QOO-305' }
{ 'RVS-253' }
{ 'QEQ-082' }
{ 'EHE-616' }
{ 'HVR-372' }
{ 'KQO-996' }
{ 'REV-997' }
{ 'PUE-347' }
{ 'LOW-768' }
{ 'YLN-495' }
{ 'HJQ-495' }
{ 'ELG-976' }
{ 'XUE-826' }
{ 'MEZ-469' }
{ 'UDS-151' }
{ 'MIJ-579' }
{ 'DGC-290' }
```

Delete observations by name.

Delete the data for the patient with observation name HVR-372.

```matlab
hospital('HVR-372',:) = [];
size(hospital)
```
The dataset array has one less observation.

See Also
dataset

Related Examples
- “Add and Delete Observations” on page 2-82
- “Clean Messy and Missing Data” on page 2-118
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Sort Observations in Dataset Arrays” on page 2-100
- “Index and Search Dataset Arrays” on page 2-140

More About
- “Dataset Arrays” on page 2-137
Sort Observations in Dataset Arrays

This example shows how to sort observations (rows) in a dataset array using the command line. You can also sort rows using the Variables editor.

Sort observations in ascending order.

Load the sample dataset array, hospital. Sort the observations by the values in Age, in ascending order.

```matlab
load hospital
dsAgeUp = sortrows(hospital,'Age');
dsAgeUp(1:10,{'LastName','Age'})
```

```
ans =
    LastName      Age
    XUE-826        JACKSON     25
    FZR-250        HALL        25
    PUE-347        YOUNG       25
    LIM-480        HILL        25
    SCQ-914        JAMES       25
    REV-997        ALEXANDER   25
    XBR-291        GARCIA      27
    VNL-702        MOORE       28
    DTT-578        WALKER      28
    XAX-646        COOPER      28
```

The youngest patients are age 25.

Sort observations in descending order.

Sort the observations by Age in descending order.

```matlab
dsAgeDown = sortrows(hospital,'Age','descend');
dsAgeDown(1:10,{'LastName','Age'})
```

```
ans =
    LastName      Age
    XBA-581        ROBINSON    50
    DAU-529        REED        50
    XLK-030        BROWN       49
    FLJ-908        STEWART     49
    GGU-691        HUGHES      49
```
The oldest patients are age 50.

Sort observations by the values of two variables.

Sort the observations in hospital by Age, and then by LastName.

```matlab
dsName = sortrows(hospital,{'Age','LastName'});
dsName(1:10,{'LastName','Age'})
```

```
LastName       Age
----------   -----  
REV-997    'ALEXANDER'    25
FZR-250    'HALL'             25
LIM-480    'HILL'             25
XUE-826    'JACKSON'          25
SCQ-914    'JAMES'            25
PUE-347    'YOUNG'            25
XBR-291    'GARCIA'           27
XAX-646    'COOPER'           28
QEQ-082    'COX'              28
NSU-424    'JENKINS'          28
```

Now the names are sorted alphabetically within increasing age groups.

Sort observations in mixed order.

Sort the observations in hospital by Age in an increasing order, and then by Weight in a decreasing order.

```matlab
dsWeight = sortrows(hospital,{'Age','Weight'},{'ascend','descend'});
dsWeight(1:10,{'LastName','Age','Weight'})
```

```
LastName       Age    Weight
----------   -----   --------
FZR-250    'HALL'    25     189
SCQ-914    'JAMES'    25     186
XUE-826    'JACKSON'  25     174
```
This shows that the maximum weight among patients that are age 25 is 189 lbs.

Sort observations by observation name.

Sort the observations in hospital by the observation names.

dsObs = sortrows(hospital,'obsnames');
dsObs(1:10,{'LastName','Age'})

ans =

LastName Age
AAX-056 'LEE' 44
AFB-271 'PEREZ' 44
AFK-336 'WRIGHT' 45
AGR-528 'SIMMONS' 45
ATA-945 'WILSON' 40
BEZ-311 'DIAZ' 45
BKD-785 'CLARK' 48
DAU-529 'REED' 50
DGC-290 'BUTLER' 38
DTT-578 'WALKER' 28

The observations are sorted by observation name in ascending alphabetical order.

See Also
dataset | sortrows

Related Examples
• “Select Subsets of Observations” on page 2-96
• “Stack or Unstack Dataset Arrays” on page 2-108
• “Dataset Arrays in the Variables Editor” on page 2-123
• “Index and Search Dataset Arrays” on page 2-140

More About
• “Dataset Arrays” on page 2-137
Merge Dataset Arrays

This example shows how to merge dataset arrays using join.

Load sample data.

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array, then keep only a few of the variables.

```matlab
ds1 = dataset('XLSFile', fullfile(matlabroot, 'help/toolbox/stats/examples', 'hospitalSmall.xlsx'))
ds1 = ds1(:, {'id', 'name', 'sex', 'age'})
```

```
ds1 =
     id    name   sex age
    ------ ----- ---- ----
   'YPL-320'  'SMITH'  'm'  38
   'GLI-532'  'JOHNSON' 'm'  43
   'PNI-258'  'WILLIAMS' 'f'  38
   'MIJ-579'   'JONES'  'f'  40
   'XLK-030'    'BROWN'  'f'  49
   'TFP-518'     'DAVIS'  'f'  46
   'LPD-746'   'MILLER'  'f'  33
   'ATA-945'   'WILSON'  'm'  40
   'VNL-702'    'MOORE'  'm'  28
   'LQW-768'   'TAYLOR'  'f'  31
   'QFY-472'   'ANDERSON' 'f'  45
   'UJG-627'    'THOMAS'  'f'  42
   'XUE-826'    'JACKSON' 'm'  25
   'TRW-072'   'WHITE'  'm'  39
```

The dataset array, `ds1`, has 14 observations (rows) and 4 variables (columns).

Import the data from the worksheet Heights2 in hospitalSmall.xlsx.

```matlab
ds2 = dataset('XLSFile', fullfile(matlabroot, 'help/toolbox/stats/examples', 'hospitalSmall.xlsx'), 'Sheet', 'Heights2')
```

```matlab
ds2 =
    id    hgt
   ------ ----
    'LPD-746'  61
    'PNI-258'  62
    'XUE-826'  71
    'ATA-945'  72
    'XLK-030'  63
```

2-104
ds2 has height measurements for a subset of five individuals from the first dataset array, ds1.

Merge only the matching subset of observations.

Use `join` to merge the two dataset arrays, ds1 and ds2, keeping only the subset of observations that are in ds2.

\[
\text{JoinSmall} = \text{join(ds2,ds1)}
\]

```matlab
JoinSmall =
```

<table>
<thead>
<tr>
<th>id</th>
<th>hgt</th>
<th>name</th>
<th>sex</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>'LPD-746'</td>
<td>61</td>
<td>'MILLER'</td>
<td>'f'</td>
<td>33</td>
</tr>
<tr>
<td>'PNI-258'</td>
<td>62</td>
<td>'WILLIAMS'</td>
<td>'f'</td>
<td>38</td>
</tr>
<tr>
<td>'XUE-826'</td>
<td>71</td>
<td>'JACKSON'</td>
<td>'m'</td>
<td>25</td>
</tr>
<tr>
<td>'ATA-945'</td>
<td>72</td>
<td>'WILSON'</td>
<td>'m'</td>
<td>40</td>
</tr>
<tr>
<td>'XLK-030'</td>
<td>63</td>
<td>'BROWN'</td>
<td>'f'</td>
<td>49</td>
</tr>
</tbody>
</table>

In `JoinSmall`, the variable `id` only appears once. This is because it is the key variable—the variable that links observations between the two dataset arrays—and has the same variable name in both ds1 and ds2.

Include incomplete observations in the merge.

Merge ds1 and ds2 keeping all observations in the larger ds1.

\[
\text{joinAll} = \text{join(ds2,ds1,'type','rightouter','mergekeys',true)}
\]

```matlab
joinAll =
```

<table>
<thead>
<tr>
<th>id</th>
<th>hgt</th>
<th>name</th>
<th>sex</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ATA-945'</td>
<td>72</td>
<td>'WILSON'</td>
<td>'m'</td>
<td>40</td>
</tr>
<tr>
<td>'GLI-532'</td>
<td>NaN</td>
<td>'JOHNSON'</td>
<td>'m'</td>
<td>43</td>
</tr>
<tr>
<td>'LPD-746'</td>
<td>61</td>
<td>'MILLER'</td>
<td>'f'</td>
<td>33</td>
</tr>
<tr>
<td>'LQW-768'</td>
<td>NaN</td>
<td>'TAYLOR'</td>
<td>'f'</td>
<td>31</td>
</tr>
<tr>
<td>'MIJ-579'</td>
<td>NaN</td>
<td>'JONES'</td>
<td>'f'</td>
<td>40</td>
</tr>
<tr>
<td>'PNI-258'</td>
<td>62</td>
<td>'WILLIAMS'</td>
<td>'f'</td>
<td>38</td>
</tr>
<tr>
<td>'QFY-472'</td>
<td>NaN</td>
<td>'ANDERSON'</td>
<td>'f'</td>
<td>45</td>
</tr>
<tr>
<td>'TFP-518'</td>
<td>NaN</td>
<td>'DAVIS'</td>
<td>'f'</td>
<td>46</td>
</tr>
<tr>
<td>'TRW-072'</td>
<td>NaN</td>
<td>'WHITE'</td>
<td>'m'</td>
<td>39</td>
</tr>
<tr>
<td>'UJG-627'</td>
<td>NaN</td>
<td>'THOMAS'</td>
<td>'f'</td>
<td>42</td>
</tr>
<tr>
<td>'VNL-702'</td>
<td>NaN</td>
<td>'MOORE'</td>
<td>'m'</td>
<td>28</td>
</tr>
<tr>
<td>'XLK-030'</td>
<td>63</td>
<td>'BROWN'</td>
<td>'f'</td>
<td>49</td>
</tr>
</tbody>
</table>
Each observation in ds1 without corresponding height measurements in ds2 has height value NaN. Also, because there is no id value in ds2 for each observation in ds1, you need to merge the keys using the option 'MergeKeys', true. This merges the key variable, id.

Merge dataset arrays with different key variable names.

When using join, it is not necessary for the key variable to have the same name in the dataset arrays to be merged. Import the data from the worksheet named Heights3 in hospitalSmall.xlsx.

```matlab
ds3 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet','Heights3')
ds3 =

    identifier    hgt
    'GLI-532'    69
    'QFY-472'    62
    'MIJ-579'    61
    'VNL-702'    68
    'XLK-030'    63
    'LPD-746'    61
    'TFP-518'    60
    'YPL-320'    71
    'ATA-945'    72
    'LQW-768'    64
    'PNI-258'    62
    'UJG-627'    61
    'XUE-826'    71
    'TRW-072'    69```

ds3 has height measurements for each observation in ds1. This dataset array has the same patient identifiers as ds1, but they are under the variable name identifier, instead of id (and in a different order).

**Specify key variable.**

You can easily change the variable name of the key variable in ds3 by setting d3.Properties.VarNames or using the Variables editor, but it is not required to perform a merge. Instead, you can specify the name of the key variable in each dataset array using LeftKeys and RightKeys.
joinDiff = join(ds3,ds1,'LeftKeys','identifier','RightKeys','id')

joinDiff =

<table>
<thead>
<tr>
<th>identifier</th>
<th>hgt</th>
<th>name</th>
<th>sex</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>'GLI-532'</td>
<td>69</td>
<td>'JOHNSON'</td>
<td>'m'</td>
<td>43</td>
</tr>
<tr>
<td>'QFY-472'</td>
<td>62</td>
<td>'ANDERSON'</td>
<td>'f'</td>
<td>45</td>
</tr>
<tr>
<td>'MIJ-579'</td>
<td>61</td>
<td>'JONES'</td>
<td>'f'</td>
<td>40</td>
</tr>
<tr>
<td>'VNL-702'</td>
<td>68</td>
<td>'MOORE'</td>
<td>'m'</td>
<td>28</td>
</tr>
<tr>
<td>'XLK-030'</td>
<td>63</td>
<td>'BROWN'</td>
<td>'f'</td>
<td>49</td>
</tr>
<tr>
<td>'LPD-746'</td>
<td>61</td>
<td>'MILLER'</td>
<td>'f'</td>
<td>33</td>
</tr>
<tr>
<td>'TFP-518'</td>
<td>60</td>
<td>'DAVIS'</td>
<td>'f'</td>
<td>46</td>
</tr>
<tr>
<td>'YPL-320'</td>
<td>71</td>
<td>'SMITH'</td>
<td>'m'</td>
<td>38</td>
</tr>
<tr>
<td>'ATA-945'</td>
<td>72</td>
<td>'WILSON'</td>
<td>'m'</td>
<td>40</td>
</tr>
<tr>
<td>'LQW-768'</td>
<td>64</td>
<td>'TAYLOR'</td>
<td>'f'</td>
<td>31</td>
</tr>
<tr>
<td>'PNI-258'</td>
<td>62</td>
<td>'WILLIAMS'</td>
<td>'f'</td>
<td>38</td>
</tr>
<tr>
<td>'UJG-627'</td>
<td>61</td>
<td>'THOMAS'</td>
<td>'f'</td>
<td>42</td>
</tr>
<tr>
<td>'XUE-826'</td>
<td>71</td>
<td>'JACKSON'</td>
<td>'m'</td>
<td>25</td>
</tr>
<tr>
<td>'TRW-072'</td>
<td>69</td>
<td>'WHITE'</td>
<td>'m'</td>
<td>39</td>
</tr>
</tbody>
</table>

The merged dataset array, `joinDiff`, has the same key variable order and name as the first dataset array input to `join`, `ds3`.

**See Also**
dataset | join

**Related Examples**
- “Add and Delete Variables” on page 2-86
- “Stack or Unstack Dataset Arrays” on page 2-108
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140

**More About**
- “Dataset Arrays” on page 2-137
Stack or Unstack Dataset Arrays

This example shows how to reformat dataset arrays using stack and unstack.

**Load sample data.**

Import the data from the comma-separated text file `testScores.csv`.

```matlab
ds = dataset('File','testScores.csv','Delimiter',',')
ds =
LastName Sex Test1 Test2 Test3 Test4
'HOWARD' 'male' 90 87 93 92
'WARD' 'male' 87 85 83 90
'TORRES' 'male' 86 85 88 86
'PETERTON' 'female' 75 80 72 77
'GRAY' 'female' 89 86 87 90
'RAMIREZ' 'female' 96 92 98 95
'JAMES' 'male' 78 75 77 77
'WATSON' 'female' 91 94 92 90
'BROOKS' 'female' 86 83 85 89
'KELLY' 'male' 79 76 82 80
```

Each of the 10 students has 4 test scores.

**Perform calculations on dataset array.**

With the data in this format, you can, for example, calculate the average test score for each student. The test scores are in columns 3 to 6.

```matlab
ds.TestAve = mean(double(ds(:,3:6)),2);
ds(:,{'LastName','Sex','TestAve'})
ans =
LastName Sex TestAve
'HOWARD' 'male' 90.5
'WARD' 'male' 86.25
'TORRES' 'male' 86.25
'PETERTON' 'female' 76
'GRAY' 'female' 88
'RAMIREZ' 'female' 95.25
'JAMES' 'male' 76.75
```
A new variable with average test scores is added to the dataset array, ds.

**Reformat the dataset array.**

Stack the test score variables into a new variable, Scores.

```matlab
dsNew = stack(ds,{'Test1','Test2','Test3','Test4'},...
 'newDataVarName','Scores')
```

```
LastName Sex TestAve Scores_Indicator Scores
'HOWARD' 'male' 90.5 Test1 90
'HOWARD' 'male' 90.5 Test2 87
'HOWARD' 'male' 90.5 Test3 93
'HOWARD' 'male' 90.5 Test4 92
'WARD' 'male' 86.25 Test1 87
'WARD' 'male' 86.25 Test2 85
'WARD' 'male' 86.25 Test3 83
'WARD' 'male' 86.25 Test4 90
'TORRES' 'male' 86.25 Test1 86
'TORRES' 'male' 86.25 Test2 85
'TORRES' 'male' 86.25 Test3 88
'TORRES' 'male' 86.25 Test4 86
'PETERSON' 'female' 76 Test1 75
'PETERSON' 'female' 76 Test2 80
'PETERSON' 'female' 76 Test3 72
'PETERSON' 'female' 76 Test4 77
'GRAY' 'female' 88 Test1 89
'GRAY' 'female' 88 Test2 86
'GRAY' 'female' 88 Test3 87
'GRAY' 'female' 88 Test4 90
'RAMIREZ' 'female' 95.25 Test1 96
'RAMIREZ' 'female' 95.25 Test2 92
'RAMIREZ' 'female' 95.25 Test3 98
'RAMIREZ' 'female' 95.25 Test4 95
'JAMES' 'male' 76.75 Test1 78
'JAMES' 'male' 76.75 Test2 75
'JAMES' 'male' 76.75 Test3 77
'JAMES' 'male' 76.75 Test4 77
'WATSON' 'female' 91.75 Test1 91
```
The original test variable names, Test1, Test2, Test3, and Test4, appear as levels in the combined test scores indicator variable, Scores_Indicator.

**Plot data grouped by category.**

With the data in this format, you can use Scores_Indicator as a grouping variable, and draw box plots of test scores grouped by test.

```python
figure()
boxplot(dsNew.Scores, dsNew.Scores_Indicator)
```
Revert the dataset array to the original format.

Reformat dsNew back into its original format.

```
dsOrig = unstack(dsNew,'Scores','Scores_Indicator');
dsOrig(:,{'LastName','Test1','Test2','Test3','Test4'})
```

```
ans =

 LastName Test1 Test2 Test3 Test4
 'HOWARD' 90 87 93 92
 'WARD' 87 85 83 90
 'TORRES' 86 85 88 86
 'PETETSON' 75 80 72 77
 'GRAY' 89 86 87 90
 'RAMIREZ' 96 92 98 95
 'JAMES' 78 75 77 77
 'WATSON' 91 94 92 90
 'BROOKS' 86 83 85 89
 'KELLY' 79 76 82 80
```
The dataset array is back in wide format. `unstack` reassigns the levels of the indicator variable, `Scores_Indicator`, as variable names in the unstacked dataset array.

**See Also**
dataset | double | stack | unstack

**Related Examples**
- “Access Data in Dataset Array Variables” on page 2-90
- “Calculations on Dataset Arrays” on page 2-113
- “Index and Search Dataset Arrays” on page 2-140

**More About**
- “Dataset Arrays” on page 2-137
- “Grouping Variables” on page 2-57
Calculations on Dataset Arrays

This example shows how to perform calculations on dataset arrays.

Load sample data.

Import the data from the comma-separated text file testScores.csv.

ds = dataset('File','testScores.csv','Delimiter',',')

ds =

<table>
<thead>
<tr>
<th>LastName</th>
<th>Sex</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
</tr>
</thead>
<tbody>
<tr>
<td>'HOWARD'</td>
<td>'male'</td>
<td>90</td>
<td>87</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>'WARD'</td>
<td>'male'</td>
<td>87</td>
<td>85</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>'TORRES'</td>
<td>'male'</td>
<td>86</td>
<td>85</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td>'PETE RSON'</td>
<td>'female'</td>
<td>75</td>
<td>80</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>'GRAY'</td>
<td>'female'</td>
<td>89</td>
<td>86</td>
<td>87</td>
<td>90</td>
</tr>
<tr>
<td>'RAMIREZ'</td>
<td>'female'</td>
<td>96</td>
<td>92</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>'JAMES'</td>
<td>'male'</td>
<td>78</td>
<td>75</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>'WATSON'</td>
<td>'female'</td>
<td>91</td>
<td>94</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>'BROOKS'</td>
<td>'female'</td>
<td>86</td>
<td>83</td>
<td>85</td>
<td>89</td>
</tr>
<tr>
<td>'KELLY'</td>
<td>'male'</td>
<td>79</td>
<td>76</td>
<td>82</td>
<td>80</td>
</tr>
</tbody>
</table>

There are 4 test scores for each of 10 students, in wide format.

Average dataset array variables.

Compute the average (mean) test score for each student in the dataset array, and store it in a new variable, TestAvg. Test scores are in columns 3 to 6.

Use double to convert the specified dataset array variables into a numeric array. Then, calculate the mean across the second dimension (across columns) to get the test average for each student.

ds.TestAvg = mean(double(ds(:,3:6)),2);
ds(:,{"LastName","TestAvg"})

ans =

<table>
<thead>
<tr>
<th>LastName</th>
<th>TestAvg</th>
</tr>
</thead>
<tbody>
<tr>
<td>'HOWARD'</td>
<td>90.5</td>
</tr>
<tr>
<td>'WARD'</td>
<td>86.25</td>
</tr>
<tr>
<td>'TORRES'</td>
<td>86.25</td>
</tr>
</tbody>
</table>
Summarize the dataset array using a grouping variable.

Compute the mean and maximum average test scores for each gender.

```matlab
stats = grpstats(ds,'Sex',{'mean','max'},'DataVars','TestAvg')
```

```
stats =

 Sex GroupCount mean_TestAvg max_TestAvg
 male 'male' 5 83.8 90.5
 female 'female' 5 87.35 95.25
```

This returns a new dataset array containing the specified summary statistics for each level of the grouping variable, Sex.

**Replace data values.**

The denominator for each test score is 100. Convert the test score denominator to 25.

```matlab
scores = double(ds(:,3:6));
newScores = scores*25/100;
ds = replacedata(ds,newScores,3:6)
```

```
ds =

 LastName Sex Test1 Test2 Test3 Test4 TestAvg
 'HOWARD' 'male' 22.5 21.75 23.25 23 90.5
 'WARD' 'male' 21.75 21.25 20.75 22.5 86.25
 'TORRES' 'male' 21.5 21.25 22 21.5 86.25
 'PETERSON' 'female' 18.75 20 18 19.25 76
 'GRAY' 'female' 22.25 21.5 21.75 22.5 88
 'RAMIREZ' 'female' 24 23.5 24.5 23.75 95.25
 'JAMES' 'male' 19.5 18.75 19.25 19.25 76.75
 'WATSON' 'female' 22.75 23.5 23 22.5 91.75
 'BROOKS' 'female' 21.5 20.75 21.25 22.25 85.75
 'KELLY' 'male' 19.75 19 20.5 20 79.25
```
The first two lines of code extract the test data and perform the desired calculation. Then, `replacedata` inserts the new test scores back into the dataset array.

The variable of test score averages, `TestAvg`, is now the final score for each student.

**Change variable name.**

Change the variable name to `Final`.

```matlab
ds.Properties.VarNames{end} = 'Final';
ds
```

```matlab
ds =

<table>
<thead>
<tr>
<th>LastName</th>
<th>Sex</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>'HOWARD'</td>
<td>'male'</td>
<td>22.5</td>
<td>21.75</td>
<td>23.25</td>
<td>23</td>
<td>90.5</td>
</tr>
<tr>
<td>'WARD'</td>
<td>'male'</td>
<td>21.75</td>
<td>21.25</td>
<td>20.75</td>
<td>22.5</td>
<td>86.25</td>
</tr>
<tr>
<td>'TORRES'</td>
<td>'male'</td>
<td>21.5</td>
<td>21.25</td>
<td>22</td>
<td>21.5</td>
<td>86.25</td>
</tr>
<tr>
<td>'PETERSON'</td>
<td>'female'</td>
<td>18.75</td>
<td>20</td>
<td>18</td>
<td>19.25</td>
<td>76</td>
</tr>
<tr>
<td>'GRAY'</td>
<td>'female'</td>
<td>22.25</td>
<td>21.5</td>
<td>21.75</td>
<td>22.5</td>
<td>88</td>
</tr>
<tr>
<td>'RAMIREZ'</td>
<td>'female'</td>
<td>24</td>
<td>23</td>
<td>24.5</td>
<td>23.75</td>
<td>95.25</td>
</tr>
<tr>
<td>'JAMES'</td>
<td>'male'</td>
<td>19.5</td>
<td>18.75</td>
<td>19.25</td>
<td>19.25</td>
<td>76.75</td>
</tr>
<tr>
<td>'WATSON'</td>
<td>'female'</td>
<td>22.75</td>
<td>23.5</td>
<td>23</td>
<td>22.5</td>
<td>91.75</td>
</tr>
<tr>
<td>'BROOKS'</td>
<td>'female'</td>
<td>21.5</td>
<td>20.75</td>
<td>21.25</td>
<td>22.25</td>
<td>85.75</td>
</tr>
<tr>
<td>'KELLY'</td>
<td>'male'</td>
<td>19.75</td>
<td>19</td>
<td>20.5</td>
<td>20</td>
<td>79.25</td>
</tr>
</tbody>
</table>
```

**See Also**

dataset | double | grpstats | replacedata

**Related Examples**

- “Stack or Unstack Dataset Arrays” on page 2-108
- “Access Data in Dataset Array Variables” on page 2-90
- “Select Subsets of Observations” on page 2-96
- “Index and Search Dataset Arrays” on page 2-140

**More About**

- “Dataset Arrays” on page 2-137
Export Dataset Arrays

This example shows how to export a dataset array from the MATLAB workspace to a text or spreadsheet file.

**Load sample data.**

load('hospital')

The dataset array has 100 observations and 7 variables.

**Export to a text file.**

Export the dataset array, hospital, to a text file named hospital.txt. By default, export writes to a tab-delimited text file with the same name as the dataset array, appended by .txt.

export(hospital)

This creates the file hospital.txt in the current working folder, if it does not previously exist. If the file already exists in the current working folder, export overwrites the existing file.

By default, variable names are in the first line of the text file. Observation names, if present, are in the first column.

**Export without variable names.**

Export hospital with variable names suppressed to a text file named NoLabels.txt.

export(hospital,'File','NoLabels.txt','WriteVarNames',false)

There are no variable names in the first line of the created text file, NoLabels.txt.

**Export to a comma-delimited format.**

Export hospital to a comma-delimited text file, hospital.csv.

export(hospital,'File','hospital.csv','Delimiter',',')

**Export to an Excel spreadsheet.**

Export hospital to an Excel spreadsheet named hospital.xlsx.
export(hospital,'XLSFile','hospital.xlsx')

By default, the first row of hospital.xlsx has variable names, and the first column has observation names.

See Also
- dataset
- export

Related Examples
- “Create a Dataset Array from Workspace Variables” on page 2-69
- “Create a Dataset Array from a File” on page 2-75

More About
- “Dataset Arrays” on page 2-137
Clean Messy and Missing Data

This example shows how to find, clean, and delete observations with missing data in a dataset array.

**Load sample data.**

Import the data from the spreadsheet messy.xlsx.

```matlab
messyData = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','messy.xlsx'))
messyData =

<table>
<thead>
<tr>
<th>var1</th>
<th>var2</th>
<th>var3</th>
<th>var4</th>
<th>var5</th>
</tr>
</thead>
<tbody>
<tr>
<td>'afe1'</td>
<td>'3'</td>
<td>'yes'</td>
<td>'3'</td>
<td>3</td>
</tr>
<tr>
<td>'egh3'</td>
<td>'.'</td>
<td>'no'</td>
<td>'7'</td>
<td>7</td>
</tr>
<tr>
<td>'wth4'</td>
<td>'3'</td>
<td>'yes'</td>
<td>'3'</td>
<td>3</td>
</tr>
<tr>
<td>'atn2'</td>
<td>'23'</td>
<td>'no'</td>
<td>'23'</td>
<td>23</td>
</tr>
<tr>
<td>'arg1'</td>
<td>'5'</td>
<td>'yes'</td>
<td>'5'</td>
<td>5</td>
</tr>
<tr>
<td>'jre3'</td>
<td>'34.6'</td>
<td>'yes'</td>
<td>'34.6'</td>
<td>34.6</td>
</tr>
<tr>
<td>'wen9'</td>
<td>'234'</td>
<td>'yes'</td>
<td>'234'</td>
<td>234</td>
</tr>
<tr>
<td>'ple2'</td>
<td>'2'</td>
<td>'no'</td>
<td>'2'</td>
<td>2</td>
</tr>
<tr>
<td>'dbo8'</td>
<td>'5'</td>
<td>'no'</td>
<td>'5'</td>
<td>5</td>
</tr>
<tr>
<td>'oii4'</td>
<td>'5'</td>
<td>'yes'</td>
<td>'5'</td>
<td>5</td>
</tr>
<tr>
<td>'wnk3'</td>
<td>'245'</td>
<td>'yes'</td>
<td>'245'</td>
<td>245</td>
</tr>
<tr>
<td>'abk6'</td>
<td>'563'</td>
<td>''</td>
<td>'563'</td>
<td>563</td>
</tr>
<tr>
<td>'pnj5'</td>
<td>'463'</td>
<td>'no'</td>
<td>'463'</td>
<td>463</td>
</tr>
<tr>
<td>'wnn3'</td>
<td>'6'</td>
<td>'no'</td>
<td>'6'</td>
<td>6</td>
</tr>
<tr>
<td>'oks9'</td>
<td>'23'</td>
<td>'yes'</td>
<td>'23'</td>
<td>23</td>
</tr>
<tr>
<td>'wba3'</td>
<td>''</td>
<td>'yes'</td>
<td>'NaN'</td>
<td>14</td>
</tr>
<tr>
<td>'pkn4'</td>
<td>'2'</td>
<td>'no'</td>
<td>'2'</td>
<td>2</td>
</tr>
<tr>
<td>'adv3'</td>
<td>'22'</td>
<td>'no'</td>
<td>'22'</td>
<td>22</td>
</tr>
<tr>
<td>'poj2'</td>
<td>'-99'</td>
<td>'yes'</td>
<td>'-99'</td>
<td>-99</td>
</tr>
<tr>
<td>'bas8'</td>
<td>'23'</td>
<td>'no'</td>
<td>'23'</td>
<td>23</td>
</tr>
<tr>
<td>'gry5'</td>
<td>'NA'</td>
<td>'yes'</td>
<td>'NaN'</td>
<td>21</td>
</tr>
</tbody>
</table>
```

When you import data from a spreadsheet, `dataset` reads any variables with nonnumeric elements as a cell array of character vectors. This is why the variable `var2` is a cell array of character vectors. When importing data from a text file, you have more flexibility to specify which nonnumeric expressions to treat as missing using the option `TreatAsEmpty`.

There are many different missing data indicators in `messy.xlsx`, such as:
• Empty cells
• A period (.)
• NA
• NaN
• -99

**Find observations with missing values.**

Display the subset of observations that have at least one missing value using `ismissing`.

```matlab
ix = ismissing(messyData,'NumericTreatAsMissing','-99,...
 'StringTreatAsMissing',{NA',.','NA'});
messyData(any(ix,2),:)
```

```matlab
ans =
 var1 var2 var3 var4 var5
 'egh3' '.' 'no' '7' 7
 'abk6' '563' '' '563' 563
 'wba3' '' 'yes' 'NaN' 14
 'poj2' '-99' 'yes' '-99' -99
 'gry5' 'NA' 'yes' 'NaN' 21
```

By default, `ismissing` recognizes the following missing value indicators:

• *NaN* for numeric arrays
• '' for character arrays
• <undefined> for categorical arrays

Use the `NumericTreatAsMissing` and `StringTreatAsMissing` options to specify other values to treat as missing.

**Convert character arrays to double arrays.**

You can convert the char variables that should be numeric using `str2double`.

```matlab
messyData.var2 = str2double(messyData.var2);
messyData.var4 = str2double(messyData.var4)
messyData =
 var1 var2 var3 var4 var5
```

2-119
Now, var2 and var4 are numeric arrays. During the conversion, str2double replaces the nonnumeric elements of the variables var2 and var4 with the value NaN. However, there are no changes to the numeric missing value indicator, -99.

When applying the same function to many dataset array variables, it can sometimes be more convenient to use datasetfun. For example, to convert both var2 and var4 to numeric arrays simultaneously, you can use:

    messyData(:,[2,4]) = datasetfun(@str2double,messyData, ...  
                        'DataVars',[2,4],'DatasetOutput',true);

**Replace missing value indicators.**

Clean the data so that the missing values indicated by the code -99 have the standard MATLAB numeric missing value indicator, NaN.

    messyData = replaceWithMissing(messyData,'NumericValues','-99')

    messyData =
                  var1     var2    var3     var4     var5
            'afe1'    3       'yes'    3       3
            'egh3'    NaN     'yes'    3       3
            'atn2'    3       'yes'    3       3
            'arg1'    5       'yes'    3       3
            'jre3'    34.6    'yes'    34.6    34.6
            'wen9'    234     'yes'    234     234
            'ple2'    2       'no'     2       2
            'dbo8'    5       'no'     2       2
            'oii4'    5       'yes'    5       5
            'wnk3'    245     'yes'    245     245
            'abk6'    563     ''       563     563
            'pnj5'    463     'no'     463     463
            'wnn3'    6       'no'     6       6
            'okk9'    23      'yes'    23      23
            'wba3'    NaN     'yes'    NaN     14
            'pkn4'    2       'no'     2       2
            'adw3'    22      'no'     22      22
            'poj2'    -99     'yes'    -99     -99
            'bas8'    23      'no'     23      23
            'gry5'    NaN     'yes'    NaN     21
Create a dataset array with complete observations.

Create a new dataset array that contains only the complete observations—those without missing data.

```matlab
ix = ismissing(messyData);
completeData = messyData(~any(ix,2),:)
```

completeData =

```
 var1 var2 var3 var4 var5
 {'afe1'} 3 {'yes'} 3 3
 {'wth4'} 3 {'yes'} 3 3
 {'atn2'} 23 {'no'} 23 23
 {'arg1'} 5 {'yes'} 5 5
 {'jre3'} 34.6 {'yes'} 34.6 34.6
 {'wen9'} 234 {'yes'} 234 234
 {'ple2'} 2 {'no'} 2 2
 {'dbo8'} 5 {'no'} 5 5
 {'oii4'} 5 {'yes'} 5 5
 {'wnk3'} 245 {'yes'} 245 245
 {'abk6'} 563 '' 563 563
 {'pnj5'} 463 {'no'} 463 463
 {'wnn3'} 6 {'no'} 6 6
 {'oks9'} 23 {'yes'} 23 23
 {'wba3'} NaN {'yes'} NaN 14
 {'pkn4'} 2 {'no'} 2 2
 {'adw3'} 22 {'no'} 22 22
 {'poj2'} NaN {'yes'} NaN NaN
 {'bas8'} 23 {'no'} 23 23
 {'gry5'} NaN {'yes'} NaN 21
```
See Also

\texttt{dataset} | \texttt{ismissing} | \texttt{replaceWithMissing}

Related Examples

\begin{itemize}
  \item “Select Subsets of Observations” on page 2-96
  \item “Calculations on Dataset Arrays” on page 2-113
  \item “Index and Search Dataset Arrays” on page 2-140
\end{itemize}

More About

\begin{itemize}
  \item “Dataset Arrays” on page 2-137
\end{itemize}
Dataset Arrays in the Variables Editor

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB table data type instead. See MATLAB table documentation for more information.

In this section...

“Open Dataset Arrays in the Variables Editor” on page 2-123
“Modify Variable and Observation Names” on page 2-124
“Reorder or Delete Variables” on page 2-126
“Add New Data” on page 2-128
“Sort Observations” on page 2-130
“Select a Subset of Data” on page 2-131
“Create Plots” on page 2-134

Open Dataset Arrays in the Variables Editor

The MATLAB Variables editor provides a convenient interface for viewing, modifying, and plotting dataset arrays.

First, load the sample data set, hospital.

load hospital

The dataset array, hospital, is created in the MATLAB workspace.

The dataset array has 100 observations and 7 variables.

To open hospital in the Variables editor, click Open Variable, and select hospital.
The Variables editor opens, displaying the contents of the dataset array (only the first 10 observations are shown here).

In the Variables editor, you can see the names of the seven variables along the top row, and the observations names down the first column.

**Modify Variable and Observation Names**

You can modify variable and observation names by double-clicking a name, and then typing new text.
All changes made in the Variables editor are also sent to the command line.

The sixth variable in the data set, `BloodPressure`, is a numeric array with two columns. The first column shows systolic blood pressure, and the second column shows diastolic blood pressure. Click the arrow that appears on the right side of the variable name cell to see the units and description of the variable. You can type directly in the units and description fields to modify the text. The variable data type and size are shown under the variable description.
Reorder or Delete Variables

You can reorder variables in a dataset array using the Variables editor. Hover over the left side of a variable name cell until a four-headed arrow appears.

After the arrow appears, click and drag the variable column to a new location.
The command for the variable reordering appears in the command line.

```
>> hospital = hospital(:,[1:4 6 5 end]);
>>
```
You can delete a variable in the Variables editor by selecting the variable column, right-clicking, and selecting **Delete Column Variable(s)**.

The command for the variable deletion appears in the command line.

```
>> hospital(:, 'Weight') = [];
```

**Add New Data**

You can enter new data values directly into the Variables editor. For example, you can add a new patient observation to the hospital data set. To enter a new last name, add a character vector to the end of the variable **LastName**.
The variable Gender is a nominal array. The levels of the categorical variable appear in a drop-down list when you double-click a cell in the Gender column. You can choose one of the levels previously used, or create a new level by selecting New Item.

You can continue to add data for the remaining variables.

To change the observation name, click the observation name and type the new name.

The commands for entering the new data appear at the command line.

```
>> hospital.LastName{101} = 'JONES';
Warning: Observations with default values added to dataset variables.
> In dataset.subsasgn at 584
>> hospital.Sex(101) = 'Female';
>> hospital.Age(101) = 45;
>> hospital.BloodPressure(101,2) = 85;
>> hospital.BloodPressure(101,1) = 120;
>> hospital.Properties.ObsNames{101} = 'QPO-187';
>>
```

Notice the warning that appears after the first assignment. When you enter the first piece of data in the new observation row—here, the last name—default values are assigned to all other variables. Default assignments are:
• \(\theta\) for numeric variables
• `<undefined>` for categorical variables
• `[]` for cell arrays

You can also copy and paste data from one dataset array to another using the Variables editor.

**Sort Observations**

You can use the Variables editor to sort dataset array observations by the values of one or more variables. To sort by gender, for example, select the variable `Gender`. Then click **Sort**, and choose to sort rows by ascending or descending values of the selected variable.

When sorting by variables that are cell arrays of character vectors or of nominal data type, observations are sorted alphabetically. For ordinal variables, rows are sorted by the ordering of the levels. For example, when the observations of `hospital` are sorted by the values in `Gender`, the females are grouped together, followed by the males.
To sort by the values of multiple variables, press **Ctrl** while you select multiple variables.

When you use the Variables editor to sort rows, it is the same as calling `sortrows`. You can see this at the command line after executing the sorting.

![Command Window](image)

```matlab
>> hospital = sortrows(hospital, 'Gender', 'ascend');
```

**Select a Subset of Data**

You can select a subset of data from a dataset array in the Variables editor, and create a new dataset array from the selection. For example, to create a dataset array containing only the variables `LastName` and `Age`:

1. Hold **Ctrl** while you click the variables `LastName` and `Age`.
2. Right-click, and select **New Workspace Variable from Selection > New Dataset Array**.
The new dataset array appears in the Workspace window with the name `hospital1`. The Command Window shows the commands that execute the selection.

You can use the same steps to select any subset of data. To select observations according to some logical condition, you can use a combination of sorting and selecting. For example, to create a new dataset array containing only males aged 45 and older:

1. Sort the observations of `hospital` by the values in `Gender` and `Age`, descending.
2. Select the male observations with age 45 and older.
3 Right-click, and select **New Workspace Variables from Selection > New Dataset Array**. The new dataset array, hospital2, is created in the Workspace window.

4 You can rename the dataset array in the Workspace window.
Create Plots

You can plot data from a dataset array using plotting options in the Variables editor. Available plot choices depend on the data types of variables to be plotted.

For example, if you select the variable Age, you can see in the Plots tab some plotting options that are appropriate for a univariate, numeric variable.
Sometimes, there are plot options for multiple variables, depending on their data types. For example, if you select both Age and Gender, you can draw box plots of age, grouped by gender.

**See Also**

- `dataset`  
- `sortrows`

**Related Examples**

- “Add and Delete Observations” on page 2-82
- “Add and Delete Variables” on page 2-86
- “Access Data in Dataset Array Variables” on page 2-90
- “Select Subsets of Observations” on page 2-96
• “Sort Observations in Dataset Arrays” on page 2-100

More About
• “Dataset Arrays” on page 2-137
**Dataset Arrays**

**Note** The `dataset` data type might be removed in a future release. To work with heterogeneous data, use the MATLAB `table` data type instead. See MATLAB `table` documentation for more information.

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“What Are Dataset Arrays?” on page 2-137</td>
</tr>
<tr>
<td>“Dataset Array Conversion” on page 2-137</td>
</tr>
<tr>
<td>“Dataset Array Properties” on page 2-138</td>
</tr>
</tbody>
</table>

**What Are Dataset Arrays?**

Statistics and Machine Learning Toolbox has dataset arrays for storing variables with heterogeneous data types. For example, you can combine numeric data, logical data, cell arrays of character vectors, and categorical arrays in one dataset array variable.

Within a dataset array, each variable (column) must be one homogeneous data type, but the different variables can be of heterogeneous data types. A dataset array is usually interpreted as a set of variables measured on many units of observation. That is, each row in a dataset array corresponds to an observation, and each column to a variable. In this sense, a dataset array organizes data like a typical spreadsheet.

Dataset arrays are a unique data type, with a corresponding set of valid operations. Even if a dataset array contains only numeric variables, you cannot operate on the dataset array like a numeric variable. The valid operations for dataset arrays are the methods of the `dataset` class.

**Dataset Array Conversion**

You can create a dataset array by combining variables that exist in the MATLAB workspace, or directly importing data from a file, such as a text file or spreadsheet. This table summarizes the functions you can use to create dataset arrays.
### Data Source

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Conversion to Dataset Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from a file</td>
<td>dataset</td>
</tr>
<tr>
<td>Heterogeneous collection of workspace variables</td>
<td>dataset</td>
</tr>
<tr>
<td>Numeric array</td>
<td>mat2dataset</td>
</tr>
<tr>
<td>Cell array</td>
<td>cell2dataset</td>
</tr>
<tr>
<td>Structure array</td>
<td>struct2dataset</td>
</tr>
<tr>
<td>Table</td>
<td>table2dataset</td>
</tr>
</tbody>
</table>

You can export dataset arrays to text or spreadsheet files using `export`. To convert a dataset array to a cell array or structure array, use `dataset2cell` or `dataset2struct`. To convert a dataset array to a table, use `dataset2table`.

### Dataset Array Properties

In addition to storing data in a dataset array, you can store metadata such as:

- Variable and observation names
- Data descriptions
- Units of measurement
- Variable descriptions

This information is stored as dataset array properties. For a dataset array named `ds`, you can view the dataset array metadata by entering `ds.Properties` at the command line. You can access a specific property, such as variable names—property `VarNames`—using `ds.Properties.VarNames`. You can both retrieve and modify property values using this syntax.

Variable and observation names are included in the display of a dataset array. Variable names display across the top row, and observation names, if present, appear in the first column. Note that variable and observation names do not affect the size of a dataset array.

### See Also

- `cell2dataset`
- `dataset`
- `dataset2cell`
- `dataset2struct`
- `dataset2table`
- `export`
- `mat2dataset`
- `struct2dataset`
- `table2dataset`
Related Examples

- “Create a Dataset Array from Workspace Variables” on page 2-69
- “Create a Dataset Array from a File” on page 2-75
- “Export Dataset Arrays” on page 2-116
- “Dataset Arrays in the Variables Editor” on page 2-123
- “Index and Search Dataset Arrays” on page 2-140
Index and Search Dataset Arrays

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB table data type instead. See MATLAB table documentation for more information.

### Ways To Index and Search

There are many ways to index into dataset arrays. For example, for a dataset array, `ds`, you can:

- Use () to create a new dataset array from a subset of `ds`. For example, `ds1 = ds(1:5,:)` creates a new dataset array, `ds1`, consisting of the first five rows of `ds`. Metadata, including variable and observation names, transfers to the new dataset array.

- Use variable names with dot notation to index individual variables in a dataset array. For example, `ds.Height` indexes the variable named `Height`.

- Use observation names to index individual observations in a dataset array. For example, `ds('Obs1',:)` gives data for the observation named `Obs1`.

- Use observation or variable numbers. For example, `ds(:,[1,3,5])` gives the data in the first, third, and fifth variables (columns) of `ds`.

- Use logical indexing to search for observations in `ds` that satisfy a logical condition. For example, `ds(ds.Gender=='Male',:)` gives the observations in `ds` where the variable named `Gender`, a nominal array, has the value `Male`.

- Use `ismissing` to find missing data in the dataset array.

### Examples

#### Common Indexing and Searching Methods

This example shows several indexing and searching methods for categorical arrays.

Load the sample data.

```matlab
load hospital;
size(hospital)
```
ans = 1×2
    100    7

The dataset array has 100 observations and 7 variables.

Index a variable by name. Return the minimum age in the dataset array.

min(hospital.Age)
ans = 25

Delete the variable Trials.

hospital.Trials = [];
size(hospital)
ans = 1×2
    100    6

Index an observation by name. Display measurements on the first five variables for the observation named PUE-347.

hospital('PUE-347',1:5)
ans =
        PUE-347    'YOUNG'        Female    25     114       false

Index variables by number. Create a new dataset array containing the first four variables of hospital.

dsNew = hospital(:,1:4);
dsNew.Properties.VarNames(:)
ans = 4x1 cell array
    {'LastName'    }
    {'Sex'         }
    {'Age'         }
    {'Weight'      }
Index observations by number. Delete the last 10 observations.

```matlab
hospital(end-9:end,:) = []; size(hospital)
ans = 1x2
 90 6
```

Search for observations by logical condition. Create a new dataset array containing only females who smoke.

```matlab
dsFS = hospital(hospital.Sex=='Female' & hospital.Smoker==true,:); dsFS(:,{'LastName','Sex','Smoker'})
```

```
LastName Sex Smoker
LPD-746 'MILLER' Female true
XBR-291 'GARCIA' Female true
AAX-056 'LEE' Female true
DTT-578 'WALKER' Female true
AFK-336 'WRIGHT' Female true
RBA-579 'SANCHEZ' Female true
HAK-381 'MORRIS' Female true
NSK-403 'RAMIREZ' Female true
ILS-109 'WATSON' Female true
JDR-456 'SANDERS' Female true
HWZ-321 'PATTERSON' Female true
GGU-691 'HUGHES' Female true
WUS-105 'FLORES' Female true
```

**See Also**
dataset

**Related Examples**
- “Access Data in Dataset Array Variables” on page 2-90
- “Select Subsets of Observations” on page 2-96
More About

• “Dataset Arrays” on page 2-137
Descriptive Statistics

- “Measures of Central Tendency” on page 3-2
- “Measures of Dispersion” on page 3-4
- “Quantiles and Percentiles” on page 3-6
- “Exploratory Analysis of Data” on page 3-10
- “Resampling Statistics” on page 3-15
- “Data with Missing Values” on page 3-20
Measures of Central Tendency

Measures of central tendency locate a distribution of data along an appropriate scale.

The following table lists the functions that calculate the measures of central tendency.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geomean</td>
<td>Geometric mean</td>
</tr>
<tr>
<td>harmmean</td>
<td>Harmonic mean</td>
</tr>
<tr>
<td>mean</td>
<td>Arithmetic average</td>
</tr>
<tr>
<td>median</td>
<td>50th percentile</td>
</tr>
<tr>
<td>mode</td>
<td>Most frequent value</td>
</tr>
<tr>
<td>trimmean</td>
<td>Trimmed mean</td>
</tr>
</tbody>
</table>

The average is a simple and popular estimate of location. If the data sample comes from a normal distribution, then the sample mean is also optimal (minimum variance unbiased estimator (MVUE) of \( \mu \)).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample mean is sensitive to these problems. One bad data value can move the average away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is the 50th percentile of the sample, which will only change slightly if you add a large perturbation to any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and lowest values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful when the sample is distributed lognormal or heavily skewed.

**Measures of Central Tendency**

This example shows how to compute and compare measures of location for sample data that contains one outlier.

Generate sample data that contains one outlier.

\[
x = \text{[ones}(1,6),100]\]
Compute the geometric mean, harmonic mean, mean, median, and trimmed mean for the sample data.

\[
\text{locate} = [\text{geomean}(x) \ \text{harmmean}(x) \ \text{mean}(x) \ \text{median}(x) \ldots \\
\quad \text{trimmean}(x,25)]
\]

\[
\text{locate} = 1 \times 5
\]

\[
1.9307 \quad 1.1647 \quad 15.1429 \quad 1.0000 \quad 1.0000
\]

The mean (\text{mean}) is far from any data value because of the influence of the outlier. The geometric mean (\text{geomean}) and the harmonic mean (\text{harmmean}) are influenced by the outlier, but not as significantly. The median (\text{median}) and trimmed mean (\text{trimmean}) ignore the outlier value and describe the location of the rest of the data values.

**See Also**

**Related Examples**

- “Exploratory Analysis of Data” on page 3-10
Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqr</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation</td>
</tr>
<tr>
<td>moment</td>
<td>Central moment of all orders</td>
</tr>
<tr>
<td>range</td>
<td>Range</td>
</tr>
<tr>
<td>std</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>var</td>
<td>Variance</td>
</tr>
</tbody>
</table>

The range (the difference between the maximum and minimum values) is the simplest measure of spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are optimal for normally distributed samples. The sample variance is the minimum variance unbiased estimator (MVUE) of the normal parameter $\sigma^2$. The standard deviation is the square root of the variance and has the desirable property of being in the same units as the data. That is, if the data is in meters, the standard deviation is in meters as well. The variance is in meters$^2$, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the MAD does not move quite as much as the standard deviation or variance in response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. Since only the middle 50% of the data affects this measure, it is robust to outliers.
Compare Measures of Dispersion

This example shows how to compute and compare measures of dispersion for sample data that contains one outlier.

Generate sample data that contains one outlier value.

\[ x = \text{[ones}(1,6),100] \]

\[ x = 1\times7 \]

\[
\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 & 100 \\
\end{array}
\]

Compute the interquartile range, mean absolute deviation, range, and standard deviation of the sample data.

\[ \text{stats} = [\text{iqr}(x),\text{mad}(x),\text{range}(x),\text{std}(x)] \]

\[ \text{stats} = 1\times4 \]

\[
\begin{array}{llll}
0 & 24.2449 & 99.0000 & 37.4185 \\
\end{array}
\]

The interquartile range (\text{iqr}) is the difference between the 75th and 25th percentile of the sample data, and is robust to outliers. The range (\text{range}) is the difference between the maximum and minimum values in the data, and is strongly influenced by the presence of an outlier.

Both the mean absolute deviation (\text{mad}) and the standard deviation (\text{std}) are sensitive to outliers. However, the mean absolute deviation is less sensitive than the standard deviation.

See Also

Related Examples

-  “Exploratory Analysis of Data” on page 3-10
Quantiles and Percentiles

This section explains how the Statistics and Machine Learning Toolbox functions `quantile` and `prctile` compute quantiles and percentiles.

The `prctile` function calculates the percentiles in a similar way as `quantile` calculates quantiles. The following steps in the computation of quantiles are also true for percentiles, given the fact that, for the same data sample, the quantile at the value Q is the same as the percentile at the value P = 100*Q.

1. `quantile` initially assigns the sorted values in `X` to the $(0.5/n), (1.5/n), \ldots, ([n - 0.5]/n)$ quantiles. For example:

   - For a data vector of six elements such as `{6, 3, 2, 10, 8, 1}`, the sorted elements `{1, 2, 3, 6, 8, 10}` respectively correspond to the $(0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6), \text{and } (5.5/6)$ quantiles.
   - For a data vector of five elements such as `{2, 10, 5, 9, 13}`, the sorted elements `{2, 5, 9, 10, 13}` respectively correspond to the $0.1, 0.3, 0.5, 0.7, \text{and } 0.9$ quantiles.

   The following figure illustrates this approach for data vector $X = \{2, 10, 5, 9, 13\}$. The first observation corresponds to the cumulative probability $1/5 = 0.2$, the second observation corresponds to the cumulative probability $2/5 = 0.4$, and so on. The step function in this figure shows these cumulative probabilities. `quantile` instead places the observations in midpoints, such that the first corresponds to $0.5/5 = 0.1$, the second corresponds to $1.5/5 = 0.3$, and so on, and then connects these midpoints. The red lines in the following figure connect the midpoints.
Assigning Observations to Quantiles

By switching the axes, as the next figure, you can see the values of the variable $X$ that correspond to the $p$ quantiles.
Quantiles of $X$

A quantile finds any quantiles between the data values using linear interpolation.

Linear interpolation uses linear polynomials to approximate a function $f(x)$ and construct new data points within the range of a known set of data points. Algebraically, given the data points $(x_1, y_1)$ and $(x_2, y_2)$, where $y_1 = f(x_1)$ and $y_2 = f(x_2)$, linear interpolation finds $y = f(x)$ for a given $x$ between $x_1$ and $x_2$ as follows:

$$y = f(x) = y_1 + \left( \frac{x - x_1}{x_2 - x_1} \right) (y_2 - y_1).$$
Similarly, if the $1.5/n$ quantile is $y_{1.5/n}$ and the $2.5/n$ quantile is $y_{2.5/n}$, then linear interpolation finds the $2.3/n$ quantile $y_{2.3/n}$ as

$$y_{2.3} = y_{1.5} + \frac{\left(\frac{2.3}{n} - \frac{1.5}{n}\right)}{\left(\frac{2.5}{n} - \frac{1.5}{n}\right)} \left(\frac{y_{2.5} - y_{1.5}}{n} \right).$$

The $3$-quantile assigns the first and last values of $X$ to the quantiles for probabilities less than $(0.5/n)$ and greater than $([n-0.5]/n)$, respectively.

**References**


**See Also**

median | prctile | quantile

**Related Examples**

- “Exploratory Analysis of Data” on page 3-10
Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.

**Generate sample data.**

Generate a vector containing randomly-generated sample data.

```matlab
rng default % For reproducibility
x = [normrnd(4,1,1,100),normrnd(6,0.5,1,200)];
```

**Plot a histogram.**

Plot a histogram of the sample data with a normal density fit. This provides a visual comparison of the sample data and a normal distribution fitted to the data.

```matlab
histfit(x)
```
The distribution of the data appears to be left skewed. A normal distribution does not look like a good fit for this sample data.

**Obtain a normal probability plot.**

Obtain a normal probability plot. This plot provides another way to visually compare the sample data to a normal distribution fitted to the data.

```matlab
probplot('normal',x)
```
The probability plot also shows the deviation of data from normality.

**Compute the quantiles.**

Compute the quantiles of the sample data.

```matlab
p = 0:0.25:1;
y = quantile(x,p);
z = [p;y]
z = 2×5
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.2500</th>
<th>0.5000</th>
<th>0.7500</th>
<th>1.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0557</td>
<td>4.7375</td>
<td>5.6872</td>
<td>6.1526</td>
<td>7.5784</td>
</tr>
</tbody>
</table>
Create a box plot to visualize the statistics.

`boxplot(x)`

The box plot shows the 0.25, 0.5, and 0.75 quantiles. The long lower tail and plus signs show the lack of symmetry in the sample data values.

**Compute descriptive statistics.**

Compute the mean and median of the data.

```python
y = [mean(x), median(x)]
```

```
y = 1×2
```

```markdown
The box plot shows the 0.25, 0.5, and 0.75 quantiles. The long lower tail and plus signs show the lack of symmetry in the sample data values.

Compute descriptive statistics.

Compute the mean and median of the data.

```python
y = [mean(x), median(x)]
```

```
y = 1×2
```
5.3438 5.6872

The mean and median values seem close to each other, but a mean smaller than the median usually indicates that the data is left skewed.

Compute the skewness and kurtosis of the data.

\[y = [\text{skewness}(x), \text{kurtosis}(x)] \]

\[
y = 1 \times 2
\]

\[
\begin{array}{cc}
-1.0417 & 3.5895 \\
\end{array}
\]

A negative skewness value means the data is left skewed. The data has a larger peakedness than a normal distribution because the kurtosis value is greater than 3.

Compute z-scores.

Identify possible outliers by computing the z-scores and finding the values that are greater than 3 or less than -3.

\[
Z = \text{zscore}(x);
\]

\[
\text{find}(|Z| > 3);
\]

Based on the z-scores, the 3rd and 35th observations might be outliers.

See Also

`boxplot` | `histfit` | `kurtosis` | `mean` | `median` | `prctile` | `quantile` | `skewness`

More About

- “Box Plots” on page 4-6
- “Measures of Central Tendency” on page 3-2
- “Measures of Dispersion” on page 3-4
- “Quantiles and Percentiles” on page 3-6
Resampling Statistics

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bootstrap Resampling” on page 3-15</td>
</tr>
<tr>
<td>“Jackknife Resampling” on page 3-18</td>
</tr>
<tr>
<td>“Parallel Computing Support for Resampling Methods” on page 3-19</td>
</tr>
</tbody>
</table>

Bootstrap Resampling

The bootstrap procedure involves choosing random samples with replacement from a data set and analyzing each sample the same way. Sampling with replacement means that each observation is selected separately at random from the original dataset. So a particular data point from the original data set could appear multiple times in a given bootstrap sample. The number of elements in each bootstrap sample equals the number of elements in the original data set. The range of sample estimates you obtain enables you to establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani compares Law School Admission Test (LSAT) scores and subsequent law school grade point average (GPA) for a sample of 15 law schools.

```matlab
load lawdata
plot(lsat,gpa,'+')
lsline
```
The least-squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how certain is this conclusion? The plot provides some intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the \texttt{corr} function.

\[
\text{rhohat} = \text{corr}(\text{lsat}, \text{gpa})
\]

\[
\text{rhohat} = 0.7764
\]

Now you have a number describing the positive connection between LSAT and GPA; though it may seem large, you still do not know if it is statistically significant.
Using the `bootstrap` function you can resample the `lsat` and `gpa` vectors as many times as you like and consider the variation in the resulting correlation coefficients.

```matlab
rng default  % For reproducibility
rhos1000 = bootstrap(1000,'corr',lsat,gpa);
```

This resamples the `lsat` and `gpa` vectors 1000 times and computes the `corr` function on each sample. You can then plot the result in a histogram.

```matlab
histogram(rhos1000,30,'FaceColor',[.8 .8 1])
```

Nearly all the estimates lie on the interval [0.4 1.0].
It is often desirable to construct a confidence interval for a parameter estimate in statistical inferences. Using the \texttt{bootci} function, you can use bootstrapping to obtain a confidence interval for the \texttt{lsat} and \texttt{gpa} data.

\begin{verbatim}
ci = bootci(5000,@corr,lsat,gpa)
\end{verbatim}

\begin{verbatim}
ci = 2×1
0.3319
0.9427
\end{verbatim}

Therefore, a 95% confidence interval for the correlation coefficient between LSAT and GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated. Moreover, this evidence does not require any strong assumptions about the probability distribution of the correlation coefficient.

Although the \texttt{bootci} function computes the Bias Corrected and accelerated (BCa) interval as the default type, it is also able to compute various other types of bootstrap confidence intervals, such as the studentized bootstrap confidence interval.

\section*{Jackknife Resampling}

Similar to the bootstrap is the jackknife, which uses resampling to estimate the bias of a sample statistic. Sometimes it is also used to estimate standard error of the sample statistic. The jackknife is implemented by the Statistics and Machine Learning Toolbox™ function \texttt{jackknife}.

The jackknife resamples systematically, rather than at random as the bootstrap does. For a sample with \(n \) points, the jackknife computes sample statistics on \(n \) separate samples of size \(n-1 \). Each sample is the original data with a single observation omitted.

In the bootstrap example, you measured the uncertainty in estimating the correlation coefficient. You can use the jackknife to estimate the bias, which is the tendency of the sample correlation to over-estimate or under-estimate the true, unknown correlation. First compute the sample correlation on the data.

\begin{verbatim}
load lawdata
rhohat = corr(lsat,gpa)
\end{verbatim}

\begin{verbatim}
rhohat = 0.7764
\end{verbatim}
Next compute the correlations for jackknife samples, and compute their mean.

```matlab
rng default;  % For reproducibility
jackrho = jackknife(@corr, lsat, gpa);
meanrho = mean(jackrho)

meanrho = 0.7759
```

Now compute an estimate of the bias.

```matlab
n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)
```

```
biasrho = -0.0065
```

The sample correlation probably underestimates the true correlation by about this amount.

Parallel Computing Support for Resampling Methods

For information on computing resampling statistics in parallel, see Parallel Computing Toolbox™.
Data with Missing Values

Many data sets have one or more missing values. It is convenient to code missing values as NaN (Not a Number) to preserve the structure of data sets across multiple variables and observations.

Normal MATLAB arithmetic operations yield NaN values when operands are NaN. Removing the NaN values would destroy the matrix structure. Removing the rows containing the NaN values would discard data. Statistics and Machine Learning Toolbox functions in the following table remove NaN values only for the purposes of computation.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nancov</td>
<td>Covariance matrix, ignoring NaN values</td>
</tr>
<tr>
<td>nanmax</td>
<td>Maximum, ignoring NaN values</td>
</tr>
<tr>
<td>nanmean</td>
<td>Mean, ignoring NaN values</td>
</tr>
<tr>
<td>nanmedian</td>
<td>Median, ignoring NaN values</td>
</tr>
<tr>
<td>nanmin</td>
<td>Minimum, ignoring NaN values</td>
</tr>
<tr>
<td>nanstd</td>
<td>Standard deviation, ignoring NaN values</td>
</tr>
<tr>
<td>nansum</td>
<td>Sum, ignoring NaN values</td>
</tr>
<tr>
<td>nanvar</td>
<td>Variance, ignoring NaN values</td>
</tr>
</tbody>
</table>

Other Statistics and Machine Learning Toolbox functions also ignore NaN values. These include iqr, kurtosis, mad, prctile, range, skewness, and trimmean.

Working with Data with Missing Values

Create a 3-by-3 matrix of sample data. Remove two data values by replacing them with NaN.

```matlab
X = magic(3);
X([1 5]) = [NaN NaN]
```

```
X = 3x3
NaN     1     6
3  NaN    7
4     9    2
```
Compute the sum of for each column of the sample data matrix using the `sum` function.

```matlab
s1 = sum(X)
```

```
s1 = 1×3
    NaN   NaN    15
```

If a column contains a `NaN` value, then the `sum` function will return `NaN` as the sum of the data in that column.

For comparison, compute the sum for each column of the sample data matrix using the `nansum` function.

```matlab
s2 = nansum(X)
```

```
s2 = 1×3
    7    10    15
```

If a column contains a `NaN` value, then the `nansum` function ignores the `NaN` value and returns the sum of the remaining values in the column.
Statistical Visualization

- “Create Scatter Plots Using Grouped Data” on page 4-2
- “Box Plots” on page 4-6
- “Distribution Plots” on page 4-9
Create Scatter Plots Using Grouped Data

This example shows how to create scatter plots using grouped sample data.

A scatter plot is a simple plot of one variable against another. The MATLAB® functions plot and scatter produce scatter plots. The MATLAB function plotmatrix can produce a matrix of such plots showing the relationship between several pairs of variables.

Statistics and Machine Learning Toolbox™ functions gscatter and gplotmatrix produce grouped versions of these plots. These functions are useful for determining whether the values of two variables or the relationship between those variables is the same in each group. These functions use different plotting symbols to indicate group membership. You can use gname to label points on the plots with a text label or an observation number.

Suppose you want to examine the weight and mileage of cars from three different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')
This shows that not only is there a strong relationship between the weight of a car and its mileage, but also that newer cars tend to be lighter and have better gas mileage than older cars.

The default arguments for `gscatter` produce a scatter plot with the different groups shown with the same symbol but different colors. The last two arguments above request that all groups be shown in default colors and with different symbols.

The `carsmall` data set contains other variables that describe different aspects of cars. You can examine several of them in a single display by creating a grouped plot matrix.

```matlab
xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'','xos')
```
The upper right subplot displays MPG against Horsepower, and shows that over the years the horsepower of the cars has decreased but the gas mileage has improved.

The gplotmatrix function can also graph all pairs from a single list of variables, along with histograms for each variable. See “MANOVA” on page 9-71.

See Also

gname | gplotmatrix | gscatter
More About

- “Grouping Variables” on page 2-57
Box Plots

Box plots provide a visualization of summary statistics for sample data and contain the following features:

- The tops and bottoms of each “box” are the 25th and 75th percentiles of the samples, respectively. The distances between the tops and bottoms are the interquartile ranges. You can compute the value of the interquartile range using `iqr`.
- The line in the middle of each box is the sample median. If the median is not centered in the box, it shows sample skewness. You can compute the value of the median using the `median` function.
- The whiskers are lines extending above and below each box. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length (the adjacent values).
- Observations beyond the whisker length are marked as outliers. By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box, but this value can be adjusted with additional input arguments. Outliers are displayed with a red + sign.
- Notches display the variability of the median between samples. The width of a notch is computed so that box plots whose notches do not overlap (as above) have different medians at the 5% significance level. The significance level is based on a normal distribution assumption, but comparisons of medians are reasonably robust for other distributions. Comparing box-plot medians is like a visual hypothesis test, analogous to the t test used for means.

Because box plots show less detail than histograms, they are most useful for side-by-side comparisons of two distributions.

Compare Grouped Data Using Box Plots

Load the Fisher iris sample data. The data contains length and width measurements from the sepal and petals of three species of iris flowers. Store the petal length data for the versicolor irises as `s1`, and the petal length data for the virginica irises as `s2`.

```matlab
load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
```

Create a box plot using the sample data. Include a notch on the plot and label each box with the name of the iris species it represents.
The notches of the two box plots do not overlap, which indicates that the median petal length of the versicolor and virginica irises are significantly different at the 5% significance level.

The median line in the versicolor plot does not appear to be centered inside the box, which indicates that the sample is slightly skewed. Additionally, the versicolor data contains one outlier value, while the virginica data does not contain any outliers.
See Also
boxplot | iqr | median

More About
- “Exploratory Analysis of Data” on page 3-10
- “Measures of Central Tendency” on page 3-2
- “Measures of Dispersion” on page 3-4
- “Quantiles and Percentiles” on page 3-6
- “Distribution Plots” on page 4-9
Distribution Plots

In this section...

“Normal Probability Plots” on page 4-9
“Probability Plots” on page 4-12
“Quantile-Quantile Plots” on page 4-13
“Cumulative Distribution Plots” on page 4-16

Distribution plots visually assess the distribution of sample data by comparing the empirical distribution of the data with the theoretical values expected from a specified distribution. Use distribution plots in addition to more formal hypothesis tests to determine whether the sample data comes from a specified distribution. To learn about hypothesis tests, see “Hypothesis Testing” on page 8-6.

Statistics and Machine Learning Toolbox offers several distribution plot options:

• “Normal Probability Plots” on page 4-9 — Use `normplot` to assess whether sample data comes from a normal distribution. Use `probplot` to create “Probability Plots” on page 4-12 for distributions other than normal, or to explore the distribution of censored data.

• “Quantile-Quantile Plots” on page 4-13 — Use `qqplot` to assess whether two sets of sample data come from the same distribution family. This plot is robust with respect to differences in location and scale.

• “Cumulative Distribution Plots” on page 4-16 — Use `cdfplot` or `ecdf` to display the empirical cumulative distribution function (cdf) of the sample data for visual comparison to the theoretical cdf of a specified distribution.

Normal Probability Plots

Use normal probability plots to assess whether data comes from a normal distribution. Many statistical procedures make the assumption that an underlying distribution is normal. Normal probability plots can provide some assurance to justify this assumption or provide a warning of problems with the assumption. An analysis of normality typically combines normal probability plots with hypothesis tests for normality.

This example generates a data sample of 25 random numbers from a normal distribution with mean 10 and standard deviation 1, and creates a normal probability plot of the data.
rng('default'); % For reproducibility
x = normrnd(10,1,[25,1]);
normplot(x)

The plus signs plot the empirical probability versus the data value for each point in the data. A solid line connects the 25th and 75th percentiles in the data, and a dashed line extends it to the ends of the data. The y-axis values are probabilities from zero to one, but the scale is not linear. The distance between tick marks on the y-axis matches the distance between the quantiles of a normal distribution. The quantiles are close together near the median (50th percentile) and stretch out symmetrically as you move away from the median.
In a normal probability plot, if all the data points fall near the line, an assumption of normality is reasonable. Otherwise, an assumption of normality is not justified. For example, the following generates a data sample of 100 random numbers from an exponential distribution with mean 10, and creates a normal probability plot of the data.

```matlab
x = exprnd(10,100,1);
normplot(x)
```

The plot is strong evidence that the underlying distribution is not normal.
Probability Plots

A probability plot, like the normal probability plot, is just an empirical cdf plot scaled to a particular distribution. The y-axis values are probabilities from zero to one, but the scale is not linear. The distance between tick marks is the distance between quantiles of the distribution. In the plot, a line is drawn between the first and third quartiles in the data. If the data falls near the line, it is reasonable to choose the distribution as a model for the data. A distribution analysis typically combines probability plots with hypothesis tests for a particular distribution.

Create Weibull Probability Plot

Generate sample data and create a probability plot.

Generate sample data. The sample x1 contains 500 random numbers from a Weibull distribution with scale parameter $A = 3$ and shape parameter $B = 3$. The sample x2 contains 500 random numbers from a Rayleigh distribution with scale parameter $B = 3$.

```matlab
rng('default'); % For reproducibility
x1 = wblrnd(3,3,[500,1]);
x2 = raylrnd(3,[500,1]);
```

Create a probability plot to assess whether the data in x1 and x2 comes from a Weibull distribution.

```matlab
figure
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','best')
```
The probability plot shows that the data in x1 comes from a Weibull distribution, while the data in x2 does not.

Alternatively, you can use `wblplot` to create a Weibull probability plot.

Quantile-Quantile Plots

Use quantile-quantile (q-q) plots to determine whether two samples come from the same distribution family. Q-Q plots are scatter plots of quantiles computed from each sample, with a line drawn between the first and third quartiles. If the data falls near the line, it is reasonable to assume that the two samples come from the same distribution. The method is robust with respect to changes in the location and scale of either distribution.
Create a quantile-quantile plot by using the `qqplot` function.

The following example generates two data samples containing random numbers from Poisson distributions with different parameter values, and creates a quantile-quantile plot. The data in `x` is from a Poisson distribution with mean 10, and the data in `y` is from a Poisson distribution with mean 5.

```matlab
x = poissrnd(10,[50,1]);
y = poissrnd(5,[100,1]);
qqplot(x,y)
```

Even though the parameters and sample sizes are different, the approximate linear relationship suggests that the two samples may come from the same distribution family. As with normal probability plots, hypothesis tests can provide additional justification for
such an assumption. For statistical procedures that depend on the two samples coming from the same distribution, however, a linear quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions are not the same. Here, \(x \) contains 100 random numbers generated from a normal distribution with mean 5 and standard deviation 1, while \(y \) contains 100 random numbers generated from a Weibull distribution with a scale parameter of 2 and a shape parameter of 0.5.

\[
x = \text{normrnd}(5,1,[100,1]);
y = \text{wblrnd}(2,0.5,[100,1]);
qqplot(x,y)
\]

The plots indicate that these samples clearly are not from the same distribution family.
Cumulative Distribution Plots

An empirical cumulative distribution function (cdf) plot shows the proportion of data less than or equal to each \(x \) value, as a function of \(x \). The scale on the \(y \)-axis is linear; in particular, it is not scaled to any particular distribution. Empirical cdf plots are used to compare data cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the \texttt{cdfplot} function or the \texttt{ecdf} function.

Compare Empirical cdf to Theoretical cdf

Plot the empirical cdf of a sample data set and compare it to the theoretical cdf of the underlying distribution of the sample data set. In practice, a theoretical cdf can be unknown.

Generate a random sample data set from the extreme value distribution with a location parameter of 0 and a scale parameter of 3.

```matlab
rng('default')  % For reproducibility
y = evrnd(0,3,100,1);
plot(y)
hold on
x = linspace(min(y),max(y));
plot(x,evcdf(x,0,3))
legend('Empirical CDF','Theoretical CDF','Location','best')
hold off
```
The plot shows the similarity between the empirical cdf and the theoretical cdf.

Alternatively, you can use the `ecdf` function. The `ecdf` function also plots the 95% confidence intervals estimated by using Greenwood’s Formula. For details, see “Greenwood’s Formula” on page 32-1374.

```matlab
ecdf(y,'Bounds','on')
hold on
plot(x,evcdf(x,0,3))
grid on
title('Empirical CDF')
legend('Empirical CDF','Lower Confidence Bound','Upper Confidence Bound','Theoretical CDF')
hold off
```
See Also

cdfplot | ecdf | normplot | probplot | qqplot | wblplot

More About

- “Box Plots” on page 4-6
- “Hypothesis Testing” on page 8-6
Probability Distributions

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
- “Maximum Likelihood Estimation” on page 5-27
- “Negative Loglikelihood Functions” on page 5-30
- “Random Number Generation” on page 5-35
- “Nonparametric and Empirical Probability Distributions” on page 5-39
- “Fit Kernel Distribution Object to Data” on page 5-48
- “Fit Kernel Distribution Using ksdensity” on page 5-53
- “Fit Distributions to Grouped Data Using ksdensity” on page 5-55
- “Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
- “Generate Random Numbers Using the Triangular Distribution” on page 5-63
- “Model Data Using the Distribution Fitter App” on page 5-68
- “Fit a Distribution Using the Distribution Fitter App” on page 5-95
- “Custom Distributions Using the Distribution Fitter App” on page 5-107
- “Explore the Random Number Generation UI” on page 5-109
- “Compare Multiple Distribution Fits” on page 5-112
- “Fit Probability Distribution Objects to Grouped Data” on page 5-119
- “Multinomial Probability Distribution Objects” on page 5-123
- “Multinomial Probability Distribution Functions” on page 5-127
- “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130
- “Represent Cauchy Distribution Using t Location-Scale” on page 5-134
- “Generate Cauchy Random Numbers Using Student’s t” on page 5-137
- “Generate Correlated Data Using Rank Correlation” on page 5-139
- “Gaussian Mixture Models” on page 5-145
- “Create Gaussian Mixture Model” on page 5-147
- “Fit Gaussian Mixture Model to Data” on page 5-151
• “Simulate Data from Gaussian Mixture Model” on page 5-156
• “Copulas: Generate Correlated Samples” on page 5-159
Working with Probability Distributions

In this section...

“Probability Distribution Objects” on page 5-4
“Probability Distribution Functions” on page 5-8
“Probability Distribution Apps and User Interfaces” on page 5-10

Probability distributions are theoretical distributions based on assumptions about a source population. The distributions assign probability to the event that a random variable has a specific, discrete value, or falls within a specified range of continuous values.

Statistics and Machine Learning Toolbox offers several ways to work with probability distributions.

- Use “Probability Distribution Objects” on page 5-4 to fit a probability distribution object to sample data, or to create a probability distribution object with specified parameter values.
- Use “Probability Distribution Functions” on page 5-8 to work with data input from matrices.
- Use “Probability Distribution Apps and User Interfaces” on page 5-10 to interactively fit, explore, and generate random numbers from probability distributions. Available apps and user interfaces include:
 - The **Distribution Fitter** app
 - The **Probability Distribution Function** user interface
 - The Random Number Generation user interface (`randtool`)

For a list of distributions supported by Statistics and Machine Learning Toolbox, see “Supported Distributions” on page 5-16.

User-defined custom distributions, created using files and function handles, are supported by the Statistics and Machine Learning Toolbox functions `pdf`, `cdf`, `icdf`, and `mle`, and the Statistics and Machine Learning Toolbox Distribution Fitter app.
Probability Distribution Objects

Probability distribution objects allow you to fit a probability distribution to sample data, or define a distribution by specifying parameter values. You can then perform a variety of analyses on the distribution object.

Create Probability Distribution Objects

Estimate probability distribution parameters from sample data by fitting a probability distribution object to the data using fitdist. You can fit a single specified parametric or nonparametric distribution to the sample data. You can also fit multiple distributions of the same type to the sample data based on grouping variables. For most distributions, fitdist uses maximum likelihood estimation (MLE) to estimate the distribution parameters from the sample data. For more information and additional syntax options, see fitdist.

Alternatively, you can create a probability distribution object with specified parameter values using makedist.

Work with Probability Distribution Objects

Once you create a probability distribution object, you can use object functions to:

- Compute confidence intervals for the distribution parameters (paramci).
- Compute summary statistics, including mean (mean), median (median), interquartile range (iqr), variance (var), and standard deviation (std).
- Evaluate the probability density function (pdf).
- Evaluate the cumulative distribution function (cdf) or the inverse cumulative distribution function (icdf).
- Compute the negative loglikelihood (negloglik) and profile likelihood function (proflik) for the distribution.
- Generate random numbers from the distribution (random).
- Truncate the distribution to specified lower and upper limits (truncate).

Save a Probability Distribution Object

To save your probability distribution object to a .MAT file:

- In the toolbar, click Save Workspace. This option saves all of the variables in your workspace, including any probability distribution objects.
• In the workspace browser, right-click the probability distribution object and select **Save as**. This option saves only the selected probability distribution object, not the other variables in your workspace.

Alternatively, you can save a probability distribution object directly from the command line by using the `save` function. `save` enables you to choose a file name and specify the probability distribution object you want to save. If you do not specify an object (or other variable), MATLAB saves all of the variables in your workspace, including any probability distribution objects, to the specified file name. For more information and additional syntax options, see `save`.

Analysis on Fitted Distribution

This example shows how to use probability distribution objects to perform a multistep analysis on a fitted distribution.

The following analysis illustrates how to:

• Fit a probability distribution object to sample data that contains 120 students' exam grades, using `fitdist`.
• Compute the mean of the exam grades, using `mean`.
• Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted distribution, using `plot` and `pdf`.
• Compute the boundary for the top 10 percent of student grades, using `icdf`.
• Save the fitted probability distribution object, using `save`.

Load the sample data.

```matlab
load examgrades
```

The sample data contains a 120-by-5 matrix of students' exam grades. The exams are scored on a scale of 0 to 100.

Create a vector containing the first column of students' exam grade data.

```matlab
x = grades(:,1);
```

Fit a normal distribution to the sample data by using `fitdist` to create a probability distribution object.

```matlab
pd = fitdist(x,'Normal')
```
pd =
 NormalDistribution

 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]

fitdist returns a probability distribution object, pd, of the type NormalDistribution. This object contains the estimated parameter values, mu and sigma, for the fitted normal distribution. The intervals next to the parameter estimates are the 95% confidence intervals for the distribution parameters.

Compute the mean of the students' exam grades using the fitted distribution object, pd.

m = mean(pd)
m = 75.0083

The mean of the exam grades is equal to the mu parameter estimated by fitdist.

Plot a histogram of the exam grades. Overlay a plot of the fitted pdf to visually compare the fitted normal distribution with the actual exam grades.

x_pdf = [1:0.1:100];
y = pdf(pd,x_pdf);

figure
histogram(x,'Normalization','pdf')
line(x_pdf,y)
The pdf of the fitted distribution follows the same shape as the histogram of the exam grades.

Use the inverse cumulative distribution function (icdf) to determine the boundary for the upper 10 percent of student exam grades. This boundary is equivalent to the value at which the cdf of the probability distribution is equal to 0.9. In other words, 90 percent of the exam grades are less than or equal to this boundary value.

\[A = \text{icdf}(pd, 0.9) \]

\[A = 86.1837 \]
Based on the fitted distribution, 10 percent of students received an exam grade greater than 86.1837. Equivalently, 90 percent of students received an exam grade less than or equal to 86.1837.

Save the fitted probability distribution, pd, as a file named myobject.mat.

```
save myobject.mat pd
```

Probability Distribution Functions

You can also work with probability distributions using command-line functions. Command-line functions let you further explore parametric and nonparametric distributions, fit relevant models to your data, and generate random data from a specified distribution. For a list of supported probability distributions, see “Supported Distributions” on page 5-16.

Probability distribution functions are useful for generating random numbers, computing summary statistics inside a loop or script, and passing a cdf or pdf as a function handle (MATLAB) to another function. You can also use these functions to perform computations on arrays of parameter values rather than a single set of parameters.

Use Probability Distribution Functions as Function Handle

This example shows how to use the probability distribution function `normcdf` as a function handle in the chi-square goodness of fit test (`chi2gof`).

This example tests the null hypothesis that the sample data contained in the input vector, `x`, comes from a normal distribution with parameters \(\mu \) and \(\sigma \) equal to the mean (`mean`) and standard deviation (`std`) of the sample data, respectively.

```
rng('default') % For reproducibility
x = normrnd(50,5,100,1);
h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})
```

```
h = 0
```

The returned result \(h = 0 \) indicates that `chi2gof` does not reject the null hypothesis at the default 5% significance level.

This next example illustrates how to use probability distribution functions as a function handle in the slice sampler (`slicesample`). The example uses `normpdf` to generate a random sample of 2,000 values from a standard normal distribution, and plots a histogram of the resulting values.
rng('default') % For reproducibility
x = slicesample(1,2000,'pdf',@normpdf,'thin',5,'burnin',1000);
histogram(x)

The histogram shows that, when using normpdf, the resulting random sample has a standard normal distribution.

If you pass the probability distribution function for the exponential distribution pdf (exppdf) as a function handle instead of normpdf, then slicesample generates the 2,000 random samples from an exponential distribution with a default parameter value of \(\mu \) equal to 1.
rng('default') % For reproducibility
x = slicesample(1,2000,'pdf',@exppdf,'thin',5,'burnin',1000);
histogram(x)

The histogram shows that the resulting random sample when using `exppdf` has an exponential distribution.

Probability Distribution Apps and User Interfaces

Apps and user interfaces provide an interactive approach to working with parametric and nonparametric probability distributions.
Distribution Fitter App

The Distribution Fitter app allows you to interactively fit a probability distribution to your data. You can display different types of plots, compute confidence bounds, and evaluate the fit of the data. You can also exclude data from the fit. You can save the data, and export the fit to your workspace as a probability distribution object to perform further analysis.

Load the Distribution Fitter app from the Apps tab, or by entering distributionFitter in the command window. For more information, see “Model Data Using the Distribution Fitter App” on page 5-68.
Probability Distribution Function Tool

The **Probability Distribution Function** user interface visually explores probability distributions. You can load the Probability Distribution Function user interface by entering `disttool` in the command window.
Random Number Generation Tool

The Random Number Generation user interface generates random data from a specified distribution and exports the results to your workspace. You can use this tool to explore the effects of changing parameters and sample size on the distributions.

The Random Number Generation user interface allows you to set parameter values for the distribution and change their lower and upper bounds; draw another sample from the same distribution, using the same size and parameters; and export the current random sample to your workspace for use in further analysis. A dialog box enables you to provide a name for the sample.
Probability Distributions
See Also
Distribution Fitter | Probability Distribution Function | fitdist | makedist | randtool

More About
- “Multinomial Probability Distribution Objects” on page 5-123
- “Multinomial Probability Distribution Functions” on page 5-127
- “Fit Kernel Distribution Object to Data” on page 5-48
- “Generate Random Numbers Using the Triangular Distribution” on page 5-63
- “Supported Distributions” on page 5-16
Supported Distributions

Statistics and Machine Learning Toolbox supports more than 30 probability distributions, including parametric, nonparametric, continuous, and discrete distributions.

The toolbox provides several ways to work with probability distributions.

- Use **probability distribution objects** to fit a probability distribution object to sample data, or to create a probability distribution object with specified parameter values. Once you create a probability distribution object, you can use object functions to:
 - Compute confidence intervals for the distribution parameters (paramci).
 - Compute summary statistics, including mean (mean), median (median), interquartile range (iqr), variance (var), and standard deviation (std).
 - Evaluate the probability density function (pdf).
 - Evaluate the cumulative distribution function (cdf) or the inverse cumulative distribution function (icdf).
 - Compute the negative loglikelihood (negloglik) and profile likelihood function (proflik) for the distribution.
 - Generate random numbers from the distribution (random).
 - Truncate the distribution to specified lower and upper limits (truncate).

Each distribution object page provides information about the object’s properties and the functions you can use to work with the object.

- Use **probability distribution functions** to work with data input from matrices. Some of the supported distributions have distribution-specific functions. These functions use the following abbreviations, as in normpdf, normcdf, norminv, normstat, normfit, normlike, and normrnd:
• pdf — Probability density functions
• cdf — Cumulative distribution functions
• inv — Inverse cumulative distribution functions
• stat — Distribution statistics functions
• fit — Distribution Fitter functions
• like — Negative loglikelihood functions
• rnd — Random number generators

You can also use the following generic functions to work with most of the distributions:

• pdf — Probability density function
• cdf — Cumulative distribution function
• icdf — Inverse cumulative distribution function
• random — Random number generating function
• mle — Distribution fitting function
• Use probability distribution apps and user interfaces to interactively fit, explore, and generate random numbers from probability distributions. Available apps and user interfaces include:

 • The Distribution Fitter app, to interactively fit a distribution to sample data, and export a probability distribution object to the workspace.
 • The Probability Distribution Function user interface, to visually explore the effect on the pdf and cdf of changing the distribution parameter values.
 • The Random Number Generation user interface (randtool), to interactively generate random numbers from a probability distribution with specified parameter values and export them to the workspace.

For more information on the different ways to work with probability distributions, see “Working with Probability Distributions” on page 5-3.
Continuous Distributions (Data)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps and UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta on page B-4</td>
<td>BetaDistribution</td>
<td>betapdf betacdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betainv betastat</td>
<td>cdf</td>
<td>Probability Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betafit betalike</td>
<td>icdf</td>
<td>Distribution Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betarnd</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Birnbaum-Saunders on page B-13</td>
<td>BirnbaumSaundersDistribuition</td>
<td></td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cdf</td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>random</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Burr Type XII on page B-15</td>
<td>BurrDistribution</td>
<td></td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cdf</td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>random</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Exponential on page B-32</td>
<td>ExponentialDistribution</td>
<td>exppdf expcdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expinv expstat</td>
<td>cdf</td>
<td>Probability Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expfit</td>
<td>icdf</td>
<td>Distribution Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exprnd</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Extreme value on page B-36</td>
<td>ExtremeValueDistribution</td>
<td>evpdf evcdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evinv evstat</td>
<td>cdf</td>
<td>Probability Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evfit</td>
<td>icdf</td>
<td>Distribution Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evlike</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>evrnd</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Distribution Objects</td>
<td>Distribution-Specific Functions</td>
<td>Generic Functions</td>
<td>Apps and UIs</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Gamma on page B-45</td>
<td>GammaDistribution</td>
<td>gampdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gamcdf</td>
<td>cdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gaminv</td>
<td>icdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gamstat</td>
<td>random</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gamfit</td>
<td>mle</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gamlike</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gamrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>randg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized extreme value on page B-50</td>
<td>GeneralizedExtremeValueDistribution</td>
<td>gevpdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevcdf</td>
<td>cdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevinv</td>
<td>icdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevstat</td>
<td>random</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevfit</td>
<td>mle</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevlike</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gevrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized Pareto on page B-55</td>
<td>GeneralizedParetoDistribution</td>
<td>gppdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gpcdf</td>
<td>cdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gpinv</td>
<td>icdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gpstat</td>
<td>random</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gpdfit</td>
<td>mle</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gpplike</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gprnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half-Normal on page B-69</td>
<td>HalfNormalDistribution</td>
<td>pdf</td>
<td>Distribution Fitter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cdf</td>
<td>Probability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>icdf</td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>random</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mle</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>Inverse Gaussian on page B-78</td>
<td>InverseGaussianDistribution</td>
<td>pdf</td>
<td>Distribution Fitter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cdf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>icdf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>random</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Distribution Objects</td>
<td>Distribution-Specific Functions</td>
<td>Generic Functions</td>
<td>Apps and UIs</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Logistic on page B-91</td>
<td>LogisticDistrbution</td>
<td></td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Loglogistic on page B-93</td>
<td>LoglogisticDistrbution</td>
<td></td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Lognormal on page B-95</td>
<td>LognormalDistrbution</td>
<td>lognpdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logncdf</td>
<td>cdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>logninv</td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognstat</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognlike</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lognrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakagami on page B-114</td>
<td>NakagamiDistrbution</td>
<td></td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Normal (Gaussian) on page B-130</td>
<td>NormalDistrbution</td>
<td>normpdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>normcdf</td>
<td>cdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>norminv</td>
<td>icdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>normstat</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>normfit</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>normlike</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>normrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piecewise linear on page B-135</td>
<td>PiecewiseLinearDistrbution</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-20
<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps and Uls</th>
</tr>
</thead>
</table>
| Rayleigh on page B-140 | RayleighDistribution | raylpdf raylcdf raylinv raylstat raylfit raylrnd | pdf cdf icdf random mle | Distribution Fitter
Probability Distribution Function randtool |
| Rician on page B-143 | RicianDistribution | | pdf cdf icdf random mle | Distribution Fitter |
| Stable on page B-145 | StableDistribution | | pdf cdf icdf random mle | Distribution Fitter |
| Triangular on page B-169 | TriangularDistribution | | | |
| Uniform (continuous) on page B-175 | UniformDistribution | unifpdf unifcdf unifinv unifstat uniffit unifrnd | pdf cdf icdf random mle | Probability Distribution Function randtool |
| Weibull on page B-184 | WeibullDistribution | wblpdf wblcdf wblinv wblstat wblfit wbllike wblrnd | pdf cdf icdf random mle | Distribution Fitter
Probability Distribution Function randtool |
Continuous Distributions (Statistics)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps and UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square on page B-28</td>
<td></td>
<td>chi2pdf chi2cdf chi2inv chi2stat chi2rnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>F on page B-42</td>
<td></td>
<td>fpdf fcdf finv fstat frnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Noncentral chi-square on page B-121</td>
<td></td>
<td>ncx2pdf ncx2cdf ncx2inv ncx2stat ncx2rnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Noncentral F on page B-124</td>
<td></td>
<td>ncfpdf ncfcdf ncfinv ncfstat ncfrnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Noncentral t on page B-127</td>
<td></td>
<td>nctpdf nctcdf nctinv nctstat nctrnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Student's t on page B-158</td>
<td></td>
<td>tpdf tcdf tinv tstat trnd</td>
<td>pdf cdf icdf random</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Distribution</td>
<td>Distribution Objects</td>
<td>Distribution-Specific Functions</td>
<td>Generic Functions</td>
<td>Apps and Uls</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>t location-scale on page B-166</td>
<td>tLocationScaleDistribution</td>
<td></td>
<td>pdf cdf icdf random mle</td>
<td>Distribution Fitter</td>
</tr>
</tbody>
</table>

Discrete Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps/UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial on page B-9</td>
<td>BinomialDistribution</td>
<td>binopdf binocdf binoinv binostat binofit binornd</td>
<td>pdf cdf icdf random mle</td>
<td>Distribution Fitter Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Bernoulli on page B-2</td>
<td></td>
<td></td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td>Geometric on page B-61</td>
<td></td>
<td>geopdf geocdf geoinv geostat mle geornd</td>
<td>pdf cdf icdf random mle</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Hypergeometric on page B-75</td>
<td></td>
<td>hygepdf hygecdf hygeinv hygestat hygernd</td>
<td>pdf cdf icdf random mle</td>
<td>Probability Distribution Function randtool</td>
</tr>
<tr>
<td>Multinomial on page B-99</td>
<td>MultinomialDistribution</td>
<td>mnpdf mnrnd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probability Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps/UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative binomial</td>
<td>NegativeBinomialDistribution</td>
<td>nbinpdf nbinpdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nbinccdf nbinccdf</td>
<td>cdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nbininv nbininv</td>
<td>icdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nbininv nbininv</td>
<td>random</td>
<td>randtool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nbinstat nbinstat</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nbirnd nbirnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson</td>
<td>PoissonDistribution</td>
<td>poisspdf poisspdf</td>
<td>pdf</td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poissccdf poissccdf</td>
<td>cdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poissinv poissinv</td>
<td>icdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poissstat poissstat</td>
<td>random</td>
<td>randtool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poissfit poissfit</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>poissrnd poissrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform (discrete)</td>
<td></td>
<td>unidpdf unidpdf</td>
<td>pdf</td>
<td>Probability Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unidcdf unidcdf</td>
<td>cdf</td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unidinv unidinv</td>
<td>icdf</td>
<td>randtool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unidstat unidstat</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unidrnd unidrnd</td>
<td>mle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multivariate Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Object</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps/UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copula</td>
<td>gmdist</td>
<td>copulapdf copula</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copulacpdf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copulaparam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copulastat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copulafit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copularnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Mixture</td>
<td>gmdist</td>
<td>fitgmdist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pdf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cdf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>random</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>Object</td>
<td>Distribution-Specific Functions</td>
<td>Generic Functions</td>
<td>Apps/UI</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Inverse Wishart on page B-79</td>
<td></td>
<td>iwishrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate normal on page B-102</td>
<td></td>
<td>mvnpdf mvncdf mvnrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate t on page B-108</td>
<td></td>
<td>mvtpdf mvtcdf mvtrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wishart on page B-189</td>
<td></td>
<td>wishrnd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nonparametric Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps/UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel on page B-81</td>
<td>KernelDistribution</td>
<td>ksdensity</td>
<td></td>
<td>Distribution Fitter</td>
</tr>
<tr>
<td>Pareto tails</td>
<td>paretotails</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flexible Distribution Families

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Distribution Objects</th>
<th>Distribution-Specific Functions</th>
<th>Generic Functions</th>
<th>Apps/UIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson system on page 7-26</td>
<td></td>
<td>pearsrnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson system on page 7-26</td>
<td></td>
<td>johnsrnd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
See Also

More About

• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-39
Maximum Likelihood Estimation

The `mle` function computes maximum likelihood estimates (MLEs) for a distribution specified by its name and for a custom distribution specified by its probability density function (pdf), log pdf, or negative log likelihood function.

For some distributions, MLEs can be given in closed form and computed directly. For other distributions, a search for the maximum likelihood must be employed. The search can be controlled with an `options` input argument, created using the `statset` function. For efficient searches, it is important to choose a reasonable distribution model and set appropriate convergence tolerances.

MLEs can be biased, especially for small samples. As sample size increases, however, MLEs become unbiased minimum variance estimators with approximate normal distributions. This is used to compute confidence bounds for the estimates.

For example, consider the following distribution of means from repeated random samples of an exponential distribution:

```matlab
mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples
rng('default') % For reproducibility
samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

[phat,pci] = mle(means)
```

```
phat = 1×2
     1.0000    0.0315

pci = 2×2
       0.9994    0.0311
      1.0006    0.0319
```

The Central Limit Theorem says that the means will be approximately normally distributed, regardless of the distribution of the data in the samples. The `mle` function can be used to find the normal distribution that best fits the means:
phat(1) and phat(2) are the MLEs for the mean and standard deviation. pci(:,1) and pci(:,1) are the corresponding 95% confidence intervals.

Visualize the distribution of sample means together with the fitted normal distribution.

```matlab
numbins = 50;
histogram(means,numbins,'Normalization','pdf')
hold on
x = min(means):0.001:max(means);
y = normpdf(x,phat(1),phat(2));
plot(x,y,'r','LineWidth',2)
```
See Also
Histogram|mle

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Negative Loglikelihood Functions

Negative loglikelihood functions for supported Statistics and Machine Learning Toolbox distributions all end with `like`, as in `explike`. Each function represents a parametric family of distributions. Input arguments are lists of parameter values specifying a particular member of the distribution family followed by an array of data. Functions return the negative loglikelihood of the parameters, given the data.

To find maximum likelihood estimates (MLEs), you can use a negative loglikelihood function as an objective function of the optimization problem and solve it by using the MATLAB function `fminsearch` or functions in Optimization Toolbox™ and Global Optimization Toolbox. These functions allow you to choose a search algorithm and exercise low-level control over algorithm execution. By contrast, the `mle` function and the distribution fitting functions that end with `fit`, such as `normfit` and `gamfit`, use preset algorithms with options limited to those set by the `statset` function.

Likelihoods are conditional probability densities. You can specify a parametric family of distributions by using a function $f(x,a)$, where x and a represent a random variable and parameters, respectively. When a is fixed, the function is the probability density function (pdf) at x, $f(x|a)$. When x is fixed, the function is the likelihood of the parameters a, $f(a|x)$. The joint likelihood of the parameters over an independent random sample data set X is

$$L(a) = \prod_{x \in X} f(a | x).$$

Given X, MLEs maximize $L(a)$ over all possible a. Numerical algorithms find MLEs that (equivalently) maximize the loglikelihood function, $\log(L(a))$. The logarithm transforms the product of potentially small likelihoods into a sum of logs, which is easier to distinguish from 0 in computation. For convenience, Statistics and Machine Learning Toolbox negative loglikelihood functions return the *negative* of this sum because optimization algorithms typically search for minima rather than maxima.

Find MLEs Using Negative Loglikelihood Function

This example shows how to find MLEs by using the `gamlike` and `fminsearch` functions.

Use the `gammrnd` function to generate a random sample from a specific “Gamma Distribution” on page B-45.
rng default; % For reproducibility
a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);

Visualize the likelihood surface in the neighborhood of a given X by using the gamlike function.

mesh = 50;
delta = 0.5;
a1 = linspace(a(1)-delta,a(1)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for i = 1:mesh
 for j = 1:mesh
 logL(i,j) = gamlike([a1(i),a2(j)],X);
 end
end

[A1,A2] = meshgrid(a1,a2);
surfc(A1,A2,logL)
Search for the minimum of the likelihood surface by using the `fminsearch` function.

\[
LL = @(u)\text{gamlike}([u(1),u(2)],X); \quad \% \text{Likelihood given } X
\]

\[
\text{MLEs} = \text{fminsearch}(LL,[1,2])
\]

\[
\text{MLEs} = 1\times2
\]

\[
\begin{array}{cc}
0.9980 & 2.0172 \\
\end{array}
\]

Compare MLES to the estimates returned by the `gamfit` function.

\[
a\hat{h} = \text{gamfit}(X)
\]
ahat = 1×2

0.9980 2.0172

The difference of each parameter between MLES and ahat is less than 1e-4.

Add the MLEs to the surface plot.

```matlab
hold on
plot3(MLES(1),MLES(2),LL(MLES), 'ro', 'MarkerSize', 5, 'MarkerFaceColor', 'r')
view([-60 40]) % Rotate to show the minimum
```
See Also
fminsearch | negloglik | statset | surfc

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Random Number Generation

Statistics and Machine Learning Toolbox supports the generation of random numbers from various distributions. Each random number generator (RNG) represents a parametric family of distributions. RNGs return random numbers from the specified distribution in an array of the specified dimensions.

Other random number generation functions which do not support specific distributions include:

- cvpartition
- datasample
- hmmgenerate
- lhsdesign
- lhsnorm
- mhsample
- random
- randsample
- slicesample

RNGs in Statistics and Machine Learning Toolbox software depend on MATLAB's default random number stream via the `rand` and `randn` functions, each RNG uses one of the techniques discussed in “Common Pseudorandom Number Generation Methods” on page 7-2 to generate random numbers from a given distribution.

By controlling the default random number stream and its state, you can control how the RNGs in Statistics and Machine Learning Toolbox software generate random values. For example, to reproduce the same sequence of values from an RNG, you can save and restore the default stream's state, or reset the default stream. For details on managing the default random number stream, see “Managing the Global Stream” (MATLAB).

MATLAB initializes the default random number stream to the same state each time it starts up. Thus, RNGs in Statistics and Machine Learning Toolbox software will generate the same sequence of values for each MATLAB session unless you modify that state at startup. One simple way to do that is to add commands to `startup.m` such as

```
rng shuffle
```
that initialize MATLAB's default random number stream to a different state for each session.

The following table lists the supported distributions and their respective random number generation functions.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Random Number Generation Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta on page B-4</td>
<td>betarnd, random, randtool</td>
</tr>
<tr>
<td>Binomial on page B-9</td>
<td>binornd, random, randtool</td>
</tr>
<tr>
<td>Birnbaum-Saunders on page B-13</td>
<td>random</td>
</tr>
<tr>
<td>Burr Type XII on page B-15</td>
<td>random, randtool</td>
</tr>
<tr>
<td>Chi-square on page B-28</td>
<td>chi2rnd, random, randtool</td>
</tr>
<tr>
<td>Clayton copula on page 5-159</td>
<td>copularnd</td>
</tr>
<tr>
<td>Exponential on page B-32</td>
<td>exprnd, random, randtool</td>
</tr>
<tr>
<td>Extreme value on page B-36</td>
<td>evrnd, random, randtool</td>
</tr>
<tr>
<td>F on page B-42</td>
<td>frnd, random, randtool</td>
</tr>
<tr>
<td>Frank copula on page 5-159</td>
<td>copularnd</td>
</tr>
<tr>
<td>Gamma on page B-45</td>
<td>gamrnd, randg, random, randtool</td>
</tr>
<tr>
<td>Gaussian copula on page 5-159</td>
<td>copularnd</td>
</tr>
<tr>
<td>Gaussian Mixture on page 5-145</td>
<td>random</td>
</tr>
<tr>
<td>Generalized extreme value on page B-50</td>
<td>gevrnd, random, randtool</td>
</tr>
<tr>
<td>Generalized Pareto on page B-55</td>
<td>gprnd, random, randtool</td>
</tr>
<tr>
<td>Geometric on page B-61</td>
<td>geornd, random, randtool</td>
</tr>
<tr>
<td>Gumbel copula on page 5-159</td>
<td>copularnd</td>
</tr>
<tr>
<td>Half-Normal on page B-69</td>
<td>random, randtool</td>
</tr>
<tr>
<td>Hypergeometric on page B-75</td>
<td>hygernd, random, randtool</td>
</tr>
<tr>
<td>Inverse Gaussian on page B-78</td>
<td>random</td>
</tr>
<tr>
<td>Inverse Wishart on page B-79</td>
<td>iwishrnd</td>
</tr>
<tr>
<td>Johnson system on page 7-26</td>
<td>johnsrnd</td>
</tr>
<tr>
<td>Kernel on page B-81</td>
<td>random</td>
</tr>
<tr>
<td>Logistic on page B-91</td>
<td>random</td>
</tr>
<tr>
<td>Distribution</td>
<td>Random Number Generation Function</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Loglogistic on page B-93</td>
<td>random</td>
</tr>
<tr>
<td>Lognormal on page B-95</td>
<td>lognrnd, random, randtool</td>
</tr>
<tr>
<td>Multinominal on page B-99</td>
<td>mnrnd</td>
</tr>
<tr>
<td>Multivariate normal on page B-102</td>
<td>mvnrnd</td>
</tr>
<tr>
<td>Multivariate t on page B-108</td>
<td>mvtrnd</td>
</tr>
<tr>
<td>Nakagami on page B-114</td>
<td>random</td>
</tr>
<tr>
<td>Negative binomial on page B-116</td>
<td>nbinr>nd, random, randtool</td>
</tr>
<tr>
<td>Noncentral chi-square on page B-121</td>
<td>ncx2r>nd, random, randtool</td>
</tr>
<tr>
<td>Noncentral F on page B-124</td>
<td>ncfr>nd, random, randtool</td>
</tr>
<tr>
<td>Noncentral t on page B-127</td>
<td>nctrnd, random, randtool</td>
</tr>
<tr>
<td>Normal (Gaussian) on page B-130</td>
<td>normr>nd, randn, random, randtool</td>
</tr>
<tr>
<td>Pareto</td>
<td>random</td>
</tr>
<tr>
<td>Pearson system on page 7-26</td>
<td>pearsr>nd</td>
</tr>
<tr>
<td>Piecewise on page B-135</td>
<td>random</td>
</tr>
<tr>
<td>Poisson on page B-137</td>
<td>poissr>nd, random, randtool</td>
</tr>
<tr>
<td>Rayleigh on page B-140</td>
<td>raylr>nd, random, randtool</td>
</tr>
<tr>
<td>Rician on page B-143</td>
<td>random</td>
</tr>
<tr>
<td>Stable on page B-145</td>
<td>random</td>
</tr>
<tr>
<td>Student's t on page B-158</td>
<td>tr>nd, random, randtool</td>
</tr>
<tr>
<td>t copula on page 5-159</td>
<td>copular>nd</td>
</tr>
<tr>
<td>t location- scale on page B-166</td>
<td>random</td>
</tr>
<tr>
<td>Triangular on page B-169</td>
<td>random</td>
</tr>
<tr>
<td>Uniform (continuous) on page B-175</td>
<td>unifr>nd, rand, random</td>
</tr>
<tr>
<td>Uniform (discrete) on page B-181</td>
<td>unidr>nd, random, randtool</td>
</tr>
<tr>
<td>Weibull on page B-184</td>
<td>wblr>nd, random</td>
</tr>
<tr>
<td>Wishart on page B-189</td>
<td>wishr>nd</td>
</tr>
</tbody>
</table>
See Also

More About

• “Generate Random Numbers Using the Triangular Distribution” on page 5-63
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130
• “Generating Pseudorandom Numbers” on page 7-2
• “Generating Quasi-Random Numbers” on page 7-16
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Nonparametric and Empirical Probability Distributions

In this section...

“Overview” on page 5-39
“Kernel Distribution” on page 5-39
“Empirical Cumulative Distribution Function” on page 5-41
“Piecewise Linear Distribution” on page 5-43
“Pareto Tails” on page 5-44
“A Pareto Tails” on page 5-45

Overview

In some situations, you cannot accurately describe a data sample using a parametric distribution. Instead, the probability density function (pdf) or cumulative distribution function (cdf) must be estimated from the data. Statistics and Machine Learning Toolbox provides several options for estimating the pdf or cdf from sample data.

Kernel Distribution

A kernel distribution on page B-81 produces a nonparametric probability density estimate that adapts itself to the data, rather than selecting a density with a particular parametric form and estimating the parameters. This distribution is defined by a kernel density estimator, a smoothing function that determines the shape of the curve used to generate the pdf, and a bandwidth value that controls the smoothness of the resulting density curve.

Similar to a histogram, the kernel distribution builds a function to represent the probability distribution using the sample data. But unlike a histogram, which places the values into discrete bins, a kernel distribution sums the component smoothing functions for each data value to produce a smooth, continuous probability curve. The following plot shows a visual comparison of a histogram and a kernel distribution generated from the same sample data.
A histogram represents the probability distribution by establishing bins and placing each data value in the appropriate bin. Because of this bin count approach, the histogram produces a discrete probability density function. This might be unsuitable for certain applications, such as generating random numbers from a fitted distribution.

Alternatively, the kernel distribution builds the probability density function (pdf) by creating an individual probability density curve for each data value, then summing the smooth curves. This approach creates one smooth, continuous probability density function for the data set.

For more general information about kernel distributions, see “Kernel Distribution” on page B-81. For information on how to work with a kernel distribution, see Using KernelDistribution Objects and ksdensity.
Empirical Cumulative Distribution Function

An empirical cumulative distribution function (ecdf) estimates the cdf of a random variable by assigning equal probability to each observation in a sample. Because of this approach, the ecdf is a discrete cumulative distribution function that creates an exact match between the ecdf and the distribution of the sample data.

The following plot shows a visual comparison of the ecdf of 20 random numbers generated from a standard normal distribution, and the theoretical cdf of a standard normal distribution. The circles indicate the value of the ecdf calculated at each sample data point. The dashed line that passes through each circle visually represents the ecdf, although the ecdf is not a continuous function. The solid line shows the theoretical cdf of the standard normal distribution from which the random numbers in the sample data were drawn.
The ecdf is similar in shape to the theoretical cdf, although it is not an exact match. Instead, the ecdf is an exact match to the sample data. The ecdf is a discrete function, and is not smooth, especially in the tails where data might be sparse. You can smooth the distribution with Pareto tails on page 5-44, using the `paretotails` function.

For more information and additional syntax options, see `ecdf`. To construct a continuous function based on cdf values computed from sample data, see “Piecewise Linear Distribution” on page 5-43.
Piecewise Linear Distribution

A piecewise linear distribution on page B-135 estimates an overall cdf for the sample data by computing the cdf value at each individual point, and then linearly connecting these values to form a continuous curve.

The following plot shows the cdf for a piecewise linear distribution based on a sample of hospital patients’ weight measurements. The circles represent each individual data point (weight measurement). The black line that passes through each data point represents the piecewise linear distribution cdf for the sample data.

A piecewise linear distribution linearly connects the cdf values calculated at each sample data point to form a continuous curve. By contrast, an empirical cumulative distribution...
function on page 5-41 constructed using the `ecdf` function produces a discrete cdf. For example, random numbers generated from the `ecdf` can only include x values contained in the original sample data. Random numbers generated from a piecewise linear distribution can include any x value between the lower and upper boundaries of the sample data.

Because the piecewise linear distribution cdf is constructed from the values contained in the sample data, the resulting curve is often not smooth, especially in the tails where data might be sparse. You can smooth the distribution with Pareto tails on page 5-44, using the `paretotails` function.

For information on how to work with a piecewise linear distribution, see Using `PiecewiseLinearDistribution` Objects.

Pareto Tails

Pareto tails use a piecewise approach to improve the fit of a nonparametric cdf by smoothing the tails of the distribution. You can fit a kernel distribution on page 5-39, empirical cdf on page 5-41, or a user-defined estimator to the middle data values, then fit generalized Pareto distribution on page B-55 curves to the tails. This technique is especially useful when the sample data is sparse in the tails.

The following plot shows the empirical cdf (ecdf) of a data sample containing 20 random numbers. The solid line represents the ecdf, and the dashed line represents the empirical cdf with Pareto tails fit to the lower and upper 10 percent of the data. The circles denote the boundaries for the lower and upper 10 percent of the data.
Fitting Pareto tails to the lower and upper 10 percent of the sample data makes the cdf smoother in the tails, where the data is sparse. For more information on working with Pareto tails, see paretotails.

Triangular Distribution

A “Triangular Distribution” on page B-169 provides a simplistic representation of the probability distribution when limited sample data is available. This continuous distribution is parameterized by a lower limit, peak location, and upper limit. These points are linearly connected to estimate the pdf of the sample data. You can use the mean, median, or mode of the data as the peak location.
The following plot shows the triangular distribution pdf of a random sample of 10 integers from 0 to 5. The lower limit is the smallest integer in the sample data, and the upper limit is the largest integer. The peak for this plot is at the mode, or most frequently-occurring value, in the sample data.

Business applications such as simulation and project management sometimes use a triangular distribution to create models when limited sample data exists. For more information, see “Triangular Distribution” on page B-169.

See Also
ecdf | ksdensity | paretotails
More About

• “Kernel Distribution” on page B-81
• “Piecewise Linear Distribution” on page B-135
• “Triangular Distribution” on page B-169
• “Generalized Pareto Distribution” on page B-55
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
Fit Kernel Distribution Object to Data

This example shows how to fit a kernel probability distribution object to sample data.

Step 1. Load sample data.

Load the sample data.

```matlab
load carsmall;
```

This data contains miles per gallon (MPG) measurements for different makes and models of cars, grouped by country of origin (Origin), model year (Year), and other vehicle characteristics.

Step 2. Fit a kernel distribution object.

Use `fitdist` to fit a kernel probability distribution object to the miles per gallon (MPG) data for all makes of cars.

```matlab
pd = fitdist(MPG,'Kernel')
```

```matlab
pd = 
    KernelDistribution
    Kernel = normal  
    Bandwidth = 4.11428  
    Support = unbounded
```

This creates a `prob.KernelDistribution` object. By default, `fitdist` uses a normal kernel smoothing function and chooses an optimal bandwidth for estimating normal densities, unless you specify otherwise. You can access information about the fit and perform further calculations using the related object functions.

Step 3. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the fitted kernel distribution.

```matlab
m = mean(pd)
```

```matlab
m = 23.7181
```

```matlab
med = median(pd)
```

```matlab
med = 23.4841
```
Step 4. Compute and plot the pdf.

Compute and plot the pdf of the fitted kernel distribution.

```matlab
figure
x = 0:1:60;
y = pdf(pd,x);
plot(x,y,'LineWidth',2)
title('Miles per Gallon')
xlabel('MPG')
```

![Miles per Gallon](image)
The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed with a heavier right tail.

Step 5. Generate random numbers.

Generate a vector of random numbers from the fitted kernel distribution.

```matlab
rng('default') % For reproducibility
r = random(pd,1000,1);
figure
hist(r);
set(get(gca,'Children'),'FaceColor', [.8 .8 1]);
hold on
y = y*5000; % Scale pdf to overlay on histogram
plot(x,y,'LineWidth',2)
title('Random Numbers Generated From Distribution')
hold off
```
The histogram has a similar shape to the pdf plot because the random numbers generate from the nonparametric kernel distribution fit to the sample data.

See Also

KernelDistribution | fitdist | ksdensity

More About

- “Kernel Distribution” on page B-81
- “Fit Kernel Distribution Using ksdensity” on page 5-53
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Fit Kernel Distribution Using ksdensity

This example shows how to generate a kernel probability density estimate from sample data using the ksdensity function.

Step 1. Load sample data.

Load the sample data.

```matlab
load carsmall;
```

This data contains miles per gallon (MPG) measurements for different makes and models of cars, grouped by country of origin (Origin), model year (Year), and other vehicle characteristics.

Step 2. Generate a kernel probability density estimate.

Use ksdensity to generate a kernel probability density estimate for the miles per gallon (MPG) data.

```matlab
[f,xi] = ksdensity(MPG);
```

By default, ksdensity uses a normal kernel smoothing function and chooses an optimal bandwidth for estimating normal densities, unless you specify otherwise.

Step 3. Plot the kernel probability density estimate.

Plot the kernel probability density estimate to visualize the MPG distribution.

```matlab
plot(xi,f,'LineWidth',2)
title('Miles per Gallon')
xlabel('MPG')
```
The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed with a heavier right tail.

See Also
KernelDistribution | fitdist | ksdensity

More About
- “Kernel Distribution” on page B-81
- “Fit Kernel Distribution Object to Data” on page 5-48
Fit Distributions to Grouped Data Using ksdensity

This example shows how to fit kernel distributions to grouped sample data using the ksdensity function.

Step 1. Load sample data.

Load the sample data.

```matlab
load carsmall
```

The data contains miles per gallon (MPG) measurements for different makes and models of cars, grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Group sample data by origin.

Group the MPG data by origin (Origin) for cars made in the USA, Japan, and Germany.

```matlab
Origin = categorical(cellstr(Origin));
MPG_USA = MPG(Origin=='USA');
MPG_Japan = MPG(Origin=='Japan');
MPG_Germany = MPG(Origin=='Germany');
```

Step 3. Compute and plot the pdf.

Compute and plot the pdf for each group.

```matlab
[fi,xi] = ksdensity(MPG_USA);
plot(xi,fi,'r-')
hold on

[fj,xj] = ksdensity(MPG_Japan);
plot(xj,fj,'b-.')

[fk,xk] = ksdensity(MPG_Germany);
plot(xk,fk,'k:')

legend('USA','Japan','Germany')
title('MPG by Origin')
xlabel('MPG')
hold off
```
The plot shows how miles per gallon (MPG) performance differs by country of origin (Origin). Using this data, the USA has the widest distribution, and its peak is at the lowest MPG value of the three origins. Japan has the most regular distribution with a slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The peak for Germany is between the USA and Japan, and the second bump near 44 miles per gallon suggests that there might be multiple modes in the data.

See Also
KernelDistribution | fitdist | ksdensity
More About

- “Kernel Distribution” on page B-81
- “Grouping Variables” on page 2-57
- “Fit Kernel Distribution Using ksdensity” on page 5-53
- “Fit Probability Distribution Objects to Grouped Data” on page 5-119
Fit a Nonparametric Distribution with Pareto Tails

This example shows how to fit a nonparametric probability distribution to sample data using Pareto tails to smooth the distribution in the tails.

Step 1. Generate sample data.

Generate sample data that contains more outliers than expected from a standard normal distribution.

```matlab
rng('default')  % For reproducibility
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];
```

The data contains 80% values from a standard normal distribution, 10% from an exponential distribution with a mean of 5, and 10% from an exponential distribution with mean of -1. Compared to a standard normal distribution, the exponential values are more likely to be outliers, especially in the upper tail.

Step 2. Fit probability distributions to the data.

Fit a normal distribution and a t location-scale distribution to the data, and plot for a visual comparison.

```matlab
probplot(data);
p = fitdist(data,'tlocationscale');
h = probplot(gca,p);
set(h,'color','r','linestyle','-');
title('Probability Plot')
legend('Normal','Data','t location-scale','Location','SE')
```
Both distributions appear to fit reasonably well in the center, but neither the normal distribution nor the t location-scale distribution fit the tails very well.

Step 3. Generate an empirical distribution.

To obtain a better fit, use `ecdf` to generate an empirical cdf based on the sample data.

```matlab
figure
ecdf(data)
```
The empirical distribution provides a perfect fit, but the outliers make the tails very discrete. Random samples generated from this distribution using the inversion method might include, for example, values near 4.33 and 9.25, but no values in between.

Step 4. Fit a distribution using Pareto tails.

Use `paretotails` to generate an empirical cdf for the middle 80% of the data and fit generalized Pareto distributions to the lower and upper 10%.

```matlab
pfit = paretotails(data,0.1,0.9)
pfit =
Piecewise distribution with 3 segments
-Inf < x < -1.24623   (0 < p < 0.1): lower tail, GPD(-0.334156,0.798745)
```

5-60
To obtain a better fit, `paretotails` fits a distribution by piecing together an ecdf or kernel distribution in the center of the sample, and smooth generalized Pareto distributions (GPDs) in the tails. Use `paretotails` to create `paretotails` probability distribution object. You can access information about the fit and perform further calculations on the object using the object functions of the `paretotails` object. For example, you can evaluate the cdf or generate random numbers from the distribution.

Step 5. Compute and plot the cdf.

Compute and plot the cdf of the fitted `paretotails` distribution.

```matlab
x = -4:0.01:10;
plot(x,cdf(pfit,x))
```
The `paretotails` cdf closely fits the data but is smoother in the tails than the `ecdf` generated in Step 3.

See Also

`ecdf` | `fitdist` | `paretotails`

More About

- “Nonparametric and Empirical Probability Distributions” on page 5-39
Generate Random Numbers Using the Triangular Distribution

This example shows how to create a triangular probability distribution object based on sample data, and generate random numbers for use in a simulation.

Step 1. Input sample data.

Input the data vector `time`, which contains the observed length of time (in seconds) that 10 different cars stopped at a highway tollbooth.

```plaintext
time = [6 14 8 7 16 8 23 6 7 15];
```

The data shows that, while most cars stopped for 6 to 16 seconds, one outlier stopped for 23 seconds.

Step 2. Estimate distribution parameters.

Estimate the triangular distribution parameters from the sample data.

```plaintext
lower = min(time);
peak = median(time);
upper = max(time);
```

A triangular distribution provides a simplistic representation of the probability distribution when sample data is limited. Estimate the lower and upper boundaries of the distribution by finding the minimum and maximum values of the sample data. For the peak parameter, the median might provide a better estimate of the mode than the mean, since the data includes an outlier.

Step 3. Create a probability distribution object.

Create a triangular probability distribution object using the estimated parameter values.

```plaintext
pd = makedist('Triangular','a',lower,'b',peak,'c',upper)
```

```plaintext
pd =
    TriangularDistribution

A = 6, B = 8, C = 23
```

Compute and plot the pdf of the triangular distribution.
x = 0:.1:230;
y = pdf(pd,x);
plot(x,y)
title('Time Spent at Tollbooth')
xlabel('Time (seconds)')
xlim([0 30])

The plot shows that this triangular distribution is skewed to the right. However, since the estimated peak value is the sample median, the distribution should be symmetrical about the peak. Because of its skew, this model might, for example, generate random numbers that seem unusually high when compared to the initial sample data.
Step 4. Generate random numbers.

Generate random numbers from this distribution to simulate future traffic flow through the tollbooth.

```matlab
rng('default');  % For reproducibility
r = random(pd,10,1)
```

```
r = 10×1
    16.1265
    18.0987
    8.0796
    18.3001
    13.3176
    7.8211
    9.4360
    12.2508
    19.7082
    20.0078
```

The returned values in `r` are the time in seconds that the next 10 simulated cars spend at the tollbooth. These values seem high compared to the values in the original data vector `time` because the outlier skewed the distribution to the right. Using the second-highest value as the upper limit parameter might mitigate the effects of the outlier and generate a set of random numbers more similar to the initial sample data.

Step 5. Revise estimated parameters.

Estimate the upper boundary of the distribution using the second largest value in the sample data.

```matlab
sort_time = sort(time,'descend');
secondLargest = sort_time(2);
```

Step 6. Create a new distribution object and plot the pdf.

Create a new triangular probability distribution object using the revised estimated parameters, and plot its pdf.

```matlab
figure
pd2 = makedist('Triangular','a',lower,'b',peak,'c',secondLargest);
y2 = pdf(pd2,x);
```
The plot shows that this triangular distribution is still slightly skewed to the right. However, it is much more symmetrical about the peak than the distribution that used the maximum sample data value to estimate the upper limit.

Step 7. Generate new random numbers.

Generate new random numbers from the revised distribution.
rng('default'); % For reproducibility
r2 = random(pd2,10,1)

r2 = 10×1

12.1501
13.2547
 7.5937
13.3675
10.5768
 7.3967
 8.4026
 9.9792
14.1562
14.3240

These new values more closely resemble those in the original data vector time. They are also closer to the sample median than the random numbers generated by the distribution that used the outlier to estimate its upper limit. This example does not remove the outlier from the sample data when computing the median. Other options for parameter estimation include removing outliers from the sample data altogether, or using the mean or mode of the sample data as the peak value.

See Also
makedist | pdf | random

More About
- “Triangular Distribution” on page B-169
- “Random Number Generation” on page 5-35
- “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130
Model Data Using the Distribution Fitter App

In this section...

“Explore Probability Distributions Interactively” on page 5-68
“Create and Manage Data Sets” on page 5-69
“Create a New Fit” on page 5-74
“Display Results” on page 5-79
“Manage Fits” on page 5-81
“Evaluate Fits” on page 5-83
“Exclude Data” on page 5-87
“Save and Load Sessions” on page 5-92
“Generate a File to Fit and Plot Distributions” on page 5-92

The Distribution Fitter app provides a visual, interactive approach to fitting univariate distributions to data.

Explore Probability Distributions Interactively

You can use the Distribution Fitter app to interactively fit probability distributions to data imported from the MATLAB workspace. You can choose from 22 built-in probability distributions, or create your own custom distribution. The app displays the fitted distribution over plots of the empirical distributions, including pdf, cdf, probability plots, and survivor functions. You can export the fit data, including fitted parameter values, to the workspace for further analysis.

Distribution Fitter App Workflow

To fit a probability distribution to your sample data:

1. On the MATLAB Toolstrip, click the Apps tab. In the Math, Statistics and Optimization group, open the Distribution Fitter app. Alternatively, at the command prompt, enter `distributionFitter`.

2. Import your sample data, or create a data vector directly in the app. You can also manage your data sets and choose which one to fit. See “Create and Manage Data Sets” on page 5-69.

3. Create a new fit for your data. See “Create a New Fit” on page 5-74.
4 Display the results of the fit. You can choose to display the density (pdf), cumulative probability (cdf), quantile (inverse cdf), probability plot (choose one of several distributions), survivor function, and cumulative hazard. See “Display Results” on page 5-79.

5 You can create additional fits, and manage multiple fits from within the app. See “Manage Fits” on page 5-81.

6 Evaluate probability functions for the fit. You can choose to evaluate the density (pdf), cumulative probability (cdf), quantile (inverse cdf), survivor function, and cumulative hazard. See “Evaluate Fits” on page 5-83.

7 Improve the fit by excluding certain data. You can specify bounds for the data to exclude, or you can exclude data graphically using a plot of the values in the sample data. See “Exclude Data” on page 5-87.

8 Save your current Distribution Fitter app session so you can open it later. See “Save and Load Sessions” on page 5-92.

Create and Manage Data Sets

To open the Data dialog box, click the Data button in the Distribution Fitter app.
Import Data

Create a data set by importing a vector from the MATLAB workspace using the **Import workspace vectors** pane.

• **Data** — In the **Data** field, the drop-down list contains the names of all matrices and vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the array containing the data that you want to fit. The actual data you import must be a vector. If you select a matrix in the **Data** field, the first column of the matrix is imported by default. To select a different column or row of the matrix, click **Select Column or Row**. The matrix displays in the Variables editor. You can select a row or column by highlighting it.

Alternatively, you can enter any valid MATLAB expression in the **Data** field.
When you select a vector in the **Data** field, a histogram of the data appears in the **Data preview** pane.

- **Censoring** — If some of the points in the data set are censored, enter a Boolean vector of the same size as the data vector, specifying the censored entries of the data. A 1 in the censoring vector specifies that the corresponding entry of the data vector is censored. A 0 specifies that the entry is not censored. If you enter a matrix, you can select a column or row by clicking **Select Column or Row**. If you do not have censored data, leave the **Censoring** field blank.

- **Frequency** — Enter a vector of positive integers of the same size as the data vector to specify the frequency of the corresponding entries of the data vector. For example, a value of 7 in the 15th entry of frequency vector specifies that there are 7 data points corresponding to the value in the 15th entry of the data vector. If all entries of the data vector have frequency 1, leave the **Frequency** field blank.

- **Data set name** — Enter a name for the data set that you import from the workspace, such as *My data*.

After you have entered the information in the preceding fields, click **Create Data Set** to create the data set *My data*.

Manage Data Sets

View and manage the data sets that you create using the **Manage data sets** pane. When you create a data set, its name appears in the **Data sets** list. The following figure shows the **Manage data sets** pane after creating the data set *My data*.

For each data set in the **Data sets** list, you can:
Select the **Plot** check box to display a plot of the data in the main Distribution Fitter app window. When you create a new data set, **Plot** is selected by default. Clearing the **Plot** check box removes the data from the plot in the main window. You can specify the type of plot displayed in the **Display type** field in the main window.

If **Plot** is selected, you can also select **Bounds** to display confidence interval bounds for the plot in the main window. These bounds are pointwise confidence bounds around the empirical estimates of these functions. The bounds are displayed only when you set **Display Type** in the main window to one of the following:

- Cumulative probability (CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitter app cannot display confidence bounds on density (PDF), quantile (inverse CDF), or probability plots. Clearing the **Bounds** check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, you can access the following buttons:

- **View** — Display the data in a table in a new window.
- **Set Bin Rules** — Defines the histogram bins used in a density (PDF) plot.
- **Rename** — Rename the data set.
- **Delete** — Delete the data set.

Set Bin Rules

To set bin rules for the histogram of a data set, click **Set Bin Rules** to open the **Set Bin Width Rules** dialog box.
You can select from the following rules:

- **Freedman-Diaconis rule** — Algorithm that chooses bin widths and locations automatically, based on the sample size and the spread of the data. This rule, which is the default, is suitable for many kinds of data.

- **Scott rule** — Algorithm intended for data that are approximately normal. The algorithm chooses bin widths and locations automatically.

- **Number of bins** — Enter the number of bins. All bins have equal widths.

- **Bins centered on integers** — Specifies bins centered on integers.

- **Bin width** — Enter the width of each bin. If you select this option, you can also select:

 - **Automatic bin placement** — Place the edges of the bins at integer multiples of the Bin width.
• **Bin boundary at** — Enter a scalar to specify the boundaries of the bins. The boundary of each bin is equal to this scalar plus an integer multiple of the **Bin width**.

You can also:

• **Apply to all existing data sets** — Apply the rule to all data sets. Otherwise, the rule is applied only to the data set currently selected in the Data dialog box.

• **Save as default** — Apply the current rule to any new data sets that you create. You can set default bin width rules by selecting **Set Default Bin Rules** from the **Tools** menu in the main window.

Create a New Fit

Click the **New Fit** button at the top of the main window to open the New Fit dialog box. If you created the data set **My data**, it appears in the **Data** field.
Model Data Using the Distribution Fitter App

Fit name: fit 1
Data: My data
Distribution: Normal
Exclusion rule: (none)

Normal
Distribution parameters:
mu (location)
sigma (scale)

Results:
Click "Apply" to fit this distribution
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit Name</td>
<td>Enter a name for the fit.</td>
</tr>
<tr>
<td>Data</td>
<td>Select the data set to which you want to fit a distribution from the drop-down list.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Select the type of distribution to fit from the Distribution drop-down list. Only the distributions that apply to the values of the selected data set appear in the Distribution field. For example, when the data include values that are zero or negative, positive distributions are not displayed. You can specify either a parametric or a nonparametric distribution. When you select a parametric distribution from the drop-down list, a description of its parameters appears. Distribution Fitter estimates these parameters to fit the distribution to the data set. If you select the binomial distribution or the generalized extreme value distribution, you must specify a fixed value for one of the parameters. The pane contains a text field into which you can specify that parameter. When you select Nonparametric fit, options for the fit appear in the pane, as described in “Further Options for Nonparametric Fits” on page 5-78.</td>
</tr>
<tr>
<td>Exclusion rule</td>
<td>Specify a rule to exclude some data. Create an exclusion rule by clicking Exclude in the Distribution Fitter app. For more information, see “Exclude Data” on page 5-87.</td>
</tr>
</tbody>
</table>

Apply the New Fit

Click **Apply** to fit the distribution. For a parametric fit, the **Results** pane displays the values of the estimated parameters. For a nonparametric fit, the **Results** pane displays information about the fit.

When you click **Apply**, the Distribution Fitter app displays a plot of the distribution and the corresponding data.

Note When you click **Apply**, the title of the dialog box changes to Edit Fit. You can now make changes to the fit you just created and click **Apply** again to save them. After closing
the Edit Fit dialog box, you can reopen it from the Fit Manager dialog box at any time to edit the fit.

After applying the fit, you can save the information to the workspace using probability distribution objects by clicking **Save to workspace.**

Available Distributions

All of the distributions available in the Distribution Fitter app are supported elsewhere in Statistics and Machine Learning Toolbox software. You can use the `fitdist` function to fit any of the distributions supported by the app. Many distributions also have dedicated fitting functions. These functions compute the majority of the fits in the Distribution Fitter app, and are referenced in the following list. Other fits are computed using functions internal to the Distribution Fitter app.

Not all of the distributions listed are available for all data sets. The Distribution Fitter app determines the extent of the data (nonnegative, unit interval, etc.) and displays appropriate distributions in the **Distribution** drop-down list. Distribution data ranges are given parenthetically in the following list.

- Beta on page B-4 (unit interval values) distribution, fit using the function `betafit`.
- Binomial on page B-9 (nonnegative integer values) distribution, fit using the function `binopdf`.
- Birnbaum-Saunders on page B-13 (positive values) distribution.
- Burr Type XII on page B-15 (positive values) distribution.
- Exponential on page B-32 (nonnegative values) distribution, fit using the function `expfit`.
- Extreme value on page B-36 (all values) distribution, fit using the function `evfit`.
- Gamma on page B-45 (positive values) distribution, fit using the function `gamfit`.
- Generalized extreme value on page B-50 (all values) distribution, fit using the function `gevfit`.
- Generalized Pareto on page B-55 (all values) distribution, fit using the function `gpdf`.
- Inverse Gaussian on page B-78 (positive values) distribution.
- Logistic on page B-91 (all values) distribution.
- Loglogistic on page B-93 (positive values) distribution.
• Lognormal on page B-95 (positive values) distribution, fit using the function \texttt{lognfit}.
• Nakagami on page B-114 (positive values) distribution.
• Negative binomial on page B-116 (nonnegative integer values) distribution, fit using the function \texttt{nbincdf}.
• Nonparametric on page B-81 (all values) distribution, fit using the function \texttt{ksdensity}.
• Normal on page B-130 (all values) distribution, fit using the function \texttt{normfit}.
• Poisson on page B-137 (nonnegative integer values) distribution, fit using the function \texttt{poisspdf}.
• Rayleigh on page B-140 (positive values) distribution using the function \texttt{raylfit}.
• Rician on page B-143 (positive values) distribution.
• \textit{t} location-scale on page B-166 (all values) distribution.
• Weibull on page B-184 (positive values) distribution using the function \texttt{wblfit}.

\textbf{Further Options for Nonparametric Fits}

When you select Non-parametric in the Distribution field, a set of options appears in the Non-parametric pane, as shown in the following figure.

![Non-parametric options](image)

The options for nonparametric distributions are:

• \textbf{Kernel} — Type of kernel function to use.
• Normal
• Box
• Triangle
• Epanechnikov

• **Bandwidth** — The bandwidth of the kernel smoothing window. Select **Auto** for a default value that is optimal for estimating normal densities. After you click **Apply**, this value appears in the **Fit results** pane. Select **Specify** and enter a smaller value to reveal features such as multiple modes or a larger value to make the fit smoother.

• **Domain** — The allowed x-values for the density.
 - **Unbounded** — The density extends over the whole real line.
 - **Positive** — The density is restricted to positive values.
 - **Specify** — Enter lower and upper bounds for the domain of the density.

When you select **Positive** or **Specify**, the nonparametric fit has zero probability outside the specified domain.

Display Results

The Distribution Fitter app window displays plots of:

• The data sets for which you select **Plot** in the Data dialog box.
• The fits for which you select **Plot** in the Fit Manager dialog box.
• Confidence bounds for:
 - The data sets for which you select **Bounds** in the Data dialog box.
 - The fits for which you select **Bounds** in the Fit Manager dialog box.

Adjust the plot display using the buttons at the top of the tool:

• — Toggle the legend on (default) or off.
• — Toggle grid lines on or off (default).
• — Restore default axes limits.

The following fields are available.
Display Type

Specify the type of plot to display using the **Display Type** field in the main app window. Each type corresponds to a probability function, for example, a probability density function. You can choose from the following display types:

- **Density (PDF)** — Display a probability density function (PDF) plot for the fitted distribution. The main window displays data sets using a probability histogram, in which the height of each rectangle is the fraction of data points that lie in the bin divided by the width of the bin. This makes the sum of the areas of the rectangles equal to 1.

- **Cumulative probability (CDF)** — Display a cumulative probability plot of the data. The main window displays data sets using a cumulative probability step function. The height of each step is the cumulative sum of the heights of the rectangles in the probability histogram.

- **Quantile (inverse CDF)** — Display a quantile (inverse CDF) plot.

- **Probability plot** — Display a probability plot of the data. Specify the type of distribution used to construct the probability plot in the **Distribution** field. This field is only available when you select **Probability plot**. The choices for the distribution are:
 - Exponential
 - Extreme value
 - Logistic
 - Log-Logistic
 - Lognormal
 - Normal
 - Rayleigh
 - Weibull

You can also create a probability plot against a parametric fit that you create in the **New Fit** pane. When you create these fits, they are added at the bottom of the **Distribution** drop-down list.

- **Survivor function** — Display survivor function plot of the data.

- **Cumulative hazard** — Display cumulative hazard plot of the data.
Note If the plotted data includes 0 or negative values, some distributions are unavailable.

Confidence Bounds

You can display confidence bounds for data sets and fits when you set **Display Type** to **Cumulative probability (CDF)**, **Survivor function**, **Cumulative hazard**, or, for fits only, **Quantile (inverse CDF)**.

- To display bounds for a data set, select **Bounds** next to the data set in the **Data sets** pane of the Data dialog box.
- To display bounds for a fit, select **Bounds** next to the fit in the Fit Manager dialog box. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select **Confidence Level** from the **View** menu in the main window and choose from the options.

Manage Fits

Click the **Manage Fits** button to open the **Fit Manager** dialog box.
The **Table of fits** displays a list of the fits that you create, with the following options:

- **Plot** — Displays a plot of the fit in the main window of the Distribution Fitter app. When you create a new fit, **Plot** is selected by default. Clearing the **Plot** check box removes the fit from the plot in the main window.

- **Bounds** — If you select **Plot**, you can also select **Bounds** to display confidence bounds in the plot. The bounds are displayed when you set **Display Type** in the main window to one of the following:
 - Cumulative probability (CDF)
 - Quantile (inverse CDF)
 - Survivor function
 - Cumulative hazard
The Distribution Fitter app cannot display confidence bounds on density (PDF) or probability plots. Bounds are not supported for nonparametric fits and some parametric fits.

Clearing the **Bounds** check box removes the confidence intervals from the plot in the main window.

When you select a fit in the **Table of fits**, the following buttons are enabled below the table:

- **New Fit** — Open a New Fit window.
- **Copy** — Create a copy of the selected fit.
- **Edit** — Open an Edit Fit dialog box, to edit the fit.

Note You can edit only the currently selected fit in the Edit Fit dialog box. To edit a different fit, select it in the **Table of fits** and click **Edit** to open another Edit Fit dialog box.

- **Save to workspace** — Save the selected fit as a distribution object.
- **Delete** — Delete the selected fit.

Evaluate Fits

Use the **Evaluate** dialog box to evaluate your fitted distribution at any data points you choose. To open the dialog box, click the **Evaluate** button.
In the **Evaluate** dialog box, choose from the following items:

- **Fit pane** — Display the names of existing fits. Select one or more fits that you want to evaluate. Using your platform specific functionality, you can select multiple fits.

- **Function** — Select the type of probability function that you want to evaluate for the fit. The available functions are:
 - Density (PDF) — Computes a probability density function.
 - Cumulative probability (CDF) — Computes a cumulative probability function.
 - Quantile (inverse CDF) — Computes a quantile (inverse CDF) function.
 - Survivor function — Computes a survivor function.
 - Cumulative hazard — Computes a cumulative hazard function.
• **Hazard rate** — Computes the hazard rate.

• **At x =** — Enter a vector of points or the name of a workspace variable containing a vector of points at which you want to evaluate the distribution function. If you change **Function** to Quantile (inverse CDF), the field name changes to **At p =**, and you enter a vector of probability values.

• **Compute confidence bounds** — Select this box to compute confidence bounds for the selected fits. The check box is enabled only if you set **Function** to one of the following:

 • Cumulative probability (CDF)
 • Quantile (inverse CDF)
 • Survivor function
 • Cumulative hazard

The Distribution Fitter app cannot compute confidence bounds for nonparametric fits and for some parametric fits. In these cases, it returns NaN for the bounds.

• **Level** — Set the level for the confidence bounds.

• **Plot function** — Select this box to display a plot of the distribution function, evaluated at the points you enter in the **At x =** field, in a new window.

Note The settings for **Compute confidence bounds**, **Level**, and **Plot function** do not affect the plots that are displayed in the main window of the Distribution Fitter app. The settings apply only to plots you create by clicking **Plot function** in the Evaluate window.

To apply these evaluation settings to the selected fit, click **Apply**. The following figure shows the results of evaluating the cumulative density function for the fit **My fit**, at the points in the vector `-4:1:6`.

5-85
The columns of the table to the right of the **Fit** pane display the following values:

- **X** — The entries of the vector that you enter in **At x =** field.
- **F(X)** — The corresponding values of the CDF at the entries of X.
- **LB** — The lower bounds for the confidence interval, if you select **Compute confidence bounds**.
- **UB** — The upper bounds for the confidence interval, if you select **Compute confidence bounds**.
To save the data displayed in the table to a matrix in the MATLAB workspace, click **Export to Workspace**.

Exclude Data

To exclude values from fit, open the **Exclude** window by clicking the **Exclude** button. In the **Exclude** window, you can create rules for excluding specified data values. When you create a new fit in the **New Fit** window, you can use these rules to exclude data from the fit.

To create an exclusion rule:

1. **Exclusion Rule Name**— Enter a name for the exclusion rule.
2. **Exclude Sections**— Specify bounds for the excluded data:
 - In the **Lower limit: exclude data** drop-down list, select <= or < and enter a scalar value in the field to the right. Depending on which operator you select, the app excludes from the fit any data values that are less than or equal to the scalar value, or less than the scalar value, respectively.
 - In the **Upper limit: exclude data** drop-down list, select >= or > and enter a scalar value in the field to the right. Depending on which operator you select, the app excludes from the fit any data values that are greater than or equal to the scalar value, or greater than the scalar value, respectively.
OR

Click the **Exclude Graphically** button to define the exclusion rule by displaying a plot of the values in a data set and selecting the bounds for the excluded data. For example, if you created the data set *My data* as described in Create and Manage Data Sets, select it from the drop-down list next to **Exclude graphically**, and then click the **Exclude graphically** button. The app displays the values in *My data* in a new window.

To set a lower limit for the boundary of the excluded region, click **Add Lower Limit**. The app displays a vertical line on the left side of the plot window. Move the line to the point you where you want the lower limit, as shown in the following figure.
Move the vertical line to change the value displayed in the **Lower limit: exclude data** field in the Exclude window.

The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded region by clicking **Add Upper Limit**, and then moving the vertical line that appears at the
right side of the plot window. After setting the lower and upper limits, click Close and return to the Exclude window.

3 Create Exclusion Rule—Once you have set the lower and upper limits for the boundary of the excluded data, click Create Exclusion Rule to create the new rule. The name of the new rule appears in the Existing exclusion rules pane.

Selecting an exclusion rule in the Existing exclusion rules pane enables the following buttons:

• Copy — Creates a copy of the rule, which you can then modify. To save the modified rule under a different name, click Create Exclusion Rule.
• View — Opens a new window in which you can see the data points excluded by the rule. The following figure shows a typical example.
The shaded areas in the plot graphically display which data points are excluded. The table to the right lists all data points. The shaded rows indicate excluded points:

- **Rename** — Rename the rule.
- **Delete** — Delete the rule.

After you define an exclusion rule, you can use it when you fit a distribution to your data. The rule does not exclude points from the display of the data set.
Save and Load Sessions

Save your work in the current session, and then load it in a subsequent session, so that you can continue working where you left off.

Save a Session

To save the current session, from the File menu in the main window, select Save Session. A dialog box opens and prompts you to enter a file name, for example my_session.dfit. Click Save to save the following items created in the current session:

- Data sets
- Fits
- Exclusion rules
- Plot settings
- Bin width rules

Load a Session

To load a previously saved session, from the File menu in the main window, select Load Session. Enter the name of a previously saved session. Click Open to restore the information from the saved session to the current session.

Generate a File to Fit and Plot Distributions

Use the Generate Code option in the File to create a file that:

- Fits the distributions in the current session to any data vector in the MATLAB workspace.
- Plots the data and the fits.

After you end the current session, you can use the file to create plots in a standard MATLAB figure window, without reopening the Distribution Fitter app.

As an example, if you created the fit described in “Create a New Fit” on page 5-74, do the following steps:

1. From the File menu, select Generate Code.
In the MATLAB Editor window, choose File > Save as. Save the file as normal_fit.m in a folder on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the MATLAB workspace. For example, the following commands:

```matlab
ew_data = normrnd(4.1, 12.5, 100, 1);
newfit = normal_fit(new_data)
legend('New Data', 'My fit')
```

generate newfit, a fitted normal distribution of the data. The commands also generate a plot of the data and the fit.

```matlab
newfit =

normal distribution

mu = 3.19148
sigma = 12.5631
```
Note By default, the file labels the data in the legend using the same name as the data set in the Distribution Fitter app. You can change the label using the `legend` command, as illustrated by the preceding example.
Fit a Distribution Using the Distribution Fitter App

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Step 1: Load Sample Data” on page 5-95</td>
</tr>
<tr>
<td>“Step 2: Import Data” on page 5-95</td>
</tr>
<tr>
<td>“Step 3: Create a New Fit” on page 5-97</td>
</tr>
<tr>
<td>“Step 4: Create and Manage Additional Fits” on page 5-103</td>
</tr>
</tbody>
</table>

This example shows how you can use the Distribution Fitter app to interactively fit a probability distribution to data.

Step 1: Load Sample Data

Load the sample data.

```matlab
tload carsmall
```

Step 2: Import Data

Open the Distribution Fitter tool.

```matlab
distributionFitter
```

To import the vector MPG into the Distribution Fitter app, click the **Data** button. The **Data** dialog box opens.
The **Data** field displays all numeric arrays in the MATLAB workspace. From the drop-down list, select **MPG**. A histogram of the selected data appears in the **Data preview** pane.

In the **Data set name** field, type a name for the data set, such as **MPG data**, and click **Create Data Set**. The main window of the Distribution Fitter app now displays a larger version of the histogram in the **Data preview** pane.
Step 3: Create a New Fit

To fit a distribution to the data, in the main window of the Distribution Fitter app, click New Fit.
To fit a normal distribution to My data:

1. In the **Fit name** field, enter a name for the fit, such as *My fit*.
2. From the drop-down list in the **Data** field, select *MPG data*.

Probability Distributions
3 Confirm that Normal is selected from the drop-down menu in the Distribution field.
4 Click Apply.

The Results pane displays the mean and standard deviation of the normal distribution that best fits MPG data.

The Distribution Fitter app main window displays a plot of the normal distribution with this mean and standard deviation.
Based on the plot, a normal distribution does not appear to provide a good fit for the MPG data. To obtain a better evaluation, select Probability plot from the Display type drop-down list. Confirm that the Distribution drop-down list is set to Normal. The main window displays the following figure.
The normal probability plot shows that the data deviates from normal, especially in the tails.

Step 4: Create and Manage Additional Fits

The MPG data pdf indicates that the data has two peaks. Try fitting a nonparametric kernel distribution to obtain a better fit for this data.

1. Click **Manage Fits**. In the dialog box, click **New Fit**.
2. In the **Fit name** field, enter a name for the fit, such as **Kernel fit**.
3. From the drop-down list in the **Data** field, select **MPG data**.
4. From the drop-down list in the **Distribution** field, select **Non-parametric**. This enables several options in the **Non-parametric** pane, including **Kernel**, **Bandwidth**, and **Domain**. For now, accept the default value to apply a normal kernel shape and automatically determine the kernel bandwidth (using **Auto**). For more information about nonparametric kernel distributions, see “Kernel Distribution” on page B-81.
5. Click **Apply**.

The **Results** pane displays the kernel type, bandwidth, and domain of the nonparametric distribution fit to **MPG data**.

![Results pane](image_url)
The main window displays plots of the original MPG data with the normal distribution and nonparametric kernel distribution overlayed. To visually compare these two fits, select Density (PDF) from the Display type drop-down list.
Fit a Distribution Using the Distribution Fitter App
To include only the nonparametric kernel fit line (Kernel fit) on the plot, click Manage Fits. In the Table of fits pane, locate the row for the normal distribution fit (My fit) and clear the box in the Plot column.
Custom Distributions Using the Distribution Fitter App

You can use the Distribution Fitter app to fit distributions not supported by the Statistics and Machine Learning Toolbox by defining a custom distribution.

Opening the Distribution Fitter App

To open the Distribution Fitter app, enter the command

distributionFitter

Alternatively, click Distribution Fitter on the Apps tab.
Defining Custom Distributions

To define a custom distribution, select Define Custom Distribution from the File menu. This opens a file template in the MATLAB editor. You then edit this file so that it computes the distribution you want.

The template includes example code that computes the Laplace distribution. Follow the instructions in the template to define your own custom distribution.

To save your custom distribution, create a directory called +prob on your path. Save the file in this directory using a name that matches your distribution name. If you save the template in a folder on the MATLAB path, under its default name dfittooldists.m, the Distribution Fitter app reads it in automatically when you start the tool. You can also save the template under a different name, such as Laplace.m, and then import the custom distribution as described in the following section.

Importing Custom Distributions

To import a custom distribution, select Import Custom Distributions from the File menu. This opens a dialog box in which you can select the file that defines the distribution. For example, if you created the file Laplace.m, as described in the preceding section, the New Parametric Distribution List dialog that launches when you select Import Custom Distributions now includes Laplace. In addition, the Distribution field of the New Fit window also contains the option Laplace.
Explore the Random Number Generation UI

The Random Number Generation user interface (UI) generates random samples from specified probability distributions, and displays the samples as histograms. Use the interface to explore the effects of changing parameters and sample size on the distributions.

Run the user interface by typing `randtool` at the command line.
Start by selecting a distribution, then enter the desired sample size.
You can also

- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.
- Draw another sample from the same distribution, with the same size and parameters.
- Export the current sample to your workspace. A dialog box enables you to provide a name for the sample.
Compare Multiple Distribution Fits

This example shows how to fit multiple probability distribution objects to the same set of sample data, and obtain a visual comparison of how well each distribution fits the data.

Step 1. Load sample data.

Load the sample data.

```matlab
load carsmall
```

This data contains miles per gallon (MPG) measurements for different makes and models of cars, grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Create a categorical array.

Transform Origin into a categorical array and remove the Italian car from the sample data. Since there is only one Italian car, fitdist cannot fit a distribution to that group using other than a kernel distribution.

```matlab
Origin = categorical(cellstr(Origin));
MPG2 = MPG(Origin~='Italy');
Origin2 = Origin(Origin~='Italy');
Origin2 = removecats(Origin2,'Italy');
```

Step 3. Fit multiple distributions by group.

Use fitdist to fit Weibull, normal, logistic, and kernel distributions to each country of origin group in the MPG data.

```matlab
[WeiByOrig,Country] = fitdist(MPG2,'weibull','by',Origin2);
[NormByOrig,Country] = fitdist(MPG2,'normal','by',Origin2);
[LogByOrig,Country] = fitdist(MPG2,'logistic','by',Origin2);
[KerByOrig,Country] = fitdist(MPG2,'kernel','by',Origin2);
```

`WeiByOrig`

`WeiByOrig = 1x5 cell array
 Columns 1 through 2
 {1x1 prob.WeibullDistribution} {1x1 prob.WeibullDistribution}
 Columns 3 through 4`
Each country group now has four distribution objects associated with it. For example, the cell array `WeiByOrig` contains five Weibull distribution objects, one for each country represented in the sample data. Likewise, the cell array `NormByOrig` contains five normal distribution objects, and so on. Each object contains properties that hold information about the data, distribution, and parameters. The array `Country` lists the country of origin for each group in the same order as the distribution objects are stored in the cell arrays.

Step 4. Compute the pdf for each distribution.

Extract the four probability distribution objects for USA and compute the pdf for each distribution. As shown in Step 3, USA is in position 5 in each cell array.

```plaintext
WeiUSA = WeiByOrig{5};
NormUSA = NormByOrig{5};
LogUSA = LogByOrig{5};
KerUSA = KerByOrig{5};

x = 0:1:50;
pdf_Wei = pdf(WeiUSA,x);
pdf_Norm = pdf(NormUSA,x);
pdf_Log = pdf(LogUSA,x);
pdf_Ker = pdf(KerUSA,x);
```
Step 5. Plot pdf the for each distribution.

Plot the pdf for each distribution fit to the USA data, superimposed on a histogram of the sample data. Normalize the histogram for easier display.

Create a histogram of the USA sample data.

data = MPG(Origin2=='USA');
figure
histogram(data,10,'Normalization','pdf','FaceColor',[1,0.8,0]);

Plot the pdf of each fitted distribution.

line(x,pdf_Wei,'LineStyle','-','Color','r')
line(x,pdf_Norm,'LineStyle','-.','Color','b')
line(x,pdf_Log,'LineStyle','--','Color','g')
line(x,pdf_Ker,'LineStyle',':','Color','k')
legend('Data','Weibull','Normal','Logistic','Kernel','Location','Best')
title('MPG for Cars from USA')
xlabel('MPG')
Superimposing the pdf plots over a histogram of the sample data provides a visual comparison of how well each type of distribution fits the data. Only the nonparametric kernel distribution KerUSA comes close to revealing the two modes in the original data.

Step 6. Further group USA data by year.

To investigate the two modes revealed in Step 5, group the MPG data by both country of origin (Origin) and model year (Model_Year), and use fitdist to fit kernel distributions to each group.

```
[KerByYearOrig,Names] = fitdist(MPG,'Kernel','By',{Origin Model_Year});
```

Each unique combination of origin and model year now has a kernel distribution object associated with it.
Names

Names = 14x1 cell array
 {'France...'}
 {'France...'}
 {'Germany...'}
 {'Germany...'}
 {'Germany...'}
 {'Germany...'}
 {'Italy...'}
 {'Japan...'}
 {'Japan...'}
 {'Japan...'}
 {'Sweden...'}
 {'Sweden...'}
 {'USA...'}
 {'USA...'}
 {'USA...'}

Plot the three probability distributions for each USA model year, which are in positions 12, 13, and 14 in the cell array KerByYearOrig.

```matlab
figure
hold on
for i = 12 : 14
    plot(x,pdf(KerByYearOrig{i},x))
end
legend('1970','1976','1982')
title('MPG in USA Cars by Model Year')
xlabel('MPG')
hold off
```
When further grouped by model year, the pdf plots reveal two distinct peaks in the MPG data for cars made in the USA — one for the model year 1970 and one for the model year 1982. This explains why the histogram for the combined USA miles per gallon data shows two peaks instead of one.

See Also

Histogram | fitdist | pdf

More About

- “Grouping Variables“ on page 2-57
• “Fit Probability Distribution Objects to Grouped Data” on page 5-119
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Fit Probability Distribution Objects to Grouped Data

This example shows how to fit probability distribution objects to grouped sample data, and create a plot to visually compare the pdf of each group.

Step 1. Load sample data.

Load the sample data.

```matlab
load carsmall;
```

The data contains miles per gallon (MPG) measurements for different makes and models of cars, grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Create a categorical array.

Transform Origin into a categorical array.

```matlab
Origin = categorical(cellstr(Origin));
```

Step 3. Fit kernel distributions to each group.

Use `fitdist` to fit kernel distributions to each country of origin group in the MPG data.

```matlab
[KerByOrig,Country] = fitdist(MPG,'Kernel','by',Origin)
```

KerByOrig = 1x6 cell array
Columns 1 through 2
{1x1 prob.KernelDistribution} {1x1 prob.KernelDistribution}

Columns 3 through 4
{1x1 prob.KernelDistribution} {1x1 prob.KernelDistribution}

Columns 5 through 6
{1x1 prob.KernelDistribution} {1x1 prob.KernelDistribution}

Country = 6x1 cell array
{'France' }
{'Germany' }
The cell array KerByOrig contains six kernel distribution objects, one for each country represented in the sample data. Each object contains properties that hold information about the data, the distribution, and the parameters. The array Country lists the country of origin for each group in the same order as the distribution objects are stored in KerByOrig.

Step 4. Compute the pdf for each group.

Extract the probability distribution objects for Germany, Japan, and USA. Use the positions of each country in KerByOrig shown in Step 3, which indicates that Germany is the second country, Japan is the fourth country, and USA is the sixth country. Compute the pdf for each group.

```matlab
Germany = KerByOrig{2};
Japan = KerByOrig{4};
USA = KerByOrig{6};
x = 0:1:50;
USA_pdf = pdf(USA,x);
Japan_pdf = pdf(Japan,x);
Germany_pdf = pdf(Germany,x);
```

Step 5. Plot the pdf for each group.

Plot the pdf for each group on the same figure.

```matlab
plot(x,USA_pdf,'r-')
hold on
plot(x,Japan_pdf,'b-.')
plot(x,Germa}y_pdf,'k:')
legend({'USA','Japan','Germany'},'Location','NW')
title('MPG by Country of Origin')
xlabel('MPG')
```
The resulting plot shows how miles per gallon (MPG) performance differs by country of origin (Origin). Using this data, the USA has the widest distribution, and its peak is at the lowest MPG value of the three origins. Japan has the most regular distribution with a slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The peak for Germany is between the USA and Japan, and the second bump near 44 miles per gallon suggests that there might be multiple modes in the data.

See Also

fitdist | pdf
More About

- “Kernel Distribution” on page B-81
- “Grouping Variables” on page 2-57
- “Fit Distributions to Grouped Data Using ksdensity” on page 5-55
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Multinomial Probability Distribution Objects

This example shows how to generate random numbers, compute and plot the pdf, and compute descriptive statistics of a multinomial distribution using probability distribution objects.

Step 1. Define the distribution parameters.

Create a vector \(p \) containing the probability of each outcome. Outcome 1 has a probability of \(1/2 \), outcome 2 has a probability of \(1/3 \), and outcome 3 has a probability of \(1/6 \). The number of trials \(n \) in each experiment is 5, and the number of repetitions \(\text{reps} \) of the experiment is 8.

\[
p = \left[\frac{1}{2} \ 1/3 \ 1/6 \right];
\]
\[
n = 5;
\]
\[
\text{reps} = 8;
\]

Step 2. Create a multinomial probability distribution object.

Create a multinomial probability distribution object using the specified value \(p \) for the **Probabilities** parameter.

\[
pd = \text{makedist}('\text{Multinomial}','\text{Probabilities}',p)
\]

\[
pd =
\begin{align*}
\text{MultinomialDistribution} \\
\text{Probabilities:} \\
0.5000 & 0.3333 & 0.1667
\end{align*}
\]

Step 3. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of a single trial.

\[
rng('\text{default}') \quad \% \text{ For reproducibility}
\]
\[
r = \text{random}(pd)
\]
\[
r = 2
\]

This trial resulted in outcome 2.
Step 4. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinominal distribution, which reports the results of multiple experiments that each contain multiple trials. Generate a matrix that contains the outcomes of an experiment with \(n = 5 \) trials and \(\text{reps} = 8 \) repetitions.

\[
r = \text{random}(pd, \text{reps}, n)
\]

\[
r = 8\times5
\]

3 3 3 2 1
1 1 2 2 1
3 3 3 1 2
2 3 2 2 2
1 1 1 1 1
1 2 3 2 3
2 1 3 1 1
3 1 2 1 1

Each element in the resulting matrix is the outcome of one trial. The columns correspond to the five trials in each experiment, and the rows correspond to the eight experiments. For example, in the first experiment (corresponding to the first row), one of the five trials resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five trials resulted in outcome 3.

Step 5. Compute and plot the pdf.

Compute the pdf of the distribution.

\[
x = 1:3;
y = \text{pdf}(pd,x);
\text{bar}(x,y)
xlabel('Outcome')
ylabel('Probability Mass')
title('Trinomial Distribution')
The plot shows the probability mass for each \(k \) possible outcome. For this distribution, the pdf value for any \(x \) other than 1, 2, or 3 is 0.

Step 6. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the distribution.

\[
m = \text{mean}(pd) \\
m = 1.6667 \\
\text{med} = \text{median}(pd) \\
\text{med} = 1
\]
\texttt{s = std(pd)}
\texttt{s = 0.7454}

See Also

More About
- “Multinomial Probability Distribution Functions” on page 5-127
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Multinomial Probability Distribution Functions

This example shows how to generate random numbers and compute and plot the pdf of a multinomial distribution using probability distribution functions.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6. The number of trials in each experiment n is 5, and the number of repetitions of the experiment $reps$ is 8.

$$p = \left[\frac{1}{2} \ 1/3 \ 1/6 \right];$$

$$n = 5;$$

$$reps = 8;$$

Step 2. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of a single trial.

```matlab
rng('default') % For reproducibility
r = mnrnd(1,p,1)
```

$r = 1\times3$

$$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

The returned vector r contains three elements, which show the counts for each possible outcome. This single trial resulted in outcome 2.

Step 3. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution, which reports the results of multiple experiments that each contain multiple trials. Generate a matrix that contains the outcomes of an experiment with $n = 5$ trials and $reps = 8$ repetitions.

```matlab
r = mnrnd(n,p,reps)
```

$r = 8\times3$

$$\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$$
Each row in the resulting matrix contains counts for each of the k multinomial bins. For example, in the first experiment (corresponding to the first row), one of the five trials resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five trials resulted in outcome 3.

Step 4. Compute the pdf.

Since multinomial functions work with bin counts, create a multidimensional array of all possible outcome combinations, and compute the pdf using `mnpdf`.

```matlab
count1 = 1:n;
count2 = 1:n;
[x1,x2] = meshgrid(count1,count2);
x3 = n-(x1+x2);
y = mnpdf([x1(:),x2(:),x3(:)],repmat(p,(n)^2,1));
```

Step 5. Plot the pdf.

Create a 3-D bar graph to visualize the pdf for each combination of outcome frequencies.

```matlab
y = reshape(y,n,n);
bar3(y)
set(gca,'XTickLabel',1:n);
set(gca,'YTickLabel',1:n);
xlabel('x_1 Frequency')
ylabel('x_2 Frequency')
zlabel('Probability Mass')
```
The plot shows the probability mass for each possible combination of outcomes. It does not show \(x_3 \), which is determined by the constraint \(x_1 + x_2 + x_3 = n \).

See Also

More About

- “Multinomial Probability Distribution Objects” on page 5-123
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Generate Random Numbers Using Uniform Distribution Inversion

This example shows how to generate random numbers using the uniform distribution inversion method. This is useful for distributions when it is possible to compute the inverse cumulative distribution function, but there is no support for sampling from the distribution directly.

Step 1. Generate random numbers from the standard uniform distribution.

Use `rand` to generate 1000 random numbers from the uniform distribution on the interval (0,1).

```matlab
rng('default')  % For reproducibility
u = rand(1000,1);
```

The inversion method relies on the principle that continuous cumulative distribution functions (cdfs) range uniformly over the open interval (0,1). If \(u \) is a uniform random number on (0,1), then \(x = F^{-1}(u) \) generates a random number \(x \) from any continuous distribution with the specified cdf \(F \).

Step 2. Generate random numbers from the Weibull distribution.

Use the inverse cumulative distribution function to generate the random numbers from a Weibull distribution with parameters \(A = 1 \) and \(B = 1 \) that correspond to the probabilities in \(u \). Plot the results.

```matlab
x = wblinv(u,1,1);
histogram(x,20);
```
The histogram shows that the random numbers generated using the Weibull inverse cdf function `wblinv` have a Weibull distribution.

Step 3. Generate random numbers from the standard normal distribution.

The same values in \(u \) can generate random numbers from any distribution, for example the standard normal, by following the same procedure using the inverse cdf of the desired distribution.

```
figure
x_norm = norminv(u,1,1);
histogram(x_norm,20)
```
The histogram shows that, by using the standard normal inverse cdf `norminv`, the random numbers generated from u now have a standard normal distribution.

See Also

`hist` | `norminv` | `rand` | `wblinv`

More About

- “Uniform Distribution (Continuous)” on page B-175
- “Weibull Distribution” on page B-184
• “Normal Distribution” on page B-130
• “Random Number Generation” on page 5-35
• “Generate Random Numbers Using the Triangular Distribution” on page 5-63
• “Generating Pseudorandom Numbers” on page 7-2
Represent Cauchy Distribution Using t Location-Scale

This example shows how to use the t location-scale probability distribution object to work with a Cauchy distribution with nonstandard parameter values.

Step 1. Create a probability distribution object.

Create a t location-scale probability distribution object with degrees of freedom $\nu = 1$. Specify $\mu = 3$ to set the location parameter equal to 3, and $\sigma = 1$ to set the scale parameter equal to 1.

```matlab
pd = makedist('tLocationScale', 'mu', 3, 'sigma', 1, 'nu', 1)
pd =
tLocationScaleDistribution
    t Location-Scale distribution
        mu = 3
        sigma = 1
        nu = 1
```

Step 2. Compute descriptive statistics.

Use object functions to compute descriptive statistics for the Cauchy distribution.

```matlab
med = median(pd)
med = 3
r = iqr(pd)
r = 2
m = mean(pd)
m = NaN
s = std(pd)
s = Inf
```

The median of the Cauchy distribution is equal to its location parameter, and the interquartile range is equal to two times its scale parameter. Its mean and standard deviation are undefined.
Step 3. Compute and plot the pdf.

Compute and plot the pdf of the Cauchy distribution.

```matlab
x = -20:1:20;
y = pdf(pd,x);
plot(x,y,'LineWidth',2)
```

The peak of the pdf is centered at the location parameter \(\mu = 3 \).

Step 4. Generate a vector of Cauchy random numbers.

Generate a column vector containing 10 random numbers from the Cauchy distribution using the `random` function for the \(t \) location-scale probability distribution object.
rng('default'); % For reproducibility
r = random(pd,10,1)

r = 10×1
3.2678
4.6547
2.0604
4.7322
3.1810
1.6649
1.8471
4.2466
5.4647
8.8874

Step 5. Generate a matrix of Cauchy random numbers.

Generate a 5-by-5 matrix of Cauchy random numbers.

r = random(pd,5,5)

r = 5×5
2.2867 2.9692 -1.7003 5.5949 1.9806
2.7421 2.7180 3.2210 2.4233 3.1394
3.5966 3.9806 1.0182 6.4180 5.1367
5.4791 15.6472 0.7558 2.8908 5.9031
1.6863 4.0985 2.9934 13.9506 4.8792

See Also
makedist

More About
• “t Location-Scale Distribution” on page B-166
• “Generate Cauchy Random Numbers Using Student's t” on page 5-137
Generate Cauchy Random Numbers Using Student's t

This example shows how to use the Student's t distribution to generate random numbers from a standard Cauchy distribution.

Step 1. Generate a vector of random numbers.

Generate a column vector containing 10 random numbers from a standard Cauchy distribution, which has a location parameter $\mu = 0$ and scale parameter $\sigma = 1$. Use `trnd` with degrees of freedom $V = 1$.

```matlab
rng('default');  % For reproducibility
r = trnd(1,10,1)
```

```plaintext
r = 10×1
    0.2678
    1.6547
   -0.9396
    1.7322
    0.1810
   -1.3351
   -1.1529
    1.2466
    2.4647
    5.8874
```

Step 2. Generate a matrix of random numbers.

Generate a 5-by-5 matrix of random numbers from a standard Cauchy distribution.

```matlab
r = trnd(1,5,5)
```

```plaintext
r = 5×5
   -0.7133   -0.0308   -4.7003    2.5949   -1.0194
   -0.2579   -0.2820    0.2210   -0.5767    0.1394
    0.5966    0.9806   -1.9818    3.4180    2.1367
    2.4791   12.6472   -2.2442   -0.1092    2.9031
```
See Also
trnd

More About
- “Student's t Distribution” on page B-158
- “Represent Cauchy Distribution Using t Location-Scale” on page 5-134
Generate Correlated Data Using Rank Correlation

This example shows how to use a copula and rank correlation to generate correlated data from probability distributions that do not have an inverse cdf function available, such as the Pearson flexible distribution family.

Step 1. Generate Pearson random numbers.

Generate 1000 random numbers from two different Pearson distributions, using the `pearsrnd` function. The first distribution has the parameter values `mu` equal to 0, `sigma` equal to 1, skew equal to 1, and kurtosis equal to 4. The second distribution has the parameter values `mu` equal to 0, `sigma` equal to 1, skew equal to 0.75, and kurtosis equal to 3.

```matlab
rng default  % For reproducibility
p1 = pearsrnd(0,1,-1,4,1000,1);
p2 = pearsrnd(0,1,0.75,3,1000,1);
```

At this stage, `p1` and `p2` are independent samples from their respective Pearson distributions, and are uncorrelated.

Step 2. Plot the Pearson random numbers.

Create a `scatterhist` plot to visualize the Pearson random numbers.

```matlab
figure
scatterhist(p1,p2)
```
The histograms show the marginal distributions for \(p_1 \) and \(p_2 \). The scatterplot shows the joint distribution for \(p_1 \) and \(p_2 \). The lack of pattern to the scatterplot shows that \(p_1 \) and \(p_2 \) are independent.

Step 3. Generate random numbers using a Gaussian copula.

Use `copularnd` to generate 1000 correlated random numbers with a correlation coefficient equal to -0.8, using a Gaussian copula. Create a `scatterhist` plot to visualize the random numbers generated from the copula.

```matlab
u = copularnd('Gaussian', -0.8, 1000);
figure
scatterhist(u(:,1), u(:,2))
```
The histograms show that the data in each column of the copula have a marginal uniform distribution. The scatterplot shows that the data in the two columns are negatively correlated.

Step 4. Sort the copula random numbers.

Using Spearman's rank correlation, transform the two independent Pearson samples into correlated data.

Use the `sort` function to sort the copula random numbers from smallest to largest, and to return a vector of indices describing the rearranged order of the numbers.

```
[s1,i1] = sort(u(:,1));
[s2,i2] = sort(u(:,2));
```
s1 and s2 contain the numbers from the first and second columns of the copula, u, sorted in order from smallest to largest. i1 and i2 are index vectors that describe the rearranged order of the elements into s1 and s2. For example, if the first value in the sorted vector s1 is the third value in the original unsorted vector, then the first value in the index vector i1 is 3.

Step 5. Transform the Pearson samples using Spearman's rank correlation.

Create two vectors of zeros, x1 and x2, that are the same size as the sorted copula vectors, s1 and s2. Sort the values in p1 and p2 from smallest to largest. Place the values into x1 and x2, in the same order as the indices i1 and i2 generated by sorting the copula random numbers.

```matlab
x1 = zeros(size(s1));
x2 = zeros(size(s2));
x1(i1) = sort(p1);
x2(i2) = sort(p2);
```

Step 6. Plot the correlated Pearson random numbers.

Create a scatterhist plot to visualize the correlated Pearson data.

```matlab
figure
scatterhist(x1,x2)
```
The histograms show the marginal Pearson distributions for each column of data. The scatterplot shows the joint distribution of p_1 and p_2, and indicates that the data are now negatively correlated.

Step 7. Confirm Spearman rank correlation coefficient values.

Confirm that the Spearman rank correlation coefficient is the same for the copula random numbers and the correlated Pearson random numbers.

```matlab
copula_corr = corr(u,'Type','spearman')
copula_corr = 2×2
1.0000   -0.7858
```
The Spearman rank correlation is the same for the copula and the Pearson random numbers.

See Also
copularnd | corr | sort

More About
- “Copulas: Generate Correlated Samples” on page 5-159
Gaussian Mixture Models

Gaussian mixture models (GMM) are composed of \(k \) multivariate normal density components, where \(k \) is a positive integer. Each component has a \(d \)-dimensional mean (\(d \) is a positive integer), \(d \)-by-\(d \) covariance matrix, and a mixing proportion. Mixing proportion \(j \) determines the proportion of the population composed by component \(j \), \(j = 1, \ldots, k \).

You can create a Gaussian mixture distribution object \texttt{gmdistribution} using \texttt{gmdistribution} or \texttt{fitgmdist}. Use \texttt{gmdistribution} to create a fully specified GMM object by specifying the component means, covariances, and mixture proportions. Use \texttt{fitgmdist} to fit a GMM object to an \(n \)-by-\(d \) matrix of the data \(X \) by specifying the number of mixture components \(k \). The columns of \(X \) correspond to the predictors, features, or attributes. The rows of \(X \) correspond to the observations or examples. By default, \texttt{fitgmdist} fits full covariance matrices that are different among components (or unshared).

\texttt{fitgmdist} fits GMMs to data using the iterative Expectation-Maximization (EM) algorithm. Using initial values for component means, covariance matrices, and mixing proportions, the EM algorithm proceeds using these steps.

1. For each observation, the algorithm computes posterior probabilities of component memberships. You can think of the result as an \(n \)-by-\(k \) matrix, where element \((i,j)\) contains the posterior probability that observation \(i \) is from component \(j \). This is the E-step of the EM algorithm.

2. Using the component-membership posterior probabilities as weights, the algorithm estimates the component means, covariance matrices, and mixing proportions by applying maximum likelihood. This is the M-step of the EM algorithm.

The algorithm iterates over these steps until convergence. The likelihood surface is complex, and the algorithm might converge to a local optimum. Also, the resulting local optimum might depend on the initial conditions. \texttt{fitgmdist} has several options for choosing initial conditions, including random component assignments for the observations and the \(k \)-means ++ algorithm.

\texttt{fitgmdist} returns a fitted \texttt{gmdistribution} model object. The object contains properties that store the estimation results, which include the estimated parameters, convergence information, and information criteria (Akaike and Bayesian information criteria). You can use dot notation to access the properties.
Once you have a fitted GMM, you can cluster query data using it. Clustering using GMM is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster. For more information on clustering with GMM, see “Cluster Using Gaussian Mixture Models” on page 16-29.

See Also

cluster | fitgmdist | gmdistribution

More About

- “Create Gaussian Mixture Model“ on page 5-147
- “Fit Gaussian Mixture Model to Data” on page 5-151
- “Simulate Data from Gaussian Mixture Model” on page 5-156
- “Cluster Using Gaussian Mixture Models” on page 16-29
Create Gaussian Mixture Model

This example shows how to create a known, or fully specified, Gaussian mixture model (GMM) object using `gmdistribution` and by specifying component means, covariances, and mixture proportions. To create a GMM object by fitting data to a GMM, see “Fit Gaussian Mixture Model to Data” on page 5-151.

Specify the component means, covariances, and mixing proportions for a two-component mixture of bivariate Gaussian distributions.

\[
\begin{align*}
\text{mu} &= [1 \hspace{0.5cm} 2; -3 \hspace{0.5cm} -5]; \quad \% \hspace{0.5cm} \text{Means} \\
\text{sigma} &= \text{cat}(3,[2 \hspace{0.5cm} 0; 0 \hspace{0.5cm} .5],[1 \hspace{0.5cm} 0; 0 \hspace{0.5cm} 1]); \quad \% \hspace{0.5cm} \text{Covariances} \\
p &= \text{ones}(1,2)/2; \quad \% \hspace{0.5cm} \text{Mixing proportions}
\end{align*}
\]

The rows of `mu` correspond to the component mean vectors, and the pages of `sigma`, `sigma(:,:,J)`, correspond to the component covariance matrices.

Create a GMM object using `gmdistribution`.

\[
\text{gm} = \text{gmdistribution(mu,sigma,p)};
\]

Display the properties of the GMM.

\[
\text{properties(gm)}
\]
For a description of the properties, see gmdistribution. To access the value of a property, use dot notation. For example, access the number of variables of each GMM component.

dimension = gm.NumVariables

dimension = 2

Visualize the probability density function (pdf) of the GMM using pdf and the MATLAB® function ezsurf.

\[
gmPDF = @(x,y)pdf(gm,[x y]);
\]
\[
ezsurf(gmPDF,[-10 10],[-10 10])
\]
\[
title('Probability Density Function of GMM');
\]
Visualize the cumulative distribution function (cdf) of the GMM using `cdf` and `ezsurf`.

```matlab
gmCDF = @(x,y)cdf(gm,[x y]);
ezsurf(@(x,y)cdf(gm,[x y]),[-10 10],[-10 10])
title('Cumulative Distribution Function of GMM');
```

See Also

`fitgmdist` | `gmdistribution`
More About

- “Gaussian Mixture Models” on page 5-145
- “Fit Gaussian Mixture Model to Data” on page 5-151
- “Simulate Data from Gaussian Mixture Model” on page 5-156
- “Cluster Using Gaussian Mixture Models” on page 16-29
Fit Gaussian Mixture Model to Data

This example shows how to simulate data from a multivariate normal distribution, and then fit a Gaussian mixture model (GMM) to the data using fitgmdist. To create a known, or fully specified, GMM object, see “Create Gaussian Mixture Model” on page 5-147.

fitgmdist requires a matrix of data and the number of components in the GMM. To create a useful GMM, you must choose k carefully. Too few components fails to model the data accurately (i.e., underfitting to the data). Too many components leads to an over-fit model with singular covariance matrices.

Simulate data from a mixture of two bivariate Gaussian distributions using mvnrnd.

\[
\begin{align*}
\text{mu1} &= [1 \ 2]; \\
\text{sigma1} &= [2 \ 0; \ 0 \ .5]; \\
\text{mu2} &= [-3 \ -5]; \\
\text{sigma2} &= [1 \ 0; \ 0 \ 1]; \\
\text{rng}(1); \ % \text{For reproducibility} \\
\text{X} &= [\text{mvnrnd(mu1,sigma1,1000)}; \\
& \quad \text{mvnrnd(mu2,sigma2,1000)}]; \\
\end{align*}
\]

Plot the simulated data.

\[
\text{scatter(X(:,1),X(:,2),10,'.')} \ % \text{Scatter plot with points of size 10} \\
\text{title('Simulated Data')} \\
\]

5-151
Fit a two-component GMM. Use the 'Options' name-value pair argument to display the final output of the fitting algorithm.

```matlab
options = statset('Display','final');
gm = fitgmdist(X,2,'Options',options)
```

5 iterations, log-likelihood = -7105.71

```matlab
gm =
```

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: -3.0377 -4.9859
Component 2:
Mixing proportion: 0.500000
Mean: 0.9812 2.0563

Plot the pdf of the fitted GMM.

\[
gmPDF = @(x,y)pdf(gm,[x y]);
\]

\[
hold on
h = ezcontour(gmPDF,[-8 6],[-8 6]);
title('Simulated Data and Contour lines of pdf');
\]

Display the estimates for means, covariances, and mixture proportions

\[
ComponentMeans = gm.mu
\]
ComponentMeans = 2x2

-3.0377 -4.9859
0.9812 2.0563

ComponentCovariances = gm.Sigma

ComponentCovariances =
ComponentCovariances(:,:,1) =

 1.0132 0.0482
 0.0482 0.9796

ComponentCovariances(:,:,2) =

 1.9919 0.0127
 0.0127 0.5533

MixtureProportions = gm.ComponentProportion

MixtureProportions = 1x2

 0.5000 0.5000

Fit four models to the data, each with an increasing number of components, and compare the Akaike Information Criterion (AIC) values.

AIC = zeros(1,4);
gm = cell(1,4);
for k = 1:4
 gm{k} = fitgmdist(X,k);
 AIC(k) = gm{k}.AIC;
end

Display the number of components that minimizes the AIC value.

[minAIC, numComponents] = min(AIC);
numComponents

numComponents = 2

The two-component model has the smallest AIC value.
Display the two-component GMM.

```plaintext
gm2 = gm{numComponents}

gm2 =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:    -3.0377   -4.9859

Component 2:
Mixing proportion: 0.500000
Mean:    0.9812    2.0563
```

Both the AIC and Bayesian information criteria (BIC) are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). You can use them to determine an appropriate number of components for a model when the number of components is unspecified.

See Also

fitgmdist | gmdistribution | mvnrnd | random

More About

- “Gaussian Mixture Models” on page 5-145
- “Create Gaussian Mixture Model” on page 5-147
- “Simulate Data from Gaussian Mixture Model” on page 5-156
- “Cluster Using Gaussian Mixture Models” on page 16-29
Simulate Data from Gaussian Mixture Model

This example shows how to simulate data from a Gaussian mixture model (GMM) using a fully specified gmdistribution object and the random function.

Create a known, two-component GMM object.

```matlab
mu = [1 2; -3 -5];
sigma = cat(3,[2 0; 0 .5],[1 0; 0 1]);
p = ones(1,2)/2;
gm = gmdistribution(mu,sigma,p);
```

Plot the contour of the pdf of the GMM.

```matlab
gmPDF = @(x,y)pdf(gm,[x y]);
ezcontour(gmPDF,[-10 10],[-10 10]);
title('Contour lines of pdf');
```
Generate 1000 random variates from the GMM.

```matlab
rng('default'); % For reproducibility
X = random(gm,1000);
```

Plot the variates with the pdf contours.

```matlab
hold on
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
title('Contour lines of pdf and Simulated Data');
```
See Also
fitgmdist | gmdistribution | mvnrnd | random

More About
- “Gaussian Mixture Models” on page 5-145
- “Create Gaussian Mixture Model” on page 5-147
- “Fit Gaussian Mixture Model to Data” on page 5-151
- “Cluster Using Gaussian Mixture Models” on page 16-29
Copulas are functions that describe dependencies among variables, and provide a way to create distributions that model correlated multivariate data. Using a copula, you can construct a multivariate distribution by specifying marginal univariate distributions, and then choose a copula to provide a correlation structure between variables. Bivariate distributions, as well as distributions in higher dimensions, are possible.

Determining Dependence Between Simulation Inputs

One of the design decisions for a Monte Carlo simulation is a choice of probability distributions for the random inputs. Selecting a distribution for each individual variable is often straightforward, but deciding what dependencies should exist between the inputs may not be. Ideally, input data to a simulation should reflect what you know about dependence among the real quantities you are modeling. However, there may be little or no information on which to base any dependence in the simulation. In such cases, it is useful to experiment with different possibilities in order to determine the model's sensitivity.

It can be difficult to generate random inputs with dependence when they have distributions that are not from a standard multivariate distribution. Further, some of the standard multivariate distributions can model only limited types of dependence. It is always possible to make the inputs independent, and while that is a simple choice, it is not always sensible and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two random inputs that represent different sources of insurance losses. You could model these inputs as
lognormal random variables. A reasonable question to ask is how dependence between these two inputs affects the results of the simulation. Indeed, you might know from real data that the same random conditions affect both sources; ignoring that in the simulation could lead to the wrong conclusions.

Generate and Exponentiate Normal Random Variables

The `lognrnd` function simulates independent lognormal random variables. In the following example, the `mvnrnd` function generates \(n \) pairs of independent normal random variables, and then exponentiates them. Notice that the covariance matrix used here is diagonal.

\[
\begin{align*}
n &= 1000; \\
sigma &= .5; \\
\text{SigmaInd} &= \sigma^2 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\end{align*}
\]

\[
\begin{bmatrix}
0.2500 & 0 \\
0 & 0.2500
\end{bmatrix}
\]

\[
\text{rng('default'); } \quad \% \text{ For reproducibility}
\]

\[
\text{ZInd} = \text{mvnrnd}([0 \ 0], \text{SigmaInd}, n);
\]

\[
\text{XInd} = \exp(\text{ZInd});
\]

\[
\text{plot(XInd(:,1),XInd(:,2),'.')}
\]

\[
\text{axis([0 5 0 5])}
\]

\[
\text{axis equal}
\]

\[
\text{xlabel('X1')}
\]

\[
\text{ylabel('X2')}
\]
Dependent bivariate lognormal random variables are also easy to generate using a covariance matrix with nonzero off-diagonal terms.

\[\rho = .7; \]

\[\Sigma_{Dep} = \sigma^2 \cdot \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \]

\[\Sigma_{Dep} = \begin{bmatrix} 0.2500 & 0.1750 \\ 0.1750 & 0.2500 \end{bmatrix} \]
ZDep = mvnrnd([0 0],SigmaDep,n);
XDep = exp(ZDep);

A second scatter plot demonstrates the difference between these two bivariate distributions.

plot(XDep(:,1),XDep(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')
It is clear that there is a tendency in the second data set for large values of X_1 to be associated with large values of X_2, and similarly for small values. The correlation parameter ρ of the underlying bivariate normal determines this dependence. The conclusions drawn from the simulation could well depend on whether you generate X_1 and X_2 with dependence. The bivariate lognormal distribution is a simple solution in this case; it easily generalizes to higher dimensions in cases where the marginal distributions are different lognormals.

Other multivariate distributions also exist. For example, the multivariate t and the Dirichlet distributions simulate dependent t and beta random variables, respectively. But the list of simple multivariate distributions is not long, and they only apply in cases where the marginals are all in the same family (or even the exact same distributions). This can be a serious limitation in many situations.

Constructing Dependent Bivariate Distributions

Although the construction discussed in the previous section creates a bivariate lognormal that is simple, it serves to illustrate a method that is more generally applicable.

1. Generate pairs of values from a bivariate normal distribution. There is statistical dependence between these two variables, and each has a normal marginal distribution.

2. Apply a transformation (the exponential function) separately to each variable, changing the marginal distributions into lognormals. The transformed variables still have a statistical dependence.

If a suitable transformation can be found, this method can be generalized to create dependent bivariate random vectors with other marginal distributions. In fact, a general method of constructing such a transformation does exist, although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf), denoted here by Φ, to a standard normal random variable results in a random variable that is uniform on the interval $[0,1]$. To see this, if Z has a standard normal distribution, then the cdf of $U = \Phi(Z)$ is

$$
\Pr(U \leq u) = \Pr(\Phi(Z) \leq u) = \Pr(Z \leq \Phi^{-1}(u)) = u
$$
and that is the cdf of a Unif(0,1) random variable. Histograms of some simulated normal and transformed values demonstrate that fact:

```matlab
n = 1000; rng default % for reproducibility
z = normrnd(0,1,n,1); % generate standard normal data

histogram(z,-3.75:.5:3.75,'FaceColor',[.8 .8 1]) % plot the histogram of data
xlim([-4 4])
title('1000 Simulated N(0,1) Random Values')
xlabel('Z')
ylabel('Frequency')
```

![Histogram of 1000 Simulated N(0,1) Random Values](image)
\(u = \text{normcdf}(z); \) \% compute the cdf values of the sample data

\begin{verbatim}
figure
histogram(u,.05:.1:.95,'FaceColor',[.8 .8 1]) \% plot the histogram of the cdf values
title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)')
xlabel('U')
ylabel('Frequency')
\end{verbatim}

Borrowing from the theory of univariate random number generation, applying the inverse cdf of any distribution, \(F \), to a Unif(0,1) random variable results in a random variable whose distribution is exactly \(F \) (see “Inversion Methods” on page 7-4). The proof is essentially the opposite of the preceding proof for the forward case. Another histogram illustrates the transformation to a gamma distribution:
You can apply this two-step transformation to each variable of a standard bivariate normal, creating dependent random variables with arbitrary marginal distributions. Because the transformation works on each component separately, the two resulting random variables need not even have the same marginal distributions. The transformation is defined as:

\[x = \text{gaminv}(u,2,1); \] % transform to gamma values

\[\text{figure} \]
\[\text{histogram}(x,.25:.5:9.75,'FaceColor',[.8 .8 1]) \] % plot the histogram of gamma values
\[\text{title}('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)') \]
\[\text{xlabel('X')} \]
\[\text{ylabel('Frequency')} \]
\[
Z = [Z_1, Z_2] \sim N \left([0, 0], \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)
\]

\[
U = [\Phi(Z_1), \Phi(Z_2)]
\]

\[
X = [G_1(U_1), G_2(U_2)]
\]

where \(G_1 \) and \(G_2 \) are inverse cdfs of two possibly different distributions. For example, the following generates random vectors from a bivariate distribution with \(t_5 \) and Gamma(2,1) marginals:

```matlab
n = 1000; rho = .7;
Z = mvnrnd([0 0],[1 rho; rho 1],n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

% draw the scatter plot of data with histograms
figure
scatterhist(X(:,1),X(:,2),'Direction','out')
```

This plot has histograms alongside a scatter plot to show both the marginal distributions, and the dependence.

Using Rank Correlation Coefficients

The correlation parameter, ρ, of the underlying bivariate normal determines the dependence between X_1 and X_2 in this construction. However, the linear correlation of X_1 and X_2 is not ρ. For example, in the original lognormal case, a closed form for that correlation is:
\[\text{cor}(X_1, X_2) = \frac{e^{\rho \sigma^2} - 1}{e^{\sigma^2} - 1} \]

which is strictly less than \(\rho \), unless \(\rho \) is exactly 1. In more general cases such as the Gamma/t construction, the linear correlation between \(X_1 \) and \(X_2 \) is difficult or impossible to express in terms of \(\rho \), but simulations show that the same effect happens.

That is because the linear correlation coefficient expresses the linear dependence between random variables, and when nonlinear transformations are applied to those random variables, linear correlation is not preserved. Instead, a rank correlation coefficient, such as Kendall's \(\tau \) or Spearman's \(\rho \), is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or small values of one random variable associate with large or small values of another. However, unlike the linear correlation coefficient, they measure the association only in terms of ranks. As a consequence, the rank correlation is preserved under any monotonic transformation. In particular, the transformation method just described preserves the rank correlation. Therefore, knowing the rank correlation of the bivariate normal \(Z \) exactly determines the rank correlation of the final transformed random variables, \(X \).

While the linear correlation coefficient, \(\rho \), is still needed to parameterize the underlying bivariate normal, Kendall's \(\tau \) or Spearman's \(\rho \) are more useful in describing the dependence between random variables, because they are invariant to the choice of marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between Kendall's \(\tau \) or Spearman's \(\rho \), and the linear correlation coefficient \(\rho \):

\[
\tau = \frac{2}{\pi} \arcsin(\rho) \quad \text{or} \quad \rho = \sin\left(\frac{\tau \pi}{2}\right)
\]

\[
\rho_s = \frac{6}{\pi} \arcsin\left(\frac{\rho}{2}\right) \quad \text{or} \quad \rho = 2\sin\left(\frac{\rho_s \pi}{6}\right)
\]

The following plot shows the relationship.

```matlab
rho = -1:.01:1;
tau = 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;
plot(rho,tau,'b-','LineWidth',2)
hold on
```
Thus, it is easy to create the desired rank correlation between X_1 and X_2, regardless of their marginal distributions, by choosing the correct ρ parameter value for the linear correlation between Z_1 and Z_2.

Thus, it is easy to create the desired rank correlation between X_1 and X_2, regardless of their marginal distributions, by choosing the correct ρ parameter value for the linear correlation between Z_1 and Z_2.

5-170
For the multivariate normal distribution, Spearman's rank correlation is almost identical to the linear correlation. However, this is not true once you transform to the final random variables.

Using Bivariate Copulas

The first step of the construction described in the previous section defines what is known as a bivariate Gaussian copula. A copula is a multivariate probability distribution, where each random variable has a uniform marginal distribution on the unit interval [0,1]. These variables may be completely independent, deterministically related (e.g., \(U_2 = U_1 \)), or anything in between. Because of the possibility for dependence among variables, you can use a copula to construct a new multivariate distribution for dependent variables. By transforming each of the variables in the copula separately using the inversion method, possibly using different cdfs, the resulting distribution can have arbitrary marginal distributions. Such multivariate distributions are often useful in simulations, when you know that the different random inputs are not independent of each other.

Statistics and Machine Learning Toolbox functions compute:

- Probability density functions (`copulapdf`) and the cumulative distribution functions (`copulacdf`) for Gaussian copulas
- Rank correlations from linear correlations (`copulastat`) and vice versa (`copulaparam`)
- Random vectors (`copularnd`)
- Parameters for copulas fit to data (`copulafit`)

For example, use the `copularnd` function to create scatter plots of random values from a bivariate Gaussian copula for various levels of \(\rho \), to illustrate the range of different dependence structures. The family of bivariate Gaussian copulas is parameterized by the linear correlation matrix:

\[
P = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}
\]

\(U_1 \) and \(U_2 \) approach linear dependence as \(\rho \) approaches \(\pm 1 \), and approach complete independence as \(\rho \) approaches zero:

\[n = 500; \]
rng('default') % for reproducibility
U = copularnd('Gaussian',[1 .8; .8 1],n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = 0.8')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 .1; .1 1],n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.1; -.1 1],n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.8; -.8 1],n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = -0.8')
xlabel('U1')
ylabel('U2')
The dependence between U_1 and U_2 is completely separate from the marginal distributions of $X_1 = G(U_1)$ and $X_2 = G(U_2)$. X_1 and X_2 can be given any marginal distributions, and still have the same rank correlation. This is one of the main appeals of copulas—they allow this separate specification of dependence and marginal distribution. You can also compute the pdf (copulapdf) and the cdf (copulacdf) for a copula. For example, these plots show the pdf and cdf for $\rho = .8$:

```matlab
u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
Rho = [1 .8; .8 1];
f = copulapdf('t',[U1(:) U2(:)],Rho,5);
f = reshape(f,size(U1));
```
```matlab
figure()
surf(u1,u2,log(f), 'FaceColor','interp', 'EdgeColor','none')
view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Probability Density')
```

```
u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = reshape(F,size(U1));
figure()
```
A different family of copulas can be constructed by starting from a bivariate t distribution and transforming using the corresponding t cdf. The bivariate t distribution is parameterized with P, the linear correlation matrix, and ν, the degrees of freedom. Thus, for example, you can speak of a t_1 or a t_5 copula, based on the multivariate t with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics and Machine Learning Toolbox functions for t copulas compute:
• Probability density functions (copulapdf) and the cumulative distribution functions (copulacdf) for Gaussian copulas
• Rank correlations from linear correlations (copulastat) and vice versa (copulaparam)
• Random vectors (copularnd)
• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from a bivariate t_1 copula for various levels of ρ, to illustrate the range of different dependence structures:

```matlab
n = 500;
nu = 1;

rng('default') % for reproducibility
U = copularnd('t', [1 .8; .8 1], nu, n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = 0.8')
xlabel('U1')
ylabel('U2')

U = copularnd('t', [1 .1; .1 1], nu, n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t', [1 -.1; -.1 1], nu, n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t', [1 -.8; -.8 1], nu, n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it \rho} = -0.8')
xlabel('U1')
ylabel('U2')
```
A t copula has uniform marginal distributions for U_1 and U_2, just as a Gaussian copula does. The rank correlation τ or ρ, between components in a t copula is also the same function of ρ as for a Gaussian. However, as these plots demonstrate, a t_1 copula differs quite a bit from a Gaussian copula, even when their components have the same rank correlation. The difference is in their dependence structure. Not surprisingly, as the degrees of freedom parameter ν is made larger, a t_ν copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a t copula. For example, using a t copula with 1 degree of freedom, you can again generate random vectors from a bivariate distribution with Gamma(2,1) and t_5 marginals using `copularnd`:
Comparing to the bivariate Gamma/t distribution constructed earlier, which was based on a Gaussian copula, the distribution constructed here, based on a t_1 copula, has the same marginal distributions and the same rank correlation between variables but a very
different dependence structure. This illustrates the fact that multivariate distributions are not uniquely defined by their marginal distributions, or by their correlations. The choice of a particular copula in an application may be based on actual observed data, or different copulas may be used as a way of determining the sensitivity of simulation results to the input distribution.

Higher Dimension Copulas

The Gaussian and t copulas are known as elliptical copulas. It is easy to generalize elliptical copulas to a higher number of dimensions. For example, simulate data from a trivariate distribution with $\text{Gamma}(2,1)$, $\text{Beta}(2,2)$, and t_5 marginals using a Gaussian copula and `copularnd`, as follows:

```matlab
n = 1000;
Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];
ng('default') % for reproducibility
U = copularnd('Gaussian',Rho,n);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];

Plot the data.

subplot(1,1,1)
plot3(X(:,1),X(:,2),X(:,3),'.')
grid on
view([-55, 15])
xlabel('X1')
ylabel('X2')
zlabel('X3')
```

5-179
Notice that the relationship between the linear correlation parameter \(\rho \) and, for example, Kendall's \(\tau \), holds for each entry in the correlation matrix \(P \) used here. You can verify that the sample rank correlations of the data are approximately equal to the theoretical values:

\[
\text{tauTheoretical} = 2 \cdot \frac{\arcsin(\rho)}{\pi}
\]

\[
\text{tauTheoretical} = 3 \times 3
\]

\[
\begin{array}{ccc}
1.0000 & 0.2620 & 0.1282 \\
0.2620 & 1.0000 & -0.5903 \\
0.1282 & -0.5903 & 1.0000 \\
\end{array}
\]
tauSample = corr(X,'type','Kendall')
tauSample = 3×3

1.0000 0.2581 0.1414
0.2581 1.0000 -0.5790
0.1414 -0.5790 1.0000

Archimedean Copulas

Statistics and Machine Learning Toolbox functions are available for three bivariate
Archimedean copula families:

- Clayton copulas
- Frank copulas
- Gumbel copulas

These are one-parameter families that are defined directly in terms of their cdfs, rather
than being defined constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate copulas,
first use the copulastat function to find the rank correlation for a Gaussian or t copula
with linear correlation parameter of 0.8, and then use the copulaparam function to find
the Clayton copula parameter that corresponds to that rank correlation:

tau = copulastat('Gaussian',.8 , 'type', 'kendall')
tau = 0.5903

alpha = copulaparam('Clayton',tau, 'type', 'kendall')
alpha = 2.8820

Finally, plot a random sample from the Clayton copula with copularnd. Repeat the same
procedure for the Frank and Gumbel copulas:

n = 500;

U = copularnd('Clayton',alpha,n);
subplot(3,1,1)
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, \alpha = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Frank', tau, 'type', 'kendall');
U = copularnd('Frank', alpha, n);
subplot(3,1,2)
plot(U(:,1),U(:,2),'.')
title(['Frank Copula, \(\alpha\) = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Gumbel', tau, 'type', 'kendall');
U = copularnd('Gumbel', alpha, n);
subplot(3,1,3)
plot(U(:,1),U(:,2),'.')
title(['Gumbel Copula, \(\alpha\) = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
Simulating Dependent Multivariate Data Using Copulas

To simulate dependent multivariate data using a copula, you must specify each of the following:

- The copula family (and any shape parameters)
- The rank correlations among variables
- Marginal distributions for each variable

Suppose you have return data for two stocks and want to run a Monte Carlo simulation with inputs that follow the same distributions as the data:
load stockreturns
nobs = size(stocks,1);

subplot(2,1,1)
histogram(stocks(:,1),10,'FaceColor',[.8 .8 1])
xlim([-3.5 3.5])
xlabel('X1')
ylabel('Frequency')

subplot(2,1,2)
histogram(stocks(:,2),10,'FaceColor',[.8 .8 1])
xlim([-3.5 3.5])
xlabel('X2')
ylabel('Frequency')
You could fit a parametric model separately to each dataset, and use those estimates as the marginal distributions. However, a parametric model may not be sufficiently flexible. Instead, you can use a nonparametric model to transform to the marginal distributions. All that is needed is a way to compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the `ecdf` function. For a discrete marginal distribution, this is appropriate. However, for a continuous distribution, use a model that is smoother than the step function computed by `ecdf`. One way to do that is to estimate the empirical cdf and interpolate between the midpoints of the steps with a piecewise linear function. Another way is to use kernel smoothing with `ksdensity`. For example, compare the empirical cdf to a kernel smoothed cdf estimate for the first variable:

```matlab
[Fi,xi] = ecdf(stocks(:,1));

figure()
stairs(xi,Fi,'b','LineWidth',2)
hold on

Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);

plot(xi,Fi_sm,'r-','LineWidth',1.5)
xlabel('X1')
ylabel('Cumulative Probability')
legend('Empirical','Smoothed','Location','NW')
grid on
```
For the simulation, experiment with different copulas and correlations. Here, you will use a bivariate \textit{t} copula with a fairly small degrees of freedom parameter. For the correlation parameter, you can compute the rank correlation of the data.

\begin{verbatim}
nu = 5;
tau = corr(stocks(:,1),stocks(:,2),'type','kendall')
\end{verbatim}

\begin{verbatim}
tau = 0.5180
\end{verbatim}

Find the corresponding linear correlation parameter for the \textit{t} copula using \texttt{copulaparam}.

\begin{verbatim}
rho = copulaparam('t', tau, nu, 'type','kendall')
rho = 0.7268
\end{verbatim}
Next, use `copularnd` to generate random values from the t copula and transform using the nonparametric inverse cdfs. The `ksdensity` function allows you to make a kernel estimate of distribution and evaluate the inverse cdf at the copula points all in one step:

```matlab
n = 1000;
U = copularnd('t',[1 rho; rho 1],nu,n);

X1 = ksdensity(stocks(:,1),U(:,1),'
  function','icdf','width',.15);
X2 = ksdensity(stocks(:,2),U(:,2),'
  function','icdf','width',.15);
```

Alternatively, when you have a large amount of data or need to simulate more than one set of values, it may be more efficient to compute the inverse cdf over a grid of values in the interval $(0,1)$ and use interpolation to evaluate it at the copula points:

```matlab
p = linspace(0.00001,0.99999,1000);
G1 = ksdensity(stocks(:,1),p,'
  function','icdf','width',0.15);
X1 = interp1(p,G1,U(:,1),'spline');
G2 = ksdensity(stocks(:,2),p,'
  function','icdf','width',0.15);
X2 = interp1(p,G2,U(:,2),'spline');
scatterhist(X1,X2,'Direction','out')
```
The marginal histograms of the simulated data are a smoothed version of the histograms for the original data. The amount of smoothing is controlled by the bandwidth input to `ksdensity`.

Fitting Copulas to Data

This example shows how to use `copulafit` to calibrate copulas with data. To generate data `Xsim` with a distribution "just like" (in terms of marginal distributions and correlations) the distribution of data in the matrix `X`, you need to fit marginal distributions to the columns of `X`, use appropriate cdf functions to transform `X` to `U`, so that `U` has values between 0 and 1, use `copulafit` to fit a copula to `U`, generate new
data U_{sim} from the copula, and use appropriate inverse cdf functions to transform U_{sim} to X_{sim}.

Load and plot the simulated stock return data.

```matlab
load stockreturns
x = stocks(:,1);
y = stocks(:,2);
scatterhist(x,y,'Direction','out')
```

Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative distribution function.
Fit a \(t \) copula.

\[
[Rho,nu] = \text{copulafit}('t',[u \ v],\text{'Method'},'ApproximateML')
\]

\[
\begin{bmatrix}
1.0000 & 0.7220 \\
0.0000 & 0.7220
\end{bmatrix}
\]
nu = 2.6133e+06

Generate a random sample from the t copula.

```
r = copularnd('t', Rho, nu, 1000);
u1 = r(:,1);
v1 = r(:,2);
scatterhist(u1, v1, 'Direction', 'out')
xlabel('u')
ylabel('v')
set(get(gca, 'children'), 'marker', '.')
```
Transform the random sample back to the original scale of the data.

```matlab
x1 = ksdensity(x,u1,'function','icdf');
y1 = ksdensity(y,v1,'function','icdf');

scatterhist(x1,y1,'Direction','out')
set(get(gca,'children'),'marker','.')```

As the example illustrates, copulas integrate naturally with other distribution fitting functions.
Gaussian Processes

- “Gaussian Process Regression Models” on page 6-2
- “Kernel (Covariance) Function Options” on page 6-7
- “Exact GPR Method” on page 6-13
- “Subset of Data Approximation for GPR Models” on page 6-20
- “Subset of Regressors Approximation for GPR Models” on page 6-22
- “Fully Independent Conditional Approximation for GPR Models” on page 6-29
- “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Gaussian Process Regression Models

Gaussian process regression (GPR) models are nonparametric kernel-based probabilistic models. You can train a GPR model using the `fitrgp` function.

Consider the training set \( \{(x_i, y_i); i = 1, 2, \ldots, n\} \), where \( x_i \in \mathbb{R}^d \) and \( y_i \in \mathbb{R} \), drawn from an unknown distribution. A GPR model addresses the question of predicting the value of a response variable \( y_{\text{new}} \), given the new input vector \( x_{\text{new}} \), and the training data. A linear regression model is of the form

\[
y = x^T \beta + \varepsilon,
\]

where \( \varepsilon \sim N(0, \sigma^2) \). The error variance \( \sigma^2 \) and the coefficients \( \beta \) are estimated from the data. A GPR model explains the response by introducing latent variables,

\[
f(x_i), i = 1, 2, \ldots, n,
\]

from a Gaussian process (GP), and explicit basis functions, \( h \). The covariance function of the latent variables captures the smoothness of the response and basis functions project the inputs \( x \) into a \( p \)-dimensional feature space.

A GP is a set of random variables, such that any finite number of them have a joint Gaussian distribution. If \( \{f(x), x \in \mathbb{R}^d\} \) is a GP, then given \( n \) observations \( x_1, x_2, \ldots, x_n \), the joint distribution of the random variables \( f(x_1), f(x_2), \ldots, f(x_n) \) is Gaussian. A GP is defined by its mean function \( m(x) \) and covariance function, \( k(x, x') \). That is, if

\[
\{f(x), x \in \mathbb{R}^d\} \text{ is a Gaussian process, then } E(f(x)) = m(x) \text{ and }
\]

\[
\text{Cov}[f(x), f(x')] = E[(f(x) - m(x))(f(x') - m(x'))] = k(x, x').
\]

Now consider the following model.

\[
h(x)^T \beta + f(x),
\]
where \( f(x) \sim GP(0, k(x, x')) \), that is \( f(x) \) are from a zero mean GP with covariance function, \( k(x, x') \). \( h(x) \) are a set of basis functions that transform the original feature vector \( x \) in \( \mathbb{R}^d \) into a new feature vector \( h(x) \) in \( \mathbb{R}^p \). \( \beta \) is a \( p \)-by-1 vector of basis function coefficients. This model represents a GPR model. An instance of response \( y \) can be modeled as

\[
P(y_i|f(x_i), x_i) \sim N\left(y_i \mid h(x_i)^T \beta + f(x_i), \sigma^2\right)
\]

Hence, a GPR model is a probabilistic model. There is a latent variable \( f(x_i) \) introduced for each observation \( x_i \), which makes the GPR model nonparametric. In vector form, this model is equivalent to

\[
P(y \mid f, X) \sim N(y \mid H\beta + f, \sigma^2 I),
\]

where

\[
X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad H = \begin{bmatrix} h(x_1^T) \\ h(x_2^T) \\ \vdots \\ h(x_n^T) \end{bmatrix}, \quad f = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}.
\]

The joint distribution of latent variables \( f(x_1), f(x_2), \ldots, f(x_n) \) in the GPR model is as follows:

\[
P(f \mid X) \sim N\left(f \mid 0, K(X, X)\right),
\]

close to a linear regression model, where \( K(X, X) \) looks as follows:
The covariance function $k(x,x')$ is usually parameterized by a set of kernel parameters or hyperparameters, $\theta$. Often $k(x,x')$ is written as $k(x,x'|\theta)$ to explicitly indicate the dependence on $\theta$.

`fitrgp` estimates the basis function coefficients, $\beta$, the noise variance, $\sigma^2$, and the hyperparameters, $\theta$, of the kernel function from the data while training the GPR model. You can specify the basis function, the kernel (covariance) function, and the initial values for the parameters.

Because a GPR model is probabilistic, it is possible to compute the prediction intervals using the trained model (see `predict` and `resubPredict`). Consider some data observed from the function $g(x) = x \times \sin(x)$, and assume that they are noise free. The subplot on the left in the following figure illustrates the observations, the GPR fit, and the actual function. It is more realistic that the observed values are not the exact function values, but a noisy realization of them. The subplot on the right illustrates this case. When observations are noise free (as in the subplot on the left), the GPR fit crosses the observations, and the standard deviation of the predicted response is zero. Hence, you do not see prediction intervals around these values.
You can also compute the regression error using the trained GPR model (see `loss` and `resubLoss`).

**References**


**See Also**

RegressionGP | fitrgp

**More About**

- “Exact GPR Method” on page 6-13
- “Subset of Data Approximation for GPR Models” on page 6-20
- “Subset of Regressors Approximation for GPR Models” on page 6-22
• “Fully Independent Conditional Approximation for GPR Models” on page 6-29
• “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Kernel (Covariance) Function Options

In supervised learning, it is expected that the points with similar predictor values \( x_i \), naturally have close response (target) values \( y_i \). In Gaussian processes, the covariance function expresses this similarity [1]. It specifies the covariance between the two latent variables \( f(x_i) \) and \( f(x_j) \), where both \( x_i \) and \( x_j \) are \( d \)-by-1 vectors. In other words, it determines how the response at one point \( x_i \) is affected by responses at other points \( x_j \), \( i \neq j, i = 1, 2, \ldots, n \). The covariance function \( k(x_i, x_j) \) can be defined by various kernel functions. It can be parameterized in terms of the kernel parameters in vector \( \theta \). Hence, it is possible to express the covariance function as \( k(x_i, x_j | \theta) \).

For many standard kernel functions, the kernel parameters are based on the signal standard deviation \( \sigma_f \) and the characteristic length scale \( \sigma_l \). The characteristic length scales briefly define how far apart the input values \( x_i \) can be for the response values to become uncorrelated. Both \( \sigma_l \) and \( \sigma_f \) need to be greater than 0, and this can be enforced by the unconstrained parametrization vector \( \theta \), such that

\[
\theta_1 = \log \sigma_l, \quad \theta_2 = \log \sigma_f.
\]

The built-in kernel (covariance) functions with same length scale for each predictor are:

- **Squared Exponential Kernel**

  This is one of the most commonly used covariance functions and is the default option for `fitrgp`. The squared exponential kernel function is defined as

  \[
k(x_i, x_j | \theta) = \sigma_f^2 \exp\left[-\frac{1}{2} \frac{(x_i - x_j)^T(x_i - x_j)}{\sigma_l^2}\right].
\]

  where \( \sigma_l \) is the characteristic length scale, and \( \sigma_f \) is the signal standard deviation.
Exponential Kernel

You can specify the exponential kernel function using the 'KernelFunction','exponential' name-value pair argument. This covariance function is defined by

\[ k(x_i, x_j \mid \theta) = \sigma_f^2 \exp \left( -\frac{r}{\sigma_l} \right), \]

where \( \sigma_l \) is the characteristic length scale and

\[ r = \sqrt{(x_i - x_j)^T(x_i - x_j)} \]

is the Euclidean distance between \( x_i \) and \( x_j \).

Matern 3/2

You can specify the Matern 3/2 kernel function using the 'KernelFunction','matern32' name-value pair argument. This covariance function is defined by

\[ k(x_i, x_j \mid \theta) = \sigma_f^2 \left( 1 + \sqrt{3}r \right) \exp \left( -\sqrt{3}r/\sigma_l \right), \]

where

\[ r = \sqrt{(x_i - x_j)^T(x_i - x_j)} \]

is the Euclidean distance between \( x_i \) and \( x_j \).

Matern 5/2

You can specify the Matern 5/2 kernel function using the 'KernelFunction','matern52' name-value pair argument. The Matern 5/2 covariance function is defined as
\[ k(x_i, x_j) = \sigma_f^2 \left( 1 + \frac{\sqrt{5}r}{\sigma_l} + \frac{5r^2}{3\sigma_l^2} \right) \exp \left( - \frac{\sqrt{5}r}{\sigma_l} \right), \]

where

\[ r = \sqrt{(x_i - x_j)^T(x_i - x_j)} \]

is the Euclidean distance between \( x_i \) and \( x_j \).

- **Rational Quadratic Kernel**

You can specify the rational quadratic kernel function using the 'KernelFunction','rationalquadratic' name-value pair argument. This covariance function is defined by

\[ k(x_i, x_j | \theta) = \sigma_f^2 \left( 1 + \frac{r^2}{2\alpha\sigma_l^2} \right)^{-\alpha}, \]

where \( \sigma_l \) is the characteristic length scale, \( \alpha \) is a positive-valued scale-mixture parameter, and

\[ r = \sqrt{(x_i - x_j)^T(x_i - x_j)} \]

is the Euclidean distance between \( x_i \) and \( x_j \).

It is possible to use a separate length scale \( \sigma_m \) for each predictor \( m, m = 1, 2, ..., d \). The built-in kernel (covariance) functions with a separate length scale for each predictor implement automatic relevance determination (ARD) [2]. The unconstrained parametrization \( \theta \) in this case is

\[ \theta_m = \log \sigma_m, \text{ for } m = 1, 2, ..., d \]
\[ \theta_{d+1} = \log \sigma_f. \]
The built-in kernel (covariance) functions with separate length scale for each predictor are:

- **ARD Squared Exponential Kernel**

You can specify this kernel function using the 'KernelFunction','ardsquaredexponential' name-value pair argument. This covariance function is the squared exponential kernel function, with a separate length scale for each predictor. It is defined as

\[
k(x_i, x_j | \theta) = \sigma_f^2 \exp \left[ -\frac{1}{2} \sum_{m=1}^{d} \left( \frac{x_{im} - x_{jm}}{\sigma_m} \right)^2 \right].
\]

- **ARD Exponential Kernel**

You can specify this kernel function using the 'KernelFunction','ardexponential' name-value pair argument. This covariance function is the exponential kernel function, with a separate length scale for each predictor. It is defined as

\[
k(x_i, x_j | \theta) = \sigma_f^2 \exp(-r),
\]

where

\[
r = \sqrt{\sum_{m=1}^{d} \left( \frac{x_{im} - x_{jm}}{\sigma_m} \right)^2}.
\]

- **ARD Matern 3/2**

You can specify this kernel function using the 'KernelFunction','ardmatern32' name-value pair argument. This covariance function is the Matern 3/2 kernel function, with a different length scale for each predictor. It is defined as

\[
k(x_i, x_j | \theta) = \sigma_f^2 \left( 1 + \sqrt{3} r \right) \exp(-\sqrt{3} r),
\]

where
You can specify this kernel function using the 'KernelFunction', 'ardmatern52' name-value pair argument. This covariance function is the Matern 5/2 kernel function, with a different length scale for each predictor. It is defined as

\[ k(x_i, x_j \mid \theta) = \sigma_f^2 \left( 1 + \sqrt{5} r + \frac{5}{3} r^2 \right) \exp\left( -\sqrt{5} r \right), \]

where

\[ r = \sqrt{\sum_{m=1}^{d} \frac{(x_{im} - x_{jm})^2}{\sigma_m^2}}. \]

• **ARD Rational Quadratic Kernel**

You can specify this kernel function using the 'KernelFunction', 'ardrationalquadratic' name-value pair argument. This covariance function is the rational quadratic kernel function, with a separate length scale for each predictor. It is defined as

\[ k(x_i, x_j \mid \theta) = \sigma_f^2 \left( 1 + \frac{1}{2} \sum_{m=1}^{d} \frac{(x_{im} - x_{jm})^2}{\sigma_m^2} \right)^{-\alpha}. \]

You can specify the kernel function using the KernelFunction name-value pair argument in a call to fitrgp. You can either specify one of the built-in kernel parameter options, or specify a custom function. When providing the initial kernel parameter values for a built-in kernel function, input the initial values for signal standard deviation and the characteristic length scale(s) as a numeric vector. When providing the initial kernel parameter values for a custom kernel function, input the initial values the unconstrained parametrization vector \( \theta \). fitrgp uses analytical derivatives to estimate parameters when using a built-in kernel function, whereas when using a custom kernel function it uses numerical derivatives.
References


See Also
RegressionGP | fitrgp

Related Examples
- “Use Separate Length Scales for Predictors” on page 32-2241
- “Fit GPR Model Using Custom Kernel Function” on page 32-2254
- “Impact of Specifying Initial Kernel Parameter Values” on page 32-2239
An instance of response $y$ from a Gaussian process regression (GPR) model can be modeled as

$$P(y_i | f(x_i), x_i) \sim N(y_i | h(x_i)^T \beta + f(x_i), \sigma^2)$$

Hence, making predictions for new data from a GPR model requires:

- Knowledge of the coefficient vector, $\beta$, of fixed basis functions
- Ability to evaluate the covariance function $k(x, x' | \theta)$ for arbitrary $x$ and $x'$, given the kernel parameters or hyperparameters, $\theta$.
- Knowledge of the noise variance $\sigma^2$ that appears in the density $P(y_i | f(x_i), x_i)$

That is, one needs first to estimate $\beta$, $\theta$, and $\sigma^2$ from the data $(X, y)$.

**Parameter Estimation**

One approach for estimating the parameters $\beta$, $\theta$, and $\sigma^2$ of a GPR model is by maximizing the likelihood $P(y | X)$ as a function of $\beta$, $\theta$, and $\sigma^2$[1]. That is, if $\hat{\beta}$, $\hat{\theta}$, and $\hat{\sigma}^2$ are the estimates of $\beta$, $\theta$, and $\sigma^2$, respectively, then:

$$\hat{\beta}, \hat{\theta}, \hat{\sigma}^2 = \arg \max_{\beta, \theta, \sigma^2} \log P(y | X, \beta, \theta, \sigma^2).$$
Because

\[ P(y|X) = P\left(y|X, \beta, \theta, \sigma^2\right) = \mathcal{N}\left(y|H\beta, K(X,X|\theta) + \sigma^2 I_n\right), \]

the marginal log likelihood function is as follows:

\[
\log P\left(y|X, \beta, \theta, \sigma^2\right) = \frac{-1}{2} (y - H\beta)^T \left[K(X,X|\theta) + \sigma^2 I_n\right]^{-1} (y - H\beta) \\
- \frac{n}{2} \log 2\pi - \frac{1}{2} \log \left|K(X,X|\theta) + \sigma^2 I_n\right|
\]

where \( H \) is the vector of explicit basis functions, and \( K(X,X|\theta) \) is the covariance function matrix (for more information, see “Gaussian Process Regression Models” on page 6-2).

To estimate the parameters, the software first computes \( \hat{\beta}(\theta, \sigma^2) \), which maximizes the log likelihood function with respect to \( \beta \) for given \( \theta \) and \( \sigma^2 \). It then uses this estimate to compute the \( \beta \)-profiled likelihood:

\[
\log \left[ P\left(y|X, \hat{\beta}(\theta, \sigma^2), \theta, \sigma^2\right)\right].
\]

The estimate of \( \beta \) for given \( \theta \), and \( \sigma^2 \) is

\[
\hat{\beta}(\theta, \sigma^2) = \left[H^T \left[K(X,X|\theta) + \sigma^2 I_n\right]^{-1} H\right]^{-1} H^T \left[K(X,X|\theta) + \sigma^2 I_n\right]^{-1} y.
\]

Then, the \( \beta \)-profiled log likelihood is given by

\[
\log P\left(y|X, \hat{\beta}(\theta, \sigma^2), \theta, \sigma^2\right) = \frac{-1}{2} (y - H\hat{\beta}(\theta, \sigma^2))^T \left[K(X,X|\theta) + \sigma^2 I_n\right]^{-1} (y - H\hat{\beta}(\theta, \sigma^2)) \\
- \frac{n}{2} \log 2\pi - \frac{1}{2} \log \left|K(X,X|\theta) + \sigma^2 I_n\right|
\]
The software then maximizes the $\beta$-profiled log-likelihood over $\theta$, and $\sigma^2$ to find their estimates.

**Prediction**

Making probabilistic predictions from a GPR model with known parameters requires the density $P(y_{new} \mid y, X, x_{new})$. Using the definition of conditional probabilities, one can write:

$$P(y_{new} \mid y, X, x_{new}) = \frac{P(y_{new}, y \mid X, x_{new})}{P(y \mid X, x_{new})}.$$ 

To find the joint density in the numerator, it is necessary to introduce the latent variables $f_{new}$ and $f$ corresponding to $y_{new}$, and $y$, respectively. Then, it is possible to use the joint distribution for $y_{new}$, $y$, $f_{new}$, and $f$ to compute $P(y_{new}, y \mid X, x_{new})$:

$$P(y_{new}, y \mid X, x_{new}) = \int \int P(y_{new}, y_{new}, f_{new}, f_{new}, f, x_{new}) df df_{new}$$ 
$$= \int \int P(y_{new}, y \mid X, x_{new})P(f_{new}, f \mid X, x_{new}) df df_{new}.$$ 

Gaussian process models assume that each response $y_i$ only depends on the corresponding latent variable $f_i$ and the feature vector $x_i$. Writing

$$P(y_{new}, y \mid f_{new}, f, X, x_{new})$$

as a product of conditional densities and based on this assumption produces:

$$P(y_{new}, y \mid f_{new}, f, X, x_{new}) = P(y_{new} \mid f_{new}, x_{new}) \prod_{i=1}^{n} P(y_i \mid f(x_i), x_i).$$

After integrating with respect to $y_{new}$, the result only depends on $f$ and $X$. 

Exact GPR Method

6-15
\[ P(y|f, X) = \prod_{i=1}^{n} P(y_i|f_i, x_i) = \prod_{i=1}^{n} \left( y_i \left| h(x_i)^T \beta + f_i, \sigma^2 \right. \right). \]

Hence,
\[ P(y_{\text{new}}, y|f_{\text{new}}, f, X, x_{\text{new}}) = P(y_{\text{new}}|f_{\text{new}}, x_{\text{new}})P(y|f, X). \]

Again using the definition of conditional probabilities,
\[ P(f_{\text{new}}, f|X, x_{\text{new}}) = P(f_{\text{new}}|f, X, x_{\text{new}})^*P(f|X, x_{\text{new}}), \]

it is possible to write \( P(y_{\text{new}}, y|X, x_{\text{new}}) \) as follows:
\[ P(y_{\text{new}}, y|X, x_{\text{new}}) = \int \int P(y_{\text{new}}|f_{\text{new}}, x_{\text{new}})P(y|f, X)P(f_{\text{new}}|f, X, x_{\text{new}})P(f|X, x_{\text{new}})df df_{\text{new}}. \]

Using the facts that
\[ P(f|X, x_{\text{new}}) = P(f|X) \]

and
\[ P(y|f, X)P(f|X) = P(y, f|X) = P(f|y, X)P(y|X), \]

one can rewrite \( P(y_{\text{new}}, y|X, x_{\text{new}}) \) as follows:
\[ P(y_{\text{new}}, y|X, x_{\text{new}}) = P(y|X)\int \int P(y_{\text{new}}|f_{\text{new}}, x_{\text{new}})P(f|y, X)P(f_{\text{new}}|f, X, x_{\text{new}})df df_{\text{new}}. \]

It is also possible to show that
\[ P(y|X, x_{\text{new}}) = P(y|X). \]

Hence, the required density \( P(y_{\text{new}}|y, X, x_{\text{new}}) \) is:
\[
P \left( y_{\text{new}} \mid y, X, x_{\text{new}} \right) = \frac{P \left( y_{\text{new}} \mid y, X, x_{\text{new}} \right)}{P \left( y \mid X, x_{\text{new}} \right)} = \frac{P \left( y_{\text{new}} \mid X, x_{\text{new}} \right)}{P \left( y \mid X \right)}
\]

\[
= \int \int P \left( y_{\text{new}} \mid f_{\text{new}}, x_{\text{new}} \right) P \left( f \mid y, X \right) P \left( f_{\text{new}} \mid f, X, x_{\text{new}} \right) \, df \, df_{\text{new}}.
\]

It can be shown that

\begin{enumerate}
\item \( P \left( y_{\text{new}} \mid f_{\text{new}}, x_{\text{new}} \right) = N \left( y_{\text{new}} \mid h(x_{\text{new}})^T \beta + f_{\text{new}}, \sigma_{\text{new}}^2 \right) \)
\item \( P \left( f \mid y, X \right) = N \left( f \left| \frac{1}{\sigma^2} \left( \frac{I_n}{\sigma^2} + K(X, X)^{-1} \right)^{-1} (y - H \beta), \left( \frac{I_n}{\sigma^2} + K(X, X)^{-1} \right)^{-1} \right. \right) \)
\item \( P \left( f_{\text{new}} \mid f, X, x_{\text{new}} \right) = N \left( f_{\text{new}} \mid K \left( x_{\text{new}}^T, X \right) K(X, X)^{-1} f, \Delta \right) \),
where \( \Delta = k(x_{\text{new}}, x_{\text{new}}) - K \left( x_{\text{new}}^T, X \right) K(X, X)^{-1} K(X, x_{\text{new}}^T) \).
\end{enumerate}

After the integration and required algebra, the density of the new response \( y_{\text{new}} \) at a new point \( x_{\text{new}} \), given \( y, X \) is found as

\[
P \left( y_{\text{new}} \mid y, X, x_{\text{new}} \right) = N \left( y_{\text{new}} \mid h(x_{\text{new}})^T \beta + \mu, \sigma_{\text{new}}^2 + \Sigma \right),
\]

where

\[
\mu = K \left( x_{\text{new}}^T, X \right) \left( K(X, X) + \sigma^2 I_n \right)^{-1} (y - H \beta)
\]

and

\[
\Sigma = k(x_{\text{new}}, x_{\text{new}}) - K \left( x_{\text{new}}^T, X \right) \left( K(X, X) + \sigma^2 I_n \right)^{-1} K \left( X, x_{\text{new}}^T \right).
\]
The expected value of prediction $y_{\text{new}}$ at a new point $x_{\text{new}}$ given $y$, $X$, and parameters $\beta$, $\theta$, and $\sigma^2$ is

$$E(y_{\text{new}}|y, X, x_{\text{new}}, \beta, \theta, \sigma^2) = h(x_{\text{new}})^T \beta + K(x_{\text{new}}^T, X|\theta)\alpha$$

$$= h(x_{\text{new}})^T \beta + \sum_{i=1}^{n} \alpha_i k(x_{\text{new}}, x_i|\theta),$$

where

$$\alpha = \left(K(X, X|\theta) + \sigma^2 I_n\right)^{-1} (y - H\beta).$$

**Computational Complexity of Exact Parameter Estimation and Prediction**

Training a GPR model with the exact method (when FitMethod is 'Exact') requires the inversion of an $n$-by-$n$ kernel matrix $K(X, X)$. The memory requirement for this step scales as $O(n^2)$ since $K(X, X)$ must be stored in memory. One evaluation of $\log P(y|X)$ scales as $O(n^3)$. Therefore, the computational complexity is $O(k^*n^3)$, where $k^*$ is the number of function evaluations needed for maximization and $n$ is the number of observations.

Making predictions on new data involves the computation of $\hat{\alpha}$. If prediction intervals are desired, this step could also involve the computation and storage of the Cholesky factor of

$$\left(K(X, X) + \sigma^2 I_n\right)$$

for later use. The computational complexity of this step using the direct computation of $\hat{\alpha}$ is $O(n^3)$ and the memory requirement is $O(n^2)$.

Hence, for large $n$, estimation of parameters or computing predictions can be very expensive. The approximation methods usually involve rearranging the computation so as to avoid the inversion of an $n$-by-$n$ matrix. For the available approximation methods, please see the related links at the bottom of the page.
References


See Also

fitrgp | predict

More About

- “Gaussian Process Regression Models” on page 6-2
- “Subset of Data Approximation for GPR Models” on page 6-20
- “Subset of Regressors Approximation for GPR Models” on page 6-22
- “Fully Independent Conditional Approximation for GPR Models” on page 6-29
- “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Subset of Data Approximation for GPR Models

Training a GPR model with the exact method (when FitMethod is 'Exact') requires the inversion of an $n$-by-$n$ matrix. Therefore, the computational complexity is $O(kn^3)$, where $k$ is the number of function evaluations required for estimating $\beta$, $\theta$, and $\sigma^2$, and $n$ is the number of observations. For large $n$, estimation of parameters or computing predictions can be very expensive.

One simple way to solve the computational complexity problem with large data sets is to select $m < n$ observations out of $n$ and then apply exact GPR model on page 6-13 to these $m$ points to estimate $\beta$, $\theta$, and $\sigma^2$ while ignoring the other $(n - m)$ points. This smaller subset is known as the active set. And this approximation method is called the Subset of Data (SD) method.

The computational complexity when using SD method is $O(km^3)$, where $k$ is the number of function evaluations and $m$ is the active set size. The storage requirements are $O(m^2)$ since only a part of the full kernel matrix $K(X, X|\theta)$ needs to be stored in memory.

You can specify the SD method for parameter estimation by using the 'FitMethod','sd' name-value pair argument in the call to fitrgp. To specify the SD method for prediction, use the 'PredictMethod','sd' name-value pair argument.

For estimating parameters using the exact GPR model, see parameter estimation using the exact GPR method on page 6-13. For making predictions using the exact GPR model, see prediction using the exact GPR method on page 6-15.

See Also
fitrgp | predict

More About
- “Gaussian Process Regression Models” on page 6-2
- “Exact GPR Method” on page 6-13
- “Subset of Regressors Approximation for GPR Models” on page 6-22
- “Fully Independent Conditional Approximation for GPR Models” on page 6-29
• “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Subset of Regressors Approximation for GPR Models

In this section...

“Approximating the Kernel Function” on page 6-22
“Parameter Estimation” on page 6-24
“Prediction” on page 6-25
“Predictive Variance Problem” on page 6-26

The subset of regressors (SR) approximation method consists of replacing the kernel function \( k(x, x_r | \theta) \) in the exact GPR method on page 6-13 by its approximation

\[
\hat{k}_{SR}(x, x_r | \theta, \mathcal{A})
\]
given the active set \( \mathcal{A} \subseteq \mathbb{N} = \{1,2,...,n\} \). You can specify the SR method for parameter estimation by using the 'FitMethod','sr' name-value pair argument in the call to fitrgp. For prediction using SR, you can use the 'PredictMethod','sr' name-value pair argument in the call to fitrgp.

Approximating the Kernel Function

For the exact GPR model on page 6-15, the expected prediction in GPR depends on the set of \( \mathbb{N} \) functions \( S_N = \{k(x, x_i | \theta), i = 1,2,...,n\} \), where \( \mathbb{N} = \{1,2,...,n\} \) is the set of indices of all observations, and \( n \) is the total number of observations. The idea is to approximate the span of these functions by a smaller set of functions, \( S_A \), where \( \mathcal{A} \subseteq \mathbb{N} = \{1,2,...,n\} \) is the subset of indices of points selected to be in the active set. Consider

\[
S_A = \{k(x, x_j | \theta), j \in \mathcal{A}\}
\]. The aim is to approximate the elements of \( S_N \) as linear combinations of the elements of \( S_A \).

Suppose the approximation to \( k(x, x_r | \theta) \) using the functions in \( S_A \) is as follows:

\[
\hat{k}(x, x_r | \theta) = \sum_{j \in \mathcal{A}} c_{jr} k(x, x_j | \theta),
\]
where \( c_{jr} \in \mathbb{R} \) are the coefficients of the linear combination for approximating \( k(x, x_r | \theta) \). Suppose \( \mathbf{C} \) is the matrix that contains all the coefficients \( c_{jr} \). Then, \( \mathbf{C} \), is a \(| \mathbf{A} | \times n\) matrix such that \( \mathbf{C}(j, r) = c_{jr} \). The software finds the best approximation to the elements of \( \mathbf{S}_n \) using the active set \( \mathbf{A} \subset \mathbb{N} = \{1, 2, \ldots, n\} \) by minimizing the error function

\[
E(\mathbf{A}, \mathbf{C}) = \sum_{r=1}^{n} \| k(x, x_r | \theta) - k(x, x_r | \theta) \|_{\mathcal{H}}^2,
\]

where \( \mathcal{H} \) is the Reproducing Kernel Hilbert Spaces (RKHS) associated with the kernel function \( k \) [1], [2].

The coefficient matrix that minimizes \( E(\mathbf{A}, \mathbf{C}) \) is

\[
\hat{\mathbf{C}}_\mathbf{A} = \mathbf{K}(\mathbf{X}_\mathbf{A}, \mathbf{X}_\mathbf{A} | \theta)^{-1} \mathbf{K}(\mathbf{X}_\mathbf{A}, \mathbf{X} | \theta),
\]

and an approximation to the kernel function using the elements in the active set \( \mathbf{A} \subset \mathbb{N} = \{1, 2, \ldots, n\} \) is

\[
\hat{k}(x, x_r | \theta) = \sum_{j \in \mathbf{A}} c_{jr} k(x, x_j | \theta) = \mathbf{K}(x^T, \mathbf{X}_\mathbf{A} | \theta) \mathbf{C}(:, r).
\]

The SR approximation to the kernel function using the active set \( \mathbf{A} \subset \mathbb{N} = \{1, 2, \ldots, n\} \) is defined as:

\[
\hat{k}_{SR}(x, x_r | \theta, \mathbf{A}) = \mathbf{K}(x^T, \mathbf{X}_\mathbf{A} | \theta) \hat{\mathbf{C}}_\mathbf{A}(:, r) = \mathbf{K}(x^T, \mathbf{X}_\mathbf{A} | \theta) \mathbf{K}(\mathbf{X}_\mathbf{A}, \mathbf{X}_\mathbf{A} | \theta)^{-1} \mathbf{K}(\mathbf{X}_\mathbf{A}, x_r^T | \theta)
\]

and the SR approximation to \( \mathbf{K}(\mathbf{X}, \mathbf{X} | \theta) \) is:

\[
\hat{\mathbf{K}}_{SR}(\mathbf{X}, \mathbf{X} | \theta, \mathbf{A}) = \mathbf{K}(\mathbf{X}, \mathbf{X}_\mathbf{A} | \theta) \mathbf{K}(\mathbf{X}_\mathbf{A}, \mathbf{X}_\mathbf{A} | \theta)^{-1} \mathbf{K}(\mathbf{X}_\mathbf{A}, \mathbf{X} | \theta).
\]
### Parameter Estimation

Replacing $K(\mathbf{X}, \mathbf{X} | \theta)$ by $\hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A)$ in the marginal log likelihood function produces its SR approximation:

$$
\log P_{SR}(y | \mathbf{X}, \beta, \theta, \sigma^2, A) = -\frac{1}{2}(y - H\beta)^T \left[ \hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 I_n \right]^{-1} (y - H\beta) - \frac{N}{2} \log 2\pi - \frac{1}{2} \log \left| \hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 I_n \right|
$$

As in the exact method on page 6-13, the software estimates the parameters by first computing $\hat{\beta}(\theta, \sigma^2)$, the optimal estimate of $\beta$, given $\theta$ and $\sigma^2$. Then it estimates $\theta$, and $\sigma^2$ using the $\beta$-profiled marginal log likelihood. The SR estimate to $\beta$ for given $\theta$, and $\sigma^2$ is:

$$
\hat{\beta}_{SR}(\theta, \sigma^2, A) = \left[ H^T \left[ \hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 I_n \right]^{-1} H \right]^{-1} H^T \left[ \hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 I_n \right]^{-1} y,
$$

where

$$
\left[ \hat{K}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 I_n \right]^{-1} = \frac{I_N}{\sigma^2} - \frac{K(\mathbf{X}, \mathbf{X} | \theta)}{\sigma^2} A^{-1} \frac{K(\mathbf{X}, \mathbf{X} | \theta)}{\sigma^2},
$$

$$
A_A = K(\mathbf{X}_A, \mathbf{X}_A | \theta) + \frac{K(\mathbf{X}_A, \mathbf{X} | \theta) K(\mathbf{X}, \mathbf{X} | \theta)}{\sigma^2},
$$

$$
* = \frac{H^T H}{\sigma^2} - \frac{H^T K(\mathbf{X}, \mathbf{X}_A | \theta)}{\sigma^2} A^{-1} \frac{K(\mathbf{X}_A, \mathbf{X} | \theta) H}{\sigma^2},
$$

$$
** = \frac{H^T y}{\sigma^2} - \frac{H^T K(\mathbf{X}, \mathbf{X}_A | \theta)}{\sigma^2} A^{-1} \frac{K(\mathbf{X}_A, \mathbf{X} | \theta) y}{\sigma^2}.
$$

And the SR approximation to the $\beta$-profiled marginal log likelihood is:
\log P_{SR} \left( \mathbf{y} \mid \mathbf{X}, \hat{\mathbf{\beta}}_{SR} (\theta, \sigma^2, A), \theta, \sigma^2, A \right) = \\
- \frac{1}{2} \left( \mathbf{y} - \mathbf{H} \hat{\mathbf{\beta}}_{SR} (\theta, \sigma^2, A) \right)^T \left[ \hat{\mathbf{K}}_{SR} (\mathbf{X}, \mathbf{X} \mid \theta, A) + \sigma^2 \mathbf{I}_n \right]^{-1} \left( \mathbf{y} - \mathbf{H} \hat{\mathbf{\beta}}_{SR} (\theta, \sigma^2, A) \right) \\
- \frac{N}{2} \log 2\pi - \frac{1}{2} \log \left| \hat{\mathbf{K}}_{SR} (\mathbf{X}, \mathbf{X} \mid \theta, A) + \sigma^2 \mathbf{I}_n \right|.

**Prediction**

The SR approximation to the distribution of \( y_{new} \) given \( y, \mathbf{X}, \mathbf{x}_{new} \) is

\[ P \left( y_{new} \mid y, \mathbf{X}, \mathbf{x}_{new} \right) = \mathcal{N} \left( y_{new} \mid \mathbf{h} (\mathbf{x}_{new})^T \boldsymbol{\beta}_{SR}, \sigma_{new}^2 + \Sigma_{SR} \right), \]

where \( \mu_{SR} \) and \( \Sigma_{SR} \) are the SR approximations to \( \mu \) and \( \Sigma \) shown in prediction using the exact GPR method on page 6-15.

\( \mu_{SR} \) and \( \Sigma_{SR} \) are obtained by replacing \( k (\mathbf{x}, \mathbf{x}_r \mid \theta) \) by its SR approximation \( \hat{k}_{SR} (\mathbf{x}, \mathbf{x}_r \mid \theta, A) \) in \( \mu \) and \( \Sigma \), respectively.

That is,

\[
\mu_{SR} = \frac{\hat{\mathbf{K}}_{SR} (\mathbf{x}^T_{new}, \mathbf{X} \mid \theta, A)}{(1)} \left( \frac{\hat{\mathbf{K}}_{SR} (\mathbf{X}, \mathbf{X} \mid \theta, A) + \sigma^2 \mathbf{I}_N}{(2)} \right)^{-1} \left( \mathbf{y} - \mathbf{H} \hat{\mathbf{\beta}} \right).
\]

Since

\[
(1) = \mathbf{K} \left( \mathbf{x}^T_{new}, \mathbf{X} \mid \theta \right) \mathbf{K} (\mathbf{X}_A, \mathbf{X} \mid \theta)^{-1} \mathbf{K} (\mathbf{X}_A, \mathbf{X} \mid \theta),
\]

\[
(2) = \frac{1}{\sigma^2} - \frac{\mathbf{K} (\mathbf{X}, \mathbf{X}_A \mid \theta)}{\sigma^2} \left[ \mathbf{K} (\mathbf{X}_A, \mathbf{X}_A \mid \theta) + \frac{\mathbf{K} (\mathbf{X}, \mathbf{X} \mid \theta) \mathbf{K} (\mathbf{X}, \mathbf{X}_A \mid \theta) \mathbf{K} (\mathbf{X}_A, \mathbf{X} \mid \theta)}{\sigma^2} \right]^{-1} \frac{\mathbf{K} (\mathbf{X}_A, \mathbf{X} \mid \theta)}{\sigma^2},
\]
and from the fact that \( \mathbf{I}_N - \mathbf{B}(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}(\mathbf{A} + \mathbf{B})^{-1} \), \( \mu_{SR} \) can be written as

\[
\mu_{SR} = \mathbf{K}(\mathbf{x}_{\text{new}}^T, \mathbf{X}_A | \theta) \left[ \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta) + \frac{\mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta) \mathbf{K}(\mathbf{X}, \mathbf{X}_A | \theta)}{\sigma^2} \right]^{-1} \frac{\mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta)}{\sigma^2} (\mathbf{y} - \mathbf{H}\beta).
\]

Similarly, \( \Sigma_{SR} \) is derived as follows:

\[
\Sigma_{SR} = \hat{k}_{SR}(\mathbf{x}_{\text{new}}, \mathbf{x}_{\text{new}} | \theta, A) - \hat{k}_{SR}(\mathbf{x}_{\text{new}}^T, \mathbf{X} | \theta, A) \left( \hat{k}_{SR}(\mathbf{X}, \mathbf{X} | \theta, A) + \sigma^2 \mathbf{I}_N \right)^{-1} \hat{k}_{SR}(\mathbf{X}, \mathbf{x}_{\text{new}}^T | \theta, A).
\]

Because

\[
* = \mathbf{K}(\mathbf{x}_{\text{new}}^T, \mathbf{X}_A | \theta) \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta)^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{x}_{\text{new}}^T | \theta),
\]

\[
** = \mathbf{K}(\mathbf{x}_{\text{new}}^T, \mathbf{X}_A | \theta) \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta)^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta),
\]

\[
*** = (2) \text{ in the equation of } \mu_{SR},
\]

\[
**** = \mathbf{K}(\mathbf{X}, \mathbf{X}_A | \theta) \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta)^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{x}_{\text{new}}^T | \theta),
\]

\( \Sigma_{SR} \) is found as follows:

\[
\Sigma_{SR} = \mathbf{K}(\mathbf{x}_{\text{new}}^T, \mathbf{X}_A | \theta) \left[ \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta) + \frac{\mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta) \mathbf{K}(\mathbf{X}, \mathbf{X}_A | \theta)}{\sigma^2} \right]^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{x}_{\text{new}}^T | \theta).
\]

**Predictive Variance Problem**

One of the disadvantages of the SR method is that it can give unreasonably small predictive variances when making predictions in a region far away from the chosen active
Consider making a prediction at a new point \( x_{\text{new}} \) that is far away from the training set \( X \). In other words, assume that \( K(x_{\text{new}}^T, X \mid \theta) = 0 \).

For exact GPR, the posterior distribution of \( f_{\text{new}} \) given \( y, X \) and \( x_{\text{new}} \) would be Normal with mean \( \mu = 0 \) and variance \( \Sigma = k(x_{\text{new}}, x_{\text{new}} \mid \theta) \). This value is correct in the sense that, if \( x_{\text{new}} \) is far from \( X \), then the data \((X, y)\) does not supply any new information about \( f_{\text{new}} \) and so the posterior distribution of \( f_{\text{new}} \) given \( y, X, \) and \( x_{\text{new}} \) should reduce to the prior distribution \( f_{\text{new}} \) given \( x_{\text{new}} \), which is a Normal distribution with mean 0 and variance \( k(x_{\text{new}}, x_{\text{new}} \mid \theta) \).

For the SR approximation, if \( x_{\text{new}} \) is far away from \( X \) (and hence also far away from \( X_A \) ), then \( \mu_{SR} = 0 \) and \( \Sigma_{SR} = 0 \). Thus in this extreme case, \( \mu_{SR} \) agrees with \( \mu \) from exact GPR, but \( \Sigma_{SR} \) is unreasonably small compared to \( \Sigma \) from exact GPR.

The fully independent conditional approximation method on page 6-29 can help avoid this problem.

**References**


**See Also**

fitrgp | predict
More About

• “Gaussian Process Regression Models” on page 6-2
• “Exact GPR Method” on page 6-13
• “Subset of Data Approximation for GPR Models” on page 6-20
• “Fully Independent Conditional Approximation for GPR Models” on page 6-29
• “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Fully Independent Conditional Approximation for GPR Models

In this section...

“Approximating the Kernel Function” on page 6-29
“Parameter Estimation” on page 6-30
“Prediction” on page 6-31

The fully independent conditional (FIC) approximation[1] is a way of systematically approximating the true GPR kernel function in a way that avoids the predictive variance problem of the SR approximation on page 6-26 while still maintaining a valid Gaussian process. You can specify the FIC method for parameter estimation by using the 'FitMethod','fic' name-value pair argument in the call to fitrgp. For prediction using FIC, you can use the 'PredictMethod','fic' name-value pair argument in the call to fitrgp.

Approximating the Kernel Function

The FIC approximation to $k(x_i, x_j \mid \theta)$ for active set $\mathcal{A} \subset \mathbb{N} = \{1, 2, ..., n\}$ is given by:

$$
\hat{k}_{FIC}(x_i, x_j \mid \theta, \mathcal{A}) = \hat{k}_{SR}(x_i, x_j \mid \theta, \mathcal{A}) + \delta_{ij} \left(k(x_i, x_j \mid \theta) - \hat{k}_{SR}(x_i, x_j \mid \theta, \mathcal{A})\right),
$$

$$
\delta_{ij} = \begin{cases} 
1, & \text{if } i = j, \\
0, & \text{if } i \neq j. 
\end{cases}
$$

That is, the FIC approximation is equal to the SR approximation if $i \neq j$. For $i = j$, the software uses the exact kernel value rather than an approximation. Define an $n$-by-$n$ diagonal matrix $\Omega(X \mid \theta, \mathcal{A})$ as follows:

$$
\left[\Omega(X \mid \theta, \mathcal{A})\right]_{ij} = \begin{cases} 
\delta_{ij} \left(k(x_i, x_j \mid \theta) - k_{SR}(x_i, x_j \mid \theta, \mathcal{A})\right), & \text{if } i = j, \\
0, & \text{if } i \neq j. 
\end{cases}
$$
The FIC approximation to $K(X, X|\theta)$ is then given by:

$$
\hat{K}_{FIC}(X, X|\theta, A) = \hat{K}_{SR}(X, X|\theta, A) + \Omega(X|\theta, A) \\
= K(X, X_A|\theta)K(X_A, X_A|\theta)^{-1}K(X_A, X|\theta) + \Omega(X|\theta, A).
$$

**Parameter Estimation**

Replacing $K(X, X|\theta)$ by $\hat{K}_{FIC}(X, X|\theta, A)$ in the marginal log likelihood function produces its FIC approximation:

$$
\log P_{FIC}(y|X, \beta, \theta, \sigma^2, A) = -\frac{1}{2}(y - H\beta)^T \left[ \hat{K}_{FIC}(X, X|\theta, A) + \sigma^2 I_n \right]^{-1} (y - H\beta) \\
- \frac{N}{2} \log 2\pi - \frac{1}{2} \log |\hat{K}_{FIC}(X, X|\theta, A) + \sigma^2 I_n|.
$$

As in the exact method on page 6-13, the software estimates the parameters by first computing $\hat{\beta}(\theta, \sigma^2)$, the optimal estimate of $\beta$, given $\theta$ and $\sigma^2$. Then it estimates $\theta$, and $\sigma^2$ using the $\beta$-profiled marginal log likelihood. The FIC estimate to $\beta$ for given $\theta$, and $\sigma^2$ is

$$
\hat{\beta}_{FIC}(\theta, \sigma^2, A) = \left[ H^T \left( \hat{K}_{FIC}(X, X|\theta, A) + \sigma^2 I_N \right)^{-1} H \right]^{-1} H^T \left( \hat{K}_{FIC}(X, X|\theta, A) + \sigma^2 I_N \right)^{-1} y.
$$
\[
* = H^T \Lambda(\theta, \sigma^2, A)^{-1} H - H^T \Lambda(\theta, \sigma^2, A)^{-1} K(X, X_A | \theta) B_A^{-1} K(X_A, X | \theta) \Lambda(\theta, \sigma^2, A)^{-1} H,
\]
\[
** = H^T \Lambda(\theta, \sigma^2, A)^{-1} y - H^T \Lambda(\theta, \sigma^2, A)^{-1} K(X, X_A | \theta) B_A^{-1} K(X_A, X | \theta) \Lambda(\theta, \sigma^2, A)^{-1} y,
\]
\[
B_A = K(X_A, X_A | \theta) + K(X_A, X | \theta) \Lambda(\theta, \sigma^2, A)^{-1} K(X, X_A | \theta),
\]
\[
\Lambda(\theta, \sigma^2, A) = \Omega(X | \theta, A) + \sigma^2 I_n.
\]

Using \( \hat{\beta}_{FIC}(\theta, \sigma^2, A) \), the \( \beta \)-profiled marginal log likelihood for FIC approximation is:

\[
\log P_{FIC}(y | X, \hat{\beta}_{FIC}(\theta, \sigma^2, A), \theta, \sigma^2, A) = \]
\[
-\frac{1}{2} \left( y - H \hat{\beta}_{FIC}(\theta, \sigma^2, A) \right)^T \left( \hat{K}_{FIC}(X, X | \theta, A) + \sigma^2 I_N \right)^{-1} \left( y - H \hat{\beta}_{FIC}(\theta, \sigma^2, A) \right) \]
\[
- \frac{N}{2} \log 2\pi - \frac{1}{2} \log \left| \hat{K}_{FIC}(X, X | \theta, A) + \sigma^2 I_N \right|,
\]

where

\[
\left( \hat{K}_{FIC}(X, X | \theta, A) + \sigma^2 I_N \right)^{-1} = \Lambda(\theta, \sigma^2, A)^{-1} - \Lambda(\theta, \sigma^2, A)^{-1} K(X, X_A | \theta) B_A^{-1} K(X_A, X | \theta) \Lambda(\theta, \sigma^2, A)^{-1},
\]

\[
\log \left| \hat{K}_{FIC}(X, X | \theta, A) + \sigma^2 I_N \right| = \log \left| \Lambda(\theta, \sigma^2, A) \right| + \log |B_A| - \log |K(X_A, X_A | \theta)|.
\]

**Prediction**

The FIC approximation to the distribution of \( y_{new} \) given \( y, X, x_{new} \) is

\[
P(y_{new} | y, X, x_{new}) = \mathcal{N} \left( y_{new} \mid \mathbf{h}(x_{new})^T \beta + \mu_{FIC}, \sigma^2_{new} + \Sigma_{FIC} \right),
\]
where $\mu_{FIC}$ and $\Sigma_{FIC}$ are the FIC approximations to $\mu$ and $\Sigma$ given in prediction using exact GPR method on page 6-15. As in the SR case, $\mu_{FIC}$ and $\Sigma_{FIC}$ are obtained by replacing all occurrences of the true kernel with its FIC approximation. The final forms of $\mu_{FIC}$ and $\Sigma_{FIC}$ are as follows:

$$
\mu_{FIC} = \mathbf{K}(\mathbf{x}_{new}^T, \mathbf{X}_A | \theta) \mathbf{B}_A^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta) \Lambda (\theta, \sigma^2, A)^{-1} (y - \mathbf{H} \beta),
$$

$$
\Sigma_{FIC} = k(\mathbf{x}_{new}, \mathbf{x}_{new} | \theta) - \mathbf{K}(\mathbf{x}_{new}^T, \mathbf{X}_A | \theta) \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta)^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{x}_{new}^T | \theta)
+ \mathbf{K}(\mathbf{x}_{new}^T, \mathbf{X}_A | \theta) \mathbf{B}_A^{-1} \mathbf{K}(\mathbf{X}_A, \mathbf{x}_{new}^T | \theta),
$$

where

$$
\mathbf{B}_A = \mathbf{K}(\mathbf{X}_A, \mathbf{X}_A | \theta) + \mathbf{K}(\mathbf{X}_A, \mathbf{X} | \theta) \Lambda (\theta, \sigma^2, A)^{-1} \mathbf{K}(\mathbf{X}, \mathbf{X}_A | \theta),
$$

$$
\Lambda (\theta, \sigma^2, A) = \Omega(A \theta, A) + \sigma^2 I_n.
$$

References


See Also

fitrgp | predict

More About

- “Gaussian Process Regression Models” on page 6-2
- “Exact GPR Method” on page 6-13
- “Subset of Data Approximation for GPR Models” on page 6-20
- “Subset of Regressors Approximation for GPR Models” on page 6-22
• “Block Coordinate Descent Approximation for GPR Models” on page 6-34
Block Coordinate Descent Approximation for GPR Models

For a large number of observations, using the exact method for parameter estimation and making predictions on new data can be expensive (see “Exact GPR Method” on page 6-13). One of the approximation methods that help deal with this issue for prediction is the Block Coordinate Descent (BCD) method. You can make predictions using the BCD method by first specifying the predict method using the 'PredictMethod','bcd' name-value pair argument in the call to fitrgp, and then using the predict function.

The idea of the BCD method is to compute

\[ \hat{\alpha} = \left( K(X,X) + \sigma^2 I_N \right)^{-1} (y - H \beta) \]

in a different way than the exact method. BCD estimates \( \hat{\alpha} \) by solving the following optimization problem:

\[ \hat{\alpha} = \arg \min_{\alpha} f(\alpha) \]

where

\[ f(\alpha) = \frac{1}{2} \alpha^T \left[ K(X,X) + \sigma^2 I_N \right] \alpha - \alpha^T (y - H \beta). \]

fitrgp uses block coordinate descent (BCD) to solve the above optimization problem. For users familiar with support vector machines (SVMs), sequential minimal optimization (SMO) and ISDA (iterative single data algorithm) used to fit SVMs are special cases of BCD. fitrgp performs two steps for each BCD update - block selection and block update. In the block selection phase, fitrgp uses a combination of random and greedy strategies for selecting the set of \( \alpha \) coefficients to optimize next. In the block update phase, the selected \( \alpha \) coefficients are optimized while keeping the other \( \alpha \) coefficients fixed to their previous values. These two steps are repeated until convergence. BCD does not store the \( n \times n \) matrix \( K(X,X) \) in memory but it just computes chunks of the \( K(X,X) \) matrix as needed. As a result BCD is more memory efficient compared to 'PredictMethod','exact'.

6-34
Practical experience indicates that it is not necessary to solve the optimization problem for computing $\alpha$ to very high precision. For example, it is reasonable to stop the iterations when $||\nabla f(\alpha)||$ drops below $\eta||\nabla f(\alpha_0)||$, where $\alpha_0$ is the initial value of $\alpha$ and $\eta$ is a small constant (say $\eta = 10^{-3}$). The results from 'PredictMethod','exact' and 'PredictMethod','bcd' are equivalent except BCD computes $\alpha$ in a different way. Hence, 'PredictMethod','bcd' can be thought of as a memory efficient way of doing 'PredictMethod','exact'. BCD is often faster than 'PredictMethod','exact' for large $n$. However, you cannot compute the prediction intervals using the 'PredictMethod','bcd' option. This is because computing prediction intervals requires solving a problem like the one solved for computing $\alpha$ for every test point, which again is expensive.

**Fit GPR Models Using BCD Approximation**

This example shows fitting a Gaussian Process Regression (GPR) model to data with a large number of observations, using the Block Coordinate Descent (BCD) Approximation.

**Small n - PredictMethod 'exact' and 'bcd' Produce the Same Results**

Generate a small sample dataset.

```plaintext
rng(0,'twister');
n = 1000;
X = linspace(0,1,n)';
X = [X,X.^2];
y = 1 + X*[1;2] + sin(20*X*[1;-2])./(X(:,1)+1) + 0.2*randn(n,1);
```

Create a GPR model using 'FitMethod','exact' and 'PredictMethod','exact'.

```plaintext
gpr = fitrgp(X,y,'KernelFunction','squaredexponential',...
 'FitMethod','exact','PredictMethod','exact');
```

Create another GPR model using 'FitMethod','exact' and 'PredictMethod','bcd'.

```plaintext
gprbcd = fitrgp(X,y,'KernelFunction','squaredexponential',...
 'FitMethod','exact','PredictMethod','bcd','BlockSize',200);
```

'PredictMethod','exact' and 'PredictMethod','bcd' should be equivalent. They compute the same $\alpha$ but just in different ways. You can also see the iterations by using the 'Verbose',1 name-value pair argument in the call to fitrgp.
Compute the fitted values using the two methods and compare them:

```matlab
ypred = resubPredict(gpr);
ypredbcd = resubPredict(gprbcd);

max(abs(ypred-ypredbcd))
```

ans =

```
5.8853e-04
```

The fitted values are close to each other.

Now, plot the data along with fitted values for 'PredictMethod','exact' and 'PredictMethod','bcd'.

```matlab
figure;
plot(y,'k.);
hold on;
plot(ypred,'b-','LineWidth',2);
plot(ypredbcd,'m--','LineWidth',2);
legend('Data','PredictMethod Exact','PredictMethod BCD','Location','Best');
xlabel('Observation index');
ylabel('Response value');
```
It can be seen that `'PredictMethod', 'exact' and 'PredictMethod', 'bcd' produce nearly identical fits.

**Large n - Use 'FitMethod', 'sd' and 'PredictMethod', 'bcd'**

Generate a bigger dataset similar to the previous one.

```matlab
rng(0, 'twister');
n = 50000;
X = linspace(0, 1, n)';
X = [X, X.^2];
y = 1 + X*[1; 2] + sin(20*X*[1; -2])./(X(:,1)+1) + 0.2*randn(n, 1);
```
For \( n = 50000 \), the matrix \( K(X, X) \) would be 50000-by-50000. Storing \( K(X, X) \) in memory would require around 20 GB of RAM. To fit a GPR model to this dataset, use 'FitMethod','sd' with a random subset of \( m = 2000 \) points. The 'ActiveSetSize' name-value pair argument in the call to \texttt{fitrgp} specifies the active set size \( m \). For computing \( \alpha \) use 'PredictMethod','bcd' with a 'BlockSize' of 5000. The 'BlockSize' name-value pair argument in \texttt{fitrgp} specifies the number of elements of the \( \alpha \) vector that the software optimizes at each iteration. A 'BlockSize' of 5000 assumes that the computer you use can store a 5000-by-5000 matrix in memory.

\[
gprbcd = \texttt{fitrgp}(X,y,'KernelFunction','squaredexponential',...,
  'FitMethod','sd','ActiveSetSize',2000,'PredictMethod','bcd','BlockSize',5000);
\]

Plot the data and the fitted values.

\[
\text{figure;}
\text{plot}(y,'k.');\<BR>
\text{hold on;}
\text{plot(resubPredict(gprbcd),'m-','LineWidth',2);}\<BR>
\text{legend('Data','PredictMethod BCD','Location','Best');}\<BR>
\text{xlabel('Observation index');}\<BR>
\text{ylabel('Response value');}\<BR>
\]
The plot is similar to the one for smaller $n$.

**References**


See Also

fitrgp | predict

More About

• “Gaussian Process Regression Models” on page 6-2
• “Exact GPR Method” on page 6-13
• “Subset of Data Approximation for GPR Models” on page 6-20
• “Subset of Regressors Approximation for GPR Models” on page 6-22
• “Fully Independent Conditional Approximation for GPR Models” on page 6-29
Random Number Generation

- “Generating Pseudorandom Numbers” on page 7-2
- “Representing Sampling Distributions Using Markov Chain Samplers” on page 7-12
- “Generating Quasi-Random Numbers” on page 7-16
- “Generating Data Using Flexible Families of Distributions” on page 7-26
- “Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33
Generating Pseudorandom Numbers

Pseudorandom numbers are generated by deterministic algorithms. They are "random" in the sense that, on average, they pass statistical tests regarding their distribution and correlation. They differ from true random numbers in that they are generated by an algorithm, rather than a truly random process.

Random number generators (RNGs) like those in MATLAB are algorithms for generating pseudorandom numbers with a specified distribution.

For more information on the GUI for generating random numbers from supported distributions, see “Explore the Random Number Generation UI” on page 5-109.

Common Pseudorandom Number Generation Methods

- “Direct Methods” on page 7-2
- “Inversion Methods” on page 7-4
- “Acceptance-Rejection Methods” on page 7-7

Methods for generating pseudorandom numbers usually start with uniform random numbers, like the MATLAB rand function produces. The methods described in this section detail how to produce random numbers from other distributions.

Direct Methods

Direct methods directly use the definition of the distribution.

For example, consider binomial random numbers. A binomial random number is the number of heads in \( N \) tosses of a coin with probability \( p \) of a heads on any single toss. If you generate \( N \) uniform random numbers on the interval \((0, 1)\) and count the number less than \( p \), then the count is a binomial random number with parameters \( N \) and \( p \).

This function is a simple implementation of a binomial RNG using the direct approach:

```matlab
function X = directbinornd(N,p,m,n)
 X = zeros(m,n); % Preallocate memory
 for i = 1:m*n
 u = rand(N,1);
 X(i) = sum(u < p);
 end
```
For example:

```matlab
rng('default') % For reproducibility
X = directbinornd(100,0.3,1e4,1);
histogram(X,101)
```

The `binornd` function uses a modified direct method, based on the definition of a binomial random variable as the sum of Bernoulli random variables.

You can easily convert the previous method to a random number generator for the Poisson distribution with parameter $\lambda$. The “Poisson Distribution” on page B-137 is the limiting
case of the binomial distribution as \( N \) approaches infinity, \( p \) approaches zero, and \( Np \) is held fixed at \( \lambda \). To generate Poisson random numbers, create a version of the previous generator that inputs \( \lambda \) rather than \( N \) and \( p \), and internally sets \( N \) to some large number and \( p \) to \( \lambda/N \).

The `poissrnd` function actually uses two direct methods:

- A waiting time method for small values of \( \lambda \)
- A method due to Ahrens and Dieter for larger values of \( \lambda \)

**Inversion Methods**

Inversion methods are based on the observation that continuous cumulative distribution functions (cdfs) range uniformly over the interval \((0, 1)\). If \( u \) is a uniform random number on \((0, 1)\), then using \( X = F^{-1}(U) \) generates a random number \( X \) from a continuous distribution with specified cdf \( F \).

For example, the following code generates random numbers from a specific “Exponential Distribution” on page B-32 using the inverse cdf and the MATLAB® uniform random number generator `rand`:

```matlab
rng('default') % For reproducibility
mu = 1;
X = expinv(rand(1e4,1),mu);
```

Compare the distribution of the generated random numbers to the pdf of the specified exponential by scaling the pdf to the area of the histogram used to display the distribution:

```matlab
numbins = 50;
h = histogram(X,numbins);
hold on
histarea = h.BinWidth*sum(h.Values);
x = h.BinEdges(1):0.001:h.BinEdges(end);
y = exppdf(x,mu);
plot(x,histarea*y,'r','LineWidth',2)
hold off
```
Inversion methods also work for discrete distributions. To generate a random number $X$ from a discrete distribution with probability mass vector $P(X = x_i) = p_i$ where $x_0 < x_1 < x_2 < \ldots$, generate a uniform random number $u$ on $(0, 1)$ and then set $X = x_i$ if $F(x_{i-1}) < u < F(x_i)$.

For example, the following function implements an inversion method for a discrete distribution with probability mass vector $p$:

```matlab
function X = discreteinvrnd(p,m,n)
 X = zeros(m,n); % Preallocate memory
 for i = 1:m*n
 u = rand;
            ```
I = find(u < cumsum(p));
   X(i) = min(I);
end
end

Use the function to generate random numbers from any discrete distribution:

p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
X = discreteinvrnd(p,1e4,1);
h = histogram(X,length(p));
bar(1:length(p),h.Values)
Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming to generate random numbers using direct or inversion methods. Acceptance-rejection methods provide an alternative in these cases.

Acceptance-rejection methods begin with uniform random numbers, but require an additional random number generator. If your goal is to generate a random number from a continuous distribution with pdf $f$, acceptance-rejection methods first generate a random number from a continuous distribution with pdf $g$ satisfying $f(x) \leq cg(x)$ for some $c$ and all $x$. 
A continuous acceptance-rejection RNG proceeds as follows:

1. Chooses a density $g$.
2. Finds a constant $c$ such that $f(x)/g(x) \leq c$ for all $x$.
3. Generates a uniform random number $u$.
4. Generates a random number $v$ from $g$.
5. If $cu \leq f(v)/g(v)$, accepts and returns $v$. Otherwise, rejects $v$ and goes to step 3.

For efficiency, a "cheap" method is necessary for generating random numbers from $g$, and the scalar $c$ should be small. The expected number of iterations to produce a single random number is $c$.

The following function implements an acceptance-rejection method for generating random numbers from pdf $f$ given $f$, $g$, the RNG grnd for $g$, and the constant $c$:

```matlab
function X = accrejrnd(f,g,grnd,c,m,n)
 X = zeros(m,n); % Preallocate memory
 for i = 1:m*n
 accept = false;
 while accept == false
```
u = rand();
v = grnd();
if c*u <= f(v)/g(v)
   X(i) = v;
   accept = true;
end
end
end

For example, the function \( f(x) = xe^{-x^2/2} \) satisfies the conditions for a pdf on \([0, \infty)\) (nonnegative and integrates to 1). The exponential pdf with mean 1, \( f(x) = e^{-x} \), dominates \( g \) for \( c \) greater than about 2.2. Thus, you can use rand and exprnd to generate random numbers from \( f \):

\[
f = @(x)x.*exp(-(x.^2)/2);
g = @(x)exp(-x);
grnd = @(exprnd(1));
rng('default') \% For reproducibility
X = accrejrnd(f,g,grnd,2.2,1e4,1);
\]

The pdf \( f \) is actually a “Rayleigh Distribution” on page B-140 with shape parameter 1. This example compares the distribution of random numbers generated by the acceptance-rejection method with those generated by raylrnd:

\[
Y = raylrnd(1,1e4,1);
\]

histogram(X)
hold on
histogram(Y)
legend('A-R RNG','Rayleigh RNG')
The `raylrnd` function uses a transformation method, expressing a Rayleigh random variable in terms of a chi-square random variable, which you compute using `randn`.

Acceptance-rejection methods also work for discrete distributions. In this case, the goal is to generate random numbers from a distribution with probability mass $P_p(X = i) = p_i$, assuming that you have a method for generating random numbers from a distribution with probability mass $P_q(X = i) = q_i$. The RNG proceeds as follows:

1. Chooses a density $P_q$.
2. Finds a constant $c$ such that $p_i/q_i \leq c$ for all $i$.
3. Generates a uniform random number $u$. 
4 Generates a random number $v$ from $P_q$.
5 If $cu \leq p_v/q_v$, accepts and returns $v$. Otherwise, rejects $v$ and goes to step 3.

See Also

More About
- “Random Number Generation” on page 5-35
- “Generating Quasi-Random Numbers” on page 7-16
- “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130
Representing Sampling Distributions Using Markov Chain Samplers

In this section...

| “Using the Metropolis-Hastings Algorithm” on page 7-12 |
| “Using Slice Sampling” on page 7-13 |
| “Using Hamiltonian Monte Carlo” on page 7-13 |

For more complex probability distributions, you might need more advanced methods for generating samples than the methods described in “Common Pseudorandom Number Generation Methods” on page 7-2. Such distributions arise, for example, in Bayesian data analysis and in the large combinatorial problems of Markov chain Monte Carlo (MCMC) simulations. An alternative is to construct a Markov chain with a stationary distribution equal to the target sampling distribution, using the states of the chain to generate random numbers after an initial burn-in period in which the state distribution converges to the target.

**Using the Metropolis-Hastings Algorithm**

The Metropolis-Hastings algorithm draws samples from a distribution that is only known up to a constant. Random numbers are generated from a distribution with a probability density function that is equal to or proportional to a proposal function.

To generate random numbers:

1. Assume an initial value \( x(t) \).
2. Draw a sample, \( y(t) \), from a proposal distribution \( q(y|x(t)) \).
3. Accept \( y(t) \) as the next sample \( x(t + 1) \) with probability \( r(x(t),y(t)) \), and keep \( x(t) \) as the next sample \( x(t + 1) \) with probability \( 1 - r(x(t),y(t)) \), where:

\[
r(x, y) = \min \left\{ \frac{f(y)}{f(x)} \frac{q(y|x)}{q(x|y)}, 1 \right\}
\]

4. Increment \( t \rightarrow t + 1 \), and repeat steps 2 and 3 until you get the desired number of samples.

Generate random numbers using the Metropolis-Hastings method with the `mhsample` function. To produce quality samples efficiently with the Metropolis-Hastings algorithm, it
is crucial to select a good proposal distribution. If it is difficult to find an efficient proposal distribution, use slice sampling \(\text{slice sample}\) or Hamiltonian Monte Carlo \(\text{hmc sampler}\) instead.

**Using Slice Sampling**

In instances where it is difficult to find an efficient Metropolis-Hastings proposal distribution, the slice sampling algorithm does not require an explicit specification. The slice sampling algorithm draws samples from the region under the density function using a sequence of vertical and horizontal steps. First, it selects a height at random from 0 to the density function \(f(x)\). Then, it selects a new \(x\) value at random by sampling from the horizontal “slice” of the density above the selected height. A similar slice sampling algorithm is used for a multivariate distribution.

If a function \(f(x)\) proportional to the density function is given, then do the following to generate random numbers:

1. Assume an initial value \(x(t)\) within the domain of \(f(x)\).
2. Draw a real value \(y\) uniformly from \((0, f(x(t)))\), thereby defining a horizontal “slice” as \(S = \{x: y < f(x)\}\).
3. Find an interval \(I = (L, R)\) around \(x(t)\) that contains all, or much of the “slice” \(S\).
4. Draw the new point \(x(t + 1)\) within this interval.
5. Increment \(t \rightarrow t + 1\) and repeat steps 2 through 4 until you get the desired number of samples.

Slice sampling can generate random numbers from a distribution with an arbitrary form of the density function, provided that an efficient numerical procedure is available to find the interval \(I = (L,R)\), which is the “slice” of the density.

Generate random numbers using the slice sampling method with the \text{slice sample} function.

**Using Hamiltonian Monte Carlo**

Metropolis-Hastings and slice sampling can produce MCMC chains that mix slowly and take a long time to converge to the stationary distribution, especially in medium-dimensional and high-dimensional problems. Use the gradient-based Hamiltonian Monte Carlo (HMC) sampler to speed up sampling in these situations.
To use HMC sampling, you must specify \( \log f(x) \) (up to an additive constant) and its gradient. You can use a numerical gradient, but this leads to slower sampling. All sampling variables must be unconstrained, meaning that \( \log f(x) \) and its gradient are well-defined for all real \( x \). To sample constrained variables, transform these variables into unconstrained ones before using the HMC sampler.

The HMC sampling algorithm introduces a random “momentum vector” \( z \) and defines a joint density of \( z \) and the “position vector” \( x \) as \( P(x,z) = f(x)g(z) \). The goal is to sample from this joint distribution and then to ignore the values of \( z \) — the marginal distribution of \( x \) has the desired density \( f(x) \).

The HMC algorithm assigns a Gaussian density with covariance matrix \( M \) (the “mass matrix”) to \( z \):

\[
g(z) \propto \exp\left(-\frac{1}{2} z^T M^{-1} z\right)
\]

Then, it defines an “energy function” as

\[
E(x,z) = -\log f(x) + \frac{1}{2} z^T M^{-1} z = U(x) + K(z)
\]

with \( U(x) = -\log f(x) \) the “potential energy” and \( K(z) = z^T M^{-1} z/2 \) the “kinetic energy”. The joint density is given by \( P(x,z) \propto \exp\{-E(x,z)\} \).

To generate random samples, the HMC algorithm:

1. Assumes an initial value \( x \) of the position vector.
2. Generates a sample of the momentum vector: \( z \sim g(z) \).
3. Evolves the state \( (x,z) \) for some amount of fictitious time \( \tau \) to a new state \( (x',z') \) using the “equations of motion”:

\[
\frac{dz}{d\tau} = -\frac{\partial U}{\partial x}
\]

\[
\frac{dx}{d\tau} = \frac{\partial K}{\partial z}
\]

If the equations of motion could be solved exactly, the energy (and hence the density) would remain constant: \( E(x,z) = E(x',z') \). In practice, the equations of motions must
be solved numerically (usually using so-called leapfrog integration) and the energy is not conserved.

4 Accepts \( x' \) as the next sample with probability 
\[
p_{\text{acc}} = \min(1, \exp\{E(x,z) - E(x',z')\})
\]
and keeps \( x \) as the next sample with probability \( 1 - p_{\text{acc}} \).

5 Repeats steps 2 through 4 until it has generated the desired number of samples.

To use HMC sampling, create a sampler using the `hmcSampler` function. After creating a sampler, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics. For an example of this workflow, see “Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33.

See Also

Functions

`hmcSampler` | `mhsample` | `slicesample`
Generating Quasi-Random Numbers

**In this section...**

- “Quasi-Random Sequences” on page 7-16
- “Quasi-Random Point Sets” on page 7-17
- “Quasi-Random Streams” on page 7-24

## Quasi-Random Sequences

Quasi-random number generators (QRNGs) produce highly uniform samples of the unit hypercube. QRNGs minimize the discrepancy between the distribution of generated points and a distribution with equal proportions of points in each sub-cube of a uniform partition of the hypercube. As a result, QRNGs systematically fill the “holes” in any initial segment of the generated quasi-random sequence.

Unlike the pseudorandom sequences described in “Common Pseudorandom Number Generation Methods” on page 7-2, quasi-random sequences fail many statistical tests for randomness. Approximating true randomness, however, is not their goal. Quasi-random sequences seek to fill space uniformly, and to do so in such a way that initial segments approximate this behavior up to a specified density.

QRNG applications include:

- **Quasi-Monte Carlo (QMC) integration.** Monte Carlo techniques are often used to evaluate difficult, multi-dimensional integrals without a closed-form solution. QMC uses quasi-random sequences to improve the convergence properties of these techniques.

- **Space-filling experimental designs.** In many experimental settings, taking measurements at every factor setting is expensive or infeasible. Quasi-random sequences provide efficient, uniform sampling of the design space.

- **Global optimization.** Optimization algorithms typically find a local optimum in the neighborhood of an initial value. By using a quasi-random sequence of initial values, searches for global optima uniformly sample the basins of attraction of all local minima.

### Example: Using Scramble, Leap, and Skip

Imagine a simple 1-D sequence that produces the integers from 1 to 10. This is the basic sequence and the first three points are \([1, 2, 3]\):
Now look at how Scramble, Leap, and Skip work together:

• **Scramble** — Scrambling shuffles the points in one of several different ways. In this example, assume a scramble turns the sequence into $1, 3, 5, 7, 9, 2, 4, 6, 8, 10$. The first three points are now $[1, 3, 5]$:  

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

• **Skip** — A Skip value specifies the number of initial points to ignore. In this example, set the Skip value to 2. The sequence is now $5, 7, 9, 2, 4, 6, 8, 10$ and the first three points are $[5, 7, 9]$:  

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

• **Leap** — A Leap value specifies the number of points to ignore for each one you take. Continuing the example with the Skip set to 2, if you set the Leap to 1, the sequence uses every other point. In this example, the sequence is now $5, 9, 4, 8$ and the first three points are $[5, 9, 4]$:  

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

  \[ 1 \ 3 \ 5 \ 7 \ 9 \ 2 \ 4 \ 6 \ 8 \ 10 \]

### Quasi-Random Point Sets

Statistics and Machine Learning Toolbox functions support these quasi-random sequences:

• **Halton sequences.** Produced by the haltonset function. These sequences use different prime bases to form successively finer uniform partitions of the unit interval in each dimension.

• **Sobol sequences.** Produced by the sobolset function. These sequences use a base of 2 to form successively finer uniform partitions of the unit interval, and then reorder the coordinates in each dimension.
• **Latin hypercube sequences.** Produced by the \texttt{lhsdesign} function. Though not quasi-random in the sense of minimizing discrepancy, these sequences nevertheless produce sparse uniform samples useful in experimental designs.

Quasi-random sequences are functions from the positive integers to the unit hypercube. To be useful in application, an initial point set of a sequence must be generated. Point sets are matrices of size \( n \)-by-\( d \), where \( n \) is the number of points and \( d \) is the dimension of the hypercube being sampled. The functions \texttt{haltonset} and \texttt{sobolset} construct point sets with properties of a specified quasi-random sequence. Initial segments of the point sets are generated by the \texttt{net} method of the \texttt{qrandset} on page 32-5254 class (parent class of the \texttt{haltonset} on page 32-2925 class and \texttt{sobolset} on page 32-6175 class), but points can be generated and accessed more generally using parenthesis indexing.

Because of the way in which quasi-random sequences are generated, they may contain undesirable correlations, especially in their initial segments, and especially in higher dimensions. To address this issue, quasi-random point sets often skip, leap over, or scramble values in a sequence. The \texttt{haltonset} and \texttt{sobolset} functions allow you to specify both a \texttt{Skip} and a \texttt{Leap} property of a quasi-random sequence, and the \texttt{scramble} method of the \texttt{qrandset} on page 32-5254 class allows you apply a variety of scrambling techniques. Scrambling reduces correlations while also improving uniformity.

**Generate a Quasi-Random Point Set**

This example shows how to use \texttt{haltonset} to construct a 2-D Halton quasi-random point set.

Create a \texttt{haltonset} object \( p \), that skips the first 1000 values of the sequence and then retains every 101st point.

```plaintext
rng default % For reproducibility
p = haltonset(2,'Skip',1e3,'Leap',1e2)
```

```
p =
Halton point set in 2 dimensions (89180190640991 points)

Properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none
```
The object `p` encapsulates properties of the specified quasi-random sequence. The point set is finite, with a length determined by the `Skip` and `Leap` properties and by limits on the size of point set indices.

Use `scramble` to apply reverse-radix scrambling.

```matlab
p = scramble(p,'RR2')
```

```
p = Halton point set in 2 dimensions (89180190640991 points)
```

Properties:
- `Skip` : 1000
- `Leap` : 100
- `ScrambleMethod` : RR2

Use `net` to generate the first 500 points.

```matlab
X0 = net(p,500);
```

This is equivalent to

```matlab
X0 = p(1:500,:);
```

Values of the point set `X0` are not generated and stored in memory until you access `p` using `net` or parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter plot of the two dimensions in `X0`.

```matlab
scatter(X0(:,1),X0(:,2),5,'r')
axis square
```

```matlab
title({'\bf Quasi-Random Scatter'})
```
Compare this to a scatter of uniform pseudorandom numbers generated by the \texttt{rand} function.

\begin{verbatim}
X = rand(500,2);
scatter(X(:,1),X(:,2),5,'b')
axis square
title('{\bf Uniform Random Scatter}')
\end{verbatim}
The quasi-random scatter appears more uniform, avoiding the clumping in the pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass traditional tests of randomness. For example, a Kolmogorov-Smirnov test, performed by `kstest`, is used to assess whether or not a point set has a uniform random distribution. When performed repeatedly on uniform pseudorandom samples, such as those generated by `rand`, the test produces a uniform distribution of $p$-values.

```matlab
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
 x = rand(sampSize,1);
```
The results are quite different when the test is performed repeatedly on uniform quasi-random samples.

```matlab
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
```
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = p(test:test+(sampSize-1),:);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end

histogram(PVALS,100)
xlabel('{\it p}-values')
ylabel('Number of Tests')
Small $p$-values call into question the null hypothesis that the data are uniformly distributed. If the hypothesis is true, about 5% of the $p$-values are expected to fall below 0.05. The results are remarkably consistent in their failure to challenge the hypothesis.

**Quasi-Random Streams**

Quasi-random streams, produced by the `qrandstream` function, are used to generate sequential quasi-random outputs, rather than point sets of a specific size. Streams are used like pseudoRNGS, such as `rand`, when client applications require a source of quasi-random numbers of indefinite size that can be accessed intermittently. Properties of a quasi-random stream, such as its type (Halton or Sobol), dimension, skip, leap, and scramble, are set when the stream is constructed.

In implementation, quasi-random streams are essentially very large quasi-random point sets, though they are accessed differently. The state of a quasi-random stream is the scalar index of the next point to be taken from the stream. Use the `qrand` method of the `qrandstream` on page 32-5257 class to generate points from the stream, starting from the current state. Use the `reset` method to reset the state to 1. Unlike point sets, streams do not support parenthesis indexing.

**Generate a Quasi-Random Stream**

This example shows how to generate samples from a quasi-random point set.

Use `haltonset` to create a quasi-random point set $p$, then repeatedly increment the index into the point set `test` to generate different samples.

```matlab
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
 x = p(test:test+(sampSize-1),:);
 [h,pval] = kstest(x,[x,x]);
 PVALS(test) = pval;
end
```

The same results are obtained by using `qrandstream` to construct a quasi-random stream $q$ based on the point set $p$ and letting the stream take care of increments to the index.
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
q = qrandstream(p);

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    X = qrand(q,sampSize);
    [h,pval] = kstest(X,[X,X]);
    PVALS(test) = pval;
end

See Also

More About
• “Random Number Generation” on page 5-35
• “Generating Pseudorandom Numbers” on page 7-2
Generating Data Using Flexible Families of Distributions

This example shows how to generate data using the Pearson and Johnson systems of distributions.

**Pearson and Johnson Systems**

As described in “Working with Probability Distributions” on page 5-3, choosing an appropriate parametric family of distributions to model your data can be based on *a priori* or *a posteriori* knowledge of the data-producing process, but the choice is often difficult. The *Pearson and Johnson systems* can make such a choice unnecessary. Each system is a flexible parametric family of distributions that includes a wide range of distribution shapes, and it is often possible to find a distribution within one of these two systems that provides a good match to your data.

**Data Input**

The following parameters define each member of the Pearson and Johnson systems.

- Mean — Estimated by `mean`
- Standard deviation — Estimated by `std`
- Skewness — Estimated by `skewness`
- Kurtosis — Estimated by `kurtosis`

These statistics can also be computed with the `moment` function. The Johnson system, while based on these four parameters, is more naturally described using quantiles, estimated by the `quantile` function.

The `pearsrnd` and `johnsrnd` functions take input arguments defining a distribution (parameters or quantiles, respectively) and return the type and the coefficients of the distribution in the corresponding system. Both functions also generate random numbers from the specified distribution.

As an example, load the data in `carbig.mat`, which includes a variable `MPG` containing measurements of the gas mileage for each car.

```matlab
load carbig
MPG = MPG(~isnan(MPG));
histogram(MPG,15)
```
The following two sections model the distribution with members of the Pearson and Johnson systems, respectively.

**Generating Data Using the Pearson System**

The statistician Karl Pearson devised a system, or family, of distributions that includes a unique distribution corresponding to every valid combination of mean, standard deviation, skewness, and kurtosis. If you compute sample values for each of these moments from data, it is easy to find the distribution in the Pearson system that matches these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in a single parametric framework. It includes common distributions such as the normal and
distributions, simple transformations of standard distributions such as a shifted and scaled beta distribution and the inverse gamma distribution, and one distribution—the Type IV—that is not a simple transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system that also have those same first four moments, and the distribution in the Pearson system may not be a good match to your data, particularly if the data are multimodal. But the system does cover a wide range of distribution shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches the MPG data, simply compute the four sample moments and treat those as distribution parameters.

```matlab
moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
rng('default') % For reproducibility
[r,type] = pearsrnd(moments{:},10000,1);
```

The optional second output from `pearsrnd` indicates which type of distribution within the Pearson system matches the combination of moments.

```matlab
type
```

`type = 1`

In this case, `pearsrnd` has determined that the data are best described with a Type I Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical cumulative distribution functions.

```matlab
ecdf(MPG);
[Fi,xi] = ecdf(r);
hold on;
stairs(xi,Fi,'r');
hold off
```
Generating Data Using the Johnson System

Statistician Norman Johnson devised a different system of distributions that also includes a unique distribution for every valid combination of mean, standard deviation, skewness, and kurtosis. However, since it is more natural to describe distributions in the Johnson system using quantiles, working with this system is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal random variable, plus the identity transformation. The three nontrivial cases are known as SL, SU, and SB, corresponding to exponential, logistic, and hyperbolic sine transformations. All three can be written as
where \( Z \) is a standard normal random variable, \( \Gamma \) is the transformation, and \( \gamma, \delta, \xi, \) and \( \lambda \) are scale and location parameters. The fourth case, \( SN \), is the identity transformation.

To generate a sample from the Johnson distribution that matches the MPG data, first define the four quantiles to which the four evenly spaced standard normal quantiles of -1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you compute the sample quantiles of the data for the cumulative probabilities of 0.067, 0.309, 0.691, and 0.933.

\[
\text{probs} = \text{normcdf([-1.5 -0.5 0.5 1.5])}
\]

\[
\text{probs} = \begin{bmatrix} 0.0668 & 0.3085 & 0.6915 & 0.9332 \end{bmatrix}
\]

\[
\text{quantiles} = \text{quantile(MPG,probs)}
\]

\[
\text{quantiles} = \begin{bmatrix} 13.0000 & 18.0000 & 27.2000 & 36.0000 \end{bmatrix}
\]

Then treat those quantiles as distribution parameters.

\[
[r1,\text{type}] = \text{johnsrnd(quantiles,10000,1)};
\]

The optional second output from \text{johnsrnd} indicates which type of distribution within the Johnson system matches the quantiles.

\[
\text{type} = \text{'SB'}
\]

You can verify that the sample resembles the original data by overlaying the empirical cumulative distribution functions.

\[
\text{ecdf(MPG)};
\]

\[
[\text{Fi},\text{xi}] = \text{ecdf(r1)};
\]
In some applications, it may be important to match the quantiles better in some regions of the data than in others. To do that, specify four evenly spaced standard normal quantiles at which you want to match the data, instead of the default -1.5, -0.5, 0.5, and 1.5. For example, you might care more about matching the data in the right tail than in the left, and so you specify standard normal quantiles that emphasizes the right tail.

```matlab
qnorm = [-.5 .25 1 1.75];
probs = normcdf(qnorm);
qemp = quantile(MPG,probs);
r2 = johnsrnd([qnorm; qemp],10000,1);
```
However, while the new sample matches the original data better in the right tail, it matches much worse in the left tail.

```matlab
[Fj,xj] = ecdf(r2);
hold on;
stairs(xj,Fj,'g');
hold off
```

**See Also**
ecdf | johnsrnd | pearsrnd
Bayesian Linear Regression Using Hamiltonian Monte Carlo

This example shows how to perform Bayesian inference on a linear regression model using a Hamiltonian Monte Carlo (HMC) sampler.

In Bayesian parameter inference, the goal is to analyze statistical models with the incorporation of prior knowledge of model parameters. The posterior distribution of the free parameters \( \theta \) combines the likelihood function \( P(y|\theta) \) with the prior distribution \( P(\theta) \), using Bayes' theorem:

\[
P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}.
\]

Usually, the best way to summarize the posterior distribution is to obtain samples from that distribution using Monte Carlo methods. Using these samples, you can estimate marginal posterior distributions and derived statistics such as the posterior mean, median, and standard deviation. HMC is a gradient-based Markov Chain Monte Carlo sampler that can be more efficient than standard samplers, especially for medium-dimensional and high-dimensional problems.

Linear Regression Model

Analyze a linear regression model with the intercept \( \alpha \), the linear coefficients \( \beta \) (a column vector), and the noise variance \( \sigma^2 \) of the data distribution as free parameters. Assume that each data point has an independent Gaussian distribution:

\[
y_i|\theta \sim \mathcal{N}(\mu_i(\theta), \sigma^2).
\]

Model the mean \( \mu_i \) of the Gaussian distribution as a function of the predictors \( x_i \) and model parameters as

\[
\mu_i = \alpha + x_i^T \beta.
\]

In a Bayesian analysis, you also must assign prior distributions to all free parameters. Assign independent Gaussian priors on the intercept and linear coefficients:

\[
\alpha \sim \mathcal{N}(\alpha_0, \sigma_\alpha^2),
\]
\[ \beta_i \sim \mathcal{N}(\beta_0, \sigma^2). \]

To use HMC, all sampling variables must be unconstrained, meaning that the posterior density and its gradient must be well-defined for all real parameter values. If you have a parameter that is constrained to an interval, then you must transform this parameter into an unbounded one. To conserve probability, you must multiply the prior distribution by the corresponding Jacobian factor. Also, take this factor into account when calculating the gradient of the posterior.

The noise variance is a (squared) scale parameter that can only be positive. It then can be easier and more natural to consider its logarithm as the free parameter, which is unbounded. Assign a normal prior to the logarithm of the noise variance:

\[ \log \sigma^2 \sim \mathcal{N}(\kappa, \omega^2). \]

Write the logarithm of the posterior density of the free parameters \( \theta = (\alpha; \beta; \log \sigma^2) \) as

\[ \log P(\theta|y) = \text{const.} + \log P(y|\theta) + \log P(\theta). \]

Ignore the constant term and call the sum of the last two terms \( g(\theta) \). To use HMC, create a function handle that evaluates \( g(\theta) \) and its gradient \( \partial g / \partial \theta \) for any value of \( \theta \). The functions used to calculate \( g(\theta) \) are located at the end of the script.

**Create Data Set**

Define true parameter values for the intercept, the linear coefficients \( \text{Beta} \), and the noise standard deviation. Knowing the true parameter values makes it possible to compare with the output of the HMC sampler. Only the first predictor affects the response.

\[
\begin{align*}
\text{NumPredictors} &= 2; \\
\text{trueIntercept} &= 2; \\
\text{trueBeta} &= \{3;0\}; \\
\text{trueNoiseSigma} &= 1;
\end{align*}
\]

Use these parameter values to create a normally distributed sample data set at random values of the two predictors.

\[
\begin{align*}
\text{NumData} &= 100; \\
rng('default') & \text{ %For reproducibility} \\
X &= \text{rand(NumData,NumPredictors)};
\end{align*}
\]
\[ \mu = X \times \text{trueBeta} + \text{trueIntercept}; \]
\[ y = \text{normrnd} (\mu, \text{trueNoiseSigma}); \]

**Define Posterior Probability Density**

Choose the means and standard deviations of the Gaussian priors.

\[
\begin{align*}
\text{InterceptPriorMean} &= 0; \\
\text{InterceptPriorSigma} &= 10; \\
\text{BetaPriorMean} &= 0; \\
\text{BetaPriorSigma} &= 10; \\
\text{LogNoiseVarianceMean} &= 0; \\
\text{LogNoiseVarianceSigma} &= 2;
\end{align*}
\]

Save a function `logPosterior` on the MATLAB® path that returns the logarithm of the product of the prior and likelihood, and the gradient of this logarithm. The `logPosterior` function is defined at the end of this example. Then, call the function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

\[
\text{logpdf} = @(\text{Parameters}) \text{logPosterior} (\text{Parameters}, X, y, \ldots \\
\text{InterceptPriorMean}, \text{InterceptPriorSigma}, \ldots \\
\text{BetaPriorMean}, \text{BetaPriorSigma}, \ldots \\
\text{LogNoiseVarianceMean}, \text{LogNoiseVarianceSigma});
\]

**Create HMC Sampler**

Define the initial point to start sampling from, and then call the `hmcSampler` function to create the Hamiltonian sampler as a `HamiltonianSampler` object. Display the sampler properties.

\[
\begin{align*}
\text{Intercept} &= \text{randn}; \\
\text{Beta} &= \text{randn} (\text{NumPredictors}, 1); \\
\text{LogNoiseVariance} &= \text{randn}; \\
\text{startpoint} &= [\text{Intercept}; \text{Beta}; \text{LogNoiseVariance}]; \\
\text{smp} &= \text{hmcSampler} (\text{logpdf}, \text{startpoint}, '\text{NumSteps}', 50);
\end{align*}
\]

\[
\begin{align*}
\text{smp} &= \\
\text{HamiltonianSampler with properties:}
\end{align*}
\]
\[
\begin{align*}
\text{StepSize} & : 0.1000 \\
\text{NumSteps} & : 50
\end{align*}
\]
MassVector: [4x1 double]
JitterMethod: 'jitter-both'
StepSizeTuningMethod: 'dual-averaging'
MassVectorTuningMethod: 'iterative-sampling'
LogPDF: [function_handle]
VariableNames: {4x1 cell}
StartPoint: [4x1 double]

**Estimate MAP Point**

Estimate the MAP (maximum-a-posteriori) point of the posterior density. You can start sampling from any point, but it is often more efficient to estimate the MAP point, and then use it as a starting point for tuning the sampler and drawing samples. Estimate and display the MAP point. You can show more information during optimization by setting the 'VerbosityLevel' value to 1.

```
[MAPpars,fitInfo] = estimateMAP(smp,'VerbosityLevel',0);
MAPIntercept = MAPpars(1)
MAPBeta = MAPpars(2:end-1)
MAPLogNoiseVariance = MAPpars(end)
```

```
MAPIntercept =
 2.3857

MAPBeta =
 2.5495
 -0.4508

MAPLogNoiseVariance =
 -0.1007
```

To check that the optimization has converged to a local optimum, plot the fitInfo.Objective field. This field contains the values of the negative log density at each iteration of the function optimization. The final values are all similar, so the optimization has converged.
plot(fitInfo.Iteration, fitInfo.Objective, 'ro-');
xlabel('Iteration');
ylabel('Negative log density');

Tune Sampler

It is important to select good values for the sampler parameters to get efficient sampling. The best way to find good values is to automatically tune the MassVector, StepSize, and NumSteps parameters using the tuneSampler method. Use the method to:

1. Tune the MassVector of the sampler.

2. Tune StepSize and NumSteps for a fixed simulation length to achieve a certain acceptance ratio. The default target acceptance ratio of 0.65 is good in most cases.
Start tuning at the estimated MAP point for more efficient tuning.

\[ [\text{smp}, \text{tuneinfo}] = \text{tuneSampler(smp, 'Start', MAPpars);} \]

Plot the evolution of the step size during tuning to ensure that the step size tuning has converged. Display the achieved acceptance ratio.

\[
\text{figure;}
\text{plot(tuneinfo.StepSizeTuningInfo.StepSizeProfile);}
\text{xlabel('Iteration');}
\text{ylabel('Step size');}
\]

\[
\text{accratio} = \text{tuneinfo.StepSizeTuningInfo.AcceptanceRatio}
\]

\[
\text{accratio} =
\]

\[
0.6200
\]
Draw Samples

Draw samples from the posterior density, using a few independent chains. Choose different initial points for the chains, randomly distributed around the estimated MAP point. Specify the number of burn-in samples to discard from the beginning of the Markov chain and the number of samples to generate after the burn-in.

Set the 'VerbosityLevel' value to print details during sampling for the first chain.

```matlab
NumChains = 4;
chains = cell(NumChains,1);
Burnin = 500;
NumSamples = 1000;
for c = 1:NumChains
```

if (c == 1)
    level = 1;
else
    level = 0;
end
chains{c} = drawSamples(smp,'Start',MAPpars + randn(size(MAPpars)), ... 
    'Burnin',Burnin,'NumSamples',NumSamples, ... 
    'VerbosityLevel',level,'NumPrint',300);
end

|==================================================================================|
|   ITER   |    LOG PDF    |  STEP SIZE  |  NUM STEPS  |  ACC RATIO  |  DIVERGENT  |
|==================================================================================|
300	-1.483179e+02	2.955e-01	10	9.200e-01	0
600	-1.490021e+02	2.484e-02	3	9.117e-01	0
900	-1.509802e+02	2.534e-01	4	9.144e-01	0
1200	-1.496713e+02	1.317e-01	14	9.058e-01	0
1500	-1.486536e+02	2.955e-01	10	9.113e-01	0

Examine Convergence Diagnostics

Use the diagnostics method to compute standard MCMC diagnostics. For each sampling parameter, the method uses all the chains to compute these statistics:

- Posterior mean estimate (Mean)
- Estimate of the Monte Carlo standard error (MCSE), which is the standard deviation of the posterior mean estimate
- Estimate of the posterior standard deviation (SD)
- Estimates of the 5th and 95th quantiles of the marginal posterior distribution (Q5 and Q95)
- Effective sample size for the posterior mean estimate (ESS)
- Gelman-Rubin convergence statistic (RHat). As a rule of thumb, values of RHat less than 1.1 are interpreted as a sign that the chain has converged to the desired distribution. If RHat for any variable is larger than 1.1, then try drawing more samples using the drawSamples method.

Display the diagnostics table and the true values of the sampling parameters defined in the beginning of the example. Since the prior distribution is noninformative for this data set, the true values are between (or near) the 5th and 95th quantiles.
diags = diagnostics(smp,chains)
truePars = [trueIntercept;trueBeta;log(trueNoiseSigma^2)]

diags =

4x8 table

<table>
<thead>
<tr>
<th>Name</th>
<th>Mean</th>
<th>MCSE</th>
<th>SD</th>
<th>Q5</th>
<th>Q95</th>
<th>ESS</th>
<th>RHat</th>
</tr>
</thead>
<tbody>
<tr>
<td>'x1'</td>
<td>2.3855</td>
<td>0.005599</td>
<td>0.27813</td>
<td>1.9187</td>
<td>2.8472</td>
<td>2467.6</td>
<td>1.0006</td>
</tr>
<tr>
<td>'x2'</td>
<td>2.5494</td>
<td>0.0063242</td>
<td>0.33267</td>
<td>1.9995</td>
<td>3.097</td>
<td>2767.1</td>
<td>1.0002</td>
</tr>
<tr>
<td>'x3'</td>
<td>-0.44917</td>
<td>0.0066201</td>
<td>0.34165</td>
<td>-1.0259</td>
<td>0.10024</td>
<td>2663.4</td>
<td>1.0003</td>
</tr>
<tr>
<td>'x4'</td>
<td>-0.060541</td>
<td>0.0028155</td>
<td>0.14199</td>
<td>-0.2831</td>
<td>0.18424</td>
<td>2543.4</td>
<td>1.0002</td>
</tr>
</tbody>
</table>

truePars =

2
3
0
0

Visualize Samples

Investigate issues such as convergence and mixing to determine whether the drawn samples represent a reasonable set of random realizations from the target distribution. To examine the output, plot the trace plots of the samples using the first chain.

The drawSamples method discards burn-in samples from the beginning of the Markov chain to reduce the effect of the sampling starting point. Furthermore, the trace plots look like high-frequency noise, without any visible long-range correlation between the samples. This behavior indicates that the chain is mixed well.

figure;
subplot(2,2,1);
plot(chains{1}(:,1));
title(sprintf('Intercept, Chain 1'));
for p = 2:1+NumPredictors
    subplot(2,2,p);
    plot(chains{1}(:,p));
    title(sprintf('Beta%d, Chain 1',p-1));
end
subplot(2,2,4);
plot(chains{1}(:,end));
title(sprintf('LogNoiseVariance, Chain 1'));

Combine the chains into one matrix and create scatter plots and histograms to visualize the 1-D and 2-D marginal posterior distributions.

concatenatedSamples = vertcat(chains{:});
figure;
plotmatrix(concatenatedSamples);
title('All Chains Combined');
Functions for Computing Posterior Distribution

The logPosterior function returns the logarithm of the product of a normal likelihood and a normal prior for the linear model. The input argument Parameter has the format [Intercept;Beta;LogNoiseVariance]. X and Y contain the values of the predictors and response, respectively.

The normalPrior function returns the logarithm of the multivariate normal probability density with means Mu and standard deviations Sigma, specified as scalars or columns vectors the same length as P. The second output argument is the corresponding gradient.

function [logpdf, gradlogpdf] = logPosterior(Parameters,X,Y, ... InterceptPriorMean,InterceptPriorSigma, ... BetaPriorMean,BetaPriorSigma, ...
LogNoiseVarianceMean, LogNoiseVarianceSigma)

% Unpack the parameter vector
Intercept = Parameters(1);
Beta = Parameters(2:end-1);
LogNoiseVariance = Parameters(end);
% Compute the log likelihood and its gradient
Sigma = sqrt(exp(LogNoiseVariance));
Mu = X*Beta + Intercept;
Z = (Y - Mu)/Sigma;
loglik = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
gradIntercept1 = sum(Z/Sigma);
gradBeta1 = X'*Z/Sigma;
gradLogNoiseVariance1 = sum(-.5 + .5*(Z.^2));
% Compute log priors and gradients
[LPIntercept, gradIntercept2] = normalPrior(Intercept, InterceptPriorMean, InterceptPriorSigma);
[LPBeta, gradBeta2] = normalPrior(Beta, BetaPriorMean, BetaPriorSigma);
[LPLogNoiseVar, gradLogNoiseVariance2] = normalPrior(LogNoiseVariance, LogNoiseVarianceMean, LogNoiseVarianceSigma);
logprior = LPIntercept + LPBeta + LPLogNoiseVar;
% Return the log posterior and its gradient
logpdf = loglik + logprior;
gradIntercept = gradIntercept1 + gradIntercept2;
gradBeta = gradBeta1 + gradBeta2;
gradLogNoiseVariance = gradLogNoiseVariance1 + gradLogNoiseVariance2;
gradlogpdf = [gradIntercept; gradBeta; gradLogNoiseVariance];
end

function [logpdf, gradlogpdf] = normalPrior(P, Mu, Sigma)
Z = (P - Mu)./(P.*Sigma);
logpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
gradlogpdf = -Z./Sigma;
end

See Also

Functions
hmcSampler

Classes
HamiltonianSampler
Hypothesis Tests

- “Hypothesis Test Terminology” on page 8-2
- “Hypothesis Test Assumptions” on page 8-4
- “Hypothesis Testing” on page 8-6
- “Available Hypothesis Tests” on page 8-12
Hypothesis Test Terminology

All hypothesis tests share the same basic terminology and structure.

- A **null hypothesis** is an assertion about a population that you would like to test. It is “null” in the sense that it often represents a status quo belief, such as the absence of a characteristic or the lack of an effect. It may be formalized by asserting that a population parameter, or a combination of population parameters, has a certain value. In the example given in the “Hypothesis Testing” on page 8-6, the null hypothesis would be that the average price of gas across the state was $1.15. This is written $H_0: \mu = 1.15$.

- An **alternative hypothesis** is a contrasting assertion about the population that can be tested against the null hypothesis. In the example given in the “Hypothesis Testing” on page 8-6, possible alternative hypotheses are:
  
  - $H_1: \mu \neq 1.15$ — State average was different from $1.15$ (two-tailed test)
  
  - $H_1: \mu > 1.15$ — State average was greater than $1.15$ (right-tail test)
  
  - $H_1: \mu < 1.15$ — State average was less than $1.15$ (left-tail test)

- To conduct a hypothesis test, a random sample from the population is collected and a relevant **test statistic** is computed to summarize the sample. This statistic varies with the type of test, but its distribution under the null hypothesis must be known (or assumed).

- The **p value** of a test is the probability, under the null hypothesis, of obtaining a value of the test statistic as extreme or more extreme than the value computed from the sample.

- The **significance level** of a test is a threshold of probability $\alpha$ agreed to before the test is conducted. A typical value of $\alpha$ is 0.05. If the p value of a test is less than $\alpha$, the test rejects the null hypothesis. If the p value is greater than $\alpha$, there is insufficient evidence to reject the null hypothesis. Note that lack of evidence for rejecting the null hypothesis is not evidence for accepting the null hypothesis. Also note that substantive “significance” of an alternative cannot be inferred from the statistical significance of a test.

- The significance level $\alpha$ can be interpreted as the probability of rejecting the null hypothesis when it is actually true—a **type I error**. The distribution of the test statistic under the null hypothesis determines the probability $\alpha$ of a type I error. Even if the null hypothesis is not rejected, it may still be false—a **type II error**. The distribution of the test statistic under the alternative hypothesis determines the probability $\beta$ of a
type II error. Type II errors are often due to small sample sizes. The power of a test, $1 - \beta$, is the probability of correctly rejecting a false null hypothesis.

- Results of hypothesis tests are often communicated with a confidence interval. A confidence interval is an estimated range of values with a specified probability of containing the true population value of a parameter. Upper and lower bounds for confidence intervals are computed from the sample estimate of the parameter and the known (or assumed) sampling distribution of the estimator. A typical assumption is that estimates will be normally distributed with repeated sampling (as dictated by the Central Limit Theorem). Wider confidence intervals correspond to poor estimates (smaller samples); narrow intervals correspond to better estimates (larger samples). If the null hypothesis asserts the value of a population parameter, the test rejects the null hypothesis when the hypothesized value lies outside the computed confidence interval for the parameter.

**See Also**

**More About**
- “Hypothesis Testing” on page 8-6
- “Hypothesis Test Assumptions” on page 8-4
- “Available Hypothesis Tests” on page 8-12
Hypothesis Test Assumptions

Different hypothesis tests make different assumptions about the distribution of the random variable being sampled in the data. These assumptions must be considered when choosing a test and when interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that the data are independently sampled from a normal distribution. Statistics and Machine Learning Toolbox functions are available for testing this assumption, such as chi2gof, jbtest, lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures from this assumption, so long as the sample size $n$ is large enough. Both tests compute a sample mean $\bar{x}$, which, by the Central Limit Theorem, has an approximately normal sampling distribution with mean equal to the population mean $\mu$, regardless of the population distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the standard deviation $\sigma$ of the underlying normal distribution. A z-test assumes that $\sigma$ is known; a t-test does not. As a result, a t-test must compute an estimate $s$ of the standard deviation from the sample.

Test statistics for the z-test and the t-test are, respectively,

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Under the null hypothesis that the population is distributed with mean $\mu$, the z-statistic has a standard normal distribution, $N(0,1)$. Under the same null hypothesis, the t-statistic has Student's $t$ distribution with $n - 1$ degrees of freedom. For small sample sizes, Student's $t$ distribution is flatter and wider than $N(0,1)$, compensating for the decreased confidence in the estimate $s$. As sample size increases, however, Student's $t$ distribution approaches the standard normal distribution, and the two tests become essentially equivalent.
Knowing the distribution of the test statistic under the null hypothesis allows for accurate calculation of $p$-values. Interpreting $p$-values in the context of the test assumptions allows for critical analysis of test results.

Assumptions underlying Statistics and Machine Learning Toolbox hypothesis tests are given in the reference pages for implementing functions.

**See Also**

**More About**

- “Hypothesis Testing” on page 8-6
- “Hypothesis Test Terminology” on page 8-2
- “Available Hypothesis Tests” on page 8-12
Hypothesis Testing

Hypothesis testing is a common method of drawing inferences about a population based on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of Massachusetts the average price of a gallon of regular unleaded gas was $1.15. How could you determine the truth of the statement? You could try to find prices at every gas station in the state at the time. That approach would be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly selected gas stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the selection process. Suppose your sample average comes out to be $1.18. Is the $0.03 difference an artifact of random sampling or significant evidence that the average price of a gallon of gas was in fact greater than $1.15? Hypothesis testing is a statistical method for making such decisions.

This example shows how to use hypothesis testing to analyze gas prices measured across the state of Massachusetts during two separate months.

This example uses the gas price data in the file gas.mat. The file contains two random samples of prices for a gallon of gas around the state of Massachusetts in 1993. The first sample, price1, contains 20 random observations around the state on a single day in January. The second sample, price2, contains 20 random observations around the state one month later.

load gas
prices = [price1 price2];

As a first step, you might want to test the assumption that the samples come from normal distributions. A normal probability plot gives a quick idea.

normplot(prices)
Both scatters approximately follow straight lines through the first and third quartiles of the samples, indicating approximate normal distributions. The February sample (the right-hand line) shows a slight departure from normality in the lower tail. A shift in the mean from January to February is evident. A hypothesis test is used to quantify the test of normality. Since each sample is relatively small, a Lilliefors test is recommended.

```
lillietest(price1)
ans = 0
```

```
lillietest(price2)
ans = 0
```
The default significance level of \texttt{lillietest} is 5%. The logical 0 returned by each test indicates a failure to reject the null hypothesis that the samples are normally distributed. This failure may reflect normality in the population or it may reflect a lack of strong evidence against the null hypothesis due to the small sample size.

Now compute the sample means.

```matlab
sample_means = mean(prices)
```

```
115.1500 118.5000
```

You might want to test the null hypothesis that the mean price across the state on the day of the January sample was $1.15. If you know that the standard deviation in prices across the state has historically, and consistently, been $0.04, then a \textit{z}-test is appropriate.

```
[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
```

```
h = 0
pvalue = 0.8668
```

```
 ci = 2x1
 1.1340
 1.1690
```

The logical output \( h = 0 \) indicates a failure to reject the null hypothesis at the default significance level of 5%. This is a consequence of the high probability under the null hypothesis, indicated by the \( p \) value, of observing a value as extreme or more extreme of the \textit{z}-statistic computed from the sample. The 95\% confidence interval on the mean [1.1340 1.1690] includes the hypothesized population mean of $1.15.

Does the later sample offer stronger evidence for rejecting a null hypothesis of a state-wide average price of $1.15 in February? The shift shown in the probability plot and the difference in the computed sample means suggest this. The shift might indicate a significant fluctuation in the market, raising questions about the validity of using the historical standard deviation. If a known standard deviation cannot be assumed, a \textit{t}-test is more appropriate.

```
[h,pvalue,ci] = ttest(price2/100,1.15)
```

```
8-8
```
The logical output \( h = 1 \) indicates a rejection of the null hypothesis at the default significance level of 5%. In this case, the 95% confidence interval on the mean does not include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely. The function \texttt{ttest2} tests if two independent samples come from normal distributions with equal but unknown standard deviations and the same mean, against the alternative that the means are unequal.

\[
[h, \text{sig}, \text{ci}] = \text{ttest2}(\text{price1}, \text{price2})
\]

\[
h = 1
\]

\[
\text{sig} = 0.0083
\]

\[
\text{ci} = 2\times1
\]

\[
\begin{align*}
-5.7845 \\
-0.9155
\end{align*}
\]

The null hypothesis is rejected at the default 5% significance level, and the confidence interval on the difference of means does not include the hypothesized value of 0. A notched box plot is another way to visualize the shift.

\[
\text{boxplot(\text{prices}, 1)}
\]

\[
h = \text{gca};
\]

\[
h.\text{XTick} = [1 2];
\]

\[
h.\text{XTickLabel} = \{'\text{January}', '\text{February}'\};
\]

\[
\text{xlabel('Month')}
\]

\[
\text{ylabel('Prices ($0.01$)')}
\]
The plot displays the distribution of the samples around their medians. The heights of the notches in each box are computed so that the side-by-side boxes have nonoverlapping notches when their medians are different at a default 5% significance level. The computation is based on an assumption of normality in the data, but the comparison is reasonably robust for other distributions. The side-by-side plots provide a kind of visual hypothesis test, comparing medians rather than means. The plot above appears to barely reject the null hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function `ranksum`, can be used to quantify the test of equal medians. It tests if two independent samples come from identical continuous (not necessarily normal) distributions with equal medians, against the alternative that they do not have equal medians.
[p,h] = ranksum(price1,price2)
p = 0.0095
h = logical
    1

The test rejects the null hypothesis of equal medians at the default 5% significance level.

See Also
boxplot | lillietest | normplot | ttest | ttest2 | ztest

More About
- “Hypothesis Test Terminology” on page 8-2
- “Hypothesis Test Assumptions” on page 8-4
- “Available Hypothesis Tests” on page 8-12
- “Distribution Plots” on page 4-9
### Available Hypothesis Tests

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ansaribradley</td>
<td>Ansari-Bradley test. Tests if two independent samples come from the same distribution, against the alternative that they come from distributions that have the same median and shape but different variances.</td>
</tr>
<tr>
<td>barttest</td>
<td>Bartlett’s test. Tests if the variances of the data values along each principal component are equal, against the alternative that the variances are not all equal.</td>
</tr>
<tr>
<td>chi2gof</td>
<td>Chi-square goodness-of-fit test. Tests if a sample comes from a specified distribution, against the alternative that it does not come from that distribution.</td>
</tr>
<tr>
<td>dwtest</td>
<td>Durbin-Watson test. Tests if the residuals from a linear regression are uncorrelated, against the alternative that there is autocorrelation among them.</td>
</tr>
<tr>
<td>friedman</td>
<td>Friedman’s test. Tests if the column effects in a two-way layout are all the same, against the alternative that the column effects are not all the same.</td>
</tr>
<tr>
<td>jbtest</td>
<td>Jarque-Bera test. Tests if a sample comes from a normal distribution with unknown mean and variance, against the alternative that it does not come from a normal distribution.</td>
</tr>
<tr>
<td>kruskalwallis</td>
<td>Kruskal-Wallis test. Tests if multiple samples are all drawn from the same populations (or equivalently, from different populations with the same distribution), against the alternative that they are not all drawn from the same population.</td>
</tr>
<tr>
<td>ktest</td>
<td>One-sample Kolmogorov-Smirnov test. Tests if a sample comes from a continuous distribution with specified parameters, against the alternative that it does not come from that distribution.</td>
</tr>
<tr>
<td>ktest2</td>
<td>Two-sample Kolmogorov-Smirnov test. Tests if two samples come from the same continuous distribution, against the alternative that they do not come from the same distribution.</td>
</tr>
<tr>
<td>lillietest</td>
<td>Lilliefors test. Tests if a sample comes from a distribution in the normal family, against the alternative that it does not come from a normal distribution.</td>
</tr>
</tbody>
</table>
### Available Hypothesis Tests

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linhyptest</td>
<td>Linear hypothesis test. Tests if $H<em>b = c$ for parameter estimates $b$ with estimated covariance $H$ and specified $c$, against the alternative that $H</em>b \neq c$.</td>
</tr>
<tr>
<td>ranksum</td>
<td>Wilcoxon rank sum test. Tests if two independent samples come from identical continuous distributions with equal medians, against the alternative that they do not have equal medians.</td>
</tr>
<tr>
<td>runstest</td>
<td>Runs test. Tests if a sequence of values comes in random order, against the alternative that the ordering is not random.</td>
</tr>
<tr>
<td>signrank</td>
<td>One-sample or paired-sample Wilcoxon signed rank test. Tests if a sample comes from a continuous distribution symmetric about a specified median, against the alternative that it does not have that median.</td>
</tr>
<tr>
<td>signtest</td>
<td>One-sample or paired-sample sign test. Tests if a sample comes from an arbitrary continuous distribution with a specified median, against the alternative that it does not have that median.</td>
</tr>
<tr>
<td>ttest</td>
<td>One-sample or paired-sample $t$-test. Tests if a sample comes from a normal distribution with unknown variance and a specified mean, against the alternative that it does not have that mean.</td>
</tr>
<tr>
<td>ttest2</td>
<td>Two-sample $t$-test. Tests if two independent samples come from normal distributions with unknown but equal (or, optionally, unequal) variances and the same mean, against the alternative that the means are unequal.</td>
</tr>
<tr>
<td>vartest</td>
<td>One-sample chi-square variance test. Tests if a sample comes from a normal distribution with specified variance, against the alternative that it comes from a normal distribution with a different variance.</td>
</tr>
<tr>
<td>vartest2</td>
<td>Two-sample $F$-test for equal variances. Tests if two independent samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.</td>
</tr>
<tr>
<td>vartestn</td>
<td>Bartlett multiple-sample test for equal variances. Tests if multiple samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.</td>
</tr>
</tbody>
</table>
Function | Description
--- | ---
ztest | One-sample z-test. Tests if a sample comes from a normal distribution with known variance and specified mean, against the alternative that it does not have that mean.

**Note** In addition to the previous functions, Statistics and Machine Learning Toolbox functions are available for analysis of variance (ANOVA), which perform hypothesis tests in the context of linear modeling.

**See Also**

**More About**
- “Hypothesis Testing” on page 8-6
- “Hypothesis Test Terminology” on page 8-2
- “Hypothesis Test Assumptions” on page 8-4
Analysis of Variance

- “Introduction to Analysis of Variance” on page 9-2
- “One-Way ANOVA” on page 9-3
- “Two-Way ANOVA” on page 9-15
- “Multiple Comparisons” on page 9-26
- “N-Way ANOVA” on page 9-36
- “ANOVA with Random Effects” on page 9-48
- “Other ANOVA Models” on page 9-56
- “Analysis of Covariance” on page 9-58
- “Nonparametric Methods” on page 9-68
- “MANOVA” on page 9-71
- “Model Specification for Repeated Measures Models” on page 9-78
- “Compound Symmetry Assumption and Epsilon Corrections” on page 9-80
- “Mauchly’s Test of Sphericity” on page 9-82
- “Multivariate Analysis of Variance for Repeated Measures” on page 9-84
Introduction to Analysis of Variance

Analysis of variance (ANOVA) is a procedure for assigning sample variance to different sources and deciding whether the variation arises within or among different population groups. Samples are described in terms of variation around group means and variation of group means around an overall mean. If variations within groups are small relative to variations between groups, a difference in group means may be inferred. Hypothesis tests are used to quantify decisions.
One-Way ANOVA

In this section...

“Introduction to One-Way ANOVA” on page 9-3
“Prepare Data for One-Way ANOVA” on page 9-4
“Perform One-Way ANOVA” on page 9-6
“Mathematical Details” on page 9-11

Introduction to One-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anova1 to perform one-way analysis of variance (ANOVA). The purpose of one-way ANOVA is to determine whether data from several groups (levels) of a factor have a common mean. That is, one-way ANOVA enables you to find out whether different groups of an independent variable have different effects on the response variable $y$. Suppose, a hospital wants to determine if the two new proposed scheduling methods reduce patient wait times more than the old way of scheduling appointments. In this case, the independent variable is the scheduling method, and the response variable is the waiting time of the patients.

One-way ANOVA is a simple special case of the linear model on page 11-8. The one-way ANOVA form of the model is

$$y_{ij} = \alpha_j + \varepsilon_{ij}$$

with the following assumptions:

- $y_{ij}$ is an observation, in which $i$ represents the observation number, and $j$ represents a different group (level) of the predictor variable $y$. All $y_{ij}$ are independent.
- $\alpha_j$ represents the population mean for the $j$th group (level or treatment).
- $\varepsilon_{ij}$ is the random error, independent and normally distributed, with zero mean and constant variance, i.e., $\varepsilon_{ij} \sim N(0, \sigma^2)$.

This model is also called the means model. The model assumes that the columns of $y$ are the constant $\alpha_j$ plus the error component $\varepsilon_{ij}$. ANOVA helps determine if the constants are all the same.

ANOVA tests the hypothesis that all group means are equal versus the alternative hypothesis that at least one group is different from the others.
\[ H_0 : \alpha_1 = \alpha_2 = \ldots = \alpha_k \]
\[ H_1 : \text{not all group means are equal} \]

anova1(y) tests the equality of column means for the data in matrix y, where each column is a different group and has the same number of observations (i.e., a balanced design). anova1(y, group) tests the equality of group means, specified in group, for the data in vector or matrix y. In this case, each group or column can have a different number of observations (i.e., an unbalanced design).

ANOVA is based on the assumption that all sample populations are normally distributed. It is known to be robust to modest violations of this assumption. You can check the normality assumption visually by using a normality plot (normplot). Alternatively, you can use one of the Statistics and Machine Learning Toolbox functions that checks for normality: the Anderson-Darling test (adtest), the chi-squared goodness of fit test (chi2gof), the Jarque-Bera test (jbtest), or the Lilliefors test (lillietest).

**Prepare Data for One-Way ANOVA**

You can provide sample data as a vector or a matrix.

- If the sample data is in a vector, y, then you must provide grouping information using the group input variable: anova1(y, group).

  group must be a categorical variable, numeric vector, logical vector, character array, string array, or cell array of character vectors, with one name for each element of y. The anova1 function treats the y values corresponding to the same value of group as part of the same group. For example,

  \[ y = [y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ \ldots \ y_N] \]

  \[ g = \{ 'A', 'A', 'C', 'B', 'B', \ldots, 'D' \} \]

  Use this design when groups have different numbers of elements (unbalanced ANOVA).

- If the sample data is in a matrix, y, providing the group information is optional.
• If you do not specify the input variable `group`, then `anova1` treats each column of `y` as a separate group, and evaluates whether the population means of the columns are equal. For example,

\[ Y = \begin{bmatrix}
Y_{11} & Y_{12} & \cdots & Y_{1k} \\
Y_{21} & Y_{22} & \cdots & Y_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & \cdots & Y_{nk} 
\end{bmatrix} \]

Use this form of design when each group has the same number of elements (balanced ANOVA).

• If you specify the input variable `group`, then `group` must be a character array, string array, or cell array of character vectors, with one name for each column of `y`. The `anova1` function treats the columns with the same group name as part of the same group. For example,

\[ Y = \begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} & Y_{14} & \cdots & Y_{1k} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} & \cdots & Y_{2k} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & Y_{n3} & Y_{n4} & \cdots & Y_{nk} 
\end{bmatrix} \]

`group = {'Red', 'Black', 'Red', 'Yellow', ..., 'Black'}`
If group contains empty or NaN valued elements, anova1 disregards the corresponding observations in y.

**Perform One-Way ANOVA**

This example shows how to perform one-way ANOVA to determine whether data from several groups have a common mean.

Load and display the sample data.

```matlab
load hogg
hogg
```

```
hogg = 6×5
 24 14 11 7 19
 15 7 9 7 24
 21 12 7 4 19
 27 17 13 7 15
 33 14 12 12 10
 23 16 18 18 20
```

The data comes from a Hogg and Ledolter (1987) study on bacteria counts in shipments of milk. The columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons of milk chosen randomly from each shipment.

Test if some shipments have higher counts than others. By default, anova1 returns two figures. One is the standard ANOVA table, and the other one is the box plots of data by group.

```matlab
[p,tbl,stats] = anova1(hogg);
```
One-Way ANOVA

ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>803</td>
<td>4</td>
<td>200.75</td>
<td>9.01</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>557.17</td>
<td>25</td>
<td>22.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1360.17</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The small $p$-value of about 0.0001 indicates that the bacteria counts from the different shipments are not the same.

You can get some graphical assurance that the means are different by looking at the box plots. The notches, however, compare the medians, not the means. For more information on this display, see `boxplot`.

View the standard ANOVA table. `anova1` saves the standard ANOVA table as a cell array in the output argument `tbl`.

$\begin{align*}
\text{p} \\
\text{p} = 1.1971 \times 10^{-4}
\end{align*}$
tbl = 4x6 cell array
Columns 1 through 5

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>[803.0000]</td>
<td>4</td>
<td>200.7500</td>
<td>9.0076</td>
</tr>
<tr>
<td>Error</td>
<td>[557.1667]</td>
<td>25</td>
<td>22.2867</td>
<td>NaN</td>
</tr>
<tr>
<td>Total</td>
<td>[1.3602e+03]</td>
<td>29</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Column 6

<table>
<thead>
<tr>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1.1971e-04]</td>
</tr>
<tr>
<td>NaN</td>
</tr>
<tr>
<td>NaN</td>
</tr>
</tbody>
</table>

Save the $F$-statistic value in the variable Fstat.

Fstat = tbl{2,5}

Fstat = 9.0076

View the statistics necessary to make a multiple pairwise comparison of group means. anova1 saves these statistics in the structure stats.

stats

stats = struct with fields:
  gnames: [5x1 char]
  n: [6 6 6 6 6]
  source: 'anova1'
  means: [23.8333 13.3333 11.6667 9.1667 17.8333]
  df: 25
  s: 4.7209

ANOVA rejects the null hypothesis that all group means are equal, so you can use the multiple comparisons to determine which group means are different from others. To conduct multiple comparison tests, use the function multcompare, which accepts stats as an input argument. In this example, anova1 rejects the null hypothesis that the mean bacteria counts from all four shipments are equal to each other, i.e.,

$$H_0 : \mu_1 = \mu_2 = \mu_3 = \mu_4.$$
Perform a multiple comparison test to determine which shipments are different than the others in terms of mean bacteria counts.

```
multcompare(stats)
```

![Click on the group you want to test](image)

3 groups have means significantly different from Group 1

```
ans = 10×6
1.0000 2.0000 2.4953 10.5000 18.5047 0.0059
1.0000 3.0000 4.1619 12.1667 20.1714 0.0013
1.0000 4.0000 6.6619 14.6667 22.6714 0.0001
1.0000 5.0000 -2.0047 6.0000 14.0047 0.2119
2.0000 3.0000 -6.3381 1.6667 9.6714 0.9719
2.0000 4.0000 -3.8381 4.1667 12.1714 0.5544
2.0000 5.0000 -12.5047 -4.5000 3.5047 0.4806
```
The first two columns show which group means are compared with each other. For example, the first row compares the means for groups 1 and 2. The last column shows the p-values for the tests. The p-values 0.0059, 0.0013, and 0.0001 indicate that the mean bacteria counts in the milk from the first shipment is different from the ones from the second, third, and fourth shipments. The p-value of 0.0292 indicates that the mean bacteria counts in the milk from the fourth shipment is different from the ones from the fifth. The procedure fails to reject the hypotheses that the other group means are different from each other.

The figure also illustrates the same result. The blue bar shows the comparison interval for the first group mean, which does not overlap with the comparison intervals for the second, third, and fourth group means, shown in red. The comparison interval for the mean of fifth group, shown in gray, overlaps with the comparison interval for the first group mean. Hence, the group means for the first and fifth groups are not significantly different from each other.

**Mathematical Details**

ANOVA tests for the difference in the group means by partitioning the total variation in the data into two components:

- Variation of group means from the overall mean, i.e., \( \bar{y}_j - \bar{y} \) (variation between groups), where \( \bar{y}_j \) is the sample mean of group \( j \), and \( \bar{y} \) is the overall sample mean.
- Variation of observations in each group from their group mean estimates, \( y_{ij} - \bar{y}_j \) (variation within group).

In other words, ANOVA partitions the total sum of squares (SST) into sum of squares due to between-groups effect (SSR) and sum of squared errors(SSE).

\[
\sum_{i} \sum_{j} (y_{ij} - \bar{y})^2 = \sum_{j} n_j (\bar{y}_j - \bar{y})^2 + \sum_{i} \sum_{j} (y_{ij} - \bar{y}_j)^2,
\]

\[\text{SST} = \text{SSR} + \text{SSE}\]
where \( n_j \) is the sample size for the \( j \)th group, \( j = 1, 2, \ldots, k \).

Then ANOVA compares the variation between groups to the variation within groups. If the ratio of within-group variation to between-group variation is significantly high, then you can conclude that the group means are significantly different from each other. You can measure this using a test statistic that has an \( F \)-distribution with \((k - 1, N - k)\) degrees of freedom:

\[
F = \frac{SSR/k - 1}{SSE/N - k} = \frac{MSR}{MSE} \sim F_{k-1, N-k},
\]

where \( MSR \) is the mean squared treatment, \( MSE \) is the mean squared error, \( k \) is the number of groups, and \( N \) is the total number of observations. If the \( p \)-value for the \( F \)-statistic is smaller than the significance level, then the test rejects the null hypothesis that all group means are equal and concludes that at least one of the group means is different from the others. The most common significance levels are 0.05 and 0.01.

**ANOVA Table**

The ANOVA table captures the variability in the model by source, the \( F \)-statistic for testing the significance of this variability, and the \( p \)-value for deciding on the significance of this variability. The \( p \)-value returned by \texttt{anova1} depends on assumptions about the random disturbances \( \epsilon_{ij} \) in the model equation. For the \( p \)-value to be correct, these disturbances need to be independent, normally distributed, and have constant variance. The standard ANOVA table has this form:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>( F )</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (Between)</td>
<td>SSR</td>
<td>( k - 1 )</td>
<td>MSR = SSR/(k - 1)</td>
<td>MSR/MSE</td>
<td>( P(F_{k-1, N-k}) &gt; F )</td>
</tr>
<tr>
<td>Error (Within)</td>
<td>SSE</td>
<td>( N - k )</td>
<td>MSE = SSE/(N - k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>SST</td>
<td>( N - 1 )</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\texttt{anova1} returns the standard ANOVA table as a cell array with six columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Source of the variability.</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares due to each source.</td>
</tr>
</tbody>
</table>
The rows of the ANOVA table show the variability in the data, divided by the source.

<table>
<thead>
<tr>
<th>Row (Source)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups or Columns</td>
<td>Variability due to the differences among the group means (variability <em>between</em> groups)</td>
</tr>
<tr>
<td>Error</td>
<td>Variability due to the differences between the data in each group and the group mean (variability <em>within</em> groups)</td>
</tr>
<tr>
<td>Total</td>
<td>Total variability</td>
</tr>
</tbody>
</table>

**References**


See Also
anoval | kruskalwallis | multcompare

More About
• “Two-Way ANOVA” on page 9-15
• “N-Way ANOVA” on page 9-36
• “Multiple Comparisons” on page 9-26
• “Nonparametric Methods” on page 9-68
Two-Way ANOVA

### In this section...

- “Introduction to Two-Way ANOVA” on page 9-15
- “Prepare Data for Balanced Two-Way ANOVA” on page 9-17
- “Perform Two-Way ANOVA” on page 9-18
- “Mathematical Details” on page 9-21

### Introduction to Two-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function `anova2` to perform a balanced two-way analysis of variance (ANOVA). To perform two-way ANOVA for an unbalanced design, use `anovan`. For an example, see “Two-Way ANOVA for Unbalanced Design” on page 32-90.

As in one-way ANOVA, the data for a two-way ANOVA study can be experimental or observational. The difference between one-way and two-way ANOVA is that in two-way ANOVA, the effects of two factors on a response variable are of interest. These two factors can be independent, and have no interaction effect, or the impact of one factor on the response variable can depend on the group (level) of the other factor. If the two factors have no interactions, the model is called an *additive* model.

Suppose an automobile company has two factories, and each factory makes the same three car models. The gas mileage in the cars can vary from factory to factory and from model to model. These two factors, factory and model, explain the differences in mileage, that is, the response. One measure of interest is the difference in mileage due to the production methods between factories. Another measure of interest is the difference in the mileage of the models (irrespective of the factory) due to different design specifications. The effects of these measures of interest are *additive*. In addition, suppose only one model has different gas mileage between factories, while the mileage of the other two models is the same between factories. This is called an *interaction* effect. To measure an interaction effect, there must be multiple observations for some combination of factory and car model. These multiple observations are called *replications*.

Two-way ANOVA is a special case of the linear model on page 11-8. The two-way ANOVA form of the model is

\[ y_{ijr} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijr} \]
where,

- \( y_{ijr} \) is an observation of the response variable.
  - \( i \) represents group \( i \) of row factor \( A, i = 1, 2, \ldots, I \)
  - \( j \) represents group \( j \) of column factor \( B, j = 1, 2, \ldots, J \)
  - \( r \) represents the replication number, \( r = 1, 2, \ldots, R \)

There are a total of \( N = I \times J \times R \) observations.

- \( \mu \) is the overall mean.
- \( \alpha_i \) are the deviations of groups of row factor \( A \) from the overall mean \( \mu \) due to row factor \( B \). The values of \( \alpha_i \) sum to 0.

\[
\sum_{i=1}^{I} \alpha_i = 0.
\]

- \( \beta_j \) are the deviations of groups in column factor \( B \) from the overall mean \( \mu \) due to row factor \( B \). All values in a given column of \( \beta_j \) are identical, and the values of \( \beta_j \) sum to 0.

\[
\sum_{j=1}^{J} \beta_j = 0.
\]

- \( \alpha\beta_{ij} \) are the interactions. The values in each row and in each column of \( \alpha\beta_{ij} \) sum to 0.

\[
\sum_{i=1}^{I} (\alpha\beta)_{ij} = \sum_{j=1}^{J} (\alpha\beta)_{ij} = 0.
\]

- \( \varepsilon_{ijr} \) are the random disturbances. They are assumed to be independent, normally distributed, and have constant variance.

In the mileage example:

- \( y_{ijr} \) are the gas mileage observations, \( \mu \) is the overall mean gas mileage.
- \( \alpha_i \) are the deviations of each car's gas mileage from the mean gas mileage \( \mu \) due to the car's model.
- \( \beta_j \) are the deviations of each car's gas mileage from the mean gas mileage \( \mu \) due to the car's factory.

`anova2` requires that data be balanced, so each combination of model and factory must have the same number of cars.
Two-way ANOVA tests hypotheses about the effects of factors $A$ and $B$, and their interaction on the response variable $y$. The hypotheses about the equality of the mean response for groups of row factor $A$ are

$$
H_0 : \alpha_1 = \alpha_2 \cdots = \alpha_I \\
H_1 : \text{at least one } \alpha_i \text{ is different, } i = 1, 2, \ldots, I.
$$

The hypotheses about the equality of the mean response for groups of column factor $B$ are

$$
H_0 : \beta_1 = \beta_2 = \cdots = \beta_J \\
H_1 : \text{at least one } \beta_j \text{ is different, } j = 1, 2, \ldots, J.
$$

The hypotheses about the interaction of the column and row factors are

$$
H_0 : (\alpha\beta)_{ij} = 0 \\
H_1 : \text{at least one } (\alpha\beta)_{ij} \neq 0
$$

**Prepare Data for Balanced Two-Way ANOVA**

To perform balanced two-way ANOVA using `anova2`, you must arrange data in a specific matrix form. The columns of the matrix must correspond to groups of the column factor, $B$. The rows must correspond to the groups of the row factor, $A$, with the same number of replications for each combination of the groups of factors $A$ and $B$.

Suppose that row factor $A$ has three groups, and column factor $B$ has two groups (levels). Also suppose that each combination of factors $A$ and $B$ has two measurements or observations ($\text{reps} = 2$). Then, each group of factor $A$ has six observations and each group of factor $B$ four observations.

$$
B = 1 \quad B = 2 \\
\begin{bmatrix}
 y_{111} & y_{121} \\
 y_{112} & y_{122} \\
 y_{211} & y_{221} \\
 y_{212} & y_{222} \\
 y_{311} & y_{321} \\
 y_{312} & y_{322}
\end{bmatrix}
\begin{array}{c}
A = 1 \\
A = 2 \\
A = 3
\end{array}
$$
The subscripts indicate row, column, and replication, respectively. For example, \( y_{221} \) corresponds to the measurement for the second group of factor A, the second group of factor B, and the first replication for this combination.

**Perform Two-Way ANOVA**

This example shows how to perform two-way ANOVA to determine the effect of car model and factory on the mileage rating of cars.

Load and display the sample data.

```matlab
load mileage
mileage
mileage = 6×3
33.3000 34.5000 37.4000
33.4000 34.8000 36.8000
32.9000 33.8000 37.6000
32.6000 33.4000 36.6000
32.5000 33.7000 37.0000
33.0000 33.9000 36.7000
```

There are three car models (columns) and two factories (rows). The data has six mileage rows because each factory provided three cars of each model for the study (i.e., the replication number is three). The data from the first factory is in the first three rows, and the data from the second factory is in the last three rows.

Perform two-way ANOVA. Return the structure of statistics, stats, to use in multiple comparisons.

```matlab
nmbcars = 3; % Number of cars from each model, i.e., number of replications
[~,~,stats] = anova2(mileage,nmbcars);
```
You can use the $F$-statistics to do hypotheses tests to find out if the mileage is the same across models, factories, and model - factory pairs. Before performing these tests, you must adjust for the additive effects. `anova2` returns the $p$-value from these tests.

The $p$-value for the model effect (`Columns`) is zero to four decimal places. This result is a strong indication that the mileage varies from one model to another.

The $p$-value for the factory effect (`Rows`) is 0.0039, which is also highly significant. This value indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The observed $p$-value indicates that an $F$-statistic as extreme as the observed $F$ occurs by chance about four out of 1000 times, if the gas mileage were truly equal from factory to factory.

### ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>$F$</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>53.351</td>
<td>2</td>
<td>26.6756</td>
<td>234.22</td>
<td>0</td>
</tr>
<tr>
<td>Rows</td>
<td>1.445</td>
<td>1</td>
<td>1.445</td>
<td>12.69</td>
<td>0.0039</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>0.18</td>
<td>0.8411</td>
</tr>
<tr>
<td>Error</td>
<td>1.3667</td>
<td>12</td>
<td>0.1139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>56.208</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The factories and models appear to have no interaction. The p-value, 0.8411, means that the observed result is likely (84 out of 100 times), given that there is no interaction.

Perform “Multiple Comparisons” on page 9-26 to find out which pair of the three car models is significantly different.

c = multcompare(stats)

Note: Your model includes an interaction term. A test of main effects can be difficult to interpret when the model includes interactions.
In the matrix $c$, the first two columns show the pairs of car models that are compared. The last column shows the $p$-values for the test. All $p$-values are small (0.0004, 0, and 0), which indicates that the mean mileage of all car models are significantly different from each other.

In the figure, the blue bar is the comparison interval for the mean mileage of the first car model. The red bars are the comparison intervals for the mean mileage of the second and third car models. None of the second and third comparison intervals overlap with the first comparison interval, indicating that the mean mileage of the first car model is different from the mean mileage of the second and the third car models. If you click on one of the other bars, you can test for the other car models. None of the comparison intervals overlap, indicating that the mean mileage of each car model is significantly different from the other two.

**Mathematical Details**

The two-factor ANOVA partitions the total variation into the following components:

- Variation of row factor group means from the overall mean, $\bar{y}_i - \bar{y}_{..}$
- Variation of column factor group means from the overall mean, $\bar{y}_j - \bar{y}_{..}$
- Variation of overall mean plus the replication mean from the column factor group mean plus row factor group mean, $\bar{y}_{ij} - \bar{y}_{i..} - \bar{y}_{..} + \bar{y}_{..}$
- Variation of observations from the replication means, $y_{ijk} - \bar{y}_{ij}$

ANOVA partitions the total sum of squares (SST) into the sum of squares due to row factor $A$ ($SS_A$), the sum of squares due to column factor $B$ ($SS_B$), the sum of squares due to interaction between $A$ and $B$ ($SS_{AB}$), and the sum of squares error (SSE).
ANOVA takes the variation due to the factor or interaction and compares it to the variation due to error. If the ratio of the two variations is high, then the effect of the factor or the interaction effect is statistically significant. You can measure the statistical significance using a test statistic that has an $F$-distribution.

For the null hypothesis that the mean response for groups of the row factor $A$ are equal, the test statistic is

$$F = \frac{SS_B / m - 1}{SSE / mk(R - 1)} \sim F_{m-1, mk(R-1)}.$$

For the null hypothesis that the mean response for groups of the column factor $B$ are equal, the test statistic is

$$F = \frac{SS_A / k - 1}{SSE / mk(R - 1)} \sim F_{k-1, mk(R-1)}.$$

For the null hypothesis that the interaction of the column and row factors are equal to zero, the test statistic is

$$F = \frac{SS_{AB} / (m - 1)(k - 1)}{SSE / mk(R - 1)} \sim F_{(m-1)(k-1), mk(R-1)}.$$

If the $p$-value for the $F$-statistic is smaller than the significance level, then ANOVA rejects the null hypothesis. The most common significance levels are 0.01 and 0.05.
ANOVA Table

The ANOVA table captures the variability in the model by the source, the F-statistic for testing the significance of this variability, and the p-value for deciding on the significance of this variability. The p-value returned by `anova2` depends on assumptions about the random disturbances, $\varepsilon_{ij}$, in the model equation. For the p-value to be correct, these disturbances need to be independent, normally distributed, and have constant variance.

The standard ANOVA table has this form:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>$SS_A$</td>
<td>$k - 1$</td>
<td>$MS_A$</td>
<td>$MS_A/MSE$</td>
<td>$P(F_{k-1,m(k-1)} &gt; F)$</td>
</tr>
<tr>
<td>Rows</td>
<td>$SS_B$</td>
<td>$m - 1$</td>
<td>$MS_B$</td>
<td>$MS_B/MSE$</td>
<td>$P(F_{m-1,m(k-1)} &gt; F)$</td>
</tr>
<tr>
<td>Interaction</td>
<td>$SS_{AB}$</td>
<td>$(m-1)(k - 1)$</td>
<td>$MS_{AB}$</td>
<td>$MS_{AB}/MSE$</td>
<td>$P(F_{(m-1)(k-1),m(k-1)} &gt; F)$</td>
</tr>
<tr>
<td>Error</td>
<td>SSE</td>
<td>$mk(R - 1)$</td>
<td>MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$SST$</td>
<td>$mkR - 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`anova2` returns the standard ANOVA table as a cell array with six columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>The source of the variability.</td>
</tr>
<tr>
<td>SS</td>
<td>The sum of squares due to each source.</td>
</tr>
<tr>
<td>df</td>
<td>The degrees of freedom associated with each source. Suppose $J$ is the number of groups in the column factor, $I$ is the number of groups in the row factor, and $R$ is the number of replications. Then, the total number of observations is $IJR$ and the total degrees of freedom is $IJR - 1$. $I - 1$ is the degrees of freedom for the row factor, $J - 1$ is the degrees of freedom for the column factor, $(I - 1)(J - 1)$ is the interaction degrees of freedom, and $IJ(R - 1)$ is the error degrees of freedom.</td>
</tr>
<tr>
<td>MS</td>
<td>The mean squares for each source, which is the ratio SS/df.</td>
</tr>
</tbody>
</table>
The rows of the ANOVA table show the variability in the data that is divided by the source.

<table>
<thead>
<tr>
<th>Row (Source)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>Variability due to the column factor</td>
</tr>
<tr>
<td>Rows</td>
<td>Variability due to the row factor</td>
</tr>
<tr>
<td>Interaction</td>
<td>Variability due to the interaction of the row and column factors</td>
</tr>
<tr>
<td>Error</td>
<td>Variability due to the differences between the data in each group and the group mean (variability within groups)</td>
</tr>
<tr>
<td>Total</td>
<td>Total variability</td>
</tr>
</tbody>
</table>

**References**


**See Also**

anova1 | anova2 | anovan | multcompare
Related Examples

- “Two-Way ANOVA for Unbalanced Design” on page 32-90

More About

- “One-Way ANOVA” on page 9-3
- “N-Way ANOVA” on page 9-36
- “Multiple Comparisons” on page 9-26
- “Nonparametric Methods” on page 9-68
Multiple Comparisons

In this section...

"Introduction" on page 9-26
"Multiple Comparisons Using One-Way ANOVA" on page 9-27
"Multiple Comparisons for Three-Way ANOVA" on page 9-29
"Multiple Comparison Procedures" on page 9-32

Introduction

Analysis of variance (ANOVA) techniques test whether a set of group means (treatment effects) are equal or not. Rejection of the null hypothesis leads to the conclusion that not all group means are the same. This result, however, does not provide further information on which group means are different.

Performing a series of t-tests to determine which pairs of means are significantly different is not recommended. When you perform multiple t-tests, the probability that the means appear significant, and significant difference results might be due to large number of tests. These t-tests use the data from the same sample, hence they are not independent. This fact makes it more difficult to quantify the level of significance for multiple tests.

Suppose that in a single t-test, the probability that the null hypothesis \( H_0 \) is rejected when it is actually true is a small value, say 0.05. Suppose also that you conduct six independent t-tests. If the significance level for each test is 0.05, then the probability that the tests correctly fail to reject \( H_0 \), when \( H_0 \) is true for each case, is \((0.95)^6 = 0.735\). And the probability that one of the tests incorrectly rejects the null hypothesis is \(1 - 0.735 = 0.265\), which is much higher than 0.05.

To compensate for multiple tests, you can use multiple comparison procedures. The Statistics and Machine Learning Toolbox function multcompare performs multiple pairwise comparison of the group means, or treatment effects. The options are Tukey’s honestly significant difference criterion (default option), the Bonferroni method, Scheffe’s procedure, Fisher’s least significant differences (lsd) method, and Dunn & Sidak’s approach to t-test.

To perform multiple comparisons of group means, provide the structure stats as an input for multcompare. You can obtain stats from one of the following functions:
• `anova1` — One-way ANOVA on page 9-3
• `anova2` — Two-way ANOVA on page 9-15
• `anovan` — N-way ANOVA on page 9-36
• `aoctool` — Interactive ANCOVA on page 9-58
• `kruskalwallis` — Nonparametric method on page 9-68 for one-way layout
• `friedman` — Nonparametric method on page 9-68 for two-way layout

For multiple comparison procedure options for repeated measures, see `multcompare` (RepeatedMeasuresModel).

### Multiple Comparisons Using One-Way ANOVA

Load the sample data.

```matlab
tload carsmall
```

`MPG` represents the miles per gallon for each car, and `Cylinders` represents the number of cylinders in each car, either 4, 6, or 8 cylinders.

Test if the mean miles per gallon (mpg) is different across cars that have different numbers of cylinders. Also compute the statistics needed for multiple comparison tests.

```matlab
[p,~,stats] = anova1(MPG,Cylinders,'off');
p = 4.4902e-24
```

The small p-value of about 0 is a strong indication that mean miles per gallon is significantly different across cars with different numbers of cylinders.

Perform a multiple comparison test, using the Bonferroni method, to determine which numbers of cylinders make a difference in the performance of the cars.

```matlab
[results,means] = multcompare(stats,'CType','bonferroni')
```
Analysis of Variance

results = 3×6

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>2.0000</td>
<td>4.8605</td>
<td>7.9418</td>
<td>11.0230</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>3.0000</td>
<td>12.6127</td>
<td>15.2337</td>
<td>17.8548</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2.0000</td>
<td>3.0000</td>
<td>3.8940</td>
<td>7.2919</td>
<td>10.6899</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

means = 3×2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29.5300</td>
<td>0.6363</td>
</tr>
<tr>
<td>21.5882</td>
<td>1.0913</td>
</tr>
<tr>
<td>14.2963</td>
<td>0.8660</td>
</tr>
</tbody>
</table>
In the **results** matrix, 1, 2, and 3 correspond to cars with 4, 6, and 8 cylinders, respectively. The first two columns show which groups are compared. For example, the first row compares the cars with 4 and 6 cylinders. The fourth column shows the mean mpg difference for the compared groups. The third and fifth columns show the lower and upper limits for a 95% confidence interval for the difference in the group means. The last column shows the *p*-values for the tests. All *p*-values are zero, which indicates that the mean mpg for all groups differ across all groups.

In the figure the blue bar represents the group of cars with 4 cylinders. The red bars represent the other groups. None of the red comparison intervals for the mean mpg of cars overlap, which means that the mean mpg is significantly different for cars having 4, 6, or 8 cylinders.

The first column of the **means** matrix has the mean mpg estimates for each group of cars. The second column contains the standard errors of the estimates.

### Multiple Comparisons for Three-Way ANOVA

Load the sample data.

```matlab
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
```

*y* is the response vector and *g1*, *g2*, and *g3* are the grouping variables (factors). Each factor has two levels, and every observation in *y* is identified by a combination of factor levels. For example, observation *y*(1) is associated with level 1 of factor *g1*, level 'hi' of factor *g2*, and level 'may' of factor *g3*. Similarly, observation *y*(6) is associated with level 2 of factor *g1*, level 'hi' of factor *g2*, and level 'june' of factor *g3*.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple comparison tests.

```matlab
[~,~,stats] = anovan(y,[g1 g2 g3],'model','interaction',... 'varnames',{g1','g2','g3'});
```
The p-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of factor g3 are not significantly different. The p-value of 0.0347 indicates that the mean responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the p-value of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are significantly different.

```
results = multcompare(stats,'Dimension',[1 2])
```
results = 6×6

<table>
<thead>
<tr>
<th></th>
<th>1.0000</th>
<th>2.0000</th>
<th>-6.8604</th>
<th>-4.4000</th>
<th>-1.9396</th>
<th>0.0280</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>3.0000</td>
<td>4.4896</td>
<td>6.9500</td>
<td>9.4104</td>
<td>0.0177</td>
<td></td>
</tr>
<tr>
<td>1.0000</td>
<td>4.0000</td>
<td>6.1396</td>
<td>8.6000</td>
<td>11.0604</td>
<td>0.0143</td>
<td></td>
</tr>
<tr>
<td>2.0000</td>
<td>3.0000</td>
<td>8.8896</td>
<td>11.3500</td>
<td>13.8104</td>
<td>0.0108</td>
<td></td>
</tr>
<tr>
<td>2.0000</td>
<td>4.0000</td>
<td>10.5396</td>
<td>13.0000</td>
<td>15.4604</td>
<td>0.0095</td>
<td></td>
</tr>
<tr>
<td>3.0000</td>
<td>4.0000</td>
<td>-0.8104</td>
<td>1.6500</td>
<td>4.1104</td>
<td>0.0745</td>
<td></td>
</tr>
</tbody>
</table>

`multcompare` compares the combinations of groups (levels) of the two grouping variables, `g1` and `g2`. In the results matrix, the number 1 corresponds to the combination of level 1 of `g1` and level hi of `g2`, the number 2 corresponds to the combination of level 2 of `g1` and level hi of `g2`. Similarly, the number 3 corresponds to
the combination of level 1 of \( g_1 \) and level \( l_0 \) of \( g_2 \), and the number 4 corresponds to the combination of level 2 of \( g_1 \) and level \( l_0 \) of \( g_2 \). The last column of the matrix contains the \( p \)-values.

For example, the first row of the matrix shows that the combination of level 1 of \( g_1 \) and level \( h_i \) of \( g_2 \) has the same mean response values as the combination of level 2 of \( g_1 \) and level \( h_i \) of \( g_2 \). The \( p \)-value corresponding to this test is 0.0280, which indicates that the mean responses are significantly different. You can also see this result in the figure. The blue bar shows the comparison interval for the mean response for the combination of level 1 of \( g_1 \) and level \( h_i \) of \( g_2 \). The red bars are the comparison intervals for the mean response for other group combinations. None of the red bars overlap with the blue bar, which means the mean response for the combination of level 1 of \( g_1 \) and level \( h_i \) of \( g_2 \) is significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval for the group. The bar you click on turns to blue. The bars for the groups that are significantly different are red. The bars for the groups that are not significantly different are gray. For example, if you click on the comparison interval for the combination of level 1 of \( g_1 \) and level \( l_0 \) of \( g_2 \), the comparison interval for the combination of level 2 of \( g_1 \) and level \( l_0 \) of \( g_2 \) overlaps, and is therefore gray. Conversely, the other comparison intervals are red, indicating significant difference.

**Multiple Comparison Procedures**

To specify the multiple comparison procedure you want `multcompare` to conduct use the 'CType' name-value pair argument. `multcompare` provides the following procedures:

- “Tukey’s Honestly Significant Difference Procedure” on page 9-32
- “Bonferroni Method” on page 9-33
- “Dunn & Sidák’s Approach” on page 9-33
- “Least Significant Difference” on page 9-34
- “Scheffe’s Procedure” on page 9-35

**Tukey’s Honestly Significant Difference Procedure**

You can specify Tukey’s honestly significant difference procedure using the 'CType', 'Tukey-Kramer' or 'CType', 'hsd' name-value pair argument. The test is based on studentized range distribution. Reject \( H_0 : \alpha_i = \alpha_j \) if
\[ |t| = \frac{|\bar{y}_i - \bar{y}_j|}{\sqrt{MSE \left( \frac{1}{n_i} + \frac{1}{n_j} \right)}} > \frac{1}{\sqrt{2}} q_{\alpha,k,N-k}, \]

where \( q_{\alpha,k,N-k} \) is the upper 100*(1 - \( \alpha \))th percentile of the studentized range distribution with parameter \( k \) and \( N - k \) degrees of freedom. \( k \) is the number of groups (treatments or marginal means) and \( N \) is the total number of observations.

Tukey’s honestly significant difference procedure is optimal for balanced one-way ANOVA and similar procedures with equal sample sizes. It has been proven to be conservative for one-way ANOVA with different sample sizes. According to the unproven Tukey-Kramer conjecture, it is also accurate for problems where the quantities being compared are correlated, as in analysis of covariance with unbalanced covariate values.

**Bonferroni Method**

You can specify the Bonferroni method using the 'CType','bonferroni' name-value pair. This method uses critical values from Student’s \( t \)-distribution after an adjustment to compensate for multiple comparisons. The test rejects \( H_0: \alpha_i = \alpha_j \) at the \( \alpha / \binom{k}{2} \) significance level, where \( k \) is the number of groups if

\[ |t| = \frac{|\bar{y}_i - \bar{y}_j|}{\sqrt{MSE \left( \frac{1}{n_i} + \frac{1}{n_j} \right)}} > t, \quad \alpha / \binom{k}{2}, N-k, \]

where \( N \) is the total number of observations and \( k \) is the number of groups (marginal means). This procedure is conservative, but usually less so than the Scheffé procedure.

**Dunn & Sidák’s Approach**

You can specify Dunn & Sidak’s approach using the 'CType','dunn-sidak' name-value pair argument. It uses critical values from the \( t \)-distribution, after an adjustment for multiple comparisons that was proposed by Dunn and proved accurate by Sidák. This test rejects \( H_0: \alpha_i = \alpha_j \) if
\[ |t| = \frac{|\bar{y}_i - \bar{y}_j|}{\sqrt{MSE \left( \frac{1}{n_i} + \frac{1}{n_j} \right)}} > t_{1-\eta/2, v}, \]

where

\[ \eta = 1 - \left(1 - \alpha \right)^{1/k} \]

and \( k \) is the number of groups. This procedure is similar to, but less conservative than, the Bonferroni procedure.

**Least Significant Difference**

You can specify the least significance difference procedure using the 'CType', 'lsd' name-value pair argument. This test uses the test statistic

\[ t = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MSE \left( \frac{1}{n_i} + \frac{1}{n_j} \right)}}. \]

It rejects \( H_0: \alpha_i = \alpha_j \) if

\[ |\bar{y}_i - \bar{y}_j| > t_{\alpha/2; N-k} \sqrt{MSE \left( \frac{1}{n_i} + \frac{1}{n_j} \right)} \]

Fisher suggests a protection against multiple comparisons by performing LSD only when the null hypothesis \( H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_k \) is rejected by ANOVA \( F \)-test. Even in this case, LSD might not reject any of the individual hypotheses. It is also possible that ANOVA does not reject \( H_0 \), even when there are differences between some group means. This behavior occurs because the equality of the remaining group means can cause the \( F \)-test statistic to be nonsignificant. Without any condition, LSD does not provide any protection against the multiple comparison problem.
Scheffe's Procedure

You can specify Scheffe’s procedure using the 'CType', 'scheffe' name-value pair argument. The critical values are derived from the $F$ distribution. The test rejects $H_0: \alpha_i = \alpha_j$ if

$$\frac{\left| \bar{y}_i - \bar{y}_j \right|}{\sqrt{\text{MSE} \left( \frac{1}{n_i} + \frac{1}{n_j} \right)}} > \sqrt{(k-1) F_{k-1,N-k,\alpha}}$$

This procedure provides a simultaneous confidence level for comparisons of all linear combinations of the means. It is conservative for comparisons of simple differences of pairs.

References


See Also

anova1 | anova2 | anovan | aoctool | friedman | kruskalwallis | multcompare

Related Examples

• “Perform One-Way ANOVA” on page 9-6
• “Perform Two-Way ANOVA” on page 9-18
N-Way ANOVA

In this section...

“Introduction to N-Way ANOVA” on page 9-36
“Prepare Data for N-Way ANOVA” on page 9-38
“Perform N-Way ANOVA” on page 9-39

Introduction to N-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function `anovan` to perform N-way ANOVA. Use N-way ANOVA to determine if the means in a set of data differ with respect to groups (levels) of multiple factors. By default, `anovan` treats all grouping variables as fixed effects. For an example of ANOVA with random effects, see “ANOVA with Random Effects” on page 9-48. For repeated measures, see `fitrm` and `ranova`.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, for example, the model can be written as

\[
y_{ijkr} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \varepsilon_{ijkr},
\]

where

- \(y_{ijkr}\) is an observation of the response variable. \(i\) represents group \(i\) of factor \(A\), \(i = 1, 2, ..., I\). \(j\) represents group \(j\) of factor \(B\), \(j = 1, 2, ..., J\). \(k\) represents group \(k\) of factor \(C\), and \(r\) represents the replication number, \(r = 1, 2, ..., R\). For constant \(R\), there are a total of \(N = I*J*K*R\) observations, but the number of observations does not have to be the same for each combination of groups of factors.

- \(\mu\) is the overall mean.

- \(\alpha_i\) are the deviations of groups of factor \(A\) from the overall mean \(\mu\) due to factor \(A\). The values of \(\alpha_i\) sum to 0.

\[
\sum_{i=1}^{I} \alpha_i = 0.
\]

- \(\beta_j\) are the deviations of groups in factor \(B\) from the overall mean \(\mu\) due to factor \(B\). The values of \(\beta_j\) sum to 0.

\[
\sum_{j=1}^{J} \beta_j = 0.
\]
• $\gamma_k$ are the deviations of groups in factor $C$ from the overall mean $\mu$ due to factor $C$. The values of $\gamma_k$ sum to 0.

$$\sum_{k=1}^{K} \gamma_k = 0.$$ 

• $(\alpha\beta)_{ij}$ is the interaction term between factors $A$ and $B$. $(\alpha\beta)_{ij}$ sum to 0 over either index.

$$\sum_{i=1}^{I} (\alpha\beta)_{ij} = \sum_{j=1}^{J} (\alpha\beta)_{ij} = 0.$$ 

• $(\alpha\gamma)_{ik}$ is the interaction term between factors $A$ and $C$. The values of $(\alpha\gamma)_{ik}$ sum to 0 over either index.

$$\sum_{i=1}^{I} (\alpha\gamma)_{ik} = \sum_{k=1}^{K} (\alpha\gamma)_{ik} = 0.$$ 

• $(\beta\gamma)_{jk}$ is the interaction term between factors $B$ and $C$. The values of $(\beta\gamma)_{jk}$ sum to 0 over either index.

$$\sum_{j=1}^{J} (\beta\gamma)_{jk} = \sum_{k=1}^{K} (\beta\gamma)_{jk} = 0.$$ 

• $(\alpha\beta\gamma)_{ijk}$ is the three-way interaction term between factors $A$, $B$, and $C$. The values of $(\alpha\beta\gamma)_{ijk}$ sum to 0 over any index.

$$\sum_{i=1}^{I} (\alpha\beta\gamma)_{ijk} = \sum_{j=1}^{J} (\alpha\beta\gamma)_{ijk} = \sum_{k=1}^{K} (\alpha\beta\gamma)_{ijk} = 0.$$ 

• $\varepsilon_{ijk}$ are the random disturbances. They are assumed to be independent, normally distributed, and have constant variance.

Three-way ANOVA tests hypotheses about the effects of factors $A$, $B$, $C$, and their interactions on the response variable $y$. The hypotheses about the equality of the mean responses for groups of factor $A$ are

$$H_0 : \alpha_1 = \alpha_2 = \cdots = \alpha_I$$

$$H_1 : \text{at least one } \alpha_i \text{ is different}, \ i = 1, 2, \ldots, I.$$ 

The hypotheses about the equality of the mean response for groups of factor $B$ are

$$H_0 : \beta_1 = \beta_2 = \cdots = \beta_J$$

$$H_1 : \text{at least one } \beta_j \text{ is different}, \ j = 1, 2, \ldots, J.$$
The hypotheses about the equality of the mean response for groups of factor $C$ are

$$H_0 : \gamma_1 = \gamma_2 = \cdots = \gamma_K$$
$$H_1 : \text{at least one } \gamma_k \text{ is different, } k = 1, 2, \ldots, K.$$  

The hypotheses about the interaction of the factors are

$$H_0 : (\alpha\beta)_{ij} = 0$$
$$H_1 : \text{at least one } (\alpha\beta)_{ij} \neq 0$$

$$H_0 : (\alpha\gamma)_{ik} = 0$$
$$H_1 : \text{at least one } (\alpha\gamma)_{ik} \neq 0$$

$$H_0 : (\beta\gamma)_{jk} = 0$$
$$H_1 : \text{at least one } (\beta\gamma)_{jk} \neq 0$$

$$H_0 : (\alpha\beta\gamma)_{ijk} = 0$$
$$H_1 : \text{at least one } (\alpha\beta\gamma)_{ijk} \neq 0$$

In this notation parameters with two subscripts, such as $(\alpha\beta)_{ij}$, represent the interaction effect of two factors. The parameter $(\alpha\beta\gamma)_{ijk}$ represents the three-way interaction. An ANOVA model can have the full set of parameters or any subset, but conventionally it does not include complex interaction terms unless it also includes all simpler terms for those factors. For example, one would generally not include the three-way interaction without also including all two-way interactions.

**Prepare Data for N-Way ANOVA**

Unlike anova1 and anova2, anovan does not expect data in a tabular form. Instead, it expects a vector of response measurements and a separate vector (or text array) containing the values corresponding to each factor. This input data format is more convenient than matrices when there are more than two factors or when the number of measurements per factor combination is not constant.
Perform N-Way ANOVA

This example shows how to perform N-way ANOVA on car data with mileage and other information on 406 cars made between 1970 and 1982.

Load the sample data.

load carbig

The example focusses on four variables. MPG is the number of miles per gallon for each of 406 cars (though some have missing values coded as NaN). The other three variables are factors: cyl4 (four-cylinder car or not), org (car originated in Europe, Japan, or the USA), and when (car was built early in the period, in the middle of the period, or late in the period).

Fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

varnames = {'Origin','4Cyl','MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)

\[
y = [ \ y_1, \ y_2, \ y_3, \ y_4, \ y_5, \ldots, \ y_N \ ]' \\
\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
g_1 = \{'A', 'A', 'C', 'B', 'B', \ldots, 'D'\}
g_2 = [1 \ 2 \ 1 \ 3 \ 1 \ \ldots, \ 2] \\
g_3 = \{'hi', 'mid', 'low', 'mid', 'hi', \ldots, 'low'\}
\]
### Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Sq.</th>
<th>d.f.</th>
<th>Mean Sq.</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td># Origin</td>
<td>416.8</td>
<td>1</td>
<td>416.77</td>
<td>29.34</td>
<td>0</td>
</tr>
<tr>
<td># 4Cyl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NaN</td>
</tr>
<tr>
<td># MfgDate</td>
<td>1112.3</td>
<td>1</td>
<td>1112.27</td>
<td>78.31</td>
<td>0</td>
</tr>
<tr>
<td># Origin*4Cyl</td>
<td>2.1</td>
<td>1</td>
<td>2.07</td>
<td>0.15</td>
<td>0.7032</td>
</tr>
<tr>
<td># Origin*MfgDate</td>
<td>301.2</td>
<td>3</td>
<td>100.41</td>
<td>7.07</td>
<td>0.0001</td>
</tr>
<tr>
<td># 4Cyl*MfgDate</td>
<td>22.7</td>
<td>1</td>
<td>22.68</td>
<td>1.6</td>
<td>0.2072</td>
</tr>
<tr>
<td># Origin<em>4Cyl</em>MfgDate</td>
<td>20.3</td>
<td>3</td>
<td>6.77</td>
<td>0.48</td>
<td>0.699</td>
</tr>
<tr>
<td>Error</td>
<td>5411.8</td>
<td>381</td>
<td>14.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24252.6</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constrained (Type III) sums of squares. Terms marked with # are not full rank.

\[
\text{ans} = \begin{bmatrix}
0.0000 \\
\text{NaN} \\
0.0000 \\
0.7032 \\
0.0001 \\
0.2072 \\
0.6990
\end{bmatrix}
\]

Note that many terms are marked by a # symbol as not having full rank, and one of them has zero degrees of freedom and is missing a p-value. This can happen when there are missing factor combinations and the model has higher-order terms. In this case, the
cross-tabulation below shows that there are no cars made in Europe during the early part of the period with other than four cylinders, as indicated by the 0 in $\text{tbl}(2,1,1)$.

$$[\text{tbl}, \text{chi2}, p, \text{factorvals}] = \text{crosstab}([\text{org}, \text{when}, \text{cyl4}])$$

\begin{verbatim}
tbl =
tbl(:,:,1) = 
    82    75    25
    0     4     3
    3     3     4

tbl(:,:,2) = 
    12    22    38
    23    26    17
    12    25    32

chi2 = 207.7689
p = 8.0973e-38
factorvals = 3x3 cell array
             {'USA'   }    {'Early'}    {'Other'   }
             {'Europe'}    {'Mid'  }    {'Four'    }
             {'Japan' }    {'Late'}    {0x0 double}
\end{verbatim}

Consequently it is impossible to estimate the three-way interaction effects, and including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see that the three-way interaction has a $p$-value of 0.699, so it is not significant.

Examine only two-way interactions.

$$[p, tbl2, stats, terms] = \text{anovan}(\text{MPG},[\text{org cyl4 when}],2,3,\text{varnames});$$
Now all terms are estimable. The $p$-values for interaction term 4 (Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than a typical cutoff value of 0.05,
indicating these terms are not significant. You could choose to omit these terms and pool their effects into the error term. The output terms variable returns a matrix of codes, each of which is a bit pattern representing a term.

Omit terms from the model by deleting their entries from terms.

```
terms([4 6], :) = []
```

```
terms = 4×3
 1 0 0
 0 1 0
 0 0 1
 1 0 1
```

Run anovan again, this time supplying the resulting vector as the model argument. Also return the statistics required for multiple comparisons of factors.

```
[~, ~, stats] = anovan(MPG, {org cyl4 when}, terms, 3, varnames)
```
### Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Sq.</th>
<th>d.f.</th>
<th>Mean Sq.</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>686.7</td>
<td>2</td>
<td>343.36</td>
<td>24.34</td>
<td>0</td>
</tr>
<tr>
<td>4Cyl</td>
<td>4206.2</td>
<td>1</td>
<td>4206.17</td>
<td>298.19</td>
<td>0</td>
</tr>
<tr>
<td>MfgDate</td>
<td>3590.7</td>
<td>2</td>
<td>1795.34</td>
<td>127.28</td>
<td>0</td>
</tr>
<tr>
<td>Origin*MfgDate</td>
<td>336.8</td>
<td>4</td>
<td>84.19</td>
<td>5.97</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>5473</td>
<td>388</td>
<td>14.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24282.6</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Constrained (Type III) sums of squares.*

```plaintext
stats = struct with fields:
source: 'anovan'
resid: [1x406 double]
coeffs: [18x1 double]
Rtr: [10x10 double]
rowbasis: [10x18 double]
dfe: 388
mse: 14.1056
nullproject: [18x10 double]
terms: [4x3 double]
nlevels: [3x1 double]
continuous: [0 0 0]
vmeans: [3x1 double]
termcols: [5x1 double]
```
Now you have a more parsimonious model indicating that the mileage of these cars seems to be related to all three factors, and that the effect of the manufacturing date depends on where the car was made.

Perform multiple comparisons for Origin and Cylinder.

```matlab
results = multcompare(stats,'Dimension',[1,2])
```
Analysis of Variance

results = 15×6

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>2.0000</td>
<td>-5.4891</td>
<td>-3.8412</td>
<td>-2.1932</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.0000</td>
<td>3.0000</td>
<td>-4.4146</td>
<td>-2.7251</td>
<td>-1.0356</td>
<td>0.0001</td>
</tr>
<tr>
<td>1.0000</td>
<td>4.0000</td>
<td>-9.9992</td>
<td>-8.5828</td>
<td>-7.1664</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.0000</td>
<td>5.0000</td>
<td>-14.0237</td>
<td>-12.4240</td>
<td>-10.8242</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.0000</td>
<td>6.0000</td>
<td>-12.8980</td>
<td>-11.3080</td>
<td>-9.7180</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>3.0000</td>
<td>-0.7171</td>
<td>1.1160</td>
<td>2.9492</td>
<td>0.5085</td>
</tr>
<tr>
<td>2.0000</td>
<td>4.0000</td>
<td>-7.3655</td>
<td>-4.7417</td>
<td>-2.1179</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>5.0000</td>
<td>-9.9992</td>
<td>-8.5828</td>
<td>-7.1664</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>6.0000</td>
<td>-9.7464</td>
<td>-7.4668</td>
<td>-5.1872</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.0000</td>
<td>4.0000</td>
<td>-8.5396</td>
<td>-5.8577</td>
<td>-3.1757</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
See Also
anoval | anovan | kruskalwallis | multcompare

Related Examples
• “ANOVA with Random Effects” on page 9-48

More About
• “One-Way ANOVA” on page 9-3
• “Two-Way ANOVA” on page 9-15
• “Multiple Comparisons” on page 9-26
• “Nonparametric Methods” on page 9-68
ANOVA with Random Effects

This example shows how to use anovan to fit models where a factor's levels represent a random selection from a larger (infinite) set of possible levels.

In an ordinary ANOVA model, each grouping variable represents a fixed factor. The levels of that factor are a fixed set of values. The goal is to determine whether different factor levels lead to different response values.

Set Up the Model

Load the sample data.

load mileage

The anova2 function works only with balanced data, and it infers the values of the grouping variables from the row and column numbers of the input matrix. The anovan function, on the other hand, requires you to explicitly create vectors of grouping variable values. Create these vectors in the following way.

Create an array indicating the factory for each value in mileage. This array is 1 for the first column, 2 for the second, and 3 for the third.

factory = repmat(1:3,6,1);

Create an array indicating the car model for each mileage value. This array is 1 for the first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

Turn these matrices into vectors and display them.

mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);

[mileage factory carmod]

ans = 18×3

33.3000 1.0000 1.0000
33.4000 1.0000 1.0000
32.9000 1.0000 1.0000
32.6000 1.0000 2.0000
32.5000 1.0000 2.0000
Fit a Random Effects Model

Suppose you are studying a few factories but you want information about what would happen if you build these same car models in a different factory, either one that you already have or another that you might construct. To get this information, fit the analysis of variance model, specifying a model that includes an interaction term and that the factory factor is random.

```matlab
[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
 'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});
```
In the fixed effects version of this fit, which you get by omitting the inputs 'random', 1 in the preceding code, the effect of car model is significant, with a p-value of 0.0039. But in this example, which takes into account the random variation of the effect of the variable 'Car Model' from one factory to another, the effect is still significant, but with a higher p-value of 0.0136.

F-Statistics for Models with Random Effects

The F-statistic in a model having random effects is defined differently than in a model having all fixed effects. In the fixed effects model, you compute the F-statistic for any term by taking the ratio of the mean square for that term with the mean square for error. In a random effects model, however, some F-statistics use a different mean square in the denominator.
In the example described in **Set Up the Model**, the effect of the variable 'Factory' could vary across car models. In this case, the interaction mean square takes the place of the error mean square in the $F$-statistic.

Find the $F$-statistic.

$$F = \frac{26.6756}{0.02}$$

$$F = 1.3338 \times 10^3$$

The degrees of freedom for the statistic are the degrees of freedom for the numerator (2) and denominator (2) mean squares.

Find the $p$-value.

$$pval = 1 - \text{fcdf}(F,2,2)$$

$$pval = 7.4919 \times 10^{-4}$$

With random effects, the expected value of each mean square depends not only on the variance of the error term, but also on the variances contributed by the random effects. You can see these dependencies by writing the expected values as linear combinations of contributions from the various model terms.

Find the coefficients of these linear combinations.

```plaintext
stats.ems
ans = 4x4
6.0000 0.0000 3.0000 1.0000
0.0000 9.0000 3.0000 1.0000
0.0000 0.0000 3.0000 1.0000
0 0 0 1.0000
```

This returns the `ems` field of the `stats` structure.

Display text representations of the linear combinations.

```plaintext
stats.txtems
ans = 4x1 cell array
{'6*V(Factory)+3*V(Factory*Car Model)+V(Error)'}
{'9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'}
```
The expected value for the mean square due to car model (second term) includes contributions from a quadratic function of the car model effects, plus three times the variance of the interaction term's effect, plus the variance of the error term. Notice that if the car model effects were all zero, the expression would reduce to the expected mean square for the third term (the interaction term). That is why the $F$-statistic for the car model effect uses the interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one required for the denominator of the $F$-statistic. In that case, the denominator is a linear combination of mean squares. The stats structure contains fields giving the definitions of the denominators for each $F$-statistic. The `txtdenom` field, `stats.txtdenom`, contains a text representation, and the `denom` field contains a matrix that defines a linear combination of the variances of terms in the model. For balanced models like this one, the `denom` matrix, `stats.denom`, contains zeros and ones, because the denominator is just a single term’s mean square.

Display the `txtdenom` field.

```matlab
stats.txtdenom
```
```
ans = 3x1 cell array
 {'MS(Factory*Car Model)'}
 {'MS(Factory*Car Model)'}
 {'MS(Error)'
```

Display the `denom` field.

```matlab
stats.denom
```
```
ans = 3x3
 0.0000 1.0000 0
 0.0000 1.0000 -0.0000
 -0.0000 0.0000 1.0000
```
**Variance Components**

For the model described in **Set Up the Model**, consider the mileage for a particular car of a particular model made at a random factory. The variance of that car is the sum of components, or contributions, one from each of the random terms.

Display the names of the random terms.

```matlab
stats.rtnames
```

```matlab
ans = 3x1 cell array
 {'Factory' }
 {'Factory*Car Model'}
 {'Error' }
```

You do not know the variances, but you can estimate them from the data. Recall that the `ems` field of the `stats` structure expresses the expected value of each term's mean square as a linear combination of unknown variances for random terms, and unknown quadratic forms for fixed terms. If you take the expected mean square expressions for the random terms, and equate those expected values to the computed mean squares, you get a system of equations that you can solve for the unknown variances. These solutions are the variance component estimates.

Display the variance component estimate for each term.

```matlab
stats.varest
```

```matlab
ans = 3x1
 4.4426
 -0.0313
 0.1139
```

Under some conditions, the variability attributed to a term is unusually low, and that term's variance component estimate is negative. In those cases it is common to set the estimate to zero, which you might do, for example, to create a bar graph of the components.

Create a bar graph of the components.

```matlab
bar(max(0,stats.varest))
```
You can also compute confidence bounds for the variance estimate. The `anovan` function does this by computing confidence bounds for the variance expected mean squares, and finding lower and upper limits on each variance component containing all of these bounds. This procedure leads to a set of bounds that is conservative for balanced data. (That is, 95% confidence bounds will have a probability of at least 95% of containing the true variances if the number of observations for each combination of grouping variables is the same.) For unbalanced data, these are approximations that are not guaranteed to be conservative.
Display the variance estimates and the confidence limits for the variance estimates of each component.

```matlab
{{'Term' 'Estimate' 'Lower' 'Upper'};
stats.rtnames, num2cell([stats.varest stats.varci])}
```

ans = 4x4 cell array

```matlab
{'Term' cell} {'Estimate'} {'Lower'} {'Upper'}
{'Factory' } {[4.4426]} {[1.0736]} {[175.6038]}
{'Factory*Car Model'} {[-0.0313]} {[NaN]} {[NaN]}
{'Error' } {[0.1139]} {[0.0586]} {[0.3103]}
```
Other ANOVA Models

The `anovan` function also has arguments that enable you to specify two other types of model terms:

- `'nested'` argument specifies a matrix that indicates which factors are nested within other factors. A nested factor is one that takes different values within each level its nested factor.

  Suppose an automobile company has three factories, and each factory makes two car models. The gas mileage in the cars can vary from factory to factory and from model to model. These two factors, factory and model, explain the differences in mileage, that is, the response. One measure of interest is the difference in mileage due to the production methods between factories. Another measure of interest is the difference in the mileage of the models (irrespective of the factory) due to different design specifications. Suppose also that, each factory produces distinct car models for a total of six car models. Then, the car model is nested in factory.

<table>
<thead>
<tr>
<th>Factory</th>
<th>Car Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

It is also common with nested models to number the nested factor the same way in each nested factor.

- `'continuous'` argument specifies that some factors are to be treated as continuous variables. The remaining factors are categorical variables. Although the `anovan` function can fit models with multiple continuous and categorical predictors, the simplest model that combines one predictor of each type is known as an analysis of covariance model. “Analysis of Covariance” on page 9-58 describes a specialized tool for fitting this model.

**See Also**

`anova1` | `anova2` | `anovan` | `kruskalwallis` | `multcompare`
Related Examples

- “ANOVA with Random Effects” on page 9-48

More About

- “One-Way ANOVA” on page 9-3
- “Two-Way ANOVA” on page 9-15
- “Multiple Comparisons” on page 9-26
- “N-Way ANOVA” on page 9-36
- “Nonparametric Methods” on page 9-68
Introduction to Analysis of Covariance

Analysis of covariance is a technique for analyzing grouped data having a response ($y$, the variable to be predicted) and a predictor ($x$, the variable used to do the prediction). Using analysis of covariance, you can model $y$ as a linear function of $x$, with the coefficients of the line possibly varying from group to group.

Analysis of Covariance Tool

The `aoctool` function opens an interactive graphical environment for fitting and prediction with analysis of covariance (ANOCOVA) models. It fits the following models for the $i$th group:

- **Same mean**
  \[ y = \alpha + \varepsilon \]

- **Separate means**
  \[ y = (\alpha + \alpha_i) + \varepsilon \]

- **Same line**
  \[ y = \alpha + \beta x + \varepsilon \]

- **Parallel lines**
  \[ y = (\alpha + \alpha_i) + \beta x + \varepsilon \]

- **Separate lines**
  \[ y = (\alpha + \alpha_i) + (\beta + \beta_i) x + \varepsilon \]

For example, in the parallel lines model the intercept varies from one group to the next, but the slope is the same for each group. In the same mean model, there is a common intercept and no slope. In order to make the group coefficients well determined, the tool imposes the constraints

\[ \sum \alpha_j = \sum \beta_j = 0 \]

The following steps describe the use of `aoctool`. 
1 **Load the data.** The Statistics and Machine Learning Toolbox data set `carsmall.mat` contains information on cars from the years 1970, 1976, and 1982. This example studies the relationship between the weight of a car and its mileage, and whether this relationship has changed over the years. To start the demonstration, load the data set.

```matlab
load carsmall
```

The Workspace Browser shows the variables in the data set.

![Workspace Browser](image)

You can also use `aoctool` with your own data.

2 **Start the tool.** The following command calls `aoctool` to fit a separate line to the column vectors `Weight` and `MPG` for each of the three model group defined in `Model_Year`. The initial fit models the `y` variable, `MPG`, as a linear function of the `x` variable, `Weight`.

```matlab
[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
```

See the `aoctool` function reference page for detailed information about calling `aoctool`.

3 **Examine the output.** The graphical output consists of a main window with a plot, a table of coefficient estimates, and an analysis of variance table. In the plot, each
Model_Year group has a separate line. The data points for each group are coded with the same color and symbol, and the fit for each group has the same color as the data points.

The coefficients of the three lines appear in the figure titled ANOCOVA Coefficients. You can see that the slopes are roughly \(-0.0078\), with a small deviation for each group:

- Model year 1970: 
  \[ y = (45.9798 - 8.5805) + (-0.0078 + 0.002)x + \varepsilon \]
• Model year 1976: \( y = (45.9798 - 3.8902) + (-0.0078 + 0.0011)x + \varepsilon \)

• Model year 1982: \( y = (45.9798 + 12.4707) + (-0.0078 - 0.0031)x + \varepsilon \)

Because the three fitted lines have slopes that are roughly similar, you may wonder if they really are the same. The Model_Year*Weight interaction expresses the difference in slopes, and the ANOVA table shows a test for the significance of this term. With an \( F \) statistic of 5.23 and a \( p \) value of 0.0072, the slopes are significantly different.
4 **Constrain the slopes to be the same.** To examine the fits when the slopes are constrained to be the same, return to the ANOCOVA Prediction Plot window and use the **Model** pop-up menu to select a **Parallel Lines** model. The window updates to show the following graph.
Though this fit looks reasonable, it is significantly worse than the Separate Lines model. Use the Model pop-up menu again to return to the original model.

**Confidence Bounds**

The example in “Analysis of Covariance Tool” on page 9-58 provides estimates of the relationship between MPG and Weight for each Model_Year, but how accurate are these estimates? To find out, you can superimpose confidence bounds on the fits by examining them one group at a time.
In the **Model Year** menu at the lower right of the figure, change the setting from **All Groups** to 82. The data and fits for the other groups are dimmed, and confidence bounds appear around the 82 fit.

The dashed lines form an envelope around the fitted line for model year 82. Under the assumption that the true relationship is linear, these bounds provide a 95% confidence region for the true line. Note that the fits for the other model years are well outside these confidence bounds for **Weight** values between 2000 and 3000.
Sometimes it is more valuable to be able to predict the response value for a new observation, not just estimate the average response value. Use the `aoctool` function `Bounds` menu to change the definition of the confidence bounds from `Line` to `Observation`. The resulting wider intervals reflect the uncertainty in the parameter estimates as well as the randomness of a new observation.

Like the `polytool` function, the `aoctool` function has cross hairs that you can use to manipulate the `Weight` and watch the estimate and confidence bounds along the...
Multiple Comparisons

You can perform a multiple comparison test by using the `stats` output structure from `aocctool` as input to the `multcompare` function. The `multcompare` function can test either slopes, intercepts, or population marginal means (the predicted MPG of the mean weight for each group). The example in “Analysis of Covariance Tool” on page 9-58 shows that the slopes are not all the same, but could it be that two are the same and only the other one is different? You can test that hypothesis.

```matlab
multcompare(stats,0.05,'on','','s')
```

```
ans =
 1.0000 2.0000 -0.0012 0.0008 0.0029
 1.0000 3.0000 0.0013 0.0051 0.0088
 2.0000 3.0000 0.0005 0.0042 0.0079
```

This matrix shows that the estimated difference between the intercepts of groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the difference is [–0.0012, 0.0029]. There is no significant difference between the two. There are significant differences, however, between the intercept for 1982 and each of the other two. The graph shows the same information.
Note that the stats structure was created in the initial call to the aoctool function, so it is based on the initial model fit (typically a separate-lines model). If you change the model interactively and want to base your multiple comparisons on the new model, you need to run aoctool again to get another stats structure, this time specifying your new model as the initial model.
Nonparametric Methods

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction to Nonparametric Methods” on page 9-68</td>
</tr>
<tr>
<td>“Kruskal-Wallis Test” on page 9-68</td>
</tr>
<tr>
<td>“Friedman's Test” on page 9-69</td>
</tr>
</tbody>
</table>

Introduction to Nonparametric Methods

Statistics and Machine Learning Toolbox functions include nonparametric versions of one-way and two-way analysis of variance. Unlike classical tests, nonparametric tests make only mild assumptions about the data, and are appropriate when the distribution of the data is non-normal. On the other hand, they are less powerful than classical methods for normally distributed data.

Both of the nonparametric functions described here will return a `stats` structure that can be used as an input to the `multcompare` function for multiple comparisons.

Kruskal-Wallis Test

The example “Perform One-Way ANOVA” on page 9-6 uses one-way analysis of variance to determine if the bacteria counts of milk varied from shipment to shipment. The one-way analysis rests on the assumption that the measurements are independent, and that each has a normal distribution with a common variance and with a mean that was constant in each column. You can conclude that the column means were not all the same. The following example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance. The assumption behind this test is that the measurements come from a continuous distribution, but not necessarily a normal distribution. The test is based on an analysis of variance using the ranks of the data values, not the data values themselves. Output includes a table similar to an ANOVA table, and a box plot.

You can run this test as follows:

```matlab
load hogg
p = kruskalwallis(hogg)
```
The low $p$ value means the Kruskal-Wallis test results agree with the one-way analysis of variance results.

**Friedman's Test**

"Perform Two-Way ANOVA" on page 9-18 uses two-way analysis of variance to study the effect of car model and factory on car mileage. The example tests whether either of these factors has a significant effect on mileage, and whether there is an interaction between these factors. The conclusion of the example is there is no interaction, but that each individual factor has a significant effect. The next example examines whether a nonparametric analysis leads to the same conclusion.

Friedman's test is a nonparametric test for data having a two-way layout (data grouped by two categorical factors). Unlike two-way analysis of variance, Friedman's test does not treat the two factors symmetrically and it does not test for an interaction between them. Instead, it is a test for whether the columns are different after adjusting for possible row differences. The test is based on an analysis of variance using the ranks of the data across categories of the row factor. Output includes a table similar to an ANOVA table.

You can run Friedman's test as follows.

```matlab
load mileage
p = friedman(mileage,3)
p = 7.4659e-004
```

Recall the classical analysis of variance gave a $p$ value to test column effects, row effects, and interaction effects. This $p$ value is for column effects. Using either this $p$ value or the $p$ value from ANOVA ($p < 0.0001$), you conclude that there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the roles of the rows in columns. For a data matrix $x$ with no replications, you could simply transpose the data and type

```matlab
p = friedman(x')
```

With replicated data it is slightly more complicated. A simple way is to transform the matrix into a three-dimensional array with the first dimension representing the replicates, swapping the other two dimensions, and restoring the two-dimensional shape.
\begin{verbatim}
x = reshape(mileage, [3 2 3]);
x = permute(x,[1 3 2]);
x = reshape(x,[9 2])
x =
   33.3000   32.6000
   33.4000   32.5000
   32.9000   33.0000
   34.5000   33.4000
   34.8000   33.7000
   33.8000   33.9000
   37.4000   36.6000
   36.8000   37.0000
   37.6000   36.7000

friedman(x,3)
ans =
   0.0082
\end{verbatim}

Again, the conclusion is similar to that of the classical analysis of variance. Both this \( p \) value and the one from ANOVA \( (p = 0.0039) \) lead you to conclude that there are significant row effects.

You cannot use Friedman's test to test for interactions between the row and column factors.
MANOVA

In this section...

“Introduction to MANOVA” on page 9-71
“ANOVA with Multiple Responses” on page 9-71

Introduction to MANOVA

The analysis of variance technique in “Perform One-Way ANOVA” on page 9-6 takes a set of grouped data and determine whether the mean of a variable differs significantly among groups. Often there are multiple response variables, and you are interested in determining whether the entire set of means is different from one group to the next. There is a multivariate version of analysis of variance that can address the problem.

ANOVA with Multiple Responses

The carsmall data set has measurements on a variety of car models from the years 1970, 1976, and 1982. Suppose you are interested in whether the characteristics of the cars have changed over time.

Load the sample data.

load carsmall
whos

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Horsepower</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>MPG</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Mfg</td>
<td>100x13</td>
<td>2600</td>
<td>char</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>100x33</td>
<td>6600</td>
<td>char</td>
<td></td>
</tr>
<tr>
<td>Model_Year</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td>100x7</td>
<td>1400</td>
<td>char</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>100x1</td>
<td>800</td>
<td>double</td>
<td></td>
</tr>
</tbody>
</table>

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) are continuous measurements on individual car models. The variable Model_Year indicates
the year in which the car was made. You can create a grouped plot matrix of these variables using the `gplotmatrix` function.

Create a grouped plot matrix of these variables using the `gplotmatrix` function.

```matlab
x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+x0')
```

(When the second argument of `gplotmatrix` is empty, the function graphs the columns of the `x` argument against each other, and places histograms along the diagonals. The empty fourth argument produces a graph with the default colors. The fifth argument controls the symbols used to distinguish between groups.)
It appears the cars do differ from year to year. The upper right plot, for example, is a graph of MPG versus Weight. The 1982 cars appear to have higher mileage than the older cars, and they appear to weigh less on average. But as a group, are the three years significantly different from one another? The manova1 function can answer that question.

\[ [d,p,stats] = \text{manova1}(x,\text{Model\_Year}) \]

\[
d = 2
\]

\[
p = 2\times1 \\
10^{-6} \times \\
0.0000 \\
0.1141
\]

\[
\text{stats} = \text{struct with fields:}
\]

\[
\begin{align*}
W: & \ [4\times4 \text{ double}] \\
B: & \ [4\times4 \text{ double}] \\
T: & \ [4\times4 \text{ double}] \\
dfW: & \ 90 \\
dfB: & \ 2 \\
dfT: & \ 92 \\
\lambda: & \ [2\times1 \text{ double}] \\
\text{chisq:} & \ [2\times1 \text{ double}] \\
\text{chisqdf:} & \ [2\times1 \text{ double}] \\
\text{eigenval:} & \ [4\times1 \text{ double}] \\
\text{eigenvect:} & \ [4\times4 \text{ double}] \\
\text{canon:} & \ [100\times4 \text{ double}] \\
\text{mdist:} & \ [1\times100 \text{ double}] \\
\text{gmdist:} & \ [3\times3 \text{ double}] \\
\text{gnames:} & \ {3\times1 \text{ cell}}
\end{align*}
\]

The \text{manova1} function produces three outputs:

- The first output, \(d\), is an estimate of the dimension of the group means. If the means were all the same, the dimension would be 0, indicating that the means are at the same point. If the means differed but fell along a line, the dimension would be 1. In the example the dimension is 2, indicating that the group means fall in a plane but not along a line. This is the largest possible dimension for the means of three groups.

- The second output, \(p\), is a vector of \(p\)-values for a sequence of tests. The first \(p\) value tests whether the dimension is 0, the next whether the dimension is 1, and so on. In this case both \(p\)-values are small. That's why the estimated dimension is 2.
• The third output, `stats`, is a structure containing several fields, described in the following section.

The Fields of the stats Structure

The `W`, `B`, and `T` fields are matrix analogs to the within, between, and total sums of squares in ordinary one-way analysis of variance. The next three fields are the degrees of freedom for these matrices. Fields `lambda`, `chisq`, and `chisqdf` are the ingredients of the test for the dimensionality of the group means. (The `p`-values for these tests are the first output argument of `manova1`.)

The next three fields are used to do a canonical analysis. Recall that in principal components analysis on page 15-79 (“Principal Component Analysis (PCA)” on page 15-79) you look for the combination of the original variables that has the largest possible variation. In multivariate analysis of variance, you instead look for the linear combination of the original variables that has the largest separation between groups. It is the single variable that would give the most significant result in a univariate one-way analysis of variance. Having found that combination, you next look for the combination with the second highest separation, and so on.

The `eigencvec` field is a matrix that defines the coefficients of the linear combinations of the original variables. The `eigenval` field is a vector measuring the ratio of the between-group variance to the within-group variance for the corresponding linear combination. The `canon` field is a matrix of the canonical variable values. Each column is a linear combination of the mean-centered original variables, using coefficients from the `eigencvec` matrix.

```matlab
c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
```

Plot the grouped scatter plot of the first two canonical variables.

```matlab
figure()
gscatter(c2,c1,Model_Year,[],'oxs')
```
A grouped scatter plot of the first two canonical variables shows more separation between groups than a grouped scatter plot of any pair of original variables. In this example, it shows three clouds of points, overlapping but with distinct centers. One point in the bottom right sits apart from the others. You can mark this point on the plot using the gname function.

Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have high values of c1) from the older cars. The second canonical variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The mdist field measures the distance from each point to its group mean. Points with large values may be outliers. In this data set, the largest outlier is the one in the scatter plot, the Buick Estate
station wagon. (Note that you could have supplied the model name to the \texttt{gname} function above if you wanted to label the point with its model name rather than its row number.)

Find the largest distance from the group mean.

\begin{verbatim}
max(stats.mdist)
\end{verbatim}

\begin{verbatim}
ans = 31.5273
\end{verbatim}

Find the point that has the largest distance from the group mean.

\begin{verbatim}
find(stats.mdist == ans)
\end{verbatim}

\begin{verbatim}
ans = 20
\end{verbatim}

Find the car model that corresponds to the largest distance from the group mean.

\begin{verbatim}
Model(20, :)
\end{verbatim}

\begin{verbatim}
ans = 'buick estate wagon (sw)'
\end{verbatim}

The \texttt{gmdist} field measures the distances between each pair of group means. Examine the group means using \texttt{grpstats}.

\begin{verbatim}
grpstats(x, Model_Year)
\end{verbatim}

\begin{verbatim}
ans = 3×4
10^3 ×

0.0177 0.1489 0.2869 3.4413
0.0216 0.1011 0.1978 3.0787
0.0317 0.0815 0.1289 2.4535
\end{verbatim}

Find the distances between the each pair of group means.

\begin{verbatim}
stats.gmdist
\end{verbatim}

\begin{verbatim}
ans = 3×3

0 3.8277 11.1106
3.8277 0 6.1374
11.1106 6.1374 0
\end{verbatim}
As might be expected, the multivariate distance between the extreme years 1970 and 1982 (11.1) is larger than the difference between more closely spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the points seem to follow a progression as the year changes from 1970 through 1976 to 1982. If you had more groups, you might find it instructive to use the manovacluster function to draw a diagram that presents clusters of the groups, formed using the distances between their means.
Model Specification for Repeated Measures Models

Model specification for a repeated measures model is a character vector or string scalar representing a formula in the form

`'y1-yk ~ terms'`,

where the responses and terms are in Wilkinson notation.

For example, if you have five repeated measures `y1`, `y2`, `y3`, `y4`, and `y5`, and you include the terms `X1`, `X2`, `X3`, `X4`, and `X3:X4` in your linear model, then you can specify `modelspec` as follows:

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. It does not describe the multipliers (coefficients) of those factors.

Use these rules to specify the responses in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Y1,Y2,Y3</code></td>
<td>Specific list of variables</td>
</tr>
<tr>
<td><code>Y1-Y5</code></td>
<td>All table variables from <code>Y1</code> through <code>Y5</code></td>
</tr>
</tbody>
</table>

The following rules are for specifying terms in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td><code>X^k</code>, where <code>k</code> is a positive integer</td>
<td><code>X</code>, <code>X^2</code>, ..., <code>X^k</code></td>
</tr>
<tr>
<td><code>X1 + X2</code></td>
<td><code>X1</code>, <code>X2</code></td>
</tr>
<tr>
<td><code>X1*X2</code></td>
<td><code>X1</code>, <code>X2</code>, <code>X1*X2</code></td>
</tr>
<tr>
<td><code>X1:X2</code></td>
<td><code>X1*X2</code> only</td>
</tr>
<tr>
<td><code>-X2</code></td>
<td>Do not include <code>X2</code></td>
</tr>
<tr>
<td><code>X1*X2 + X3</code></td>
<td><code>X1</code>, <code>X2</code>, <code>X3</code>, <code>X1*X2</code></td>
</tr>
<tr>
<td><code>X1 + X2 + X3 + X1:X2</code></td>
<td><code>X1</code>, <code>X2</code>, <code>X3</code>, <code>X1*X2</code></td>
</tr>
</tbody>
</table>
Wilkinson Notation | Factors in Standard Notation
---|---
X1*X2*X3 - X1:X2:X3 | X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) | X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

**See Also**
fitrm
Compound Symmetry Assumption and Epsilon Corrections

The regular $p$-value calculations in the repeated measures anova (ranova) are accurate if the theoretical distribution of the response variables has compound symmetry. This means that all response variables have the same variance, and each pair of response variables share a common correlation. That is,

$$
\Sigma = \sigma^2 \begin{pmatrix}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \cdots & 1
\end{pmatrix}.
$$

Under the compound symmetry assumption, the $F$-statistics in the repeated measures anova table have an $F$-distribution with degrees of freedom ($v_1, v_2$). Here, $v_1$ is the rank of the contrast being tested, and $v_2$ is the degrees of freedom for error. If the compound symmetry assumption is not true, the $F$-statistic has an approximate $F$-distribution with degrees of freedom ($\epsilon v_1, \epsilon v_2$), where $\epsilon$ is the correction factor. Then, the $p$-value must be computed using the adjusted values. The three different correction factor computations are as follows:

- **Greenhouse-Geisser approximation**

  $$
  \epsilon_{GG} = \frac{\left( \sum_{i=1}^{p} \lambda_i \right)^2}{d \sum_{i=1}^{p} \lambda_i^2},
  $$

  where $\lambda_i, i = 1, 2, \ldots, p$ are the eigenvalues of the covariance matrix, $p$ is the number of variables, and $d$ is equal to $p-1$.

- **Huynh-Feldt approximation**

  $$
  \epsilon_{HF} = \min \left( 1, \frac{nd\epsilon_{GG} - 2}{d(n - rx) - d^2\epsilon_{GG}} \right),
  $$

  where $n$ is the sample size, $r$ is the number of repeated measures, and $x$ is the number of conditions.
where \( n \) is the number of rows in the design matrix and \( r \) is the rank of the design matrix.

- **Lower bound on the true \( p \)-value**

\[
\varepsilon_{LB} = \frac{1}{d}.
\]

**References**


**See Also**

epsilon | mauchly | ranova

**More About**

- “Mauchly’s Test of Sphericity” on page 9-82
Mauchly’s Test of Sphericity

The regular \( p \)-value calculations in the repeated measures anova (ranova) are accurate if the theoretical distribution of the response variables have compound symmetry. This means that all response variables have the same variance, and each pair of response variables share a common correlation. That is,

\[
\Sigma = \sigma^2 \begin{pmatrix}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \cdots & 1
\end{pmatrix}.
\]

If the compound symmetry assumption is false, then the degrees of freedom for the repeated measures anova test must be adjusted by a factor \( \epsilon \), and the \( p \)-value must be computed using the adjusted values.

Compound symmetry implies sphericity.

For a repeated measures model with responses \( y_1, y_2, \ldots \), sphericity means that all pairwise differences \( y_1 - y_2, y_1 - y_3, \ldots \) have the same theoretical variance. Mauchly’s test is the most accepted test for sphericity.

Mauchly’s \( W \) statistic is

\[
W = \frac{|T|}{(\text{trace}(T)/p)^d},
\]

where

\[
T = M' \Sigma M.
\]

\( M \) is a \( p \)-by-\( d \) orthogonal contrast matrix, \( \Sigma \) is the covariance matrix, \( p \) is the number of variables, and \( d = p - 1 \).

A chi-square test statistic assesses the significance of \( W \). If \( n \) is the number of rows in the design matrix, and \( r \) is the rank of the design matrix, then the chi-square statistic is

\[
C = -(n - r) \log(W) D,
\]
where

\[ D = 1 - \frac{2d^2 + d + 2}{6d(n-r)}. \]

The \( C \) test statistic has a chi-square distribution with \( (p(p - 1)/2) - 1 \) degrees of freedom. A small \( p \)-value for the Mauchly’s test indicates that the sphericity assumption does not hold.

The \texttt{rmanova} method computes the \( p \)-values for the repeated measures anova based on the results of the Mauchly’s test and each epsilon value.

**References**


**See Also**

\texttt{epsilon} | \texttt{mauchly} | \texttt{ranova}

**More About**

- “Compound Symmetry Assumption and Epsilon Corrections” on page 9-80
Multivariate Analysis of Variance for Repeated Measures

Multivariate analysis of variance analysis is a test of the form \( A \times B \times C = D \), where \( B \) is the \( p \)-by-\( r \) matrix of coefficients. \( p \) is the number of terms, such as the constant, linear predictors, dummy variables for categorical predictors, and products and powers, \( r \) is the number of repeated measures, and \( n \) is the number of subjects. \( A \) is an \( a \)-by-\( p \) matrix, with rank \( a \leq p \), defining hypotheses based on the between-subjects model. \( C \) is an \( r \)-by-\( c \) matrix, with rank \( c \leq r \leq n - p \), defining hypotheses based on the within-subjects model, and \( D \) is an \( a \)-by-\( c \) matrix, containing the hypothesized value.

\texttt{manova} tests if the model terms are significant in their effect on the response by measuring how they contribute to the overall covariance. It includes all terms in the between-subjects model. \texttt{manova} always takes \( D \) as zero. The multivariate response for each observation (subject) is the vector of repeated measures.

\texttt{manova} uses four different methods to measure these contributions: Wilks’ lambda, Pillai’s trace, Hotelling-Lawley trace, Roy’s maximum root statistic. Define

\[
T = A\hat{B}C - D,
\]
\[
Z = A(XX')^{-1}A'.
\]

Then, the hypotheses sum of squares and products matrix is

\[
Q_h = T'Z^{-1}T,
\]

and the residuals sum of squares and products matrix is

\[
Q_e = C'(R'R)C,
\]

where

\[
R = Y - X\hat{B}.
\]

The matrix \( Q_h \) is analogous to the numerator of a univariate \( F \)-test, and \( Q_e \) is analogous to the error sum of squares. Hence, the four statistics \texttt{manova} uses are:

- Wilks’ lambda
\[ \Lambda = \frac{|Q_e|}{|Q_h + Q_e|} = \prod_{1+\lambda_i}^{1} \]

where \( \lambda_i \) are the solutions of the characteristic equation \( |Q_h - \lambda Q_e| = 0 \).

- **Pillai’s trace**
  \[ V = \text{trace} \left( Q_h (Q_h + Q_e)^{-1} \right) = \sum \theta_i, \]
  where \( \theta_i \) values are the solutions of the characteristic equation \( Q_h - \theta(Q_h + Q_e) = 0 \).

- **Hotelling-Lawley trace**
  \[ U = \text{trace} \left( Q_h Q_e^{-1} \right) = \sum \lambda_i. \]

- **Roy’s maximum root statistic**
  \[ \Theta = \max \left( \text{eig} \left( Q_h Q_e^{-1} \right) \right). \]

**References**


**See Also**

coefftest | manova
Bayesian Optimization

• “Bayesian Optimization Algorithm” on page 10-2
• “Parallel Bayesian Optimization” on page 10-9
• “Bayesian Optimization Plot Functions” on page 10-14
• “Bayesian Optimization Output Functions” on page 10-23
• “Bayesian Optimization Workflow” on page 10-30
• “Variables for a Bayesian Optimization” on page 10-40
• “Bayesian Optimization Objective Functions” on page 10-43
• “Constraints in Bayesian Optimization” on page 10-45
• “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55
• “Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 10-68
• “Optimize a Boosted Regression Ensemble” on page 10-78
Bayesian Optimization Algorithm

In this section...

“Algorithm Outline” on page 10-2
“Gaussian Process Regression for Fitting the Model” on page 10-3
“Acquisition Function Types” on page 10-4
“Acquisition Function Maximization” on page 10-7

Algorithm Outline

The Bayesian optimization algorithm attempts to minimize a scalar objective function \( f(x) \) for \( x \) in a bounded domain. The function can be deterministic or stochastic, meaning it can return different results when evaluated at the same point \( x \). The components of \( x \) can be continuous reals, integers, or categorical, meaning a discrete set of names.

Note Throughout this discussion, \( D \) represents the number of components of \( x \).

The key elements in the minimization are:

- A Gaussian process model of \( f(x) \).
- A Bayesian update procedure for modifying the Gaussian process model at each new evaluation of \( f(x) \).
- An acquisition function \( a(x) \) (based on the Gaussian process model of \( f \)) that you maximize to determine the next point \( x \) for evaluation. For details, see “Acquisition Function Types” on page 10-4 and “Acquisition Function Maximization” on page 10-7.

Algorithm outline:

- Evaluate \( y_i = f(x_i) \) for \( \text{NumSeedPoints} \) points \( x_i \), taken at random within the variable bounds. \( \text{NumSeedPoints} \) is a bayesopt setting. If there are evaluation errors, take more random points until there are \( \text{NumSeedPoints} \) successful evaluations. The probability distribution of each component is either uniform or log-scaled, depending on the Transform value in optimizableVariable.

Then repeat the following steps:
1 Update the Gaussian process model of \( f(x) \) to obtain a posterior distribution over functions \( Q(f|X_i, y_i \text{ for } i = 1, ..., t) \). (Internally, \texttt{bayesopt} uses \texttt{fitrgp} to fit a Gaussian process model to the data.)

2 Find the new point \( x \) that maximizes the acquisition function \( a(x) \).

The algorithm stops after reaching any of the following:

- A fixed number of iterations (default 30).
- A fixed time (default is no time limit).
- A stopping criterion that you supply in “Bayesian Optimization Output Functions” on page 10-23 or “Bayesian Optimization Plot Functions” on page 10-14.

For the algorithmic differences in parallel, see “Parallel Bayesian Algorithm” on page 10-9.

**Gaussian Process Regression for Fitting the Model**

The underlying probabilistic model for the objective function \( f \) is a Gaussian process prior with added Gaussian noise in the observations. So the prior distribution on \( f(x) \) is a Gaussian process with mean \( \mu(x; \theta) \) and covariance kernel function \( k(x, x'; \theta) \). Here, \( \theta \) is a vector of kernel parameters. For the particular kernel function \texttt{bayesopt} uses, see “Kernel Function” on page 10-4.

In a bit more detail, denote a set of points \( X = x_i \) with associated objective function values \( F = f_i \). The prior’s joint distribution of the function values \( F \) is multivariate normal, with mean \( \mu(X) \) and covariance matrix \( K(X, X) \), where \( K_{ij} = k(x_i, x_j) \).

Without loss of generality, the prior mean is given as \( \Theta \).

Also, the observations are assumed to have added Gaussian noise with variance \( \sigma^2 \). So the prior distribution has covariance \( K(X, X; \theta) + \sigma^2 I \).

Fitting a Gaussian process regression model to observations consists of finding values for the noise variance \( \sigma^2 \) and kernel parameters \( \theta \). This fitting is a computationally intensive process performed by \texttt{fitrgp}.

For details on fitting a Gaussian process to observations, see “Gaussian Process Regression”.

---

10-3
Kernel Function

The kernel function \( k(x,x';\theta) \) can significantly affect the quality of a Gaussian process regression. \texttt{bayesopt} uses the ARD Matérn 5/2 kernel defined in “Kernel (Covariance) Function Options” on page 6-7.

See Snoek, Larochelle, and Adams [3].

Acquisition Function Types

Six choices of acquisition functions are available for \texttt{bayesopt}. There are three basic types, with expected-improvement also modified by per-second or plus:

- 'expected-improvement-per-second-plus' (default)
- 'expected-improvement'
- 'expected-improvement-plus'
- 'expected-improvement-per-second'
- 'lower-confidence-bound'
- 'probability-of-improvement'

The acquisition functions evaluate the “goodness” of a point \( x \) based on the posterior distribution function \( Q \). When there are coupled constraints, including the Error constraint (see “Objective Function Errors” on page 10-44), all acquisition functions modify their estimate of “goodness” following a suggestion of Gelbart, Snoek, and Adams [2]. Multiply the “goodness” by an estimate of the probability that the constraints are satisfied, to arrive at the acquisition function.

- “Expected Improvement” on page 10-4
- “Probability of Improvement” on page 10-5
- “Lower Confidence Bound” on page 10-5
- “Per Second” on page 10-6
- “Plus” on page 10-6

Expected Improvement

The 'expected-improvement' family of acquisition functions evaluates the expected amount of improvement in the objective function, ignoring values that cause an increase in the objective. In other words, define
• $x_{\text{best}}$ as the location of the lowest posterior mean.
• $\mu_Q(x_{\text{best}})$ as the lowest value of the posterior mean.

Then the expected improvement

$$EI(x, Q) = E_Q \left[ \max(0, \mu_Q(x_{\text{best}}) - f(x)) \right].$$

**Probability of Improvement**

The 'probability-of-improvement' acquisition function makes a similar, but simpler, calculation as 'expected-improvement'. In both cases, bayesopt first calculates $x_{\text{best}}$ and $\mu_Q(x_{\text{best}})$. Then for 'probability-of-improvement', bayesopt calculates the probability $PI$ that a new point $x$ leads to a better objective function value, modified by a “margin” parameter $m$:

$$PI(x, Q) = P_Q \left( f(x) < \mu_Q(x_{\text{best}}) - m \right).$$

bayesopt takes $m$ as the estimated noise standard deviation. bayesopt evaluates this probability as

$$PI = \Phi(v_Q(x)),$$

where

$$v_Q(x) = \frac{\mu_Q(x_{\text{best}}) - m - \mu_Q(x)}{\sigma_Q(x)}.$$

Here $\Phi(\cdot)$ is the unit normal CDF, and $\sigma_Q$ is the posterior standard deviation of the Gaussian process at $x$.

**Lower Confidence Bound**

The 'lower-confidence-bound' acquisition function looks at the curve $G$ two standard deviations below the posterior mean at each point:

$$G(x) = \mu_Q(x) - 2\sigma_Q(x).$$
$G(x)$ is the $2\sigma_Q$ lower confidence envelope of the objective function model. \texttt{bayesopt} then maximizes the negative of $G$:

$$LCB = 2\sigma_Q(x) - \mu_Q(x).$$

**Per Second**

Sometimes, the time to evaluate the objective function can depend on the region. For example, many Support Vector Machine calculations vary in timing a good deal over certain ranges of points. If so, \texttt{bayesopt} can obtain better improvement per second by using time-weighting in its acquisition function. The cost-weighted acquisition functions have the phrase per-second in their names.

These acquisition functions work as follows. During the objective function evaluations, \texttt{bayesopt} maintains another Bayesian model of objective function evaluation time as a function of position $x$. The expected improvement per second that the acquisition function uses is

$$EI_{pS}(x) = \frac{EI_Q(x)}{\mu_S(x)},$$

where $\mu_S(x)$ is the posterior mean of the timing Gaussian process model.

**Plus**

To escape a local objective function minimum, the acquisition functions with plus in their names modify their behavior when they estimate that they are overexploiting an area. To understand overexploiting, let $\sigma_F(x)$ be the standard deviation of the posterior objective function at $x$. Let $\sigma$ be the posterior standard deviation of the additive noise, so that

$$\sigma_Q^2(x) = \sigma_F^2(x) + \sigma^2.$$

Define $t_\sigma$ to be the value of the ExplorationRatio option, a positive number. The \texttt{bayesopt plus} acquisition functions, after each iteration, evaluate whether the next point $x$ satisfies

$$\sigma_F(x) < t_\sigma \sigma.$$  

If so, the algorithm declares that $x$ is overexploiting. Then the acquisition function modifies its “Kernel Function” on page 10-4 by multiplying $\theta$ by the number of iterations,
as suggested by Bull [1]. This modification raises the variance $\sigma_Q$ for points in between observations. It then generates a new point based on the new fitted kernel function. If the new point $x$ is again overexploiting, the acquisition function multiplies $\theta$ by an additional factor of 10 and tries again. It continues in this way up to five times, trying to generate a point $x$ that is not overexploiting. The algorithm accepts the new $x$ as the next point.

ExplorationRatio therefore controls a tradeoff between exploring new points for a better global solution, versus concentrating near points that have already been examined.

**Acquisition Function Maximization**

Internally, bayesopt maximizes an acquisition function using the following general steps:

1. For algorithms starting with 'expected-improvement' and for 'probability-of-improvement', bayesopt estimates the smallest feasible mean of the posterior distribution $\mu_Q(x_{\text{best}})$ by sampling several thousand points within the variable bounds, taking several of the best (low mean value) feasible points, and improving them using local search, to find the ostensible best feasible point. Feasible means that the point satisfies constraints (see “Constraints in Bayesian Optimization” on page 10-45).

2. For all algorithms, bayesopt samples several thousand points within the variable bounds, takes several of the best (high acquisition function) feasible points, and improves them using local search, to find the ostensible best feasible point. The acquisition function value depends on the modeled posterior distribution, not a sample of the objective function, and so it can be calculated quickly.

**References**


See Also

Related Examples

- “Bayesian Optimization Workflow” on page 10-30
Parallel Bayesian Optimization

In this section...

“Optimize in Parallel” on page 10-9
“Parallel Bayesian Algorithm” on page 10-9
“Settings for Best Parallel Performance” on page 10-10
“Differences in Parallel Bayesian Optimization Output” on page 10-12

Optimize in Parallel

Running Bayesian optimization in parallel can save time. Running in parallel requires Parallel Computing Toolbox. `bayesopt` performs parallel objective function evaluations concurrently on parallel workers.

To optimize in parallel:

• `bayesopt` — Set the `UseParallel` name-value pair to `true`. For example,

  ```
 results = bayesopt(fun,vars,'UseParallel',true);
  ```

• Fit functions — Set the `UseParallel` field of the `HyperparameterOptimizationOptions` structure to `true`. For example,

  ```
 Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto',...
 'HyperparameterOptimizationOptions',struct('UseParallel',true))
  ```

Parallel Bayesian Algorithm

The parallel Bayesian optimization algorithm is similar to the serial algorithm, which is described in “Bayesian Optimization Algorithm” on page 10-2. The differences are:

• `bayesopt` assigns points to evaluate to the parallel workers, generally one point at a time. `bayesopt` calculates on the client to determine which point to assign.

• After `bayesopt` evaluates the initial random points, it chooses points to evaluate by fitting a Gaussian process (GP) model. To fit a GP model while some workers are still evaluating points, `bayesopt` imputes a value to each point that is still on a worker. The imputed value is the mean of the GP model value at the points it is evaluating, or some other value as specified by the `bayesopt 'ParallelMethod'` name-value pair.
For parallel optimization of fit functions, `bayesopt` uses the default `ParallelMethod` imputed value.

- After `bayesopt` assigns a point to evaluate, and before it computes a new point to assign, it checks whether too many workers are idle. The threshold for active workers is determined by the `MinWorkerUtilization` name-value pair. If too many workers are idle, then `bayesopt` assigns random points, chosen uniformly within bounds, to all idle workers. This step causes the workers to be active more quickly, but the workers have random points rather than fitted points. If the number of idle workers does not exceed the threshold, then `bayesopt` chooses a point to evaluate as usual, by fitting a GP model and maximizing the acquisition function.

**Settings for Best Parallel Performance**

Fit functions have no special settings for better parallel performance. In contrast, several `bayesopt` settings can help to speed an optimization.

**Solver Options**

Setting the `GPActiveSetSize` option to a smaller value than the default (300) can speed the solution. The cost is potential inaccuracy in the points that `bayesopt` chooses to evaluate, because the GP model of the objective function can be less accurate than with a larger value. Setting the option to a larger value can result in a more accurate GP model, but requires more time to create the model.

Setting the `ParallelMethod` option to `'max-observed'` can lead `bayesopt` to search more widely for a global optimum. This choice can lead to a better solution in less time. However, the default value of `'clipped-model-prediction'` is often best.

Setting the `MinWorkerUtilization` option to a large value can result in higher parallel utilization. However, this setting causes more completely random points to be evaluated, which can lead to less accurate solutions. A large value, in this context, depends on how many workers you have. The default is `floor(0.8*N)`, where `N` is the number of parallel workers. Setting the option to a lower value can give lower parallel utilization, but with the benefit of higher quality points.

**Placing the Objective Function on Workers**

You can place an objective function on the parallel workers in one of three ways. Some have better performance, but require a more complex setup.
1. **Automatic** If you give a function handle as the objective function, `bayesopt` sends the handle to all the parallel workers at the beginning of its run. For example,

```matlab
defun = @(params)kfoldLoss(fitctree(X,Y,'Kfold',5,...
 'MaxNumSplits',params.splits,'MinLeaf',params.minleaf));
results = bayesopt(fun,[splits,minleaf],'UseParallel',true);
```

This method is effective if the handle is small, or if you run the optimization only once. However, if you plan to run the optimization several times, you can save time by using one of the other two techniques.

2. **Parallel constant** If you plan to run an optimization several times, save time by transferring the objective function to the workers only once. This technique is especially effective when the function handle incorporates a large amount of data. Transfer the objective once by setting the function handle to a `parallel.pool.Constant` construct, as in this example.

```matlab
defun = @(params)kfoldLoss(fitctree(X,Y,'Kfold',5,...
 'MaxNumSplits',params.splits,'MinLeaf',params.minleaf));
C = copyFunctionHandleToWorkers(fun);
results1 = bayesopt(C,[splits,minleaf],'UseParallel',true);
results2 = bayesopt(C,[splits,minleaf],'UseParallel',true,...
 'MaxObjectiveEvaluations',50);
results3 = bayesopt(C,[splits,minleaf],'UseParallel',true,...
 'AcquisitionFunction','expected-improvement');
```

In this example, `copyFunctionHandleToWorkers` sends the function handle to the workers only once.

3. **Create objective function on workers** If you have a great deal of data to send to the workers, you can avoid loading the data in the client by using `spmd` to load the data on the workers. Use a `Composite` with `parallel.pool.Constant` to access the distributed objective functions.
% makeFun is at the end of this script
spmd
    fun = makeFun();
end

% ObjectiveFunction is now a Composite. Get a parallel.pool.Constant
% that refers to it, without copying it to the client:
C = parallel.pool.Constant(fun);

% You could also use the line
% C = parallel.pool.Constant(@MakeFun);
% In this case, you do not use spmd

% Call bayesopt, passing the Constant
splits = optimizableVariable('splits', [1 100]);
minleaf = optimizableVariable('minleaf', [1 100]);
bo = bayesopt(C,[splits minleaf],'UseParallel',true);

function f = makeFun()
load('ionosphere','X','Y');
f = @fun;
    function L = fun(Params)
        L = kfoldLoss(fitctree(X,Y, ...
            'KFold', 5,...
            'MaxNumSplits',Params.splits, ...
            'MinLeaf', Params.minleaf));
    end
end

In this example, the function handle exists only on the workers. The handle never appears on the client.

Differences in Parallel Bayesian Optimization Output

When bayesopt runs in parallel, the Bayesian optimization output includes these differences.

- **Iterative Display** — Iterative display includes a column showing the number of active workers. This is the number after bayesopt assigns a job to the next worker.
- **Plot Functions**
• Objective Function Model plot (@plotObjectiveModel) shows the pending points (those points executing on parallel workers). The height of the points depends on the ParallelMethod name-value pair.

• Elapsed Time plot (@plotElapsedTime) shows the total elapsed time with the label **Real time** and the total objective function evaluation time, summed over all workers, with the label **Objective evaluation time (all workers)**. Objective evaluation time includes the time to start a worker on a job.

See Also

parallel.pool.Constant | spmd

More About

• “Bayesian Optimization Algorithm” on page 10-2
• “Feature Extraction Workflow” on page 15-165
Bayesian Optimization Plot Functions

<table>
<thead>
<tr>
<th>Model Plots — Apply When D ≤ 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@plotAcquisitionFunction</td>
<td>Plot the acquisition function surface.</td>
</tr>
</tbody>
</table>
| @plotConstraintModels | Plot each constraint model surface. Negative values indicate feasible points. Also plot a $P(\text{feasible})$ surface. Also plot the error model, if it exists, which ranges from $-1$ to $1$. Negative values mean that the model probably does not error, positive values mean that it probably does error. The model is: 

$\text{Plotted error} = 2*\text{Probability(error)} - 1.$ |
<p>| @plotObjectiveEvaluation | Plot the objective function evaluation time model surface. |
| @plotObjectiveModel | Plot the fun model surface, the estimated location of the minimum, and the location of the next proposed point to evaluate. For one-dimensional problems, plot envelopes one credible interval above and below the mean function, and envelopes one noise standard deviation above and below the mean. |</p>
<table>
<thead>
<tr>
<th>Trace Plots — Apply to All D</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@plotObjective</td>
<td>Plot each observed function value versus the number of function evaluations.</td>
</tr>
<tr>
<td>@plotObjectiveEvaluationTime</td>
<td>Plot each observed function evaluation run time versus the number of function evaluations.</td>
</tr>
<tr>
<td>@plotMinObjective</td>
<td>Plot the minimum observed and estimated function values versus the number of function evaluations.</td>
</tr>
<tr>
<td>@plotElapsedTime</td>
<td>Plot three curves: the total elapsed time of the optimization, the total function evaluation time, and the total modeling and point selection time, all versus the number of function evaluations.</td>
</tr>
</tbody>
</table>

**Note** When there are coupled constraints, iterative display and plot functions can give counterintuitive results such as:

- A *minimum objective* plot can increase.
- The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the optimization progresses. *bayesopt* determines feasibility with respect to its constraint model, and this model changes as *bayesopt* evaluates points. So a “minimum objective” plot can increase when the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is later deemed infeasible.

**Custom Plot Function Syntax**

A custom plot function has the same syntax as a custom output function (see “Bayesian Optimization Output Functions” on page 10-23):

```matlab
stop = plotfun(results,state)
```

*bayesopt* passes the `results` and `state` variables to your function. Your function returns `stop`, which you set to `true` to halt the iterations, or to `false` to continue the iterations.

`results` is an object of class `BayesianOptimization` that contains the available information on the computations.
state has these possible values:

- 'initial' — bayesopt is about to start iterating. Use this state to set up a plot or to perform other initializations.
- 'iteration' — bayesopt just finished an iteration. Generally, you perform most of the plotting or other calculations in this state.
- 'done' — bayesopt just finished its final iteration. Clean up plots or otherwise prepare for the plot function to shut down.

Create a Custom Plot Function

This example shows how to create a custom plot function for bayesopt. It further shows how to use information in the UserData property of a BayesianOptimization object.

Problem Statement

The problem is to find parameters of a Support Vector Machine (SVM) classification to minimize the cross-validated loss. The specific model is the same as in “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55. Therefore, the objective function is essentially the same, except it also computes UserData, in this case the number of support vectors in an SVM model fitted to the current parameters.

Create a custom plot function that plots the number of support vectors in the SVM model as the optimization progresses. To give the plot function access to the number of support vectors, create a third output, UserData, to return the number of support vectors.

Objective Function

Create an objective function that computes the cross-validation loss for a fixed cross-validation partition, and that returns the number of support vectors in the resulting model.

```matlab
function [f,viol,nsupp] = mysvmminfn(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
 'KernelScale',x.sigma,'BoxConstraint',x.box);
f = kfoldLoss(crossval(SVMModel,'CVPartition',c));
viol = [];
nsupp = sum(SVMModel.IsSupportVector);
end
```
**Custom Plot Function**

Create a custom plot function that uses the information computed in UserData. Have the function plot both the current number of constraints and the number of constraints for the model with the best objective function found.

```matlab
function stop = svmsuppvec(results, state)
 persistent hs nbest besthist nsupptrace
 stop = false;
 switch state
 case 'initial'
 hs = figure;
 besthist = [];
 nbest = 0;
 nsupptrace = [];
 case 'iteration'
 figure(hs)
 nsupp = results.UserDataTrace{end}; % get nsupp from UserDataTrace property.
 nsupptrace(end+1) = nsupp; % accumulate nsupp values in a vector.
 if (results.ObjectiveTrace(end) == min(results.ObjectiveTrace)) || (length(results.ObjectiveTrace) == 1) % current is best
 nbest = nsupp;
 end
 besthist = [besthist,nbest];
 plot(1:length(nsupptrace),nsupptrace,'b',1:length(besthist),besthist,'r--')
 xlabel 'Iteration number'
 ylabel 'Number of support vectors'
 title 'Number of support vectors at each iteration'
 legend('Current iteration','Best objective','Location','best')
 drawnow
 end
end
```

**Set Up the Model**

Generate ten base points for each class.

```matlab
rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
```

Generate 100 data points of each class.

```matlab
redpts = zeros(100,2); grnpts = redpts;
for i = 1:100
```

10-17
grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

Put the data into one matrix, and make a vector grp that labels the class of each point.

```matlab
 cdata = [grnpts;redpts];
 grp = ones(200,1);
 % Green label 1, red label -1
 grp(101:200) = -1;
```

Check the basic classification of all the data using the default SVM parameters.

```matlab
 SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf','ClassNames',[-1 1]);
```

Set up a partition to fix the cross validation. Without this step, the cross validation is random, so the objective function is not deterministic.

```matlab
 c = cvpartition(200,'KFold',10);
```

Check the cross-validation accuracy of the original fitted model.

```matlab
 loss = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
 'KernelFunction','rbf','BoxConstraint',SVMModel.BoxConstraints(1),...
 'KernelScale',SVMModel.KernelParameters.Scale))
```

```matlab
 loss =
 0.1350
```

**Prepare Variables for Optimization**

The objective function takes an input z = [rbf_sigma,boxconstraint] and returns the cross-validation loss value of z. Take the components of z as positive, log-transformed variables between 1e-5 and 1e5. Choose a wide range because you do not know which values are likely to be good.

```matlab
 sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
 box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
```
Set Plot Function and Call the Optimizer

Search for the best parameters \([\text{sigma}, \text{box}]\) using \texttt{bayesopt}. For reproducibility, choose the 'expected-improvement-plus' acquisition function. The default acquisition function depends on run time, so it can give varying results.

Plot the number of support vectors as a function of the iteration number, and plot the number of support vectors for the best parameters found.

\[
\text{obj} = @(x)\text{mysvmminfn}(x, \text{cdata}, \text{grp}, c);
\]

\[
\text{results} = \text{bayesopt}(\text{obj}, [\text{sigma}, \text{box}], \ldots
\]

\['\text{IsObjectiveDeterministic}', \text{true}, '\text{Verbose}', 0, \ldots
\]

\['\text{AcquisitionFunctionName}', '\text{expected-improvement-plus}', \ldots
\]

\['\text{PlotFcn}', \{\text{@svmsuppvec}, \text{@plotObjectiveModel}, \text{@plotMinObjective}\}\]

\[
\text{results} =
\]

\begin{verbatim}
BayesianOptimization with properties:

    ObjectiveFcn: @(x)mysvmminfn(x,cdata,grp,c)
    VariableDescriptions: [1x2 optimizableVariable]
    Options: [1x1 struct]
    MinObjective: 0.0750
    XAtMinObjective: [1x2 table]
    MinEstimatedObjective: 0.0750
    XAtMinEstimatedObjective: [1x2 table]
    NumObjectiveEvaluations: 30
    TotalElapsedTime: 82.3666
    NextPoint: [1x2 table]
    ObjectiveTrace: [30x1 double]
    ConstraintsTrace: []
    UserDataTrace: {30x1 cell}
    ObjectiveEvaluationTimeTrace: [30x1 double]
    IterationTimeTrace: [30x1 double]
    ErrorTrace: [30x1 double]
    FeasibilityTrace: [30x1 logical]
    FeasibilityProbabilityTrace: [30x1 double]
    IndexOfMinimumTrace: [30x1 double]
    ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
\end{verbatim}
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
See Also

Related Examples

- “Bayesian Optimization Output Functions” on page 10-23
- “Constraints in Bayesian Optimization” on page 10-45
Bayesian Optimization Output Functions

In this section...

"What Is a Bayesian Optimization Output Function?" on page 10-23
"Built-In Output Functions" on page 10-23
"Custom Output Functions" on page 10-23
"Bayesian Optimization Output Function" on page 10-24

What Is a Bayesian Optimization Output Function?

An output function is a function that is called at the end of every iteration of `bayesopt`. An output function can halt iterations. It can also create plots, save information to your workspace or to a file, or perform any other calculation you like.

Other than halting the iterations, output functions cannot change the course of a Bayesian optimization. They simply monitor the progress of the optimization.

Built-In Output Functions

These built-in output functions save your optimization results to a file or to the workspace.

- `@assignInBase` — Saves your results after each iteration to a variable named 'BayesoptResults' in your workspace. To choose a different name, pass the `SaveVariableName` name-value pair.
- `@saveToFile` — Saves your results after each iteration to a file named 'BayesoptResults.mat' in your current folder. To choose a different name or folder, pass the `SaveFileName` name-value pair.

For example, to save the results after each iteration to a workspace variable named 'BayesIterations',

```matlab
results = bayesopt(fun,vars,'OutputFcn',@assignInBase,...
 'SaveVariableName','BayesIterations')
```

Custom Output Functions

Write a custom output function with signature
stop = outputfun(results,state)

bayesopt passes the results and state variables to your function. Your function returns stop, which you set to true to halt the iterations, or to false to allow the iterations to continue.

results is an object of class BayesianOptimization. results contains the available information on the computations so far.

state has possible values:

• 'initial' — bayesopt is about to start iterating.
• 'iteration' — bayesopt just finished an iteration.
• 'done' — bayesopt just finished its final iteration.

For an example, see “Bayesian Optimization Output Function” on page 10-24.

Bayesian Optimization Output Function

This example shows how to use a custom output function with Bayesian optimization. The output function halts the optimization when the objective function, which is the cross-validation error rate, drops below 13%. The output function also plots the time for each iteration.

```matlab
function stop = outputfun(results,state)
persistent h
stop = false;
switch state
 case 'initial'
 h = figure;
 case 'iteration'
 if results.MinObjective < 0.13
 stop = true;
 end
 figure(h)
 tms = results.IterationTimeTrace;
 plot(1:numel(tms),tms')
 xlabel('Iteration Number')
 ylabel('Time for Iteration')
 title('Time for Each Iteration')
 drawnow
```
The objective function is the cross validation loss of the KNN classification of the ionosphere data. Load the data and, for reproducibility, set the default random stream.

```matlab
load ionosphere
rng default
```

Optimize over neighborhood size from 1 through 30, and for three distance metrics.

```matlab
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
vars = [num,dst];
```

Set the cross-validation partition and objective function. For reproducibility, set the `AcquisitionFunctionName` to 'expected-improvement-plus'. Run the optimization.

```matlab
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
 'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,vars,'OutputFcn',@outputfun,...
 'AcquisitionFunctionName','expected-improvement-plus');
```

Optimization completed.
Total function evaluations: 3
Total elapsed time: 8.5925 seconds.
Total objective function evaluation time: 0.57617

Best observed feasible point:

<table>
<thead>
<tr>
<th>n</th>
<th>dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>chebychev</td>
</tr>
</tbody>
</table>
Observed objective function value = 0.12536
Estimated objective function value = 0.12861
Function evaluation time = 0.15412

Best estimated feasible point (according to models):

    n   dst
    = ...
    3   chebychev

Estimated objective function value = 0.12861
Estimated function evaluation time = 0.18125
Min objective vs. Number of function evaluations

Min observed objective
Estimated min objective
See Also

Related Examples
• "Bayesian Optimization Plot Functions" on page 10-14
Bayesian Optimization Workflow

In this section...

- “What Is Bayesian Optimization?” on page 10-30
- “Two Ways to Perform Bayesian Optimization” on page 10-30
- “Bayesian Optimization Using a Fit Function” on page 10-31
- “Bayesian Optimization Using bayesopt” on page 10-32
- “Bayesian Optimization Characteristics” on page 10-32
- “Parameters Available for Fit Functions” on page 10-34
- “Hyperparameter Optimization Options for Fit Functions” on page 10-36

What Is Bayesian Optimization?

Optimization, in its most general form, is the process of locating a point that minimizes a real-valued function called the objective function. Bayesian optimization is the name of one such process. Bayesian optimization internally maintains a Gaussian process model of the objective function, and uses objective function evaluations to train the model. One innovation in Bayesian optimization is the use of an acquisition function, which the algorithm uses to determine the next point to evaluate. The acquisition function can balance sampling at points that have low modeled objective functions, and exploring areas that have not yet been modeled well. For details, see “Bayesian Optimization Algorithm” on page 10-2.

Bayesian optimization is part of Statistics and Machine Learning Toolbox because it is well-suited to optimizing hyperparameters of classification and regression algorithms. A hyperparameter is an internal parameter of a classifier or regression function, such as the box constraint of a support vector machine, or the learning rate of a robust classification ensemble. These parameters can strongly affect the performance of a classifier or regressor, and yet it is typically difficult or time-consuming to optimize them. See “Bayesian Optimization Characteristics” on page 10-32.

Typically, optimizing the hyperparameters means that you try to minimize the cross-validation loss of a classifier or regression.

Two Ways to Perform Bayesian Optimization

You can perform a Bayesian optimization in two distinct ways:
• **Fit function** — Include the `OptimizeHyperparameters` name-value pair in many fitting functions to have Bayesian optimization apply automatically. The optimization minimizes cross-validation loss. This way gives you fewer tuning options, but enables you to perform Bayesian optimization most easily. See “Bayesian Optimization Using a Fit Function” on page 10-31.

• **bayesopt** — Exert the most control over your optimization by calling `bayesopt` directly. This way requires you to write an objective function, which does not have to represent cross-validation loss. See “Bayesian Optimization Using `bayesopt`” on page 10-32.

### Bayesian Optimization Using a Fit Function

To minimize the error in a cross-validated response via Bayesian optimization, follow these steps.

1. Choose your classification or regression solver among `fitcdiscr`, `fitcecoc`, `fitensemble`, `fitckernel`, `fitcknn`, `fitclinear`, `fitcnb`, `fitcsvm`, `fitctree`, `fitrensemble`, `fitrgp`, `fitrkernel`, `fitrlinear`, `fitrsvm`, or `fitrtree`.

2. Decide on the hyperparameters to optimize, and pass them in the `OptimizeHyperparameters` name-value pair. For each fit function, you can choose from a set of hyperparameters. See Eligible Hyperparameters for Fit Functions, or use the `hyperparameters` function, or consult the fit function reference page.

   You can pass a cell array of parameter names. You can also set `'auto'` as the `OptimizeHyperparameters` value, which chooses a typical set of hyperparameters to optimize, or `'all'` to optimize all available parameters.

3. For ensemble fit functions `fitcecoc`, `fitensemble`, and `fitrensemble`, also include parameters of the weak learners in the `OptimizeHyperparameters` cell array.

4. Optionally, create an options structure for the `HyperparameterOptimizationOptions` name-value pair. See “Hyperparameter Optimization Options for Fit Functions” on page 10-36.

5. Call the fit function with the appropriate name-value pairs.

For examples, see “Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 10-68 and “Optimize a Boosted Regression Ensemble” on page 10-78. Also, every fit function reference page contains a Bayesian optimization example.
Bayesian Optimization Using bayesopt

To perform a Bayesian optimization using bayesopt, follow these steps.

1. Prepare your variables. See “Variables for a Bayesian Optimization” on page 10-40.
2. Create your objective function. See “Bayesian Optimization Objective Functions” on page 10-43. If necessary, create constraints, too. See “Constraints in Bayesian Optimization” on page 10-45.
3. Decide on options, meaning the bayesopt Name,Value on page 32-158 pairs. You are not required to pass any options to bayesopt but you typically do, especially when trying to improve a solution.
4. Call bayesopt.
5. Examine the solution. You can decide to resume the optimization by using resume, or restart the optimization, usually with modified options.

For an example, see “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55.

Bayesian Optimization Characteristics

Bayesian optimization algorithms are best suited to these problem types.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low dimension</td>
<td>Bayesian optimization works best in a low number of dimensions, typically 10 or fewer. While Bayesian optimization can solve some problems with a few dozen variables, it is not recommended for dimensions higher than about 50.</td>
</tr>
<tr>
<td>Expensive objective</td>
<td>Bayesian optimization is designed for objective functions that are slow to evaluate. It has considerable overhead, typically several seconds for each iteration.</td>
</tr>
<tr>
<td>Low accuracy</td>
<td>Bayesian optimization does not necessarily give very accurate results. If you have a deterministic objective function, you can sometimes improve the accuracy by starting a standard optimization algorithm from the bayesopt solution.</td>
</tr>
<tr>
<td>Global solution</td>
<td>Bayesian optimization is a global technique. Unlike many other algorithms, to search for a global solution you do not have to start the algorithm from various initial points.</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Details</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Hyperparameters</td>
<td>Bayesian optimization is well-suited to optimizing hyperparameters of another function. A hyperparameter is a parameter that controls the behavior of a function. For example, the <code>fitcsvm</code> function fits an SVM model to data. It has hyperparameters <code>BoxConstraint</code> and <code>KernelScale</code> for its <code>'rbf'</code> <code>KernelFunction</code>. For an example of Bayesian optimization applied to hyperparameters, see “Optimize a Cross-Validated SVM Classifier Using <code>bayesopt</code>” on page 10-55.</td>
</tr>
</tbody>
</table>
Parameters Available for Fit Functions

Eligible Hyperparameters for Fit Functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Eligible Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitcdiscr</td>
<td>Delta, Gamma, DiscrimType</td>
</tr>
<tr>
<td>fitcecoc</td>
<td>Coding, eligible fitcdiscr parameters for 'Learners','Discriminant', eligible fitcknn parameters for 'Learners','knn', eligible fitclinear parameters for 'Learners','linear', eligible fitcsvm parameters for 'Learners','svm', eligible fitctree parameters for 'Learners','tree'</td>
</tr>
<tr>
<td>fitcensemble</td>
<td>Method, NumLearningCycles, LearnRate, eligible fitcdiscr parameters for 'Learners','Discriminant', eligible fitcknn parameters for 'Learners','knn', eligible fitctree parameters for 'Learners','tree'</td>
</tr>
<tr>
<td>fitckernel</td>
<td>'Learner', 'KernelScale', 'Lambda', 'NumExpansionDimensions'</td>
</tr>
<tr>
<td>fitcknn</td>
<td>NumNeighbors, Distance, DistanceWeight, Exponent, Standardize</td>
</tr>
<tr>
<td>fitclinear</td>
<td>Lambda, Learner, Regularization</td>
</tr>
<tr>
<td>Function Name</td>
<td>Eligible Parameters</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>fitcnnb</td>
<td>DistributionNames, Width, Kernel</td>
</tr>
<tr>
<td>fitcsvm</td>
<td>BoxConstraint, KernelScale, KernelFunction, PolynomialOrder, Standardize</td>
</tr>
<tr>
<td>fitctree</td>
<td>MinLeafSize, MaxNumSplits, SplitCriterion, NumVariablesToSample</td>
</tr>
<tr>
<td>fitrensemble</td>
<td>Method, NumLearningCycles, LearnRate, eligible fitrtree parameters for 'Learners','tree': MinLeafSize, MaxNumSplits, NumVariablesToSample</td>
</tr>
<tr>
<td>fitrgp</td>
<td>Sigma, BasisFunction, KernelFunction, KernelScale, Standardize</td>
</tr>
<tr>
<td>fitrkernel</td>
<td>Learner, KernelScale, Lambda, NumExpansionDimensions, Epsilon</td>
</tr>
<tr>
<td>fitrlinear</td>
<td>Lambda, Learner, Regularization</td>
</tr>
<tr>
<td>Function Name</td>
<td>Eligible Parameters</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>fitrsvm</td>
<td>BoxConstraint</td>
</tr>
<tr>
<td></td>
<td>KernelScale</td>
</tr>
<tr>
<td></td>
<td>Epsilon</td>
</tr>
<tr>
<td></td>
<td>KernelFunction</td>
</tr>
<tr>
<td></td>
<td>PolynomialOrder</td>
</tr>
<tr>
<td></td>
<td>Standardize</td>
</tr>
<tr>
<td>fitrtree</td>
<td>MinLeafSize</td>
</tr>
<tr>
<td></td>
<td>MaxNumSplits</td>
</tr>
<tr>
<td></td>
<td>NumVariablesToSample</td>
</tr>
</tbody>
</table>

**Hyperparameter Optimization Options for Fit Functions**

When optimizing using a fit function, you have these options available in the `HyperparameterOptimizationOptions` name-value pair. Give the value as a structure. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer    | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.  
|              | • 'gridsearch' — Use grid search with `NumGridDivisions` values per dimension.  
|              | • 'randomsearch' — Search at random among `MaxObjectiveEvaluations` points.  
<p>|              | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command <code>sortrows(Mdl.HyperparameterOptimizationResults)</code>.  | 'bayesopt'    |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| AcquisitionFunctionName    | • 'expected-improvement-per-second-plus'
• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'                                                                                                                 | 'expected-improvement-per-second-plus' |
<p>|                           | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.                                                                                   |                                        |
| MaxObjectiveEvaluations    | Maximum number of objective function evaluations.                                                                                                                                                        | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |
| MaxTime                    | Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.                                 | Inf                                    |
| NumGridDivisions           | For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables. | 10                                     |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>- 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>
Variables for a Bayesian Optimization

Syntax for Creating Optimization Variables

For each variable in your objective function, create a variable description object using optimizableVariable. Each variable has a unique name and a range of values. The minimal syntax for variable creation is

```matlab
variable = optimizableVariable(Name,Range)
```

This function creates a real variable that ranges from the lower bound `Range(1)` to the upper bound `Range(2)`.

You can specify three types of variables in the `Type` name-value pair:

- `'real'` — Continuous real values between finite bounds. Give `Range` as the two-element vector `[lower upper]`, which represent the lower and upper bounds.
- `'integer'` — Integer values between finite bounds, similar to `'real'`.
- `'categorical'` — Cell array of names of possible values, such as `{'red','green','blue'}`, that you specify in the `Range` argument.

For `'real'` or `'integer'` variables, you can specify that bayesopt searches in a log-scaled space by setting the `Transform` name-value pair to `'log'`. For this transformation, ensure that the lower bound in the `Range` is strictly positive.

Include variables for bayesopt as a vector in the second argument.

```matlab
results = bayesopt(fun,[xvar,ivar,rvar])
```

To exclude a variable from an optimization, set `Optimize` to `false`, either in the name-value pair of `optimizableVariable`, or by dot notation:

```matlab
xvar.Optimize = false;
```

Tip
There are two names associated with an `optimizableVariable`:

- The MATLAB workspace variable name
- The name of the variable in the optimization

For example,

```matlab
xvar = optimizableVariable('spacevar',[1,100]);
```

`xvar` is the MATLAB workspace variable, and `spacevar` is the variable in the optimization.

Use these names as follows:

- Use `xvar` as an element in the vector of variables you pass to `bayesopt`. For example,
  ```matlab
 results = bayesopt(fun,[xvar,tvar])
  ```
- Use `spacevar` as the name of the variable in the optimization. For example, in an objective function,
  ```matlab
 function objective = mysvmfun(x,cdata,grp)
 SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf','BoxConstraint',x.spacevar,'KernelScale',x.tvar);
 objective = kfoldLoss(crossval(SVMModel));
  ```

### Variables for Optimization Examples

**Real variable from 0 to 1:**

```matlab
var1 = optimizableVariable('xvar',[0 1])
```

```matlab
var1 = optimizableVariable with properties:
 Name: 'xvar'
 Range: [0 1]
 Type: 'real'
 Transform: 'none'
 Optimize: 1
```
Integer variable from 1 to 1000 on a log scale:

\[
\text{var2} = \text{optimizableVariable('ivar',[1 1000],}'Type','integer','Transform','log')
\]

\[
\text{var2} =
\begin{array}{l}
\text{optimizableVariable with properties:} \\
\quad \text{Name: 'ivar'} \\
\quad \text{Range: [1 1000]} \\
\quad \text{Type: 'integer'} \\
\quad \text{Transform: 'log'} \\
\quad \text{Optimize: 1}
\end{array}
\]

Categorical variable of rainbow colors:

\[
\text{var3} = \text{optimizableVariable('rvar','{'r' 'o' 'y' 'g' 'b' 'i' 'v'}',}'Type','categorical')
\]

\[
\text{var3} =
\begin{array}{l}
\text{optimizableVariable with properties:} \\
\quad \text{Name: 'rvar'} \\
\quad \text{Range: {'r' 'o' 'y' 'g' 'b' 'i' 'v'}} \\
\quad \text{Type: 'categorical'} \\
\quad \text{Transform: 'none'} \\
\quad \text{Optimize: 1}
\end{array}
\]

**See Also**

**Related Examples**

- “Bayesian Optimization Workflow” on page 10-30
- “Bayesian Optimization Objective Functions” on page 10-43
Bayesian Optimization Objective Functions

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Objective Function Syntax” on page 10-43</td>
</tr>
<tr>
<td>“Objective Function Example” on page 10-43</td>
</tr>
<tr>
<td>“Objective Function Errors” on page 10-44</td>
</tr>
</tbody>
</table>

**Objective Function Syntax**

`bayesopt` attempts to minimize an objective function. If, instead, you want to maximize a function, set the objective function to the negative of the function you want to maximize. See “Maximizing Functions” (MATLAB).

`bayesopt` passes a table of variables to the objective function. The variables have the names and types that you declare; see “Variables for a Bayesian Optimization” on page 10-40.

The objective function has the following signature:

```
[objective,coupledconstraints,userdata] = fun(x)
```

1. `objective` — The objective function value at `x`, a real scalar.
2. `coupledconstraints` — Value of coupled constraints, if any (optional output), a vector of real values. A negative value indicates that a constraint is satisfied, a positive value indicates that it is not satisfied. For details, see “Coupled Constraints” on page 10-48.
3. `userdata` — Optional data that your function can return for further uses, such as plotting or logging (optional output). For an example, see “Bayesian Optimization Plot Functions” on page 10-14.

**Objective Function Example**

This objective function returns the loss in a cross-validated fit of an SVM model with parameters `box` and `sigma`. The objective also returns a coupled constraint function that is positive (infeasible) when the number of support vectors exceeds 100 (100 is feasible, 101 is not).

```matlab
function [objective,constraint] = msvmfun(x,cdata,grp)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
'BoxConstraint',x.box,...
'KernelScale',x.sigma);
objective = kfoldLoss(crossval(SVMModel));
constraint = sum(SVMModel.SupportVectors) - 100.5;

Objective Function Errors

bayesopt deems your objective function to return an error when the objective function returns anything other than a finite real scalar. For example, if your objective function returns a complex value, NaN, Inf, or matrix with more than one entry, then bayesopt deems that your objective function errors. If bayesopt encounters an error, it continues to optimize, and automatically updates a Bayesian model of points that lead to errors. This Bayesian model is the Error model. bayesopt incorporates the Error model as a coupled constraint. See “Coupled Constraints” on page 10-48.

When errors exist, you can plot the Error model by setting the bayesopt PlotFcn name-value pair @plotConstraintModels. Or you can retrospectively call plot on the results of a Bayesian optimization, and include @plotConstraintModels.

See Also

Related Examples

• “Bayesian Optimization Workflow” on page 10-30
• “Variables for a Bayesian Optimization” on page 10-40
• “Constraints in Bayesian Optimization” on page 10-45
Constraints in Bayesian Optimization

In this section...

“Bounds” on page 10-45
“Deterministic Constraints — XConstraintFcn” on page 10-45
“Conditional Constraints — ConditionalVariableFcn” on page 10-46
“Coupled Constraints” on page 10-48
“Bayesian Optimization with Coupled Constraints” on page 10-49

Bounds

bayesopt requires finite bounds on all variables. (categorical variables are, by nature, bounded in their possible values.) Pass the lower and upper bounds for real and integer-valued variables in optimizableVariable.

bayesopt uses these bounds to sample points, either uniformly or log-scaled. You set the scaling for sampling in optimizableVariable.

For example, to constrain a variable X1 to values between 1e-6 and 1e3, scaled logarithmically,

xvar = optimizableVariable('X1',[1e-6,1e3], 'Transform','log')

bayesopt includes the endpoints in its range. Therefore, you cannot use 0 as a lower bound for a log-transformed variable.

Tip To use a zero lower bound in a log-transformed variable, set the lower bound to 1, then inside the objective function use x - 1.

Deterministic Constraints — XConstraintFcn

Sometimes your problem is valid or well-defined only for points in a certain region, called the feasible region. A deterministic constraint is a deterministic function that returns true when a point is feasible, and false when a point is infeasible. So deterministic constraints are not stochastic, and they are not functions of a group of points, but of individual points.
Tip It is more efficient to use `optimizableVariable` bounds, instead of deterministic constraints, to confine the optimization to a rectangular region.

Write a deterministic constraint function using the signature

```matlab
tf = xconstraint(X)
```

- `X` is a width-D table of arbitrary height.
- `tf` is a logical column vector, where `tf(i) = true` exactly when `X(i,:)` is feasible.

Pass the deterministic constraint function in the `bayesopt XConstraintFcn` name-value pair. For example,

```matlab
results = bayesopt(fun,vars,'XConstraintFcn',@xconstraint)
```

`bayesopt` evaluates deterministic constraints on thousands of points, and so runs faster when your constraint function is vectorized. See “Vectorization” (MATLAB).

For example, suppose that the variables named 'x1' and 'x2' are feasible when the norm of the vector `[x1 x2]` is less than 6, and when `x1 <= x2`. The following constraint function evaluates these constraints.

```matlab
function tf = xconstraint(X)
tf1 = sqrt(X.x1.^2 + X.x2.^2) < 6;
tf2 = X.x1 <= X.x2;
tf = tf1 & tf2;
```

Conditional Constraints — `ConditionalVariableFcn`

Conditional constraints are functions that enforce one of the following two conditions:

- When some variables have certain values, other variables are set to given values.
- When some variables have certain values, other variables have `NaN` or, for categorical variables, `<undefined>` values.

Specify a conditional constraint by setting the `bayesopt ConditionalVariableFcn` name-value pair to a function handle, say `@condvariablefcn`. The `@condvariablefcn` function must have the signature

```matlab
Xnew = condvariablefcn(X)
```
• X is a width-D table of arbitrary height.
• Xnew is a table the same type and size as X.

condvariablefcn sets Xnew to be equal to X, except it also sets the relevant variables in each row of Xnew to the correct values for the constraint.

Note If you have both conditional constraints and deterministic constraints, bayesopt applies the conditional constraints first. Therefore, if your conditional constraint function can set variables to \(\text{NaN} \) or <undefined>, ensure that your deterministic constraint function can process these values correctly.

Conditional constraints ensure that variable values are sensible. Therefore, bayesopt applies conditional constraints first so that all passed values are sensible.

Conditional Constraint That Sets a Variable Value

Suppose that you are optimizing a classification using fitcdiscr, and you optimize over both the 'DiscrimType' and 'Gamma' name-value pair arguments. When 'DiscrimType' is one of the quadratic types, 'Gamma' must be 0 or the solver errors. In that case, use this conditional constraint function:

```matlab
function XTable = fitcdiscrCVF(XTable)
% Gamma must be 0 if discrim type is a quadratic
XTable.Gamma(ismember(XTable.DiscrimType, {'quadratic',...'
diagQuadratic','pseudoQuadratic'})) = 0;
end
```

Conditional Constraint That Sets a Variable to NaN

Suppose that you are optimizing a classification using fitcsvm, and you optimize over both the 'KernelFunction' and 'PolynomialOrder' name-value pair arguments. When 'KernelFunction' is not 'polynomial', the 'PolynomialOrder' setting does not apply. The following function enforces this conditional constraint.

```matlab
function Xnew = condvariablefcn(X)
Xnew = X;
Xnew.PolynomialOrder(Xnew.KernelFunction ~= 'polynomial') = NaN;
end
```

You can save a line of code as follows:

```matlab
function X = condvariablefcn(X)
X.PolynomialOrder(Xnew.KernelFunction ~= 'polynomial') = NaN;
```
In addition, define an objective function that does not pass the 'PolynomialOrder' name-value pair argument to fitcsvm when the value of 'PolynomialOrder' is NaN.

```matlab
fun = @(X)mysvmfun(X,predictors,responce,c)
```  

```matlab
function objective = mysvmfun(X,predictors,response,c)
    args = {predictors,response, ...
        'CVPartition',c, ...
        'KernelFunction',X.KernelFunction};
    if ~isnan(X.PolynomialOrder)
        args = [args,{'PolynomialOrder',X.PolynomialOrder}];
    end
    objective = kfoldLoss(fitcsvm(args{:}));
end
```

Coupled Constraints

Coupled constraints are constraints that you can evaluate only by calling the objective function. These constraints can be stochastic or deterministic. Return these constraint values from your objective function in the second argument. See “Bayesian Optimization Objective Functions” on page 10-43.

The objective function returns a numeric vector for the coupled constraints, one entry for each coupled constraint. For each entry, a negative value indicates that the constraint is satisfied (also called feasible). A positive value indicates that the constraint is not satisfied (infeasible).

bayesopt automatically creates a coupled constraint, called the Error constraint, for every run. This constraint enables bayesopt to model points that cause errors in objective function evaluation. For details, see “Objective Function Errors” on page 10-44 and predictError.

If you have coupled constraints in addition to the Error constraint:

- Include the NumCoupledConstraints name-value pair in your bayesopt call (required). Do not include the Error constraint in this number.
- If any of your coupled constraints are stochastic, include the AreCoupledConstraintsDeterministic name-value pair and pass false for any stochastic constraint.

Observe the coupled constraint values in each iteration by setting the bayesopt Verbose name-value pair to 1 or 2.
Note When there are coupled constraints, iterative display and plot functions can give counterintuitive results such as:

- A *minimum objective* plot can increase.
- The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the optimization progresses. **bayesopt** determines feasibility with respect to its constraint model, and this model changes as **bayesopt** evaluates points. So a “minimum objective” plot can increase when the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is later deemed infeasible.

For an example, see “Bayesian Optimization with Coupled Constraints” on page 10-49.

Bayesian Optimization with Coupled Constraints

A coupled constraint is one that can be evaluated only by evaluating the objective function. In this case, the objective function is the cross-validated loss of an SVM model. The coupled constraint is that the number of support vectors is no more than 100. The model details are in “Optimize a Cross-Validated SVM Classifier Using **bayesopt**” on page 10-55.

Create the data for classification.

```matlab
rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
```
The objective function is the cross-validation loss of the SVM model for partition \(c \). The coupled constraint is the number of support vectors minus 100.5. This ensures that 100 support vectors give a negative constraint value, but 101 support vectors give a positive value. The model has 200 data points, so the coupled constraint values range from -99.5 (there is always at least one support vector) to 99.5. Positive values mean the constraint is not satisfied.

```matlab
function [objective,constraint] = mysvmfun(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.box,...
    'KernelScale',x.sigma);
cvModel = crossval(SVMModel,'CVPartition',c);
objective = kfoldLoss(cvModel);
constraint = sum(SVMModel.IsSupportVector)-100.5;

fun = @(x)mysvmfun(x,cdata,grp,c);
```

Set the `NumCoupledConstraints` to 1 so the optimizer knows that there is a coupled constraint. Set options to plot the constraint model.

```matlab
results = bayesopt(fun,[sigma,box],'IsObjectiveDeterministic',true,...
    'NumCoupledConstraints',1,'PlotFcn',...
    {@plotMinObjective,@plotConstraintModels},...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective

Function evaluations vs. Min objective
Most points lead to an infeasible number of support vectors.

See Also

bayesopt | optimizableVariable
Related Examples

- “Bayesian Optimization Workflow” on page 10-30
- “Variables for a Bayesian Optimization” on page 10-40
- “Bayesian Optimization Objective Functions” on page 10-43
Optimize a Cross-Validated SVM Classifier Using bayesopt

This example shows how to optimize an SVM classification using the bayesopt function. The classification works on locations of points from a Gaussian mixture model. In The Elements of Statistical Learning, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The model begins with generating 10 base points for a "green" class, distributed as 2-D independent normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class, distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and red), generate 100 random points as follows:

1. Choose a base point m of the appropriate color uniformly at random.
2. Generate an independent random point with 2-D normal distribution with mean m and variance $I/5$, where I is the 2-by-2 identity matrix. In this example, use a variance $I/50$ to show the advantage of optimization more clearly.

After generating 100 green and 100 red points, classify them using fitcsvm. Then use bayesopt to optimize the parameters of the resulting SVM model with respect to cross validation.

Generate the Points and Classifier

Generate the 10 base points for each class.

```matlab
rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
```

View the base points.

```matlab
plot(grnpop(:,1),grnpop(:,2),'go') hold on
plot(redpop(:,1),redpop(:,2),'ro') hold off
```
Since some red base points are close to green base points, it can be difficult to classify the data points based on location alone.

Generate the 100 data points of each class.

```matlab
redpts = zeros(100,2); grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
```
Prepare Data For Classification

Put the data into one matrix, and make a vector `grp` that labels the class of each point.

```matlab
hold on
plot(redpts(:,1),redpts(:,2),'ro')
hold off
```

```matlab
cdata = [grnpts;redpts];
grp = ones(200,1);
% Green label 1, red label -1
grp(101:200) = -1;
```
Prepare Cross-Validation

Set up a partition for cross-validation. This step fixes the train and test sets that the optimization uses at each step.

\[
c = \text{cvpartition}(200,'KFold',10);
\]

Prepare Variables for Bayesian Optimization

Set up a function that takes an input \(z = [\text{rbf}_\text{sigma}, \text{boxconstraint}] \) and returns the cross-validation loss value of \(z \). Take the components of \(z \) as positive, log-transformed variables between \(1e-5 \) and \(1e5 \). Choose a wide range, because you don't know which values are likely to be good.

\[
sigma = \text{optimizableVariable}(\text{\texttt{sigma}},[1e-5,1e5],\text{\texttt{Transform}},\text{\texttt{log}});
box = \text{optimizableVariable}(\text{\texttt{box}},[1e-5,1e5],\text{\texttt{Transform}},\text{\texttt{log}});
\]

Objective Function

This function handle computes the cross-validation loss at parameters \([\text{sigma}, \text{box}]\). For details, see \texttt{kfoldLoss}.

\[
\text{bayesopt} \text{ passes the variable } z \text{ to the objective function as a one-row table.}
\]

\[
\text{minfn} = @(z)\text{kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...}
\quad\text{'KernelFunction','rbf','BoxConstraint',z.box,...}
\quad\text{'KernelScale',z.sigma));}
\]

Optimize Classifier

Search for the best parameters \([\text{sigma}, \text{box}]\) using \texttt{bayesopt}. For reproducibility, choose the \texttt{'expected-improvement-plus'} acquisition function. The default acquisition function depends on run time, and so can give varying results.

\[
\text{results} = \text{bayesopt(minfn,}[\text{sigma}, \text{box}],\text{\texttt{IsObjectiveDeterministic'}},\text{true,...}
\quad\text{'AcquisitionFunctionName','expected-improvement-plus'})
\]
Optimize a Cross-Validated SVM Classifier Using bayesopt
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.61</td>
<td>0.71832</td>
<td>0.61</td>
<td>0.61</td>
<td>0.00013375</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.345</td>
<td>0.5423</td>
<td>0.345</td>
<td>0.345</td>
<td>24526</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.61</td>
<td>0.41066</td>
<td>0.345</td>
<td>0.345</td>
<td>0.0026459</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.345</td>
<td>0.42225</td>
<td>0.345</td>
<td>0.345</td>
<td>3506.3</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.345</td>
<td>0.29835</td>
<td>0.345</td>
<td>0.345</td>
<td>9135.2</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.345</td>
<td>0.22682</td>
<td>0.345</td>
<td>0.345</td>
<td>99701</td>
</tr>
<tr>
<td>7</td>
<td>Best</td>
<td>0.295</td>
<td>0.22217</td>
<td>0.295</td>
<td>0.295</td>
<td>455.88</td>
</tr>
<tr>
<td>8</td>
<td>Best</td>
<td>0.24</td>
<td>3.6968</td>
<td>0.24</td>
<td>0.24</td>
<td>31.56</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.24</td>
<td>4.7552</td>
<td>0.24</td>
<td>0.24</td>
<td>10.451</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.35</td>
<td>0.23786</td>
<td>0.24</td>
<td>0.24</td>
<td>17.331</td>
</tr>
</tbody>
</table>

Min objective vs. Number of function evaluations
Optimize a Cross-Validated SVM Classifier Using bayesopt

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Best</td>
<td>0.23</td>
<td>2.8392</td>
<td>0.23</td>
<td>0.23</td>
<td>16.005</td>
</tr>
<tr>
<td>12</td>
<td>Best</td>
<td>0.1</td>
<td>0.42937</td>
<td>0.1</td>
<td>0.1</td>
<td>0.36562</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.115</td>
<td>0.20926</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1793</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>0.105</td>
<td>0.31987</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2267</td>
</tr>
<tr>
<td>15</td>
<td>Best</td>
<td>0.095</td>
<td>0.21948</td>
<td>0.095</td>
<td>0.095</td>
<td>0.28999</td>
</tr>
<tr>
<td>16</td>
<td>Best</td>
<td>0.075</td>
<td>0.24834</td>
<td>0.075</td>
<td>0.075</td>
<td>0.30554</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.085</td>
<td>0.18193</td>
<td>0.075</td>
<td>0.075</td>
<td>0.41122</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.085</td>
<td>0.18732</td>
<td>0.075</td>
<td>0.075</td>
<td>0.25565</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.075</td>
<td>0.18966</td>
<td>0.075</td>
<td>0.075</td>
<td>0.32869</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.085</td>
<td>0.15784</td>
<td>0.075</td>
<td>0.075</td>
<td>0.32442</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 76.5065 seconds.
Total objective function evaluation time: 18.942

Best observed feasible point:
- sigma: 0.30554
- box: 8.9017

Observed objective function value = 0.075
Estimated objective function value = 0.075
Function evaluation time = 0.24834

Best estimated feasible point (according to models):
- sigma
- box
Estimated objective function value = 0.075
Estimated function evaluation time = 0.2034

results =
BayesianOptimization with properties:

ObjectiveFcn: [function_handle]
VariableDescriptions: [1x2 optimizableVariable]
Options: [1x1 struct]
MinObjective: 0.0750
XAtMinObjective: [1x2 table]
MinEstimatedObjective: 0.0750
XAtMinEstimatedObjective: [1x2 table]
NumObjectiveEvaluations: 30
TotalElapsedTime: 76.5065
NextPoint: [1x2 table]
XTrace: [30x2 table]
ObjectiveTrace: [30x1 double]
ConstraintsTrace: []
UserDataTrace: {30x1 cell}
ObjectiveEvaluationTimeTrace: [30x1 double]
IterationTimeTrace: [30x1 double]
ErrorTrace: [30x1 double]
FeasibilityTrace: [30x1 logical]
FeasibilityProbabilityTrace: [30x1 double]
IndexOfMinimumTrace: [30x1 double]
ObjectiveMinimumTrace: [30x1 double]
EstimatedObjectiveMinimumTrace: [30x1 double]

Use the results to train a new, optimized SVM classifier.

z(1) = results.XAtMinObjective.sigma;
z(2) = results.XAtMinObjective.box;
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...'
KernelScale',z(1),'BoxConstraint',z(2));

Plot the classification boundaries. To visualize the support vector classifier, predict scores over a grid.
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)),...
 min(cdata(:,2)):d:max(cdata(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(SVMModel,xGrid);

h = nan(3,1); % Preallocation
figure;
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3) = plot(cdata(SVMModel.IsSupportVector,1),...
 cdata(SVMModel.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');
axis equal
hold off
Evaluate Accuracy on New Data

Generate and classify some new data points.

```matlab
grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1);
grpData(11:20) = -1; % red = -1

v = predict(SVMModel,newData);
```
g = nan(7,1);
figure;
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3:4) = gscatter(newData(:,1),newData(:,2),v,'mc','**');
h(5) = plot(cdata(SVMModel.IsSupportVector,1),...
 cdata(SVMModel.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h(1:5),{'-1 (training)','+1 (training)', '-1 (classified)',...
 '+1 (classified)','Support Vectors'},'Location','Southeast');
axis equal
hold off
See which new data points are correctly classified. Circle the correctly classified points in red, and the incorrectly classified points in black.

```matlab
mydiff = (v == grpData); % Classified correctly
figure;
hold on
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3:4) = gscatter(newData(:,1),newData(:,2),v,'mc','**');
h(5) = plot(cdata(SVMModel.IsSupportVector,1),...
    cdata(SVMModel.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
for ii = mydiff % Plot red squares around correct pts
    h(6) = plot(newData(ii,1),newData(ii,2),'rs','MarkerSize',12);
end
for ii = not(mydiff) % Plot black squares around incorrect pts
    h(7) = plot(newData(ii,1),newData(ii,2),'ks','MarkerSize',12);
end
legend(h,{'-1 (training)','+1 (training)'...\%
    '-1 (classified)','+1 (classified)'...\%
    'Support Vectors','Correctly Classified',...\%
    'Misclassified'},'Location','Southeast');
hold off
```
See Also
bayesopt | optimizableVariable

Related Examples
- “Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 10-68
Optimize an SVM Classifier Fit Using Bayesian Optimization

This example shows how to optimize an SVM classification using the `fitcsvm` function and `OptimizeHyperparameters` name-value pair. The classification works on locations of points from a Gaussian mixture model. In *The Elements of Statistical Learning*, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The model begins with generating 10 base points for a "green" class, distributed as 2-D independent normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class, distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and red), generate 100 random points as follows:

1. Choose a base point \(m \) of the appropriate color uniformly at random.
2. Generate an independent random point with 2-D normal distribution with mean \(m \) and variance \(I/5 \), where \(I \) is the 2-by-2 identity matrix. In this example, use a variance \(I/50 \) to show the advantage of optimization more clearly.

Generate the Points and Classifier

Generate the 10 base points for each class.

```matlab
rng default % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
```

View the base points.

```matlab
plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off
```
Since some red base points are close to green base points, it can be difficult to classify the data points based on location alone.

Generate the 100 data points of each class.

```matlab
redpts = zeros(100,2); grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
```
Prepare Data For Classification

Put the data into one matrix, and make a vector grp that labels the class of each point.

cdata = [grnpts;redpts];
grp = ones(200,1);
% Green label 1, red label -1
grp(101:200) = -1;
Prepare Cross-Validation

Set up a partition for cross-validation. This step fixes the train and test sets that the optimization uses at each step.

```matlab
c = cvpartition(200,'KFold',10);
```

Optimize the Fit

To find a good fit, meaning one with a low cross-validation loss, set options to use Bayesian optimization. Use the same cross-validation partition `c` in all optimizations.

For reproducibility, use the 'expected-improvement-plus' acquisition function.

```matlab
opts = struct('Optimizer','bayesopt','ShowPlots',true,'CVPartition',c,...
               'AcquisitionFunctionName','expected-improvement-plus');
svmmod = fitcsvm(cdata,grp,'KernelFunction','rbf',...
                 'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
Objective function model

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>BoxConstraint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.345</td>
<td>0.65256</td>
<td>0.345</td>
<td>0.345</td>
<td>0.00474</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.115</td>
<td>0.33059</td>
<td>0.115</td>
<td>0.12678</td>
<td>430.31</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.52</td>
<td>0.3304</td>
<td>0.115</td>
<td>0.1152</td>
<td>0.028415</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>BoxConstraint</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.345</td>
<td>0.19768</td>
<td>0.065</td>
<td>0.071764</td>
<td>971.7</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.61</td>
<td>0.31966</td>
<td>0.065</td>
<td>0.071967</td>
<td>0.0010168</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.345</td>
<td>0.24395</td>
<td>0.065</td>
<td>0.071959</td>
<td>996.73</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.35</td>
<td>0.22841</td>
<td>0.065</td>
<td>0.071863</td>
<td>996.69</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.24</td>
<td>0.40574</td>
<td>0.065</td>
<td>0.072124</td>
<td>996.55</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.61</td>
<td>0.25635</td>
<td>0.065</td>
<td>0.072068</td>
<td>958.64</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.47</td>
<td>0.2912</td>
<td>0.065</td>
<td>0.07218</td>
<td>993.69</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.3</td>
<td>0.22305</td>
<td>0.065</td>
<td>0.072291</td>
<td>993.15</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.16</td>
<td>0.64557</td>
<td>0.065</td>
<td>0.072104</td>
<td>992.81</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.365</td>
<td>0.30112</td>
<td>0.065</td>
<td>0.072112</td>
<td>0.0010017</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 76.4651 seconds.
Total objective function evaluation time: 9.0311

Best observed feasible point:
BoxConstraint: 953.22
KernelScale: 0.26253
Observed objective function value = 0.065
Estimated objective function value = 0.072112
Function evaluation time = 0.27076

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>985.37</td>
<td>0.27389</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.072112
Estimated function evaluation time = 0.28839

svmmmod =
ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: [-1 1]
 ScoreTransform: 'none'
 NumObservations: 200
 HyperparameterOptimizationResults: [1x1 BayesianOptimization]
 Alpha: [77x1 double]
 Bias: -0.2352
 KernelParameters: [1x1 struct]
 BoxConstraints: [200x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [200x1 logical]
 Solver: 'SMO'

Properties, Methods

Find the loss of the optimized model.

lossnew = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,'KernelFunction','rbf',
 'BoxConstraint',svmmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxConstraint,
 'KernelScale',svmmmod.HyperparameterOptimizationResults.XAtMinObjective.KernelScale))

lossnew = 0.0650

This loss is the same as the loss reported in the optimization output under "Observed objective function value".

Visualize the optimized classifier.
d = 0.02;
[x1Grid, x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)),...
 min(cdata(:,2)):d:max(cdata(:,2)));
xGrid = [x1Grid(:), x2Grid(:)];
[~, scores] = predict(svmmod, xGrid);
figure;
h = nan(3,1); % Preallocation
h(1:2) = gscatter(cdata(:,1), cdata(:,2), grp, 'rg', '++');
hold on
h(3) = plot(cdata(svmmod.IsSupportVector,1),...
 cdata(svmmod.IsSupportVector,2), 'ko');
contour(x1Grid, x2Grid, reshape(scores(:,2), size(x1Grid)), [0 0], 'k');
legend(h, {'-1', '+1', 'Support Vectors'}, 'Location', 'Southeast');
axis equal
hold off
See Also
bayesopt | fitcsvm

Related Examples
• “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55
Optimize a Boosted Regression Ensemble

This example shows how to optimize hyperparameters of a boosted regression ensemble. The optimization minimizes the cross-validation loss of the model.

The problem is to model the efficiency in miles per gallon of an automobile, based on its acceleration, engine displacement, horsepower, and weight. Load the carsmall data, which contains these and other predictors.

```matlab
load carsmall
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;
```

Fit a regression ensemble to the data using the LSBoost algorithm, and using surrogate splits. Optimize the resulting model by varying the number of learning cycles, the maximum number of surrogate splits, and the learn rate. Furthermore, allow the optimization to repartition the cross-validation between every iteration.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng default
Mdl = fitrensemble(X,Y,
    'Method','LSBoost',
    'Learner',templateTree('Surrogate','on'),
    'OptimizeHyperparameters',{'NumLearningCycles','MaxNumSplits','LearnRate'},
    'HyperparameterOptimizationOptions',struct('Repartition',true,
    'AcquisitionFunctionName','expected-improvement-plus'))
```
Min objective vs. Number of function evaluations

Optimize a Boosted Regression Ensemble
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>NumLearningCycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Accept</td>
<td>3.3339</td>
<td>10.911</td>
<td>3.1893</td>
<td>3.1886</td>
<td>447</td>
</tr>
<tr>
<td>12</td>
<td>Best</td>
<td>2.9764</td>
<td>0.3165</td>
<td>2.9764</td>
<td>3.1412</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>3.1958</td>
<td>0.34108</td>
<td>2.9764</td>
<td>3.1537</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>3.2951</td>
<td>11.913</td>
<td>2.9764</td>
<td>3.1458</td>
<td>487</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
<td>5.8041</td>
<td>0.30311</td>
<td>2.9764</td>
<td>3.1653</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>3.4128</td>
<td>12.332</td>
<td>2.9764</td>
<td>3.1677</td>
<td>500</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>3.2357</td>
<td>0.60773</td>
<td>2.9764</td>
<td>3.1653</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>3.2848</td>
<td>3.1287</td>
<td>2.9764</td>
<td>3.1458</td>
<td>129</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>3.1073</td>
<td>0.46267</td>
<td>2.9764</td>
<td>3.1408</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>6.422</td>
<td>0.26879</td>
<td>2.9764</td>
<td>3.1415</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>3.2146</td>
<td>0.57793</td>
<td>2.9764</td>
<td>3.157</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>3.0515</td>
<td>0.32591</td>
<td>2.9764</td>
<td>3.1365</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>3.3721</td>
<td>12.022</td>
<td>2.9764</td>
<td>3.1357</td>
<td>500</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>3.1053</td>
<td>12.322</td>
<td>2.9764</td>
<td>3.136</td>
<td>499</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>3.1303</td>
<td>12.109</td>
<td>2.9764</td>
<td>3.1357</td>
<td>499</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>3.1956</td>
<td>11.603</td>
<td>2.9764</td>
<td>3.1354</td>
<td>500</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>3.2926</td>
<td>11.796</td>
<td>2.9764</td>
<td>3.1366</td>
<td>500</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>4.4567</td>
<td>1.3716</td>
<td>2.9764</td>
<td>3.1372</td>
<td>74</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>3.4466</td>
<td>4.0423</td>
<td>2.9764</td>
<td>3.1383</td>
<td>186</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>6.1348</td>
<td>1.6247</td>
<td>2.9764</td>
<td>3.137</td>
<td>68</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 176.43 seconds.
Total objective function evaluation time: 134.532

Best observed feasible point:
NumLearningCycles	LearnRate	MaxNumSplits
11 | 0.26217 | 98

Observed objective function value = 2.9764
Estimated objective function value = 3.137
Function evaluation time = 0.3165

Best estimated feasible point (according to models):
NumLearningCycles	LearnRate	MaxNumSplits
10 | 80 |
Estimated objective function value = 3.137
Estimated function evaluation time = 0.29142

Mdl =
 classreg.learning.regr.RegressionEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 NumObservations: 94
 HyperparameterOptimizationResults: [1×1 BayesianOptimization]
 NumTrained: 10
 Method: 'LSBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: [10×1 double]
 FitInfoDescription: {2×1 cell}
 Regularization: []

Properties, Methods

Compare the loss to that of a boosted, unoptimized model, and to that of the default ensemble.

loss = kfoldLoss(crossval(Mdl,'kfold',10))
loss = 23.3445

Mdl2 = fitrensemble(X,Y,...
 'Method','LSBoost',...
 Learner',templateTree('Surrogate','on'));
loss2 = kfoldLoss(crossval(Mdl2,'kfold',10))
loss2 = 37.0534

Mdl3 = fitrensemble(X,Y);
loss3 = kfoldLoss(crossval(Mdl3,'kfold',10))
loss3 = 38.4890
For a different way of optimizing this ensemble, see “Find the Optimal Number of Splits and Trees for an Ensemble” on page 32-2365.
Parametric Regression Analysis

- “Parametric Regression Analysis” on page 11-3
- “What Are Linear Regression Models?” on page 11-8
- “Linear Regression” on page 11-11
- “Linear Regression Workflow” on page 11-43
- “Regression Using Dataset Arrays” on page 11-50
- “Regression Using Tables” on page 11-53
- “Linear Regression with Interaction Effects” on page 11-56
- “Interpret Linear Regression Results” on page 11-65
- “Cook’s Distance” on page 11-71
- “Coefficient Standard Errors and Confidence Intervals” on page 11-75
- “Coefficient of Determination (R-Squared)” on page 11-79
- “Delete-1 Statistics” on page 11-82
- “Durbin-Watson Test” on page 11-93
- “F-statistic and t-statistic” on page 11-95
- “Hat Matrix and Leverage” on page 11-101
- “Residuals” on page 11-105
- “Summary of Output and Diagnostic Statistics” on page 11-114
- “Wilkinson Notation” on page 11-116
- “Stepwise Regression” on page 11-126
- “Robust Regression — Reduce Outlier Effects” on page 11-132
- “Ridge Regression” on page 11-135
- “Lasso and Elastic Net” on page 11-140
- “Wide Data via Lasso and Parallel Computing” on page 11-143
- “Lasso Regularization” on page 11-149
- “Lasso and Elastic Net with Cross Validation” on page 11-153
- “Partial Least Squares” on page 11-157
• “Linear Mixed-Effects Models” on page 11-162
• “Prepare Data for Linear Mixed-Effects Models” on page 11-167
• “Relationship Between Formula and Design Matrices” on page 11-173
• “Estimating Parameters in Linear Mixed-Effects Models” on page 11-180
• “Linear Mixed-Effects Model Workflow” on page 11-185
• “Fit Mixed-Effects Spline Regression” on page 11-199
Parametric Regression Analysis

In this section...

“What Is Parametric Regression?” on page 11-3
“What Choose a Regression Function” on page 11-3
“Update Legacy Code with New Fitting Methods” on page 11-4

What Is Parametric Regression?

Regression is the process of fitting models to data. The models must have numerical responses. For models with categorical responses, see “Parametric Classification” on page 17-2 or “Supervised Learning Workflow and Algorithms” on page 18-2. The regression process depends on the model. If a model is parametric, regression estimates the parameters from the data. If a model is linear in the parameters, estimation is based on methods from linear algebra that minimize the norm of a residual vector. If a model is nonlinear in the parameters, estimation is based on search methods from optimization that minimize the norm of a residual vector.

Choose a Regression Function

<table>
<thead>
<tr>
<th>You have:</th>
<th>You want:</th>
<th>Use this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous or categorical predictors, continuous response, linear model</td>
<td>Fitted model coefficients</td>
<td>fitlm. See “Linear Regression” on page 11-11.</td>
</tr>
<tr>
<td>Continuous or categorical predictors, continuous response, linear model of unknown complexity</td>
<td>Fitted model and fitted coefficients</td>
<td>stepwiselm. See “Stepwise Regression” on page 11-126.</td>
</tr>
<tr>
<td>Continuous or categorical predictors, response possibly with restrictions such as nonnegative or integer-valued, generalized linear model</td>
<td>Fitted generalized linear model coefficients</td>
<td>fitglm or stepwiseglm. See “Generalized Linear Models” on page 12-12.</td>
</tr>
</tbody>
</table>
Update Legacy Code with New Fitting Methods

There are several Statistics and Machine Learning Toolbox functions for performing regression. The following sections describe how to replace calls to older functions to new versions:

- “regress into fitlm” on page 11-5
- “regstats into fitlm” on page 11-5
- “robustfit into fitlm” on page 11-5
- “stepwisefit into stepwiselm” on page 11-6
- “glmfit into fitglm” on page 11-6
- “nlmfit into fitnlm” on page 11-6
regress into fitlm

Previous Syntax

\[[b,\text{bint},r,\text{rint},\text{stats}] = \text{regress}(y,X)\]

where \(X\) contains a column of ones.

Current Syntax

\[\text{mdl} = \text{fitlm}(X,y)\]

where you do not add a column of ones to \(X\).

Equivalent values of the previous outputs:

- \(b\) — \(\text{mdl}.\text{Coefficients}.\text{Estimate}\)
- \(\text{bint}\) — \(\text{coefCI}(\text{mdl})\)
- \(r\) — \(\text{mdl}.\text{Residuals}.\text{Raw}\)
- \(\text{rint}\) — There is no exact equivalent. Try examining \(\text{mdl}.\text{Residuals}.\text{Studentized}\) to find outliers.
- \(\text{stats}\) — \(\text{mdl}\) contains various properties that replace components of \(\text{stats}\).

regstats into fitlm

Previous Syntax

\[\text{stats} = \text{regstats}(y,X,\text{model},\text{whichstats})\]

Current Syntax

\[\text{mdl} = \text{fitlm}(X,y,\text{model})\]

Obtain statistics from the properties and methods of \(\text{mdl}\). For example, see the \(\text{mdl}.\text{Diagnostics}\) and \(\text{mdl}.\text{Residuals}\) properties.

robustfit into fitlm

Previous Syntax

\[[b,\text{stats}] = \text{robustfit}(X,y,wfun,\text{tune},\text{const})\]

Current Syntax

\[\text{mdl} = \text{fitlm}(X,y,\text{''robust'',''on''}) \% \text{bisquare}\]
Or to use the *wfun* weight and the *tune* tuning parameter:

```matlab
opt.RobustWgtFun = 'wfun';
opt.Tune = tune; % optional
mdl = fitlm(X,y,'robust',opt)
```

Obtain statistics from the properties and methods of `mdl`. For example, see the `mdl.Diagnostics` and `mdl.Residuals` properties.

stepwisefit into stepwiselm

Previous Syntax

```matlab
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(X,y,Name,Value)
```

Current Syntax

```matlab
mdl = stepwiselm(ds,modelspec,Name,Value)
```

or

```matlab
mdl = stepwiselm(X,y,modelspec,Name,Value)
```

Obtain statistics from the properties and methods of `mdl`. For example, see the `mdl.Diagnostics` and `mdl.Residuals` properties.

glmfit into fitglm

Previous Syntax

```matlab
[b,dev,stats] = glmfit(X,y,distr,param1,val1,...)
```

Current Syntax

```matlab
mdl = fitglm(X,y,distr,...)
```

Obtain statistics from the properties and methods of `mdl`. For example, the deviance is `mdl.Deviance`, and to compare `mdl` against a constant model, use `devianceTest(mdl)`.

nlinfit into fitnlm

Previous Syntax

```matlab
[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0,options)
```
Current Syntax

```matlab
mdl = fitnlm(X,y,fun,beta0,'Options',options)
```

Equivalent values of the previous outputs:

- `beta` — `mdl.Coefficients.Estimate`
- `r` — `mdl.Residuals.Raw`
- `covb` — `mdl.CoefficientCovariance`
- `mse` — `mdl.mse`

`mdl` does not provide the Jacobian (J) output. The primary purpose of J was to pass it into `nlparci` or `nlpredci` to obtain confidence intervals for the estimated coefficients (parameters) or predictions. Obtain those confidence intervals as:

```matlab
parci = coefCI(mdl)
[pred,predci] = predict(mdl)
```
What Are Linear Regression Models?

Regression models describe the relationship between a dependent variable, \(y \), and independent variable or variables, \(X \). The dependent variable is also called the response variable. Independent variables are also called explanatory or predictor variables. Continuous predictor variables might be called covariates, whereas categorical predictor variables might be also referred to as factors. The matrix, \(X \), of observations on predictor variables is usually called the design matrix.

A multiple linear regression model is

\[
y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ip} + \varepsilon_i, \quad i = 1, \ldots, n,
\]

where

- \(y_i \) is the \(i \)th response.
- \(\beta_k \) is the \(k \)th coefficient, where \(\beta_0 \) is the constant term in the model. Sometimes, design matrices might include information about the constant term. However, \texttt{fitlm} or \texttt{stepwiselm} by default includes a constant term in the model, so you must not enter a column of 1s into your design matrix \(X \).
- \(X_{ij} \) is the \(i \)th observation on the \(j \)th predictor variable, \(j = 1, \ldots, p \).
- \(\varepsilon_i \) is the \(i \)th noise term, that is, random error.

In general, a linear regression model can be a model of the form

\[
y_i = \beta_0 + \sum_{k=1}^{K} \beta_k f_k \left(X_{i1}, X_{i2}, \ldots, X_{ip} \right) + \varepsilon_i, \quad i = 1, \ldots, n,
\]

where \(f(\cdot) \) is a scalar-valued function of the independent variables, \(X_{ij} \)s. The functions, \(f(X) \), might be in any form including nonlinear functions or polynomials. The linearity, in the linear regression models, refers to the linearity of the coefficients \(\beta_k \). That is, the response variable, \(y \), is a linear function of the coefficients, \(\beta_k \).

Some examples of linear models are:

\[
\begin{align*}
y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i \\
y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}^2 + \beta_4 X_{2i}^2 + \varepsilon_i \\
y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \beta_4 \log X_{3i} + \varepsilon_i
\end{align*}
\]
The following, however, are not linear models since they are not linear in the unknown coefficients, β_k.

$$
\log y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i
$$

$$
y_i = \beta_0 + \beta_1 X_{1i} + \frac{1}{\beta_2 X_{2i}} + e^{\beta_3 X_{1i} X_{2i}} + \varepsilon_i
$$

The usual assumptions for linear regression models are:

• The noise terms, ε_i, are uncorrelated.

• The noise terms, ε_i, have independent and identical normal distributions with mean zero and constant variance, σ^2. Thus

$$
E(\hat{y}_i) = E\left(\sum_{k=0}^{K} \beta_k f_k(X_{i1}, X_{i2}, \ldots, X_{ip}) + \varepsilon_i\right)
$$

$$
= \sum_{k=0}^{K} \beta_k f_k(X_{i1}, X_{i2}, \ldots, X_{ip}) + E(\varepsilon_i)
$$

$$
= \sum_{k=0}^{K} \beta_k f_k(X_{i1}, X_{i2}, \ldots, X_{ip})
$$

and

$$
V(\hat{y}_i) = V\left(\sum_{k=0}^{K} \beta_k f_k(X_{i1}, X_{i2}, \ldots, X_{ip}) + \varepsilon_i\right) = V(\varepsilon_i) = \sigma^2
$$

So the variance of y_i is the same for all levels of X_{ij}.

• The responses y_i are uncorrelated.

The fitted linear function is

$$
\hat{y}_i = \sum_{k=0}^{K} b_k f_k(X_{i1}, X_{i2}, \ldots, X_{ip}), \quad i = 1, \ldots, n,
$$

where \hat{y}_i is the estimated response and b_ks are the fitted coefficients. The coefficients are estimated so as to minimize the mean squared difference between the prediction vector
\(\hat{y} \) and the true response vector \(y \), that is \(\hat{y} - y \). This method is called the method of least squares. Under the assumptions on the noise terms, these coefficients also maximize the likelihood of the prediction vector.

In a linear regression model of the form \(y = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p \), the coefficient \(\beta_k \) expresses the impact of a one-unit change in predictor variable, \(X_j \), on the mean of the response, \(E(y) \) provided that all other variables are held constant. The sign of the coefficient gives the direction of the effect. For example, if the linear model is \(E(y) = 1.8 - 2.35 X_1 + X_2 \), then \(-2.35\) indicates a 2.35 unit decrease in the mean response with a one-unit increase in \(X_1 \), given \(X_2 \) is held constant. If the model is \(E(y) = 1.1 + 1.5 X_1^2 + X_2 \), the coefficient of \(X_1^2 \) indicates a 1.5 unit increase in the mean of \(Y \) with a one-unit increase in \(X_1^2 \) given all else held constant. However, in the case of \(E(y) = 1.1 + 2.1 X_1 + 1.5 X_1^2 \), it is difficult to interpret the coefficients similarly, since it is not possible to hold \(X_1 \) constant when \(X_1^2 \) changes or vice versa.

References

See Also

LinearModel | fitlm | stepwiselm

Related Examples

- “Interpret Linear Regression Results” on page 11-65
- “Regression Using Dataset Arrays” on page 11-50
- “Linear Regression with Interaction Effects” on page 11-56
- “Regression with Categorical Covariates” on page 2-63
- “Linear Regression Workflow” on page 11-43
Linear Regression

In this section...

“Prepare Data” on page 11-11
“Choose a Fitting Method” on page 11-13
“Choose a Model or Range of Models” on page 11-14
“Fit Model to Data” on page 11-19
“Examine Quality and Adjust the Fitted Model” on page 11-20
“Predict or Simulate Responses to New Data” on page 11-38
“Share Fitted Models” on page 11-41

Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array \(X \) and response data in a separate vector \(y \), or input data in a table or dataset array \(tbl \) and response data as a column in \(tbl \). Each row of the input data represents one observation. Each column represents one predictor (variable).

For a table or dataset array \(tbl \), indicate the response variable with the ‘ResponseVar’ name-value pair:

\[
mdl = \text{fitlm}(tbl,'ResponseVar','BloodPressure');
% or
mdl = \text{fitglm}(tbl,'ResponseVar','BloodPressure');
\]

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes values from a fixed set of possibilities.

- For a numeric array \(X \), indicate the categorical predictors using the ‘Categorical’ name-value pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

\[
mdl = \text{fitlm}(X,y,'Categorical',[2,3]);
% or
mdl = \text{fitglm}(X,y,'Categorical',[2,3]);
\]
% or equivalently
mdl = fitlm(X,y,'Categorical',logical([0 1 1 0 0 0]));

- For a table or dataset array tbl, fitting functions assume that these data types are
categorical:
 - Logical
 - Character array

If you want to indicate that a numeric predictor is categorical, use the
'Categorical' name-value pair.

Represent missing numeric data as NaN. To represent missing data for other data types,
see “Missing Group Values” on page 2-59.

Dataset Array for Input and Response Data

To create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls', ...
 'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall
ds = dataset(MPG,Weight);
ds.Year = categorical(Model_Year);

Table for Input and Response Data

To create a table from an Excel spreadsheet:

tbl = readtable('hospital.xls', ...) ...
 'ReadRowNames',true);

To create a table from workspace variables:

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);

Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:
load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = [] ; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose a Fitting Method

There are three ways to fit a model to data:

- “Least-Squares Fit” on page 11-13
- “Robust Fit” on page 11-13
- “Stepwise Fit” on page 11-13

Least-Squares Fit

Use fitlm to construct a least-squares fit of a model to the data. This method is best when you are reasonably certain of the model’s form, and mainly need to find its parameters. This method is also useful when you want to explore a few models. The method requires you to examine the data manually to discard outliers, though there are techniques to help (see “Residuals — Model Quality for Training Data” on page 11-24).

Robust Fit

Use fitlm with the RobustOpts name-value pair to create a model that is little affected by outliers. Robust fitting saves you the trouble of manually discarding outliers. However, step does not work with robust fitting. This means that when you use robust fitting, you cannot search stepwise for a good model.

Stepwise Fit

Use stepwiselm to find a model, and fit parameters to the model. stepwiselm starts from one model, such as a constant, and adds or subtracts terms one at a time, choosing an optimal term each time in a greedy fashion, until it cannot improve further. Use stepwise fitting to find a good model, which is one that has only relevant terms.
The result depends on the starting model. Usually, starting with a constant model leads to a small model. Starting with more terms can lead to a more complex model, but one that has lower mean squared error. See “Compare large and small stepwise models” on page 11-126.

You cannot use robust options along with stepwise fitting. So after a stepwise fit, examine your model for outliers (see “Residuals — Model Quality for Training Data” on page 11-24).

Choose a Model or Range of Models

There are several ways of specifying a model for linear regression. Use whichever you find most convenient.

- “Brief Name” on page 11-14
- “Terms Matrix” on page 11-15
- “Formula” on page 11-18

For `fitlm`, the model specification you give is the model that is fit. If you do not give a model specification, the default is 'linear'.

For `stepwiselm`, the model specification you give is the starting model, which the stepwise procedure tries to improve. If you do not give a model specification, the default starting model is 'constant', and the default upper bounding model is 'interactions'. Change the upper bounding model using the `Upper` name-value pair.

Note There are other ways of selecting models, such as using `lasso`, `lassoglm`, `sequentialfs`, or `plsregress`.

Brief Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>Name</td>
<td>Model Type</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree i in the first predictor, degree j in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

For example, to specify an interaction model using `fitlm` with matrix predictors:

```matlab
mdl = fitlm(X,y,'interactions');
```

To specify a model using `stepwiselm` and a table or dataset array `tbl` of predictors, suppose you want to start from a constant and have a linear model upper bound. Assume the response variable in `tbl` is in the third column.

```matlab
mdl2 = stepwiselm(tbl,'constant', ... 'Upper','linear','ResponseVar',3);
```

Terms Matrix

A terms matrix is a t-by-$(p + 1)$ matrix specifying terms in a model, where t is the number of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of $T(i,j)$ is the exponent of variable j in term i. Suppose there are three predictor variables A, B, and C:

```
[0 0 0 0] % Constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[1 0 1 0] % A*C
[2 0 0 0] % A^2
[0 1 2 0] % B*(C^2)
```

The 0 at the end of each term represents the response variable. In general,
• If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
```

Redefine the table.

```matlab
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.
Load the sample data and define the matrix of predictors.

```matlab
t = load('carsmall')
X = [Acceleration, Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

```matlab
t = [0 0 0; 1 0 0; 0 1 0; 1 1 0; 0 2 0]
```

Fit a linear model.

```matlab
mdl = fitlm(X, MPG, T)
```

```matlab
mdl =

Linear regression model:
  y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:
     Estimate       SE           tStat      pValue
    __________       ____          ______    _______
     (Intercept)     48.906        12.589     3.8847    0.00019665
     x1              0.54418       0.57125    0.95261       0.34337
     x2             -0.012781     0.0060312    -2.1192      0.036857
     x1:x2          -0.00010892    0.00017925    -0.6076         0.545
     x2^2             9.7518e-07    7.5389e-07     1.2935       0.19917

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751,  Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26
```

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.
Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[T = \begin{bmatrix} 0 & 0 & 0; & 1 & 0 & 0; & 0 & 1 & 0; & 1 & 1 & 0 \end{bmatrix}; \]

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:
 \(y \sim 1 + x2 \)

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of \texttt{fitlm} in the previous step.

Formula

A formula for a model specification is a character vector or string scalar of the form

\['Y \sim terms', \]

- \(Y\) is the response name.
- \(terms\) contains
 - Variable names
 - + to include the next variable
 - - to exclude the next variable
 - : to define an interaction, a product of terms
 - * to define an interaction and all lower-order terms
 - ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
• () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

Examples:

'Y ~ A + B + C' is a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example, since B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example, since A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

For example, to specify an interaction model using fitlm with matrix predictors:

```matlab
mdl = fitlm(X,y,'y ~ x1*x2*x3 - x1:x2:x3');
```

To specify a model using stepwiselm and a table or dataset array tbl of predictors, suppose you want to start from a constant and have a linear model upper bound. Assume the response variable in tbl is named 'y', and the predictor variables are named 'x1', 'x2', and 'x3'.

```matlab
mdl2 = stepwiselm(tbl,'y ~ 1','Upper','y ~ x1 + x2 + x3');
```

Fit Model to Data

The most common optional arguments for fitting:

- For robust regression in fitlm, set the 'RobustOpts' name-value pair to 'on'.
- Specify an appropriate upper bound model in stepwiselm, such as set 'Upper' to 'linear'.
- Indicate which variables are categorical using the 'CategoricalVars' name-value pair. Provide a vector with column numbers, such as [1 6] to specify that predictors 1 and 6 are categorical. Alternatively, give a logical vector the same length as the data.
columns, with a 1 entry indicating that variable is categorical. If there are seven predictors, and predictors 1 and 6 are categorical, specify logical([1,0,0,0,0,1,0]).

• For a table or dataset array, specify the response variable using the 'ResponseVar' name-value pair. The default is the last column in the array.

For example,

mdl = fitlm(X,y,'linear', ...
 'RobustOpts','on','CategoricalVars',3);
mdl2 = stepwiselm(tbl,'constant', ...
 'ResponseVar','MPG','Upper','quadratic');

Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result and make adjustments.

• “Model Display” on page 11-20
• “ANOVA” on page 11-21
• “Diagnostic Plots” on page 11-22
• “Residuals — Model Quality for Training Data” on page 11-24
• “Plots to Understand Predictor Effects” on page 11-29
• “Plots to Understand Terms Effects” on page 11-34
• “Change Models” on page 11-36

Model Display

A linear regression model shows several diagnostics when you enter its name or enter disp(mdl). This display gives some of the basic information to check whether the fitted model represents the data adequately.

For example, fit a linear model to data constructed with two out of five predictors not present and with no intercept term:

X = randn(100,5);
y = X*[1;0;3;0;-1] + randn(100,1);
mdl = fitlm(X,y)

mdl =
Linear regression model:
\[y \sim 1 + x1 + x2 + x3 + x4 + x5 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.038164</td>
<td>0.099458</td>
<td>0.38372</td>
<td>0.70205</td>
</tr>
<tr>
<td>x1</td>
<td>0.92794</td>
<td>0.087307</td>
<td>10.628</td>
<td>8.5494e-18</td>
</tr>
<tr>
<td>x2</td>
<td>-0.075593</td>
<td>0.10044</td>
<td>-0.75264</td>
<td>0.45355</td>
</tr>
<tr>
<td>x3</td>
<td>2.8965</td>
<td>0.099879</td>
<td>29</td>
<td>1.1117e-48</td>
</tr>
<tr>
<td>x4</td>
<td>0.045311</td>
<td>0.10832</td>
<td>0.41831</td>
<td>0.67667</td>
</tr>
<tr>
<td>x5</td>
<td>-0.99708</td>
<td>0.11799</td>
<td>-8.4504</td>
<td>3.593e-13</td>
</tr>
</tbody>
</table>

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 0.972
R-squared: 0.93, Adjusted R-Squared 0.926
F-statistic vs. constant model: 248, p-value = 1.5e-52

Notice that:

- The display contains the estimated values of each coefficient in the **Estimate** column. These values are reasonably near the true values \([0;1;0;3;0;-1]\).
- There is a standard error column for the coefficient estimates.
- The reported **pValue** (which are derived from the **t** statistics under the assumption of normal errors) for predictors 1, 3, and 5 are extremely small. These are the three predictors that were used to create the response data \(y\).
- The **pValue** for (Intercept), \(x2\) and \(x4\) are much larger than 0.01. These three predictors were not used to create the response data \(y\).
- The display contains \(R^2\), adjusted \(R^2\), and \(F\) statistics.

ANOVA

To examine the quality of the fitted model, consult an ANOVA table. For example, use **anova** on a linear model with five predictors:

```plaintext
X = randn(100,5);
y = X*[1;0;3;0;-1] + randn(100,1);
mdl = fitlm(X,y);
tbl = anova(mdl)

tbl =
     SumSq    DF    MeanSq   F    pValue
     x1      106.62     1  106.62  112.96  8.5494e-18
```
This table gives somewhat different results than the default display (see “Model Display” on page 11-20). The table clearly shows that the effects of \(x_2 \) and \(x_4 \) are not significant. Depending on your goals, consider removing \(x_2 \) and \(x_4 \) from the model.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. For example, load the carsmall data, and make a model of MPG as a function of Cylinders (categorical) and Weight:

```matlab
load carsmall
tbl = table(Weight,MPG,Cylinders);
tbl.Cylinders = categorical(tbl.Cylinders);
mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');
```

Make a leverage plot of the data and model.

```matlab
plotDiagnostics(mdl)
```
There are a few points with high leverage. But this plot does not reveal whether the high-leverage points are outliers.

Look for points with large Cook’s distance.

plotDiagnostics(mdl,'cookd')
There is one point with large Cook’s distance. Identify it and remove it from the model. You can use the Data Cursor to click the outlier and identify it, or identify it programmatically:

```matlab
 [~, larg] = max(mdl.Diagnostics.CooksDistance);
 mdl2 = fitlm(tbl, 'MPG ~ Cylinders*Weight + Weight^2', ...
             'Exclude', larg);
```

Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or data. The simplest residual plots are the default histogram plot, which shows the range of the residuals and their frequencies, and the probability plot, which shows how the distribution of the residuals compares to a normal distribution with matched variance.

Load the carsmall data, and make a model of MPG as a function of Cylinders (categorical) and Weight:
load carsmall
tbl = table(Weight,MPG,Cylinders);
tbl.Cylinders = categorical(tbl.Cylinders);
mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');

Examine the residuals:
plotResiduals(mdl)

The observations above 12 are potential outliers.
plotResiduals(mdl,'probability')
The two potential outliers appear on this plot as well. Otherwise, the probability plot seems reasonably straight, meaning a reasonable fit to normally distributed residuals.

You can identify the two outliers and remove them from the data:

```matlab
outl = find(mdl.Residuals.Raw > 12)

outl =
  90
  97
```

To remove the outliers, use the `Exclude` name-value pair:

```matlab
mdl2 = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2', ...
             'Exclude',outl);
```

Examine a residuals plot of `mdl2`:
The new residuals plot looks fairly symmetric, without obvious problems. However, there might be some serial correlation among the residuals. Create a new plot to see if such an effect exists.

`plotResiduals(mdl2,'lagged')`
The scatter plot shows many more crosses in the upper-right and lower-left quadrants than in the other two quadrants, indicating positive serial correlation among the residuals.

Another potential issue is when residuals are large for large observations. See if the current model has this issue.

plotResiduals(mdl2,'fitted')
There is some tendency for larger fitted values to have larger residuals. Perhaps the model errors are proportional to the measured values.

Plots to Understand Predictor Effects

This example shows how to understand the effect each predictor has on a regression model using a variety of available plots.

1. Create a model of mileage from some predictors in the carsmall data.

```matlab
load carsmall
tbl = table(Weight,MPG,Cylinders);
tbl.Cylinders = categorical(tbl.Cylinders);
mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');
```

2. Examine a slice plot of the responses. This displays the effect of each predictor separately.
You can drag the individual predictor values, which are represented by dashed blue vertical lines. You can also choose between simultaneous and non-simultaneous confidence bounds, which are represented by dashed red curves.
3 Use an effects plot to show another view of the effect of predictors on the response.

```
plotEffects(mdl)
```
This plot shows that changing Weight from about 2500 to 4732 lowers MPG by about 30 (the location of the upper blue circle). It also shows that changing the number of cylinders from 8 to 4 raises MPG by about 10 (the lower blue circle). The horizontal blue lines represent confidence intervals for these predictions. The predictions come from averaging over one predictor as the other is changed. In cases such as this, where the two predictors are correlated, be careful when interpreting the results.

Instead of viewing the effect of averaging over a predictor as the other is changed, examine the joint interaction in an interaction plot.

plotInteraction(mdl,'Weight','Cylinders')

The interaction plot shows the effect of changing one predictor with the other held fixed. In this case, the plot is much more informative. It shows, for example, that lowering the number of cylinders in a relatively light car (Weight = 1795) leads to an increase in mileage, but lowering the number of cylinders in a relatively heavy car (Weight = 4732) leads to a decrease in mileage.
For an even more detailed look at the interactions, look at an interaction plot with predictions. This plot holds one predictor fixed while varying the other, and plots the effect as a curve. Look at the interactions for various fixed numbers of cylinders.

```matlab
plotInteraction(mdl,'Cylinders','Weight','predictions')
```

![Interaction of Cylinders and Weight](image)

Now look at the interactions with various fixed levels of weight.

```matlab
plotInteraction(mdl,'Weight','Cylinders','predictions')
```
Plots to Understand Terms Effects

This example shows how to understand the effect of each term in a regression model using a variety of available plots.

1. Create a model of mileage from some predictors in the carsmall data.

   ```matlab
   load carsmall
   tbl = table(Weight,MPG,Cylinders);
   tbl.Cylinders = categorical(tbl.Cylinders);
   mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');
   ```

2. Create an added variable plot with $Weight^2$ as the added variable.

   ```matlab
   plotAdded(mdl,'Weight^2')
   ```
This plot shows the results of fitting both Weight^2 and MPG to the terms other than Weight^2. The reason to use `plotAdded` is to understand what additional improvement in the model you get by adding Weight^2. The coefficient of a line fit to these points is the coefficient of Weight^2 in the full model. The Weight^2 predictor is just over the edge of significance (pValue < 0.05) as you can see in the coefficients table display. You can see that in the plot as well. The confidence bounds look like they could not contain a horizontal line (constant y), so a zero-slope model is not consistent with the data.

3 Create an added variable plot for the model as a whole.

```matlab
plotAdded(mdl)
```
The model as a whole is very significant, so the bounds don't come close to containing a horizontal line. The slope of the line is the slope of a fit to the predictors projected onto their best-fitting direction, or in other words, the norm of the coefficient vector.

Change Models

There are two ways to change a model:

- **step** — Add or subtract terms one at a time, where step chooses the most important term to add or remove.

- **addTerms** and **removeTerms** — Add or remove specified terms. Give the terms in any of the forms described in “Choose a Model or Range of Models” on page 11-14.

If you created a model using stepwiselm, step can have an effect only if you give different upper or lower models. step does not work when you fit a model using Robust0pts.
For example, start with a linear model of mileage from the `carbig` data:

```matlab
load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);
mdl = fitlm(tbl,'linear','ResponseVar','MPG')
```

```
mdl =

Linear regression model:
    MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:
            Estimate       SE       tStat       pValue
    (Intercept)             45.251       2.456     18.424    7.0721e-55
     Acceleration         -0.023148     0.1256    -0.1843       0.85388
    Displacement          -0.0060009     0.0067093  -0.89441       0.37166
     Horsepower          -0.043608     0.016573    -2.6312      0.008849
       Weight            -0.0052805     0.00081085  -6.5123    2.3025e-10

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 4.25
R-squared: 0.707, Adjusted R-Squared 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102
```

Try to improve the model using `step` for up to 10 steps:

```matlab
mdl1 = step(mdl,'NSteps',10)
```

```
1. Adding Displacement:Horsepower, FStat = 87.4802, pValue = 7.05273e-19
mdl1 =

Linear regression model:
    MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:
            Estimate       SE       tStat      pValue
    (Intercept)             61.285       2.8052    21.847    1.8593e-69
     Acceleration         -0.34401       0.11862   -2.9001    0.0039445
    Displacement          -0.081198      0.010071   -8.0623    9.5014e-15
     Horsepower          -0.24313       0.026068   -9.3265    8.6556e-19
       Weight            -0.0014367     0.00084041  -1.7095     0.088166
Displacement:Horsepower  0.00054236     5.7987e-05   9.3531    7.0527e-19

Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761, Adjusted R-Squared 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117
```
step stopped after just one change.

To try to simplify the model, remove the Acceleration and Weight terms from mdl1:

```matlab
mdl2 = removeTerms(mdl1,'Accelera\tion + Weight')
```

```
mdl2 =

Linear regression model:
  MPG ~ 1 + Displacement*Horsepower

Estimated Coefficients:
                         Estimate     SE      tStat     pValue
  (Intercept)              53.051       1.526    34.765    3.0201e-121
  Displacement            -0.098046     0.0066817  -14.674     4.3203e-39
  Horsepower             -0.23434       0.019593  -11.96     2.8024e-28
  Displacement:Horsepower 0.00058278    5.193e-05   11.222     1.6816e-25

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.94
R-squared: 0.747,  Adjusted R-Squared 0.745
F-statistic vs. constant model: 381, p-value = 3e-115
```

mdl2 uses just Displacement and Horsepower, and has nearly as good a fit to the data as mdl1 in the Adjusted R-Squared metric.

Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict or simulate the response to new data:

- “predict” on page 11-38
- “feval” on page 11-39
- “random” on page 11-40

predict

This example shows how to predict and obtain confidence intervals on the predictions using the predict method.

1 Load the carbig data and make a default linear model of the response MPG to the Acceleration, Displacement, Horsepower, and Weight predictors.

```matlab
load carbig
X = [Acceleration,Displacement,Horsepower,Weight];
mdl = fitlm(X,MPG);
```
Create a three-row array of predictors from the minimal, mean, and maximal values. There are some NaN values, so use functions that ignore NaN values.

\[
X_{\text{new}} = \begin{bmatrix} \text{nanmin}(X); \text{nanmean}(X); \text{nanmax}(X) \end{bmatrix}; \quad \% \text{ new data}
\]

Find the predicted model responses and confidence intervals on the predictions.

\[
[\text{NewMPG}, \text{NewMPGCI}] = \text{predict}(\text{mdl},X_{\text{new}})
\]

\[
\text{NewMPG} = \\
\begin{bmatrix}
34.1345 \\
23.4078 \\
4.7751
\end{bmatrix}
\]

\[
\text{NewMPGCI} = \\
\begin{bmatrix}
31.6115 & 36.6575 \\
22.9859 & 23.8298 \\
0.6134 & 8.9367
\end{bmatrix}
\]

The confidence bound on the mean response is narrower than those for the minimum or maximum responses, which is quite sensible.

feval

When you construct a model from a table or dataset array, `feval` is often more convenient for predicting mean responses than `predict`. However, `feval` does not provide confidence bounds.

This example shows how to predict mean responses using the `feval` method.

1. Load the `carbig` data and make a default linear model of the response `MPG` to the `Acceleration`, `Displacement`, `Horsepower`, and `Weight` predictors.

\[
\text{load carbig} \\
\text{tbl} = \text{table}(\text{Acceleration},\text{Displacement},\text{Horsepower},\text{Weight},\text{MPG}); \\
\text{mdl} = \text{fitlm}(\text{tbl},'\text{linear}','\text{ResponseVar}','\text{MPG}');
\]

2. Create a three-row array of predictors from the minimal, mean, and maximal values. There are some NaN values, so use functions that ignore NaN values.

\[
X = [\text{Acceleration},\text{Displacement},\text{Horsepower},\text{Weight}]; \\
X_{\text{new}} = \begin{bmatrix} \text{nanmin}(X); \text{nanmean}(X); \text{nanmax}(X) \end{bmatrix}; \quad \% \text{ new data}
\]

The `X_{\text{new}}` array has the correct number of columns for prediction, so `feval` can use it for predictions.
Find the predicted model responses.

\[
\text{NewMPG} = \text{feval}(\text{mdl}, X\text{new})
\]

\[
\text{NewMPG} = \\
\begin{align*}
34.1345 \\
23.4078 \\
4.7751
\end{align*}
\]

random

The `random` method simulates new random response values, equal to the mean prediction plus a random disturbance with the same variance as the training data.

This example shows how to simulate responses using the `random` method.

1. Load the `carbig` data and make a default linear model of the response `MPG` to the `Acceleration`, `Displacement`, `Horsepower`, and `Weight` predictors.

   ```matlab
   load carbig
   X = [Acceleration,Displacement,Horsepower,Weight];
   mdl = fitlm(X,MPG);
   ```

2. Create a three-row array of predictors from the minimal, mean, and maximal values. There are some `NaN` values, so use functions that ignore `NaN` values.

   ```matlab
   Xnew = [nanmin(X);nanmean(X);nanmax(X)]; % new data
   ```

3. Generate new predicted model responses including some randomness.

   ```matlab
   rng('default') % for reproducibility
   NewMPG = random(mdl,Xnew)
   ```

 \[
 \text{NewMPG} = \\
 \begin{align*}
36.4178 \\
31.1958 \\
-4.8176
\end{align*}
\]

4. Because a negative value of `MPG` does not seem sensible, try predicting two more times.

   ```matlab
   NewMPG = random(mdl,Xnew)
   ```

 \[
 \text{NewMPG} = \\
37.7959
\]
24.7615
-0.7783

\[\text{NewMPG} = \text{random}(\text{mdl}, \text{Xnew}) \]

\[\text{NewMPG} = \]

\[\begin{align*}
32.2931 \\
24.8628 \\
19.9715
\end{align*} \]

Clearly, the predictions for the third (maximal) row of \(\text{Xnew} \) are not reliable.

Share Fitted Models

Suppose you have a linear regression model, such as \(\text{mdl} \) from the following commands:

\[
\text{load carbig} \\
\text{tbl} = \text{table(Acceleration, Displacement, Horsepower, Weight, MPG);} \\
\text{mdl} = \text{fitlm(tbl, 'linear', 'ResponseVar', 'MPG');}
\]

To share the model with other people, you can:

- Provide the model display.

\[
\text{mdl}
\]

\[
\text{mdl} =
\]

Linear regression model:
\[\text{MPG} \sim 1 + \text{Acceleration} + \text{Displacement} + \text{Horsepower} + \text{Weight} \]

Estimated Coefficients:

\[
\begin{array}{ccccc}
\text{Estimate} & \text{SE} & \text{tStat} & \text{pValue} \\
\text{(Intercept)} & 45.251 & 2.456 & 18.424 & 7.0721e-55 \\
\text{Acceleration} & -0.023148 & 0.1256 & -0.1843 & 0.85388 \\
\text{Displacement} & -0.0060009 & 0.0067093 & -0.89441 & 0.37166 \\
\text{Horsepower} & -0.043608 & 0.016573 & -2.6312 & 0.008849 \\
\text{Weight} & -0.0052805 & 0.00081085 & -6.5123 & 2.3025e-10 \\
\end{array}
\]

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 4.25
R-squared: 0.707, Adjusted R-Squared 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102

- Provide just the model definition and coefficients.

mdl.CoefficientNames
ans =
'(Intercept)' 'Acceleration' 'Displacement' 'Horsepower' 'Weight'

mdl.Coefficients.Estimate
ans =
45.2511
-0.0231
-0.0060
-0.0436
-0.0053

mdl.Formula
ans =
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

See Also
LinearModel | anova | feval | fitlm | lasso | plotResiduals | predict | sequentialfs | stepwiselm
Linear Regression Workflow

This example shows how to fit a linear regression model. A typical workflow involves the following: import data, fit a regression, test its quality, modify it to improve the quality, and share it.

Step 1. Import the data into a table.

`hospital.xls` is an Excel® spreadsheet containing patient names, sex, age, weight, blood pressure, and dates of treatment in an experimental protocol. First read the data into a table.

```matlab
patients = readtable('hospital.xls', ...
    'ReadRowNames',true);
```

Examine the first row of data.

```matlab
patients(1,:)
```

```matlab
ans =

1x11 table

    name      sex    age    wgt    smoke    sys    dia    trial1    trial2    trial3    trial4
    ______    ___    ___    ___    _____    ___    ___    ______    ______    ______    ______
    YPL-320    'SMITH'    'm'    38     176      1      124    93       18       -99       -99
```

The `sex` and `smoke` fields seem to have two choices each. So change these fields to categorical.

```matlab
patients.smoke = categorical(patients.smoke,0:1,{'No','Yes'});
patients.sex = categorical(patients.sex);
```

Step 2. Create a fitted model.

Your goal is to model the systolic pressure as a function of a patient's age, weight, sex, and smoking status. Create a linear formula for 'sys' as a function of 'age', 'wgt', 'sex', and 'smoke'.

```matlab
modelspec = 'sys ~ age + wgt + sex + smoke';
mdl = fitlm(patients,modelspec)
```
mdl =

Linear regression model:
 sys ~ 1 + sex + age + wgt + smoke

Estimated Coefficients:
 Estimate SE tStat pValue
 _______ ________ ________ __________
 (Intercept) 118.28 7.6291 15.504 9.1557e-28
 sex_m 0.88162 2.9473 0.29913 0.76549
 age 0.08602 0.06731 1.278 0.20438
 wgt -0.016685 0.055714 -0.29947 0.76524
 smoke_Yes 9.884 1.0406 9.498 1.9546e-15

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 4.81
R-squared: 0.508, Adjusted R-Squared 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The sex, age, and weight predictors have rather high P-values, indicating that some of these predictors might be unnecessary.

Step 3. Locate and remove outliers.

See if there are outliers in the data that should be excluded from the fit. Plot the residuals.

plotResiduals(mdl)
There is one possible outlier, with a value greater than 12. This is probably not truly an outlier. For demonstration, here is how to find and remove it.

Find the outlier:

```matlab
outlier = mdl.Residuals.Raw > 12;
find(outlier)
```

```matlab
ans =
 84
```

Remove the outlier.
mdl = fitlm(patients, modelspec, ...
 'Exclude', 84);

mdl.ObservationInfo(84, :)

ans =

 1x4 table

 Weights Excluded Missing Subset
 _______ ________ _______ ______
 WXM-486 1 true false false

Observation 84 is no longer in the model.

Step 4. Simplify the model.

Try to obtain a simpler model, one with fewer predictors but the same predictive accuracy. step looks for a better model by adding or removing one term at a time. Allow step take up to 10 steps.

mdl1 = step(mdl, 'NSteps', 10)

1. Removing wgt, FStat = 4.6001e-05, pValue = 0.9946
2. Removing sex, FStat = 0.063241, pValue = 0.80199

mdl1 =

Linear regression model:
 sys ~ 1 + age + smoke

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>115.11</td>
<td>2.5364</td>
<td>45.383</td>
<td>1.1407e-66</td>
</tr>
<tr>
<td>age</td>
<td>0.10782</td>
<td>0.064844</td>
<td>1.6628</td>
<td>0.09962</td>
</tr>
<tr>
<td>smoke_Yes</td>
<td>10.054</td>
<td>0.97696</td>
<td>10.291</td>
<td>3.5276e-17</td>
</tr>
</tbody>
</table>

Number of observations: 99, Error degrees of freedom: 96
Root Mean Squared Error: 4.61
R-squared: 0.536, Adjusted R-Squared 0.526
F-statistic vs. constant model: 55.4, p-value = 1.02e-16

step took two steps. This means it could not improve the model further by adding or subtracting a single term.

Plot the effectiveness of the simpler model on the training data.

plotResiduals(mdl1)

The residuals look about as small as those of the original model.
Step 5. Predict responses to new data.

Suppose you have four new people, aged 25, 30, 40, and 65, and the first and third smoke. Predict their systolic pressure using mdl1.

```matlab
ages = [25;30;40;65];
smoker = {'Yes';'No';'Yes';'No'};
systolicnew = feval(mdl1,ages,smoker)
```

```matlab
systolicnew =
    127.8561
    118.3412
    129.4734
    122.1149
```

To make predictions, you need only the variables that mdl1 uses.

Step 6. Share the model.

You might want others to be able to use your model for prediction. Access the terms in the linear model.

```matlab
coefnames = mdl1.CoefficientNames
```

```matlab
coefnames =
    1x3 cell array
    {'(Intercept)'} {'age'} {'smoke_Yes'}
```

View the model formula.

```matlab
mdl1.Formula
```

```matlab
ans =
sys ~ 1 + age + smoke
```

Access the coefficients of the terms.
coefvals = mdl1.Coefficients(:,1); % table
coefvals = table2array(coefvals)

c coefvals =

 115.1066
 0.1078
 10.0540

The model is sys = 115.1066 + 0.1078*age + 10.0540*smoke, where smoke is 1 for a smoker, and 0 otherwise.
Regression Using Dataset Arrays

This example shows how to perform linear and stepwise regression analyses using dataset arrays.

Load sample data.

```matlab
cmdtext = 'load imports-85';
load imports-85
```

Store predictor and response variables in dataset array.

```matlab
ds = dataset(X(:,7),X(:,8),X(:,9),X(:,15),'Varnames', ... 
                 {'curb_weight','engine_size','bore','price'});
```

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight, engine size, and bore.

```matlab
fitlm(ds,'price~curb_weight+engine_size+bore')
```

Fit linear regression model.

```matlab
ans = 
    Linear regression model: 
       price ~ 1 + curb_weight + engine_size + bore 

    Estimated Coefficients: 
                          Estimate       SE         tStat       pValue
    ____________    ________    _______    ____________
    (Intercept)        64.095        3.703     17.309    2.0481e-41
    curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
    engine_size     -0.015806     0.013255    -1.1925       0.23452
    bore              -2.6998       1.3489    -2.0015      0.046711
```

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674, Adjusted R-Squared 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

The command `fitlm(ds)` also returns the same result because `fitlm`, by default, assumes the predictor variable is in the last column of the dataset array `ds`.
Recreate dataset array and repeat analysis.

This time, put the response variable in the first column of the dataset array.

```matlab
ds = dataset(X(:,15),X(:,7),X(:,8),X(:,9),'Varnames',...{'price','curb_weight','engine_size','bore'});
```

When the response variable is in the first column of `ds`, define its location. For example, `fitlm`, by default, assumes that `bore` is the response variable. You can define the response variable in the model using either:

```matlab
fitlm(ds,'ResponseVar','price');
```

or

```matlab
fitlm(ds,'ResponseVar',logical([1 0 0 0]));
```

Perform stepwise regression.

```matlab
stepwiselm(ds,'quadratic','lower','price~1',...'ResponseVar','price')
```

1. Removing `bore^2`, FStat = 0.01282, pValue = 0.90997
2. Removing `engine_size^2`, FStat = 0.078043, pValue = 0.78027
3. Removing `curb_weight:bore`, FStat = 0.70558, pValue = 0.40195

```matlab
ans =
Linear regression model:
    price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2
```

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>131.13</td>
<td>14.273</td>
<td>9.1873</td>
<td>6.2319e-17</td>
</tr>
<tr>
<td>curb_weight</td>
<td>-0.043315</td>
<td>0.0085114</td>
<td>-5.0891</td>
<td>8.4682e-07</td>
</tr>
<tr>
<td>engine_size</td>
<td>-0.17102</td>
<td>0.13844</td>
<td>-1.2354</td>
<td>0.21819</td>
</tr>
<tr>
<td>bore</td>
<td>-12.244</td>
<td>4.999</td>
<td>-2.4493</td>
<td>0.015202</td>
</tr>
<tr>
<td>curb_weight:engine_size</td>
<td>-6.3411e-05</td>
<td>2.6577e-05</td>
<td>-2.386</td>
<td>0.017996</td>
</tr>
<tr>
<td>engine_size:bore</td>
<td>0.092554</td>
<td>0.037263</td>
<td>2.4838</td>
<td>0.013847</td>
</tr>
<tr>
<td>curb_weight^2</td>
<td>8.0836e-06</td>
<td>1.9983e-06</td>
<td>4.0451</td>
<td>7.5432e-05</td>
</tr>
</tbody>
</table>

Number of observations: 201, Error degrees of freedom: 194
Root Mean Squared Error: 3.59
R-squared: 0.735, Adjusted R-Squared 0.726
F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant. Here, stepwiselm performs a backward elimination technique to determine the terms in the model. The final model is \(\text{price} \sim 1 + \text{curb_weight} \times \text{engine_size} + \text{engine_size} \times \text{bore} + \text{curb_weight}^2 \), which corresponds to

\[
P = \beta_0 + \beta_C C + \beta_E E + \beta_B B + \beta_{CE} CE + \beta_{EB} EB + \beta_{C^2} C^2 + \epsilon
\]

where \(P \) is price, \(C \) is curb weight, \(E \) is engine size, \(B \) is bore, \(\beta_i \) is the coefficient for the corresponding term in the model, and \(\epsilon \) is the error term. The final model includes all three main effects, the interaction effects for curb weight and engine size and engine size and bore, and the second-order term for curb weight.

See Also
LinearModel | fitlm | stepwiselm

Related Examples
- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Regression Using Tables

This example shows how to perform linear and stepwise regression analyses using tables.

Load sample data.

```plaintext
load imports-85
```

Store predictor and response variables in a table.

```plaintext
tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',
    {'curb_weight','engine_size','bore','price'});
```

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight, engine size, and bore.

```plaintext
fitlm(tbl,'price~curb_weight+engine_size+bore')
```

```plaintext
ans =
Linear regression model:
    price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:
    Estimate       SE         tStat       pValue
    ____________    __________    _______    __________
    (Intercept)        64.095        3.703     17.309    2.0481e-41
    curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
    engine_size     -0.015806     0.013255    -1.1925       0.23452
    bore              -2.6998       1.3489    -2.0015      0.046711

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674,  Adjusted R-Squared 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47
```

The command `fitlm(tbl)` also returns the same result because `fitlm`, by default, assumes the predictor variable is in the last column of the table `tbl`.

Recreate table and repeat analysis.

This time, put the response variable in the first column of the table.
When the response variable is in the first column of tbl, define its location. For example, \texttt{fitlm}, by default, assumes that \texttt{bore} is the response variable. You can define the response variable in the model using either:

\begin{verbatim}
fitlm(tbl,'ResponseVar','price');
\end{verbatim}

or

\begin{verbatim}
fitlm(tbl,'ResponseVar',logical([1 0 0 0]));
\end{verbatim}

Perform stepwise regression.

\begin{verbatim}
stepwiselm(tbl,'quadratic','lower','price~1','ResponseVar','price')
\end{verbatim}

1. Removing bore^2, FStat = 0.01282, pValue = 0.90997
2. Removing engine_size^2, FStat = 0.078043, pValue = 0.78027
3. Removing curb_weight:bore, FStat = 0.70558, pValue = 0.40195

\begin{verbatim}
ans =
Linear regression model:
 price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2
\end{verbatim}

\begin{verbatim}
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>131.13</td>
<td>14.273</td>
<td>9.1873</td>
<td>6.2319e-17</td>
</tr>
<tr>
<td>curb_weight</td>
<td>-0.043315</td>
<td>0.0085114</td>
<td>-5.0891</td>
<td>8.4682e-07</td>
</tr>
<tr>
<td>engine_size</td>
<td>-0.17102</td>
<td>0.13844</td>
<td>-1.2354</td>
<td>0.21819</td>
</tr>
<tr>
<td>bore</td>
<td>-12.244</td>
<td>4.999</td>
<td>-2.4493</td>
<td>0.015202</td>
</tr>
<tr>
<td>curb_weight:engine_size</td>
<td>-6.3411e-05</td>
<td>2.6577e-05</td>
<td>-2.386</td>
<td>0.017996</td>
</tr>
<tr>
<td>engine_size:bore</td>
<td>0.092554</td>
<td>0.037263</td>
<td>2.4838</td>
<td>0.013847</td>
</tr>
<tr>
<td>curb_weight^2</td>
<td>8.0836e-06</td>
<td>1.9983e-06</td>
<td>4.0451</td>
<td>7.5432e-05</td>
</tr>
</tbody>
</table>
\end{verbatim}

Number of observations: 201, Error degrees of freedom: 194
Root Mean Squared Error: 3.59
R-squared: 0.735, Adjusted R-Squared 0.726
F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant. Here, \texttt{stepwiselm} performs a backward elimination technique to determine the terms in
the model. The final model is \(\text{price} \sim 1 + \text{curb_weight*engine_size} + \text{engine_size*bore} + \text{curb_weight}^2 \), which corresponds to

\[
P = \beta_0 + \beta_C C + \beta_E E + \beta_B B + \beta_{CE} CE + \beta_{EB} EB + \beta_{C^2} C^2 + \epsilon
\]

where \(P \) is price, \(C \) is curb weight, \(E \) is engine size, \(B \) is bore, \(\beta_i \) is the coefficient for the corresponding term in the model, and \(\epsilon \) is the error term. The final model includes all three main effects, the interaction effects for curb weight and engine size and engine size and bore, and the second-order term for curb weight.

See Also

LinearModel | fitlm | stepwiselm

Related Examples

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Linear Regression with Interaction Effects

Construct and analyze a linear regression model with interaction effects and interpret the results.

Load sample data.

```
load hospital
```

To retain only the first column of blood pressure, store data in a new dataset array.

```
ds = dataset(hospital.Sex,hospital.Age,hospital.Weight,hospital.Smoker,...
hospital.BloodPressure(:,1), 'Varnames', {'Sex', 'Age', 'Weight', 'Smoker', ...
'BloodPressure'});
```

Perform stepwise linear regression.

For the initial model, use the full model with all terms and their pairwise interactions.

```
mdl = stepwiselm(ds, 'interactions')
```

1. Removing Sex:Smoker, FStat = 0.050738, pValue = 0.8223
2. Removing Weight:Smoker, FStat = 0.07758, pValue = 0.78124
3. Removing Age:Weight, FStat = 1.9717, pValue = 0.16367
4. Removing Sex:Age, FStat = 0.32389, pValue = 0.57067
5. Removing Age:Smoker, FStat = 2.4939, pValue = 0.11768

```
mdl = Linear regression model:
    BloodPressure ~ 1 + Age + Smoker + Sex*Weight

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>133.17</td>
<td>10.337</td>
<td>12.883</td>
<td>1.76e-22</td>
</tr>
<tr>
<td>Sex_Male</td>
<td>-35.269</td>
<td>17.524</td>
<td>-2.0126</td>
<td>0.047015</td>
</tr>
<tr>
<td>Age</td>
<td>0.11584</td>
<td>0.067664</td>
<td>1.712</td>
<td>0.090198</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.1393</td>
<td>0.080211</td>
<td>-1.7367</td>
<td>0.085722</td>
</tr>
<tr>
<td>Smoker_1</td>
<td>9.8307</td>
<td>1.0229</td>
<td>9.6102</td>
<td>1.2391e-15</td>
</tr>
<tr>
<td>Sex_Male:Weight</td>
<td>0.2341</td>
<td>0.11192</td>
<td>2.0917</td>
<td>0.039162</td>
</tr>
</tbody>
</table>
```

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 4.72
R-squared: 0.53, Adjusted R-Squared 0.505
F-statistic vs. constant model: 21.2, p-value = 4e-14

The final model in formula form is BloodPressure ~ 1 + Age + Smoker + Sex*Weight. This model includes all four main effects (Age, Smoker, Sex, Weight) and the two-way interaction between Sex and Weight. This model corresponds to

\[BP = \beta_0 + \beta_A X_A + \beta_{Sm} I_{Sm} + \beta_{S} I_S + \beta_{W} X_W + \beta_{SW} X_W I_S + \epsilon, \]

where

- \(BP \) is the blood pressure
- \(\beta_i \) are the coefficients
- \(I_{Sm} \) is the indicator variable for smoking; \(I_{Sm} = 1 \) indicates a smoking patient whereas \(I_{Sm} = 0 \) indicates a nonsmoking patient
- \(I_S \) is the indicator variable for sex; \(I_S = 1 \) indicates a male patient whereas \(I_S = 0 \) indicates a female patient
- \(X_A \) is the Age variable
- \(X_W \) is the Weight variable
- \(\epsilon \) is the error term

The following table shows the fitted linear model for each gender and smoking combination.
As seen from these models, β_{Sm} and β_S show how much the intercept of the response function changes when the indicator variable takes the value 1 compared to when it takes the value 0. β_{SW}, however, shows the effect of the Weight variable on the response variable when the indicator variable for sex takes the value 1 compared to when it takes the value 0. You can explore the main and interaction effects in the final model using the methods of the `LinearModel` class as follows.

Plot prediction slice plots.

```matlab
figure
plotSlice(mdl)
```
This plot shows the main effects for all predictor variables. The green line in each panel shows the change in the response variable as a function of the predictor variable when all other predictor variables are held constant. For example, for a smoking male patient aged 37.5, the expected blood pressure increases as the weight of the patient increases, given all else the same.

The dashed red curves in each panel show the 95% confidence bounds for the predicted response values.

The horizontal dashed blue line in each panel shows the predicted response for the specific value of the predictor variable corresponding to the vertical dashed blue line. You can drag these lines to get the predicted response values at other predictor values, as shown next.
For example, the predicted value of the response variable is 118.3497 when a patient is female, nonsmoking, age 40.3788, and weighs 139.9545 pounds. The values in the square brackets, [114.621, 122.079], show the lower and upper limits of a 95% confidence interval for the estimated response. Note that, for a nonsmoking female patient, the expected blood pressure decreases as the weight increases, given all else is held constant.

Plot main effects.

plotEffects(mdl)
This plot displays the main effects. The circles show the magnitude of the effect and the blue lines show the upper and lower confidence limits for the main effect. For example, being a smoker increases the expected blood pressure by 10 units, compared to being a nonsmoker, given all else is held constant. Expected blood pressure increases about two units for males compared to females, again, given other predictors held constant. An increase in age from 25 to 50 causes an expected increase of 4 units, whereas a change in weight from 111 to 202 causes about a 4-unit decrease in the expected blood pressure, given all else held constant.

Plot interaction effects.

```matlab
goto figure
plotInteraction(mdl,'Sex','Weight')```
This plot displays the impact of a change in one factor given the other factor is fixed at a value.

Be cautious while interpreting the interaction effects. When there is not enough data on all factor combinations or the data is highly correlated, it might be difficult to determine the interaction effect of changing one factor while keeping the other fixed. In such cases, the estimated interaction effect is an extrapolation from the data.

The blue circles show the main effect of a specific term, as in the main effects plot. The red circles show the impact of a change in one term for fixed values of the other term. For example, in the bottom half of this plot, the red circles show the impact of a weight change in female and male patients, separately. You can see that an increase in a female’s weight from 111 to 202 pounds causes about a 14-unit decrease in the expected blood
pressure, while an increase of the same amount in the weight of a male patient causes about a 5-unit increase in the expected blood pressure, again given other predictors are held constant.

**Plot prediction effects.**

```matlab
figure
plotInteraction(mdl,'Sex','Weight','predictions')
```

This plot shows the effect of changing one variable as the other predictor variable is held constant. In this example, the last figure shows the response variable, blood pressure, as a function of weight, when the variable sex is fixed at males and females. The lines for males and females are crossing which indicates a strong interaction between weight and
sex. You can see that the expected blood pressure increases as the weight of a male patient increases, but decreases as the weight of a female patient increases.

**See Also**
LinearModel | fitlm | plotEffects | plotInteraction | plotSlice | stepwiselm

**Related Examples**
- “Plots to Understand Predictor Effects” on page 11-29
Interpret Linear Regression Results

This example shows how to display and interpret linear regression output statistics.

Load sample data and define predictor variables.

load carsmall
X = [Weight,Horsepower,Acceleration];

Fit linear regression model.

lm = fitlm(X,MPG,'linear')

lm =
Linear regression model:
    y ~ 1 + x1 + x2 + x3

Estimated Coefficients:
     Estimate     SE         tStat     pValue
    ________    _________    _________    __________
    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

Number of observations: 93, Error degrees of freedom: 89
Root Mean Squared Error: 4.09
R-squared: 0.752,  Adjusted R-Squared 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27

This linear regression output displays the following.

- \( y \sim 1 + x_1 + x_2 + x_3 \) — Linear regression model in the formula form using Wilkinson notation. Here it corresponds to \( y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon \).
- First column (under Estimated Coefficients) — Terms included in the model.
- Estimate — Coefficient estimates for each corresponding term in the model. For example, the estimate for the constant term (intercept) is 47.977.
- SE — Standard error of the coefficients.
- tStat — \( t \)-statistic for each coefficient to test the null hypothesis that the corresponding coefficient is zero against the alternative that it is different from zero,
given the other predictors in the model. Note that \( t\text{Stat} = \frac{\text{Estimate}}{\text{SE}} \). For example, the \( t \)-statistic for the intercept is \( 47.977/3.8785 = 12.37 \).

- **pValue** — \( p \)-value for the \( F \)-statistic of the hypotheses test that the corresponding coefficient is equal to zero or not. For example, the \( p \)-value of the \( F \)-statistic for \( x_2 \) is greater than 0.05, so this term is not significant at the 5% significance level given the other terms in the model.

- **Number of observations** — Number of rows without any NaN values. For example, Number of observations is 93 because the MPG data vector has 6 NaN values and one of the data vectors, Horsepower, has one NaN value for a different observation.

- **Error degrees of freedom** — \( n - p \), where \( n \) is the number of observations, and \( p \) is the number of coefficients in the model, including the intercept. For example, the model has four predictors, so the Error degrees of freedom is 93 - 4 = 89.

- **Root mean squared error** — Square root of the mean squared error, which estimates the standard deviation of the error distribution.

- **R-squared and Adjusted R-squared** — Coefficient of determination and adjusted coefficient of determination, respectively. For example, the R-squared value suggests that the model explains approximately 75% of the variability in the response variable MPG.

- **F-statistic vs. constant model** — Test statistic for the \( F \)-test on the regression model. It tests for a significant linear regression relationship between the response variable and the predictor variables.

- **p-value** — \( p \)-value for the \( F \)-test on the model. For example, the model is significant with a \( p \)-value of 7.3816e-27.

You can request this display by using disp. For example, if you name your model lm, then you can display the outputs using disp(lm).

**Perform analysis of variance (ANOVA) for the model.**

anova(lm,'summary')

```
ans=3×5 table

 SumSq DF MeanSq F pValue
 _____ ___ ______ ______ __________
 Total 6004.8 92 65.269
 Model 4516 3 1505.3 89.987 7.3816e-27
 Residual 1488.8 89 16.728
```

11-66
This anova display shows the following.

- **SumSq** — Sum of squares for the regression model, Model, the error term, Residual, and the total, Total.

- **DF** — Degrees of freedom for each term. Degrees of freedom is \( n - 1 \) for the total, \( p - 1 \) for the model, and \( n - p \) for the error term, where \( n \) is the number of observations, and \( p \) is the number of coefficients in the model, including the intercept. For example, MPG data vector has six NaN values and one of the data vectors, Horsepower, has one NaN value for a different observation, so the total degrees of freedom is 93 - 1 = 92. There are four coefficients in the model, so the model DF is 4 - 1 = 3, and the DF for error term is 93 - 4 = 89.

- **MeanSq** — Mean squared error for each term. Note that MeanSq = SumSq/DF. For example, the mean squared error for the error term is 1488.8/89 = 16.728. The square root of this value is the root mean squared error in the linear regression display, or 4.09.

- **F** — F-statistic value, which is the same as F-statistic vs. constant model in the linear regression display. In this example, it is 89.987, and in the linear regression display this F-statistic value is rounded up to 90.

- **pValue** — p-value for the F-test on the model. In this example, it is 7.3816e-27.

If there are higher-order terms in the regression model, anova partitions the model SumSq into the part explained by the higher-order terms and the rest. The corresponding F-statistics are for testing the significance of the linear terms and higher-order terms as separate groups.

If the data includes replicates, or multiple measurements at the same predictor values, then the anova partitions the error SumSq into the part for the replicates and the rest. The corresponding F-statistic is for testing the lack-of-fit by comparing the model residuals with the model-free variance estimate computed on the replicates.

See the anova method for details.

**Decompose ANOVA table for model terms.**

```matlab
anova(lm)
```

```
ans=4×5 table
 SumSq DF MeanSq F pValue
 ______ __ ______ _______ ______
```

11-67
This anova display shows the following:

- First column — Terms included in the model.
- SumSq — Sum of squared error for each term except for the constant.
- DF — Degrees of freedom. In this example, DF is 1 for each term in the model and \( n - p \) for the error term, where \( n \) is the number of observations, and \( p \) is the number of coefficients in the model, including the intercept. For example, the DF for the error term in this model is \( 93 - 4 = 89 \). If any of the variables in the model is a categorical variable, the DF for that variable is the number of indicator variables created for its categories (number of categories - 1).
- MeanSq — Mean squared error for each term. Note that \( \text{MeanSq} = \frac{\text{SumSq}}{\text{DF}} \). For example, the mean squared error for the error term is \( \frac{1488.8}{89} = 16.728 \).
- \( F \) — \( F \)-values for each coefficient. The \( F \)-value is the ratio of the mean squared of each term and mean squared error, that is, \( F = \frac{\text{MeanSq}(x_i)}{\text{MeanSq}(\text{Error})} \). Each \( F \)-statistic has an \( F \) distribution, with the numerator degrees of freedom, \( \text{DF} \) value for the corresponding term, and the denominator degrees of freedom, \( n - p \). \( n \) is the number of observations, and \( p \) is the number of coefficients in the model. In this example, each \( F \)-statistic has an \( F_{(1,89)} \) distribution.
- \( p \)Value — \( p \)-value for each hypothesis test on the coefficient of the corresponding term in the linear model. For example, the \( p \)-value for the \( F \)-statistic coefficient of \( x_2 \) is 0.08078, and is not significant at the 5% significance level given the other terms in the model.

**Display coefficient confidence intervals.**

\[
\text{coefCI(lm)}
\]
\[
\text{ans} = 4\times2
\]
\[
\begin{array}{cc}
40.2702 & 55.6833 \\
-0.0088 & -0.0043 \\
-0.0913 & 0.0054
\end{array}
\]
The values in each row are the lower and upper confidence limits, respectively, for the default 95% confidence intervals for the coefficients. For example, the first row shows the lower and upper limits, 40.2702 and 55.6833, for the intercept, $\beta_0$. Likewise, the second row shows the limits for $\beta_1$ and so on. Confidence intervals provide a measure of precision for linear regression coefficient estimates. A $100(1 - \alpha)\%$ confidence interval gives the range the corresponding regression coefficient will be in with $100(1 - \alpha)\%$ confidence.

You can also change the confidence level. Find the 99% confidence intervals for the coefficients.

```matlab
coeffCI(lm,0.01)
```

```
ans = 4x2
 37.7677 58.1858
 -0.0095 -0.0036
 -0.1069 0.0211
 -0.5205 0.4973
```

**Perform hypothesis test on coefficients.**

Test the null hypothesis that all predictor variable coefficients are equal to zero versus the alternate hypothesis that at least one of them is different from zero.

```matlab
[p,F,d] = coefTest(lm)
p = 7.3816e-27
F = 89.9874
d = 3
```

Here, `coefTest` performs an $F$-test for the hypothesis that all regression coefficients (except for the intercept) are zero versus at least one differs from zero, which essentially is the hypothesis on the model. It returns $p$, the $p$-value, $F$, the $F$-statistic, and $d$, the numerator degrees of freedom. The $F$-statistic and $p$-value are the same as the ones in the
linear regression display and anova for the model. The degrees of freedom is $4 - 1 = 3$ because there are four predictors (including the intercept) in the model.

Now, perform a hypothesis test on the coefficients of the first and second predictor variables.

$$H = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix};$$

$$[p,F,d] = \text{coefTest}(\text{lm},H)$$

$$p = 5.1702e-23$$

$$F = 96.4873$$

$$d = 2$$

The numerator degrees of freedom is the number of coefficients tested, which is 2 in this example. The results indicate that at least one of $\beta_2$ and $\beta_3$ differs from zero.

**See Also**

LinearModel | anova | fitlm | stepwiselm

**Related Examples**

- “Examine Quality and Adjust the Fitted Model” on page 11-20

**More About**

- “Coefficient Standard Errors and Confidence Intervals” on page 11-75
- “Coefficient of Determination (R-Squared)” on page 11-79
- “F-statistic and t-statistic” on page 11-95
- “Summary of Output and Diagnostic Statistics” on page 11-114
Cook’s Distance

Purpose

Cook’s distance is useful for identifying outliers in the X values (observations for predictor variables). It also shows the influence of each observation on the fitted response values. An observation with Cook’s distance larger than three times the mean Cook’s distance might be an outlier.

Definition

Cook’s distance is the scaled change in fitted values. Each element in CooksDistance is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook’s distance, \( D_i \), of observation \( i \) is

\[
D_i = \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(i)})^2}{p \text{ MSE}},
\]

where

- \( \hat{y}_j \) is the \( j \)th fitted response value.
- \( \hat{y}_{j(i)} \) is the \( j \)th fitted response value, where the fit does not include observation \( i \).
- \( \text{MSE} \) is the mean squared error.
- \( p \) is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

\[
D_i = \frac{r_i^2}{p \text{ MSE}} \left( \frac{h_{ii}}{(1-h_{ii})^2} \right),
\]

where \( r_i \) is the \( i \)th residual, and \( h_{ii} \) is the \( i \)th leverage value.

CooksDistance is an \( n \)-by-1 column vector in the Diagnostics table of the LinearModel object.
How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Cook’s distance values by indexing into the property using dot notation,
  mdl.Diagnostics.CooksDistance
• Plot the Cook’s distance values using
  plotDiagnostics(mdl,'cookd')

For details, see the plotDiagnostics method of the LinearModel class.

Determine Outliers Using Cook's Distance

This example shows how to use Cook's Distance to determine the outliers in the data.

Load the sample data and define the independent and response variables.

load hospital
X = double(hospital(:,2:5));
y = hospital.BloodPressure(:,1);

Fit the linear regression model.
mdl = fitlm(X,y);

Plot the Cook's distance values.
plotDiagnostics(mdl,'cookd')
The dashed line in the figure corresponds to the recommended threshold value, $3 \times \text{mean}(\text{mdl.Diagnostics.CooksDistance})$. The plot has some observations with Cook's distance values greater than the threshold value, which for this example is $3 \times (0.0108) = 0.0324$. In particular, there are two Cook's distance values that are relatively higher than the others, which exceed the threshold value. You might want to find and omit these from your data and rebuild your model.

Find the observations with Cook's distance values that exceed the threshold value.

```matlab
find((mdl.Diagnostics.CooksDistance) > 3*mean(mdl.Diagnostics.CooksDistance))
```

ans = 10×1

2
Find the observations with Cook's distance values that are relatively larger than the other observations with Cook's distances exceeding the threshold value.

```matlab
find((mdl.Diagnostics.CooksDistance)>5*mean(mdl.Diagnostics.CooksDistance))
```

```matlab
ans = 2×1
 2
 84
```

References


See Also

LinearModel | fitlm | plotDiagnostics | stepwiselm

Related Examples

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Coefficient Standard Errors and Confidence Intervals

In this section...

“Coefficient Covariance and Standard Errors” on page 11-75
“Compute Coefficient Covariance and Standard Errors” on page 11-76
“Coefficient Confidence Intervals” on page 11-77
“Compute Coefficient Confidence Intervals” on page 11-77

Coefficient Covariance and Standard Errors

Purpose

Estimated coefficient variances and covariances capture the precision of regression coefficient estimates. The coefficient variances and their square root, the standard errors, are useful in testing hypotheses for coefficients.

Definition

The estimated covariance matrix is

\[ \Sigma = MSE(XX)^{-1}, \]

where \( MSE \) is the mean squared error, and \( X \) is the matrix of observations on the predictor variables. \( \text{CoefficientCovariance} \), a property of the fitted model, is a \( p \)-by-\( p \) covariance matrix of regression coefficient estimates. \( p \) is the number of coefficients in the regression model. The diagonal elements are the variances of the individual coefficients.

How To

After obtaining a fitted model, say, \( \text{mdl} \), using \( \text{fitlm} \) or \( \text{stepwiselm} \), you can display the coefficient covariances using

\( \text{mdl.CoefficientCovariance} \)
Compute Coefficient Covariance and Standard Errors

This example shows how to compute the covariance matrix and standard errors of the coefficients.

Load the sample data and define the predictor and response variables.

```matlab
tload hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```matlab
mdl = fitlm(X,y);
```

Display the coefficient covariance matrix.

```matlab
CM = mdl.CoefficientCovariance
```

```
CM = 5×5
 27.5113 11.0027 -0.1542 -0.2444 0.2702
 11.0027 8.6864 -0.0021 -0.1547 -0.0838
 -0.1542 -0.0021 0.0045 -0.0001 -0.0029
 -0.2444 -0.1547 -0.0001 0.0031 -0.0026
 0.2702 -0.0838 -0.0029 -0.0026 1.0829
```

Compute the coefficient standard errors.

```matlab
SE = diag(sqrt(CM))
```

```
SE = 5×1
 5.2451
 2.9473
 0.0673
 0.0557
 1.0406
```
Coefficient Confidence Intervals

Purpose

The coefficient confidence intervals provide a measure of precision for linear regression coefficient estimates. A 100(1–α)% confidence interval gives the range that the corresponding regression coefficient will be in with 100(1–α)% confidence.

Definition

The 100*(1–α)% confidence intervals for linear regression coefficients are

\[ b_i \pm t_{(1-\alpha/2,n-p)} SE(b_i), \]

where \( b_i \) is the coefficient estimate, \( SE(b_i) \) is the standard error of the coefficient estimate, and \( t_{(1-\alpha/2,n-p)} \) is the 100(1–α/2) percentile of \( t \)-distribution with \( n - p \) degrees of freedom. \( n \) is the number of observations and \( p \) is the number of regression coefficients.

How To

After obtaining a fitted model, say, \( mdl \), using \texttt{fitlm} or \texttt{stepwiselm}, you can obtain the default 95% confidence intervals for coefficients using

\texttt{coefCI(mdl)}

You can also change the confidence level using

\texttt{coefCI(mdl,alpha)}

For details, see the \texttt{coefCI} and \texttt{coefTest} methods of \texttt{LinearModel} class.

Compute Coefficient Confidence Intervals

This example shows how to compute coefficient confidence intervals.

Load the sample data and fit a linear regression model.

\texttt{load hald}
\texttt{mdl = fitlm(ingredients,heat)};

Display the 95% coefficient confidence intervals.
coefCI(mdl)

ans = 5×2

-99.1786   223.9893
-0.1663     3.2685
-1.1589     2.1792
-1.6385     1.8423
-1.7791     1.4910

The values in each row are the lower and upper confidence limits, respectively, for the default 95% confidence intervals for the coefficients. For example, the first row shows the lower and upper limits, -99.1786 and 223.9893, for the intercept, $\beta_0$. Likewise, the second row shows the limits for $\beta_1$ and so on.

Display the 90% confidence intervals for the coefficients ($\alpha = 0.1$).

coefCI(mdl,0.1)

ans = 5×2

-67.8949   192.7057
 0.1662     2.9360
-0.8358     1.8561
-1.3015     1.5053
-1.4626     1.1745

The confidence interval limits become narrower as the confidence level decreases.

See Also
LinearModel | anova | coefCI | coefTest | fitlm | plotDiagnostics | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 11-20
• “Interpret Linear Regression Results” on page 11-65
Coefficient of Determination (R-Squared)

Purpose

Coefficient of determination (R-squared) indicates the proportionate amount of variation in the response variable \( y \) explained by the independent variables \( X \) in the linear regression model. The larger the R-squared is, the more variability is explained by the linear regression model.

Definition

R-squared is the proportion of the total sum of squares explained by the model. Rsquared, a property of the fitted model, is a structure with two fields:

- **Ordinary** — Ordinary (unadjusted) R-squared

\[
R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}.
\]

- **Adjusted** — R-squared adjusted for the number of coefficients

\[
R_{adj}^2 = 1 - \left( \frac{n-1}{n-p} \right) \frac{SSE}{SST}.
\]

\( SSE \) is the sum of squared error, \( SSR \) is the sum of squared regression, \( SST \) is the sum of squared total, \( n \) is the number of observations, and \( p \) is the number of regression coefficients. Note that \( p \) includes the intercept, so for example, \( p \) is 2 for a linear fit. Because R-squared increases with added predictor variables in the regression model, the adjusted R-squared adjusts for the number of predictor variables in the model. This makes it more useful for comparing models with a different number of predictors.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain either R-squared value as a scalar by indexing into the property using dot notation, for example,

\[
mdl.Rsquared.Ordinary
mdl.Rsquared.Adjusted
\]
You can also obtain the SSE, SSR, and SST using the properties with the same name.

```matlab
mdl.SSE
mdl.SSR
mdl.SST
```

**Display Coefficient of Determination**

This example shows how to display R-squared (coefficient of determination) and adjusted R-squared. Load the sample data and define the response and independent variables.

```matlab
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```matlab
mdl = fitlm(X,y)
```

```matlab
mdl =
Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
 Estimate SE tStat pValue
 __________________________ ________ ________ __________
 (Intercept) 117.4 5.2451 22.383 1.1667e-39
 x1 0.88162 2.9473 0.29913 0.76549
 x2 0.08602 0.06731 1.278 0.20438
 x3 -0.016685 0.055714 -0.29947 0.76524
 x4 9.884 1.0406 9.498 1.9546e-15
```

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 4.81
R-squared: 0.508, Adjusted R-Squared 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The R-squared and adjusted R-squared values are 0.508 and 0.487, respectively. Model explains about 50% of the variability in the response variable.

Access the R-squared and adjusted R-squared values using the property of the fitted `LinearModel` object.
 mdl.Rsquared.Ordinary
ans = 0.5078

mdl.Rsquared.Adjusted
ans = 0.4871

The adjusted R-squared value is smaller than the ordinary R-squared value.

See Also
LinearModel | anova | fitlm | stepwiselm

Related Examples
• "Examine Quality and Adjust the Fitted Model” on page 11-20
• “Interpret Linear Regression Results” on page 11-65
Delete-1 Statistics

In this section...

“Delete-1 Change in Covariance (covratio)” on page 11-82
“Determine Influential Observations Using CovRatio” on page 11-83
“Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)” on page 11-85
“Determine Observations Influential on Coefficients Using Dfbetas” on page 11-86
“Delete-1 Scaled Change in Fitted Values (Dffits)” on page 11-86
“Determine Observations Influential on Fitted Response Using Dffits” on page 11-87
“Delete-1 Variance (S2_i)” on page 11-89
“Compute and Examine Delete-1 Variance Values” on page 11-90

Delete-1 Change in Covariance (covratio)

Purpose

Delete-1 change in covariance (covratio) identifies the observations that are influential in the regression fit. An influential observation is one where its exclusion from the model might significantly alter the regression function. Values of covratio larger than $1 + 3\frac{p}{n}$ or smaller than $1 - 3\frac{p}{n}$ indicate influential points, where $p$ is the number of regression coefficients, and $n$ is the number of observations.

Definition

The covratio statistic is the ratio of the determinant of the coefficient covariance matrix with observation $i$ deleted to the determinant of the covariance matrix for the full model:

$$
\text{covratio} = \frac{\det\left\{\text{MSE}(i)[X'(i)X(i)]^{-1}\right\}}{\det\left[\text{MSE}(XX)^{-1}\right]}.
$$

CovRatio is an $n$-by-1 vector in the Diagnostics table of the fitted LinearModel object. Each element is the ratio of the generalized variance of the estimated coefficients when the corresponding element is deleted to the generalized variance of the coefficients using all the data.
**How To**

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

- Display the CovRatio by indexing into the property using dot notation
  
  mdl.Diagnostics.CovRatio

- Plot the delete-1 change in covariance using
  
  plotDiagnostics(mdl,'CovRatio')

  For details, see the plotDiagnostics method of the LinearModel class.

**Determine Influential Observations Using CovRatio**

This example shows how to use the CovRatio statistics to determine the influential points in data. Load the sample data and define the response and predictor variables.

```matlab
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```matlab
mdl = fitlm(X,y);
```

Plot the CovRatio statistics.

```matlab
plotDiagnostics(mdl,'CovRatio')
```
For this example, the threshold limits are $1 + 3\times5/100 = 1.15$ and $1 - 3\times5/100 = 0.85$. There are a few points beyond the limits, which might be influential points.

Find the observations that are beyond the limits.

```matlab
```

ans = 5x1

2
14
84
84
93
Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)

Purpose

The sign of a delete-1 scaled difference in coefficient estimate (Dfbetas) for coefficient $j$ and observation $i$ indicates whether that observation causes an increase or decrease in the estimate of the regression coefficient. The absolute value of a Dfbetas indicates the magnitude of the difference relative to the estimated standard deviation of the regression coefficient. A Dfbetas value larger than $3/\sqrt{n}$ in absolute value indicates that the observation has a large influence on the corresponding coefficient.

Definition

Dfbetas for coefficient $j$ and observation $i$ is the ratio of the difference in the estimate of coefficient $j$ using all observations and the one obtained by removing observation $i$, and the standard error of the coefficient estimate obtained by removing observation $i$. The Dfbetas for coefficient $j$ and observation $i$ is

$$D_{\text{fbetas}}_{ij} = \frac{b_j - b_{j(i)}}{\sqrt{\text{MSE}_{(i)}(1-h_{ii})}},$$

where $b_j$ is the estimate for coefficient $j$, $b_{j(i)}$ is the estimate for coefficient $j$ by removing observation $i$, $\text{MSE}_{(i)}$ is the mean squared error of the regression fit by removing observation $i$, and $h_{ii}$ is the leverage value for observation $i$. Dfbetas is an $n$-by-$p$ matrix in the Diagnostics table of the fitted LinearModel object. Each cell of Dfbetas corresponds to the Dfbetas value for the corresponding coefficient obtained by removing the corresponding observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain the Dfbetas values as an $n$-by-$p$ matrix by indexing into the property using dot notation,

mdl.Diagnostics.Dfbetas
Determine Observations Influential on Coefficients Using Dfbetas

This example shows how to determine the observations that have large influence on coefficients using Dfbetas. Load the sample data and define the response and independent variables.

```matlab
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.
mdl = fitlm(X,y);

Find the Dfbetas values that are high in absolute value.
```

```matlab
[row,col] = find(abs(mdl.Diagnostics.Dfbetas)>3/sqrt(100));
disp([row col])
```

```
2 1
28 1
84 1
93 1
2 2
13 3
84 3
2 4
84 4
```

Delete-1 Scaled Change in Fitted Values (Dffits)

Purpose

The delete-1 scaled change in fitted values (Dffits) show the influence of each observation on the fitted response values. Dffits values with an absolute value larger than 2*sqrt(p/n) might be influential.

Definition

Dffits for observation i is
\[ Dffits_i = sr_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}} \]

where \( sr_i \) is the studentized residual, and \( h_{ii} \) is the leverage value of the fitted \( \text{LinearModel} \) object. \( Dffits \) is an \( n \)-by-1 column vector in the \( \text{Diagnostics} \) table of the fitted \( \text{LinearModel} \) object. Each element in \( Dffits \) is the change in the fitted value caused by deleting the corresponding observation and scaling by the standard error.

**How To**

After obtaining a fitted model, say, \( mdl \), using \( \text{fitlm} \) or \( \text{stepwiselm} \), you can:

- Display the \( Dffits \) values by indexing into the property using dot notation
  \[
  mdl.\text{Diagnostics}.Dffits
  \]
- Plot the delete-1 scaled change in fitted values using
  \[
  \text{plotDiagnostics}(mdl, \text{'Dffits'})
  \]

For details, see the \( \text{plotDiagnostics} \) method of the \( \text{LinearModel} \) class for details.

**Determine Observations Influential on Fitted Response Using Dffits**

This example shows how to determine the observations that are influential on the fitted response values using \( Dffits \) values. Load the sample data and define the response and independent variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```
mdl = fitlm(X,y);
```

Plot the \( Dffits \) values.

```
plotDiagnostics(mdl,'Dffits')
```
The influential threshold limit for the absolute value of Dffits in this example is $2\times\sqrt{5/100} = 0.45$. Again, there are some observations with Dffits values beyond the recommended limits.

Find the Dffits values that are large in absolute value.

```matlab
find(abs(mdl.Diagnostics.Dffits)>2*sqrt(4/100))
```

ans = 10×1

2
13
28
44
Delete-1 Variance (S2_i)

Purpose

The delete-1 variance (S2_i) shows how the mean squared error changes when an observation is removed from the data set. You can compare the S2_i values with the value of the mean squared error.

Definition

S2_i is a set of residual variance estimates obtained by deleting each observation in turn. The S2_i value for observation i is

\[
S2_i = MSE_{(i)} = \frac{\sum_{j \neq i}^n (y_j - y_{j(i)})^2}{n - p - 1},
\]

where \( y_j \) is the jth observed response value. S2_i is an n-by-1 vector in the Diagnostics table of the fitted LinearModel object. Each element in S2_i is the mean squared error of the regression obtained by deleting that observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

- Display the S2_i vector by indexing into the property using dot notation
  
  mdl.Diagnostics.S2_i

- Plot the delete-1 variance values using
  
  plotDiagnostics(mdl,'S2_i')

  For details, see the plotDiagnostics method of the LinearModel class.
Compute and Examine Delete-1 Variance Values

This example shows how to compute and plot $S^2_i$ values to examine the change in the mean squared error when an observation is removed from the data. Load the sample data and define the response and independent variables.

```matlab
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.
mdl = fitlm(X,y);

Display the MSE value for the model.
mdl.MSE
ans = 23.1140

Plot the S^2_i values.
plotDiagnostics(mdl,'S2_i')
```
This plot makes it easy to compare the S2_i values to the MSE value of 23.114, indicated by the horizontal dashed lines. You can see how deleting one observation changes the error variance.

**See Also**
- LinearModel
- fitlm
- plotDiagnostics
- plotResiduals
- stepwiselm

**Related Examples**
- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65


**Durbin-Watson Test**

**Purpose**

The Durbin-Watson test assesses whether there is autocorrelation among the residuals or not.

**Definition**

The Durbin-Watson test statistic, $DW$, is

$$DW = \frac{\sum_{i=1}^{n-1} (r_{i+1} - r_i)^2}{\sum_{i=1}^{n} r_i^2}.$$

Here, $r_i$ is the $i$th raw residual, and $n$ is the number of observations.

**How To**

After obtaining a fitted model, say, `mdl`, using `fitlm` or `stepwiselm`, you can perform the Durbin-Watson test using

```matlab
dwtest(mdl)
```

For details, see the `dwtest` method of the `LinearModel` class.

**Test for Autocorrelation Among Residuals**

This example shows how to test for autocorrelation among the residuals of a linear regression model.

Load the sample data and fit a linear regression model.

```matlab
load hald
mdl = fitlm(ingredients,heat);
```
Perform a two-sided Durbin-Watson test to determine if there is any autocorrelation among the residuals of the linear model, mdl.

\[
[p, DW] = \text{dwtest}(\text{mdl}, \text{'exact', 'both'})
\]

\[
p = 0.8421
\]

\[
DW = 2.0526
\]

The value of the Durbin-Watson test statistic is 2.0526. The \( p \)-value of 0.8421 suggests that the residuals are not autocorrelated.

**See Also**

LinearModel | dwtest | fitlm | plotResiduals | stepwiselm

**Related Examples**

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
F-statistic and t-statistic

In this section...

“F-statistic” on page 11-95
“Assess Fit of Model Using F-statistic” on page 11-96
“t-statistic” on page 11-98
“Assess Significance of Regression Coefficients Using t-statistic” on page 11-99

F-statistic

Purpose

In linear regression, the F-statistic is the test statistic for the analysis of variance (ANOVA) approach to test the significance of the model or the components in the model.

Definition

The F-statistic in the linear model output display is the test statistic for testing the statistical significance of the model. The F-statistic values in the anova display are for assessing the significance of the terms or components in the model.

How To

After obtaining a fitted model, say mdl, using fitlm or stepwiselm, you can:

- Find the F-statistic vs. constant model in the output display or by using disp(mdl)
- Display the ANOVA for the model using anova(mdl,’summary’)
- Obtain the F-statistic values for the components, except for the constant term using anova(mdl)

For details, see the anova method of the LinearModel class.
Assess Fit of Model Using F-statistic

This example shows how to assess the fit of the model and the significance of the regression coefficients using the F-statistic.

Load the sample data.

```plaintext
load hospital
tbl = table(hospital.Age,hospital.Weight,hospital.Smoker,hospital.BloodPressure(:,1), ... 'VariableNames',{'Age','Weight','Smoker','BloodPressure'});
tbl.Smoker = categorical(tbl.Smoker);
```

Fit a linear regression model.

```plaintext
mdl = fitlm(tbl,'BloodPressure ~ Age*Weight + Smoker + Weight^2')
mdl =
 Linear regression model:
 BloodPressure ~ 1 + Smoker + Age*Weight + Weight^2
 Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _________ ________ __________
 (Intercept) 168.02 27.694 6.067 2.7149e-08
 Age 0.079569 0.39861 0.19962 0.84221
 Weight -0.69041 0.3435 -2.0099 0.047305
 Smoker_true 9.8027 1.0256 9.5584 1.5969e-15
 Age:Weight 0.00021796 0.0025258 0.086294 0.93142
 Weight^2 0.0021877 0.0011037 1.9822 0.050375

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 4.73
R-squared: 0.528, Adjusted R-Squared 0.503
F-statistic vs. constant model: 21, p-value = 4.81e-14
```

The F-statistic of the linear fit versus the constant model is 21, with a p-value of 4.81e-14. The model is significant at the 5% significance level. The R-squared value of 0.528 means the model explains about 53% of the variability in the response. There might be other predictor (explanatory) variables that are not included in the current model.

Display the ANOVA table for the fitted model.

```plaintext
anova(mdl,'summary')
```

11-96
This display separates the variability in the model into linear and nonlinear terms. Since there are two non-linear terms (\(\text{Weight}^2\) and the interaction between \(\text{Weight}\) and \(\text{Age}\)), the nonlinear degrees of freedom in the DF column is 2. There are three linear terms in the model (one Smoker indicator variable, \(\text{Weight}\), and \(\text{Age}\)). The corresponding F-statistics in the F column are for testing the significance of the linear and nonlinear terms as separate groups.

When there are replicated observations, the residual term is also separated into two parts; first is the error due to the lack of fit, and second is the pure error independent from the model, obtained from the replicated observations. In that case, the F-statistic is for testing the lack of fit, that is, whether the fit is adequate or not. But, in this example, there are no replicated observations.

Display the ANOVA table for the model terms.

```
anova(mdl)
anova(mdl)
```

This display decomposes the ANOVA table into the model terms. The corresponding F-statistics in the F column assess the statistical significance of each term. For example, the F-test for Smoker tests whether the coefficient of the indicator variable for Smoker is different from zero. That is, the F-test determines whether being a smoker has a
significant effect on BloodPressure. The degrees of freedom for each model term is the numerator degrees of freedom for the corresponding F-test. All the terms have one degree of freedom. In the case of a categorical variable, the degrees of freedom is the number of indicator variables. Smoker has only one indicator variable, so it also has one degree of freedom.

**t-statistic**

**Purpose**

In linear regression, the t-statistic is useful for making inferences about the regression coefficients. The hypothesis test on coefficient $i$ tests the null hypothesis that it is equal to zero – meaning the corresponding term is not significant – versus the alternate hypothesis that the coefficient is different from zero.

**Definition**

For a hypotheses test on coefficient $i$, with

$H_0 : \beta_i = 0$

$H_1 : \beta_i \neq 0$, 

the t-statistic is:

$$t = \frac{b_i}{SE(b_i)},$$

where $SE(b_i)$ is the standard error of the estimated coefficient $b_i$.

**How To**

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

- Find the coefficient estimates, the standard errors of the estimates (SE), and the t-statistic values of hypothesis tests for the corresponding coefficients (tStat) in the output display.
- Call for the display using

  `display(mdl)`
Assess Significance of Regression Coefficients Using t-statistic

This example shows how to test for the significance of the regression coefficients using t-statistic.

Load the sample data and fit the linear regression model.

```matlab
load hald
mdl = fitlm(ingredients,heat)
```

```matlab
dmdl =
Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _______ ________ ________
(Intercept) 62.405 70.071 0.8906 0.39913
 x1 1.5511 0.74477 2.0827 0.070822
 x2 0.51017 0.72379 0.70486 0.5009
 x3 0.10191 0.75471 0.13503 0.89592
 x4 -0.14406 0.70905 -0.20317 0.84407
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

You can see that for each coefficient, $t_{Stat} = \frac{Estimate}{SE}$. The $p$-values for the hypotheses tests are in the $pValue$ column. Each $t$-statistic tests for the significance of each term given other terms in the model. According to these results, none of the coefficients seem significant at the 5% significance level, although the R-squared value for the model is really high at 0.97. This often indicates possible multicollinearity among the predictor variables.

Use stepwise regression to decide which variables to include in the model.

```matlab
load hald
mdl = stepwiselm(ingredients,heat)
```
1. Adding x4, FStat = 22.7985, pValue = 0.000576232
2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06

mdl =
Linear regression model:
y ~ 1 + x1 + x4

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>103.1</td>
<td>2.124</td>
<td>48.54</td>
<td>3.3243e-13</td>
</tr>
<tr>
<td>x1</td>
<td>1.44</td>
<td>0.13842</td>
<td>10.403</td>
<td>1.1053e-06</td>
</tr>
<tr>
<td>x4</td>
<td>-0.61395</td>
<td>0.048645</td>
<td>-12.621</td>
<td>1.8149e-07</td>
</tr>
</tbody>
</table>

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.73
R-squared: 0.972, Adjusted R-Squared 0.967
F-statistic vs. constant model: 177, p-value = 1.58e-08

In this example, stepwiselm starts with the constant model (default) and uses forward selection to incrementally add x4 and x1. Each predictor variable in the final model is significant given the other one is in the model. The algorithm stops when adding none of the other predictor variables significantly improves in the model. For details on stepwise regression, see stepwiselm.

See Also
LinearModel | anova | coefCI | coefTest | fitlm | stepwiselm

Related Examples
- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Hat Matrix and Leverage

In this section...

"Hat Matrix" on page 11-101
"Leverage" on page 11-102
"Determine High Leverage Observations" on page 11-103

Hat Matrix

Purpose

The hat matrix provides a measure of leverage. It is useful for investigating whether one or more observations are outlying with regard to their $X$ values, and therefore might be excessively influencing the regression results.

Definition

The hat matrix is also known as the projection matrix because it projects the vector of observations, $y$, onto the vector of predictions, $\hat{y}$, thus putting the "hat" on $y$. The hat matrix $H$ is defined in terms of the data matrix $X$:

$$ H = X(X^TX)^{-1}X^T $$

and determines the fitted or predicted values since

$$ \hat{y} = Hy = Xb. $$

The diagonal elements of $H$, $h_{ii}$, are called leverages and satisfy

$$ 0 \leq h_{ii} \leq 1 $$

$$ \sum_{i=1}^{n} h_{ii} = p, $$

where $p$ is the number of coefficients, and $n$ is the number of observations (rows of $X$) in the regression model. HatMatrix is an $n$-by-$n$ matrix in the Diagnostics table.
How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

- Display the HatMatrix by indexing into the property using dot notation
  
  mdl.Diagnostics.HatMatrix

  When \( n \) is large, HatMatrix might be computationally expensive. In those cases, you can obtain the diagonal values directly, using

  mdl.Diagnostics.Leverage

Leverage

Purpose

Leverage is a measure of the effect of a particular observation on the regression predictions due to the position of that observation in the space of the inputs. In general, the farther a point is from the center of the input space, the more leverage it has. Because the sum of the leverage values is \( p \), an observation \( i \) can be considered as an outlier if its leverage substantially exceeds the mean leverage value, \( p/n \), for example, a value larger than \( 2*p/n \).

Definition

The leverage of observation \( i \) is the value of the \( i \)th diagonal term, \( h_{ii} \), of the hat matrix, \( H \), where

\[
H = X(X'X)^{-1}X'.
\]

The diagonal terms satisfy

\[
0 \leq h_{ii} \leq 1
\]

\[
\sum_{i=1}^{n} h_{ii} = p,
\]

where \( p \) is the number of coefficients in the regression model, and \( n \) is the number of observations. The minimum value of \( h_{ii} \) is \( 1/n \) for a model with a constant term. If the fitted model goes through the origin, then the minimum leverage value is 0 for an observation at \( x = 0 \).
It is possible to express the fitted values, \( \hat{y} \), by the observed values, \( y \), since

\[
\hat{y} = Hy = Xb.
\]

Hence, \( h_{ii} \) expresses how much the observation \( y_i \) has impact on \( \hat{y}_i \). A large value of \( h_{ii} \) indicates that the \( i \)th case is distant from the center of all \( X \) values for all \( n \) cases and has more leverage. Leverage is an \( n \)-by-1 column vector in the Diagnostics table.

**How To**

After obtaining a fitted model, say, \( mdl \), using fitlm or stepwiselm, you can:

- Display the Leverage vector by indexing into the property using dot notation
  
  \[ mdl.Diagnostics.Leverage \]

- Plot the leverage for the values fitted by your model using
  
  \[ plotDiagnostics(mdl) \]

  See the \texttt{plotDiagnostics} method of the \texttt{LinearModel} class for details.

**Determine High Leverage Observations**

This example shows how to compute Leverage values and assess high leverage observations. Load the sample data and define the response and independent variables.

```matlab
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
mdl = fitlm(X,y);
plotDiagnostics(mdl)
```
For this example, the recommended threshold value is $2 \times 5/100 = 0.1$. There is no indication of high leverage observations.

**See Also**

LinearModel | fitlm | plotDiagnostics | stepwiselm

**Related Examples**

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Residuals

Purpose
Residuals are useful for detecting outlying $y$ values and checking the linear regression assumptions with respect to the error term in the regression model. High-leverage observations have smaller residuals because they often shift the regression line or surface closer to them. You can also use residuals to detect some forms of heteroscedasticity and autocorrelation.

Definition
The Residuals matrix is an $n$-by-4 table containing four types of residuals, with one row for each observation.

Raw Residuals
Observed minus fitted values, that is,

$$r_i = y_i - \hat{y}_i.$$  

Pearson Residuals
Raw residuals divided by the root mean squared error, that is,

$$pr_i = \frac{r_i}{\sqrt{MSE}},$$

where $r_i$ is the raw residual and $MSE$ is the mean squared error.

Standardized Residuals
Standardized residuals are raw residuals divided by their estimated standard deviation. The standardized residual for observation $i$ is

$$st_i = \frac{r_i}{\sqrt{MSE(1-h_{ii})}},$$

where $MSE$ is the mean squared error and $h_{ii}$ is the leverage value for observation $i$. 

11-105
Studentized Residuals

Studentized residuals are the raw residuals divided by an independent estimate of the residual standard deviation. The residual for observation $i$ is divided by an estimate of the error standard deviation based on all observations except for observation $i$.

$$sr_i = \frac{r_i}{\sqrt{\text{MSE}_i(1-h_{ii})}},$$

where $\text{MSE}_i$ is the mean squared error of the regression fit calculated by removing observation $i$, and $h_{ii}$ is the leverage value for observation $i$. The studentized residual $sr_i$ has a $t$-distribution with $n - p - 1$ degrees of freedom.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

- Find the Residuals table under mdl object.
- Obtain any of these columns as a vector by indexing into the property using dot notation, for example,
  
  mdl.Residuals.Raw

- Plot any of the residuals for the values fitted by your model using
  
  plotResiduals(mdl)

  For details, see the plotResiduals method of the LinearModel class.

Assess Model Assumptions Using Residuals

This example shows how to assess the model assumptions by examining the residuals of a fitted linear regression model.

Load the sample data and store the independent and response variables in a table.

```matlab
load imports-85
tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',
{'curb_weight','engine_size','bore','price'});
```

Fit a linear regression model.
mdl = fitlm(tbl)

mdl =

Linear regression model:
  price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:
       Estimate       SE      tStat      pValue
    ________    _________    _______    __________
(Intercept)        64.095        3.703     17.309    2.0481e-41
curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
engine_size     -0.015806     0.013255    -1.1925       0.23452
bore              -2.6998       1.3489    -2.0015      0.046711

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674,  Adjusted R-Squared 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

Plot the histogram of raw residuals.

plotResiduals(mdl)
The histogram shows that the residuals are slightly right skewed.

Plot the box plot of all four types of residuals.

```matlab
Res = table2array(mdl.Residuals);
```

You can see the right-skewed structure of the residuals in the box plot as well.

Plot the normal probability plot of the raw residuals.

```matlab
plotResiduals(mdl,'probability')
boxplot(Res)
```
This normal probability plot also shows the deviation from normality and the skewness on the right tail of the distribution of residuals.

Plot the residuals versus lagged residuals.

`plotResiduals(mdl,'lagged')`
This graph shows a trend, which indicates a possible correlation among the residuals. You can further check this using `dwtest(mdl)`. Serial correlation among residuals usually means that the model can be improved.

Plot the symmetry plot of residuals.

`plotResiduals(mdl, 'symmetry')`
This plot also suggests that the residuals are not distributed equally around their median, as would be expected for normal distribution.

Plot the residuals versus the fitted values.

plotResiduals(mdl,'fitted')
The increase in the variance as the fitted values increase suggests possible heteroscedasticity.

**References**


**See Also**

LinearModel | dwtest | fitlm | plotDiagnostics | plotResiduals | stepwiselm

**Related Examples**

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
### Summary of Output and Diagnostic Statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>LinearModel</th>
<th>regstats</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Cook's Distance&quot; on page 11-71</td>
<td>CooksDistance and cookd</td>
<td>cookd</td>
</tr>
<tr>
<td>&quot;Coefficient Confidence Intervals&quot; on page 11-77</td>
<td>coefCI</td>
<td>N/A</td>
</tr>
<tr>
<td>&quot;Coefficient Covariance and Standard Errors&quot; on page 11-75</td>
<td>CoefficientCovariance</td>
<td>covb</td>
</tr>
<tr>
<td>&quot;Coefficient of Determination (R-Squared)&quot; on page 11-79</td>
<td>Rsquared: Ordinary, Adjusted</td>
<td>rsquare, adjrsquare</td>
</tr>
<tr>
<td>&quot;Delete-1 Change in Covariance (covratio)&quot; on page 11-82</td>
<td>CovRatio</td>
<td>covratio</td>
</tr>
<tr>
<td>&quot;Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)&quot; on page 11-85</td>
<td>Dfbetas</td>
<td>dfbetas</td>
</tr>
<tr>
<td>&quot;Delete-1 Scaled Change in Fitted Values (Dffits)&quot; on page 11-86</td>
<td>Dffits</td>
<td>dffits</td>
</tr>
<tr>
<td>&quot;Delete-1 Variance (S2_i)&quot; on page 11-89</td>
<td>S2_i</td>
<td>s2_i</td>
</tr>
<tr>
<td>&quot;Durbin-Watson Test&quot; on page 11-93</td>
<td>dwtest</td>
<td>dwstat</td>
</tr>
<tr>
<td>&quot;F-statistic&quot; on page 11-95</td>
<td>Fstat</td>
<td>fstat</td>
</tr>
<tr>
<td>&quot;Hat Matrix&quot; on page 11-101</td>
<td>HatMatrix</td>
<td>hatmat</td>
</tr>
<tr>
<td>&quot;Leverage&quot; on page 11-102</td>
<td>Leverage</td>
<td>leverage</td>
</tr>
<tr>
<td>&quot;Residuals&quot; on page 11-105</td>
<td>Residuals: Raw, Pearson, Studentized, Standardized</td>
<td>r, studres, standres</td>
</tr>
<tr>
<td>&quot;t-statistic&quot; on page 11-98</td>
<td>tstats</td>
<td>tstat</td>
</tr>
</tbody>
</table>

### See Also

LinearModel | dwtest | fitlm | plotDiagnostics | plotResiduals | stepwiselm
Related Examples

- “Examine Quality and Adjust the Fitted Model” on page 11-20
- “Interpret Linear Regression Results” on page 11-65
Wilkinson Notation

In this section...

“Overview” on page 11-116
“Formula Specification” on page 11-117
“Linear Model Examples” on page 11-120
“Linear Mixed-Effects Model Examples” on page 11-122
“Generalized Linear Model Examples” on page 11-123
“Generalized Linear Mixed-Effects Model Examples” on page 11-124
“Repeated Measures Model Examples” on page 11-125

Overview

Wilkinson notation provides a way to describe regression and repeated measures models without specifying coefficient values. This specialized notation identifies the response variable and which predictor variables to include or exclude from the model. You can also include squared and higher-order terms, interaction terms, and grouping variables in the model formula.

Specifying a model using Wilkinson notation provides several advantages:

- You can include or exclude individual predictors and interaction terms from the model. For example, using the 'Interactions' name-value pair available in each model fitting functions includes interaction terms for all pairs of variables. Using Wilkinson notation instead allows you to include only the interaction terms of interest.
- You can change the model formula without changing the design matrix, if your input data uses the table data type. For example, if you fit an initial model using all the available predictor variables, but decide to remove a variable that is not statistically significant, then you can re-write the model formula to include only the variables of interest. You do not need to make any changes to the input data itself.

Statistics and Machine Learning Toolbox offers several model fitting functions that use Wilkinson notation, including:

- Linear models (using fitlm and stepwiselm)
- Generalized linear models (using fitglm)
• Linear mixed-effects models (using fitlme and fitlmematrix)
• Generalized linear mixed-effects models (using fitglme)
• Repeated measures models (using fitrm)

**Formula Specification**

A formula for model specification is a character vector or string scalar of the form \( y \sim \text{terms} \), where \( y \) is the name of the response variable, and \( \text{terms} \) defines the model using the predictor variable names and the following operators.

**Predictor Variables**

<table>
<thead>
<tr>
<th>Predictor Terms in Model</th>
<th>Wilkinson Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>1</td>
</tr>
<tr>
<td>no intercept</td>
<td>–1</td>
</tr>
<tr>
<td>( x_1 )</td>
<td>( x1 )</td>
</tr>
<tr>
<td>( x_1, x_2 )</td>
<td>( x1 + x2 )</td>
</tr>
<tr>
<td>( x_1, x_2, x_1x_2 )</td>
<td>( x1*x2 ) or ( x1 + x2 + x1:x2 )</td>
</tr>
<tr>
<td>( x_1x_2 )</td>
<td>( x1:x2 )</td>
</tr>
<tr>
<td>( x_1, x_1^2 )</td>
<td>( x1^2 )</td>
</tr>
<tr>
<td>( x_1^2 )</td>
<td>( x1^2 - x1 )</td>
</tr>
</tbody>
</table>

Wilkinson notation includes an intercept term in the model by default, even if you do not add 1 to the model formula. To exclude the intercept from the model, use -1 in the formula.

The * operator (for interactions) and the ^ operator (for power and exponents) automatically include all lower-order terms. For example, if you specify \( x^3 \), the model will automatically include \( x^3, x^2, \) and \( x \). If you want to exclude certain variables from the model, use the – operator to remove the unwanted terms.

**Random-Effects and Mixed-Effects Models**

For random-effects and mixed-effects models, the formula specification includes the names of the predictor variables and the grouping variables. For example, if the predictor variable \( x_1 \) is a random effect grouped by the variable \( g \), then represent this in Wilkinson notation as follows:
(x1 | g)

Repeated Measures Models

For repeated measures models, the formula specification includes all of the repeated measures as responses, and the factors as predictor variables. Specify the response variables for repeated measures models as described in the following table.

<table>
<thead>
<tr>
<th>Response Terms in Model</th>
<th>Wilkinson Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y_1 )</td>
<td>( y_1 )</td>
</tr>
<tr>
<td>( y_1, y_2, y_3 )</td>
<td>( y_1, y_2, y_3 )</td>
</tr>
<tr>
<td>( y_1, y_2, y_3, y_4, y_5 )</td>
<td>( y_1-y_5 )</td>
</tr>
</tbody>
</table>

For example, if you have three repeated measures as responses and the factors \( x_1, x_2, \) and \( x_3 \) as the predictor variables, then you can define the repeated measures model using Wilkinson notation as follows:

\[
y_1,y_2,y_3 \sim x_1 + x_2 + x_3
\]

or

\[
y_1-y_3 \sim x_1 + x_2 + x_3
\]

Variable Names

If the input data (response and predictor variables) is stored in a table or dataset array, you can specify the formula using the variable names. For example, load the carsmall sample data. Create a table containing Weight, Acceleration, and MPG. Name each variable using the 'VariableNames' name-value pair argument of the fitting function fitlm. Then fit the following model to the data:

\[
MPG = \beta_0 + \beta_1Weight + \beta_2Acceleration
\]

load carsmall
tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration','MPG'});
mdl = fitlm(tbl,'MPG ~ Weight + Acceleration')

mdl =

Linear regression model:
  MPG ~ 1 + Weight + Acceleration
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>45.155</td>
<td>3.4659</td>
<td>13.028</td>
<td>1.6266e-22</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.0082475</td>
<td>0.00059836</td>
<td>-13.783</td>
<td>5.3165e-24</td>
</tr>
<tr>
<td>Acceleration</td>
<td>0.19694</td>
<td>0.14743</td>
<td>1.3359</td>
<td>0.18493</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743, Adjusted R-Squared 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The model object display uses the variable names provided in the input table.

If the input data is stored as a matrix, you can specify the formula using default variable names such as y, x1, and x2. For example, load the carsmall sample data. Create a matrix containing the predictor variables Weight and Acceleration. Then fit the following model to the data:

\[ MPG = \beta_0 + \beta_1 \text{Weight} + \beta_2 \text{Acceleration} \]

load carsmall
X = [Weight,Acceleration];
y = MPG;
mdl = fitlm(X,y,'y ~ x1 + x2')
mdl =

Linear regression model:
\[ y \sim 1 + x1 + x2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>45.155</td>
<td>3.4659</td>
<td>13.028</td>
<td>1.6266e-22</td>
</tr>
<tr>
<td>x1</td>
<td>-0.0082475</td>
<td>0.00059836</td>
<td>-13.783</td>
<td>5.3165e-24</td>
</tr>
<tr>
<td>x2</td>
<td>0.19694</td>
<td>0.14743</td>
<td>1.3359</td>
<td>0.18493</td>
</tr>
</tbody>
</table>
Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743, Adjusted R-Squared 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The term $x_1$ in the model specification formula corresponds to the first column of the predictor variable matrix $X$. The term $x_2$ corresponds to the second column of the input matrix. The term $y$ corresponds to the response variable.

**Linear Model Examples**

Use `fitlm` and `stepwiselm` to fit linear models.

**Intercept and Two Predictors**

For a linear regression model with an intercept and two fixed-effects predictors, such as

$$ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, $$

specify the model formula using Wilkinson notation as follows:

'\texttt{y ~ x1 + x2}'

**No Intercept and Two Predictors**

For a linear regression model with no intercept and two fixed-effects predictors, such as

$$ y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, $$

specify the model formula using Wilkinson notation as follows:

'\texttt{y ~ -1 + x1 + x2}'

**Intercept, Two Predictors, and an Interaction Term**

For a linear regression model with an intercept, two fixed-effects predictors, and an interaction term, such as

$$ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i, $$

specify the model formula using Wilkinson notation as follows:
'y ~ x1*x2' 
or
'y ~ x1 + x2 + x1:x2'

**Intercept, Three Predictors, and All Interaction Effects**

For a linear regression model with an intercept, three fixed-effects predictors, and interaction effects between all three predictors plus all lower-order terms, such as

\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i1}x_{i2} + \beta_5 x_{i1}x_{i3} + \beta_6 x_{i2}x_{i3} + \beta_7 x_{i1}x_{i2}x_{i3} + \epsilon_i, \]

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3'

**Intercept, Three Predictors, and Selected Interaction Effects**

For a linear regression model with an intercept, three fixed-effects predictors, and interaction effects between two of the predictors, such as

\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i1}x_{i2} + \epsilon_i, \]

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2 + x3'

or

'y ~ x1 + x2 + x3 + x1:x2'

**Intercept, Three Predictors, and Lower-Order Interaction Effects Only**

For a linear regression model with an intercept, three fixed-effects predictors, and pairwise interaction effects between all three predictors, but excluding an interaction effect between all three predictors simultaneously, such as

\[ y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i1}x_{i2} + \beta_5 x_{i1}x_{i3} + \beta_6 x_{i2}x_{i3} + \epsilon_i, \]

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3 - x1:x2:x3'
Linear Mixed-Effects Model Examples

Use `fitlme` and `fitlmematrix` to fit linear mixed-effects models.

**Random Effect Intercept, No Predictors**

For a linear mixed-effects model that contains a random intercept but no predictor terms, such as

\[ y_{im} = \beta_0, \]

where

\[ \beta_0 = \beta_{00} + b_{0m}, b_{0m} \sim N\left(0, \sigma_0^2\right) \]

and \( g \) is the grouping variable with \( m \) levels, specify the model formula using Wilkinson notation as follows:

'\( y \sim (1 | g) \)'

**Random Intercept and Fixed Slope for One Predictor**

For a linear mixed-effects model that contains a fixed intercept, random intercept, and fixed slope for the continuous predictor variable, such as

\[ y_{im} = \beta_0 + \beta_1 x_{im}, \]

where

\[ \beta_0 = \beta_{00} + b_{0m}, b_{0m} \sim N\left(0, \sigma_0^2\right) \]

and \( g \) is the grouping variable with \( m \) levels, specify the model formula using Wilkinson notation as follows:

'\( y \sim x1 + (1 | g) \)'

**Random Intercept and Random Slope for One Predictor**

For a linear mixed-effects model that contains a fixed intercept, plus a random intercept and a random slope that have a possible correlation between them, such as
\[ y_{im} = \beta_{0m} + \beta_{1m} x_{im}, \]

where
\[
\beta_{0m} = \beta_{00} + b_{0m}
\]
\[
\beta_{1m} = \beta_{10} + b_{1m}
\]
\[
\begin{bmatrix} b_{0m} \\ b_{1m} \end{bmatrix} \sim N\{0, \sigma^2 D(\theta)\}
\]

and \( D \) is a 2-by-2 symmetric and positive semidefinite covariance matrix, parameterized by a variance component vector \( \theta \), specify the model formula using Wilkinson notation as follows:

'\( y \sim x1 + (x1 | g) \)'

The pattern of the random effects covariance matrix is determined by the model fitting function. To specify the covariance matrix pattern, use the name-value pairs available through \texttt{fitlme} when fitting the model. For example, you can specify the assumption that the random intercept and random slope are independent of one another using the 'CovariancePattern' name-value pair argument in \texttt{fitlme}.

**Generalized Linear Model Examples**

Use \texttt{fitglm} and \texttt{stepwiseglm} to fit generalized linear models.

In a generalized linear model, the \( y \) response variable has a distribution other than normal, but you can represent the model as an equation that is linear in the regression coefficients. Specifying a generalized linear model requires three parts:

- Distribution of the response variable
- Link function
- Linear predictor

The distribution of the response variable and the link function are specified using name-value pair arguments in the fit function \texttt{fitglm} or \texttt{stepwiseglm}. 

11-123
The linear predictor portion of the equation, which appears on the right side of the \(~\) symbol in the model specification formula, uses Wilkinson notation in the same way as for the linear model examples.

A generalized linear model models the link function, rather than the actual response, as \(y\). This is reflected in the output display for the model object.

**Intercept and Two Predictors**

For a generalized linear regression model with an intercept and two predictors, such as

\[
\log(y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2},
\]

specify the model formula using Wilkinson notation as follows:

'\(y \sim x1 + x2\)'

**Generalized Linear Mixed-Effects Model Examples**

Use \texttt{fitglme} to fit generalized linear mixed-effects models.

In a generalized linear mixed-effects model, the \(y\) response variable has a distribution other than normal, but you can represent the model as an equation that is linear in the regression coefficients. Specifying a generalized linear model requires three parts:

- Distribution of the response variable
- Link function
- Linear predictor

The distribution of the response variable and the link function are specified using name-value pair arguments in the \texttt{fit} function \texttt{fitglme}.

The linear predictor portion of the equation, which appears on the right side of the \(~\) symbol in the model specification formula, uses Wilkinson notation in the same way as for the linear mixed-effects model examples.

A generalized linear model models the link function as \(y\), not the response itself. This is reflected in the output display for the model object.

The pattern of the random effects covariance matrix is determined by the model fitting function. To specify the covariance matrix pattern, use the name-value pairs available...
through \texttt{fitglme} when fitting the model. For example, you can specify the assumption that the random intercept and random slope are independent of one another using the \texttt{'CovariancePattern'} name-value pair argument in \texttt{fitglme}.

**Random Intercept and Fixed Slope for One Predictor**

For a generalized linear mixed-effects model that contains a fixed intercept, random intercept, and fixed slope for the continuous predictor variable, where the response can be modeled using a Poisson distribution, such as

\[
\log(y_{im}) = \beta_0 + \beta_1 x_{im} + b_i,
\]

where

\[
b_i \sim N\left(0, \sigma_{b_i}^2\right)
\]

and \(g\) is the grouping variable with \(m\) levels, specify the model formula using Wilkinson notation as follows:

\['y \sim x1 + (1 \mid g)'\]

**Repeated Measures Model Examples**

Use \texttt{fitrm} to fit repeated measures models.

**One Predictor**

For a repeated measures model with five response measurements and one predictor variable, specify the model formula using Wilkinson notation as follows:

\['y_{1-5} \sim x1'\]

**Three Predictors and an Interaction Term**

For a repeated measures model with five response measurements and three predictor variables, plus an interaction between two of the predictor variables, specify the model formula using Wilkinson notation as follows:

\['y_{1-5} \sim x1 \times x2 + x3'\]
Stepwise Regression

In this section...

“Stepwise Regression to Select Appropriate Models” on page 11-126
“Compare large and small stepwise models” on page 11-126

Stepwise Regression to Select Appropriate Models

stepwiselm creates a linear model and automatically adds to or trims the model. To create a small model, start from a constant model. To create a large model, start with a model containing many terms. A large model usually has lower error as measured by the fit to the original data, but might not have any advantage in predicting new data.

stepwiselm can use all the name-value options from fitlm, with additional options relating to the starting and bounding models. In particular:

- For a small model, start with the default lower bounding model: 'constant' (a model that has no predictor terms).
- The default upper bounding model has linear terms and interaction terms (products of pairs of predictors). For an upper bounding model that also includes squared terms, set the Upper name-value pair to 'quadratic'.

Compare large and small stepwise models

This example shows how to compare models that stepwiselm returns starting from a constant model and starting from a full interaction model.

Load the carbig data and create a table from some of the data.

load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a mileage model stepwise starting from the constant model.

mdl1 = stepwiselm(tbl,'constant','ResponseVar','MPG')

1. Adding Weight, FStat = 888.8507, pValue = 2.9728e-103
2. Adding Horsepower, FStat = 3.8217, pValue = 0.00049608
3. Adding Horsepower:Weight, FStat = 64.8709, pValue = 9.93362e-15
mdl1 =
Linear regression model:
    MPG ~ 1 + Horsepower*Weight

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>63.558</td>
<td>2.3429</td>
<td>27.127</td>
<td>1.2343e-91</td>
</tr>
<tr>
<td>Horsepower</td>
<td>-0.25084</td>
<td>0.027279</td>
<td>-9.1952</td>
<td>2.3226e-18</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.010772</td>
<td>0.00077381</td>
<td>-13.921</td>
<td>5.1372e-36</td>
</tr>
<tr>
<td>Horsepower:Weight</td>
<td>5.3554e-05</td>
<td>6.6491e-06</td>
<td>8.0542</td>
<td>9.9336e-15</td>
</tr>
</tbody>
</table>

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
R-squared: 0.748, Adjusted R-Squared 0.746
F-statistic vs. constant model: 385, p-value = 7.26e-116

Create a mileage model stepwise starting from the full interaction model.

mdl2 = stepwiselm(tbl,'interactions','ResponseVar','MPG')

1. Removing Acceleration:Displacement, FStat = 0.024186, pValue = 0.8765
2. Removing Displacement:Weight, FStat = 0.33103, pValue = 0.56539
3. Removing Acceleration:Horsepower, FStat = 1.7334, pValue = 0.18876
4. Removing Acceleration:Weight, FStat = 0.93269, pValue = 0.33477
5. Removing Horsepower:Weight, FStat = 0.64486, pValue = 0.42245

mdl2 =
Linear regression model:
    MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>61.285</td>
<td>2.8052</td>
<td>21.847</td>
<td>1.8593e-69</td>
</tr>
<tr>
<td>Acceleration</td>
<td>-0.34401</td>
<td>0.11862</td>
<td>-2.9</td>
<td>0.0039445</td>
</tr>
<tr>
<td>Displacement</td>
<td>-0.081198</td>
<td>0.010071</td>
<td>-8.0623</td>
<td>9.5014e-15</td>
</tr>
<tr>
<td>Horsepower</td>
<td>-0.24313</td>
<td>0.026068</td>
<td>-9.3265</td>
<td>8.6556e-19</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.001437</td>
<td>0.00084041</td>
<td>-1.7095</td>
<td>0.088166</td>
</tr>
<tr>
<td>Displacement:Horsepower</td>
<td>0.00054236</td>
<td>5.7987e-05</td>
<td>9.3531</td>
<td>7.0527e-19</td>
</tr>
</tbody>
</table>
Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761, Adjusted R-Squared 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117

Notice that:

- `mdl1` has four coefficients (the `Estimate` column), and `mdl2` has six coefficients.
- The adjusted R-squared of `mdl1` is 0.746, which is slightly less (worse) than that of `mdl2`, 0.758.

Create a mileage model stepwise with a full quadratic model as the upper bound, starting from the full quadratic model:

```matlab
mdl3 = stepwiselm(tbl,'quadratic','ResponseVar','MPG','Upper','quadratic');
```

1. Removing `Acceleration`:`Horsepower`, FStat = 0.075209, pValue = 0.78405
2. Removing `Acceleration`:`Weight`, FStat = 0.072756, pValue = 0.78751
3. Removing `Horsepower`:`Weight`, FStat = 0.12569, pValue = 0.72314
4. Removing `Weight`^2, FStat = 1.194, pValue = 0.27521
5. Removing `Displacement`:`Weight`, FStat = 1.2839, pValue = 0.25789
6. Removing `Displacement`^2, FStat = 2.069, pValue = 0.15114
7. Removing `Horsepower`^2, FStat = 0.74063, pValue = 0.39

Compare the three model complexities by examining their formulas.

```matlab
mdl1.Formula
ans =
MPG ~ 1 + Horsepower*Weight

mdl2.Formula
ans =
MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

mdl3.Formula
ans =
MPG ~ 1 + Weight + Acceleration*Displacement + Displacement*Horsepower + Acceleration^2
```

The adjusted $R^2$ values improve slightly as the models become more complex:
RSquared = [mdl1.Rsquared.Adjusted, ...

RSquared = 1×3
0.7465   0.7580   0.7599

Compare residual plots of the three models.

subplot(3,1,1)
plotResiduals(mdl1)
subplot(3,1,2)
plotResiduals(mdl2)
subplot(3,1,3)
plotResiduals(mdl3)
The models have similar residuals. It is not clear which fits the data better.

Interestingly, the more complex models have larger maximum deviations of the residuals:

\[
R_{\text{range1}} = [\min(\text{mdl1.Residuals.Raw}), \max(\text{mdl1.Residuals.Raw})];
R_{\text{range2}} = [\min(\text{mdl2.Residuals.Raw}), \max(\text{mdl2.Residuals.Raw})];
R_{\text{range3}} = [\min(\text{mdl3.Residuals.Raw}), \max(\text{mdl3.Residuals.Raw})];
R_{\text{ranges}} = [R_{\text{range1}}; R_{\text{range2}}; R_{\text{range3}}]
\]

\[
R_{\text{ranges}} = 3\times2
\]

\[
\begin{array}{cc}
-10.7725 & 14.7314 \\
-11.4407 & 16.7562 \\
-12.2723 & 16.7927 \\
\end{array}
\]
Robust Regression — Reduce Outlier Effects

In this section...

“What Is Robust Regression?” on page 11-132
“Robust Regression versus Standard Least-Squares Fit” on page 11-132

What Is Robust Regression?

The models described in “What Are Linear Regression Models?” on page 11-8 are based on certain assumptions, such as a normal distribution of errors in the observed responses. If the distribution of errors is asymmetric or prone to outliers, model assumptions are invalidated, and parameter estimates, confidence intervals, and other computed statistics become unreliable. Use fitlm with the RobustOpts name-value pair to create a model that is not much affected by outliers. The robust fitting method is less sensitive than ordinary least squares to large changes in small parts of the data.

Robust regression works by assigning a weight to each data point. Weighting is done automatically and iteratively using a process called iteratively reweighted least squares. In the first iteration, each point is assigned equal weight and model coefficients are estimated using ordinary least squares. At subsequent iterations, weights are recomputed so that points farther from model predictions in the previous iteration are given lower weight. Model coefficients are then recomputed using weighted least squares. The process continues until the values of the coefficient estimates converge within a specified tolerance.

Robust Regression versus Standard Least-Squares Fit

This example shows how to use robust regression. It compares the results of a robust fit to a standard least-squares fit.

Step 1. Prepare data.

Load the moore data. The data is in the first five columns, and the response in the sixth.

load moore
X = moore(:,1:5);%moore(1:5,1:5)';
y = moore(:,6);
Step 2. Fit robust and nonrobust models.

Fit two linear models to the data, one using robust fitting, one not.

```matlab
mdl = fitlm(X,y); % not robust
mdlr = fitlm(X,y,'RobustOpts','on');
```

Step 3. Examine model residuals.

Examine the residuals of the two models.

```matlab
subplot(1,2,1)
plotResiduals(mdl,'probability')
subplot(1,2,2)
plotResiduals(mdlr,'probability')
```
The residuals from the robust fit (right half of the plot) are nearly all closer to the straight line, except for the one obvious outlier.

**Step 4. Remove the outlier from the standard model.**

Find the index of the outlier. Examine the weight of the outlier in the robust fit.

```matlab
 [~,outlier] = max(mdlr.Residuals.Raw);
 mdlr.Robust.Weights(outlier)
 ans = 0.0246
```

Check the median weight.

```matlab
 median(mdlr.Robust.Weights)
 ans = 0.9718
```

This weight of the outlier in the robust fit is much less than a typical weight of an observation.
Ridge Regression

Introduction to Ridge Regression

Coefficient estimates for the models described in “Linear Regression” on page 11-11 rely on the independence of the model terms. When terms are correlated and the columns of the design matrix $X$ have an approximate linear dependence, the matrix $(X^T X)^{-1}$ becomes close to singular. As a result, the least-squares estimate

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

becomes highly sensitive to random errors in the observed response $y$, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

$$\hat{\beta} = (X^T X + kI)^{-1} X^T y$$

where $k$ is the ridge parameter and $I$ is the identity matrix. Small positive values of $k$ improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of ridge estimates often result in a smaller mean square error when compared to least-squares estimates.

The Statistics and Machine Learning Toolbox function `ridge` carries out ridge regression.

Ridge Regression

This example shows how to perform ridge regression.

Load the data in `acetylene.mat`, with observations of the predictor variables $x_1$, $x_2$, $x_3$, and the response variable $y$.

```
load acetylene
```
Plot the predictor variables against each other.

```matlab
subplot(1,3,1)
plot(x1,x2,'.')</xlabel('x1')
ylabel('x2')
grid on
axis square

subplot(1,3,2)
plot(x1,x3,'.')</xlabel('x1')
ylabel('x3')
grid on
axis square

subplot(1,3,3)
plot(x2,x3,'.')</xlabel('x2')
ylabel('x3')
grid on
axis square
```
Note the correlation between \( x_1 \) and the other two predictor variables.

Use `ridge` and `x2fx` to compute coefficient estimates for a multilinear model with interaction terms, for a range of ridge parameters.

\[
X = [x_1 \ x_2 \ x_3];
D = x2fx(X,'interaction');
D(:,1) = []; \% No constant term
k = 0:1e-5:5e-3;
betahat = ridge(y,D,k);

Plot the ridge trace.

figure
plot(k,betahat,'LineWidth',2)
The estimates stabilize to the right of the plot. Note that the coefficient of the $x_2x_3$ interaction term changes sign at a value of the ridge parameter $\approx 5 \times 10^{-4}$. 
See Also
ridge

Related Examples
• “Ridge Regression” on page 11-135
Lasso and Elastic Net

In this section...

“What Are Lasso and Elastic Net?” on page 11-140
“Lasso and Elastic Net Details” on page 11-140
“References” on page 11-142

What Are Lasso and Elastic Net?

Lasso is a regularization technique. Use lasso to:

• Reduce the number of predictors in a regression model.
• Identify important predictors.
• Select among redundant predictors.
• Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use elastic net when you have several highly correlated variables. lasso provides elastic net regularization when you set the Alpha name-value pair to a number strictly between 0 and 1.

See “Lasso and Elastic Net Details” on page 11-140.

For lasso regularization of regression ensembles, see regularize.

Lasso and Elastic Net Details

Overview of Lasso and Elastic Net

Lasso is a regularization technique for performing linear regression. Lasso includes a penalty term that constrains the size of the estimated coefficients. Therefore, it resembles ridge regression on page 11-135. Lasso is a shrinkage estimator: it generates coefficient estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller mean squared error than an ordinary least-squares estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, lasso sets more coefficients to zero. This means that the lasso estimator is a smaller model, with fewer predictors. As
such, lasso is an alternative to stepwise regression on page 11-126 and other model selection and dimensionality reduction techniques.

Elastic net is a related technique. Elastic net is a hybrid of ridge regression and lasso regularization. Like lasso, elastic net can generate reduced models by generating zero-valued coefficients. Empirical studies have suggested that the elastic net technique can outperform lasso on data with highly correlated predictors.

**Definition of Lasso**

The lasso technique solves this regularization problem. For a given value of \( \lambda \), a nonnegative parameter, lasso solves the problem

\[
\min_{\beta_0, \beta} \left( \frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right).
\]

- \( N \) is the number of observations.
- \( y_i \) is the response at observation \( i \).
- \( x_i \) is data, a vector of \( p \) values at observation \( i \).
- \( \lambda \) is a positive regularization parameter corresponding to one value of \( \text{Lambda} \).
- The parameters \( \beta_0 \) and \( \beta \) are scalar and \( p \)-vector respectively.

As \( \lambda \) increases, the number of nonzero components of \( \beta \) decreases.

The lasso problem involves the \( L^1 \) norm of \( \beta \), as contrasted with the elastic net algorithm.

**Definition of Elastic Net**

The elastic net technique solves this regularization problem. For an \( \alpha \) strictly between 0 and 1, and a nonnegative \( \lambda \), elastic net solves the problem

\[
\min_{\beta_0, \beta} \left( \frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j \right)
\]

where

\[
P_\alpha (\beta) = \frac{(1-\alpha)}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 = \sum_{j=1}^{p} \left( \frac{(1-\alpha)}{2} \beta_j^2 + \alpha |\beta_j| \right).
\]
Elastic net is the same as lasso when $\alpha = 1$. As $\alpha$ shrinks toward 0, elastic net approaches ridge regression. For other values of $\alpha$, the penalty term $P_\alpha(\beta)$ interpolates between the $L^1$ norm of $\beta$ and the squared $L^2$ norm of $\beta$.

References


Wide Data via Lasso and Parallel Computing

This example shows how to use `lasso` along with cross validation to identify important predictors.

Load the sample data and display the description.

```matlab
load spectra
Description
```

```plaintext
Description =

11×72 char array

'== Spectral and octane data of gasoline ==

'NIR spectra and octane numbers of 60 gasoline samples

'NIR: NIR spectra, measured in 2 nm intervals from 900 nm to 1700 nm
'octane: octane numbers
'spectra: a dataset array containing variables for NIR and octane

'Reference:
```

Lasso and elastic net are especially well suited for wide data, that is, data with more predictors than observations with lasso and elastic net. There are redundant predictors in this type of data. You can use `lasso` along with cross validation to identify important predictors.

Compute the default `lasso` fit.

```matlab
[b fitinfo] = lasso(NIR,octane);
```

Plot the number of predictors in the fitted lasso regularization as a function of `Lambda`, using a logarithmic x-axis.

```matlab
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```
It is difficult to tell which value of Lambda is appropriate. To determine a good value, try fitting with cross validation.

```matlab
tic
[b fitinfo] = lasso(NIR,octane,'CV',10);
toc

Elapsed time is 7.353767 seconds.

Plot the result.

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
Display the suggested value of \(\Lambda \).

\[
\text{fitinfo.Lambda1SE}
\]

\[
\text{ans} =
\]

\[
0.0302
\]

Display the \(\Lambda \) with minimal MSE.

\[
\text{fitinfo.LambdaMinMSE}
\]
ans =
 0.0144

Examine the quality of the fit for the suggested value of Lambda.

```matlab
lambdaindex = fitinfo.Index1SE;
mse = fitinfo.MSE(lambdaindex)
df = fitinfo.DF(lambdaindex)
```

```
ans =
    0.0528

df =
    11
```

The fit uses just 11 of the 401 predictors and achieves a small cross-validated MSE.

Examine the plot of cross-validated MSE.

```matlab
lassoPlot(b,fitinfo,'PlotType','CV');
set(gca,'YScale','log');
```
As \(\text{Lambda} \) increases (toward the left), MSE increases rapidly. The coefficients are reduced too much and they do not adequately fit the responses. As \(\text{Lambda} \) decreases, the models are larger (have more nonzero coefficients). The increasing MSE suggests that the models are overfitted.

The default set of \(\text{Lambda} \) values does not include values small enough to include all predictors. In this case, there does not appear to be a reason to look at smaller values. However, if you want smaller values than the default, use the \(\text{LambdaRatio} \) parameter, or supply a sequence of \(\text{Lambda} \) values using the \(\text{Lambda} \) parameter. For details, see the \texttt{lasso} reference page.
Cross validation can be slow. If you have a Parallel Computing Toolbox license, speed the computation of cross-validated lasso estimate using parallel computing. Start a parallel pool.

```matlab
mypool = parpool()
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

```matlab
mypool =
```

Pool with properties:

```matlab
    Connected: true
    NumWorkers: 6
    Cluster: local
    AttachedFiles: {}
    AutoAddClientPath: true
    IdleTimeout: 30 minutes (30 minutes remaining)
    SpmdEnabled: true
```

Set the parallel computing option and compute the lasso estimate.

```matlab
opts = statset('UseParallel',true);
tic;
[b fitinfo] = lasso(NIR,octane,'CV',10,'Options',opts);
toc
```

Elapsed time is 3.799009 seconds.

Computing in parallel using two workers is faster on this problem.

Stop parallel pool.

```matlab
delete(mypool)
```

Parallel pool using the 'local' profile is shutting down.
Lasso Regularization

This example shows how lasso identifies and discards unnecessary predictors.

Generate 200 samples of five-dimensional artificial data X from exponential distributions with various means.

```matlab
rng(3,'twister') % For reproducibility
X = zeros(200,5);
for ii = 1:5
    X(:,ii) = exprnd(ii,200,1);
end

Generate response data Y = X * r + eps, where r has just two nonzero components, and the noise eps is normal with standard deviation 0.1.

```matlab
r = [0;2;0;-3;0];
Y = X*r + randn(200,1)*.1;
```

Fit a cross-validated sequence of models with lasso, and plot the result.

```matlab
[b,fitinfo] = lasso(X,Y,'CV',10);
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```
The plot shows the nonzero coefficients in the regression for various values of the Lambda regularization parameter. Larger values of Lambda appear on the left side of the graph, meaning more regularization, resulting in fewer nonzero regression coefficients.

The dashed vertical lines represent the Lambda value with minimal mean squared error (on the right), and the Lambda value with minimal mean squared error plus one standard deviation. This latter value is a recommended setting for Lambda. These lines appear only when you perform cross validation. Cross validate by setting the 'CV' name-value pair argument. This example uses 10-fold cross validation.

The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the regression, as a function of Lambda. On the left, the large value of Lambda causes all but one coefficient to be 0. On the right all five coefficients are...
nonzero, though the plot shows only two clearly. The other three coefficients are so small that you cannot visually distinguish them from 0.

For small values of Lambda (toward the right in the plot), the coefficient values are close to the least-squares estimate.

Find the Lambda value of the minimal cross-validated mean squared error plus one standard deviation. Examine the MSE and coefficients of the fit at that Lambda.

```matlab
lam = fitinfo.Index1SE;
fitinfo.MSE(lam)
ans = 0.1398
b(:,lam)
ans = 5×1
 0
 1.8855
 0
 -2.9367
 0
```

**lasso** did a good job finding the coefficient vector $r$.

For comparison, find the least-squares estimate of $r$.

```matlab
rhat = X\Y
rhat = 5×1
 -0.0038
 1.9952
 0.0014
 -2.9993
 0.0031
```

The estimate $b(:,\text{lam})$ has slightly more mean squared error than the mean squared error of $rhat$.

```matlab
res = X*rhat - Y; % Calculate residuals
MSEmin = res'*res/200 % b(:,\text{lam}) value is 0.1398
```
MSE_{min} = 0.0088

But $b(:,\text{lam})$ has only two nonzero components, and therefore can provide better predictive estimates on new data.
Lasso and Elastic Net with Cross Validation

This example shows how to predict the mileage (MPG) of a car based on its weight, displacement, horsepower, and acceleration, using the lasso and elastic net methods.

Load the carbig data set.

```matlab
load carbig
```

Extract the continuous (noncategorical) predictors (lasso does not handle categorical predictors).

```matlab
X = [Acceleration Displacement Horsepower Weight];
```

Perform a lasso fit with 10-fold cross validation.

```matlab
[b fitinfo] = lasso(X,MPG,'CV',10);
```

Plot the result.

```matlab
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```
Calculate the correlation of the predictors. Eliminate NaNs first.

```matlab
nonan = ~any(isnan([X MPG]),2);
Xnonan = X(nonan,:);
MPGnonan = MPG(nonan,:);
corr(Xnonan)
```

```plaintext
ans = 4x4

1.0000 -0.5438 -0.6892 -0.4168
-0.5438 1.0000 0.8973 0.9330
-0.6892 0.8973 1.0000 0.8645
-0.4168 0.9330 0.8645 1.0000
```
Because some predictors are highly correlated, perform elastic net fitting. Use \( \text{Alpha} = 0.5 \).

\[
[\text{ba fitinfoa}] = \text{lasso}(X, \text{MPG}, 'CV', 10, '\text{Alpha}', .5);
\]

Plot the result. Name each predictor so you can tell which curve is which.

\[
\text{pnames} = \{'\text{Acceleration}', '\text{Displacement}', '\text{Horsepower}', '\text{Weight}'\};
\]

\[
\text{lassoPlot(ba, fitinfoa, 'PlotType', 'Lambda', 'XScale', 'log', ...}
\]

When you activate the data cursor and click the plot, you see the name of the predictor, the coefficient, the value of \( \text{Lambda} \), and the index of that point, meaning the column in \( \text{b} \) associated with that fit.
Here, the elastic net and lasso results are not very similar. Also, the elastic net plot reflects a notable qualitative property of the elastic net technique. The elastic net retains three nonzero coefficients as Lambda increases (toward the left of the plot), and these three coefficients reach 0 at about the same Lambda value. In contrast, the lasso plot shows two of the three coefficients becoming 0 at the same value of Lambda, while another coefficient remains nonzero for higher values of Lambda.

This behavior exemplifies a general pattern. In general, elastic net tends to retain or drop groups of highly correlated predictors as Lambda increases. In contrast, lasso tends to drop smaller groups, or even individual predictors.
Partial Least Squares

In this section...

“Introduction to Partial Least Squares” on page 11-157
“Partial Least Squares” on page 11-158

Introduction to Partial Least Squares

Partial least-squares (PLS) regression is a technique used with data that contain correlated predictor variables. This technique constructs new predictor variables, known as components, as linear combinations of the original predictor variables. PLS constructs these components while considering the observed response values, leading to a parsimonious model with reliable predictive power.

The technique is something of a cross between multiple linear regression on page 11-11 and principal component analysis on page 15-79:

• Multiple linear regression finds a combination of the predictors that best fit a response.
• Principal component analysis finds combinations of the predictors with large variance, reducing correlations. The technique makes no use of response values.
• PLS finds combinations of the predictors that have a large covariance with the response values.

PLS therefore combines information about the variances of both the predictors and the responses, while also considering the correlations among them.

PLS shares characteristics with other regression and feature transformation techniques. It is similar to ridge regression on page 11-135 in that it is used in situations with correlated predictors. It is similar to stepwise regression on page 11-126 (or more general feature selection on page 15-70 techniques) in that it can be used to select a smaller set of model terms. PLS differs from these methods, however, by transforming the original predictor space into the new component space.

The Statistics and Machine Learning Toolbox function plsregress carries out PLS regression.
Partial Least Squares

For example, consider the data on biochemical oxygen demand in moore.mat, padded with noisy versions of the predictors to introduce correlations:

```matlab
load moore
y = moore(:,6); % Response
X0 = moore(:,1:5); % Original predictors
X1 = X0+10*randn(size(X0)); % Correlated predictors
X = [X0,X1];
```

Use `plsregress` to perform PLS regression with the same number of components as predictors, then plot the percentage variance explained in the response as a function of the number of components:

```matlab
[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');
```
Choosing the number of components in a PLS model is a critical step. The plot gives a rough indication, showing nearly 80% of the variance in $y$ explained by the first component, with as many as five additional components making significant contributions.

The following computes the six-component model:

```matlab
[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6);
yfit = [ones(size(X,1),1) X]*beta;
plot(y,yfit,'o')
```

The scatter shows a reasonable correlation between fitted and observed responses, and this is confirmed by the $R^2$ statistic:

```matlab
TSS = sum((y-mean(y)).^2);
RSS = sum((y-yfit).^2);
Rsquared = 1 - RSS/TSS
Rsquared =
 0.8421
```
A plot of the weights of the ten predictors in each of the six components shows that two of the components (the last two computed) explain the majority of the variance in $X$:

```matlab
plot(1:10,stats.W,'o-');
legend({'c1','c2','c3','c4','c5','c6'},'Location','NW')
xlabel('Predictor');
ylabel('Weight');
```

A plot of the mean-squared errors suggests that as few as two components may provide an adequate model:

```matlab
[axes,h1,h2] = plotyy(0:6,MSE(1,:),0:6,MSE(2,:));
set(h1,'Marker','o')
set(h2,'Marker','o')
legend('MSE Predictors','MSE Response')
xlabel('Number of Components')
```
The calculation of mean-squared errors by `plsregress` is controlled by optional parameter name/value pairs specifying cross-validation type and the number of Monte Carlo repetitions.
Linear Mixed-Effects Models

Linear mixed-effects models are extensions of linear regression models for data that are collected and summarized in groups. These models describe the relationship between a response variable and independent variables, with coefficients that can vary with respect to one or more grouping variables. A mixed-effects model consists of two parts, fixed effects and random effects. Fixed-effects terms are usually the conventional linear regression part, and the random effects are associated with individual experimental units drawn at random from a population. The random effects have prior distributions whereas fixed effects do not. Mixed-effects models can represent the covariance structure related to the grouping of data by associating the common random effects to observations that have the same level of a grouping variable. The standard form of a linear mixed-effects model is

\[ y = X\beta + Zb + \varepsilon, \]

where

- \( y \) is the \( n \)-by-1 response vector, and \( n \) is the number of observations.
- \( X \) is an \( n \)-by-\( p \) fixed-effects design matrix.
- \( \beta \) is a \( p \)-by-1 fixed-effects vector.
- \( Z \) is an \( n \)-by-\( q \) random-effects design matrix.
- \( b \) is a \( q \)-by-1 random-effects vector.
- \( \varepsilon \) is the \( n \)-by-1 observation error vector.

The assumptions for the linear mixed-effects model are:

- Random-effects vector, \( b \), and the error vector, \( \varepsilon \), have the following prior distributions:

\[ b \sim N\left( 0, \sigma^2 D(\theta) \right), \]

\[ \varepsilon \sim N\left( 0, \sigma^2 I \right), \]

where \( D \) is a symmetric and positive semidefinite matrix, parameterized by a variance component vector \( \theta \), \( I \) is an \( n \)-by-\( n \) identity matrix, and \( \sigma^2 \) is the error variance.
• Random-effects vector, $b$, and the error vector, $\varepsilon$, are independent from each other.

Mixed-effects models are also called multilevel models or hierarchical models depending on the context. Mixed-effects models is a more general term than the latter two. Mixed-effects models might include factors that are not necessarily multilevel or hierarchical, for example crossed factors. That is why mixed-effects is the terminology preferred here. Sometimes mixed-effects models are expressed as multilevel regression models (first level and grouping level models) that are fit simultaneously. For example, a varying or random intercept model, with one continuous predictor variable $x$ and one grouping variable with $M$ levels, can be expressed as

$$
y_{im} = \beta_{0m} + \beta_{1m}x_{im} + \varepsilon_{im}, \quad i = 1, 2, \ldots, n, \quad m = 1, 2, \ldots, M, \quad \varepsilon_{im} \sim N\left(0, \sigma^2\right),$$

$$\beta_{0m} = \beta_{00} + b_{0m}, \quad b_{0m} \sim N\left(0, \sigma^0_0\right),$$

where $y_{im}$ corresponds to data for observation $i$ and group $m$, $n$ is the total number of observations, and $b_{0m}$ and $\varepsilon_{im}$ are independent of each other. After substituting the group-level parameters in the first-level model, the model for the response vector becomes

$$
y_{im} = \underbrace{\beta_{00} + \beta_{10}x_{im}}_{\text{fixed effects}} + \underbrace{b_{0m}}_{\text{random effects}} + \varepsilon_{im}.$$

A random intercept and slope model with one continuous predictor variable $x$, where both the intercept and slope vary independently by a grouping variable with $M$ levels is

$$
y_{im} = \beta_{0m} + \beta_{1m}x_{im} + \varepsilon_{im}, \quad i = 1, 2, \ldots, n, \quad m = 1, 2, \ldots, M, \quad \varepsilon_{im} \sim N\left(0, \sigma^2\right),$$

$$\beta_{0m} = \beta_{00} + b_{0m}, \quad b_{0m} \sim N\left(0, \sigma^0_0\right),$$

$$\beta_{1m} = \beta_{10} + b_{1m}, \quad b_{1m} \sim N\left(0, \sigma^1_1\right),$$

or

$$b_m = \begin{pmatrix} b_{0m} \\ b_{1m} \end{pmatrix} \sim N\left(\begin{pmatrix} \sigma^0_0 & 0 \\ 0 & \sigma^1_1 \end{pmatrix}\right).$$

You might also have correlated random effects. In general, for a model with a random intercept and slope, the distribution of the random effects is
where $D$ is a 2-by-2 symmetric and positive semidefinite matrix, parameterized by a variance component vector $\theta$.

After substituting the group-level parameters in the first-level model, the model for the response vector is

$$y_{im} = \beta_{00} + \beta_{10} x_{im} + b_{0m} + b_{1m} z_{im} + \varepsilon_{im}, \quad i = 1,2,...,n, \quad m = 1,2,...,M.$$  

If you express the group-level variable, $x_{im}$, in the random-effects term by $z_{im}$, this model is

$$y_{im} = \beta_{00} + \beta_{10} x_{im} + b_{0m} + b_{1m} z_{im} + \varepsilon_{im}, \quad i = 1,2,...,n, \quad m = 1,2,...,M.$$  

In this case, the same terms appear in both the fixed-effects design matrix and random-effects design matrix. Each $z_{im}$ and $x_{im}$ correspond to the level $m$ of the grouping variable.

It is also possible to explain more of the group-level variations by adding more group-level predictor variables. A random-intercept and random-slope model with one continuous predictor variable $x$, where both the intercept and slope vary independently by a grouping variable with $M$ levels, and one group-level predictor variable $v_m$ is

$$y_{im} = \beta_{0im} + \beta_{1im} x_{im} + \varepsilon_{im}, \quad i = 1,2,...,n, \quad m = 1,2,...,M, \quad \varepsilon_{im} \sim N\left(0, \sigma^2 \right),$$

$$\beta_{0im} = \beta_{00} + \beta_{01} v_{im} + b_{0m}, \quad b_{0m} \sim N\left(0, \sigma_0^2 \right),$$

$$\beta_{1im} = \beta_{10} + \beta_{11} v_{im} + b_{1m}, \quad b_{1m} \sim N\left(0, \sigma_1^2 \right).$$

This model results in main effects of the group-level predictor and an interaction term between the first-level and group-level predictor variables in the model for the response variable as
\begin{align*}
    y_{im} &= \beta_{00} + \beta_{01}v_{im} + b_{0m} + (\beta_{10} + \beta_{11}v_{im})x_{im} + \epsilon_{im}, \quad i = 1,2,\ldots,n, \quad m = 1,2,\ldots,M, \\
    &= \beta_{00} + \beta_{10}x_{im} + \beta_{11}v_{im}x_{im} + b_{0m} + b_{1m}x_{im} + \epsilon_{im}.
\end{align*}

The term \( \beta_{11}v_{im}x_{im} \) is often called a cross-level interaction in many textbooks on multilevel models. The model for the response variable \( y \) can be expressed as

\[
y_{im} = \begin{bmatrix} 1 & x_{1im} & v_{im} & v_{im}x_{1im} \end{bmatrix} \begin{bmatrix} \beta_{00} \\ \beta_{10} \\ \beta_{01} \\ \beta_{11} \end{bmatrix} + \begin{bmatrix} 1 & x_{1im} \end{bmatrix} \begin{bmatrix} b_{0m} \\ b_{1m} \end{bmatrix} + \epsilon_{im}, \quad i = 1,2,\ldots,n, \quad m = 1,2,\ldots,M,
\]

which corresponds to the standard form given earlier,

\[
y = X \beta + Zb + \varepsilon.
\]

In general, if there are \( R \) grouping variables, and \( m(r,i) \) shows the level of grouping variable \( r \), for observation \( i \), then the model for the response variable for observation \( i \) is

\[
y_i = x_i^T \beta + \sum_{r=1}^{R} z_{ir}v^{(r)}_{m(r,i)} + \varepsilon_i, \quad i = 1,2,\ldots,n,
\]

where \( \beta \) is a \( p \)-by-1 fixed-effects vector, \( b^{(r)}_{m(r,i)} \) is a \( q(r) \)-by-1 random-effects vector for the \( r \)th grouping variable and level \( m(r,i) \), and \( \varepsilon_i \) is a 1-by-1 error term for observation \( i \).

**References**


**See Also**
LinearMixedModel | fitlme | fitlmematrix

**More About**
- “Prepare Data for Linear Mixed-Effects Models” on page 11-167
Prepare Data for Linear Mixed-Effects Models

In this section...

“Tables and Dataset Arrays” on page 11-167
“Design Matrices” on page 11-169
“Relation of Matrix Form to Tables and Dataset Arrays” on page 11-171

Tables and Dataset Arrays

To fit a linear-mixed effects model, you must store your data in a table or dataset array. In your table or dataset array, you must have a column for each variable including the response variable. More specifically, the table or dataset array, say tbl, must contain the following:

- A response variable y
- Predictive variables $X_j$ which can be continuous or grouping variables
- Grouping variables $g_1, g_2, ..., g_R$

where the grouping variables in $X_j$ and $g_r$ can be categorical, logical, a character array, a string array, or a cell array of character vectors, $r = 1, 2, ..., R$.

You must organize your data so that each row represents an observation. And each row should contain the value of variables and the levels of grouping variables corresponding to that observation. For example, if you have data from an experiment with four treatment options, on five different types of individuals chosen randomly from a population of individuals (blocks), the table or dataset array must look like this.

<table>
<thead>
<tr>
<th>Block</th>
<th>Treatment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>y11</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>y12</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>y13</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>y14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>y51</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>y52</td>
</tr>
</tbody>
</table>
Now, consider a split-plot experiment, where the effect of four different types of fertilizers on the yield of tomato plants is studied. The soil where the tomato plants are planted is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of tomato plants, (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. Then, the tomato plants in the plots are divided into subplots, where each subplot is treated by one of the four fertilizers. The data from this experiment looks like:

<table>
<thead>
<tr>
<th>Soil</th>
<th>Tomato</th>
<th>Fertilizer</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Sandy'</td>
<td>'Plum'</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Plum'</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Plum'</td>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Plum'</td>
<td>4</td>
<td>174</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Cherry'</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Cherry'</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Vine'</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>'Sandy'</td>
<td>'Vine'</td>
<td>4</td>
<td>117</td>
</tr>
<tr>
<td>'Silty'</td>
<td>'Plum'</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>'Silty'</td>
<td>'Plum'</td>
<td>2</td>
<td>115</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>'Loamy'</td>
<td>'Vine'</td>
<td>3</td>
<td>111</td>
</tr>
<tr>
<td>'Loamy'</td>
<td>'Vine'</td>
<td>4</td>
<td>105</td>
</tr>
</tbody>
</table>

You must specify the model you want to fit using the `formula` input argument to `fitlme`.

In general, a formula for model specification is a character vector or string scalar of the form `'y ~ terms'`. For linear mixed-effects models, this formula is in the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`, where fixed contains the fixed-effects terms and random1, ..., randomR contain the random-
effects terms. For example, for the previous fertilizer experiment, consider the following mixed-effects model

\[
y_{imjk} = \beta_0 + \sum_{m=2}^{4} \beta_{1m} I(F)_{im} + \sum_{j=2}^{5} \beta_{2j} I(T)_{ij} + b_{0k} S_k + b_{0jk} (S \ast T)_{jk} + \varepsilon_{imjk},
\]

where \(i = 1, 2, ..., 60\), the index \(m\) corresponds to the fertilizer types, \(j\) corresponds to the tomato types, and \(k = 1, 2, 3\) corresponds to the blocks (soil). \(S_k\) represents the \(k\)th soil type, and \(I(F)_{im}\) is the dummy variable representing level \(m\) of the fertilizer. Similarly, \(I(T)_{ij}\) is the dummy variable representing the level \(j\) of the tomato type.

You can fit this model using the formula 'Yield ~ 1 + Fertilizer + Tomato + (1|Soil)+(1|Soil:Tomato)'.

For detailed information on how to specify your model using formula, see “Relationship Between Formula and Design Matrices” on page 11-173.

**Design Matrices**

If you cannot easily describe your model using a formula, you can create design matrices to define the fixed and random effects, and fit the model using `fitlmematrix(X,y,Z,G)`. You must create your design matrices as follows.

Fixed-effects and random-effects design matrices \(X\) and \(Z\):

- Enter a column of 1s for the intercept using `ones(n,1)`, where \(n\) is the total number of observations.
- If \(X1\) is a continuous variable, then enter \(X1\) as it is in a separate column.
- If \(X1\) is a categorical variable with \(m\) levels, then there must be \(m - 1\) dummy variables for \(m - 1\) levels of \(X1\) in \(X\).

For example, consider an experiment where you want to study the impact of quality of raw materials from four different providers on the productivity of a production line. If you fit a linear mixed-effects model with intercept and provider as the fixed-effects terms, intercept is the random-effects term, and you use reference contrasts coding, then you must construct your fixed- and random-effects design matrices as follows.

\[
D = dummyvar(provider); \quad % Create dummy variables \\
X = [ones(n,1) D(:,2) D(:,3) D(:,4)]; \\
Z = [ones(n,1)];
\]
Because reference contrast coding uses the first provider as the reference, and the model has an intercept, you must use the dummy variables for only the last three providers.

- If there is an interaction term of predictor variables $X_1$ and $X_2$, then you must enter a column that you form by elementwise product of the vectors $X_1$ and $X_2$.

For example, if you want to fit a model, where there is an intercept, a continuous treatment factor, a continuous time factor, and their interaction as the fixed-effects in a longitudinal study, and time is the random-effects term, then your fixed- and random-effects design matrices should look like

$$X = [\text{ones}(n,1), \text{treatment}, \text{time}, \text{treatment}.*\text{time}];$$
$$y = \text{response};$$
$$Z = [\text{time}];$$

Grouping variables $G$:

There is one column for each grouping variable and a column of elementwise product of the grouping variables in case of a nesting.

For example, if you want to group plots ($\text{plot}$) within blocks ($\text{block}$), then you must add a column of elementwise product of $\text{plot}$ by $\text{block}$. More specifically, if you want to fit a model where there is intercept and a continuous treatment factor as the fixed-effects in a split-block experiment, and the intercept and treatment are grouped by the plots nested within blocks, then the design matrices should look like this.

$$X = [\text{ones}(n,1), \text{treatment}];$$
$$y = \text{response};$$
$$Z = [\text{ones}(n,1), \text{treatment}];$$
$$G = [\text{block}.*\text{plot}];$$

Suppose in the earlier quality of raw materials example, the raw materials arrive in bulks, and the bulks are nested within providers. If you want to fit a linear mixed-effects model, where intercept is grouped by the bulks within providers, then your design matrices should look like this.

$$D = \text{dummyvar}(\text{provider});$$
$$X = [\text{ones}(n,1) \ D(:,2) \ D(:,3) \ D(:,4)];$$
$$y = \text{response};$$
$$Z = \text{ones}(n,1);$$
$$G = [\text{provider}.*\text{bulks}];$$
In the earlier longitudinal study example, if you want to add random effects for intercept and time grouped by subjects that participated in the study, then your design matrices should look like

\[
X = [\text{ones}(n,1), \text{treatment}, \text{time}, \text{treatment}.*\text{time}];
\]
\[
y = \text{response};
\]
\[
Z = [\text{ones}(n,1), \text{time}];
\]
\[
G = \text{subject};
\]

**Relation of Matrix Form to Tables and Dataset Arrays**

`fitlme(tbl, formula)` and `fitlmematrix(X, y, Z, G)` are equivalent in functionality, such that

- `y` is the `n`-by-1 response vector.
- `X` is an `n`-by-`p` fixed-effects design matrix. `fitlme` constructs this from the expression `fixed` in `formula`.
- `Z` is an `R`-by-1 cell array with `Z{r}` being an `n`-by-`q(r)` random-effects design matrix constructed from the `r`th expression in `random` in `formula`, `r = 1, 2, ..., R`.
- `G` is an `R`-by-1 cell array with `G{r}` being an `n`-by-1 grouping variable, `g_{r}`, in `formula` with `M(r)` levels or groups.

For example, if `tbl` is a table or dataset array containing the response variable `y`, the continuous variables `X1` and `X2`, and the grouping variable `g`, then to fit a linear mixed-effects model that corresponds to the formula expression 'y ~ X1 + X2 + (X1*X2|g)' using `fitlmematrix(X, y, Z, G)` the input arguments must correspond to the following:

\[
y = \text{tbl}.y
\]
\[
X = [\text{ones}(n,1), \text{tbl}.X1, \text{tbl}.X2]
\]
\[
Z = [\text{ones}(n,1), \text{tbl}.X1, \text{tbl}.X2, \text{tbl}.X1.*\text{tbl}.X2]
\]
\[
G = \text{tbl}.g
\]

**See Also**

`LinearMixedModel`, `fitlme`, `fitlmematrix`

**More About**

- “Linear Mixed-Effects Models” on page 11-162
• “Relationship Between Formula and Design Matrices” on page 11-173
Relationship Between Formula and Design Matrices

In this section...

“Formula” on page 11-173
“Design Matrices for Fixed and Random Effects” on page 11-175
“Grouping Variables” on page 11-177

Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~ terms'. For the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

- A response variable, y
- Predictor variables, \(X_j\), which can be continuous or grouping variables
- Grouping variables, \(g_1, g_2, ..., g_R\),

where the grouping variables in \(X_j\) and \(g_r\) can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term fixed corresponds to a specification of the fixed-effects design matrix \(X\), random1 is a specification of the random-effects design matrix \(Z_1\) corresponding to grouping variable \(g_1\), and similarly random R is a specification of the random-effects design matrix \(Z_R\) corresponding to grouping variable \(g_R\). You can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>(X^k), where k is a positive integer</td>
<td>(X, X^2, ..., X^k)</td>
</tr>
</tbody>
</table>
### Wilkinson Notation

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X_1 + X_2 )</td>
<td>( X_1, X_2 )</td>
</tr>
<tr>
<td>( X_1 \times X_2 )</td>
<td>( X_1, X_2, X_1 \times X_2 ) (elementwise multiplication of ( X_1 ) and ( X_2 ))</td>
</tr>
<tr>
<td>( X_1 : X_2 )</td>
<td>( X_1 \times X_2 ) only</td>
</tr>
<tr>
<td>( - X_2 )</td>
<td>Do not include ( X_2 )</td>
</tr>
<tr>
<td>( X_1 \times X_2 + X_3 )</td>
<td>( X_1, X_2, X_3, X_1 \times X_2 )</td>
</tr>
<tr>
<td>( X_1 + X_2 + X_3 + X_1 : X_2 )</td>
<td>( X_1, X_2, X_3, X_1 \times X_2 )</td>
</tr>
<tr>
<td>( X_1 \times X_2 \times X_3 - X_1 : X_2 : X_3 )</td>
<td>( X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3, X_2 \times X_3 )</td>
</tr>
<tr>
<td>( X_1 \times (X_2 + X_3) )</td>
<td>( X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3 )</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1. Here are some examples for linear mixed-effects model specification.

#### Examples:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X_1 + X_2'</td>
<td>Fixed effects for the intercept, ( X_1 ) and ( X_2 ). This is equivalent to 'y ~ 1 + X_1 + X_2'.</td>
</tr>
<tr>
<td>'y ~ -1 + X_1 + X_2'</td>
<td>No intercept and fixed effects for ( X_1 ) and ( X_2 ). The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X_1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X_1 + (X_1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X_1 + (1</td>
<td>g1) + (-1 + X_1</td>
</tr>
</tbody>
</table>
Design Matrices for Fixed and Random Effects

fitlme converts the expressions in the fixed and random parts (not grouping variables) of a formula into design matrices as follows:

- Each term in a formula adds one or more columns to the corresponding design matrix.
- A term containing a single continuous variable adds one column to the design matrix.
- A fixed term containing a categorical variable X with k levels adds \((k - 1)\) dummy variables to the design matrix.

For example, if the variable Supplier represents three different suppliers a manufacturer receives parts from, i.e. a categorical variable with three levels, and out of six batches of parts, the first two batches come from supplier 1 (level 1), the second two batches come from supplier 2 (level 2), and the last two batches come from supplier 3 (level 3), such as

\[
\text{Supplier} = \\
1 \\
1 \\
2 \\
2 \\
3 \\
3
\]

Then, adding Supplier to the formula as a fixed-effects or random-effects term adds the following two dummy variables to the corresponding design matrix, using the 'reference' contrast:

\[
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
\end{array}
\]
For more details on dummy variables, see “Dummy Indicator Variables” on page 2-60. For other contrast options, see the 'DummyVarCoding' name-value pair argument of fitlm.

• If \( X_1 \) and \( X_2 \) are continuous variables, the product term \( X_1:X_2 \) adds one column obtained by elementwise multiplication of \( X_1 \) and \( X_2 \) to the design matrix.

• If \( X_1 \) is continuous and \( X_2 \) is categorical with \( k \) levels, the product term \( X_1:X_2 \) multiplies elementwise \( X_1 \) with the \((k - 1)\) dummy variables representing \( X_2 \), and adds these \((k - 1)\) columns to the design matrix.

For example, if Drug is the amount of a drug given to patients, a continuous treatment, and Time is three distinct points in time when the health measures are taken, a categorical variable with three levels, and out of nine observations, the first three are observed at time point 1, the second three are observed at time point 2, and the last three are observed at time point 3 so that

\[
[\text{Drug Time}] =
\begin{bmatrix}
0.1000 & 1.0000 \\
0.2000 & 1.0000 \\
0.5000 & 2.0000 \\
0.6000 & 2.0000 \\
0.3000 & 3.0000 \\
0.8000 & 3.0000
\end{bmatrix}
\]

Then, the product term Drug:Time adds the following two variables to the design matrix:

\[
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
0.5000 & 0 \\
0.6000 & 0 \\
0 & 0.3000 \\
0 & 0.8000
\end{bmatrix}
\]

• If \( X_1 \) and \( X_2 \) are categorical variables with \( k \) and \( m \) levels respectively, the product term \( X_1:X_2 \) adds \((k - 1)(m - 1)\) dummy variables to the design matrix formed by taking the elementwise product of each dummy variable representing \( X_1 \) with each dummy variable representing \( X_2 \).

For example, in an experiment to determine the impact of the type of corn and the popping method on the yield, suppose there are three types of Corn and two types of Method as follows:

11-176
Then, the interaction term $\text{Corn:Method}$ adds the following to the design matrix:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- The term $X1 \times X2$ adds the necessary number of columns for $X1$, $X2$, and $X1:X2$ to the design matrix.
- The term $X1^2$ adds the necessary number of columns for $X1$ and $X1:X1$ to the design matrix.
- The symbol 1 (one) in the formula stands for a column of all 1s. By default a column of 1s is included in the design matrix. To exclude a column of ones from the design matrix, you must explicitly specify –1 as a term in the expression.

### Grouping Variables

`fitlme` handles the grouping variables in the (. | group) part of a formula as follows:

- If a grouping variable has $k$ levels, then $k$ dummy variables represent this grouping.
For example, suppose District is a categorical grouping variable with three levels, showing the three types of districts, and out of six schools, the first two are in district 1, the second two are in district 2, and the last two are in district 3, so that

\[
\text{District = }
\begin{align*}
1 \\
1 \\
2 \\
2 \\
3 \\
3
\end{align*}
\]

Then, the dummy variables that represent this grouping are:

\[
\begin{align*}
1 & & 0 & & 0 \\
1 & & 0 & & 0 \\
0 & & 1 & & 0 \\
0 & & 1 & & 0 \\
0 & & 0 & & 1 \\
0 & & 0 & & 1 \\
\end{align*}
\]

• If \(X_1\) is a continuous random-effects variable and \(X_2\) is a grouping variable with \(k\) levels, then the random term \((X_1 - 1 | X_2)\) multiplies elementwise \(X_1\) with the \(k\) dummy variables representing \(X_2\) and adds these \(k\) columns to the random-effects design matrix.

For example, suppose Score is a continuous variable showing the scores of students from a math exam in a school, and Class is a categorical variable with three levels, showing the three different classes in a school. Also, suppose out of nine observations first three correspond to the scores of students in the first class, the second three correspond to scores of students in the second class, and the last three correspond to the scores of students in the third class, such as

\[
\begin{bmatrix}
\text{Score} & \text{Class} \\
78.0000 & 1.0000 \\
68.0000 & 1.0000 \\
81.0000 & 2.0000 \\
53.0000 & 2.0000 \\
85.0000 & 3.0000 \\
72.0000 & 3.0000
\end{bmatrix}
\]

Then, the random term \((\text{Score} - 1 | \text{Class})\) adds the following three columns to the random-effects design matrix:
• If \( X_1 \) is a continuous predictor variable and \( X_2 \) and \( X_3 \) are grouping variables with \( k \) and \( m \) levels respectively, the term \((X_1|X_2:X_3)\) represents this grouping of \( X_1 \) with \( k\times m \) dummy variables formed by taking the elementwise product of each dummy variable representing \( X_2 \) with each dummy variable representing \( X_3 \).

For example, suppose \textit{Treatment} is a continuous predictor variable, and there are three levels of \textit{Block} and two levels of \textit{Plot} nested within the block as follows:

\[
\begin{align*}
0.1000 & \quad 1 & \quad a \\
0.2000 & \quad 1 & \quad b \\
0.5000 & \quad 2 & \quad a \\
0.6000 & \quad 2 & \quad b \\
0.3000 & \quad 3 & \quad a \\
0.8000 & \quad 3 & \quad b
\end{align*}
\]

Then, the random term \((\text{Treatment} – 1|\text{Block}:\text{Plot})\) adds the following to the random-effects design matrix:

\[
\begin{align*}
0.1000 & \quad 0 \\
0 & \quad 0.2000 & \quad 0 \\
0 & \quad 0 & \quad 0.5000 & \quad 0 \\
0 & \quad 0 & \quad 0 & \quad 0.6000 & \quad 0 & \quad 0 & \quad 0 & \quad 0 \\
0 & \quad 0 & \quad 0 & \quad 0 & \quad 0.3000 & \quad 0 & \quad 0 & \quad 0 \\
0 & \quad 0.8000 & \quad 0 & \quad 0
\end{align*}
\]

**See Also**

LinearMixedModel | fitlme | fitlmematrix

**More About**

• “Prepare Data for Linear Mixed-Effects Models” on page 11-167
Estimating Parameters in Linear Mixed-Effects Models

A linear mixed-effects model is of the form

\[ y = X\beta + Zb + \varepsilon, \]

where

- \( y \) is the \( n \)-by-1 response vector, and \( n \) is the number of observations.
- \( X \) is an \( n \)-by-\( p \) fixed-effects design matrix.
- \( \beta \) is a \( p \)-by-1 fixed-effects vector.
- \( Z \) is an \( n \)-by-\( q \) random-effects design matrix.
- \( b \) is a \( q \)-by-1 random-effects vector.
- \( \varepsilon \) is the \( n \)-by-1 observation error vector.

The random-effects vector, \( b \), and the error vector, \( \varepsilon \), are assumed to have the following independent prior distributions:

\[ b \sim N\left(0, \sigma^2 D(\theta)\right), \]
\[ \varepsilon \sim N\left(0, \sigma^2 I\right), \]

where \( D \) is a symmetric and positive semidefinite matrix, parameterized by a variance component vector \( \theta \), \( I \) is an \( n \)-by-\( n \) identity matrix, and \( \sigma^2 \) is the error variance.

In this model, the parameters to estimate are the fixed-effects coefficients \( \beta \), and the variance components \( \theta \) and \( \sigma^2 \). The two most commonly used approaches to parameter estimation in linear mixed-effects models are maximum likelihood and restricted maximum likelihood methods.
**Maximum Likelihood (ML)**

The maximum likelihood estimation includes both regression coefficients and the variance components, that is, both fixed-effects and random-effects terms in the likelihood function.

For a linear mixed-effects model defined above, the conditional response of the response variable $y$ given $\beta$, $b$, $\theta$, and $\sigma^2$ is

$$y | b, \beta, \theta, \sigma^2 \sim N(X\beta + Zb, \sigma^2 I_n).$$

The likelihood of $y$ given $\beta$, $\theta$, and $\sigma^2$ is

$$P(y | \beta, \theta, \sigma^2) = \int P(y | b, \beta, \theta, \sigma^2) P(b | \theta, \sigma^2) db,$$

where

$$P(b | \theta, \sigma^2) = \frac{1}{\left(2\pi\sigma^2\right)^{q/2} |D(\theta)|^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} b^T D^{-1} b\right\}$$

and

$$P(y | b, \beta, \theta, \sigma^2) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} (y - X\beta - Zb)^T (y - X\beta - Zb)\right\}.$$
for given $\beta$ and $\theta$. Then, the likelihood function is

$$P\left(y \mid \beta, \theta, \sigma^2\right) = \left(2\pi\sigma^2\right)^{-n/2} |D(\theta)|^{-1/2} \exp\left\{-\frac{1}{2\sigma^2} r^2(\beta, b^*(\beta), \theta)\right\} \frac{1}{|\Delta^T \Delta + Z^T Z|^{1/2}}.$$

$P(y|\beta,\theta,\sigma^2)$ is first maximized with respect to $\beta$ and $\sigma^2$ for a given $\theta$. Thus the optimized solutions $\hat{\beta}(\theta)$ and $\hat{\sigma}^2(\theta)$ are obtained as functions of $\theta$. Substituting these solutions into the likelihood function produces $P\left(y \mid \beta(\theta), \theta, \sigma^2(\theta)\right)$. This expression is called a profiled likelihood where $\beta$ and $\sigma^2$ have been profiled out. $P\left(y \mid \beta(\theta), \theta, \sigma^2(\theta)\right)$ is a function of $\theta$, and the algorithm then optimizes it with respect to $\theta$. Once it finds the optimal estimate of $\theta$, the estimates of $\beta$ and $\sigma^2$ are given by $\hat{\beta}(\theta)$ and $\hat{\sigma}^2(\theta)$.

The ML method treats $\beta$ as fixed but unknown quantities when the variance components are estimated, but does not take into account the degrees of freedom lost by estimating the fixed effects. This causes ML estimates to be biased with smaller variances. However, one advantage of ML over REML is that it is possible to compare two models in terms of their fixed- and random-effects terms. On the other hand, if you use REML to estimate the parameters, you can only compare two models, that are nested in their random-effects terms, with the same fixed-effects design.

**Restricted Maximum Likelihood (REML)**

Restricted maximum likelihood estimation includes only the variance components, that is, the parameters that parameterize the random-effects terms in the linear mixed-effects model. $\beta$ is estimated in a second step. Assuming a uniform improper prior distribution for $\beta$ and integrating the likelihood $P(y|\beta,\theta,\sigma^2)$ with respect to $\beta$ results in the restricted likelihood $P(y|\theta,\sigma^2)$. That is,

$$P\left(y \mid \theta, \sigma^2\right) = \int P\left(y \mid \beta, \theta, \sigma^2\right) P(\beta) \, d\beta = \int P\left(y \mid \beta, \theta, \sigma^2\right) d\beta.$$
The algorithm first profiles out $\hat{\sigma}_R^2$ and maximizes remaining objective function with respect to $\theta$ to find $\hat{\theta}_R$. The restricted likelihood is then maximized with respect to $\sigma^2$ to find $\hat{\sigma}_R^2$. Then, it estimates $\beta$ by finding its expected value with respect to the posterior distribution

$$P(\beta | y, \theta_R, \sigma_R^2).$$

REML accounts for the degrees of freedom lost by estimating the fixed effects, and makes a less biased estimation of random effects variances. The estimates of $\theta$ and $\sigma^2$ are invariant to the value of $\beta$ and less sensitive to outliers in the data compared to ML estimates. However, if you use REML to estimate the parameters, you can only compare two models that have the identical fixed-effects design matrices and are nested in their random-effects terms.

**References**


See Also
LinearMixedModel | fitlme | fitlmematrix

More About
• “Linear Mixed-Effects Models” on page 11-162
Linear Mixed-Effects Model Workflow

This example shows how to fit and analyze a linear mixed-effects model (LME).

**Load the sample data.**

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

**Reorganize and plot the data.**

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses, combine the nine columns corresponding to the regions into an array. The new dataset array, flu2, must have the response variable FluRate, the nominal variable Region that shows which region each estimate is from, the nationwide estimate WtdILI, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Define flu2 as a table.

flu2 = dataset2table(flu2);

Plot flu rates versus the nationwide estimate.

plot(flu2.WtdILI,flu2.FluRate,'ro')
xlabel('WtdILI')
ylabel('Flu Rate')
You can see that the flu rates in regions have a direct relationship with the nationwide estimate.

**Fit an LME model and interpret the results.**

Fit a linear mixed-effects model with the nationwide estimate as the predictor variable and a random intercept that varies by Date.

```matlab
lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')
```

```
lme =
```

11-186
Linear mixed-effects model fit by ML

Model information:
- Number of observations: 468
- Fixed effects coefficients: 2
- Random effects coefficients: 52
- Covariance parameters: 2

Formula:
FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:
<table>
<thead>
<tr>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>286.24</td>
<td>302.83</td>
<td>-139.12</td>
<td>278.24</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.16385</td>
<td>0.057525</td>
<td>2.8484</td>
<td>466</td>
<td>0.0045885</td>
</tr>
<tr>
<td>'WtdILI'</td>
<td>0.7236</td>
<td>0.032219</td>
<td>22.459</td>
<td>466</td>
<td>3.0502e-76</td>
</tr>
</tbody>
</table>

  Lower    Upper
0.050813  0.27689
0.66028   0.78691

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.17146</td>
<td>0.13227</td>
</tr>
</tbody>
</table>

  Upper
0.22226

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.30201</td>
<td>0.28217</td>
<td>0.32324</td>
</tr>
</tbody>
</table>

The small p-values of 0.0045885 and 3.0502e-76 indicate that both the intercept and nationwide estimate are significant. Also, the confidence limits for the standard deviation of the random-effects term, \( \sigma_b \), do not include 0 (0.13227, 0.22226), which indicates that the random-effects term is significant.
Plot the raw residuals versus the fitted values.

```matlab
figure();
plotResiduals(lme,'fitted')
```

The variance of residuals increases with increasing fitted response values, which is known as heteroscedasticity.

Find the two observations on the top right that appear like outliers.

```matlab
find(residuals(lme) > 1.5)
```

```
ans =
```
Refit the model by removing these observations.

\[
lme = \text{fitlme}(\text{flu2},'\text{FluRate} \sim 1 + \text{WtdILI} + (1|\text{Date})','\text{Exclude}',[98,107]);
\]

**Improve the model.**

Determine if including an independent random term for the nationwide estimate grouped by Date improves the model.

\[
altlme = \text{fitlme}(\text{flu2},'\text{FluRate} \sim 1 + \text{WtdILI} + (1|\text{Date}) + (\text{WtdILI-1}|\text{Date})',...'
\text{Exclude}',[98,107])
\]

**altlme =**

Linear mixed-effects model fit by ML

Model information:

- Number of observations: 466
- Fixed effects coefficients: 2
- Random effects coefficients: 104
- Covariance parameters: 3

Formula:

\[
\text{FluRate} \sim 1 + \text{WtdILI} + (1 | \text{Date}) + (\text{WtdILI | Date})
\]

Model fit statistics:

- AIC: 179.39
- BIC: 200.11
- LogLikelihood: -84.694
- Deviance: 169.39

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.17837</td>
<td>0.054585</td>
<td>3.2676</td>
<td>464</td>
<td>0.001165</td>
</tr>
<tr>
<td>'WtdILI'</td>
<td>0.70836</td>
<td>0.030594</td>
<td>23.153</td>
<td>464</td>
<td>2.123e-79</td>
</tr>
</tbody>
</table>

Lower  Upper
0.0711  0.28563
0.64824 0.76849
Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.16631</td>
<td>0.12977</td>
<td>0.21313</td>
</tr>
</tbody>
</table>

Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'WtdILI'</td>
<td>'WtdILI'</td>
<td>'std'</td>
<td>4.6824e-08</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.26691</td>
<td>0.24934</td>
<td>0.28572</td>
</tr>
</tbody>
</table>

The estimated standard deviation of \( WtdILI \) term is nearly 0 and its confidence interval cannot be computed. This is an indication that the model is overparameterized and the \((WtdILI-1|Date)\) term is not significant. You can formally test this using the compare method as follows: `compare(lme, altlme, 'CheckNesting', true)`.

Add a random effects-term for intercept grouped by Region to the initial model `lme`.

```matlab
lme2 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1|Region)',... 'Exclude',[98,107]);
```

Compare the models `lme` and `lme2`.

```matlab
compare(lme, lme2, 'CheckNesting', true)
```

```matlab
ans =
```

**THEORETICAL LIKELIHOOD RATIO TEST**

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>deltaDF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>lme</td>
<td>4</td>
<td>177.39</td>
<td>193.97</td>
<td>-84.694</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lme2</td>
<td>5</td>
<td>62.265</td>
<td>82.986</td>
<td>-26.133</td>
<td>117.12</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The \( p \)-value of 0 indicates that `lme2` is a better fit than `lme`. 

11-190
Now, check if adding a potentially correlated random-effects term for the intercept and national average improves the model lme2.

```matlab
lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1 + WtdILI|Region)',...
'Exclude',[98,107])
```

lme3 =

Linear mixed-effects model fit by ML

Model information:
- Number of observations: 466
- Fixed effects coefficients: 2
- Random effects coefficients: 70
- Covariance parameters: 5

Formula:
```
FluRate ~ 1 + WtdILI + (1 | Date) + (1 + WtdILI | Region)
```

Model fit statistics:
- AIC: 13.338
- BIC: 42.348
- LogLikelihood: 0.33076
- Deviance: -0.66153

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.1795</td>
<td>0.054953</td>
<td>3.2665</td>
<td>464</td>
<td>0.0011697</td>
</tr>
<tr>
<td>'WtdILI'</td>
<td>0.70719</td>
<td>0.04252</td>
<td>16.632</td>
<td>464</td>
<td>4.6451e-49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.071514</td>
<td>0.28749</td>
</tr>
<tr>
<td>0.62363</td>
<td>0.79074</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.17634</td>
<td>0.14093</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22064</td>
</tr>
</tbody>
</table>

Group: Region (9 Levels)
The estimate for the standard deviation of the random-effects term for intercept grouped by Region is 0.0077037, its confidence interval is very large and includes zero. This indicates that the random-effects for intercept grouped by Region is insignificant. The correlation between the random-effects for intercept and WtdILI is -0.059604. Its confidence interval is also very large and includes zero. This is an indication that the correlation is not significant.

Refit the model by eliminating the intercept from the (1 + WtdILI | Region) random-effects term.

```
lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (WtdILI - 1|Region)',...
 'Exclude',[98,107])
```

```
lme3 =
```

Linear mixed-effects model fit by ML

Model information:
  Number of observations             466
  Fixed effects coefficients           2
  Random effects coefficients         61
  Covariance parameters                3

Formula:
  FluRate ~ 1 + WtdILI + (1 | Date) + (WtdILI | Region)
Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.3395</td>
<td>30.06</td>
<td>0.33023</td>
<td>-0.66046</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.1795</td>
<td>0.054892</td>
<td>3.2702</td>
<td>464</td>
<td>0.0011549</td>
</tr>
<tr>
<td>'WtdILI'</td>
<td>0.70718</td>
<td>0.042486</td>
<td>16.645</td>
<td>464</td>
<td>4.0496e-49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.071637</td>
<td>0.28737</td>
</tr>
<tr>
<td>0.62369</td>
<td>0.79067</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.17633</td>
<td>0.14092</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22062</td>
</tr>
</tbody>
</table>

Group: Region (9 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'WtdILI'</td>
<td>'WtdILI'</td>
<td>'std'</td>
<td>0.087925</td>
<td>0.054474</td>
<td>0.14192</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.20979</td>
<td>0.19585</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

All terms in the new model lme3 are significant.

Compare lme2 and lme3.

```matlab
compare(lme2,lme3,'CheckNesting',true,'NSim',100)
```

```matlab
ans =

SIMULATED LIKELIHOOD RATIO TEST: NSIM = 100, ALPHA = 0.05

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

11-193
The $P$-value of 0.009901 indicates that lme3 is a better fit than lme2.

Add a quadratic fixed-effects term to the model lme3.

```matlab
lme4 = fitlme(flu2,'FluRate ~ 1 + WtdILI^2 + (1|Date) + (WtdILI - 1|Region)',...
'Exclude',[98,107])
```

lme4 =

Linear mixed-effects model fit by ML

Model information:
  Number of observations             466
  Fixed effects coefficients           3
  Random effects coefficients         61
  Covariance parameters                3

Formula:
  FluRate ~ 1 + WtdILI + WtdILI^2 + (1 | Date) + (WtdILI | Region)

Model fit statistics:
  AIC      BIC      LogLikelihood    Deviance
       6.7234    31.588        2.6383           -5.2766

Fixed effects coefficients (95% CIs):
  Name                Estimate    SE        tStat      DF    pValue
  '(Intercept)'         -0.063406 0.12236   -0.51821    463  0.60456
  'WtdILI'              1.0594    0.16554     6.3996    463  3.8232e-10
  'WtdILI^2'           -0.096919     0.0441   -2.1977    463  0.028463

  Lower      Upper
    -0.30385  0.17704
0.73406     1.3847
Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.16732</td>
<td>0.13326</td>
<td>0.21009</td>
</tr>
</tbody>
</table>

Group: Region (9 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'WtdILI'</td>
<td>'WtdILI'</td>
<td>'std'</td>
<td>0.087865</td>
<td>0.05443</td>
<td>0.1418</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.20979</td>
<td>0.19585</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

The $p$-value of 0.028463 indicates that the coefficient of the quadratic term $WtdILI^2$ is significant.

**Plot the fitted response versus the observed response and residuals.**

```matlab
F = fitted(lme4);
R = response(lme4);
figure();
plot(R,F,'rx')
xlabel('Response')
ylabel('Fitted')
```
The fitted versus observed response values form almost 45-degree angle indicating a good fit.

Plot the residuals versus the fitted values.

```matlab
figure();
plotResiduals(lme4,'fitted')
```
Although it has improved, you can still see some heteroscedasticity in the model. This might be due to another predictor that does not exist in the data set, hence not in the model.

**Find the fitted flu rate value for region ENCentral, date 11/6/2005.**

F(flu2.Region == 'ENCentral' & flu2.Date == '11/6/2005')

ans =

1.4860
Randomly generate response values.

Randomly generate response values for a national estimate of 1.625, region MidAtl, and date 4/23/2006. First, define the new table. Because Date and Region are nominal in the original table, you must define them similarly in the new table.

tblnew.Date = nominal('4/23/2006');
tblnew.WtdILI = 1.625;
tblnew.Region = nominal('MidAtl');
tblnew = struct2table(tblnew);

Now, generate the response value.

random(lme4,tblnew)

ans =

1.2679
Fit Mixed-Effects Spline Regression

This example shows how to fit a mixed-effects linear spline model.

Load the sample data.

load(fullfile(matlabroot,'examples','stats','mespline.mat'));

This is simulated data.

Plot $y$ versus sorted $x$.

[x_sorted,I] = sort(x,'ascend');
plot(x_sorted,y(I),'o')
Fit the following mixed-effects linear spline regression model

\[ y_i = \beta_1 + \beta_2 x_i + \sum_{j=1}^{K} b_j (x_i - k_j)_+ + \epsilon_i \]

where \( k_j \) is the \( j \) th knot, and \( K \) is the total number of knots. Assume that \( b_j \sim N(0, \sigma_b^2) \) and \( \epsilon \sim N(0, \sigma^2) \).

Define the knots.

\[ k = \text{linspace}(0.05, 0.95, 100); \]

Define the design matrices.

\[
X = [\text{ones}(1000,1), x];
Z = \text{zeros} \left( \text{length}(x), \text{length}(k) \right);
\text{for } j = 1: \text{length}(k)
    Z(:,j) = \text{max}(X(:,2) - k(j), 0);
\text{end}
\]

Fit the model with an isotropic covariance structure for the random effects.

\[ \text{lme} = \text{fitlmematrix}(X,y,Z,[])\text{,'CovariancePattern','Isotropic'}; \]

Fit a fixed-effects only model.

\[ X = [X Z]; \]
\[ \text{lme\_fixed} = \text{fitlmematrix}(X,y,[]); \]

Compare \( \text{lme\_fixed} \) and \( \text{lme} \) via a simulated likelihood ratio test.

\[ \text{compare} (\text{lme, lme\_fixed, 'NSim', 500, 'CheckNesting', true}) \]

\[ \text{ans} = \]

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>lme</td>
<td>4</td>
<td>170.62</td>
<td>190.25</td>
<td>-81.309</td>
<td>255.24</td>
<td>0.68064</td>
</tr>
<tr>
<td>lme_fixed</td>
<td>103</td>
<td>113.38</td>
<td>618.88</td>
<td>46.309</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The p-value indicates that the fixed-effects only model is not a better fit than the mixed-effects spline regression model.

Plot the fitted values from both models on top of the original response data.

```matlab
R = response(lme);
figure();
plot(x_sorted,R(I),'o', 'MarkerFaceColor',[0.8,0.8,0.8],...
 'MarkerEdgeColor',[0.8,0.8,0.8],'MarkerSize',4);
hold on
F = fitted(lme);
F_fixed = fitted(lme_fixed);
plot(x_sorted,F(I),'b');
plot(x_sorted,F_fixed(I),'r');
legend('data','mixed effects','fixed effects','Location','NorthWest')
xlabel('sorted x values');
ylabel('y');
hold off
```
You can also see from the figure that the mixed-effects model provides a better fit to data than the fixed-effects only model.
Generalized Linear Models

- “Multinomial Models for Nominal Responses” on page 12-2
- “Multinomial Models for Ordinal Responses” on page 12-5
- “Hierarchical Multinomial Models” on page 12-9
- “Generalized Linear Models” on page 12-12
- “Generalized Linear Model Workflow” on page 12-40
- “Lasso Regularization of Generalized Linear Models” on page 12-45
- “Regularize Poisson Regression” on page 12-48
- “Regularize Logistic Regression” on page 12-51
- “Regularize Wide Data in Parallel” on page 12-59
- “Generalized Linear Mixed-Effects Models” on page 12-65
- “Fit a Generalized Linear Mixed-Effects Model” on page 12-77
Multinomial Models for Nominal Responses

The outcome of a response variable might be one of a restricted set of possible values. If there are only two possible outcomes, such as a yes or no answer to a question, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. Some examples include the degree of a disease (mild, medium, severe), preferred districts to live in a city, and so on. When the response variable is nominal, there is no natural order among the response variable categories. Nominal response models explain and predict the probability that an observation is in each category of a categorical response variable.

A nominal response model is one of several natural extensions of the binary logit model and is also called a multinomial logit model. The multinomial logit model explains the relative risk of being in one category versus being in the reference category, \( k \), using a linear combination of predictor variables. Consequently, the probability of each outcome is expressed as a nonlinear function of \( p \) predictor variables. The 'interactions', 'on' name-value pair argument in \texttt{mnrfit} corresponds to this multinomial model with separate intercept and slopes among categories. \texttt{mnrfit} uses the default logit link function for multinomial models. You cannot specify a different link function for multinomial responses.

The multinomial logit model is

\[
\begin{align*}
\ln\left(\frac{\pi_1}{\pi_k}\right) &= \alpha_1 + \beta_{11}X_1 + \beta_{12}X_2 + \cdots + \beta_{1p}X_p, \\
\ln\left(\frac{\pi_2}{\pi_k}\right) &= \alpha_2 + \beta_{21}X_1 + \beta_{22}X_2 + \cdots + \beta_{2p}X_p, \\
&\vdots \\
\ln\left(\frac{\pi_{k-1}}{\pi_k}\right) &= \alpha_{(k-1)} + \beta_{(k-1)1}X_1 + \beta_{(k-1)2}X_2 + \cdots + \beta_{(k-1)p}X_p,
\end{align*}
\]

where \( \pi_j = P(y = j) \) is the probability of an outcome being in category \( j \), \( k \) is the number of response categories, and \( p \) is the number of predictor variables. Theoretically, any category can be the reference category, but \texttt{mnrfit} chooses the last one, \( k \), as the reference category. Thus, \texttt{mnrfit} assumes the coefficients of the \( k \)th category are zero. The total of \( j-1 \) equations are solved simultaneously to estimate the coefficients. \texttt{mnrfit} uses the iteratively weighted least squares algorithm to find the maximum likelihood estimates.
The coefficients in the model express the effects of the predictor variables on the relative risk or the log odds of being in category $j$ versus the reference category, here $k$. For example, the coefficient $\beta_{23}$ indicates that the probability of the response variable being in category 2 compared to the probability of being in category $k$ increases $\exp(\beta_{23})$ times for each unit increase in $X_3$, given all else is held constant. Or it indicates that the relative log odds of the response variable being category 2 versus in category $k$ increases $\beta_{23}$ times with a one-unit increase in $X_3$, given all else equal.

Based on the nominal response model, and the assumption that the coefficients for the last category are zero, the probability of being in each category is

$$
\pi_j = P(y = j) = \frac{\alpha_j + \sum_{i=1}^{p} \beta_{ji}x_i}{1 + \sum_{j=1}^{k-1} e^{\alpha_j + \sum_{i=1}^{p} \beta_{ji}x_i}}, \quad j = 1, \ldots, k - 1.
$$

The probability of the $k$th category becomes

$$
\pi_k = P(y = k) = \frac{1}{1 + \sum_{j=1}^{k-1} e^{\alpha_j + \sum_{i=1}^{p} \beta_{ji}x_i}},
$$

which is simply equal to $1 - \pi_1 - \pi_2 - \ldots - \pi_{k-1}$.

After estimating the model coefficients using mnrfit, you can estimate the category probabilities or the number in each category using mnrval (the default name-value pair is 'type', 'category'). This function accepts the coefficient estimates and the model statistics mnrfit returns and estimates the categorical probabilities or the number in each category and their confidence bounds. You can also specify the cumulative or conditional probabilities or numbers to estimate using the 'type' name-value pair argument in mnrval.

**References**


**See Also**
fitglm | glmfit | glmval | mnrfit | mnrval

**More About**
- “Multinomial Models for Ordinal Responses” on page 12-5
- “Hierarchical Multinomial Models” on page 12-9
Multinomial Models for Ordinal Responses

The outcome of a response variable might be one of a restricted set of possible values. If there are only two possible outcomes, such as male and female for gender, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. Some examples of polytomous responses include levels of a disease (mild, medium, severe), preferred districts to live in a city, the species for a certain flower type, and so on. Sometimes there might be a natural order among the response categories. These responses are called ordinal responses.

The ordering might be inherent in the category choices, such as an individual being not satisfied, satisfied, or very satisfied with an online customer service. The ordering might also be introduced by categorization of a latent (continuous) variable, such as in the case of an individual being in the low risk, medium risk, or high risk group for developing a certain disease, based on a quantitative medical measure such as blood pressure.

You can specify a multinomial regression model that uses the natural ordering among the response categories. This ordinal model describes the relationship between the cumulative probabilities of the categories and predictor variables.

Different link functions can describe this relationship with logit and probit being the most used.

- **Logit:** The default link function `mnrfit` uses for ordinal categories is the logit link function. This models the log cumulative odds. The 'link','logit' name-value pair specifies this in `mnrfit`. Log cumulative odds is the logarithm of the ratio of the probability that a response belongs to a category with a value less than or equal to category $j$, $P(y \leq c_j)$, and the probability that a response belongs to a category with a value greater than category $j$, $P(y > c_j)$.

Ordinal models are usually based on the assumption that the effects of predictor variables are the same for all categories on the logarithmic scale. That is, the model has different intercepts but common slopes (coefficients) among categories. This model is called parallel regression or the proportional odds model. It is the default for ordinal responses, and the 'interactions','off' name-value pair specifies this model in `mnrfit`.

The proportional odds model is
\[
\ln \left( \frac{P(y \leq c_1)}{P(y > c_1)} \right) = \ln \left( \frac{\pi_1}{\pi_2 + \cdots + \pi_k} \right) = \alpha_1 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p,
\]
\[
\ln \left( \frac{P(y \leq c_2)}{P(y > c_2)} \right) = \ln \left( \frac{\pi_1 + \pi_2}{\pi_3 + \cdots + \pi_k} \right) = \alpha_2 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p,
\]
\[
\vdots
\]
\[
\ln \left( \frac{P(y \leq c_{k-1})}{P(y > c_{k-1})} \right) = \ln \left( \frac{\pi_1 + \pi_2 + \cdots + \pi_{k-1}}{\pi_k} \right) = \alpha_{k-1} + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p,
\]

where \( \pi_j, j = 1, 2, \ldots, k, \) are the category probabilities.

For example, for a response variable with three categories, there are \( 3 - 1 = 2 \) equations as follows:

\[
\ln \left( \frac{\pi_1}{\pi_2 + \pi_3} \right) = \alpha_1 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p,
\]
\[
\ln \left( \frac{\pi_1 + \pi_2}{\pi_3} \right) = \alpha_2 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p.
\]

Under the proportional odds assumption, the partial effect of a predictor variable \( X \) is invariant to the choice of the response variable category, \( j \). For example, if there are three categories, then the coefficients express the impact of a predictor variable on the relative risk or log odds of the response value being in category 1 versus categories 2 or 3, or in category 1 or 2 versus category 3.

Thus, a unit change in variable \( X_2 \) would mean a change in the cumulative odds of the response value being in category 1 versus categories 2 or 3, or category 1 or 2 versus category 3 by a factor of \( \exp(\beta_2) \), given all else equal.

You can alternatively fit a model with different intercept and slopes among the categories by using the 'interactions', 'on' name-value pair argument. However, using this option for ordinal models when the equal slopes model is true causes a loss of efficiency (you lose the advantage of estimating fewer parameters).

- **Probit**: The 'link', 'probit' name-value pair argument uses the probit link function which is based on a normally distributed latent variable assumption. For ordinal response variables this is also called an ordered probit model. Consider the regression model that describes the relationship of a latent variable \( y^* \) of an ordinal process and a vector of predictor variables, \( X \),

\[
12 \text{ Generalized Linear Models}
\]
\[ y^* = \beta X + \epsilon, \]

where the error term \( \epsilon \) has a standard normal distribution. Suppose there is the following relationship between the latent variable \( y^* \) and the observed variable \( y \):

\[
\begin{align*}
y = c_1 & \quad \text{if} \quad \alpha_0 < y^* \leq \alpha_1, \\
y = c_2 & \quad \text{if} \quad \alpha_1 < y^* \leq \alpha_2, \\
& \vdots \\
y = c_k & \quad \text{if} \quad \alpha_{k-1} < y^* \leq \alpha_k,
\end{align*}
\]

where \( \alpha_0 = -\infty \) and \( \alpha_k = \infty \). Then, the cumulative probability of \( y \) being in category \( j \) or one of earlier categories, \( P(y \leq c_j) \), is equal to

\[
P(y \leq c_j) = P(y^* < \alpha_j) = P(\beta X + \epsilon < \alpha_j) = P(\epsilon < \alpha_j - \beta X) = \Phi(\alpha_j - \beta X),
\]

where \( \Phi \) is standard normal cumulative distribution function. Thus,

\[
\Phi^{-1}(P(y \leq c_j)) = \alpha_j - \beta X,
\]

where \( \alpha_j \) corresponds to the cut points of the latent variable and the intercept in the regression model. This only holds under the assumptions of a normal latent variable and parallel regression. More generally, for a response variable with \( k \) categories and multiple predictors, the ordered probit model is

\[
\begin{align*}
\Phi^{-1}(P(y \leq c_1)) &= \alpha_1 + \beta_1 X_1 + \cdots + \beta_p X_p, \\
\Phi^{-1}(P(y \leq c_2)) &= \alpha_2 + \beta_1 X_1 + \cdots + \beta_p X_p, \\
& \vdots \\
\Phi^{-1}(P(y \leq c_{k-1})) &= \alpha_{k-1} + \beta_1 X_1 + \cdots + \beta_p X_p,
\end{align*}
\]

where \( P(y \leq c_j) = p_1 + p_2 + \ldots + p_j \).

The coefficients indicate the impact of a unit change in the predictor variable on the likelihood of a state. A positive coefficient, \( \beta_1 \), for example, indicates an increase in the
underlying latent variable with an increase in the corresponding predictor variable, $X_1$. Hence, it causes a decrease in $P(y \leq c_1)$ and an increase in $P(y \leq c_k)$.

After estimating the model coefficients using \texttt{mnrfit}, you can estimate the cumulative probabilities or the cumulative number in each category using \texttt{mnrval} with the \texttt{'type','cumulative'} name-value pair option. \texttt{mnrval} accepts the coefficient estimates and the model statistics \texttt{mnrfit} returns, and estimates the categorical probabilities or the number in each category and their confidence intervals. You can specify which category or conditional probabilities or numbers to estimate by changing the value of the \texttt{'type'} name-value pair argument.

\section*{References}


\section*{See Also}
\texttt{fitglm|glmfit|glmval|mnrfit|mnrval}

\section*{More About}
- “Multinomial Models for Nominal Responses” on page 12-2
- “Hierarchical Multinomial Models” on page 12-9
Hierarchical Multinomial Models

The outcome of a response variable might sometimes be one of a restricted set of possible values. If there are only two possible outcomes, such as male and female for gender, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. These responses are usually qualitative rather than quantitative, such as preferred districts to live in a city, the severity level of a disease, the species for a certain flower type, and so on. Polytomous responses might also have categories which are not independent of each other. Instead the response happens in a sequential manner, or one category is nested in the previous one. These types of responses are called hierarchical, or sequential, or nested multinomial responses.

For example, if the response is the number of cigarettes a person smokes in a given day, the first level is whether the person is a smoker or not. Given that he or she is a smoker, the number of cigarettes he or she smokes can be from one to five or more than five a day. Given that it is more than 5, this person might be smoking from 6 to 10 or more than 10 cigarettes a day, and so on. The risk group at each level changes accordingly. At level one, the risk group is all of the individuals of interest (smoker or not), say $m$. If out of $m$ individuals, $y_1$ of them are not smokers, then at level two, the risk group is the number of all smoking individuals, $m - y_1$. If $y_2$ of these $m - y_1$ individuals smoke from one to five cigarettes a day, then at level three, the risk group is $m - y_1 - y_2$. So, at each level, the number of people in that category becomes a conditional binomial observation.

The hierarchical multinomial regression models are extensions of binary regression models based on conditional binary observations. The default is a model with different intercept and slopes (coefficients) among categories, in which case `mnrfit` fits a sequence of conditional binomial models. The 'interactions','on' name-value pair specifies this in `mnrfit`. The default link function is logit and the 'link','logit' name-value pair specifies this model in `mnrfit`.

Suppose the probability that an individual is in category $j$ given that he or she is not in the previous categories is $p_j$, and the cumulative probability that a response belongs to a category $j$ or a previous category is $P(y \leq c_j)$. Then the hierarchical model with a logit link function and different slopes assumption is
\[
\ln \left( \frac{\pi_1}{1 - P(y \leq c_1)} \right) = \ln \left( \frac{\pi_1}{1 - \pi_1} \right) = \alpha_1 + \beta_{11}X_1 + \beta_{12}X_2 + \cdots + \beta_{1p}X_p,
\]
\[
\ln \left( \frac{\pi_2}{1 - P(y \leq c_2)} \right) = \ln \left( \frac{\pi_2}{1 - (\pi_1 + \pi_2)} \right) = \alpha_2 + \beta_{21}X_2 + \beta_{22}X_2 + \cdots + \beta_{2p}X_p,
\]
\[\vdots\]
\[
\ln \left( \frac{\pi_{k-1}}{1 - P(y \leq c_{k-1})} \right) = \ln \left( \frac{\pi_{k-1}}{1 - (\pi_1 + \cdots + \pi_{k-1})} \right) = \alpha_{k-1} + \beta_{(k-1)1}X_1 + \beta_{(k-1)2}X_2 + \cdots + \beta_{(k-1)p}X_p.
\]

For example, for a response variable with four sequential categories, there are 4 - 1 = 3 equations as follows:

\[
\ln \left( \frac{\pi_1}{\pi_2 + \pi_3 + \pi_4} \right) = \alpha_1 + \beta_{11}X_1 + \beta_{12}X_2 + \cdots + \beta_{1p}X_p,
\]
\[
\ln \left( \frac{\pi_2}{\pi_3 + \pi_4} \right) = \alpha_2 + \beta_{21}X_1 + \beta_{22}X_2 + \cdots + \beta_{2p}X_p,
\]
\[
\ln \left( \frac{\pi_3}{\pi_4} \right) = \alpha_3 + \beta_{31}X_1 + \beta_{32}X_2 + \cdots + \beta_{3p}X_p.
\]

The coefficients \(\beta_{ij}\) are interpreted within each level. For example, for the previous smoking example, \(\beta_{12}\) shows the impact of \(X_2\) on the log odds of a person being a smoker versus a nonsmoker, provided that everything else is held constant. Alternatively, \(\beta_{22}\) shows the impact of \(X_2\) on the log odds of a person smoking one to five cigarettes versus more than five cigarettes a day, given that he or she is a smoker, provided that everything else is held constant. Similarly, \(\beta_{23}\) shows the effect of \(X_2\) on the log odds of a person smoking 6 to 10 cigarettes versus more than 10 cigarettes a day, given that he or she smokes more than 5 cigarettes a day, provided that everything else is held constant.

You can specify other link functions for hierarchical models. The 'link', 'probit' name-value pair argument uses the probit link function. With the separate slopes assumption, the model becomes
\[
\Phi^{-1}(\pi_1) = \alpha_1 + \beta_{11}X_1 + \cdots + \beta_{1p}X_p,
\]
\[
\Phi^{-1}(\pi_2) = \alpha_2 + \beta_{21}X_1 + \cdots + \beta_{2p}X_p,
\]
\[
\vdots
\]
\[
\Phi^{-1}(\pi_k) = \alpha_k + \beta_{k1}X_1 + \cdots + \beta_{kp}X_p,
\]

where \( \pi_j \) is the conditional probability of being in category \( j \), given that it is not in categories previous to category \( j \). And \( \Phi^{-1}(\cdot) \) is the inverse of the standard normal cumulative distribution function.

After estimating the model coefficients using \texttt{mnrfit}, you can estimate the cumulative probabilities or the cumulative number in each category using \texttt{mnrval} with the \texttt{\'type\',\'conditional\'} name-value pair argument. The function \texttt{mnrval} accepts the coefficient estimates and the model statistics \texttt{mnrfit} returns, and estimates the categorical probabilities or the number in each category and their confidence bounds. You can specify which category or cumulative probabilities or numbers to estimate by changing the value of the \texttt{\'type\'} name-value pair argument in \texttt{mnrval}.

**References**


**See Also**

\texttt{fitglm|glmfit|glmval|mnrfit|mnrval}

**More About**

- “Multinomial Models for Nominal Responses” on page 12-2
- “Multinomial Models for Ordinal Responses” on page 12-5
Generalized Linear Models

In this section...

“What Are Generalized Linear Models?” on page 12-12
“Prepare Data” on page 12-13
“Choose Generalized Linear Model and Link Function” on page 12-15
“Choose Fitting Method and Model” on page 12-18
“Fit Model to Data” on page 12-23
“Examine Quality and Adjust the Fitted Model” on page 12-23
“Predict or Simulate Responses to New Data” on page 12-34
“Share Fitted Models” on page 12-38

What Are Generalized Linear Models?

Linear regression models describe a linear relationship between a response and one or more predictive terms. Many times, however, a nonlinear relationship exists. “Nonlinear Regression” on page 13-2 describes general nonlinear models. A special class of nonlinear models, called *generalized linear models*, uses linear methods.

Recall that linear models have these characteristics:

- At each set of values for the predictors, the response has a normal distribution with mean $\mu$.
- A coefficient vector $b$ defines a linear combination $Xb$ of the predictors $X$.
- The model is $\mu = Xb$.

In generalized linear models, these characteristics are generalized as follows:

- At each set of values for the predictors, the response has a distribution that can be normal on page B-130, binomial on page B-9, Poisson on page B-137, gamma on page B-45, or inverse Gaussian on page B-78, with parameters including a mean $\mu$.
- A coefficient vector $b$ defines a linear combination $Xb$ of the predictors $X$.
- A link function $f$ defines the model as $f(\mu) = Xb$. 
Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array \( X \) and response data in a separate vector \( y \), or input data in a table or dataset array \( tbl \) and response data as a column in \( tbl \). Each row of the input data represents one observation. Each column represents one predictor (variable).

For a table or dataset array \( tbl \), indicate the response variable with the 'ResponseVar' name-value pair:

\[
mdl = \text{fitlm}(tbl,'\text{ResponseVar}','\text{BloodPressure}');
% or
mdl = \text{fitglm}(tbl,'\text{ResponseVar}','\text{BloodPressure}');
\]

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes values from a fixed set of possibilities.

- For a numeric array \( X \), indicate the categorical predictors using the 'Categorical' name-value pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

\[
mdl = \text{fitlm}(X,y,'\text{Categorical}',[2,3]);
% or
mdl = \text{fitglm}(X,y,'\text{Categorical}',[2,3]);
% or equivalently
mdl = \text{fitlm}(X,y,'\text{Categorical}',\text{logical}([0 1 1 0 0 0]));
\]

- For a table or dataset array \( tbl \), fitting functions assume that these data types are categorical:
  
  - Logical
  - Character array

If you want to indicate that a numeric predictor is categorical, use the 'Categorical' name-value pair.

Represent missing numeric data as \textbf{NaN}. To represent missing data for other data types, see “Missing Group Values“ on page 2-59.

- For a 'binomial' model with data matrix \( X \), the response \( y \) can be:
• Binary column vector — Each entry represents success (1) or failure (0).
• Two-column matrix of integers — The first column is the number of successes in each observation, the second column is the number of trials in that observation.
• For a 'binomial' model with table or dataset tbl:
  • Use the ResponseVar name-value pair to specify the column of tbl that gives the number of successes in each observation.
  • Use the BinomialSize name-value pair to specify the column of tbl that gives the number of trials in each observation.

**Dataset Array for Input and Response Data**

For example, to create a dataset array from an Excel spreadsheet:

```matlab
ds = dataset('XLSFile','hospital.xls',...
'ReadObsNames',true);
```

To create a dataset array from workspace variables:

```matlab
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
```

**Table for Input and Response Data**

To create a table from workspace variables:

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
```

**Numeric Matrix for Input Data, Numeric Vector for Response**

For example, to create numeric arrays from workspace variables:

```matlab
load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;
```

To create numeric arrays from an Excel spreadsheet:

```matlab
[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix
Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose Generalized Linear Model and Link Function

Often, your data suggests the distribution type of the generalized linear model.

<table>
<thead>
<tr>
<th>Response Data Type</th>
<th>Suggested Model Distribution Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any real number</td>
<td>'normal'</td>
</tr>
<tr>
<td>Any positive number</td>
<td>'gamma' or 'inverse gaussian'</td>
</tr>
<tr>
<td>Any nonnegative integer</td>
<td>'poisson'</td>
</tr>
<tr>
<td>Integer from 0 to n, where n is a fixed positive value</td>
<td>'binomial'</td>
</tr>
</tbody>
</table>

Set the model distribution type with the `Distribution` name-value pair. After selecting your model type, choose a link function to map between the mean μ and the linear predictor Xb.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'comploglog'</td>
<td>$\log(-\log((1 - \mu))) = Xb$</td>
</tr>
<tr>
<td>'identity', default for the distribution 'normal'</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'log', default for the distribution 'poisson'</td>
<td>$\log(\mu) = Xb$</td>
</tr>
<tr>
<td>'logit', default for the distribution 'binomial'</td>
<td>$\log(\mu/(1 - \mu)) = Xb$</td>
</tr>
<tr>
<td>'loglog'</td>
<td>$\log(-\log(\mu)) = Xb$</td>
</tr>
<tr>
<td>'probit'</td>
<td>$\Phi^{-1}(\mu) = Xb$, where Φ is the normal (Gaussian) cumulative distribution function</td>
</tr>
<tr>
<td>'reciprocal', default for the distribution 'gamma'</td>
<td>$\mu^{-1} = Xb$</td>
</tr>
<tr>
<td>p (a number), default for the distribution 'inverse gaussian' (with $p = -2$)</td>
<td>$\mu^p = Xb$</td>
</tr>
</tbody>
</table>
The nondefault link functions are mainly useful for binomial models. These nondefault link functions are 'comploglog', 'loglog', and 'probit'.

Custom Link Function

The link function defines the relationship $f(\mu) = Xb$ between the mean response μ and the linear combination $Xb = X*b$ of the predictors. You can choose one of the built-in link functions or define your own by specifying the link function FL, its derivative FD, and its inverse FI:

- The link function FL calculates $f(\mu)$.
- The derivative of the link function FD calculates $df(\mu)/d\mu$.
- The inverse function FI calculates $g(Xb) = \mu$.

You can specify a custom link function in either of two equivalent ways. Each way contains function handles that accept a single array of values representing μ or Xb, and returns an array the same size. The function handles are either in a cell array or a structure:

- Cell array of the form {FL FD FI}, containing three function handles, created using @, that define the link (FL), the derivative of the link (FD), and the inverse link (FI).
- Structure s with three fields, each containing a function handle created using @:
 - s.Link — Link function
 - s.Derivative — Derivative of the link function
 - s.Inverse — Inverse of the link function

For example, to fit a model using the 'probit' link function:
\[x = [2100 2300 2500 2700 2900 \ldots \\
 3100 3300 3500 3700 3900 4100 4300]';
\]
\[n = [48 42 31 34 31 21 23 23 21 16 17 21]';
\]
\[y = [1 2 0 3 8 8 14 17 19 15 17 21]';
\]
\[g = \text{fitglm}(x,[y \ n],
 'linear','distr','binomial','link','probit')
\]

\[g =
\]

Generalized Linear regression model:
probit(y) \sim 1 + x1
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-7.3628</td>
<td>0.66815</td>
<td>-11.02</td>
</tr>
<tr>
<td>x1</td>
<td>0.0023039</td>
<td>0.00021352</td>
<td>10.79</td>
</tr>
</tbody>
</table>

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

You can perform the same fit using a custom link function that performs identically to the 'probit' link function:

\[s = \{@\text{norminv},@(x)1./\text{normpdf}(\text{norminv}(x)),@\text{normcdf}\};
\]
\[g = \text{fitglm}(x,[y \ n],
 'linear','distr','binomial','link',s)
\]

\[g =
\]

Generalized Linear regression model:
link(y) \sim 1 + x1
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-7.3628</td>
<td>0.66815</td>
<td>-11.02</td>
</tr>
<tr>
<td>x1</td>
<td>0.0023039</td>
<td>0.00021352</td>
<td>10.79</td>
</tr>
</tbody>
</table>

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

The two models are the same.
Equivalently, you can write s as a structure instead of a cell array of function handles:

```matlab
s.Link = @norminv;
s.Derivative = @(x) 1./normpdf(norminv(x));
s.Inverse = @normcdf;
g = fitglm(x,[y n],...
    'linear','distr','binomial','link',s)
```

$g =$

Generalized Linear regression model:
link(y) ~ 1 + x1
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-7.3628</td>
<td>0.66815</td>
<td>-11.02</td>
<td>3.0701e-28</td>
</tr>
<tr>
<td>x1</td>
<td>0.0023039</td>
<td>0.00021352</td>
<td>10.79</td>
<td>3.8274e-27</td>
</tr>
</tbody>
</table>

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

Choose Fitting Method and Model

There are two ways to create a fitted model.

- Use `fitglm` when you have a good idea of your generalized linear model, or when you want to adjust your model later to include or exclude certain terms.
- Use `stepwiseglm` when you want to fit your model using stepwise regression.

`stepwiseglm` starts from one model, such as a constant, and adds or subtracts terms one at a time, choosing an optimal term each time in a greedy fashion, until it cannot improve further. Use stepwise fitting to find a good model, one that has only relevant terms.

The result depends on the starting model. Usually, starting with a constant model leads to a small model. Starting with more terms can lead to a more complex model, but one that has lower mean squared error.

In either case, provide a model to the fitting function (which is the starting model for `stepwiseglm`).

Specify a model using one of these methods.
• “Brief Model Name” on page 12-19
• “Terms Matrix” on page 12-19
• “Formula” on page 12-22

Brief Model Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree i in the first predictor, degree j in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

Terms Matrix

A terms matrix is a t-by-$(p + 1)$ matrix specifying terms in a model, where t is the number of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of $T(i,j)$ is the exponent of variable j in term i. Suppose there are three predictor variables A, B, and C:

$$
\begin{align*}
[0 \ 0 \ 0 \ 0] & \% \text{ Constant term or intercept} \\
[0 \ 1 \ 0 \ 0] & \% B; \text{ equivalently, } A^0 \times B^1 \times C^0 \\
[1 \ 0 \ 1 \ 0] & \% A*C \\
[2 \ 0 \ 0 \ 0] & \% A^2 \\
[0 \ 1 \ 2 \ 0] & \% B*(C^2)
\end{align*}
$$

The 0 at the end of each term represents the response variable. In general,
• If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
code
load hospital
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
code
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
```

Redefine the table.

```matlab
code
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
code
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.
Load the sample data and define the matrix of predictors.

```matlab
load carsmall
X = [Acceleration,Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

```matlab
T = [0 0 0;1 0 0;1 0;1 1 0;0 2 0]
```

Fit a linear model.

```matlab
mdl = fitlm(X,MPG,T)
```

```matlab
mdl =
```

Linear regression model:

```
y ~ 1 + x1*x2 + x2^2
```

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.
Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[
T = \begin{bmatrix}
0 & 0 & 0; & 1 & 0 & 0; & 0 & 1 & 0; & 1 & 1 & 0
\end{bmatrix};
\]

\[
mdl = \text{stepwiselm}(X, \text{MPG}, [0 \ 0 \ 0], 'upper', T)
\]

1. Adding \(x_2 \), \(F\text{Stat} = 259.3087 \), \(p\text{Value} = 1.643351e-28 \)

\[
mdl =
\]

Linear regression model:
\[
y \sim 1 + x_2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>(x_2)</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, \(p\text{-value} = 1.64e-28 \)

The results of the stepwise regression are consistent with the results of \textit{fitlm} in the previous step.

Formula

A formula for a model specification is a character vector or string scalar of the form

\[
'Y ~ terms',
\]

- \(Y \) is the response name.
- \(terms \) contains
 - Variable names
 - + to include the next variable
 - - to exclude the next variable
 - : to define an interaction, a product of terms
 - * to define an interaction and all lower-order terms
 - ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
() to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

Examples:

'Y ~ A + B + C' is a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example, since B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example, since A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

Fit Model to Data

Create a fitted model using fitglm or stepwiseglm. Choose between them as in “Choose Fitting Method and Model” on page 12-18. For generalized linear models other than those with a normal distribution, give a Distribution name-value pair as in “Choose Generalized Linear Model and Link Function” on page 12-15. For example,

mdl = fitglm(X,y,'linear','Distribution','poisson')
% or
mdl = fitglm(X,y,'quadratic',...
 'Distribution','binomial')

Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result.

- “Model Display” on page 12-24
- “Diagnostic Plots” on page 12-25
- “Residuals — Model Quality for Training Data” on page 12-27
"Plots to Understand Predictor Effects and How to Modify a Model" on page 12-30

Model Display

A linear regression model shows several diagnostics when you enter its name or enter `disp(mdl)`. This display gives some of the basic information to check whether the fitted model represents the data adequately.

For example, fit a Poisson model to data constructed with two out of five predictors not affecting the response, and with no intercept term:

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[.4;.2;.3]);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'linear','Distribution','poisson')
```

```
mdl =

Generalized Linear regression model:
    log(y) ~ 1 + x1 + x2 + x3 + x4 + x5
Distribution = Poisson

Estimated Coefficients:  
                            Estimate     SE         tStat     pValue
    ______________________  __________  __________  __________  __________
    (Intercept)             0.039829     0.10793     0.36901     0.71212
    x1                     0.38551    0.076116     5.0647    4.0895e-07
    x2                -0.034905     0.086685    -0.40266        0.6872
    x3               -0.034905    0.086685    -0.40266        0.6872
    x4                     0.21929     0.09357     2.3436      0.019097
    x5                     0.28918     0.1094     2.6432     0.0082126

100 observations, 94 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 44.9, p-value = 1.55e-08
```

Notice that:

- The display contains the estimated values of each coefficient in the Estimate column. These values are reasonably near the true values \([0; 0.4; 0; 0.2; 0.3]\), except possibly the coefficient of \(x_3\) is not terribly near 0.
• There is a standard error column for the coefficient estimates.
• The reported pValue (which are derived from the t statistics under the assumption of normal errors) for predictors 1, 4, and 5 are small. These are the three predictors that were used to create the response data y.
• The pValue for (Intercept), x2 and x3 are larger than 0.01. These three predictors were not used to create the response data y. The pValue for x3 is just over .05, so might be regarded as possibly significant.
• The display contains the Chi-square statistic.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. To illustrate these plots, consider binomial regression with a logistic link function.

The logistic model is useful for proportion data. It defines the relationship between the proportion p and the weight w by:

\[
\log\left(\frac{p}{1 - p}\right) = b_1 + b_2 w
\]

This example fits a binomial model to data. The data are derived from `carbig.mat`, which contains measurements of large cars of various weights. Each weight in w has a corresponding number of cars in total and a corresponding number of poor-mileage cars in poor.

It is reasonable to assume that the values of poor follow binomial distributions, with the number of trials given by total and the percentage of successes depending on w. This distribution can be accounted for in the context of a logistic model by using a generalized linear model with link function \(\log(\mu/(1 - \mu)) = Xb\). This link function is called 'logit'.

```matlab
w = [2100 2300 2500 2700 2900 3100 ... 3300 3500 3700 3900 4100 4300];
total = [48 42 31 34 31 21 23 23 21 16 17 21];
poor = [1 2 0 3 8 14 17 19 15 17 21];
mdl = fitglm(w,[poor total],...
    'linear','Distribution','binomial','link','logit')
```

mdl =

Generalized Linear regression model:
 logit(y) ~ 1 + x1
 Distribution = Binomial
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0.0041812</td>
<td>0.00044258</td>
<td>9.4474</td>
<td>3.4739e-21</td>
</tr>
</tbody>
</table>

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 242, p-value = 1.3e-54

See how well the model fits the data.

plotSlice(mdl)

The fit looks reasonably good, with fairly wide confidence bounds.
To examine further details, create a leverage plot.
plotDiagnostics(mdl)

This is typical of a regression with points ordered by the predictor variable. The leverage of each point on the fit is higher for points with relatively extreme predictor values (in either direction) and low for points with average predictor values. In examples with multiple predictors and with points not ordered by predictor value, this plot can help you identify which observations have high leverage because they are outliers as measured by their predictor values.

Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or data. The simplest residual plots are the default histogram plot, which shows the range of the residuals and their frequencies, and the probability plot, which shows how the distribution of the residuals compares to a normal distribution with matched variance.
This example shows residual plots for a fitted Poisson model. The data construction has two out of five predictors not affecting the response, and no intercept term:

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'linear','Distribution','poisson');
```

Examine the residuals:

```matlab
plotResiduals(mdl)
```

![Histogram of residuals](image)

While most residuals cluster near 0, there are several near ±18. So examine a different residuals plot.

```matlab
plotResiduals(mdl,'fitted')
```
The large residuals don’t seem to have much to do with the sizes of the fitted values. Perhaps a probability plot is more informative.

plotResiduals(mdl,'probability')
Now it is clear. The residuals do not follow a normal distribution. Instead, they have fatter tails, much as an underlying Poisson distribution.

Plots to Understand Predictor Effects and How to Modify a Model

This example shows how to understand the effect each predictor has on a regression model, and how to modify the model to remove unnecessary terms.

1. Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on those predictors.

   ```matlab
   rng('default') % for reproducibility
   X = randn(100,5);
   mu = exp(X(:,[1 4 5])*[2;1;.5]);
   y = poissrnd(mu);
   mdl = fitglm(X,y,...
                'linear','Distribution','poisson');
   ```
2 Examine a slice plot of the responses. This displays the effect of each predictor separately.

plotSlice(mdl)

The scale of the first predictor is overwhelming the plot. Disable it using the Predictors menu.
Now it is clear that predictors 2 and 3 have little to no effect.

You can drag the individual predictor values, which are represented by dashed blue vertical lines. You can also choose between simultaneous and non-simultaneous confidence bounds, which are represented by dashed red curves. Dragging the predictor lines confirms that predictors 2 and 3 have little to no effect.

3 Remove the unnecessary predictors using either `removeTerms` or `step`. Using `step` can be safer, in case there is an unexpected importance to a term that becomes apparent after removing another term. However, sometimes `removeTerms` can be effective when `step` does not proceed. In this case, the two give identical results.

```matlab
mdl1 = removeTerms(mdl,'x2 + x3')
mdl1 =

Generalized Linear regression model:
log(y) ~ 1 + x1 + x4 + x5
Distribution = Poisson

Estimated Coefficients:
(Intercept)  Estimate   SE       tStat   pValue
          0.17604  0.062215  2.8295   0.004662
```
100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

mdl1 = step(mdl,'NSteps',5,'Upper','linear')

1. Removing x3, Deviance = 93.856, Chi2Stat = 0.00075551, PValue = 0.97807
2. Removing x2, Deviance = 96.333, Chi2Stat = 2.4769, PValue = 0.11553

mdl1 =

Generalized Linear regression model:
log(y) ~ 1 + x1 + x4 + x5
Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.17604</td>
<td>0.062215</td>
<td>2.8295</td>
<td>0.004662</td>
</tr>
<tr>
<td>x1</td>
<td>1.9122</td>
<td>0.024638</td>
<td>77.614</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>0.98521</td>
<td>0.026393</td>
<td>37.328</td>
<td>5.6696e-305</td>
</tr>
<tr>
<td>x5</td>
<td>0.61321</td>
<td>0.038435</td>
<td>15.955</td>
<td>2.6473e-57</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict the response to new data:

- “predict” on page 12-34
- “feval” on page 12-35
- “random” on page 12-37

predict

The predict method gives a prediction of the mean responses and, if requested, confidence bounds.

This example shows how to predict and obtain confidence intervals on the predictions using the predict method.
Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson');
```

1. Adding x_1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x_4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x_5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

Generate some new data, and evaluate the predictions from the data.

```matlab
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
[ynew,ynewci] = predict(mdl,Xnew)
```

```matlab
ynew =
  1.0e+04 *
       0.1130
       1.7375
       3.7471

ynewci =
  1.0e+04 *
   0.0821   0.1555
   1.2167   2.4811
   2.8419   4.9407
```

feval

When you construct a model from a table or dataset array, `feval` is often more convenient for predicting mean responses than `predict`. However, `feval` does not provide confidence bounds.

This example shows how to predict mean responses using the `feval` method.
Create a model from some predictors in artificial data. The data do not use the second and third columns in \(X\). So you expect the model not to show much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);

X = array2table(X); % create data table
y = array2table(y);
tbl = [X y];

mdl = stepwiseglm(tbl, 'constant', 'upper', 'linear', 'Distribution', 'poisson');
```

1. Adding \(x_1\), Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding \(x_4\), Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding \(x_5\), Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

Generate some new data, and evaluate the predictions from the data.

```matlab
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ynew = feval(mdl,Xnew(:,1),Xnew(:,4),Xnew(:,5)) % only need predictors 1,4,5
```

```matlab
ynew =
  1.0e+04 *
    0.1130
    1.7375
    3.7471
```

Equivalently,

```matlab
ynew = feval(mdl,Xnew(:,[1 4 5])) % only need predictors 1,4,5
```

```matlab
ynew =
  1.0e+04 *
    0.1130
    1.7375
    3.7471
```
random

The random method generates new random response values for specified predictor values. The distribution of the response values is the distribution used in the model. random calculates the mean of the distribution from the predictors, estimated coefficients, and link function. For distributions such as normal, the model also provides an estimate of the variance of the response. For the binomial and Poisson distributions, the variance of the response is determined by the mean; random does not use a separate “dispersion” estimate.

This example shows how to simulate responses using the random method.

1. Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson');
```

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2. Generate some new data, and evaluate the predictions from the data.

```matlab
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ysim = random(mdl,Xnew)
```

```
ysim =

1111
17121
37457
```

The predictions from random are Poisson samples, so are integers.

3. Evaluate the random method again, the result changes.

```matlab
ysim = random(mdl,Xnew)
```

```
ysim =
```

12-37
Share Fitted Models

The model display contains enough information to enable someone else to recreate the model in a theoretical sense. For example,

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson')
```

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

mdl =

Generalized Linear regression model:
log(y) ~ 1 + x1 + x4 + x5
Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.1760</td>
<td>0.062215</td>
<td>2.8295</td>
<td>0.004662</td>
</tr>
<tr>
<td>x1</td>
<td>1.9122</td>
<td>0.024638</td>
<td>77.614</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>0.9852</td>
<td>0.026393</td>
<td>37.328</td>
<td>5.6696e-305</td>
</tr>
<tr>
<td>x5</td>
<td>0.6132</td>
<td>0.038435</td>
<td>15.955</td>
<td>2.6473e-57</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

You can access the model description programmatically, too. For example,

```matlab
mdl.Coefficients.Estimate
```

ans =

0.1760
1.9122
0.9852
0.6132

mdl.Formula
ans =

\log(y) \sim 1 + x1 + x4 + x5

References

Generalized Linear Model Workflow

This example shows how to fit a generalized linear model and analyze the results. A typical workflow involves the following: import data, fit a generalized linear model, test its quality, modify it to improve the quality, and make predictions based on the model. It computes the probability that a flower is in one of two classes, based on the Fisher iris data.

Step 1. Load the data.

Load the Fisher iris data. Extract the rows that have classification versicolor or virginica. These are rows 51 to 150. Create logical response variables that are true for versicolor flowers.

```matlab
load fisheriris
X = meas(51:end,:); % versicolor and virginica
y = strcmp('versicolor',species(51:end));
```

Step 2. Fit a generalized linear model.

Fit a binomial generalized linear model to the data.

```matlab
mdl = fitglm(X,y,'linear','distr','binomial')
```

```
mdl = 
Generalized linear regression model:
    logit(y) ~ 1 + x1 + x2 + x3 + x4
    Distribution = Binomial

Estimated Coefficients:
                          Estimate     SE         tStat      pValue
    ______________________    _______    _______    _______
    (Intercept)      42.638       25.708      1.6586    0.097204
    x1              2.4652       2.3943      1.0296    0.30319
    x2              6.6809       4.4796      1.4914    0.13585
    x3             -9.4294       4.7372     -1.9905    0.046537
    x4             -18.286       9.7426     -1.8769    0.060529

100 observations, 95 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 127, p-value = 1.95e-26
```
Step 3. Examine the result, consider alternative models.

Some P-values in the pValue column are not very small. Perhaps the model can be simplified.

See if some 95% confidence intervals for the coefficients include 0. If so, perhaps these model terms could be removed.

\begin{verbatim}
confint = coefCI(mdl)
confint = 5×2
 -8.3984 93.6740
 -2.2881 7.2185
 -2.2122 15.5739
 -18.8339 -0.0248
 -37.6277 1.0554
\end{verbatim}

Only two of the predictors have coefficients whose confidence intervals do not include 0.

The coefficients of 'x1' and 'x2' have the largest P-values. Test whether both coefficients could be zero.

\begin{verbatim}
M = [0 1 0 0 0 % picks out coefficient for column 1
 0 0 1 0 0]; % picks out coefficient for column 2
p = coefTest(mdl,M)
p = 0.1442
\end{verbatim}

The P-value of about 0.14 is not very small. Drop those terms from the model.

\begin{verbatim}
mdl1 = removeTerms(mdl,'x1 + x2')
mdl1 =
Generalized linear regression model:
 logit(y) ~ 1 + x3 + x4
 Distribution = Binomial

Estimated Coefficients:
 _______ _____ _____ ______
 Estimate SE tStat pValue
\end{verbatim}
Perhaps it would have been better to have `stepwiseglm` identify the model initially.

```matlab
mdl2 = stepwiseglm(X,y,...  
    'constant','Distribution','binomial','upper','linear')
```

1. Adding x4, Deviance = 33.4208, Chi2Stat = 105.2086, PValue = 1.099298e-24
2. Adding x3, Deviance = 20.5635, Chi2Stat = 12.8573, PValue = 0.000336166
3. Adding x2, Deviance = 13.2658, Chi2Stat = 7.29767, PValue = 0.00690441

`mdl2 =` Generalized linear regression model:
```
logit(y) ~ 1 + x2 + x3 + x4
Distribution = Binomial
```

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>50.527</td>
<td>23.995</td>
<td>2.1057</td>
<td>0.035227</td>
</tr>
<tr>
<td>x2</td>
<td>8.3761</td>
<td>4.7612</td>
<td>1.7592</td>
<td>0.078536</td>
</tr>
<tr>
<td>x3</td>
<td>-7.8745</td>
<td>3.8407</td>
<td>-2.0503</td>
<td>0.040334</td>
</tr>
<tr>
<td>x4</td>
<td>-21.43</td>
<td>10.707</td>
<td>-2.0014</td>
<td>0.04535</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 125, p-value = 5.4e-27

`stepwiseglm` included 'x2' in the model, because it neither adds nor removes terms with P-values between 0.05 and 0.10.

Step 4. Look for outliers and exclude them.

Examine a leverage plot to look for influential outliers.

`plotDiagnostics(mdl2,'leverage')`
There is one observation with a leverage close to one. Using the Data Cursor, click the point, and find it has index 69.

See if the model coefficients change when you fit a model excluding this point.

```matlab
oldCoeffs = mdl2.Coefficients.Estimate;
mdl3 = fitglm(X,y,'linear',...
    'distr','binomial','pred',2:4,'exclude',69);
newCoeffs = mdl3.Coefficients.Estimate;
disp([oldCoeffs newCoeffs])
50.5268   50.5268
8.3761    8.3761
```
The model coefficients do not change, suggesting that the response at the high-leverage point is consistent with the predicted value from the reduced model.

Step 5. Predict the probability that a new flower is versicolor.

Use mdl2 to predict the probability that a flower with average measurements is versicolor. Generate confidence intervals for your prediction.

```
[newf,newc] = predict(mdl2,mean(X))
```

```
newf = 0.5086
newc = 1×2
       0.1863    0.8239
```

The model gives almost a 50% probability that the average flower is versicolor, with a wide confidence interval about this estimate.
Lasso Regularization of Generalized Linear Models

In this section...

| “What is Generalized Linear Model Lasso Regularization?” on page 12-45 |
| “Generalized Linear Model Lasso and Elastic Net” on page 12-45 |
| “References” on page 12-47 |

What is Generalized Linear Model Lasso Regularization?

Lasso is a regularization technique. Use \texttt{lassoglm} to:

- Reduce the number of predictors in a generalized linear model.
- Identify important predictors.
- Select among redundant predictors.
- Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use it when you have several highly correlated variables. \texttt{lassoglm} provides elastic net regularization when you set the \texttt{Alpha} name-value pair to a number strictly between 0 and 1.

For details about lasso and elastic net computations and algorithms, see “Generalized Linear Model Lasso and Elastic Net” on page 12-45. For a discussion of generalized linear models, see “What Are Generalized Linear Models?” on page 12-12.

Generalized Linear Model Lasso and Elastic Net

Overview of Lasso and Elastic Net

Lasso is a regularization technique for estimating generalized linear models. Lasso includes a penalty term that constrains the size of the estimated coefficients. Therefore, it resembles “Ridge Regression” on page 11-135. Lasso is a shrinkage estimator: it generates coefficient estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller error than an ordinary maximum likelihood estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, the lasso technique sets more coefficients to zero. This means that the lasso estimator is a smaller model, with fewer
predictors. As such, lasso is an alternative to stepwise regression on page 11-126 and other model selection and dimensionality reduction techniques.

Elastic net is a related technique. Elastic net is akin to a hybrid of ridge regression and lasso regularization. Like lasso, elastic net can generate reduced models by generating zero-valued coefficients. Empirical studies suggest that the elastic net technique can outperform lasso on data with highly correlated predictors.

Definition of Lasso for Generalized Linear Models

For a nonnegative value of \(\lambda \), \texttt{lassoglm} solves the problem

\[
\min_{\beta_0, \beta} \left(\frac{1}{N} \text{Deviance}(\beta_0, \beta) + \lambda \sum_{j=1}^{p} |\beta_j| \right).
\]

- The function \(\text{Deviance} \) in this equation is the deviance of the model fit to the responses using the intercept \(\beta_0 \) and the predictor coefficients \(\beta \). The formula for Deviance depends on the \texttt{distr} parameter you supply to \texttt{lassoglm}. Minimizing the \(\lambda \)-penalized deviance is equivalent to maximizing the \(\lambda \)-penalized loglikelihood.
- \(N \) is the number of observations.
- \(\lambda \) is a nonnegative regularization parameter corresponding to one value of \texttt{Lambda}.
- The parameters \(\beta_0 \) and \(\beta \) are a scalar and a vector of length \(p \), respectively.

As \(\lambda \) increases, the number of nonzero components of \(\beta \) decreases.

The lasso problem involves the \(L^1 \) norm of \(\beta \), as contrasted with the elastic net algorithm.

Definition of Elastic Net for Generalized Linear Models

For \(\alpha \) strictly between 0 and 1, and nonnegative \(\lambda \), elastic net solves the problem

\[
\min_{\beta_0, \beta} \left(\frac{1}{N} \text{Deviance}(\beta_0, \beta) + \lambda P_\alpha(\beta) \right),
\]

where

\[
P_\alpha(\beta) = \frac{(1-\alpha)}{2} \| \beta \|_2^2 + \alpha \| \beta \|_1 = \sum_{j=1}^{p} \left(\frac{(1-\alpha)}{2} \beta_j^2 + \alpha |\beta_j| \right).
\]
Elastic net is the same as lasso when $\alpha = 1$. For other values of α, the penalty term $P_\alpha(\beta)$ interpolates between the L^1 norm of β and the squared L^2 norm of β. As α shrinks toward 0, elastic net approaches ridge regression.

References

Regularize Poisson Regression

This example shows how to identify and remove redundant predictors from a generalized linear model.

Create data with 20 predictors, and Poisson responses using just three of the predictors, plus a constant.

```matlab
rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Construct a cross-validated lasso regularization of a Poisson regression model of the data.
```
```matlab
[B,FitInfo] = lassoglm(X,y,'poisson','CV',10);
```

Examine the cross-validation plot to see the effect of the Lambda regularization parameter.

```matlab
lassoPlot(B,FitInfo,'plottype','CV');
legend('show') % show legend
```
The green circle and dashed line locate the \texttt{Lambda} with minimal cross-validation error. The blue circle and dashed line locate the point with minimal cross-validation error plus one standard deviation.

Find the nonzero model coefficients corresponding to the two identified points.

\[
\text{minpts} = \text{find}(B(:, \text{FitInfo.IndexMinDeviance}))
\]

\[
\text{minpts} = 7 \times 1
\]

3
5
6
10
min1pts = find(B(:,FitInfo.Index1SE))

min1pts = 3×1

5
10
15

The coefficients from the minimal plus one standard error point are exactly those coefficients used to create the data.

Find the values of the model coefficients at the minimal plus one standard error point.

B(min1pts,FitInfo.Index1SE)

ans = 3×1

0.2903
0.0789
0.2081

The values of the coefficients are, as expected, smaller than the original [0.4, 0.2, 0.3]. Lasso works by "shrinkage," which biases predictor coefficients toward zero.

The constant term is in the FitInfo.Intercept vector.

FitInfo.Intercept(FitInfo.Index1SE)

ans = 1.0879

The constant term is near 1, which is the value used to generate the data.
This example shows how to regularize binomial regression. The default (canonical) link function for binomial regression is the logistic function.

Step 1. Prepare the data.

Load the `ionosphere` data. The response Y is a cell array of 'g' or 'b' characters. Convert the cells to logical values, with true representing 'g'. Remove the first two columns of X because they have some awkward statistical properties, which are beyond the scope of this discussion.

```matlab
load ionosphere
Ybool = strcmp(Y,'g');
X = X(:,3:end);
```

Step 2. Create a cross-validated fit.

Construct a regularized binomial regression using 25 Lambda values and 10-fold cross validation. This process can take a few minutes.

```matlab
rng('default') % for reproducibility
[B,FitInfo] = lassoglm(X,Ybool,'binomial',...
    'NumLambda',25,'CV',10);
```

Step 3. Examine plots to find appropriate regularization.

`lassoPlot` can give both a standard trace plot and a cross-validated deviance plot. Examine both plots.

```matlab
lassoPlot(B,FitInfo,'PlotType','CV');
legend('show','Location','best') % show legend
```
The plot identifies the minimum-deviance point with a green circle and dashed line as a function of the regularization parameter Lambda. The blue circled point has minimum deviance plus no more than one standard deviation.

```matlab
lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');
```
The trace plot shows nonzero model coefficients as a function of the regularization parameter Lambda. Because there are 32 predictors and a linear model, there are 32 curves. As Lambda increases to the left, lassoglm sets various coefficients to zero, removing them from the model.

The trace plot is somewhat compressed. Zoom in to see more detail.

\begin{verbatim}
 xlim([.01 .1])
 ylim([-3 3])
\end{verbatim}
As Lambda increases toward the left side of the plot, fewer nonzero coefficients remain.

Find the number of nonzero model coefficients at the Lambda value with minimum deviance plus one standard deviation point. The regularized model coefficients are in column FitInfo.Index1SE of the B matrix.

```plaintext
indx = FitInfo.Index1SE;
B0 = B(:,indx);
nonzeros = sum(B0 ~= 0)
```

```plaintext
nonzeros =
```
When you set
Lambda to FitInfo.Index1SE, lassoglm removes over half of the 32 original predictors.

Step 4. Create a regularized model.

The constant term is in the FitInfo.Index1SE entry of the FitInfo.Intercept vector. Call that value cnst.

The model is logit(mu) = log(mu/(1 - mu)) = X*B0 + cnst. Therefore, for predictions,
mu = exp(X*B0 + cnst)/(1+exp(x*B0 + cnst)).

The glmval function evaluates model predictions. It assumes that the first model coefficient relates to the constant term. Therefore, create a coefficient vector with the constant term first.

cnst = FitInfo.Intercept(indx);
B1 = [cnst;B0];

Step 5. Examine residuals.

Plot the training data against the model predictions for the regularized lassoglm model.

preds = glmval(B1,X,'logit');
histogram(Ybool - preds) % plot residuals
title('Residuals from lassoglm model')

Instead of using the biased predictions from the model, you can make an unbiased model using just the identified predictors.

```matlab
predictors = find(B0); % indices of nonzero predictors
mdl = fitglm(X,Ybool,'linear',... 'Distribution','binomial','PredictorVars',predictors)
```

mdl =
Generalized linear regression model:
\[y \sim \text{[Linear formula with 15 terms in 14 predictors]} \]
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.9367</td>
<td>0.50926</td>
<td>-5.7666</td>
<td>8.0893e-09</td>
</tr>
<tr>
<td>x1</td>
<td>2.492</td>
<td>0.60795</td>
<td>4.099</td>
<td>4.1502e-05</td>
</tr>
<tr>
<td>x3</td>
<td>2.5501</td>
<td>0.63304</td>
<td>4.0284</td>
<td>5.616e-05</td>
</tr>
<tr>
<td>x4</td>
<td>0.48816</td>
<td>0.50336</td>
<td>0.9698</td>
<td>0.33215</td>
</tr>
<tr>
<td>x5</td>
<td>0.6158</td>
<td>0.62192</td>
<td>0.99015</td>
<td>0.3221</td>
</tr>
<tr>
<td>x6</td>
<td>2.294</td>
<td>0.5421</td>
<td>4.2317</td>
<td>2.3198e-05</td>
</tr>
<tr>
<td>x7</td>
<td>0.77842</td>
<td>0.57765</td>
<td>1.3476</td>
<td>0.1778</td>
</tr>
<tr>
<td>x12</td>
<td>1.7808</td>
<td>0.54316</td>
<td>3.2786</td>
<td>0.0010432</td>
</tr>
<tr>
<td>x16</td>
<td>-0.070993</td>
<td>0.50515</td>
<td>-0.14054</td>
<td>0.88823</td>
</tr>
<tr>
<td>x20</td>
<td>-2.7767</td>
<td>0.55131</td>
<td>-5.0365</td>
<td>4.7402e-07</td>
</tr>
<tr>
<td>x24</td>
<td>2.0212</td>
<td>0.57639</td>
<td>3.5067</td>
<td>0.00045372</td>
</tr>
<tr>
<td>x25</td>
<td>-2.3796</td>
<td>0.58274</td>
<td>-4.0835</td>
<td>4.4363e-05</td>
</tr>
<tr>
<td>x27</td>
<td>0.79564</td>
<td>0.55904</td>
<td>1.4232</td>
<td>0.15467</td>
</tr>
<tr>
<td>x29</td>
<td>1.2689</td>
<td>0.55468</td>
<td>2.2876</td>
<td>0.022162</td>
</tr>
<tr>
<td>x32</td>
<td>-1.5681</td>
<td>0.54336</td>
<td>-2.8859</td>
<td>0.0039035</td>
</tr>
</tbody>
</table>

351 observations, 336 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 262, p-value = 1e-47

Plot the residuals of the model.

plotResiduals(mdl)
As expected, residuals from the least-squares model are slightly smaller than those of the regularized model. However, this does not mean that mdl is a better predictor for new data.
Regularize Wide Data in Parallel

This example shows how to regularize a model with many more predictors than observations. Wide data is data with more predictors than observations. Typically, with wide data you want to identify important predictors. Use lassoglm as an exploratory or screening tool to select a smaller set of variables to prioritize your modeling and research. Use parallel computing to speed up cross validation.

Load the ovariancancer data. This data has 216 observations and 4000 predictors in the obs workspace variable. The responses are binary, either 'Cancer' or 'Normal', in the grp workspace variable. Convert the responses to binary for use in lassoglm.

```matlab
load ovariancancer
y = strcmp(grp,'Cancer');
```

Set options to use parallel computing. Prepare to compute in parallel using parpool.

```matlab
opt = statset('UseParallel',true);
parpool()
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

```matlab
ans =

Pool with properties:

    Connected: true
    NumWorkers: 6
    Cluster: local
    AttachedFiles: {}
    AutoAddClientPath: true
    IdleTimeout: 30 minutes (30 minutes remaining)
    SpmdEnabled: true
```

Fit a cross-validated set of regularized models. Use the Alpha parameter to favor retaining groups of highly correlated predictors, as opposed to eliminating all but one member of the group. Commonly, you use a relatively large value of Alpha.

```matlab
rng('default') % For reproducibility
tic
[B,S] = lassoglm(obs,y,'binomial','NumLambda',100,...
    'Alpha',0.9,'LambdaRatio',1e-4,'CV',10,'Options',opt);
toc
Elapsed time is 82.390258 seconds.

Examine cross-validation plot.

```matlab
lassoPlot(B,S,'PlotType','CV');
legend('show') % Show legend
```

Examine trace plot.

```matlab
lassoPlot(B,S,'PlotType','Lambda','XScale','log')
```
The right (green) vertical dashed line represents the Lambda providing the smallest cross-validated deviance. The left (blue) dashed line has the minimal deviance plus no more than one standard deviation. This blue line has many fewer predictors:

\[ \text{S.DF(S.Index1SE)} \text{ S.DF(S.IndexMinDeviance)} \]

You asked lassoglm to fit using 100 different Lambda values. How many did it use?

\text{size(B)}

lassoglm stopped after 84 values because the deviance was too small for small Lambda values. To avoid overfitting, lassoglm halts when the deviance of the fitted model is too small compared to the deviance in the binary responses, ignoring the predictor variables.
You can force `lassoglm` to include more terms by using the 'Lambda' name-value pair argument. For example, define a set of Lambda values that additionally includes three values smaller than the values in `S.Lambda`.

```
minLambda = min(S.Lambda);
explicitLambda = [minLambda*[.1 .01 .001] S.Lambda];
```

Specify 'Lambda', `explicitLambda` when you call the `lassoglm` function. `lassoglm` halts when the deviance of the fitted model is too small, even though you explicitly provide a set of Lambda values.

To save time, you can use:

- Fewer Lambda, meaning fewer fits
- Fewer cross-validation folds
- A larger value for LambdaRatio

Use serial computation and all three of these time-saving methods:

```
tic
[Bquick,Squick] = lassoglm(obs,y,'binomial','NumLambda',25,...
 'LambdaRatio',1e-2,'CV',5);
toc
```

Elapsed time is 14.668383 seconds.

Graphically compare the new results to the first results.

```
lassoPlot(Bquick,Squick,'PlotType','CV');
legend('show') % Show legend
```
lassoPlot(Bquick,Squick,'PlotType','Lambda','XScale','log')
The number of nonzero coefficients in the lowest plus one standard deviation model is around 50, similar to the first computation.
Generalized Linear Mixed-Effects Models

In this section...
“What Are Generalized Linear Mixed-Effects Models?” on page 12-65
“GLME Model Equations” on page 12-65
“Prepare Data for Model Fitting” on page 12-67
“Choose a Distribution Type for the Model” on page 12-67
“Choose a Link Function for the Model” on page 12-68
“Specify the Model Formula” on page 12-69
“Display the Model” on page 12-72
“Work with the Model” on page 12-74

What Are Generalized Linear Mixed-Effects Models?

Generalized linear mixed-effects (GLME) models describe the relationship between a response variable and independent variables using coefficients that can vary with respect to one or more grouping variables, for data with a response variable distribution other than normal. You can think of GLME models as extensions of generalized linear models on page 12-12 (GLM) for data that are collected and summarized in groups. Alternatively, you can think of GLME models as a generalization of linear mixed-effects models on page 11-162 (LME) for data where the response variable is not normally distributed.

A mixed-effects model consists of fixed-effects and random-effects terms. Fixed-effects terms are usually the conventional linear regression part of the model. Random-effects terms are associated with individual experimental units drawn at random from a population, and account for variations between groups that might affect the response. The random effects have prior distributions, whereas the fixed effects do not.

GLME Model Equations

The standard form of a generalized linear mixed-effects model is

\[ y_i \mid b \sim \text{Distr} \left( \mu_i, \frac{\sigma^2}{\omega_i} \right) \]
\[ g(\mu) = X\beta + Zb + \delta , \]

where

- \( y \) is an \( n \)-by-1 response vector, and \( y_i \) is its \( i \)th element.
- \( b \) is the random-effects vector.
- \( Distr \) is a specified conditional distribution of \( y \) given \( b \).
- \( \mu \) is the conditional mean of \( y \) given \( b \), and \( \mu_i \) is its \( i \)th element.
- \( \sigma^2 \) is the dispersion parameter.
- \( w \) is the effective observation weight vector, and \( w_i \) is the weight for observation \( i \).

- For a binomial distribution, the effective observation weight is equal to the prior weight specified using the 'Weights' name-value pair argument in fitglme, multiplied by the binomial size specified using the 'BinomialSize' name-value pair argument.
- For all other distributions, the effective observation weight is equal to the prior weight specified using the 'Weights' name-value pair argument in fitglme.
- \( g(\mu) \) is a link function that defines the relationship between the mean response \( \mu \) and the linear combination of the predictors.
- \( X \) is an \( n \)-by-\( p \) fixed-effects design matrix.
- \( \beta \) is a \( p \)-by-1 fixed-effects vector.
- \( Z \) is an \( n \)-by-\( q \) random-effects design matrix.
- \( b \) is a \( q \)-by-1 random-effects vector.
- \( \delta \) is a model offset vector.

The model for the mean response \( \mu \) is

\[ \mu = g^{-1}(\eta) , \]

where \( g^{-1} \) is inverse of the link function \( g(\mu) \), and \( \hat{\eta}_{ME} \) is the linear predictor of the fixed and random effects of the generalized linear mixed-effects model

\[ \eta = X\beta + Zb + \delta . \]

A GLME model is parameterized by \( \beta, \theta, \) and \( \sigma^2 \).
The assumptions for generalized linear mixed-effects models are:

- The random effects vector $b$ has the prior distribution:

$$b \mid \sigma^2, \theta \sim N\left(0, \sigma^2 D(\theta)\right),$$

where $\sigma^2$ is the dispersion parameter, and $D$ is a symmetric and positive semidefinite matrix parameterized by an unconstrained parameter vector $\theta$.

- The observations $y_i$ are conditionally independent given $b$.

**Prepare Data for Model Fitting**

To fit a GLME model to your data, use `fitglme`. Format your input data using the `table` data type. Each row of the table represents one observation, and each column represents one predictor variable. For more information on creating and using `table`, see “Create and Work with Tables” (MATLAB).

Input data can include continuous and grouping variables. `fitglme` assumes that predictors using the following data types are categorical:

- Logical
- Categorical
- Character vector or character array
- String array
- Cell array of character vectors

If the input data table contains any `NaN` values, then `fitglme` excludes that entire row of data from the fit. To exclude additional rows of data, you can use the `’Exclude’` name-value pair argument of `fitglme` when fitting the model.

**Choose a Distribution Type for the Model**

GLME models are used when the response data does not follow a normal distribution. Therefore, when fitting a model using `fitglme`, you must specify the response distribution type using the `’Distribution’` name-value pair argument. Often, the type of response data suggests the appropriate distribution type for the model.
<table>
<thead>
<tr>
<th>Type of Response Data</th>
<th>Suggested Response Distribution Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any real number</td>
<td>'Normal'</td>
</tr>
<tr>
<td>Any positive number</td>
<td>'Gamma' or 'InverseGaussian'</td>
</tr>
<tr>
<td>Any nonnegative integer</td>
<td>'Poisson'</td>
</tr>
<tr>
<td>Integer from 0 to $n$, where $n$ is a fixed positive value</td>
<td>'Binomial'</td>
</tr>
</tbody>
</table>

**Choose a Link Function for the Model**

GLME models use a link function, $g$, to map the relationship between the mean response and the linear combination of the predictors. By default, `fitglme` uses a predefined, commonly accepted link function based on the specified distribution of the response data, as shown in the following table. However, you can specify a different link function from the list of predefined functions, or define your own, using the 'Link' name-value pair argument of `fitglme`.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'comploglog'</td>
<td>$g(\mu) = \log(-\log(1-\mu))$</td>
</tr>
<tr>
<td>'identity'</td>
<td>$g(\mu) = \mu$</td>
</tr>
<tr>
<td></td>
<td>Canonical link for the normal distribution.</td>
</tr>
<tr>
<td>'log'</td>
<td>$g(\mu) = \log(\mu)$</td>
</tr>
<tr>
<td></td>
<td>Canonical link for the Poisson distribution.</td>
</tr>
<tr>
<td>'logit'</td>
<td>$g(\mu) = \log(\mu/(1-\mu))$</td>
</tr>
<tr>
<td></td>
<td>Canonical link for the binomial distribution.</td>
</tr>
<tr>
<td>'loglog'</td>
<td>$g(\mu) = \log(-\log(\mu))$</td>
</tr>
<tr>
<td>'probit'</td>
<td>$g(\mu) = \text{norminv}(\mu)$</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>$g(\mu) = \mu.^(\text{-1})$</td>
</tr>
<tr>
<td>Scalar value $P$</td>
<td>$g(\mu) = \mu.^(P)$</td>
</tr>
</tbody>
</table>
Value | Description
---|---
Structure S | A structure containing four fields whose values are function handles:
  - S.Link — Link function
  - S.Derivative — Derivative
  - S.SecondDerivative — Second derivative
  - S.Inverse — Inverse of link

If 'FitMethod' is 'MPL' or 'REPL', or if S represents a canonical link for the specified distribution, you can omit the specification of S.SecondDerivative.

When fitting a model to data, fitglme uses the canonical link function by default.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Default Link Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Normal'</td>
<td>'identity'</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>'logit'</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>'log'</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>-1</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>-2</td>
</tr>
</tbody>
</table>

The link functions 'comploglog', 'loglog', and 'probit' are mainly useful for binomial models.

**Specify the Model Formula**

Model specification for fitglme uses Wilkinson notation, which is a character vector or string scalar of the form 'y ~ terms', where y is the response variable name, and terms is written in the following notation.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
</tbody>
</table>
### Wilkinson Notation vs. Standard Notation

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^k$, where $k$ is a positive integer</td>
<td>$X, X^2, ..., X^k$</td>
</tr>
<tr>
<td>$X_1 + X_2$</td>
<td>$X_1, X_2$</td>
</tr>
<tr>
<td>$X_1 \times X_2$</td>
<td>$X_1, X_2, X_1 \times X_2$ (element-wise multiplication of $X_1$ and $X_2$)</td>
</tr>
<tr>
<td>$X_1 : X_2$</td>
<td>$X_1 \times X_2$ only</td>
</tr>
<tr>
<td>- $X_2$</td>
<td>Do not include $X_2$</td>
</tr>
<tr>
<td>$X_1 \times X_2 + X_3$</td>
<td>$X_1, X_2, X_3, X_1 \times X_2$</td>
</tr>
<tr>
<td>$X_1 + X_2 + X_3 + X_1 : X_2$</td>
<td>$X_1, X_2, X_3, X_1 \times X_2$</td>
</tr>
<tr>
<td>$X_1 \times X_2 \times X_3 - X_1 : X_2 : X_3$</td>
<td>$X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3, X_2 \times X_3$</td>
</tr>
<tr>
<td>$X_1 \times (X_2 + X_3)$</td>
<td>$X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3$</td>
</tr>
</tbody>
</table>

Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include $-1$ in the formula.

For generalized linear mixed-effects models, the formula specification is of the form `$y \sim fixed + (random_1|grouping_1) + ... + (random_R|grouping_R)$`, where `fixed` and `random` contain the fixed-effects and the random-effects terms, respectively.

Suppose the input data table contains the following:

- A response variable, $y$
- Predictor variables, $X_1, X_2, ..., X_J$, where $J$ is the total number of predictor variables (including continuous and grouping variables).
- Grouping variables, $g_1, g_2, ..., g_R$, where $R$ is the number of grouping variables.

The grouping variables in $X_J$ and $g_R$ can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form `$y \sim fixed + (random_1|g_1) + ... + (random_R|g_R)$`, the term `fixed` corresponds to a specification of the fixed-effects design matrix $X$, `random_1` is a specification of the random-effects design matrix $Z_1$ corresponding to grouping variable $g_1$, and similarly `random_R` is a specification of the random-effects design matrix $Z_R$ corresponding to grouping variable $g_R$. You can express the `fixed` and `random` terms using Wilkinson notation as follows.
Generalized Linear Mixed-Effects Models

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X1 + X2'</td>
<td>Fixed effects for the intercept, X1, and X2. This formula is equivalent to 'y ~ 1 + X1 + X2'.</td>
</tr>
<tr>
<td>'y ~ -1 + X1 + X2'</td>
<td>No intercept, with fixed effects for X1 and X2. The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (X1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1) + (1</td>
</tr>
</tbody>
</table>

For example, the sample data mfr contains simulated data from a manufacturing company that operates 50 factories across the world. Each factory runs a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches), and recorded data on processing time (time_dev), temperature (temp_dev), number of defects (defects), and a categorical variable indicating the raw materials supplier (supplier) for each batch.

To determine whether the new process (represented by the predictor variable newprocess) significantly reduces the number of defects, fit a GLME model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects intercept grouped by factory, to account for quality differences that
might exist due to factory-specific variations. The response variable \textit{defects} has a Poisson distribution.

The number of defects can be modeled using a Poisson distribution

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time\_dev}_{ij} \\
+ \beta_3 \text{temp\_dev}_{ij} + \beta_4 \text{supplier\_C}_{ij} + \beta_5 \text{supplier\_B}_{ij} + b_i,
\]

where

• \text{defects}_{ij} is the number of defects observed in the batch produced by factory \( i \) (where \( i = 1, 2, \ldots, 20 \)) during batch \( j \) (where \( j = 1, 2, \ldots, 5 \)).

• \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) during batch \( j \).

• \text{supplier\_C}_{ij} and \text{supplier\_B}_{ij} are dummy variables that indicate whether company \( C \) or \( B \), respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).

• \( b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

Using Wilkinson notation, specify this model as:

'\text{defects} \sim 1 + \text{newprocess} + \text{time\_dev} + \text{temp\_dev} + \text{supplier} + (1|\text{factory})'

To account for the Poisson distribution of the response variable, when fitting the model using \texttt{fitglme}, specify the 'Distribution' name-value pair argument as 'Poisson'. By default, \texttt{fitglme} uses a log link function for response variables with a Poisson distribution.

**Display the Model**

The output of the fitting function \texttt{fitglme} provides information about generalized linear mixed-effects model.
Using the `mfr` manufacturing experiment data, fit a model using `newprocess`, `time_dev`, `temp_dev`, and `supplier` as fixed-effects predictors. Specify the response distribution as Poisson, the link function as log, and the fit method as Laplace.

```matlab
load mfr

glme = fitglme(mfr,...
 'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
 'Distribution','Poisson','Link','log','FitMethod','Laplace',...
 'DummyVarCoding','effects')

glme =
```

Generalized linear mixed-effects model fit by ML

Model information:
  Number of observations             100
  Fixed effects coefficients           6
  Random effects coefficients         20
  Covariance parameters                1
  Distribution                    Poisson
  Link                            Log
  FitMethod                       Laplace

Formula:
  defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
  AIC       BIC       LogLikelihood    Deviance
  416.35    434.58    -201.17          402.35

Fixed effects coefficients (95% CIs):
  Name                 Estimate     SE          tStat       DF    pValue
  '(Intercept)'           1.4689     0.15988      9.1875    94    9.8194e-15
  'newprocess'          -0.36766     0.17755     -2.0708    94      0.041122
  'time_dev'           -0.094521     0.82849    -0.11409    94       0.90941
  'temp_dev'            -0.28317      0.9617    -0.29444    94       0.76907
  'supplier_C'         -0.071868    0.078024     -0.9211    94       0.35936
  'supplier_B'          0.071072     0.07739     0.91836    94       0.36078

  Lower        Upper
  1.1515       1.7864
  -0.72019    -0.015134
  -1.7395       1.5585
  -2.1926       1.6263
  -0.22679     0.083051
  -0.082588      0.22473

Random effects covariance parameters:
  Group: factory (20 Levels)
  Name1                Name2                Type         Estimate
  '(Intercept)'        '(Intercept)'        'std'        0.31381

Group: Error
  Name                     Estimate
  'sqrt(Dispersion)'       1
The Model information table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only factory), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, std indicates that fitglme returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-effects parameters. To compute and display these values, use covarianceParameters.

Work with the Model

After you create a GLME model using fitglme, you can use additional functions to work with the model.

Inspect and Test Coefficients and Confidence Intervals

To extract estimates of the fixed- and random-effects coefficients, covariance parameters, design matrices, and related statistics:
• **fixedEffects** extracts estimated fixed-effects coefficients and related statistics from a fitted model. Related statistics include the standard error; the $t$-statistic, degrees of freedom, and $p$-value for a hypothesis test of whether each parameter is equal to 0; and the confidence intervals.

• **randomEffects** extracts estimated random-effects coefficients and related statistics from a fitted GLME model. Related statistics include the estimated empirical Bayes predictor (EBP) of each random effect, the square root of the conditional mean squared error of prediction (CMSEP) given the covariance parameters and the response; the $t$-statistic, estimated degrees of freedom, and $p$-value for a hypothesis test of whether each random effect is equal to 0; and the confidence intervals.

• **covarianceParameters** extracts estimated covariance parameters and related statistics from a fitted GLME model. Related statistics include estimate of the covariance parameter, and the confidence intervals.

• **designMatrix** extracts the fixed- and random-effects design matrices, or a specified subset thereof, from the fitted GLME model.

To conduct customized hypothesis tests for the significance of fixed- and random-effects coefficients, and to compute custom confidence intervals:

• **anova** performs a marginal $F$-test (hypothesis test) on fixed-effects terms, to determine if all coefficients representing the fixed-effects terms are equal to 0. You can use **anova** to test the combined significance of the coefficients of categorical predictors.

• **coefCI** computes confidence intervals for fixed- and random-effects parameters from a fitted GLME model. By default, **fitglme** computes 95% confidence intervals. Use **coefCI** to compute the boundaries at a different confidence level.

• **coefTest** performs custom hypothesis tests on fixed-effects or random-effects vectors of a fitted generalized linear mixed-effects model. For example, you can specify contrast matrices.

**Generate New Response Values and Refit Model**

To generate new response values, including fitted, predicted, and random responses, based on the fitted GLME model:

• **fitted** computes fitted response values using the original predictor values, and the estimated coefficient and parameter values from the fitted model.

• **predict** computes the predicted conditional or marginal mean of the response using either the original predictor values or new predictor values, and the estimated coefficient and parameter values from the fitted model.
random generates random responses from a fitted model.

refit creates a new fitted GLME model, based on the original model and a new response vector.

Inspect and Visualize Residuals

To extract and visualize residuals from the fitted GLME model:

- residuals extracts the raw or Pearson residuals from the fitted model. You can also specify whether to compute the conditional or marginal residuals.
- plotResiduals creates plots using the raw or Pearson residuals from the fitted model, including:
  - A histogram of the residuals
  - A scatterplot of the residuals versus fitted values
  - A scatterplot of residuals versus lagged residuals

See Also
GeneralizedLinearMixedModel | fitglme

Related Examples
- “Fit a Generalized Linear Mixed-Effects Model” on page 12-77
This example shows how to fit a generalized linear mixed-effects model (GLME) to sample data.

Load the sample data.

```
load mfr
```

A manufacturing company operates 50 factories across the world, and each runs a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. However, the company wants to test the new process in select factories to ensure that it is effective before rolling it out to all 50 locations.

To test whether the new process significantly reduces the number of defects in each batch, the company selected 20 of its factories at random to participate in an experiment. Ten factories implemented the new process, while the other ten used the old process.

In each of the 20 factories \((i = 1, 2, \ldots, 20)\), the company ran five batches \((j = 1, 2, \ldots, 5)\) and recorded the following data in the table `mfr`:

- Flag to indicate use of the new process:
  - If the batch used the new process, then `newprocess = 1`
  - If the batch used the old process, then `newprocess = 0`
- Processing time for the batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Supplier of the chemical used in the batch (`supplier`)
  - `supplier` is a categorical variable with levels A, B, and C, where each level represents one of the three suppliers
- Number of defects in the batch (`defects`)

The data also includes `time_dev` and `temp_dev`, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours and 20 degrees Celsius. The response variable `defects` has a Poisson distribution. This is simulated data.
The company wants to determine whether the new process significantly reduces the number of defects in each batch, while accounting for quality differences that might exist due to factory-specific variations in time, temperature, and supplier. The number of defects per batch can be modeled using a Poisson distribution:

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

Use a generalized linear mixed-effects model to model the number of defects per batch:

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time\_dev}_{ij} \\
+ \beta_3 \text{temp\_dev}_{ij} + \beta_4 \text{supplier\_C}_{ij} + \beta_5 \text{supplier\_B}_{ij} + b_i ,
\]

where

- \( \text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
- \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, ..., 20 \)) during batch \( j \) (where \( j = 1, 2, ..., 5 \)).
- \( \text{newprocess}_{ij}, \text{time\_dev}_{ij}, \text{and temp\_dev}_{ij} \) are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, \( \text{newprocess}_{ij} \) indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.
- \( \text{supplier\_C}_{ij} \) and \( \text{supplier\_B}_{ij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company \( C \) or \( B \), respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).
- \( b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

**Fit a GLME model and interpret the results.**

Fit a generalized linear mixed-effects model using \( \text{newprocess}, \text{time\_dev}, \text{temp\_dev}, \) and \( \text{supplier} \) as fixed-effects predictors. Include a random-effects term for intercept grouped by \( \text{factory} \), to account for quality differences that might exist due to factory-specific variations. The response variable \( \text{defects} \) has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

```matlab
glme = fitglme(mfr,...
'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
'Distribution','Poisson','Link','log','FitMethod','Laplace',...
'DummyVarCoding','effects')
```

```matlab
glme =
Generalized linear mixed-effects model fit by ML

Model information:
Number of observations 100
Fixed effects coefficients 6
Random effects coefficients 20
Covariance parameters 1
Distribution Poisson
Link Log
FitMethod Laplace

Formula:
 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
AIC BIC LogLikelihood Deviance
416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.4689</td>
<td>0.15988</td>
<td>9.1875</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.36766</td>
<td>0.17755</td>
<td>-2.0708</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.094521</td>
<td>0.82849</td>
<td>-0.11409</td>
<td>94</td>
<td>0.90941</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>-0.28317</td>
<td>0.9617</td>
<td>-0.29444</td>
<td>94</td>
<td>0.76907</td>
</tr>
<tr>
<td>'supplier_C'</td>
<td>-0.071868</td>
<td>0.078024</td>
<td>-0.9211</td>
<td>94</td>
<td>0.35936</td>
</tr>
<tr>
<td>'supplier_B'</td>
<td>0.071072</td>
<td>0.07739</td>
<td>0.91836</td>
<td>94</td>
<td>0.36078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1515</td>
<td>1.7864</td>
</tr>
<tr>
<td>-0.72691</td>
<td>-0.01514</td>
</tr>
<tr>
<td>-1.7395</td>
<td>1.5505</td>
</tr>
<tr>
<td>-2.1926</td>
<td>1.6263</td>
</tr>
<tr>
<td>-0.22679</td>
<td>0.083051</td>
</tr>
<tr>
<td>-0.082588</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

Random effects covariance parameters:

Group: factory (20 Levels)
<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.31381</td>
</tr>
</tbody>
</table>

Group: Error
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sqrt(Dispersion)'</td>
<td>1</td>
</tr>
</tbody>
</table>
```
The Model information table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only factory), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, std indicates that fitglme returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-effects parameters. To compute and display these values, use covarianceParameters.

**Check significance of random effect.**

To determine whether the random-effects intercept grouped by factory is statistically significant, compute the confidence intervals for the estimated covariance parameter.

```
[psi,dispersion,stats] = covarianceParameters(glme);
```

covarianceParameters returns the estimated covariance parameter in psi, the estimated dispersion parameter dispersion, and a cell array of related statistics stats.
The first cell of stats contains statistics for factory, while the second cell contains statistics for the dispersion parameter.

Display the first cell of stats to see the confidence intervals for the estimated covariance parameter for factory.

stats{1}

ans =

    Covariance Type: Isotropic
    Group       Name1                Name2                Type
    factory    '(Intercept)'        '(Intercept)'        'std'

    Estimate    Lower      Upper
    0.31381     0.19253    0.51148

The columns Lower and Upper display the default 95% confidence interval for the estimated covariance parameter for factory. Because the interval [0.19253,0.51148] does not contain 0, the random-effects intercept is significant at the 5% significance level. Therefore, the random effect due to factory-specific variation must be considered before drawing any conclusions about the effectiveness of the new manufacturing process.

**Compare two models.**

Compare the mixed-effects model that includes a random-effects intercept grouped by factory with a model that does not include the random effect, to determine which model is a better fit for the data. Fit the first model, FEglme, using only the fixed-effects predictors newprocess, time_dev, temp_dev, and supplier. Fit the second model, glme, using these same fixed-effects predictors, but also including a random-effects intercept grouped by factory.

FEglme = fitglme(mfr,...
    'defects ~ 1 + newprocess + time_dev + temp_dev + supplier',... 
    'Distribution','Poisson','Link','log','FitMethod','Laplace');

glme = fitglme(mfr,...
    'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 
    'Distribution','Poisson','Link','log','FitMethod','Laplace');
Compare the two models using a likelihood ratio test. Specify 'CheckNesting' as true, so compare returns a warning if the nesting requirements are not satisfied.

\[
results = \text{compare(FEglme,glme,'CheckNesting',true)}
\]

\[
results =
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>deltaDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEglme</td>
<td>6</td>
<td>431.02</td>
<td>446.65</td>
<td>-209.51</td>
<td>16.672</td>
<td>1</td>
</tr>
<tr>
<td>glme</td>
<td>7</td>
<td>416.35</td>
<td>434.58</td>
<td>-201.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pValue

\[
4.4435e-05
\]

\text{compare} returns the degrees of freedom (DF), the Akaike information criterion (AIC), Bayesian information criterion (BIC), and log likelihood values for each model. \text{glme} has smaller AIC, BIC, and log likelihood values than \text{FEglme}, which indicates that \text{glme} (the model containing the random-effects term for intercept grouped by factory) is the better-fitting model for this data. Additionally, the small p-value indicates that \text{compare} rejects the null hypothesis that the response vector was generated by the fixed-effects-only model \text{FEglme}, in favor of the alternative that the response vector was generated by the mixed-effects model \text{glme}.

**Plot the results**.

Generate the fitted conditional mean values for the model.

\[
mufit = \text{fitted(glme)};
\]

Plot the observed response values versus the fitted response values.

\[
\text{figure}
\text{scatter(mfr.defects,mufit)}
\text{title('Observed Values versus Fitted Values')}
\text{xlabel('Fitted Values')}
\text{ylabel('Observed Values')}
\]
Create diagnostic plots using conditional Pearson residuals to test model assumptions. Since raw residuals for generalized linear mixed-effects models do not have a constant variance across observations, use the conditional Pearson residuals instead.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0. If the model is correct, we expect the Pearson residuals to be centered at 0.

```matlab
plotResiduals(glme,'histogram','ResidualType','Pearson')
```
The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among the residuals (heteroscedasticity). We expect the conditional Pearson residuals to have a constant variance. Therefore, a plot of conditional Pearson residuals versus conditional fitted values should not reveal any systematic dependence on the conditional fitted values.

```matlab
plotResiduals(glme,'fitted','ResidualType','Pearson')
```
The plot does not show a systematic dependence on the fitted values, so there are no signs of nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among the residuals. The conditional independence assumption in GLME implies that the conditional Pearson residuals are approximately uncorrelated.
There is no pattern to the plot, so there are no signs of correlation among the residuals.

**See Also**
GeneralizedLinearMixedModel | fitglme

**More About**
•  “Generalized Linear Models” on page 12-12
Nonlinear Regression

- “Nonlinear Regression” on page 13-2
- “Nonlinear Regression Workflow” on page 13-15
- “Mixed-Effects Models” on page 13-22
- “Examining Residuals for Model Verification” on page 13-37
- “Mixed-Effects Models Using nlmefit and nlmefitsa” on page 13-43
What Are Parametric Nonlinear Regression Models?

Parametric nonlinear models represent the relationship between a continuous response variable and one or more continuous predictor variables in the form

\[ y = f(X, \beta) + \varepsilon, \]

where

- \( y \) is an \( n \)-by-1 vector of observations of the response variable.
- \( f \) is any function of \( X \) and \( \beta \) that evaluates each row of \( X \) along with the vector \( \beta \) to compute the prediction for the corresponding row of \( y \).
- \( X \) is an \( n \)-by-\( p \) matrix of predictors, with one row for each observation, and one column for each predictor.
- \( \beta \) is a \( p \)-by-1 vector of unknown parameters to be estimated.
- \( \varepsilon \) is an \( n \)-by-1 vector of independent, identically distributed random disturbances.

In contrast, nonparametric models do not attempt to characterize the relationship between predictors and response with model parameters. Descriptions are often graphical, as in the case of “Decision Trees” on page 19-2.

`fitnlm` attempts to find values of the parameters \( \beta \) that minimize the mean squared differences between the observed responses \( y \) and the predictions of the model \( f(X, \beta) \). To do so, it needs a starting value `beta0` before iteratively modifying the vector \( \beta \) to a vector with minimal mean squared error.
**Prepare Data**

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array $X$ and response data in a separate vector $y$, or input data in a table or dataset array $tbl$ and response data as a column in $tbl$. Each row of the input data represents one observation. Each column represents one predictor (variable).

For a table or dataset array $tbl$, indicate the response variable with the 'ResponseVar' name-value pair:

```matlab
mdl = fitlm(tbl,'ResponseVar','BloodPressure');
```

The response variable is the last column by default.

You cannot use categorical predictors for nonlinear regression. A categorical predictor is one that takes values from a fixed set of possibilities.

Represent missing data as NaN for both input data and response data.

**Dataset Array for Input and Response Data**

For example, to create a dataset array from an Excel spreadsheet:

```matlab
ds = dataset('XLSFile','hospital.xls',... 'ReadObsNames',true);
```

To create a dataset array from workspace variables:

```matlab
load carsmall
ds = dataset(Weight,Model_Year,MPG);
```

**Table for Input and Response Data**

To create a table from an Excel spreadsheet:

```matlab
tbl = readtable('hospital.xls',... 'ReadRowNames',true);
```

To create a table from workspace variables:

```matlab
load carsmall
tbl = table(Weight,Model_Year,MPG);
```
Numeric Matrix for Input Data and Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

```matlab
load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;
```

To create numeric arrays from an Excel spreadsheet:

```matlab
[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = [];
% remove y from the X matrix
```

Notice that the nonnumeric entries, such as sex, do not appear in X.

Represent the Nonlinear Model

There are several ways to represent a nonlinear model. Use whichever is most convenient.

The nonlinear model is a required input to `fitnlm`, in the `modelfun` input.

`fitnlm` assumes that the response function $f(X,\beta)$ is smooth in the parameters $\beta$. If your function is not smooth, `fitnlm` can fail to provide optimal parameter estimates.

- “Function Handle to Anonymous Function or Function File” on page 13-4
- “Text Representation of Formula” on page 13-5

Function Handle to Anonymous Function or Function File

The function handle `@modelfun(b,x)` accepts a vector $b$ and matrix, table, or dataset array $x$. The function handle should return a vector $f$ with the same number of rows as $x$. For example, the function file `hougen.m` computes

$$
hougen(b,x) = \frac{b(1)x(2) - x(3) / b(5)}{1 + b(2)x(1) + b(3)x(2) + b(4)x(3)}.
$$

Examine the function by entering `type hougen` at the MATLAB command line.

```matlab
function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
```

13-4
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have 5 elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5).(1+b2*x1+b3*x2+b4*x3)
%
% Reference:
% Regression Analysis and Its Applications", Wiley
%
% Copyright 1993-2004 The MathWorks, Inc.
% B.A. Jones 1-06-95.

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

You can write an anonymous function that performs the same calculation as hougen.m.

modelfun = @(b,x)(b(1)*x(:,2) - x(:,3)/b(5))./(1 + b(2)*x(:,1) + b(3)*x(:,2) + b(4)*x(:,3));

**Text Representation of Formula**

For data in a matrix X and response in a vector y:

- Represent the formula using 'x1' as the first predictor (column) in X, 'x2' as the second predictor, etc.
- Represent the vector of parameters to optimize as 'b1', 'b2', etc.
- Write the formula as 'y ~ (mathematical expressions)'.

For example, to represent the response to the reaction data:
modelfun = 'y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)';

For data in a table or dataset array, you can use formulas represented as the variable names from the table or dataset array. Put the response variable name at the left of the formula, followed by a \( \sim \), followed by a character vector representing the response formula.

This example shows how to create a character vector to represent the response to the reaction data that is in a dataset array.

1. Load the reaction data.
   ```matlab
 load reaction
   ```
2. Put the data into a dataset array, where each variable has a name given in \( x_n \) or \( y_n \).
   ```matlab
ds = dataset({reactants,xn(1,:),xn(2,:),xn(3,:)},...
 {rate,yn});
   ```
3. Examine the first row of the dataset array.
   ```matlab
ds(1,:)
 ans =
 Hydrogen n_Pentane Isopentane ReactionRate
 470 300 10 8.55
   ```
4. Write the hougen formula using names in the dataset array.
   ```matlab
 modelfun = ['ReactionRate ~ (b1*n_Pentane - Isopentane/b5) /'...
 '(1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)']
 modelfun =
 ReactionRate ~ (b1*n_Pentane - Isopentane/b5) / ...
 (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)
   ```

### Choose Initial Vector \( \text{beta0} \)

The initial vector for the fitting iterations, \( \text{beta0} \), can greatly influence the quality of the resulting fitted model. \( \text{beta0} \) gives the dimensionality of the problem, meaning it needs the correct length. A good choice of \( \text{beta0} \) leads to a quick, reliable model, while a poor choice can lead to a long computation, or to an inadequate model.

It is difficult to give advice on choosing a good \( \text{beta0} \). If you believe certain components of the vector should be positive or negative, set your \( \text{beta0} \) to have those characteristics.
If you know the approximate value of other components, include them in beta0. However, if you don’t know good values, try a random vector, such as

\[ \text{beta0} = \text{randn(nVars,1)}; \%
\]  
% or
\[ \text{beta0} = 10*\text{rand(nVars,1)}; \]

**Fit Nonlinear Model to Data**

The syntax for fitting a nonlinear regression model using a table or dataset array tbl is

\[ \text{mdl} = \text{fitnlm}(tbl,\text{modelfun},\text{beta0}) \]

The syntax for fitting a nonlinear regression model using a numeric array X and numeric response vector y is

\[ \text{mdl} = \text{fitnlm}(X,y,\text{modelfun},\text{beta0}) \]

For information on representing the input parameters, see “Prepare Data” on page 13-3, “Represent the Nonlinear Model” on page 13-4, and “Choose Initial Vector beta0” on page 13-6.

fitnlm assumes that the response variable in a table or dataset array tbl is the last column. To change this, use the ResponseVar name-value pair to name the response column.

**Examine Quality and Adjust the Fitted Nonlinear Model**

There are diagnostic plots to help you examine the quality of a model. plotDiagnostics(mdl) gives a variety of plots, including leverage and Cook's distance plots. plotResiduals(mdl) gives the difference between the fitted model and the data.

There are also properties of mdl that relate to the model quality. mdl.RMSE gives the root mean square error between the data and the fitted model. mdl.Residuals.Raw gives the raw residuals. mdl.Diagnostics contains several fields, such as Leverage and CooksDistance, that can help you identify particularly interesting observations.

This example shows how to examine a fitted nonlinear model using diagnostic, residual, and slice plots.

Load the sample data.
load reaction

Create a nonlinear model of rate as a function of reactants using the hougen.m function.

beta0 = ones(5,1);
mdl = fitnlm(reactants,...
    rate,@hougen,beta0);

Make a leverage plot of the data and model.

plotDiagnostics(mdl)

There is one point that has high leverage. Locate the point.
 [~,maxl] = max(mdl.Diagnostics.Leverage)
maxl = 6

Examine a residuals plot.

plotResiduals(mdl,'fitted')

Nothing stands out as an outlier.

Use a slice plot to show the effect of each predictor on the model.

plotSlice(mdl)
You can drag the vertical dashed blue lines to see the effect of a change in one predictor on the response. For example, drag the X2 line to the right, and notice that the slope of the X3 line changes.

**Predict or Simulate Responses Using a Nonlinear Model**

This example shows how to use the methods `predict`, `feval`, and `random` to predict and simulate responses to new data.

Randomly generate a sample from a Cauchy distribution.

```matlab
rng('default')
X = rand(100,1);
X = tan(pi*X - pi/2);
```

Generate the response according to the model \( y = b_1 \frac{\pi}{2} + \arctan\left(\frac{x - b_2}{b_3}\right) \) and add noise to the response.

```matlab
modelfun = @(b,x) b(1) * ...
 (pi/2 + atan((x - b(2))/b(3)));
y = modelfun([12 5 10],X) + randn(100,1);
```
Fit a model starting from the arbitrary parameters $b = [1,1,1]$.

```matlab
beta0 = [1 1 1]; % An arbitrary guess
mdl = fitnlm(X,y,modelfun,beta0)
```

```matlab
dmdl =
Nonlinear regression model:
 y ~ b1*(pi/2 + atan((x - b2)/b3))
```

```
Estimated Coefficients:
 Estimate SE tStat pValue
 ______ _______ ______ __________
 b1 12.082 0.80028 15.097 3.3151e-27
 b2 5.0603 1.0825 4.6747 9.5063e-06
 b3 9.64 0.46499 20.732 2.0382e-37
```

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 1.02
R-Squared: 0.92, Adjusted R-Squared 0.918
F-statistic vs. zero model: 6.45e+03, p-value = 1.72e-111

The fitted values are within a few percent of the parameters [12,5,10].

Examine the fit.

```matlab
plotSlice(mdl)
```
predict

The `predict` method predicts the mean responses and, if requested, gives confidence bounds. Find the predicted response values and predicted confidence intervals about the response at $X$ values $[-15;5;12]$.

$$X_{\text{new}} = [-15;5;12];$$

$$[y_{\text{new}}, y_{\text{newci}}] = \text{predict}(\text{mdl}, X_{\text{new}})$$

\begin{align*}
\text{ynew} &= 3 \times 1 \\
&= \begin{bmatrix} 5.4122 \\ 18.9022 \\ 26.5161 \end{bmatrix} \\
\text{ynewci} &= 3 \times 2 \\
&= \begin{bmatrix} 4.8233 & 6.0010 \\ 18.4555 & 19.3490 \\ 25.0170 & 28.0151 \end{bmatrix}
\end{align*}
The confidence intervals are reflected in the slice plot.

**feval**

The `feval` method predicts the mean responses. `feval` is often more convenient to use than `predict` when you construct a model from a dataset array.

Create the nonlinear model from a dataset array.

```matlab
ds = dataset({X,'X'},{y,'y'});
mdl2 = fitnlm(ds,modelfun,beta0);
```

Find the predicted model responses (CDF) at X values [-15;5;12].

```matlab
Xnew = [-15;5;12];
ynew = feval(mdl2,Xnew)
ynew = 3×1
5.4122
18.9022
26.5161
```

**random**

The `random` method simulates new random response values, equal to the mean prediction plus a random disturbance with the same variance as the training data.

```matlab
Xnew = [-15;5;12];
ysim = random(mdl,Xnew)
```

```matlab
ysim = 3×1
6.0505
19.0893
25.4647
```

Rerun the random method. The results change.

```matlab
ysim = random(mdl,Xnew)
```

```matlab
ysim = 3×1
```
6.3813
19.2157
26.6541
Nonlinear Regression Workflow

This example shows how to do a typical nonlinear regression workflow: import data, fit a nonlinear regression, test its quality, modify it to improve the quality, and make predictions based on the model.

**Step 1. Prepare the data.**

Load the reaction data.

```matlab
load reaction
```

Examine the data in the workspace. `reactants` is a matrix with 13 rows and 3 columns. Each row corresponds to one observation, and each column corresponds to one variable. The variable names are in `xn`:

```matlab
xn
```

```matlab
xn = 3x10 char array
 'Hydrogen '
 'n-Pentane '
 'Isopentane'
```

Similarly, `rate` is a vector of 13 responses, with the variable name in `yn`:

```matlab
yn
```

```matlab
yn =
 'Reaction Rate'
```

The `hougen.m` file contains a nonlinear model of reaction rate as a function of the three predictor variables. For a 5-D vector `b` and 3-D vector `x`,

```matlab
hougen(b, x) = \frac{b(1)x(2) - x(3)/b(5)}{1 + b(2)x(1) + b(3)x(2) + b(4)x(3)}
```

As a start point for the solution, take `b` as a vector of ones.

```matlab
beta0 = ones(5,1);
```
Step 2. Fit a nonlinear model to the data.

```matlab
mdl = fitnlm(reactants,...
 rate,@hougen,beta0)
mdl =
 Nonlinear regression model:
 y ~ hougen(b,X)
Estimated Coefficients:
 Estimate SE tStat pValue
 _______ _________ ____ ____
 b1 1.2526 0.86702 1.4447 0.18654
 b2 0.062776 0.043562 1.4411 0.18753
 b3 0.040048 0.030885 1.2967 0.23089
 b4 0.11242 0.075158 1.4957 0.17309
 b5 1.1914 0.83671 1.4239 0.1923
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Step 3. Examine the quality of the model.

The root mean squared error is fairly low compared to the range of observed values.

```matlab
[mdl.RMSE min(rate) max(rate)]
ans = 1x3
 0.1933 0.0200 14.3900
```

Examine a residuals plot.

```matlab
plotResiduals(mdl)
```
The model seems adequate for the data.

Examine a diagnostic plot to look for outliers.

`plotDiagnostics(mdl,'cookd')`
Observation 6 seems out of line.

**Step 4. Remove the outlier.**

Remove the outlier from the fit using the `Exclude` name-value pair:

```matlab
mdl1 = fitnlm(reactants,...
 rate,@hougen,ones(5,1),'Exclude',6)
```

```matlab
mdl1 =
Nonlinear regression model:
 y ~ hougen(b,X)
```

Estimated Coefficients:
<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>0.619</td>
<td>0.4552</td>
<td>1.3598</td>
<td>0.21605</td>
</tr>
<tr>
<td>b2</td>
<td>0.030377</td>
<td>0.023061</td>
<td>1.3172</td>
<td>0.22924</td>
</tr>
<tr>
<td>b3</td>
<td>0.018927</td>
<td>0.01574</td>
<td>1.2024</td>
<td>0.26828</td>
</tr>
<tr>
<td>b4</td>
<td>0.053411</td>
<td>0.041084</td>
<td>1.3</td>
<td>0.23476</td>
</tr>
<tr>
<td>b5</td>
<td>2.4125</td>
<td>1.7903</td>
<td>1.3475</td>
<td>0.2198</td>
</tr>
</tbody>
</table>

Number of observations: 12, Error degrees of freedom: 7
Root Mean Squared Error: 0.198
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 2.67e+03, p-value = 2.54e-11

The model coefficients changed quite a bit from those in mdl.

**Step 5. Examine slice plots of both models.**

To see the effect of each predictor on the response, make a slice plot using `plotSlice(mdl)`.

```
plotSlice(mdl)
```

```
plotSlice(mdl1)
```
The plots look very similar, with slightly wider confidence bounds for mdl1. This difference is understandable, since there is one less data point in the fit, representing over 7% fewer observations.

**Step 6. Predict for new data.**

Create some new data and predict the response from both models.

\[ X_{\text{new}} = \begin{bmatrix} 200, 200, 200; 100, 200, 100; 500, 50, 5 \end{bmatrix}; \]

\[ [\text{ypred} \hspace{1cm} \text{yci}] = \text{predict(mdl,Xnew)} \]

\[ \text{ypred} = 3 \times 1 \]

1.8762  
6.2793  
1.6718

\[ \text{yci} = 3 \times 2 \]

1.6283  2.1242  
5.9789  6.5797  
1.5589  1.7846

\[ [\text{ypred1} \hspace{1cm} \text{yci1}] = \text{predict(mdl1,Xnew)} \]

\[ \text{ypred1} = 3 \times 1 \]

1.8984  
6.2555
\[ y_{c1} = 3 \times 2 \]

\[
\begin{array}{cc}
1.6260 & 2.1708 \\
5.9323 & 6.5787 \\
1.5345 & 1.7843
\end{array}
\]

Even though the model coefficients are dissimilar, the predictions are nearly identical.
Mixed-Effects Models

Introduction to Mixed-Effects Models

In statistics, an effect is anything that influences the value of a response variable at a particular setting of the predictor variables. Effects are translated into model parameters. In linear models, effects become coefficients, representing the proportional contributions of model terms. In nonlinear models, effects often have specific physical interpretations, and appear in more general nonlinear combinations.

Fixed effects represent population parameters, assumed to be the same each time data is collected. Estimating fixed effects is the traditional domain of regression modeling. Random effects, by comparison, are sample-dependent random variables. In modeling, random effects act like additional error terms, and their distributions and covariances must be specified.

For example, consider a model of the elimination of a drug from the bloodstream. The model uses time $t$ as a predictor and the concentration of the drug $C$ as the response. The nonlinear model term $C_0 e^{-rt}$ combines parameters $C_0$ and $r$, representing, respectively, an initial concentration and an elimination rate. If data is collected across multiple individuals, it is reasonable to assume that the elimination rate is a random variable $r_i$ depending on individual $i$, varying around a population mean $\bar{r}$. The term $C_0 e^{-rt}$ becomes

$$C_0 e^{-[\bar{r}+(r_i-\bar{r})]t} = C_0 e^{-(\beta+b_i)t},$$

where $\beta = \bar{r}$ is a fixed effect and $b_i = r_i - \bar{r}$ is a random effect.

Random effects are useful when data falls into natural groups. In the drug elimination model, the groups are simply the individuals under study. More sophisticated models...
might group data by an individual's age, weight, diet, etc. Although the groups are not the focus of the study, adding random effects to a model extends the reliability of inferences beyond the specific sample of individuals.

Mixed-effects models account for both fixed and random effects. As with all regression models, their purpose is to describe a response variable as a function of the predictor variables. Mixed-effects models, however, recognize correlations within sample subgroups. In this way, they provide a compromise between ignoring data groups entirely and fitting each group with a separate model.

**Mixed-Effects Model Hierarchy**

Suppose data for a nonlinear regression model falls into one of \( m \) distinct groups \( i = 1, ..., m \). To account for the groups in a model, write response \( j \) in group \( i \) as:

\[
y_{ij} = f(\phi, x_{ij}) + \epsilon_{ij}
\]

\( y_{ij} \) is the response, \( x_{ij} \) is a vector of predictors, \( \phi \) is a vector of model parameters, and \( \epsilon_{ij} \) is the measurement or process error. The index \( j \) ranges from 1 to \( n_i \), where \( n_i \) is the number of observations in group \( i \). The function \( f \) specifies the form of the model. Often, \( x_{ij} \) is simply an observation time \( t_{ij} \). The errors are usually assumed to be independent and identically, normally distributed, with constant variance.

Estimates of the parameters in \( \phi \) describe the population, assuming those estimates are the same for all groups. If, however, the estimates vary by group, the model becomes

\[
y_{ij} = f(\phi_i, x_{ij}) + \epsilon_{ij}
\]

In a mixed-effects model, \( \phi_i \) may be a combination of a fixed and a random effect:

\[
\phi_i = \beta + b_i
\]

The random effects \( b_i \) are usually described as multivariate normally distributed, with mean zero and covariance \( \Psi \). Estimating the fixed effects \( \beta \) and the covariance of the random effects \( \Psi \) provides a description of the population that does not assume the parameters \( \phi_i \) are the same across groups. Estimating the random effects \( b_i \) also gives a description of specific groups within the data.
Model parameters do not have to be identified with individual effects. In general, design matrices $A$ and $B$ are used to identify parameters with linear combinations of fixed and random effects:

$$\phi_i = A\beta + Bb_i$$

If the design matrices differ among groups, the model becomes

$$\phi_i = A_i\beta + B_ib_i$$

If the design matrices also differ among observations, the model becomes

$$\phi_{ij} = A_{ij}\beta + B_{ij}b_i$$

$$y_{ij} = f(\phi_{ij}, x_{ij}) + \epsilon_{ij}$$

Some of the group-specific predictors in $x_{ij}$ may not change with observation $j$. Calling those $v_i$, the model becomes

$$y_{ij} = f(\phi_{ij}, x_{ij}, v_i) + \epsilon_{ij}$$

**Specifying Mixed-Effects Models**

Suppose data for a nonlinear regression model falls into one of $m$ distinct groups $i = 1, ..., m$. (Specifically, suppose that the groups are not nested.) To specify a general nonlinear mixed-effects model for this data:

1. Define group-specific model parameters $\phi_i$ as linear combinations of fixed effects $\beta$ and random effects $b_i$.

2. Define response values $y_i$ as a nonlinear function $f$ of the parameters and group-specific predictor variables $X_i$.

The model is:

$$\phi_i = A_i\beta + B_ib_i$$

$$y_i = f(\phi_i, X_i) + \epsilon_i$$

$$b_i \sim N(0, \Psi)$$

$$\epsilon_i \sim N(0, \sigma^2)$$
This formulation of the nonlinear mixed-effects model uses the following notation:

- $\varphi_i$  A vector of group-specific model parameters
- $\beta$  A vector of fixed effects, modeling population parameters
- $b_i$  A vector of multivariate normally distributed group-specific random effects
- $A_i$  A group-specific design matrix for combining fixed effects
- $B_i$  A group-specific design matrix for combining random effects
- $X_i$  A data matrix of group-specific predictor values
- $y_i$  A data vector of group-specific response values
- $f$  A general, real-valued function of $\varphi_i$ and $X_i$
- $\varepsilon_i$  A vector of group-specific errors, assumed to be independent, identically, normally distributed, and independent of $b_i$
- $\Psi$  A covariance matrix for the random effects
- $\sigma^2$  The error variance, assumed to be constant across observations

For example, consider a model of the elimination of a drug from the bloodstream. The model incorporates two overlapping phases:

- An initial phase $p$ during which drug concentrations reach equilibrium with surrounding tissues
- A second phase $q$ during which the drug is eliminated from the bloodstream

For data on multiple individuals $i$, the model is

$$y_{ij} = C_{pi}e^{r_{pi}t_{ij}} + C_{qi}e^{r_{qi}t_{ij}} + \varepsilon_{ij},$$

where $y_{ij}$ is the observed concentration in individual $i$ at time $t_{ij}$. The model allows for different sampling times and different numbers of observations for different individuals.

The elimination rates $r_{pi}$ and $r_{qi}$ must be positive to be physically meaningful. Enforce this by introducing the log rates $R_{pi} = \log(r_{pi})$ and $R_{qi} = \log(r_{qi})$ and reparametrizing the model:

$$y_{ij} = C_{pi}e^{\exp(R_{pi}x_{ij})} + C_{qi}e^{\exp(R_{qi})t_{ij}} + \varepsilon_{ij}$$

Choosing which parameters to model with random effects is an important consideration when building a mixed-effects model. One technique is to add random effects to all
parameters, and use estimates of their variances to determine their significance in the model. An alternative is to fit the model separately to each group, without random effects, and look at the variation of the parameter estimates. If an estimate varies widely across groups, or if confidence intervals for each group have minimal overlap, the parameter is a good candidate for a random effect.

To introduce fixed effects $\beta$ and random effects $b_i$ for all model parameters, reexpress the model as follows:

$$y_{ij} = [\bar{C}_p + (C_{pi} - \bar{C}_p)]e^{-\exp[R_p + (R_{pi} - R_p)]y_{ij}} +$$

$$[\bar{C}_q + (C_{qi} - \bar{C}_q)]e^{-\exp[R_q + (R_{qi} - R_q)]y_{ij}} + \varepsilon_{ij}$$

$$= (\beta_1 + b_{1i})e^{-\exp(\beta_2 + b_{2i})t_{ij}} +$$

$$(\beta_3 + b_{3i})e^{-\exp(\beta_4 + b_{4i})y_{ij}} + \varepsilon_{ij}$$

In the notation of the general model:

$$\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_4 \end{pmatrix}, \quad b_i = \begin{pmatrix} b_{1i} \\ \vdots \\ b_{4i} \end{pmatrix}, \quad y_i = \begin{pmatrix} y_{i1} \\ \vdots \\ y_{in_i} \end{pmatrix}, \quad X_i = \begin{pmatrix} t_{1i} \\ \vdots \\ t_{in_i} \end{pmatrix},$$

where $n_i$ is the number of observations of individual $i$. In this case, the design matrices $A_i$ and $B_i$ are, at least initially, 4-by-4 identity matrices. Design matrices may be altered, as necessary, to introduce weighting of individual effects, or time dependency.

Fitting the model and estimating the covariance matrix $\Psi$ often leads to further refinements. A relatively small estimate for the variance of a random effect suggests that it can be removed from the model. Likewise, relatively small estimates for covariances among certain random effects suggests that a full covariance matrix is unnecessary. Since random effects are unobserved, $\Psi$ must be estimated indirectly. Specifying a diagonal or block-diagonal covariance pattern for $\Psi$ can improve convergence and efficiency of the fitting algorithm.

Statistics and Machine Learning Toolbox functions nlmefit and nlmefitsa fit the general nonlinear mixed-effects model to data, estimating the fixed and random effects. The functions also estimate the covariance matrix $\Psi$ for the random effects. Additional diagnostic outputs allow you to assess tradeoffs between the number of model parameters and the goodness of fit.
Specify Covariate Models

If the model in “Specifying Mixed-Effects Models” on page 13-24 assumes a group-dependent covariate such as weight (w) the model becomes:

\[
\begin{pmatrix}
\varphi_1 \\
\varphi_2 \\
\varphi_3
\end{pmatrix}
= 
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4
\end{pmatrix}
+ 
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}
\]

Thus, the parameter \( \varphi_i \) for any individual in the \( i \)th group is:

\[
\begin{pmatrix}
\varphi_1_i \\
\varphi_2_i \\
\varphi_3_i
\end{pmatrix}
= 
\begin{pmatrix}
\beta_1 + \beta_4 w_i \\
\beta_2 \\
\beta_3
\end{pmatrix}
+ 
\begin{pmatrix}
b_1_i \\
b_2_i \\
b_3_i
\end{pmatrix}
\]

To specify a covariate model, use the 'FEGroupDesign' option.

'FEGroupDesign' is a \( p \times q \times m \) array specifying a different \( p \times q \) fixed-effects design matrix for each of the \( m \) groups. Using the previous example, the array resembles the following:

1. Create the array.
% Number of parameters in the model (Phi)
num_params = 3;
% Number of covariates
num_cov = 1;
% Assuming number of groups in the data set is 7
num_groups = 7;
% Array of covariate values
covariates = [75; 52; 66; 55; 70; 58; 62 ];
A = repmat(eye(num_params, num_params+num_cov),...
[1,1,num_groups]);
A(1,num_params+1,1:num_groups) = covariates(:,1)

2 Create a struct with the specified design matrix.

    options.FEGroupDesign = A;

3 Specify the arguments for nlmefit (or nlmefitsa) as shown in “Mixed-Effects Models Using nlmefit and nlmefitsa” on page 13-43.

Choosing nlmefit or nlmefitsa

Statistics and Machine Learning Toolbox provides two functions, nlmefit and nlmefitsa for fitting nonlinear mixed-effects models. Each function provides different capabilities, which may help you decide which to use.

- “Approximation Methods” on page 13-28
- “Parameters Specific to nlmefitsa” on page 13-29
- “Model and Data Requirements” on page 13-30

Approximation Methods

nlmefit provides the following four approximation methods for fitting nonlinear mixed-effects models:

- 'LME' — Use the likelihood for the linear mixed-effects model at the current conditional estimates of beta and B. This is the default.
- 'RELME' — Use the restricted likelihood for the linear mixed-effects model at the current conditional estimates of beta and B.
- 'FO' — First-order Laplacian approximation without random effects.
- 'FOCE' — First-order Laplacian approximation at the conditional estimates of B.
**nlmefitsa** provides an additional approximation method, Stochastic Approximation Expectation-Maximization (SAEM) [24] with three steps:

1. **Simulation**: Generate simulated values of the random effects $b$ from the posterior density $p(b|\Sigma)$ given the current parameter estimates.

2. **Stochastic approximation**: Update the expected value of the log likelihood function by taking its value from the previous step, and moving part way toward the average value of the log likelihood calculated from the simulated random effects.

3. **Maximization step**: Choose new parameter estimates to maximize the log likelihood function given the simulated values of the random effects.

Both **nlmefit** and **nlmefitsa** attempt to find parameter estimates to maximize a likelihood function, which is difficult to compute. **nlmefit** deals with the problem by approximating the likelihood function in various ways, and maximizing the approximate function. It uses traditional optimization techniques that depend on things like convergence criteria and iteration limits.

**nlmefitsa**, on the other hand, simulates random values of the parameters in such a way that in the long run they converge to the values that maximize the exact likelihood function. The results are random, and traditional convergence tests don't apply. Therefore **nlmefitsa** provides options to plot the results as the simulation progresses, and to restart the simulation multiple times. You can use these features to judge whether the results have converged to the accuracy you desire.

**Parameters Specific to nlmefitsa**

The following parameters are specific to **nlmefitsa**. Most control the stochastic algorithm.

- **Cov0** — Initial value for the covariance matrix $\Psi$. Must be an $r$-by-$r$ positive definite matrix. If empty, the default value depends on the values of $\text{BETA0}$.
- **ComputeStdErrors** — true to compute standard errors for the coefficient estimates and store them in the output $\text{STATS}$ structure, or false (default) to omit this computation.
- **LogLikMethod** — Specifies the method for approximating the log likelihood.
- **NBurnIn** — Number of initial burn-in iterations during which the parameter estimates are not recomputed. Default is 5.
- **NIterations** — Controls how many iterations are performed for each of three phases of the algorithm.
• **NMCMCIterations** — Number of Markov Chain Monte Carlo (MCMC) iterations.

### Model and Data Requirements

There are some differences in the capabilities of `nlmefit` and `nlmefitsa`. Therefore some data and models are usable with either function, but some may require you to choose just one of them.

- **Error models** — `nlmefitsa` supports a variety of error models. For example, the standard deviation of the response can be constant, proportional to the function value, or a combination of the two. `nlmefit` fits models under the assumption that the standard deviation of the response is constant. One of the error models, `'exponential'`, specifies that the log of the response has a constant standard deviation. You can fit such models using `nlmefit` by providing the log response as input, and by rewriting the model function to produce the log of the nonlinear function value.

- **Random effects** — Both functions fit data to a nonlinear function with parameters, and the parameters may be simple scalar values or linear functions of covariates. `nlmefit` allows any coefficients of the linear functions to have both fixed and random effects. `nlmefitsa` supports random effects only for the constant (intercept) coefficient of the linear functions, but not for slope coefficients. So in the example in “Specifying Covariate Models” on page 13-27, `nlmefitsa` can treat only the first three beta values as random effects.

- **Model form** — `nlmefit` supports a very general model specification, with few restrictions on the design matrices that relate the fixed coefficients and the random effects to the model parameters. `nlmefitsa` is more restrictive:
  - The fixed effect design must be constant in every group (for every individual), so an observation-dependent design is not supported.
  - The random effect design must be constant for the entire data set, so neither an observation-dependent design nor a group-dependent design is supported.
  - As mentioned under **Random Effects**, the random effect design must not specify random effects for slope coefficients. This implies that the design must consist of zeros and ones.
  - The random effect design must not use the same random effect for multiple coefficients, and cannot use more than one random effect for any single coefficient.
  - The fixed effect design must not use the same coefficient for multiple parameters. This implies that it can have at most one nonzero value in each column.
If you want to use `nlmefitsa` for data in which the covariate effects are random, include the covariates directly in the nonlinear model expression. Don't include the covariates in the fixed or random effect design matrices.

- **Convergence** — As described in the Model form, `nlmefit` and `nlmefitsa` have different approaches to measuring convergence. `nlmefit` uses traditional optimization measures, and `nlmefitsa` provides diagnostics to help you judge the convergence of a random simulation.

In practice, `nlmefitsa` tends to be more robust, and less likely to fail on difficult problems. However, `nlmefit` may converge faster on problems where it converges at all. Some problems may benefit from a combined strategy, for example by running `nlmefitsa` for a while to get reasonable parameter estimates, and using those as a starting point for additional iterations using `nlmefit`.

**Using Output Functions with Mixed-Effects Models**

The `OutputFcn` field of the `options` structure specifies one or more functions that the solver calls after each iteration. Typically, you might use an output function to plot points at each iteration or to display optimization quantities from the algorithm. To set up an output function:

1. Write the output function as a MATLAB file function or local function.
2. Use `statset` to set the value of `OutputFcn` to be a function handle, that is, the name of the function preceded by the `@` sign. For example, if the output function is `outfun.m`, the command

   ```matlab
 options = statset('OutputFcn', @outfun);
   ```

   specifies `OutputFcn` to be the handle to `outfun`. To specify multiple output functions, use the syntax:

   ```matlab
 options = statset('OutputFcn',{@outfun, @outfun2});
   ```

3. Call the optimization function with `options` as an input argument.

For an example of an output function, see “Sample Output Function” on page 13-35.

**Structure of the Output Function**

The function definition line of the output function has the following form:

```matlab
stop = outfun(beta, status, state)
```
where

- \textit{beta} is the current fixed effects.
- \textit{status} is a structure containing data from the current iteration. “Fields in status” on page 13-32 describes the structure in detail.
- \textit{state} is the current state of the algorithm. “States of the Algorithm” on page 13-33 lists the possible values.
- \textit{stop} is a flag that is \texttt{true} or \texttt{false} depending on whether the optimization routine should quit or continue. See “Stop Flag” on page 13-34 for more information.

The solver passes the values of the input arguments to \texttt{outfun} at each iteration.

**Fields in status**

The following table lists the fields of the \texttt{status} structure:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure</td>
<td>• 'ALT' — alternating algorithm for the optimization of the linear mixed effects or restricted linear mixed effects approximations</td>
</tr>
<tr>
<td></td>
<td>• 'LAP' — optimization of the Laplacian approximation for first order or first order conditional estimation</td>
</tr>
<tr>
<td>iteration</td>
<td>An integer starting from 0.</td>
</tr>
</tbody>
</table>
### Field Description

**inner**

A structure describing the status of the inner iterations within the ALT and LAP procedures, with the fields:

- **procedure** — When procedure is 'ALT':
  - 'PNLS' (penalized nonlinear least squares)
  - 'LME' (linear mixed-effects estimation)
  - 'none'

When procedure is 'LAP',
  - 'PNLS' (penalized nonlinear least squares)
  - 'PLM' (profiled likelihood maximization)
  - 'none'

- **state** — one of the following:
  - 'init'
  - 'iter'
  - 'done'
  - 'none'

- **iteration** — an integer starting from 0, or NaN. For nlmefitsa with burn-in iterations, the output function is called after each of those iterations with a negative value for STATUS.iteration.

**fval** The current log likelihood

**Psi** The current random-effects covariance matrix

**theta** The current parameterization of Psi

**mse** The current error variance

### States of the Algorithm

The following table lists the possible values for **state**:

<table>
<thead>
<tr>
<th>state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'init'</td>
<td>The algorithm is in the initial state before the first iteration.</td>
</tr>
</tbody>
</table>
The following code illustrates how the output function might use the value of `state` to decide which tasks to perform at the current iteration:

```matlab
switch state
 case 'iter'
 % Make updates to plot or guis as needed
 case 'init'
 % Setup for plots or guis
 case 'done'
 % Cleanup of plots, guis, or final plot
 otherwise
 % Cleanup of plots, guis, or final plot
end
```

### Stop Flag

The output argument `stop` is a flag that is true or false. The flag tells the solver whether it should quit or continue. The following examples show typical ways to use the `stop` flag.

#### Stopping an Optimization Based on Intermediate Results

The output function can stop the estimation at any iteration based on the values of arguments passed into it. For example, the following code sets `stop` to true based on the value of the log likelihood stored in the `'fval'` field of the status structure:

```matlab
stop = outfun(beta,status,state)
stop = false;
% Check if loglikelihood is more than 132.
if status.fval > -132
 stop = true;
end
```

#### Stopping an Iteration Based on GUI Input

If you design a GUI to perform `nlmefit` iterations, you can make the output function stop when a user clicks a **Stop** button on the GUI. For example, the following code implements a dialog to cancel calculations:

```matlab
function retval = stop_outfcn(beta,str,status)
persistent h stop;
```

---

<table>
<thead>
<tr>
<th><code>state</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'iter'</td>
<td>The algorithm is at the end of an iteration.</td>
</tr>
<tr>
<td>'done'</td>
<td>The algorithm is in the final state after the last iteration.</td>
</tr>
</tbody>
</table>
if isequal(str.inner.state,'none')
    switch(status)
    case 'init'
        % Initialize dialog
        stop = false;
        h = msgbox('Press STOP to cancel calculations.',...
                    'NLMEFIT: Iteration 0 ');
        button = findobj(h,'type','uicontrol');
        set(button,'String','STOP','Callback',@stopper)
        pos = get(h,'Position');
        pos(3) = 1.1 * pos(3);
        set(h,'Position',pos)
        drawnow
    case 'iter'
        % Display iteration number in the dialog title
        set(h,'Name',sprintf('NLMEFIT: Iteration %d',...str.iteration))
        drawnow;
    case 'done'
        % Delete dialog
        delete(h);
    end
end
if stop
    % Stop if the dialog button has been pressed
    delete(h)
end
retval = stop;

    function stopper(varargin)
        % Set flag to stop when button is pressed
        stop = true;
        disp('Calculation stopped.'
    end
end

Sample Output Function

nmlefitoutputfcn is the sample Statistics and Machine Learning Toolbox output function for nlmefit and nlmefitsa. It initializes or updates a plot with the fixed-effects (BETA) and variance of the random effects (diag(STATUS.Psi)). For nlmefit, the plot also includes the log-likelihood (STATUS.fval).
nlmefitoutputfcn is the default output function for nlmefitsa. To use it with nlmefit, specify a function handle for it in the options structure:

opt = statset('OutputFcn', @nlmefitoutputfcn, ...)  
beta = nlmefit(..., 'Options', opt, ...)

To prevent nlmefitsa from using of this function, specify an empty value for the output function:

opt = statset('OutputFcn', [], ...)  
beta = nlmefitsa(..., 'Options', opt, ...)

nlmefitoutputfcn stops nlmefit or nlmefitsa if you close the figure that it produces.
Examining Residuals for Model Verification

You can examine the stats structure, which is returned by both nlmefit and nlmefitsa, to determine the quality of your model. The stats structure contains fields with conditional weighted residuals (cwres field) and individual weighted residuals (iwres field). Since the model assumes that residuals are normally distributed, you can examine the residuals to see how well this assumption holds.

This example generates synthetic data using normal distributions. It shows how the fit statistics look:

- Good when testing against the same type of model as generates the data
- Poor when tested against incorrect data models

1 Initialize a 2-D model with 100 individuals:

```matlab
nGroups = 100; % 100 Individuals
nlmefun = @(PHI,t)(PHI(:,1)*5 + PHI(:,2)^2.*t); % Regression fcn
REParamSelect = [1 2]; % Both Parameters have random effect
errorParam = .03;
beta0 = [1.5 5]; % Parameter means
psi = [0.35 0; 0 0.51];
time = [0.25;0.5;0.75;1;1.25;2;3;4;5;6];
nParameters = 2;
 rng(0,'twister') % for reproducibility
```

2 Generate the data for fitting with a proportional error model:

```matlab
bi = mvnrnd(zeros(1, numel(REParamSelect)), psi, nGroups);
individualParameters = zeros(nGroups,nParameters);
individualParameters(:, REParamSelect) = ...%'
 bsxfun(@plus,beta0(REParamSelect), bi);

groups = repmat(1:nGroups,numel(time),1);
groups = vertcat(groups(1,:));

y = zeros(numel(time)*nGroups,1);
x = zeros(numel(time)*nGroups,1);
for i = 1:nGroups
 idx = groups == i;
 f = nlmefun(individualParameters(i,:), time);
 % Make a proportional error model for y:
 y(idx) = f + errorParam*f.*randn(numel(f),1);
```
x(idx) = time;
end

P = [ 1 0 ; 0 1 ];

3 Fit the data using the same regression function and error model as the model generator:

[~,~,stats] = nlmefit(x,y,groups, ...  
    [],nlmefun,[1 1],’REParamsSelect’,REParamSelect,...
    ’ErrorModel’,’Proportional’,’CovPattern’,P);

4 Create a plotting routine by copying the following function definition, and creating a file plotResiduals.m on your MATLAB path:

function plotResiduals(stats)
    pwres = stats.pwres;
    iwres = stats.iwres;
    cwres = stats.cwres;
    figure
    subplot(2,3,1);
    normplot(pwres); title(’PWRES’)
    subplot(2,3,4);
    createhistplot(pwres);
    subplot(2,3,2);
    normplot(cwres); title(’CWRES’)
    subplot(2,3,5);
    createhistplot(cwres);
    subplot(2,3,3);
    normplot(iwres); title(’IWRES’)
    subplot(2,3,6);
    createhistplot(iwres); title(’IWRES’)

function createhistplot(pwres)
    h = histogram(pwres);
    % x is the probability/height for each bin
    x = h.Values/sum(h.Values*h.BinWidth)
    % n is the center of each bin
    n = h.BinEdges + (0.5*h.BinWidth)
    n(end) = [];
    bar(n,x);
ylim([0 max(x)*1.05]);
hold on;
x2 = -4:0.1:4;
f2 = normpdf(x2,0,1);
plot(x2,f2,'r');
end

5 Plot the residuals using the plotResiduals function:
plotResiduals(stats);
The upper probability plots look straight, meaning the residuals are normally distributed. The bottom histogram plots match the superimposed normal density plot. So you can conclude that the error model matches the data.

For comparison, fit the data using a constant error model, instead of the proportional model that created the data:

```matlab
[~,~,stats] = nlmefit(x,y,groups, ...
 [],nlmefun,[0 0],'REParamsSelect',REParamSelect,...
 'ErrorModel','Constant','CovPattern',P);
plotResiduals(stats);
```
The upper probability plots are not straight, indicating the residuals are not normally distributed. The bottom histogram plots are fairly close to the superimposed normal density plots.

For another comparison, fit the data to a different structural model than created the data:

```matlab
nlmefun2 = @(PHI,t)(PHI(:,1)*5 + PHI(:,2).*t.^4);
[~,~,stats] = nlmefit(x,y,groups, ...
 [],nlmefun2,[0 0],'REParamsSelect',REParamSelect,...
 'ErrorModel','constant', 'CovPattern',P);
plotResiduals(stats);
```
Not only are the upper probability plots not straight, but the histogram plot is quite skewed compared to the superimposed normal density. These residuals are not normally distributed, and do not match the model.
Mixed-Effects Models Using nlmefit and nlmefitsa

Load the sample data.

load indomethacin

The data in indomethacin.mat records concentrations of the drug indomethacin in the bloodstream of six subjects over eight hours.

Plot the scatter plot of indomethacin in the bloodstream grouped by subject.

```matlab
gscatter(time,concentration,subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
```
Specifying Mixed-Effects Models page discusses a useful model for this type of data.

Construct the model via an anonymous function.

```matlab
model = @(phi,t)(phi(1)*exp(-exp(phi(2))*t) + ...
phi(3)*exp(-exp(phi(4))*t));
```

Use the `nlinfit` function to fit the model to all of the data, ignoring subject-specific effects.

```matlab
phi0 = [1 2 1 1];
[phi,res] = nlinfit(time,concentration,model,phi0);
```

Compute the mean squared error.
numObs = length(time);
numParams = 4;
df = numObs-numParams;
mse = (res'*res)/df

mse =

0.0304

Super impose the model on the scatter plot of data.

tplot = 0:0.01:8;
plot(tplot,model(phi,tplot),'k','LineWidth',2)
hold off
Draw the box-plot of residuals by subject.

```matlab
colors = 'rygcbm';
h = boxplot(res,subject,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on
boxplot(res,subject,'colors','k','symbol','ko')
grid on
xlabel('Subject')
ylabel('Residual')
hold off
```
The box plot of residuals by subject shows that the boxes are mostly above or below zero, indicating that the model has failed to account for subject-specific effects.

To account for subject-specific effects, fit the model separately to the data for each subject.

phi0 = [1 2 1 1];
PHI = zeros(4,6);
RES = zeros(11,6);
for I = 1:6
    tI = time(subject == I);
cI = concentration(subject == I);
[PHI(:,I),RES(:,I)] = nlinfit(tI,cI,model,phi0);
Compute the mean squared error.

```matlab
numParams = 24;
df = numObs-numParams;
mse = (RES(:)'*RES(:))/df
```

```
mse =
 0.0057
```

Plot the scatter plot of the data and superimpose the model for each subject.

```matlab
gscatter(time,concentration,subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
for I = 1:6
 plot(tplot,model(PHI(:,I),tplot),'Color',colors(I))
end
axis([0 8 0 3.5])
hold off
```
PHI gives estimates of the four model parameters for each of the six subjects. The estimates vary considerably, but taken as a 24-parameter model of the data, the mean-squared error of 0.0057 is a significant reduction from 0.0304 in the original four-parameter model.

Draw the box plot of residuals by subject.

```matlab
h = boxplot(RES,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on
boxplot(RES,'colors','k','symbol','ko')
grid on
xlabel('Subject')
```
Now the box plot shows that the larger model accounts for most of the subject-specific effects. The spread of the residuals (the vertical scale of the box plot) is much smaller than in the previous box plot, and the boxes are now mostly centered on zero.

While the 24-parameter model successfully accounts for variations due to the specific subjects in the study, it does not consider the subjects as representatives of a larger population. The sampling distribution from which the subjects are drawn is likely more interesting than the sample itself. The purpose of mixed-effects models is to account for subject-specific variations more broadly, as random effects varying around population means.
Use the `nlmefit` function to fit a mixed-effects model to the data. You can also use `nlmefitsa` in place of `nlmefit`.

The following anonymous function, `nlme_model`, adapts the four-parameter model used by `nlinfit` to the calling syntax of `nlmefit` by allowing separate parameters for each individual. By default, `nlmefit` assigns random effects to all the model parameters. Also by default, `nlmefit` assumes a diagonal covariance matrix (no covariance among the random effects) to avoid overparametrization and related convergence issues.

```matlab
nlme_model = @(PHI,t)(PHI(:,1).*exp(-exp(PHI(:,2)).*t) + ...
 PHI(:,3).*exp(-exp(PHI(:,4)).*t));
phi0 = [1 2 1 1];
[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
 [],nlme_model,phi0)
```

```
phi =
 2.8277
 0.7729
 0.4606
 -1.3459

PSI =
 0.3264 0 0 0
 0 0.0250 0 0
 0 0 0.0124 0
 0 0 0 0.0000
```

```
stats =
 struct with fields:
 dfe: 57
 logl: 54.5882
 mse: 0.0066
 rmse: 0.0787
 errorparam: 0.0815
 aic: -91.1765
 bic: -93.0506
 covb: [4x4 double]
```
The mean-squared error of 0.0066 is comparable to the 0.0057 of the 24-parameter model without random effects, and significantly better than the 0.0304 of the four-parameter model without random effects.

The estimated covariance matrix PSI shows that the variance of the fourth random effect is essentially zero, suggesting that you can remove it to simplify the model. To do this, use the 'REParamsSelect' name-value pair to specify the indices of the parameters to be modeled with random effects in nlmefit.

\[
[\phi,\text{PSI,stats}] = \text{nlmefit}(\text{time,concentration,subject, ... []},\text{nlme_model,phi0, ... 'REParamsSelect',[1 2 3])}
\]

\[
\phi =  \\
2.8277  \\
0.7728  \\
0.4605  \\
-1.3460
\]

\[
\text{PSI} =  \\
0.3270 0 0  \\
0 0.0250 0  \\
0 0 0.0124
\]

\[
\text{stats} =  \\
\text{struct with fields:}
\]

\[
dfe: 58  \\
\logl: 54.5875  \\
mse: 0.0066
\]
The log-likelihood \( \log l \) is almost identical to what it was with random effects for all of the parameters, the Akaike information criterion \( \text{aic} \) is reduced from -91.1765 to -93.1750, and the Bayesian information criterion \( \text{bic} \) is reduced from -93.0506 to -94.8410. These measures support the decision to drop the fourth random effect.

Refitting the simplified model with a full covariance matrix allows for identification of correlations among the random effects. To do this, use the \texttt{CovPattern} parameter to specify the pattern of nonzero elements in the covariance matrix.

\[
[\phi, \Psi, \text{stats}] = \text{nlmefit}(\text{time, concentration, subject, ... []}, \text{nlme model, phi0, ... 'REParamsSelect', [1 2 3], ... 'CovPattern', ones(3))}
\]

\[
\phi =
\begin{bmatrix}
2.8149 \\
0.8293 \\
0.5613 \\
-1.1407
\end{bmatrix}
\]

\[
\Psi =
\begin{bmatrix}
0.4768 & 0.1152 & 0.0500 \\
0.1152 & 0.0321 & 0.0032 \\
0.0500 & 0.0032 & 0.0236
\end{bmatrix}
\]

\[
\text{stats} =
\begin{bmatrix}
\end{bmatrix}
\]
The estimated covariance matrix \( \Psi \) shows that the random effects on the first two parameters have a relatively strong correlation, and both have a relatively weak correlation with the last random effect. This structure in the covariance matrix is more apparent if you convert \( \Psi \) to a correlation matrix using \texttt{corrcov}.

\[
\text{RHO} = \text{corrcov}(\Psi)
\]

```
clf;
imagesc(RHO)
set(gca,'XTick',[1 2 3],'YTick',[1 2 3])
title('{{\bf Random Effect Correlation}}')
h = colorbar;
set(get(h,'YLabel'),'String','Correlation');
```

\[
\text{RHO} =
\begin{bmatrix}
1.0000 & 0.9316 & 0.4708 \\
0.9316 & 1.0000 & 0.1180 \\
0.4708 & 0.1180 & 1.0000
\end{bmatrix}
\]
Incorporate this structure into the model by changing the specification of the covariance pattern to block-diagonal.

\[
P = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\] % Covariance pattern

\[
[\phi, \Psi, \text{stats}, b] = \text{nlmefit}(\text{time}, \text{concentration}, \text{subject},... \\
[], \text{nlme_model}, \phi_0, ... \\
'\text{REParamsSelect}', [1 2 3], ... \\
'\text{CovPattern}', P)
\]

\[
P =
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & 0 & 1
\end{bmatrix}
\]

\[
\phi = 
\begin{bmatrix}
2.7830 \\
0.8981 \\
0.6581 \\
-1.0000
\end{bmatrix}
\]

\[
\Psi = 
\begin{bmatrix}
0.5180 & 0.1069 & 0 \\
0.1069 & 0.0221 & 0 \\
0 & 0 & 0.0454
\end{bmatrix}
\]

\[
\text{stats =}
\begin{bmatrix}
\text{struct with fields:}
\end{bmatrix}
\]

\[
\begin{bmatrix}
dfe: 57 \\
\logl: 58.0804 \\
mse: 0.0061 \\
rmse: 0.0768 \\
errorparam: 0.0782 \\
aic: -98.1608 \\
bic: -100.0350 \\
covb: [4x4 double] \\
sebeta: [0.3171 0.1073 0.1384 0.1453] \\
ires: [66x1 double] \\
pres: [66x1 double] \\
iwres: [66x1 double] \\
pwres: [66x1 double] \\
cwres: [66x1 double]
\end{bmatrix}
\]

\[
b = 
\begin{bmatrix}
-0.8507 & -0.1563 & 1.0427 & -0.7559 & 0.5652 & 0.1550 \\
-0.1756 & -0.0323 & 0.2152 & -0.1560 & 0.1167 & 0.0320 \\
-0.2756 & 0.0519 & 0.2620 & 0.1064 & -0.2835 & 0.1389
\end{bmatrix}
\]

13 Nonlinear Regression
The block-diagonal covariance structure reduces \( \text{aic} \) from -94.9462 to -98.1608 and \( \text{bic} \) from -97.2368 to -100.0350 without significantly affecting the log-likelihood. These measures support the covariance structure used in the final model. The output \( b \) gives predictions of the three random effects for each of the six subjects. These are combined with the estimates of the fixed effects in \( \phi \) to produce the mixed-effects model.

Plot the mixed-effects model for each of the six subjects. For comparison, the model without random effects is also shown.

```matlab
PHI = repmat(phi,1,6) + ... % Fixed effects
 [b(1,:);b(2,:);b(3,:);zeros(1,6)]; % Random effects
RES = zeros(11,6); % Residuals
colors = 'rygcbm';
for I = 1:6
 fitted_model = @(t)(PHI(1,I)*exp(-exp(PHI(2,I))*t) + ...
 PHI(3,I)*exp(-exp(PHI(4,I))*t));
 tI = time(subject == I);
 cI = concentration(subject == I);
 RES(:,I) = cI - fitted_model(tI);
 subplot(2,3,I)
 scatter(tI,cI,20,colors(I),'filled')
 hold on
 plot(tplot,fitted_model(tplot),'Color',colors(I))
 plot(tplot,model(phi,tplot),'k')
 axis([0 8 0 3.5])
 xlabel('Time (hours)')
 ylabel('Concentration (mcg/ml)')
 legend(num2str(I),'Subject','Fixed')
end
```
If obvious outliers in the data (visible in previous box plots) are ignored, a normal probability plot of the residuals shows reasonable agreement with model assumptions on the errors.

```
clf; normplot(RES(:))
```
Mixed-Effects Models Using nlmefit and nlmefitsa
# Survival Analysis

- “What Is Survival Analysis?” on page 14-2
- “Kaplan-Meier Method” on page 14-11
- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
- “Cox Proportional Hazards Model” on page 14-30
- “Cox Proportional Hazards Model for Censored Data” on page 14-37
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42
What Is Survival Analysis?

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction” on page 14-2</td>
</tr>
<tr>
<td>“Censoring” on page 14-2</td>
</tr>
<tr>
<td>“Data” on page 14-3</td>
</tr>
<tr>
<td>“Survivor Function” on page 14-4</td>
</tr>
<tr>
<td>“Hazard Function” on page 14-7</td>
</tr>
</tbody>
</table>

**Introduction**

Survival analysis is time-to-event analysis, that is, when the outcome of interest is the time until an event occurs. Examples of time-to-events are the time until infection, reoccurrence of a disease, or recovery in health sciences, duration of unemployment in economics, time until the failure of a machine part or lifetime of light bulbs in engineering, and so on. Survival analysis is a part of reliability studies in engineering. In this case, it is usually used to study the lifetime of industrial components. In reliability analyses, survival times are usually called failure times as the variable of interest is how much time a component functions properly before it fails.

Survival analysis consists of parametric, semiparametric, and nonparametric methods. You can use these to estimate the most commonly used measures in survival studies, survivor and hazard functions, compare them for different groups, and assess the relationship of predictor variables to survival time. Some statistical probability distributions describe survival times well. Commonly used distributions are exponential, Weibull, lognormal, Burr, and Birnbaum-Saunders distributions. Statistics and Machine Learning Toolbox functions `ecdf` and `ksdensity` compute the empirical and kernel density estimates of the cdf, cumulative hazard, and survivor functions. `coxphfit` fits the Cox proportional hazards model to the data.

**Censoring**

One important concept in survival analysis is censoring. The survival times of some individuals might not be fully observed due to different reasons. In life sciences, this might happen when the survival study (e.g., the clinical trial) stops before the full survival times of all individuals can be observed, or a person drops out of a study, or for long-term studies, when the patient is lost to follow up. In the industrial context, not all components
might have failed before the end of the reliability study. In such cases, the individual survives beyond the time of the study, and the exact survival time is unknown. This is called right censoring.

During a survival study either the individual is observed to fail at time $T$, or the observation on that individual ceases at time $c$. Then the observation is $\min(T,c)$ and an indicator variable $I_c$ shows if the individual is censored or not. The calculations for hazard and survivor functions must be adjusted to account for censoring. Statistics and Machine Learning Toolbox functions such as `ecdf`, `ksdensity`, `coxphfit`, `mle` account for censoring.

### Data

Survival data usually consists of the time until an event of interest occurs and the censoring information for each individual or component. The following table shows the fictitious unemployment time of individuals in a 6-month study. Two individuals are right censored (indicated by a censoring value of 1). One individual was still unemployed after the 24th week, when the study ended. Contact with the other censored individual was lost at the end of the 21st week.

<table>
<thead>
<tr>
<th>Unemployment Time (Weeks)</th>
<th>Censoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Survival data might also include the number of failures at a certain time (the number of times a particular survival or failure time was observed). The following table shows the simulated time until a light-emitting diodes drops to 70% of its full light output level, in hours, in an accelerated life test.
Data might also have information on the predictor variables, to use in semi-parametric regression-like methods such as Cox proportional hazards regression.

<table>
<thead>
<tr>
<th>Time Until Recovery (weeks)</th>
<th>Censoring</th>
<th>Gender</th>
<th>Systolic Blood Pressure</th>
<th>Diastolic Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>Male</td>
<td>124</td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>Female</td>
<td>109</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Female</td>
<td>125</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Male</td>
<td>117</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Male</td>
<td>122</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>Female</td>
<td>121</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Male</td>
<td>130</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Female</td>
<td>115</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>Male</td>
<td>118</td>
<td>86</td>
</tr>
</tbody>
</table>

**Survivor Function**

The survivor function is the probability of survival as a function of time. It is also called the survival function. It gives the probability that the survival time of an individual
exceeds a certain value. Since the cumulative distribution function, \( F(t) \), is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, \( S(t) \), is the complement of the cumulative distribution function:

\[
S(t) = 1 - F(t).
\]

For example, for data coming from a Burr distribution with parameters 50, 3, and 1, you can calculate and plot the survival function.

```matlab
x = 0:0.1:200;
figure()
plot(x,1-cdf('Burr',x,50,3,1))
xlabel('Failure time');
ylabel('Survival probability');
```
The survivor function is also related to the hazard function on page 14-7. If the data has the hazard function, $h(t)$, then the survivor function is

$$S(t) = \exp\left(-\int_0^t h(u)du\right),$$

which corresponds to

$$S(t) = \exp\left(-H(t)\right),$$

where $H(t)$ is the cumulative hazard function.
Hazard Function

The hazard function gives the instantaneous failure rate of an individual conditioned on the fact that the individual survived until a given time. That is,

\[ h(t) = \lim_{\Delta t \to 0} \frac{P(t \leq T < t + \Delta t \mid T \geq t)}{\Delta t}, \]

where \( \Delta t \) is a very small time interval. The hazard rate, therefore, is sometimes called the conditional failure rate. The hazard function always takes a positive value. However, these values do not correspond to probabilities and might be greater than 1.

The hazard function is related to the probability density function, \( f(t) \), cumulative distribution function, \( F(t) \), and survivor function, \( S(t) \), as follows:

\[ h(t) = \frac{f(t)}{S(t)} = \frac{f(t)}{1 - F(t)}, \]

which is also equivalent to

\[ h(t) = -\frac{d}{dt} \ln S(t). \]

So, if you know the shape of the survival function, you can also derive the corresponding hazard function.

For example, for data coming from a Burr distribution with parameters 50, 3, and 1, you can calculate and plot the hazard function.

```matlab
x = 0:1:200;
Burrhazard = pdf('Burr',x,50,3,1)./(1-cdf('Burr',x,50,3,1));
figure()
plot(x,Burrhazard)
xlabel('Failure time');
ylabel('Hazard rate');
```
There are different types of hazard functions. The previous figure shows a situation when the hazard rate increases for the early time periods and then gradually decreases. The hazard rate might also be monotonically decreasing, increasing, or constant over time. The following figure shows examples of different types of hazard functions for data coming from different Weibull distributions.

```matlab
ax1 = subplot(3,1,1);
x1 = 0:0.5:30;
hazard1 = pdf('wbl',x1,3,0.6)./(1-cdf('wbl',x1,3,0.6));
plot(x1,hazard1)

ax2 = subplot(3,1,2);
x2 = 0:0.05:2;
hazard2 = pdf('wbl',x2,0.9,4)./(1-cdf('wbl',x2,0.9,4));
```

14-8
What Is Survival Analysis?

plot(x2,hazard2,'color','r')

ax3 = subplot(3,1,3);
x3 = 0:0.05:5;
hazard3 = pdf('wbl',x3,2.5,1)./(1-cdf('wbl',x3,2.5,1));
plot(x3,hazard3)

set(ax1,'Ylim',[0 0.4]);
legend(ax1,'a=3, b=0.6');
legend(ax2,'a=0.9, b=4','location','northwest');
legend(ax3,'a=2.5, b=1');
In the third case, the Weibull distribution has a shape parameter value of 1, which corresponds to the exponential distribution. The exponential distribution always has a constant hazard rate over time.

**References**


**See Also**
coxphfit | ecdf | ksdensity

**Related Examples**
- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
- “Cox Proportional Hazards Model for Censored Data” on page 14-37
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

**More About**
- “Kaplan-Meier Method” on page 14-11
- “Cox Proportional Hazards Model” on page 14-30
Kaplan-Meier Method

The Statistics and Machine Learning Toolbox function `ecdf` produces the empirical cumulative hazard, survivor, and cumulative distribution functions by using the Kaplan-Meier nonparametric method. The Kaplan-Meier estimator for the survivor function is also called the *product-limit estimator*.

The Kaplan-Meier method uses survival data summarized in life tables. Life tables order data according to ascending failure times, but you don’t have to enter the failure/survival times in an ordered manner to use `ecdf`.

A life table usually consists of:
- Failure times
- Number of items failed at a time/time period
- Number of items censored at a time/time period
- Number of items at risk at the beginning of a time/time period

The number at risk is the total number of survivors at the beginning of each period. The number at risk at the beginning of the first period is all individuals in the lifetime study. At the beginning of each remaining period, the number at risk is reduced by the number of failures plus individuals censored at the end of the previous period.

This life table shows fictitious survival data. At the beginning of the first failure time, there are seven items at risk. At time 4, three fail. So at the beginning of time 7, there are four items at risk. Only one fails at time 7, so the number at risk at the beginning of time 11 is three. Two fail at time 11, so at the beginning of time 12, the number at risk is one. The remaining item fails at time 12.

<table>
<thead>
<tr>
<th>Failure Time (t)</th>
<th>Number Failed</th>
<th>Number at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

You can estimate the hazard, cumulative hazard, survival, and cumulative distribution functions using the life tables as described next.

**Cumulative Hazard Rate (Failure Rate)**
The hazard rate at each period is the number of failures in the given period divided by the number of surviving individuals at the beginning of the period (number at risk).

\[
\begin{array}{ccc}
\text{Failure Time (} t \text{)} & \text{Hazard Rate (} h(t) \text{)} & \text{Cumulative Hazard Rate} \\
0 & 0 & 0 \\
\text{ } & \frac{d_1}{r_1} & \frac{d_1}{r_1} \\
\text{ } & \frac{d_2}{r_2} & h(t_1) + \frac{d_2}{r_2} \\
\text{ } & \text{...} & \text{...} \\
\text{ } & \frac{d_n}{r_n} & h(t_{n-1}) + \frac{d_n}{r_n} \\
\end{array}
\]

**Survival Probability**

For each period, the survival probability is the product of the complement of hazard rates. The initial survival probability at the beginning of the first time period is 1. If the hazard rate for the each period is \( h(t_i) \), then the survivor probability is as shown.

\[
\begin{array}{cc}
\text{Time (} t \text{)} & \text{Survival Probability (} S(t) \text{)} \\
0 & 1 \\
\text{ } & 1 \times (1 - h(t_1)) \\
\text{ } & S(t_1) \times (1 - h(t_2)) \\
\text{ } & \text{...} \\
\text{ } & S(t_{n-1}) \times (1 - h(t_n)) \\
\end{array}
\]

**Cumulative Distribution Function**

Because the cumulative distribution function (cdf) and the survivor function are complements of each other, you can find the cdf from the life tables using \( F(t) = 1 - S(t) \).

You can compute the cumulative hazard rate, survival rate, and cumulative distribution function for the simulated data in the first table on this page as follows.

\[
\begin{array}{cccccc}
\text{t} & \text{Number Failed (} d \text{)} & \text{Number at Risk (} r \text{)} & \text{Hazard Rate} & \text{Survival Probability} & \text{Cumulative Distribution Function} \\
4 & 3 & 7 & \frac{3}{7} & 1 - \frac{3}{7} = \frac{4}{7} = 0.5714 & 0.4286 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>t</th>
<th>Number Failed (d)</th>
<th>Number at Risk (r)</th>
<th>Hazard Rate</th>
<th>Survival Probability</th>
<th>Cumulative Distribution Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1/4</td>
<td>4/7*(1 – 1/4) = 3/7 = .4286</td>
<td>0.5714</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>3/7*(1 – 2/3) = 1/7 = 0.1429</td>
<td>0.8571</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>1/7*(1 – 1) = 0</td>
<td>1</td>
</tr>
</tbody>
</table>

This rates in this example are based on the discrete failure times, and hence the calculations do not necessarily follow the derivative-based definition in “What Is Survival Analysis?” on page 14-2.

Here is how you can enter the data and calculate these measures using `ecdf`. The data does not necessarily have to be in ascending order. Suppose the failure times are stored in an array `y`.

```matlab
y = [4 7 11 12];
freq = [3 1 2 1];
[f,x] = ecdf(y,'frequency',freq)
```

```matlab
f =
0
0.4286
0.5714
0.8571
1.0000
```

```matlab
x =
4
4
7
11
12
```

When you have censored data, the life table might look like the following:
At any given time, the censored items are also considered in the total of number at risk, and the hazard rate formula is based on the number failed and the total number at risk. While updating the number at risk at the beginning of each period, the total number failed and censored in the previous period is reduced from the number at risk at the beginning of that period.

While using `ecdf`, you must also enter the censoring information using an array of binary variables. Enter 1 for censored data, and enter 0 for exact failure time.

```
y = [4 4 4 7 11 11 12];
cens = [0 1 0 0 1 0 0];
[f,x] = ecdf(y,'censoring',cens)
```

```
f =
 0
 0.2857
 0.4643
 0.6429
 1.0000

x =
 4
 4
```
ecdf, by default, produces the cumulative distribution function values. You have to specify the survivor function or the hazard function using optional name-value pair arguments. You can also plot the results as follows.

```matlab
figure()
ecdf(y,'censoring',cens,'function','survivor');
```

```
figure()
ecdf(y,'censoring',cens,'function','cumulative hazard');
```
References


See Also
coxphfit | ecdf | ksdensity
Related Examples

- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
- “Cox Proportional Hazards Model for Censored Data” on page 14-37
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

More About

- “What Is Survival Analysis?” on page 14-2
- “Cox Proportional Hazards Model” on page 14-30
Hazard and Survivor Functions for Different Groups

This example shows how to estimate and plot the cumulative hazard and survivor functions for different groups.

**Step 1. Load and organize sample data.**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','readmissiontimes.mat'))
```

The data has readmission times of patients with information on their gender, age, weight, smoking status, and censorship. This is simulated data.

Create a matrix of readmission times and censoring for each gender.

```matlab
female = [ReadmissionTime(Sex==1),Censored(Sex==1)];
male = [ReadmissionTime(Sex==0),Censored(Sex==0)];
```

**Step 2. Estimate and plot cumulative distribution function for each gender.**

Plot the Kaplan-Meier estimate of the cumulative distribution function for female and male patients.

```matlab
figure()
ecdf(gca,female(:,1),'Censoring',female(:,2));
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2));
stairs(x,f,'--r')
hold off
legend('female','male','Location','SouthEast')
```
Step 3. Plot survivor functions.

Compare the survivor functions for female and male patients.

```matlab
figure()
ax1 = gca;
ecdf(ax1,female(:,1),'Censoring',female(:,2),'function','survivor');
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2),'function','survivor');
stairs(x,f,'--r')
legend('female','male')
```
This figure shows that readmission times are shorter for male patients than female patients.

**Step 4. Fit Weibull survivor functions.**

Fit Weibull distributions to readmission times of female and male patients.

```matlab
pd = fitdist(female(:,1), 'wbl', 'Censoring', female(:,2))
```

```matlab
pd =
 WeibullDistribution
Weibull distribution
A = 12.5593 [10.749, 14.6745]
B = 1.99834 [1.56489, 2.55185]

pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 =
WeibullDistribution

Weibull distribution
A = 4.63991 [3.91039, 5.50551]
B = 1.94422 [1.48496, 2.54552]

pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 =
WeibullDistribution

Weibull distribution
A = 4.63991 [3.91039, 5.50551]
B = 1.94422 [1.48496, 2.54552]

Plot the Weibull survivor functions for female and male patients on estimated survivor functions.

plot(0:1:25,1-cdf('wbl',0:1:25,12.5593,1.99834),'-.')
plot(0:1:25,1-cdf('wbl',0:1:25,4.63991,1.94422),':r')
hold off
legend('Festimated','Mestimated','FWeibull','MWeibull')
Weibull distribution provides a good fit for the data.

Step 5. Estimate cumulative hazard and fit Weibull cumulative hazard functions.

Estimate the cumulative hazard function for the genders and fit Weibull cumulative hazard functions.

```matlab
figure()
[f,x] = ecdf(female(:,1),'Censoring',female(:,2),...
    'function','cumhazard');
plot(x,f)
hold on
plot(x,cumsum(pdf(pd,x)./(1-cdf(pd,x))),'-.')
[f,x] = ecdf(male(:,1),'Censoring',male(:,2),...
'function', 'cumhazard');
plot(x, f, '--r')
plot(x, cumsum(pdf(pd2, x)./(1 - cdf(pd2, x))), ':r')
legend('Festimated', 'FWeibull', 'Mestimated', 'MWeibull', ...
'Location', 'North')

See Also

coxphfit | ecdf | ksdensity
Related Examples

- “Survivor Functions for Two Groups” on page 14-25
- “Cox Proportional Hazards Model for Censored Data” on page 14-37
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

More About

- “What Is Survival Analysis?” on page 14-2
- “Kaplan-Meier Method” on page 14-11
- “Cox Proportional Hazards Model” on page 14-30
Survivor Functions for Two Groups

This example shows how to find the empirical survivor functions and the parametric survivor functions using the Burr type XII distribution fit to data for two groups.

Step 1. Load and prepare sample data.

Load the sample data.

load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))

The first column of the data has the lifetime (in hours) of two types of light bulbs. The second column has information about the type of light bulb. 0 indicates fluorescent bulbs whereas 1 indicates the incandescent bulb. The third column has censoring information. 1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Create a variable for each light bulb type and also include the censorship information.

fluo = [lightbulb(lightbulb(:,2)==0,1),...
       lightbulb(lightbulb(:,2)==0,3)];
insc = [lightbulb(lightbulb(:,2)==1,1),...
       lightbulb(lightbulb(:,2)==1,3)];

Step 2. Plot estimated survivor functions.

Plot the estimated survivor functions for the two different types of light bulbs.

figure()
[f,x,flow,fup] = ecdf(fluo(:,1),'censoring',fluo(:,2),...
  'function','survivor');
ax1 = stairs(x,f);
hold on
stairs(x,flow,':')
stairs(x,fup,':')
[f,x,flow,fup] = ecdf(insc(:,1),'censoring',insc(:,2),...
  'function','survivor');
ax2 = stairs(x,f,'color','r');
stairs(x,flow,'r')
stairs(x,fup,'r')
legend([ax1,ax2],{'Fluorescent','Incandescent'})
xlabel('Lifetime (hours)')
ylabel('Survival probability')
You can see that the survival probability of incandescent light bulbs is much smaller than that of fluorescent light bulbs.

**Step 3. Fit Burr Type XII distribution.**

Fit Burr distribution to the lifetime data of fluorescent and incandescent type bulbs.

```matlab
pd = fitdist(fluo(:,1), 'burr', 'Censoring', fluo(:,2))
```

```
Burr distribution
alpha = 29143.5 [0.903899, 9.39642e+08]
```
pd2 = fitdist(insc(:,1),'burr','Censoring',insc(:,2))

Superimpose Burr type XII survivor functions.

ax3 = plot(0:500:15000,1-cdf('burr',0:500:15000,29143.5,...
  3.44582,33.704),'m');
ax4 = plot(0:500:5000,1-cdf('burr',0:500:5000,2650.76,...
  3.41898,4.5891),'g');
legend([ax1;ax2;ax3;ax4],'Festimate','Iestimate','FBurr','IBurr')
Burr distribution provides a good fit for the lifetime of light bulbs in this example.

**Step 4. Fit a Cox proportional hazards model.**

Fit a Cox proportional hazards regression where the type of the bulb is the explanatory variable.

```matlab
[b,logl,H,stats] = coxphfit(lightbulb(:,2),lightbulb(:,1),...
 'Censoring',lightbulb(:,3));
stats
```

```
stats = struct with fields:
 covb: 1.0757
 beta: 4.7262
```
The $P$-value, $p$, indicates that the type of light bulb is statistically significant. The estimate of the hazard ratio is $\exp(b) = 112.8646$. This means that the hazard for the incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

**See Also**
coxphfit | ecdf | ksdensity

**Related Examples**
- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Cox Proportional Hazards Model for Censored Data” on page 14-37
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

**More About**
- “What Is Survival Analysis?” on page 14-2
- “Kaplan-Meier Method” on page 14-11
- “Cox Proportional Hazards Model” on page 14-30
Cox Proportional Hazards Model

Introduction

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates to quantify the effect of predictor variables. The method represents the effects of explanatory variables as a multiplier of a common baseline hazard function, \( h_0(t) \). The hazard function is the nonparametric part of the Cox proportional hazards regression function, whereas the impact of the predictor variables is a loglinear regression. For a baseline relative to 0, this model corresponds to

\[
    h(X_i, t) = h_0(t) \exp \left( \sum_{j=1}^{p} x_{ij} b_j \right),
\]

where \( X_i = (x_{i1}, x_{i2}, \ldots, x_{ip}) \) is the predictor variable for the \( i \)th subject, \( h(X_i, t) \) is the hazard rate at time \( t \) for \( X_i \), and \( h_0(t) \) is the baseline hazard rate function.

Hazard Ratio

The Cox proportional hazards model relates the hazard rate for individuals or items at the value \( X_i \) to the hazard rate for individuals or items at the baseline value. It produces an estimate for the hazard ratio:

\[
    HR(X_i) = \frac{h(X_i, t)}{h_0(t)} = \exp \left( \sum_{j=1}^{p} x_{ij} b_j \right).
\]
The model is based on the assumption that the baseline hazard function depends on time, \( t \), but the predictor variables do not. This assumption is also called the proportional hazards assumption, which states that the hazard ratio does not change over time for any individual.

The hazard ratio represents the relative risk of instant failure for individuals or items having the predictive variable value \( X_i \) compared to the ones having the baseline values. For example, if the predictive variable is smoking status, where nonsmoking is the baseline category, the hazard ratio shows the relative instant failure rate of smokers compared to the baseline category, that is, nonsmokers. For a baseline relative to \( X^* \) and the predictor variable value \( X_i \), the hazard ratio is

\[
HR(X_i) = \frac{h(X_i,t)}{h(X^*,t)} = \exp \left( \sum_{j=1}^{p} (x_{ij} - x_j^*)b_j \right).
\]

For example, if the baseline is the mean values of the predictor variables (\( \text{mean}(X) \)), then the hazard ratio becomes

\[
HR(X_i) = \frac{h(X_i,t)}{h(\bar{X},t)} = \exp \left( \sum_{j=1}^{p} (x_{ij} - \bar{x}_j)b_j \right).
\]

Hazard rates are related to survival rates, such that the survival rate at time \( t \) for an individual with the explanatory variable value \( X_i \) is

\[
S_{X_i}(t) = S_0(t)^{HR(X_i)},
\]

where \( S_0(t) \) is the survivor function with the baseline hazard rate function \( h_0(t) \), and \( HR(X_i) \) is the hazard ratio of the predictor variable value \( X_i \) relative to the baseline value.

**Extension of Cox Proportional Hazards Model**

When you have variables that do not satisfy the proportional hazards (PH) assumption, you can consider using two extensions of Cox proportional hazards model: the stratified Cox model and the Cox model with time-dependent variables.

If the variables that do not satisfy the PH assumption are categorizable, use the stratified Cox model:
where the subscript $s$ indicates the $s$th stratum. The stratified Cox model has a different baseline hazard rate function for each stratum but shares coefficients. Therefore, it has the same hazard ratio across all strata if the predictor variable values are the same. You can include stratification variables in `coxphfit` by using the name-value pair `'Strata'`.

If the variables that do not satisfy the PH assumption are time-dependent variables, use the Cox model with time-dependent variables:

$$h(X_i,t) = h_0(t) \exp \left( \sum_{j=1}^{p_1} x_{ij} b_j + \sum_{k=1}^{p_2} x_{ik}(t) c_k \right),$$

where $x_{ij}$ is an element of a time-independent predictor and $x_{ik}(t)$ is an element of a time-dependent predictor. For an example of how to include time-dependent variables in `coxphfit`, see “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42.

**Partial Likelihood Function**

A point estimate of the effect of each explanatory variable, that is, the estimated hazard ratio for the effect of each explanatory variable is $\exp(b)$, given all other variables are held constant, where $b$ is the coefficient estimate for that variable. The coefficient estimates are found by maximizing the partial likelihood function of the model. The partial likelihood function for the proportional hazards regression model is based on the observed order of events. It is the product of partial likelihoods of failures estimated for each failure time. If there are $n$ failures at $n$ distinct failure times, $t_1 < t_2 < \cdots < t_n$, then the partial likelihood is

$$L = \frac{HR(X_1)}{\sum_{j=1}^{n} HR(X_j)} \times \frac{HR(X_2)}{\sum_{j=2}^{n} HR(X_j)} \times \cdots \times \frac{HR(X_n)}{HR(X_n)} = \prod_{i=1}^{n} \frac{HR(X_i)}{\sum_{j=t_i}^{n} HR(X_j)}.$$

You can rewrite the partial likelihood by using a risk set $R_i$: 

14-32
\[ L = \prod_{i=1}^{n} \frac{HR(X_i)}{\sum_{j \in R_i} HR(X_j)} , \]

where \( R_i \) represents the index set of subjects who are under study but do not experience the event until the \( i \)th failure time.

You can use a likelihood ratio test to assess the significance of adding a term or terms in a model. Consider the two models where the first model has \( p \) predictive variables and the second model has \( p + r \) predictive variables. Then, comparing the two models, \(-2(L_1/L_2)\) has a chi-square distribution with \( r \) degrees of freedom (the number of terms being tested).

**Partial Likelihood Function for Tied Events**

When you have tied events, \texttt{coxphfit} approximates the partial likelihood of the model by either Breslow’s method (default) or Efron’s method, instead of computing the exact partial likelihood. Computing the exact partial likelihood requires a large amount of computation, which involves an entire permutation of the risk sets for the tied event times.

The simplest approximation method is Breslow’s method. This method uses the same denominator for each tied set.

\[ L = \prod_{i=1}^{d} \prod_{j \in D_i} \frac{HR(X_j)}{\sum_{k \in R_i} HR(X_k)} , \]

where \( d \) is the number of distinct event times, and \( D_i \) is the index set of all subjects whose event time is equal to the \( i \)th event time.

Efron’s method is more accurate than Breslow’s method, yet simple. This method adjusts the denominator of the tied events as follows:

\[ L = \prod_{i=1}^{d} \prod_{j \in D_i} \frac{HR(X_j)}{\sum_{k \in R_i} HR(X_k) - \frac{j-1}{d_i} \sum_{k \in D_i} HR(X_k)} , \]
where \( d_i \) is the number of indexes in \( D_i \).

For an example, assume that the first two events are tied, that is, \( t_1 = t_2 \) and \( t_2 < t_3 < \cdots < t_n \). In Breslow’s method, the denominators of the first two terms are the same:

\[
L = \frac{HR(X_1)}{\sum_{j=1}^{n} HR(X_j)} \times \frac{HR(X_2)}{\sum_{j=1}^{n} HR(X_j)} \times \frac{HR(X_3)}{\sum_{j=3}^{n} HR(X_j)} \times \frac{HR(X_4)}{\sum_{j=4}^{n} HR(X_j)} \times \cdots \times \frac{HR(X_n)}{HR(X_n)}.
\]

Efron’s method adjusts the denominator of the second term:

\[
L = \frac{HR(X_1)}{\sum_{j=1}^{n} HR(X_j)} \times \frac{HR(X_2)}{0.5HR(X_1) + 0.5HR(X_2) + \sum_{j=3}^{n} HR(X_j)} \times \frac{HR(X_3)}{\sum_{j=3}^{n} HR(X_j)} \times \frac{HR(X_4)}{\sum_{j=4}^{n} HR(X_j)} \times \cdots \times \frac{HR(X_n)}{HR(X_n)}.
\]

You can specify an approximation method by using the name-value pair 'Ties' in \texttt{coxphfit}.

**Frequency or Weights of Observations**

The Cox proportional hazards model can incorporate with the frequency or weights of observations. Let \( w_i \) be the weight of the \( i \)th observation. Then, the partial likelihoods of the Cox model with weights become as follows:

- Partial likelihood with weights

\[
L = \prod_{i=1}^{n} \frac{HR_w(X_i)}{\sum_{j \in R_i} w_j HR(X_j)},
\]

where

\[
HR_w(X_i) = \exp \left[ \sum_{j=1}^{p} w_j x_{ij} b_j \right].
\]

- Partial likelihood with weights and Breslow’s method
\[ L = \prod_{i=1}^{d} \prod_{j \in D_i} \frac{HR_w(X_j)}{\sum_{k \in R_i} w_k HR(X_k) - \frac{j-1}{d_i} \sum_{k \in D_i} w_k HR(X_k)} \]

- Partial likelihood with weights and Efron’s method

You can specify the frequency or weights of observations by using the name-value pair 'Frequency' in `coxphfit`.

**References**


**See Also**

`coxphfit` | `ecdf` | `ksdensity`

**Related Examples**

- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
• “Cox Proportional Hazards Model for Censored Data” on page 14-37
• “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

More About
• “What Is Survival Analysis?” on page 14-2
• “Kaplan-Meier Method” on page 14-11
Cox Proportional Hazards Model for Censored Data

This example shows how to construct a Cox proportional hazards model, and assess the significance of the predictor variables.

**Step 1. Load sample data.**

Load the sample data.

```matlab
load readmissiontimes
```

The response variable is `ReadmissionTime`, which shows the readmission times for 100 patients. The predictor variables are `Age`, `Sex`, `Weight`, and the smoking status of each patient, `Smoker`. 1 indicates the patient is a smoker, and 0 indicates that the patient does not smoke. The column vector `Censored` has the censorship information for each patient, where 1 indicates censored data, and 0 indicates the exact readmission times are observed. This is simulated data.

**Step 2. Fit Cox proportional hazards function.**

Fit a Cox proportional hazard function with the variable `Sex` as the predictor variable, taking the censoring into account.

```matlab
X = Sex;
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,'censoring',Censored);
```

Assess the statistical significance of the term `Sex`.

```matlab
stats
```

```matlab
stats = struct with fields:
 covb: 0.1016
 beta: -1.7642
 se: 0.3188
 z: -5.5335
 p: 3.1392e-08
 csres: [100x1 double]
 devres: [100x1 double]
 martres: [100x1 double]
 schres: [100x1 double]
 sschres: [100x1 double]
 scores: [100x1 double]
 sscores: [100x1 double]
```
The \( p \)-value, \( p \), indicates that the term Sex is statistically significant.

Save the loglikelihood value with a different name. You will use this to assess the significance of the extended models.

\[
\text{loglSex} = \text{logl}
\]
\[
\text{loglSex} = -262.1365
\]

**Step 3. Add Age and Weight to the model.**

Fit a Cox proportional hazards model with the variables Sex, Age, and Weight.

\[
X = [\text{Sex \ Age \ Weight}];
\]
\[
[b,\text{logl},H,\text{stats}] = \text{coxphfit}(X,\text{ReadmissionTime},'\text{censoring}',\text{Censored});
\]

Assess the significance of the terms.

\[
\text{stats.beta}
\]
\[
\text{ans} = 3\times1
\]
\[
\begin{array}{c}
-0.5441 \\
0.0143 \\
0.0250 \\
\end{array}
\]

\[
\text{stats.p}
\]
\[
\text{ans} = 3\times1
\]
\[
\begin{array}{c}
0.4953 \\
0.3842 \\
0.0960 \\
\end{array}
\]

None of the terms, adjusted for others, is statistically significant.

Assess the significance of the terms using the log likelihood ratio. You can assess the significance of the new model using the likelihood ratio statistic. First find the difference between the log-likelihood statistic of the model without the terms Age and Weight and the log-likelihood of the model with Sex, Age, and Weight.

\[
-2[\text{loglSex} - \text{logl}]
\]
Now, compute the $P$-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-square distribution with a degrees of freedom equal to the number of predictor variables being assessed. In this case, the degrees of freedom is 2.

$$p = 1 - \text{cdf('chi2',3.6705,2)}$$

$p = 0.1596$

The $P$-value of 0.1596 indicates that the terms Age and Weight are not statistically significant, given the term Sex in the model.

**Step 4. Add Smoker to the model.**

Fit a Cox proportional hazards model with the variables Sex and Smoker.

```
X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored);
```

Assess the significance of the terms in the model.

```
stats.p
```

```
ans = 2×1
 0.0000
 0.0148
```

Compare this model to the first model where Sex is the only term.

```
-2*[loglSex - logl]
```

```
ans = 5.5789
```

Compute the $P$-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-square distribution with a degree of freedom of 1.

```
p = 1 - \text{cdf('chi2',5.5789,1)}
```

```
p = 0.0182
```
The $p$-value of 0.0182 indicates that Sex and Smoker are statistically significant given the other is in the model. The model with Sex and Smoker is a better fit compared to the model with only Sex.

Request the coefficient estimates.

```matlab
stats.beta
```

```
ans = 2×1
 -1.7165
 0.6338
```

The default baseline is the mean of $X$, so the final model for the hazard ratio is

$$HR = \frac{h_X(t)}{h_X(t)} = \exp [\beta_s (X_s - \bar{X}_s) + \beta_a (X_a - \bar{X}_a)].$$

Fit a Cox ph model with a baseline of 0.

```matlab
X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
 'censoring',Censored,'baseline','0');
```

The model for the hazard ratio is

$$HR = \frac{h_X(t)}{h_0(t)} = \exp [\beta_s X_s + \beta_a X_a].$$

Request the coefficient estimates.

```matlab
stats.beta
```

```
ans = 2×1
 -1.7165
 0.6338
```
The coefficients are not affected, but the hazard rate differs from when the baseline is the mean of $X$.

**See Also**
coxphfit | ecdf | ksdensity

**Related Examples**
- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
- “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42

**More About**
- “What Is Survival Analysis?” on page 14-2
- “Kaplan-Meier Method” on page 14-11
- “Cox Proportional Hazards Model” on page 14-30
Cox Proportional Hazards Model with Time-Dependent Covariates

This example shows how to convert survival data to counting process form and then construct a Cox proportional hazards model with time-dependent covariates.

**Step 1. Compare standard layout and counting process form.**

A Cox model with time-dependent covariates requires survival data to be in counting process form and not in standard layout. To see the difference between survival data in standard layout and in counting process form, load the following sample data.

```matlab
load simplesurvivaldata
```

This sample data contains two tables: `relapseS` and `relapseCP`. These two tables represent the same simple survival data in standard layout and in counting process form, respectively.

Display the data in standard layout.

```matlab
relapseS
```

This data represents two patients whose treatment status changes over time. Patient 1 was not taking treatment for the interval from week 0 to 5 and relapsed at the end of the interval. Patient 2 was taking treatment for the interval from week 0 to 12, but not for the interval from week 12 to 20. Patient 2 did not relapse and left the study after week 20.

Now display the same data in counting process form.

```matlab
relapseCP
```
In counting process form, each row represents the risk interval \((t_{\text{Start}}, t_{\text{Stop}}]\) instead of a single value of an event time. Censoring is 0 if the event is observed at the end of the risk interval, and 1 if it is not. TreatmentStatus corresponds to a time-dependent covariate, which represents the same information with StopTreatment in standard layout. Note that a Cox model assumes time-dependent covariates to be constant in each risk interval.

**Step 2. Load sample data.**

Next, load sample data to convert.

```matlab
load survivaldatacp
```

This sample data contains a table `labS`, which is simulated survival data including repeated measurement for each patient in standard layout.

Display the simulated survival data in standard layout.

```matlab
labS
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Time</th>
<th>Censoring</th>
<th>Sex</th>
<th>Lab_0</th>
<th>Lab_50</th>
<th>Lab_100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td>0.3</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.23</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
<td>0</td>
<td>1</td>
<td>0.18</td>
<td>0.22</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0.21</td>
<td>0.2</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.21</td>
<td>0.42</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0.21</td>
<td>0.22</td>
<td>NaN</td>
</tr>
</tbody>
</table>

In standard layout, each row of the table shows information for one patient.

- **ID** indicates the ID of a patient. You do not include ID as an input of a Cox model. Include ID in a data set to confirm that the data set is correctly converted to counting process form.
- **Time** represents time to event in days, which corresponds to a response variable.
• **Censoring** has the censorship information for each patient, where 1 indicates censored data and 0 indicates that the exact time to event is observed at the end of the observation period.

• **Sex** is a time-independent predictor where 1 indicates female, and 0 indicates male.

• **Lab_0, Lab_50, and Lab_100** represent three consecutive laboratory results measured at day 0, 50, and 100, which correspond to a time-dependent predictor.

### Step 3. Convert survival data to counting process form.

To convert the survival data `labS` to counting process form, execute the code below. This code converts `Time` to a risk interval \((t_{Start}, t_{Stop}]\) and combines three vectors of the time-dependent predictor, `Lab_0, Lab_50, and Lab_100`, into one vector, `Lab`.

```matlab
mTime = [0 50 100]; % Measurement time
threeLabs = [labS.Lab_0 labS.Lab_50 labS.Lab_100];
nLabMeasure = sum(sum(~isnan(threeLabs))); % Number of lab measurements
data = zeros(nLabMeasure,6); % One row for each observation
oID = 0; % Observation ID
for i = 1 : size(labS,1)
 idx = find(mTime <= labS.Time(i));
 for j = 1 : length(idx)-1
 oID = oID + 1;
 data(oID,:) = [labS.ID(i) mTime(j:j+1) 1 labS.Sex(i) threeLabs(i,j)];
 end
 oID = oID + 1;
 data(oID,:) = [labS.ID(i) mTime(length(idx)) labS.Time(i) ...
 labS.Censoring(i) labS.Sex(i) threeLabs(i,length(idx))];
end
labCP = table(data(:,1),data(:,2),data(:,3),data(:,4),data(:,5),data(:,6), ...
 'VariableNames', {'ID','tStart','tStop','Censoring','Sex','Lab'});
```

Display the survival data in counting process form.

```matlab
labCP
```

```
labCP=13×6 table
 ID tStart tStop Censoring Sex Lab
 __ _____ _____ __________ ____ __
 1 0 46 0 1 0.3
 2 0 50 1 0 0.2
 2 50 100 1 0 0.23
 2 100 138 1 0 0.39
 3 0 50 1 1 0.18
```
In counting process form, each row of table `labCP` shows information of one observation corresponding to one risk interval. Note that a Cox model assumes `Lab` to be constant in the risk interval \((t_{\text{Start}}, t_{\text{Stop}}]\). The value in `Censoring` is 0 if an event is observed at the end of the risk interval, and 1 if an event is not observed.

For example, patient 3 has two laboratory measurements at day 0 and 50, so there are two rows of data for patient 3 in counting process form. A Cox model assumes the lab results 0.18 and 0.22 to be constant in the interval \((0, 50]\) and \((50, 94]\), respectively. `Censoring` is 1 in \((0, 50]\) and 0 in \((50, 94]\) because the exact event time of patient 3 is observed at day 94.

**Step 4. Adjust zero-length risk interval.**

Find a patient who has a zero-length risk interval.

```matlab
idxInvalid = labCP.ID(find(labCP.tStart == labCP.tStop))
```

`idxInvalid = 4`

Review the data for patient 4.

```matlab
labCP(find(labCP.ID==idxInvalid),:)
```

```
s=2×6 table
 ID tStart tStop Censoring Sex Lab
 __ __ __ __________ ___ __
1 3 50 94 0 1 0.22
2 4 0 50 1 0 0.21
3 4 50 50 0 0 0.2
4 5 0 50 1 0 0.25
5 5 50 100 1 0 0.21
6 5 100 106 0 0 0.42
7 6 0 50 1 0 0.21
8 6 50 98 0 0 0.22
```

The time to event of patient 4 coincides with the measurement day 50. However, \((50, 50]\) is an invalid risk interval for a Cox model because the model does not accept a zero length interval. Adjust the risk interval to be valid. You can choose any value less than the
time unit as an adjustment amount. The choice of an adjustment amount is arbitrary, and it does not change the result.

```matlab
idxAdjust = find(labCP.ID==idxInvalid);
labCP.tStop(idxAdjust(1)) = labCP.tStop(idxAdjust(1))-0.5;
labCP.tStart(idxAdjust(2)) = labCP.tStart(idxAdjust(2))-0.5;
labCP(idxAdjust,:) =
```

<table>
<thead>
<tr>
<th>ID</th>
<th>tStart</th>
<th>tStop</th>
<th>Censoring</th>
<th>Sex</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>49.5</td>
<td>1</td>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>49.5</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Step 5. Construct a Cox proportional hazards model.

Fit a Cox proportional hazards model with the time-independent variable `Sex` and time-dependent variable `Lab`.

```matlab
X = [labCP.Sex labCP.Lab];
T = [labCP.tStart labCP.tStop];
b = coxphfit(X,T,'Censoring',labCP.Censoring,'Baseline',0)
```

```
b = 2×1
 2.0054
 29.7530
```

For details on how to assess a Cox proportional hazards model, see “Cox Proportional Hazards Model for Censored Data” on page 14-37.

See Also
coxphfit

Related Examples
- “Hazard and Survivor Functions for Different Groups” on page 14-18
- “Survivor Functions for Two Groups” on page 14-25
• “Cox Proportional Hazards Model for Censored Data” on page 14-37

**More About**

• “What Is Survival Analysis?” on page 14-2
• “Kaplan-Meier Method” on page 14-11
• “Cox Proportional Hazards Model” on page 14-30
Multivariate Methods

- “Multivariate Linear Regression” on page 15-3
- “Estimation of Multivariate Regression Models” on page 15-7
- “Set Up Multivariate Regression Problems” on page 15-16
- “Multivariate General Linear Model” on page 15-30
- “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
- “Longitudinal Analysis” on page 15-44
- “Multidimensional Scaling” on page 15-51
- “Nonclassical and Nonmetric Multidimensional Scaling” on page 15-52
- “Classical Multidimensional Scaling” on page 15-58
- “Procrustes Analysis” on page 15-61
- “Compare Handwritten Shapes Using Procrustes Analysis” on page 15-63
- “Feature Selection” on page 15-70
- “Nonnegative Matrix Factorization” on page 15-75
- “Perform Nonnegative Matrix Factorization” on page 15-76
- “Principal Component Analysis (PCA)” on page 15-79
- “Analyze Quality of Life in U.S. Cities Using PCA” on page 15-81
- “Factor Analysis” on page 15-93
- “Analyze Stock Prices Using Factor Analysis” on page 15-94
- “Robust Feature Selection Using NCA for Regression” on page 15-102
- “Neighborhood Component Analysis (NCA) Feature Selection” on page 15-121
- “t-SNE” on page 15-128
- “t-SNE Output Function” on page 15-136
- “Visualize High-Dimensional Data Using t-SNE” on page 15-140
- “tsne Settings” on page 15-145
- “Feature Extraction” on page 15-159
- “Feature Extraction Workflow” on page 15-165
• “Extract Mixed Signals” on page 15-201
Multivariate Linear Regression

In this section...

“Introduction to Multivariate Methods” on page 15-3
“Multivariate Linear Regression Model” on page 15-4
“Solving Multivariate Regression Problems” on page 15-4

Introduction to Multivariate Methods

Large, high-dimensional data sets are common in the modern era of computer-based instrumentation and electronic data storage. High-dimensional data present many challenges for statistical visualization, analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a result, pattern recognition, data preprocessing, and model selection must rely heavily on numerical methods.

A fundamental challenge in high-dimensional data analysis is the so-called curse of dimensionality. Observations in a high-dimensional space are necessarily sparser and less representative than those in a low-dimensional space. In higher dimensions, data over-represent the edges of a sampling distribution, because regions of higher-dimensional space contain the majority of their volume near the surface. (A $d$-dimensional spherical shell has a volume, relative to the total volume of the sphere, that approaches 1 as $d$ approaches infinity.) In high dimensions, typical data points at the interior of a distribution are sampled less frequently.

Often, many of the dimensions in a data set—the measured features—are not useful in producing a model. Features may be irrelevant or redundant. Regression and classification algorithms may require large amounts of storage and computation time to process raw data, and even if the algorithms are successful the resulting models may contain an incomprehensible number of terms.

Because of these challenges, multivariate statistical methods often begin with some type of dimension reduction, in which data are approximated by points in a lower-dimensional space. Dimension reduction is the goal of the methods presented in this chapter. Dimension reduction often leads to simpler models and fewer measured variables, with consequent benefits when measurements are expensive and visualization is important.
Multivariate Linear Regression Model

The multivariate linear regression model expresses a $d$-dimensional continuous response vector as a linear combination of predictor terms plus a vector of error terms with a multivariate normal distribution. Let $y_i = (y_{i1}, \ldots, y_{id})'$ denote the response vector for observation $i$, $i = 1, \ldots, n$. In the most general case, given the $d$-by-$K$ design matrix $X_i$ and the $K$-by-1 vector of coefficients $\beta$, the multivariate linear regression model is

$$ y_i = X_i \beta + \varepsilon_i, $$

where the $d$-dimensional vector of error terms follows a multivariate normal distribution,

$$ \varepsilon_i \sim MVN_d(0, \Sigma). $$

The model assumes independence between observations, meaning the error variance-covariance matrix for the $n$ stacked $d$-dimensional response vectors is

$$ I_n \otimes \Sigma = \begin{pmatrix}
\Sigma & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \Sigma
\end{pmatrix}. $$

If $Y$ denotes the $nd$-by-1 vector of stacked $d$-dimensional responses, and $X$ denotes the $nd$-by-$K$ matrix of stacked design matrices, then the distribution of the response vector is

$$ y \sim MVN_{nd}(X\beta, I_n \otimes \Sigma). $$

Solving Multivariate Regression Problems

To fit multivariate linear regression models of the form

$$ y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim MVN_d(0, \Sigma) $$

in Statistics and Machine Learning Toolbox, use \texttt{mvregress}. This function fits multivariate regression models with a diagonal (heteroscedastic) or unstructured
(heteroscedastic and correlated) error variance-covariance matrix, \( \Sigma \), using least squares or maximum likelihood estimation.

Many variations of multivariate regression might not initially appear to be of the form supported by `mvregress`, such as:

- Multivariate general linear model
- Multivariate analysis of variance (MANOVA)
- Longitudinal analysis
- Panel data analysis
- Seemingly unrelated regression (SUR)
- Vector autoregressive (VAR) model

In many cases, you can frame these problems in the form used by `mvregress` (but `mvregress` does not support parameterized error variance-covariance matrices). For the special case of one-way MANOVA, you can alternatively use `manova1`. Econometrics Toolbox™ has functions for VAR estimation.

**Note** The multivariate linear regression model is distinct from the multiple linear regression model, which models a *univariate* continuous response as a linear combination of exogenous terms plus an independent and identically distributed error term. To fit a multiple linear regression model, use `LinearModel.fit`.

**See Also**

- `LinearModel.fit`
- `manova1`
- `mvregress`
- `mvregresslike`

**Related Examples**

- “Set Up Multivariate Regression Problems” on page 15-16
- “Multivariate General Linear Model” on page 15-30
- “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
- “Longitudinal Analysis” on page 15-44
More About

- “Estimation of Multivariate Regression Models” on page 15-7
Estimation of Multivariate Regression Models

In this section...

“Least Squares Estimation” on page 15-7
“Maximum Likelihood Estimation” on page 15-11
“Missing Response Data” on page 15-13

Least Squares Estimation

• “Ordinary Least Squares” on page 15-7
• “Covariance-Weighted Least Squares” on page 15-8
• “Error Covariance Estimation” on page 15-9
• “Feasible Generalized Least Squares” on page 15-10
• “Panel Corrected Standard Errors” on page 15-11

Ordinary Least Squares

When you fit multivariate linear regression models using `mvregress`, you can use the optional name-value pair `'algorithm','cwls'` to choose least squares estimation. In this case, by default, `mvregress` returns ordinary least squares (OLS) estimates using $\Sigma = I_d$. Alternatively, if you specify a covariance matrix for weighting, you can return covariance-weighted least squares (CWLS) estimates. If you combine OLS and CWLS, you can get feasible generalized least squares (FGLS) estimates.

The OLS estimate for the coefficient vector is the vector $b$ that minimizes

$$\sum_{i=1}^{n} (y_i - X_i b)' (y_i - X_i b).$$

Let $Y$ denote the $nd$-by-1 vector of stacked $d$-dimensional responses, and $X$ denote the $nd$-by-$K$ matrix of stacked design matrices. The $K$-by-1 vector of OLS regression coefficient estimates is

$$b_{OLS} = (X'X)^{-1} X' y.$$
This is the first mvregress output.

Given $\Sigma = \mathbf{I}_d$ (the mvregress OLS default), the variance-covariance matrix of the OLS estimates is

$$V(\mathbf{b}_{OLS}) = (\mathbf{X}'\mathbf{X})^{-1}.$$ 

This is the fourth mvregress output. The standard errors of the OLS regression coefficients are the square root of the diagonal of this variance-covariance matrix.

If your data is not scaled such that $\Sigma = \sigma^2 \mathbf{I}_d$, then you can multiply the mvregress variance-covariance matrix by the mean squared error (MSE), an unbiased estimate of $\sigma^2$. To compute the MSE, return the $n$-by-$d$ matrix of residuals, $\mathbf{E}$ (the third mvregress output). Then,

$$\text{MSE} = \frac{\sum_{i=1}^{n} e_i e_i'}{n - K},$$

where $e_i = (y_i - X_i \beta)'$ is the $i$th row of $\mathbf{E}$.

**Covariance-Weighted Least Squares**

For most multivariate problems, an identity error covariance matrix is insufficient, and leads to inefficient or biased standard error estimates. You can specify a matrix for CWLS estimation using the optional name-value pair argument `covar0`, for example, an invertible $d$-by-$d$ matrix named $\mathbf{C}_0$. Usually, $\mathbf{C}_0$ is a diagonal matrix such that the inverse matrix $\mathbf{C}_0^{-1}$ contains weights for each dimension to model heteroscedasticity. However, $\mathbf{C}_0$ can also be a nondiagonal matrix that models correlation.

Given $\mathbf{C}_0$, the CWLS solution is the vector $\mathbf{b}$ that minimizes

$$\sum_{i=1}^{n} (y_i - X_i \beta)' \mathbf{C}_0 (y_i - X_i \beta).$$
In this case, the $K$-by-1 vector of CWLS regression coefficient estimates is

$$b_{CWLS} = \left( X'(I_n \otimes C_0)^{-1} X \right)^{-1} X'(I_n \otimes C_0)^{-1} y.$$  

This is the first `mvregress` output.

If $\Sigma = C_0$, this is the generalized least squares (GLS) solution. The corresponding variance-covariance matrix of the CWLS estimates is

$$V(b_{CWLS}) = \left( X'(I_n \otimes C_0)^{-1} X \right)^{-1}.$$  

This is the fourth `mvregress` output. The standard errors of the CWLS regression coefficients are the square root of the diagonal of this variance-covariance matrix.

If you only know the error covariance matrix up to a proportion, that is, $\Sigma = \sigma^2 C_0$, you can multiply the `mvregress` variance-covariance matrix by the MSE, as described in “Ordinary Least Squares” on page 15-7.

**Error Covariance Estimation**

Regardless of which least squares method you use, the estimate for the error variance-covariance matrix is

$$\hat{\Sigma} = \begin{pmatrix} \hat{\sigma}^2_1 & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1d} \\ \hat{\sigma}_{12} & \hat{\sigma}^2_2 & \cdots & \hat{\sigma}_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\sigma}_{1d} & \hat{\sigma}_{2d} & \cdots & \hat{\sigma}^2_d \end{pmatrix} = \frac{EE'}{n},$$

where $E$ is the $n$-by-$d$ matrix of residuals. The $i$th row of $E$ is $e_i = (y_i - X_i b)'$.

The error covariance estimate, $\hat{\Sigma}$, is the second `mvregress` output, and the matrix of residuals, $E$, is the third output. If you specify the optional name-value pair
'covtype', 'diagonal', then `mvregress` returns $\hat{\Sigma}$ with zeros in the off-diagonal entries,

$$
\hat{\Sigma} = \begin{pmatrix}
\hat{\sigma}_1^2 & 0 \\
0 & \cdots & 0 \\
\hat{\sigma}_d^2
\end{pmatrix}.
$$

**Feasible Generalized Least Squares**

The generalized least squares estimate is the CWLS estimate with a known covariance matrix. That is, given $\Sigma$ is known, the GLS solution is

$$
b_{GLS} = \left( X' (I_n \otimes \Sigma)^{-1} X \right)^{-1} X' (I_n \otimes \Sigma)^{-1} y,
$$

with variance-covariance matrix

$$
V(b_{GLS}) = \left( X' (I_n \otimes \Sigma)^{-1} X \right)^{-1}.
$$

In most cases, the error covariance is unknown. The feasible generalized least squares (FGLS) estimate uses $\hat{\Sigma}$ in place of $\Sigma$. You can obtain two-step FGLS estimates as follows:

1. **Perform OLS regression, and return an estimate $\hat{\Sigma}$.**
2. **Perform CWLS regression, using $C_0 = \hat{\Sigma}$.**

You can also iterate between these two steps until convergence is reached.

For some data, the OLS estimate $\hat{\Sigma}$ is positive semidefinite, and has no unique inverse. In this case, you cannot get the FGLS estimate using `mvregress`. As an alternative, you can use `lscov`, which uses a generalized inverse to return weighted least squares solutions for positive semidefinite covariance matrices.
Panel Corrected Standard Errors

An alternative to FGLS is to use OLS coefficient estimates (which are consistent) and make a standard error correction to improve efficiency. One such standard error adjustment—which does not require inversion of the covariance matrix—is panel corrected standard errors (PCSE) [1]. The panel corrected variance-covariance matrix for OLS estimates is

\[ V_{pcse}(\mathbf{b}_{OLS}) = (\mathbf{X}^\prime \mathbf{X})^{-1} \mathbf{X}^\prime (\mathbf{I}_n \otimes \Sigma) \mathbf{X}(\mathbf{X}^\prime \mathbf{X})^{-1}. \]

The PCSE are the square root of the diagonal of this variance-covariance matrix. “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36 illustrates PCSE computation.

Maximum Likelihood Estimation

- “Maximum Likelihood Estimates” on page 15-11
- “Standard Errors” on page 15-12

Maximum Likelihood Estimates

The default estimation algorithm used by \texttt{mvregress} is maximum likelihood estimation (MLE). The loglikelihood function for the multivariate linear regression model is

\[
\log L(\beta, \Sigma|\mathbf{y}, \mathbf{X}) = \frac{1}{2} nd \log(2\pi) + \frac{1}{2} n \log(\det(\Sigma)) \\
+ \frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_i - \mathbf{X}_i \beta)^\prime \Sigma^{-1} (\mathbf{y}_i - \mathbf{X}_i \beta). 
\]

The MLEs for \( \beta \) and \( \Sigma \) are the values that maximize the loglikelihood objective function. \texttt{mvregress} finds the MLEs using an iterative two-stage algorithm. At iteration \( m + 1 \), the estimates are

\[
\mathbf{b}_{MLE}^{(m+1)} = \left( \mathbf{X}^\prime (\mathbf{I}_n \otimes \Sigma^{(m)})^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^\prime (\mathbf{I}_n \otimes \Sigma^{(m)})^{-1} \mathbf{y} 
\]
and

\[ \hat{\Sigma}^{(m+1)} = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - X_i b^{(m+1)\text{MLE}} \right) \left( y_i - X_i b^{(m+1)\text{MLE}} \right)^\prime. \]

The algorithm terminates when the changes in the coefficient estimates and loglikelihood objective function are less than a specified tolerance, or when the specified maximum number of iterations is reached. The optional name-value pair arguments for changing these convergence criteria are `tolbeta`, `tolobj`, and `maxiter`, respectively.

### Standard Errors

The variance-covariance matrix of the MLEs is an optional `mvregress` output. By default, `mvregress` returns the variance-covariance matrix for only the regression coefficients, but you can also get the variance-covariance matrix of \( \hat{\Sigma} \) using the optional name-value pair `'vartype'`, `'full'`. In this case, `mvregress` returns the variance-covariance matrix for all \( K \) regression coefficients, and \( d \) or \( d(d + 1)/2 \) covariance terms (depending on whether the error covariance is diagonal or full).

By default, the variance-covariance matrix is the inverse of the observed Fisher information matrix (the `'hessian'` option). You can request the expected Fisher information matrix using the optional name-value pair `'vartype'`, `'fisher'`. Provided there is no missing response data, the observed and expected Fisher information matrices are the same. If response data is missing, the observed Fisher information accounts for the added uncertainty due to the missing values, whereas the expected Fisher information matrix does not.

The variance-covariance matrix for the regression coefficient MLEs is

\[ V(b^{\text{MLE}}) = \left( X'(I_n \otimes \Sigma)^{-1} X \right)^{-1}, \]

evaluated at the MLE of the error covariance matrix. This is the fourth `mvregress` output. The standard errors of the MLEs are the square root of the diagonal of this variance-covariance matrix.

For \( \hat{\Sigma} \), let \( \theta \) denote the vector of parameters in the estimated error variance-covariance matrix. For example, if \( d = 2 \), then:
• If the estimated covariance matrix is diagonal, then \( \theta = (\sigma_1^2, \sigma_2^2) \).

• If the estimated covariance matrix is full, then \( \theta = (\sigma_1^2, \sigma_{12}, \sigma_2^2) \).

The Fisher information matrix for \( \theta \), \( I(\theta) \), has elements

\[
I(\theta)_{u,v} = \frac{1}{2} \text{tr} \left( \Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_u} \Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_v} \right), \quad u,v = 1,\ldots,n_\theta,
\]

where \( n_\theta \) is the length of \( \theta \) (either \( d \) or \( d(d + 1)/2 \)). The resulting variance-covariance matrix is

\[
V(\theta) = I(\theta)^{-1}.
\]

When you request the full variance-covariance matrix, \texttt{mvregress} returns (as the fourth output) the block diagonal matrix

\[
\begin{pmatrix}
V(\hat{b}_{MLE}) & 0 \\
0 & V(\theta)
\end{pmatrix}.
\]

**Missing Response Data**

- “Expectation/Conditional Maximization” on page 15-13
- “Observed Information Matrix” on page 15-14

**Expectation/Conditional Maximization**

If any response values are missing, indicated by \texttt{NaN}, \texttt{mvregress} uses an expectation/conditional maximization (ECM) algorithm for estimation (if enough data is available). In this case, the algorithm is iterative for both least squares and maximum likelihood estimation. During each iteration, \texttt{mvregress} imputes missing response values using their conditional expectation.

Consider organizing the data so that the joint distribution of the missing and observed responses, denoted \( \tilde{Y} \) and \( Y \) respectively, can be written as
Using properties of the multivariate normal distribution, the conditional expectation of the missing responses given the observed responses is

\[
E(\tilde{y}|y) = \tilde{X}\beta + \Sigma_{yy}^{-1}(y - X\beta).
\]

Also, the variance-covariance matrix of the conditional distribution is

\[
\text{COV}(\tilde{y}|y) = \Sigma_{\tilde{y}} - \Sigma_{\tilde{y}y}\Sigma_{y}^{-1}\Sigma_{yy}.
\]

At each iteration of the ECM algorithm, \texttt{mvregress} uses the parameter values from the previous iteration to:

- Update the regression coefficients using the combined vector of observed responses and conditional expectations of missing responses.
- Update the variance-covariance matrix, adjusting for missing responses using the variance-covariance matrix of the conditional distribution.

Finally, the residuals that \texttt{mvregress} returns for missing responses are the difference between the conditional expectation and the fitted value, both evaluated at the final parameter estimates.

If you prefer to ignore any observations that have missing response values, use the name-value pair 'algorithm','mvn'. Note that \texttt{mvregress} always ignores observations that have missing predictor values.

**Observed Information Matrix**

By default, \texttt{mvregress} uses the observed Fisher information matrix (the 'hessian' option) to compute the variance-covariance matrix of the regression parameters. This accounts for the additional uncertainty due to missing response values.

The observed information matrix includes contributions from only the observed responses. That is, the observed Fisher information matrix for the parameters in the error variance-covariance matrix has elements
\[ I(\theta)_{u,v} = \frac{1}{2} \sum_{i=1}^{n} tr \left( \Sigma_i^{-1} \frac{\partial \Sigma_i}{\partial \theta_u} \Sigma_i^{-1} \frac{\partial \Sigma_i}{\partial \theta_v} \right) u,v = 1,\ldots,n_{\theta}, \]

where \( \hat{\Sigma}_i \) is the subset of \( \hat{\Sigma} \) corresponding to the observed responses in \( y_i \).

For example, if \( d = 3 \), but \( y_{i2} \) is missing, then

\[ \hat{\Sigma}_i = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{13} \\ \hat{\sigma}_{13} & \hat{\sigma}_3^2 \end{pmatrix} \]

The observed Fisher information for the regression coefficients has similar contributions from the design and covariance matrices.

**References**


**See Also**

mvregress | mvregresslike

**Related Examples**

- “Set Up Multivariate Regression Problems” on page 15-16
- “Multivariate General Linear Model” on page 15-30
- “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
- “Longitudinal Analysis” on page 15-44

**More About**

- “Multivariate Linear Regression” on page 15-3
Set Up Multivariate Regression Problems

In this section...

“Response Matrix” on page 15-16
“Design Matrices” on page 15-21
“Common Multivariate Regression Problems” on page 15-22

Response Matrix

To fit a multivariate linear regression model using `mvregress`, you must set up your response matrix and design matrices in a particular way. Given properly formatted inputs, `mvregress` can handle a variety of multivariate regression problems.

`mvregress` expects the $n$ observations of potentially correlated $d$-dimensional responses to be in an $n$-by-$d$ matrix, named $Y$, for example. That is, set up your responses so that the dependency structure is between observations in the same row. If you specify $Y$ as a vector of length $n$ (either a row or column vector), then `mvregress` assumes that $d = 1$, and treats the elements as $n$ independent observations. It does not model the vector as one realization of a correlated series (such as a time series).

To illustrate how to set up a response matrix, suppose that your multivariate responses are repeated measurements made on subjects at multiple time points, as in the following figure.
Suppose that observations within a subject are correlated.
In this case, set up the response matrix $Y$ such that each row corresponds to a subject, and each column corresponds to a time point.
Then again, suppose that observations made on subjects at the same time are correlated (concurrent correlation).
In this case, set up the response matrix $Y$ such that each row corresponds to a time point, and each column corresponds to a subject.
Design Matrices

In the multivariate linear regression model, each $d$-dimensional response has a corresponding design matrix. Depending on the model, the design matrix might be comprised of exogenous predictor variables, dummy variables, lagged responses, or a combination of these and other covariate terms.

- If $d > 1$ and all $d$ dimensions have the same design matrix, then specify one $n$-by-$p$ design matrix, where $p$ is the number of predictor variables. To determine an intercept for each dimension, add a column of ones to the design matrix. In this case, `mvregress` applies the design matrix to all $d$ dimensions.

- If $d > 1$ and all $d$ dimensions do not have the same design matrix, then specify the design matrices using a length-$n$ cell array of $d$-by-$K$ arrays, named $X$, for example. $K$ is the total number of regression coefficients in the model. Note that the rows of the arrays in $X$ correspond to the columns of the response matrix, $Y$. 
If all $n$ observations have the same design matrix, you can specify a cell array containing one $d$-by-$K$ design matrix. In this case, `mvregress` applies the design matrix to all $n$ observations. For example, this situation might arise if the predictors are functions of time, and all observations were measured at the same time points.

- In the special case that $d = 1$, you can specify one $n$-by-$K$ design matrix (not in a cell array). However, you should consider using `fitlm` to fit regression models to univariate, continuous responses.

The following sections illustrate how to set up the some common multivariate regression problems for estimation using `mvregress`.

### Common Multivariate Regression Problems

- “Multivariate General Linear Model” on page 15-22
- “Longitudinal Analysis” on page 15-25
- “Panel Analysis” on page 15-26
- “Seemingly Unrelated Regression” on page 15-27
- “Vector Autoregressive Model” on page 15-28

### Multivariate General Linear Model

The multivariate general linear model is of the form

$$Y_{n \times d} = X_{n \times (p+1)}B_{(p+1) \times d} + E_{n \times d}.$$ 

In expanded form,
That is, each $d$-dimensional response has an intercept and $p$ predictor variables, and each dimension has its own set of regression coefficients. In this form, the least squares solution is $B = X\backslash Y$. To estimate this model using \texttt{mvregress}, use the $n$-by-$d$ matrix of responses, as above.

If all $d$ dimensions have the same design matrix, use the $n$-by-$(p+1)$ design matrix, as above. Adding a column of ones to the $p$ predictor variables computes the intercept for each dimension.

If all $d$ dimensions do not have the same design matrix, reformat the $n$-by-$p(d + 1)$ design matrix into a length-$n$ cell array of $d$-by-$K$ matrices. Here, $K = (p + 1)d$ for an intercept and slopes for each dimension.

For example, suppose $n = 4$, $d = 3$, and $p = 2$ (two predictor terms in addition to an intercept). This figure shows how to format the $i$th element in the cell array.
If you prefer, you can reshape the $K$-by-1 vector of coefficients back into a $(p + 1)$-by-$d$ matrix after estimation.

To put constraints on the model parameters, adjust the design matrix accordingly. For example, suppose that the three dimensions in the previous example have a common slope. That is, $\beta_{11} = \beta_{12} = \beta_{13} = \beta_1$ and $\beta_{21} = \beta_{22} = \beta_{23} = \beta_2$. In this case, each design matrix is 3-by-5, as shown in the following figure.
Longitudinal Analysis

In a longitudinal analysis, you might measure responses on $n$ subjects at $d$ time points, with correlation between observations made on the same subject. For example, suppose that you measure responses $y_{ij}$ at times $t_{ij}, i = 1, \ldots, n$ and $j = 1, \ldots, d$. In addition, suppose that each subject is in one of two groups (such as male or female), specified by the indicator variable $G_i$. You could model $y_{ij}$ as a function of $G_i$ and $t_{ij}$, with group-specific intercepts and slopes, as follows:

$$y_{ij} = \beta_0 + \beta_1 G_i + \beta_2 t_{ij} + \beta_3 G_i \times t_{ij} + \epsilon_{ij}, i = 1, \ldots, n; j = 1, \ldots, d,$$

where

$$\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{id})' \sim MVN(0, \Sigma).$$

Most longitudinal models include time as an explicit predictor.

To fit this model using `mvregress`, arrange the responses in an $n$-by-$d$ matrix, where $n$ is the number of subjects and $d$ is the number of time points. Specify the design matrices in an $n$-length cell array of $d$-by-$K$ matrices, where here $K = 4$ for the four regression coefficients.

For example, suppose $d = 5$ (five observations per subject). The $i$th design matrix and corresponding parameter vector for the specified model are shown in the following figure.
Panel Analysis

In a panel analysis, you might measure responses and covariates on $d$ subjects (such as individuals or countries) at $n$ time points. For example, suppose you measure responses $y_{tj}$ and covariates $x_{tj}$ on subjects $j = 1,...,d$ at times $t = 1,...,n$. A fixed effects panel model, with subject-specific fixed effects, and concurrent correlation might look like:

$$y_{tj} = \alpha_j + \beta x_{tj} + \epsilon_{tj},$$

where

$$\epsilon_t = (\epsilon_{t1},...\epsilon_{td})' \sim MVN(0, \Sigma).$$

In contrast to longitudinal models, the panel analysis model typically includes covariates measured at each time point, instead of using time as an explicit predictor.

To fit this model using \texttt{mvregress}, arrange the responses in an $n$-by-$d$ matrix, such that each column corresponds to a subject. Specify the design matrices in an $n$-length cell array of $d$-by-$K$ matrices, where here $K = d + 1$ for the $d$ intercepts and a slope term.

For example, suppose $d = 4$ (four subjects). The $t$th design matrix and corresponding parameter vector are shown in the following figure.
Seemingly Unrelated Regression

In a seemingly unrelated regression (SUR), you model $d$ separate regressions, each with its own intercept and slope, but a common error variance-covariance matrix. For example, suppose you measure responses $y_{ij}$ and covariates $x_{ij}$ for regression models $j = 1,\ldots,d$, with $i = 1,\ldots,n$ observations to fit each regression. The SUR model might look like:

$$y_{ij} = \beta_{0j} + \beta_{j} x_{ij} + \epsilon_{ij},$$

where

$$\epsilon_{i} = (\epsilon_{i1},\ldots,\epsilon_{id})' \sim MVN(\mathbf{0}, \Sigma).$$

This model is very similar to the multivariate general linear model, except that it has different covariates for each dimension.

To fit this model using `mvregress`, arrange the responses in an $n$-by-$d$ matrix, such that each column has the data for the $j$th regression model. Specify the design matrices in an $n$-length cell array of $d$-by-$K$ matrices, where here $K = 2d$ for $d$ intercepts and $d$ slopes.

For example, suppose $d = 3$ (three regressions). The $i$th design matrix and corresponding parameter vector are shown in the following figure.
Vector Autoregressive Model

The VAR($p$) vector autoregressive model expresses $d$-dimensional time series responses as a linear function of $p$ lagged $d$-dimensional responses from previous times. For example, suppose you measure responses $y_{tj}$ for time series $j = 1, \ldots, d$ at times $t = 1, \ldots, n$. The VAR($p$) model might look like:

$$
\begin{bmatrix}
  y_{t1} \\
  y_{t2} \\
  \vdots \\
  y_{td}
\end{bmatrix} =
\begin{bmatrix}
  c_1 \\
  c_2 \\
  \vdots \\
  c_d
\end{bmatrix} +
\begin{bmatrix}
  \phi_{11}^{(1)} & \phi_{12}^{(1)} & \cdots & \phi_{1d}^{(1)} \\
  \vdots & \vdots & \ddots & \vdots \\
  \phi_{d1}^{(1)} & \phi_{d2}^{(1)} & \cdots & \phi_{dd}^{(1)}
\end{bmatrix}
\begin{bmatrix}
  y_{t-1,1} \\
  y_{t-1,2} \\
  \vdots \\
  y_{t-1,d}
\end{bmatrix} + \cdots +
\begin{bmatrix}
  \phi_{11}^{(p)} & \phi_{12}^{(p)} & \cdots & \phi_{1d}^{(p)} \\
  \vdots & \vdots & \ddots & \vdots \\
  \phi_{d1}^{(p)} & \phi_{d2}^{(p)} & \cdots & \phi_{dd}^{(p)}
\end{bmatrix}
\begin{bmatrix}
  y_{t-p,1} \\
  y_{t-p,2} \\
  \vdots \\
  y_{t-p,d}
\end{bmatrix} +
\begin{bmatrix}
  \varepsilon_{t1} \\
  \varepsilon_{t2} \\
  \vdots \\
  \varepsilon_{td}
\end{bmatrix},
$$

where

$$\varepsilon_t = (\varepsilon_{t1}, \ldots, \varepsilon_{td})' \sim MVN(0, \Sigma).$$

When estimating vector autoregressive models, you typically need to use the first $p$ observations to initiate the model, or provide some other presample response values.

To fit this model using `mvregress`, arrange the responses in an $n$-by-$d$ matrix, such that each column corresponds to a time series. Specify the design matrices in an $n$-length cell array of $d$-by-$K$ matrices, where here $K = d + pd^2$.

For example, suppose $d = 2$ (two time series) and $p = 1$ (one lag). The $t$th design matrix and corresponding parameter vector are shown in the following figure.
Alternatively, Econometrics Toolbox has functions for fitting and forecasting VAR(p) models, including the option to specify exogenous predictor variables.

**See Also**

mvregress | mvregresslike

**Related Examples**

- “Multivariate General Linear Model” on page 15-30
- “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
- “Longitudinal Analysis” on page 15-44

**More About**

- “Multivariate Linear Regression” on page 15-3
- “Estimation of Multivariate Regression Models” on page 15-7
Multivariate General Linear Model

This example shows how to set up a multivariate general linear model for estimation using `mvregress`.

**Load sample data.**

This data contains measurements on a sample of 205 auto imports from 1985.

Here, model the bivariate response of city and highway MPG (columns 14 and 15).

For predictors, use wheel base (column 3), curb weight (column 7), and fuel type (column 18). The first two predictors are continuous, and for this example are centered and scaled. Fuel type is a categorical variable with two categories (11 and 20), so a dummy indicator variable is needed for the regression.

```matlab
load('imports-85')
Y = X(:,14:15);
[n,d] = size(Y);

X1 = zscore(X(:,3));
X2 = zscore(X(:,7));
X3 = X(:,18)==20;

Xmat = [ones(n,1) X1 X2 X3];
```

The variable `X3` is coded to have value 1 for the fuel type 20, and value 0 otherwise.

For convenience, the three predictors (wheel base, curb weight, and fuel type indicator) are combined into one design matrix, with an added intercept term.

**Set up design matrices.**

Given these predictors, the multivariate general linear model for the bivariate MPG response is

\[
\begin{bmatrix}
  y_{11} & y_{12} \\
  y_{21} & y_{22} \\
  \vdots & \vdots \\
  y_{n1} & y_{n2}
\end{bmatrix}
= \begin{bmatrix}
  1 & x_{11} & x_{12} & x_{13} \\
  1 & x_{21} & x_{22} & x_{23} \\
  \vdots & \vdots & \vdots & \vdots \\
  1 & x_{n1} & x_{n2} & x_{n3}
\end{bmatrix}
\begin{bmatrix}
  \beta_{01} & \beta_{02} \\
  \beta_{11} & \beta_{12} \\
  \beta_{21} & \beta_{22} \\
  \beta_{31} & \beta_{32}
\end{bmatrix}
+ \begin{bmatrix}
  e_{11} & e_{12} \\
  e_{21} & e_{22} \\
  \vdots & \vdots \\
  e_{n1} & e_{n2}
\end{bmatrix},
\]
where $c_i = (c_{i1}, c_{i2})' - MVN(0, \Sigma)$. There are $K = 8$ regression coefficients in total.

Create a length $n = 205$ cell array of 2-by-8 (d-by-K) matrices for use with `mvregress`. The $i$th matrix in the cell array is

$$X(i) = \begin{bmatrix} 1 & 0 & x_{i1} & 0 & x_{i2} & 0 & x_{i3} & 0 \\ 0 & 1 & 0 & x_{i1} & 0 & x_{i2} & 0 & x_{i3} \end{bmatrix}.$$ 

$Xcell = \text{cell}(1,n);
\text{for } i = 1:n
\quad Xcell\{i\} = [\text{kron}([Xmat(i,:)], \text{eye}(d))];$
\text{end}$

Given this specification of the design matrices, the corresponding parameter vector is

$$\beta = \begin{bmatrix} \beta_{01} \\ \beta_{02} \\ \beta_{11} \\ \beta_{12} \\ \beta_{21} \\ \beta_{22} \\ \beta_{31} \\ \beta_{32} \end{bmatrix}.$$

**Estimate regression coefficients.**

Fit the model using maximum likelihood estimation.

```matlab
[beta,sigma,E,V] = mvregress(Xcell,Y);
beta
```

```
beta = 8x1
 33.5476
 38.5720
 0.9723
 0.3950
```
These coefficient estimates show:

- The expected city and highway MPG for cars of average wheel base, curb weight, and fuel type 11 are 33.5 and 38.6, respectively. For fuel type 20, the expected city and highway MPG are $33.5476 - 9.2284 = 24.3192$ and $38.5720 - 8.6663 = 29.9057$.

- An increase of one standard deviation in curb weight has almost the same effect on expected city and highway MPG. Given all else is equal, the expected MPG decreases by about 6.3 with each one standard deviation increase in curb weight, for both city and highway MPG.

- For each one standard deviation increase in wheel base, the expected city MPG increases 0.972, while the expected highway MPG increases by only 0.395, given all else is equal.

**Compute standard errors.**

The standard errors for the regression coefficients are the square root of the diagonal of the variance-covariance matrix, \( V \).

\[
\text{se} = \sqrt{\text{diag}(V)}
\]

\[
\text{se} = 8 \times 1 \\
\begin{array}{c}
0.7365 \\
0.7599 \\
0.3589 \\
0.3702 \\
0.3497 \\
0.3608 \\
0.7790 \\
0.8037 \\
\end{array}
\]

**Reshape coefficient matrix.**

You can easily reshape the regression coefficients into the original 4-by-2 matrix.

\[
B = \text{reshape}(\beta, 2, 4)'
\]
Check model assumptions.

Under the model assumptions, \( z = \mathbf{E}\Sigma^{-1/2} \) should be independent, with a bivariate standard normal distribution. In this 2-D case, you can assess the validity of this assumption using a scatter plot.

\[
z = \mathbf{E}/\text{chol}(\sigma);
\]
figure()
plot(z(:,1),z(:,2),'.'
title('Standardized Residuals')
hold on

% Overlay standard normal contours
z1 = linspace(-5,5);
z2 = linspace(-5,5);
[zx,zy] = meshgrid(z1,z2);
zgrid = [reshape(zx,100^2,1),reshape(zy,100^2,1)];
zn = reshape(mvnpdf(zgrid),100,100);
[c,h] = contour(zx,zy,zn);
clabel(c,h)
Several residuals are larger than expected, but overall, there is little evidence against the multivariate normality assumption.

**See Also**

mvregress | mvregresslike

**Related Examples**

- “Set Up Multivariate Regression Problems” on page 15-16
- “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
• “Longitudinal Analysis” on page 15-44

More About
• “Multivariate Linear Regression” on page 15-3
• “Estimation of Multivariate Regression Models” on page 15-7
Fixed Effects Panel Model with Concurrent Correlation

This example shows how to perform panel data analysis using `mvregress`. First, a fixed effects model with concurrent correlation is fit by ordinary least squares (OLS) to some panel data. Then, the estimated error covariance matrix is used to get panel corrected standard errors for the regression coefficients.

**Load sample data.**

Load the sample panel data.

```matlab
load panelData
```

The dataset array, `panelData`, contains yearly observations on eight cities for 6 years. This is simulated data.

**Define variables.**

The first variable, `Growth`, measures economic growth (the response variable). The second and third variables are city and year indicators, respectively. The last variable, `Employ`, measures employment (the predictor variable).

```matlab
y = panelData.Growth;
city = panelData.City;
year = panelData.Year;
x = panelData.Employ;
```

**Plot data grouped by category.**

To look for potential city-specific fixed effects, create a box plot of the response grouped by city.

```matlab
figure() boxplot(y,city) xlabel('City')
```
There does not appear to be any systematic differences in the mean response among cities.

**Plot data grouped by a different category.**

To look for potential year-specific fixed effects, create a box plot of the response grouped by year:

```matlab
figure()
boxplot(y, year)
xlabel('Year')
```
Some evidence of systematic differences in the mean response between years seems to exist.

**Format response data.**

Let \( y_{ij} \) denote the response for city \( j = 1,\ldots,d \), in year \( i = 1,\ldots,n \). Similarly, \( x_{ij} \) is the corresponding value of the predictor variable. In this example, \( n = 6 \) and \( d = 8 \).

Consider fitting a year-specific fixed effects model with a constant slope and concurrent correlation among cities in the same year,

\[
y_{ij} = \alpha_i + \beta_1 x_{ij} + \epsilon_{ij}, \quad i = 1,\ldots,n, \quad j = 1,\ldots,d,
\]

where \( \epsilon_i = (\epsilon_{i1},\ldots,\epsilon_{id})' \sim MVN(0,\Sigma) \). The concurrent correlation accounts for any unmeasured, time-static factors that might impact growth similarly for some cities. For example, cities with close spatial proximity might be more likely to have similar economic growth.
To fit this model using `mvregress`, reshape the response data into an \( n \)-by-\( d \) matrix.

\[
\begin{align*}
n & = 6; \ d = 8; \\
Y & = \text{reshape}(y, n, d);
\end{align*}
\]

**Format design matrices.**

Create a length-\( n \) cell array of \( d \)-by-\( K \) design matrices. For this model, there are \( K = 7 \) parameters (\( d = 6 \) intercept terms and a slope).

Suppose the vector of parameters is arranged as

\[
\beta = \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_6 \\
\beta_1
\end{pmatrix}
\]

In this case, the first design matrix for year 1 looks like

\[
X[1] = \begin{pmatrix}
1 & 0 & \cdots & 0 & x_{11} \\
1 & 0 & \cdots & 0 & x_{12} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & \cdots & 0 & x_{18}
\end{pmatrix},
\]

and the second design matrix for year 2 looks like

\[
X[2] = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & x_{21} \\
0 & 1 & 0 & \cdots & 0 & x_{22} \\
\vdots & \vdots & 0 & \ddots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 0 & x_{28}
\end{pmatrix}.
\]

The design matrices for the remaining 4 years are similar.

\[
\begin{align*}
K & = 7; \ N = n\times d; \\
X & = \text{cell}(n,1); \\
& \text{for} \ i = 1:n \\
& \quad x0 = \text{zeros}(d, K-1);
\end{align*}
\]
x0(:,i) = 1;
X{i} = [x0,x(i:n:N)];
end

**Fit the model.**

Fit the model using ordinary least squares (OLS).

\[
[b, sig, E, V] = \text{mvregress}(X, Y, 'algorithm', 'cwls');
\]

\[
b =
\]

\[
\begin{align*}
&41.6878 \\
&26.1864 \\
&-64.5107 \\
&11.0924 \\
&-59.1872 \\
&71.3313 \\
&4.9525
\end{align*}
\]

**Plot fitted model.**

\[
xx = \text{linspace}(\text{min}(x), \text{max}(x));
\]

\[
axx = \text{repmat}(b(1:K-1),1,\text{length}(xx));
\]

\[
bxx = \text{repmat}(b(K)*xx,n,1);
\]

\[
yhat = axx + bxx;
\]

figure()

hPoints = gscatter(x,y,year);
hold on

hLines = plot(xx,yhat);
for i=1:n
    set(hLines(i),'color',get(hPoints(i),'color'));
end

hold off
The model with year-specific intercepts and common slope appears to fit the data quite well.

**Residual correlation.**

Plot the residuals, grouped by year.

```matlab
figure()
gscatter(year,E(:,),city)
ylabel('Residuals')
```
The residual plot suggests concurrent correlation is present. For examples, cities 1, 2, 3, and 4 are consistently above or below average as a group in any given year. The same is true for the collection of cities 5, 6, 7, and 8. As seen in the exploratory plots, there are no systematic city-specific effects.

**Panel corrected standard errors.**

Use the estimated error variance-covariance matrix to compute panel corrected standard errors for the regression coefficients.

\[
XX = \text{cell2mat}(X);
S = \text{kron}(\text{eye}(n),\text{sig});
Vpcse = \text{inv}(XX'\times XX) \times XX' \times S \times XX \times \text{inv}(XX' \times XX);
se = \text{sqrt(diag(Vpcse))}
\]

\[
se =
\begin{align*}
9.3750 \\
8.6698 \\
9.3406
\end{align*}
\]
See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 15-16
• “Multivariate General Linear Model” on page 15-30
• “Longitudinal Analysis” on page 15-44

More About
• “Multivariate Linear Regression” on page 15-3
• “Estimation of Multivariate Regression Models” on page 15-7
Longitudinal Analysis

This example shows how to perform longitudinal analysis using `mvregress`.

**Load sample data.**

Load the sample longitudinal data.

```matlab
load longitudinalData
```

The matrix `Y` contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (`t = 0, 2, 4, 6, and 8`). Each row of `Y` corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

**Plot data.**

Plot the data for all 16 subjects.

```matlab
figure()
t = [0,2,4,6,8];
plot(t,Y)
hold on

hf = plot(t,Y(1:8,:),'^');
hm = plot(t,Y(9:16,:),'o');
legend([hf(1),hm(1)],'Female','Male','Location','NorthEast')

title('Longitudinal Response')
ylabel('Blood Drug Level')
xlabel('Time')
hold off
```
Define design matrices.

Let $y_{ij}$ denote the response for individual $i = 1,...,n$ measured at times $t_{ij}, j = 1,...,d$. In this example, $n = 16$ and $d = 5$. Let $G_i$ denote the gender of individual $i$, where $G_i = 1$ for males and 0 for females.

Consider fitting a quadratic longitudinal model, with a separate slope and intercept for each gender,

$$y_{ij} = \beta_0 + \beta_1 G_i + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \beta_4 G_i \times t_{ij} + \beta_5 G_i \times t_{ij}^2 + \epsilon_{ij},$$

where $\epsilon_{i} = (\epsilon_{i1},...,\epsilon_{id})' \sim MVN(0, \Sigma)$. The error correlation accounts for clustering within an individual.

To fit this model using \texttt{mvregress}, the response data should be in an $n$-by-$d$ matrix. $Y$ is already in the proper format.
Next, create a length-$n$ cell array of $d$-by-$K$ design matrices. For this model, there are $K = 6$ parameters.

For individual $i$, the 5-by-6 design matrix is

$$
X(i) = \begin{pmatrix}
1 & G_i & t_{i1} & t_{i1}^2 & G_i \times t_{i1} & G_i \times t_{i1}^2 \\
1 & G_i & t_{i2} & t_{i2}^2 & G_i \times t_{i2} & G_i \times t_{i2}^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & G_i & t_{i5} & t_{i5}^2 & G_i \times t_{i5} & G_i \times t_{i5}^2 \\
\end{pmatrix},
$$

corresponding to the parameter vector

$$
\beta = \begin{pmatrix}
\beta_0 \\
\beta_1 \\
\vdots \\
\beta_5 \\
\end{pmatrix}.
$$

The matrix $X1$ has the design matrix for a female, and $X2$ has the design matrix for a male.

Create a cell array of design matrices. The first eight individuals are females, and the second eight are males.

```matlab
X = cell(8,1);
X(1:8) = {X1};
X(9:16) = {X2};
```

**Fit the model.**

Fit the model using maximum likelihood estimation. Display the estimated coefficients and standard errors.

```matlab
[b,sig,E,V,loglikF] = mvregress(X,Y);
[b sqrt(diag(V))]
```

ans =

```
 18.8619 0.7432
 13.0942 1.0511
 2.5968 0.2845
```
The coefficients on the interaction terms (in the last two rows of $b$) do not appear significant. You can use the value of the loglikelihood objective function for this fit, loglikF, to compare this model to one without the interaction terms using a likelihood ratio test.

**Plot fitted model.**

Plot the fitted lines for females and males.

```matlab
Yhatf = X1*b;
Yhatm = X2*b;

figure()
plot(t,Y)
hold on
plot(t,Y(1:8,:),'^',t,Y(9:16,:),'o')

hf = plot(t,Yhatf,'k--','LineWidth',3);
hm = plot(t,Yhatm,'k','LineWidth',3);
legend([hf,hm],'Females','Males','Location','NorthEast')

title('Longitudinal Response')
ylabel('Blood Drug Level')
xlabel('Time')
hold off
```
Define a reduced model.

Fit the model without interaction terms,

\[ y_{ij} = \beta_0 + \beta_1 G_i + \beta_2 t_{ij} + \beta_3 t_{ij}^2 + \epsilon_{ij}, \]

where \( \epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{id})' \sim MVN(0, \Sigma). \)

This model has four coefficients, which correspond to the first four columns of the design matrices \( X_1 \) and \( X_2 \) (for females and males, respectively).

\[ X_{1R} = X_1(:,1:4); \]
\[ X_{2R} = X_2(:,1:4); \]
\[ XR = \text{cell}(8,1); \]
\[ XR(1:8) = \{X_{1R}\}; \]
\[ XR(9:16) = \{X_{2R}\}; \]
**Fit the reduced model.**

Fit this model using maximum likelihood estimation. Display the estimated coefficients and their standard errors.

```matlab
[bR,sigR,ER,VR,loglikR] = mvregress(XR,Y);
[bR,sqrt(diag(VR))]
```

```matlab
ans =
 19.3765 0.6898
 12.0936 0.8591
 2.2919 0.2139
 -0.3623 0.0283
```

**Conduct a likelihood ratio test.**

Compare the two models using a likelihood ratio test. The null hypothesis is that the reduced model is sufficient. The alternative is that the reduced model is inadequate (compared to the full model with the interaction terms).

The likelihood ratio test statistic is compared to a chi-squared distribution with two degrees of freedom (for the two coefficients being dropped).

```matlab
LR = 2*(loglikF-loglikR); pval = 1 - chi2cdf(LR,2)
```

```matlab
pval =
 0.0803
```

The p-value 0.0803 indicates that the null hypothesis is not rejected at the 5% significance level. Therefore, there is insufficient evidence that the extra terms improve the fit.

**See Also**

mvregress | mvregresslike

**Related Examples**

- “Set Up Multivariate Regression Problems” on page 15-16
• “Multivariate General Linear Model” on page 15-30
• “Fixed Effects Panel Model with Concurrent Correlation” on page 15-36

More About

• “Multivariate Linear Regression” on page 15-3
• “Estimation of Multivariate Regression Models” on page 15-7
Multidimensional Scaling

One of the most important goals in visualizing data is to get a sense of how near or far points are from each other. Often, you can do this with a scatter plot. However, for some analyses, the data that you have might not be in the form of points at all, but rather in the form of pairwise similarities or dissimilarities between cases, observations, or subjects. There are no points to plot.

Even if your data are in the form of points rather than pairwise distances, a scatter plot of those data might not be useful. For some kinds of data, the relevant way to measure how near two points are might not be their Euclidean distance. While scatter plots of the raw data make it easy to compare Euclidean distances, they are not always useful when comparing other kinds of inter-point distances, city block distance for example, or even more general dissimilarities. Also, with a large number of variables, it is very difficult to visualize distances unless the data can be represented in a small number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these problems. MDS allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of your data in a small number of dimensions. MDS does not require raw data, but only a matrix of pairwise distances or dissimilarities.

See Also

cmdscale | mdscale

Related Examples

• “Nonclassical and Nonmetric Multidimensional Scaling” on page 15-52
• “Classical Multidimensional Scaling” on page 15-58
Nonclassical and Nonmetric Multidimensional Scaling

In this section...

“Nonclassical Multidimensional Scaling” on page 15-52
“Nonmetric Multidimensional Scaling” on page 15-54

Perform nonclassical multidimensional scaling using mdscale.

Nonclassical Multidimensional Scaling

The function mdscale performs nonclassical multidimensional scaling. As with cmdscale, you use mdscale either to visualize dissimilarity data for which no “locations” exist, or to visualize high-dimensional data by reducing its dimensionality. Both functions take a matrix of dissimilarities as an input and produce a configuration of points. However, mdscale offers a choice of different criteria to construct the configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing breakfast cereals. You can use mdscale to visualize these data in two dimensions. First, load the data. For clarity, this example code selects a subset of 22 of the observations.

```
load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...
 Carbo Sugars Shelf Potass Vitamins];
% Take a subset from a single manufacturer
mfg1 = strcmp('G',cellstr(Mfg));
X = X(mfg1,:);
size(X)
an =
 22 10
```

Then use pdist to transform the 10-dimensional data into dissimilarities. The output from pdist is a symmetric dissimilarity matrix, stored as a vector containing only the (23*22/2) elements in its upper triangle.

```
dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
an =
 1 231
```

This example code first standardizes the cereal data, and then uses city block distance as a dissimilarity. The choice of transformation to dissimilarities is application-dependent,
and the choice here is only for simplicity. In some applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify the desired number of dimensions, and the method to use to construct the output configuration. For this example, use two dimensions. The metric STRESS criterion is a common method for computing the output; for other choices, see the mdscale reference page in the online documentation. The second output from mdscale is the value of that criterion evaluated for the output configuration. It measures the how well the inter-point distances of the output configuration approximate the original input dissimilarities:

\[
[Y,\text{stress}] = \ldots \\
\text{mdscale}([\text{dissimilarities}], 2, \text{'}criterion\text{'} ,\text{'}metricstress\text{'});
\]

\[
stress \\
stress = 0.1856
\]

A scatterplot of the output from mdscale represents the original 10-dimensional data in two dimensions, and you can use the gname function to label selected points:

\[
\text{plot}(Y(:,1), Y(:,2), 'o','LineWidth',2); \\
\text{gname}\text{(Name(mfg1))}
\]

```matlab
[Y, stress] = ...
mdscale(dissimilarities, 2, 'criterion', 'metricstress');
stress
stress =
 0.1856
```

A scatterplot of the output from mdscale represents the original 10-dimensional data in two dimensions, and you can use the gname function to label selected points:

```matlab
plot(Y(:,1), Y(:,2), 'o', 'LineWidth', 2);
gname(Name(mfg1))
```
Nonmetric Multidimensional Scaling

Metric multidimensional scaling creates a configuration of points whose inter-point distances approximate the given dissimilarities. This is sometimes too strict a requirement, and non-metric scaling is designed to relax it a bit. Instead of trying to approximate the dissimilarities themselves, non-metric scaling approximates a nonlinear, but monotonic, transformation of them. Because of the monotonicity, larger or smaller distances on a plot of the output will correspond to larger or smaller dissimilarities, respectively. However, the nonlinearity implies that mdscale only attempts to preserve the ordering of dissimilarities. Thus, there may be contractions or expansions of distances at different scales.
You use `mdscale` to perform nonmetric MDS in much the same way as for metric scaling. The nonmetric STRESS criterion is a common method for computing the output; for more choices, see the `mdscale` reference page in the online documentation. As with metric scaling, the second output from `mdscale` is the value of that criterion evaluated for the output configuration. For nonmetric scaling, however, it measures the how well the inter-point distances of the output configuration approximate the disparities. The disparities are returned in the third output. They are the transformed values of the original dissimilarities:

```
[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =
 0.1562
```

To check the fit of the output configuration to the dissimilarities, and to understand the disparities, it helps to make a Shepard plot:

```
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
 dissimilarities(ord),disparities(ord),'r.-', ...
 [0 25],[0 25],'k-')
xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
 'Location','NorthWest');
```
This plot shows that `mdscale` has found a configuration of points in two dimensions whose inter-point distances approximates the disparities, which in turn are a nonlinear transformation of the original dissimilarities. The concave shape of the disparities as a function of the dissimilarities indicates that fit tends to contract small distances relative to the corresponding dissimilarities. This may be perfectly acceptable in practice.

`mdscale` uses an iterative algorithm to find the output configuration, and the results can often depend on the starting point. By default, `mdscale` uses `cmdscale` to construct an initial configuration, and this choice often leads to a globally best solution. However, it is possible for `mdscale` to stop at a configuration that is a local minimum of the criterion. Such cases can be diagnosed and often overcome by running `mdscale` multiple times with different starting points. You can do this using the `start` and `replicates` name-value pair arguments. The following code runs five replicates of MDS, each starting
at a different randomly-chosen initial configuration. The criterion value is printed out for each replication; mdscale returns the configuration with the best fit.

opts = statset('Display','final');
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);

35 iterations, Final stress criterion = 0.156209
31 iterations, Final stress criterion = 0.156209
48 iterations, Final stress criterion = 0.171209
33 iterations, Final stress criterion = 0.175341
32 iterations, Final stress criterion = 0.185881

Notice that mdscale finds several different local solutions, some of which do not have as low a stress value as the solution found with the cmdscale starting point.
Classical Multidimensional Scaling

This example shows how to use cmdscale to perform classical (metric) multidimensional scaling, also known as principal coordinates analysis.

cmdscale takes as an input a matrix of inter-point distances and creates a configuration of points. Ideally, those points are in two or three dimensions, and the Euclidean distances between them reproduce the original distance matrix. Thus, a scatter plot of the points created by cmdscale provides a visual representation of the original distances.

As a very simple example, you can reconstruct a set of points from only their inter-point distances. First, create some four dimensional points with a small component in their fourth coordinate, and reduce them to distances.

```matlab
rng default; % For reproducibility
X = [normrnd(0,1,10,3),normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');
```

Next, use cmdscale to find a configuration with those inter-point distances. cmdscale accepts distances as either a square matrix, or, as in this example, in the vector upper-triangular form produced by pdist.

```matlab
[Y,eigvals] = cmdscale(D);
```

cmdscale produces two outputs. The first output, Y, is a matrix containing the reconstructed points. The second output, eigvals, is a vector containing the sorted eigenvalues of what is often referred to as the "scalar product matrix," which, in the simplest case, is equal to $Y*Y'$. The relative magnitudes of those eigenvalues indicate the relative contribution of the corresponding columns of Y in reproducing the original distance matrix D with the reconstructed points.

```matlab
format short g
[eigvals eigvals/max(abs(eigvals))]
```

```
ans = 10×2
 35.41 1
 11.158 0.31511
 1.6894 0.04771
 0.1436 0.0040553
 7.9529e-15 2.246e-16
 4.564e-15 1.2889e-16
 2.6538e-15 7.4944e-17
```
If `eigvals` contains only positive and zero (within round-off error) eigenvalues, the columns of `Y` corresponding to the positive eigenvalues provide an exact reconstruction of `D`, in the sense that their inter-point Euclidean distances, computed using `pdist`, for example, are identical (within round-off) to the values in `D`.

```matlab
maxerr4 = max(abs(D - pdist(Y))) % Exact reconstruction
maxerr4 =
 3.5527e-15
```

If two or three of the eigenvalues in `eigvals` are much larger than the rest, then the distance matrix based on the corresponding columns of `Y` nearly reproduces the original distance matrix `D`. In this sense, those columns form a lower-dimensional representation that adequately describes the data. However it is not always possible to find a good low-dimensional reconstruction.

```matlab
maxerr3 = max(abs(D - pdist(Y(:,1:3)))) % Good reconstruction in 3D
maxerr3 =
 0.043142

maxerr2 = max(abs(D - pdist(Y(:,1:2)))) % Poor reconstruction in 2D
maxerr2 =
 0.98315
```

The reconstruction in three dimensions reproduces `D` very well, but the reconstruction in two dimensions has errors that are of the same order of magnitude as the largest values in `D`.

```matlab
max(max(D))
ans =
 5.8974
```

Often, `eigvals` contains some negative eigenvalues, indicating that the distances in `D` cannot be reproduced exactly. That is, there might not be any configuration of points...
whose inter-point Euclidean distances are given by $D$. If the largest negative eigenvalue is small in magnitude relative to the largest positive eigenvalues, then the configuration returned by \texttt{cmdscale} might still reproduce $D$ well.
**Procrustes Analysis**

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Compare Landmark Data” on page 15-61</td>
</tr>
<tr>
<td>“Data Input” on page 15-61</td>
</tr>
<tr>
<td>“Preprocess Data for Accurate Results” on page 15-62</td>
</tr>
</tbody>
</table>

**Compare Landmark Data**

The `procrustes` function analyzes the distribution of a set of shapes using Procrustes analysis. This analysis method matches landmark data (geometric locations representing significant features in a given shape) to calculate the best shape-preserving Euclidian transformations. These transformations minimize the differences in location between compared landmark data.

Procrustes analysis is also useful in conjunction with multidimensional scaling. In “Construct a Map Using Multidimensional Scaling” on page 32-628 there is an observation that the orientation of the reconstructed points is arbitrary. Two different applications of multidimensional scaling could produce reconstructed points that are very similar in principle, but that look different because they have different orientations. The `procrustes` function transforms one set of points to make them more comparable to the other.

**Data Input**

The `procrustes` function takes two matrices as input:

- The target shape matrix $X$ has dimension $n \times p$, where $n$ is the number of landmarks in the shape and $p$ is the number of measurements per landmark.
- The comparison shape matrix $Y$ has dimension $n \times q$ with $q \leq p$. If there are fewer measurements per landmark for the comparison shape than the target shape ($q < p$), the function adds columns of zeros to $Y$, yielding an $n \times p$ matrix.

The equation to obtain the transformed shape, $Z$, is

$$Z = bYT + c$$

(15-1)

where:
• $b$ is a scaling factor that stretches ($b > 1$) or shrinks ($b < 1$) the points.
• $T$ is the orthogonal rotation and reflection matrix.
• $c$ is a matrix with constant values in each column, used to shift the points.

The `procrustes` function chooses $b$, $T$, and $c$ to minimize the distance between the target shape $X$ and the transformed shape $Z$ as measured by the least squares criterion:

$$
\sum_{i=1}^{n} \sum_{j=1}^{p} (X_{ij} - Z_{ij})^2
$$

**Preprocess Data for Accurate Results**

Procrustes analysis is appropriate when all $p$ measurement dimensions have similar scales. The analysis would be inaccurate, for example, if the columns of $Z$ had different scales:

• The first column is measured in milliliters ranging from 2,000 to 6,000.
• The second column is measured in degrees Celsius ranging from 10 to 25.
• The third column is measured in kilograms ranging from 50 to 230.

In such cases, standardize your variables by:

1. Subtracting the sample mean from each variable.
2. Dividing each resultant variable by its sample standard deviation.

Use the `zscore` function to perform this standardization.

**See Also**

`procrustes`

**Related Examples**

• “Compare Handwritten Shapes Using Procrustes Analysis” on page 15-63
Compare Handwritten Shapes Using Procrustes Analysis

This example shows how to use Procrustes analysis to compare two handwritten number threes. Visually and analytically explore the effects of forcing size and reflection changes.

**Load and Display the Original Data**

Input landmark data for two handwritten number threes.

```matlab
A = [11 39; 17 42; 25 42; 25 40; 23 36; 19 35; 30 34; 35 29; 30 20; 18 19];
B = [15 31; 20 37; 30 40; 29 35; 25 29; 29 31; 31 31; 35 20; 29 10; 25 18];
```

Create X and Y from A and B, moving B to the side to make each shape more visible.

```matlab
X = A;
Y = B + repmat([25 0], 10,1);
```

Plot the shapes, using letters to designate the landmark points. Lines in the figure join the points to indicate the drawing path of each shape.

```matlab
plot(X(:,1), X(:,2), 'r-', Y(:,1), Y(:,2), 'b-');
text(X(:,1), X(:,2), ('abcdefghij'));
text(Y(:,1), Y(:,2), ('abcdefghij'))
legend('X = Target', 'Y = Comparison', 'location', 'SE')
xlim([0 65]);
ylim([0 55]);
```
Calculate the Best Transformation

Use Procrustes analysis to find the transformation that minimizes distances between landmark data points.

\[
[d,Z,tr] = \text{procrustes}(X,Y);
\]

The outputs of the function are \(d\) (a standardized dissimilarity measure), \(Z\) (a matrix of the transformed landmarks), and \(tr\) (a structure array of the computed transformation with fields \(T\), \(b\), and \(c\) which correspond to the transformation equation).

Visualize the transformed shape, \(Z\), using a dashed blue line.

\[
\text{plot}(X(:,1), X(:,2), 'r-', Y(:,1), Y(:,2), 'b-',... Z(:,1),Z(:,2),'b:');
\]
Examine the Similarity of the Two Shapes

Use two different numerical values, the dissimilarity measure $d$ and the scaling measure $b$, to assess the similarity of the target shape and the transformed shape.
The dissimilarity measure $d$ gives a number between 0 and 1 describing the difference between the target shape and the transformed shape. Values near 0 imply more similar shapes, while values near 1 imply dissimilarity.

d

d = 0.1502

The small value of $d$ in this case shows that the two shapes are similar. `procrustes` calculates $d$ by comparing the sum of squared deviations between the set of points with the sum of squared deviations of the original points from their column means.

$$\text{numerator} = \text{sum}((X-Z)^2)$$

numerator = 166.5321

denominator = \text{sum}((\text{bsxfun}(@minus,X,\text{mean}(X)))^2)

denominator = 1.1085e+03

ratio = \text{numerator}/\text{denominator}

ratio = 0.1502

The resulting measure $d$ is independent of the scale of the size of the shapes and takes into account only the similarity of landmark data.

Examine the size similarity of the shapes.

$$\text{tr.b}$$

ans = 0.9291

The sizes of the target and comparison shapes in the previous figure appear similar. This visual impression is reinforced by the value of $b = 0.93$, which implies that the best transformation results in shrinking the comparison shape by a factor .93 (only 7%).

**Restrict the Form of the Transformations**

Explore the effects of manually adjusting the scaling and reflection coefficients.

Force $b$ to equal 1 (set 'Scaling' to false) to examine the amount of dissimilarity in size of the target and transformed figures.

ds = procrustes(X,Y,'Scaling',false)
ds = 0.1552

In this case, setting 'Scaling' to false increases the calculated value of d only 0.0049, which further supports the similarity in the size of the two number threes. A larger increase in d would have indicated a greater size discrepancy.

This example requires only a rotation, not a reflection, to align the shapes. You can show this by observing that the determinant of the matrix T is 1 in this analysis.

det(tr.T)

ans = 1.0000

If you need a reflection in the transformation, the determinant of T is -1. You can force a reflection into the transformation as follows.

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);
dr

dr = 0.8130

The d value increases dramatically, indicating that a forced reflection leads to a poor transformation of the landmark points. A plot of the transformed shape shows a similar result.

plot(X(:,1), X(:,2), 'r-', Y(:,1), Y(:,2), 'b-', ...  Zr(:,1),Zr(:,2), 'b-');
text(X(:,1), X(:,2), ('abcdefghij'))
text(Y(:,1), Y(:,2), ('abcdefghij'))
text(Zr(:,1), Zr(:,2), ('abcdefghij'))
legend('X = Target', 'Y = Comparison', ...  'Z = Transformed', 'Location', 'SW')
xlim([0 65]);
ylim([0 55]);
The landmark data points are now further away from their target counterparts. The transformed three is now an undesirable mirror image of the target three.

It appears that the shapes might be better matched if you flipped the transformed shape upside down. Flipping the shapes would make the transformation even worse, however, because the landmark data points would be further away from their target counterparts. From this example, it is clear that manually adjusting the scaling and reflection parameters is generally not optimal.

**See Also**

procrustes
More About

• “Procrustes Analysis” on page 15-61
Feature Selection

In this section...

“Introduction to Feature Selection” on page 15-70
“Sequential Feature Selection” on page 15-70
“Select Subset of Features with Comparative Predictive Power” on page 15-71

Introduction to Feature Selection

Feature selection reduces the dimensionality of data by selecting only a subset of measured features (predictor variables) to create a model. Selection criteria usually involve the minimization of a specific measure of predictive error for models fit to different subsets. Algorithms search for a subset of predictors that optimally model measured responses, subject to constraints such as required or excluded features and the size of the subset.

Feature selection is preferable to feature transformation when the original units and meaning of features are important and the modeling goal is to identify an influential subset. When categorical features are present, and numerical transformations are inappropriate, feature selection becomes the primary means of dimension reduction.

Sequential Feature Selection

A common method of feature selection is sequential feature selection. This method has two components:

- An objective function, called the criterion, which the method seeks to minimize over all feasible feature subsets. Common criteria are mean squared error (for regression models) and misclassification rate (for classification models).
- A sequential search algorithm, which adds or removes features from a candidate subset while evaluating the criterion. Since an exhaustive comparison of the criterion value at all 2^n subsets of an n-feature data set is typically infeasible (depending on the size of n and the cost of objective calls), sequential searches move in only one direction, always growing or always shrinking the candidate set.

The method has two variants:
• Sequential forward selection (SFS), in which features are sequentially added to an empty candidate set until the addition of further features does not decrease the criterion.

• Sequential backward selection (SBS), in which features are sequentially removed from a full candidate set until the removal of further features increase the criterion.

Stepwise regression is a sequential feature selection technique designed specifically for least-squares fitting. The functions stepwise and stepwisefit make use of optimizations that are only possible with least-squares criteria. Unlike generalized sequential feature selection, stepwise regression may remove features that have been added or add features that have been removed.

The Statistics and Machine Learning Toolbox function sequentialfs carries out sequential feature selection. Input arguments include predictor data, response data, and a function handle to a file implementing the criterion function. Optional inputs allow you to specify SFS or SBS, required or excluded features, and the size of the feature subset. The function calls cvpartition and crossval to evaluate the criterion at different candidate sets.

Select Subset of Features with Comparative Predictive Power

Consider a data set with 100 observations of 10 predictors. Generate the random data from a logistic model, with a binomial distribution of responses at each set of values for the predictors. Some coefficients are set to zero so that not all of the predictors affect the response.

rng(456) % Set the seed for reproducibility
n = 100;
m = 10;
X = rand(n,m);
b = [1 0 0 2 .5 0 0 0.1 0 1];
Xb = X*b';
p = 1./(1+exp(-Xb));
N = 50;
y = binornd(N,p);

Fit a logistic model to the data using fitglm.

Y = [y N*ones(size(y))];
model0 = fitglm(X,Y,'Distribution','binomial')

model0 =
Generalized linear regression model:

Y ~ predictors

Distribution = Binomial
Link = logit
Coefficient estimates:

  Estimate  SE       tStat    pValue
  ______    ____    ________    ______
  (Intercept)    0.6000 0.2313    2.5905    0.0101
  X1            1.0000 0.4727    2.1145    0.0348
  X2            0.0000 0.4727    0.0000    0.9999
  X3            0.1000 0.4727    0.2121    0.8312
  X4            1.1000 0.4727    2.3503    0.0185
  X5            0.1000 0.4727    0.2121    0.8312
  X6            2.0000 0.4727    4.2600    0.0000
  X7            0.0000 0.4727    0.0000    0.9999
  X8            0.1000 0.4727    0.2121    0.8312
  X9            0.1000 0.4727    0.2121    0.8312
  X10           0.0000 0.4727    0.0000    0.9999

Deviance: 335.883  Residual deviance: 286.025  Number of observations: 100
logit(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.22474</td>
<td>0.30043</td>
<td>0.74806</td>
<td>0.45443</td>
</tr>
<tr>
<td>x1</td>
<td>0.68782</td>
<td>0.17207</td>
<td>3.9973</td>
<td>6.408e-05</td>
</tr>
<tr>
<td>x2</td>
<td>0.2003</td>
<td>0.18087</td>
<td>1.1074</td>
<td>0.26811</td>
</tr>
<tr>
<td>x3</td>
<td>-0.055328</td>
<td>0.18871</td>
<td>-0.29319</td>
<td>0.76937</td>
</tr>
<tr>
<td>x4</td>
<td>2.2576</td>
<td>0.1813</td>
<td>12.452</td>
<td>1.3566e-35</td>
</tr>
<tr>
<td>x5</td>
<td>0.54603</td>
<td>0.16836</td>
<td>3.2432</td>
<td>0.0011821</td>
</tr>
<tr>
<td>x6</td>
<td>0.069701</td>
<td>0.17738</td>
<td>0.39294</td>
<td>0.69437</td>
</tr>
<tr>
<td>x7</td>
<td>-0.22562</td>
<td>0.16957</td>
<td>-1.3306</td>
<td>0.18334</td>
</tr>
<tr>
<td>x8</td>
<td>-0.19712</td>
<td>0.17317</td>
<td>-1.1383</td>
<td>0.25498</td>
</tr>
<tr>
<td>x9</td>
<td>-0.20373</td>
<td>0.16796</td>
<td>-1.213</td>
<td>0.22514</td>
</tr>
<tr>
<td>x10</td>
<td>0.99741</td>
<td>0.17247</td>
<td>5.7832</td>
<td>7.3296e-09</td>
</tr>
</tbody>
</table>

100 observations, 89 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 222, p-value = 4.92e-42

Display the deviance of the fit.

dev0 = model0.Deviance

dev0 = 101.5648

This model is the full model, with all of the features and an initial constant term.
Sequential feature selection searches for a subset of the features in the full model with
comparative predictive power.

Before performing feature selection, you must specify a criterion for selecting the
features. In this case, the criterion is the deviance of the fit (a generalization of the
residual sum of squares). The critfun function (shown at the end of this example) calls
fitglm and returns the deviance of the fit.

If you use the live script file for this example, the critfun function is already included at
the end of the file. Otherwise, you need to create this function at the end of your .m file or
add it as a file on the MATLAB path.

Perform feature selection. sequentialfs calls the criterion function via a function
handle.
maxdev = chi2inv(.95,1);
opt = statset('display','iter',...  
'TolFun',maxdev,...
'TolTypeFun','abs');

inmodel = sequentialfs(@critfun,X,Y,...  
'cv','none',...
'nullmodel',true,...
'options',opt,...
'direction','forward');

Start forward sequential feature selection:
Initial columns included:  none
Columns that can not be included:  none
Step 1, used initial columns, criterion value 323.173
Step 2, added column 4, criterion value 184.794
Step 3, added column 10, criterion value 139.176
Step 4, added column 1, criterion value 119.222
Step 5, added column 5, criterion value 107.281
Final columns included:  1 4 5 10

The iterative display shows a decrease in the criterion value as each new feature is added to the model. The final result is a reduced model with only four of the original ten features: columns 1, 4, 5, and 10 of X, as indicated in the logical vector inmodel returned by sequentialfs.

The deviance of the reduced model is higher than the deviance of the full model. However, the addition of any other single feature would not decrease the criterion value by more than the absolute tolerance, maxdev, set in the options structure. Adding a feature with no effect reduces the deviance by an amount that has a chi-square distribution with one degree of freedom. Adding a significant feature results in a larger change in the deviance. By setting maxdev to chi2inv(.95,1), you instruct sequentialfs to continue adding features provided that the change in deviance is more than the change expected by random chance.

Create the reduced model with an initial constant term.

model = fitglm(X(:,inmodel),Y,'Distribution','binomial')

model = 
Generalized linear regression model:
  logit(y) ~ 1 + x1 + x2 + x3 + x4
  Distribution = Binomial
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.0052025</td>
<td>0.16772</td>
<td>-0.031018</td>
<td>0.97525</td>
</tr>
<tr>
<td>x1</td>
<td>0.73814</td>
<td>0.16316</td>
<td>4.5241</td>
<td>6.0666e-06</td>
</tr>
<tr>
<td>x2</td>
<td>2.2139</td>
<td>0.17402</td>
<td>12.722</td>
<td>4.4369e-37</td>
</tr>
<tr>
<td>x3</td>
<td>0.54073</td>
<td>0.1568</td>
<td>3.4485</td>
<td>0.00056361</td>
</tr>
<tr>
<td>x4</td>
<td>1.0694</td>
<td>0.15916</td>
<td>6.7191</td>
<td>1.8288e-11</td>
</tr>
</tbody>
</table>

100 observations, 95 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 216, p-value = 1.44e-45

This code creates the function `critfun`.

```matlab
function dev = critfun(X,Y)
model = fitglm(X,Y,'Distribution','binomial');
dev = model.Deviance;
end
```

See Also

`sequentialfs`
Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. Besides providing a reduction in the number of features, NMF guarantees that the features are nonnegative, producing additive models that respect, for example, the nonnegativity of physical quantities.

Given a nonnegative $m$-by-$n$ matrix $X$ and a positive integer $k < \min(m,n)$, NMF finds nonnegative $m$-by-$k$ and $k$-by-$n$ matrices $W$ and $H$, respectively, that minimize the norm of the difference $X - WH$. $W$ and $H$ are thus approximate nonnegative factors of $X$.

The $k$ columns of $W$ represent transformations of the variables in $X$; the $k$ rows of $H$ represent the coefficients of the linear combinations of the original $n$ variables in $X$ that produce the transformed variables in $W$. Since $k$ is generally smaller than the rank of $X$, the product $WH$ provides a compressed approximation of the data in $X$. A range of possible values for $k$ is often suggested by the modeling context.

The Statistics and Machine Learning Toolbox function `nnmf` carries out nonnegative matrix factorization. `nnmf` uses one of two iterative algorithms that begin with random initial values for $W$ and $H$. Because the norm of the residual $X - WH$ may have local minima, repeated calls to `nnmf` may yield different factorizations. Sometimes the algorithm converges to a solution of lower rank than $k$, which may indicate that the result is not optimal.

See Also

`nnmf`

Related Examples

- “Perform Nonnegative Matrix Factorization” on page 15-76
Perform Nonnegative Matrix Factorization

This example shows how to perform nonnegative matrix factorization.

Load the sample data.

```matlab
load moore
X = moore(:,1:5);
rng('default'); % For reproducibility
```

Compute a rank-two approximation of `X` using a multiplicative update algorithm that begins from five random initial values for `W` and `H`.

```matlab
opt = statset('MaxIter',10,'Display','final');
[W0,H0] = nnmf(X,2,'replicates',5,'options',opt,'algorithm','mult');
```

```
rep iteration rms resid |delta x|
1 10 358.296 0.00190554
2 10 78.3556 0.000351747
3 10 230.962 0.0172839
4 10 326.347 0.00739552
5 10 361.547 0.00705539
```

Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good choice when using 'replicates' to find `W` and `H` from multiple random starting values.

Now perform the factorization using alternating least-squares algorithm, which converges faster and more consistently. Run 100 times more iterations, beginning from the initial `W0` and `H0` identified above.

```matlab
opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'w0',W0,'h0',H0,'options',opt,'algorithm','als');
```

```
rep iteration rms resid |delta x|
1 2 77.5315 0.000830334
```

Final root mean square residual = 77.5315

The two columns of `W` are the transformed predictors. The two rows of `H` give the relative contributions of each of the five predictors in `X` to the predictors in `W`. Display `H`.

```matlab
H
```

```
H = 2×5
```
The fifth predictor in $X$ (weight 0.9802) strongly influences the first predictor in $W$. The third predictor in $X$ (weight 0.9969) strongly influences the second predictor in $W$.

Visualize the relative contributions of the predictors in $X$ with biplot, showing the data and original variables in the column space of $W$.

```matlab
biplot(H,'scores',W,'varlabels',{'','','v3','','v5'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')
```
See Also

nnmf

More About

• “Nonnegative Matrix Factorization” on page 15-75
Principal Component Analysis (PCA)

One of the difficulties inherent in multivariate statistics is the problem of visualizing data that has many variables. The MATLAB function `plot` displays a graph of the relationship between two variables. The `plot3` and `surf` commands display different three-dimensional views. But when there are more than three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together. One reason for this is that more than one variable might be measuring the same driving principle governing the behavior of the system. In many systems there are only a few such driving forces. But an abundance of instrumentation enables you to measure dozens of system variables. When this happens, you can take advantage of this redundancy of information. You can simplify the problem by replacing a group of variables with a single new variable.

Principal component analysis is a quantitatively rigorous method for achieving this simplification. The method generates a new set of variables, called principal components. Each principal component is a linear combination of the original variables. All the principal components are orthogonal to each other, so there is no redundant information. The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that axis, the resulting values form a new variable. And the variance of this variable is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates another new variable. The variance of this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it is commonplace for the sum of the variances of the first few principal components to exceed 80% of the total variance of the original data. By examining plots of these few new variables, researchers often develop a deeper understanding of the driving forces that generated the original data.

You can use the function `pca` to find the principal components. To use `pca`, you need to have the actual measured data you want to analyze. However, if you lack the actual data,
but have the sample covariance or correlation matrix for the data, you can still use the function `pcacov` to perform a principal components analysis. See the reference page for `pcacov` for a description of its inputs and outputs.

**See Also**

`pca` | `pcacov` | `pcares` | `ppca`

**Related Examples**

- “Analyze Quality of Life in U.S. Cities Using PCA” on page 15-81
Analyze Quality of Life in U.S. Cities Using PCA

This example shows how to perform a weighted principal components analysis and interpret the results.

Load sample data.

Load the sample data. The data includes ratings for 9 different indicators of the quality of life in 329 U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and economics. For each category, a higher rating is better. For example, a higher rating for crime means a lower crime rate.

Display the categories variable.

load cities

categories

categories =
climate
housing
health
crime
transportation
education
arts
recreation
economics

In total, the cities data set contains three variables:

- categories, a character matrix containing the names of the indices
- names, a character matrix containing the 329 city names
- ratings, the data matrix with 329 rows and 9 columns

Plot data.

Make a boxplot to look at the distribution of the ratings data.

figure()

boxplot(ratings,'Orientation','horizontal','Labels',categories)
There is more variability in the ratings of the arts and housing than in the ratings of crime and climate.

**Check pairwise correlation.**

Check the pairwise correlation between the variables.

\[ C = \text{corr(ratings, ratings)}; \]

The correlation among some variables is as high as 0.85. Principal components analysis constructs independent new variables which are linear combinations of the original variables.

**Compute principal components.**

When all variables are in the same unit, it is appropriate to compute principal components for raw data. When the variables are in different units or the difference in the
variance of different columns is substantial (as in this case), scaling of the data or use of weights is often preferable.

Perform the principal component analysis by using the inverse variances of the ratings as weights.

\[ w = 1./\text{var}(\text{ratings}); \]
\[ [\text{wcoeff}, \text{score}, \text{latent}, \text{tsquared}, \text{explained}] = \text{pca}(\text{ratings},... \]
\[ '\text{VariableWeights}', w); \]

Or equivalently:

\[ [\text{wcoeff}, \text{score}, \text{latent}, \text{tsquared}, \text{explained}] = \text{pca}(\text{ratings},... \]
\[ '\text{VariableWeights}', '\text{variance}'); \]

The following sections explain the five outputs of `pca`.

**Component coefficients.**

The first output, \( \text{wcoeff} \), contains the coefficients of the principal components.

The first three principal component coefficient vectors are:

\[ c3 = \text{wcoeff}(\:,1:3) \]
\[ c3 = \text{wcoeff}(\:,1:3) \]
\[ c3 = \]
\[
1.0e+03 * \\
0.0249  -0.0263  -0.0834 \\
0.8504  -0.5978  -0.4965 \\
0.4616   0.3004  -0.0073 \\
0.1005  -0.1269  0.0661 \\
0.5096   0.2606  0.2124 \\
0.0883   0.1551  0.0737 \\
2.1496   0.9043  -0.1229 \\
0.2649  -0.3106  -0.0411 \\
0.1469  -0.5111  0.6586 \\
\]

These coefficients are weighted, hence the coefficient matrix is not orthonormal.

**Transform coefficients.**

Transform the coefficients so that they are orthonormal.
coefforth = inv(diag(std(ratings)))*wcoeff;

Note that if you use a weights vector, w, while conducting the pca, then

coefforth = diag(sqrt(w))*wcoeff;

**Check coefficients are orthonormal.**

The transformed coefficients are now orthonormal.

I = coefforth'*coefforth;
I(1:3,1:3)

ans =
  1.0000   -0.0000   -0.0000
 -0.0000    1.0000   -0.0000
 -0.0000   -0.0000    1.0000

**Component scores.**

The second output, score, contains the coordinates of the original data in the new coordinate system defined by the principal components. The score matrix is the same size as the input data matrix. You can also obtain the component scores using the orthonormal coefficients and the standardized ratings as follows.

cscores = zscore(ratings)*coefforth;

cscores and score are identical matrices.

**Plot component scores.**

Create a plot of the first two columns of score.

figure()
plot(score(:,1),score(:,2),'+')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
This plot shows the centered and scaled ratings data projected onto the first two principal components. `pca` computes the scores to have mean zero.

**Explore plot interactively.**

Note the outlying points in the right half of the plot. You can graphically identify these points as follows.

`gname`

Move your cursor over the plot and click once near the rightmost seven points. This labels the points by their row numbers as in the following figure.
After labeling points, press **Return**.

**Extract observation names.**

Create an index variable containing the row numbers of all the cities you chose and get the names of the cities.

```matlab
metro = [43 65 179 213 234 270 314];
names(metro,:)
```

```matlab
tmp = names(metro,:);
ans =
 Boston, MA
 Chicago, IL
 Los Angeles, Long Beach, CA
```
New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

These labeled cities are some of the biggest population centers in the United States and they appear more extreme than the remainder of the data.

**Component variances.**

The third output, \texttt{latent}, is a vector containing the variance explained by the corresponding principal component. Each column of \texttt{score} has a sample variance equal to the corresponding row of \texttt{latent}.

\[
\text{latent} =
\begin{array}{l}
3.4083 \\
1.2140 \\
1.1415 \\
0.9209 \\
0.7533 \\
0.6306 \\
0.4930 \\
0.3180 \\
0.1204 \\
\end{array}
\]

**Percent variance explained.**

The fifth output, \texttt{explained}, is a vector containing the percent variance explained by the corresponding principal component.

\[
\text{explained} =
\begin{array}{l}
37.8699 \\
13.4886 \\
12.6831 \\
10.2324 \\
8.3698 \\
7.0062 \\
5.4783 \\
\end{array}
\]
Create scree plot.

Make a scree plot of the percent variability explained by each principal component.

```matlab
figure()
pareto(explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')
```

This scree plot only shows the first seven (instead of the total nine) components that explain 95% of the total variance. The only clear break in the amount of variance
accounted for by each component is between the first and second components. However, the first component by itself explains less than 40% of the variance, so more components might be needed. You can see that the first three principal components explain roughly two-thirds of the total variability in the standardized ratings, so that might be a reasonable way to reduce the dimensions.

**Hotelling's T-squared statistic.**

The last output from `pca` is `tsquared`, which is Hotelling's $T^2$, a statistical measure of the multivariate distance of each observation from the center of the data set. This is an analytical way to find the most extreme points in the data.

```matlab
[st2,index] = sort(tquared,'descend'); % sort in descending order
extreme = index(1);
names(extreme,:)
ans =
New York, NY
```

The ratings for New York are the furthest from the average U.S. city.

**Visualize the results.**

Visualize both the orthonormal principal component coefficients for each variable and the principal component scores for each observation in a single plot.

```matlab
biplot(coefforth(:,1:2),'Scores',score(:,1:2),'Varlabels',categories);
axis([-0.26 0.6 -.51 .51]);
```
All nine variables are represented in this bi-plot by a vector, and the direction and length of the vector indicate how each variable contributes to the two principal components in the plot. For example, the first principal component, on the horizontal axis, has positive coefficients for all nine variables. That is why the nine vectors are directed into the right half of the plot. The largest coefficients in the first principal component are the third and seventh elements, corresponding to the variables health and arts.

The second principal component, on the vertical axis, has positive coefficients for the variables education, health, arts, and transportation, and negative coefficients for the remaining five variables. This indicates that the second component distinguishes among cities that have high values for the first set of variables and low for the second, and cities that have the opposite.
The variable labels in this figure are somewhat crowded. You can either exclude the `VarLabels` name-value pair argument when making the plot, or select and drag some of the labels to better positions using the Edit Plot tool from the figure window toolbar.

This 2-D bi-plot also includes a point for each of the 329 observations, with coordinates indicating the score of each observation for the two principal components in the plot. For example, points near the left edge of this plot have the lowest scores for the first principal component. The points are scaled with respect to the maximum score value and maximum coefficient length, so only their relative locations can be determined from the plot.

You can identify items in the plot by selecting **Tools>Data Cursor** in the figure window. By clicking a variable (vector), you can read the variable label and coefficients for each principal component. By clicking an observation (point), you can read the observation name and scores for each principal component. You can specify `Obslabels`, `names` to show the observation names instead of the observation numbers in the data cursor display.

**Create a three-dimensional bi-plot.**

You can also make a bi-plot in three dimensions.

```matlab
figure()
biplot(coefforth(:,1:3),'Scores',score(:,1:3),'Obslabels',names);
axis([-0.26 0.8 -.51 .51 -.61 .81]);
view([30 40]);
```
This graph is useful if the first two principal coordinates do not explain enough of the variance in your data. You can also rotate the figure to see it from different angles by selecting the **Tools** > **Rotate 3D**.

### See Also
- biplot
- boxplot
- pca
- pcacov
- pcares
- ppca

### More About
- "Principal Component Analysis (PCA)" on page 15-79
Factor Analysis

Multivariate data often includes a large number of measured variables, and sometimes those variables overlap, in the sense that groups of them might be dependent. For example, in a decathlon, each athlete competes in 10 events, but several of them can be thought of as speed events, while others can be thought of as strength events, etc. Thus, you can think of a competitor's 10 event scores as largely dependent on a smaller set of three or four types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort of interdependence. In a factor analysis model, the measured variables depend on a smaller number of unobserved (latent) factors. Because each factor might affect several variables in common, they are known as common factors. Each variable is assumed to be dependent on a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as specific variance because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the form

\[
\Sigma_x = \Lambda \Lambda^T + \Psi
\]

where \( \Lambda \) is the matrix of loadings, and the elements of the diagonal matrix \( \Psi \) are the specific variances. The function \texttt{factoran} fits the Factor Analysis model using maximum likelihood.

See Also

\texttt{factoran}

Related Examples

- “Analyze Stock Prices Using Factor Analysis” on page 15-94
Analyze Stock Prices Using Factor Analysis

This example shows how to analyze if companies within the same sector experience similar week-to-week changes in stock price.

**Factor Loadings**

Load the sample data.

```matlab
load stockreturns
```

Suppose that over the course of 100 weeks, the percent change in stock prices for ten companies has been recorded. Of the ten companies, the first four can be classified as primarily technology, the next three as financial, and the last three as retail. It seems reasonable that the stock prices for companies that are in the same sector might vary together as economic conditions change. Factor analysis can provide quantitative evidence.

First specify a model fit with three common factors. By default, `factoran` computes rotated estimates of the loadings to try and make their interpretation simpler. But in this example, specify an unrotated solution.

```matlab
[Loadings,specificVar,T,stats] = factoran(stocks,3,'rotate','none');
```

The first two `factoran` output arguments are the estimated loadings and the estimated specific variances. Each row of the loadings matrix represents one of the ten stocks, and each column corresponds to a common factor. With unrotated estimates, interpretation of the factors in this fit is difficult because most of the stocks contain fairly large coefficients for two or more factors.

**Loadings**

```matlab
Loadings = 10x3

0.8885 0.2367 -0.2354
0.7126 0.3862 0.0034
0.3351 0.2784 -0.0211
0.3088 0.1113 -0.1905
0.6277 -0.6643 0.1478
0.4726 -0.6383 0.0133
0.1133 -0.5416 0.0322
0.6403 0.1669 0.4960
0.2363 0.5293 0.5770
```

15-94
Factor rotation helps to simplify the structure in the Loadings matrix, to make it easier to assign meaningful interpretations to the factors.

From the estimated specific variances, you can see that the model indicates that a particular stock price varies quite a lot beyond the variation due to the common factors. Display estimated specific variances.

\[
\text{specificVar} = \begin{bmatrix}
0.0991 \\
0.3431 \\
0.8097 \\
0.8559 \\
0.1429 \\
0.3691 \\
0.6928 \\
0.3162 \\
0.3311 \\
0.6544 \\
\end{bmatrix}
\]

A specific variance of 1 would indicate that there is no common factor component in that variable, while a specific variance of 0 would indicate that the variable is entirely determined by common factors. These data seem to fall somewhere in between.

Display the \( p \)-value.

\[
\text{stats.p} = 0.8144
\]

The \( p \)-value returned in the \text{stats} structure fails to reject the null hypothesis of three common factors, suggesting that this model provides a satisfactory explanation of the covariation in these data.

Fit a model with two common factors to determine whether fewer than three factors can provide an acceptable fit.

\[
[\text{Loadings2, specificVar2, T2, stats2}] = \text{factoran(stocks, 2, 'rotate', 'none')};
\]
Display the p-value.

\[
\text{stats2.p}
\]

\[
\text{ans} = 3.5610\times10^{-06}
\]

The p-value for this second fit is highly significant, and rejects the hypothesis of two factors, indicating that the simpler model is not sufficient to explain the pattern in these data.

**Factor Rotation**

As the results illustrate, the estimated loadings from an unrotated factor analysis fit can have a complicated structure. The goal of factor rotation is to find a parameterization in which each variable has only a small number of large loadings. That is, each variable is affected by a small number of factors, preferably only one. This can often make it easier to interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point in M-dimensional space, then each factor corresponds to a coordinate axis. Factor rotation is equivalent to rotating those axes and computing new loadings in the rotated coordinate system. There are various ways to do this. Some methods leave the axes orthogonal, while others are oblique methods that change the angles between them. For this example, you can rotate the estimated loadings by using the promax criterion, a common oblique method.

\[
[\text{LoadingsPM,specVarPM}] = \text{factoran(stocks,3,'rotate','promax')};
\]

\[
\text{LoadingsPM}
\]

\[
\begin{array}{ccc}
0.9452 & 0.1214 & -0.0617 \\
0.7064 & -0.0178 & 0.2058 \\
0.3885 & -0.0994 & 0.0975 \\
0.4162 & -0.0148 & -0.1298 \\
0.1021 & 0.9019 & 0.0768 \\
0.0873 & 0.7709 & -0.0821 \\
-0.1616 & 0.5320 & -0.0888 \\
0.2169 & 0.2844 & 0.6635 \\
0.0016 & -0.1881 & 0.7849 \\
-0.2289 & 0.0636 & 0.6475 \\
\end{array}
\]
Promax rotation creates a simpler structure in the loadings, one in which most of the stocks have a large loading on only one factor. To see this structure more clearly, you can use the biplot function to plot each stock using its factor loadings as coordinates.

```matlab
biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);
```

This plot shows that promax has rotated the factor loadings to a simpler structure. Each stock depends primarily on only one factor, and it is possible to describe each factor in terms of the stocks that it affects. Based on which companies are near which axes, you could reasonably conclude that the first factor axis represents the financial sector, the
second retail, and the third technology. The original conjecture, that stocks vary primarily within sector, is apparently supported by the data.

**Factor Scores**

Sometimes, it is useful to be able to classify an observation based on its factor scores. For example, if you accepted the three-factor model and the interpretation of the rotated factors, you might want to categorize each week in terms of how favorable it was for each of the three stock sectors, based on the data from the 10 observed stocks. Because the data in this example are the raw stock price changes, and not just their correlation matrix, you can have factoran return estimates of the value of each of the three rotated common factors for each week. You can then plot the estimated scores to see how the different stock sectors were affected during each week.

```matlab
[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,'rotate','promax');
plot3(F(:,1),F(:,2),F(:,3),'b.'
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],[0 0 NaN 0 0 NaN -4 4], 'Color','black'
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
grid on
axis square
view(-22.5, 8)
```
Oblique rotation often creates factors that are correlated. This plot shows some evidence of correlation between the first and third factors, and you can investigate further by computing the estimated factor correlation matrix.

\[ \text{inv}(TPM'\times TPM); \]

**Visualize the Results**

You can use the biplot function to help visualize both the factor loadings for each variable and the factor scores for each observation in a single plot. For example, the following command plots the results from the factor analysis on the stock data and labels each of the 10 stocks.
biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
axis square
view(155,27)

In this case, the factor analysis includes three factors, and so the biplot is three-dimensional. Each of the 10 stocks is represented in this plot by a vector, and the direction and length of the vector indicates how each stock depends on the underlying factors. For example, you have seen that after promax rotation, the first four stocks have positive loadings on the first factor, and unimportant loadings on the other two factors. That first factor, interpreted as a financial sector effect, is represented in this biplot as
one of the horizontal axes. The dependence of those four stocks on that factor corresponds to the four vectors directed approximately along that axis. Similarly, the dependence of stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their locations indicate the score of each observation for the three factors. For example, points near the top of this plot have the highest scores for the technology sector factor. The points are scaled to fit within the unit square, so only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window to identify the items in this plot. By clicking a stock (vector), you can read off that stock's loadings for each factor. By clicking an observation (point), you can read off that observation's scores for each factor.
Perform feature selection that is robust to outliers using a custom robust loss function in NCA.

**Generate data with outliers**

Generate sample data for regression where the response depends on three of the predictors, namely predictors 4, 7, and 13.

```matlab
rng(123,'twister'); % For reproducibility
n = 200;
X = randn(n,20);
y = cos(X(:,7)) + sin(X(:,4).*X(:,13)) + 0.1*randn(n,1);
```

Add outliers to data.

```matlab
numoutliers = 25;
outlieridx = floor(linspace(10,90,numoutliers));
y(outlieridx) = 5*randn(numoutliers,1);
```

Plot the data.

```matlab
figure;
plot(y);
```
Use non-robust loss function

The performance of the feature selection algorithm highly depends on the value of the regularization parameter. It is a good practice to tune the regularization parameter for the best value to use in feature selection. Tune the regularization parameter using five-fold cross validation. Use the mean squared error (mse):

$$mse = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_j)^2$$

First, partition the data into five folds. In each fold, the software uses 4/5th of the data for training and 1/5th of the data for validation (testing).
cvp = cvpartition(length(y),'kfold',5);
numtestsets = cvp.NumTestSets;

Compute the lambda values to test for and create an array to store the loss values.

lambdavals = linspace(0,3,50)*std(y)/length(y);
lossvals = zeros(length(lambdavals),numtestsets);

Perform NCA and compute the loss for each \( \lambda \) value and each fold.

\[
\text{for } i = 1:length(lambdavals) \\
\quad \text{for } k = 1:numtestsets \\
\qquad Xtrain = X(cvp\text{.training}(k),:);
\qquad ytrain = y(cvp\text{.training}(k),:);
\qquad Xtest = X(cvp\text{.test}(k),:);
\qquad ytest = y(cvp\text{.test}(k),:);
\qquad nca = fsrnca(Xtrain,ytrain,'FitMethod','exact',...
\qquad \quad 'Solver','lbfgs','Verbose',0,'Lambda',lambdavals(i),...
\qquad \quad 'LossFunction','mse');
\qquad lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
\quad \text{end}
\text{end}
\]

Plot the mean loss corresponding to each lambda value.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
Find the $\lambda$ value that produces the minimum average loss.

\[
[~,\text{idx}] = \min(\text{mean(lossvals,2)});
\]

\[
\text{bestlambda} = \text{lambdavals(idx)}
\]

\[
\text{bestlambda} =
\]

\[
0.0231
\]

Perform feature selection using the best $\lambda$ value and mse.

\[
\text{nca} = \text{fsrnca}(X,y,\text{'FitMethod','exact','Solver','lbfgs',...\text{'Verbose','1,'Lambda',bestlambda,'LossFunction','mse'});}
\]
o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

ITER	FUN VALUE	NORM GRAD	NORM STEP	CURV	GAMMA	ALPHA	ACCEPT
===============================================	============	------------	------------	--------	-------------	-------------	--------
0	6.414642e+00	8.430e-01	0.000e+00		7.117e-01	0.000e+00	YES
1	6.066100e+00	9.952e-01	1.264e+00	OK	3.741e-01	1.000e+00	YES
2	5.498221e+00	4.267e-01	4.250e-01	OK	4.016e-01	1.000e+00	YES
3	5.108548e+00	9.352e-01	9.352e-01	OK	8.798e-01	1.000e+00	YES
4	4.808456e+00	2.505e-01	9.352e-01	OK	8.798e-01	1.000e+00	YES
5	4.677389e+00	2.085e-01	6.014e-01	OK	1.052e+00	1.000e+00	YES
6	4.487789e+00	4.726e-01	7.374e-01	OK	5.593e-01	1.000e+00	YES
7	4.310099e+00	2.484e-01	4.253e-01	OK	3.367e-01	1.000e+00	YES
8	4.258539e+00	3.629e-01	4.521e-01	OK	4.705e-01	5.000e-01	YES
9	4.175345e+00	1.972e-01	2.608e-01	OK	4.018e-01	1.000e+00	YES
10	4.122340e+00	9.169e-02	2.947e-01	OK	3.487e-01	1.000e+00	YES
11	4.095525e+00	9.798e-02	2.529e-01	OK	1.188e+00	1.000e+00	YES
12	4.059690e+00	1.584e-01	5.213e-01	OK	9.930e-01	1.000e+00	YES
13	4.029208e+00	7.411e-02	2.076e-01	OK	4.886e-01	1.000e+00	YES
14	4.016358e+00	1.068e-01	2.696e-01	OK	6.919e-01	1.000e+00	YES
15	4.010368e+00	1.568e-01	1.293e-01	OK	9.930e-01	1.000e+00	YES
16	3.986929e+00	8.248e-02	2.892e-01	OK	1.040e+00	1.000e+00	YES
17	3.945475e+00	3.119e-02	1.698e-01	OK	1.095e+00	1.000e+00	YES
18	3.941567e+00	2.350e-02	1.293e-01	OK	1.117e-01	1.000e+00	YES
19	3.939468e+00	1.296e-02	1.805e-01	OK	2.287e+00	1.000e+00	YES
20	3.938662e+00	8.591e-03	5.955e-02	OK	1.553e+00	1.000e+00	YES
21	3.938239e+00	6.421e-03	5.334e-02	OK	1.102e+00	1.000e+00	YES
22	3.938013e+00	4.966e-03	2.213e-01	OK	7.668e-01	1.000e+00	YES
23	3.937896e+00	2.497e-03	1.293e-01	OK	7.940e-01	1.000e+00	YES
24	3.937820e+00	2.044e-03	1.339e-02	OK	1.863e+00	1.000e+00	YES
25	3.937784e+00	2.448e-03	1.265e-02	OK	9.667e-01	1.000e+00	YES
26	3.937778e+00	6.973e-04	2.906e-03	OK	4.672e-01	1.000e+00	YES
27	3.937777e+00	3.038e-04	9.502e-04	OK	1.060e+00	1.000e+00	YES

ITER	FUN VALUE	NORM GRAD	NORM STEP	CURV	GAMMA	ALPHA	ACCEPT
===============================================	============	------------	------------	--------	-------------	-------------	--------
28	3.937777e+00	2.327e-04	1.069e-03	OK	1.597e+00	1.000e+00	YES

15-106
<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>3.937777e+00</td>
<td>1.959e-04</td>
<td>1.537e-03</td>
<td>OK</td>
<td>4.026e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>35</td>
<td>3.937777e+00</td>
<td>1.162e-04</td>
<td>1.464e-03</td>
<td>OK</td>
<td>3.418e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>36</td>
<td>3.937777e+00</td>
<td>8.353e-05</td>
<td>3.660e-04</td>
<td>OK</td>
<td>7.304e-01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>37</td>
<td>3.937777e+00</td>
<td>1.412e-05</td>
<td>1.412e-04</td>
<td>OK</td>
<td>7.842e-01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>38</td>
<td>3.937777e+00</td>
<td>1.277e-05</td>
<td>3.808e-05</td>
<td>OK</td>
<td>1.021e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>39</td>
<td>3.937777e+00</td>
<td>8.614e-06</td>
<td>3.698e-05</td>
<td>OK</td>
<td>2.561e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

<p>|====================================================================================================|</p>
<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3.937777e+00</td>
<td>3.159e-06</td>
<td>5.299e-05</td>
<td>OK</td>
<td>4.331e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>41</td>
<td>3.937777e+00</td>
<td>2.657e-06</td>
<td>1.080e-05</td>
<td>OK</td>
<td>7.038e-01</td>
<td>5.000e-01</td>
<td>YES</td>
</tr>
<tr>
<td>42</td>
<td>3.937777e+00</td>
<td>7.054e-07</td>
<td>7.036e-06</td>
<td>OK</td>
<td>9.519e-01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 7.054e-07
Two norm of the final step     = 7.036e-06, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 7.054e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot selected features.

```matlab
figure;
plot(nca.FeatureWeights,'ro');
grid on;
xlabel('Feature index');
ylabel('Feature weight');
```
Predict the response values using the nca model and plot the fitted (predicted) response values and the actual response values.

```matlab
fitted = predict(nca,X);
figure;
plot(y,'r.');
hold on;
plot(fitted,'b-');
xlabel('index');
ylabel('Fitted values');
```
fsrnca tries to fit every point in data including the outliers. As a result it assigns nonzero weights to many features besides predictors 4, 7, and 13.

**Use built-in robust loss function**

Repeat the same process of tuning the regularization parameter, this time using the built-in $\epsilon$-insensitive loss function:

$$l(y_i, y_j) = \max(0, |y_i - y_j| - \epsilon)$$

$\epsilon$-insensitive loss function is more robust to outliers than mean squared error.

```matlab
lambdavals = linspace(0,3,50)*std(y)/length(y);
cvp = cvpartition(length(y),'kfold',5);
```
numtestsets = cvp.NumTestSets;
lossvals    = zeros(length(lambdavals),numtestsets);

for i = 1:length(lambdavals)
    for k = 1:numtestsets
        Xtrain = X(cvp.training(k),:);
ytrain = y(cvp.training(k),:);
Xtest  = X(cvp.test(k),:);
ytest  = y(cvp.test(k),:);

        nca = fsrnca(Xtrain,ytrain,'FitMethod','exact',...
            'Solver','sgd','Verbose',0,'Lambda',lambdavals(i),...
            'LossFunction','epsiloninsensitive','Epsilon',0.8);

        lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

The \( \epsilon \) value to use depends on the data and the best value can be determined using cross-validation as well. But choosing the \( \epsilon \) value is out of scope of this example. The choice of \( \epsilon \) in this example is mainly for illustrating the robustness of the method.

Plot the mean loss corresponding to each lambda value.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
Find the lambda value that produces the minimum average loss.

\[
[-,\text{idx}] = \text{min}(\text{mean}(<lossvals>,2));
\]
\[
\text{bestlambda} = \text{lambdavals}(\text{idx})
\]

\[
\text{bestlambda} =
\]

\[
0.0187
\]

Fit neighborhood component analysis model using \(\epsilon\)-insensitive loss function and best lambda value.
nca = fsrnca(X,y,'FitMethod','exact','Solver','sgd',...  
    'Lambda',bestlambda,'LossFunction','epsiloninsensitive','Epsilon',0.8);

Plot selected features.

figure;
plot(nca.FeatureWeights,'ro');
grid on;
xlabel('Feature index');
ylabel('Feature weight');

Plot fitted values.

fitted = predict(nca,X);
figure;

	ext{-insensitive loss seems more robust to outliers. It identified fewer features than mse as relevant. The fit shows that it is still impacted by some of the outliers.

**Use custom robust loss function**

Define a custom robust loss function that is robust to outliers to use in feature selection for regression:
\[ f(y_i, y_j) = 1 - \exp(-|y_i, y_j|). \]

customlossFcn = @(yi,yj) 1 - exp(-abs(bsxfun(@minus,yi,yj')));

Tune the regularization parameter using the custom-defined robust loss function.

lambdavals  = linspace(0,3,50)*std(y)/length(y);
cvp         = cvpartition(length(y),'kfold',5);
numtestsets = cvp.NumTestSets;
lossvals    = zeros(length(lambdavals),numtestsets);

    for i = 1:length(lambdavals)
        for k = 1:numtestsets
            Xtrain = X(cvp.training(k),:);
ytrain = y(cvp.training(k),:);
            Xtest  = X(cvp.test(k),:);
ytest  = y(cvp.test(k),:);

            nca = fsrnca(Xtrain,ytrain,'FitMethod','exact',...
                          'Solver','lbfgs','Verbose',0,'Lambda',lambdavals(i),...
                          'LossFunction',customlossFcn);

            lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
        end
    end

Plot the mean loss corresponding to each lambda value.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
Find the \( \lambda \) value that produces the minimum average loss.

\[
[~,\text{idx}] = \min(\text{mean}(\text{lossvals},2));
\]

\[
\text{bestlambda} = \text{lambdavals}(\text{idx})
\]

\[
\text{bestlambda} = 0.0165
\]

Perform feature selection using the custom robust loss function and best \( \lambda \) value.

\[
\text{nca} = \text{fsrnca}(X,y,'\text{FitMethod}','\text{exact}', '\text{Solver}','\text{lbfgs}', ... \\
'\text{Verbose}',1, '\text{Lambda}', \text{bestlambda}, '\text{LossFunction}', \text{customlossFcn});
\]
<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.610073e-01</td>
<td>4.921e-02</td>
<td>0.000e+00</td>
<td></td>
<td>1.219e+01</td>
<td>0.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>6.582278e-01</td>
<td>2.328e-02</td>
<td>1.820e+00</td>
<td>OK</td>
<td>2.177e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>5.706490e-01</td>
<td>2.241e-02</td>
<td>7.583e-01</td>
<td>OK</td>
<td>1.092e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>5.677090e-01</td>
<td>2.666e-02</td>
<td>2.360e+00</td>
<td>OK</td>
<td>2.541e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>5.620806e-01</td>
<td>5.524e-03</td>
<td>3.335e-01</td>
<td>OK</td>
<td>9.973e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>5.616054e-01</td>
<td>1.428e-03</td>
<td>1.025e-01</td>
<td>OK</td>
<td>1.736e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>5.614779e-01</td>
<td>4.446e-04</td>
<td>8.350e-02</td>
<td>OK</td>
<td>2.507e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>5.614653e-01</td>
<td>4.118e-04</td>
<td>2.466e-02</td>
<td>OK</td>
<td>2.105e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>5.614620e-01</td>
<td>1.307e-04</td>
<td>1.373e-02</td>
<td>OK</td>
<td>2.002e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>5.614615e-01</td>
<td>9.318e-05</td>
<td>4.128e-03</td>
<td>OK</td>
<td>3.683e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>10</td>
<td>5.614611e-01</td>
<td>4.579e-05</td>
<td>8.785e-03</td>
<td>OK</td>
<td>6.170e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>11</td>
<td>5.614610e-01</td>
<td>1.232e-05</td>
<td>1.582e-03</td>
<td>OK</td>
<td>2.000e+01</td>
<td>5.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>12</td>
<td>5.614610e-01</td>
<td>3.174e-06</td>
<td>4.742e-04</td>
<td>OK</td>
<td>2.510e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>13</td>
<td>5.614610e-01</td>
<td>7.896e-07</td>
<td>1.683e-04</td>
<td>OK</td>
<td>2.959e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 7.896e-07
Two norm of the final step     = 1.683e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 7.896e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot selected features.

```matlab
figure;
plot(nca.FeatureWeights, 'ro');
grid on;
xlabel('Feature index');
ylabel('Feature weight');
```
Plot fitted values.

```matlab
fitted = predict(nca,X);
figure;
plot(y,'r.');
hold on;
plot(fitted,'b-');
xlabel('index');
ylabel('Fitted values');
```
In this case, the loss is not affected by the outliers and results are based on most of the observation values. `fsrnca` detects the predictors 4, 7, and 13 as relevant features and does not select any other features.

**Why does the loss function choice affect the results?**

First, compute the loss functions for a series of values for the difference between two observations.

```matlab
deltay = linspace(-10,10,1000)';
% Compute custom loss function values
customlossvals = customlossFcn(deltay,0);
% Compute epsilon insensitive loss function and values
epsinsensitive = @(yi,yj,E) max(0,abs(bsxfun(@minus,yi,yj')))-E;
```
epsinsenvals = epsinsensitive(deltay,0,0.5);
% Compute mse loss function and values
mse = @(yi,yj) (yi-yj').^2;
 msevals = mse(deltay,0);

Now, plot the loss functions to see their difference and why they affect the results in the way they do.

figure;
xlabel('(yi - yj)')
ylabel('loss(yi,yj)')
plot(deltay,customlossvals,'g-',deltay,epsinsenvals,'b-',deltay,msevals,'r-')
legend('customloss','epsiloninsensitive','mse')
ylim([0 20])
As the difference between two response values increases, mse increases quadratically, which makes it very sensitive to outliers. As fsrnca tries to minimize this loss, it ends up identifying more features as relevant. The epsilon insensitive loss is more resistant to outliers than mse, but eventually it does start to increase linearly as the difference between two observations increase. As the difference between two observations increase, the robust loss function does approach 1 and stays at that value even though the difference between the observations keeps increasing. Out of three, it is the most robust to outliers.
Neighborhood Component Analysis (NCA) Feature Selection

In this section...

“NCA Feature Selection for Classification” on page 15-121
“NCA Feature Selection for Regression” on page 15-125
“Impact of Standardization” on page 15-127
“Choosing the Regularization Parameter Value” on page 15-127

Neighborhood component analysis (NCA) is a non-parametric and embedded method for selecting features with the goal of maximizing prediction accuracy of regression and classification algorithms. The Statistics and Machine Learning Toolbox functions `fscnca` and `fsrnca` perform NCA feature selection with regularization to learn feature weights for minimization of an objective function that measures the average leave-one-out classification or regression loss over the training data.

NCA Feature Selection for Classification

Consider a multi-class classification problem with a training set containing $n$ observations:

$$S = \{(x_i, y_i), i = 1, 2, ..., n\},$$

where $x_i \in \mathbb{R}^P$ are the feature vectors, $y_i \in \{1, 2, ..., c\}$ are the class labels, and $c$ is the number of classes. The aim is to learn a classifier $f: \mathbb{R}^P \to \{1, 2, ..., c\}$ that accepts a feature vector and makes a prediction $f(x)$ for the true label $y$ of $x$.

Consider a randomized classifier that:

- Randomly picks a point, $\text{Ref}(x)$, from $S$ as the ‘reference point’ for $x$.
- Labels $x$ using the label of the reference point $\text{Ref}(x)$.

This scheme is similar to that of a 1-NN classifier where the reference point is chosen to be the nearest neighbor of the new point $x$. In NCA, the reference point is chosen...
randomly and all points in $S$ have some probability of being selected as the reference point. The probability $P(\text{Ref}(x) = x_j | S)$ that point $x_j$ is picked from $S$ as the reference point for $x$ is higher if $x_j$ is closer to $x$ as measured by the distance function $d_w$, where

$$d_w(x_i, x_j) = \sum_{r=1}^{P} w_r^2 |x_{ir} - x_{jr}|,$$

and $w_r$ are the feature weights. Assume that

$$P(\text{Ref}(x) = x_j | S) \propto k(d_w(x, x_j)),$$

where $k$ is some kernel or a similarity function that assumes large values when $d_w(x, x_j)$ is small. Suppose it is

$$k(z) = \exp\left(-\frac{z}{\sigma}\right),$$

as suggested in [1]. The reference point for $x$ is chosen from $S$, so sum of $P(\text{Ref}(x) = x_j | S)$ for all $j$ must be equal to 1. Therefore, it is possible to write

$$P(\text{Ref}(x) = x_j | S) = \frac{k(d_w(x, x_j))}{\sum_{j=1}^{n} k(d_w(x, x_j))}.$$

Now consider the leave-one-out application of this randomized classifier, that is, predicting the label of $x_i$ using the data in $S^{-i}$, the training set $S$ excluding the point $(x_i, y_i)$. The probability that point $x_j$ is picked as the reference point for $x_i$ is
The average leave-one-out probability of correct classification is the probability $p_i$ that the randomized classifier correctly classifies observation $i$ using $S^{-i}$.

$$p_i = \sum_{j=1, j\neq i}^{n} P(\text{Ref}(x_i) = x_j | S^{-i}) I(y_i = y_j) = \sum_{j=1, j\neq i}^{n} p_{ij} y_{ij},$$

where

$$y_{ij} = I(y_i = y_j) = \begin{cases} 1 & \text{if } y_i = y_j, \\ 0 & \text{otherwise}. \end{cases}$$

The average leave-one-out probability of correct classification using the randomized classifier can be written as

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} p_i.$$
\[ F(w) = \frac{1}{n} \sum_{i=1}^{n} p_i - \lambda \sum_{r=1}^{p} w_r^2 \]
\[ = \frac{1}{n} \sum_{i=1}^{n} \left( \sum_{j=1, j \neq i}^{n} p_{ij} y_{ij} - \lambda \sum_{r=1}^{p} w_r^2 \right) \]
\[ = \frac{1}{n} \sum_{i=1}^{n} F_i(w) \]

where \( \lambda \) is the regularization parameter. The regularization term drives many of the weights in \( w \) to 0.

After choosing the kernel parameter \( \sigma \) in \( p_{ij} \) as 1, finding the weight vector \( w \) can be expressed as the following minimization problem for given \( \lambda \).

\[ \hat{w} = \arg \min_w f(w) = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} f_i(w), \]

where \( f(w) = -F(w) \) and \( f_i(w) = -F_i(w) \).

Note that
\[ \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} p_{ij} = 1, \]

and the argument of the minimum does not change if you add a constant to an objective function. Therefore, you can rewrite the objective function by adding the constant 1.
where the loss function is defined as

\[ l(y_i, y_j) = \begin{cases} 
1 & \text{if } y_i \neq y_j, \\
0 & \text{otherwise.}
\end{cases} \]

The argument of the minimum is the weight vector that minimizes the classification error. You can specify a custom loss function using the LossFunction name-value pair argument in the call to fscnca.

**NCA Feature Selection for Regression**

The fsrnca function performs NCA feature selection modified for regression. Given \( n \) observations

\[ S = \{(x_i, y_i), i = 1, 2, \ldots, n\}, \]

the only difference from the classification problem is that the response values \( y_i \in \mathbb{R} \) are continuous. In this case, the aim is to predict the response \( y \) given the training set \( S \).

Consider a randomized regression model that:

- Randomly picks a point \((\text{Ref}(x))\) from \( S \) as the ‘reference point’ for \( x \)
- Sets the response value at \( x \) equal to the response value of the reference point \( \text{Ref}(x) \).
Again, the probability \( P(\text{Ref}(x) = x_j | S) \) that point \( x_j \) is picked from \( S \) as the reference point for \( x \) is

\[
P(\text{Ref}(x) = x_j | S) = \frac{k(d_w(x, x_j))}{\sum_{j=1}^{n} k(d_w(x, x_j))}.
\]

Now consider the leave-one-out application of this randomized regression model, that is, predicting the response for \( x_i \) using the data in \( S^{-i} \), the training set \( S \) excluding the point \((x_i, y_i)\). The probability that point \( x_j \) is picked as the reference point for \( x_i \) is

\[
p_{ij} = P(\text{Ref}(x_i) = x_j | S^{-i}) = \frac{k(d_w(x_i, x_j))}{\sum_{j=1, j \neq i}^{n} k(d_w(x_i, x_j))}.
\]

Let \( \hat{y}_i \) be the response value the randomized regression model predicts and \( y_i \) be the actual response for \( x_i \). And let \( l : \mathbb{R}^2 \to \mathbb{R} \) be a loss function that measures the disagreement between \( \hat{y}_i \) and \( y_i \). Then, the average value of \( l(y_i, y_i) \) is

\[
l_i = E(l(y_i, y_i) | S^{-i}) = \sum_{j=1, j \neq i}^{n} p_{ij} l(y_i, y_j).
\]

After adding the regularization term, the objective function for minimization is:

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} l_i + \lambda \sum_{r=1}^{p} w_r^2.
\]
The default loss function $l(y_i, y_j)$ for NCA for regression is mean absolute deviation, but you can specify other loss functions, including a custom one, using the LossFunction name-value pair argument in the call to fsrnca.

**Impact of Standardization**

The regularization term derives the weights of irrelevant predictors to zero. In the objective functions for NCA for classification or regression, there is only one regularization parameter $\lambda$ for all weights. This fact requires the magnitudes of the weights to be comparable to each other. When the feature vectors $x_i$ in $S$ are in different scales, this might result in weights that are in different scales and not meaningful. To avoid this situation, standardize the predictors to have zero mean and unit standard deviation before applying NCA. You can standardize the predictors using the 'Standardize',true name-value pair argument in the call to fscnca or fsrnca.

**Choosing the Regularization Parameter Value**

It is usually necessary to select a value of the regularization parameter by calculating the accuracy of the randomized NCA classifier or regression model on an independent test set. If you use cross-validation instead of a single test set, select the $\lambda$ value that minimizes the average loss across the cross-validation folds. For examples, see “Tune Regularization Parameter to Detect Features Using NCA for Classification” and “Tune Regularization Parameter in NCA for Regression” on page 32-2654.

**References**


**See Also**

fscnca | fsrnca
### What Is t-SNE?

t-SNE (tsne) is an algorithm for dimensionality reduction that is well-suited to visualizing high-dimensional data. The name stands for \(t\)-distributed Stochastic Neighbor Embedding. The idea is to embed high-dimensional points in low dimensions in a way that respects similarities between points. Nearby points in the high-dimensional space correspond to nearby embedded low-dimensional points, and distant points in high-dimensional space correspond to distant embedded low-dimensional points. (Generally, it is impossible to match distances exactly between high-dimensional and low-dimensional spaces.)

The tsne function creates a set of low-dimensional points from high-dimensional data. Typically, you visualize the low-dimensional points to see natural clusters in the original high-dimensional data.

The algorithm takes the following general steps to embed the data in low dimensions.

1. Calculate the pairwise distances between the high-dimensional points.
2. Create a standard deviation \(\sigma_i\) for each high-dimensional point \(i\) so that the perplexity of each point is at a predetermined level. For the definition of perplexity, see “Compute Distances, Gaussian Variances, and Similarities” on page 15-129.
3. Calculate the similarity matrix. This is the joint probability distribution of \(X\), defined by “Equation 15-2”.
4. Create an initial set of low-dimensional points.
5. Iteratively update the low-dimensional points to minimize the Kullback-Leibler divergence between a Gaussian distribution in the high-dimensional space and a \(t\) distribution in the low-dimensional space. This optimization procedure is the most time-consuming part of the algorithm.
See van der Maaten and Hinton [1].

**t-SNE Algorithm**

The basic t-SNE algorithm performs the following steps.

- “Prepare Data” on page 15-129
- “Compute Distances, Gaussian Variances, and Similarities” on page 15-129
- “Initialize the Embedding and Divergence” on page 15-130
- “Gradient Descent of Kullback-Leibler Divergence” on page 15-131

**Prepare Data**

tsne first removes each row of the input data X that contains any NaN values. Then, if the Standardize name-value pair is true, tsne centers X by subtracting the mean of each column, and scales X by dividing its columns by their standard deviations.

The original authors van der Maaten and Hinton [1] recommend reducing the original data X to a lower-dimensional version using “Principal Component Analysis (PCA)” on page 15-79. You can set the tsne NumPCAComponents name-value pair to the number of dimensions you like, perhaps 50. To exercise more control over this step, preprocess the data using the pca function.

**Compute Distances, Gaussian Variances, and Similarities**

After the preprocessing, tsne calculates the distance \( d(x_i, x_j) \) between each pair of points \( x_i \) and \( x_j \) in X. You can choose various distance metrics using the Distance name-value pair. By default, tsne uses the standard Euclidean metric. tsne uses the square of the distance metric in its subsequent calculations.

Then for each row \( i \) of X, tsne calculates a standard deviation \( \sigma_i \) so that the perplexity of row \( i \) is equal to the Perplexity name-value pair. The perplexity is defined in terms of a model Gaussian distribution as follows. As van der Maaten and Hinton [1] describe, “The similarity of datapoint \( x_j \) to datapoint \( x_i \) is the conditional probability, \( p_{ji} \), that \( x_i \) would pick \( x_j \) as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at \( x_i \). For nearby datapoints, \( p_{ji} \) is relatively high, whereas for widely separated datapoints, \( p_{ji} \) will be almost infinitesimal (for reasonable values of the variance of the Gaussian, \( \sigma_j \)).”
Define the conditional probability of \( j \) given \( i \) as

\[
p_{j|i} = \frac{\exp \left( -d(x_i, x_j)^2 / (2\sigma_i^2) \right)}{\sum_{k \neq i} \exp \left( -d(x_i, x_k)^2 / (2\sigma_i^2) \right)}
\]

where \( \sigma_i \) is the standard deviation.

Then define the joint probability \( p_{ij} \) by symmetrizing the conditional probabilities:

\[
p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N},
\]

where \( N \) is the number of rows of \( X \).

The distributions still do not have their standard deviations \( \sigma_i \) defined in terms of the Perplexity name-value pair. Let \( P_i \) represents the conditional probability distribution over all other datapoints given datapoint \( x_i \). The perplexity of the distribution is

\[
\text{perplexity}(P_i) = 2^H(P_i),
\]

where \( H(P_i) \) is the Shannon entropy of \( P_i \):

\[
H(P_i) = -\sum_j p_{j|i} \log_2(p_{j|i}).
\]

The perplexity measures the effective number of neighbors of point \( i \). \texttt{tsne} performs a binary search over the \( \sigma_i \) to achieve a fixed perplexity for each point \( i \).

**Initialize the Embedding and Divergence**

To embed the points in \( X \) into a low-dimensional space, \texttt{tsne} performs an optimization. \texttt{tsne} attempts to minimize the Kullback-Leibler divergence between the model Gaussian distribution of the points in \( X \) and a Student \( t \) distribution of points \( Y \) in the low-dimensional space.

The minimization procedure begins with an initial set of points \( Y \). \texttt{tsne} create the points by default as random Gaussian-distributed points. You can also create these points...
yourself and include them in the 'InitialY' name-value pair for tsne. tsne then calculates the similarities between each pair of points in Y.

The probability model $q_{ij}$ of the distribution of the distances between points $y_i$ and $y_j$ is

$$q_{ij} = \frac{1}{\sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}} \frac{1}{\sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}}$$

$q_{ii} = 0$.

Using this definition and the model of distances in $X$ given by “Equation 15-2”, the Kullback-Liebler divergence between the joint distribution $P$ and $Q$ is

$$KL(P \mid \mid Q) = \sum_j \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$ 

For consequences of this definition, see “Helpful Nonlinear Distortion” on page 15-133.

**Gradient Descent of Kullback-Leibler Divergence**

To minimize the Kullback-Leibler divergence, the 'exact' algorithm uses a modified gradient descent procedure. The gradient with respect to the points in $Y$ of the divergence is

$$\frac{\partial KL(P \mid \mid Q)}{\partial y_i} = 4 \sum_{j \neq i} Z(p_{ij} - q_{ij})q_{ij}(y_i - y_j),$$

where the normalization term

$$Z = \sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}.$$

The modified gradient descent algorithm uses a few tuning parameters to attempt to reach a good local minimum.
• 'Exaggeration' — During the first 99 gradient descent steps, tsne multiplies the probabilities $p_{ij}$ from “Equation 15-2” by the exaggeration value. This step tends to create more space between clusters in the output $Y$.

• 'LearnRate' — tsne uses adaptive learning to improve the convergence of the gradient descent iterations. The descent algorithm has iterative steps that are a linear combination of the previous step in the descent and the current gradient. 'LearnRate' is a multiplier of the current gradient for the linear combination. For details, see Jacobs [3].

Barnes-Hut Variation of t-SNE

To speed the t-SNE algorithm and to cut down on its memory usage, tsne offers an approximate optimization scheme. The Barnes-Hut algorithm groups nearby points together to lower the complexity and memory usage of the t-SNE optimization step. The Barnes-Hut algorithm is an approximate optimizer, not an exact optimizer. There is a nonnegative tuning parameter Theta that effects a tradeoff between speed and accuracy. Larger values of 'Theta' give faster but less accurate optimization results. The algorithm is relatively insensitive to 'Theta' values in the range (0.2,0.8).

The Barnes-Hut algorithm groups nearby points in the low-dimensional space, and performs an approximate gradient descent based on these groups. The idea, originally used in astrophysics, is that the gradient is similar for nearby points, so the computations can be simplified.

See van der Maaten [2].

Characteristics of t-SNE

• “Cannot Use Embedding to Classify New Data” on page 15-132
• “Performance Depends on Data Sizes and Algorithm” on page 15-133
• “Helpful Nonlinear Distortion” on page 15-133

Cannot Use Embedding to Classify New Data

Because t-SNE often separates data clusters well, it can seem that t-SNE can classify new data points. However, t-SNE cannot classify new points. The t-SNE embedding is a nonlinear map that is data-dependent. To embed a new point in the low-dimensional space, you cannot use the previous embedding as a map. Instead, run the entire algorithm again.
Performance Depends on Data Sizes and Algorithm

t-SNE can take a good deal of time to process data. If you have $N$ data points in $D$ dimensions that you want to map to $Y$ dimensions, then

- Exact t-SNE takes of order $D*N^2$ operations.
- Barnes-Hut t-SNE takes of order $D*N\log(N)\exp(\text{dimension}(Y))$ operations.

So for large data sets, where $N$ is greater than 1000 or so, and where the embedding dimension $Y$ is 2 or 3, the Barnes-Hut algorithm can be faster than the exact algorithm.

Helpful Nonlinear Distortion

T-SNE maps high-dimensional distances to distorted low-dimensional analogues. Because of the fatter tail of the Student $t$ distribution in the low-dimensional space, $\text{tsne}$ often moves close points closer together, and moves far points farther apart than in the high-dimensional space, as illustrated in the following figure. The figure shows both Gaussian and Student $t$ distributions at the points where the densities are at 0.25 and 0.025. The Gaussian density relates to high-dimensional distances, and the $t$ density relates to low-dimensional distances. The $t$ density corresponds to close points being closer, and far points being farther, compared to the Gaussian density.

t = linspace(0,5);
y1 = normpdf(t,0,1);
y2 = tpdf(t,1);
plot(t,y1,'k',t,y2,'r')
hold on
x1 = fzero(@(x)normpdf(x,0,1)-0.25,[0,2]);
x2 = fzero(@(x)tpdf(x,1)-0.25,[0,2]);
z1 = fzero(@(x)normpdf(x,0,1)-0.025,[0,5]);
z2 = fzero(@(x)tpdf(x,1)-0.025,[0,5]);
plot([0,x1],[0.25,0.25],'k-.')
plot([0,z2],[0.025,0.025],'k-.')
plot([x1,x1],[0,0.25],'g-',[x2,x2],[0,0.25],'g-')
plot([z1,z1],[0,0.025],'g-',[z2,z2],[0,0.025],'g-')
text(1.1,.25,'Close points are closer in low-D')
text(2.4,.05,'Far points are farther in low-D')
legend('Gaussian(0,1)', 'Student $t$ (df = 1)')
xlabel('x')
ylabel('Density')
title('Density of Gaussian(0,1) and Student $t$ (df = 1)')
hold off
This distortion is helpful when it applies. It does not apply in cases such as when the Gaussian variance is high, which lowers the Gaussian peak and flattens the distribution. In such a case, tsne can move close points farther apart than in the original space. To achieve a helpful distortion,

- Set the 'Verbose' name-value pair to 2.
- Adjust the 'Perplexity' name-value pair so the reported range of variances is not too far from 1, and the mean variance is near 1.

If you can achieve this range of variances, then the diagram applies, and the tsne distortion is helpful.

For effective ways to tune tsne, see Wattenberg, Viégas and Johnson [4].
References


See Also

Related Examples
• “Visualize High-Dimensional Data Using t-SNE” on page 15-140
• “t-SNE Output Function” on page 15-136
• “tsne Settings” on page 15-145

More About
• “Principal Component Analysis (PCA)” on page 15-79
• “Classical Multidimensional Scaling” on page 15-58
• “Factor Analysis” on page 15-93
t-SNE Output Function

**t-SNE Output Function Description**

A `tsne` output function is a function that runs after every `NumPrint` optimization iterations of the t-SNE algorithm. An output function can create plots, or log data to a file or to a workspace variable. The function cannot change the progress of the algorithm, but can halt the iterations.

Set output functions using the `Options` name-value pair argument to the `tsne` function. Set `Options` to a structure created using `statset` or `struct`. Set the `'OutputFcn'` field of the `Options` structure to a function handle or cell array of function handles.

For example, to set an output function named `outfun.m`, use the following commands.

```matlab
opts = statset('OutputFcn',@outfun);
Y = tsne(X,'Options',opts);
```

Write an output function using the following syntax.

```matlab
function stop = outfun(optimValues,state)

stop = false; % do not stop by default
switch state
 case 'init'
 % Set up plots or open files
 case 'iter'
 % Draw plots or update variables
 case 'done'
 % Clean up plots or files
end
```

tsne passes the `state` and `optimValues` variables to your function. `state` takes on the values 'init', 'iter', or 'done' as shown in the code snippet.
**tsne optimValues Structure**

<table>
<thead>
<tr>
<th>optimValues Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'iteration'</td>
<td>Iteration number</td>
</tr>
<tr>
<td>'fval'</td>
<td>Kullback-Leibler divergence, modified by exaggeration during the first 99 iterations</td>
</tr>
<tr>
<td>'grad'</td>
<td>Gradient of the Kullback-Leibler divergence, modified by exaggeration during the first 99 iterations</td>
</tr>
<tr>
<td>'Exaggeration'</td>
<td>Value of the exaggeration parameter in use in the current iteration</td>
</tr>
<tr>
<td>'Y'</td>
<td>Current embedding</td>
</tr>
</tbody>
</table>

**t-SNE Custom Output Function**

This example shows how to use an output function in `tsne`.

**Custom Output Function**

The following code is an output function that performs these tasks:

- Keep a history of the Kullback-Leibler divergence and the norm of its gradient in a workspace variable.
- Plot the solution and the history as the iterations proceed.
- Display a Stop button on the plot to stop the iterations early without losing any information.

The output function has an extra input variable, `species`, that enables its plots to show the correct classification of the data. For information on including extra parameters such as `species` in a function, see “Parameterizing Functions” (MATLAB).

```plaintext
function stop = KLLogging(optimValues, state, species)
persistent h kllog iters stopnow
switch state
 case 'init'
 stopnow = false;
 kllog = [];
 iters = [];
 h = figure;
```
c = uicontrol('Style','pushbutton','String','Stop','Position', [10 10 50 20], 'Callback', @stopme);

case 'iter'
    kllog = [kllog; optimValues.fval, log(norm(optimValues.grad))];
    assignin('base', 'history', kllog)
    iters = [iters; optimValues.iteration];
    if length(iters) > 1
        figure(h)
        subplot(2,1,2)
        plot(iters, kllog);
        xlabel('Iterations')
        ylabel('Loss and Gradient')
        legend('Divergence', 'log(norm(gradient))'
        title('Divergence and log(norm(gradient))'
        subplot(2,1,1)
        gscatter(optimValues.Y(:,1), optimValues.Y(:,2), species)
        title('Embedding')
        drawnow
    end

case 'done'
    % Nothing here
end

% Nothing here
stop = stopnow;

function stopme(~,~)
    stopnow = true;
end
end

Use the Custom Output Function

Plot the Fisher iris data, a 4-D data set, in two dimensions using tsne. There is a drop in the Divergence value at iteration 100 because the divergence is scaled by the exaggeration value for earlier iterations. The embedding remains largely unchanged for the last several hundred iterations, so you can save time by clicking the Stop button during the iterations.

load fisheriris
rng default % for reproducibility
opts = statset('OutputFcn', @(optimValues, state) KLLogging(optimValues, state, species));
Y = tsne(meas, 'Options', opts, 'Algorithm', 'exact');
See Also

Related Examples
- “Visualize High-Dimensional Data Using t-SNE” on page 15-140
- “tsne Settings” on page 15-145
Visualize High-Dimensional Data Using t-SNE

This example shows how to visualize the MNIST data, which consists of images of handwritten digits, using the *tsne* function. The images are 28-by-28 pixels in grayscale. Each image has an associated label from 0 through 9, which is the digit that the image represents. *tsne* reduces the dimension of the data from 784 original dimensions to 50 using PCA, and then to two or three using the t-SNE Barnes-Hut algorithm.

**Obtain Data**

Begin by obtaining image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For this example, use the *t10k-images* data.

```matlab
imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';
```

Process the files to load them in the workspace. The code for this processing function appears at the end of this example. To execute the code, add the directory of the function to the search path.

```matlab
addpath(fullfile(matlabroot,'examples','stats')); % add to the path
[X,L] = processMNISTdata(imageFileName,labelFileName); % add to the path
rmpath(fullfile(matlabroot,'examples','stats')); % remove from the path
```

Read MNIST image data...
Number of images in the dataset: 10000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions: 10000 by 784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset: 10000 ...
The label data is read to a matrix of dimensions: 10000 by 1...
End of reading label data.

**Reduce Dimension of Data to Two**

Obtain two-dimensional analogues of the data clusters using t-SNE. Use PCA to reduce the initial dimensionality to 50. Use the Barnes-Hut variant of the t-SNE algorithm to save time on this relatively large data set.
rng default % for reproducibility
Y = tsne(X,'Algorithm','barneshut','NumPCAComponents',50);

Display the result, colored with the correct labels.

figure
gscatter(Y(:,1),Y(:,2),L)

t-SNE creates clusters of points based solely on their relative similarities that correspond closely to the true labels.

**Reduce Dimension of Data to Three**

t-SNE can also reduce the data to three dimensions. Set the tsne 'NumDimensions' name-value pair to 3.
rng default % for fair comparison
Y3 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'NumDimensions',3);
figure
scatter3(Y3(:,1),Y3(:,2),Y3(:,3),15,L,'filled');
view(-93,14)

Here is the code of the function that reads the data into the workspace.

```matlab
function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
 error(errmsg);
```
end
%%
% First read the magic number. This number is 2051 for image data, and
% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
    fprintf('Read MNIST image data...
')
end
%
% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...
',numImages);
numRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...
',numRows,numCols);
%
% Read the image data
X = fread(fileID,inf,'unsigned char');
%
% Reshape the data to array X
X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);
%
% Then flatten each image data into a 1 by (numRows*numCols) vector, and
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages)';
fprintf(['The image data is read to a matrix of dimensions: %6d by %4d...
',...  
End of reading image data.
'],size(X,1),size(X,2));
%
% Close the file
fclose(fileID);
%
% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
    error(errmsg);
end
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
    fprintf('Read MNIST label data...
')
end
numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...
',numItems);
L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d\n',...
   'End of reading label data.\n'],size(L,1),size(L,2));
fclose(fileID);

See Also

Related Examples

- “tsne Settings” on page 15-145

More About

- “t-SNE” on page 15-128
**tsne Settings**

This example shows the effects of various tsne settings.

**Obtain Data**

Begin by obtaining image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For this example, use the t10k-images data.

```matlab
imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';
```

Process the files to load them in the workspace. The code for this processing function appears at the end of this example. To execute the code, add the directory of the function to the search path.

```matlab
addpath(fullfile(matlabroot,'examples','stats')); % add to the path
[X,L] = processMNISTdata(imageFileName,labelFileName);
rmpath(fullfile(matlabroot,'examples','stats')); % remove from the path
```

Read MNIST image data...
Number of images in the dataset: 10000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions: 10000 by 784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset: 10000 ...
The label data is read to a matrix of dimensions: 10000 by 1...
End of reading label data.

**Process Data Using t-SNE**

Obtain two-dimensional analogs of the data clusters using t-SNE. Use the Barnes-Hut algorithm for better performance on this large data set. Use PCA to reduce the initial dimensions from 784 to 50.

```matlab
rng default % for reproducibility
Y = tsne(X,'Algorithm','barneshut','NumPCAComponents',50);
figure
```
gscatter(Y(:,1),Y(:,2),L)
title('Default Figure')

t-SNE creates a figure with well separated clusters and relatively few data points that seem misplaced.

**Perplexity**

Try altering the perplexity setting to see the effect on the figure.

```matlab
rng default % for fair comparison
Y100 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Perplexity',100);
figure
gscatter(Y100(:,1),Y100(:,2),L)
```
rng default % for fair comparison
Y4 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Perplexity',4);
figure
gscatter(Y4(:,1),Y4(:,2),L)
title('Perplexity 4')
Setting the perplexity to 100 yields a figure that is largely similar to the default figure. The clusters are tighter than with the default setting. However, setting the perplexity to 4 gives a figure without well separated clusters. The clusters are looser than with the default setting.

**Exaggeration**

Try altering the exaggeration setting to see the effect on the figure.

```matlab
rng default % for fair comparison
YEX0 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',20);
figure
gscatter(YEX0(:,1),YEX0(:,2),L)
title('Exaggeration 20')
```
rng default % for fair comparison
YEx15 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',1.5);
figure
gscatter(YEx15(:,1),YEx15(:,2),L)
title('Exaggeration 1.5')
While the exaggeration setting has an effect on the figure, it is not clear whether any nondefault setting gives a better picture than the default setting. The figure with an exaggeration of 20 is similar to the default figure. In general, a larger exaggeration creates more empty space between embedded clusters. An exaggeration of 1.5 causes the groups labeled 1 and 6 to split into two groups each, an undesirable outcome. Exaggerating the values in the joint distribution of X makes the values in the joint distribution of Y smaller. This makes it much easier for the embedded points to move relative to one another. The splitting of clusters 1 and 6 reflects this effect.

**Learning Rate**

Try altering the learning rate setting to see the effect on the figure.
rng default % for fair comparison
YL5 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',5);
figure
gscatter(YL5(:,1),YL5(:,2),L)
title('Learning Rate 5')

rng default % for fair comparison
YL2000 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',2000);
figure
gscatter(YL2000(:,1),YL2000(:,2),L)
title('Learning Rate 2000')
The figure with a learning rate of 5 has several clusters that split into two or more pieces. This shows that if the learning rate is too small, the minimization process can get stuck in a bad local minimum. A learning rate of 2000 gives a figure similar to the default figure.

**Initial Behavior with Various Settings**

Large learning rates or large exaggeration values can lead to undesirable initial behavior. To see this, set large values of these parameters and set NumPrint and Verbose to 1 to show all the iterations. Stop the iterations after 10, as the goal of this experiment is simply to look at the initial behavior.

Begin by setting the exaggeration to 200.
rng default % for fair comparison

opts = statset('MaxIter',10);
YEX200 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',200,...
    'NumPrint',1,'Verbose',1,'Options',opts);

<table>
<thead>
<tr>
<th>ITER</th>
<th>KL DIVERGENCE</th>
<th>NORM GRAD USING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EXAGGERATED DIST</td>
</tr>
<tr>
<td></td>
<td>FUN VALUE USING</td>
<td>EXAGGERATED DIST</td>
</tr>
<tr>
<td></td>
<td>OF X</td>
<td>OF X</td>
</tr>
</tbody>
</table>

	2.190347e+03	6.078667e-05
	2.190352e+03	4.769050e-03
	2.204061e+03	9.423678e-02
	2.464585e+03	2.113271e-02
	2.501222e+03	2.616407e-02
	2.529362e+03	3.022570e-02
	2.553233e+03	3.108418e-02
	2.562822e+03	3.278873e-02
	2.538056e+03	3.222265e-02
	2.504932e+03	3.671708e-02

The Kullback-Leibler divergence increases during the first few iterations, and the norm of the gradient increases as well.

To see the final result of the embedding, allow the algorithm to run to completion using the default stopping criteria.

rng default % for fair comparison
YEX200 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',200);
figure
gscatter(YEX200(:,1),YEX200(:,2),L)
title('Exaggeration 200')
This exaggeration value does not give a clean separation into clusters.

Show the initial behavior when the learning rate is 100,000.

```matlab
rng default % for fair comparison
YL100k = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',1e5,...
'NumPrint',1,'Verbose',1,'Options',opts);
```

<table>
<thead>
<tr>
<th>ITER</th>
<th>KL DIVERGENCE</th>
<th>NORM GRAD USING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FUN VALUE USING</td>
<td>EXAGGERATED DIST</td>
</tr>
<tr>
<td></td>
<td>EXAGGERATED DIST</td>
<td>OF X</td>
</tr>
<tr>
<td></td>
<td>OF X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>2.815885e+01</td>
<td>1.024049e-06</td>
</tr>
<tr>
<td>2</td>
<td>2.816022e+01</td>
<td>1.024049e-06</td>
</tr>
<tr>
<td>3</td>
<td>2.815885e+01</td>
<td>1.024049e-06</td>
</tr>
<tr>
<td>4</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>5</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>6</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>7</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>8</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>9</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
<tr>
<td>10</td>
<td>3.195873e+01</td>
<td>7.355889e-04</td>
</tr>
</tbody>
</table>

Again, the Kullback-Leibler divergence increases during the first few iterations, and the norm of the gradient increases as well.

To see the final result of the embedding, allow the algorithm to run to completion using the default stopping criteria.

```matlab
rng default % for fair comparison
YL100k = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',1e5);
figure
gscatter(YL100k(:,1),YL100k(:,2),L)
title('Learning Rate 100,000')
```
The learning rate is far too large, and gives no useful embedding.

**Conclusion**

t**sne** with default settings does a good job of embedding the high-dimensional initial data into two-dimensional points that have well defined clusters. The effects of algorithm settings are difficult to predict. Sometimes they can improve the clustering, but for the most part the default settings seem good. While speed is not part of this investigation, settings can affect the speed of the algorithm. In particular, the Barnes-Hut algorithm is notably faster on this data.

**Code to Process MNIST Data**

Here is the code of the function that reads the data into the workspace.
function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
    error(errmsg);
end

% First read the magic number. This number is 2051 for image data, and
% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
    fprintf('
Read MNIST image data...
')
end

% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...
',numImages);
umRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...
',numRows,numCols);

% Read the image data
X = fread(fileID,inf,'unsigned char');

% Reshape the data to array X
X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);

% Then flatten each image data into a 1 by (numRows*numCols) vector, and
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages)';
fprintf(['The image data is read to a matrix of dimensions: %6d by %4d ...
',...
    'End of reading image data.\n'],size(X,1),size(X,2));

% Close the file
fclose(fileID);

% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
    error(errmsg);
end

magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
    fprintf('
Read MNIST label data...
')
end
numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...
',numItems);

L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...
','End of reading label data.
'],size(L,1),size(L,2));
fclose(fileID);

See Also

Related Examples
• “Visualize High-Dimensional Data Using t-SNE” on page 15-140
• “t-SNE Output Function” on page 15-136

More About
• “t-SNE” on page 15-128

External Websites
• How to Use t-SNE Effectively
Feature Extraction

In this section...

“What Is Feature Extraction?” on page 15-159
“Sparse Filtering Algorithm” on page 15-159
“Reconstruction ICA Algorithm” on page 15-162

What Is Feature Extraction?

Feature extraction is a set of methods that map input features to new output features. Many feature extraction methods use unsupervised learning to extract features. Unlike some feature extraction methods such as PCA and NNMF, the methods described in this section can increase dimensionality (and decrease dimensionality). Internally, the methods involve optimizing nonlinear objective functions. For details, see “Sparse Filtering Algorithm” on page 15-159 or “Reconstruction ICA Algorithm” on page 15-162.

One typical use of feature extraction is finding features in images. Using these features can lead to improved classification accuracy. For an example, see “Feature Extraction Workflow” on page 15-165. Another typical use is extracting individual signals from superpositions, which is often termed blind source separation. For an example, see “Extract Mixed Signals” on page 15-201.

There are two feature extraction functions: rica and sparsefilt. Associated with these functions are the objects that they create: ReconstructionICA and SparseFiltering.

Sparse Filtering Algorithm

The sparse filtering algorithm begins with a data matrix X that has n rows and p columns. Each row represents one observation and each column represents one measurement. The columns are also called the features or predictors. The algorithm then takes either an initial random p-by-q weight matrix W or uses the weight matrix passed in the InitialTransformWeights name-value pair. q is the requested number of features that sparsefilt computes.

The algorithm attempts to minimize the “Sparse Filtering Objective Function” on page 15-160 by using a standard limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton optimizer. See Nocedal and Wright [2]. This optimizer takes up to IterationLimit iterations. It stops iterating earlier when it takes a step whose norm is
less than StepTolerance, or when it computes that the norm of the gradient at the current point is less than GradientTolerance times a scalar $\tau$, where

$$\tau = \max\left(1, \min\left(\frac{|f|}{\|g_0\|_{\infty}}\right)\right).$$

$|f|$ is the norm of the objective function, and $\|g_0\|_{\infty}$ is the infinity norm of the initial gradient.

The objective function attempts to simultaneously obtain few nonzero features for each data point, and for each resulting feature to have nearly equal weight. To understand how the objective function attempts to achieve these goals, see Ngiam, Koh, Chen, Bhaksar, and Ng [1].

Frequently, you obtain good features by setting a relatively small value of IterationLimit, from as low as 5 to a few hundred. Allowing the optimizer to continue can result in overtraining, where the extracted features do not generalize well to new data.

After constructing a SparseFiltering object, use the transform method to map input data to the new output features.

**Sparse Filtering Objective Function**

To compute an objective function, the sparse filtering algorithm uses the following steps. The objective function depends on the n-by-p data matrix $X$ and a weight matrix $W$ that the optimizer varies. The weight matrix $W$ has dimensions p-by-q, where $p$ is the number of original features and $q$ is the number of requested features.

1. Compute the n-by-q matrix $X \ast W$. Apply the approximate absolute value function

$$\phi(u) = \sqrt{u^2 + 10^{-8}}$$

to each element of $X \ast W$ to obtain the matrix $F$. $\phi$ is a smooth nonnegative symmetric function that closely approximates the absolute value function.

2. Normalize the columns of $F$ by the approximate $L^2$ norm. In other words, define the normalized matrix $\tilde{F}(i, j)$ by
Normalize the rows of \( \tilde{F}(i, j) \) by the approximate \( L^2 \) norm. In other words, define the normalized matrix \( \hat{F}(i, j) \) by

\[
\|F(j)\| = \sqrt{\sum_{i=1}^{n} (F(i, j))^2 + 10^{-8}}
\]
\[
\tilde{F}(i, j) = F(i, j) / \|F(j)\|.
\]

3

The matrix \( \hat{F} \) is the matrix of converted features in \( X \). Once \texttt{sparsfilt} finds the weights \( W \) that minimize the objective function \( h \) (see below), which the function stores in the output object \( \text{Mdl} \) in the \text{Mdl}.TransformWeights property, the transform function can follow the same transformation steps to convert new data to output features.

4

Compute the objective function \( h(W) \) as the 1-norm of the matrix \( \hat{F}(i, j) \), meaning the sum of all the elements in the matrix (which are nonnegative by construction):

\[
h(W) = \sum_{j=1}^{q} \sum_{i=1}^{n} \hat{F}(i, j).
\]

5

If you set the \texttt{Lambda} name-value pair to a strictly positive value, \texttt{sparsfilt} uses the following modified objective function:

\[
h(W) = \sum_{j=1}^{q} \sum_{i=1}^{n} \hat{F}(i, j) + \lambda \sum_{j=1}^{q} w_j^T w_j.
\]

Here, \( w_j \) is the jth column of the matrix \( W \) and \( \lambda \) is the value of \texttt{Lambda}. The effect of this term is to shrink the weights \( W \). If you plot the columns of \( W \) as images, with positive \texttt{Lambda} these images appear smooth compared to the same images with zero \texttt{Lambda}.

15-161
Reconstruction ICA Algorithm

The Reconstruction Independent Component Analysis (RICA) algorithm is based on minimizing an objective function. The algorithm maps input data to output features.

The ICA source model is the following. Each observation $x$ is generated by a random vector $s$ according to

$$x = \mu + As.$$ 

- $x$ is a column vector of length $p$.
- $\mu$ is a column vector of length $p$ representing a constant term.
- $s$ is a column vector of length $q$ whose elements are zero mean, unit variance random variables that are statistically independent of each other.
- $A$ is a mixing matrix of size $p$-by-$q$.

You can use this model in `rica` to estimate $A$ from observations of $x$. See “Extract Mixed Signals” on page 15-201.

The RICA algorithm begins with a data matrix $X$ that has $n$ rows and $p$ columns consisting of the observations $x_i$:

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}.$$ 

Each row represents one observation and each column represents one measurement. The columns are also called the features or predictors. The algorithm then takes either an initial random $p$-by-$q$ weight matrix $W$ or uses the weight matrix passed in the `InitialTransformWeights` name-value pair. $q$ is the requested number of features that `rica` computes. The weight matrix $W$ is composed of columns $w_i$ of size $p$-by-1:

$$W = [w_1 \ w_2 \ \ldots \ w_q].$$

The algorithm attempts to minimize the “Reconstruction ICA Objective Function” on page 15-163 by using a standard limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
quasi-Newton optimizer. See Nocedal and Wright [2]. This optimizer takes up to 
**IterationLimit** iterations. It stops iterating when it takes a step whose norm is less 
than **StepTolerance**, or when it computes that the norm of the gradient at the current 
point is less than **GradientTolerance** times a scalar \( \tau \), where 

\[
\tau = \max \left(1, \min \left(\frac{|f|}{g_0}, \|g_0\|_\infty \right) \right).
\]

|\( f |\) is the norm of the objective function, and \( \|g_0\|_\infty \) is the infinity norm of the initial 
gradient.

The objective function attempts to obtain a nearly orthonormal weight matrix that 
minimizes the sum of elements of \( g(XW) \), where \( g \) is a function (described below) that is 
applied elementwise to \( XW \). To understand how the objective function attempts to achieve 
these goals, see Le, Karpenko, Ngiam, and Ng [3].

After constructing a **ReconstructionICA** object, use the **transform** method to map 
input data to the new output features.

**Reconstruction ICA Objective Function**

The objective function uses a contrast function, which you specify by using the 
**ContrastFcn** name-value pair. The contrast function is a smooth convex function that is 
similar to an absolute value. By default, the contrast function is 

\[
g(x) = \frac{1}{2} \log(\cosh(2x)).
\]

For other available contrast functions, see **ContrastFcn**.

For an \( n \)-by-\( p \) data matrix \( X \) and \( q \) output features, with a regularization parameter \( \lambda \) as 
the value of the **Lambda** name-value pair, the objective function in terms of the \( p \)-by-\( q \) 
matrix \( W \) is 

\[
h = \frac{\lambda}{n} \sum_{i=1}^{n} \|WW^T x_i - x_i\|^2_2 + \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{q} \sigma_j g(w_j^T x_i)
\]

The \( \sigma_j \) are known constants that are \( \pm 1 \). When \( \sigma_j = +1 \), minimizing the objective function 
\( h \) encourages the histogram of \( w_j^T x_i \) to be sharply peaked at 0 (super Gaussian). When 
\( \sigma_j = -1 \), minimizing the objective function \( h \) encourages the histogram of \( w_j^T x_i \) to be
flatter near 0 (sub Gaussian). Specify the $\sigma_j$ values using the rica NonGaussianityIndicator name-value pair.

The objective function $h$ can have a spurious minimum of zero when $\lambda$ is zero. Therefore, rica minimizes $h$ over $W$ that are normalized to 1. In other words, each column $w_j$ of $W$ is defined in terms of a column vector $v_j$ by

$$w_j = \frac{v_j}{\sqrt{v_j^T v_j + 10^{-8}}}.$$

rica minimizes over the $v_j$. The resulting minimal matrix $W$ provides the transformation from input data $X$ to output features $XW$.

**References**


**See Also**

ReconstructionICA | SparseFiltering | rica | sparsefilt

**Related Examples**

- “Feature Extraction Workflow” on page 15-165
- “Extract Mixed Signals” on page 15-201
Feature Extraction Workflow

This example shows a complete workflow for feature extraction from image data.

**Obtain Data**

This example uses the MNIST image data, which consists of images of handwritten digits. The images are 28-by-28 pixels in gray scale. Each image has an associated label from 0 through 9, which is the digit that the image represents.

Begin by obtaining image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For better performance on this long example, use the test data as training data and the training data as test data.

```matlab
imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';
```

Process the files to load them in the workspace. The code for this processing function appears at the end of this example. To execute the code, add the directory of the function to the search path.

```matlab
addpath(fullfile(matlabroot,'examples','stats'));
[Xtrain,LabelTrain] = processMNISTdata(imageFileName,labelFileName);
```

Read MNIST image data...
Number of images in the dataset: 10000...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions: 10000 by 784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset: 10000...
The label data is read to a matrix of dimensions: 10000 by 1...
End of reading label data.

View a few of the images.

```matlab
rng('default') % For reproducibility
numrows = size(Xtrain,1);
ims = randi(numrows,4,1);
```
Choose New Feature Dimensions

There are several considerations in choosing the number of features to extract:

- More features use more memory and computational time.
- Fewer features can produce a poor classifier.

For this example, choose 100 features.

q = 100;

Extract Features

There are two feature extraction functions, `sparsefilt` and `rica`. Begin with the `sparsefilt` function. Set the number of iterations to 10 so that the extraction does not take too long.

Typically, you get good results by running the `sparsefilt` algorithm for a few iterations to a few hundred iterations. Running the algorithm for too many iterations can lead to decreased classification accuracy, a type of overfitting problem.

Use `sparsefilt` to obtain the sparse filtering model while using 10 iterations.

Mdl = `sparsefilt(Xtrain,q,'IterationLimit',10);

Warning: Solver LBFGS was not able to converge to a solution.
sparsefilt warns that the internal LBFGS optimizer did not converge. The optimizer
did not converge because you set the iteration limit to 10. Nevertheless, you can use the
result to train a classifier.

**Create Classifier**

Transform the original data into the new feature representation.

\[
\text{NewX} = \text{transform(Mdl,Xtrain)};
\]

Train a linear classifier based on the transformed data and the correct classification
labels in \text{LabelTrain}. The accuracy of the learned model is sensitive to the \text{fitcecoc}
regularization parameter \text{Lambda}. Try to find the best value for \text{Lambda} by using the
\text{OptimizeHyperparameters} name-value pair. Be aware that this optimization takes
time. If you have a Parallel Computing Toolbox™ license, use parallel computing for faster
execution. If you don't have a parallel license, remove the \text{UseParallel} calls before
running this script.

\[
t = \text{templateLinear('Solver','lbfgs');}
\]

\[
\text{options} = \text{struct('UseParallel',true)};
\]

\[
\text{Cmdl} = \text{fitcecoc(NewX,LabelTrain,'Learners',t, ...}
\]

\[
\quad \text{'OptimizeHyperparameters','{\text{Lambda}'}, ...}
\]

\[
\quad \text{'HyperparameterOptimizationOptions',options});
\]

Starting parallel pool (parpool) using the 'local' profile ...
Preserving jobs with IDs: 1 2 because they contain crash dump files.
You can use 'delete(myCluster.Jobs)' to remove all jobs created with profile local. To
connect to 6 workers.
Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.5777</td>
<td>7.4007</td>
<td>0.5777</td>
<td>0.5777</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Accept</td>
<td>0.8865</td>
<td>8.203</td>
<td>0.2041</td>
<td>0.27206</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Best</td>
<td>0.2041</td>
<td>8.7958</td>
<td>0.2041</td>
<td>0.27206</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Best</td>
<td>0.1077</td>
<td>14.377</td>
<td>0.1077</td>
<td>0.10773</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Best</td>
<td>0.0962</td>
<td>14.766</td>
<td>0.0962</td>
<td>0.096203</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Accept</td>
<td>0.2</td>
<td>6.4864</td>
<td>0.0962</td>
<td>0.096221</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.2077</td>
<td>6.5173</td>
<td>0.0962</td>
<td>0.096222</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.0977</td>
<td>22.173</td>
<td>0.0962</td>
<td>0.096215</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.1238</td>
<td>8.6482</td>
<td>0.0962</td>
<td>0.096199</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.1082</td>
<td>12.894</td>
<td>0.0962</td>
<td>0.096198</td>
</tr>
</tbody>
</table>
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 81.5517 seconds.
Total objective function evaluation time: 398.4276

Best observed feasible point:
Lambda

8.6862e-05

Observed objective function value = 0.0914
Estimated objective function value = 0.09251
Function evaluation time = 15.7692

Best estimated feasible point (according to models):
Lambda

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>6</td>
<td>Accept</td>
<td>0.8865</td>
<td>5.3391</td>
<td>0.0914</td>
<td>0.092543</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Accept</td>
<td>0.0942</td>
<td>17.642</td>
<td>0.0914</td>
<td>0.09256</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.093</td>
<td>15.341</td>
<td>0.0914</td>
<td>0.092615</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Accept</td>
<td>0.0921</td>
<td>16.01</td>
<td>0.0914</td>
<td>0.092512</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>Accept</td>
<td>0.1473</td>
<td>8.1332</td>
<td>0.0914</td>
<td>0.09247</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>Accept</td>
<td>0.1064</td>
<td>15.85</td>
<td>0.0914</td>
<td>0.092473</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>Accept</td>
<td>0.1009</td>
<td>12.464</td>
<td>0.0914</td>
<td>0.092506</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>Accept</td>
<td>0.1072</td>
<td>13.731</td>
<td>0.0914</td>
<td>0.092507</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Accept</td>
<td>0.1003</td>
<td>21.702</td>
<td>0.0914</td>
<td>0.092508</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>Accept</td>
<td>0.1156</td>
<td>10.224</td>
<td>0.0914</td>
<td>0.09251</td>
</tr>
</tbody>
</table>
Estimated objective function value = 0.09251
Estimated function evaluation time = 15.7884
**Evaluate Classifier**

Check the error of the classifier when applied to test data. First, load the test data.

```matlab
imageFileName = 'train-images.idx3-ubyte';
labelFileName = 'train-labels.idx1-ubyte';
[Xtest,LabelTest] = processMNISTdata(imageFileName,labelFileName);
```

Read MNIST image data...
Number of images in the dataset:  60000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions:  60000 by  784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset:  60000 ...
The label data is read to a matrix of dimensions:  60000 by  1...
End of reading label data.

Calculate the classification loss when applying the classifier to the test data.

```matlab
TestX = transform(Mdl,Xtest);
Loss = loss(Cmdl,TestX,LabelTest)
```

Loss =

```
0.1007
```

Did this transformation result in a better classifier than one trained on the original data? Create a classifier based on the original training data and evaluate its loss.

```matlab
Omdl = fitcecoc(Xtrain,LabelTrain,'Learners',t, ...
 'OptimizeHyperparameters',{'Lambda'}, ...
 'HyperparameterOptimizationOptions',options);
Losso = loss(Omdl,Xtest,LabelTest)
```

Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>workers</td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iter</td>
<td>Active workers</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>45.861</td>
<td>0.0719</td>
<td>0.073414</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Accept</td>
<td>0.0757</td>
<td>162.35</td>
<td>0.0719</td>
<td>0.073399</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.0734</td>
<td>258.31</td>
<td>0.0719</td>
<td>0.073386</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>45.468</td>
<td>0.0719</td>
<td>0.073374</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>45.322</td>
<td>0.0719</td>
<td>0.073363</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>Accept</td>
<td>0.0784</td>
<td>54.492</td>
<td>0.0719</td>
<td>0.073362</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>Accept</td>
<td>0.0787</td>
<td>119.62</td>
<td>0.0719</td>
<td>0.073353</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>45.514</td>
<td>0.0719</td>
<td>0.073324</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>44.712</td>
<td>0.0719</td>
<td>0.073316</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>Accept</td>
<td>0.0779</td>
<td>46.147</td>
<td>0.0719</td>
<td>0.073308</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 685.0741 seconds.
Total objective function evaluation time: 3418.7781

Best observed feasible point:
Lambda
9.9979

Observed objective function value = 0.0719  
Estimated objective function value = 0.073308  
Function evaluation time = 264.5614

Best estimated feasible point (according to models):
  Lambda  

9.9979

Estimated objective function value = 0.073308  
Estimated function evaluation time = 257.1588

Losso = 

0.0860
The classifier based on sparse filtering has a somewhat higher loss than the classifier based on the original data. However, the classifier uses only 100 features rather than the 784 features in the original data, and is much faster to create. Try to make a better sparse filtering classifier by increasing $q$ from 100 to 200, which is still far less than 784.

```matlab
q = 200;
Mdl2 = sparsefilt(Xtrain,q,'IterationLimit',10);
NewX = transform(Mdl2,Xtrain);
TestX = transform(Mdl2,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...'
 'OptimizeHyperparameters',{'Lambda'}, ...'
 'HyperparameterOptimizationOptions',options);
Loss2 = loss(Cmdl,TestX,LabelTest)
```

Warning: Solver LBFGS was not able to converge to a solution.
Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective runtime</th>
<th>Objective (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.752</td>
<td>7.076</td>
<td>0.752</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Accept</td>
<td>0.8848</td>
<td>7.1285</td>
<td>0.752</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Accept</td>
<td>0.7805</td>
<td>7.1223</td>
<td>0.752</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Best</td>
<td>0.0648</td>
<td>9.0767</td>
<td>0.0648</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Accept</td>
<td>0.0981</td>
<td>12.339</td>
<td>0.0648</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Accept</td>
<td>0.8865</td>
<td>7.2604</td>
<td>0.0648</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.067</td>
<td>9.6393</td>
<td>0.0648</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.063</td>
<td>14.945</td>
<td>0.063</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.0654</td>
<td>9.8684</td>
<td>0.063</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.0794</td>
<td>16.553</td>
<td>0.063</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Best</td>
<td>0.0589</td>
<td>28.416</td>
<td>0.0589</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Accept</td>
<td>0.066</td>
<td>9.5237</td>
<td>0.0589</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Accept</td>
<td>0.0639</td>
<td>10.891</td>
<td>0.0589</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Accept</td>
<td>0.0649</td>
<td>11.456</td>
<td>0.0589</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Best</td>
<td>0.0579</td>
<td>28.103</td>
<td>0.0579</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Accept</td>
<td>0.0626</td>
<td>18.265</td>
<td>0.0579</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Accept</td>
<td>0.0621</td>
<td>21.254</td>
<td>0.0579</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>Accept</td>
<td>0.0615</td>
<td>25.528</td>
<td>0.0579</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Accept</td>
<td>0.0625</td>
<td>23.378</td>
<td>0.0579</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Accept</td>
<td>0.0579</td>
<td>34.905</td>
<td>0.0579</td>
</tr>
</tbody>
</table>
```
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 105.4513 seconds.
Total objective function evaluation time: 542.2851

Best observed feasible point:

<table>
<thead>
<tr>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6608e-05</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.0561
Estimated objective function value = 0.05663
Function evaluation time = 34.4305

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6608e-05</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.05663
Estimated function evaluation time = 33.6933

Loss2 = 0.0686
This time the classification loss is lower than that of the original data classifier.
Try RICA

Try the other feature extraction function, rica. Extract 200 features, create a classifier, and examine its loss on the test data. Use more iterations for the rica function, because rica can perform better with more iterations than sparsefilt uses.

Often prior to feature extraction, you "prewhiten" the input data as a data preprocessing step. The prewhitening step includes two transforms, decorrelation and standardization, which make the predictors have zero mean and identity covariance. rica supports only the standardization transform. You use the Standardize name-value pair argument to make the predictors have zero mean and unit variance. Alternatively, you can transform images for contrast normalization individually by applying the zscore transformation before calling sparsefilt or rica.

Mdl3 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true);
NewX = transform(Mdl3,Xtrain);
TestX = transform(Mdl3,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
 'OptimizeHyperparameters',{'Lambda'}, ...
 'HyperparameterOptimizationOptions',options);
Loss3 = loss(Cmdl,TestX,LabelTest)

Warning: Solver LBFGS was not able to converge to a solution.
Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.1161</td>
<td>12.033</td>
<td>0.1161</td>
<td>0.1161</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Best</td>
<td>0.0801</td>
<td>13.23</td>
<td>0.0801</td>
<td>0.081824</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Best</td>
<td>0.0797</td>
<td>13.7</td>
<td>0.0797</td>
<td>0.078824</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Best</td>
<td>0.0788</td>
<td>20.336</td>
<td>0.0788</td>
<td>0.078804</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Best</td>
<td>0.0765</td>
<td>21.716</td>
<td>0.0765</td>
<td>0.07651</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Best</td>
<td>0.0644</td>
<td>26.986</td>
<td>0.0644</td>
<td>0.064403</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.0808</td>
<td>13.69</td>
<td>0.0644</td>
<td>0.064403</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.0797</td>
<td>13.349</td>
<td>0.0644</td>
<td>0.064404</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.079</td>
<td>20.276</td>
<td>0.0644</td>
<td>0.064403</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.0801</td>
<td>13.71</td>
<td>0.0644</td>
<td>0.064403</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Accept</td>
<td>0.066</td>
<td>24.9</td>
<td>0.0644</td>
<td>0.064394</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Accept</td>
<td>0.0767</td>
<td>31.617</td>
<td>0.0644</td>
<td>0.064397</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Accept</td>
<td>0.0668</td>
<td>27.014</td>
<td>0.0644</td>
<td>0.064389</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Accept</td>
<td>0.0719</td>
<td>30.169</td>
<td>0.0644</td>
<td>0.064387</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Accept</td>
<td>0.0654</td>
<td>26.338</td>
<td>0.0644</td>
<td>0.064399</td>
</tr>
<tr>
<td>Iter</td>
<td>Active workers</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Accept</td>
<td>0.0733</td>
<td>31.345</td>
<td>0.0644</td>
<td>0.064218</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Best</td>
<td>0.0643</td>
<td>25.532</td>
<td>0.0643</td>
<td>0.064239</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>Accept</td>
<td>0.0648</td>
<td>26.839</td>
<td>0.0624</td>
<td>0.063728</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>Best</td>
<td>0.0624</td>
<td>26.951</td>
<td>0.0624</td>
<td>0.063728</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Accept</td>
<td>0.0859</td>
<td>16.207</td>
<td>0.0624</td>
<td>0.063798</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Accept</td>
<td>0.0628</td>
<td>26.359</td>
<td>0.0624</td>
<td>0.063609</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Accept</td>
<td>0.0648</td>
<td>25.385</td>
<td>0.0624</td>
<td>0.063715</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.0798</td>
<td>14.33</td>
<td>0.0624</td>
<td>0.063713</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Accept</td>
<td>0.0802</td>
<td>20.475</td>
<td>0.0624</td>
<td>0.063712</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>Accept</td>
<td>0.0702</td>
<td>20.18</td>
<td>0.0624</td>
<td>0.063739</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>Accept</td>
<td>0.0782</td>
<td>19.979</td>
<td>0.0624</td>
<td>0.063739</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>Best</td>
<td>0.0619</td>
<td>26.638</td>
<td>0.0619</td>
<td>0.063479</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>Accept</td>
<td>0.0624</td>
<td>26.768</td>
<td>0.0619</td>
<td>0.063479</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Accept</td>
<td>0.0992</td>
<td>13.079</td>
<td>0.0619</td>
<td>0.063361</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>Accept</td>
<td>0.0807</td>
<td>13.742</td>
<td>0.0619</td>
<td>0.063362</td>
</tr>
</tbody>
</table>

Optimization completed. MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 119.988 seconds.
Total objective function evaluation time: 642.8708

Best observed feasible point:

Lambda

0.074666

Observed objective function value = 0.0619
Estimated objective function value = 0.063362
Function evaluation time = 26.6381

Best estimated feasible point (according to models):

Lambda

0.072374

Estimated objective function value = 0.063362
Estimated function evaluation time = 26.6488

Loss3 = 0.0746
The rica-based classifier has somewhat higher test loss compared to the sparse filtering classifier.

Try More Features

The feature extraction functions have few tuning parameters. One parameter that can affect results is the number of requested features. See how well classifiers work when based on 1000 features, rather than the 200 features previously tried, or the 784 features in the original data. Using more features than appear in the original data is called "overcomplete" learning. Conversely, using fewer features is called "undercomplete" learning. Overcomplete learning can lead to increased classification accuracy, while undercomplete learning can save memory and time.

```matlab
q = 1000;
Mdl4 = sparsefilt(Xtrain,q,'IterationLimit',10);
NewX = transform(Mdl4,Xtrain);
TestX = transform(Mdl4,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...  
    'OptimizeHyperparameters',{'Lambda'}, ...  
    'HyperparameterOptimizationOptions',options);
Loss4 = loss(Cmdl,TestX,LabelTest)
```

Warning: Solver LBFGS was not able to converge to a solution.
Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.8865</td>
<td>45.942</td>
<td>0.8865</td>
<td>0.8865</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Accept</td>
<td>0.8865</td>
<td>47.902</td>
<td>0.8865</td>
<td>0.8865</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Best</td>
<td>0.0432</td>
<td>51.794</td>
<td>0.0432</td>
<td>0.043283</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Accept</td>
<td>0.0436</td>
<td>54.696</td>
<td>0.0432</td>
<td>0.043283</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Accept</td>
<td>0.4011</td>
<td>40.1</td>
<td>0.0432</td>
<td>0.043226</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Accept</td>
<td>0.0958</td>
<td>89.542</td>
<td>0.0432</td>
<td>0.043225</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Accept</td>
<td>0.1911</td>
<td>55.344</td>
<td>0.0432</td>
<td>0.043146</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Accept</td>
<td>0.0438</td>
<td>51.203</td>
<td>0.0432</td>
<td>0.043146</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Best</td>
<td>0.0438</td>
<td>51.389</td>
<td>0.043</td>
<td>0.04308</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.0434</td>
<td>53.469</td>
<td>0.043</td>
<td>0.043015</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Best</td>
<td>0.0427</td>
<td>53.882</td>
<td>0.0427</td>
<td>0.04302</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Best</td>
<td>0.0425</td>
<td>87.783</td>
<td>0.0425</td>
<td>0.043036</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Accept</td>
<td>0.0439</td>
<td>53.166</td>
<td>0.0425</td>
<td>0.043043</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Accept</td>
<td>0.0429</td>
<td>53.46</td>
<td>0.0425</td>
<td>0.043086</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Accept</td>
<td>0.0425</td>
<td>157.2</td>
<td>0.0425</td>
<td>0.043067</td>
</tr>
<tr>
<td>Iter</td>
<td>Active workers</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Accept</td>
<td>0.0515</td>
<td>163.53</td>
<td>0.0425</td>
<td>0.043077</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Accept</td>
<td>0.0428</td>
<td>53.968</td>
<td>0.0425</td>
<td>0.042737</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>Accept</td>
<td>0.0426</td>
<td>67.358</td>
<td>0.0425</td>
<td>0.042733</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Best</td>
<td>0.0399</td>
<td>285.58</td>
<td>0.0399</td>
<td>0.039883</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Accept</td>
<td>0.0424</td>
<td>128.03</td>
<td>0.0399</td>
<td>0.039881</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Best</td>
<td>0.0398</td>
<td>216.8</td>
<td>0.0398</td>
<td>0.039864</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Accept</td>
<td>0.0444</td>
<td>208.6</td>
<td>0.0398</td>
<td>0.039835</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.0404</td>
<td>256.65</td>
<td>0.0398</td>
<td>0.039847</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Best</td>
<td>0.0397</td>
<td>276.9</td>
<td>0.0397</td>
<td>0.039688</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>Accept</td>
<td>0.041</td>
<td>189.17</td>
<td>0.0397</td>
<td>0.039809</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>Best</td>
<td>0.0393</td>
<td>299.66</td>
<td>0.0393</td>
<td>0.039338</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>Best</td>
<td>0.0391</td>
<td>250.98</td>
<td>0.0391</td>
<td>0.039321</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>Accept</td>
<td>0.0391</td>
<td>287.08</td>
<td>0.0391</td>
<td>0.039321</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Accept</td>
<td>0.0396</td>
<td>239.51</td>
<td>0.0391</td>
<td>0.039462</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>Accept</td>
<td>0.0405</td>
<td>206.25</td>
<td>0.0391</td>
<td>0.03952</td>
</tr>
</tbody>
</table>

Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 794.8129 seconds. Total objective function evaluation time: 4076.9347

Best observed feasible point:
Lambda

4.0724e-06

Observed objective function value = 0.0391
Estimated objective function value = 0.03952
Function evaluation time = 250.9821

Best estimated feasible point (according to models):
Lambda

3.5146e-06

Estimated objective function value = 0.03952

15-185
Estimated function evaluation time = 238.7933

Loss4 =

0.0458
Objective function model

- Observed points
- Points being evaluated
- Model mean
- Model error bars
- Noise error bars
- Next point
- Model minimum feasible

Estimated objective function value vs. Lambda

- X-axis: Lambda (log scale)
- Y-axis: Estimated objective function value (linear scale)

Graph shows the relationship between the estimated objective function value and lambda, with various symbols indicating different types of data points and error bars.
The classifier based on overcomplete sparse filtering with 1000 extracted features has the lowest test loss of any classifier yet tested.

```matlab
Mdl5 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true);
NewX = transform(Mdl5,Xtrain);
TestX = transform(Mdl5,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Loss5 = loss(Cmdl,TestX,LabelTest)
```

Warning: Solver LBFGS was not able to converge to a solution.
Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.0793</td>
<td>45.449</td>
<td>0.0793</td>
<td>0.0793</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Best</td>
<td>0.0787</td>
<td>146.84</td>
<td>0.0787</td>
<td>0.079</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Best</td>
<td>0.0779</td>
<td>149.38</td>
<td>0.0779</td>
<td>0.078633</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Best</td>
<td>0.0777</td>
<td>153.15</td>
<td>0.0777</td>
<td>0.0777</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Best</td>
<td>0.0735</td>
<td>171.35</td>
<td>0.0735</td>
<td>0.0735</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Accept</td>
<td>0.1263</td>
<td>95.035</td>
<td>0.0735</td>
<td>0.073503</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.0786</td>
<td>141.65</td>
<td>0.0735</td>
<td>0.073504</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.078</td>
<td>147.28</td>
<td>0.0735</td>
<td>0.073504</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.0788</td>
<td>151.31</td>
<td>0.0735</td>
<td>0.073504</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.0772</td>
<td>260.81</td>
<td>0.0735</td>
<td>0.073504</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Best</td>
<td>0.0692</td>
<td>310.13</td>
<td>0.0692</td>
<td>0.069203</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Accept</td>
<td>0.079</td>
<td>45.189</td>
<td>0.0692</td>
<td>0.069203</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Accept</td>
<td>0.0791</td>
<td>43.562</td>
<td>0.0692</td>
<td>0.069203</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Accept</td>
<td>0.0791</td>
<td>44.776</td>
<td>0.0692</td>
<td>0.069204</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Accept</td>
<td>0.09</td>
<td>129.34</td>
<td>0.0692</td>
<td>0.069206</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Accept</td>
<td>0.0786</td>
<td>49.025</td>
<td>0.0692</td>
<td>0.069206</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Best</td>
<td>0.0675</td>
<td>211.67</td>
<td>0.0675</td>
<td>0.067494</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>Best</td>
<td>0.0651</td>
<td>233.43</td>
<td>0.0651</td>
<td>0.065096</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Accept</td>
<td>0.0692</td>
<td>252.72</td>
<td>0.0651</td>
<td>0.065116</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Accept</td>
<td>0.0653</td>
<td>246.18</td>
<td>0.0651</td>
<td>0.065116</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Accept</td>
<td>0.0692</td>
<td>285.39</td>
<td>0.0651</td>
<td>0.065109</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Accept</td>
<td>0.0791</td>
<td>192.95</td>
<td>0.0651</td>
<td>0.065111</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.0672</td>
<td>221.33</td>
<td>0.0651</td>
<td>0.065121</td>
</tr>
</tbody>
</table>
```

15-188
24	6	Accept	0.0796	46.336	0.0651	0.065122	2.4318e-08
25	6	Accept	0.0686	265.9	0.0651	0.065224	
26	6	Accept	0.066	245.17	0.0651	0.065462	
27	6	Best	0.065	233.62	0.065	0.065338	
28	6	Accept	0.0652	236.22	0.065	0.065304	
29	6	Accept	0.079	46.072	0.065	0.065301	
30	6	Accept	0.0662	221.53	0.065	0.065311	

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 985.7708 seconds.
Total objective function evaluation time: 5022.8042

Best observed feasible point:
Lambda

0.070537

Observed objective function value = 0.065
Estimated objective function value = 0.065311
Function evaluation time = 233.6229

Best estimated feasible point (according to models):
Lambda

0.070537

Estimated objective function value = 0.065311
Estimated function evaluation time = 239.1365

Loss5 =

0.0741
Min objective vs. Number of function evaluations
The classifier based on RICA with 1000 extracted features has a similar test loss to the
RICA classifier based on 200 extracted features.

**Optimize Hyperparameters by Using bayesopt**

Feature extraction functions have these tuning parameters:

- Iteration limit
- Function, either rica or sparsefilt
- Parameter Lambda
- Number of learned features q

The fitcecoc regularization parameter also affects the accuracy of the learned
classifier. Include that parameter in the list of hyperparameters as well.

To search among the available parameters effectively, try bayesopt. Use the following
objective function, which includes parameters passed from the workspace.

```matlab
function objective = filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,winit)
initW = winit(1:size(Xtrain,2),1:x.q);
if char(x.solver) == 'r'
 Mdl = rica(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ...
 'InitialTransformWeights',initW,'Standardize',true);
else
 Mdl = sparsefilt(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ...%
 'InitialTransformWeights',initW);
end
NewX = transform(Mdl,Xtrain);
TestX = transform(Mdl,Xtest);
t = templateLinear('Lambda',x.lambdareg,'Solver','lbfgs');
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t);
objective = loss(Cmdl,TestX,LabelTest);
```

To remove sources of variation, fix an initial transform weight matrix.

```matlab
W = randn(1e4,1e3);
```

Create hyperparameters for the objective function.

**15-192**
iterlim = optimizableVariable('iterlim',[5,500],'Type','integer');
lambda = optimizableVariable('lambda',[0,10]);
solver = optimizableVariable('solver',{'r','s'},'Type','categorical');
qvar = optimizableVariable('q',[10,1000],'Type','integer');
lambdareg = optimizableVariable('lambdareg',[1e-6,1],'Transform','log');
vars = [iterlim,lambda,solver,qvar,lambdareg];

Run the optimization without the warnings that occur when the internal optimizations do not run to completion. Run for 60 iterations instead of the default 30 to give the optimization a better chance of locating a good value.

warning('off','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge');
results = bayesopt(@(x) filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,W),vars, ... 'UseParallel',true,'MaxObjectiveEvaluations',60);
warning('on','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge');

Copying objective function to workers...
Done copying objective function to workers.

<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Best</td>
<td>0.53748</td>
<td>25.011</td>
<td>0.53748</td>
<td>0.53748</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Best</td>
<td>0.090079</td>
<td>117.88</td>
<td>0.090079</td>
<td>0.12404</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Accept</td>
<td>0.094795</td>
<td>128.8</td>
<td>0.090079</td>
<td>0.090738</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Accept</td>
<td>0.091667</td>
<td>140.48</td>
<td>0.090079</td>
<td>0.090124</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Accept</td>
<td>0.092124</td>
<td>122.07</td>
<td>0.090079</td>
<td>0.090351</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Best</td>
<td>0.079954</td>
<td>55.372</td>
<td>0.079954</td>
<td>0.079961</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.087518</td>
<td>107.37</td>
<td>0.079954</td>
<td>0.080013</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.1044</td>
<td>262.5</td>
<td>0.079954</td>
<td>0.079955</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.08908</td>
<td>236.96</td>
<td>0.079954</td>
<td>0.079954</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Best</td>
<td>0.073399</td>
<td>357.09</td>
<td>0.073399</td>
<td>0.073454</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Accept</td>
<td>0.27723</td>
<td>700.19</td>
<td>0.073399</td>
<td>0.073682</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Accept</td>
<td>0.098615</td>
<td>495.45</td>
<td>0.073399</td>
<td>0.073412</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Accept</td>
<td>0.26445</td>
<td>16.279</td>
<td>0.073399</td>
<td>0.073415</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>Accept</td>
<td>0.086335</td>
<td>463.99</td>
<td>0.073399</td>
<td>0.073415</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Accept</td>
<td>0.073897</td>
<td>165.19</td>
<td>0.073399</td>
<td>0.073453</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Best</td>
<td>0.0542</td>
<td>63.842</td>
<td>0.0542</td>
<td>0.054204</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Accept</td>
<td>0.13236</td>
<td>9.7164</td>
<td>0.0542</td>
<td>0.054172</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>Accept</td>
<td>0.089937</td>
<td>121.57</td>
<td>0.0542</td>
<td>0.054184</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Accept</td>
<td>0.095321</td>
<td>26.666</td>
<td>0.0542</td>
<td>0.054188</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Accept</td>
<td>0.075511</td>
<td>663.85</td>
<td>0.0542</td>
<td>0.054177</td>
</tr>
<tr>
<td>Iter</td>
<td>workers</td>
<td>result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Accept</td>
<td>0.11003</td>
<td>924.74</td>
<td>0.0542</td>
<td>0.054227</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Best</td>
<td>0.052359</td>
<td>73.155</td>
<td>0.052359</td>
<td>0.052321</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Accept</td>
<td>0.12494</td>
<td>358.25</td>
<td>0.052359</td>
<td>0.052541</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Best</td>
<td>0.049896</td>
<td>78.397</td>
<td>0.049896</td>
<td>0.049868</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>Accept</td>
<td>0.082211</td>
<td>88.012</td>
<td>0.049896</td>
<td>0.049877</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>Accept</td>
<td>0.13766</td>
<td>4.1461</td>
<td>0.049896</td>
<td>0.049929</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>Accept</td>
<td>0.091505</td>
<td>76.834</td>
<td>0.049896</td>
<td>0.049938</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>Accept</td>
<td>0.083367</td>
<td>377.72</td>
<td>0.049896</td>
<td>0.049922</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>Accept</td>
<td>0.050204</td>
<td>36.144</td>
<td>0.049896</td>
<td>0.049954</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>Accept</td>
<td>0.050111</td>
<td>94.69</td>
<td>0.049896</td>
<td>0.049853</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>Accept</td>
<td>0.049967</td>
<td>80.205</td>
<td>0.049896</td>
<td>0.049843</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>Accept</td>
<td>0.051483</td>
<td>73.96</td>
<td>0.049896</td>
<td>0.049913</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>Accept</td>
<td>0.055065</td>
<td>59.315</td>
<td>0.049896</td>
<td>0.049209</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>Accept</td>
<td>0.085603</td>
<td>646.71</td>
<td>0.049896</td>
<td>0.049199</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>Accept</td>
<td>0.055191</td>
<td>64.876</td>
<td>0.049896</td>
<td>0.050181</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>Accept</td>
<td>0.053131</td>
<td>78.86</td>
<td>0.049896</td>
<td>0.050183</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>Accept</td>
<td>0.086441</td>
<td>972.66</td>
<td>0.049896</td>
<td>0.050138</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>Accept</td>
<td>0.11435</td>
<td>559.73</td>
<td>0.049896</td>
<td>0.050126</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>Accept</td>
<td>0.061942</td>
<td>56.196</td>
<td>0.049896</td>
<td>0.05003</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>Accept</td>
<td>0.050695</td>
<td>146.19</td>
<td>0.049896</td>
<td>0.049991</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iter</th>
<th>workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>6</td>
<td>Accept</td>
<td>0.063993</td>
<td>67.757</td>
<td>0.049896</td>
<td>0.04959</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>Accept</td>
<td>0.052216</td>
<td>67.695</td>
<td>0.049896</td>
<td>0.050079</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>Accept</td>
<td>0.050459</td>
<td>106.06</td>
<td>0.049896</td>
<td>0.05057</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>Accept</td>
<td>0.080488</td>
<td>73.663</td>
<td>0.049896</td>
<td>0.050185</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>Accept</td>
<td>0.33271</td>
<td>3.0724</td>
<td>0.049896</td>
<td>0.049921</td>
</tr>
<tr>
<td>46</td>
<td>6</td>
<td>Accept</td>
<td>0.050062</td>
<td>117.69</td>
<td>0.049896</td>
<td>0.049974</td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td>Accept</td>
<td>0.052668</td>
<td>84.789</td>
<td>0.049896</td>
<td>0.050235</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>Accept</td>
<td>0.2018</td>
<td>3.8272</td>
<td>0.049896</td>
<td>0.049958</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>Accept</td>
<td>0.16043</td>
<td>4.6847</td>
<td>0.049896</td>
<td>0.050023</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td>Best</td>
<td>0.049641</td>
<td>114.53</td>
<td>0.049641</td>
<td>0.049857</td>
</tr>
<tr>
<td>51</td>
<td>6</td>
<td>Accept</td>
<td>0.7381</td>
<td>4.4077</td>
<td>0.049641</td>
<td>0.049978</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>Best</td>
<td>0.049122</td>
<td>126.93</td>
<td>0.049122</td>
<td>0.046892</td>
</tr>
<tr>
<td>53</td>
<td>6</td>
<td>Accept</td>
<td>0.11509</td>
<td>5.5331</td>
<td>0.049122</td>
<td>0.046928</td>
</tr>
<tr>
<td>54</td>
<td>6</td>
<td>Accept</td>
<td>0.13896</td>
<td>5.3982</td>
<td>0.049122</td>
<td>0.046931</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>Accept</td>
<td>0.089654</td>
<td>118.4</td>
<td>0.049122</td>
<td>0.047014</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>Accept</td>
<td>0.13288</td>
<td>6.7787</td>
<td>0.049122</td>
<td>0.04717</td>
</tr>
<tr>
<td>57</td>
<td>6</td>
<td>Accept</td>
<td>0.088281</td>
<td>7.071</td>
<td>0.049122</td>
<td>0.049622</td>
</tr>
<tr>
<td>58</td>
<td>6</td>
<td>Accept</td>
<td>0.14073</td>
<td>4.7475</td>
<td>0.049122</td>
<td>0.05038</td>
</tr>
<tr>
<td>59</td>
<td>6</td>
<td>Accept</td>
<td>0.10047</td>
<td>6.3818</td>
<td>0.049122</td>
<td>0.050379</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>Accept</td>
<td>0.049743</td>
<td>123.64</td>
<td>0.049122</td>
<td>0.049364</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 60 reached.
Total function evaluations: 60
Total elapsed time: 1929.959 seconds.
Total objective function evaluation time: 11249.722

Best observed feasible point:
iterlim lambda solver q lambdareg
_______ ______ ______ ___ __________ 
    11    4.4034     s   997  1.2552e-05 

Observed objective function value = 0.049122
Estimated objective function value = 0.049364
Function evaluation time = 126.9278

Best estimated feasible point (according to models):
iterlim lambda solver q lambdareg
_______ ______ ______ ___ __________ 
    27    1.2167     s   657  1.0109e-05 

Estimated objective function value = 0.049364
Estimated function evaluation time = 81.6216
The resulting classifier does not have better (lower) loss than the classifier using \texttt{sparsefilt} for 1000 features, trained for 10 iterations.

View the filter coefficients for the best hyperparameters that \texttt{bayesopt} found. The resulting images show the shapes of the extracted features. These shapes are recognizable as portions of handwritten digits.

```matlab
Xtbl = results.XAtMinObjective;
Q = Xtbl.q;
initW = W(1:size(Xtrain,2),1:Q);
if char(Xtbl.solver) == 'r'
 Mdl = rica(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ...
 'InitialTransformWeights',initW,'Standardize',true);
else
```

15-196
Mdl = sparsefilt(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ...  
'InitialTransformWeights',initW);
end
Wts = Mdl.TransformWeights;
Wts = reshape(Wts,[28,28,Q]);
[dx,dy,~,~] = size(Wts);
for f = 1:Q
    Wvec = Wts(:,:,f);
    Wvec = Wvec(:);
    Wvec =(Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
    Wts(:,:,f) = reshape(Wvec,dx,dy);
end
m   = ceil(sqrt(Q));
n   = m;
img = zeros(m*dx,n*dy);
f   = 1;
for i = 1:m
    for j = 1:n
        if (f <= Q)
            img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = Wts(:,:,f);
            f = f+1;
        end
    end
end
imshow(img);

Warning: Solver LBFGS was not able to converge to a solution.
Remove the directory of the functions `processMNISTdata` and `filterica` from the search path.

```matlab
rmpath(fullfile(matlabroot,'examples','stats'));
```
**Code for Reading MNIST Data**

The code of the function that reads the data into the workspace is:

```matlab
function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
 error(errmsg);
end

%%
% First read the magic number. This number is 2051 for image data, and
% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
 fprintf('
Read MNIST image data...
')
end
%
% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...
',numImages);
numRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...
',numRows,numCols);
%
% Read the image data
X = fread(fileID,inf,'unsigned char');
%
% Reshape the data to array X
X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);
%
% Then flatten each image data into a 1 by (numRows*numCols) vector, and
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages);
fprintf(['
The image data is read to a matrix of dimensions: %6d by %4d...
',...'
End of reading image data.
'],size(X,1),size(X,2));
%
% Close the file
fclose(fileID);
%
% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
 error(errmsg);
end
```

```
error(errmsg);
end
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
 fprintf('
Read MNIST label data...
')
end
numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...
',numItems);
L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...
','End of reading label data.
'],size(L,1),size(L,2));
fclose(fileID);

See Also
ReconstructionICA|SparseFiltering|rica|sparsefilt

Related Examples
• “Extract Mixed Signals” on page 15-201

More About
• “Feature Extraction” on page 15-159
This example shows how to use rica to disentangle mixed audio signals. You can use rica to perform independent component analysis (ICA) when prewhitening is included as a preprocessing step. The ICA model is

\[x = \mu + As. \]

Here, \(x \) is a \(P \)-by-1 vector of mixed signals, \(\mu \) is a \(P \)-by-1 vector of offset values, \(A \) is a \(P \)-by-\(Q \) mixing matrix, and \(s \) is a \(Q \)-by-1 vector of original signals. Suppose first that \(A \) is a square matrix. If you know \(\mu \) and \(A \), you can recover an original signal \(s \) from the data \(x \):

\[s = A^{-1}(x - \mu). \]

Using the rica function, you can perform this recovery even without knowing the mixing matrix \(A \) or the mean \(\mu \). Given a set of several observations \(x(1), x(2), \ldots \), rica extracts the original signals \(s(1), s(2), \ldots \).

Load Data

Load a set of six audio files, which ship with MATLAB®. Trim each file to 10,000 samples.

```matlab
files = {'chirp.mat', 'gong.mat', 'handel.mat', 'laughter.mat', 'splat.mat', 'train.mat'};
S = zeros(10000,6);
for i = 1:6
test = load(files{i});
y = test.y(1:10000,1);
S(:,i) = y;
end
```

Mix Signals

Mix the signals together by using a random mixing matrix and add a random offset.

```matlab
rng default % For reproducibility
mixdata = S*randn(6) + randn(1,6);
```
To listen to the original sounds, execute this code:

```matlab
for i = 1:6
    disp(i);
    sound(S(:,i));
    pause;
end
```

To listen to the mixed sounds, execute this code:

```matlab
for i = 1:6
    disp(i);
    sound(mixdata(:,i));
    pause;
end
```

Plot the signals.

```matlab
figure
for i = 1:6
    subplot(2,6,i)
    plot(S(:,i))
    title(['Sound ',num2str(i)])
    subplot(2,6,i+6)
    plot(mixdata(:,i))
    title(['Mix ',num2str(i)])
end
```
The original signals have clear structure. The mixed signals have much less structure.

Prewhiten Mixed Signals

To separate the signals effectively, "prewhiten" the signals by using the `prewhiten` function that appears at the end of this example. This function transforms `mixdata` so that it has zero mean and identity covariance.

The idea is the following. If s is a zero-mean source with statistically independent components, then

$$E(s) = 0$$
\[E(ss^T) = I. \]

Then the mean and covariance of \(x \) are

\[E(x) = \mu \]
\[\text{Cov}(x) = AA^T = C. \]

Suppose that you know \(\mu \) and \(C \). In practice, you would estimate these quantities from the sample mean and covariance of the columns of \(x \). You can solve for \(s \) in terms of \(x \) by

\[s = A^{-1}(x - \mu) = (A^T A)^{-1} A^T (x - \mu). \]

The latter equation holds even when \(A \) is not a square invertible matrix.

Suppose that \(U \) is a \(p \)-by- \(q \) matrix of left eigenvectors of the positive semidefinite matrix \(C \), and \(\Sigma \) is the \(q \)-by- \(q \) matrix of eigenvalues. Then

\[C = U \Sigma U^T \]
\[U^T U = I. \]

Then

\[AA^T = U \Sigma U^T. \]

There are many mixing matrices \(A \) that satisfy this last equation. If \(W \) is a \(q \)-by- \(q \) orthonormal matrix, then

\[W^T W = WW^T = I \]
\[A = U \Sigma^{1/2} W. \]

Substituting into the equation for \(s \),

\[s = W^T \tilde{x}, \text{ where} \]
\[\tilde{x} = \Sigma^{-1/2} U^T (x - \mu). \]
\(\tilde{x} \) is the prewhitened data. rica computes the unknown matrix \(W \) under the assumption that the components of \(s \) are as independent as possible.

```matlab
mixdata = prewhiten(mixdata);
```

Separate All Signals

A super-Gaussian source has a sharp peak near zero, such as a histogram of sound 1 shows.

```matlab
figure
histogram(S(:,1))
```
Perform Reconstruction ICA while asking for six features. Indicate that each source is super-Gaussian.

\[
q = 6;
\]
\[
\text{Mdl} = \text{rica} \left(\text{mixdata}, q, '\text{NonGaussianityIndicator}', \text{ones}(6,1) \right);
\]

Extract the features. If the unmixing procedure is successful, the features are proportional to the original signals.

\[
\text{unmixed} = \text{transform} \left(\text{Mdl}, \text{mixdata} \right);
\]

Compare Unmixed Signals To Original Signals

Plot the original and unmixed signals.

\[
\text{figure}
\]
\[
\text{for } i = 1:6
\]
\[
\quad \text{subplot}(2,6,i)
\]
\[
\quad \text{plot}(S(:,i))
\]
\[
\quad \text{title}(['\text{Sound }', \text{num2str}(i)])
\]
\[
\quad \text{subplot}(2,6,i+6)
\]
\[
\quad \text{plot}(\text{unmixed}(:,i))
\]
\[
\quad \text{title}(['\text{Unmix }', \text{num2str}(i)])
\]
\[
\text{end}
\]
The order of the unmixed signals is different than the original order. Reorder the columns so that the unmixed signals match the corresponding original signals. Scale the unmixed signals to have the same norms as the corresponding original signals. (rica cannot identify the scale of the original signals because any scale can lead to the same signal mixture.)

```
unmixed = unmixed(:,[2,5,4,6,3,1]);
for i = 1:6
    unmixed(:,i) = unmixed(:,i)/norm(unmixed(:,i))*norm(S(:,i));
end
```

Plot the original and unmixed signals.
The unmixed signals look similar to the original signals. To listen to the unmixed sounds, execute this code.
for i = 1:6
 disp(i);
 sound(unmixed(:,i));
 pause;
end

Here is the code for the prewhiten function.

function Z = prewhiten(X)
% X = N-by-P matrix for N observations and P predictors
% Z = N-by-P prewhitened matrix

 % 1. Size of X.
 [N,P] = size(X);
 assert(N >= P);

 % 2. SVD of covariance of X. We could also use svd(X) to proceed but N
 % can be large and so we sacrifice some accuracy for speed.
 [U,Sig] = svd(cov(X));
 Sig = diag(Sig);
 Sig = Sig(:)';

 % 3. Figure out which values of Sig are non-zero.
 tol = eps(class(X));
 idx = (Sig > max(Sig)*tol);
 assert(~all(idx == 0));

 % 4. Get the non-zero elements of Sig and corresponding columns of U.
 Sig = Sig(idx);
 U = U(:,idx);

 % 5. Compute prewhitened data.
 mu = mean(X,1);
 Z = bsxfun(@minus,X,mu);
 Z = bsxfun(@times,Z*U,1./sqrt(Sig));
end

See Also
ReconstructionICA|SparseFiltering|rica|sparsefilt
Related Examples
• “Feature Extraction Workflow” on page 15-165

More About
• “Feature Extraction” on page 15-159
Cluster Analysis

- “Introduction to Cluster Analysis” on page 16-2
- “Hierarchical Clustering” on page 16-4
- “k-Means Clustering” on page 16-22
- “Cluster Using Gaussian Mixture Models” on page 16-29
- “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
- “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48
- “Tune Gaussian Mixture Models” on page 16-55
Introduction to Cluster Analysis

Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups, or clusters, of data. Clusters are formed in such a way that objects in the same cluster are very similar and objects in different clusters are very distinct. Measures of similarity depend on the application.

“Hierarchical Clustering” on page 16-4 groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics and Machine Learning Toolbox function `clusterdata` performs all of the necessary steps for you. It incorporates the `pdist`, `linkage`, and `cluster` functions, which may be used separately for more detailed analysis. The `dendrogram` function plots the cluster tree.

“k-Means Clustering” on page 16-22 is a partitioning method. The function `kmeans` partitions data into k mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k-means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that k-means clustering is often more suitable than hierarchical clustering for large amounts of data.

“Cluster Using Gaussian Mixture Models” on page 16-29 form clusters by representing the probability density function of observed variables as a mixture of multivariate normal densities. Mixture models of the `gmdistribution` class use an expectation maximization (EM) algorithm to fit data, which assigns posterior probabilities to each component density with respect to each observation. Clusters are assigned by selecting the component that maximizes the posterior probability. Clustering using Gaussian mixture models is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster. Like k-means clustering, Gaussian mixture modeling uses an iterative algorithm that converges to a local optimum. Gaussian mixture modeling may be more appropriate than k-means clustering when clusters have different sizes and correlation within them.
See Also

More About

• “Hierarchical Clustering” on page 16-4
• “k-Means Clustering” on page 16-22
• “Cluster Using Gaussian Mixture Models” on page 16-29
Hierarchical Clustering

In this section...

“Introduction to Hierarchical Clustering” on page 16-4
“Algorithm Description” on page 16-4
“Similarity Measures” on page 16-5
“Linkages” on page 16-7
“Dendrograms” on page 16-9
“Verify the Cluster Tree” on page 16-10
“Create Clusters” on page 16-16

Introduction to Hierarchical Clustering

Hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics and Machine Learning Toolbox function `clusterdata` supports agglomerative clustering and performs all of the necessary steps for you. It incorporates the `pdist`, `linkage`, and `cluster` functions, which you can use separately for more detailed analysis. The `dendrogram` function plots the cluster tree.

Algorithm Description

To perform agglomerative hierarchical cluster analysis on a data set using Statistics and Machine Learning Toolbox functions, follow this procedure:

1. **Find the similarity or dissimilarity between every pair of objects in the data set.** In this step, you calculate the distance between objects using the `pdist` function. The `pdist` function supports many different ways to compute this measurement. See “Similarity Measures” on page 16-5 for more information.

2. **Group the objects into a binary, hierarchical cluster tree.** In this step, you link pairs of objects that are in close proximity using the `linkage` function. The `linkage` function uses the distance information generated in step 1 to determine the proximity of objects to each other. As objects are paired into binary clusters, the newly formed
clusters are grouped into larger clusters until a hierarchical tree is formed. See “Linkages” on page 16-7 for more information.

3 **Determine where to cut the hierarchical tree into clusters.** In this step, you use the \texttt{cluster} function to prune branches off the bottom of the hierarchical tree, and assign all the objects below each cut to a single cluster. This creates a partition of the data. The \texttt{cluster} function can create these clusters by detecting natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point.

The following sections provide more information about each of these steps.

Note The Statistics and Machine Learning Toolbox function \texttt{clusterdata} performs all of the necessary steps for you. You do not need to execute the \texttt{pdist}, \texttt{linkage}, or \texttt{cluster} functions separately.

Similarity Measures

You use the \texttt{pdist} function to calculate the distance between every pair of objects in a data set. For a data set made up of \(m \) objects, there are \(m^2(m - 1)/2 \) pairs in the data set. The result of this computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the \texttt{pdist} function calculates the Euclidean distance between objects; however, you can specify one of several other options. See \texttt{pdist} for more information.

Note You can optionally normalize the values in the data set before calculating the distance information. In a real world data set, variables can be measured against different scales. For example, one variable can measure Intelligence Quotient (IQ) test scores and another variable can measure head circumference. These discrepancies can distort the proximity calculations. Using the \texttt{zscore} function, you can convert all the values in the data set to use the same proportional scale. See \texttt{zscore} for more information.

For example, consider a data set, \(X \), made up of five objects where each object is a set of \(x,y \) coordinates.

- **Object 1**: 1, 2
- **Object 2**: 2.5, 4.5
• Object 3: 2, 2
• Object 4: 4, 1.5
• Object 5: 4, 2.5

You can define this data set as a matrix

```matlab
rng default; % For reproducibility
X = [1 2; 2.5 4.5; 2 2; 4 1.5; ...
    4 2.5];
```

and pass it to `pdist`. The `pdist` function calculates the distance between object 1 and object 2, object 1 and object 3, and so on until the distances between all the pairs have been calculated. The following figure plots these objects in a graph. The Euclidean distance between object 2 and object 3 is shown to illustrate one interpretation of distance.

![Distance Information](image)

Distance Information

The `pdist` function returns this distance information in a vector, `Y`, where each element contains the distance between a pair of objects.

```matlab
Y = pdist(X)
```

`Y = 1x10`

```
2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000 2.0616 2.0616 1.0000
```
To make it easier to see the relationship between the distance information generated by \texttt{pdist} and the objects in the original data set, you can reformat the distance vector into a matrix using the \texttt{squareform} function. In this matrix, element \(i,j\) corresponds to the distance between object \(i\) and object \(j\) in the original data set. In the following example, element 1,1 represents the distance between object 1 and itself (which is zero). Element 1,2 represents the distance between object 1 and object 2, and so on.

\begin{verbatim}
\texttt{squareform(Y)}
\end{verbatim}

\begin{verbatim}
ans = 5x5
\end{verbatim}

\begin{verbatim}
0 2.9155 1.0000 3.0414 3.0414
2.9155 0 2.5495 3.3541 2.5000
1.0000 2.5495 0 2.0616 2.0616
3.0414 3.3541 2.0616 0 1.0000
3.0414 2.5000 2.0616 1.0000 0
\end{verbatim}

Linkages

Once the proximity between objects in the data set has been computed, you can determine how objects in the data set should be grouped into clusters, using the \texttt{linkage} function. The \texttt{linkage} function takes the distance information generated by \texttt{pdist} and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The \texttt{linkage} function then links these newly formed clusters to each other and to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree.

For example, given the distance vector \(Y\) generated by \texttt{pdist} from the sample data set of \(x\)- and \(y\)-coordinates, the \texttt{linkage} function generates a hierarchical cluster tree, returning the linkage information in a matrix, \(Z\).

\begin{verbatim}
\texttt{Z = linkage(Y)}
\end{verbatim}

\begin{verbatim}
Z = 4x3
\end{verbatim}

\begin{verbatim}
4.0000 5.0000 1.0000
1.0000 3.0000 1.0000
6.0000 7.0000 2.0616
2.0000 8.0000 2.5000
\end{verbatim}

In this output, each row identifies a link between objects or clusters. The first two columns identify the objects that have been linked. The third column contains the
distance between these objects. For the sample data set of x- and y-coordinates, the linkage function begins by grouping objects 4 and 5, which have the closest proximity (distance value = 1.0000). The linkage function continues by grouping objects 1 and 3, which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If the original sample data set contained only five objects, what are objects 6 and 7? Object 6 is the newly formed binary cluster created by the grouping of objects 4 and 5. When the linkage function groups two objects into a new cluster, it must assign the cluster a unique index value, starting with the value \(m + 1 \), where \(m \) is the number of objects in the original data set. (Values 1 through \(m \) are already used by the original data set.) Similarly, object 7 is the cluster formed by grouping objects 1 and 3.

Linkage uses distances to determine the order in which it clusters objects. The distance vector \(Y \) contains the distances between the original objects 1 through 5. But linkage must also be able to determine distances involving clusters that it creates, such as objects 6 and 7. By default, linkage uses a method known as single linkage. However, there are a number of different methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster made up of objects 6 and 7, with object 2 from the original data set. The following figure graphically illustrates the way linkage groups the objects into a hierarchy of clusters.
Dendrograms

The hierarchical, binary cluster tree created by the `linkage` function is most easily understood when viewed graphically. The Statistics and Machine Learning Toolbox function `dendrogram` plots the tree as follows.

```
dendrogram(Z)
```

In the figure, the numbers along the horizontal axis represent the indices of the objects in the original data set. The links between objects are represented as upside-down U-shaped lines. The height of the U indicates the distance between the objects. For example, the link representing the cluster containing objects 1 and 3 has a height of 1. The link representing the cluster that groups object 2 together with objects 1, 3, 4, and 5, (which are already clustered as object 8) has a height of 2.5. The height represents the distance.
linkage computes between objects 2 and 8. For more information about creating a dendrogram diagram, see the dendrogram reference page.

Verify the Cluster Tree

After linking the objects in a data set into a hierarchical cluster tree, you might want to verify that the distances (that is, heights) in the tree reflect the original distances accurately. In addition, you might want to investigate natural divisions that exist among links between objects. Statistics and Machine Learning Toolbox functions are available for both of these tasks, as described in the following sections.

- “Verify Dissimilarity” on page 16-10
- “Verify Consistency” on page 16-11

Verify Dissimilarity

In a hierarchical cluster tree, any two objects in the original data set are eventually linked together at some level. The height of the link represents the distance between the two clusters that contain those two objects. This height is known as the cophenetic distance between the two objects. One way to measure how well the cluster tree generated by the linkage function reflects your data is to compare the cophenetic distances with the original distance data generated by the pdist function. If the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic correlation coefficient. The closer the value of the cophenetic correlation coefficient is to 1, the more accurately the clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of clustering the same data set using different distance calculation methods or clustering algorithms. For example, you can use the cophenet function to evaluate the clusters created for the sample data set.

```matlab
c = cophenet(Z,Y)
c = 0.8615```

Z is the matrix output by the linkage function and Y is the distance vector output by the pdist function.
Execute \texttt{pdist} again on the same data set, this time specifying the city block metric. After running the \texttt{linkage} function on this new \texttt{pdist} output using the average linkage method, call \texttt{cophenet} to evaluate the clustering solution.

\begin{verbatim}
Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
\end{verbatim}

\begin{verbatim}
c = 0.9047
\end{verbatim}

The cophenetic correlation coefficient shows that using a different distance and linkage method creates a tree that represents the original distances slightly better.

**Verify Consistency**

One way to determine the natural cluster divisions in a data set is to compare the height of each link in a cluster tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates that there are no distinct divisions between the objects joined at this level of the hierarchy. These links are said to exhibit a high level of consistency, because the distance between the objects being joined is approximately the same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the links below it indicates that the objects joined at this level in the cluster tree are much farther apart from each other than their components were when they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division in a data set. The \texttt{cluster} function uses a quantitative measure of inconsistency to determine where to partition your data set into clusters.

The following dendrogram illustrates inconsistent links. Note how the objects in the dendrogram fall into two groups that are connected by links at a much higher level in the tree. These links are inconsistent when compared with the links below them in the hierarchy.
The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as the *inconsistency coefficient*. This value compares the height of a link in a cluster hierarchy with the average height of links below it. Links that join distinct clusters have a high inconsistency coefficient; links that join indistinct clusters have a low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use the `inconsistent` function. By default, the `inconsistent` function compares each link
in the cluster hierarchy with adjacent links that are less than two levels below it in the cluster hierarchy. This is called the depth of the comparison. You can also specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no further objects below them, have an inconsistency coefficient of zero. Clusters that join two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency values for the links created by the linkage function in “Linkages” on page 16-7.

First, recompute the distance and linkage values using the default settings.

\[
Y = pdist(X); \\
Z = linkage(Y); \\
\]

Next, use inconsistent to calculate the inconsistency values.

\[
I = inconsistent(Z) \\
I = 4\times4 \\
\]

\[
\begin{array}{cccc}
1.0000 & 0 & 1.0000 & 0 \\
1.0000 & 0 & 1.0000 & 0 \\
1.3539 & 0.6129 & 3.0000 & 1.1547 \\
2.2808 & 0.3100 & 2.0000 & 0.7071 \\
\end{array}
\]

The inconsistent function returns data about the links in an \((m-1)\)-by-4 matrix, whose columns are described in the following table.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean of the heights of all the links included in the calculation</td>
</tr>
<tr>
<td>2</td>
<td>Standard deviation of all the links included in the calculation</td>
</tr>
<tr>
<td>3</td>
<td>Number of links included in the calculation</td>
</tr>
<tr>
<td>4</td>
<td>Inconsistency coefficient</td>
</tr>
</tbody>
</table>

In the sample output, the first row represents the link between objects 4 and 5. This cluster is assigned the index 6 by the linkage function. Because both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero. The second row represents the link between objects 1 and 3, both of which are also leaf nodes. This cluster is assigned the index 7 by the linkage function.
The third row evaluates the link that connects these two clusters, objects 6 and 7. (This new cluster is assigned index 8 in the linkage output). Column 3 indicates that three links are considered in the calculation: the link itself and the two links directly below it in the hierarchy. Column 1 represents the mean of the heights of these links. The inconsistent function uses the height information output by the linkage function to calculate the mean. Column 2 represents the standard deviation between the links. The last column contains the inconsistency value for these links, 1.1547. It is the difference between the current link height and the mean, normalized by the standard deviation.

\[
\frac{2.0616 - 1.3539}{.6129}
\]

\[\text{ans} = 1.1547\]

The following figure illustrates the links and heights included in this calculation.
Note In the preceding figure, the lower limit on the y-axis is set to 0 to show the heights of the links. To set the lower limit to 0, select Axes Properties from the Edit menu, click the Y Axis tab, and enter 0 in the field immediately to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2. Column 3 indicates that two links are included in this calculation: the link itself and the link directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this calculation.
Create Clusters

After you create the hierarchical tree of binary clusters, you can prune the tree to partition your data into clusters using the `cluster` function. The `cluster` function lets you create clusters in two ways, as discussed in the following sections:

- “Find Natural Divisions in Data” on page 16-17
- “Specify Arbitrary Clusters” on page 16-18
Find Natural Divisions in Data

The hierarchical cluster tree may naturally divide the data into distinct, well-separated clusters. This can be particularly evident in a dendrogram diagram created from data where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of the links in the cluster tree can identify these divisions where the similarities between objects change abruptly. (See “Verify the Cluster Tree” on page 16-10 for more information about the inconsistency coefficient.) You can use this value to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters, specifying an inconsistency coefficient threshold of 1.2 as the value of the cutoff argument, the cluster function groups all the objects in the sample data set into one cluster. In this case, none of the links in the cluster hierarchy had an inconsistency coefficient greater than 1.2.

\[
T = \text{cluster}(Z,'cutoff',1.2)
\]
\[
T = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

The cluster function outputs a vector, \( T \), that is the same size as the original data set. Each element in this vector contains the number of the cluster into which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function divides the sample data set into three separate clusters.

\[
T = \text{cluster}(Z,'cutoff',0.8)
\]
\[
T = \begin{bmatrix}
3 \\
2 \\
3 \\
1 \\
1
\end{bmatrix}
\]
This output indicates that objects 1 and 3 are in one cluster, objects 4 and 5 are in another cluster, and object 2 is in its own cluster.

When clusters are formed in this way, the cutoff value is applied to the inconsistency coefficient. These clusters may, but do not necessarily, correspond to a horizontal slice across the dendrogram at a certain height. If you want clusters corresponding to a horizontal slice of the dendrogram, you can either use the criterion option to specify that the cutoff should be based on distance rather than inconsistency, or you can specify the number of clusters directly as described in the following section.

**Specify Arbitrary Clusters**

Instead of letting the `cluster` function create clusters determined by the natural divisions in the data set, you can specify the number of clusters you want created.

For example, you can specify that you want the `cluster` function to partition the sample data set into two clusters. In this case, the `cluster` function creates one cluster containing objects 1, 3, 4, and 5 and another cluster containing object 2.

```matlab
T = cluster(Z,'maxclust',2)
T = 5×1
 2
 1
 2
 2
 2
```

To help you visualize how the `cluster` function determines these clusters, the following figure shows the dendrogram of the hierarchical cluster tree. The horizontal dashed line intersects two lines of the dendrogram, corresponding to setting `'maxclust'` to 2. These two lines partition the objects into two clusters: the objects below the left-hand line, namely 1, 3, 4, and 5, belong to one cluster, while the object below the right-hand line, namely 2, belongs to the other cluster.
On the other hand, if you set 'maxclust' to 3, the cluster function groups objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster. The following command illustrates this.

```matlab
T = cluster(Z,'maxclust',3)
```

T = 5x1

2
3
2
1
This time, the `cluster` function cuts off the hierarchy at a lower point, corresponding to the horizontal line that intersects three lines of the dendrogram in the following figure.
See Also

More About

• “Introduction to Cluster Analysis” on page 16-2
k-Means Clustering

**Introduction to k-Means Clustering**

$k$-means clustering is a partitioning method. The function `kmeans` partitions data into $k$ mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, $k$-means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that $k$-means clustering is often more suitable than hierarchical clustering for large amounts of data.

`kmeans` treats each observation in your data as an object having a location in space. It finds a partition in which objects within each cluster are as close to each other as possible, and as far from objects in other clusters as possible. You can choose from five different distance metrics, depending on the kind of data you are clustering.

Each cluster in the partition is defined by its member objects and by its centroid, or center. The centroid for each cluster is the point to which the sum of distances from all objects in that cluster is minimized. `kmeans` computes cluster centroids differently for each distance metric, to minimize the sum with respect to the measure that you specify.

You can control the details of the minimization using several optional input parameters to `kmeans`, including ones for the initial values of the cluster centroids, and for the maximum number of iterations. By default, `kmeans` uses the $k$-means++ algorithm for cluster center initialization and the squared Euclidean metric to determine distances.

**Create Clusters and Determine Separation**

The following example explores possible clustering in four-dimensional data by analyzing the results of partitioning the points into three, four, and five clusters.
Note Because each part of this example generates random numbers sequentially, i.e., without setting a new state, you must perform all steps in sequence to duplicate the results shown. If you perform the steps out of sequence, the answers will be essentially the same, but the intermediate results, number of iterations, or ordering of the silhouette plots may differ.

First, load some data.

```matlab
rng default % For reproducibility
load kmeansdata
size(X)
```

```matlab
ans = 1×2
560 4
```

Even though these data are four-dimensional, and cannot be easily visualized, `kmeans` enables you to investigate whether a group structure exists in them. Call `kmeans` with `k`, the desired number of clusters, equal to 3. For this example, specify the city block distance metric, and use the default `k-means++` algorithm for cluster center initialization.

```matlab
idx3 = kmeans(X,3,'Distance','cityblock');
```

To get an idea of how well-separated the resulting clusters are, you can make a silhouette plot using the cluster indices output from `kmeans`. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters. This measure ranges from +1, indicating points that are very distant from neighboring clusters, through 0, indicating points that are not distinctly in one cluster or another, to -1, indicating points that are probably assigned to the wrong cluster. `silhouette` returns these values in its first output.

```matlab
figure
[silh3,h] = silhouette(X,idx3,'cityblock');
h = gca;
h.Children.EdgeColor = [.8 .8 1];
xlabel 'Silhouette Value'
ylabel 'Cluster'
```
From the silhouette plot, you can see that most points in the second cluster have a large silhouette value, greater than 0.6, indicating that the cluster is somewhat separated from neighboring clusters. However, the third cluster contains many points with low silhouette values, and the first and third contain a few points with negative values, indicating that those two clusters are not well separated.

**Determine the Correct Number of Clusters**

Increase the number of clusters to see if kmeans can find a better grouping of the data. This time, use the 'Display' name-value pair argument to print information about each iteration.

```matlab
dx4 = kmeans(X,4, 'Distance','cityblock', 'Display','iter');```
<table>
<thead>
<tr>
<th>iter</th>
<th>phase</th>
<th>num</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>560</td>
<td>1792.72</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1771.1</td>
</tr>
</tbody>
</table>

Best total sum of distances = 1771.1

A silhouette plot for this solution indicates that these four clusters are better separated than the three in the previous solution.

```matlab
figure
[silh4,h] = silhouette(X,idx4,'cityblock');
h = gca;
h.Children.EdgeColor = [.8 .8 1];
xlabel 'Silhouette Value'
ylabel 'Cluster'
```
A more quantitative way to compare the two solutions is to look at the average silhouette values for the two cases.

\[
\text{cluster3} = \text{mean(silh3)} \\
\text{cluster3} = 0.5352 \\
\text{cluster4} = \text{mean(silh4)} \\
\text{cluster4} = 0.6400
\]

Finally, try clustering the data using five clusters.

```matlab
idx5 = kmeans(X,5,'Distance','cityblock','Replicates',5);
figure
[silh5,h] = silhouette(X,idx5,'city');
h = gca;
h.Children.EdgeColor = [.8 .8 1];
xlabel 'Silhouette Value'
ylabel 'Cluster'
```
mean(silh5)
ans = 0.5266

This silhouette plot indicates that this is probably not the right number of clusters, since two of the clusters contain points with mostly low silhouette values. Without some knowledge of how many clusters are really in the data, it is a good idea to experiment with a range of values for k.

Avoid Local Minima

Like many other types of numerical minimizations, the solution that kmeans reaches often depends on the starting points. It is possible for kmeans to reach a local minimum, where
reassigning any one point to a new cluster would increase the total sum of point-to-centroid distances, but where a better solution does exist. However, you can use the 'Replicates' name-value pair argument to overcome that problem.

For four clusters, specify five replicates, and use the 'Display' name-value pair argument to print out the final sum of distances for each of the solutions.

\[
[idx4,cent4,sumdist] = \text{kmeans}(X,4,'Distance','cityblock',... \\
\quad \quad 'Display','final','Replicates',5);
\]

Replicate 1, 4 iterations, total sum of distances = 1771.1.
Replicate 2, 2 iterations, total sum of distances = 1771.1.
Replicate 3, 5 iterations, total sum of distances = 2303.45.
Replicate 4, 4 iterations, total sum of distances = 2303.45.
Replicate 5, 6 iterations, total sum of distances = 1771.1.
Best total sum of distances = 1771.1

In two of the five replications, \text{kmeans} found a local (nonglobal) minimum. Since each of these five replicates begin from a different randomly selected set of initial centroids, sometimes \text{kmeans} finds more than one local minimum. However, the final solution that \text{kmeans} returns is the one with the lowest total sum of distances, over all replicates.

\[
\text{sum(sumdist)}
\]

\[
\text{ans} = 1.7711e+03
\]

See Also

More About
- “Introduction to Cluster Analysis” on page 16-2
Cluster Using Gaussian Mixture Models

How Gaussian Mixture Models Cluster Data

Gaussian mixture models (GMM) are often used for data clustering. Usually, fitted GMMs cluster by assigning query data points to the multivariate normal components that maximize the component posterior probability given the data. That is, given a fitted GMM, `cluster` assigns query data to the component yielding the highest posterior probability. This method of assigning a data point to exactly one cluster is called *hard* clustering. For an example showing how to fit a GMM to data, cluster using the fitted model, and estimate component posterior probabilities, see “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38.

However, GMM clustering is more flexible because you can view it as a *fuzzy* or *soft clustering* method. Soft clustering methods assign a score to a data point for each cluster. The value of the score indicates the association strength of the data point to the cluster. As opposed to hard clustering methods, soft clustering methods are flexible in that they can assign a data point to more than one cluster. When clustering with GMMs, the score is the posterior probability. For an example of soft clustering using GMM, see “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48.

Moreover, GMM clustering can accommodate clusters that have different sizes and correlation structures within them. Because of this, GMM clustering can be more appropriate to use than, e.g., *k*-means clustering.

Like most clustering methods, you must specify the number of desired clusters before fitting the model. The number of clusters specifies the number of components in the GMM. For GMMs, it is best practice to also consider the:

- Component covariance structure. You can specify diagonal or full covariance matrices, or whether all components have the same covariance matrix.
- Initial conditions. The Expectation-Maximization (EM) algorithm fits the GMM. Like the *k*-means clustering algorithm, EM is sensitive to initial conditions and might converge to a local optimum. You can specify your own starting values for the parameters, specify initial cluster assignments for data points or let them be randomly chosen, or specify to use the *k*-means ++ algorithm.
- Regularization parameter. If, for example, you have more predictors than data points, then you can regularize for estimation stability.
Covariance Structure Options

Load Fisher's iris data set. Consider clustering the sepal measurements.

```matlab
load fisheriris;
X = meas(:,1:2);
[n,p] = size(X);
rng(3); % For reproducibility
figure;
plot(X(:,1),X(:,2),'.','MarkerSize',15);
title('Fisher''s Iris Data Set');
xlabel('Sepal length (cm)');
ylabel('Sepal width (cm)');
```

![Fisher's Iris Data Set](image_url)
The number of components, k, in a GMM determines number of subpopulations or clusters. In this figure, it is difficult to determine whether two, three, or perhaps more components are appropriate. A GMM increases in complexity as k increases.

Each component has a covariance matrix. Geometrically, the covariance structure determines the shape of a confidence ellipsoid drawn over a subpopulation or cluster. You can specify whether the covariance matrices for all components are diagonal or full, or whether all components have the same covariance matrix. Each combination of specifications determines the shape and orientation of the ellipsoids.

Fit GMMs to the data and examine the effects of specifying all combinations of covariance structure options on the shape of the ellipsoids. That is, specify all combinations of the name-value pair arguments 'CovarianceType' and 'SharedCovariance'. Covariance structure specifications apply to all components. For illustration, specify that there are three components. To draw the ellipsoids:

1. Use the fitted GMM to cluster a grid covering the plane composed of the extremes of the measurements.
2. Obtain the score that specifies a 99% probability threshold for each confidence region. This specification determines the length of the major and minor axes of the ellipsoids.
3. Color the ellipse using a similar color to its cluster.

```matlab
k = 3;
Sigma = {'diagonal','full'};
nSigma = numel(Sigma);
SharedCovariance = {true,false};
SCtext = {'true','false'};
nSC = numel(SharedCovariance);
d = 500;
x1 = linspace(min(X(:,1)) - 2,max(X(:,1)) + 2,d);
x2 = linspace(min(X(:,2)) - 2,max(X(:,2)) + 2,d);
[x1grid,x2grid] = meshgrid(x1,x2);
X0 = [x1grid(:) x2grid(:)];
threshold = sqrt(chi2inv(0.99,2));
options = statset('MaxIter',1000); % Increase number of EM iterations

figure;
c = 1;
for i = 1:nSigma;
    for j = 1:nSC;
        gmmfit = fitgmdist(X,k,'CovarianceType',Sigma{i},...
```
'SharedCovariance',SharedCovariance{j},'Options',options);
clusterX = cluster(gmfit,X);
mahalDist = mahal(gmfit,X0);
subplot(2,2,c);
h1 = gscatter(X(:,1),X(:,2),clusterX);
hold on;
 for m = 1:k;
 idx = mahalDist(:,m)<=threshold;
 Color = h1(m).Color*0.75 + -0.5*(h1(m).Color - 1);
 h2 = plot(X0(idx,1),X0(idx,2),'.','Color',Color,'MarkerSize',1);
 uistack(h2,'bottom');
 end
plot(gmfit.mu(:,1),gmfit.mu(:,2),'kx','LineWidth',2,'MarkerSize',10)
title(sprintf('Sigma is %s, SharedCovariance = %s','...
Sigma{i},SCtext{j}),'FontSize',8)
legend(h1,['1','2','3']);
hold off
c = c + 1;
end
While the probability threshold for the confidence region determines the length of the major and minor axes, the covariance type determines the orientation of the axes.

- Diagonal covariance matrices indicate that the predictors are uncorrelated. The major and minor axes of the ellipses are parallel or perpendicular to the x and y axes. This specification increases the total number of parameters by p, the number of predictors, for each component, but is more parsimonious than the full covariance specification.

- Full covariance matrices allow for correlated predictors. There is no restriction to the orientation of the ellipses relative to the x and y axes. Each component increases the total number of parameters by $p(p + 1)/2$, but captures correlation structure among the predictors. This specification can cause overfitting.
• Shared covariance matrices indicate that all components have the same covariance matrix. All ellipses are the same size and have the same orientation. This specification is more parsimonious than the unshared specification because the total number of parameters only increases by the number of covariance parameters for one component.

• Unshared covariance matrices indicate that all components have their own covariance matrix. The size and orientation of all ellipses might differ. This specification increases the number of parameters by k times the number of covariance parameters for a component, but can capture covariance differences among components.

The figure also shows that `cluster` does not always preserve cluster order. That is, if you cluster several fitted `gmdistribution` models, `cluster` might assign different cluster labels for similar components.

In most applications, the number of components, k, and appropriate covariance structure, Σ, are unknown. One way you can tune a GMM is by comparing information criteria. Two popular information criteria are Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both take the optimized, negative log likelihood, and then penalize it with the number of parameters in the model (i.e., the model complexity). However, the BIC penalizes for complexity more severely than AIC. Therefore, the AIC tends to choose more complex models that might overfit, and BIC tends to choose simpler models that might underfit. A good practice is to look at both criteria when deciding on a model. Lower AIC or BIC values indicate better fitting models. You should also ensure that your choices for k and the covariance matrix structure is appropriate for your application. `fitgmdist` stores the AIC and BIC of fitted `gmdistribution` model objects in the properties `AIC` and `BIC`. You can access them using dot notation. For an example on choosing the appropriate parameters, see “Tune Gaussian Mixture Models” on page 16-55.

Effects of Initial Conditions

The algorithm that fits a GMM to the data can be sensitive to initial conditions. To illustrate this, consider fitting several GMMs and specify different initial conditions. Specifically, specify that, initially, most data points belong to the first cluster, two sets of random, initial assignments, and use k-means ++ to obtain initial cluster centers. For all instances, specify three components, unshared and full covariance matrices, the same initial mixture proportions, and the same initial covariance matrices. For stability when you try different sets of initial values, increase the number of EM algorithm iterations.

```matlab
cluster0 = {[ones(n-8,1); [2; 2; 2; 2]; [3; 3; 3; 3]];...
    randsample(1:k,n,true); randsample(1:k,n,true); 'plus'};
```
converged = nan(4,1);
figure;
for j = 1:4;
gmfit = fitgmdist(X,k,'CovarianceType','full',...
'SharedCovariance',false,'Start',cluster0{j},...
'Options',options);
clusterX = cluster(gmfit,X);
mahalDist = mahal(gmfit,X0);
subplot(2,2,j);
h1 = gscatter(X(:,1),X(:,2),clusterX);
hold on;
nK = numel(unique(clusterX));
for m = 1:nK;
 id = mahalDist(:,m)<=threshold;
 Color = h1(m).Color*0.75 + -0.5*(h1(m).Color - 1);
 h2 = plot(X0(id,1),X0(id,2),'.','Color',Color,'MarkerSize',1);
 uistack(h2,'bottom');
end
plot(gmfit.mu(:,1),gmfit.mu(:,2),'kx','LineWidth',2,'MarkerSize',10)
legend(h1,{'1','2','3'});
hold off
converged(j) = gmfit.Converged;
end
sum(converged)

ans =

4
All algorithms converged. Each of the different sets of starting cluster assignments for the data points leads to a different, fitted cluster assignment. You can specify a positive integer for the name-value pair argument 'Replicates', which runs the algorithm the specified number of times. Subsequently, fitgmdist chooses the fit that yields the largest likelihood.

When to Regularize

Sometimes, during an EM iteration, a fitted covariance matrix can become ill conditioned, that is, the likelihood is escaping to infinity. This can happen if:

- There are more predictors than data points.
- You specify to fit with too many components.
• Variables are highly correlated.

To overcome this problem, you can specify a small, positive number using the 'Regularize' name-value pair argument. fitgmdist adds the specified small, positive number to the diagonal elements of all covariance matrices, which ensures all matrices are positive definite. Regularizing can reduce the maximal likelihood value. For more details, see fitgmdist.

See Also
cluster | fitgmdist | gmdistribution

More About
• “Gaussian Mixture Models” on page 5-145
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48
• “Tune Gaussian Mixture Models” on page 16-55
• “Introduction to Cluster Analysis” on page 16-2
Cluster Gaussian Mixture Data Using Hard Clustering

This example shows how to implement hard clustering on simulated data from a mixture of Gaussian distributions.

Gaussian mixture models can be used for clustering data, by realizing that the multivariate normal components of the fitted model can represent clusters.

Simulate Data from a Mixture of Gaussian Distributions

Simulate data from a mixture of two bivariate Gaussian distributions using `mvnrnd`.

```matlab
rng('default') % For reproducibility
mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
X = [mvnrnd(mu1,sigma1,200); mvnrnd(mu2,sigma2,100)];
n = size(X,1);

figure
scatter(X(:,1),X(:,2),10,'ko')
```

Fit the Simulated Data to a Gaussian Mixture Model

Fit a two-component Gaussian mixture model (GMM). Here, you know the correct number of components to use. In practice, with real data, this decision would require comparing models with different numbers of components. Also, request to display the final iteration of the expectation-maximization fitting routine.

```matlab
options = statset('Display','final');
gm = fitgmdist(X,2,'Options',options)
```

26 iterations, log-likelihood = -1210.59

```matlab
gm =
```
Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.629514
Mean: 1.0756 2.0421

Component 2:
Mixing proportion: 0.370486
Mean: -0.8296 -1.8488

Plot the estimated probability density contours for the two-component mixture
distribution. The two bivariate normal components overlap, but their peaks are distinct.
This suggests that the data could reasonably be divided into two clusters.

```matlab
hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6])
title('Scatter Plot and Fitted GMM Contour')
hold off
```
Cluster the Data Using the Fitted GMM

cluster implements "hard clustering", a method that assigns each data point to exactly one cluster. For GMM, cluster assigns each point to one of the two mixture components in the GMM. The center of each cluster is the corresponding mixture component mean. For details on "soft clustering," see “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48.

Partition the data into clusters by passing the fitted GMM and the data to cluster.

```matlab
idx = cluster(gm,X);
cluster1 = (idx == 1); % [1] for cluster 1 membership
cluster2 = (idx == 2); % [2] for cluster 2 membership
```
Each cluster corresponds to one of the bivariate normal components in the mixture distribution. `cluster` assigns data to clusters based on a cluster membership score. Each cluster membership scores is the estimated posterior probability that the data point came from the corresponding component. `cluster` assigns each point to the mixture component corresponding to the highest posterior probability.

You can estimate cluster membership posterior probabilities by passing the fitted GMM and data to either:
• posterior
• cluster, and request to return the third output argument

Estimate Cluster Membership Posterior Probabilities

Estimate and plot the posterior probability of the first component for each point.

```
P = posterior(gm,X);
figure
scatter(X(cluster1,1),X(cluster1,2),10,P(cluster1,1),'+')
hold on
scatter(X(cluster2,1),X(cluster2,2),10,P(cluster2,1),'o')
hold off
clrmap = jet(80);
colormap(clrmap(9:72,:))
ylabel(colorbar,'Component 1 Posterior Probability')
legend('Cluster 1','Cluster 2','Location','best')
title('Scatter Plot and Cluster 1 Posterior Probabilities')
```
\(P \) is an \(n \)-by-2 matrix of cluster membership posterior probabilities. The first column contains the probabilities for cluster 1 and the second column corresponds to cluster 2.

Assign New Data to Clusters

You can also use the `cluster` method to assign new data points to the mixture components found in the original data.

Simulate new data from a mixture of Gaussian distributions. Rather than using `mvnrnd`, you can create a GMM with the true mixture component means and standard deviations using `gmdistribution`, and then pass the GMM to `random` to simulate data.

\[
Mu = [\text{mu1}; \text{mu2}];
\]
\[
\text{Sigma} = \text{cat}(3, \text{sigma1}, \text{sigma2});
\]
p = [0.75 0.25]; % Mixing proportions

gmTrue = gmdistribution(Mu,Sigma,p);
X0 = random(gmTrue,75);

Assign clusters to the new data by pass the fitted GMM (gm) and the new data to
cluster. Request cluster membership posterior probabilities.

[idx0,~,P0] = cluster(gm,X0);

figure
ezcontour(@(x,y)pdf(gm,[x y]),[min(X0(:,1)) max(X0(:,1))],...
 [min(X0(:,2)) max(X0(:,2))])
hold on
gscatter(X0(:,1),X0(:,2),idx0,'rb','+o')
legend('Fitted GMM Contour','Cluster 1','Cluster 2','Location','best')
title('New Data Cluster Assignments')
hold off
For `cluster` to provide meaningful results when clustering new data, \(X_0 \) should come from the same population as \(X \), the original data used to create the mixture distribution. In particular, when computing the posterior probabilities for \(X_0 \), `cluster` and `posterior` use the estimated mixing probabilities.

See Also

`cluster` | `fitgmdist` | `gmdistribution` | `posterior` | `random`

More About

- “Gaussian Mixture Models” on page 5-145
• “Cluster Using Gaussian Mixture Models” on page 16-29
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48
• “Tune Gaussian Mixture Models” on page 16-55
Cluster Gaussian Mixture Data Using Soft Clustering

This example shows how to implement soft clustering on simulated data from a mixture of Gaussian distributions.

Clustering estimates cluster membership posterior probabilities, and then assigns each point to the cluster corresponding to the maximum posterior probability. Soft clustering is an alternative clustering method that allows some data points to belong to multiple clusters. To implement soft clustering:

1. Assign a cluster membership score to each data point that describes how similar each point is to each cluster's archetype. For a mixture of Gaussian distributions, the cluster archetype is the corresponding component mean, and the component can be the estimated cluster membership posterior probability.

2. Rank the points by their cluster membership score.

3. Inspect the scores and determine cluster memberships.

For algorithms that use posterior probabilities as scores, a data point is a member of the cluster corresponding to the maximum posterior probability. However, if there are other clusters with corresponding posterior probabilities that are close to the maximum, then the data point can also be a member of those clusters. It is good practice to determine the threshold on scores that yield multiple cluster memberships before clustering.

This example follows from “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38.

Simulate data from a mixture of two bivariate Gaussian distributions.

```matlab
rng(0,'twister')  % For reproducibility
mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
X = [mvnrnd(mu1,sigma1,200); mvnrnd(mu2,sigma2,100)];
```

Fit a two-component Gaussian mixture model (GMM). Because there are two components, suppose that any data point with cluster membership posterior probabilities in the interval $[0.4,0.6]$ can be a member of both clusters.

```matlab
gm = fitgmdist(X,2);
threshold = [0.4 0.6];
```
Estimate component-member posterior probabilities for all data points using the fitted GMM gm. These represent cluster membership scores.

\[P = \text{posterior}(gm,X); \]

For each cluster, rank the membership scores for all data points. For each cluster, plot each data points membership score with respect to its ranking relative to all other data points.

\[n = \text{size}(X,1); \]
\[[~,\text{order}] = \text{sort}(P(:,1)); \]

\[\text{figure} \]
\[\text{plot}(1:n,P(order,1),'r-',1:n,P(order,2),'b-') \]
\[\text{legend}('\text{Cluster 1}', '\text{Cluster 2}') \]
\[\text{ylabel('Cluster Membership Score')} \]
\[\text{xlabel('Point Ranking')} \]
\[\text{title('GMM with Full Unshared Covariances')} \]
Although a clear separation is hard to see in a scatter plot of the data, plotting the membership scores indicates that the fitted distribution does a good job of separating the data into groups.

Plot the data and assign clusters by maximum posterior probability. Identify points that could be in either cluster.

```matlab
idx = cluster(gm,X);
idxBoth = find(P(:,1)>=threshold(1) & P(:,1)<=threshold(2));
numInBoth = numel(idxBoth)
```

```matlab
numInBoth = 7
```

```matlab
figure
```
Using the score threshold interval, seven data points can be in either cluster.

Soft clustering using a GMM is similar to fuzzy k-means clustering, which also assigns each point to each cluster with a membership score. The fuzzy k-means algorithm assumes that clusters are roughly spherical in shape, and all of roughly equal size. This is comparable to a Gaussian mixture distribution with a single covariance matrix that is shared across all components, and is a multiple of the identity matrix. In contrast,
gmdistribution allows you to specify different covariance structures. The default is to estimate a separate, unconstrained covariance matrix for each component. A more restricted option, closer to k-means, is to estimate a shared, diagonal covariance matrix.

Fit a GMM to the data, but specify that the components share the same, diagonal covariance matrix. This specification is similar to implementing fuzzy k-means clustering, but provides more flexibility by allowing unequal variances for different variables.

gmSharedDiag = fitgmdist(X,2,'CovType','Diagonal','SharedCovariance',true);

Estimate component-member posterior probabilities for all data points using the fitted GMM gmSharedDiag. Estimate soft cluster assignments.

[idxSharedDiag,~,PSharedDiag] = cluster(gmSharedDiag,X);
idxBothSharedDiag = find(PSharedDiag(:,1)>=threshold(1) & ...
 PSharedDiag(:,1)<=threshold(2));
numInBoth = numel(idxBothSharedDiag)

numInBoth = 5

Assuming shared, diagonal covariances among components, five data points could be in either cluster.

For each cluster:

1. Rank the membership scores for all data points.
2. Plot each data points membership score with respect to its ranking relative to all other data points.

[~,orderSharedDiag] = sort(PSharedDiag(:,1));

figure
plot(1:n,PSharedDiag(orderSharedDiag,1),'r-',...
 1:n,PSharedDiag(orderSharedDiag,2),'b-')
legend({'Cluster 1' 'Cluster 2'},'Location','NorthEast')
ylabel('Cluster Membership Score')
xlabel('Point Ranking')
title('GMM with Shared Diagonal Component Covariances')
Plot the data and identify the hard, clustering assignments from the GMM analysis assuming the shared, diagonal covariances among components. Also, identify those data points that could be in either cluster.

```matlab
figure
gscatter(X(:,1),X(:,2),idxSharedDiag,'rb','+o',5)
hold on
plot(X(idxBothSharedDiag,1),X(idxBothSharedDiag,2),'ko','MarkerSize',10)
legend({'Cluster 1','Cluster 2','Both Clusters'},'Location','SouthEast')
title('Scatter Plot - GMM with Shared Diagonal Component Covariances')
hold off
```
See Also
cluster | fitgmdist | gmdistribution

More About
- “Gaussian Mixture Models” on page 5-145
- “Cluster Using Gaussian Mixture Models” on page 16-29
- “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
- “Tune Gaussian Mixture Models” on page 16-55
This example shows how to determine the best Gaussian mixture model (GMM) fit by adjusting the number of components and the component covariance matrix structure.

Load Fisher's iris data set. Consider the petal measurements as predictors.

```matlab
load fisheriris;
X = meas(:,3:4);
[n,p] = size(X);
rng(1); % For reproducibility

figure;
plot(X(:,1),X(:,2),'.','MarkerSize',15);
title('Fisher''s Iris Data Set');
xlabel('Petal length (cm)');
ylabel('Petal width (cm)');
```
Suppose k is the number of desired components or clusters, and Σ is the covariance structure for all components. Follow these steps to tune a GMM.

1. Choose a (k, Σ) pair, and then fit a GMM using the chosen parameter specification and the entire data set.
2. Estimate the AIC and BIC.
3. Repeat steps 1 and 2 until you exhaust all (k, Σ) pairs of interest.
4. Choose the fitted GMM that balances low AIC with simplicity.

For this example, choose a grid of values for k that include 2 and 3, and some surrounding numbers. Specify all available choices for covariance structure. If k is too high for the data set, then the estimated component covariances can be badly conditioned. Specify to
use regularization to avoid badly conditioned covariance matrices. Increase the number of
EM algorithm iterations to 10000.

\begin{verbatim}
 k = 1:5;
nK = numel(k);
Sigma = {'diagonal','full'};
nSigma = numel(Sigma);
SharedCovariance = {true,false};
SCtext = {'true','false'};
nSC = numel(SharedCovariance);
RegularizationValue = 0.01;
options = statset('MaxIter',10000);

Fit the GMMs using all parameter combination. Compute the AIC and BIC for each fit.
Track the terminal convergence status of each fit.

% Preallocation
gm = cell(nK,nSigma,nSC);
aic = zeros(nK,nSigma,nSC);
bic = zeros(nK,nSigma,nSC);
converged = false(nK,nSigma,nSC);

% Fit all models
for m = 1:nSC;
 for j = 1:nSigma;
 for i = 1:nK;
 gm{i,j,m} = fitgmdist(X,k(i),...
 'CovarianceType',Sigma{j},...
 'SharedCovariance',SharedCovariance{m},...
 'RegularizationValue',RegularizationValue,....
 'Options',options);
 aic(i,j,m) = gm{i,j,m}.AIC;
 bic(i,j,m) = gm{i,j,m}.BIC;
 converged(i,j,m) = gm{i,j,m}.Converged;
 end
 end
end

allConverge = (sum(converged(:)) == nK*nSigma*nSC)

allConverge =

logical
\end{verbatim}
gm is a cell array containing all of the fitted gmdistribution model objects. All of the fitting instances converged.

Plot separate bar charts to compare the AIC and BIC among all fits. Group the bars by k.

```matlab
figure;
bar(reshape(aic,nK,nSigma*nSC));
title('AIC For Various $k$ and $\Sigma$ Choices','Interpreter','latex');
xlabel('$k$','Interpreter','Latex');
ylabel('AIC);
legend({'Diagonal-shared','Full-shared','Diagonal-unshared','Full-unshared'});

figure;
bar(reshape(bic,nK,nSigma*nSC));
title('BIC For Various $k$ and $\Sigma$ Choices','Interpreter','latex');
xlabel('$c$','Interpreter','Latex');
ylabel('BIC');
legend({'Diagonal-shared','Full-shared','Diagonal-unshared','Full-unshared'});
```
According to the AIC and BIC values, the best model has 3 components and a full, unshared covariance matrix structure.

Cluster the training data using the best fitting model. Plot the clustered data and the component ellipses.

gmBest = gm{3,2,2};
clusterX = cluster(gmBest,X);
kGMM = gmBest.NumComponents;
d = 500;
x1 = linspace(min(X(:,1)) - 2,max(X(:,1)) + 2,d);
x2 = linspace(min(X(:,2)) - 2,max(X(:,2)) + 2,d);
[x1grid,x2grid] = meshgrid(x1,x2);
X0 = [x1grid(:) x2grid(:)];
mahalDist = mahal(gmBest,X0);
threshold = sqrt(chi2inv(0.99,2));

figure;
h1 = gscatter(X(:,1),X(:,2),clusterX);
hold on;
for j = 1:kGMM;
 idx = mahalDist(:,j)<=threshold;
 Color = h1(j).Color*0.75 + -0.5*(h1(j).Color - 1);
 h2 = plot(X0(idx,1),X0(idx,2),'.','Color',Color,'MarkerSize',1);
 uistack(h2,'bottom');
end
h3 = plot(gmBest.mu(:,1),gmBest.mu(:,2),'kx','LineWidth',2,'MarkerSize',10);
title('Clustered Data and Component Structures');
xlabel('Petal length (cm)');
ylabel('Petal width (cm)');
legend(h1,'Cluster 1','Cluster 2','Cluster 3','Location','NorthWest');
hold off
This data set includes labels. Determine how well gmBest clusters the data by comparing each prediction to the true labels.

```matlab
species = categorical(species);
Y = zeros(n,1);
Y(species == 'versicolor') = 1;
Y(species == 'virginica') = 2;
Y(species == 'setosa') = 3;

miscluster = Y ~= clusterX;
clusterError = sum(miscluster)/n
```

clusterError =
The best fitting GMM groups 8% of the observations into the wrong cluster.

cluster does not always preserve cluster order. That is, if you cluster several fitted gmdistribution models, cluster might assign different cluster labels for similar components.

See Also
cluster | fitgmdist | gmdistribution

More About
• “Gaussian Mixture Models” on page 5-145
• “Cluster Using Gaussian Mixture Models” on page 16-29
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48
Parametric Classification

- “Parametric Classification” on page 17-2
- “Performance Curves” on page 17-3
Parametric Classification

Models of data with a categorical response are called classifiers. A classifier is built from training data, for which classifications are known. The classifier assigns new test data to one of the categorical levels of the response.

Parametric methods, like “Discriminant Analysis Classification” on page 20-2, fit a parametric model to the training data and interpolate to classify test data.

Nonparametric methods, like classification and regression trees, use other means to determine classifications.

See Also
fitcdiscr | fitcnnb

Related Examples
• “Discriminant Analysis Classification” on page 20-2
• “Naive Bayes Classification” on page 21-2
Introduction to Performance Curves

After a classification algorithm such as ClassificationNaiveBayes or TreeBagger has trained on data, you may want to examine the performance of the algorithm on a specific test dataset. One common way of doing this would be to compute a gross measure of performance such as quadratic loss or accuracy, averaged over the entire test dataset.

What are ROC Curves?

You may want to inspect the classifier performance more closely, for example, by plotting a Receiver Operating Characteristic (ROC) curve. By definition, a ROC curve [1,2] shows true positive rate versus false positive rate (equivalently, sensitivity versus 1–specificity) for different thresholds of the classifier output. You can use it, for example, to find the threshold that maximizes the classification accuracy or to assess, in more broad terms, how the classifier performs in the regions of high sensitivity and high specificity.

Evaluate Classifier Performance Using perfcurve

perfcurve computes measures for a plot of classifier performance. You can use this utility to evaluate classifier performance on test data after you train the classifier. Various measures such as mean squared error, classification error, or exponential loss can summarize the predictive power of a classifier in a single number. However, a performance curve offers more information as it lets you explore the classifier performance across a range of thresholds on its output.

You can use perfcurve with any classifier or, more broadly, with any method that returns a numeric score for an instance of input data. By convention adopted here,

- A high score returned by a classifier for any given instance signifies that the instance is likely from the positive class.
• A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability of observing an instance of the positive class at point X. An example of such a score is the fraction of positive observations in a leaf of a decision tree. In this case, scores fall into the range from 0 to 1 and scores from positive and negative classes add up to unity. Other methods can return scores ranging between minus and plus infinity, without any obvious mapping from the score to the posterior class probability.

`perfcurve` does not impose any requirements on the input score range. Because of this lack of normalization, you can use `perfcurve` to process scores returned by any classification, regression, or fit method. `perfcurve` does not make any assumptions about the nature of input scores or relationships between the scores for different classes. As an example, consider a problem with three classes, A, B, and C, and assume that the scores returned by some classifier for two instances are as follows:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance 1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>instance 2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

If you want to compute a performance curve for separation of classes A and B, with C ignored, you need to address the ambiguity in selecting A over B. You could opt to use the score ratio, $s(A)/s(B)$, or score difference, $s(A) - s(B)$; this choice could depend on the nature of these scores and their normalization. `perfcurve` always takes one score per instance. If you only supply scores for class A, `perfcurve` does not distinguish between observations 1 and 2. The performance curve in this case may not be optimal.

`perfcurve` is intended for use with classifiers that return scores, not those that return only predicted classes. As a counter-example, consider a decision tree that returns only hard classification labels, 0 or 1, for data with two classes. In this case, the performance curve reduces to a single point because classified instances can be split into positive and negative categories in one way only.

For input, `perfcurve` takes true class labels for some data and scores assigned by a classifier to these data. By default, this utility computes a Receiver Operating Characteristic (ROC) curve and returns values of 1–specificity, or false positive rate, for X and sensitivity, or true positive rate, for Y. You can choose other criteria for X and Y by selecting one out of several provided criteria or specifying an arbitrary criterion through an anonymous function. You can display the computed performance curve using `plot(X,Y)`.
perfcurve can compute values for various criteria to plot either on the x- or the y-axis. All such criteria are described by a 2-by-2 confusion matrix, a 2-by-2 cost matrix, and a 2-by-1 vector of scales applied to class counts.

The confusion matrix, C, is defined as

$$
\begin{pmatrix}
TP & FN \\
FP & TN
\end{pmatrix}
$$

where

- P stands for "positive".
- N stands for "negative".
- T stands for "true".
- F stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies instances of the positive class: $C(1,1)$ is the count of correctly identified positive instances and $C(1,2)$ is the count of positive instances misidentified as negative.

The cost matrix defines the cost of misclassification for each category:

$$
\begin{pmatrix}
Cost(P | P) & Cost(N | P) \\
Cost(P | N) & Cost(N | N)
\end{pmatrix}
$$

where $Cost(I | J)$ is the cost of assigning an instance of class J to class I. Usually $Cost(I | J)=0$ for $I=J$. For flexibility, perfcurve allows you to specify nonzero costs for correct classification as well.

The two scales include prior information about class probabilities. perfcurve computes these scales by taking $scale(P) = prior(P) * N$ and $scale(N) = prior(N) * P$ and normalizing the sum $scale(P) + scale(N)$ to 1. $P=TP+FN$ and $N=TN+FP$ are the total instance counts in the positive and negative class, respectively. The function then applies the scales as multiplicative factors to the counts from the corresponding class: perfcurve multiplies counts from the positive class by $scale(P)$ and counts from the negative class by $scale(N)$. Consider, for example, computation of positive predictive value, $PPV = TP / (TP + FP)$. TP counts come from the positive class and FP counts come from the negative class. Therefore, you need to scale TP by $scale(P)$ and FP by $scale(N)$, and the modified formula for PPV with prior probabilities taken into account is now:
If all scores in the data are above a certain threshold, perfcurve classifies all instances as 'positive'. This means that TP is the total number of instances in the positive class and FP is the total number of instances in the negative class. In this case, PPV is simply given by the prior:

\[
PPV = \frac{scale(P) \times TP}{scale(P) \times TP + scale(N) \times FP}
\]

The perfcurve function returns two vectors, X and Y, of performance measures. Each measure is some function of confusion, cost, and scale values. You can request specific measures by name or provide a function handle to compute a custom measure. The function you provide should take confusion, cost, and scale as its three inputs and return a vector of output values.

The criterion for X must be a monotone function of the positive classification count, or equivalently, threshold for the supplied scores. If perfcurve cannot perform a one-to-one mapping between values of the X criterion and score thresholds, it exits with an error message.

By default, perfcurve computes values of the X and Y criteria for all possible score thresholds. Alternatively, it can compute a reduced number of specific X values supplied as an input argument. In either case, for M requested values, perfcurve computes M+1 values for X and Y. The first value out of these M+1 values is special. perfcurve computes it by setting the TP instance count to zero and setting TN to the total count in the negative class. This value corresponds to the 'reject all' threshold. On a standard ROC curve, this translates into an extra point placed at (0,0).

If there are NaN values among input scores, perfcurve can process them in either of two ways:

- It can discard rows with NaN scores.
- It can add them to false classification counts in the respective class.

That is, for any threshold, instances with NaN scores from the positive class are counted as false negative (FN), and instances with NaN scores from the negative class are counted as false positive (FP). In this case, the first value of X or Y is computed by setting TP to zero and setting TN to the total count minus the NaN count in the negative class. For
illustration, consider an example with two rows in the positive and two rows in the negative class, each pair having a NaN score:

<table>
<thead>
<tr>
<th>Class</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>0.2</td>
</tr>
<tr>
<td>Negative</td>
<td>NaN</td>
</tr>
<tr>
<td>Positive</td>
<td>0.7</td>
</tr>
<tr>
<td>Positive</td>
<td>NaN</td>
</tr>
</tbody>
</table>

If you discard rows with NaN scores, then as the score cutoff varies, `perfcurve` computes performance measures as in the following table. For example, a cutoff of 0.5 corresponds to the middle row where rows 1 and 3 are classified correctly, and rows 2 and 4 are omitted.

<table>
<thead>
<tr>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If you add rows with NaN scores to the false category in their respective classes, `perfcurve` computes performance measures as in the following table. For example, a cutoff of 0.5 corresponds to the middle row where now rows 2 and 4 are counted as incorrectly classified. Notice that only the FN and FP columns differ between these two tables.

<table>
<thead>
<tr>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

For data with three or more classes, `perfcurve` takes one positive class and a list of negative classes for input. The function computes the X and Y values using counts in the positive class to estimate TP and FN, and using counts in all negative classes to estimate TN and FP. `perfcurve` can optionally compute Y values for each negative class separately and, in addition to Y, return a matrix of size M-by-C, where M is the number of elements in X or Y and C is the number of negative classes. You can use this functionality to monitor components of the negative class contribution. For example, you can plot TP.
counts on the X-axis and FP counts on the Y-axis. In this case, the returned matrix shows how the FP component is split across negative classes.

You can also use `perfcurve` to estimate confidence intervals. `perfcurve` computes confidence bounds using either cross-validation or bootstrap. If you supply cell arrays for `labels` and `scores`, `perfcurve` uses cross-validation and treats elements in the cell arrays as cross-validation folds. If you set input parameter `NBoot` to a positive integer, `perfcurve` generates `nboot` bootstrap replicas to compute pointwise confidence bounds.

`perfcurve` estimates the confidence bounds using one of two methods:

- Vertical averaging (VA) — estimate confidence bounds on Y and T at fixed values of X. Use the `XVals` input parameter to use this method for computing confidence bounds.
- Threshold averaging (TA) — estimate confidence bounds for X and Y at fixed thresholds for the positive class score. Use the `TVals` input parameter to use this method for computing confidence bounds.

To use observation weights instead of observation counts, you can use the `'Weights'` parameter in your call to `perfcurve`. When you use this parameter, to compute X, Y and T or to compute confidence bounds by cross-validation, `perfcurve` uses your supplied observation weights instead of observation counts. To compute confidence bounds by bootstrap, `perfcurve` samples N out of N with replacement using your weights as multinomial sampling probabilities.
Nonparametric Supervised Learning

- “Supervised Learning Workflow and Algorithms” on page 18-2
- “Visualize Decision Surfaces of Different Classifiers” on page 18-11
- “Classification Using Nearest Neighbors” on page 18-16
- “Framework for Ensemble Learning” on page 18-40
- “Ensemble Algorithms” on page 18-50
- “Train Classification Ensemble” on page 18-66
- “Train Regression Ensemble” on page 18-69
- “Select Predictors for Random Forests” on page 18-72
- “Test Ensemble Quality” on page 18-79
- “Ensemble Regularization” on page 18-86
- “Classification with Imbalanced Data” on page 18-99
- “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page 18-105
- “Classification with Many Categorical Levels” on page 18-113
- “Surrogate Splits” on page 18-119
- “LPBoost and TotalBoost for Small Ensembles” on page 18-122
- “Tune RobustBoost” on page 18-129
- “Random Subspace Classification” on page 18-133
- “Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
- “Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
- “Detect Outliers Using Quantile Regression” on page 18-167
- “Conditional Quantile Estimation Using Kernel Smoothing” on page 18-174
- “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 18-178
- “Support Vector Machines for Binary Classification” on page 18-183
- “Bibliography” on page 18-221
Supervised Learning Workflow and Algorithms

In this section...

“What is Supervised Learning?” on page 18-2
“Steps in Supervised Learning” on page 18-3
“Characteristics of Classification Algorithms” on page 18-7

What is Supervised Learning?

The aim of supervised, machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. As adaptive algorithms identify patterns in data, a computer "learns" from the observations. When exposed to more observations, the computer improves its predictive performance.

Specifically, a supervised learning algorithm takes a known set of input data and known responses to the data (output), and trains a model to generate reasonable predictions for the response to new data.

For example, suppose you want to predict whether someone will have a heart attack within a year. You have a set of data on previous patients, including age, weight, height, blood pressure, etc. You know whether the previous patients had heart attacks within a year of their measurements. So, the problem is combining all the existing data into a model that can predict whether a new person will have a heart attack within a year.

You can think of the entire set of input data as a heterogeneous matrix. Rows of the matrix are called observations, examples, or instances, and each contain a set of measurements for a subject (patients in the example). Columns of the matrix are called
predictors, attributes, or features, and each are variables representing a measurement taken on every subject (age, weight, height, etc. in the example). You can think of the response data as a column vector where each row contains the output of the corresponding observation in the input data (whether the patient had a heart attack). To fit or train a supervised learning model, choose an appropriate algorithm, and then pass the input and response data to it.

Supervised learning splits into two broad categories: classification and regression.

- In classification, the goal is to assign a class (or label) from a finite set of classes to an observation. That is, responses are categorical variables. Applications include spam filters, advertisement recommendation systems, and image and speech recognition. Predicting whether a patient will have a heart attack within a year is a classification problem, and the possible classes are true and false. Classification algorithms usually apply to nominal response values. However, some algorithms can accommodate ordinal classes (see fitcecoc).

- In regression, the goal is to predict a continuous measurement for an observation. That is, the responses variables are real numbers. Applications include forecasting stock prices, energy consumption, or disease incidence.

Statistics and Machine Learning Toolbox supervised learning functionalities comprise a streamlined, object framework. You can efficiently train a variety of algorithms, combine models into an ensemble, assess model performances, cross-validate, and predict responses for new data.

Steps in Supervised Learning

While there are many Statistics and Machine Learning Toolbox algorithms for supervised learning, most use the same basic workflow for obtaining a predictor model. (Detailed instruction on the steps for ensemble learning is in “Framework for Ensemble Learning” on page 18-40.) The steps for supervised learning are:

1. “Prepare Data” on page 18-4
2. “Choose an Algorithm” on page 18-4
3. “Fit a Model” on page 18-5
4. “Choose a Validation Method” on page 18-5
5. “Examine Fit and Update Until Satisfied” on page 18-6
6. “Use Fitted Model for Predictions” on page 18-7
Prepare Data

All supervised learning methods start with an input data matrix, usually called X here. Each row of X represents one observation. Each column of X represents one variable, or predictor. Represent missing entries with NaN values in X. Statistics and Machine Learning Toolbox supervised learning algorithms can handle NaN values, either by ignoring them or by ignoring any row with a NaN value.

You can use various data types for response data Y. Each element in Y represents the response to the corresponding row of X. Observations with missing Y data are ignored.

- For regression, Y must be a numeric vector with the same number of elements as the number of rows of X.
- For classification, Y can be any of these data types. This table also contains the method of including missing entries.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Missing Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric vector</td>
<td>NaN</td>
</tr>
<tr>
<td>Categorical vector</td>
<td><undefined></td>
</tr>
<tr>
<td>Character array</td>
<td>Row of spaces</td>
</tr>
<tr>
<td>String array</td>
<td><missing> or ""</td>
</tr>
<tr>
<td>Cell array of character vectors</td>
<td>''</td>
</tr>
<tr>
<td>Logical vector</td>
<td>(Cannot represent)</td>
</tr>
</tbody>
</table>

Choose an Algorithm

There are tradeoffs between several characteristics of algorithms, such as:

- Speed of training
- Memory usage
- Predictive accuracy on new data
- Transparency or interpretability, meaning how easily you can understand the reasons an algorithm makes its predictions

Details of the algorithms appear in “Characteristics of Classification Algorithms” on page 18-7. More detail about ensemble algorithms is in “Choose an Applicable Ensemble Aggregation Method” on page 18-42.
Fit a Model

The fitting function you use depends on the algorithm you choose.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Fitting Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification Trees</td>
<td>fitctree</td>
</tr>
<tr>
<td>Regression Trees</td>
<td>fitrtree</td>
</tr>
<tr>
<td>Discriminant Analysis (classification)</td>
<td>fitcdiscr</td>
</tr>
<tr>
<td>k-Nearest Neighbors (classification)</td>
<td>fitcknn</td>
</tr>
<tr>
<td>Naive Bayes (classification)</td>
<td>fitcnb</td>
</tr>
<tr>
<td>Support Vector Machines (SVM) for classification</td>
<td>fitcsvm</td>
</tr>
<tr>
<td>SVM for regression</td>
<td>fitrsvm</td>
</tr>
<tr>
<td>Multiclass models for SVM or other classifiers</td>
<td>fitcecoc</td>
</tr>
<tr>
<td>Classification Ensembles</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>Regression Ensembles</td>
<td>fitrensemble</td>
</tr>
<tr>
<td>Classification or Regression Tree Ensembles (e.g., Random Forests [1]) in Parallel</td>
<td>TreeBagger</td>
</tr>
</tbody>
</table>

For a comparison of these algorithms, see “Characteristics of Classification Algorithms” on page 18-7.

Choose a Validation Method

The three main methods to examine the accuracy of the resulting fitted model are:

- Examine the resubstitution error. For examples, see:
 - “Classification Tree Resubstitution Error” on page 19-17
 - “Cross Validate a Regression Tree” on page 19-18
 - “Test Ensemble Quality” on page 18-79
 - “Example: Resubstitution Error of a Discriminant Analysis Classifier” on page 20-22
• Examine the cross-validation error. For examples, see:
 • “Cross Validate a Regression Tree” on page 19-18
 • “Test Ensemble Quality” on page 18-79
 • “Classification with Many Categorical Levels” on page 18-113
 • “Cross Validating a Discriminant Analysis Classifier” on page 20-23
• Examine the out-of-bag error for bagged decision trees. For examples, see:
 • “Test Ensemble Quality” on page 18-79
 • “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page 18-139
 • “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 18-152

Examine Fit and Update Until Satisfied

After validating the model, you might want to change it for better accuracy, better speed, or to use less memory.

• Change fitting parameters to try to get a more accurate model. For examples, see:
 • “Tune RobustBoost” on page 18-129
 • “Train Ensemble With Unequal Classification Costs” on page 18-106
 • “Improving Discriminant Analysis Models” on page 20-20
• Change fitting parameters to try to get a smaller model. This sometimes gives a model with more accuracy. For examples, see:
 • “Select Appropriate Tree Depth” on page 19-21
 • “Prune a Classification Tree” on page 19-26
 • “Surrogate Splits” on page 18-119
 • “Regularize a Regression Ensemble” on page 18-87
 • “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page 18-139
 • “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 18-152
• Try a different algorithm. For applicable choices, see:
 • “Characteristics of Classification Algorithms” on page 18-7
When satisfied with a model of some types, you can trim it using the appropriate compact function (compact for classification trees, compact for regression trees, compact for discriminant analysis, compact for naive Bayes, compact for SVM, compact for ECOC models, compact for classification ensembles, and compact for regression ensembles). compact removes training data and other properties not required for prediction, e.g., pruning information for decision trees, from the model to reduce memory consumption. Because kNN classification models require all of the training data to predict labels, you cannot reduce the size of a ClassificationKNN model.

Use Fitted Model for Predictions

To predict classification or regression response for most fitted models, use the predict method:

\[\text{Ypredicted} = \text{predict(obj,Xnew)} \]

- **obj** is the fitted model or fitted compact model.
- **Xnew** is the new input data.
- **Ypredicted** is the predicted response, either classification or regression.

Characteristics of Classification Algorithms

This table shows typical characteristics of the various supervised learning algorithms. The characteristics in any particular case can vary from the listed ones. Use the table as a guide for your initial choice of algorithms. Decide on the tradeoff you want in speed, memory usage, flexibility, and interpretability.

Tip Try a decision tree or discriminant first, because these classifiers are fast and easy to interpret. If the models are not accurate enough predicting the response, try other classifiers with higher flexibility.

To control flexibility, see the details for each classifier type. To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy.
<table>
<thead>
<tr>
<th>Classifier</th>
<th>Multiclass Support</th>
<th>Categorical Predictor Support on page 18-9</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Decision Trees” on page 19-2 — fitctree</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Small</td>
<td>Easy</td>
</tr>
<tr>
<td>Discriminant analysis on page 20-2 — fitcdiscr</td>
<td>Yes</td>
<td>No</td>
<td>Fast</td>
<td>Small for linear, large for quadratic</td>
<td>Easy</td>
</tr>
<tr>
<td>Naive Bayes on page 21-2 — fitcnb</td>
<td>Yes</td>
<td>Yes</td>
<td>Medium for simple distributions. Slow for kernel distributions or high-dimensional data</td>
<td>Small for simple distributions. Medium for kernel distributions or high-dimensional data</td>
<td>Easy</td>
</tr>
<tr>
<td>Nearest neighbor on page 18-16 — fitcknn</td>
<td>Yes</td>
<td>Yes</td>
<td>Slow for cubic. Medium for others.</td>
<td>Medium</td>
<td>Hard</td>
</tr>
<tr>
<td>Ensembles on page 18-40 — fitcensemble and fitrensemble</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast to medium depending on choice of algorithm</td>
<td>Low to high depending on choice of algorithm.</td>
<td>Hard</td>
</tr>
</tbody>
</table>
The results in this table are based on an analysis of many data sets. The data sets in the study have up to 7000 observations, 80 predictors, and 50 classes. This list defines the terms in the table.

Speed:
- Fast — 0.01 second
- Medium — 1 second
- Slow — 100 seconds

Memory
- Small — 1MB
- Medium — 4MB
- Large — 100MB

Note The table provides a general guide. Your results depend on your data and the speed of your machine.

Categorical Predictor Support

This table describes the data-type support of predictors for each classifier.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>All predictors numeric</th>
<th>All predictors categorical</th>
<th>Some categorical, some numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Discriminant Analysis</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SVM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nearest Neighbor</td>
<td>Euclidean distance only</td>
<td>Hamming distance only</td>
<td>No</td>
</tr>
<tr>
<td>Ensembles</td>
<td>Yes</td>
<td>Yes, except subspace ensembles of discriminant analysis classifiers</td>
<td>Yes, except subspace ensembles</td>
</tr>
</tbody>
</table>
References

Visualize Decision Surfaces of Different Classifiers

This example shows how to plot the decision surface of different classification algorithms.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas(:,1:2);
y = categorical(species);
labels = categories(y);
```

X is a numeric matrix that contains two petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Visualize the data using a scatter plot. Group the variables by iris species.

```matlab
gscatter(X(:,1),X(:,2),species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width');
```
Train four different classifiers and store the models in a cell array.

```matlab
classifier_name = {'Naive Bayes','Discriminant Analysis','Classification Tree','Nearest Neighbor'};
```

Train a naive Bayes model.

```matlab
classifier{1} = fitcnb(X,y);
```

Train a discriminant analysis classifier.

```matlab
classifier{2} = fitcdiscr(X,y);
```

Train a classification decision tree.

```matlab
classifier{3} = fitctree(X,y);
```
Train a k-nearest neighbor classifier.

classifier{4} = fitcknn(X,y);

Create a grid of points spanning the entire space within some bounds of the actual data values.

\[
x1range = \min(X(:,1)):.01:\max(X(:,1));
\]
\[
x2range = \min(X(:,2)):.01:\max(X(:,2));
\]
\[
[xx1, xx2] = meshgrid(x1range,x2range);
\]
\[
XGrid = [xx1(:) xx2(:)];
\]

Predict the iris species of each observation in XGrid using all classifiers. Plot the a scatter plot of the results.

\[
\text{for} \ i = 1:\text{numel}(\text{classifier})
\]
\[
\quad \text{predictedspecies} = \text{predict}(\text{classifier}{i},XGrid);
\]
\[
\quad \text{subplot}(2,2,i);
\]
\[
\quad \text{gscatter}(xx1(:), xx2(:), predictedspecies,'rgb');
\]
\[
\quad \text{title}(\text{classifier_name}{i})
\]
\[
\quad \text{legend} \ \text{off}, \text{axis} \ \text{tight}
\]
\[
\text{end}
\]
\[
\text{legend}(\text{labels},'\text{Location}',[0.35,0.01,0.35,0.05],'\text{Orientation}','\text{Horizontal}')
\]
Each classification algorithm generates different decision making rules. A decision surface can help you visualize these rules.

See Also

Functions
fitcdiscr | fitcknn | fitcnb | fitctree
Related Examples

- “Plot Posterior Classification Probabilities” on page 21-7
Classification Using Nearest Neighbors

Pairwise Distance Metrics

Categorizing query points based on their distance to points in a training data set can be a simple yet effective way of classifying new points. You can use various metrics to determine the distance, described next. Use pdist2 to find the distance between a set of data and query points.

Distance Metrics

Given an \(mx \)-by-\(n \) data matrix \(X \), which is treated as \(mx \) (1-by-\(n \)) row vectors \(x_1, x_2, ..., x_{mx} \), and an \(my \)-by-\(n \) data matrix \(Y \), which is treated as \(my \) (1-by-\(n \)) row vectors \(y_1, y_2, ..., y_{my} \), the various distances between the vector \(x_s \) and \(y_t \) are defined as follows:

- Euclidean distance

\[
d^2_{st} = (x_s - y_t)(x_s - y_t)'.
\]

The Euclidean distance is a special case of the Minkowski distance, where \(p = 2 \).

- Standardized Euclidean distance

\[
d^2_{st} = (x_s - y_t)V^{-1}(x_s - y_t)',
\]
where V is the n-by-n diagonal matrix whose jth diagonal element is $(S(j))^2$, where S is a vector of scaling factors for each dimension.

- **Mahalanobis distance**

 $$d_{st}^2 = (x_s - y_t)'C^{-1}(x_s - y_t),$$

 where C is the covariance matrix.

- **City block distance**

 $$d_{st} = \sum_{j=1}^{n}|x_{sj} - y_{tj}|.$$

 The city block distance is a special case of the Minkowski distance, where $p = 1$.

- **Minkowski distance**

 $$d_{st} = \sqrt[p]{\sum_{j=1}^{n}|x_{sj} - y_{tj}|^p}.$$

 For the special case of $p = 1$, the Minkowski distance gives the city block distance. For the special case of $p = 2$, the Minkowski distance gives the Euclidean distance. For the special case of $p = \infty$, the Minkowski distance gives the Chebychev distance.

- **Chebychev distance**

 $$d_{st} = \max_j \{|x_{sj} - y_{tj}|\}.$$

 The Chebychev distance is a special case of the Minkowski distance, where $p = \infty$.

- **Cosine distance**

 $$d_{st} = \left(1 - \frac{x_s'y_t'}{\sqrt{(x_s'x_s')(y_t'y_t')}}\right).$$

- **Correlation distance**
\[
 d_{st} = 1 - \frac{(x_s - \bar{x}_s)(y_t - \bar{y}_t)'}{\sqrt{(x_s - \bar{x}_s)(x_s - \bar{x}_s)'} (y_t - \bar{y}_t)(y_t - \bar{y}_t)'}
\]

where

\[
 \bar{x}_s = \frac{1}{n} \sum_j x_{sj}
\]

and

\[
 \bar{y}_t = \frac{1}{n} \sum_j y_{tj}
\]

- Hamming distance

\[
 d_{st} = \left(\frac{\#(x_{sj} \neq y_{tj})}{n}\right).
\]

- Jaccard distance

\[
 d_{st} = \frac{\#\left(\left(\left(x_{sj} \neq y_{tj}\right) \cap \left(x_{sj} \neq 0\right) \cup \left(y_{tj} \neq 0\right)\right)\right]}{\#\left(\left(\left(x_{sj} \neq 0\right) \cup \left(y_{tj} \neq 0\right)\right)\right]}
\]

- Spearman distance

\[
 d_{st} = 1 - \frac{(r_s - \bar{r}_s)(r_t - \bar{r}_t)'}{\sqrt{(r_s - \bar{r}_s)(r_s - \bar{r}_s)'} (r_t - \bar{r}_t)(r_t - \bar{r}_t)'}
\]

where

- \(r_{sj} \) is the rank of \(x_{sj} \) taken over \(x_{1j}, x_{2j}, \ldots x_{mj} \), as computed by \texttt{tiedrank}.
- \(r_{tj} \) is the rank of \(y_{tj} \) taken over \(y_{1j}, y_{2j}, \ldots y_{nj} \), as computed by \texttt{tiedrank}.
- \(r_s \) and \(r_t \) are the coordinate-wise rank vectors of \(x_s \) and \(y_t \), i.e., \(r_s = (r_{s1}, r_{s2}, \ldots r_{sn}) \)
 and \(r_t = (r_{t1}, r_{t2}, \ldots r_{tn}) \).
\[r_s = \frac{1}{n} \sum_j r_{sj} = \frac{(n+1)}{2}. \]

\[r_t = \frac{1}{n} \sum_j r_{tj} = \frac{(n+1)}{2}. \]

k-Nearest Neighbor Search and Radius Search

Given a set \(X \) of \(n \) points and a distance function, \(k \)-nearest neighbor (kNN) search lets you find the \(k \) closest points in \(X \) to a query point or set of points \(Y \). The kNN search technique and kNN-based algorithms are widely used as benchmark learning rules. The relative simplicity of the kNN search technique makes it easy to compare the results from other classification techniques to kNN results. The technique has been used in various areas such as:

- bioinformatics
- image processing and data compression
- document retrieval
- computer vision
- multimedia database
- marketing data analysis

You can use kNN search for other machine learning algorithms, such as:

- kNN classification
- local weighted regression
- missing data imputation and interpolation
- density estimation

You can also use kNN search with many distance-based learning functions, such as K-means clustering.

In contrast, for a positive real value \(r \), `rangesearch` finds all points in \(X \) that are within a distance \(r \) of each point in \(Y \). This fixed-radius search is closely related to kNN search, as it supports the same distance metrics and search classes, and uses the same search algorithms.
k-Nearest Neighbor Search Using Exhaustive Search

When your input data meets any of the following criteria, `knnsearch` uses the exhaustive search method by default to find the k-nearest neighbors:

- The number of columns of X is more than 10.
- X is sparse.
- The distance metric is either:
 - `'seuclidean'`
 - `'mahalanobis'`
 - `'cosine'`
 - `'correlation'`
 - `'spearman'`
 - `'hamming'`
 - `'jaccard'`
 - A custom distance function

`knnsearch` also uses the exhaustive search method if your search object is an `ExhaustiveSearcher` model object. The exhaustive search method finds the distance from each query point to every point in X, ranks them in ascending order, and returns the k points with the smallest distances. For example, this diagram shows the $k = 3$ nearest neighbors.
k-Nearest Neighbor Search Using a Kd-Tree

When your input data meets all of the following criteria, `knnsearch` creates a Kd-tree by default to find the \(k \)-nearest neighbors:

- The number of columns of \(X \) is less than 10.
- \(X \) is not sparse.
- The distance metric is either:
 - 'euclidean' (default)
 - 'cityblock'
 - 'minkowski'
 - 'chebychev'

`knnsearch` also uses a Kd-tree if your search object is a `KDTreeSearcher` model object.
Kd-trees divide your data into nodes with at most BucketSize (default is 50) points per node, based on coordinates (as opposed to categories). The following diagrams illustrate this concept using patch objects to color code the different “buckets.”

When you want to find the k-nearest neighbors to a given query point, knnsearch does the following:

1. Determines the node to which the query point belongs. In the following example, the query point (32,90) belongs to Node 4.
2. Finds the closest k points within that node and its distance to the query point. In the following example, the points in red circles are equidistant from the query point, and are the closest points to the query point within Node 4.
3 Chooses all other nodes having any area that is within the same distance, in any direction, from the query point to the kth closest point. In this example, only Node 3 overlaps the solid black circle centered at the query point with radius equal to the distance to the closest points within Node 4.

4 Searches nodes within that range for any points closer to the query point. In the following example, the point in a red square is slightly closer to the query point than those within Node 4.

Using a Kd-tree for large data sets with fewer than 10 dimensions (columns) can be much more efficient than using the exhaustive search method, as knnsearch needs to calculate only a subset of the distances. To maximize the efficiency of Kd-trees, use a KDTreeSearcher model.
What Are Search Model Objects?

Basically, model objects are a convenient way of storing information. Related models have the same properties with values and types relevant to a specified search method. In addition to storing information within models, you can perform certain actions on models.

You can efficiently perform a k-nearest neighbors search on your search model using knnsearch. Or, you can search for all neighbors within a specified radius using your search model and rangesearch. In addition, there are a generic knnsearch and rangesearch functions that search without creating or using a model.

To determine which type of model and search method is best for your data, consider the following:

- Does your data have many columns, say more than 10? The ExhaustiveSearcher model may perform better.
- Is your data sparse? Use the ExhaustiveSearcher model.
- Do you want to use one of these distance metrics to find the nearest neighbors? Use the ExhaustiveSearcher model.
 - 'seuclidean'
 - 'mahalanobis'
 - 'cosine'
 - 'correlation'
 - 'spearman'
 - 'hamming'
 - 'jaccard'
 - A custom distance function
- Is your data set huge (but with fewer than 10 columns)? Use the KDTreeSearcher model.
- Are you searching for the nearest neighbors for a large number of query points? Use the KDTreeSearcher model.

Classify Query Data

This example shows how to classify query data by:
1 Growing a Kd-tree
2 Conducting a k nearest neighbor search using the grown tree.
3 Assigning each query point the class with the highest representation among their respective nearest neighbors.

Classify a new point based on the last two columns of the Fisher iris data. Using only the last two columns makes it easier to plot.

```matlab
load fisheriris
x = meas(:,3:4);
gscatter(x(:,1),x(:,2),species)
legend('Location','best')
```
Plot the new point.

```matlab
newpoint = [5 1.45];
line(newpoint(1),newpoint(2), 'marker', 'x', 'color', 'k', ...
    'markersize', 10, 'linewidth', 2)
```

Prepare a K-tree neighbor searcher model.

```matlab
Mdl = KDTreeSearcher(x)
```

```matlab
Mdl =
    KDTreeSearcher with properties:
    BucketSize: 50
    Distance: 'euclidean'
```
Mdl is a KDTreeSearcher model. By default, the distance metric it uses to search for neighbors is Euclidean distance.

Find the 10 sample points closest to the new point.

```matlab
[n,d] = knnsearch(Mdl,newpoint,'k',10);
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o','linestyle','none','markersize',10)
```
It appears that `knnsearch` has found only the nearest eight neighbors. In fact, this particular dataset contains duplicate values.

\[x(n,:) \]

\[
\begin{array}{cc}
5.0000 & 1.5000 \\
4.9000 & 1.5000 \\
4.9000 & 1.5000 \\
5.1000 & 1.5000 \\
5.1000 & 1.6000 \\
4.8000 & 1.4000 \\
5.0000 & 1.7000 \\
4.7000 & 1.4000 \\
4.7000 & 1.4000 \\
4.7000 & 1.5000 \\
\end{array}
\]

Make the axes equal so the calculated distances correspond to the apparent distances on the plot axis equal and zoom in to see the neighbors better.

\[
xlim([4.5 5.5]); \\
ylim([1 2]); \\
axis square
\]
Find the species of the 10 neighbors.

\[
\text{tabulate(species(n))}
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>virginica</td>
<td>2</td>
<td>20.00%</td>
</tr>
<tr>
<td>versicolor</td>
<td>8</td>
<td>80.00%</td>
</tr>
</tbody>
</table>

Using a rule based on the majority vote of the 10 nearest neighbors, you can classify this new point as a versicolor.

Visually identify the neighbors by drawing a circle around the group of them. Define the center and diameter of a circle, based on the location of the new point.
ctr = newpoint - d(end);
diameter = 2*d(end);
% Draw a circle around the 10 nearest neighbors.
h = rectangle('position', [ctr, diameter, diameter], ...
 'curvature', [1 1]);
h.LineStyle = ':';

Using the same dataset, find the 10 nearest neighbors to three new points.

figure
newpoint2 = [5 1.45; 6 2; 2.75 .75];
gscatter(x(:,1),x(:,2),species)
legend('location', 'best')
[n2,d2] = knnsearch(Mdl, newpoint2, 'k', 10);
Find the species of the 10 nearest neighbors for each new point.

```
tabulate(species(n2(1,:)))
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>virginica</td>
<td>2</td>
<td>20.00%</td>
</tr>
<tr>
<td>versicolor</td>
<td>8</td>
<td>80.00%</td>
</tr>
</tbody>
</table>

```
tabulate(species(n2(2,:)))
```

18-31
<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>virginica</td>
<td>10</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

`tabulate(species(n2(3,:)))`

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>versicolor</td>
<td>7</td>
<td>70.00%</td>
</tr>
<tr>
<td>setosa</td>
<td>3</td>
<td>30.00%</td>
</tr>
</tbody>
</table>

For more examples using `knnsearch` methods and function, see the individual reference pages.

Find Nearest Neighbors Using a Custom Distance Metric

This example shows how to find the indices of the three nearest observations in X to each observation in Y with respect to the chi-square distance. This distance metric is used in correspondence analysis, particularly in ecological applications.

Randomly generate normally distributed data into two matrices. The number of rows can vary, but the number of columns must be equal. This example uses 2-D data for plotting.

```matlab
rng(1); % For reproducibility
X = randn(50,2);
Y = randn(4,2);

h = zeros(3,1);
figure;
h(1) = plot(X(:,1),X(:,2),'bx');
hold on;
h(2) = plot(Y(:,1),Y(:,2),'rs','MarkerSize',10);
title('Heterogenous Data')
```
The rows of X and Y correspond to observations, and the columns are, in general, dimensions (for example, predictors).

The chi-square distance between \(j \)-dimensional points \(x \) and \(z \) is

\[
\chi(x, z) = \sqrt{\sum_{j=1}^{J} w_j (x_j - z_j)^2},
\]

where \(w_j \) is the weight associated with dimension \(j \).

Choose weights for each dimension, and specify the chi-square distance function. The distance function must:
• Take as input arguments one row of X, e.g., x, and the matrix Z.
• Compare x to each row of Z.
• Return a vector D of length n_z, where n_z is the number of rows of Z. Each element of D is the distance between the observation corresponding to x and the observations corresponding to each row of Z.

```matlab
w = [0.4; 0.6];
chiSqrDist = @(x,Z)sqrt((bsxfun(@minus,x,Z).^2)*w);
```

This example uses arbitrary weights for illustration.

Find the indices of the three nearest observations in X to each observation in Y.

```matlab
k = 3;
[Idx,D] = knnsearch(X,Y,'Distance',chiSqrDist,'k',k);
```

`Idx` and D are 4-by-3 matrices.

• $\text{Idx}(j,1)$ is the row index of the closest observation in X to observation j of Y, and $D(j,1)$ is their distance.
• $\text{Idx}(j,2)$ is the row index of the next closest observation in X to observation j of Y, and $D(j,2)$ is their distance.
• And so on.

Identify the nearest observations in the plot.

```matlab
for j = 1:k;
    h(3) = plot(X(Idx(:,j),1),X(Idx(:,j),2),'ko','MarkerSize',10);
end
legend(h,['\texttt{X}','\texttt{Y}','Nearest Neighbor'],'Interpreter','latex');
title('Heterogenous Data and Nearest Neighbors')
hold off;
```
Several observations of Y share nearest neighbors.

Verify that the chi-square distance metric is equivalent to the Euclidean distance metric, but with an optional scaling parameter.

\[
[\text{IdxE,DE}] = \text{knnsearch}(X,Y,'Distance','seuclidean','k',k,...
\quad 'Scale',1./\text{sqrt}(w));
\]

\[
\text{AreDiffIdx} = \text{sum}(\text{sum}(\text{Idx} \neq \text{IdxE}))
\]

\[
\text{AreDiffIdx} = 0
\]

\[
\text{AreDiffDist} = \text{sum}(\text{sum}(|D - DE| > \text{eps}))
\]

\[
\text{AreDiffDist} = 0
\]
The indices and distances between the two implementations of three nearest neighbors are practically equivalent.

K-Nearest Neighbor Classification for Supervised Learning

The ClassificationKNN classification model lets you:

- “Construct KNN Classifier” on page 18-36
- “Examine Quality of KNN Classifier” on page 18-37
- “Predict Classification Using KNN Classifier” on page 18-38
- “Modify KNN Classifier” on page 18-38

Prepare your data for classification according to the procedure in “Steps in Supervised Learning” on page 18-3. Then, construct the classifier using fitcknn.

Construct KNN Classifier

This example shows how to construct a k-nearest neighbor classifier for the Fisher iris data.

Load the Fisher iris data.

```matlab
load fisheriris
X = meas;   % Use all data for fitting
Y = species; % Response data
```

Construct the classifier using fitcknn.

```matlab
Md1 = fitcknn(X,Y)
Md1 =
    ClassificationKNN
        ResponseName: 'Y'
        CategoricalPredictors: []
        ClassNames: {'setosa' 'versicolor' 'virginica'}
        ScoreTransform: 'none'
        NumObservations: 150
        Distance: 'euclidean'
        NumNeighbors: 1
```
Properties, Methods

A default k-nearest neighbor classifier uses a single nearest neighbor only. Often, a classifier is more robust with more neighbors than that.

Change the neighborhood size of `Mdl` to 4, meaning that `Mdl` classifies using the four nearest neighbors.

```matlab
Mdl.NumNeighbors = 4;
```

Examine Quality of KNN Classifier

This example shows how to examine the quality of a k-nearest neighbor classifier using resubstitution and cross validation.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 18-36.

```matlab
load fisheriris
X = meas;
Y = species;
rng(10); % For reproducibility
Mdl = fitcknn(X,Y,'NumNeighbors',4);
```

Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the predictions of `Mdl`. (For nondefault cost, weights, or priors, see `loss`.)

```matlab
rloss = resubLoss(Mdl)
rloss = 0.0400
```

The classifier predicts incorrectly for 4% of the training data.

Construct a cross-validated classifier from the model.

```matlab
CVMdl = crossval(Mdl);
```

Examine the cross-validation loss, which is the average loss of each cross-validation model when predicting on data that is not used for training.

```matlab
kloss = kfoldLoss(CVMdl)
kloss = 0.0333
```
The cross-validated classification accuracy resembles the resubstitution accuracy. Therefore, you can expect Mdl to misclassify approximately 4% of new data, assuming that the new data has about the same distribution as the training data.

Predict Classification Using KNN Classifier

This example shows how to predict classification for a \(k \)-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 18-36.

```matlab
load fisheriris
X = meas;
Y = species;
Mdl = fitcknn(X,Y,'NumNeighbors',4);
```

Predict the classification of an average flower.

```matlab
flwr = mean(X); % an average flower
flwrClass = predict(Mdl,flwr)
```

```matlab
flwrClass = 1x1 cell array
    {'versicolor'}
```

Modify KNN Classifier

This example shows how to modify a \(k \)-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 18-36.

```matlab
load fisheriris
X = meas;
Y = species;
Mdl = fitcknn(X,Y,'NumNeighbors',4);
```

Modify the model to use the three nearest neighbors, rather than the default one nearest neighbor.

```matlab
Mdl.NumNeighbors = 3;
```
Compare the resubstitution predictions and cross-validation loss with the new number of neighbors.

```matlab
loss = resubLoss(Mdl)
loss = 0.0400
```

```matlab
rng(10); % For reproducibility
CVMdl = crossval(Mdl,'KFold',5);
kloss = kfoldLoss(CVMdl)
kloss = 0.0333
```

In this case, the model with three neighbors has the same cross-validated loss as the model with four neighbors (see “Examine Quality of KNN Classifier” on page 18-37).

Modify the model to use cosine distance instead of the default, and examine the loss. To use cosine distance, you must recreate the model using the exhaustive search method.

```matlab
CMdl = fitcknn(X,Y,'NSMethod','exhaustive','Distance','cosine');
CMdl.NumNeighbors = 3;
closs = resubLoss(CMdl)
closs = 0.0200
```

The classifier now has lower resubstitution error than before.

Check the quality of a cross-validated version of the new model.

```matlab
CVCMdl = crossval(CMdl);
kcloss = kfoldLoss(CVCMdl)
kcloss = 0.0200
```

`CVCMdl` has a better cross-validated loss than `CVMdl`. However, in general, improving the resubstitution error does not necessarily produce a model with better test-sample predictions.

See Also
ClassificationKNN | ExhaustiveSearcher | KDTreeSearcher | fitcknn
Framework for Ensemble Learning

Using various methods, you can meld results from many weak learners into one high-quality ensemble predictor. These methods closely follow the same syntax, so you can try different methods with minor changes in your commands.

You can create an ensemble for classification by using `fitcensemble` or for regression by using `fitrensemble`.

To train an ensemble for classification using `fitcensemble`, use this syntax.

```matlab
ens = fitcensemble(X,Y,Name,Value)
```

- `X` is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- `Y` is the vector of responses, with the same number of observations as the rows in `X`.
- `Name,Value` specify additional options using one or more name-value pair arguments. For example, you can specify the ensemble aggregation method with the 'Method' argument, the number of ensemble learning cycles with the 'NumLearningCycles' argument, and the type of weak learners with the 'Learners' argument. For a complete list of name-value pair arguments, see the `fitcensemble` function page.

This figure shows the information you need to create a classification ensemble.

```
Predictor Data X
|
|-- Response Y
|   | Ensemble Aggregation Method
|   | fitcensemble
|   | ensemble
|
|
Number of Ensemble Learning Cycles
|
Weak Learners
```

Similarly, you can train an ensemble for regression by using `fitrensemble`, which follows the same syntax as `fitcensemble`. For details on the input arguments and name-value pair arguments, see the `fitrensemble` function page.
For all classification or nonlinear regression problems, follow these steps to create an ensemble:

1. “Prepare the Predictor Data” on page 18-41
2. “Prepare the Response Data” on page 18-41
3. “Choose an Applicable Ensemble Aggregation Method” on page 18-42
4. “Set the Number of Ensemble Members” on page 18-45
5. “Prepare the Weak Learners” on page 18-46
6. “Call fitcensemble or fitrensemble” on page 18-48

Prepare the Predictor Data

All supervised learning methods start with predictor data, usually called X in this documentation. X can be stored in a matrix or a table. Each row of X represents one observation, and each column of X represents one variable or predictor.

Prepare the Response Data

You can use a wide variety of data types for the response data.

- For regression ensembles, Y must be a numeric vector with the same number of elements as the number of rows of X.
- For classification ensembles, Y can be any of the following data types. This table also contains the method of including missing entries.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Missing Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric vector</td>
<td>NaN</td>
</tr>
<tr>
<td>Categorical vector</td>
<td><undefined></td>
</tr>
<tr>
<td>Character array</td>
<td>Row of spaces</td>
</tr>
<tr>
<td>String array</td>
<td><missing> or ""</td>
</tr>
<tr>
<td>Cell array of character vectors</td>
<td>''</td>
</tr>
<tr>
<td>Logical vector</td>
<td>(not possible to represent)</td>
</tr>
</tbody>
</table>

fitcensemble and fitrensemble ignore missing values in Y when creating an ensemble.
For example, suppose your response data consists of three observations in the following order: true, false, true. You could express \(Y \) as:

- \([1;0;1]\) (numeric vector)
- \(\text{nominal(\{'true','false','true'\})}\) (categorical vector)
- \([\text{true;false;true}]\) (logical vector)
- \(['\text{true }';'\text{false }';'\text{true }']\) (character array, padded with spaces so each row has the same length)
- \("\text{true","false","true"}\) (string array)
- \(\{'\text{true}','\text{false}','\text{true}'\}\) (cell array of character vectors)

Use whichever data type is most convenient. Because you cannot represent missing values with logical entries, do not use logical entries when you have missing values in \(Y \).

Choose an Applicable Ensemble Aggregation Method

To create classification and regression ensembles with \texttt{fitcensemble} and \texttt{fitrensemble}, respectively, choose appropriate algorithms from this list.

- For classification with two classes:
 - 'AdaBoostM1'
 - 'LogitBoost'
 - 'GentleBoost'
 - 'RobustBoost' (requires Optimization Toolbox)
 - 'LPBoost' (requires Optimization Toolbox)
 - 'TotalBoost' (requires Optimization Toolbox)
 - 'RUSBoost'
 - 'Subspace'
 - 'Bag'

- For classification with three or more classes:
 - 'AdaBoostM2'
 - 'LPBoost' (requires Optimization Toolbox)
 - 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'
• For regression:
 • 'LSBoost'
 • 'Bag'

For descriptions of the various algorithms, see “Ensemble Algorithms” on page 18-50.

See “Suggestions for Choosing an Appropriate Ensemble Algorithm” on page 18-44.

This table lists characteristics of the various algorithms. In the table titles:

- **Regress.** — Regression
- **Classif.** — Classification
- **Preds.** — Predictors
- **Imbalance** — Good for imbalanced data (one class has many more observations than the other)
- **Stop** — Algorithm self-terminates
- **Sparse** — Requires fewer weak learners than other ensemble algorithms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdaBoostM1</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdaBoostM2</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogitBoost</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GentleBoost</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RobustBoost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPBoost</td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TotalBoost</td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
--- | --- | --- | --- | --- | --- | --- | ---
RUSBoost | × | | × | × | | |
LSBoost | × | | | | | |
Subspace | | × | | | | |

RobustBoost, LPBoost, and TotalBoost require an Optimization Toolbox license. Try TotalBoost before LPBoost, as TotalBoost can be more robust.

Suggestions for Choosing an Appropriate Ensemble Algorithm

- **Regression** — Your choices are LSBoost or Bag. See “General Characteristics of Ensemble Algorithms” on page 18-45 for the main differences between boosting and bagging.

- **Binary Classification** — Try AdaBoostM1 first, with these modifications:

<table>
<thead>
<tr>
<th>Data Characteristic</th>
<th>Recommended Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many predictors</td>
<td>Subspace</td>
</tr>
<tr>
<td>Skewed data (many more observations of one class)</td>
<td>RUSBoost</td>
</tr>
<tr>
<td>Categorical predictors with over 31 levels</td>
<td>LogitBoost or GentleBoost</td>
</tr>
<tr>
<td>Label noise (some training data has the wrong class)</td>
<td>RobustBoost</td>
</tr>
<tr>
<td>Many observations</td>
<td>Avoid LPBoost, TotalBoost, and Bag</td>
</tr>
</tbody>
</table>

- **Multiclass Classification** — Try AdaBoostM2 first, with these modifications:

<table>
<thead>
<tr>
<th>Data Characteristic</th>
<th>Recommended Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many predictors</td>
<td>Subspace</td>
</tr>
<tr>
<td>Skewed data (many more observations of one class)</td>
<td>RUSBoost</td>
</tr>
<tr>
<td>Many observations</td>
<td>Avoid LPBoost, TotalBoost, and Bag</td>
</tr>
</tbody>
</table>
For details of the algorithms, see “Ensemble Algorithms” on page 18-50.

General Characteristics of Ensemble Algorithms

- **Bag** generally constructs deep trees. This construction is both time consuming and memory-intensive. This also leads to relatively slow predictions.

- **Boost** algorithms generally use very shallow trees. This construction uses relatively little time or memory. However, for effective predictions, boosted trees might need more ensemble members than bagged trees. Therefore it is not always clear which class of algorithms is superior.

- **Bag** can estimate the generalization error without additional cross validation. See oobLoss.

- Except for Subspace, all boosting and bagging algorithms are based on decision tree learners. Subspace can use either discriminant analysis or k-nearest neighbor learners.

For details of the characteristics of individual ensemble members, see “Characteristics of Classification Algorithms” on page 18-7.

Set the Number of Ensemble Members

Choosing the size of an ensemble involves balancing speed and accuracy.

- Larger ensembles take longer to train and to generate predictions.
- Some ensemble algorithms can become overtrained (inaccurate) when too large.

To set an appropriate size, consider starting with several dozen to several hundred members in an ensemble, training the ensemble, and then checking the ensemble quality, as in “Test Ensemble Quality” on page 18-79. If it appears that you need more members, add them using the resume method (classification) or the resume method (regression). Repeat until adding more members does not improve ensemble quality.

Tip For classification, the LPBoost and TotalBoost algorithms are self-terminating, meaning you do not have to investigate the appropriate ensemble size. Try setting NumLearningCycles to 500. The algorithms usually terminate with fewer members.
Prepare the Weak Learners

Currently the weak learner types are:

- 'Discriminant' (recommended for Subspace ensemble)
- 'KNN' (only for Subspace ensemble)
- 'Tree' (for any ensemble except Subspace)

There are two ways to set the weak learner type in an ensemble.

- To create an ensemble with default weak learner options, specify the value of the 'Learners' name-value pair argument as the character vector or string scalar of the weak learner name. For example:

  ```
  ens = fitcensemble(X,Y,'Method','Subspace','NumLearningCycles',50,'Learners','KNN');
  % or
  ens = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',50,'Learners','Tree');
  ```

- To create an ensemble with nondefault weak learner options, create a nondefault weak learner using the appropriate template method.

 For example, if you have missing data, and want to use classification trees with surrogate splits for better accuracy:

  ```
  templ = templateTree('Surrogate','all');
  ens = fitcensemble(X,Y,'Method','AdaBoostM2','NumLearningCycles',50,'Learners',templ);
  ```

 To grow trees with leaves containing a number of observations that is at least 10% of the sample size:

  ```
  templ = templateTree('MinLeafSize',size(X,1)/10);
  ens = fitcensemble(X,Y,'Method','AdaBoostM2','NumLearningCycles',50,'Learners',templ);
  ```

 Alternatively, choose the maximal number of splits per tree:

  ```
  templ = templateTree('MaxNumSplits',4);
  ens = fitcensemble(X,Y,'Method','AdaBoostM2','NumLearningCycles',50,'Learners',templ);
  ```

 You can also use nondefault weak learners in fitrensemble.

While you can give fitcensemble and fitrensemble a cell array of learner templates, the most common usage is to give just one weak learner template.
For examples using a template, see “Train Ensemble With Unequal Classification Costs” on page 18-106 and “Surrogate Splits” on page 18-119.

Decision trees can handle NaN values in X. Such values are called “missing”. If you have some missing values in a row of X, a decision tree finds optimal splits using nonmissing values only. If an entire row consists of NaN, fitensemble and fitrensemble ignore that row. If you have data with a large fraction of missing values in X, use surrogate decision splits. For examples of surrogate splits, see “Train Ensemble With Unequal Classification Costs” on page 18-106 and “Surrogate Splits” on page 18-119.

Common Settings for Tree Weak Learners

- The depth of a weak learner tree makes a difference for training time, memory usage, and predictive accuracy. You control the depth these parameters:

 - MaxNumSplits — The maximal number of branch node splits is MaxNumSplits per tree. Set large values of MaxNumSplits to get deep trees. The default for bagging is size(X,1) - 1. The default for boosting is 1.
 - MinLeafSize — Each leaf has at least MinLeafSize observations. Set small values of MinLeafSize to get deep trees. The default for classification is 1 and 5 for regression.
 - MinParentSize — Each branch node in the tree has at least MinParentSize observations. Set small values of MinParentSize to get deep trees. The default for classification is 2 and 10 for regression.

If you supply both MinParentSize and MinLeafSize, the learner uses the setting that gives larger leaves (shallower trees):

\[
\text{MinParent} = \max(\text{MinParent}, 2 \times \text{MinLeaf})
\]

If you additionally supply MaxNumSplits, then the software splits a tree until one of the three splitting criteria is satisfied.

- Surrogate — Grow decision trees with surrogate splits when Surrogate is 'on'. Use surrogate splits when your data has missing values.

Note Surrogate splits cause slower training and use more memory.

- PredictorSelection — fitensemble, fitrensemble, and TreeBagger grow trees using the standard CART algorithm [11] by default. If the predictor variables are heterogeneous or there are predictors having many levels and other having few levels,
then standard CART tends to select predictors having many levels as split predictors. For split-predictor selection that is robust to the number of levels that the predictors have, consider specifying 'curvature' or 'interaction-curvature'. These specifications conduct chi-square tests of association between each predictor and the response or each pair of predictors and the response, respectively. The predictor that yields the minimal p-value is the split predictor for a particular node. For more details, see “Choose Split Predictor Selection Technique” on page 19-19.

Note When boosting decision trees, selecting split predictors using the curvature or interaction tests is not recommended.

Call fitcensemble or fitrensemble

The syntaxes for fitcensemble and fitrensemble are identical. For fitrensemble, the syntax is:

```
ens = fitrensemble(X,Y,Name,Value)
```

- X is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- Y is the responses, with the same number of observations as rows in X.
- **Name,Value** specify additional options using one or more name-value pair arguments. For example, you can specify the ensemble aggregation method with the 'Method' argument, the number of ensemble learning cycles with the 'NumLearningCycles' argument, and the type of weak learners with the 'Learners' argument. For a complete list of name-value pair arguments, see the fitrensemble function page.

The result of fitrensemble and fitcensemble is an ensemble object, suitable for making predictions on new data. For a basic example of creating a regression ensemble, see “Train Regression Ensemble” on page 18-69. For a basic example of creating a classification ensemble, see “Train Classification Ensemble” on page 18-66.

Where to Set Name-Value Pairs

There are several name-value pairs you can pass to fitcensemble or fitrensemble, and several that apply to the weak learners (templateDiscriminant, templateKNN, and templateTree). To determine which name-value pair argument is appropriate, the ensemble or the weak learner:
• Use template name-value pairs to control the characteristics of the weak learners.
• Use fitcensemble or fitrensemble name-value pair arguments to control the ensemble as a whole, either for algorithms or for structure.

For example, for an ensemble of boosted classification trees with each tree deeper than the default, set the templateTree name-value pair arguments MinLeafSize and MinParentSize to smaller values than the defaults. Or, MaxNumSplits to a larger value than the defaults. The trees are then leafier (deeper).

To name the predictors in a classification ensemble (part of the structure of the ensemble), use the PredictorNames name-value pair in fitcensemble.

See Also
fitcensemble| fitrensemble| oobLoss | resume | resume|
templateDiscriminant | templateKNN | templateTree

Related Examples
• “Train Classification Ensemble” on page 18-66
• “Train Regression Ensemble” on page 18-69
• “Ensemble Algorithms” on page 18-50
• “Decision Trees” on page 19-2
• “Choose Split Predictor Selection Technique” on page 19-19
Ensemble Algorithms

You can use various algorithms for ensemble learning. Some of the algorithms apply only to classification ensembles, and others apply only to regression ensembles. You can use the algorithms to create ensembles by specifying a value for the 'Method' name-value pair argument of `fitcensemble` or `fitrensemble`. This topic provides descriptions of the various algorithms. Note that usage of some algorithms, such as LPBoost, TotalBoost, and RobustBoost, requires an Optimization Toolbox license.

AdaBoostM1

AdaBoostM1 is a very popular boosting algorithm for binary classification. The algorithm trains learners sequentially. For every learner with index t, AdaBoostM1 computes the weighted classification error

$$
\varepsilon_t = \sum_{n=1}^{N} d_n^{(t)} \mathbb{I}(y_n \neq h_t(x_n)),
$$

where

- x_n is a vector of predictor values for observation n.
• y_n is the true class label.
• h_t is the prediction of learner (hypothesis) with index t.
• \mathbb{I} is the indicator function.
• $d_n^{(t)}$ is the weight of observation n at step t.

AdaBoostM1 then increases weights for observations misclassified by learner t and reduces weights for observations correctly classified by learner t. The next learner $t + 1$ is then trained on the data with updated weights $d_n^{(t+1)}$. After training finishes, AdaBoostM1 computes prediction for new data using

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x),$$

where

$$\alpha_t = \frac{1}{2} \log \frac{1 - \varepsilon_t}{\varepsilon_t}$$

are weights of the weak hypotheses in the ensemble.

Training by AdaBoostM1 can be viewed as stagewise minimization of the exponential loss

$$\sum_{n=1}^{N} w_n \exp(-y_n f(x_n)),$$

where

• $y_n \in \{-1, +1\}$ is the true class label.
• w_n are observation weights normalized to add up to 1.
• $f(x_n) \in (-\infty, +\infty)$ is the predicted classification score.

The observation weights w_n are the original observation weights you passed to fitcensemble.
The second output from the predict method of an AdaBoostM1 classification ensemble is an \(N\)-by-2 matrix of classification scores for the two classes and \(N\) observations. The second column in this matrix is always equal to minus the first column. The predict method returns two scores to be consistent with multiclass models, though this is redundant because the second column is always the negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow trees. If boosted stumps give poor performance, try setting the minimal parent node size to one quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the learning rate to a lower number, the ensemble learns at a slower rate, but can converge to a better solution. 0.1 is a popular choice for the learning rate. Learning at a rate less than 1 is often called “shrinkage”.

For examples using AdaBoostM1, see “Tune RobustBoost” on page 18-129.

For references related to AdaBoostM1, see Freund and Schapire [20], Schapire et al. [40], Friedman, Hastie, and Tibshirani [22], and Friedman [21].

AdaBoostM2

AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of weighted classification error, AdaBoostM2 uses weighted pseudo-loss for \(N\) observations and \(K\) classes

\[
\varepsilon_t = \frac{1}{2} \sum_{n=1}^{N} \sum_{k \neq y_n} d_{n,k}^{(t)} (1 - h_t(x_n, y_n) + h_t(x_n, k)),
\]

where

- \(h_t(x_n, k)\) is the confidence of prediction by learner at step \(t\) into class \(k\) ranging from 0 (not at all confident) to 1 (highly confident).
- \(d_{n,k}^{(t)}\) are observation weights at step \(t\) for class \(k\).
- \(y_n\) is the true class label taking one of the \(K\) values.
- The second sum is over all classes other than the true class \(y_n\).

Interpreting the pseudo-loss is harder than classification error, but the idea is the same. Pseudo-loss can be used as a measure of the classification accuracy from any learner in
an ensemble. Pseudo-loss typically exhibits the same behavior as a weighted classification
error for AdaBoostM1: the first few learners in a boosted ensemble give low pseudo-loss
values. After the first few training steps, the ensemble begins to learn at a slower pace,
and the pseudo-loss value approaches 0.5 from below.

For examples using AdaBoostM2, see “Train Classification Ensemble” on page 18-66.

For references related to AdaBoostM2, see Freund and Schapire [20].

Bag

Bagging, which stands for “bootstrap aggregation,” is a type of ensemble learning. To bag
a weak learner such as a decision tree on a dataset, generate many bootstrap replicas of
this dataset and grow decision trees on these replicas. Obtain each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size.
To find the predicted response of a trained ensemble, take an average over predictions
from individual trees.

Bagged decision trees were introduced in MATLAB R2009a as TreeBagger. The
fitcensemble and fitrensemble functions let you bag in a manner consistent with
boosting. An ensemble of bagged trees, either ClassificationBaggedEnsemble or
RegressionBaggedEnsemble, returned by fitcensemble or fitrensemble,
respectively, offers almost the same functionally as TreeBagger. Discrepancies between
TreeBagger and the new framework are described in detail in TreeBagger Features Not
in fitcensemble or fitrensemble.

Bagging works by training learners on resampled versions of the data. This resampling is
usually done by bootstrapping observations, that is, selecting N out of N observations
with replacement for every new learner. In addition, every tree in the ensemble can
randomly select predictors for decision splits—a technique known to improve the
accuracy of bagged trees.

By default, the minimal leaf sizes for bagged trees are set to 1 for classification and 5 for
regression. Trees grown with the default leaf size are usually very deep. These settings
are close to optimal for the predictive power of an ensemble. Often you can grow trees
with larger leaves without losing predictive power. Doing so reduces training and
prediction time, as well as memory usage for the trained ensemble.

Another important parameter is the number of predictors selected at random for every
decision split. This random selection is made for every split, and every deep tree involves
many splits. By default, this parameter is set to a square root of the number of predictors for classification, and one third of predictors for regression.

Several features of bagged decision trees make them a unique algorithm. Drawing \(N \) out of \(N \) observations with replacement omits on average 37% of observations for each decision tree. These are “out-of-bag” observations. You can use them to estimate the predictive power and feature importance. For each observation, you can estimate the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. You can then compare the computed prediction against the observed response for this observation. By comparing the out-of-bag predicted responses against the observed responses for all observations used for training, you can estimate the average out-of-bag error. This out-of-bag average is an unbiased estimator of the true ensemble error. You can also obtain out-of-bag estimates of feature importance by randomly permuting out-of-bag data across one variable or column at a time and estimating the increase in the out-of-bag error due to this permutation. The larger the increase, the more important the feature. Thus, you need not supply test data for bagged ensembles because you obtain reliable estimates of the predictive power and feature importance in the process of training, which is an attractive feature of bagging.

Another attractive feature of bagged decision trees is the proximity matrix. Every time two observations land on the same leaf of a tree, their proximity increases by 1. For normalization, sum these proximities over all trees in the ensemble and divide by the number of trees. The resulting matrix is symmetric with diagonal elements equal to 1 and off-diagonal elements ranging from 0 to 1. You can use this matrix for finding outlier observations and discovering clusters in the data through multidimensional scaling.

For examples using bagging, see:

- “Test Ensemble Quality” on page 18-79
- “Surrogate Splits” on page 18-119
- “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page 18-139
- “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 18-152

For references related to bagging, see Breiman [8], [9], and [10].

Comparison of TreeBagger and Bagged Ensembles

`fitcensemble` and `fitrensemble` produce bagged ensembles that have most, but not all, of the functionality of `TreeBagger` objects. Additionally, some functionalities have different names in the new bagged ensembles.
TreeBagger Features Not in fitcensemble or fitrensemble

<table>
<thead>
<tr>
<th>Feature</th>
<th>TreeBagger Property</th>
<th>TreeBagger Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation of proximity matrix</td>
<td>Proximity</td>
<td>fillprox, mdsprox</td>
</tr>
<tr>
<td>Computation of outliers</td>
<td>OutlierMeasure</td>
<td>N/A</td>
</tr>
<tr>
<td>Out-of-bag estimates of predictor importance</td>
<td>OOBPermutedPredictorDeltaMeanMargin and OOBPermutedPredictorCountRaiseMargin</td>
<td>N/A</td>
</tr>
<tr>
<td>Merging two ensembles trained separately</td>
<td>N/A</td>
<td>append</td>
</tr>
<tr>
<td>Parallel computation for creating ensemble</td>
<td>Set the UseParallel name-value pair to true</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note When you estimate the proximity matrix and outliers of a TreeBagger model using fillprox, MATLAB must fit an n-by-n matrix in memory, where n is the number of observations. Therefore, if n is moderate to large, then you should avoid estimating the proximity matrix and outliers.
Differing Names Between TreeBagger and Bagged Ensembles

<table>
<thead>
<tr>
<th>Feature</th>
<th>TreeBagger</th>
<th>Bagged Ensembles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split criterion contributions for each predictor</td>
<td>DeltaCriterionDecisionSplit property</td>
<td>First output of predictorImportance (classification) or predictorImportance (regression)</td>
</tr>
<tr>
<td>Predictor associations</td>
<td>SurrogateAssociation property</td>
<td>Second output of predictorImportance (classification) or predictorImportance (regression)</td>
</tr>
<tr>
<td>Out-of-bag estimates of predictor importance</td>
<td>OOBPermutatedPredictorDeltaError property</td>
<td>Output of oobPermutatedPredictorImportance (classification) or oobPermutatedPredictorImportance (regression)</td>
</tr>
<tr>
<td>Error (misclassification probability or mean-squared error)</td>
<td>error and oobError methods</td>
<td>loss and oobLoss methods (classification); loss and oobLoss methods (regression)</td>
</tr>
<tr>
<td>Train additional trees and add to ensemble</td>
<td>growTrees method</td>
<td>resume method (classification); resume method (regression)</td>
</tr>
<tr>
<td>Mean classification margin per tree</td>
<td>meanMargin and oobMeanMargin methods</td>
<td>edge and oobEdge methods (classification)</td>
</tr>
</tbody>
</table>

In addition, two important changes were made to training and prediction for bagged classification ensembles:

- If you pass a misclassification cost matrix to `TreeBagger`, it passes this matrix along to the trees. If you pass a misclassification cost matrix to `fitcensemble`, it uses this matrix to adjust the class prior probabilities. `fitcensemble` then passes the adjusted prior probabilities and the default cost matrix to the trees. The default cost matrix is `ones(K)-eye(K)` for K classes.
- Unlike the `loss` and `edge` methods in the new framework, the `TreeBagger` `error` and `meanMargin` methods do not normalize input observation weights of the prior probabilities in the respective class.
GentleBoost

GentleBoost (also known as Gentle AdaBoost) combines features of AdaBoostM1 and LogitBoost. Like AdaBoostM1, GentleBoost minimizes the exponential loss. But its numeric optimization is set up differently. Like LogitBoost, every weak learner fits a regression model to response values $y_n \in \{-1, +1\}$. This makes GentleBoost another good candidate for binary classification of data with multilevel categorical predictors.

`fitcensemble` computes and stores the mean-squared error in the `FitInfo` property of the ensemble object. The mean-squared error is

$$
\sum_{n=1}^{N} d_{n}^{(t)} (\tilde{y}_{n} - h_{t}(x_{n}))^2,
$$

where

- $d_{n}^{(t)}$ are observation weights at step t (the weights add up to 1).
- $h_{t}(x_{n})$ are predictions of the regression model h_{t} fitted to response values y_{n}.

As the strength of individual learners weakens, the weighted mean-squared error approaches 1.

For examples using GentleBoost, see “Train Ensemble With Unequal Classification Costs” on page 18-106 and “Classification with Many Categorical Levels” on page 18-113.

For references related to GentleBoost, see Friedman, Hastie, and Tibshirani [22].

LogitBoost

LogitBoost is another popular algorithm for binary classification. LogitBoost works similarly to AdaBoostM1, except it minimizes binomial deviance

$$
\sum_{n=1}^{N} w_n \log \left(1 + \exp(-2y_nf(x_n)) \right),
$$

where
• $y_n \in \{-1,+1\}$ is the true class label.
• w_n are observation weights normalized to add up to 1.
• $f(x_n) \in (-\infty, +\infty)$ is the predicted classification score.

Binomial deviance assigns less weight to badly misclassified observations (observations with large negative values of $y_n f(x_n)$). **LogitBoost** can give better average accuracy than **AdaBoostM1** for data with poorly separable classes.

Learner t in a **LogitBoost** ensemble fits a regression model to response values

$$
\tilde{y}_n = \frac{y_n^* - p_t(x_n)}{p_t(x_n)(1 - p_t(x_n))},
$$

where

• $y_n^* \in \{0,+1\}$ are relabeled classes (0 instead of -1).
• $p_t(x_n)$ is the current ensemble estimate of the probability for observation x_n to be of class 1.

Fitting a regression model at each boosting step turns into a great computational advantage for data with multilevel categorical predictors. Take a categorical predictor with L levels. To find the optimal decision split on such a predictor, a classification tree needs to consider $2^{L-1} - 1$ splits. A regression tree needs to consider only $L - 1$ splits, so the processing time can be much shorter. **LogitBoost** is recommended for categorical predictors with many levels.

fitcensemble computes and stores the mean-squared error in the **FitInfo** property of the ensemble object. The mean-squared error is

$$
\sum_{n=1}^{N} d_n^{(t)} (\tilde{y}_n - h_t(x_n))^2,
$$

where

• $d_n^{(t)}$ are observation weights at step t (the weights add up to 1).
• $h_t(x_n)$ are predictions of the regression model h_t fitted to response values \tilde{y}_n.

18-58
Values y_n can range from $-\infty$ to $+\infty$, so the mean-squared error does not have well-defined bounds.

For examples using LogitBoost, see “Classification with Many Categorical Levels” on page 18-113.

For references related to LogitBoost, see Friedman, Hastie, and Tibshirani [22].

LPBoost

LPBoost (linear programming boost), like TotalBoost, performs multiclass classification by attempting to maximize the minimal margin in the training set. This attempt uses optimization algorithms, namely linear programming for LPBoost. So you need an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification score for the true class, and the largest score for the false classes. For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node. For more information, see “Definitions” on page 32-3984 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is the probability of obtaining a negative margin. Schapire and Singer [41] establish this inequality on the probability of obtaining a negative margin:

$$P_{\text{test}}(m \leq 0) \leq P_{\text{train}}(m \leq \theta) + O\left(\frac{1}{\sqrt{N}} \sqrt{\frac{V \log^2(N/V)}{\theta^2}} + \log(1/\delta)\right).$$

Here m is the margin, θ is any positive number, V is the Vapnik-Chervonenkis dimension of the classifier space, N is the size of the training set, and δ is a small positive number. The inequality holds with probability $1-\delta$ over many i.i.d. training and test sets. This inequality says: To obtain a low generalization error, minimize the number of observations below margin θ in the training set.

LPBoost iteratively maximizes the minimal margin through a sequence of linear programming problems. Equivalently, by duality, LPBoost minimizes the maximal edge, where edge is the weighted mean margin (see “Definitions” on page 32-1423). At each
iteration, there are more constraints in the problem. So, for large problems, the optimization problem becomes increasingly constrained, and slow to solve.

LPBoost typically creates ensembles with many learners having weights that are orders of magnitude smaller than those of other learners. Therefore, to better enable you to remove the unimportant ensemble members, the **compact** method reorders the members of an **LPBoost** ensemble from largest weight to smallest. Therefore, you can easily remove the least important members of the ensemble using the **removeLearners** method.

For examples using **LPBoost**, see “LPBoost and TotalBoost for Small Ensembles” on page 18-122.

For references related to **LPBoost**, see Warmuth, Liao, and Ratsch [44].

LSBoost

LSBoost (least squares boosting) fits regression ensembles. At every step, the ensemble fits a new learner to the difference between the observed response and the aggregated prediction of all learners grown previously. The ensemble fits to minimize mean-squared error.

You can use **LSBoost** with shrinkage by passing in the **LearnRate** parameter. By default this parameter is set to 1, and the ensemble learns at the maximal speed. If you set **LearnRate** to a value from 0 to 1, the ensemble fits every new learner to $y_n - \eta f(x_n)$, where

- y_n is the observed response.
- $f(x_n)$ is the aggregated prediction from all weak learners grown so far for observation x_n.
- η is the learning rate.

For examples using **LSBoost**, see “Train Regression Ensemble” on page 18-69 and “Regularize a Regression Ensemble” on page 18-87.

For references related to **LSBoost**, see Hastie, Tibshirani, and Friedman [24], Chapters 7 (Model Assessment and Selection) and 15 (Random Forests, see also [9]).
RobustBoost

Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for misclassified observations at every boosting step. These weights can become very large. If this happens, the boosting algorithm sometimes concentrates on a few misclassified observations and neglects the majority of training data. Consequently the average classification accuracy suffers. You need an Optimization Toolbox license to use RobustBoost.

In this situation, you can try using RobustBoost. This algorithm does not assign almost the entire data weight to badly misclassified observations. It can produce better average classification accuracy.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a specific loss function. Instead, it maximizes the number of observations with the classification margin above a certain threshold.

RobustBoost trains based on time evolution. The algorithm starts at $t = 0$. At every step, RobustBoost solves an optimization problem to find a positive step in time Δt and a corresponding positive change in the average margin for training data Δm. RobustBoost stops training and exits if at least one of these three conditions is true:

- Time t reaches 1.
- RobustBoost cannot find a solution to the optimization problem with positive updates Δt and Δm.
- RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition. Estimate the classification accuracy by cross validation or by using an independent test set.

To get better classification accuracy from RobustBoost, you can adjust three parameters in fitensemble: RobustErrorGoal, RobustMaxMargin, and RobustMarginSigma. Start by varying values for RobustErrorGoal from 0 to 1. The maximal allowed value for RobustErrorGoal depends on the two other parameters. If you pass a value that is too high, fitensemble produces an error message showing the allowed range for RobustErrorGoal.

For examples using RobustBoost, see “Tune RobustBoost” on page 18-129.

For references related to RobustBoost, see Freund [19].
RUSBoost

RUSBoost is especially effective at classifying imbalanced data, meaning some class in the training data has many fewer members than another. RUS stands for Random Under Sampling. The algorithm takes \(N \), the number of members in the class with the fewest members in the training data, as the basic unit for sampling. Classes with more members are under sampled by taking only \(N \) observations of every class. In other words, if there are \(K \) classes, then, for each weak learner in the ensemble, RUSBoost takes a subset of the data with \(N \) observations from each of the \(K \) classes. The boosting procedure follows the procedure in “AdaBoostM2” on page 18-52 for reweighting and constructing the ensemble.

When you construct a RUSBoost ensemble, there is an optional name-value pair called RatioToSmallest. Give a vector of \(K \) values, each value representing the multiple of \(N \) to sample for the associated class. For example, if the smallest class has \(N = 100 \) members, then RatioToSmallest = [2, 3, 4] means each weak learner has 200 members in class 1, 300 in class 2, and 400 in class 3. If RatioToSmallest leads to a value that is larger than the number of members in a particular class, then RUSBoost samples the members with replacement. Otherwise, RUSBoost samples the members without replacement.

For examples using RUSBoost, see “Classification with Imbalanced Data” on page 18-99.

For references related to RUSBoost, see Seiffert et al. [43].

Subspace

Use random subspace ensembles (Subspace) to improve the accuracy of discriminant analysis (ClassificationDiscriminant) or \(k \)-nearest neighbor (ClassificationKNN) classifiers. Subspace ensembles also have the advantage of using less memory than ensembles with all predictors, and can handle missing values (NaNs).

The basic random subspace algorithm uses these parameters.

- \(m \) is the number of dimensions (variables) to sample in each learner. Set \(m \) using the NPredToSample name-value pair.
- \(d \) is the number of dimensions in the data, which is the number of columns (predictors) in the data matrix \(X \).
• \(n \) is the number of learners in the ensemble. Set \(n \) using the \texttt{NLearn} input.

The basic random subspace algorithm performs the following steps:

1. Choose without replacement a random set of \(m \) predictors from the \(d \) possible values.
2. Train a weak learner using just the \(m \) chosen predictors.
3. Repeat steps 1 and 2 until there are \(n \) weak learners.
4. Predict by taking an average of the score prediction of the weak learners, and classify the category with the highest average score.

You can choose to create a weak learner for every possible set of \(m \) predictors from the \(d \) dimensions. To do so, set \(n \), the number of learners, to \textquote{AllPredictorCombinations}'. In this case, there are \texttt{nchoosek(size(X,2),NPredToSample)} weak learners in the ensemble.

\texttt{fitcensemble} downweights predictors after choosing them for a learner, so subsequent learners have a lower chance of using a predictor that was previously used. This weighting tends to make predictors more evenly distributed among learners than in uniform weighting.

For examples using \texttt{Subspace}, see \enquote{Random Subspace Classification} on page 18-133.

For references related to random subspace ensembles, see Ho [26].

TotalBoost

\texttt{TotalBoost}, like linear programming boost (\texttt{LPBoost}), performs multiclass classification by attempting to maximize the minimal margin in the training set. This attempt uses optimization algorithms, namely quadratic programming for \texttt{TotalBoost}. So you need an Optimization Toolbox license to use \texttt{LPBoost} or \texttt{TotalBoost}.

The margin of a classification is the difference between the predicted soft classification score for the true class, and the largest score for the false classes. For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node. For more information, see \enquote{Definitions} on page 32-3984 in \texttt{margin}.
Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is the probability of obtaining a negative margin. Schapire and Singer [41] establish this inequality on the probability of obtaining a negative margin:

\[
P_{\text{test}}(m \leq 0) \leq P_{\text{train}}(m \leq \theta) + O\left(\frac{1}{\sqrt{N}} \sqrt{\frac{V \log^2(N/V)}{\theta^2}} + \log(1/\delta)\right).
\]

Here \(m \) is the margin, \(\theta \) is any positive number, \(V \) is the Vapnik-Chervonenkis dimension of the classifier space, \(N \) is the size of the training set, and \(\delta \) is a small positive number. The inequality holds with probability \(1-\delta \) over many i.i.d. training and test sets. This inequality says: To obtain a low generalization error, minimize the number of observations below margin \(\theta \) in the training set.

TotalBoost minimizes a proxy of the Kullback-Leibler divergence between the current weight distribution and the initial weight distribution, subject to the constraint that the edge (the weighted margin) is below a certain value. The proxy is a quadratic expansion of the divergence:

\[
D(W, W_0) = \sum_{n=1}^{N} \log \frac{W(n)}{W_0(n)} = \sum_{n=1}^{N} \left(1 + \frac{W(n)}{W_0(n)}\right) \Delta + \frac{1}{2W(n)} \Delta^2,
\]

where \(\Delta \) is the difference between \(W(n) \), the weights at the current and next iteration, and \(W_0 \), the initial weight distribution, which is uniform. This optimization formulation keeps weights from becoming zero. At each iteration, there are more constraints in the problem. So, for large problems, the optimization problem becomes increasingly constrained, and slow to solve.

TotalBoost typically creates ensembles with many learners having weights that are orders of magnitude smaller than those of other learners. Therefore, to better enable you to remove the unimportant ensemble members, the **compact** method reorders the members of a **TotalBoost** ensemble from largest weight to smallest. Therefore you can easily remove the least important members of the ensemble using the **removeLearners** method.

For examples using **TotalBoost**, see “LPBoost and TotalBoost for Small Ensembles” on page 18-122.

For references related to **TotalBoost**, see Warmuth, Liao, and Ratsch [44].
See Also
ClassificationBaggedEnsemble | ClassificationDiscriminant | ClassificationEnsemble | ClassificationKNN | ClassificationPartitionedEnsemble | CompactClassificationEnsemble | CompactRegressionEnsemble | RegressionBaggedEnsemble | RegressionEnsemble | RegressionPartitionedEnsemble | TreeBagger | fitcensemble | fitrensemble

Related Examples
- “Framework for Ensemble Learning” on page 18-40
- “Tune RobustBoost” on page 18-129
- “Surrogate Splits” on page 18-119
- “Train Ensemble With Unequal Classification Costs” on page 18-106
- “LPBoost and TotalBoost for Small Ensembles” on page 18-122
- “Random Subspace Classification” on page 18-133
Train Classification Ensemble

This example shows how to create a classification tree ensemble for the ionosphere data set, and use it to predict the classification of a radar return with average measurements.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble. For binary classification problems, fitcensemble aggregates 100 classification trees using LogitBoost.

Mdl = fitcensemble(X,Y)

Mdl =
 classreg.learning.classif.ClassificationEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 NumTrained: 100
 Method: 'LogitBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: [100x1 double]
 FitInfoDescription: {2x1 cell}

Properties, Methods

Mdl is a ClassificationEnsemble model.

Plot a graph of the first trained classification tree in the ensemble.

view(Mdl.Trained{1}.CompactRegressionLearner,'Mode','graph');
By default, `fitcensemble` grows shallow trees for boosting algorithms. You can alter the tree depth by passing a tree template object to `fitcensemble`. For more details, see `templateTree`.

Predict the quality of a radar return with average predictor measurements.

```matlab
label = predict(Mdl,mean(X))
```

```matlab
label = 1x1 cell array
    {'g'}
```
See Also
fitcensemble | predict

Related Examples
• “Train Regression Ensemble” on page 18-69
• “Select Predictors for Random Forests” on page 18-72
• “Decision Trees” on page 19-2
• “Ensemble Algorithms” on page 18-50
• “Framework for Ensemble Learning” on page 18-40
Train Regression Ensemble

This example shows how to create a regression ensemble to predict mileage of cars based on their horsepower and weight, trained on the carsmall data.

Load the carsmall data set.

```matlab
load carsmall
```

Prepare the predictor data.

```matlab
X = [Horsepower Weight];
```

The response data is MPG. The only available boosted regression ensemble type is LSBoost. For this example, arbitrarily choose an ensemble of 100 trees, and use the default tree options.

Train an ensemble of regression trees.

```matlab
Mdl = fitrensemble(X,MPG,'Method','LSBoost','NumLearningCycles',100)
```

Mdl =
```
classreg.learning.regr.RegressionEnsemble
   ResponseName: 'Y'
   CategoricalPredictors: []
   ResponseTransform: 'none'
   NumObservations: 94
   NumTrained: 100
   Method: 'LSBoost'
   LearnerNames: {'Tree'}
   ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
   FitInfo: [100x1 double]
   FitInfoDescription: {2x1 cell}
   Regularization: []
```

Properties, Methods

Plot a graph of the first trained regression tree in the ensemble.

```matlab
view(Mdl.Trained{1},'Mode','graph');
```
By default, `fitrensemble` grows shallow trees for LSBoost.

Predict the mileage of a car with 150 horsepower weighing 2750 lbs.

```matlab
mileage = predict(Mdl,[150 2750])
mileage = 23.6713
```
See Also
fitrensemble | predict

Related Examples
• “Train Classification Ensemble” on page 18-66
• “Select Predictors for Random Forests” on page 18-72
• “Decision Trees” on page 19-2
• “Ensemble Algorithms” on page 18-50
• “Framework for Ensemble Learning” on page 18-40
Select Predictors for Random Forests

This example shows how to choose the appropriate split predictor selection technique for your data set when growing a random forest of regression trees. This example also shows how to decide which predictors are most important to include in the training data.

Load and Preprocess Data

Load the carbig data set. Consider a model that predicts the fuel economy of a car given its number of cylinders, engine displacement, horsepower, weight, acceleration, model year, and country of origin. Consider Cylinders, Model Year, and Origin as categorical variables.

load carbig
Cylinders = categorical(Cylinders);
Model_Year = categorical(Model_Year);
Origin = categorical(cellstr(Origin));
X = table(Cylinders,Displacement,Horsepower,Weight,Acceleration,Model_Year,...
Origin,MPG);

Determine Levels in Predictors

The standard CART algorithm tends to split predictors with many unique values (levels), e.g., continuous variables, over those with fewer levels, e.g., categorical variables. If your data is heterogeneous, or your predictor variables vary greatly in their number of levels, then consider using the curvature or interaction tests for split-predictor selection instead of standard CART.

For each predictor, determine the number of levels in the data. One way to do this is define an anonymous function that:

1. Converts all variables to the categorical data type using categorical
2. Determines all unique categories while ignoring missing values using categories
3. Counts the categories using numel

Then, apply the function to each variable using varfun.

\[
\text{countLevels} = @(x)\text{numel(categories(categorical(x)))};
\]
\[
\text{numLevels} = \text{varfun(countLevels,X(\cdot,:1:end-1),'OutputFormat','uniform')};
\]

Compare the number of levels among the predictor variables.
The continuous variables have many more levels than the categorical variables. Because the number of levels among the predictors vary so much, using standard CART to select split predictors at each node of the trees in a random forest can yield inaccurate predictor importance estimates.
Grow Robust Random Forest

Grow a random forest of 200 regression trees. Specify sampling all variables at each node. Specify usage of the interaction test to select split predictors. Because there are missing values in the data, specify usage of surrogate splits to increase accuracy.

```matlab
t = templateTree('NumVariablesToSample','all',...
    'PredictorSelection','interaction-curvature','Surrogate','on');
rng(1); % For reproducibility
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',200,...
    'Learners',t);
```

Mdl is a `RegressionBaggedEnsemble` model.

Estimate the model R^2 using out-of-bag predictions.

```matlab
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
```

R2 = 0.8742

Mdl explains 87.39% of the variability around the mean.

Predictor Importance Estimation

Estimate predictor importance values by permuting out-of-bag observations among the trees.

```matlab
impOOB = oobPermutedPredictorImportance(Mdl);
```

impOOB is a 1-by-7 vector of predictor importance estimates corresponding to the predictors in Mdl.PredictorNames. The estimates are not biased toward predictors containing many levels.

Compare the predictor importance estimates.

```matlab
figure;
bar(impOOB);
title('Unbiased Predictor Importance Estimates');
xlabel('Predictor variable');
ylabel('Importance');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
Greater importance estimates indicate more important predictors. The bar graph suggests that `Model_Year` is the most important predictor, followed by `Weight`. `Model_Year` has 13 distinct levels only, whereas `Weight` has over 300.

Compare predictor importance estimates by permuting out-of-bag observations and those estimates obtained by summing gains in the mean squared error due to splits on each predictor. Also, obtain predictor association measures estimated by surrogate splits.

```matlab
[impGain, predAssociation] = predictorImportance(Mdl);
figure;
plot(1:numel(Mdl.PredictorNames), [impOOB' impGain']);
title('Predictor Importance Estimation Comparison')
xlabel('Predictor variable');
```
ylabel('Importance');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
legend('OOB permuted','MSE improvement')
grid on

impGain is commensurate with impOOB. According to the values of impGain, Model_Year and Weight do not appear to be the most important predictors.

predAssociation is a 7-by-7 matrix of predictor association measures. Rows and columns correspond to the predictors in Mdl.PredictorNames. You can infer the
strength of the relationship between pairs of predictors using the elements of `predAssociation`. Larger values indicate more highly correlated pairs of predictors.

```matlab
figure;
imagesc(predAssociation);
title('Predictor Association Estimates');
colorbar;
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
h.YTickLabel = Mdl.PredictorNames;
```
predAssociation(1,2)
ans = 0.6871

The largest association is between Cylinders and Displacement, but the value is not high enough to indicate a strong relationship between the two predictors.

Grow Random Forest Using Reduced Predictor Set

Because prediction time increases with the number of predictors in random forests, it is good practice to create a model using as few predictors as possible.

Grow a random forest of 200 regression trees using the best two predictors only.

```matlab
MdlReduced = fitrensemble(X(:,{'Model_Year' 'Weight' 'MPG'}),'MPG','Method','bag', ... 'NumLearningCycles',200,'Learners',t);
```

Compute the R^2 of the reduced model.

```matlab
yHatReduced = oobPredict(MdlReduced);
r2Reduced = corr(Mdl.Y,yHatReduced)^2
```

r2Reduced = 0.8532

The R^2 for the reduced model is close to the R^2 of the full model. This result suggests that the reduced model is sufficient for prediction.

See Also
corr|fitrensemble|oobPermutedPredictorImportance|oobPredict|
predictorImportance|templateTree

Related Examples
- “Improving Classification Trees and Regression Trees” on page 19-17
- “Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
- “Surrogate Splits” on page 18-119
Test Ensemble Quality

You cannot evaluate the predictive quality of an ensemble based on its performance on training data. Ensembles tend to “overtrain,” meaning they produce overly optimistic estimates of their predictive power. This means the result of `resubLoss` for classification (`resubLoss` for regression) usually indicates lower error than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:

- Evaluate the ensemble on an independent test set (useful when you have a lot of training data).
- Evaluate the ensemble by cross validation (useful when you don't have a lot of training data).
- Evaluate the ensemble on out-of-bag data (useful when you create a bagged ensemble with `fitcensemble` or `fitrensemble`).

Test Ensemble Quality

This example uses a bagged ensemble so it can use all three methods of evaluating ensemble quality.

Generate an artificial dataset with 20 predictors. Each entry is a random number from 0 to 1. The initial classification is $Y = 1$ if $X_1 + X_2 + X_3 + X_4 + X_5 > 2.5$ and $Y = 0$ otherwise.

```plaintext
rng(1,'twister')  % for reproducibility
X = rand(2000,20);
Y = sum(X(:,1:5),2) > 2.5;
```

In addition, to add noise to the results, randomly switch 10% of the classifications:

```plaintext
idx = randsample(2000,200);
Y(idx) = ~Y(idx);
```

Independent Test Set

Create independent training and test sets of data. Use 70% of the data for a training set by calling `cvpartition` using the `holdout` option:

```plaintext
cvpart = cvpartition(Y,'holdout',0.3);
Xtrain = X(training(cvpart),:);
```
Ytrain = Y(training(cvpart),:);
Xtest = X(test(cvpart),:);
Ytest = Y(test(cvpart),:);

Create a bagged classification ensemble of 200 trees from the training data:

bag = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',200)

bag =
 classreg.learning.classif.ClassificationBaggedEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: [0 1]
 ScoreTransform: 'none'
 NumObservations: 1400
 NumTrained: 200
 Method: 'Bag'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: []
 FitInfoDescription: 'None'
 FResample: 1
 Replace: 1
 UseObsForLearner: [1400x200 logical]

Properties, Methods

Plot the loss (misclassification) of the test data as a function of the number of trained trees in the ensemble:

figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Test classification error');
Cross Validation

Generate a five-fold cross-validated bagged ensemble:

```matlab
cv = fitcensemble(X,Y,'Method','Bag','NumLearningCycles',200,'Kfold',5)
```

cv =

classreg.learning.partition.ClassificationPartitionedEnsemble
 CrossValidatedModel: 'Bag'
 PredictorNames: {1x20 cell}
 ResponseName: 'Y'
 NumObservations: 2000
 KFold: 5
 Partition: [1x1 cvpartition]
NumTrainedPerFold: [200 200 200 200 200]
 ClassNames: [0 1]
 ScoreTransform: 'none'

Properties, Methods

Examine the cross-validation loss as a function of the number of trees in the ensemble:

```matlab
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold on;
plot(kfoldLoss(cv,'mode','cumulative'),'r.');</
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Location','NE');
```
Cross validating gives comparable estimates to those of the independent set.

Out-of-Bag Estimates

Generate the loss curve for out-of-bag estimates, and plot it along with the other curves:

```matlab
defigure;
dplot(loss(bag,Xtest,Ytest,'mode','cumulative'));
dhold on;
dplot(kfoldLoss(cv,'mode','cumulative'),'r.);
dplot(oobLoss(bag,'mode','cumulative'),'k--');
dhold off;
dxlabel('Number of trees');
```
The out-of-bag estimates are again comparable to those of the other methods.

See Also

cvpartition | cvpartition | fitensemble | fitrensemble | kfoldLoss | loss |
oobLoss | resubLoss | resubLoss
Related Examples

- “Framework for Ensemble Learning” on page 18-40
- “Ensemble Algorithms” on page 18-50
- “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 18-152
Ensemble Regularization

Regularization is a process of choosing fewer weak learners for an ensemble in a way that does not diminish predictive performance. Currently you can regularize regression ensembles. (You can also regularize a discriminant analysis classifier in a non-ensemble context; see “Regularize a Discriminant Analysis Classifier” on page 20-28.)

The `regularize` method finds an optimal set of learner weights α_t that minimize

$$
\sum_{n=1}^{N} w_n g\left(\left(\sum_{t=1}^{T} \alpha_t h_t(x_n) \right), y_n \right) + \lambda \sum_{t=1}^{T} |\alpha_t|.
$$

Here

- $\lambda \geq 0$ is a parameter you provide, called the lasso parameter.
- h_t is a weak learner in the ensemble trained on N observations with predictors x_n, responses y_n, and weights w_n.
- $g(f, y) = (f - y)^2$ is the squared error.

The ensemble is regularized on the same (x_n, y_n, w_n) data used for training, so

$$
\sum_{n=1}^{N} w_n g\left(\left(\sum_{t=1}^{T} \alpha_t h_t(x_n) \right), y_n \right)
$$

is the ensemble resubstitution error. The error is measured by mean squared error (MSE).

If you use $\lambda = 0$, `regularize` finds the weak learner weights by minimizing the resubstitution MSE. Ensembles tend to overtrain. In other words, the resubstitution error is typically smaller than the true generalization error. By making the resubstitution error even smaller, you are likely to make the ensemble accuracy worse instead of improving it. On the other hand, positive values of λ push the magnitude of the α_t coefficients to 0. This often improves the generalization error. Of course, if you choose λ too large, all the optimal coefficients are 0, and the ensemble does not have any accuracy. Usually you can find an optimal range for λ in which the accuracy of the regularized ensemble is better or comparable to that of the full ensemble without regularization.

A nice feature of lasso regularization is its ability to drive the optimized coefficients precisely to 0. If a learner's weight α_t is 0, this learner can be excluded from the
regularized ensemble. In the end, you get an ensemble with improved accuracy and fewer learners.

Regularize a Regression Ensemble

This example uses data for predicting the insurance risk of a car based on its many attributes.

Load the `imports-85` data into the MATLAB workspace.

```matlab
load imports-85;
```

Look at a description of the data to find the categorical variables and predictor names.

```matlab
Description = 9x79 char array

'1985 Auto Imports Database from the UCI repository
'Variables have been reordered to place variables with numeric values (referred to as "continuous" on the UCI site) to the left and categorical values to the right. Specifically, variables 1:16 are: symboling, normalized-losses, wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price. Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style, drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system.'

The objective of this process is to predict the "symboling," the first variable in the data, from the other predictors. "symboling" is an integer from -3 (good insurance risk) to 3 (poor insurance risk). You could use a classification ensemble to predict this risk instead of a regression ensemble. When you have a choice between regression and classification, you should try regression first.

Prepare the data for ensemble fitting.

```matlab
Y = X(:,1);
X(:,1) = [];
VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...
 'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...
 'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...
 'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...
 'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};
catidx = 16:25; % indices of categorical predictors
```
Create a regression ensemble from the data using 300 trees.

```matlab
ls = fitrensemble(X,Y,'Method','LSBoost','NumLearningCycles',300, ... 'LearnRate',0.1,'PredictorNames',VarNames, ... 'ResponseName','Symboling','CategoricalPredictors',catidx)
```

```
ls =
 classreg.learning.regr.RegressionEnsemble
 PredictorNames: {1x25 cell}
 ResponseName: 'Symboling'
 CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
 ResponseTransform: 'none'
 NumObservations: 205
 NumTrained: 300
 Method: 'LSBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: [300x1 double]
 FitInfoDescription: {2x1 cell}
 Regularization: []
```

The final line, Regularization, is empty ([ ]). To regularize the ensemble, you have to use the `regularize` method.

```matlab
cv = crossval(ls,'KFold',5);
figure;
plot(kfoldLoss(cv,'Mode','Cumulative'));
xlabel('Number of trees');
ylabel('Cross-validated MSE');
ylim([0.2,2])
```
It appears you might obtain satisfactory performance from a smaller ensemble, perhaps one containing from 50 to 100 trees.

Call the `regularize` method to try to find trees that you can remove from the ensemble. By default, `regularize` examines 10 values of the lasso (Lambda) parameter spaced exponentially.

```matlab
ls = regularize(ls)
```

```matlab
lS =
 classreg.learning.regr.RegressionEnsemble
 PredictorNames: {1x25 cell}
 ResponseName: 'Symboling'
 CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
```
The Regularization property is no longer empty.

Plot the resubstitution mean-squared error (MSE) and number of learners with nonzero weights against the lasso parameter. Separately plot the value at \( \text{Lambda} = 0 \). Use a logarithmic scale because the values of \( \text{Lambda} \) are exponentially spaced.

```matlab
figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE,...
 'bx-','Markersize',10);
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...]
 ls.Regularization.ResubstitutionMSE(1)],...
 'Marker','x','Markersize',10,'Color','b');
r0 = resubLoss(ls);
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
 [r0 r0],'Color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Resubstitution MSE');
annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble',...'
 'Color','r','FontSize',14,'LineStyle','none');
```
figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
line([1e-3 1e-3],...
    [sum(ls.Regularization.TrainedWeights(:,1)>0) ...
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
    'marker','x','markersize',10,'color','b');
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
    [ls.NTrained ls.NTrained],...
    'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Number of learners');
annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...
    'color','r','FontSize',14,'LineStyle','none');
The resubstitution MSE values are likely to be overly optimistic. To obtain more reliable estimates of the error associated with various values of Lambda, cross validate the ensemble using `cvshrink`. Plot the resulting cross-validation loss (MSE) and number of learners against Lambda.

```matlab
rng(0,'Twister') % for reproducibility
[mse,nlearn] = cvshrink(ls,'Lambda',ls.Regularization.Lambda,'KFold',5);
```

Warning: Some folds do not have any trained weak learners.

```matlab
figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE, ... 'bx-','Markersize',10);
```
hold on;
semilogx(ls.Regularization.Lambda,mse,'ro-','Markersize',10);
hold off;
xlabel('Lambda');
ylabel('Mean squared error');
legend('resubstitution','cross-validation','Location','NW');
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ... 
     ls.Regularization.ResubstitutionMSE(1)],...
     'Marker','x','Markersize',10,'Color','b','HandleVisibility','off');
line([1e-3 1e-3],[mse(1) mse(1)],'Marker','o',...
     'Markersize',10,'Color','r','LineStyle','--','HandleVisibility','off');
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
hold;

Current plot held

loglog(ls.Regularization.Lambda,nlearn,'r--');
hold off;
xlabel('Lambda');
ylabel('Number of learners');
legend('resubstitution','cross-validation','Location','NE');
line([1e-3 1e-3],...
    [sum(ls.Regularization.TrainedWeights(:,1)>0) ... 
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
    'Marker','x','Markersize',10,'Color','b','HandleVisibility','off');
line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...
    'Markersize',10,'Color','r','LineStyle','--','HandleVisibility','off');
Examining the cross-validated error shows that the cross-validation MSE is almost flat for Lambda up to a bit over 1e-2.

Examine `ls.Regularization.Lambda` to find the highest value that gives MSE in the flat region (up to a bit over 1e-2).

```matlab
jj = 1:length(ls.Regularization.Lambda);
[jj;ls.Regularization.Lambda]
```

```
ans = 2×10
 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 0
 0 0.0019 0.0045 0.0107 0.0254 0.0602 0.1428 0.3387 0.8
```
Element 5 of ls.Regularization.Lambda has value 0.0254, the largest in the flat range.

Reduce the ensemble size using the shrink method. shrink returns a compact ensemble with no training data. The generalization error for the new compact ensemble was already estimated by cross validation in mse(5).

cmp = shrink(ls,'weightcolumn',5)

cmp =
    classreg.learning.regr.CompactRegressionEnsemble
    PredictorNames: {1x25 cell}
    ResponseName: 'Symboling'
    CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
    ResponseTransform: 'none'
    NumTrained: 8

The number of trees in the new ensemble has notably reduced from the 300 in ls.

Compare the sizes of the ensembles.

sz(1) = whos('cmp'); sz(2) = whos('ls');
[sz(1).bytes sz(2).bytes]
ans = 1x2
     88368     3088696

The size of the reduced ensemble is a fraction of the size of the original. Note that your ensemble sizes can vary depending on your operating system.

Compare the MSE of the reduced ensemble to that of the original ensemble.

figure;
plot(kfoldLoss(cv,'mode','cumulative'));
hold on
plot(cmp.NTrained,mse(5),'ro','MarkerSize',10);
xlabel('Number of trees');
ylabel('Cross-validated MSE');
legend('unregularized ensemble','regularized ensemble',...
The reduced ensemble gives low loss while using many fewer trees.

See Also

crossval | cvshrink | fitrensemble | kfoldLoss | regularize | resubLoss | shrink
Related Examples

- “Regularize a Discriminant Analysis Classifier” on page 20-28
- “Framework for Ensemble Learning” on page 18-40
- “Ensemble Algorithms” on page 18-50
Classification with Imbalanced Data

This example shows how to classify when one class has many more observations than another. Try the RUSBoost algorithm first, because it is designed to handle this case.

This example uses the "Cover type" data from the UCI machine learning archive, described in http://archive.ics.uci.edu/ml/datasets/Covertype. The data classifies types of forest (ground cover), based on predictors such as elevation, soil type, and distance to water. The data has over 500,000 observations and over 50 predictors, so training and using a classifier is time consuming.

Blackard and Dean [4] describe a neural net classification of this data. They quote a 70.6% classification accuracy. RUSBoost obtains over 81% classification accuracy.

Obtain the data

Import the data into your workspace. Extract the last data column into a variable named Y.

```
load covtype.data
Y = covtype(:,end);
covtype(:,end) = [];
```

Examine the response data

```
tabulate(Y)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>211840</td>
<td>36.46%</td>
</tr>
<tr>
<td>2</td>
<td>283301</td>
<td>48.76%</td>
</tr>
<tr>
<td>3</td>
<td>35754</td>
<td>6.15%</td>
</tr>
<tr>
<td>4</td>
<td>2747</td>
<td>0.47%</td>
</tr>
<tr>
<td>5</td>
<td>9493</td>
<td>1.63%</td>
</tr>
<tr>
<td>6</td>
<td>17367</td>
<td>2.99%</td>
</tr>
<tr>
<td>7</td>
<td>20510</td>
<td>3.53%</td>
</tr>
</tbody>
</table>

There are hundreds of thousands of data points. Those of class 4 are less than 0.5% of the total. This imbalance indicates that RUSBoost is an appropriate algorithm.

Partition the data for quality assessment

Use half the data to fit a classifier, and half to examine the quality of the resulting classifier.
rng(10,'twister')         % For reproducibility
part = cvpartition(Y,'Holdout',0.5);
istrain = training(part); % Data for fitting
istest = test(part);      % Data for quality assessment
tabulate(Y(istrain))

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105919</td>
<td>36.46%</td>
</tr>
<tr>
<td>2</td>
<td>141651</td>
<td>48.76%</td>
</tr>
<tr>
<td>3</td>
<td>17877</td>
<td>6.15%</td>
</tr>
<tr>
<td>4</td>
<td>1374</td>
<td>0.47%</td>
</tr>
<tr>
<td>5</td>
<td>4747</td>
<td>1.63%</td>
</tr>
<tr>
<td>6</td>
<td>8684</td>
<td>2.99%</td>
</tr>
<tr>
<td>7</td>
<td>10254</td>
<td>3.53%</td>
</tr>
</tbody>
</table>

Create the ensemble

Use deep trees for higher ensemble accuracy. To do so, set the trees to have maximal number of decision splits of \( N \), where \( N \) is the number of observations in the training sample. Set LearnRate to 0.1 in order to achieve higher accuracy as well. The data is large, and, with deep trees, creating the ensemble is time consuming.

\[
N = \text{sum}(istrain); % \text{Number of observations in the training sample}
\]

\[
t = \text{templateTree}('MaxNumSplits',N);
\]

\[
tic
\]

\[
rusTree = \text{fitensemble}(\text{covtype}(istrain,:),Y(istrain),'Method','RUSBoost', ... \\
'NumLearningCycles',1000,'Learners',t,'LearnRate',0.1,'nprint',100);
\]

\[
toc
\]

Training RUSBoost...
Grown weak learners: 100
Grown weak learners: 200
Grown weak learners: 300
Grown weak learners: 400
Grown weak learners: 500
Grown weak learners: 600
Grown weak learners: 700
Grown weak learners: 800
Grown weak learners: 900
Grown weak learners: 1000
Elapsed time is 426.143168 seconds.

Inspect the classification error

Plot the classification error against the number of members in the ensemble.
The ensemble achieves a classification error of under 20% using 116 or more trees. For 500 or more trees, the classification error decreases at a slower rate.

Examine the confusion matrix for each class as a percentage of the true class.
tic
Yfit = predict(rusTree, covtype(istest,:));
toc

tab = tabulate(Y(istest));
bsxfun(@rdivide, confusionmat(Y(istest), Yfit), tab(:,2)) * 100

Elapsed time is 245.604008 seconds.

ans =

  90.5354  4.1040  0.0434   0  1.0480  0.1511  4.1182
 17.5171  71.2467  1.8292  0.0162  6.4335  2.2803  0.6770
   0  0.0671  93.6678  1.6558  0.5594  4.0499   0
   0   0  3.7145  94.6832   0   0  1.6023   0
 0.1054  0.1896  0.5057   0  98.8622  0.3371   0
   0  0.1037  2.7064  1.1056  0.3340  95.7503   0
 0.2340  0.0098   0   0  0.0098   0  99.7465

All classes except class 2 have over 90% classification accuracy. But class 2 makes up close to half the data, so the overall accuracy is not that high.

**Compact the ensemble**

The ensemble is large. Remove the data using the `compact` method.

cmpctRus = compact(rusTree);

sz(1) = whos('rusTree');
sz(2) = whos('cmpctRus');
[sz(1).bytes, sz(2).bytes]

ans =

    1.0e+09 *
     1.6575   0.9418

The compacted ensemble is about half the size of the original.

Remove half the trees from `cmpctRus`. This action is likely to have minimal effect on the predictive performance, based on the observation that 500 out of 1000 trees give nearly optimal accuracy.
cmpctRus = removeLearners(cmpctRus,[500:1000]);

sz(3) = whos('cmpctRus');
sz(3).bytes

ans =

    452637153

The reduced compact ensemble takes about a quarter of the memory of the full ensemble. Its overall loss rate is under 19%:

L = loss(cmpctRus,covtype(istest,:),Y(istest))

L =

    0.1833

The predictive accuracy on new data might differ, because the ensemble accuracy might be biased. The bias arises because the same data used for assessing the ensemble was used for reducing the ensemble size. To obtain an unbiased estimate of requisite ensemble size, you should use cross validation. However, that procedure is time consuming.

See Also
compact | confusionmat | cvpartition | cvpartition | fitensemble | loss | predict | removeLearners | tabulate | templateTree | test | training

Related Examples
• "Surrogate Splits" on page 18-119
• "Ensemble Algorithms" on page 18-50
• "Test Ensemble Quality" on page 18-79
• "Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles" on page 18-105
• "Classification with Many Categorical Levels" on page 18-113
• “LPBoost and TotalBoost for Small Ensembles” on page 18-122
• “Tune RobustBoost” on page 18-129
Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles

In many real-world applications, you might prefer to treat classes in your data asymmetrically. For example, you might have data with many more observations of one class than of any other. Or you might work on a problem in which misclassifying observations of one class has more severe consequences than misclassifying observations of another class. In such situations, you can use two optional parameters for `fitcensemble`: `prior` and `cost`.

By using `prior`, you set prior class probabilities (that is, class probabilities used for training). Use this option if some classes are under- or overrepresented in your training set. For example, you might obtain your training data by simulation. Because simulating class A is more expensive than class B, you opt to generate fewer observations of class A and more observations of class B. You expect, however, that class A and class B are mixed in a different proportion in the real world. In this case, set prior probabilities for class A and B approximately to the values you expect to observe in the real world. `fitcensemble` normalizes prior probabilities to make them add up to 1; multiplying all prior probabilities by the same positive factor does not affect the result of classification.

If classes are adequately represented in the training data but you want to treat them asymmetrically, use the `cost` parameter. Suppose you want to classify benign and malignant tumors in cancer patients. Failure to identify a malignant tumor (false negative) has far more severe consequences than misidentifying benign as malignant (false positive). You should assign high cost to misidentifying malignant as benign and low cost to misidentifying benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative elements. Element $C(i,j)$ of this matrix is the cost of classifying an observation into class $j$ if the true class is $i$. The diagonal elements $C(i,i)$ of the cost matrix must be 0. For the previous example, you can choose malignant tumor to be class 1 and benign tumor to be class 2. Then you can set the cost matrix to

$$
\begin{bmatrix}
0 & c \\
1 & 0
\end{bmatrix}
$$

where $c > 1$ is the cost of misidentifying a malignant tumor as benign. Costs are relative—multiplying all costs by the same positive factor does not affect the result of classification.
If you have only two classes, \texttt{fitcensemble} adjusts their prior probabilities using

\[
\tilde{P}_i = C_{ij} P_i \quad \text{for class } i = 1,2 \text{ and } j \neq i. P_i \text{ are prior probabilities either passed into } \texttt{fitcensemble} \text{ or computed from class frequencies in the training data, and } \tilde{P}_i \text{ are adjusted prior probabilities. Then } \texttt{fitcensemble} \text{ uses the default cost matrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

and these adjusted probabilities for training its weak learners. Manipulating the cost matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, \texttt{fitcensemble} also converts input costs into adjusted prior probabilities. This conversion is more complex. First, \texttt{fitcensemble} attempts to solve a matrix equation described in Zhou and Liu [51]. If it fails to find a solution, \texttt{fitcensemble} applies the “average cost” adjustment described in Breiman et al. [11]. For more information, see Zadrozny, Langford, and Abe [50].

**Train Ensemble With Unequal Classification Costs**

This example shows how to train an ensemble of classification trees with unequal classification costs. This example uses data on patients with hepatitis to see if they live or die as a result of the disease. The data set is described at UCI Machine Learning Data Repository.

Read the hepatitis data set from the UCI repository as a character array. Then convert the result to a cell array of character vectors using \texttt{textscan}. Specify a cell array of character vectors containing the variable names.

```matlab
hepatitis = textscan(urlread(['http://archive.ics.uci.edu/ml/' ... 'machine-learning-databases/hepatitis/hepatitis.data'])),...
 '%f','TreatAsEmpty',',',...
 'Delimiter',',');
size(hepatitis)
```

```matlab
ans =
```

```matlab
VarNames = { 'dieOrLive' 'age' 'sex' 'steroid' 'antivirals' 'fatigue' ...
 'malaise' 'anorexia' 'liverBig' 'liverFirm' 'spleen' ...
 'spiders' 'ascites' 'varices' 'bilirubin' 'alkPhosphate' 'sgot' ...
 'albumin' 'protime' 'histology'};
```

```matlab
ans =
```
hepatitis is a 1-by-20 cell array of character vectors. The cells correspond to the response (liveOrDie) and 19 heterogeneous predictors.

Specify a numeric matrix containing the predictors and a cell vector containing 'Die' and 'Live', which are response categories. The response contains two values: 1 indicates that a patient died, and 2 indicates that a patient lived. Specify a cell array of character vectors for the response using the response categories. The first variable in hepatitis contains the response.

    X = cell2mat(hepatitis(2:end));
    ClassNames = {'Die' 'Live'};
    Y = ClassNames(hepatitis{:,1});

    X is a numeric matrix containing the 19 predictors. Y is a cell array of character vectors containing the response.

Inspect the data for missing values.

    figure;
    barh(sum(isnan(X),1)/size(X,1));
    h = gca;
    h.YTick = 1:numel(VarNames) - 1;
    h.YTickLabel = VarNames(2:end);
    ylabel 'Predictor';
    xlabel 'Fraction of missing values';
Most predictors have missing values, and one has nearly 45% of the missing values. Therefore, use decision trees with surrogate splits for better accuracy. Because the data set is small, training time with surrogate splits should be tolerable.

Create a classification tree template that uses surrogate splits.

```matlab
rng(0,'twister') % for reproducibility
t = templateTree('surrogate','all');
```

Examine the data or the description of the data to see which predictors are categorical.

```matlab
X(1:5,:)
```

```matlab
ans =
```
Columns 1 through 7

```
30.0000 2.0000 1.0000 2.0000 2.0000 2.0000 2.0000
50.0000 1.0000 1.0000 2.0000 1.0000 2.0000 2.0000
78.0000 1.0000 2.0000 2.0000 1.0000 2.0000 2.0000
31.0000 1.0000 NaN 1.0000 2.0000 2.0000 2.0000
34.0000 1.0000 2.0000 2.0000 2.0000 2.0000 2.0000
```

Columns 8 through 14

```
1.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000
1.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.9000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.7000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.7000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000
```

Columns 15 through 19

```
85.0000 18.0000 4.0000 NaN 1.0000
135.0000 42.0000 3.5000 NaN 1.0000
96.0000 32.0000 4.0000 NaN 1.0000
46.0000 52.0000 4.0000 80.0000 1.0000
 NaN 200.0000 4.0000 NaN 1.0000
```

It appears that predictors 2 through 13 are categorical, as well as predictor 19. You can confirm this inference using the data set description at UCI Machine Learning Data Repository.

List the categorical variables.

catIdx = [2:13,19];

Create a cross-validated ensemble using 150 learners and the GentleBoost algorithm.

```
Ensemble = fitcensemble(X,Y,'Method','GentleBoost', ...
 'NumLearningCycles',150,'Learners',t,'PredictorNames',VarNames(2:end), ...
 'LearnRate',0.1,'CategoricalPredictors',catIdx,'KFold',5);
figure;
plot(kfoldLoss(Ensemble,'Mode','cumulative','LossFun','exponential'));
xlabel('Number of trees');
ylabel('Cross-validated exponential loss');
```

18-109
Inspect the confusion matrix to see which patients the ensemble predicts correctly.

```matlab
[yFit,sFit] = kfoldPredict(Ensemble);
confusionmat(Y,yFit,'Order',ClassNames)
```

```
ans =
 19 13
 11 112
```
Of the 123 patients who live, the ensemble predicts correctly that 112 will live. But for the 32 patients who die of hepatitis, the ensemble only predicts correctly that about half will die of hepatitis.

There are two types of error in the predictions of the ensemble:

- Predicting that the patient lives, but the patient dies
- Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second. Create a new classification cost matrix that reflects this belief.

```matlab
cost.ClassNames = ClassNames;
cost.ClassificationCosts = [0 5; 1 0];
```

Create a new cross-validated ensemble using `cost` as the misclassification cost, and inspect the resulting confusion matrix.

```matlab
EnsembleCost = fitcensemble(X,Y,'Method','GentleBoost',... 'NumLearningCycles',150,'Learners',t,'PredictorNames',VarNames(2:end),... 'LearnRate',0.1,'CategoricalPredictors',catIdx,'KFold',5,'Cost',cost);
[yFitCost,sFitCost] = kfoldPredict(EnsembleCost);
confusionmat(Y,yFitCost,'Order',ClassNames)
```

```
ans =
 20 12
 8 115
```

As expected, the new ensemble does a better job classifying the patients who die. Somewhat surprisingly, the new ensemble also does a better job classifying the patients who live, though the result is not statistically significantly better. The results of the cross validation are random, so this result is simply a statistical fluctuation. The result seems to indicate that the classification of patients who live is not very sensitive to the cost.

**See Also**

- `confusionmat`
- `fitcensemble`
- `kfoldLoss`
- `kfoldPredict`
- `templateTree`
Related Examples

- “Surrogate Splits” on page 18-119
- “Ensemble Algorithms” on page 18-50
- “Test Ensemble Quality” on page 18-79
- “Classification with Imbalanced Data” on page 18-99
- “Classification with Many Categorical Levels” on page 18-113
- “LPBoost and TotalBoost for Small Ensembles” on page 18-122
- “Tune RobustBoost” on page 18-129
Classification with Many Categorical Levels

This example shows how to train an ensemble of classification trees using data containing predictors with many categorical levels.

Generally, you cannot use classification with more than 31 levels in any categorical predictor. However, two boosting algorithms can classify data with many categorical predictor levels and binary responses: LogitBoost and GentleBoost. For details, see “LogitBoost” on page 18-57 and “GentleBoost” on page 18-57.

The example uses the census1994 data set, which consists of demographic data from the U.S. Census Bureau to predict whether an individual makes over $50,000 a year.

Load the census1994 file. Specify a cell array of character vectors containing the variable names.

load census1994
VarNames = adultdata.Properties.VariableNames;

Some variable names in the adultdata table contain the _ character. Replace instances of _ with a space.

VarNames = strrep(VarNames,'_',' ');

Some categorical variables have many levels. Plot the number of levels of each categorical predictor.

cat = ~varfun(@isnumeric,adultdata(:,1:end - 1),...
    'OutputFormat','uniform'); % Logical flag for categorical variables
catVars = find(cat);           % Indices of categorical variables

countCats = @(var)numel(categories(nominal(var)));
numCat = varfun(@(var)countCats(var),adultdata(:,catVars),...
    'OutputFormat','uniform');

figure
barh(numCat);
h = gca;
h.YTickLabel = VarNames(catVars);
ylabel 'Predictor'
xlabel 'Number of categories'
The anonymous function `countCats` converts a predictor to a nominal array, then counts the unique, nonempty categories of the predictor. Predictor 14 ('native country') has more than 40 categorical levels. For binary classification, `fitctree` uses a computational shortcut to find an optimal split for categorical predictors with many categories. For classification with more than two classes, you can choose a heuristic algorithm to find a good split. For details, see “Splitting Categorical Predictors” on page 19-31.

Specify the predictor matrix using `classreg.regr.modelutils.predictormatrix` and the response vector.

\[
X = \text{classreg.regr.modelutils.predictormatrix(adultdata,'ResponseVar',... size(adultdata,2));}
Y = \text{nominal(adultdata.salary)};
\]
X is a numeric matrix; predictormatrix converts all categorical variables into group indices. The name-value pair argument ResponseVar indicates that the last column is the response variable, and excludes it from the predictor matrix. Y is a nominal, categorical array.

Train classification ensembles using both LogitBoost and GentleBoost.

```matlab
rng(1); % For reproducibility
LBEnsemble = fitcensemble(X,Y,'Method','LogitBoost', ... 'NumLearningCycles',300,'Learners','Tree',... 'CategoricalPredictors',cat,'PredictorNames',VarNames(1:end-1),... 'ResponseName','income');
GBEnsemble = fitcensemble(X,Y,'Method','GentleBoost', ... 'NumLearningCycles',300,'Learners','Tree',... 'CategoricalPredictors',cat,'PredictorNames',VarNames(1:end-1),... 'ResponseName','income');
```

Examine the resubstitution error for both ensembles.

```matlab
figure
plot(resubLoss(LBEnsemble,'Mode','cumulative'))
hold on
plot(resubLoss(GBEnsemble,'Mode','cumulative'),'r--')
hold off
xlabel('Number of trees')
ylabel('Resubstitution error')
legend('LogitBoost','GentleBoost','Location','NE')
```
For both ensembles, the resubstitution error continues to decrease as the number of trees increases.

Estimate the generalization error for both algorithms by cross validation.

```matlab
CVLBEensemble = crossval(LBEnsemble,'KFold',5);
CVGBEnsemble = crossval(GBEnsemble,'KFold',5);
figure
plot(kfoldLoss(CVLBEensemble,'Mode','cumulative'))
hold on
plot(kfoldLoss(CVGBEnsemble,'Mode','cumulative'),'r--')
hold off
xlabel('Number of trees')
```
As the number of trees increases to 300, the cross-validated loss decreases up to a point, and then starts to increase. A guideline for determining the number of trees to use in the ensemble is to stop adding more trees when the validation error stops improving and starts increasing. This happens after about 50 trees for LogitBoost and 25 trees for GentleBoost.

**See Also**

crossval | fitensemble | resubLoss
Related Examples

- “Surrogate Splits” on page 18-119
- “Ensemble Algorithms” on page 18-50
- “Test Ensemble Quality” on page 18-79
- “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page 18-105
- “Classification with Imbalanced Data” on page 18-99
- “LPBoost and TotalBoost for Small Ensembles” on page 18-122
- “Tune RobustBoost” on page 18-129
Surrogate Splits

When you have missing data, trees and ensembles of trees give better predictions when they include surrogate splits. Furthermore, estimates of predictor importance are often different with surrogate splits. Eliminating unimportant predictors can save time and memory for predictions, and can make predictions easier to understand.

This example shows the effects of surrogate splits for predictions for data containing missing entries in the test set.

Load sample data. Partition it into a training and test set.

```
load ionosphere;
rng(10) % for reproducibility
cv = cvpartition(Y,'Holdout',0.3);
Xtrain = X(training(cv),:);
Ytrain = Y(training(cv));
Xtest = X(test(cv),:);
Ytest = Y(test(cv));
```

Bag decision trees with and without surrogate splits.

```
b = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',50);
templS = templateTree('Surrogate','On');
bs = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',50,...
 'Learners',templS);
```

Suppose half of the values in the test set are missing.

```
Xtest(rand(size(Xtest))>0.5) = NaN;
```

Test accuracy with and without surrogate splits.

```
figure;
plot(loss(b,Xtest,Ytest,'Mode','Cumulative'));
hold on;
plot(loss(bs,Xtest,Ytest,'Mode','Cumulative'),'r--');
legend('Regular trees','Trees with surrogate splits');
xlabel('Number of trees');
ylabel('Test classification error');
```
Check the statistical significance of the difference in results with the McNemar test. Convert the labels to a nominal data type to make it easier to check for equality.

\[
\begin{align*}
Y_{\text{fit}} &= \text{nominal}(\text{predict}(b,X_{\text{test}})); \\
Y_{\text{fitS}} &= \text{nominal}(\text{predict}(bs,X_{\text{test}})); \\
N_{10} &= \text{sum}(Y_{\text{fit}}==\text{nominal}(Y_{\text{test}}) \& \ Y_{\text{fitS}}!=\text{nominal}(Y_{\text{test}})); \\
N_{01} &= \text{sum}(Y_{\text{fit}}!=\text{nominal}(Y_{\text{test}}) \& \ Y_{\text{fitS}}==\text{nominal}(Y_{\text{test}})); \\
\text{mcnemar} &= (\text{abs}(N_{10}-N_{01}) - 1)^2/(N_{10}+N_{01}); \\
p_{\text{val}} &= 1 - \text{chi2cdf}(\text{mcnemar},1) \\
p_{\text{val}} &= 1.7683e-04
\end{align*}
\]

The extremely low $p$-value indicates that the ensemble with surrogate splits is better in a statistically significant manner.
See Also
fitcensemble | fitrensemble

Related Examples
• “Ensemble Algorithms” on page 18-50
• “Test Ensemble Quality” on page 18-79
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page 18-105
• “Classification with Imbalanced Data” on page 18-99
• “Classification with Many Categorical Levels” on page 18-113
• “LPBoost and TotalBoost for Small Ensembles” on page 18-122
• “Tune RobustBoost” on page 18-129
LPBoost and TotalBoost for Small Ensembles

This example shows how to obtain the benefits of the LPBoost and TotalBoost algorithms. These algorithms share two beneficial characteristics:

- They are self-terminating, which means you do not have to figure out how many members to include.
- They produce ensembles with some very small weights, enabling you to safely remove ensemble members.

Load the data

Load the ionosphere data set.

```matlab
load ionosphere
```

Create the classification ensembles

Create ensembles for classifying the ionosphere data using the LPBoost, TotalBoost, and, for comparison, AdaBoostM1 algorithms. It is hard to know how many members to include in an ensemble. For LPBoost and TotalBoost, try using 500. For comparison, also use 500 for AdaBoostM1.

The default weak learners for boosting methods are decision trees with the MaxNumSplits property set to 10. These trees tend to fit better than tree stumps (with 1 maximum split) and may overfit more. Therefore, to prevent overfitting, use tree stumps as weak learners for the ensembles.

```matlab
rng('default') % For reproducibility
T = 500;
treeStump = templateTree('MaxNumSplits',1);
adaStump = fitcensemble(X,Y,'Method','AdaBoostM1','NumLearningCycles',T,'Learners',treeStump);
totalStump = fitcensemble(X,Y,'Method','TotalBoost','NumLearningCycles',T,'Learners',treeStump);
lpStump = fitcensemble(X,Y,'Method','LPBoost','NumLearningCycles',T,'Learners',treeStump);
```

```matlab
figure
plot(resubLoss(adaStump,'Mode','Cumulative'));
hold on
plot(resubLoss(totalStump,'Mode','Cumulative'),'r');
plot(resubLoss(lpStump,'Mode','Cumulative'),'g');
hold off
xlabel('Number of stumps');
```
All three algorithms achieve perfect prediction on the training data after a while. Examine the number of members in all three ensembles.

```
ans = 1×3
 500 52 76
```

AdaBoostM1 trained all 500 members. The other two algorithms stopped training early.
Cross validate the ensembles

Cross validate the ensembles to better determine ensemble accuracy.

```matlab
cvlp = crossval(lpStump,'KFold',5);
cvtotal = crossval(totalStump,'KFold',5);
cvada = crossval(adaStump,'KFold',5);

figure
plot(kfoldLoss(cvada,'Mode','Cumulative')); hold on
plot(kfoldLoss(cvtotal,'Mode','Cumulative'),'r');
plot(kfoldLoss(cvlp,'Mode','Cumulative'),'g'); hold off
xlabel('Ensemble size');
ylabel('Cross-validated error');
legend('AdaBoost','TotalBoost','LPBoost','Location','NE');
```
The results show that each boosting algorithm achieves a loss of 10% or lower with 50 ensemble members.

**Compact and remove ensemble members**

To reduce the ensemble sizes, compact them, and then use `removeLearners`. The question is, how many learners should you remove? The cross-validated loss curves give you one measure. For another, examine the learner weights for LPBoost and TotalBoost after compacting.

```matlab
cada = compact(adaStump); clp = compact(lpStump); ctotal = compact(totalStump);```
Both LPBoost and TotalBoost show clear points where the ensemble member weights become negligible.

Remove the unimportant ensemble members.
cada = removeLearners(cada, 150:cada.NTrained);
clp = removeLearners(clp, 60:clp.NTrained);
ctotal = removeLearners(ctotal, 40:ctotal.NTrained);

Check that removing these learners does not affect ensemble accuracy on the training data.

[loss(cada, X, Y) loss(clp, X, Y) loss(ctotal, X, Y)]

ans = 1x3

 0 0 0

Check the resulting compact ensemble sizes.

s(1) = whos('cada');
s(2) = whos('clp');
s(3) = whos('ctotal');
s.bytes

ans = 503987

ans = 201283

ans = 134023

The sizes of the compact ensembles are approximately proportional to the number of members in each.

See Also

compact | crossval | fitensemble | kfoldLoss | loss | removeLearners | resubLoss

Related Examples

- “Surrogate Splits” on page 18-119
- “Ensemble Algorithms” on page 18-50
- “Test Ensemble Quality” on page 18-79
- “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page 18-105
• “Classification with Imbalanced Data” on page 18-99
• “Classification with Many Categorical Levels” on page 18-113
• “Tune RobustBoost” on page 18-129
Tune RobustBoost

The RobustBoost algorithm can make good classification predictions even when the training data has noise. However, the default RobustBoost parameters can produce an ensemble that does not predict well. This example shows one way of tuning the parameters for better predictive accuracy.

Generate data with label noise. This example has twenty uniform random numbers per observation, and classifies the observation as 1 if the sum of the first five numbers exceeds 2.5 (so is larger than average), and 0 otherwise:

```matlab
rng(0,'twister') % for reproducibility
Xtrain = rand(2000,20);
Ytrain = sum(Xtrain(:,1:5),2) > 2.5;
```

To add noise, randomly switch 10% of the classifications:

```matlab
idx = randsample(2000,200);
Ytrain(idx) = ~Ytrain(idx);
```

Create an ensemble with AdaBoostM1 for comparison purposes:

```matlab
ada = fitcensemble(Xtrain,Ytrain,'Method','AdaBoostM1', ... 'NumLearningCycles',300,'Learners','Tree','LearnRate',0.1);
```

Create an ensemble with RobustBoost. Because the data has 10% incorrect classification, perhaps an error goal of 15% is reasonable.

```matlab
rb1 = fitcensemble(Xtrain,Ytrain,'Method','RobustBoost', ... 'NumLearningCycles',300,'Learners','Tree','RobustErrorGoal',0.15, ... 'RobustMaxMargin',1);
```

Note that if you set the error goal to a high enough value, then the software returns an error.

Create an ensemble with very optimistic error goal, 0.01:

```matlab
rb2 = fitcensemble(Xtrain,Ytrain,'Method','RobustBoost', ... 'NumLearningCycles',300,'Learners','Tree','RobustErrorGoal',0.01);
```

Compare the resubstitution error of the three ensembles:

```matlab
figure
plot(resubLoss(rb1,'Mode','Cumulative'));
```
All the RobustBoost curves show lower resubstitution error than the AdaBoostM1 curve. The error goal of 0.01 curve shows the lowest resubstitution error over most of the range.
Xtest = rand(2000,20);
Ytest = sum(Xtest(:,1:5),2) > 2.5;
idx = randsample(2000,200);
Ytest(idx) = ~Ytest(idx);
figure;
plot(loss(rb1,Xtest,Ytest,'Mode','Cumulative')); hold on
plot(loss(rb2,Xtest,Ytest,'Mode','Cumulative'),'r--');
plot(loss(ada,Xtest,Ytest,'Mode','Cumulative'),'g.'); hold off;
xlabel('Number of trees');
ylabel('Test error');
legend('ErrorGoal=0.15','ErrorGoal=0.01', ... 'AdaBoostM1','Location','NE');
The error curve for error goal 0.15 is lowest (best) in the plotted range. AdaBoostM1 has higher error than the curve for error goal 0.15. The curve for the too-optimistic error goal 0.01 remains substantially higher (worse) than the other algorithms for most of the plotted range.

See Also
fitcensemble | loss | resubLoss

Related Examples
- “Surrogate Splits” on page 18-119
- “Ensemble Algorithms” on page 18-50
- “Test Ensemble Quality” on page 18-79
- “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page 18-105
- “Classification with Imbalanced Data” on page 18-99
- “Classification with Many Categorical Levels” on page 18-113
- “LPBoost and TotalBoost for Small Ensembles” on page 18-122
Random Subspace Classification

This example shows how to use a random subspace ensemble to increase the accuracy of classification. It also shows how to use cross validation to determine good parameters for both the weak learner template and the ensemble.

Load the data

Load the ionosphere data. This data has 351 binary responses to 34 predictors.

```matlab
load ionosphere;
[N,D] = size(X)

N = 351
D = 34
resp = unique(Y)
resp = 2x1 cell array
 {'b'}
 {'g'}
```

Choose the number of nearest neighbors

Find a good choice for k, the number of nearest neighbors in the classifier, by cross validation. Choose the number of neighbors approximately evenly spaced on a logarithmic scale.

```matlab
rng(8000,'twister') % for reproducibility
K = round(logspace(0,log10(N),10)); % number of neighbors
cvloss = zeros(numel(K),1);
for k=1:numel(K)
    knn = fitcknn(X,Y,...
                  'NumNeighbors',K(k),'CrossVal','On');
    cvloss(k) = kfoldLoss(knn);
end
figure; % Plot the accuracy versus k
semilogx(K,cvloss);
xlabel('Number of nearest neighbors');
ylabel('10 fold classification error');
title('k-NN classification');
```
The lowest cross-validation error occurs for $k = 2$.

Create the ensembles

Create ensembles for 2-nearest neighbor classification with various numbers of dimensions, and examine the cross-validated loss of the resulting ensembles.

This step takes a long time. To keep track of the progress, print a message as each dimension finishes.

```matlab
NPredToSample = round(linspace(1,D,10)); % linear spacing of dimensions
cvloss = zeros(numbel(NPredToSample),1);
learner = templateKNN('NumNeighbors',2);
for npred=1:numel(NPredToSample)
```

18-134
subspace = fitcensemble(X,Y,'Method','Subspace','Learners',learner, ...
 'NPredToSample',NPredToSample(npred),'CrossVal','On');
cvloss(npred) = kfoldLoss(subspace);
fprintf('Random Subspace %i done.
',npred);
end
Random Subspace 1 done.
Random Subspace 2 done.
Random Subspace 3 done.
Random Subspace 4 done.
Random Subspace 5 done.
Random Subspace 6 done.
Random Subspace 7 done.
Random Subspace 8 done.
Random Subspace 9 done.
Random Subspace 10 done.
figure; % plot the accuracy versus dimension
plot(NPredToSample,cvloss);
xlabel('Number of predictors selected at random');
ylabel('10 fold classification error');
title('k-NN classification with Random Subspace');
The ensembles that use five and eight predictors per learner have the lowest cross-validated error. The error rate for these ensembles is about 0.06, while the other ensembles have cross-validated error rates that are approximately 0.1 or more.

Find a good ensemble size

Find the smallest number of learners in the ensemble that still give good classification.

```matlab
ens = fitcensemble(X,Y,'Method','Subspace','Learners',learner, ...    'NPredToSample',5,'CrossVal','on');
figure; % Plot the accuracy versus number in ensemble
plot(kfoldLoss(ens,'Mode','Cumulative'))
xlabel('Number of learners in ensemble');
```
There seems to be no advantage in an ensemble with more than 50 or so learners. It is possible that 25 learners gives good predictions.

Create a final ensemble

Construct a final ensemble with 50 learners. Compact the ensemble and see if the compacted version saves an appreciable amount of memory.

```matlab
ens = fitcensemble(X,Y,'Method','Subspace','NumLearningCycles',50,... 'Learners',learner,'NPredToSample',5);
cens = compact(ens);
```
s1 = whos('ens');
s2 = whos('cens');
[s1.bytes s2.bytes] % si.bytes = size in bytes

ans = 1×2
 1728705 1499584

The compact ensemble is about 10% smaller than the full ensemble. Both give the same predictions.

See Also
compact|fitcensemble|fitcknn|kfoldLoss|templateKNN

Related Examples
• “Framework for Ensemble Learning” on page 18-40
• “Ensemble Algorithms” on page 18-50
• “Train Classification Ensemble” on page 18-66
• “Test Ensemble Quality” on page 18-79
Bootstrap Aggregation (Bagging) of Regression Trees

TreeBagger ensembles have more functionality than those constructed with fitrensemble; see TreeBagger Features Not in fitcensemble or fitrensemble. Also, some property and method names differ from their fitrensemble counterparts. This section contains an example workflow for regression that uses this extra TreeBagger functionality.

Regression of Insurance Risk Rating for Car Imports Using TreeBagger

In this example, use a database of 1985 car imports with 205 observations, 25 predictors, and 1 response, which is insurance risk rating, or "symboling." The first 15 variables are numeric and the last 10 are categorical. The symboling index takes integer values from -3 to 3.

Load the data set and split it into predictor and response arrays.

load imports-85
Y = X(:,1);
X = X(:,2:end);
isCategorical = [zeros(15,1);ones(size(X,2)-15,1)]; % Categorical variable flag

Because bagging uses randomized data drawings, its exact outcome depends on the initial random seed. To reproduce the results in this example, use the random stream settings.

rng(1945,'twister')

Finding the Optimal Leaf Size

For regression, the general rule is to set leaf size to 5 and select one third of the input features for decision splits at random. In the following step, verify the optimal leaf size by comparing mean squared errors obtained by regression for various leaf sizes. oobError computes MSE versus the number of grown trees. You must set OOBPred to 'On' to obtain out-of-bag predictions later.

leaf = [5 10 20 50 100];
col = 'rbcmy';
figure
for i=1:length(leaf)
 b = TreeBagger(50,X,Y,'Method','R','OOBPred','On',...
 'CategoricalPredictors',find(isCategorical == 1),...
The red curve (leaf size 5) yields the lowest MSE values.
Estimating Feature Importance

In practical applications, you typically grow ensembles with hundreds of trees. For example, the previous code block uses 50 trees for faster processing. Now that you have estimated the optimal leaf size, grow a larger ensemble with 100 trees and use it to estimate feature importance.

\[b = \text{TreeBagger}(100,X,Y,'Method','R','OOBVarImp','On',...\]
\['CategoricalPredictors',\text{find}(\text{isCategorical} == 1),...\]
\['MinLeafSize',5); \]

Inspect the error curve again to make sure nothing went wrong during training.

\[\text{figure} \]
\[\text{plot(oobError(b))} \]
\[\text{xlabel} 'Number of Grown Trees' \]
\[\text{ylabel} 'Out-of-Bag Mean Squared Error' \]
Prediction ability should depend more on important features than unimportant features. You can use this idea to measure feature importance.

For each feature, permute the values of this feature across every observation in the data set and measure how much worse the MSE becomes after the permutation. You can repeat this for each feature.

Plot the increase in MSE due to permuting out-of-bag observations across each input variable. The `OOBPermutedVarDeltaError` array stores the increase in MSE averaged over all trees in the ensemble and divided by the standard deviation taken over the trees, for each variable. The larger this value, the more important the variable. Imposing an arbitrary cutoff at 0.7, you can select the four most important features.
figure
bar(b.OOBPermutedVarDeltaError)
xlabel 'Feature Number'
ylabel 'Out-of-Bag Feature Importance'

idxvar = find(b.OOBPermutedVarDeltaError>0.7)
idxvar = 1x4
1 2 16 19

idxCategorical = find(isCategorical(idxvar)==1);
The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately 2/3, which is the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```matlab
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure
plot(finbag)
xlabel 'Number of Grown Trees'
ylabel 'Fraction of In-Bag Observations'
```
Growing Trees on a Reduced Set of Features

Using just the four most powerful features, determine if it is possible to obtain a similar predictive power. To begin, grow 100 trees on these features only. The first two of the four selected features are numeric and the last two are categorical.

```matlab
b5v = TreeBagger(100,X(:,idxvar),Y,'Method','R',
                 'OOBVarImp','On','CategoricalPredictors',idxCategorical,
                 'MinLeafSize',5);
figure
plot(oobError(b5v))
xlabel 'Number of Grown Trees'
ylabel 'Out-of-Bag Mean Squared Error'
```
Nonparametric Supervised Learning

```matlab
figure
bar(b5v.0OBPermutetVarDeltaError)
xlabel 'Feature Index'
ylabel 'Out-of-Bag Feature Importance'
```
These four most powerful features give the same MSE as the full set, and the ensemble trained on the reduced set ranks these features similarly to each other. If you remove features 1 and 2 from the reduced set, then the predictive power of the algorithm might not decrease significantly.

Finding Outliers

To find outliers in the training data, compute the proximity matrix using `fillProximities`.

```plaintext
b5v = fillProximities(b5v);
```
The method normalizes this measure by subtracting the mean outlier measure for the entire sample. Then it takes the magnitude of this difference and divides the result by the median absolute deviation for the entire sample.

```matlab
figure
histogram(b5v.OutlierMeasure)
xlabel 'Outlier Measure'
ylabel 'Number of Observations'
```

Discovering Clusters in the Data

By applying multidimensional scaling to the computed matrix of proximities, you can inspect the structure of the input data and look for possible clusters of observations. The `mdsProx` method returns scaled coordinates and eigenvalues for the computed proximity
matrix. If you run it with the **Colors** name-value-pair argument, then this method creates a scatter plot of two scaled coordinates.

```matlab
figure(8)
[r,e] = mdsProx(b5v,'Colors','K');
xlabel 'First Scaled Coordinate'
ylabel 'Second Scaled Coordinate'
```

Assess the relative importance of the scaled axes by plotting the first 20 eigenvalues.

```matlab
figure
d = bar(e(1:20))
xlabel 'Scaled Coordinate Index'
ylabel 'Eigenvalue'
```
Saving the Ensemble Configuration for Future Use

To use the trained ensemble for predicting the response on unseen data, store the ensemble to disk and retrieve it later. If you do not want to compute predictions for out-of-bag data or reuse training data in any other way, there is no need to store the ensemble object itself. Saving the compact version of the ensemble is enough in this case. Extract the compact object from the ensemble.

```matlab
C = compact(b5v)
```

C =
CompactTreeBagger
Ensemble with 100 bagged decision trees:
 Method: regression
NumPredictors: 4

Properties, Methods

You can save the resulting CompactTreeBagger model in a *.mat file.

See Also
TreeBagger | compact | fillprox | fitrensemble | mdsprox | oobError

Related Examples
• “Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
• TreeBagger Features Not in fitcensemble or fitrensemble
• “Use Parallel Processing for Regression TreeBagger Workflow” on page 30-7
Bootstrap Aggregation (Bagging) of Classification Trees

TreeBagger ensembles have more functionality than those constructed with fitensemble; see TreeBagger Features Not in fitensemble or fitrensemble. Also, some property and method names differ from their fitensemble counterparts. This section contains an example workflow for classification that uses this extra TreeBagger functionality.

Classifying Radar Returns for Ionosphere Data Using TreeBagger

You can also use ensembles of decision trees for classification. For this example, use ionosphere data with 351 observations and 34 real-valued predictors. The response variable is categorical with two levels:

- 'g' represents good radar returns.
- 'b' represents bad radar returns.

The goal is to predict good or bad returns using a set of 34 measurements.

Fix the initial random seed, grow 50 trees, inspect how the ensemble error changes with accumulation of trees, and estimate feature importance. For classification, it is best to set the minimal leaf size to 1 and select the square root of the total number of features for each decision split at random. These settings are defaults for TreeBagger used for classification.

```
load ionosphere
rng(1945,'twister')
b = TreeBagger(50,X,Y,'OOBVarImp','On');
figure
plot(oobError(b))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Classification Error')
```
The method trains ensembles with few trees on observations that are in bag for all trees. For such observations, it is impossible to compute the true out-of-bag prediction, and `TreeBagger` returns the most probable class for classification and the sample mean for regression. You can change the default value returned for in-bag observations using the `DefaultYfit` property. If you set the default value to an empty character vector for classification, the method excludes in-bag observations from computation of the out-of-bag error. In this case, the curve is more variable when the number of trees is small, either because some observations are never out of bag (and are therefore excluded) or because their predictions are based on few trees.

```matlab
b.DefaultYfit = '';
figure
plot(oobError(b))
```
The `OOBIndices` property of `TreeBagger` tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately 2/3, which is the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```matlab
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
```
Estimate feature importance.

```matlab
data = 'finbag';
figure
plot(data)
xlabel('Number of Grown Trees')
ylabel('Fraction of In-Bag Observations')
```

```matlab
figure
bar(b.OutOfBagPermutedVarDeltaError)
xlabel('Feature Index')
ylabel('Out-of-Bag Feature Importance')
```
Select the features yielding an importance measure greater than 0.75. This threshold is chosen arbitrarily.

```
idxvar = find(b.OOBPermutedVarDeltaError>0.75)
idxvar = 1x6
       3     5     6     7     8    27
```

Having selected the most important features, grow a larger ensemble on the reduced feature set. Save time by not permuting out-of-bag observations to obtain new estimates of feature importance for the reduced feature set (set `OOBVarImp` to `'off'`). You would
still be interested in obtaining out-of-bag estimates of classification error (set `OOBPred` to 'on').

```matlab
b5v = TreeBagger(100,X(:,idxvar),Y,'OOBVarImp','off','OOBPred','on');
figure
plot(oobError(b5v))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Classification Error')
```

For classification ensembles, in addition to classification error (fraction of misclassified observations), you can also monitor the average classification margin. For each observation, the *margin* is defined as the difference between the score for the true class and the maximal score for other classes predicted by this tree. The cumulative classification margin uses the scores averaged over all trees and the mean cumulative
classification margin is the cumulative margin averaged over all observations. The `oobMeanMargin` method with the 'mode' argument set to 'cumulative' (default) shows how the mean cumulative margin changes as the ensemble grows: every new element in the returned array represents the cumulative margin obtained by including a new tree in the ensemble. If training is successful, you would expect to see a gradual increase in the mean classification margin.

The method trains ensembles with few trees on observations that are in bag for all trees. For such observations, it is impossible to compute the true out-of-bag prediction, and `TreeBagger` returns the most probable class for classification and the sample mean for regression.

For decision trees, a classification score is the probability of observing an instance of this class in this tree leaf. For example, if the leaf of a grown decision tree has five 'good' and three 'bad' training observations in it, the scores returned by this decision tree for any observation fallen on this leaf are 5/8 for the 'good' class and 3/8 for the 'bad' class. These probabilities are called 'scores' for consistency with other classifiers that might not have an obvious interpretation for numeric values of returned predictions.

```matlab
figure
plot(oobMeanMargin(b5v));
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Mean Classification Margin')
```
Compute the matrix of proximities and examine the distribution of outlier measures. Unlike regression, outlier measures for classification ensembles are computed within each class separately.

```matlab
b5v = fillProximities(b5v);
figure
histogram(b5v.OutlierMeasure)
xlabel('Outlier Measure')
ylabel('Number of Observations')
```
Find the class of the extreme outliers.

```matlab
extremeOutliers = b5v.Y(b5v.OutlierMeasure>40)
```

`extremeOutliers` is a `3x1 cell array`

- `'g'`
- `'g'`
- `'g'`

```matlab
percentGood = 100*sum(strcmp(extremeOutliers,'g'))/numel(extremeOutliers)
```

`percentGood = 100`

All of the extreme outliers are labeled 'good'.

18 Nonparametric Supervised Learning
As for regression, you can plot scaled coordinates, displaying the two classes in different colors using the 'Colors' name-value pair argument of mdsProx. This argument takes a character vector in which every character represents a color. The software does not rank class names. Therefore, it is best practice to determine the position of the classes in the ClassNames property of the ensemble.

```matlab
gPosition = find(strcmp('g',b5v.ClassNames))
gPosition = 2
```

The 'bad' class is first and the 'good' class is second. Display scaled coordinates using red for the 'bad' class and blue for the 'good' class observations.

```matlab
figure
[s,e] = mdsProx(b5v,'Colors','rb');
xlabel('First Scaled Coordinate')
ylabel('Second Scaled Coordinate')
```
Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue clearly dominates and the first scaled coordinate is most important.

```matlab
figure
bar(e(1:20))
xlabel('Scaled Coordinate Index')
ylabel('Eigenvalue')
```
Another way of exploring the performance of a classification ensemble is to plot its Receiver Operating Characteristic (ROC) curve or another performance curve suitable for the current problem. Obtain predictions for out-of-bag observations. For a classification ensemble, the `oobPredict` method returns a cell array of classification labels as the first output argument and a numeric array of scores as the second output argument. The returned array of scores has two columns, one for each class. In this case, the first column is for the 'bad' class and the second column is for the 'good' class. One column in the score matrix is redundant because the scores represent class probabilities in tree leaves and by definition add up to 1.

```matlab
[Yfit, Sfit] = oobPredict(b5v);
```
Use `perfcurve` to compute a performance curve. By default, `perfcurve` returns the standard ROC curve, which is the true positive rate versus the false positive rate. `perfcurve` requires true class labels, scores, and the positive class label for input. In this case, choose the 'good' class as positive.

```matlab
[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,gPosition),'g');
figure
plot(fpr,tpr)
xlabel('False Positive Rate')
ylabel('True Positive Rate')
```

Instead of the standard ROC curve, you might want to plot, for example, ensemble accuracy versus threshold on the score for the 'good' class. The `ycrit` input argument of `perfcurve` lets you specify the criterion for the y-axis, and the third output argument
of `perfcurve` returns an array of thresholds for the positive class score. Accuracy is the fraction of correctly classified observations, or equivalently, 1 minus the classification error.

```matlab
[fpr, accu, thre] = perfcurve(b5v.Y, Sfit(:, gPosition), 'g', 'YCrit', 'Accu'); figure(20) plot(thre, accu) xlabel('Threshold for ''good'' Returns') ylabel('Classification Accuracy')```

The curve shows a flat region indicating that any threshold from 0.2 to 0.6 is a reasonable choice. By default, the `perfcurve` assigns classification labels using 0.5 as the boundary between the two classes. You can find exactly what accuracy this corresponds to.
accu(abs(thre-0.5)<eps)
ans =

0x1 empty double column vector

The maximal accuracy is a little higher than the default one.

[maxaccu,iaccu] = max(accu)
maxaccu = 0.9459
iaccu = 105

The optimal threshold is therefore.

thre(iaccu)
ans = 0.4503

See Also
TreeBagger | compact | fitensemble | mdsprox | oobError | oobMeanMargin | oobPredict | perfcurve

Related Examples
- “Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
- TreeBagger Features Not in fitensemble or fitrensemble
- “Use Parallel Processing for Regression TreeBagger Workflow” on page 30-7
Detect Outliers Using Quantile Regression

This example shows how to detect outliers using quantile random forest. Quantile random forest can detect outliers with respect to the conditional distribution of $Y$ given $X$. However, this method cannot detect outliers in the predictor data. For outlier detection in the predictor data using a bag of decision trees, see the OutlierMeasure property of a TreeBagger model.

An outlier is an observation that is located far enough from most of the other observations in a data set and can be considered anomalous. Causes of outlying observations include inherent variability or measurement error. Outliers significant affect estimates and inference, so it is important to detect them and decide whether to remove them or consider a robust analysis.

The Statistics and Machine Learning Toolbox™ software provides several functionalities to detect or remove outliers including:

- **zscore** — Compute $z$ scores of observations.
- **trimmean** — Estimate mean of data, excluding outliers.
- **boxplot** — Draw box plot of data.
- **probplot** — Draw probability plot.
- **robustcov** — Estimate robust covariance of multivariate data.
- **fitcsvm** — Fit a one-class support vector machine (SVM) to determine which observations are located far from the decision boundary.

To demonstrate outlier detection, this example:

1. Generates data from a nonlinear model with heteroscedasticity and simulates a few outliers.
2. Grows a quantile random forest of regression trees.
3. Estimates conditional quartiles ($Q_1$, $Q_2$, and $Q_3$) and the interquartile range ($IQR$) within the ranges of the predictor variables.
4. Compares the observations to the fences, which are the quantities $F_1 = Q_1 - 1.5IQR$ and $F_2 = Q_3 + 1.5IQR$. Any observation that is less than $F_1$ or greater than $F_2$ is an outlier.
Generate Data

Generate 500 observations from the model

\[ y_i = 10 + 3t + t \sin(2t) + \epsilon_i. \]

\( t \) is uniformly distributed between 0 and \( 4\pi \), and \( \epsilon_i \sim N(0,t+0.01) \). Store the data in a table.

\[ n = 500; \]
\[ \text{rng('default'); \% For reproducibility} \]
\[ t = \text{randsample(linspace(0,4*pi,1e6),n,true)'}; \]
\[ \text{epsilon = randn(n,1).*sqrt((t+0.01));} \]
\[ y = 10 + 3*t + t.*\sin(2*t) + \text{epsilon}; \]
\[ \text{Tbl = table(t,y);} \]

Move five observations in a random vertical direction by 90\% of the value of the response.

\[ \text{numOut = 5;} \]
\[ [~,idx] = \text{datasample(Tbl,numOut);} \]
\[ \text{Tbl.y(idx) = Tbl.y(idx) + randsample([-1 1],numOut,true)'.*(0.9*Tbl.y(idx))}; \]

Draw a scatter plot of the data and identify the outliers.

\[ \text{figure;} \]
\[ \text{plot(Tbl.t,Tbl.y,'.')}; \]
\[ \text{hold on} \]
\[ \text{plot(Tbl.t(idx),Tbl.y(idx),'*');} \]
\[ \text{axis tight;} \]
\[ \text{ylabel('y');} \]
\[ \text{xlabel('t');} \]
\[ \text{title('Scatter Plot of Data');} \]
\[ \text{legend('Data','Simulated outliers','Location','NorthWest');} \]
Grow Quantile Random Forest

Grow a bag of 200 regression trees using \texttt{TreeBagger}.

\begin{verbatim}
Mdl = TreeBagger(200,Tbl,'y','Method','regression');
\end{verbatim}

\texttt{Mdl} is a \texttt{TreeBagger} ensemble.

**Predict Conditional Quartiles and Interquartile Ranges**

Using quantile regression, estimate the conditional quartiles of 50 equally spaced values within the range of \( t \).
\begin{verbatim}
tau = [0.25 0.5 0.75];
predT = linspace(0,4*pi,50)';
quartiles = quantilePredict(Mdl,predT,'Quantile',tau);

quartiles is a 500-by-3 matrix of conditional quartiles. Rows correspond to the
observations in t, and columns correspond to the probabilities in tau.

On the scatter plot of the data, plot the conditional mean and median responses.

meanY = predict(Mdl,predT);

plot(predT,[quartiles(:,2) meanY],'LineWidth',2);
legend('Data','Simulated outliers','Median response','Mean response',...
    'Location','NorthWest');
hold off;
\end{verbatim}
Although the conditional mean and median curves are close, the simulated outliers can affect the mean curve.

Compute the conditional $IQR$, $F_1$, and $F_2$.

\[
iqr = \text{quartiles}(::,3) - \text{quartiles}(::,1);
\]
\[
k = 1.5;
\]
\[
f1 = \text{quartiles}(::,1) - k*iqr;
\]
\[
f2 = \text{quartiles}(::,3) + k*iqr;
\]

$k = 1.5$ means that all observations less than $f1$ or greater than $f2$ are considered outliers, but this threshold does not disambiguate from extreme outliers. A $k$ of 3 identifies extreme outliers.
**Compare Observations to Fences**

Plot the observations and the fences.

```matlab
figure;
plot(Tbl.t,Tbl.y,'.');
hold on
plot(Tbl.t(idx),Tbl.y(idx),'*');
plot(predT,[f1 f2]);
legend('Data','Simulated outliers','F_1','F_2','Location','NorthWest');
axis tight
title('Outlier Detection Using Quantile Regression')
hold off
```
All simulated outliers fall outside \([F_1, F_2]\), and some observations are outside this interval as well.

**See Also**

**Classes**
TreeBagger

**Functions**
TreeBagger | predict | quantilePredict

**Related Examples**
- “Conditional Quantile Estimation Using Kernel Smoothing” on page 18-174
- “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 18-178
Conditional Quantile Estimation Using Kernel Smoothing

This example shows how to estimate conditional quantiles of a response given predictor data using quantile random forest and by estimating the conditional distribution function of the response using kernel smoothing.

For quantile-estimation speed, quantilePredict, oobQuantilePredict, quantileError, and oobQuantileError use linear interpolation to predict quantiles in the conditional distribution of the response. However, you can obtain response weights, which comprise the distribution function, and then pass them to ksdensity to possibly gain accuracy at the cost of computation speed.

Generate 2000 observations from the model

\[ y_t = 0.5 + t + \varepsilon_t. \]

\( t \) is uniformly distributed between 0 and 1, and \( \varepsilon_t \sim N(0, t^2/2 + 0.01) \). Store the data in a table.

\[
\begin{align*}
n &= 2000; \\
rng('default'); \% \text{For reproducibility} \\
t &= \text{randsample(linspace(0,1,1e2),n,true)}'; \\
epsilon &= \text{randn(n,1).*sqrt(t.^2/2 + 0.01)}; \\
y &= 0.5 + t + \text{epsilon}; \\
Tbl &= \text{table(t,y)};
\end{align*}
\]

Train an ensemble of bagged regression trees using the entire data set. Specify 200 weak learners and save the out-of-bag indices.

\[
\begin{align*}
rng('default'); \% \text{For reproducibility} \\
Mdl &= \text{TreeBagger(200,Tbl,'y','Method','regression',...} \\
&\quad \text{ 'OOBPrediction','on');}
\end{align*}
\]

\( Mdl \) is a TreeBagger ensemble.

Predict out-of-bag, conditional 0.05 and 0.95 quantiles (90% confidence intervals) for all training-sample observations using oobQuantilePredict, that is, by interpolation. Request response weights. Record the execution time.

\[
\begin{align*}
tau &= [0.05 \ 0.95]; \\
tic
\end{align*}
\]
[quantInterp,yw] = oobQuantilePredict(Mdl,'Quantile',tau);
timeInterp = toc;

quantInterp is a 94-by-2 matrix of predicted quantiles; rows correspond to the observations in Mdl.X and columns correspond to the quantile probabilities in tau. yw is a 94-by-94 sparse matrix of response weights; rows correspond to training-sample observations and columns correspond to the observations in Mdl.X. Response weights are independent of tau.

Predict out-of-bag, conditional 0.05 and 0.95 quantiles using kernel smoothing and record the execution time.

n = numel(Tbl.y);
quantKS = zeros(n,numel(tau)); \% Preallocation
tic
for j = 1:n
    quantKS(j,:) = ksdensity(Tbl.y,tau,'Function','icdf','Weights',yw(:,j));
end
timeKS = toc;

quantKS is commensurate with quantInterp.

Evaluate the ratio of execution times between kernel smoothing estimation and interpolation.

timeKS/timeInterp

ans = 7.0169

It takes much more time to execute kernel smoothing than interpolation. This ratio is dependent on the memory of your machine, so your results will vary.

Plot the data with both sets of predicted quantiles.

[sT,idx] = sort(t);

figure;
h1 = plot(t,y,'.');
hold on
h2 = plot(sT,quantInterp(idx,:),'b');
h3 = plot(sT,quantKS(idx,:),'r');
legend([h1 h2(1) h3(1)],'Data','Interpolation','Kernel Smoothing');
title('Quantile Estimates')
hold off
Both sets of estimated quantiles agree fairly well. However, the quantile intervals from interpolation appear slightly tighter for smaller values of $t$ than the ones from kernel smoothing.

**See Also**
- TreeBagger
- TreeBagger
- ksdensity
- oobQuantilePredict

**Related Examples**
- “Detect Outliers Using Quantile Regression” on page 18-167
• “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 18-178
Tune Random Forest Using Quantile Error and Bayesian Optimization

This example shows how to implement Bayesian optimization to tune the hyperparameters of a random forest of regression trees using quantile error. Tuning a model using quantile error, rather than mean squared error, is appropriate if you plan to use the model to predict conditional quantiles rather than conditional means.

Load and Preprocess Data

Load the carsmall data set. Consider a model that predicts the median fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
 Model_Year,Weight,MPG);
rng('default'); % For reproducibility
```

Specify Tuning Parameters

Consider tuning:

- The complexity (depth) of the trees in the forest. Deep trees tend to over-fit, but shallow trees tend to underfit. Therefore, specify that the minimum number of observations per leaf be at most 20.
- When growing the trees, the number of predictors to sample at each node. Specify sampling from 1 through all of the predictors.

bayesopt, the function that implements Bayesian optimization, requires you to pass these specifications as optimizableVariable objects.

```matlab
maxMinLS = 20;
minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer');
numPTS = optimizableVariable('numPTS',[1,size(X,2)-1],'Type','integer');
hyperparametersRF = [minLS; numPTS];
```

hyperparametersRF is a 2-by-1 array of OptimizableVariable objects.
You should also consider tuning the number of trees in the ensemble. bayesopt tends to choose random forests containing many trees because ensembles with more learners are more accurate. If available computation resources is a consideration, and you prefer ensembles with as fewer trees, then consider tuning the number of trees separately from the other parameters or penalizing models containing many learners.

Define Objective Function

Define an objective function for the Bayesian optimization algorithm to optimize. The function should:

- Accept the parameters to tune as an input.
- Train a random forest using TreeBagger. In the TreeBagger call, specify the parameters to tune and specify returning the out-of-bag indices.
- Estimate the out-of-bag quantile error based on the median.
- Return the out-of-bag quantile error.

```
function oobErr = oobErrRF(params,X)
%oobErrRF Trains random forest and estimates out-of-bag quantile error
% oobErr trains a random forest of 300 regression trees using the
% predictor data in X and the parameter specification in params, and then
% returns the out-of-bag quantile error based on the median. X is a table
% and params is an array of OptimizableVariable objects corresponding to
% the minimum leaf size and number of predictors to sample at each node.
randomForest = TreeBagger(300,X,'MPG','Method','regression',...
 'OOBPrediction','on','MinLeafSize',params.minLS,...
 'NumPredictorstoSampel',params.numPTS);
oobErr = oobQuantileError(randomForest);
end
```

Minimize Objective Using Bayesian Optimization

Find the model achieving the minimal, penalized, out-of-bag quantile error with respect to tree complexity and number of predictors to sample at each node using Bayesian optimization. Specify the expected improvement plus function as the acquisition function and suppress printing the optimization information.

```
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
 'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
```
results is a BayesianOptimization object containing, among other things, the minimum of the objective function and the optimized hyperparameter values.

Display the observed minimum of the objective function and the optimized hyperparameter values.

```matlab
bestOOBErr = results.MinObjective
bestHyperparameters = results.XAtMinObjective
```

```
bestOOBErr =
 1.0890
```
bestHyperparameters =

1×2 table
minLS  numPTS
____    ______
7       7

**Train Model Using Optimized Hyperparameters**

Train a random forest using the entire data set and the optimized hyperparameter values.

```matlab
Mdl = TreeBagger(300,X,'MPG','Method','regression',...
 'MinLeafSize',bestHyperparameters.minLS,...
 'NumPredictorstoSample',bestHyperparameters.numPTS);
```

*Mdl* is *TreeBagger* object optimized for median prediction. You can predict the median fuel economy given predictor data by passing *Mdl* and the new data to *quantilePredict*.

**See Also**

TreeBagger | TreeBagger | bayesopt | oobQuantileError | optimizableVariable

**Related Examples**

- “Detect Outliers Using Quantile Regression” on page 18-167
- “Conditional Quantile Estimation Using Kernel Smoothing” on page 18-174
Support Vector Machines for Binary Classification

In this section...

- “Understanding Support Vector Machines” on page 18-183
- “Using Support Vector Machines” on page 18-189
- “Train SVM Classifiers Using a Gaussian Kernel” on page 18-192
- “Train SVM Classifier Using Custom Kernel” on page 18-196
- “Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 18-202
- “Plot Posterior Probability Regions for SVM Classification Models” on page 18-212
- “Analyze Images Using Linear Support Vector Machines” on page 18-215

Understanding Support Vector Machines

- “Separable Data” on page 18-183
- “Nonseparable Data” on page 18-186
- “Nonlinear Transformation with Kernels” on page 18-188

Separable Data

You can use a support vector machine (SVM) when your data has exactly two classes. An SVM classifies data by finding the best hyperplane that separates all data points of one class from those of the other class. The best hyperplane for an SVM means the one with the largest margin between the two classes. Margin means the maximal width of the slab parallel to the hyperplane that has no interior data points.

The support vectors are the data points that are closest to the separating hyperplane; these points are on the boundary of the slab. The following figure illustrates these definitions, with + indicating data points of type 1, and – indicating data points of type -1.
Mathematical Formulation: Primal

This discussion follows Hastie, Tibshirani, and Friedman [1] and Christianini and Shawe-Taylor [2].

The data for training is a set of points (vectors) $x_j$ along with their categories $y_j$. For some dimension $d$, the $x_j \in R^d$, and the $y_j = \pm 1$. The equation of a hyperplane is

$$f(x) = x' \beta + b = 0$$

where $\beta \in R^d$ and $b$ is a real number.

The following problem defines the best separating hyperplane (i.e., the decision boundary). Find $\beta$ and $b$ that minimize $||\beta||$ such that for all data points $(x_j, y_j)$,

$$y_j f(x_j) \geq 1.$$

The support vectors are the $x_j$ on the boundary, those for which $y_j f(x_j) = 1$.

For mathematical convenience, the problem is usually given as the equivalent problem of minimizing $||\beta||$. This is a quadratic programming problem. The optimal solution $(\hat{\beta}, \hat{b})$ enables classification of a vector $z$ as follows:
class(z) = sign(z'β + b) = sign(f(z)).

\( \hat{f}(z) \) is the classification score and represents the distance \( z \) is from the decision boundary.

**Mathematical Formulation: Dual**

It is computationally simpler to solve the dual quadratic programming problem. To obtain the dual, take positive Lagrange multipliers \( \alpha_j \) multiplied by each constraint, and subtract from the objective function:

\[
L_P = \frac{1}{2} \beta'\beta - \sum_j \alpha_j (y_j (x_j'\beta + b) - 1),
\]

where you look for a stationary point of \( L_P \) over \( \beta \) and \( b \). Setting the gradient of \( L_P \) to 0, you get

\[
\beta = \sum_j \alpha_j y_j x_j
\]

\[
0 = \sum_j \alpha_j y_j.
\]

Substituting into \( L_P \), you get the dual \( L_D \):

\[
L_D = \sum_j \alpha_j - \frac{1}{2} \sum_j \sum_k \alpha_j \alpha_k y_j y_k x_j'x_k,
\]

which you maximize over \( \alpha_j \geq 0 \). In general, many \( \alpha_j \) are 0 at the maximum. The nonzero \( \alpha_j \) in the solution to the dual problem define the hyperplane, as seen in “Equation 18-1”, which gives \( \beta \) as the sum of \( \alpha_j y_j x_j \). The data points \( x_j \) corresponding to nonzero \( \alpha_j \) are the support vectors.

The derivative of \( L_D \) with respect to a nonzero \( \alpha_j \) is 0 at an optimum. This gives

\[
y_j f(x_j) - 1 = 0.
\]

In particular, this gives the value of \( b \) at the solution, by taking any \( j \) with nonzero \( \alpha_j \).
The dual is a standard quadratic programming problem. For example, the Optimization Toolbox `quadprog` solver solves this type of problem.

**Nonseparable Data**

Your data might not allow for a separating hyperplane. In that case, SVM can use a soft margin, meaning a hyperplane that separates many, but not all data points.

There are two standard formulations of soft margins. Both involve adding slack variables $\xi_j$ and a penalty parameter $C$.

- The $L^1$-norm problem is:

$$\min_{\beta, b, \xi} \left( \frac{1}{2} \beta' \beta + C \sum_j \xi_j \right)$$

such that

$$y_j f(x_j) \geq 1 - \xi_j$$

$$\xi_j \geq 0.$$

The $L^1$-norm refers to using $\xi_j$ as slack variables instead of their squares. The three solver options SMO, ISDA, and L1QP of `fitcsvm` minimize the $L^1$-norm problem.

- The $L^2$-norm problem is:

$$\min_{\beta, b, \xi} \left( \frac{1}{2} \beta' \beta + C \sum_j \xi_j^2 \right)$$

subject to the same constraints.

In these formulations, you can see that increasing $C$ places more weight on the slack variables $\xi_j$, meaning the optimization attempts to make a stricter separation between classes. Equivalently, reducing $C$ towards 0 makes misclassification less important.

**Mathematical Formulation: Dual**

For easier calculations, consider the $L^1$ dual problem to this soft-margin formulation. Using Lagrange multipliers $\mu_j$, the function to minimize for the $L^1$-norm problem is:
\[
L_P = \frac{1}{2} \beta' \beta + C \sum_j \xi_j - \sum_j \alpha_j (y_j f(x_j) - (1 - \xi_j)) - \sum_j \mu_j \xi_j,
\]

where you look for a stationary point of \(L_P\) over \(\beta, b,\) and positive \(\xi_j\). Setting the gradient of \(L_P\) to 0, you get

\[
\beta = \sum_j \alpha_j y_j x_j
\]

\[
\sum_j \alpha_j y_j = 0
\]

\[
\alpha_j = C - \mu_j
\]

\(\alpha_j, \mu_j, \xi_j \geq 0.\)

These equations lead directly to the dual formulation:

\[
\max_{\alpha} \sum_j \alpha_j - \frac{1}{2} \sum_j \sum_k \alpha_j \alpha_k y_j y_k x_j \cdot x_k
\]

subject to the constraints

\[
\sum_j y_j \alpha_j = 0
\]

\(0 \leq \alpha_j \leq C.\)

The final set of inequalities, \(0 \leq \alpha_j \leq C,\) shows why \(C\) is sometimes called a box constraint. \(C\) keeps the allowable values of the Lagrange multipliers \(\alpha_j\) in a "box", a bounded region.

The gradient equation for \(b\) gives the solution \(b\) in terms of the set of nonzero \(\alpha_j\), which correspond to the support vectors.

You can write and solve the dual of the \(L^2\)-norm problem in an analogous manner. For details, see Christianini and Shawe-Taylor [2], Chapter 6.

**fitcsvm Implementation**

Both dual soft-margin problems are quadratic programming problems. Internally, **fitcsvm** has several different algorithms for solving the problems.
For one-class or binary classification, if you do not set a fraction of expected outliers in the data (see `OutlierFraction`), then the default solver is Sequential Minimal Optimization (SMO). SMO minimizes the one-norm problem by a series of two-point minimizations. During optimization, SMO respects the linear constraint $\sum \alpha_i y_i = 0$, and explicitly includes the bias term in the model. SMO is relatively fast. For more details on SMO, see [3].

For binary classification, if you set a fraction of expected outliers in the data, then the default solver is the Iterative Single Data Algorithm. Like SMO, ISDA solves the one-norm problem. Unlike SMO, ISDA minimizes by a series on one-point minimizations, does not respect the linear constraint, and does not explicitly include the bias term in the model. For more details on ISDA, see [4].

For one-class or binary classification, and if you have an Optimization Toolbox license, you can choose to use `quadprog` to solve the one-norm problem. `quadprog` uses a good deal of memory, but solves quadratic programs to a high degree of precision. For more details, see “Quadratic Programming Definition” (Optimization Toolbox).

**Nonlinear Transformation with Kernels**

Some binary classification problems do not have a simple hyperplane as a useful separating criterion. For those problems, there is a variant of the mathematical approach that retains nearly all the simplicity of an SVM separating hyperplane.

This approach uses these results from the theory of reproducing kernels:

- There is a class of functions $G(x_1, x_2)$ with the following property. There is a linear space $S$ and a function $\varphi$ mapping $x$ to $S$ such that

$$G(x_1, x_2) = <\varphi(x_1), \varphi(x_2)>.$$  

  The dot product takes place in the space $S$.

- This class of functions includes:
  - Polynomials: For some positive integer $p$,

$$G(x_1, x_2) = 1 + x_1^T x_2^p.$$  

  - Radial basis function (Gaussian):

$$G(x_1, x_2) = \exp(-\|x_1 - x_2\|^2).$$
• Multilayer perceptron or sigmoid (neural network): For a positive number $p_1$ and a negative number $p_2$,

$$G(x_1,x_2) = \tanh(p_1 x_1' x_2 + p_2).$$

**Note**

• Not every set of $p_1$ and $p_2$ yields a valid reproducing kernel.

• `fitcsvm` does not support the sigmoid kernel. Instead, you can define the sigmoid kernel and specify it by using the 'KernelFunction' name-value pair argument. For details, see “Train SVM Classifier Using Custom Kernel” on page 18-196.

The mathematical approach using kernels relies on the computational method of hyperplanes. All the calculations for hyperplane classification use nothing more than dot products. Therefore, nonlinear kernels can use identical calculations and solution algorithms, and obtain classifiers that are nonlinear. The resulting classifiers are hypersurfaces in some space $S$, but the space $S$ does not have to be identified or examined.

**Using Support Vector Machines**

As with any supervised learning model, you first train a support vector machine, and then cross validate the classifier. Use the trained machine to classify (predict) new data. In addition, to obtain satisfactory predictive accuracy, you can use various SVM kernel functions, and you must tune the parameters of the kernel functions.

• “Training an SVM Classifier” on page 18-189

• “Classifying New Data with an SVM Classifier” on page 18-190

• “Tuning an SVM Classifier” on page 18-191

**Training an SVM Classifier**

Train, and optionally cross validate, an SVM classifier using `fitcsvm`. The most common syntax is:

```matlab
SVMMODEL = fitcsvm(X,Y,'KernelFunction','rbf',... 'Standardize',true,'ClassNames',{negClass,posClass});
```
The inputs are:

- **X** — Matrix of predictor data, where each row is one observation, and each column is one predictor.
- **Y** — Array of class labels with each row corresponding to the value of the corresponding row in X. Y can be a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors.
- **KernelFunction** — The default value is 'linear' for two-class learning, which separates the data by a hyperplane. The value 'gaussian' (or 'rbf') is the default for one-class learning, and specifies to use the Gaussian (or radial basis function) kernel. An important step to successfully train an SVM classifier is to choose an appropriate kernel function.
- **Standardize** — Flag indicating whether the software should standardize the predictors before training the classifier.
- **ClassNames** — Distinguishes between the negative and positive classes, or specifies which classes to include in the data. The negative class is the first element (or row of a character array), e.g., 'negClass', and the positive class is the second element (or row of a character array), e.g., 'posClass'. ClassNames must be the same data type as Y. It is good practice to specify the class names, especially if you are comparing the performance of different classifiers.

The resulting, trained model (SVMModel) contains the optimized parameters from the SVM algorithm, enabling you to classify new data.

For more name-value pairs you can use to control the training, see the fitcsvm reference page.

**Classifying New Data with an SVM Classifier**

Classify new data using predict. The syntax for classifying new data using a trained SVM classifier (SVMModel) is:

```
[label,score] = predict(SVMModel,newX);
```

The resulting vector, label, represents the classification of each row in X. score is an n-by-2 matrix of soft scores. Each row corresponds to a row in X, which is a new observation. The first column contains the scores for the observations being classified in the negative class, and the second column contains the scores observations being classified in the positive class.
To estimate posterior probabilities rather than scores, first pass the trained SVM classifier (SVMModel) to fitPosterior, which fits a score-to-posterior-probability transformation function to the scores. The syntax is:

\[
\text{ScoreSVMModel} = \text{fitPosterior}(\text{SVMModel}, X, Y);
\]

The property ScoreTransform of the classifier ScoreSVMModel contains the optimal transformation function. Pass ScoreSVMModel to predict. Rather than returning the scores, the output argument score contains the posterior probabilities of an observation being classified in the negative (column 1 of score) or positive (column 2 of score) class.

**Tuning an SVM Classifier**

Use the 'OptimizeHyperparameters' name-value pair argument of fitcsvm to find parameter values that minimize the cross-validation loss. The eligible parameters are 'BoxConstraint', 'KernelFunction', 'KernelScale', 'PolynomialOrder', and 'Standardize'. For an example, see “Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 18-202. Alternatively, you can use the bayesopt function, as shown in “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55. The bayesopt function allows more flexibility to customize optimization. You can use the bayesopt function to optimize any parameters, including parameters that are not eligible to optimize when you use the fitcsvm function.

You can also try tuning parameters of your classifier manually according to this scheme:

1. Pass the data to fitcsvm, and set the name-value pair argument 'KernelScale', 'auto'. Suppose that the trained SVM model is called SVMModel. The software uses a heuristic procedure to select the kernel scale. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a random number seed using rng before training the classifier.

2. Cross validate the classifier by passing it to crossval. By default, the software conducts 10-fold cross validation.

3. Pass the cross-validated SVM model to kFoldLoss to estimate and retain the classification error.

4. Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxConstraint' name-value pair arguments.

   - **BoxConstraint** — One strategy is to try a geometric sequence of the box constraint parameter. For example, take 11 values, from 1e-5 to 1e5 by a factor
of 10. Increasing BoxConstraint might decrease the number of support vectors, but also might increase training time.

- KernelScale — One strategy is to try a geometric sequence of the RBF sigma parameter scaled at the original kernel scale. Do this by:

  a. Retrieving the original kernel scale, e.g., ks, using dot notation: 

      \[ \text{ks} = \text{SVMModel.KernelParameters.Scale} \].

  b. Use as new kernel scales factors of the original. For example, multiply ks by the 11 values 1e-5 to 1e5, increasing by a factor of 10.

Choose the model that yields the lowest classification error. You might want to further refine your parameters to obtain better accuracy. Start with your initial parameters and perform another cross-validation step, this time using a factor of 1.2.

**Train SVM Classifiers Using a Gaussian Kernel**

This example shows how to generate a nonlinear classifier with Gaussian kernel function. First, generate one class of points inside the unit disk in two dimensions, and another class of points in the annulus from radius 1 to radius 2. Then, generates a classifier based on the data with the Gaussian radial basis function kernel. The default linear classifier is obviously unsuitable for this problem, since the model is circularly symmetric. Set the box constraint parameter to Inf to make a strict classification, meaning no misclassified training points. Other kernel functions might not work with this strict box constraint, since they might be unable to provide a strict classification. Even though the rbf classifier can separate the classes, the result can be overtrained.

Generate 100 points uniformly distributed in the unit disk. To do so, generate a radius \( r \) as the square root of a uniform random variable, generate an angle \( t \) uniformly in (0, \( 2\pi \)), and put the point at \((r \cos(t), r \sin(t))\).

```matlab
rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
```

Generate 100 points uniformly distributed in the annulus. The radius is again proportional to a square root, this time a square root of the uniform distribution from 1 through 4.

```matlab
r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
```
Plot the points, and plot circles of radii 1 and 2 for comparison.

```matlab
figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
```

Put the data in one matrix, and make a vector of classifications.

```matlab
data3 = [data1;data2];
thesclass = ones(200,1);
thesclass(1:100) = -1;
```
Train an SVM classifier with KernelFunction set to 'rbf' and BoxConstraint set to Inf. Plot the decision boundary and flag the support vectors.

\%Train the SVM Classifier
cl = fitcsvm(data3,theclass,'KernelFunction','rbf',...
    'BoxConstraint',Inf,'ClassNames',[-1,1]);

\% Predict scores over the grid
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(data3(:,1)):d:max(data3(:,1)),...
    min(data3(:,2)):d:max(data3(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(cl,xGrid);

\% Plot the data and the decision boundary
figure;
h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');
hold on
ezpolar(@(x)1);
h(3) = plot(data3(cl.IsSupportVector,1),data3(cl.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'});
axis equal
hold off
fitcsvm generates a classifier that is close to a circle of radius 1. The difference is due to the random training data.

Training with the default parameters makes a more nearly circular classification boundary, but one that misclassifies some training data. Also, the default value of BoxConstraint is 1, and, therefore, there are more support vectors.

cl2 = fitcsvm(data3,theclass,'KernelFunction','rbf');
[~,scores2] = predict(cl2,xGrid);

figure;
h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.'); hold on
ezpolar(@(x)1);
Train SVM Classifier Using Custom Kernel

This example shows how to use a custom kernel function, such as the sigmoid kernel, to train SVM classifiers, and adjust custom kernel function parameters.
Generate a random set of points within the unit circle. Label points in the first and third quadrants as belonging to the positive class, and those in the second and fourth quadrants in the negative class.

```matlab
rng(1); % For reproducibility
n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1)); % Random radii
r2 = sqrt(rand(2*n,1));

% Random angles for Q1 and Q3

% Polar-to-Cartesian conversion

t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)];

X1 = [r1.*cos(t1) r1.*sin(t1)];

% Random angles for Q2 and Q4

X2 = [r2.*cos(t2) r2.*sin(t2)];

X = [X1; X2]; % Predictors
Y = ones(4*n,1);
Y(2*n + 1:end) = -1; % Labels

Plot the data.

figure;
gscatter(X(:,1),X(:,2),Y);
title('Scatter Diagram of Simulated Data')
```
Write a function that accepts two matrices in the feature space as inputs, and transforms them into a Gram matrix using the sigmoid kernel.

```matlab
function G = mysigmoid(U,V)
 % Sigmoid kernel function with slope gamma and intercept c
 gamma = 1;
 c = -1;
 G = tanh(gamma*U*V' + c);
end
```

Save this code as a file named `mysigmoid` on your MATLAB® path.
Train an SVM classifier using the sigmoid kernel function. It is good practice to standardize the data.

```
Mdl1 = fitcsvm(X,Y,'KernelFunction','mysigmoid','Standardize',true);
```

Mdl1 is a `ClassificationSVM` classifier containing the estimated parameters.

Plot the data, and identify the support vectors and the decision boundary.

```
% Compute the scores over a grid
d = 0.02; % Step size of the grid
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
 min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)]; % The grid
[~,scores1] = predict(Mdl1,xGrid); % The scores

figure;
h(1:2) = gscatter(X(:,1),X(:,2),Y);
hold on
h(3) = plot(X(Mdl1.IsSupportVector,1),...
 X(Mdl1.IsSupportVector,2),'ko','MarkerSize',10);
 % Support vectors
contour(x1Grid,x2Grid,reshape(scores1(:,2),size(x1Grid)),[0 0],'k');
 % Decision boundary
title('Scatter Diagram with the Decision Boundary')
legend({'-1','1','Support Vectors'},'Location','Best');
hold off
```
You can adjust the kernel parameters in an attempt to improve the shape of the decision boundary. This might also decrease the within-sample misclassification rate, but, you should first determine the out-of-sample misclassification rate.

Determine the out-of-sample misclassification rate by using 10-fold cross validation.

```matlab
CVMdl1 = crossval(Mdl1);
misclass1 = kfoldLoss(CVMdl1);
misclass1
```

misclass1 =
The out-of-sample misclassification rate is 13.5%.

Write another sigmoid function, but Set gamma = 0.5;

```matlab
function G = mysigmoid2(U,V)
 % Sigmoid kernel function with slope gamma and intercept c
 gamma = 0.5;
 c = -1;
 G = tanh(gamma*U*V' + c);
end
```

Save this code as a file named `mysigmoid2` on your MATLAB® path.

Train another SVM classifier using the adjusted sigmoid kernel. Plot the data and the decision region, and determine the out-of-sample misclassification rate.

```matlab
Mdl2 = fitcsvm(X,Y,'KernelFunction','mysigmoid2','Standardize',true);
[~,scores2] = predict(Mdl2,xGrid);
figure;
h(1:2) = gscatter(X(:,1),X(:,2),Y);
hold on
h(3) = plot(X(Mdl2.IsSupportVector,1),...
 X(Mdl2.IsSupportVector,2),'ko','MarkerSize',10);
title('Scatter Diagram with the Decision Boundary')
contour(x1Grid,x2Grid,reshape(scores2(:,2),size(x1Grid)),[0 0],'k');
legend({'-1','1','Support Vectors'},'Location','Best');
hold off

CVMdl2 = crossval(Mdl2);
misclass2 = kfoldLoss(CVMdl2);
misclass2
```

```
misclass2 =
0.0450
```
After the sigmoid slope adjustment, the new decision boundary seems to provide a better within-sample fit, and the cross-validation rate contracts by more than 66%.

Optimize an SVM Classifier Fit Using Bayesian Optimization

This example shows how to optimize an SVM classification using the `fitcsvm` function and `OptimizeHyperparameters` name-value pair. The classification works on locations of points from a Gaussian mixture model. In *The Elements of Statistical Learning*, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The model begins with generating 10 base points for a "green" class, distributed as 2-D independent normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class,
distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and red), generate 100 random points as follows:

1. Choose a base point $m$ of the appropriate color uniformly at random.
2. Generate an independent random point with 2-D normal distribution with mean $m$ and variance $I/5$, where $I$ is the 2-by-2 identity matrix. In this example, use a variance $I/50$ to show the advantage of optimization more clearly.

**Generate the Points and Classifier**

Generate the 10 base points for each class.

```matlab
rng default % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
```

View the base points.

```matlab
plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off
```
Since some red base points are close to green base points, it can be difficult to classify the data points based on location alone.

Generate the 100 data points of each class.

redpts = zeros(100,2); grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on
plot(redpts(:,1),redpts(:,2),'ro')
hold off

**Prepare Data For Classification**

Put the data into one matrix, and make a vector `grp` that labels the class of each point.

```matlab
 cdata = [grnpts;redpts];
 grp = ones(200,1);
 % Green label 1, red label -1
 grp(101:200) = -1;
```
Prepare Cross-Validation

Set up a partition for cross-validation. This step fixes the train and test sets that the optimization uses at each step.

c = cvpartition(200,'KFold',10);

Optimize the Fit

To find a good fit, meaning one with a low cross-validation loss, set options to use Bayesian optimization. Use the same cross-validation partition c in all optimizations.

For reproducibility, use the 'expected-improvement-plus' acquisition function.

opts = struct('Optimizer','bayesopt','ShowPlots',true,'CVPartition',c,'...'
    'AcquisitionFunctionName','expected-improvement-plus');
svmmod = fitcsvm(cdata,grp,'KernelFunction','rbf','OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)
### Iterative Objective Function Model

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>BoxConstraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.345</td>
<td>0.65256</td>
<td>0.345</td>
<td>0.345</td>
<td>0.00474</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.115</td>
<td>0.33059</td>
<td>0.115</td>
<td>0.12678</td>
<td>430.31</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.52</td>
<td>0.3304</td>
<td>0.115</td>
<td>0.1152</td>
<td>0.028415</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>BoxConstraint</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.345</td>
<td>0.19768</td>
<td>0.065</td>
<td>0.071764</td>
<td>971.7</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.61</td>
<td>0.31966</td>
<td>0.065</td>
<td>0.071967</td>
<td>0.0010168</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.345</td>
<td>0.24395</td>
<td>0.065</td>
<td>0.071959</td>
<td>0.0010674</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.35</td>
<td>0.22841</td>
<td>0.065</td>
<td>0.071863</td>
<td>0.0009903</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.24</td>
<td>0.40574</td>
<td>0.065</td>
<td>0.072124</td>
<td>996.55</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.61</td>
<td>0.25635</td>
<td>0.065</td>
<td>0.072068</td>
<td>958.64</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.47</td>
<td>0.2912</td>
<td>0.065</td>
<td>0.07218</td>
<td>933.69</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.3</td>
<td>0.22305</td>
<td>0.065</td>
<td>0.072291</td>
<td>993.15</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.16</td>
<td>0.64557</td>
<td>0.065</td>
<td>0.072104</td>
<td>992.81</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.365</td>
<td>0.30112</td>
<td>0.065</td>
<td>0.072112</td>
<td>0.0010017</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 76.4651 seconds.
Total objective function evaluation time: 9.0311

Best observed feasible point:
BoxConstraint	KernelScale
953.22         | 0.26253
Observed objective function value = 0.065
Estimated objective function value = 0.072112
Function evaluation time = 0.27076

Best estimated feasible point (according to models):
<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>985.37</td>
<td>0.27389</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.072112
Estimated function evaluation time = 0.28839

svmmmod =
ClassificationSVM
  ResponseName: 'Y'
  CategoricalPredictors: []
  ClassNames: [-1 1]
  ScoreTransform: 'none'
  NumObservations: 200
  HyperparameterOptimizationResults: [1x1 BayesianOptimization]
    Alpha: [77x1 double]
    Bias: -0.2352
    KernelParameters: [1x1 struct]
    BoxConstraints: [200x1 double]
    ConvergenceInfo: [1x1 struct]
    IsSupportVector: [200x1 logical]
    Solver: 'SMO'

Properties, Methods

Find the loss of the optimized model.

lossnew = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,'KernelFunction','rbf',...
  'BoxConstraint',svmmmod.HyperparameterOptimizationResults.XAtMinObjective.BoxConstraint,  
  'KernelScale',svmmmod.HyperparameterOptimizationResults.XAtMinObjective.KernelScale))

lossnew = 0.0650

This loss is the same as the loss reported in the optimization output under "Observed objective function value".

Visualize the optimized classifier.
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)),...
    min(cdata(:,2)):d:max(cdata(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[-,scores] = predict(svmmod,xGrid);
figure;
h = nan(3,1); % Preallocation
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3) = plot(cdata(svmmod.IsSupportVector,1),...
    cdata(svmmod.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');
axis equal
hold off
Plot Posterior Probability Regions for SVM Classification Models

This example shows how to predict posterior probabilities of SVM models over a grid of observations, and then plot the posterior probabilities over the grid. Plotting posterior probabilities exposes decision boundaries.

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and remove the virginica species from the data.

```matlab
load fisheriris
classKeep = ~strcmp(species,'virginica');
```
X = meas(classKeep,3:4);  
y = species(classKeep);

Train an SVM classifier using the data. It is good practice to specify the order of the classes.

SVMMModel = fitcsvm(X,y,'ClassNames',{'setosa','versicolor'});

Estimate the optimal score transformation function.

rng(1); % For reproducibility
[SVMMModel,ScoreParameters] = fitPosterior(SVMMModel);

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation function is the step function because the classes are separable. The fields LowerBound and UpperBound of ScoreParameters indicate the lower and upper end points of the interval of scores corresponding to observations within the class-separating hyperplanes (the margin). No training observation falls within the margin. If a new score is in the interval, then the software assigns the corresponding observation a positive class posterior probability, i.e., the value in the PositiveClassProbability field of ScoreParameters.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

xMax = max(X);  
xMin = min(X);  
d = 0.01;  
[x1Grid,x2Grid] = meshgrid(xMin(1):d:xMax(1),xMin(2):d:xMax(2));  

[~,PosteriorRegion] = predict(SVMMModel,[x1Grid(:),x2Grid(:)]);

Plot the positive class posterior probability region and the training data.

figure;  
contourf(x1Grid,x2Grid,...
reshape(PosteriorRegion(:,2),size(x1Grid,1),size(x1Grid,2))); h = colorbar; h.Label.String = 'P(\textit{versicolor})'; h.YLabel.FontSize = 16; caxis([0 1]); colormap jet;

hold on gscatter(X(:,1),X(:,2),y,'mc','.x',[15,10]); sv = X(SVMModel.IsSupportVector,:); plot(sv(:,1),sv(:,2),'yo','MarkerSize',15,'LineWidth',2); axis tight hold off
In two-class learning, if the classes are separable, then there are three regions: one where observations have positive class posterior probability $\theta$, one where it is 1, and the other where it is the positive class prior probability.

### Analyze Images Using Linear Support Vector Machines

This example shows how to determine which quadrant of an image a shape occupies by training an error-correcting output codes (ECOC) model comprised of linear SVM binary learners. This example also illustrates the disk-space consumption of ECOC models that store support vectors, their labels, and the estimated $\alpha$ coefficients.

### Create the Data Set

Randomly place a circle with radius five in a 50-by-50 image. Make 5000 images. Create a label for each image indicating the quadrant that the circle occupies. Quadrant 1 is in the upper right, quadrant 2 is in the upper left, quadrant 3 is in the lower left, and quadrant 4 is in the lower right. The predictors are the intensities of each pixel.

```matlab
d = 50; % Height and width of the images in pixels
n = 5e4; % Sample size

X = zeros(n,d^2); % Predictor matrix preallocation
Y = zeros(n,1); % Label preallocation
theta = 0:(1/d):(2*pi);
r = 5; % Circle radius
rng(1); % For reproducibility
for j = 1:n;
 figmat = zeros(d); % Empty image
 c = datasample((r + 1):(d - r - 1),2); % Random circle center
 x = r*cos(theta) + c(1); % Make the circle
 y = r*sin(theta) + c(2);
 idx = sub2ind([d d],round(y),round(x)); % Convert to linear indexing
 figmat(idx) = 1; % Draw the circle
 X(j,:) = figmat(:); % Store the data
 Y(j) = (c(2) >= floor(d/2)) + 2*(c(2) < floor(d/2)) + ...
 (c(1) < floor(d/2)) + ...
 2*((c(1) >= floor(d/2)) & (c(2) < floor(d/2))); % Determine the quadrant
end
```

Plot an observation.
Train the ECOC Model

Use a 25% holdout sample and specify the training and holdout sample indices.

```matlab
p = 0.25;
CVP = cvpartition(Y,'Holdout',p); % Cross-validation data partition
isIdx = training(CVP); % Training sample indices
oosIdx = test(CVP); % Test sample indices
```
Create an SVM template that specifies storing the support vectors of the binary learners. Pass it and the training data to fitcecoc to train the model. Determine the training sample classification error.

```matlab
t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(X(isIdx,:),Y(isIdx),'Learners',t);
isLoss = resubLoss(MdlSV)
```

```matlab
isLoss =
0
```

*MdlSV* is a trained *ClassificationECOC* multiclass model. It stores the training data and the support vectors of each binary learner. For large data sets, such as those in image analysis, the model can consume a lot of memory.

Determine the amount of disk space that the ECOC model consumes.

```matlab
infoMdlSV = whos('MdlSV');
mbMdlSV = infoMdlSV.bytes/1.049e6
```

```matlab
mbMdlSV =
763.5919
```

The model consumes 1477.5 MB.

**Improve Model Efficiency**

You can assess out-of-sample performance. You can also assess whether the model has been overfit with a compacted model that does not contain the support vectors, their related parameters, and the training data.

Discard the support vectors and related parameters from the trained ECOC model. Then, discard the training data from the resulting model by using compact.

```matlab
Mdl = discardSupportVectors(MdlSV);
CMdl = compact(Mdl);
info = whos('Mdl','CMdl');
[bytesCMdl,bytesMdl] = info.bytes;
memReduction = 1 - [bytesMdl bytesCMdl]/infoMdlSV.bytes
```
memReduction =

0.0626  0.9996

In this case, discarding the support vectors reduces the memory consumption by about 3%. Compacting and discarding support vectors reduces the size by about 99.99%.

An alternative way to manage support vectors is to reduce their numbers during training by specifying a larger box constraint, such as 100. Though SVM models that use fewer support vectors are more desirable and consume less memory, increasing the value of the box constraint tends to increase the training time.

Remove MdlSV and Mdl from the workspace.

clear Mdl MdlSV;

**Assess Holdout Sample Performance**

Calculate the classification error of the holdout sample. Plot a sample of the holdout sample predictions.

```matlab
oosLoss = loss(CMdl,X(oosIdx,:),Y(oosIdx))
yHat = predict(CMdl,X(oosIdx,:));
nVec = 1:size(X,1);
oosIdx = nVec(oosIdx);

figure;
for j = 1:9;
 subplot(3,3,j)
 imagesc(reshape(X(oosIdx(j),:),[d d]));
 h = gca;
 h.YDir = 'normal';
 title(sprintf('Quadrant: %d',yHat(j)))
end
text(-1.33*d,4.5*d + 1,'Predictions','FontSize',17)
```

```
oosLoss =

0
```
The model does not misclassify any holdout sample observations.

**See Also**
bayesopt | fitcsvm | kfoldLoss

**More About**
- “Train Support Vector Machines Using Classification Learner App” on page 23-89
- “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55
References


Bibliography


Decision Trees

- “Decision Trees” on page 19-2
- “View Decision Tree” on page 19-5
- “Growing Decision Trees” on page 19-9
- “Prediction Using Classification and Regression Trees” on page 19-11
- “Predict Out-of-Sample Responses of Subtrees” on page 19-13
- “Improving Classification Trees and Regression Trees” on page 19-17
- “Splitting Categorical Predictors” on page 19-31
Decision Trees

Decision trees, or classification trees and regression trees, predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node contains the response. Classification trees give responses that are nominal, such as 'true' or 'false'. Regression trees give numeric responses.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable). For example, here is a simple classification tree:

```
x1 < 0.5 Δ x1 >= 0.5

x2 < 0.5 Δ x2 >= 0.5
```

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at the top node, represented by a triangle (Δ). The first decision is whether x1 is smaller than 0.5. If so, follow the left branch, and see that the tree classifies the data as type 0.

If, however, x1 exceeds 0.5, then follow the right branch to the lower-right triangle node. Here the tree asks if x2 is smaller than 0.5. If so, then follow the left branch to see that the tree classifies the data as type 0. If not, then follow the right branch to see that the tree classifies the data as type 1.

To learn how to prepare your data for classification or regression using decision trees, see “Steps in Supervised Learning” on page 18-3.

**Train Classification Tree**

This example shows how to train a classification tree.

Create a classification tree using the entire ionosphere data set.

```matlab
load ionosphere % Contains X and Y variables
Mdl = fitctree(X,Y)
```

```
Mdl =
 ClassificationTree
 ResponseName: 'Y'
```
Train Regression Tree

This example shows how to train a regression tree.

Create a regression tree using all observation in the carsmall data set. Consider the Horsepower and Weight vectors as predictor variables, and the MPG vector as the response.

```matlab
load carsmall % Contains Horsepower, Weight, MPG
X = [Horsepower Weight];
Mdl = fitrtree(X,MPG)
```

```matlab
Mdl = RegressionTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ScoreTransform: 'none'
 NumObservations: 94
```

References


See Also

ClassificationTree | RegressionTree | fitctree | fitrtree
Related Examples

- “View Decision Tree” on page 19-5
- “Growing Decision Trees” on page 19-9
- “Prediction Using Classification and Regression Trees” on page 19-11
- “Improving Classification Trees and Regression Trees” on page 19-17
View Decision Tree

This example shows how to view a classification or regression tree. There are two ways to view a tree: `view(tree)` returns a text description and `view(tree,'mode','graph')` returns a graphic description of the tree.

Create and view a classification tree.

```matlab
load fisheriris % load the sample data
ctree = fitctree(meas,species); % create classification tree
view(ctree) % text description
```

```
Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
```

```matlab
view(ctree,'mode','graph') % graphic description
```
Now, create and view a regression tree.

```matlab
load carsmall % load the sample data, contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = fitrtree(X,MPG,'MinParent',30); % create classification tree
view(rtree) % text description
```

Decision tree for regression
1  if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181
2  if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931
3  if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417
4  if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375
5  fit = 24.0882
6  fit = 19.625
7  fit = 14.375
8  fit = 33.3056
9  fit = 29

view(rtree,'mode','graph') % graphic description
See Also
CompactClassificationTree.view | CompactRegressionTree.view | fitctree | fitrtree

Related Examples
• “Decision Trees” on page 19-2
Growing Decision Trees

By default, `fitctree` and `fitrtree` use the standard CART algorithm [1] to create decision trees. That is, they perform the following steps:

1. Start with all input data, and examine all possible binary splits on every predictor.
2. Select a split with best optimization criterion.
   - A split might lead to a child node having too few observations (less than the `MinLeafSize` parameter). To avoid this, the software chooses a split that yields the best optimization criterion subject to the `MinLeafSize` constraint.
3. Impose the split.
4. Repeat recursively for the two child nodes.

The explanation requires two more items: description of the optimization criterion and stopping rule.

**Stopping rule:** Stop splitting when any of the following hold:

- The node is pure.
  - For classification, a node is pure if it contains only observations of one class.
  - For regression, a node is pure if the mean squared error (MSE) for the observed response in this node drops below the MSE for the observed response in the entire data multiplied by the tolerance on quadratic error per node (`QuadraticErrorTolerance` parameter).
- There are fewer than `MinParentSize` observations in this node.
- Any split imposed on this node produces children with fewer than `MinLeafSize` observations.
- The algorithm splits `MaxNumSplits` nodes.

**Optimization criterion:**

- Regression: mean-squared error (MSE). Choose a split to minimize the MSE of predictions compared to the training data.
- Classification: One of three measures, depending on the setting of the `SplitCriterion` name-value pair:
  - 'gdi' (Gini's diversity index, the default)
For details, see ClassificationTree “Definitions” on page 32-588.

For alternative split predictor selection techniques, see “Choose Split Predictor Selection Technique” on page 19-19.

For a continuous predictor, a tree can split halfway between any two adjacent unique values found for this predictor. For a categorical predictor with $L$ levels, a classification tree needs to consider $2^{L-1}-1$ splits to find the optimal split. Alternatively, you can choose a heuristic algorithm to find a good split, as described in “Splitting Categorical Predictors” on page 19-31.


**References**


**See Also**
ClassificationTree | RegressionTree | fitctree | fitrtree

**Related Examples**
- “Decision Trees” on page 19-2
- “Splitting Categorical Predictors” on page 19-31
Prediction Using Classification and Regression Trees

This example shows how to predict class labels or responses using trained classification and regression trees.

After creating a tree, you can easily predict responses for new data. Suppose \( X_{\text{new}} \) is new data that has the same number of columns as the original data \( X \). To predict the classification or regression based on the tree (\( \text{Mdl} \)) and the new data, enter

\[
Y_{\text{new}} = \text{predict}(\text{Mdl}, X_{\text{new}})
\]

For each row of data in \( X_{\text{new}} \), \text{predict} runs through the decisions in \( \text{Mdl} \) and gives the resulting prediction in the corresponding element of \( Y_{\text{new}} \). For more information on classification tree prediction, see the \text{predict}. For regression, see \text{predict}.

For example, find the predicted classification of a point at the mean of the \text{ionosphere} data.

```matlab
load ionosphere
CMdl = fitctree(X,Y);
Ynew = predict(CMdl,mean(X))
```

\[
Y_{\text{new}} = 1 \times 1 \text{ cell array}
\]

\[
\{'g'\}
\]

Find the predicted MPG of a point at the mean of the \text{carsmall} data.

```matlab
load carsmall
X = [Horsepower Weight];
RMdl = fitrtree(X,MPG);
Ynew = predict(RMdl,mean(X))
```

\[
Y_{\text{new}} = 28.7931
\]

**See Also**
- ClassificationTree
- CompactClassificationTree.predict
- CompactRegressionTree.predict
- RegressionTree
- fitctree
- fitrtree
Related Examples

- “Decision Trees” on page 19-2
- “Predict Out-of-Sample Responses of Subtrees” on page 19-13
- “Improving Classification Trees and Regression Trees” on page 19-17
Predict Out-of-Sample Responses of Subtrees

This example shows how to predict out-of-sample responses of regression trees, and then plot the results.

Load the carsmall data set. Consider Weight as a predictor of the response MPG.

```matlab
load carsmall
idxNaN = isnan(MPG + Weight);
X = Weight(~idxNaN);
Y = MPG(~idxNaN);
n = numel(X);
```

Partition the data into training (50%) and validation (50%) sets.

```matlab
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false; % Validation set logical indices
```

Grow a regression tree using the training observations.

```matlab
Mdl = fitrtree(X(idxTrn),Y(idxTrn));
view(Mdl,'Mode','graph')
```
Compute fitted values of the validation observations for each of several subtrees.

\[
m = \max(Mdl.PruneList);
\]

\[
\text{pruneLevels} = 0:2:m; \quad \% \text{Pruning levels to consider}
\]

\[
z = \text{numel(pruneLevels)};
\]

\[
\text{Yfit} = \text{predict}(Mdl,X(idxVal),'SubTrees',\text{pruneLevels});
\]

\text{Yfit} is an \(n\)-by-\(z\) matrix of fitted values in which the rows correspond to observations and the columns correspond to a subtree.

Plot \text{Yfit} and \text{Y} against \(X\).
figure;
sortDat = sortrows([X(idxVal) Y(idxVal) Yfit],1); % Sort all data with respect to X
plot(sortDat(:,1),sortDat(:,2),'*');
hold on;
plot(repmat(sortDat(:,1),1,size(Yfit,2)),sortDat(:,3:end));
lev = cellstr(num2str((pruneLevels),'Level %d MPG'));
legend([\'Observed MPG\'; lev])
title 'Out-of-Sample Predictions'
xlabel 'Weight (lbs)';
ylabel 'MPG';
h = findobj(gcf);
axis tight;
set(h(4:end),\'LineWidth\',3) % Widen all lines
The values of $Y_{\text{fit}}$ for lower pruning levels tend to follow the data more closely than higher levels. Higher pruning levels tend to be flat for large $X$ intervals.

**See Also**
CompactRegressionTree.predict | RegressionTree

**Related Examples**
- “Decision Trees” on page 19-2
- “Improving Classification Trees and Regression Trees” on page 19-17
- “Prediction Using Classification and Regression Trees” on page 19-11
Improving Classification Trees and Regression Trees

In this section...

“Examining Resubstitution Error” on page 19-17
“Cross Validation” on page 19-18
“Choose Split Predictor Selection Technique” on page 19-19
“Control Depth or ‘Leafiness’” on page 19-21
“Pruning” on page 19-26

You can tune trees by setting name-value pairs in fitctree and fitrtree. The remainder of this section describes how to determine the quality of a tree, how to decide which name-value pairs to set, and how to control the size of a tree.

Examining Resubstitution Error

Resubstitution error is the difference between the response training data and the predictions the tree makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the predictions of the tree to be good. However, having low resubstitution error does not guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new data.

Classification Tree Resubstitution Error

This example shows how to examine the resubstitution error of a classification tree.

Load Fisher's iris data.

load fisheriris

Train a default classification tree using the entire data set.

Mdl = fitctree(meas,species);

Examine the resubstitution error.

resuberror = resubLoss(Mdl)
resuberror = 0.0200
The tree classifies nearly all the Fisher iris data correctly.

Cross Validation

To get a better sense of the predictive accuracy of your tree for new data, cross validate the tree. By default, cross validation splits the training data into 10 parts at random. It trains 10 new trees, each one on nine parts of the data. It then examines the predictive accuracy of each new tree on the data not included in training that tree. This method gives a good estimate of the predictive accuracy of the resulting tree, since it tests the new trees on new data.

Cross Validate a Regression Tree

This example shows how to examine the resubstitution and cross-validation accuracy of a regression tree for predicting mileage based on the carsmall data.

Load the carsmall data set. Consider acceleration, displacement, horsepower, and weight as predictors of MPG.

```matlab
load carsmall
X = [Acceleration Displacement Horsepower Weight];
```

Grow a regression tree using all of the observations.

```matlab
rtree = fitrtree(X,MPG);
```

Compute the in-sample error.

```matlab
resuberror = resubLoss(rtree)
resuberror = 4.7188
```

The resubstitution loss for a regression tree is the mean-squared error. The resulting value indicates that a typical predictive error for the tree is about the square root of 4.7, or a bit over 2.

Estimate the cross-validation MSE.

```matlab
rng 'default';
cvrtree = crossval(rtree);
cvloss = kfoldLoss(cvrtree)
cvloss = 23.8065
```
The cross-validated loss is almost 25, meaning a typical predictive error for the tree on new data is about 5. This demonstrates that cross-validated loss is usually higher than simple resubstitution loss.

**Choose Split Predictor Selection Technique**

The standard CART algorithm tends to select continuous predictors that have many levels. Sometimes, such a selection can be spurious and can also mask more important predictors that have fewer levels, such as categorical predictors. That is, the predictor-selection process at each node is biased. Also, standard CART tends to miss the important interactions between pairs of predictors and the response.

To mitigate selection bias and increase detection of important interactions, you can specify usage of the curvature or interaction tests using the 'PredictorSelection' name-value pair argument. Using the curvature or interaction test has the added advantage of producing better predictor importance estimates than standard CART.

This table summarizes the supported predictor-selection techniques.

<table>
<thead>
<tr>
<th>Technique</th>
<th>'PredictorSelection' Value</th>
<th>Description</th>
<th>Training speed</th>
<th>When to specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard CART [1]</td>
<td>Default</td>
<td>Selects the split predictor that maximizes the split-criterion gain over all possible splits of all predictors.</td>
<td>Baseline for comparison</td>
<td>Specify if any of these conditions are true:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• All predictors are continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Predictor importance is not the analysis goal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• For boosting decision trees</td>
</tr>
<tr>
<td>Technique</td>
<td>'PredictorSelection' Value</td>
<td>Description</td>
<td>Training speed</td>
<td>When to specify</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Curvature test [2][3]</td>
<td>'curvature'</td>
<td>Selects the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response.</td>
<td>Comparable to standard CART</td>
<td>Specify if any of these conditions are true:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• The predictor variables are heterogeneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Predictor importance is an analysis goal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Enhance tree interpretation</td>
</tr>
<tr>
<td>Interaction test [3]</td>
<td>'interaction-curvature'</td>
<td>Chooses the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response (that is, conducts curvature tests), and that minimizes the p-value of a chi-square test of independence between each pair of predictors and response.</td>
<td>Slower than standard CART, particularly when data set contains many predictor variables.</td>
<td>Specify if any of these conditions are true:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• The predictor variables are heterogeneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• You suspect associations between pairs of predictors and the response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Predictor importance is an analysis goal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Enhance tree interpretation</td>
</tr>
</tbody>
</table>

For more details on predictor selection techniques:

- For classification trees, see `PredictorSelection` and “Node Splitting Rules” on page 32-2087.
• For regression trees, see PredictorSelection and “Node Splitting Rules” on page 32-2087.

**Control Depth or “Leafiness”**

When you grow a decision tree, consider its simplicity and predictive power. A deep tree with many leaves is usually highly accurate on the training data. However, the tree is not guaranteed to show a comparable accuracy on an independent test set. A leafy tree tends to overtrain (or overfit), and its test accuracy is often far less than its training (resubstitution) accuracy. In contrast, a shallow tree does not attain high training accuracy. But a shallow tree can be more robust — its training accuracy could be close to that of a representative test set. Also, a shallow tree is easy to interpret. If you do not have enough data for training and test, estimate tree accuracy by cross validation.

fitctree and fitrtree have three name-value pair arguments that control the depth of resulting decision trees:

• **MaxNumSplits** — The maximal number of branch node splits is MaxNumSplits per tree. Set a large value for MaxNumSplits to get a deep tree. The default is \( \text{size}(X, 1) - 1 \).

• **MinLeafSize** — Each leaf has at least MinLeafSize observations. Set small values of MinLeafSize to get deep trees. The default is 1.

• **MinParentSize** — Each branch node in the tree has at least MinParentSize observations. Set small values of MinParentSize to get deep trees. The default is 10.

If you specify MinParentSize and MinLeafSize, the learner uses the setting that yields trees with larger leaves (i.e., shallower trees):

\[
\text{MinParent} = \text{max}(\text{MinParentSize}, 2*\text{MinLeafSize})
\]

If you supply MaxNumSplits, the software splits a tree until one of the three splitting criteria is satisfied.

For an alternative method of controlling the tree depth, see “Pruning” on page 19-26.

**Select Appropriate Tree Depth**

This example shows how to control the depth of a decision tree, and how to choose an appropriate depth.

Load the ionosphere data.
load ionosphere

Generate an exponentially spaced set of values from 10 through 100 that represent the minimum number of observations per leaf node.

leafs = logspace(1,2,10);

Create cross-validated classification trees for the ionosphere data. Specify to grow each tree using a minimum leaf size in leafs.

rng('default')
N = numel(leafs);
err = zeros(N,1);
for n=1:N
    t = fitctree(X,Y,'CrossVal','On',...
                  'MinLeafSize',leafs(n));
    err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('Min Leaf Size');
ylabel('cross-validated error');
The best leaf size is between about 20 and 50 observations per leaf.

Compare the near-optimal tree with at least 40 observations per leaf with the default tree, which uses 10 observations per parent node and 1 observation per leaf.

```matlab
DefaultTree = fitctree(X,Y);
view(DefaultTree,'Mode','Graph')
```
OptimalTree = fitctree(X,Y,'MinLeafSize',40);
view(OptimalTree,'mode','graph')
resubOpt = resubLoss(OptimalTree);
lossOpt = kfoldLoss(crossval(OptimalTree));
resubDefault = resubLoss(DefaultTree);
lossDefault = kfoldLoss(crossval(DefaultTree));
resubOpt,resubDefault,lossOpt,lossDefault

resubOpt = 0.0883
resubDefault = 0.0114
lossOpt = 0.1054
lossDefault = 0.1111
The near-optimal tree is much smaller and gives a much higher resubstitution error. Yet, it gives similar accuracy for cross-validated data.

**Pruning**

Pruning optimizes tree depth (leafiness) by merging leaves on the same tree branch. “Control Depth or “Leafiness”” on page 19-21 describes one method for selecting the optimal depth for a tree. Unlike in that section, you do not need to grow a new tree for every node size. Instead, grow a deep tree, and prune it to the level you choose.

Prune a tree at the command line using the `prune` method (classification) or `prune` method (regression). Alternatively, prune a tree interactively with the tree viewer:

```matlab
view(tree,'mode','graph')
```

To prune a tree, the tree must contain a pruning sequence. By default, both `fitctree` and `fitrtree` calculate a pruning sequence for a tree during construction. If you construct a tree with the `'Prune'` name-value pair set to `'off'`, or if you prune a tree to a smaller level, the tree does not contain the full pruning sequence. Generate the full pruning sequence with the `prune` method (classification) or `prune` method (regression).

**Prune a Classification Tree**

This example creates a classification tree for the `ionosphere` data, and prunes it to a good level.

Load the `ionosphere` data:

```matlab
load ionosphere
```

Construct a default classification tree for the data:

```matlab
tree = fitctree(X,Y);
```

View the tree in the interactive viewer:

```matlab
view(tree,'Mode','Graph')
```
Find the optimal pruning level by minimizing cross-validated loss:

```matlab
[~,~,~,bestlevel] = cvLoss(tree,...
 'SubTrees','All','TreeSize','min')
```

```matlab
bestlevel = 6
```

Prune the tree to level 6:

```matlab
view(tree,'Mode','Graph','Prune',6)
```
Alternatively, use the interactive window to prune the tree.

The pruned tree is the same as the near-optimal tree in the "Select Appropriate Tree Depth" example.

Set 'TreeSize' to 'SE' (default) to find the maximal pruning level for which the tree error does not exceed the error from the best level plus one standard deviation:

\[
[~,~,~,bestlevel] = \text{cvLoss}(\text{tree},'SubTrees','All')
\]

\[
bestlevel = 6
\]
In this case the level is the same for either setting of 'TreeSize'.

Prune the tree to use it for other purposes:

```matlab
tree = prune(tree,'Level',6);
view(tree,'Mode','Graph')
```

**References**


See Also
ClassificationTree | ClassificationTree.prune |
CompactClassificationTree.predict | CompactRegressionTree.predict |
RegressionTree | RegressionTree.prune | fitctree | fitrtree

Related Examples
• “Decision Trees” on page 19-2
• “Prediction Using Classification and Regression Trees” on page 19-11
• “Predict Out-of-Sample Responses of Subtrees” on page 19-13
Splitting Categorical Predictors

In this section...

“Challenges in Splitting Multilevel Predictors” on page 19-31
“Pull Left By Purity” on page 19-32
“Principal Component-Based Partitioning” on page 19-32
“One Versus All By Class” on page 19-32

Challenges in Splitting Multilevel Predictors

When growing a classification tree, finding an optimal binary split for a categorical predictor with many levels is significantly more computationally challenging than finding a split for a continuous predictor. For a continuous predictor, a tree can split halfway between any two adjacent unique values of this predictor.

In contrast, to find an exact optimal binary split for a categorical predictor with \( L \) levels, a classification tree needs to consider \( 2^{L-1} - 1 \) splits. To obtain this formula, observe that you can assign \( L \) distinct values to the left and right nodes in \( 2^L \) ways. Two out of these \( 2^L \) configurations leave either the left or right node empty, and therefore should be discarded. Now, divide by 2 because left and right can be swapped.

For regression and binary classification problems, with \( K = 2 \) response classes, there is a computational shortcut [1]. The tree can order the categories by mean response (for regression) or class probability for one of the classes (for classification). Then, the optimal split is one of the \( L - 1 \) splits for the ordered list. When \( K = 2 \), \texttt{fitctree} always uses an exact search.

Therefore, computational challenges really only arise when growing classification trees for data with \( K \geq 3 \) classes. To reduce computation, there are several heuristic algorithms for finding a good split. When using \texttt{fitctree} to grow a classification tree, you can choose an algorithm for splitting categorical predictors using the \texttt{AlgorithmForCategorical} name-value pair argument. You can also set this algorithm when creating a classification template.

If you do not specify an algorithm, \texttt{fitctree} splits categorical predictors using the exact search algorithm, provided the predictor has at most \texttt{MaxNumCategories} levels (the default is 10 levels, and, depending on your platform, you cannot perform an exact search on categorical predictors with more than 32 or 64 levels). Otherwise, \texttt{fitctree} chooses a good inexact search algorithm based on the number of classes and levels.
The available heuristic algorithms are: pull left by purity, a principal component-based partitioning, and one versus all by class.

**Pull Left By Purity**

This algorithm starts with all $L$ categorical levels on the right branch. Inspect the $K$ categories that have the largest class probabilities for each class. Move the category with the maximum value of the split criterion to the left branch. Continue moving categories from right to left, recording the split criterion at each move, until the right child has only one category remaining. Out of this sequence, the chosen split is the one that maximizes the split criterion.

Select this pull left by purity algorithm by using the 'AlgorithmForCategorical','PullLeft' name-value pair in fitctree.

**Principal Component-Based Partitioning**

This algorithm was developed by Coppersmith, Hong, and Hosking [2]. It finds a close-to-optimal binary partition of the $L$ predictor levels by searching for a separating hyperplane that is perpendicular to the first principal component of the weighted covariance matrix of the centered class probability matrix.

The algorithm assigns a score to each of the $L$ categories, computed as the inner product between the found principal component and the vector of class probabilities for that category. Then, the chosen split is the one of the $L - 1$ splits of the scores that maximizes the split criterion.

Select this principal component-based partitioning by using the 'AlgorithmForCategorical','PCA' name-value pair in fitctree.

**One Versus All By Class**

This algorithm starts with all $L$ categorical levels on the right branch. For each of the $K$ classes, order the categories based on their probability for that class.

For the first class, move each category to the left branch in order, recording the split criterion at each move. Repeat for the remaining classes. Out of this sequence, the chosen split is the one that maximizes the split criterion.
Select this one versus all by class algorithm by using the 'AlgorithmForCategorial','OVAByClass' name-value pair in fitctree.

References


See Also

fitctree | fitrtree | template

Related Examples

• “Decision Trees” on page 19-2
• “Growing Decision Trees” on page 19-9
Discriminant Analysis

- “Discriminant Analysis Classification” on page 20-2
- “Creating Discriminant Analysis Model” on page 20-4
- “Prediction Using Discriminant Analysis Models” on page 20-7
- “Create and Visualize Discriminant Analysis Classifier” on page 20-11
- “Improving Discriminant Analysis Models” on page 20-20
- “Regularize a Discriminant Analysis Classifier” on page 20-28
- “Examine the Gaussian Mixture Assumption” on page 20-36
Discriminant Analysis Classification

Discriminant analysis is a classification method. It assumes that different classes generate data based on different Gaussian distributions.

• To train (create) a classifier, the fitting function estimates the parameters of a Gaussian distribution for each class (see “Creating Discriminant Analysis Model” on page 20-4).
• To predict the classes of new data, the trained classifier finds the class with the smallest misclassification cost (see “Prediction Using Discriminant Analysis Models” on page 20-7).

Linear discriminant analysis is also known as the Fisher discriminant, named for its inventor, Sir R. A. Fisher [1].

Create Discriminant Analysis Classifiers

This example shows how to train a basic discriminant analysis classifier to classify irises in Fisher's iris data.

Load the data.

load fisheriris

Create a default (linear) discriminant analysis classifier.

MdlLinear = fitcdiscr(meas,species);

To visualize the classification boundaries of a 2-D linear classification of the data, see “Create and Visualize Discriminant Analysis Classifier” on page 20-11.

Classify an iris with average measurements.

meanmeas = mean(meas);
meanclass = predict(MdlLinear,meanmeas)

meanclass = 1x1 cell array
    {'versicolor'}

Create a quadratic classifier.

MdlQuadratic = fitcdiscr(meas,species,'DiscrimType','quadratic');
To visualize the classification boundaries of a 2-D quadratic classification of the data, see “Create and Visualize Discriminant Analysis Classifier” on page 20-11.

Classify an iris with average measurements using the quadratic classifier.

```matlab
meanclass2 = predict(MdlQuadratic,meanmeas)
```

```
meanclass2 = 1x1 cell array
 {'versicolor'}
```

References


See Also

Functions
fitcdiscr

Objects
ClassificationDiscriminant

Related Examples

- “Creating Discriminant Analysis Model” on page 20-4
- “Create and Visualize Discriminant Analysis Classifier” on page 20-11
- “Improving Discriminant Analysis Models” on page 20-20
- “Regularize a Discriminant Analysis Classifier” on page 20-28
- “Examine the Gaussian Mixture Assumption” on page 20-36
- “Prediction Using Discriminant Analysis Models” on page 20-7
Creating Discriminant Analysis Model

The model for discriminant analysis is:

- Each class \( Y \) generates data \( X \) using a multivariate normal distribution. In other words, the model assumes \( X \) has a Gaussian mixture distribution (gmdistribution).
  
- For linear discriminant analysis, the model has the same covariance matrix for each class; only the means vary.
  
- For quadratic discriminant analysis, both means and covariances of each class vary.

Under this modeling assumption, fitcdiscr infers the mean and covariance parameters of each class.

- For linear discriminant analysis, it computes the sample mean of each class. Then it computes the sample covariance by first subtracting the sample mean of each class from the observations of that class, and taking the empirical covariance matrix of the result.
  
- For quadratic discriminant analysis, it computes the sample mean of each class. Then it computes the sample covariances by first subtracting the sample mean of each class from the observations of that class, and taking the empirical covariance matrix of each class.

The fit method does not use prior probabilities or costs for fitting.

Weighted Observations

fitcdiscr constructs weighted classifiers using the following scheme. Suppose \( M \) is an \( N \)-by-\( K \) class membership matrix:

\[
M_{nk} = 1 \quad \text{if observation } n \text{ is from class } k
\]

\[
M_{nk} = 0 \quad \text{otherwise.}
\]

The estimate of the class mean for unweighted data is

\[
\hat{\mu}_k = \frac{\sum_{n=1}^{N} M_{nk} x_n}{\sum_{n=1}^{N} M_{nk}}.
\]

For weighted data with positive weights \( w_n \), the natural generalization is
The unbiased estimate of the pooled-in covariance matrix for unweighted data is

\[ \hat{\Sigma} = \frac{\sum_{n=1}^{N} \sum_{k=1}^{K} M_{nk} w_n (x_n - \hat{\mu}_k)(x_n - \hat{\mu}_k)^T}{N - K}, \]

For quadratic discriminant analysis, fitcdiscr uses \( K = 1 \).

For weighted data, assuming the weights sum to 1, the unbiased estimate of the pooled-in covariance matrix is

\[ \hat{\Sigma} = \frac{\sum_{n=1}^{N} \sum_{k=1}^{K} M_{nk} w_n (x_n - \hat{\mu}_k)(x_n - \hat{\mu}_k)^T}{1 - \sum_{k=1}^{K} \frac{W_k^{(2)}}{W_k}}, \]

where

- \( W_k = \sum_{n=1}^{N} M_{nk} w_n \) is the sum of the weights for class \( k \).
- \( W_k^{(2)} = \sum_{n=1}^{N} M_{nk} w_n^2 \) is the sum of squared weights per class.

**See Also**

**Functions**
fitcdiscr

**Objects**
ClassificationDiscriminant | gmdistribution
Related Examples

- “Discriminant Analysis Classification” on page 20-2
- “Examine the Gaussian Mixture Assumption” on page 20-36
**Prediction Using Discriminant Analysis Models**

`predict` uses three quantities to classify observations: posterior probability on page 20-7, prior probability on page 20-8, and cost on page 20-8.

`predict` classifies so as to minimize the expected classification cost:

\[
\hat{y} = \arg\min_{y=1,\ldots,K} \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]

where

- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

The space of \(X\) values divides into regions where a classification \(Y\) is a particular value. The regions are separated by straight lines for linear discriminant analysis, and by conic sections (ellipses, hyperbolas, or parabolas) for quadratic discriminant analysis. For a visualization of these regions, see “Create and Visualize Discriminant Analysis Classifier” on page 20-11.

**Posterior Probability**

The posterior probability that a point \(x\) belongs to class \(k\) is the product of the prior probability on page 20-8 and the multivariate normal density. The density function of the multivariate normal with mean \(\mu_k\) and covariance \(\Sigma_k\) at a point \(x\) is

\[
P(x \mid k) = \frac{1}{(2\pi|\Sigma_k|)^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right),
\]

where \(|\Sigma_k|\) is the determinant of \(\Sigma_k\), and \(\Sigma_k^{-1}\) is the inverse matrix.
Let \( P(k) \) represent the prior probability of class \( k \). Then the posterior probability that an observation \( x \) is of class \( k \) is

\[
\hat{P}(k | x) = \frac{P(x | k) P(k)}{P(x)},
\]

where \( P(x) \) is a normalization constant, namely, the sum over \( k \) of \( P(x|k)P(k) \).

**Prior Probability**

The prior probability is one of three choices:

- 'uniform' — The prior probability of class \( k \) is 1 over the total number of classes.
- 'empirical' — The prior probability of class \( k \) is the number of training samples of class \( k \) divided by the total number of training samples.
- A numeric vector — The prior probability of class \( k \) is the \( j \)th element of the Prior vector. See fitcdiscr.

After creating a classifier \( \text{obj} \), you can set the prior using dot notation:

\[
\text{obj}.\text{Prior} = v;
\]

where \( v \) is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

**Cost**

There are two costs associated with discriminant analysis classification: the true misclassification cost per class, and the expected misclassification cost per observation.

**True Misclassification Cost per Class**

\( \text{Cost}(i,j) \) is the cost of classifying an observation into class \( j \) if its true class is \( i \). By default, \( \text{Cost}(i,j)=1 \) if \( i \neq j \), and \( \text{Cost}(i,j)=0 \) if \( i=j \). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

You can set any cost matrix you like when creating a classifier. Pass the cost matrix in the Cost name-value pair in fitcdiscr.

After you create a classifier \( \text{obj} \), you can set a custom cost using dot notation:
obj.Cost = B;

B is a square matrix of size K-by-K when there are K classes. You do not need to retrain the classifier when you set a new cost.

**Expected Misclassification Cost per Observation**

Suppose you have Nobs observations that you want to classify with a trained discriminant analysis classifier obj. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row. The command

\[
\text{[label, score, cost] = predict(obj, Xnew)}
\]

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the K classes. cost(n, k) is

\[
\sum_{i=1}^{K} \hat{P}(i | Xnew(n))C(k | i),
\]

where

- K is the number of classes.
- \( \hat{P}(i | Xnew(n)) \) is the posterior probability on page 20-7 of class i for observation Xnew(n).
- \( C(k | i) \) is the cost on page 20-8 of classifying an observation as k when its true class is i.

**See Also**

**Functions**
fitcdiscr | predict

**Objects**
ClassificationDiscriminant | CompactClassificationDiscriminant
Related Examples

- “Discriminant Analysis Classification” on page 20-2
Create and Visualize Discriminant Analysis Classifier

This example shows how to perform linear and quadratic classification of Fisher iris data.

Load the sample data.

```matlab
load fisheriris
```

The column vector, `species`, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix `meas` consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Use petal length (third column in `meas`) and petal width (fourth column in `meas`) measurements. Save these as variables `PL` and `PW`, respectively.

```matlab
PL = meas(:,3);
PW = meas(:,4);
```

Plot the data, showing the classification, that is, create a scatter plot of the measurements, grouped by species.

```matlab
h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');
h1(1).LineWidth = 2;
h1(2).LineWidth = 2;
h1(3).LineWidth = 2;
legend('Setosa','Versicolor','Virginica','Location','best')
hold on
```
Create a linear classifier.

\[ X = [\text{PL}, \text{PW}] \]
\[ \text{MdlLinear} = \text{fitcdiscr}(X, \text{species}); \]

Retrieve the coefficients for the linear boundary between the second and third classes.

\[ \text{MdlLinear.ClassNames}([2 \ 3]) \]
\[ K = \text{MdlLinear.Coeffs}(2,3).\text{Const}; \]
\[ L = \text{MdlLinear.Coeffs}(2,3).\text{Linear}; \]

\[
\text{ans =}
\]
\[
2\times1 \text{ cell array}
\]
Plot the curve that separates the second and third classes

\[ K + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} L = 0. \]

\[
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
\]

\[
h2 = ezplot(f,[.9 7.1 0 2.5]);
\]

\[
h2.Color = 'r';
\]

\[
h2.LineWidth = 2;
\]
Retrieve the coefficients for the linear boundary between the first and second classes.

```matlab
MdlLinear.ClassNames([1 2])
K = MdlLinear.Coeffs(1,2).Const;
L = MdlLinear.Coeffs(1,2).Linear;
```

```matlab
ans =
 2x1 cell array
 {'setosa' }
 {'versicolor'}
```

Plot the curve that separates the first and second classes.

```matlab
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h3 = ezplot(f,[.9 7.1 0 2.5]);
h3.Color = 'k';
h3.LineWidth = 2;
axis([.9 7.1 0 2.5])
xlabel(’Petal Length’)
ylabel(’Petal Width’)
title(’{\bf Linear Classification with Fisher Training Data}’)```
Create a quadratic discriminant classifier.

MdlQuadratic = fitcdiscr(X,species,'DiscrimType','quadratic');

Remove the linear boundaries from the plot.

delete(h2);
dele(h3);
Retrieve the coefficients for the quadratic boundary between the second and third classes.

```
MdlQuadratic.ClassNames([2 3])
K = MdlQuadratic.Coeffs(2,3).Const;
L = MdlQuadratic.Coeffs(2,3).Linear;
Q = MdlQuadratic.Coeffs(2,3).Quadratic;

ans =

 2x1 cell array

  {'versicolor'}
```
Plot the curve that separates the second and third classes

\[K + \begin{bmatrix} x_1 & x_2 \end{bmatrix} L + \begin{bmatrix} x_1 & x_2 \end{bmatrix} Q \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0. \]

\[f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + \ldots \]
\[(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2; \]

h2 = ezplot(f, [.9 7.1 0 2.5]);
h2.Color = 'r';
h2.LineWidth = 2;
Retrieve the coefficients for the quadratic boundary between the first and second classes.

```matlab
MdlQuadratic.ClassNames([1 2])
K = MdlQuadratic.Coeffs(1,2).Const;
L = MdlQuadratic.Coeffs(1,2).Linear;
Q = MdlQuadratic.Coeffs(1,2).Quadratic;
```

```matlab
ans =

2x1 cell array

{ 'setosa' }
{ 'versiclor' }
```

Plot the curve that separates the first and second and classes.

```matlab
f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ... 
     (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;

h3 = ezplot(f,[.9 7.1 0 1.02]); % Plot the relevant portion of the curve.
```

```matlab
h3.Color = 'k';
h3.LineWidth = 2;
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Quadratic Classification with Fisher Training Data}')
hold off
```
See Also

Functions
fitcdiscr

Objects
ClassificationDiscriminant

Related Examples
- "Discriminant Analysis Classification" on page 20-2
Improving Discriminant Analysis Models

In this section...

- “Deal with Singular Data” on page 20-20
- “Choose a Discriminant Type” on page 20-21
- “Examine the Resubstitution Error and Confusion Matrix” on page 20-22
- “Cross Validation” on page 20-23
- “Change Costs and Priors” on page 20-24

Deal with Singular Data

Discriminant analysis needs data sufficient to fit Gaussian models with invertible covariance matrices. If your data is not sufficient to fit such a model uniquely, `fitcdiscr` fails. This section shows methods for handling failures.

Tip To obtain a discriminant analysis classifier without failure, set the `DiscrimType` name-value pair to `'pseudoLinear'` or `'pseudoQuadratic'` in `fitcdiscr`.

“Pseudo” discriminants never fail, because they use the pseudoinverse of the covariance matrix Σ_k (see `pinv`).

Example: Singular Covariance Matrix

When the covariance matrix of the fitted classifier is singular, `fitcdiscr` can fail:

```matlab
load popcorn
X = popcorn(:,[1 2]);
X(:,3) = 0; % a zero-variance column
Y = popcorn(:,3);
ppcrn = fitcdiscr(X,Y);
```

Error using `ClassificationDiscriminant` (line 635)

Predictor x3 has zero variance. Either exclude this predictor or set 'discrimType' to 'pseudoLinear' or 'diagLinear'.

Error in `classreg.learning.FitTemplate/fit` (line 243)

```matlab
obj = this.MakeFitObject(X,Y,W,this.ModelParameters,fitArgs{:});
```

Error in `fitcdiscr` (line 296)

```matlab
this = fit(temp,X,Y);
```

To proceed with linear discriminant analysis, use a `pseudoLinear` or `diagLinear` discriminant type:
ppcrn = fitcdiscr(X,Y,...
 'discrimType','pseudoLinear');
meanpredict = predict(ppcrn,mean(X))

meanpredict =
 3.5000

Choose a Discriminant Type

There are six types of discriminant analysis classifiers: linear and quadratic, with diagonal and pseudo variants of each type.

Tip To see if your covariance matrix is singular, set `discrimType` to 'linear' or 'quadratic'. If the matrix is singular, the `fitcdiscr` method fails for 'quadratic', and the `Gamma` property is nonzero for 'linear'.

To obtain a quadratic classifier even when your covariance matrix is singular, set `DiscrimType` to 'pseudoQuadratic' or 'diagQuadratic'.

```
obj = fitcdiscr(X,Y,'DiscrimType','pseudoQuadratic') % or 'diagQuadratic'
```

Choose a classifier type by setting the `discrimType` name-value pair to one of:

- 'linear' (default) — Estimate one covariance matrix for all classes.
- 'quadratic' — Estimate one covariance matrix for each class.
- 'diagLinear' — Use the diagonal of the 'linear' covariance matrix, and use its pseudoinverse if necessary.
- 'diagQuadratic' — Use the diagonals of the 'quadratic' covariance matrices, and use their pseudoinverses if necessary.
- 'pseudoLinear' — Use the pseudoinverse of the 'linear' covariance matrix if necessary.
- 'pseudoQuadratic' — Use the pseudoinverses of the 'quadratic' covariance matrices if necessary.

`fitcdiscr` can fail for the 'linear' and 'quadratic' classifiers. When it fails, it returns an explanation, as shown in “Deal with Singular Data” on page 20-20.
fitcdiscr always succeeds with the diagonal and pseudo variants. For information about pseudoinverses, see pinv.

You can set the discriminant type using dot notation after constructing a classifier:

```matlab
obj.DiscrimType = 'discrimType'
```

You can change between linear types or between quadratic types, but cannot change between a linear and a quadratic type.

Examine the Resubstitution Error and Confusion Matrix

The resubstitution error is the difference between the response training data and the predictions the classifier makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the predictions of the classifier to be good. However, having low resubstitution error does not guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new data.

The confusion matrix shows how many errors, and which types, arise in resubstitution. When there are K classes, the confusion matrix R is a K-by-K matrix with

$$R(i,j) = \text{the number of observations of class } i \text{ that the classifier predicts to be of class } j.$$

Example: Resubstitution Error of a Discriminant Analysis Classifier

Examine the resubstitution error of the default discriminant analysis classifier for the Fisher iris data:

```matlab
load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)
```

```matlab
resuberror =
  0.0200
```

The resubstitution error is very low, meaning `obj` classifies nearly all the Fisher iris data correctly. The total number of misclassifications is:

```matlab
resuberror * obj.NumObservations
```
ans =
 3.0000

To see the details of the three misclassifications, examine the confusion matrix:

R = confusionmat(obj.Y,resubPredict(obj))

R =
 50 0 0
 0 48 2
 0 1 49

obj.ClassNames

ans =
 'setosa'
 'versicolor'
 'virginica'

• R(1,:) = [50 0 0] means obj classifies all 50 setosa irises correctly.
• R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two versicolor irises as virginica.
• R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one virginica iris as versicolor.

Cross Validation

Typically, discriminant analysis classifiers are robust and do not exhibit overtraining when the number of predictors is much less than the number of observations. Nevertheless, it is good practice to cross validate your classifier to ensure its stability.

Cross Validating a Discriminant Analysis Classifier

This example shows how to perform five-fold cross validation of a quadratic discriminant analysis classifier.

Load the sample data.

load fisheriris

Create a quadratic discriminant analysis classifier for the data.

quadisc = fitcdiscr(meas,species,'DiscrimType','quadratic');
Find the resubstitution error of the classifier.

\[\text{qerror} = \text{resubLoss(quadisc)} \]

\[\text{qerror} = 0.0200 \]

The classifier does an excellent job. Nevertheless, resubstitution error can be an optimistic estimate of the error when classifying new data. So proceed to cross validation.

Create a cross-validation model.

\[\text{cvmodel} = \text{crossval(quadisc,'kfold',5)}; \]

Find the cross-validation loss for the model, meaning the error of the out-of-fold observations.

\[\text{cverror} = \text{kfoldLoss(cvmodel)} \]

\[\text{cverror} = 0.0200 \]

The cross-validated loss is as low as the original resubstitution loss. Therefore, you can have confidence that the classifier is reasonably accurate.

Change Costs and Priors

Sometimes you want to avoid certain misclassification errors more than others. For example, it might be better to have oversensitive cancer detection instead of undersensitive cancer detection. Oversensitive detection gives more false positives (unnecessary testing or treatment). Undersensitive detection gives more false negatives (preventable illnesses or deaths). The consequences of underdetection can be high. Therefore, you might want to set costs to reflect the consequences.

Similarly, the training data \(Y \) can have a distribution of classes that does not represent their true frequency. If you have a better estimate of the true frequency, you can include this knowledge in the classification \(\text{Prior} \) property.

Example: Setting Custom Misclassification Costs

Consider the Fisher iris data. Suppose that the cost of classifying a versicolor iris as virginica is 10 times as large as making any other classification error. Create a classifier from the data, then incorporate this cost and then view the resulting classifier.
Load the Fisher iris data and create a default (linear) classifier as in “Example: Resubstitution Error of a Discriminant Analysis Classifier” on page 20-22:

```matlab
load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)
resuberror =
    0.0200
R = confusionmat(obj.Y,resubPredict(obj))
R =
    50     0     0
    0    48     2
    0     1    49
obj.ClassNames
ans =
    'setosa'
    'versicolor'
    'virginica'
R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two versicolor irises as virginica.

Change the cost matrix to make fewer mistakes in classifying versicolor irises as virginica:

```matlab
obj.Cost(2,3) = 10;
R2 = confusionmat(obj.Y,resubPredict(obj))
R2 =
 50 0 0
 0 50 0
 0 7 43
```

obj now classifies all versicolor irises correctly, at the expense of increasing the number of misclassifications of virginica irises from 1 to 7.

**Example: Setting Alternative Priors**

Consider the Fisher iris data. There are 50 irises of each kind in the data. Suppose that, in a particular region, you have historical data that shows virginica are five times as prevalent as the other kinds. Create a classifier that incorporates this information.
1 Load the Fisher iris data and make a default (linear) classifier as in “Example: Resubstitution Error of a Discriminant Analysis Classifier” on page 20-22:

```matlab
load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)
resuberror =
0.0200

R = confusionmat(obj.Y,resubPredict(obj))
R =
50 0 0
 0 48 2
 0 1 49
 obj.ClassNames
ans =
'setosa'
'versicolor'
'virginica'

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one virginica iris as versicolor.

2 Change the prior to match your historical data, and examine the confusion matrix of the new classifier:

```matlab
obj.Prior = [1 1 5];
R2 = confusionmat(obj.Y,resubPredict(obj))
R2 =
50  0  0
 0 46  4
 0  0 50
```

The new classifier classifies all virginica irises correctly, at the expense of increasing the number of misclassifications of versicolor irises from 2 to 4.
See Also

Functions
crossval | cvshrink | fitcdiscr | logP | loss | predict | resubLoss

Objects
ClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 20-2
• “Regularize a Discriminant Analysis Classifier” on page 20-28
Regularize a Discriminant Analysis Classifier

This example shows how to make a more robust and simpler model by trying to remove predictors without hurting the predictive power of the model. This is especially important when you have many predictors in your data. Linear discriminant analysis uses the two regularization parameters, Gamma and Delta (see “Definitions” on page 32-1187), to identify and remove redundant predictors. The cvshrink method helps identify appropriate settings for these parameters.

Load data and create a classifier.

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory and FillCoeffs name-value pair arguments to keep the resulting model reasonably small. For computational ease, this example uses a random subset of about one third of the predictors to train the classifier.

```matlab
load ovariancancer
rng(1); % For reproducibility
numPred = size(obs,2);
obs = obs(:,randsample(numPred,ceil(numPred/3)));
Mdl = fitcdiscr(obs,grp,'SaveMemory','on','FillCoeffs','off');
```

Cross validate the classifier.

Use 25 levels of Gamma and 25 levels of Delta to search for good parameters. This search is time consuming. Set Verbose to 1 to view the progress.

```matlab
[err,gamma,delta,numpred] = cvshrink(Mdl,...
    'NumGamma',24,'NumDelta',24,'Verbose',1);
```
Examine the quality of the regularized classifiers.

Plot the number of predictors against the error.

```matlab
figure;
plot(err,numpred,'k.'
xlabel('Error rate');
ylabel('Number of predictors');
```
Examine the lower-left part of the plot more closely.

```matlab
axis([0 .1 0 1000])
```
There is a clear tradeoff between lower number of predictors and lower error.

Choose an optimal tradeoff between model size and accuracy.

Multiple pairs of Gamma and Delta values produce about the same minimal error. Display the indices of these pairs and their values.

\[
\text{minerr} = \min(\min(\text{err}))
\]

\[
[p, q] = \text{find}(\text{err} < \text{minerr} + 1e-4); \quad \% \text{Subscripts of err producing minimal error}
\]

\[
\text{numel}(p)
\]

\[
\text{idx} = \text{sub2ind}(\text{size}(\text{delta}), p, q); \quad \% \text{Convert from subscripts to linear indices}
\]

\[
\text{[gamma(p) delta(idx)]}
\]

\[
\text{minerr} =
\]
These points have as few as 20% of the total predictors that have nonzero coefficients in the model.

\[
\text{numpred}(\text{idx})/\text{ceil(}\text{numPred}/3\text{)}*100
\]

To further lower the number of predictors, you must accept larger error rates. For example, to choose the \text{Gamma} and \text{Delta} that give the lowest error rate with 200 or fewer predictors.

\[
\text{low200} = \min(\min(\text{err(numpred} \leq 200))); \\
\text{lownum} = \min(\min(\text{numpred(err} \equiv \text{low200))); \\
[\text{low200} \text{lownum}]
\]

\[
\text{ans} = \\
0.0139
\]
\[
\text{ans} = \\
4
\]
\[
\text{ans} = \\
0.7202 \quad 0.1145 \\
0.7602 \quad 0.1131 \\
0.8001 \quad 0.1128 \\
0.8001 \quad 0.1410
\]
You need 195 predictors to achieve an error rate of 0.0185, and this is the lowest error rate among those that have 200 predictors or fewer.

Display the Gamma and Delta that achieve this error/number of predictors.

```matlab
[r,s] = find((err == low200) & (numpred == lownum));
[gamma(r); delta(r,s)]
```

ans =

```
0.6403
0.2399
```

Set the regularization parameters.

To set the classifier with these values of Gamma and Delta, use dot notation.

```matlab
Mdl.Gamma = gamma(r);
Mdl.Delta = delta(r,s);
```

Heat map plot

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani [1], plot heat maps of error and number of predictors against Gamma and the index of the Delta parameter. (The Delta parameter range depends on the value of the Gamma parameter. So to get a rectangular plot, use the Delta index, not the parameter itself.)

```matlab
% Create the Delta index matrix
indx = repmat(1:size(delta,2),size(delta,1),1);
figure
subplot(1,2,1)
imagesc(err);
colorbar;
colormap('jet')
title 'Classification error';
xlabel 'Delta index';
ylabel 'Gamma index';

subplot(1,2,2)
imagesc(numpred);
colorbar;
title 'Number of predictors in the model';
```
You see the best classification error when Δ is small, but fewest predictors when Δ is large.

References

See Also

Functions
cvshrink | fitcdiscr

Objects
ClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 20-2
• “Improving Discriminant Analysis Models” on page 20-20
Examine the Gaussian Mixture Assumption

Discriminant analysis assumes that the data comes from a Gaussian mixture model (see “Creating Discriminant Analysis Model” on page 20-4). If the data appears to come from a Gaussian mixture model, you can expect discriminant analysis to be a good classifier. Furthermore, the default linear discriminant analysis assumes that all class covariance matrices are equal. This section shows methods to check these assumptions:

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on page 20-36</td>
</tr>
<tr>
<td>“Q-Q Plot” on page 20-37</td>
</tr>
<tr>
<td>“Mardia Kurtosis Test of Multivariate Normality” on page 20-41</td>
</tr>
</tbody>
</table>

Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis

The Bartlett test (see Box [1]) checks equality of the covariance matrices of the various classes. If the covariance matrices are equal, the test indicates that linear discriminant analysis is appropriate. If not, consider using quadratic discriminant analysis, setting the DiscrimType name-value pair to 'quadratic' in fitcdiscr.

The Bartlett test assumes normal (Gaussian) samples, where neither the means nor covariance matrices are known. To determine whether the covariances are equal, compute the following quantities:

- Sample covariance matrices per class σ_i, $1 \leq i \leq k$, where k is the number of classes.
- Pooled-in covariance matrix σ.
- Test statistic V:

$$V = (n - k) \log(|\Sigma|) - \sum_{i=1}^{k} (n_i - 1) \log(|\Sigma_i|)$$

where n is the total number of observations, and n_i is the number of observations in class i, and $|\Sigma|$ means the determinant of the matrix Σ.
Asymptotically, as the number of observations in each class n_i become large, V is distributed approximately χ^2 with $kd(d + 1)/2$ degrees of freedom, where d is the number of predictors (number of dimensions in the data).

The Bartlett test is to check whether V exceeds a given percentile of the χ^2 distribution with $kd(d + 1)/2$ degrees of freedom. If it does, then reject the hypothesis that the covariances are equal.

Example: Bartlett Test for Equal Covariance Matrices

Check whether the Fisher iris data is well modeled by a single Gaussian covariance, or whether it would be better to model it as a Gaussian mixture.

```matlab
load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
L = fitcdiscr(meas,species,'PredictorNames',prednames);
Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');
D = 4;  % Number of dimensions of X
Nclass = [50 50 50];
N = L.NumObservations;
K = numel(L.ClassNames);
SigmaQ = Q.Sigma;
SigmaL = L.Sigma;
logV = (N-K)*log(det(SigmaL));
for k=1:K
    logV = logV - (Nclass(k)-1)*log(det(SigmaQ(:,:,k)));
end
nu = (K-1)*D*(D+1)/2;
pval = 1 - chi2cdf(logV,nu)
pval = 0
```

The Bartlett test emphatically rejects the hypothesis of equal covariance matrices. If `pval` had been greater than 0.05, the test would not have rejected the hypothesis. The result indicates to use quadratic discriminant analysis, as opposed to linear discriminant analysis.

Q-Q Plot

A Q-Q plot graphically shows whether an empirical distribution is close to a theoretical distribution. If the two are equal, the Q-Q plot lies on a 45° line. If not, the Q-Q plot strays from the 45° line.
Check Q-Q Plots for Linear and Quadratic Discriminants

For linear discriminant analysis, use a single covariance matrix for all classes.

```matlab
load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
L = fitcdiscr(meas,species,'PredictorNames',prednames);
N = L.NumObservations;
K = numel(L.ClassNames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
expQ = chi2inv(((1:N)-0.5)/N,D); % expected quantiles
[mahL,sorted] = sort(mahL); % sorted observed quantiles
figure;
gscatter(expQ,mahL,L.Y(sorted),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile');
line([0 20],[0 20],'color','k');
```
Overall, the agreement between the expected and observed quantiles is good. Look at the right half of the plot. The deviation of the plot from the 45° line upward indicates that the data has tails heavier than a normal distribution. There are three possible outliers on the right: two observations from class 'setosa' and one observation from class 'virginica'.

As shown in “Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on page 20-36, the data does not match a single covariance matrix. Redo the calculations for a quadratic discriminant.

```matlab
load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');
Nclass = [50 50 50];
```
The Q-Q plot shows a better agreement between the observed and expected quantiles. There is only one outlier candidate, from class 'setosa'.
Mardia Kurtosis Test of Multivariate Normality

The Mardia kurtosis test (see Mardia [2]) is an alternative to examining a Q-Q plot. It gives a numeric approach to deciding if data matches a Gaussian mixture model.

In the Mardia kurtosis test you compute M, the mean of the fourth power of the Mahalanobis distance of the data from the class means. If the data is normally distributed with constant covariance matrix (and is thus suitable for linear discriminant analysis), M is asymptotically distributed as normal with mean $d(d + 2)$ and variance $8d(d + 2)/n$, where

- d is the number of predictors (number of dimensions in the data).
- n is the total number of observations.

The Mardia test is two sided: check whether M is close enough to $d(d + 2)$ with respect to a normal distribution of variance $8d(d + 2)/n$.

Example: Mardia Kurtosis Test for Linear and Quadratic Discriminants

Check whether the Fisher iris data is approximately normally distributed for both linear and quadratic discriminant analysis. According to “Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on page 20-36, the data is not normal for linear discriminant analysis (the covariance matrices are different). “Check Q-Q Plots for Linear and Quadratic Discriminants” on page 20-38 indicates that the data is well modeled by a Gaussian mixture model with different covariances per class. Check these conclusions with the Mardia kurtosis test:

```matlab
load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
L = fitcdiscr(meas,species,'PredictorNames',prednames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
N = L.NumObservations;
obskurt = mean(mahL.^2);
expkurt = D*(D+2);
varkurt = 8*D*(D+2)/N;
[~,pval] = ztest(obskurt,expkurt,sqrt(varkurt))

pval = 0.0208
```

The Mardia test indicates to reject the hypothesis that the data is normally distributed.

Continuing the example with quadratic discriminant analysis:
Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');
mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
obsKurt = mean(mahQ.^2);
[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))
pval = 0.7230

Because `pval` is high, you conclude the data are consistent with the multivariate normal distribution.

References

See Also

Functions

cvshrink | fitcdiscr

Objects

ClassificationDiscriminant | gmdistribution

Related Examples

- “Discriminant Analysis Classification” on page 20-2
- “Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on page 20-36
- “Check Q-Q Plots for Linear and Quadratic Discriminants” on page 20-38
Naive Bayes

- “Naive Bayes Classification” on page 21-2
- “Plot Posterior Classification Probabilities” on page 21-7
Naive Bayes Classification

The naive Bayes classifier is designed for use when predictors are independent of one another within each class, but it appears to work well in practice even when that independence assumption is not valid. It classifies data in two steps:

1. Training step: Using the training data, the method estimates the parameters of a probability distribution, assuming predictors are conditionally independent given the class.
2. Prediction step: For any unseen test data, the method computes the posterior probability of that sample belonging to each class. The method then classifies the test data according the largest posterior probability.

The class-conditional independence assumption greatly simplifies the training step since you can estimate the one-dimensional class-conditional density for each predictor individually. While the class-conditional independence between predictors is not true in general, research shows that this optimistic assumption works well in practice. This assumption of class-conditional independence of the predictors allows the naive Bayes classifier to estimate the parameters required for accurate classification while using less training data than many other classifiers. This makes it particularly effective for data sets containing many predictors.

Supported Distributions

The training step in naive Bayes classification is based on estimating $P(X|Y)$, the probability or probability density of predictors X given class Y. The naive Bayes classification model `ClassificationNaiveBayes` and training function `fitcnb` provide support for normal (Gaussian), kernel, multinomial, and multivariate, multinomial predictor conditional distributions. To specify distributions for the predictors, use the `DistributionNames` name-value pair argument of `fitcnb`. You can specify one type of distribution for all predictors by supplying the character vector or string scalar corresponding to the distribution name, or specify different distributions for the predictors by supplying a length D string array or cell array of character vectors, where D is the number of predictors (that is, the number of columns of X).

Normal (Gaussian) Distribution

The 'normal' distribution (specify using 'normal') is appropriate for predictors that have normal distributions in each class. For each predictor you model with a normal distribution, the naive Bayes classifier estimates a separate normal distribution for each class by computing the mean and standard deviation of the training data in that class.
Kernel Distribution

The 'kernel' distribution (specify using 'kernel') is appropriate for predictors that have a continuous distribution. It does not require a strong assumption such as a normal distribution and you can use it in cases where the distribution of a predictor may be skewed or have multiple peaks or modes. It requires more computing time and more memory than the normal distribution. For each predictor you model with a kernel distribution, the naive Bayes classifier computes a separate kernel density estimate for each class based on the training data for that class. By default the kernel is the normal kernel, and the classifier selects a width automatically for each class and predictor. The software supports specifying different kernels for each predictor, and different widths for each predictor or class.

Multivariate Multinomial Distribution

The multivariate, multinomial distribution (specify using 'mvmn') is appropriate for a predictor whose observations are categorical. Naive Bayes classifier construction using a multivariate multinomial predictor is described below. To illustrate the steps, consider an example where observations are labeled 0, 1, or 2, and a predictor the weather when the sample was conducted.

1 Record the distinct categories represented in the observations of the entire predictor. For example, the distinct categories (or predictor levels) might include sunny, rain, snow, and cloudy.

2 Separate the observations by response class. For example, segregate observations labeled 0 from observations labeled 1 and 2, and observations labeled 1 from observations labeled 2.

3 For each response class, fit a multinomial model using the category relative frequencies and total number of observations. For example, for observations labeled 0, the estimated probability it was sunny is \(p_{\text{sunny}|0} = \frac{\text{number of sunny observations with label 0}}{\text{number of observations with label 0}} \), and similar for the other categories and response labels.

The class-conditional, multinomial random variables comprise a multivariate multinomial random variable.

Here are some other properties of naive Bayes classifiers that use multivariate multinomial.

- For each predictor you model with a multivariate multinomial distribution, the naive Bayes classifier:
• Records a separate set of distinct predictor levels for each predictor
• Computes a separate set of probabilities for the set of predictor levels for each class.
• The software supports modeling continuous predictors as multivariate multinomial. In this case, the predictor levels are the distinct occurrences of a measurement. This can lead a predictor having many predictor levels. It is good practice to discretize such predictors.

If an observation is a set of successes for various categories (represented by all of the predictors) out of a fixed number of independent trials, then specify that the predictors comprise a multinomial distribution. For details, see “Multinomial Distribution” on page 21-4.

Multinomial Distribution

The multinomial distribution (specify using 'DistributionNames','mn') is appropriate when, given the class, each observation is a multinomial random variable. That is, observation, or row, j of the predictor data X represents D categories, where x_jd is the number of successes for category (i.e., predictor) d in n_j = \sum_{d=1}^{D} x_{jd} independent trials.

The steps to train a naive Bayes classifier are outlined next.

1. For each class, fit a multinomial distribution for the predictors given the class by:
 a. Aggregating the weighted, category counts over all observations. Additionally, the software implements additive smoothing [1].
 b. Estimating the D category probabilities within each class using the aggregated category counts. These category probabilities compose the probability parameters of the multinomial distribution.

2. Let a new observation have a total count of m. Then, the naive Bayes classifier:
 a. Sets the total count parameter of each multinomial distribution to m
 b. For each class, estimates the class posterior probability using the estimated multinomial distributions
 c. Predicts the observation into the class corresponding to the highest posterior probability

Consider the so-called the bag-of-tokens model, where there is a bag containing a number of tokens of various types and proportions. Each predictor represents a distinct type of
token in the bag, an observation is \(n \) independent draws (i.e., with replacement) of tokens from the bag, and the data is a vector of counts, where element \(d \) is the number of times token \(d \) appears.

A machine-learning application is the construction of an email spam classifier, where each predictor represents a word, character, or phrase (i.e., token), an observation is an email, and the data are counts of the tokens in the email. One predictor might count the number of exclamation points, another might count the number of times the word "money" appears, and another might count the number of times the recipient's name appears. This is a naive Bayes model under the further assumption that the total number of tokens (or the total document length) is independent of response class.

Other properties of naive Bayes classifiers that use multinomial observations include:

- Classification is based on the relative frequencies of the categories. If \(n_j = 0 \) for observation \(j \), then classification is not possible for that observation.
- The predictors are not conditionally independent since they must sum to \(n_j \).
- Naive Bayes is not appropriate when \(n_j \) provides information about the class. That is, this classifier requires that \(n_j \) is independent of the class.
- If you specify that the predictors are conditionally multinomial, then the software applies this specification to all predictors. In other words, you cannot include 'mn' in a cell array when specifying 'DistributionNames'.

If a predictor is categorical, i.e., is multinomial within a response class, then specify that it is multivariate multinomial. For details, see “Multivariate Multinomial Distribution” on page 21-3.

References

See Also

Functions
fitcnb | predict

Objects
ClassificationNaiveBayes
Related Examples

- “Plot Posterior Classification Probabilities” on page 21-7
- “Visualize Decision Surfaces of Different Classifiers” on page 18-11
- “Classification”
Plot Posterior Classification Probabilities

This example shows how to visualize posterior classification probabilities predicted by a naive Bayes classification model.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas(:,1:2);
Y = species;
labels = unique(Y);
```

X is a numeric matrix that contains two petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Visualize the data using a scatter plot. Group the variables by iris species.

```matlab
figure;
gscatter(X(:,1), X(:,2), species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width');
```
Train a naive Bayes classifier.

mdl = fitcnb(X,Y);

mdl is a trained ClassificationNaiveBayes classifier.

Create a grid of points spanning the entire space within some bounds of the data. The
data in X(:,1) ranges between 4.3 and 7.9. The data in X(:,2) ranges between 2 and 4.4.

[xx1, xx2] = meshgrid(4:.01:8,2:.01:4.5);
XGrid = [xx1(:) xx2(:)];

Predict the iris species and posterior class probabilities of each observation in XGrid
using mdl.
[predicted.species, Posterior, ¬] = predict(mdl, XGrid);

Plot the posterior probability distribution for each species.

sz = size(xx1);
s = max(Posterior, [], 2);

figure
hold on
surf(xx1, xx2, reshape(Posterior(:, 1), sz), 'EdgeColor', 'none')
surf(xx1, xx2, reshape(Posterior(:, 2), sz), 'EdgeColor', 'none')
surf(xx1, xx2, reshape(Posterior(:, 3), sz), 'EdgeColor', 'none')
xlabel('Sepal length');
ylabel('Sepal width');
colorbar
view(2)
hold off
The closer an observation gets to the decision surface, the less probable it is that the data belongs to a certain species.

Plot the classification probability distributions individually.

```matlab
figure('Units','Normalized','Position',[0.25,0.55,0.4,0.35]);
hold on
surf(xx1,xx2,reshape(Posterior(:,1),sz),'FaceColor','red','EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,2),sz),'FaceColor','blue','EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,3),sz),'FaceColor','green','EdgeColor','none')
xlabel('Sepal length');
ylabel('Sepal width');
zlabel('Probability');
legend(labels)
```
See Also

Functions
fitcnb | predict

Objects
ClassificationNaiveBayes
Related Examples

- “Naive Bayes Classification” on page 21-2
Classification and Regression for High-Dimensional Data
Classification Learner

- “Machine Learning in MATLAB” on page 23-2
- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
- “Train Discriminant Analysis Classifiers Using Classification Learner App” on page 23-81
- “Train Logistic Regression Classifiers Using Classification Learner App” on page 23-85
- “Train Support Vector Machines Using Classification Learner App” on page 23-89
- “Train Nearest Neighbor Classifiers Using Classification Learner App” on page 23-93
- “Train Ensemble Classifiers Using Classification Learner App” on page 23-97
What Is Machine Learning?

Machine learning teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to “learn” information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases.

Machine learning uses two types of techniques: supervised learning, which trains a model on known input and output data so that it can predict future outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures in input data.
The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Supervised learning uses classification and regression techniques to develop predictive models.

- Classification techniques predict categorical responses, for example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, image and speech recognition, and credit scoring.
- Regression techniques predict continuous responses, for example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading.

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses. Clustering is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include gene sequence analysis, market research, and object recognition.

Selecting the Right Algorithm

Choosing the right algorithm can seem overwhelming—there are dozens of supervised and unsupervised machine learning algorithms, and each takes a different approach to learning. There is no best method or one size fits all. Finding the right algorithm is partly based on trial and error—even highly experienced data scientists cannot tell whether an algorithm will work without trying it out. Highly flexible models tend to overfit data by modeling minor variations that could be noise. Simple models are easier to interpret but might have lower accuracy. Therefore, choosing the right algorithm requires trading off one benefit against another, including model speed, accuracy, and complexity. Trial and error is at the core of machine learning—if one approach or algorithm does not work, you try another. MATLAB provides tools to help you try out a variety of machine learning models and choose the best.
MACHINE LEARNING

SUPERVISED LEARNING

UNSUPERVISED LEARNING

CLASSIFICATION

- Support Vector Machines
- Discriminant Analysis
- Naive Bayes
- Nearest Neighbor
- Neural Networks

REGRESSION

- Linear Regression, GLM
- SVR, GPR
- Ensemble Methods
- Decision Trees
- Neural Networks

CLUSTERING

- K-Means, K-Medoids
- Fuzzy C-Means
- Hierarchical
- Gaussian Mixture
- Hidden Markov Model
- Neural Networks
To find MATLAB apps and functions to help you solve machine learning tasks, consult the following table. Some machine learning tasks are made easier by using apps, and others use command-line features.

<table>
<thead>
<tr>
<th>Task</th>
<th>MATLAB Apps and Functions</th>
<th>Product</th>
<th>Learn More</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification to predict categorical responses</td>
<td>Use the Classification Learner app to automatically train a selection of models and help you choose the best. You can generate MATLAB code to work with scripts. For more options, you can use the command-line interface.</td>
<td>Statistics and Machine Learning Toolbox</td>
<td>“Train Classification Models in Classification Learner App” on page 23-7 Classification Functions</td>
</tr>
<tr>
<td>Regression to predict continuous responses</td>
<td>Use the Regression Learner app to automatically train a selection of models and help you choose the best. You can generate MATLAB code to work with scripts and other function options. For more options, you can use the command-line interface.</td>
<td>Statistics and Machine Learning Toolbox</td>
<td>“Train Regression Models in Regression Learner App” on page 23-8 Regression Functions</td>
</tr>
<tr>
<td>Clustering</td>
<td>Use cluster analysis functions.</td>
<td>Statistics and Machine Learning Toolbox</td>
<td>“Cluster Analysis”</td>
</tr>
<tr>
<td>Task</td>
<td>MATLAB Apps and Functions</td>
<td>Product</td>
<td>Learn More</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Computational finance tasks such as</td>
<td>Use tools for modeling credit risk analysis.</td>
<td>Financial Toolbox™ Risk Management Toolbox™</td>
<td>“Credit Risk” (Financial Toolbox)</td>
</tr>
<tr>
<td>credit scoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>classification and regression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and object detection</td>
<td></td>
<td>Toolbox™</td>
<td>(Computer Vision System Toolbox)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following systematic machine learning workflow can help you tackle machine learning challenges. You can complete the entire workflow in MATLAB.

![Workflow Diagram]

1. ACCESS and load the data.
2. PREPROCESS the data.
3. DERIVE features using the preprocessed data.
4. TRAIN models using the features derived in step 3.
5. ITERATE to find the best model.
6. INTEGRATE the best-trained model into a production system.

To integrate the best trained model into a production system, you can deploy Statistics and Machine Learning Toolbox machine learning models using MATLAB Compiler™. For many models, you can generate C-code for prediction using MATLAB Coder™.
Train Classification Models in Classification Learner App

Use the Classification Learner app to train models to classify data using supervised machine learning. The app lets you explore supervised machine learning interactively using various classifiers.

• Automatically train a selection of models and help you choose the best model. Model types include decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, and ensemble classification.
• Explore your data, select features, and visualize results.
• Export models to the workspace to make predictions with new data.
• Generate MATLAB code from the app to create scripts, train with new data, work with huge data sets, or modify the code for further analysis.

By default, the app protects against overfitting by applying cross-validation. Alternatively, you can choose holdout validation.

To learn more, see “Train Classification Models in Classification Learner App” on page 23-11.
For more options, you can use the command-line interface. See “Classification”.

Train Regression Models in Regression Learner App

Use the Regression Learner app to train models to predict continuous data using supervised machine learning. The app lets you explore supervised machine learning interactively using various regression models.

- Automatically train a selection of models and help you choose the best model. Model types include linear regression models, regression trees, Gaussian process regression models, support vector machines, and ensembles of regression trees.
- Explore your data, select features, and visualize results.
• Export models to the workspace to make predictions with new data.
• Generate MATLAB code from the app to create scripts, train with new data, work with huge data sets, or modify the code for further analysis.

By default, the app protects against overfitting by applying cross-validation. Alternatively, you can choose holdout validation.

To learn more, see “Train Regression Models in Regression Learner App” on page 24-2.

For more options, you can use the command-line interface. See “Regression”.
Train Neural Networks for Deep Learning

Deep Learning Toolbox enables you to perform deep learning with convolutional neural networks for classification, regression, feature extraction, and transfer learning. The toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without extensive knowledge of advanced computer vision algorithms or neural networks.

To learn more, see “Deep Learning in MATLAB” (Deep Learning Toolbox).

See Also

Related Examples

- “Train Regression Models in Regression Learner App” on page 24-2
- “Train Classification Models in Classification Learner App” on page 23-11
- “Cluster Analysis”
- “Credit Risk” (Financial Toolbox)
- “Deep Learning, Semantic Segmentation, and Detection” (Computer Vision System Toolbox)
- “Deep Learning in MATLAB” (Deep Learning Toolbox)
- Machine Learning Made Easy (34 min 34 sec)
Train Classification Models in Classification Learner App

In this section...

| “Automated Classifier Training” on page 23-12 |
| “Manual Classifier Training” on page 23-14 |
| “Parallel Classifier Training” on page 23-15 |
| “Compare and Improve Classification Models” on page 23-16 |

What Is Supervised Machine Learning?

You can use Classification Learner to train models to classify data. Using this app, you can explore supervised machine learning using various classifiers. You can explore your data, select features, specify validation schemes, train models, and assess results. You can perform automated training to search for the best classification model type, including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, and ensemble classification.

Perform supervised machine learning by supplying a known set of input data (observations or examples) and known responses to the data (i.e., labels or classes). Use the data to train a model that generates predictions for the response to new data. To use the model with new data, or to learn about programmatic classification, you can export the model to the workspace or generate MATLAB code to recreate the trained model.

1. Known Data → Model
 Known Responses → Model

2. Model → Predicted Responses
 New Data → Predicted Responses

Get started by training a selection of model types. See “Automated Classifier Training” on page 23-12.
Automated Classifier Training

You can use Classification Learner to automatically train a selection of different classification models on your data.

- Get started by automatically training multiple models at once. You can quickly try a selection of models, then explore promising models interactively.
- If you already know what classifier type you want, train individual classifiers instead. See “Manual Classifier Training” on page 23-14.

1 On the Apps tab, in the Machine Learning group, click Classification Learner.
2 Click New Session and select data from the workspace or from file. Specify a response variable and variables to use as predictors. See “Select Data and Validation for Classification Problem” on page 23-20.
3 On the Classification Learner tab, in the Model Type section, click All Quick-To-Train. This option will train all the model presets available for your data set that are fast to fit.

4 Click Train.

Note The app trains models in parallel if you have Parallel Computing Toolbox. See “Parallel Classifier Training” on page 23-15.

A selection of model types appears in the History list. When they finish training, the best percentage Accuracy score is highlighted in a box.
5 Click models in the history list to explore results in the plots.

For next steps, see “Manual Classifier Training” on page 23-14 or “Compare and Improve Classification Models” on page 23-16.

6 To try all the classifier model presets available for your data set, click All, then click Train.
Manual Classifier Training

If you want to explore individual model types, or if you already know what classifier type you want, you can train classifiers one at a time, or train a group of the same type.

1. Choose a classifier. On the Classification Learner tab, in the Model Type section, click a classifier type. To see all available classifier options, click the arrow on the far right of the Model Type section to expand the list of classifiers. The options in the Model Type gallery are preset starting points with different settings, suitable for a range of different classification problems.

To read a description of each classifier, switch to the details view.

2. After selecting a classifier, click Train.

Repeat to try different classifiers.

Tip Try decision trees and discriminants first. If the models are not accurate enough predicting the response, try other classifiers with higher flexibility. To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy.

3. If you decide you want to try all model types or train a group of the same type, try one of the All options in the Model Type gallery.

For next steps, see “Compare and Improve Classification Models” on page 23-16.
Parallel Classifier Training

You can train models in parallel using Classification Learner if you have Parallel Computing Toolbox. When you train classifiers, the app automatically starts a parallel pool of workers, unless you turn off the default parallel preference **Automatically create a parallel pool**. If a pool is already open, the app uses it for training. Parallel training allows you to train multiple classifiers at once and continue working.

1. The first time you click **Train**, you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once.

2. When classifiers are training in parallel, you see progress indicators on each training and queued model in the history list, and you can cancel individual models if you want. During training, you can examine results and plots from models, and initiate training of more classifiers.
To control parallel training, toggle the **Use Parallel** button in the app toolstrip. The **Use Parallel** button is only available if you have Parallel Computing Toolbox.

If you have Parallel Computing Toolbox, then parallel training is available in Classification Learner, and you do not need to set the `UseParallel` option of the `statset` function. If you turn off the parallel preference to **Automatically create a parallel pool**, then the app will not start a pool for you without asking first.

Compare and Improve Classification Models

1. Click models in the history list to explore the results in the plots. Compare model performance by inspecting results in the scatter plot and confusion matrix. Examine the percentage accuracy reported in the history list for each model. See “Assess Classifier Performance in Classification Learner” on page 23-55.

2. Select the best model in the history list and then try including and excluding different features in the model. Click Feature Selection.

Try the parallel coordinates plot to help you identify features to remove. See if you can improve the model by removing features with low predictive power. Specify predictors to include in the model, and train new models using the new options. Compare results among the models in the history list.

You can also try transforming features with PCA to reduce dimensionality.

3 To improve the model further, you can try changing classifier parameter settings in the Advanced dialog box, and then train using the new options. To learn how to control model flexibility, see “Choose Classifier Options” on page 23-26.

4 If feature selection, PCA, or new parameter settings improve your model, try training **All** model types with the new settings. See if another model type does better with the new settings.

Tip To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy. For example, look for simple models such as decision trees and discriminants that are fast and easy to interpret. If the models are not accurate enough predicting the response, choose other classifiers with higher flexibility, such as ensembles. To learn about the model flexibility, see “Choose Classifier Options” on page 23-26.

The figure shows the app with a history list containing various classifier types.
Tip For a step-by-step example comparing different classifiers, see “Train Decision Trees Using Classification Learner App” on page 23-68.

For next steps, generate code to train the model with different data, or export trained models to the workspace to make predictions using new data. See “Export Classification Model to Predict New Data” on page 23-62.
See Also

Related Examples

- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
- “Machine Learning in MATLAB” on page 23-2
Select Data and Validation for Classification Problem

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Select Data from the Workspace” on page 23-20</td>
</tr>
<tr>
<td>“Import Data from File” on page 23-21</td>
</tr>
<tr>
<td>“Example Data for Classification” on page 23-21</td>
</tr>
<tr>
<td>“Choose Validation Scheme” on page 23-23</td>
</tr>
</tbody>
</table>

Select Data from the Workspace

Tip In Classification Learner, tables are the easiest way to use your data, because they can contain numeric and label data. Use the Import Tool to bring your data into the MATLAB workspace as a table, or use the table functions to create a table from workspace variables. See “Tables” (MATLAB).

If your predictors are a matrix and the response is a vector, combine them into a table using the `table` function.

1. Load your data into the MATLAB workspace.

 Predictor and response variables can be numeric, categorical, string, or logical vectors, cell arrays of character vectors, or character arrays. If your response variable is a string vector, then the predictions of the trained model is a cell array of character vectors.

 For example data sets, see “Example Data for Classification” on page 23-21.

2. On the **Apps** tab, click **Classification Learner**.

3. In Classification Learner, on the **Classification Learner** tab, in the **File** section, click **New Session**.

4. In the New Session dialog box, select a table or matrix from the workspace variables.

 If you select a matrix, choose whether to use rows or columns for observations by clicking the option buttons.

5. Observe the roles the app selects for the variables based on their data type. The app tries to select a suitable response variable, and all other variables are predictors.
Change the selections if needed. Add or remove predictors using the check boxes. Add or remove all predictors by clicking **Add All** or **Remove All**. You can also add or remove multiple predictors by selecting them in the table, and then clicking **Add N** or **Remove N**, where N is the number of selected predictors. The **Add All** and **Remove All** buttons change to **Add N** and **Remove N** when you select multiple predictors.

6 To accept the default validation scheme and continue, click **Start Session**. The default validation option is 5-fold cross-validation, which protects against overfitting.

Tip If you have a large data set you might want to switch to holdout validation. To learn more, see “Choose Validation Scheme” on page 23-23.

For next steps, see “Train Classification Models in Classification Learner App” on page 23-11.

Import Data from File

1 On the **Classification Learner** tab, in the **File** section, select **New Session > From File**.

2 Select a file type in the list, such as spreadsheets, text files, or comma separated values (.csv) files, or select **All Files** to browse for other file types such as .dat.

Example Data for Classification

To get started using Classification Learner, try the following example data sets.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher Iris</td>
<td>Number of predictors: 4</td>
<td>Measurements from three species of iris. Try to classify the species.</td>
</tr>
<tr>
<td></td>
<td>Number of observations: 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of classes: 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response: species</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a step-by-step example, see “Train Decision Trees Using Classification Learner App” on page 23-68.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create a table from the .csv file:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fishertable = readtable('fisheriris.csv');</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Size</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Credit Rating| Number of predictors: 6
 Number of observations: 3932
 Number of classes: 7
 Response: Rating | Financial ratios and industry sectors information for a list of corporate customers. The response variable consists of credit ratings (AAA, AA, A, BBB, BB, B, CCC) assigned by a rating agency.
 Create a table from the CreditRating_Historical.dat file:
 creditrating = readtable('CreditRating_Historical.dat'); |
|Cars | Number of predictors: 7
 Number of observations: 100
 Number of classes: 7
 Create a table from variables in the carsmall.mat file:
 load carsmall
 cartable = table(Acceleration, Cylinders, Displacement,...
 Horsepower, Model_Year, MPG, Weight, Origin); |
|Arrhythmia | Number of predictors: 279
 Number of observations: 150
 Number of classes: 16
 Response: Class (Y) | Patient information and response variables that indicate the presence and absence of cardiac arrhythmia. Misclassifying a patient as "normal" has more severe consequences than false positives classified as “has arrhythmia”.
 Create a table from the .mat file:
 load arrhythmia
 Arrhythmia = array2table(X);
 Arrhythmia.Class = categorical(Y); |
|Ovarian Cancer| Number of predictors: 4000
 Number of observations: 216
 Number of classes: 2
 Response: Group | Ovarian cancer data generated using the WCX2 protein array. Includes 95 controls and 121 ovarian cancers. |
Create a table from the `.mat` file:

```matlab
load ovariancancer
ovariancancer = array2table(obs);
ovariancancer.Group = categorical(grp);
```

Ionosphere
- **Number of predictors:** 34
- **Number of observations:** 351
- **Number of classes:** 2
- **Response:** Group (Y)

Signals from a phased array of 16 high-frequency antennas. Good ("g") returned radar signals are those showing evidence of some type of structure in the ionosphere. Bad ("b") signals are those that pass through the ionosphere.

Create a table from the `.mat` file:

```matlab
load ionosphere
ionosphere = array2table(X);
ionosphere.Group = Y;
```

Choose Validation Scheme

Choose a validation method to examine the predictive accuracy of the fitted models. Validation estimates model performance on new data compared to the training data, and helps you choose the best model. Validation protects against overfitting. Choose a validation scheme before training any models, so that you can compare all the models in your session using the same validation scheme.

Tip Try the default validation scheme and click **Start Session** to continue. The default option is 5-fold cross-validation, which protects against overfitting.

If you have a large data set and training models takes too long using cross-validation, reimport your data and try the faster holdout validation instead.

- **Cross-Validation:** Select a number of folds (or divisions) to partition the data set using the slider control.

 If you choose k folds, then the app:
1 Partitions the data into k disjoint sets or folds
2 For each fold:
 a Trains a model using the out-of-fold observations
 b Assesses model performance using in-fold data
3 Calculates the average test error over all folds

This method gives a good estimate of the predictive accuracy of the final model trained with all the data. It requires multiple fits but makes efficient use of all the data, so it is recommended for small data sets.

- **Holdout Validation**: Select a percentage of the data to use as a test set using the slider control. The app trains a model on the training set and assesses its performance with the test set. The model used for validation is based on only a portion of the data, so **Holdout Validation** is recommended only for large data sets. The final model is trained with the full data set.

- **No Validation**: No protection against overfitting. The app uses all of the data for training and computes the error rate on the same data. Without any test data, you get an unrealistic estimate of the model’s performance on new data. That is, the training sample accuracy is likely to be unrealistically high, and the predictive accuracy is likely to be lower.

To help you avoid overfitting to the training data, choose a validation scheme instead.

Note The validation scheme only affects the way that Classification Learner computes validation metrics. The final model is always trained using the full data set.

All the classification models you train after selecting data use the same validation scheme that you select in this dialog box. You can compare all the models in your session using the same validation scheme.

To change the validation selection and train new models, you can select data again, but you lose any trained models. The app warns you that importing data starts a new session. Save any trained models you want to keep to the workspace, and then import the data.

For next steps training models, see “Train Classification Models in Classification Learner App” on page 23-11.
See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
Choose Classifier Options

In this section...

“Choose a Classifier Type” on page 23-26
“Decision Trees” on page 23-30
“Discriminant Analysis” on page 23-35
“Logistic Regression” on page 23-35
“Support Vector Machines” on page 23-36
“Nearest Neighbor Classifiers” on page 23-40
“Ensemble Classifiers” on page 23-43

Choose a Classifier Type

You can use Classification Learner to automatically train a selection of different classification models on your data. Use automated training to quickly try a selection of model types, then explore promising models interactively. To get started, try these options first:

<table>
<thead>
<tr>
<th>Get Started Classifier Buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Quick-To-Train</td>
<td>Try this first. The app will train all the model types available for your data set that are typically fast to fit.</td>
</tr>
<tr>
<td>All Linear</td>
<td>Try this if you expect linear boundaries between the classes in your data. This option fits only Linear SVM and Linear Discriminant.</td>
</tr>
</tbody>
</table>
See “Automated Classifier Training” on page 23-12.

If you want to explore classifiers one at a time, or you already know what classifier type you want, you can select individual models or train a group of the same type. To see all available classifier options, on the Classification Learner tab, click the arrow on the far right of the Model Type section to expand the list of classifiers. The options in the Model Type gallery are preset starting points with different settings, suitable for a range of different classification problems.

For help choosing the best classifier type for your problem, see the table showing typical characteristics of different supervised learning algorithms. Use the table as a guide for your final choice of algorithms. Decide on the tradeoff you want in speed, memory usage, flexibility, and interpretability. The best classifier type depends on your data.

Tip To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy. For example, look for simple models such as decision trees and discriminants that are fast and easy to interpret. If the models are not accurate enough predicting the response, choose other classifiers with higher flexibility, such as ensembles. To control flexibility, see the details for each classifier type.

<table>
<thead>
<tr>
<th>Get Started Classifier Buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Use this to train all available model types. Trains every type regardless of any prior trained models. Can be time-consuming.</td>
</tr>
</tbody>
</table>
The tables on this page describe general characteristics of speed and memory usage for all the preset classifiers. The classifiers were tested with various data sets (up to 7000 observations, 80 predictors, and 50 classes), and the results define the following groups:

Speed
- Fast 0.01 second

Characteristics of Classifier Types

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Decision Trees” on page 23-30</td>
<td>Fast</td>
<td>Small</td>
<td>Easy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Discriminant Analysis” on page 23-35</td>
<td>Fast</td>
<td>Small for linear, large for quadratic</td>
<td>Easy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Logistic Regression” on page 23-35</td>
<td>Fast</td>
<td>Medium</td>
<td>Easy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note Supports C code generation for prediction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Nearest Neighbor Classifiers” on page 23-40</td>
<td>Slow for cubic. Medium for others.</td>
<td>Medium</td>
<td>Hard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Ensemble Classifiers” on page 23-43</td>
<td>Fast to medium depending on choice of algorithm</td>
<td>Low to high depending on choice of algorithm</td>
<td>Hard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Medium 1 second
• Slow 100 seconds

Memory
• Small 1MB
• Medium 4MB
• Large 100MB

These tables provide a general guide. Your results depend on your data and the speed of your machine.

To read a description of each classifier in Classification Learner, switch to the details view.

Tip After you choose a classifier type (e.g., decision trees), try training using each of the classifiers. The options in the Model Type gallery are starting points with different settings. Try them all to see which option produces the best model with your data.

For workflow instructions, see “Train Classification Models in Classification Learner App” on page 23-11.
Categorical Predictor Support

In Classification Learner, the **Model Type** gallery only shows classifier types that support your selected data.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>All predictors numeric</th>
<th>All predictors categorical</th>
<th>Some categorical, some numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Discriminant Analysis</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SVM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nearest Neighbor</td>
<td>Euclidean distance only</td>
<td>Hamming distance only</td>
<td>No</td>
</tr>
<tr>
<td>Ensembles</td>
<td>Yes</td>
<td>Yes, except Subspace</td>
<td>Yes, except any Subspace</td>
</tr>
</tbody>
</table>

Decision Trees

Decision trees are easy to interpret, fast for fitting and prediction, and low on memory usage, but they can have low predictive accuracy. Try to grow simpler trees to prevent overfitting. Control the depth with the **Maximum number of splits** setting.

Tip Model flexibility increases with the **Maximum number of splits** setting.
### Classifier Type	Prediction Speed	Memory Usage	Interpretability	Model Flexibility
Coarse Tree | Fast | Small | Easy | Low.
- Few leaves to make coarse distinctions between classes (maximum number of splits is 4).

Medium Tree | Fast | Small | Easy | Medium
- Medium number of leaves for finer distinctions between classes (maximum number of splits is 20).

Fine Tree | Fast | Small | Easy | High
- Many leaves to make many fine distinctions between classes (maximum number of splits is 100).

Tip In the **Model Type** gallery click All Trees to try each of the decision tree options. Train them all to see which settings produce the best model with your data. Select the best model in the History list. To try to improve your model, try feature selection, and then try changing some advanced options.

You train classification trees to predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf
node contains the response. Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable). For example, here is a simple classification tree:

![Classification Tree Diagram](image)

This tree predicts classifications based on two predictors, x_1 and x_2. To predict, start at the top node. At each decision, check the values of the predictors to decide which branch to follow. When the branches reach a leaf node, the data is classified either as type 0 or 1.

You can visualize your decision tree model by exporting the model from the app, and then entering:

```matlab
view(trainedModel.ClassificationTree,'Mode','graph')
```

The figure shows an example fine tree trained with the fisheriris data.
For an example, see “Train Decision Trees Using Classification Learner App” on page 23-68.

Advanced Tree Options

Classification trees in Classification Learner use the `fitctree` function. You can set these options:

- **Maximum number of splits**
Specify the maximum number of splits or branch points to control the depth of your tree. When you grow a decision tree, consider its simplicity and predictive power. To change the number of splits, click the buttons or enter a positive integer value in the **Maximum number of splits** box.

- A fine tree with many leaves is usually highly accurate on the training data. However, the tree might not show comparable accuracy on an independent test set. A leafy tree tends to overtrain, and its validation accuracy is often far lower than its training (or resubstitution) accuracy.
- In contrast, a coarse tree does not attain high training accuracy. But a coarse tree can be more robust in that its training accuracy can approach that of a representative test set. Also, a coarse tree is easy to interpret.

- **Split criterion**

Specify the split criterion measure for deciding when to split nodes. Try each of the three settings to see if they improve the model with your data.

Split criterion options are Gini's diversity index, Twoing rule, or Maximum deviance reduction (also known as cross entropy).

The classification tree tries to optimize to pure nodes containing only one class. Gini's diversity index (the default) and the deviance criterion measure node impurity. The twoing rule is a different measure for deciding how to split a node, where maximizing the twoing rule expression increases node purity.

For details of these split criteria, see ClassificationTree “Definitions” on page 32-588.

- **Surrogate decision splits** — Only for missing data.

Specify surrogate use for decision splits. If you have data with missing values, use surrogate splits to improve the accuracy of predictions.

When you set **Surrogate decision splits** to On, the classification tree finds at most 10 surrogate splits at each branch node. To change the number, click the buttons or enter a positive integer value in the **Maximum surrogates per node** box.

When you set **Surrogate decision splits** to Find All, the classification tree finds all surrogate splits at each branch node. The Find All setting can use considerable time and memory.
Discriminant Analysis

Discriminant analysis is a popular first classification algorithm to try because it is fast, accurate and easy to interpret. Discriminant analysis is good for wide datasets.

Discriminant analysis assumes that different classes generate data based on different Gaussian distributions. To train a classifier, the fitting function estimates the parameters of a Gaussian distribution for each class.

<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Discriminant</td>
<td>Fast</td>
<td>Small</td>
<td>Easy</td>
<td>Low. Creates linear boundaries between classes.</td>
</tr>
<tr>
<td>Quadratic Discriminant</td>
<td>Fast</td>
<td>Large</td>
<td>Easy</td>
<td>Low. Creates nonlinear boundaries between classes (ellipse, parabola or hyperbola).</td>
</tr>
</tbody>
</table>

Advanced Discriminant Options

Discriminant analysis in Classification Learner uses the `fitcdiscr` function. For both linear and quadratic discriminants, you can change the **Covariance structure** option. If you have predictors with zero variance or if any of the covariance matrices of your predictors are singular, training can fail using the default, Full covariance structure. If training fails, select the Diagonal covariance structure instead.

Logistic Regression

If you have 2 classes, logistic regression is a popular simple classification algorithm to try because it is easy to interpret. The classifier models the class probabilities as a function of the linear combination of predictors.
Support Vector Machines

In Classification Learner, you can train SVMs when your data has two or more classes.

Note After you train an SVM model, you can generate C code for prediction. Requires MATLAB Coder. See “Generate C Code for Prediction” on page 23-65.

<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear SVM</td>
<td>Binary: Fast</td>
<td>Medium</td>
<td>Easy</td>
<td>Low</td>
</tr>
<tr>
<td>Quadratic SVM</td>
<td>Binary: Fast</td>
<td>Binary: Medium</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td>Cubic SVM</td>
<td>Binary: Fast</td>
<td>Binary: Medium</td>
<td>Hard</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Logistic regression in Classification Learner uses the `fitglm` function. You cannot set any options for this classifier in the app.
<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Gaussian SVM</td>
<td>Binary: Fast</td>
<td>Binary: Medium</td>
<td>Hard</td>
<td>High — decreases with kernel scale setting.</td>
</tr>
<tr>
<td></td>
<td>Multiclass: Slow</td>
<td>Multiclass: Large</td>
<td></td>
<td>Makes finely detailed distinctions between classes, with kernel scale set to $\sqrt{P}/4$.</td>
</tr>
<tr>
<td>Medium Gaussian SVM</td>
<td>Binary: Fast</td>
<td>Binary: Medium</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Multiclass: Slow</td>
<td>Multiclass: Large</td>
<td></td>
<td>Medium distinctions, with kernel scale set to \sqrt{P}.</td>
</tr>
<tr>
<td>Coarse Gaussian SVM</td>
<td>Binary: Fast</td>
<td>Binary: Medium</td>
<td>Hard</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Multiclass: Slow</td>
<td>Multiclass: Large</td>
<td></td>
<td>Makes coarse distinctions between classes, with kernel scale set to $\sqrt{P}*4$, where P is the number of predictors.</td>
</tr>
</tbody>
</table>

Tip Try training each of the support vector machine options in the **Model Type** gallery. Train them all to see which settings produce the best model with your data. Select the best model in the History list. To try to improve your model, try feature selection, and then try changing some advanced options.

An SVM classifies data by finding the best hyperplane that separates data points of one class from those of the other class. The best hyperplane for an SVM means the one with the largest margin between the two classes. Margin means the maximal width of the slab parallel to the hyperplane that has no interior data points.

The support vectors are the data points that are closest to the separating hyperplane; these points are on the boundary of the slab. The following figure illustrates these definitions, with + indicating data points of type 1, and – indicating data points of type −1.
SVMs can also use a soft margin, meaning a hyperplane that separates many, but not all data points.

For an example, see “Train Support Vector Machines Using Classification Learner App” on page 23-89.

Advanced SVM Options

If you have exactly two classes, Classification Learner uses the `fitcsvm` function to train the classifier. If you have more than two classes, the app uses the `fitcecoc` function to reduce the multiclass classification problem to a set of binary classification subproblems, with one SVM learner for each subproblem. To examine the code for the binary and multiclass classifier types, you can generate code from your trained classifiers in the app.

You can set these options in the app:

- **Kernel function**

 Specify the Kernel function to compute the classifier.

 - Linear kernel, easiest to interpret
 - Gaussian or Radial Basis Function (RBF) kernel
 - Quadratic
 - Cubic
• **Box constraint level**

Specify the box constraint to keep the allowable values of the Lagrange multipliers in a box, a bounded region.

To tune your SVM classifier, try increasing the box constraint level. Click the buttons or enter a positive scalar value in the **Box constraint level** box. Increasing the box constraint level can decrease the number of support vectors, but also can increase training time.

The Box Constraint parameter is the soft-margin penalty known as C in the primal equations, and is a hard “box” constraint in the dual equations.

• **Kernel scale mode**

Specify manual kernel scaling if desired.

When you set **Kernel scale mode** to Auto, then the software uses a heuristic procedure to select the scale value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a random number seed using `rng` before training the classifier.

When you set **Kernel scale mode** to Manual, you can specify a value. Click the buttons or enter a positive scalar value in the **Manual kernel scale** box. The software divides all elements of the predictor matrix by the value of the kernel scale. Then, the software applies the appropriate kernel norm to compute the Gram matrix.

Tip Model flexibility decreases with the kernel scale setting.

• **Multiclass method**

Only for data with 3 or more classes. This method reduces the multiclass classification problem to a set of binary classification subproblems, with one SVM learner for each subproblem. **One-vs-One** trains one learner for each pair of classes. It learns to distinguish one class from the other. **One-vs-All** trains one learner for each class. It learns to distinguish one class from all others.

• **Standardize data**

Specify whether to scale each coordinate distance. If predictors have widely different scales, standardizing can improve the fit.
Nearest Neighbor Classifiers

Nearest neighbor classifiers typically have good predictive accuracy in low dimensions, but might not in high dimensions. They have high memory usage, and are not easy to interpret.

Tip Model flexibility decreases with the **Number of neighbors** setting.

<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Finely detailed distinctions between classes. The number of neighbors is set to 1.</td>
</tr>
<tr>
<td>Medium KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Medium distinctions between classes. The number of neighbors is set to 10.</td>
</tr>
<tr>
<td>Coarse KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Coarse distinctions between classes. The number of neighbors is set to 100.</td>
</tr>
<tr>
<td>Cosine KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Medium distinctions between classes, using a Cosine distance metric. The number of neighbors is set to 10.</td>
</tr>
<tr>
<td>Classifier Type</td>
<td>Prediction Speed</td>
<td>Memory Usage</td>
<td>Interpretability</td>
<td>Model Flexibility</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Cubic KNN</td>
<td>Slow</td>
<td>Medium</td>
<td>Hard</td>
<td>Medium distinctions between classes, using a cubic distance metric. The number of neighbors is set to 10.</td>
</tr>
<tr>
<td>Weighted KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Medium distinctions between classes, using a distance weight. The number of neighbors is set to 10.</td>
</tr>
</tbody>
</table>

Tip Try training each of the nearest neighbor options in the **Model Type** gallery. Train them all to see which settings produce the best model with your data. Select the best model in the History list. To try to improve your model, try feature selection, and then (optionally) try changing some advanced options.

What is k-Nearest Neighbor classification? Categorizing query points based on their distance to points (or neighbors) in a training dataset can be a simple yet effective way of classifying new points. You can use various metrics to determine the distance. Given a set X of n points and a distance function, k-nearest neighbor (kNN) search lets you find the k closest points in X to a query point or set of points. kNN-based algorithms are widely used as benchmark machine learning rules.
For an example, see “Train Nearest Neighbor Classifiers Using Classification Learner App” on page 23-93.

Advanced KNN Options

Nearest Neighbor classifiers in Classification Learner use the `fitcknn` function. You can set these options:

- **Number of neighbors**

 Specify the number of nearest neighbors to find for classifying each point when predicting. Specify a fine (low number) or coarse classifier (high number) by changing the number of neighbors. For example, a fine KNN uses one neighbor, and a coarse KNN uses 100. Many neighbors can be time consuming to fit.

- **Distance metric**

 You can use various metrics to determine the distance to points. For definitions, see the class `ClassificationKNN`.
• **Distance weight**

Specify the distance weighting function. You can choose **Equal** (no weights), **Inverse** (weight is 1/distance), or **Squared Inverse** (weight is 1/distance²).

• **Standardize data**

Specify whether to scale each coordinate distance. If predictors have widely different scales, standardizing can improve the fit.

Ensemble Classifiers

Ensemble classifiers meld results from many weak learners into one high-quality ensemble model. Qualities depend on the choice of algorithm.

Tip Model flexibility increases with the **Number of learners** setting.

All ensemble classifiers tend to be slow to fit because they often need many learners.

<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Ensemble Method</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosted Trees</td>
<td>Fast</td>
<td>Low</td>
<td>Hard</td>
<td>AdaBoost, with Decision Tree learners</td>
<td>Medium to high — increases with Number of learners or Maximum number of splits setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tip Boosted trees can usually do better than bagged, but might require parameter tuning and more learners</td>
</tr>
<tr>
<td>Classifier Type</td>
<td>Prediction Speed</td>
<td>Memory Usage</td>
<td>Interpretability</td>
<td>Ensemble Method</td>
<td>Model Flexibility</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Bagged Trees</td>
<td>Medium</td>
<td>High</td>
<td>Hard</td>
<td>Random forest Bag, with Decision Tree learners</td>
<td>High — increases with Number of learners setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tip Try this classifier first.</td>
</tr>
<tr>
<td>Subspace Discriminant</td>
<td>Medium</td>
<td>Low</td>
<td>Hard</td>
<td>Subspace, with Discriminant learners</td>
<td>Medium — increases with Number of learners setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good for many predictors</td>
</tr>
<tr>
<td>Subspace KNN</td>
<td>Medium</td>
<td>Medium</td>
<td>Hard</td>
<td>Subspace, with Nearest Neighbor learners</td>
<td>Medium — increases with Number of learners setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good for many predictors</td>
</tr>
<tr>
<td>RUSBoost Trees</td>
<td>Fast</td>
<td>Low</td>
<td>Hard</td>
<td>RUSBoost, with Decision Tree learners</td>
<td>Medium — increases with Number of learners or Maximum number of splits setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good for skewed data (with many more observations of 1 class)</td>
</tr>
</tbody>
</table>
Choose Classifier Options

<table>
<thead>
<tr>
<th>Classifier Type</th>
<th>Prediction Speed</th>
<th>Memory Usage</th>
<th>Interpretability</th>
<th>Ensemble Method</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>GentleBoost or LogitBoost — not available in the Model Type gallery. If you have 2 class data, select manually.</td>
<td>Fast</td>
<td>Low</td>
<td>Hard</td>
<td>GentleBoost or LogitBoost, with Decision Tree learners Choose Boosted Trees and change to GentleBoost method.</td>
<td>Medium — increases with Number of learners or Maximum number of splits setting. For binary classification only</td>
</tr>
</tbody>
</table>

Tips

- Try bagged trees first. Boosted trees can usually do better but might require searching many parameter values, which is time-consuming.
- Try training each of the ensemble classifier options in the Model Type gallery. Train them all to see which settings produce the best model with your data. Select the best model in the History list. To try to improve your model, try feature selection, PCA, and then (optionally) try changing some advanced options.
- For boosting ensemble methods, you can get fine detail with either deeper trees or larger numbers of shallow trees. As with single tree classifiers, deep trees can cause overfitting. You need to experiment to choose the best tree depth for the trees in the ensemble, in order to trade-off data fit with tree complexity. Use the Number of learners and Maximum number of splits settings.

For an example, see “Train Ensemble Classifiers Using Classification Learner App” on page 23-97.

Advanced Ensemble Options

Ensemble classifiers in Classification Learner use the fitensemble function. You can set these options:

- For help choosing Ensemble method and Learner type, see the Ensemble table. Try the presets first.
• **Maximum number of splits**

For boosting ensemble methods, specify the maximum number of splits or branch points to control the depth of your tree learners. Many branches tend to overfit, and simpler trees can be more robust and easy to interpret. Experiment to choose the best tree depth for the trees in the ensemble.

• **Number of learners**

Try changing the number of learners to see if you can improve the model. Many learners can produce high accuracy, but can be time consuming to fit. Start with a few dozen learners, and then inspect the performance. An ensemble with good predictive power can need a few hundred learners.

• **Learning rate**

Specify the learning rate for shrinkage. If you set the learning rate to less than 1, the ensemble requires more learning iterations but often achieves better accuracy. 0.1 is a popular choice.

• **Subspace dimension**

For subspace ensembles, specify the number of predictors to sample in each learner. The app chooses a random subset of the predictors for each learner. The subsets chosen by different learners are independent.

For next steps training models, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
See Also

- "Train Decision Trees Using Classification Learner App" on page 23-68
Feature Selection and Feature Transformation Using Classification Learner App

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Investigate Features in the Scatter Plot” on page 23-48</td>
</tr>
<tr>
<td>“Select Features to Include” on page 23-50</td>
</tr>
<tr>
<td>“Transform Features with PCA in Classification Learner” on page 23-51</td>
</tr>
<tr>
<td>“Investigate Features in the Parallel Coordinates Plot” on page 23-51</td>
</tr>
</tbody>
</table>

Investigate Features in the Scatter Plot

In Classification Learner, try to identify predictors that separate classes well by plotting different pairs of predictors on the scatter plot. The plot can help you investigate features to include or exclude. You can visualize training data and misclassified points on the scatter plot.

Before you train a classifier, the scatter plot shows the data. If you have trained a classifier, the scatter plot shows model prediction results. Switch to plotting only the data by selecting Data in the Plot controls.

- Choose features to plot using the X and Y lists under Predictors.
- Look for predictors that separate classes well. For example, plotting the fisheriris data, you can see that sepal length and sepal width separate one of the classes well (setosa). You need to plot other predictors to see if you can separate the other two classes.
- Show or hide specific classes using the check boxes under **Show**.
- Change the stacking order of the plotted classes by selecting a class under **Classes** and then clicking **Move to Front**.
- Investigate finer details by zooming in and out and panning across the plot. To enable zooming and panning, hover the mouse over the scatter plot and click one of the buttons that appear near the top-right corner of the plot.
- If you identify predictors that are not useful for separating out classes, then try using **Feature Selection** to remove them and train classifiers including only the most useful predictors.
After you train a classifier, the scatter plot shows model prediction results. You can show or hide correct or incorrect results and visualize the results by class. See “Plot Classifier Results” on page 23-55.

Select Features to Include

In Classification Learner, you can specify different features (or predictors) to include in the model. See if you can improve models by removing features with low predictive power. If data collection is expensive or difficult, you might prefer a model that performs satisfactorily without some predictors.

1. On the Classification Learner tab, in the Features section, click Feature Selection.

2. In the Feature Selection tearaway window, clear the check boxes for the predictors you want to exclude.

3. Click Train to train a new model using the new predictor options.

4. Observe the new model in the History list. The Current model pane displays how many predictors are excluded.

5. To check which predictors are included in a trained model, click the model in the History list and observe the check boxes in the Feature Selection dialog box.

6. You can try to improve the model by including different features in the model.

For an example using feature selection, see “Train Decision Trees Using Classification Learner App” on page 23-68.
Transform Features with PCA in Classification Learner

Use principal component analysis (PCA) to reduce the dimensionality of the predictor space. Reducing the dimensionality can create classification models in Classification Learner that help prevent overfitting. PCA linearly transforms predictors in order to remove redundant dimensions, and generates a new set of variables called principal components.

1 On the Classification Learner tab, in the Features section, select PCA.
2 In the Advanced PCA Options tearaway window, select the Enable PCA check box.

You can close the PCA tearaway window, or move it. Your choices in the tearaway remain.

3 When you next click Train, the pca function transforms your selected features before training the classifier.

4 By default, PCA keeps only the components that explain 95% of the variance. In the PCA tearaway window, you can change the percentage of variance to explain in the Explained variance box. A higher value risks overfitting, while a lower value risks removing useful dimensions.

5 If you want to manually limit the number of PCA components, in the Component reduction criterion list, select Specify number of components. Edit the number in the Number of numeric components box. The number of components cannot be larger than the number of numeric predictors. PCA is not applied to categorical predictors.

Check PCA options for trained models in the Current model pane information. Check the explained variance percentages to decide whether to change the number of components. For example:

PCA is keeping enough components to explain 95% variance.
After training, 2 components were kept.
Explained variance per component (in order): 92.5%, 5.3%, 1.7%, 0.5%

To learn more about how Classification Learner applies PCA to your data, generate code for your trained classifier. For more information on PCA, see the pca function.

Investigate Features in the Parallel Coordinates Plot

To investigate features to include or exclude, use the parallel coordinates plot. You can visualize high dimensional data on a single plot to see 2D patterns. This plot can help you
understand relationships between features and identify useful predictors for separating classes. You can visualize training data and misclassified points on the parallel coordinates plot. When you plot classifier results, misclassified points show dashed lines.

1. On the Classification Learner tab, in the Plots section, select Parallel Coordinates Plot.

2. On the plot, you can drag the bars to reorder the predictors. Changing the order can help you identify predictors that separate classes well.

3. To specify which predictors to plot, use the Predictors check boxes. It can be helpful to plot a few predictors at a time. If your data has many predictors, the plot shows the first 10 by default.

4. If the predictors have very different scales, scale the data to make it easier to visualize. Try different options in the Scaling list:
 - Normalization plots all predictors on the same range from 0 to 1.
 - Standardization plots the mean of each predictor at zero and scales the predictors by their standard deviations.

5. If you identify predictors that are not useful for separating out classes, use Feature Selection to remove them and train classifiers including only the most useful predictors.

Plotting the fisheriris data, you can see that petal length and petal width are the features that separate the classes best.
See Also

Related Examples
- “Train Classification Models in Classification Learner App” on page 23-11
• “Select Data and Validation for Classification Problem” on page 23-20
• “Choose Classifier Options” on page 23-26
• “Assess Classifier Performance in Classification Learner” on page 23-55
• “Generate MATLAB Code to Train the Model with New Data” on page 23-64
Assess Classifier Performance in Classification Learner

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check Performance in the History List” on page 23-55</td>
</tr>
<tr>
<td>“Plot Classifier Results” on page 23-55</td>
</tr>
<tr>
<td>“Check Performance Per Class in the Confusion Matrix” on page 23-57</td>
</tr>
<tr>
<td>“Check the ROC Curve” on page 23-60</td>
</tr>
</tbody>
</table>

Check Performance in the History List

After training a model in Classification Learner, check the History list to see which model has the best overall accuracy in percent. The best **Accuracy** score is highlighted in a box. This score is the validation accuracy (unless you opted for no validation scheme). The validation accuracy score estimates a model's performance on new data compared to the training data. Use the score to help you choose the best model.

- For cross-validation, the score is the accuracy on all observations, counting each observation when it was in a held-out fold.

Note When you imported data into the app, if you accepted the defaults, you are using cross-validation. To learn more, see “Choose Validation Scheme” on page 23-23.

- For holdout validation, the score is the accuracy on the held-out observations.
- For no validation, the score is the resubstitution accuracy against all the training data observations.

The best overall score might not be the best model for your goal. A model with a slightly lower overall accuracy might be the best classifier for your goal. For example, false positives in a particular class might be important to you. You might want to exclude some predictors where data collection is expensive or difficult.

To find out how the classifier performed in each class, examine the confusion matrix.

Plot Classifier Results

In the scatter plot, view the classifier results. After you train a classifier, the scatter plot switches from displaying the data to showing model predictions. If you are using holdout
or cross-validation, then these predictions are the predictions on the held-out observations. In other words, each prediction is obtained using a model that was trained without using the corresponding observation. To investigate your results, use the controls on the right. You can:

- Choose whether to plot model predictions or the data alone.
- Show or hide correct or incorrect results using the check boxes under **Model predictions**.
- Choose features to plot using the X and Y lists under **Predictors**.
- Visualize results by class by showing or hiding specific classes using the check boxes under **Show**.
- Change the stacking order of the plotted classes by selecting a class under **Classes** and then clicking **Move to Front**.
- Zoom in and out, or pan across the plot. To enable zooming and panning, hover the mouse over the scatter plot and click one of the buttons that appear near the top-right corner of the plot.
See also “Investigate Features in the Scatter Plot” on page 23-48.

Check Performance Per Class in the Confusion Matrix

Use the confusion matrix plot to understand how the currently selected classifier performed in each class. To view the confusion matrix after training a model, on the **Classification Learner** tab, in the **Plots** section, click **Confusion Matrix**. The confusion matrix helps you identify the areas where the classifier has performed poorly.

When you open the plot, the rows show the true class, and the columns show the predicted class. If you are using holdout or cross-validation, then the confusion matrix is calculated using the predictions on the held-out observations. The diagonal cells show
where the true class and predicted class match. If these cells are green, the classifier has performed well and classified observations of this true class correctly.

The default view shows number of observations in each cell.

To see how the classifier performed per class, under **Plot**, select the **True Positive Rates, False Negative Rates** option. The plot shows summaries per true class in the last two columns on the right.

Tip Look for areas where the classifier performed poorly by examining cells off the diagonal that display high percentages and are red. The higher the percentage, the brighter the hue of the cell color. In these red cells, the true class and the predicted class do not match. The data points are misclassified.
In this example, using the carsmall data set, the top row shows all cars with true class France. The columns show the predicted classes. In the top row, 25% of the cars from France are correctly classified, so 25% is the true positive rate for correctly classified points in this class, shown in the green cell in the True Positive Rate column.

The other cars in the France row are misclassified: 50% of the cars are incorrectly classified as from Japan, and 25% are classified as from Sweden. 75% is the false negative rate for incorrectly classified points in this class, shown in the red cell in the False Negative Rate column.

If you want to see numbers of observations (cars, in this example) instead of percentages, under Plot, select Number of observations.
If false positives are important in your classification problem, plot results per predicted class (instead of true class) to investigate false discovery rates. To see results per predicted class, under Plot, select the Positive Predictive Values False Discovery Rates option. The confusion matrix now shows summary rows underneath the table. Positive predictive values are shown in green for the correctly predicted points in each class, and false discovery rates are shown below it in red for the incorrectly predicted points in each class.

If you decide there are too many misclassified points in the classes of interest, try changing classifier settings or feature selection to search for a better model.

Check the ROC Curve

To view the ROC curve after training a model, on the Classification Learner tab, in the Plots section, click ROC Curve. View the receiver operating characteristic (ROC) curve showing true and false positive rates. The ROC curve shows true positive rate versus false positive rate for the currently selected trained classifier. You can select different classes to plot.

The marker on the plot shows the performance of the currently selected classifier. The marker shows the values of the false positive rate (FPR) and the true positive rate (TPR) for the currently selected classifier. For example, a false positive rate (FPR) of 0.2 indicates that the current classifier assigns 20% of the observations incorrectly to the positive class. A true positive rate of 0.9 indicates that the current classifier assigns 90% of the observations correctly to the positive class.

A perfect result with no misclassified points is a right angle to the top left of the plot. A poor result that is no better than random is a line at 45 degrees. The Area Under Curve number is a measure of the overall quality of the classifier. Larger Area Under Curve values indicate better classifier performance. Compare classes and trained models to see if they perform differently in the ROC curve.

For more information, see perfcurve.

See Also

Related Examples

- "Train Classification Models in Classification Learner App" on page 23-11
• “Select Data and Validation for Classification Problem” on page 23-20
• “Choose Classifier Options” on page 23-26
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
• “Export Classification Model to Predict New Data” on page 23-62
• “Train Decision Trees Using Classification Learner App” on page 23-68
Export Classification Model to Predict New Data

Export the Model to the Workspace to Make Predictions for New Data

After you create classification models interactively in Classification Learner, you can export your best model to the workspace. You can then use the trained model to make predictions using new data.

1. In Classification Learner, select the model you want to export in the History list.
2. On the Classification Learner tab, in the Export section, click one of the export options:
 - If you want to include the data used for training the model, then select Export Model.
 You export the trained model to the workspace as a structure containing a classification object, such as a ClassificationTree, ClassificationDiscriminant, ClassificationSVM, ClassificationKNN, ClassificationEnsemble, etc.
 - If you do not want to include the training data, select Export Compact Model. This option exports the model with unnecessary data removed where possible. For some classifiers this is a compact classification object that does not include the training data (e.g., CompactClassificationTree). You can use a compact classification object for making predictions of new data, but you can use fewer other methods with it.
3. In the Export Model dialog box, edit the name for your exported variable if you want, and then click OK. The default name for your exported model, trainedModel, increments every time you export to avoid overwriting your classifiers, e.g., trainedModel1.
The new variable, e.g., `trainedModel`, appears in your workspace.

The app displays information about the exported model in the command window. Read the message to learn how to make predictions with new data.

Note The final exported model is always trained using the full data set. The validation scheme that you use only affects the way that Classification Learner computes validation metrics.

Make Predictions for New Data

After you export a model to the workspace from Classification Learner, or run the code generated from the app, you get a `trainedModel` structure that you can use to make predictions using new data. The structure contains a classification object and a function for prediction. The structure allows you to make predictions for models that include principal component analysis (PCA).

1. To use the exported classifier to make predictions for new data, `T`, use the form:

   ```
   yfit = C.predictFcn(T)
   ```

 where `C` is the name of your variable, e.g., `trainedModel`.

 Supply the data `T` in same data type as your training data used in the app (table or matrix).

 - If you supply a table, ensure it contains the same predictor names as your training data. The `predictFcn` ignores additional variables in tables. Variable formats (e.g. matrix or vector, data type) must match the original training data.
 - If you supply a matrix, it must contain the same predictor columns or rows as your training data, in the same order and format. Do not include a response variable, any variables that you did not import in the app, or other unused variables.

 The output `yfit` contains a class prediction for each data point.

2. Examine the fields of the exported structure. For help making predictions, enter:

   ```
   C.HowToPredict
   ```

 You can also extract the classification object from the exported struct for further analysis (e.g., `trainedModel.ClassificationSVM`, `trainedModel.ClassificationTree`, etc.).
etc., depending on your model type). Be aware that if you used feature transformation such as PCA in the app, you will need to take account of this transformation by using the information in the PCA fields of the struct.

Generate MATLAB Code to Train the Model with New Data

After you create classification models interactively in Classification Learner, you can generate MATLAB code for your best model. You can then use the code to train the model with new data.

Generate MATLAB code to:

- Train on huge data sets. Explore models in the app trained on a subset of your data, then generate code to train a selected model on a larger data set
- Create scripts for training models without needing to learn syntax of the different functions
- Examine the code to learn how to train classifiers programmatically
- Modify the code for further analysis, for example to set options that you cannot change in the app
- Repeat your analysis on different data and automate training

1. In Classification Learner, in the History list, select the model you want to generate code for.

2. On the **Classification Learner** tab, in the **Export** section, click **Export Model > Generate Code**.

 The app generates code from your session and displays the file in the MATLAB Editor. The file includes the predictors and response, the classifier training methods, and validation methods. Save the file.

3. To retrain your classifier model, call the function from the command line with your original data or new data as the input argument. New data must be the same shape.

 Copy the first line of the generated code excluding the word **function**, and edit the **trainingData** input argument to the variable name of your training data or new data. For example, to retrain a classifier trained with the **fisheriris** data set, enter:

   ```matlab
   [trainedModel, validationAccuracy] = trainClassifier(fisheriris)
   ```
The generated code returns a `trainedModel` structure that contains the same fields as the struct you create when you export a classifier from Classification Learner to the workspace.

4 If you want to automate training the same classifier with new data, or learn how to programmatically train classifiers, examine the generated code. The code shows you how to:
 - Process the data into the right shape
 - Train a classifier and specify all the classifier options
 - Perform cross-validation
 - Compute validation accuracy
 - Compute validation predictions and scores

Generate C Code for Prediction

If you train an SVM model using Classification Learner, you can generate C code for prediction.

C code generation requires:

- MATLAB Coder license
- SVM model (binary or multiclass)
- No categorical predictors or response in your data set

1 After you train an SVM model in Classification Learner, export the model to the workspace.

 Find the name of the classification model object in the exported struct. Examine the fields of the struct to find the model name, for example, `C.ClassificationSVM`, where `C` is the name of your struct, e.g., `trainedModel`.

 Model name depends on what type of SVM you trained (binary or multiclass) and whether you exported a compact model or not. Models can be `ClassificationSVM`, `CompactClassificationSVM`, `ClassificationECOC`, or `CompactClassificationECOC`.

2 Use the function `saveCompactModel` to prepare the model for code generation:

 `saveCompactModel(Mdl,filename)`. For example:

 `saveCompactModel(C.ClassificationSVM, 'mySVM')`
Create a function that loads the saved model and makes predictions on new data. For example:

```matlab
function label = classifyX (X) %#codegen
%CLASSIFYX Classify using SVM Model
% CLASSIFYX classifies the measurements in X
% using the SVM model in the file mySVM.mat, and then
% returns class labels in label.

CompactMdl = loadCompactModel('mySVM');
label = predict(CompactMdl,X);
end
```

Generate a MEX function from your function. For example:

```matlab
codegen classifyX.m -args {data}
```

The `%#codegen` compilation directive indicates that the MATLAB code is intended for code generation. To ensure that the MEX function can use the same input, specify the data in the workspace as arguments to the function using the `-args` option. `data` must be a matrix containing only the predictor columns used to train the model.

Use the MEX function to make predictions. For example:

```matlab
labels = classifyX_mex(data);
```

If you used feature selection or PCA feature transformation in the app, then you need additional steps. If you used manual feature selection, supply the same columns in `X`. `X` is the input to your function.

If you used PCA in the app, use the information in the PCA fields of the exported struct to take account of this transformation. It does not matter whether you imported a table or a matrix into the app, as long as `X` contains the matrix columns in the same order. Before generating code, follow these steps:

1. Save the PCACenters and PCACoefficients fields of the trained classifier struct, `C`, to file using the following command:

   ```matlab
   save('pcaInfo.mat', '-struct', 'C', 'PCACenters', 'PCACoefficients');
   ```

2. In your function file, include additional lines to perform the PCA transformation. Create a function that loads the saved model, performs PCA, and makes predictions on new data. For example:

```matlab
function label = classifyX (X) %#codegen
%CLASSIFYX Classify using SVM Model
```
CLASSIFYX classifies the measurements in X using the SVM model in the file mySVM.mat, and then returns class labels in label. If you used manual feature selection in the app, ensure that X contains only the

CompactMdl = loadCompactModel('mySVM');
 pcaInfo = load('pcaInfo.mat', 'PCACenters', 'PCACoefficients');
% performs pca transformation
 pcaTransformedX = bsxfun(@minus, X, pcaInfo.PCACenters) * pcaInfo.PCACoefficients;
 [label, scores] = predict(CompactMdl, pcaTransformedX);
end

For more information on C code generation workflow and limitations, see “Code Generation”. For examples, see saveCompactModel and loadCompactModel.

See Also

Functions
fitcdiscr | fitcecoc | fitcensemble | fitcknn | fitcsvm | fitctree | fitglm

Classes
ClassificationBaggedEnsemble | ClassificationDiscriminant |
ClassificationECOC | ClassificationEnsemble | ClassificationKNN |
ClassificationSVM | ClassificationTree |
CompactClassificationDiscriminant | CompactClassificationECOC |
CompactClassificationEnsemble | CompactClassificationSVM |
CompactClassificationTree | GeneralizedLinearModel

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-11
Train Decision Trees Using Classification Learner App

This example shows how to create and compare various classification trees using Classification Learner, and export trained models to the workspace to make predictions for new data.

You can train classification trees to predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node contains the response.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable). For example, here is a simple classification tree:

This tree predicts classifications based on two predictors, x_1 and x_2. To predict, start at the top node. At each decision, check the values of the predictors to decide which branch to follow. When the branches reach a leaf node, the data is classified either as type 0 or 1.

This example use Fisher's 1936 iris data. The iris data contains measurements of flowers: the petal length, petal width, sepal length, and sepal width for specimens from three species. Train a classifier to predict the species based on the predictor measurements.

1. In MATLAB, load the fisheriris data set and create a table of measurement predictors (or features) using variables from the data set to use for a classification.

   ```matlab
   fishertable = readtable('fisheriris.csv');
   ```

2. On the Apps tab, in the Machine Learning group, click Classification Learner.

3. On the Classification Learner tab, in the File section, click New Session.

4. In the New Session dialog box, select the table fishertable from the workspace list.

 Observe that the app has selected response and predictor variables based on their data type. Petal and sepal length and width are predictors, and species is the response that you want to classify. For this example, do not change the selections.
5 To accept the default validation scheme and continue, click **Start Session**. The default validation option is cross-validation, to protect against overfitting.

Classification Learner creates a scatter plot of the data.
6. Use the scatter plot to investigate which variables are useful for predicting the response. Select different options on the X and Y lists under Predictors to visualize the distribution of species and measurements. Observe which variables separate the species colors most clearly.

Observe that the setosa species (blue points) is easy to separate from the other two species with all four predictors. The versicolor and virginica species are much closer together in all predictor measurements, and overlap especially when you plot sepal length and width. setosa is easier to predict than the other two species.

7. To create a classification tree model, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the gallery and click Coarse Tree. Then click Train.
Tip If you have Parallel Computing Toolbox then the first time you click **Train** you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.

The app creates a simple classification tree, and plots the results.

Observe the **Coarse Tree** model in the History list. Check the model validation score in the **Accuracy** box. The model has performed well.

![Classification Learner - Scatter Plot](image)

Note With validation, there is some randomness in the results, so your model validation score results can vary from those shown.

8 Examine the scatter plot. An X indicates misclassified points. The blue points (**setosa** species) are all correctly classified, but some of the other two species are
misclassified. Under **Plot**, switch between the **Data** and **Model Predictions** options. Observe the color of the incorrect (X) points. Alternatively, while plotting model predictions, to view only the incorrect points, clear the **Correct** check box.

9 **Train a different model to compare. Click Medium Tree, and then click Train.**

When you click **Train**, the app displays a new model in the History list.

10 **Observe the Medium Tree model in the History list. The model validation score is no better than the coarse tree score. The app outlines in a box the Accuracy score of the best model. Click each model in the History list to view and compare the results.**

11 **Examine the scatter plot for the Medium Tree model. The medium tree classifies as many points correctly as the previous coarse tree. You want to avoid overfitting, and the coarse tree performs well, so base all further models on the coarse tree.**

12 **Select Coarse Tree in the History list. To try to improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.**

On the **Classification Learner** tab, in the **Features** section, click **Feature Selection**.

In the Feature Selection dialog box, clear the check boxes for **PetalLength** and **PetalWidth** to exclude them from the predictors. A new draft model appears in the model history list with your new settings 2/4 features, based on the coarse tree.

Click **Train** to train a new tree model using the new predictor options.

13 **Observe the third model in the History list. It is also a Coarse Tree model, trained using only 2 of 4 predictors. The History list displays how many predictors are excluded. To check which predictors are included, click a model in the History list and observe the check boxes in the Feature Selection dialog box. The model with only sepal measurements has a much lower accuracy score than the petals-only model.**
14 Train another model including only the petal measurements. Change the selections in the Feature Selection dialog box and click **Train**.

The model trained using only petal measurements performs comparably to the models containing all predictors. The models predict no better using all the measurements compared to only the petal measurements. If data collection is expensive or difficult, you might prefer a model that performs satisfactorily without some predictors.

15 Repeat to train two more models including only the width measurements and then the length measurements. There is not much difference in score between several of the models.

16 Choose a best model among those of similar scores by examining the performance in each class. Select the coarse tree that includes all the predictors. To inspect the accuracy of the predictions in each class, on the **Classification Learner** tab, in the **Plots** section, click **Confusion Matrix**. Use this plot to understand how the currently selected classifier performed in each class. View the matrix of true class and predicted class results.

Look for areas where the classifier performed poorly by examining cells off the diagonal that display high numbers and are red. In these red cells, the true class and the predicted class do not match. The data points are misclassified.
Note With validation, there is some randomness in the results, so your confusion matrix results can vary from those shown.

In this figure, examine the third cell in the middle row. In this cell, true class is versicolor, but the model misclassified the points as virginica. For this model,
the cell shows 3 misclassified (your results can vary). To view percentages instead of numbers of observations, select the **True Positive Rates** option under **Plot** controls.

You can use this information to help you choose the best model for your goal. If false positives in this class are very important to your classification problem, then choose the best model at predicting this class. If false positives in this class are not very important, and models with fewer predictors do better in other classes, then choose a model to tradeoff some overall accuracy to exclude some predictors and make future data collection easier.

17. Compare the confusion matrix for each model in the History list. Check the Feature Selection dialog box to see which predictors are included in each model.

18. To investigate features to include or exclude, use the scatter plot and the parallel coordinates plot. On the **Classification Learner** tab, in the **Plots** section, click **Parallel Coordinates Plot**. You can see that petal length and petal width are the features that separate the classes best.
To learn about model settings, choose a model in the History list and view the advanced settings. The options in the **Model Type** gallery are preset starting points, and you can change further settings. On the **Classification Learner** tab, in the **Model Type** section, click **Advanced**. Compare the simple and medium tree models in the history, and observe the differences in the Advanced Tree Options dialog box. The **Maximum Number of Splits** setting controls tree depth.
To try to improve the coarse tree model further, try changing the **Maximum Number of Splits** setting, then train a new model by clicking **Train**.

View the settings for the selected trained model in the Current model pane, or in the Advanced dialog box.

20 To export the best trained model to the workspace, on the **Classification Learner** tab, in the **Export** section, click **Export Model**. In the Export Model dialog box, click **OK** to accept the default variable name `trainedModel`.

Look in the command window to see information about the results.

21 To visualize your decision tree model, enter:

```
view(trainedModel.ClassificationTree,'Mode','graph')
```
You can use the exported classifier to make predictions on new data. For example, to make predictions for the fishertable data in your workspace, enter:

```matlab
yfit = trainedModel.predictFcn(fishertable)
```

The output `yfit` contains a class prediction for each data point.

If you want to automate training the same classifier with new data, or learn how to programmatically train classifiers, you can generate code from the app. To generate code for the best trained model, on the Classification Learner tab, in the Export section, click Export Model > Generate Code.
The app generates code from your model and displays the file in the MATLAB Editor. To learn more, see “Generate MATLAB Code to Train the Model with New Data” on page 23-64.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1. Click the arrow on the far right of the Model Type section to expand the list of classifiers.
2. Click All, then click Train.

To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
• “Export Classification Model to Predict New Data” on page 23-62
Train Discriminant Analysis Classifiers Using Classification Learner App

This example shows how to construct discriminant analysis classifiers in the Classification Learner app, using the fisheriris data set. You can use discriminant analysis with two or more classes in Classification Learner.

1. In MATLAB, load the fisheriris data set.

 fishertable = readtable('fisheriris.csv');
2. On the Apps tab, in the Machine Learning group, click Classification Learner.
3. On the Classification Learner tab, in the File section, click New Session.

 In the New Session dialog box, observe that the app has selected response and predictor variables based on their data type. Petal and sepal length and width are predictors, and species is the response that you want to classify. For this example, do not change the selections.
4. Click Start Session.

 Classification Learner creates a scatter plot of the data.
5. Use the scatter plot to visualize which variables are useful for predicting the response. Select different variables in the X- and Y-axis controls. Observe which variables separate the classes most clearly.
6. To train both discriminant analysis classifiers, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the list of classifiers, and under Discriminant Analysis, click All Discriminants.

 Then click Train.

Tip If you have Parallel Computing Toolbox then the first time you click Train you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.
Classification Learner trains one of each classification option in the gallery, linear and quadratic discriminants, and highlights the best score. The app outlines in a box the Accuracy score of the best model.

7 Select a model in the History list to view the results. Examine the scatter plot for the trained model and try plotting different predictors. Misclassified points are shown as an X.

8 To inspect the accuracy of the predictions in each class, on the Classification Learner tab, in the Plots section, click Confusion Matrix. View the matrix of true class and predicted class results.

9 Select the other model in the list to compare.

For information on the strengths of different model types, see “Discriminant Analysis” on page 23-35.
10 Choose the best model in the History list (the best score is highlighted in a box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Features section, click Feature Selection. In the Feature Selection dialog box, specify predictors to remove from the model, and click Train to train a new model using the new options. Compare results among the classifiers in the History list.

11 To investigate features to include or exclude, use the parallel coordinates plot. On the Classification Learner tab, in the Plots section, select Parallel Coordinates Plot.

12 Choose the best model in the History list. To try to improve the model further, try changing classifier settings. On the Classification Learner tab, in the Model Type section, click Advanced. Try changing a setting, then train the new model by clicking Train. For information on settings, see “Discriminant Analysis” on page 23-35.

13 To export the trained model to the workspace, select the Classification Learner tab and click Export model. See “Export Classification Model to Predict New Data” on page 23-62.

14 To examine the code for training this classifier, select Export Model > Generate Code.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1 Click the arrow on the far right of the Model Type section to expand the list of classifiers.
2 Click All, then click Train.
To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
Train Logistic Regression Classifiers Using Classification Learner App

This example shows how to construct logistic regression classifiers in the Classification Learner app, using the ionosphere data set that contains two classes. You can use logistic regression with two classes in Classification Learner. In the ionosphere data, the response variable is categorical with two levels: g represents good radar returns, and b represents bad radar returns.

1 In MATLAB, load the ionosphere data set and define some variables from the data set to use for a classification.

```matlab
load ionosphere
ionosphere = array2table(X);
ionosphere.Group = Y;
```

2 On the Apps tab, in the Machine Learning group, click Classification Learner.

3 On the Classification Learner tab, in the File section, click New Session.

 In the New Session dialog box, observe that the app has selected Group for the response variable, and the rest as predictors. Group has two levels.

4 Click Start Session.

 Classification Learner creates a scatter plot of the data.

5 Use the scatter plot to visualize which variables are useful for predicting the response. Select different variables in the X- and Y-axis controls. Observe which variables separate the class colors most clearly.

6 To train the logistic regression classifier, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the list of classifiers, and under Logistic Regression Classifiers, click Logistic Regression.

 Then click Train.
Tip If you have Parallel Computing Toolbox then the first time you click **Train** you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.

Classification Learner trains the model. The app outlines in a box the **Accuracy** score of the best model (in this case, there is only one model).

7 Select the model in the History list to view the results. Examine the scatter plot for the trained model and try plotting different predictors. Misclassified points are shown as an X.

8 To inspect the accuracy of the predictions in each class, on the **Classification Learner** tab, in the **Plots** section, click **Confusion Matrix**. View the matrix of true class and predicted class results.
9 Choose the best model in the History list (the best score is highlighted in a box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.

On the **Classification Learner** tab, in the **Features** section, click **Feature Selection**. In the Feature Selection dialog box, specify predictors to remove from the model, and click **Train** to train a new model using the new options. Compare results among the classifiers in the History list.

10 To investigate features to include or exclude, use the parallel coordinates plot. On the **Classification Learner** tab, in the **Plots** section, select **Parallel Coordinates Plot**.

11 To export the trained model to the workspace, select the Classification Learner tab and click **Export model**. See “Export Classification Model to Predict New Data” on page 23-62.

12 To examine the code for training this classifier, select **Export Model > Generate Code**.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1 Click the arrow on the far right of the **Model Type** section to expand the list of classifiers.

2 Click **All**, then click **Train**.

To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.
See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Logistic Regression” on page 23-35
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
Train Support Vector Machines Using Classification Learner App

This example shows how to construct support vector machine (SVM) classifiers in the Classification Learner app, using the ionosphere data set that contains two classes. You can use a support vector machine (SVM) with two or more classes in Classification Learner. An SVM classifies data by finding the best hyperplane that separates all data points of one class from those of another class. In the ionosphere data, the response variable is categorical with two levels: g represents good radar returns, and b represents bad radar returns.

1. In MATLAB, load the ionosphere data set and define some variables from the data set to use for a classification.

   ```matlab
   load ionosphere
   ionosphere = array2table(X);
   ionosphere.Group = Y;
   ```

2. On the Apps tab, in the Machine Learning group, click Classification Learner.

3. On the Classification Learner tab, in the File section, click New Session.

 In the New Session dialog box, observe that the app has selected response and predictor variables based on their data type. The response variable Group has two levels. All the other variables are predictors.

4. Click Start Session.

 Classification Learner creates a scatter plot of the data.

5. Use the scatter plot to visualize which variables are useful for predicting the response. Select different variables in the X- and Y-axis controls. Observe which variables separate the class colors most clearly.

6. To create a selection of SVM models, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the list of classifiers, and under Support Vector Machines, click All SVMs.

 Then click Train.
Tip If you have Parallel Computing Toolbox then the first time you click **Train** you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.

Classification Learner trains one of each SVM classification option in the gallery, and highlights the best score. The app outlines in a box the **Accuracy** score of the best model.

7 Select a model in the History list to view the results. Examine the scatter plot for the trained model and try plotting different predictors. Misclassified points are shown as an X.

8 To inspect the accuracy of the predictions in each class, on the **Classification Learner** tab, in the **Plots** section, click **Confusion Matrix**. View the matrix of true class and predicted class results.
Select the other models in the list to compare.

Choose the best model in the History list (the best score is highlighted in a box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Data Transformation section, click Features. In the Feature Selection dialog box, specify predictors to remove from the model, and click Train to train a new model using the new options. Compare results among the classifiers in the History list.

To investigate features to include or exclude, use the parallel coordinates plot. On the Classification Learner tab, in the Plots section, select Parallel Coordinates Plot.

Choose the best model in the History list. To try to improve the model further, try changing SVM settings. On the Classification Learner tab, in the Model Type section, click Advanced. Try changing a setting, then train the new model by clicking Train. For information on settings, see “Support Vector Machines” on page 23-36.

To export the trained model to the workspace, select the Classification Learner tab and click Export model. See “Export Classification Model to Predict New Data” on page 23-62.

To examine the code for training this classifier, select Export Model > Generate Code. For SVM models, see also “Generate C Code for Prediction” on page 23-65.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1. Click the arrow on the far right of the Model Type section to expand the list of classifiers.

2. Click All, then click Train.
To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Generate C Code for Prediction” on page 23-65
- “Train Decision Trees Using Classification Learner App” on page 23-68
Train Nearest Neighbor Classifiers Using Classification Learner App

This example shows how to construct nearest neighbors classifiers in the Classification Learner app.

1. In MATLAB, load the fisheriris data set and define some variables from the data set to use for a classification.

 fishertable = readtable('fisheriris.csv');

2. On the Apps tab, in the Machine Learning group, click Classification Learner.

3. On the Classification Learner tab, in the File section, click New Session.

 In the New Session dialog box, observe that the app has selected response and predictor variables based on their data type. Petal and sepal length and width are predictors, and species is the response that you want to classify. For this example, do not change the selections.

4. Click Start Session.

 The app creates a scatter plot of the data.

5. Use the scatter plot to investigate which variables are useful for predicting the response. To visualize the distribution of species and measurements, select different options on the Variable on X axis and Variable on Y axis menus. Observe which variables separate the species colors most clearly.

6. To create a selection of nearest neighbors models, on the Classification Learner tab, on the far right of the Model Type section, click the arrow to expand the list of classifiers, and under Nearest Neighbor Classifiers, click All KNNs.

7. In the Training section, click Train.
Tip If you have Parallel Computing Toolbox then the first time you click Train you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.

Classification Learner trains one of each nearest neighbor classification option in the gallery, and highlights the best score. The app outlines in a box the Accuracy score of the best model.

8 Select a model in the History list to view the results. Examine the scatter plot for the trained model. An X indicates a misclassified point.

9 To inspect the accuracy of the predictions in each class, on the Classification Learner tab, in the Plots section, click Confusion Matrix. View the matrix of true class and predicted class results.
Select the other models in the list to compare.

Choose the best model in the History list (the best score is highlighted in a box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Data Transformation section, click Features. In the Feature Selection dialog box, select predictors to remove from the model, and click Train to train a new model using the new options. Compare results among the classifiers in the History list.

To investigate features to include or exclude, use the parallel coordinates plot. On the Classification Learner tab, in the Plots section, select Parallel Coordinates Plot.

Choose the best model in the History list. To try to improve the model further, try changing settings. On the Classification Learner tab, in the Model Type section, click Advanced. Try changing a setting, and then train the new model by clicking Train. For information on settings and the strengths of different nearest neighbor model types, see “Nearest Neighbor Classifiers” on page 23-40.

To export the trained model to the workspace, in the Export section of the toolstrip, click Export model. See “Export Classification Model to Predict New Data” on page 23-62.

To examine the code for training this classifier, select Export Model > Generate Code.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1. Click the arrow on the far right of the Model Type section to expand the list of classifiers.
2. Click All, then click Train.
To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
Train Ensemble Classifiers Using Classification Learner App

This example shows how to construct ensembles of classifiers in the Classification Learner app. Ensemble classifiers meld results from many weak learners into one high-quality ensemble predictor. Qualities depend on the choice of algorithm, but ensemble classifiers tend to be slow to fit because they often need many learners.

1. In MATLAB, load the fisheriris data set and define some variables from the data set to use for a classification.

 fishertable = readtable('fisheriris.csv');

2. On the Apps tab, in the Machine Learning group, click Classification Learner.

3. On the Classification Learner tab, in the File section, click New Session.

 In the New Session dialog box, observe that the app has selected response and predictor variables based on their data type. Petal and sepal length and width are predictors. Species is the response that you want to classify. For this example, do not change the selections.

4. Click Start Session.

 Classification Learner creates a scatter plot of the data.

5. Use the scatter plot to investigate which variables are useful for predicting the response. Select different variables in the X- and Y-axis controls to visualize the distribution of species and measurements. Observe which variables separate the species colors most clearly.

6. To create a selection of ensemble models, on the Classification Learner tab, in the Model Type section, click the down arrow to expand the list of classifiers, then under Ensemble Classifiers, click All Ensembles.

7. In the Training section, click Train.
Tip If you have Parallel Computing Toolbox then the first time you click **Train** you see a dialog while the app opens a parallel pool of workers. After the pool opens, you can train multiple classifiers at once and continue working.

Classification Learner trains one of each ensemble classification option in the gallery, and highlights the best score. The app outlines in a box the **Accuracy** score of the best model.

8 Select a model in the History list to view the results. Examine the scatter plot for the trained model. Misclassified points are shown as an X.

9 To inspect the accuracy of the predictions in each class, on the **Classification Learner** tab, in the **Plots** section, click **Confusion Matrix**. View the matrix of true class and predicted class results.
10 Select the other models in the list to compare.

11 Choose the best model in the History list (the best score is highlighted in the **Accuracy** box). To improve the model, try including different features in the model. See if you can improve the model by removing features with low predictive power.

On the **Classification Learner** tab, in the **Data Transformation** section, click **Features**. In the Feature Selection dialog box, specify predictors to remove from the model, and click **Train** to train a new model using the new options. Compare results among the classifiers in the History list.

12 To investigate features to include or exclude, use the scatter and parallel coordinates plots. On the **Classification Learner** tab, in the **Plots** section, select **Parallel Coordinates Plot**.

13 Choose the best model in the History list. To try to improve the model further, try changing settings. On the **Classification Learner** tab, in the **Model Type** section, click **Advanced**. Try changing a setting, then train the new model by clicking **Train**.

For information on the settings to try and the strengths of different ensemble model types, see “Ensemble Classifiers” on page 23-43.

14 To export the trained model to the workspace, select the Classification Learner tab and click **Export model**. See “Export Classification Model to Predict New Data” on page 23-62.

15 To examine the code for training this classifier, select **Export Model > Generate Code**.

Use the same workflow to evaluate and compare the other classifier types you can train in Classification Learner.

To try all the classifier model presets available for your data set:

1 Click the arrow on the far right of the **Model Type** section to expand the list of classifiers.

2 Click **All**, then click **Train**.
To learn about other classifier types, see “Train Classification Models in Classification Learner App” on page 23-11.

See Also

Related Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Choose Classifier Options” on page 23-26
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62
- “Train Decision Trees Using Classification Learner App” on page 23-68
Regression Learner

- “Train Regression Models in Regression Learner App” on page 24-2
- “Select Data and Validation for Regression Problem” on page 24-10
- “Choose Regression Model Options” on page 24-15
- “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
- “Assess Model Performance in Regression Learner App” on page 24-36
- “Export Regression Model to Predict New Data” on page 24-44
- “Train Regression Trees Using Regression Learner App” on page 24-48
Train Regression Models in Regression Learner App

What Is Supervised Machine Learning?

You can use Regression Learner to train regression models to predict data. Using this app, you can explore your data, select features, specify validation schemes, train models, and assess results. You can perform automated training to search for the best regression model type, including linear regression models, regression trees, Gaussian process regression models, support vector machines, and ensembles of regression trees.

Perform supervised machine learning by supplying a known set of observations of input data (predictors) and known responses. Use the observations to train a model that generates predicted responses for new input data. To use the model with new data, or to learn about programmatic regression, you can export the model to the workspace or generate MATLAB code to recreate the trained model.

Get started by training a selection of model types. See “Automated Regression Model Training” on page 24-3.
Automated Regression Model Training

You can use Regression Learner to automatically train a selection of different regression models on your data.

- Get started by automatically training multiple models simultaneously. You can quickly try a selection of models, and then explore promising models interactively.
- If you already know what model type you want, then you can train individual models instead. See “Manual Regression Model Training” on page 24-4.

1. On the Apps tab, in the Machine Learning group, click Regression Learner.
2. Click New Session and select data from the workspace or from file. Specify a response variable and variables to use as predictors. See “Select Data and Validation for Regression Problem” on page 24-10.
3. On the Regression Learner tab, in the Model Type section, click the arrow to expand the list of regression models. Select All Quick-To-Train. This option trains all the model presets that are fast to fit.

4. Click Train.

Note If you have Parallel Computing Toolbox, the app trains models in parallel. See “Parallel Regression Model Training” on page 24-6.
A selection of model types appears in the History list. When the models finish training, the best RMSE score is highlighted in a box.

5 Click models in the History list to explore results in the plots.

For the next steps, see “Manual Regression Model Training” on page 24-4 or “Compare and Improve Regression Models” on page 24-6.

6 To try all the model presets available, click All, and then click Train.

Manual Regression Model Training

To explore individual model types, you can train models one at a time or train a group of models of the same type.

1 Choose a model type. On the Regression Learner tab, in the Model Type section, click a model type. To see all available model options, click the arrow in the Model Type section to expand the list of regression models. The options in the gallery are preset starting points with different settings, suitable for a range of different regression problems.
To read descriptions of the models, switch to the details view or hover the mouse over a button to display its tooltip.

![Regression Learner - Response Plot](image)

For more information on each option, see “Choose Regression Model Options” on page 24-15.

After selecting a model, click **Train**.

Repeat to explore different models.

Tip Select regression trees first. If your trained models do not predict the response accurately enough, then try other models with higher flexibility. To avoid overfitting, look for a less flexible model that provides sufficient accuracy.

If you want to try all model types or train a group of the same type, then select one of the **All** options in the gallery.

For next steps, see “Compare and Improve Regression Models” on page 24-6.
Parallel Regression Model Training

You can train models in parallel using Regression Learner if you have Parallel Computing Toolbox. When you train models, the app automatically starts a parallel pool of workers, unless you turn off the default parallel preference **Automatically create a parallel pool**. If a pool is already open, the app uses it for training. Parallel training allows you to train multiple models simultaneously and continue working.

1. The first time you click **Train**, you see a dialog box while the app opens a parallel pool of workers. After the pool opens, you can train multiple models at once.

2. When models are training in parallel, you see progress indicators on each training and queued model in the History list. If you want, you can cancel individual models. During training, you can examine results and plots from models, and initiate training of more models.

To control parallel training, toggle the **Use Parallel** button on the app toolstrip. (The **Use Parallel** button is only available if you have Parallel Computing Toolbox.)

If you have Parallel Computing Toolbox, then parallel training is available in Regression Learner, and you do not need to set the **UseParallel** option of the statset function. If you turn off the parallel preference to **Automatically create a parallel pool**, then the app does not start a pool for you without asking first.

Compare and Improve Regression Models

1. Click models in the History list to explore the results in the plots. Compare model performance by inspecting results in the plots. Examine the **RMSE** score reported in the History list for each model. See “Assess Model Performance in Regression Learner App” on page 24-36.
2 Select the best model in the History list and then try including and excluding different features in the model. Click Feature Selection.

Try the response plot to help you identify features to remove. See if you can improve the model by removing features with low predictive power. Specify predictors to include in the model, and train new models using the new options. Compare results among the models in the History list.

You also can try transforming features with PCA to reduce dimensionality.

See “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32.

3 Improve the model further by changing model parameter settings in the Advanced dialog box. Then, train using the new options. To learn how to control model flexibility, see “Choose Regression Model Options” on page 24-15.

If feature selection, PCA, or new parameter settings improve your model, try training All model types with the new settings. See if another model type does better with the new settings.

Tip To avoid overfitting, look for a less flexible model that provides sufficient accuracy. For example, look for simple models, such as regression trees that are fast and easy to interpret. If your models are not accurate enough, then try other models with higher flexibility, such as ensembles. To learn about the model flexibility, see “Choose Regression Model Options” on page 24-15.

This figure shows the app with a History list containing various regression model types.
Tip For a step-by-step example comparing different regression models, see “Train Regression Trees Using Regression Learner App” on page 24-48.

Next, you can generate code to train the model with different data or export trained models to the workspace to make predictions using new data. See “Export Regression Model to Predict New Data” on page 24-44.
See Also

Related Examples

- “Select Data and Validation for Regression Problem” on page 24-10
- “Choose Regression Model Options” on page 24-15
- “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
- “Assess Model Performance in Regression Learner App” on page 24-36
- “Export Regression Model to Predict New Data” on page 24-44
- “Train Regression Trees Using Regression Learner App” on page 24-48
Select Data and Validation for Regression Problem

In this section...

| “Select Data from Workspace” on page 24-10 |
| “Import Data from File” on page 24-11 |
| “Example Data for Regression” on page 24-11 |
| “Choose Validation Scheme” on page 24-12 |

Select Data from Workspace

Tip In Regression Learner, tables are the easiest way to work with your data, because they can contain numeric and label data. Use the Import Tool to bring your data into the MATLAB workspace as a table, or use the table functions to create a table from workspace variables. See “Tables” (MATLAB).

If your predictors are a matrix and the response is a vector, combine them into a table using the table function.

1 Load your data into the MATLAB workspace.

 Predictor variables can be numeric, categorical, string, or logical vectors, cell arrays of character vectors, or character arrays. The response variable must be a floating-point vector (single or double precision).

 For example data sets, see “Example Data for Regression” on page 24-11.

2 On the Apps tab, click Regression Learner to open the app.

3 On the Regression Learner tab, in the File section, click New Session.

4 In the New Session dialog box, select a table or matrix from the workspace variables.

 If you select a matrix, choose whether to use rows or columns for observations by clicking the option buttons.

5 Observe the roles the app selects for the variables based on their data type. The app tries to select a suitable response variable, and all other variables are predictors. Change the selections if needed. Add or remove predictors using the check boxes. Add or remove all predictors by clicking Add All or Remove All. You can also add or
remove multiple predictors by selecting them in the table, and then clicking Add N or Remove N, where N is the number of selected predictors. The Add All and Remove All buttons change to Add N and Remove N when you select multiple predictors.

6 Click Start Session to accept the default validation scheme and continue. The default validation option is 5-fold cross-validation, which protects against overfitting.

Tip If you have a large data set, you might want to switch to holdout validation. To learn more, see “Choose Validation Scheme” on page 24-12.

For next steps, see “Train Regression Models in Regression Learner App” on page 24-2.

Import Data from File

1 On the Regression Learner tab, in the File section, select New Session > From File.

2 Select a file type in the list, such as spreadsheets, text files, or comma-separated values (.csv) files, or select All Files to browse for other file types such as .dat.

Example Data for Regression

To get started using Regression Learner, try these example data sets.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cars | Number of predictors: 7
Number of observations: 406
Response: MPG (miles per gallon) | Data on different car models, 1970–1982. Predict the fuel economy (in miles per gallon), or one of the other characteristics.
For a step-by-step example, see “Train Regression Trees Using Regression Learner App” on page 24-48. |

Create a table from variables in the carbig.mat file:

```matlab
load carbig
cartable = table(Acceleration, Cylinders, Displacement,...  
Horsepower, Model_Year, Weight, Origin, MPG);
```
### Name	Size	Description
Abalone | Number of predictors: 8
Number of observations: 4177
Response: Rings | Measurements of abalone (a group of sea snails). Predict the age of abalones, which is closely related to the number of rings in their shells.

Download the data from the UCI Machine Learning Repository and save it in your current folder. Read the data into a table and specify the variable names.

```
websave('abalone.csv',url);
varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';
'Vescera_weight'; 'Shell_weight'; 'Rings'};
abalonetable = readtable('abalone.csv');
abalonetable.Properties.VariableNames = varnames;
```

Hospital | Number of predictors: 5
Number of observations: 100
Response: BloodPressure_2 | Simulated hospital data. Predict the blood pressure of patients.

Create a table from the hospital variable in the hospital.mat file:

```
load hospital.mat
hospitaltable = dataset2table(hospital(:,2:end-1));
```

Choose Validation Scheme

Choose a validation method to examine the predictive accuracy of the fitted models. Validation estimates model performance on new data, and helps you choose the best model. Validation protects against overfitting. A model that is too flexible and suffers from overfitting has a worse validation accuracy. Choose a validation scheme before training any models so that you can compare all the models in your session using the same validation scheme.

Tip Try the default validation scheme and click **Start Session** to continue. The default option is 5-fold cross-validation, which protects against overfitting.

If you have a large data set and training the models takes too long using cross-validation, reimport your data and try the faster holdout validation instead.
• **Cross-Validation**: Select the number of folds (or divisions) to partition the data set using the slider control.

If you choose \(k \) folds, then the app:

1. Partitions the data into \(k \) disjoint sets or folds
2. For each fold:
 a. Trains a model using the out-of-fold observations
 b. Assesses model performance using in-fold data
3. Calculates the average test error over all folds

This method gives a good estimate of the predictive accuracy of the final model trained using the full data set. The method requires multiple fits, but makes efficient use of all the data, so it works well for small data sets.

• **Holdout Validation**: Select a percentage of the data to use as a validation set using the slider control. The app trains a model on the training set and assesses its performance with the validation set. The model used for validation is based on only a portion of the data, so holdout validation is appropriate only for large data sets. The final model is trained using the full data set.

• **No Validation**: No protection against overfitting. The app uses all the data for training and computes the error rate on the same data. Without any test data, you get an unrealistic estimate of the model’s performance on new data. That is, the training sample accuracy is likely to be unrealistically high, and the predictive accuracy is likely to be lower.

To help you avoid overfitting to the training data, choose a validation scheme instead.

Note The validation scheme only affects the way that Regression Learner computes validation metrics. The final model is always trained using the full data set.

All the models you train after selecting data use the same validation scheme that you select in this dialog box. You can compare all the models in your session using the same validation scheme.

To change the validation selection and train new models, you can select data again, but you lose any trained models. The app warns you that importing data starts a new session. Save any trained models you want to keep to the workspace, and then import the data.
For next steps training models, see “Train Regression Models in Regression Learner App” on page 24-2.

See Also

Related Examples

• “Train Regression Models in Regression Learner App” on page 24-2
• “Choose Regression Model Options” on page 24-15
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
• “Assess Model Performance in Regression Learner App” on page 24-36
• “Export Regression Model to Predict New Data” on page 24-44
• “Train Regression Trees Using Regression Learner App” on page 24-48
Choose Regression Model Options

In this section...

“Choose Regression Model Type” on page 24-15
“Linear Regression Models” on page 24-18
“Regression Trees” on page 24-21
“Support Vector Machines” on page 24-23
“Gaussian Process Regression Models” on page 24-26
“Ensembles of Trees” on page 24-29

Choose Regression Model Type

You can use the Regression Learner app to automatically train a selection of different models on your data. Use automated training to quickly try a selection of model types, and then explore promising models interactively. To get started, try these options first

<table>
<thead>
<tr>
<th>Get Started Regression Model Buttons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Quick-To-Train</td>
<td>Try the All Quick-To-Train button first. The app trains all model types that are typically quick to train.</td>
</tr>
<tr>
<td>All</td>
<td>Use the All button to train all available model types. Trains every type regardless of any prior trained models. Can be time-consuming.</td>
</tr>
</tbody>
</table>
To learn more about automated model training, see “Automated Regression Model Training” on page 24-3.

If you want to explore models one at a time, or if you already know what model type you want, you can select individual models or train a group of the same type. To see all available regression model options, on the Regression Learner tab, click the arrow in the Model Type section to expand the list of regression models. The options in the gallery are preset starting points with different settings, suitable for a range of different regression problems.

For help choosing the best model type for your problem, see the tables showing typical characteristics of different regression model types. Decide on the tradeoff you want in speed, flexibility, and interpretability. The best model type depends on your data.

Tip To avoid overfitting, look for a less flexible model that provides sufficient accuracy. For example, look for simple models such as regression trees that are fast and easy to interpret. If the models are not accurate enough predicting the response, choose other models with higher flexibility, such as ensembles. To control flexibility, see the details for each model type.
Characteristics of Regression Model Types

<table>
<thead>
<tr>
<th>Regression Model Type</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Linear Regression Models” on page 24-18</td>
<td>Easy</td>
</tr>
<tr>
<td>“Regression Trees” on page 24-21</td>
<td>Easy</td>
</tr>
<tr>
<td>“Support Vector Machines” on page 24-23</td>
<td>Easy for linear SVMs. Hard for other kernels.</td>
</tr>
<tr>
<td>“Gaussian Process Regression Models” on page 24-26</td>
<td>Hard</td>
</tr>
<tr>
<td>“Ensembles of Trees” on page 24-29</td>
<td>Hard</td>
</tr>
</tbody>
</table>

To read a description of each model in Regression Learner, switch to the details view in the list of all model presets.
Tip The options in the Model Type gallery are preset starting points with different settings. After you choose a model type, such as regression trees, try training all the presets to see which one produces the best model with your data.

For workflow instructions, see “Train Regression Models in Regression Learner App” on page 24-2.

Categorical Predictor Support

In Regression Learner, all model types support categorical predictors.

Tip If you have categorical predictors with many unique values, training linear models with interaction or quadratic terms and stepwise linear models can use a lot of memory. If the model fails to train, try removing these categorical predictors.

Linear Regression Models

Linear regression models have predictors that are linear in the model parameters, are easy to interpret, and are fast for making predictions. These characteristics make linear regression models popular models to try first. However, the highly constrained form of these models means that they often have low predictive accuracy. After fitting a linear
regression model, try creating more flexible models, such as regression trees, and compare the results.

Tip In the **Model Type** gallery, click **All Linear** to try each of the linear regression options and see which settings produce the best model with your data. Select the best model in the History list and try to improve that model by using feature selection and changing some advanced options.

<table>
<thead>
<tr>
<th>Regression Model Type</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Easy</td>
<td>Very low</td>
</tr>
<tr>
<td>Interactions Linear</td>
<td>Easy</td>
<td>Medium</td>
</tr>
<tr>
<td>Robust Linear</td>
<td>Easy</td>
<td>Very low. Less sensitive to outliers, but can be slow to train.</td>
</tr>
<tr>
<td>Stepwise Linear</td>
<td>Easy</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page 24-48.

Advanced Linear Regression Options

Regression Learner uses the `fitlm` function to train Linear, Interactions Linear, and Robust Linear models. The app uses the `stepwiselm` function to train Stepwise Linear models.

For Linear, Interactions Linear, and Robust Linear models you can set these options:

- **Terms**

 Specify which terms to use in the linear model. You can choose from:
• **Linear.** A constant term and linear terms in the predictors
• **Interactions.** A constant term, linear terms, and interaction terms between the predictors
• **Pure Quadratic.** A constant term, linear terms, and terms that are purely quadratic in each of the predictors
• **Quadratic.** A constant term, linear terms, and quadratic terms (including interactions)

Robust option

Specify whether to use a robust objective function and make your model less sensitive to outliers. With this option, the fitting method automatically assigns lower weights to data points that are more likely to be outliers.

Stepwise linear regression starts with an initial model and systematically adds and removes terms to the model based on the explanatory power of these incrementally larger and smaller models. For Stepwise Linear models, you can set these options:

• **Initial terms**

 Specify the terms that are included in the initial model of the stepwise procedure. You can choose from **Constant, Linear, Interactions, Pure Quadratic,** and **Quadratic.**

• **Upper bound on terms**

 Specify the highest order of the terms that the stepwise procedure can add to the model. You can choose from **Linear, Interactions, Pure Quadratic,** and **Quadratic.**

• **Maximum number of steps**

 Specify the maximum number of different linear models that can be tried in the stepwise procedure. To speed up training, try reducing the maximum number of steps. Selecting a small maximum number of steps decreases your chances of finding a good model.

Tip If you have categorical predictors with many unique values, training linear models with interaction or quadratic terms and stepwise linear models can use a lot of memory. If the model fails to train, try removing these categorical predictors.
Regression Trees

Regression trees are easy to interpret, fast for fitting and prediction, and low on memory usage. Try to grow smaller trees with fewer larger leaves to prevent overfitting. Control the leaf size with the Minimum leaf size setting.

Tip In the Model Type gallery, click All Trees to try each of the regression tree options and see which settings produce the best model with your data. Select the best model in the History list, and try to improve that model by using feature selection and changing some advanced options.

<table>
<thead>
<tr>
<th>Regression Model Type</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Tree</td>
<td>Easy</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Many small leaves for a highly flexible response function (Minimum leaf size is 4.)</td>
</tr>
<tr>
<td>Medium Tree</td>
<td>Easy</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium-sized leaves for a less flexible response function (Minimum leaf size is 12.)</td>
</tr>
<tr>
<td>Coarse Tree</td>
<td>Easy</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Few large leaves for a coarse response function (Minimum leaf size is 36.)</td>
</tr>
</tbody>
</table>

To predict a response of a regression tree, follow the tree from the root (beginning) node down to a leaf node. The leaf node contains the value of the response.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor variable. For example, here is a simple regression tree
This tree predicts the response based on two predictors, \(x_1 \) and \(x_2 \). To make a prediction, start at the top node. At each node, check the values of the predictors to decide which branch to follow. When the branches reach a leaf node, the response is set to the value corresponding to that node.

You can visualize your regression tree model by exporting the model from the app, and then entering:

```matlab
view(trainedModel.RegressionTree,'Mode','graph')
```

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page 24-48.

Advanced Regression Tree Options

The Regression Learner app uses the `fitrtree` function to train regression trees. You can set these options:
• **Minimum leaf size**

Specify the minimum number of training samples used to calculate the response of each leaf node. When you grow a regression tree, consider its simplicity and predictive power. To change the minimum leaf size, click the buttons or enter a positive integer value in the **Minimum leaf size** box.

- A fine tree with many small leaves is usually highly accurate on the training data. However, the tree might not show comparable accuracy on an independent test set. A very leafy tree tends to overfit, and its validation accuracy is often far lower than its training (or resubstitution) accuracy.
- In contrast, a coarse tree with fewer large leaves does not attain high training accuracy. But a coarse tree can be more robust in that its training accuracy can be near that of a representative test set.

Tip Decrease the **Minimum leaf size** to create a more flexible model.

• **Surrogate decision splits** — For missing data only.

Specify surrogate use for decision splits. If you have data with missing values, use surrogate splits to improve the accuracy of predictions.

When you set **Surrogate decision splits** to On, the regression tree finds at most 10 surrogate splits at each branch node. To change the number of surrogate splits, click the buttons or enter a positive integer value in the **Maximum surrogates per node** box.

When you set **Surrogate decision splits** to Find All, the regression tree finds all surrogate splits at each branch node. The Find All setting can use considerable time and memory.

Support Vector Machines

You can train regression support vector machines (SVMs) in Regression Learner. Linear SVMs are easy to interpret, but can have low predictive accuracy. Nonlinear SVMs are more difficult to interpret, but can be more accurate.

Tip In the **Model Type** gallery, click **All SVMs** to try each of the SVM options and see which settings produce the best model with your data. Select the best model in the
History list, and try to improve that model by using feature selection and changing some advanced options.

<table>
<thead>
<tr>
<th>Regression Model Type</th>
<th>Interpretability</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear SVM</td>
<td>Easy</td>
<td>Low</td>
</tr>
<tr>
<td>Quadratic SVM</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td>Cubic SVM</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td>Fine Gaussian SVM</td>
<td>Hard</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows rapid variations in the response function. Kernel scale is set to $\sqrt{P}/4$, where P is the number of predictors.</td>
</tr>
<tr>
<td>Medium Gaussian SVM</td>
<td>Hard</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gives a less flexible response function. Kernel scale is set to \sqrt{P}.</td>
</tr>
<tr>
<td>Coarse Gaussian SVM</td>
<td>Hard</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gives a rigid response function. Kernel scale is set to $\sqrt{P}*4$.</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox implements linear epsilon-insensitive SVM regression. This SVM ignores prediction errors that are less than some fixed number ε. The support vectors are the data points that have errors larger than ε. The function the SVM uses to predict new values depends only on the support vectors. To learn more about SVM regression, see Understanding Support Vector Machine Regression on page 25-2.

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page 24-48.
Advanced SVM Options

Regression Learner uses the fitrsvm function to train SVM regression models.

You can set these options in the app:

- **Kernel function**
 The kernel function determines the nonlinear transformation applied to the data before the SVM is trained. You can choose from:
 - Gaussian or Radial Basis Function (RBF) kernel
 - Linear kernel, easiest to interpret
 - Quadratic kernel
 - Cubic kernel

- **Box constraint mode**
 The box constraint controls the penalty imposed on observations with large residuals. A larger box constraint gives a more flexible model. A smaller value gives a more rigid model, less sensitive to overfitting.

 When **Box constraint mode** is set to **Auto**, the app uses a heuristic procedure to select the box constraint.

 Try to fine-tune your model by specifying the box constraint manually. Set **Box constraint mode** to **Manual** and specify a value. Change the value by clicking the buttons or entering a positive scalar value in the **Manual box constraint** box. The app automatically preselects a reasonable value for you. Try to increase or decrease this value slightly and see if this improves your model.

 Tip Increase the box constraint value to create a more flexible model.

- **Epsilon mode**
 Prediction errors that are smaller than the epsilon (ε) value are ignored and treated as equal to zero. A smaller epsilon value gives a more flexible model.

 When **Epsilon mode** is set to **Auto**, the app uses a heuristic procedure to select the kernel scale.

 Try to fine-tune your model by specifying the epsilon value manually. Set **Epsilon mode** to **Manual** and specify a value. Change the value by clicking the buttons or
entering a positive scalar value in the **Manual epsilon** box. The app automatically preselects a reasonable value for you. Try to increase or decrease this value slightly and see if this improves your model.

Tip Decrease the epsilon value to create a more flexible model.

- **Kernel scale mode**

 The kernel scale controls the scale of the predictors on which the kernel varies significantly. A smaller kernel scale gives a more flexible model.

 When **Kernel scale mode** is set to **Auto**, the app uses a heuristic procedure to select the kernel scale.

 Try to fine-tune your model by specifying the kernel scale manually. Set **Kernel scale mode** to **Manual** and specify a value. Change the value by clicking the buttons or entering a positive scalar value in the **Manual kernel scale** box. The app automatically preselects a reasonable value for you. Try to increase or decrease this value slightly and see if this improves your model.

 Tip Decrease the kernel scale value to create a more flexible model.

- **Standardize**

 Standardizing the predictors transforms them so that they have mean 0 and standard deviation 1. Standardizing removes the dependence on arbitrary scales in the predictors and generally improves performance.

Gaussian Process Regression Models

You can train Gaussian process regression (GPR) models in Regression Learner. GPR models are often highly accurate, but can be difficult to interpret.

Tip In the **Model Type** gallery, click **All GPR Models** to try each of the GPR model options and see which settings produce the best model with your data. Select the best model in the History list, and try to improve that model by using feature selection and changing some advanced options.
In Gaussian process regression, the response is modeled using a probability distribution over a space of functions. The flexibility of the presets in the **Model Type** gallery is automatically chosen to give a small training error and, simultaneously, protection against overfitting. To learn more about Gaussian process regression, see Gaussian Process Regression Models on page 6-2.

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page 24-48.

Advanced Gaussian Process Regression Options

Regression Learner uses the `fitrgp` function to train GPR models.

You can set these options in the app:

- **Basis function**

 The basis function specifies the form of the prior mean function of the Gaussian process regression model. You can choose from Zero, Constant, and Linear. Try to choose a different basis function and see if this improves your model.

- **Kernel function**
The kernel function determines the correlation in the response as a function of the distance between the predictor values. You can choose from Rational Quadratic, Squared Exponential, Matern 5/2, Matern 3/2, and Exponential.

To learn more about kernel functions, see Kernel (Covariance) Function Options on page 6-7.

- **Use isotropic kernel**

 If you use an isotropic kernel, the correlation length scales are the same for all the predictors. With a nonisotropic kernel, each predictor variable has its own separate correlation length scale.

 Using a nonisotropic kernel can improve the accuracy of your model, but can make the model slow to fit.

 To learn more about nonisotropic kernels, see Kernel (Covariance) Function Options on page 6-7.

- **Kernel mode**

 You can manually specify initial values of the kernel parameters **Kernel scale** and **Signal standard deviation**. The signal standard deviation is the prior standard deviation of the response values. By default the app locally optimizes the kernel parameters starting from the initial values. To use fixed kernel parameters, clear the **Optimize numeric parameters** check box in the advanced options.

 When **Kernel scale mode** is set to **Auto**, the app uses a heuristic procedure to select the initial kernel parameters.

 If you set **Kernel scale mode** to **Manual**, you can specify the initial values. Click the buttons or enter a positive scalar value in the **Kernel scale** box and the **Signal standard deviation** box.

 If you clear the **Use isotropic kernel** check box, you cannot set initial kernel parameters manually.

- **Sigma mode**

 You can specify manually the initial value of the observation noise standard deviation **Sigma**. By default the app optimizes the observation noise standard deviation, starting from the initial value. To use fixed kernel parameters, clear the **Optimize numeric parameters** check box in the advanced options.
When **Sigma mode** is set to **Auto**, the app uses a heuristic procedure to select the initial observation noise standard deviation.

If you set **Sigma mode** to **Manual**, you can specify the initial values. Click the buttons or enter a positive scalar value in the **Sigma** box.

- **Standardize**

 Standardizing the predictors transforms them so that they have mean 0 and standard deviation 1. Standardizing removes the dependence on arbitrary scales in the predictors and generally improves performance.

- **Optimize numeric parameters**

 With this option, the app automatically optimizes numeric parameters of the GPR model. The optimized parameters are the coefficients of the **Basis function**, the kernel parameters **Kernel scale** and **Signal standard deviation**, and the observation noise standard deviation **Sigma**.

Ensembles of Trees

You can train ensembles of regression trees in Regression Learner. Ensemble models combine results from many weak learners into one high-quality ensemble model.

Tip In the **Model Type** gallery, click **All Ensembles** to try each of the ensemble options and see which settings produce the best model with your data. Select the best model in the History list, and try to improve that model by using feature selection and changing some advanced options.

<table>
<thead>
<tr>
<th>Regression Model Type</th>
<th>Interpretability</th>
<th>Ensemble Method</th>
<th>Model Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosted Trees</td>
<td>Hard</td>
<td>Least-squares boosting (LSBoost) with regression tree learners.</td>
<td>Medium to high</td>
</tr>
</tbody>
</table>
Advanced Ensemble Options

Regression Learner uses the `fitrensemble` function to train ensemble models. You can set these options:

- **Minimum leaf size**

 Specify the minimum number of training samples used to calculate the response of each leaf node. When you grow a regression tree, consider its simplicity and predictive power. To change the minimum leaf size, click the buttons or enter a positive integer value in the **Minimum leaf size** box.

 - A fine tree with many small leaves is usually highly accurate on the training data. However, the tree might not show comparable accuracy on an independent test set. A very leafy tree tends to overfit, and its validation accuracy is often far lower than its training (or resubstitution) accuracy.

 - In contrast, a coarse tree with fewer large leaves does not attain high training accuracy. But a coarse tree can be more robust in that its training accuracy can be near that of a representative test set.

 Tip Decrease the **Minimum leaf size** to create a more flexible model.

- **Number of learners**

 Try changing the number of learners to see if you can improve the model. Many learners can produce high accuracy, but can be time consuming to fit.

 Tip Increase the **Number of learners** to create a more flexible model.
• Learning rate

For boosted trees, specify the learning rate for shrinkage. If you set the learning rate to less than 1, the ensemble requires more learning iterations but often achieves better accuracy. 0.1 is a popular initial choice.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data and Validation for Regression Problem” on page 24-10
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
• “Assess Model Performance in Regression Learner App” on page 24-36
• “Export Regression Model to Predict New Data” on page 24-44
• “Train Regression Trees Using Regression Learner App” on page 24-48
Feature Selection and Feature Transformation Using Regression Learner App

In this section...

| “Investigate Features in the Response Plot” on page 24-32 |
| “Select Features to Include” on page 24-33 |
| “Transform Features with PCA in Regression Learner” on page 24-34 |

Investigate Features in the Response Plot

In Regression Learner, use the response plot to try to identify predictors that are useful for predicting the response. To visualize the relation between different predictors and the response, under X-axis, select different variables in the X list.

Before you train a regression model, the response plot shows the training data. If you have trained a regression model, then the response plot also shows the model predictions.

Observe which variables are associated most clearly with the response. When you plot the carbig data set, the predictor Horsepower shows a clear negative association with the response.

Look for features that do not seem to have any association with the response and use Feature Selection to remove those features from the set of used predictors.
Select Features to Include

In Regression Learner, you can specify different features (or predictors) to include in the model. See if you can improve models by removing features with low predictive power. If data collection is expensive or difficult, you might prefer a model that performs satisfactorily with fewer predictors.

1. On the Regression Learner tab, in the Features section, click Feature Selection.

2. In the Feature Selection window, clear the check boxes for the predictors you want to exclude.
Tip You can close the Feature Selection window, or move it. The choices you make in the window remain.

3 Click **Train** to train a new model using the new predictor options.

4 Observe the new model in the History list. The Current Model window displays how many predictors are excluded.

5 Check which predictors are included in a trained model. Click the model in the History list and look at the check boxes in the Feature Selection window.

6 Try to improve the model by including different features.

For an example using feature selection, see “Train Regression Trees Using Regression Learner App” on page 24-48.

Transform Features with PCA in Regression Learner

Use principal component analysis (PCA) to reduce the dimensionality of the predictor space. Reducing the dimensionality can create regression models in Regression Learner that help prevent overfitting. PCA linearly transforms predictors to remove redundant dimensions, and generates a new set of variables called principal components.

1. On the **Regression Learner** tab, in the **Features** section, select **PCA**.

2. In the Advanced PCA Options window, select the **Enable PCA** check box.

 You can close the PCA window, or move it. The choices you make in the window remain.

3. Click **Train** again. The `pca` function transforms your selected features before training the model.

 By default, PCA keeps only the components that explain 95% of the variance. In the PCA window, you can change the percentage of variance to explain in the **Explained variance** box. A higher value risks overfitting, while a lower value risks removing useful dimensions.

4. Manually limit the number of PCA components. In the **Component reduction criterion** list, select **Specify number of components**. Edit the number in the **Number of numeric components** box. The number of components cannot be larger than the number of numeric predictors. PCA is not applied to categorical predictors.

 You can check PCA Options for trained models in the Current Model window. For example:
PCA is keeping enough components to explain 95% variance. After training, 2 components were kept. Explained variance per component (in order): 92.5%, 5.3%, 1.7%, 0.5%

Check the explained variance percentages to decide whether to change the number of components.

To learn more about how Regression Learner applies PCA to your data, generate code for your trained regression model. For more information on PCA, see the pca function.

See Also

Related Examples
- “Train Regression Models in Regression Learner App” on page 24-2
- “Select Data and Validation for Regression Problem” on page 24-10
- “Choose Regression Model Options” on page 24-15
- “Assess Model Performance in Regression Learner App” on page 24-36
- “Export Regression Model to Predict New Data” on page 24-44
- “Train Regression Trees Using Regression Learner App” on page 24-48
Assess Model Performance in Regression Learner App

Check Performance in History List

After training a model in Regression Learner, check the History list to see which model has the best overall score. The best score is highlighted in a box. This score is the root mean square error (RMSE) on the validation set. The score estimates the performance of the trained model on new data. Use the score to help you choose the best model.

- For cross-validation, the score is the RMSE on all observations, counting each observation when it was in a held-out fold.

Note When you imported data into the app, if you accepted the defaults, you are using cross-validation. To learn more, see “Choose Validation Scheme” on page 24-12.

- For holdout validation, the score is the RMSE on the held-out observations.
- For no validation, the score is the resubstitution RMSE on all the training data.

The best overall score might not be the best model for your goal. Sometimes a model with slightly lower overall score is the better model for your goal. You want to avoid
overfitting, and you might want to exclude some predictors where data collection is expensive or difficult.

View Model Statistics in Current Model Window

You can view model statistics in the Current Model window and use these statistics to assess and compare models. The statistics are calculated on the validation set.

![Current Model Window](image)

Model Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
<th>Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>Root mean square error. The RMSE is always positive and its units match the units of your response.</td>
<td>Look for smaller values of the RMSE.</td>
</tr>
<tr>
<td>R-Squared</td>
<td>Coefficient of determination. R-squared is always smaller than 1 and usually larger than 0. It compares the trained model with the model where the response is constant and equals the mean of the training response. If your model is worse than this constant model, then R-Squared is negative.</td>
<td>Look for an R-Squared close to 1.</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squared error. The MSE is the square of the RMSE.</td>
<td>Look for smaller values of the MSE.</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error. The MAE is always positive and similar to the RMSE, but less sensitive to outliers.</td>
<td>Look for smaller values of the MAE.</td>
</tr>
</tbody>
</table>

Explore Data and Results in Response Plot

In the response plot, view the regression model results. After you train a regression model, the response plot displays the predicted response versus record number. If you are using holdout or cross-validation, then these predictions are the predictions on the held-out observations. In other words, each prediction is obtained using a model that was trained without using the corresponding observation. To investigate your results, use the controls on the right. You can:

- Plot predicted and/or true responses. Use the check boxes under **Plot** to make your selection.
- Show prediction errors, drawn as vertical lines between the predicted and true responses, by selecting the **Errors** check box.
- Choose the variable to plot on the x-axis under **X-axis**. You can choose either the record number or one of your predictor variables.
• Plot the response as markers, or as a box plot under **Style**. You can only select **Box plot** when the variable on the x-axis has few unique values.

A box plot displays the typical values of the response and any possible outliers. The central mark indicates the median, and the bottom and top edges of the box are the 25th and 75th percentiles, respectively. Vertical lines, called whiskers, extend from the boxes to the most extreme data points that are not considered outliers. The outliers are plotted individually using the '+' symbol. For more information about box plots, see boxplot.
Plot Predicted vs. Actual Response

Use the Predicted vs. Actual plot to check model performance. Use this plot to understand how well the regression model makes predictions for different response values. To view the Predicted vs. Actual plot after training a model, on the **Regression Learner** tab, in the **Plots** section, click **Predicted vs. Actual Plot**.

When you open the plot, the predicted response of your model is plotted against the actual, true response. A perfect regression model has a predicted response equal to the true response, so all the points lie on a diagonal line. The vertical distance from the line to any point is the error of the prediction for that point. A good model has small errors, and so the predictions are scattered near the line.
Usually a good model has points scattered roughly symmetrically around the diagonal line. If you can see any clear patterns in the plot, it is likely that you can improve your model. Try training a different model type or making your current model type more flexible using the Advanced options in the Model Type section. If you are unable to improve your model, it is possible that you need more data, or that you are missing an important predictor.

Evaluate Model Using Residuals Plot

Use the residuals plot to check model performance. To view the residuals plot after training a model, on the Regression Learner tab, in the Plots section, click Residuals.
Plot. The residuals plot displays the difference between the predicted and true responses. Choose the variable to plot on the x-axis under **X-axis**. Choose either the true response, predicted response, record number, or one of your predictors.

![Residuals Plot](image)

Usually a good model has residuals scattered roughly symmetrically around 0. If you can see any clear patterns in the residuals, it is likely that you can improve your model. Look for these patterns:

- Residuals are not symmetrically distributed around 0.
- Residuals change significantly in size from left to right in the plot.
• Outliers occur, that is, residuals that are much larger than the rest of the residuals.
• Clear, nonlinear pattern appears in the residuals.

Try training a different model type, or making your current model type more flexible using the Advanced options in the Model Type section. If you are unable to improve your model, it is possible that you need more data, or that you are missing an important predictor.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data and Validation for Regression Problem” on page 24-10
• “Choose Regression Model Options” on page 24-15
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
• “Export Regression Model to Predict New Data” on page 24-44
• “Train Regression Trees Using Regression Learner App” on page 24-48
Export Regression Model to Predict New Data

In this section...

| “Export Model to Workspace” on page 24-44 |
| “Make Predictions for New Data” on page 24-45 |
| “Generate MATLAB Code to Train Model with New Data” on page 24-45 |

Export Model to Workspace

After you create regression models interactively in the Regression Learner app, you can export your best model to the workspace. Then you can use that trained model to make predictions using new data.

1. In the app, select the model you want to export in the History list.
2. On the Regression Learner tab, in the Export section, click one of the export options:
 - To include the data used for training the model, select Export Model.

 You export the trained model to the workspace as a structure containing a regression model object.
 - To exclude the training data, select Export Compact Model. This option exports the model with unnecessary data removed where possible. For some models this is a compact object that does not include the training data, but you can still use it for making predictions on new data.
3. In the Export Model dialog box, check the name of your exported variable, and edit it if you want. Then, click OK. The default name for your exported model, trainedModel, increments every time you export to avoid overwriting your models; for example, trainedModel1.

 The new variable (for example, trainedModel) appears in your workspace.

 The app displays information about the exported model in the command window. Read the message to learn how to make predictions with new data.

Note The final exported model is always trained using the full data set. The validation scheme that you use only affects the way that Regression Learner computes validation metrics.
Make Predictions for New Data

After you export a model to the workspace from Regression Learner, or run the code generated from the app, you get a trainedModel structure that you can use to make predictions using new data. The structure contains a model object and a function for prediction. The structure enables you to make predictions for models that include principal component analysis (PCA).

1 Use the exported model to make predictions for new data, T:

\[yfit = trainedModel.predictFcn(T) \]

where trainedModel is the name of your exported variable.

Supply the data \(T \) in same data type as your training data used in the app (table or matrix).

- If you supply a table, then ensure that it contains the same predictor names as your training data. The predictFcn ignores additional variables in tables. Variable formats and types must match the original training data.
- If you supply a matrix, it must contain the same predictor columns or rows as your training data, in the same order and format. Do not include a response variable, any variables that you did not import in the app, or other unused variables.

The output \(yfit \) contains a prediction for each data point.

2 Examine the fields of the exported structure. For help making predictions, enter:

\[trainedModel.HowToPredict \]

You also can extract the model object from the exported structure for further analysis. If you use feature transformation such as PCA in the app, you must take into account this transformation by using the information in the PCA fields of the structure.

Generate MATLAB Code to Train Model with New Data

After you create regression models interactively in the Regression Learner app, you can generate MATLAB code for your best model. Then you can use the code to train the model with new data.

Generate MATLAB code to:
• Train on huge data sets. Explore models in the app trained on a subset of your data, and then generate code to train a selected model on a larger data set.
• Create scripts for training models without needing to learn syntax of the different functions.
• Examine the code to learn how to train models programmatically.
• Modify the code for further analysis, for example to set options that you cannot change in the app.
• Repeat your analysis on different data and automate training.

To generate code and use it to train a model with new data:

1. In the app, from the History list, select the model you want to generate code for.
2. On the **Regression Learner** tab, in the **Export** section, click **Export Model > Generate Code**.

 The app generates code from your session and displays the file in the MATLAB Editor. The file includes the predictors and response, the model training methods, and the validation methods. Save the file.

3. To retrain your model, call the function from the command line with your original data or new data as the input argument. New data must have the same shape.

 Copy the first line of the generated code, excluding the word `function`, and edit the `trainingData` input argument to reflect the variable name of your training data or new data.

 The generated code returns a `trainedModel` structure that contains the same fields as the structure you create when you export a model from Regression Learner to the workspace.

If you want to automate training the same model with new data, or learn how to programmatically train models, examine the generated code. The code shows you how to:

• Process the data into the right shape.
• Train a model and specify all the model options.
• Perform cross-validation.
• Compute statistics.
• Compute validation predictions and scores.
See Also

Functions
fitlm | fitrensemble | fitrgp | fitrsvm | fitrtree | stepwiselm

Classes
CompactLinearModel | CompactRegressionEnsemble | CompactRegressionGP | CompactRegressionSVM | CompactRegressionTree | LinearModel | RegressionEnsemble | RegressionGP | RegressionSVM | RegressionTree

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data and Validation for Regression Problem” on page 24-10
• “Choose Regression Model Options” on page 24-15
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
• “Assess Model Performance in Regression Learner App” on page 24-36
• “Train Regression Trees Using Regression Learner App” on page 24-48
Train Regression Trees Using Regression Learner App

This example shows how to create and compare various regression trees using the Regression Learner app, and export trained models to the workspace to make predictions for new data.

You can train regression trees to predict responses to given input data. To predict the response of a regression tree, follow the tree from the root (beginning) node down to a leaf node. At each node, decide which branch to follow using the rule associated to that node. Continue until you arrive at a leaf node. The predicted response is the value associated to that leaf node.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor variable. For example, here is a simple regression tree:

This tree predicts the response based on two predictors, \(x_1\) and \(x_2\). To predict, start at the top node. At each node, check the values of the predictors to decide which branch to
follow. When the branches reach a leaf node, the response is set to the value corresponding to that node.

This example uses the `carbig` data set. This data set contains characteristics of different car models produced from 1970 through 1982, including:

- Acceleration
- Number of cylinders
- Engine displacement
- Engine power (Horsepower)
- Model year
- Country of origin
- Miles per gallon (MPG)

Train regression trees to predict the fuel economy in miles per gallon of a car model, given the other variables as inputs.

1. In MATLAB, load the `carbig` data set and create a table containing the different variables:
   ```matlab
   load carbig
cartable = table(Acceleration, Cylinders, Displacement,...
                   Horsepower, Model_Year, Weight, Origin, MPG);
   ```

2. On the Apps tab, in the Machine Learning group, click Regression Learner.

3. On the Regression Learner tab, click New Session and select From Workspace.

4. Under Workspace Variable in the New Session dialog box, select `cartable` from the list of tables and matrices in your workspace.

 Observe that the app has preselected response and predictor variables. MPG is chosen as the response, and all the other variables as predictors. For this example, do not change the selections.
To accept the default validation scheme and continue, click **Start Session**. The default validation option is cross-validation, to protect against overfitting.

Regression Learner creates a plot of the response with the record number on the x-axis.

Use the response plot to investigate which variables are useful for predicting the response. To visualize the relation between different predictors and the response, select different variables in the X list under **X-axis**.
Observe which variables are correlated most clearly with the response. Displacement, Horsepower, and Weight all have a clearly visible impact on the response and all show a negative association with the response.

7 Select the variable Origin under **X-axis**. A box plot is automatically displayed. A box plot shows the typical values of the response and any possible outliers. The box plot is useful when plotting markers results in many points overlapping. To show a box plot when the variable on the x-axis has few unique values, under **Style**, select **Box plot**.
Create a selection of regression trees. On the **Regression Learner** tab, in the **Model Type** section, click **All Trees**.

Then click **Train**.

Tip If you have Parallel Computing Toolbox, then the first time you click **Train** you see a dialog box while the app opens a parallel pool of workers. After the pool opens, you can train multiple regression models simultaneously and continue working.
Regression Learner creates and trains three regression trees: a **Fine Tree**, a **Medium Tree**, and a **Coarse Tree**.

The three models appear in the History list. Check the validation **RMSE** (root mean square error) of the models. The best score is highlighted in a box.

The **Fine Tree** and the **Medium Tree** have similar RMSEs, while the **Coarse Tree** is less accurate.

Regression Learner plots both the true training response and the predicted response of the currently selected model.

Note If you are using validation, there is some randomness in the results and so your model validation score can differ from the results shown.
9 Choose a model in the History list to view the results of that model. Under **X-axis**, select *Horsepower* and examine the response plot. Both the true and predicted responses are now plotted. Show the prediction errors, drawn as vertical lines between the predicted and true responses, by selecting the **Errors** check box.

10 See more details on the currently selected model in the Current Model window. Check and compare additional model characteristics, such as R-squared (coefficient of determination), MAE (mean absolute error), and prediction speed. To learn more, see “View Model Statistics in Current Model Window” on page 24-37. In the Current Model window you also can find details on the currently selected model type, such as options used for training the model.

11 Plot the predicted response versus true response. On the **Regression Learner** tab, in the **Plots** section, click **Predicted vs. Actual Plot**. Use this plot to understand how well the regression model makes predictions for different response values.
A perfect regression model has predicted response equal to true response, so all the points lie on a diagonal line. The vertical distance from the line to any point is the error of the prediction for that point. A good model has small errors, so the predictions are scattered near the line. Usually a good model has points scattered roughly symmetrically around the diagonal line. If you can see any clear patterns in the plot, it is likely that you can improve your model.

12 Select the other models in the History list and compare the predicted versus actual plots.

13 In the Model Type gallery, select All Trees again. To try to improve the model, try including different features in the model. See if you can improve the model by
removing features with low predictive power. On the **Regression Learner** tab, in the **Features** section, click **Feature Selection**.

In the Feature Selection window, clear the check boxes for **Acceleration** and **Cylinders** to exclude them from the predictors.

Click **Train** to train new regression trees using the new predictor settings.

14 Observe the new models in the History list. These models are the same regression trees as before, but trained using only five of seven predictors. The History list displays how many predictors are used. To check which predictors are used, click a model in the History list and observe the check boxes in the Feature Selection window.

The models with the two features removed perform comparably to the models using all predictors. The models predict no better using all the predictors compared to using only a subset of the predictors. If data collection is expensive or difficult, you might prefer a model that performs satisfactorily without some predictors.

15 Train the three regression tree presets using only **Horsepower** as predictor. Change the selections in the Feature Selection window and click **Train**.

Using only the engine power as predictor results in models with lower accuracy. However, the models perform well given that they are using only a single predictor. With this simple one-dimensional predictor space, the coarse tree now performs as well as the medium and fine trees.

16 Select the best model in the History list and view the residuals plot. On the **Regression Learner** tab, in the **Plots** section, click **Residuals Plot**. The residuals plot displays the difference between the predicted and true responses. To display the residuals as a line graph, in the **Style** section, choose **Lines**.

Under **X-axis**, select the variable to plot on the x-axis. Choose either the true response, predicted response, record number, or one of your predictors.
Usually a good model has residuals scattered roughly symmetrically around 0. If you can see any clear patterns in the residuals, it is likely that you can improve your model.

17 To learn about model settings, choose the best model in the History list and view the advanced settings. The options in the Model Type gallery are preset starting points, and you can change additional settings. On the Regression Learner tab, in the Model Type section, click Advanced. Compare the different regression tree models in the History list, and observe the differences in the Advanced Regression Tree Options dialog box. The Minimum leaf size setting controls the size of the tree leaves, and through that the size and depth of the regression tree.
To try to improve the model further, change the **Minimum leaf size** setting to 8, and then train a new model by clicking **Train**.

View the settings for the selected trained model in the Current Model window or in the Advanced Regression Tree Options dialog box.

To learn more about regression tree settings, see “Regression Trees” on page 24-21.

18 Export the selected model to the workspace. On the **Regression Learner** tab, in the **Export** section, click **Export Model**. In the Export Model dialog box, click **OK** to accept the default variable name `trainedModel`.

To see information about the results, look in the command window.

19 Use the exported model to make predictions on new data. For example, to make predictions for the `cartable` data in your workspace, enter:

```matlab
yfit = trainedModel.predictFcn(cartable)
```

The output `yfit` contains the predicted response for each data point.

20 If you want to automate training the same model with new data or learn how to programmatically train regression models, you can generate code from the app. To generate code for the best trained model, on the **Regression Learner** tab, in the **Export** section, click **Export Model > Generate Code**.

The app generates code from your model and displays the file in the MATLAB Editor. To learn more, see “Generate MATLAB Code to Train Model with New Data” on page 24-45.

Tip Use the same workflow as in this example to evaluate and compare the other regression model types you can train in Regression Learner.

Train all the regression model presets available:

1 On the far right of the **Model Type** section, click the arrow to expand the list of regression models.

2 Click **All** 🏛️, and then click **Train**.
To learn about other regression model types, see “Train Regression Models in Regression Learner App” on page 24-2.

See Also

Related Examples

- “Train Regression Models in Regression Learner App” on page 24-2
- “Select Data and Validation for Regression Problem” on page 24-10
- “Choose Regression Model Options” on page 24-15
- “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-32
- “Assess Model Performance in Regression Learner App” on page 24-36
- “Export Regression Model to Predict New Data” on page 24-44
Support Vector Machines
Understanding Support Vector Machine Regression

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Mathematical Formulation of SVM Regression” on page 25-2</td>
</tr>
<tr>
<td>“Solving the SVM Regression Optimization Problem” on page 25-7</td>
</tr>
</tbody>
</table>

Mathematical Formulation of SVM Regression

Overview

Support vector machine (SVM) analysis is a popular machine learning tool for classification and regression, first identified by Vladimir Vapnik and his colleagues in 1992[5]. SVM regression is considered a nonparametric technique because it relies on kernel functions.

Statistics and Machine Learning Toolbox implements linear epsilon-insensitive SVM (ε-SVM) regression, which is also known as L1 loss. In ε-SVM regression, the set of training data includes predictor variables and observed response values. The goal is to find a function \(f(x) \) that deviates from \(y_n \) by a value no greater than \(\varepsilon \) for each training point \(x_n \), and at the same time is as flat as possible.

Linear SVM Regression: Primal Formula

Suppose we have a set of training data where \(x_n \) is a multivariate set of \(N \) observations with observed response values \(y_n \).

To find the linear function

\[
f(x) = x'\beta + b,
\]

and ensure that it is as flat as possible, find \(f(x) \) with the minimal norm value (\(\beta'\beta \)). This is formulated as a convex optimization problem to minimize

\[
J(\beta) = \frac{1}{2} \beta'\beta
\]

subject to all residuals having a value less than \(\varepsilon \); or, in equation form:

\[
\forall n : |y_n - (x_n'\beta + b)| \leq \varepsilon.
\]
It is possible that no such function \(f(x) \) exists to satisfy these constraints for all points. To deal with otherwise infeasible constraints, introduce slack variables \(\xi_n \) and \(\xi_n^* \) for each point. This approach is similar to the “soft margin” concept in SVM classification, because the slack variables allow regression errors to exist up to the value of \(\xi_n \) and \(\xi_n^* \), yet still satisfy the required conditions.

Including slack variables leads to the objective function, also known as the primal formula[5]:

\[
J(\beta) = \frac{1}{2} \beta^T \beta + C \sum_{n=1}^{N} (\xi_n + \xi_n^*),
\]

subject to:

\[
\forall n : y_n - (x_n^T \beta + b) \leq \varepsilon + \xi_n
\]
\[
\forall n : (x_n^T \beta + b) - y_n \leq \varepsilon + \xi_n^*
\]
\[
\forall n : \xi_n^* \geq 0
\]
\[
\forall n : \xi_n \geq 0.
\]

The constant \(C \) is the box constraint, a positive numeric value that controls the penalty imposed on observations that lie outside the epsilon margin (\(\varepsilon \)) and helps to prevent overfitting (regularization). This value determines the trade-off between the flatness of \(f(x) \) and the amount up to which deviations larger than \(\varepsilon \) are tolerated.

The linear \(\varepsilon \)-insensitive loss function ignores errors that are within \(\varepsilon \) distance of the observed value by treating them as equal to zero. The loss is measured based on the distance between observed value \(y \) and the \(\varepsilon \) boundary. This is formally described by

\[
L_{\varepsilon} = \begin{cases}
0 & \text{if } |y - f(x)| \leq \varepsilon \\
|y - f(x)| - \varepsilon & \text{otherwise}
\end{cases}
\]

Linear SVM Regression: Dual Formula

The optimization problem previously described is computationally simpler to solve in its Lagrange dual formulation. The solution to the dual problem provides a lower bound to the solution of the primal (minimization) problem. The optimal values of the primal and dual problems need not be equal, and the difference is called the “duality gap.” But when
the problem is convex and satisfies a constraint qualification condition, the value of the optimal solution to the primal problem is given by the solution of the dual problem.

To obtain the dual formula, construct a Lagrangian function from the primal function by introducing nonnegative multipliers \(\alpha_n \) and \(\alpha^*_n \) for each observation \(x_n \). This leads to the dual formula, where we minimize

\[
L(\alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_i - \alpha^*_i)(\alpha_j - \alpha^*_j)x_i'x_j + \varepsilon \sum_{i=1}^{N} (\alpha_i + \alpha^*_i) + \sum_{i=1}^{N} y_i(\alpha^*_i - \alpha_i)
\]

subject to the constraints

\[
\sum_{n=1}^{N} (\alpha_n - \alpha^*_n) = 0
\]
\[\forall n : 0 \leq \alpha_n \leq C\]
\[\forall n : 0 \leq \alpha^*_n \leq C .\]

The \(\beta \) parameter can be completely described as a linear combination of the training observations using the equation

\[
\beta = \sum_{n=1}^{N} (\alpha_n - \alpha^*_n)x_n .
\]

The function used to predict new values depends only on the support vectors:

\[
f(x) = \sum_{n=1}^{N} (\alpha_n - \alpha^*_n)(x_n'x) + b .
\]

(25-1)

The Karush-Kuhn-Tucker (KKT) complementarity conditions are optimization constraints required to obtain optimal solutions. For linear SVM regression, these conditions are
∀n : αₙ (ε + ξₙ - yₙ + xₙβ + b) = 0
∀n : αₙ* (ε + ξₙ* - yₙ - xₙβ - b) = 0
∀n : ξₙ (C - αₙ) = 0
∀n : ξₙ* (C - αₙ*) = 0.

These conditions indicate that all observations strictly inside the epsilon tube have Lagrange multipliers αₙ = 0 and αₙ* = 0. If either αₙ or αₙ* is not zero, then the corresponding observation is called a support vector.

The property Alpha of a trained SVM model stores the difference between two Lagrange multipliers of support vectors, αₙ - αₙ*. The properties SupportVectors and Bias store xₙ and b, respectively.

Nonlinear SVM Regression: Primal Formula

Some regression problems cannot adequately be described using a linear model. In such a case, the Lagrange dual formulation allows the previously-described technique to be extended to nonlinear functions.

Obtain a nonlinear SVM regression model by replacing the dot product x₁x₂ with a nonlinear kernel function G(x₁,x₂) = <φ(x₁),φ(x₂)>, where φ(x) is a transformation that maps x to a high-dimensional space. Statistics and Machine Learning Toolbox provides the following built-in semidefinite kernel functions.

<table>
<thead>
<tr>
<th>Kernel Name</th>
<th>Kernel Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear (dot product)</td>
<td>G(xⱼ,xₖ) = xⱼxₖ</td>
</tr>
<tr>
<td>Gaussian</td>
<td>G(xⱼ,xₖ) = \exp \left(-|xⱼ - xₖ|^2\right)</td>
</tr>
<tr>
<td>Polynomial</td>
<td>G(xⱼ,xₖ) = (1 + xⱼxₖ)^q, where q is in the set {2,3,...}.</td>
</tr>
</tbody>
</table>

The Gram matrix is an n-by-n matrix that contains elements gᵢⱼ = G(xᵢ,xⱼ). Each element gᵢⱼ is equal to the inner product of the predictors as transformed by φ. However, we do not need to know φ, because we can use the kernel function to generate Gram matrix.
directly. Using this method, nonlinear SVM finds the optimal function \(f(x) \) in the transformed predictor space.

Nonlinear SVM Regression: Dual Formula

The dual formula for nonlinear SVM regression replaces the inner product of the predictors \((x_i', x_j')\) with the corresponding element of the Gram matrix \((g_{ij})\).

Nonlinear SVM regression finds the coefficients that minimize

\[
L(\alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\alpha_i - \alpha_i^* \right) \left(\alpha_j - \alpha_j^* \right) G(x_i, x_j) + \varepsilon \sum_{i=1}^{N} \left(\alpha_i - \alpha_i^* \right) - \sum_{i=1}^{N} y_i \left(\alpha_i - \alpha_i^* \right)
\]

subject to

\[
\sum_{n=1}^{N} \left(\alpha_n - \alpha_n^* \right) = 0
\]
\[
\forall n : 0 \leq \alpha_n \leq C
\]
\[
\forall n : 0 \leq \alpha_n^* \leq C.
\]

The function used to predict new values is equal to

\[
f(x) = \sum_{n=1}^{N} \left(\alpha_n - \alpha_n^* \right) G(x_n, x) + b.
\]

(25-2)

The KKT complementarity conditions are

\[
\forall n : \alpha_n \left(\varepsilon + \xi_n - y_n + f(x_n) \right) = 0
\]
\[
\forall n : \alpha_n^* \left(\varepsilon + \xi_n^* + y_n - f(x_n) \right) = 0
\]
\[
\forall n : \xi_n (C - \alpha_n) = 0
\]
\[
\forall n : \xi_n^* (C - \alpha_n^*) = 0.
\]
Solving the SVM Regression Optimization Problem

Solver Algorithms

The minimization problem can be expressed in standard quadratic programming form and solved using common quadratic programming techniques. However, it can be computationally expensive to use quadratic programming algorithms, especially since the Gram matrix may be too large to be stored in memory. Using a decomposition method instead can speed up the computation and avoid running out of memory.

Decomposition methods (also called *chunking and working set methods*) separate all observations into two disjoint sets: the working set and the remaining set. A decomposition method modifies only the elements in the working set in each iteration. Therefore, only some columns of the Gram matrix are needed in each iteration, which reduces the amount of storage needed for each iteration.

Sequential minimal optimization (SMO) is the most popular approach for solving SVM problems[4]. SMO performs a series of two-point optimizations. In each iteration, a working set of two points are chosen based on a selection rule that uses second-order information. Then the Lagrange multipliers for this working set are solved analytically using the approach described in [2] and [1].

In SVM regression, the gradient vector ∇L for the active set is updated after each iteration. The decomposed equation for the gradient vector is

$$(\nabla L)_n = \begin{cases} \sum_{i=1}^{N}(\alpha_i - \alpha_i^*)G(x_i, x_n) + \varepsilon - y_n, & n \leq N \\ -\sum_{i=1}^{N}(\alpha_i - \alpha_i^*)G(x_i, x_n) + \varepsilon + y_n, & n > N \end{cases}.$$

Iterative single data algorithm (ISDA) updates one Lagrange multiplier with each iteration[3]. ISDA is often conducted without the bias term b by adding a small positive constant a to the kernel function. Dropping b drops the sum constraint

$$\sum_{n=1}^{N}(\alpha_i - \alpha_i^*) = 0$$
in the dual equation. This allows us to update one Lagrange multiplier in each iteration, which makes it easier than SMO to remove outliers. ISDA selects the worst KKT violator among all the α_n and α_n^* values as the working set to be updated.

Convergence Criteria

Each of these solver algorithms iteratively computes until the specified convergence criterion is met. There are several options for convergence criteria:

- **Feasibility gap** — The feasibility gap is expressed as

 \[
 \Delta = \frac{J(\beta) + L(\alpha)}{J(\beta) + 1},
 \]

 where $J(\beta)$ is the primal objective and $L(\alpha)$ is the dual objective. After each iteration, the software evaluates the feasibility gap. If the feasibility gap is less than the value specified by \texttt{GapTolerance}, then the algorithm met the convergence criterion and the software returns a solution.

- **Gradient difference** — After each iteration, the software evaluates the gradient vector, ∇L. If the difference in gradient vector values for the current iteration and the previous iteration is less than the value specified by \texttt{DeltaGradientTolerance}, then the algorithm met the convergence criterion and the software returns a solution.

- **Largest KKT violation** — After each iteration, the software evaluates the KKT violation for all the α_n and α_n^* values. If the largest violation is less than the value specified by \texttt{KKTTolerance}, then the algorithm met the convergence criterion and the software returns a solution.

References

See Also
RegressionSVM | fitrsvm | predict | resubPredict

Related Examples
- “Train Linear Support Vector Machine Regression Model” on page 32-2497
- “Train Support Vector Machine Regression Model” on page 32-2499
- “Cross-Validate SVM Regression Model” on page 32-2500
- “Optimize SVM Regression” on page 32-2502
Markov Models

- “Markov Chains” on page 26-2
- “Hidden Markov Models (HMM)” on page 26-4
Markov Chains

Markov processes are examples of stochastic processes—processes that generate random sequences of outcomes or states according to certain probabilities. Markov processes are distinguished by being memoryless—their next state depends only on their current state, not on the history that led them there. Models of Markov processes are used in a wide variety of applications, from daily stock prices to the positions of genes in a chromosome.

A Markov model is given visual representation with a state diagram, such as the one below.

State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying to model, and the arrows represent transitions between states. The label on each arrow represents the probability of that transition. At each step of the process, the model may generate an output, or emission, depending on which state it is in, and then make a transition to another state. An important characteristic of Markov models is that the next state depends only on the current state, and not on the history of transitions that lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails. The most recent coin toss determines the current state of the model and each subsequent toss
determines the transition to the next state. If the coin is fair, the transition probabilities are all 1/2. The emission might simply be the current state. In more complicated models, random processes at each state will generate emissions. You could, for example, roll a die to determine the emission at any step.

Markov chains are mathematical descriptions of Markov models with a discrete set of states. Markov chains are characterized by:

• A set of states \(\{1, 2, ..., M\} \)
• An \(M \)-by-\(M \) transition matrix \(T \) whose \(i,j \) entry is the probability of a transition from state \(i \) to state \(j \). The sum of the entries in each row of \(T \) must be 1, because this is the sum of the probabilities of making a transition from a given state to each of the other states.
• A set of possible outputs, or emissions, \(\{s_1, s_2, ..., s_N\} \). By default, the set of emissions is \(\{1, 2, ..., N\} \), where \(N \) is the number of possible emissions, but you can choose a different set of numbers or symbols.
• An \(M \)-by-\(N \) emission matrix \(E \) whose \(i,k \) entry gives the probability of emitting symbol \(s_k \) given that the model is in state \(i \).

Markov chains begin in an initial state \(i_0 \) at step 0. The chain then transitions to state \(i_1 \) with probability \(T_{i_1} \), and emits an output \(s_{k_1} \) with probability \(E_{i_1,k} \). Consequently, the probability of observing the sequence of states \(i_1i_2...i_r \) and the sequence of emissions \(s_{k_1}s_{k_2}...s_{k_r} \) in the first \(r \) steps, is

\[
T_{i_1} E_{i_1,k_1} T_{i_2} E_{i_2,k_2} ... T_{i_{r-1}} E_{i_{r-1},k_{r-1}} E_{i_r,k_r}
\]

See Also

Related Examples

• “Hidden Markov Models (HMM)” on page 26-4
Introduction to Hidden Markov Models (HMM)

A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but do not know the sequence of states the model went through to generate the emissions. Analyses of hidden Markov models seek to recover the sequence of states from the observed data.

As an example, consider a Markov model with two states and six possible emissions. The model uses:

- A red die, having six sides, labeled 1 through 6.
- A green die, having twelve sides, five of which are labeled 2 through 6, while the remaining seven sides are labeled 1.
- A weighted red coin, for which the probability of heads is .9 and the probability of tails is .1.
- A weighted green coin, for which the probability of heads is .95 and the probability of tails is .05.

The model creates a sequence of numbers from the set \{1, 2, 3, 4, 5, 6\} with the following rules:

- Begin by rolling the red die and writing down the number that comes up, which is the emission.
- Toss the red coin and do one of the following:
 - If the result is heads, roll the red die and write down the result.
 - If the result is tails, roll the green die and write down the result.
- At each subsequent step, you flip the coin that has the same color as the die you rolled in the previous step. If the coin comes up heads, roll the same die as in the previous step. If the coin comes up tails, switch to the other die.
The state diagram for this model has two states, red and green, as shown in the following figure.

![State Diagram]

You determine the emission from a state by rolling the die with the same color as the state. You determine the transition to the next state by flipping the coin with the same color as the state.

The transition matrix is:

\[
T = \begin{bmatrix}
0.9 & 0.1 \\
0.05 & 0.95
\end{bmatrix}
\]

The emissions matrix is:

\[
E = \begin{bmatrix}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{7}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12}
\end{bmatrix}
\]

The model is not hidden because you know the sequence of states from the colors of the coins and dice. Suppose, however, that someone else is generating the emissions without showing you the dice or the coins. All you see is the sequence of emissions. If you start
seeing more 1s than other numbers, you might suspect that the model is in the green state, but you cannot be sure because you cannot see the color of the die being rolled.

Hidden Markov models raise the following questions:

- Given a sequence of emissions, what is the most likely state path?
- Given a sequence of emissions, how can you estimate transition and emission probabilities of the model?
- What is the *forward probability* that the model generates a given sequence?
- What is the *posterior probability* that the model is in a particular state at any point in the sequence?

Analyzing Hidden Markov Models

- “Generating a Test Sequence” on page 26-6
- “Estimating the State Sequence” on page 26-7
- “Estimating Transition and Emission Matrices” on page 26-7
- “Estimating Posterior State Probabilities” on page 26-10
- “Changing the Initial State Distribution” on page 26-10

Statistics and Machine Learning Toolbox functions related to hidden Markov models are:

- `hmmgenerate` — Generates a sequence of states and emissions from a Markov model
- `hmmestimate` — Calculates maximum likelihood estimates of transition and emission probabilities from a sequence of emissions and a known sequence of states
- `hmmtrain` — Calculates maximum likelihood estimates of transition and emission probabilities from a sequence of emissions
- `hmmviterbi` — Calculates the most probable state path for a hidden Markov model
- `hmmdecode` — Calculates the posterior state probabilities of a sequence of emissions

This section shows how to use these functions to analyze hidden Markov models.

Generating a Test Sequence

The following commands create the transition and emission matrices for the model described in the “Introduction to Hidden Markov Models (HMM)” on page 26-4:

```matlab
TRANS = [.9 .1; .05 .95];
```
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12];

To generate a random sequence of states and emissions from the model, use
hmmgenerate:

[seq,states] = hmmgenerate(1000,TRANS,EMIS);

The output seq is the sequence of emissions and the output states is the sequence of
states.

hmmgenerate begins in state 1 at step 0, makes the transition to state i_1 at step 1, and
returns i_1 as the first entry in states. To change the initial state, see “Changing the
Initial State Distribution” on page 26-10.

Estimating the State Sequence

Given the transition and emission matrices TRANS and EMIS, the function hmmviterbi
uses the Viterbi algorithm to compute the most likely sequence of states the model would
go through to generate a given sequence seq of emissions:

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence the same length as seq.

To test the accuracy of hmmviterbi, compute the percentage of the actual sequence
states that agrees with the sequence likelystates.

sum(states==likelystates)/1000
ans =
 0.8200

In this case, the most likely sequence of states agrees with the random sequence 82% of
the time.

Estimating Transition and Emission Matrices

• “Using hmmestimate” on page 26-8
• “Using hmmtrain” on page 26-8

The functions hmmestimate and hmmtrain estimate the transition and emission
matrices TRANS and EMIS given a sequence seq of emissions.
Using `hmmestimate`

The function `hmmestimate` requires that you know the sequence of states `states` that the model went through to generate `seq`.

The following takes the emission and state sequences and returns estimates of the transition and emission matrices:

```
[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)
```

```
TRANS_EST =
0.8989 0.1011
0.0585 0.9415

EMIS_EST =
0.1721 0.1721 0.1749 0.1612 0.1803 0.1393
0.5836 0.0741 0.0804 0.0789 0.0726 0.1104
```

You can compare the outputs with the original transition and emission matrices, `TRANS` and `EMIS`:

```
TRANS
TRANS =
0.9000 0.1000
0.0500 0.9500

EMIS
EMIS =
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833
```

Using `hmmtrain`

If you do not know the sequence of states `states`, but you have initial guesses for `TRANS` and `EMIS`, you can still estimate `TRANS` and `EMIS` using `hmmtrain`.

Suppose you have the following initial guesses for `TRANS` and `EMIS`.

```
TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17; .6 .08 .08 .08 .08 .08]
```

You estimate `TRANS` and `EMIS` as follows:

```
[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)
```
TRANS_EST2 =
0.2286 0.7714
0.0032 0.9968

EMIS_EST2 =
0.1436 0.2348 0.1837 0.1963 0.2350 0.0066
0.4355 0.1089 0.1144 0.1082 0.1109 0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and EMIS_GUESS so that at each step the adjusted matrices are more likely to generate the observed sequence, seq. The algorithm halts when the matrices in two successive iterations are within a small tolerance of each other.

If the algorithm fails to reach this tolerance within a maximum number of iterations, whose default value is 100, the algorithm halts. In this case, hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, increase the default value of the maximum number of iterations with the command:

hmmtrain(seq,TRANS_GUESS,EMIS_GUESS,'maxiterations',maxiter)

where maxiter is the maximum number of steps the algorithm executes.

Change the default value of the tolerance with the command:

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol makes the algorithm halt sooner, but the results are less accurate.

Two factors reduce the reliability of the output matrices of hmmtrain:

- The algorithm converges to a local maximum that does not represent the true transition and emission matrices. If you suspect this, use different initial guesses for the matrices TRANS_EST and EMIS_EST.
- The sequence seq may be too short to properly train the matrices. If you suspect this, use a longer sequence for seq.
Estimating Posterior State Probabilities

The posterior state probabilities of an emission sequence \(\text{seq} \) are the conditional probabilities that the model is in a particular state when it generates a symbol in \(\text{seq} \), given that \(\text{seq} \) is emitted. You compute the posterior state probabilities with \text{hmmdecode}:

\[
\text{PSTATES} = \text{hmmdecode}(\text{seq}, \text{TRANS}, \text{EMIS})
\]

The output \(\text{PSTATES} \) is an \(M \)-by-\(L \) matrix, where \(M \) is the number of states and \(L \) is the length of \(\text{seq} \). \(\text{PSTATES}(i, j) \) is the conditional probability that the model is in state \(i \) when it generates the \(j \)th symbol of \(\text{seq} \), given that \(\text{seq} \) is emitted.

\text{hmmdecode} begins with the model in state 1 at step 0, prior to the first emission. \(\text{PSTATES}(i, 1) \) is the probability that the model is in state \(i \) at the following step 1. To change the initial state, see “Changing the Initial State Distribution” on page 26-10.

To return the logarithm of the probability of the sequence \(\text{seq} \), use the second output argument of \text{hmmdecode}:

\[
[\text{PSTATES}, \logpseq] = \text{hmmdecode}(\text{seq}, \text{TRANS}, \text{EMIS})
\]

The probability of a sequence tends to 0 as the length of the sequence increases, and the probability of a sufficiently long sequence becomes less than the smallest positive number your computer can represent. \text{hmmdecode} returns the logarithm of the probability to avoid this problem.

Changing the Initial State Distribution

By default, Statistics and Machine Learning Toolbox hidden Markov model functions begin in state 1. In other words, the distribution of initial states has all of its probability mass concentrated at state 1. To assign a different distribution of probabilities, \(p = [p_1, p_2, ..., p_M] \), to the \(M \) initial states, do the following:

1. Create an \(M+1 \)-by-\(M+1 \) augmented transition matrix, \(\hat{T} \) of the following form:

\[
\hat{T} = \begin{bmatrix} 0 & p \\ 0 & T \end{bmatrix}
\]

where \(T \) is the true transition matrix. The first column of \(\hat{T} \) contains \(M+1 \) zeros. \(p \) must sum to 1.
Create an \(M+1 \)-by-\(N \) augmented emission matrix, \(\hat{E} \), that has the following form:

\[
\hat{E} = \begin{bmatrix}
0 \\
E
\end{bmatrix}
\]

If the transition and emission matrices are \(\text{TRANS} \) and \(\text{EMIS} \), respectively, you create the augmented matrices with the following commands:

\[
\text{TRANS_HAT} = [0 \ p; \ \text{zeros(size(TRANS,1),1)} \ \text{TRANS}];
\]

\[
\text{EMIS_HAT} = [\text{zeros(1,size(EMIS,2))}; \ \text{EMIS}];
\]

See Also

\text{hmmdecode}\ |
\text{hmmestimate}\ |
\text{hmmgenerate}\ |
\text{hmmtrain}\ |
\text{hmmviterbi}\]

More About

- “Markov Chains” on page 26-2
Design of Experiments

- “Design of Experiments” on page 27-2
- “Full Factorial Designs” on page 27-3
- “Fractional Factorial Designs” on page 27-5
- “Response Surface Designs” on page 27-9
- “D-Optimal Designs” on page 27-16
- “Improve an Engine Cooling Fan Using Design for Six Sigma Techniques” on page 27-25
Design of Experiments

Passive data collection leads to a number of problems in statistical modeling. Observed changes in a response variable may be correlated with, but not caused by, observed changes in individual factors (process variables). Simultaneous changes in multiple factors may produce interactions that are difficult to separate into individual effects. Observations may be dependent, while a model of the data considers them to be independent.

Designed experiments address these problems. In a designed experiment, the data-producing process is actively manipulated to improve the quality of information and to eliminate redundant data. A common goal of all experimental designs is to collect data as parsimoniously as possible while providing sufficient information to accurately estimate model parameters.

For example, a simple model of a response y in an experiment with two controlled factors x_1 and x_2 might look like this:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$$

Here ϵ includes both experimental error and the effects of any uncontrolled factors in the experiment. The terms $\beta_1 x_1$ and $\beta_2 x_2$ are main effects and the term $\beta_3 x_1 x_2$ is a two-way interaction effect. A designed experiment would systematically manipulate x_1 and x_2 while measuring y, with the objective of accurately estimating β_0, β_1, β_2, and β_3.
Full Factorial Designs

<table>
<thead>
<tr>
<th>In this section…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Multilevel Designs” on page 27-3</td>
</tr>
<tr>
<td>“Two-Level Designs” on page 27-3</td>
</tr>
</tbody>
</table>

Multilevel Designs

To systematically vary experimental factors, assign each factor a discrete set of levels. Full factorial designs measure response variables using every treatment (combination of the factor levels). A full factorial design for \(n \) factors with \(N_1, \ldots, N_n \) levels requires \(N_1 \times \ldots \times N_n \) experimental runs—one for each treatment. While advantageous for separating individual effects, full factorial designs can make large demands on data collection.

As an example, suppose a machine shop has three machines and four operators. If the same operator always uses the same machine, it is impossible to determine if a machine or an operator is the cause of variation in production. By allowing every operator to use every machine, effects are separated. A full factorial list of treatments is generated by the Statistics and Machine Learning Toolbox function `fullfact`:

```matlab
dFF = fullfact([3,4])
dFF =
    1     1
    2     1
    3     1
    1     2
    2     2
    3     2
    1     3
    2     3
    3     3
    1     4
    2     4
    3     4
```

Each of the \(3 \times 4 = 12 \) rows of \(dFF \) represent one machine/operator combination.

Two-Level Designs

Many experiments can be conducted with two-level factors, using two-level designs. For example, suppose the machine shop in the previous example always keeps the same
operator on the same machine, but wants to measure production effects that depend on the composition of the day and night shifts. The Statistics and Machine Learning Toolbox function \texttt{ff2n} generates a full factorial list of treatments:

\begin{verbatim}
dFF2 = ff2n(4)
dFF2 =
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
\end{verbatim}

Each of the $2^4 = 16$ rows of \texttt{dFF2} represent one schedule of operators for the day (0) and night (1) shifts.
Fractional Factorial Designs

In this section...

“Introduction to Fractional Factorial Designs” on page 27-5
“Plackett-Burman Designs” on page 27-5
“General Fractional Designs” on page 27-6

Introduction to Fractional Factorial Designs

Two-level designs are sufficient for evaluating many production processes. Factor levels of ±1 can indicate categorical factors, normalized factor extremes, or simply “up” and “down” from current factor settings. Experimenters evaluating process changes are interested primarily in the factor directions that lead to process improvement.

For experiments with many factors, two-level full factorial designs can lead to large amounts of data. For example, a two-level full factorial design with 10 factors requires $2^{10} = 1024$ runs. Often, however, individual factors or their interactions have no distinguishable effects on a response. This is especially true of higher order interactions. As a result, a well-designed experiment can use fewer runs for estimating model parameters.

Fractional factorial designs use a fraction of the runs required by full factorial designs. A subset of experimental treatments is selected based on an evaluation (or assumption) of which factors and interactions have the most significant effects. Once this selection is made, the experimental design must separate these effects. In particular, significant effects should not be confounded, that is, the measurement of one should not depend on the measurement of another.

Plackett-Burman Designs

Plackett-Burman designs are used when only main effects are considered significant. Two-level Plackett-Burman designs require a number of experimental runs that are a multiple of 4 rather than a power of 2. The MATLAB function `hadamard` generates these designs:

```matlab
dPB = hadamard(8)
dPB =
    1     1     1     1     1     1     1     1
   -1     1    -1    -1    -1     1    -1
```

27-5
Binary factor levels are indicated by ±1. The design is for eight runs (the rows of dPB) manipulating seven two-level factors (the last seven columns of dPB). The number of runs is a fraction $8/2^7 = 0.0625$ of the runs required by a full factorial design. Economy is achieved at the expense of confounding main effects with any two-way interactions.

General Fractional Designs

At the cost of a larger fractional design, you can specify which interactions you wish to consider significant. A design of resolution R is one in which no n-factor interaction is confounded with any other effect containing less than $R - n$ factors. Thus, a resolution III design does not confound main effects with one another but may confound them with two-way interactions (as in “Plackett-Burman Designs” on page 27-5), while a resolution IV design does not confound either main effects or two-way interactions but may confound two-way interactions with each other.

Specify general fractional factorial designs using a full factorial design for a selected subset of basic factors and generators for the remaining factors. Generators are products of the basic factors, giving the levels for the remaining factors. Use the Statistics and Machine Learning Toolbox function `fracfact` to generate these designs:

```matlab
dfF = fracfact('a b c d bcd acd')
dfF =
   -1   -1   -1   -1   -1   -1   -1
   -1   -1   -1    1    1    1    1
   -1   -1    1    1   -1   -1   -1
   -1   -1    1    1    1   -1    1
   -1    1   -1    1    1   -1    1
   -1    1   -1    1   -1    1    1
   -1    1    1   -1    1    1    1
   -1    1    1    1    1    1    1
```

Design of Experiments

27-6
This is a six-factor design in which four two-level basic factors (a, b, c, and d in the first four columns of dfF) are measured in every combination of levels, while the two remaining factors (in the last three columns of dfF) are measured only at levels defined by the generators bcd and acd, respectively. Levels in the generated columns are products of corresponding levels in the columns that make up the generator.

The challenge of creating a fractional factorial design is to choose basic factors and generators so that the design achieves a specified resolution in a specified number of runs. Use the Statistics and Machine Learning Toolbox function fracfactgen to find appropriate generators:

```matlab
generators = fracfactgen('a b c d e f',4,4)
generators =
    'a'
    'b'
    'c'
    'd'
    'bcd'
    'acd'
```

These are generators for a six-factor design with factors a through f, using $2^4 = 16$ runs to achieve resolution IV. The fracfactgen function uses an efficient search algorithm to find generators that meet the requirements.

An optional output from fracfact displays the confounding pattern of the design:

```matlab
[dfF,confounding] = fracfact(generators);
confounding
```

confounding =

```
<table>
<thead>
<tr>
<th>Term</th>
<th>Generator</th>
<th>Confounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>a</td>
<td>X1</td>
</tr>
<tr>
<td>X2</td>
<td>b</td>
<td>X2</td>
</tr>
<tr>
<td>X3</td>
<td>c</td>
<td>X3</td>
</tr>
<tr>
<td>X4</td>
<td>d</td>
<td>X4</td>
</tr>
<tr>
<td>X5</td>
<td>bcd</td>
<td>X5</td>
</tr>
<tr>
<td>X6</td>
<td>acd</td>
<td>X6</td>
</tr>
<tr>
<td>X1*X2</td>
<td>ab</td>
<td>X1<em>X2 + X5</em>X6</td>
</tr>
<tr>
<td>X1*X3</td>
<td>ac</td>
<td>X1<em>X3 + X4</em>X6</td>
</tr>
<tr>
<td>X1*X4</td>
<td>ad</td>
<td>X1<em>X4 + X3</em>X6</td>
</tr>
<tr>
<td>X1*X5</td>
<td>abcd</td>
<td>X1<em>X5 + X2</em>X6</td>
</tr>
<tr>
<td>X1*X6</td>
<td>cd</td>
<td>X1<em>X6 + X2</em>X5 + X3*X4</td>
</tr>
</tbody>
</table>
```
The confounding pattern shows that main effects are effectively separated by the design, but two-way interactions are confounded with various other two-way interactions.
Response Surface Designs

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction to Response Surface Designs” on page 27-9</td>
</tr>
<tr>
<td>“Central Composite Designs” on page 27-9</td>
</tr>
<tr>
<td>“Box-Behnken Designs” on page 27-13</td>
</tr>
</tbody>
</table>

Introduction to Response Surface Designs

Quadratic response surfaces are simple models that provide a maximum or minimum without making additional assumptions about the form of the response. Quadratic models can be calibrated using full factorial designs with three or more levels for each factor, but these designs generally require more runs than necessary to accurately estimate model parameters. This section discusses designs for calibrating quadratic models that are much more efficient, using three or five levels for each factor, but not using all combinations of levels.

Central Composite Designs

Central composite designs (CCDs), also known as Box-Wilson designs, are appropriate for calibrating full quadratic models. There are three types of CCDs—circumscribed, inscribed, and faced—pictured below:
Inscribed
Each design consists of a factorial design (the corners of a cube) together with center and star points that allow for estimation of second-order effects. For a full quadratic model with \(n \) factors, CCDs have enough design points to estimate the \((n+2)(n+1)/2\) coefficients in a full quadratic model with \(n \) factors.

The type of CCD used (the position of the factorial and star points) is determined by the number of factors and by the desired properties of the design. The following table summarizes some important properties. A design is rotatable if the prediction variance depends only on the distance of the design point from the center of the design.

<table>
<thead>
<tr>
<th>Design</th>
<th>Rotatable</th>
<th>Factor Levels</th>
<th>Uses Points Outside ±1</th>
<th>Accuracy of Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumscribed (CCC)</td>
<td>Yes</td>
<td>5</td>
<td>Yes</td>
<td>Good over entire design space</td>
</tr>
<tr>
<td>Inscribed (CCI)</td>
<td>Yes</td>
<td>5</td>
<td>No</td>
<td>Good over central subset of design space</td>
</tr>
</tbody>
</table>
Design | **Rotatable** | **Factor Levels** | **Uses Points Outside ±1** | **Accuracy of Estimates**
---|---|---|---|---
Faced (CCF) | No | 3 | No | Fair over entire design space; poor for pure quadratic coefficients

Generate CCDs with the Statistics and Machine Learning Toolbox function `ccdesign`:

```matlab
dCC = ccdesign(3,'type','circumscribed')
dCC =
    -1.0000   -1.0000   -1.0000
    -1.0000   -1.0000    1.0000
    -1.0000    1.0000   -1.0000
    -1.0000    1.0000    1.0000
    1.0000   -1.0000   -1.0000
    1.0000   -1.0000    1.0000
    1.0000    1.0000   -1.0000
    1.0000    1.0000    1.0000
    -1.6818         0         0
     1.6818         0         0
         0    -1.6818         0
         0     1.6818         0
         0         0    -1.6818
         0         0     1.6818
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
```

The repeated center point runs allow for a more uniform estimate of the prediction variance over the entire design space.

Box-Behnken Designs

Like the designs described in “Central Composite Designs” on page 27-9, Box-Behnken designs are used to calibrate full quadratic models. Box-Behnken designs are rotatable...
and, for a small number of factors (four or less), require fewer runs than CCDs. By avoiding the corners of the design space, they allow experimenters to work around extreme factor combinations. Like an inscribed CCD, however, extremes are then poorly estimated.

The geometry of a Box-Behnken design is pictured in the following figure.

Design points are at the midpoints of edges of the design space and at the center, and do not contain an embedded factorial design.

Generate Box-Behnken designs with the Statistics and Machine Learning Toolbox function `bbdesign`:

```matlab
dBB = bbdesign(3)
dBB =
    -1   -1    0
    -1    1    0
     1   -1    0
     1    1    0
    -1    0   -1
```
Again, the repeated center point runs allow for a more uniform estimate of the prediction variance over the entire design space.
D-Optimal Designs

In this section...

- “Introduction to D-Optimal Designs” on page 27-16
- “Generate D-Optimal Designs” on page 27-17
- “Augment D-Optimal Designs” on page 27-19
- “Specify Fixed Covariate Factors” on page 27-20
- “Specify Categorical Factors” on page 27-21
- “Specify Candidate Sets” on page 27-22

Introduction to D-Optimal Designs

Traditional experimental designs (“Full Factorial Designs” on page 27-3, “Fractional Factorial Designs” on page 27-5, and “Response Surface Designs” on page 27-9) are appropriate for calibrating linear models in experimental settings where factors are relatively unconstrained in the region of interest. In some cases, however, models are necessarily nonlinear. In other cases, certain treatments (combinations of factor levels) may be expensive or infeasible to measure. D-optimal designs are model-specific designs that address these limitations of traditional designs.

A D-optimal design is generated by an iterative search algorithm and seeks to minimize the covariance of the parameter estimates for a specified model. This is equivalent to maximizing the determinant $D = |X'X|$, where X is the design matrix of model terms (the columns) evaluated at specific treatments in the design space (the rows). Unlike traditional designs, D-optimal designs do not require orthogonal design matrices, and as a result, parameter estimates may be correlated. Parameter estimates may also be locally, but not globally, D-optimal.

There are several Statistics and Machine Learning Toolbox functions for generating D-optimal designs:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>candexch</td>
<td>Uses a row-exchange algorithm to generate a D-optimal design with a specified number of runs for a specified model and a specified candidate set. This is the second component of the algorithm used by rowexch.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>candgen</td>
<td>Generates a candidate set for a specified model. This is the first component of the algorithm used by rowexch.</td>
</tr>
<tr>
<td>cordexch</td>
<td>Uses a coordinate-exchange algorithm to generate a D-optimal design with a specified number of runs for a specified model.</td>
</tr>
<tr>
<td>daugment</td>
<td>Uses a coordinate-exchange algorithm to augment an existing D-optimal design with additional runs to estimate additional model terms.</td>
</tr>
<tr>
<td>dcovary</td>
<td>Uses a coordinate-exchange algorithm to generate a D-optimal design with fixed covariate factors.</td>
</tr>
<tr>
<td>rowexch</td>
<td>Uses a row-exchange algorithm to generate a D-optimal design with a specified number of runs for a specified model. The algorithm calls candgen and then candexch. (Call candexch separately to specify a candidate set.)</td>
</tr>
</tbody>
</table>

The following sections explain how to use these functions to generate D-optimal designs.

Note The Statistics and Machine Learning Toolbox function rsmdemo generates simulated data for experimental settings specified by either the user or by a D-optimal design generated by cordexch. It uses the rstool interface to visualize response surface models fit to the data, and it uses the nlintool interface to visualize a nonlinear model fit to the data.

Generate D-Optimal Designs

Two Statistics and Machine Learning Toolbox algorithms generate D-optimal designs:

- The cordexch function uses a coordinate-exchange algorithm
- The rowexch function uses a row-exchange algorithm

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally changing an initial design matrix X to increase $D = |X^T X|$ at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each algorithm multiple times and select the best result for your final design. Both functions have a 'tries' parameter that automates this repetition and comparison.
At each step, the row-exchange algorithm exchanges an entire row of X with a row from a design matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically generates a C appropriate for a specified model, operating in two steps by calling the candgen and candexch functions in sequence. Provide your own C by calling candexch directly. In either case, if C is large, its static presence in memory can affect computation.

The coordinate-exchange algorithm, by contrast, does not use a candidate set. (Or rather, the candidate set is the entire design space.) At each step, the coordinate-exchange algorithm exchanges a single element of X with a new element evaluated at a neighboring point in design space. The absence of a candidate set reduces demands on memory, but the smaller scale of the search means that the coordinate-exchange algorithm is more likely to become trapped in a local minimum than the row-exchange algorithm.

For example, suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \epsilon$$

Use cordexch to generate a D-optimal design with seven runs:

```matlab
nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =
   -1     1     1
   -1    -1    -1
    1     1     1
   -1     1    -1
    1    -1     1
    1    -1    -1
   -1    -1     1
X =
   1    -1     1     1    -1    -1     1
   1    -1    -1    -1     1     1     1
   1     1     1     1     1     1     1
   1    -1     1    -1    -1     1    -1
   1     1    -1     1    -1     1    -1
   1     1    -1    -1    -1    -1     1
   1    -1    -1     1     1    -1    -1
```

Columns of the design matrix X are the model terms evaluated at each row of the design dCE. The terms appear in order from left to right:
Use X in a linear regression model fit to response data measured at the design points in dCE.

Use `rowexch` in a similar fashion to generate an equivalent design:

```matlab
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =
-1 -1  1  
 1 -1  1  
 1 -1 -1  
 1  1  1  
-1 -1 -1  
-1  1 -1  
-1  1  1  
-1  1  1  
X =
 1 -1 -1  1  1 -1 -1  
 1  1 -1  1 -1  1 -1  
 1  1 -1 -1 -1 -1  1  
 1 -1 -1 -1  1  1  1  
 1  1  1 -1 -1  1 -1  
 1 -1  1 -1 -1  1 -1  
 1  1  1 -1 -1  1  1  
 1 -1  1  1 -1 -1  
```

Augment D-Optimal Designs

In practice, you may want to add runs to a completed experiment to learn more about a process and estimate additional model coefficients. The `daugment` function uses a coordinate-exchange algorithm to augment an existing D-optimal design.

For example, the following eight-run design is adequate for estimating main effects in a four-factor model:

```matlab
dCEmain = cordexch(4,8)
dCEmain =
 1 -1 -1  1  
-1 -1  1  1  
-1  1 -1  1  
 1  1  1 -1  
```
To estimate the six interaction terms in the model, augment the design with eight additional runs:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

The augmented design is full factorial, with the original eight runs in the first eight rows.

The 'start' parameter of the candexch function provides the same functionality as daugment, but uses a row exchange algorithm rather than a coordinate-exchange algorithm.

Specify Fixed Covariate Factors

In many experimental settings, certain factors and their covariates are constrained to a fixed set of levels or combinations of levels. These cannot be varied when searching for an optimal design. The dcovary function allows you to specify fixed covariate factors in the coordinate exchange algorithm.

For example, suppose you want a design to estimate the parameters in a three-factor linear additive model, with eight runs that necessarily occur at different times. If the
process experiences temporal linear drift, you may want to include the run time as a variable in the model. Produce the design as follows:

```matlab
time = linspace(-1,1,8)';
[dCV,X] = dcowary(3,time,'linear')
dCV =
   -1.0000    1.0000    1.0000   -1.0000
    1.0000   -1.0000   -1.0000   -0.7143
   -1.0000   -1.0000    1.0000   -0.4286
    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000   -1.0000    0.1429
   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    0.7143
   -1.0000   -1.0000    1.0000    1.0000

X =
    1.0000   -1.0000    1.0000    1.0000   -1.0000
    1.0000    1.0000   -1.0000   -1.0000   -0.7143
    1.0000   -1.0000   -1.0000   -1.0000   -0.4286
    1.0000    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000    1.0000   -1.0000    0.1429
    1.0000   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    1.0000    0.7143
    1.0000   -1.0000   -1.0000    1.0000    1.0000
```

The column vector `time` is a fixed factor, normalized to values between ±1. The number of rows in the fixed factor specifies the number of runs in the design. The resulting design `dCV` gives factor settings for the three controlled model factors at each time.

Specify Categorical Factors

Categorical factors take values in a discrete set of levels. Both `cordexch` and `rowexch` have a 'categorical' parameter that allows you to specify the indices of categorical factors and a 'levels' parameter that allows you to specify a number of levels for each factor.

For example, the following eight-run design is for a linear additive model with five factors in which the final factor is categorical with three levels:

```matlab
dCEcat = cordexch(5,8,'linear','categorical',5,'levels',3)
dCEcat =
   -1    -1     1     1     2
    1    1    1    1    3
```
Specify Candidate Sets

The row-exchange algorithm exchanges rows of an initial design matrix \(X \) with rows from a design matrix \(C \) evaluated at a candidate set of feasible treatments. The \texttt{rowexch} function automatically generates a \(C \) appropriate for a specified model, operating in two steps by calling the \texttt{candgen} and \texttt{candexch} functions in sequence. Provide your own \(C \) by calling \texttt{candexch} directly.

For example, the following uses \texttt{rowexch} to generate a five-run design for a two-factor pure quadratic model using a candidate set that is produced internally:

\[
\begin{align*}
\textup{dRE1} &= \texttt{rowexch}(2,5,\text{	extquotesingle purequadratic\textquotesingle},\text{	extquotesingle tries\textquotesingle},10) \\
\textup{dRE1} = &
\begin{pmatrix}
-1 & 1 \\
0 & 0 \\
1 & -1 \\
1 & 0 \\
1 & 1
\end{pmatrix}
\end{align*}
\]

The same thing can be done using \texttt{candgen} and \texttt{candexch} in sequence:

\[
\begin{align*}
\left[\textup{dC},C\right] &= \texttt{candgen}(2,\text{	extquotesingle purequadratic\textquotesingle}) \ % \ \text{Candidate set, } C \\
\textup{dC} = &
\begin{pmatrix}
-1 & -1 \\
0 & -1 \\
1 & -1 \\
-1 & 0 \\
0 & 0 \\
1 & 0 \\
-1 & 1 \\
0 & 1 \\
1 & 1
\end{pmatrix} \\
\textup{C} = &
\begin{pmatrix}
1 & -1 & -1 & 1 & 1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & -1 & 0 & 1 & 0
\end{pmatrix}
\end{align*}
\]
treatments = candexch(C,5,'tries',10) % D-opt subset

treatments =
2
1
7
3
4
dRE2 = dC(treatments,:) % Display design
dRE2 =
 0 -1
-1 -1
-1 1
 1 -1
-1 0

You can replace C in this example with a design matrix evaluated at your own candidate set. For example, suppose your experiment is constrained so that the two factors cannot have extreme settings simultaneously. The following produces a restricted candidate set:

constraint = sum(abs(dC),2) < 2; % Feasible treatments
my_dC = dC(constraint,:)
my_dC =
 0 -1
-1 0
 0 0
 1 0
 0 1

Use the x2fx function to convert the candidate set to a design matrix:

my_C = x2fx(my_dC,'purequadratic')
my_C =
 1 0 -1 0 1
 1 -1 0 1 0
 1 0 0 0 0
 1 1 0 1 0
 1 0 1 0 1

Find the required design in the same manner:
my_treatments = candexch(my_C,5,'tries',10) % D-opt subset
my_treatments =
 2
 4
 5
 1
 3
my_dRE = my_dC(my_treatments,:) % Display design
my_dRE =
 -1 0
 1 0
 0 1
 0 -1
 0 0
This example shows how to improve the performance of an engine cooling fan through a Design for Six Sigma approach using Define, Measure, Analyze, Improve, and Control (DMAIC). The initial fan does not circulate enough air through the radiator to keep the engine cool during difficult conditions. First the example shows how to design an experiment to investigate the effect of three performance factors: fan distance from the radiator, blade-tip clearance, and blade pitch angle. It then shows how to estimate optimum values for each factor, resulting in a design that produces airflows beyond the goal of 875 ft3 per minute using test data. Finally it shows how to use simulations to verify that the new design produces airflow according to the specifications in more than 99.999% of the fans manufactured. This example uses MATLAB, Statistics and Machine Learning Toolbox, and Optimization Toolbox.

Define the Problem

This example addresses an engine cooling fan design that is unable to pull enough air through the radiator to keep the engine cool during difficult conditions, such as stop-and-go traffic or hot weather). Suppose you estimate that you need airflow of at least 875 ft3/min to keep the engine cool during difficult conditions. You need to evaluate the current design and develop an alternative design that can achieve the target airflow.

Assess Cooling Fan Performance

Load the sample data.

```matlab
load(fullfile(matlabroot,'help/toolbox/stats/examples','OriginalFan.mat'))
```

The data consists of 10,000 measurements (historical production data) of the existing cooling fan performance.

Plot the data to analyze the current fan's performance.

```matlab
plot(originalfan)
xlabel('Observation')
ylabel('Max Airflow (ft^3/min)')
title('Historical Production Data')
```
The data is centered around 842 ft\(^3/\)min and most values fall within the range of about 8 ft\(^3/\)min. The plot does not tell much about the underlying distribution of data, however. Plot the histogram and fit a normal distribution to the data.

```matlab
figure()
histfit(originalfan) % Plot histogram with normal distribution fit
format shortg
xlabel('Airflow (ft^3/min)')
ylabel('Frequency (counts)')
title('Airflow Histogram')
```
pd = fitdist(originalfan,'normal') % Fit normal distribution to data

pd =

NormalDistribution

Normal distribution
mu = 841.652 [841.616, 841.689]
sigma = 1.8768 [1.85114, 1.90318]

fitdist fits a normal distribution to data and estimates the parameters from data. The estimate for the mean airflow speed is 841.652 ft³/min, and the 95% confidence interval for the mean airflow speed is (841.616, 841.689). This estimate makes it clear that the
current fan is not close to the required 875 ft3/min. There is need to improve the fan design to achieve the target airflow.

Determine Factors That Affect Fan Performance

Evaluate the factors that affect cooling fan performance using design of experiments (DOE). The response is the cooling fan airflow rate (ft3/min). Suppose that the factors that you can modify and control are:

- Distance from radiator
- Pitch angle
- Blade tip clearance

In general, fluid systems have nonlinear behavior. Therefore, use a response surface design to estimate any nonlinear interactions among the factors. Generate the experimental runs for a Box-Behnken design on page 27-13 in coded (normalized) variables [-1, 0, +1].

\[
\text{CodedValue} = \text{bbdesign}(3)
\]

CodedValue =

\[
\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 0 \\
1 & 1 & 0 \\
-1 & 0 & -1 \\
-1 & 0 & 1 \\
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & -1 & -1 \\
0 & -1 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\]

The first column is for the distance from radiator, the second column is for the pitch angle, and the third column is for the blade tip clearance. Suppose you want to test the effects of the variables at the following minimum and maximum values.

Distance from radiator: 1 to 1.5 inches
Pitch angle: 15 to 35 degrees
Blade tip clearance: 1 to 2 inches

Randomize the order of the runs, convert the coded design values to real-world units, and perform the experiment in the order specified.

```
runorder = randperm(15);     % Random permutation of the runs
bounds = [1 1.5;15 35;1 2];  % Min and max values for each factor

RealValue = zeros(size(CodedValue));
for i = 1:size(CodedValue,2) % Convert coded values to real-world units
    zmax = max(CodedValue(:,i));
    zmin = min(CodedValue(:,i));
    RealValue(:,i) = interp1([zmin zmax],bounds(i,:),CodedValue(:,i));
end
```

Suppose at the end of the experiments, you collect the following response values in the variable `TestResult`.

```
TestResult = [837 864 829 856 880 879 872 874 834 833 860 859 874 876 875]';
```

Display the design values and the response.

```
disp({'Run Number','Distance','Pitch','Clearance','Airflow'})
disp(sortrows([runorder' RealValue TestResult]))
```

<table>
<thead>
<tr>
<th>'Run Number'</th>
<th>'Distance'</th>
<th>'Pitch'</th>
<th>'Clearance'</th>
<th>'Airflow'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>35</td>
<td>1.5</td>
<td>856</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>25</td>
<td>1.5</td>
<td>876</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>25</td>
<td>1</td>
<td>872</td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>25</td>
<td>1.5</td>
<td>875</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>35</td>
<td>1.5</td>
<td>864</td>
</tr>
<tr>
<td>6</td>
<td>1.25</td>
<td>25</td>
<td>1.5</td>
<td>874</td>
</tr>
<tr>
<td>7</td>
<td>1.25</td>
<td>15</td>
<td>2</td>
<td>833</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>15</td>
<td>1.5</td>
<td>829</td>
</tr>
<tr>
<td>9</td>
<td>1.25</td>
<td>15</td>
<td>1</td>
<td>834</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>15</td>
<td>1.5</td>
<td>837</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>25</td>
<td>2</td>
<td>874</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>880</td>
</tr>
<tr>
<td>13</td>
<td>1.25</td>
<td>35</td>
<td>1</td>
<td>860</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>879</td>
</tr>
<tr>
<td>15</td>
<td>1.25</td>
<td>35</td>
<td>2</td>
<td>859</td>
</tr>
</tbody>
</table>

Save the design values and the response in a table.
D stands for Distance, P stands for Pitch, and C stands for Clearance. Based on the experimental test results, the airflow rate is sensitive to the changing factors values. Also, four experimental runs meet or exceed the target airflow rate of 875 ft3/min (runs 2, 4, 12, and 14). However, it is not clear which, if any, of these runs is the optimal one. In addition, it is not obvious how robust the design is to variation in the factors. Create a model based on the current experimental data and use the model to estimate the optimal factor settings.

Improve the Cooling Fan Performance

The Box-Behnken design enables you to test for nonlinear (quadratic) effects. The form of the quadratic model is:

$$ AF = \beta_0 + \beta_1 \cdot Distance + \beta_2 \cdot Pitch + \beta_3 \cdot Clearance + \beta_4 \cdot Distance \cdot Pitch \\
+ \beta_5 \cdot Distance \cdot Clearance + \beta_6 \cdot Pitch \cdot Clearance + \beta_7 \cdot Distance^2 \\
+ \beta_8 \cdot Pitch^2 + \beta_9 \cdot Clearance^2, $$

where AF is the airflow rate and B_i is the coefficient for the term i. Estimate the coefficients of this model using the `fitlm` function from Statistics and Machine Learning Toolbox.

```matlab
mdl = fitlm(Expmt,'Airflow~D*P*C-D:P:C+D^2+P^2+C^2');
```

Display the magnitudes of the coefficients (for normalized values) in a bar chart.

```matlab
figure()
h = bar(mdl.Coefficients.Estimate(2:10));
set(h,'facecolor',[0.8 0.8 0.9])
legend('Coefficient')
set(gcf,'units','normalized','position',[0.05 0.4 0.35 0.4])
set(gca,'xticklabel',mdl.CoefficientNames(2:10))
ylabel('Airflow (ft^3/min)')
xlabel('Normalized Coefficient')
title('Quadratic Model Coefficients')
```
The bar chart shows that *Pitch* and *Pitch*\(^2\) are dominant factors. You can look at the relationship between multiple input variables and one output variable by generating a response surface plot. Use `plotSlice` to generate response surface plots for the model `mdl` interactively.

```matlab
plotSlice(mdl)
```
The plot shows the nonlinear relationship of airflow with pitch. Move the blue dashed lines around and see the effect the different factors have on airflow. Although you can use `plotSlice` to determine the optimum factor settings, you can also use Optimization Toolbox to automate the task.

Find the optimal factor settings using the constrained optimization function `fmincon`.

Write the objective function.

```matlab
```

The objective function is a quadratic response surface fit to the data. Minimizing the negative airflow using `fmincon` is the same as maximizing the original objective function. The constraints are the upper and lower limits tested (in coded values). Set the initial starting point to be the center of the design of the experimental test matrix.

```matlab
lb = [-1 -1 -1]; % Lower bound
ub = [1 1 1];   % Upper bound
```
x0 = [0 0 0]; % Starting point
[optfactors,fval] = fmincon(f,x0,[],[],[],[],lb,ub,[]); % Invoke the solver

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

Convert the results to a maximization problem and real-world units.

maxval = -fval;
maxloc = (optfactors + 1)';
bounds = [1 1.5;15 35;1 2];
maxloc=(bounds(:,1)+maxloc .* ((bounds(:,2) - bounds(:,1))/2);
disp('Optimal Values:')
disp({'Distance','Pitch','Clearance','Airflow'})
disp([maxloc' maxval])

Optimal Values:
Distance Pitch Clearance Airflow
1 27.275 1 882.26

The optimization result suggests placing the new fan one inch from the radiator, with a one-inch clearance between the tips of the fan blades and the shroud.

Because pitch angle has such a significant effect on airflow, perform additional analysis to verify that a 27.3 degree pitch angle is optimal.

load(fullfile(matlabroot,'help/toolbox/stats/examples','AirflowData.mat'))
tbl = table(pitch,airflow);
mdl2 = fitlm(tbl,'airflow~pitch^2');
mdl2.Rsquared.Ordinary

ans =
0.99632

The results show that a quadratic model explains the effect of pitch on the airflow well.

Plot the pitch angle against airflow and impose the fitted model.

figure()
plot(pitch,airflow,'.r')
Find the pitch value that corresponds to the maximum airflow.

pitch(find(airflow==max(airflow)))
The additional analysis confirms that a 27.3 degree pitch angle is optimal.

The improved cooling fan design meets the airflow requirements. You also have a model that approximates the fan performance well based on the factors you can modify in the design. Ensure that the fan performance is robust to variability in manufacturing and installation by performing a sensitivity analysis.

Sensitivity Analysis

Suppose that, based on historical experience, the manufacturing uncertainty is as follows.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Real Values</th>
<th>Coded Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from radiator</td>
<td>1.00 +/- 0.05 inch</td>
<td>1.00 +/- 0.20 inch</td>
</tr>
<tr>
<td>Blade pitch angle</td>
<td>27.3 +/- 0.25 degrees</td>
<td>0.227 +/- 0.028 degrees</td>
</tr>
<tr>
<td>Blade tip clearance</td>
<td>1.00 +/- 0.125 inch</td>
<td>-1.00 +/- 0.25 inch</td>
</tr>
</tbody>
</table>

Verify that these variations in factors will enable to maintain a robust design around the target airflow. The philosophy of Six Sigma targets a defect rate of no more than 3.4 per 1,000,000 fans. That is, the fans must hit the 875 ft³/min target 99.999% of the time.

You can verify the design using Monte Carlo simulation. Generate 10,000 random numbers for three factors with the specified tolerance. First, set the state of the random number generators so results are consistent across different runs.

```matlab
rng('default')
```

Perform the Monte Carlo simulation. Include a noise variable that is proportional to the noise in the fitted model, mdl (that is, the RMS error of the model). Because the model coefficients are in coded variables, you must generate dist, pitch, and clearance using the coded definition.

```matlab
dist = random('normal',optfactors(1),0.20,[10000 1]);
pitch = random('normal',optfactors(2),0.028,[10000 1]);
clearance = random('normal',optfactors(3),0.25,[10000 1]);
noise = random('normal',0,mdl2.RMSE,[10000 1]);
```

Calculate airflow for 10,000 random factor combinations using the model.
simfactor = [dist pitch clearance];
X = x2fx(simfactor,'quadratic');

Add noise to the model (the variation in the data that the model did not account for).

simflow = X*mdl.Coefficients.Estimate+noise;

Evaluate the variation in the model's predicted airflow using a histogram. To estimate the mean and standard deviation, fit a normal distribution to data.

pd = fitdist(simflow,'normal');
histfit(simflow)
hold on
text(pd.mu+2,300,['Mean: ' num2str(round(pd.mu))])
text(pd.mu+2,280,['Standard deviation: ' num2str(round(pd.sigma))])
hold off
xlabel('Airflow (ft^3/min)')
ylabel('Frequency')
title('Monte Carlo Simulation Results')
The results look promising. The average airflow is 882 ft3/min and appears to be better than 875 ft3/min for most of the data.

Determine the probability that the airflow is at 875 ft3/min or below.

```matlab
format long
pfail = cdf(pd,875)
pass = (1-pfail)*100

pfail =

1.509289008603141e-07
The design appears to achieve at least $875 \text{ ft}^3/\text{min}$ of airflow 99.999% of the time.

Use the simulation results to estimate the process capability.

$$S = \text{capability}(\text{simflow}, [875.0 \ 890])$$

$$\text{pass} = (1 - S\text{.Pl}) \times 100$$

$$S =$$

$$\begin{align*}
\mu & : 8.822982645666709e+02 \\
\sigma & : 1.424806876923940 \\
\text{P} & : 0.999999816749816 \\
\text{Pl} & : 1.509289008603141e-07 \\
\text{Pu} & : 3.232128339675335e-08 \\
\text{Cp} & : 1.754623760237126 \\
\text{Cpl} & : 1.707427788957002 \\
\text{Cpu} & : 1.801819731517250 \\
\text{Cpk} & : 1.707427788957002
\end{align*}$$

$$\text{pass} =$$

$$99.9999849071099$$

The $C_p$ value is 1.75. A process is considered high quality when $C_p$ is greater than or equal to 1.6. The $C_{pk}$ is similar to the $C_p$ value, which indicates that the process is centered. Now implement this design. Monitor it to verify the design process and to ensure that the cooling fan delivers high-quality performance.

**Control Manufacturing of the Improved Cooling Fan**

You can monitor and evaluate the manufacturing and installation process of the new fan using control charts. Evaluate the first 30 days of production of the new cooling fan. Initially, five cooling fans per day were produced. First, load the sample data from the new process.

```matlab
code
load(fullfile(matlabroot,'help/toolbox/stats/examples','spcdata.mat'))
```

Plot the X-bar and S charts.
According to the results, the manufacturing process is in statistical control, as indicated by the absence of violations of control limits or nonrandom patterns in the data over time. You can also run a capability analysis on the data to evaluate the process.

```matlab
[row,col] = size(spcflow);
S2 = capability(reshape(spcflow,row*col,1),[875.0 890])
pass = (1-S.Pl)*100
```

S2 =
The $C_p$ value of 1.755 is very similar to the estimated value of 1.73. The $C_{pk}$ value of 1.66 is smaller than the $C_p$ value. However, only a $C_{pk}$ value less than 1.33, which indicates that the process shifted significantly toward one of the process limits, is a concern. The process is well within the limits and it achieves the target airflow (875 ft$^3$/min) more than 99.999% of the time.
Statistical Process Control

- “Control Charts” on page 28-2
- “Capability Studies” on page 28-5
Control Charts

A control chart displays measurements of process samples over time. The measurements are plotted together with user-defined specification limits and process-defined control limits. The process can then be compared with its specifications—to see if it is in control or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart indicates an undesirable, systematic change in the process. The control chart is used to discover the variation, so that the process can be adjusted to reduce it.

Control charts are created with the controlchart function. Any of the following chart types may be specified:

- Xbar or mean
- Standard deviation
- Range
- Exponentially weighted moving average
- Individual observation
- Moving range of individual observations
- Moving average of individual observations
- Proportion defective
- Number of defectives
- Defects per unit
- Count of defects

Control rules are specified with the controlrules function. The following example illustrates how to use Western Electric rules to mark out of control measurements on an Xbar chart.

First load the sample data.

```
load parts;
```

Construct the Xbar control chart using the Western Electric 2 rule (2 of 3 points at least 2 standard errors above the center line) to mark the out of control measurements.

```
st = controlchart(runout,'rules','we2');
```
For a better understanding of the Western Electric 2 rule, calculate and plot the 2 standard errors line on the chart.

```matlab
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')
```
Identify the measurements that violate the control rule.

\[
R = \text{controlrules('we2',x,cl,se)}; \\
I = \text{find}(R) \\
I = 6 \times 1 \\
21 \\
23 \\
24 \\
25 \\
26 \\
27
\]
Capability Studies

Before going into production, many manufacturers run a capability study to determine if their process will run within specifications enough of the time. Capability indices produced by such a study are used to estimate expected percentages of defective parts.

Capability studies are conducted with the capability function. The following capability indices are produced:

- \( \mu \) — Sample mean
- \( \sigma \) — Sample standard deviation
- \( P \) — Estimated probability of being within the lower (L) and upper (U) specification limits
- \( Pl \) — Estimated probability of being below L
- \( Pu \) — Estimated probability of being above U
- \( Cp \) — \( \frac{(U-L)}{6\sigma} \)
- \( Cpl \) — \( \frac{(\mu-L)}{3\sigma} \)
- \( Cpu \) — \( \frac{(U-\mu)}{3\sigma} \)
- \( Cpk \) — \( \min(Cpl,Cpu) \)

As an example, simulate a sample from a process with a mean of 3 and a standard deviation of 0.005:

\[ \text{rng default; \% For reproducibility} \]
\[ \text{data = normrnd(3,0.005,100,1);} \]

Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99:

\[ S = \text{capability(data,[2.99 3.01])} \]

\[ S = \text{struct with fields:} \]
\[ \mu: 3.0006 \]
\[ \sigma: 0.0058 \]
\[ P: 0.9129 \]
\[ Pl: 0.0339 \]
\[ Pu: 0.0532 \]
\[ Cp: 0.5735 \]
\[ Cpl: 0.6088 \]
\[ Cpu: 0.5382 \]
Cpk: 0.5382

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
Tall Arrays

- “Tall Array Support, Usage Notes, and Limitations” on page 29-2
- “Logistic Regression with Tall Arrays” on page 29-42
- “Bayesian Optimization with Tall Arrays” on page 29-52
## Tall Array Support, Usage Notes, and Limitations

### Descriptive Statistics and Visualization

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>binScatterPlot</td>
<td>This function is specifically designed for visualizing large data sets. Instead of plotting millions of data points, which is not very feasible, binScatterPlot summarizes the data points into bins. This “scatter plot of bins” reveals high-level trends in the data.</td>
</tr>
<tr>
<td>confusionmat</td>
<td></td>
</tr>
<tr>
<td>corr</td>
<td>Only the 'Pearson' type is supported.</td>
</tr>
<tr>
<td>crosstab</td>
<td>The fourth output, labels, is returned as a cell array containing M unevaluated tall cell arrays, where M is the number of input grouping variables. Each unevaluated tall cell array, labels{J}, contains the labels for one grouping variable.</td>
</tr>
<tr>
<td>dummyvar</td>
<td></td>
</tr>
<tr>
<td>geomean</td>
<td>• The following syntaxes are not supported.</td>
</tr>
<tr>
<td></td>
<td>• m = geomean(X,'all')</td>
</tr>
<tr>
<td></td>
<td>• m = geomean(X,vecdim)</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| grpstats | • If the input data is a tall array, then all grouping variables must also be tall and have the same number of rows as the data.  
  • The `whichstats` option cannot be specified as a function handle. In addition to the current built-in options, `whichstats` can also be:  
    • 'Count' — Number of non-NaNs.  
    • 'NNZ' — Number of nonzeros and non-NaNs.  
    • 'Kurtosis' — Compute kurtosis.  
    • 'Skewness' — Compute skewness.  
    • 'all-stats' — Compute all summary statistics.  
  • Group order is not guaranteed to be the same as the in-memory `grpstats` computation. Specify 'gname' as the `whichstats` option to return the order of rows of the summary statistics. For example `[means,grpname] = grpstats(x,bins, ['mean','gname'])` returns the means of groups in `x` in the same order that the groups appear in `grpname`.  
  • Summary statistics for nonnumeric variables return NaNs.  
  • `grpstats` always operates on the first dimension.  
  • If the input is a tall table, then the output is also a tall table. However, rather than including row names, the output tall table contains an extra... |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>variable GroupLabel that contains the same information.</td>
</tr>
<tr>
<td>harmmean</td>
<td>• The following syntaxes are not supported.</td>
</tr>
<tr>
<td></td>
<td>• m = harmmean(X,'all')</td>
</tr>
<tr>
<td></td>
<td>• m = harmmean(X,vecdim)</td>
</tr>
<tr>
<td>ksdensity</td>
<td>• Some options that require extra passes or sorting of the input data are not</td>
</tr>
<tr>
<td></td>
<td>supported:</td>
</tr>
<tr>
<td></td>
<td>• 'BoundaryCorrection'</td>
</tr>
<tr>
<td></td>
<td>• 'Censoring'</td>
</tr>
<tr>
<td></td>
<td>• 'Support' (support is always unbounded).</td>
</tr>
<tr>
<td></td>
<td>• Uses standard deviation (instead of median absolute deviation) to compute the</td>
</tr>
<tr>
<td></td>
<td>bandwidth.</td>
</tr>
<tr>
<td>kurtosis</td>
<td>• The following syntaxes are not supported.</td>
</tr>
<tr>
<td></td>
<td>• k = kurtosis(X,flag,'all')</td>
</tr>
<tr>
<td></td>
<td>• k = kurtosis(X,flag,vecdim)</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| prctile  | - The following syntaxes are not supported.  
  - `Y = prctile(X,p,'all')`  
  - `Y = prctile(X,p,vecdim)`  
  - `Y = prctile(X,p)` returns the exact percentiles (using a sorting-based algorithm on page 32-4936) under these conditions.  
    - `X` is a tall column vector and `p` is a scalar. In this case, `dim` is 1.  
    - `X` is a tall matrix and `dim` is not 1.  
    - If `p` is a vector and `dim` is 1, then you must specify `'Method','approximate'` to use an approximation algorithm based on T-Digest on page 32-4933 for computing the percentiles. |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| quantile | • The following syntaxes are not supported.  
  • $Y = \text{quantile}(__, \text{'all'})$  
  • $Y = \text{quantile}(__, \text{vecdim})$  
  • $Y = \text{quantile}(X,p)$ returns the exact quantiles (using a sorting-based algorithm on page 32-5292) under these conditions.  
    • $X$ is a tall column vector and $p$ is a scalar. In this case, $\text{dim}$ is 1.  
    • $X$ is a tall matrix and $\text{dim}$ is not 1.  
    • If $p$ is a vector and $\text{dim}$ is 1, then you must specify 'Method','approximate' to use an approximation algorithm based on T-Digest on page 32-5290 for computing the quantiles.  
  • $Y = \text{quantile}(X,N)$ returns the exact quantiles only when quantile is operating along a dimension other than the first dimension. If $\text{dim}$ is 1, then you must specify 'Method','approximate' to use an approximation algorithm based on t-digest for computing the quantiles. |
| range    | • The following syntaxes are not supported.  
  • $y = \text{range}(X, \text{'all'})$  
  • $y = \text{range}(X,\text{vecdim})$ |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>skewness</td>
<td>• The following syntaxes are not supported.</td>
</tr>
<tr>
<td></td>
<td>• <code>y = skewness(X, flag, 'all')</code></td>
</tr>
<tr>
<td></td>
<td>• <code>y = skewness(X, flag, vecdim)</code></td>
</tr>
<tr>
<td>tabulate</td>
<td></td>
</tr>
<tr>
<td>zscore</td>
<td>• The following syntaxes are not supported.</td>
</tr>
<tr>
<td></td>
<td>• <code>Z = zscore(X, flag, 'all')</code></td>
</tr>
<tr>
<td></td>
<td>• <code>Z = zscore(X, flag, vecdim)</code></td>
</tr>
</tbody>
</table>
## Probability Distributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| datasample | • `datasample` is useful as a precursor to plotting and fitting a random subset of a large data set. Sampling a large data set preserves trends in the data without requiring the use of all the data points. If the sample is small enough to fit in memory, then you can apply plotting and fitting functions that do not directly support tall arrays.  
  • `datasample` supports sampling only along the first dimension of the data.  
  • For tall arrays, `datasample` does not support sampling with replacement. You must specify `'Replace',false`, for example, `datasample(data,k,'Replace',false)`.  
  • The value of `'Weights'` must be a numeric tall array of the same height as `data`.  
  • For the syntax `[Y,idx] = datasample(__),` the output `idx` is a tall logical vector of the same height as `data`. The vector indicates whether each data point is included in the sample.  
  • If you specify a random number stream, then the underlying generator must support multiple streams and substreams. If you do not specify a random number stream, then `datasample` uses the stream controlled by `tallrng`. |
## Cluster Analysis

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmeans</td>
<td>Only random sample initialization is supported. Supported syntaxes:</td>
</tr>
<tr>
<td></td>
<td>• <code>idx = kmeans(X,k)</code> performs classic k-means clustering.</td>
</tr>
<tr>
<td></td>
<td>• <code>[idx,C] = kmeans(X,k)</code> also returns the k cluster centroid locations.</td>
</tr>
<tr>
<td></td>
<td>• <code>[idx,C,sumd] = kmeans(X,k)</code> additionally returns the k within-cluster sums of point-to-centroid distances.</td>
</tr>
<tr>
<td></td>
<td>• <code>___ = kmeans(____,Name,Value)</code> specifies additional name-value pair options using any of the other syntaxes. Valid options are:</td>
</tr>
<tr>
<td></td>
<td>• <code>'Start'</code> — Method used to choose the initial cluster centroid positions. Value can be:</td>
</tr>
<tr>
<td></td>
<td>• <code>'plus'</code> (default) — Select k observations from X using a variant of the kmeans++ algorithm adapted for tall data.</td>
</tr>
<tr>
<td></td>
<td>• <code>'sample'</code> — Select k observations from X at random.</td>
</tr>
<tr>
<td></td>
<td>• Numeric matrix — A k-by-p matrix to explicitly specify starting locations.</td>
</tr>
</tbody>
</table>
|           | • `'Options'` — An options structure created using the `statset` function. For tall arrays, `kmeans` uses the fields listed here and ignores all other fields in the options structure:
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
|          | • 'Display' — Level of display. Choices are 'iter' (default), 'off', and 'final'.  
|          | • 'MaxIter' — Maximum number of iterations. Default is 100.  
|          | • 'TolFun' — Convergency tolerance for the within-cluster sums of point-to-centroid distances. Default is $1e^{-4}$. This option field only works with tall arrays. |

### Regression

The loss and predict methods of these regression classes support tall arrays:

- CompactRegressionSVM
- CompactRegressionGP
- CompactRegressionTree
- CompactRegressionEnsemble
- RegressionLinear
- RegressionKernel

- **Notes or Limitations**
  - You can use models trained on either in-memory or tall data with these methods.
  - The loss method of CompactRegressionTree only supports one output argument.

The resume method of RegressionKernel supports tall arrays.

- **Notes or Limitations**
  - You can use models trained on either in-memory or tall data.
  - The default value for the 'IterationLimit' name-value pair argument is relaxed to 20 when you work with tall arrays.
  - resume uses a block-wise strategy. For details, see the “Algorithms” on page 32-7237 section of fitrkernel.
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| cvpartition   | • When you use cvpartition with tall arrays, the first input argument must be a grouping variable, tGroup. If you specify a tall scalar as the first input argument, cvpartition gives an error.  
  • cvpartition supports only Holdout cross-validation for tall arrays; for example, c = cvpartition(tGroup,'HoldOut',p). By default, cvpartition randomly partitions observations into a training set and a test set with stratification, using the class information in tGroup. The parameter p is a scalar such that $0 < p < 1$.  
  • To create nonstratified Holdout partitions, specify the value of the 'Stratify' name-value pair argument as false; for example, c = cvpartition(tGroup,'HoldOut',p, 'Stratify',false). |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| fitglm   | • If any input argument to `fitglm` is a tall array, then all of the other inputs must be tall arrays as well. This includes nonempty variables supplied with the 'Weights', 'Exclude', 'Offset', and 'BinomialSize' name-value pairs.  
• The default number of iterations is 5. You can change the number of iterations using the 'Options' name-value pair to pass in an options structure. Create an options structure using `statset` to specify a different value for `MaxIter`.  
• For tall data, `fitglm` returns a `CompactGeneralizedLinearModel` object that contains most of the same properties as a `GeneralizedLinearModel` object. The main difference is that the compact object is sensitive to memory requirements. The compact object does not include properties that include the data, or that include an array of the same size as the data. The compact object does not contain these `GeneralizedLinearModel` properties:  
  • Diagnostics  
  • Fitted  
  • Offset  
  • ObservationInfo  
  • ObservationNames  
  • Residuals  
  • Steps  
  • Variables |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>You can compute the residuals directly from the compact object returned by GLM = fitglm(X,Y) using RES = Y - predict(GLM,X); S = sqrt(GLM.SSE/GLM.DFE); histogram(RES,linspace(-3<em>S,3</em>S,51))</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| fitlm    | • If any input argument to fitlm is a tall array, then all of the other inputs must be tall arrays as well. This includes nonempty variables supplied with the 'Weights' and 'Exclude' name-value pairs.  
• The 'RobustOpts' name-value pair is not supported with tall arrays.  
• For tall data, fitlm returns a CompactLinearModel object that contains most of the same properties as a LinearModel object. The main difference is that the compact object is sensitive to memory requirements. The compact object does not include properties that include the data, or that include an array of the same size as the data. The compact object does not contain these LinearModel properties:  
  • Diagnostics  
  • Fitted  
  • ObservationInfo  
  • ObservationNames  
  • Residuals  
  • Steps  
  • Variables  

You can compute the residuals directly from the compact object returned by LM = fitlm(X,Y) using

\[
\begin{align*}
\text{RES} &= Y - \text{predict}(LM,X); \\
S &= LM.RMSE; \\
\text{histogram}(RES,\text{linspace}(-3S,3S,51))
\end{align*}
\]
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the CompactLinearModel object is missing lower order terms that include categorical factors:</td>
</tr>
<tr>
<td></td>
<td>• The plotEffects and plotInteraction methods are not supported.</td>
</tr>
<tr>
<td></td>
<td>• The anova method with the 'components' option is not supported.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>fitrkernel</td>
<td>• The default values for these name-value pair arguments are different when you work with tall arrays.</td>
</tr>
<tr>
<td></td>
<td>• 'BetaTolerance' — Default value is relaxed to 1e-3.</td>
</tr>
<tr>
<td></td>
<td>• 'GradientTolerance' — Default value is relaxed to 1e-5.</td>
</tr>
<tr>
<td></td>
<td>• 'IterationLimit' — Default value is relaxed to 20.</td>
</tr>
<tr>
<td></td>
<td>• 'Verbose' — Default value is 1.</td>
</tr>
<tr>
<td></td>
<td>• If 'KernelScale' is 'auto', then fitrkernel uses the random stream controlled by tallrng for subsampling. For reproducibility, you must set a</td>
</tr>
<tr>
<td></td>
<td>random number seed for both the global stream and the random stream controlled by tallrng.</td>
</tr>
<tr>
<td></td>
<td>• If 'Lambda' is 'auto', then fitrkernel might take an extra pass through the data to calculate the number of observations in X.</td>
</tr>
<tr>
<td></td>
<td>• fitrkernel uses a block-wise strategy. For details, see “Algorithms” on page 32-7237.</td>
</tr>
<tr>
<td></td>
<td>• The cross-validation name-value pair arguments, which include 'CrossVal', 'CVPartition', 'Holdout', 'KFold', and 'Leaveout', are not supported.</td>
</tr>
<tr>
<td></td>
<td>• The 'HyperparameterOptimizationOptions' name-value pair argument supports only 'Holdout' for cross-validation. For example, you can specify</td>
</tr>
<tr>
<td></td>
<td>(X,Y,'OptimizeHyperparameters',...)</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------------------------------</td>
</tr>
<tr>
<td>'auto','HyperparameterOptimizatio...</td>
<td>'auto','HyperparameterOptimizatioOptions',struct('Holdout', 0.2))</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| fitrlinear   | • Some name-value pair arguments have different defaults and values compared to the in-memory fitrlinear function. Supported name-value pair arguments, and any differences, are:  
  • 'Epsilon'  
  • 'ObservationsIn' — Supports only 'rows'.  
  • 'Lambda' — Can be 'auto' (default) or a scalar.  
  • 'Learner'  
  • 'Regularization' — Supports only 'ridge'.  
  • 'Solver' — Supports only 'lbfgs'.  
  • 'Verbose' — Default value is 1  
  • 'Beta'  
  • 'Bias'  
  • 'FitBias' — Supports only true.  
  • 'Weights' — Value must be a tall array.  
  • 'HessianHistorySize'  
  • 'BetaTolerance' — Default value is relaxed to 1e-3.  
  • 'GradientTolerance' — Default value is relaxed to 1e-3.  
  • 'IterationLimit' — Default value is relaxed to 20.  
  • 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be 'ridge'.  
  • 'HyperparameterOptimizationOptions' — For cross-validation, tall arrays  

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>optimization supports only 'Holdout' validation. For example, you can specify (X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).</td>
</tr>
<tr>
<td></td>
<td>• For tall arrays fitrlinear implements LBFGS by distributing the calculation of the loss and the gradient among different parts of the tall array at each iteration. Other solvers are not available for tall arrays.</td>
</tr>
<tr>
<td></td>
<td>When initial values for Beta and Bias are not given, fitrlinear first refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| lasso    | - With tall arrays, lasso uses an algorithm based on ADMM (Alternating Direction Method of Multipliers).  
- No elastic net support. The 'Alpha' parameter is always 1.  
- No cross-validation ('CV' parameter) support, which includes the related parameter 'MCReps'.  
- The output FitInfo does not contain the additional fields 'SE', 'LambdaMinMSE', 'Lambda1SE', 'IndexMinMSE', and 'Index1SE'.  
- The 'Options' parameter is not supported because it does not contain options that apply to the ADMM algorithm. You can tune the ADMM algorithm using name-value pair arguments.  
- Supported name-value pair arguments are:  
  - 'Lambda'  
  - 'LambdaRatio'  
  - 'NumLambda'  
  - 'Standardize'  
  - 'PredictorNames'  
  - 'RelTol'  
  - 'Weights'  
- Additional name-value pair arguments to control the ADMM algorithm are:  
  - 'Rho' — Augmented Lagrangian parameter, $\rho$. The default value is automatic selection. |
### Function

<table>
<thead>
<tr>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 'AbsTol' — Absolute tolerance used to determine convergence. The default value is $1e^{-4}$.</td>
</tr>
<tr>
<td>• 'MaxIter' — Maximum number of iterations. The default value is $1e4$.</td>
</tr>
<tr>
<td>• 'B0' — Initial values for the coefficients $x$. The default value is a vector of zeros.</td>
</tr>
<tr>
<td>• 'U0' — Initial values of the scaled dual variable $u$. The default value is a vector of zeros.</td>
</tr>
</tbody>
</table>

### Classification

The predict, loss, margin, and edge methods of these classification classes support tall arrays:

- CompactClassificationEnsemble
- CompactClassificationTree
- CompactClassificationDiscriminant
- CompactClassificationNaiveBayes
- CompactClassificationSVM
- CompactClassificationECOC
- ClassificationKernel
- ClassificationKNN
- ClassificationLinear

<table>
<thead>
<tr>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You can use models trained on either in-memory or tall data with these methods.</td>
</tr>
<tr>
<td>• The loss method of CompactClassificationTree only supports one output argument.</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>----------</td>
</tr>
</tbody>
</table>
| The `resume` method of ClassificationKernel supports tall arrays. | • You can use models trained on either in-memory or tall data.  
• The default value for the `'IterationLimit'` name-value pair argument is relaxed to 20 when working with tall arrays.  
• `resume` uses a block-wise strategy. For details, see “Algorithms” on page 32-7146 of `fitckernel`. |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| fitcdiscr  | • Supported syntaxes for tall arrays return the additional output arguments FitInfo and HyperparameterOptimizationResults. The supported syntaxes are:  
  • `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(Tbl,Y)`  
  • `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(X,Y)`  
  • `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(___,Name,Value)`  
  • The FitInfo output argument is an empty structure array currently reserved for possible future use.  
  • The HyperparameterOptimizationResults output argument is a BayesianOptimization object or a table of hyperparameters with associated values that describe the cross-validation optimization of hyperparameters.  
  'HyperparameterOptimizationResults' is nonempty when the 'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create the model. The values in 'HyperparameterOptimizationResults' depend on the value you specify for the 'HyperparameterOptimizationOptions' argument. |

29-23
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ons' name-value pair argument when you create the model.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an object of class BayesianOptimization.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'gridsearch' or 'randomsearch', then HyperparameterOptimizationResults is a table of the hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst).</td>
</tr>
<tr>
<td></td>
<td>• Supported name-value pair arguments, and any differences, are:</td>
</tr>
<tr>
<td></td>
<td>• 'ClassNames'</td>
</tr>
<tr>
<td></td>
<td>• 'Cost'</td>
</tr>
<tr>
<td></td>
<td>• 'DiscrimType'</td>
</tr>
<tr>
<td></td>
<td>• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify (X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).</td>
</tr>
<tr>
<td></td>
<td>• 'OptimizeHyperparameters' — The only eligible parameter to optimize is 'DiscrimType'. Specifying 'auto' uses 'DiscrimType'.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>• 'PredictorNames'</td>
<td></td>
</tr>
<tr>
<td>• 'Prior'</td>
<td></td>
</tr>
<tr>
<td>• 'ResponseName'</td>
<td></td>
</tr>
<tr>
<td>• 'ScoreTransform'</td>
<td></td>
</tr>
<tr>
<td>• 'Weights'</td>
<td></td>
</tr>
<tr>
<td>• For tall arrays and tall tables, fitcdiscr returns a CompactClassificationDiscriminant object, which contains most of the same properties as a ClassificationDiscriminant object. The main difference is that the compact object is sensitive to memory requirements. The compact object does not include properties that include the data, or that include an array of the same size as the data. The compact object does not contain these ClassificationDiscriminant properties:</td>
<td></td>
</tr>
<tr>
<td>• ModelParameters</td>
<td></td>
</tr>
<tr>
<td>• NumObservations</td>
<td></td>
</tr>
<tr>
<td>• HyperparameterOptimizationResults</td>
<td></td>
</tr>
<tr>
<td>• RowsUsed</td>
<td></td>
</tr>
<tr>
<td>• XCentered</td>
<td></td>
</tr>
<tr>
<td>• W</td>
<td></td>
</tr>
<tr>
<td>• X</td>
<td></td>
</tr>
<tr>
<td>• Y</td>
<td></td>
</tr>
<tr>
<td>Additionally, the compact object does not support these ClassificationDiscriminant methods:</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td>• compact</td>
</tr>
<tr>
<td></td>
<td>• crossval</td>
</tr>
<tr>
<td></td>
<td>• cvshrink</td>
</tr>
<tr>
<td></td>
<td>• resubEdge</td>
</tr>
<tr>
<td></td>
<td>• resubLoss</td>
</tr>
<tr>
<td></td>
<td>• resubMargin</td>
</tr>
<tr>
<td></td>
<td>• resubPredict</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| fitcecoc | • Supported syntaxes are:  
|          |   • Mdl = fitcecoc(X,Y)  
|          |   • Mdl = fitcecoc(___,Name,Value)  
|          | • Options related to cross-validation and hyperparameter optimization are not supported. The supported name-value pair arguments are:  
|          |   • 'ClassNames'  
|          |   • 'Cost'  
|          |   • 'Coding' — Default value is 'onevsall'.  
|          |   • 'Learners' — Default value is 'linear'. Only linear and kernel binary classifiers are supported.  
|          |   • 'Prior'  
|          |   • 'Verbose' — Default value is 1.  
|          |   • 'Weights'  
|          | • This additional name-value pair argument is specific to tall arrays:  
<p>|          |   • 'NumConcurrent' — A positive integer scalar specifying the number of binary learners that are trained concurrently by combining file I/O operations. The default value for 'NumConcurrent' is 1, which means fitcecoc trains the binary learners sequentially. 'NumConcurrent' is most beneficial when the input arrays cannot fit into the distributed cluster memory. Otherwise, the input arrays |</p>
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>can be cached and speedup is negligible. If you run your code on Apache Spark™, NumConcurrent is upper bounded by the memory available for communications. Check the 'spark.executor.memory' and 'spark.driver.memory' properties in your Apache Spark configuration. See parallel.cluster.Hadoop for more details. For more information on Apache Spark and other execution environments that control where your code runs, see “Extend Tall Arrays with Other Products” (MATLAB).</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>fitckernel</td>
<td>• The default values for these name-value pair arguments are different when you work with tall arrays.</td>
</tr>
<tr>
<td></td>
<td>• 'BetaTolerance' — Default value is relaxed to 1e−3.</td>
</tr>
<tr>
<td></td>
<td>• 'GradientTolerance' — Default value is relaxed to 1e−5.</td>
</tr>
<tr>
<td></td>
<td>• 'IterationLimit' — Default value is relaxed to 20.</td>
</tr>
<tr>
<td></td>
<td>• 'Verbose' — Default value is 1.</td>
</tr>
<tr>
<td></td>
<td>• If 'KernelScale' is 'auto', then fitckernel uses the random stream controlled by tallrng for subsampling. For reproducibility, you must set a</td>
</tr>
<tr>
<td></td>
<td>random number seed for both the global stream and the random stream controlled by tallrng.</td>
</tr>
<tr>
<td></td>
<td>• If 'Lambda' is 'auto', then fitckernel might take an extra pass through the data to calculate the number of observations in X.</td>
</tr>
<tr>
<td></td>
<td>• fitckernel uses a block-wise strategy. For details, see “Algorithms” on page 32-7146.</td>
</tr>
<tr>
<td></td>
<td>• The cross-validation name-value pair arguments, which include 'CrossVal', 'CVPartition', 'Holdout', 'KFold', and 'Leaveout', are not supported.</td>
</tr>
<tr>
<td></td>
<td>• The 'HyperparameterOptimizationOptions' name-value pair argument supports only 'Holdout' for cross-validation. For example, you can specify (X,Y,'OptimizeHyperparameters',</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>'auto','HyperparameterOptimizationOptions',struct('Holdout', 0.2)).</td>
</tr>
<tr>
<td>templateKernel</td>
<td>• The default values for these name-value pair arguments are different when you work with tall arrays.</td>
</tr>
<tr>
<td></td>
<td>• 'Verbose' — Default value is 1.</td>
</tr>
<tr>
<td></td>
<td>• 'BetaTolerance' — Default value is relaxed to 1e–3.</td>
</tr>
<tr>
<td></td>
<td>• 'GradientTolerance' — Default value is relaxed to 1e–5.</td>
</tr>
<tr>
<td></td>
<td>• 'IterationLimit' — Default value is relaxed to 20.</td>
</tr>
<tr>
<td></td>
<td>• If 'KernelScale' is 'auto', then templateKernel uses the random stream controlled by tallrng for subsampling. For reproducibility, you must set a random number seed for both the global stream and the random stream controlled by tallrng.</td>
</tr>
<tr>
<td></td>
<td>• If 'Lambda' is 'auto', then templateKernel might take an extra pass through the data to calculate the number of observations.</td>
</tr>
<tr>
<td></td>
<td>• templateKernel uses a block-wise strategy. For details, see “Algorithms” on page 32-6463.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>fitclinear</td>
<td>• Some name-value pair arguments have different defaults compared to the in-memory fitclinear function. Supported name-value pair arguments, and any differences, are:</td>
</tr>
<tr>
<td></td>
<td>• 'ObservationsIn' — Supports only 'rows'.</td>
</tr>
<tr>
<td></td>
<td>• 'Lambda' — Can be 'auto' (default) or a scalar.</td>
</tr>
<tr>
<td></td>
<td>• 'Learner'</td>
</tr>
<tr>
<td></td>
<td>• 'Regularization' — Supports only 'ridge'.</td>
</tr>
<tr>
<td></td>
<td>• 'Solver' — Supports only 'lbfgs'.</td>
</tr>
<tr>
<td></td>
<td>• 'FitBias' — Supports only true.</td>
</tr>
<tr>
<td></td>
<td>• 'Verbose' — Default value is 1.</td>
</tr>
<tr>
<td></td>
<td>• 'Beta'</td>
</tr>
<tr>
<td></td>
<td>• 'Bias'</td>
</tr>
<tr>
<td></td>
<td>• 'ClassNames'</td>
</tr>
<tr>
<td></td>
<td>• 'Cost'</td>
</tr>
<tr>
<td></td>
<td>• 'Prior'</td>
</tr>
<tr>
<td></td>
<td>• 'Weights' — Value must be a tall array.</td>
</tr>
<tr>
<td></td>
<td>• 'HessianHistorySize'</td>
</tr>
<tr>
<td></td>
<td>• 'BetaTolerance' — Default value is relaxed to 1e-3.</td>
</tr>
<tr>
<td></td>
<td>• 'GradientTolerance' — Default value is relaxed to 1e-3.</td>
</tr>
<tr>
<td></td>
<td>• 'IterationLimit' — Default value is relaxed to 20.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>• 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be 'ridge'.</td>
<td></td>
</tr>
<tr>
<td>• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify (X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).</td>
<td></td>
</tr>
<tr>
<td>• For tall arrays, fitclinear implements LBFGS by distributing the calculation of the loss and gradient among different parts of the tall array at each iteration. Other solvers are not available for tall arrays.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When initial values for Beta and Bias are not given, fitclinear refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>templateLinear</td>
<td>• The default values for these name-value pair arguments are different when you work with tall arrays.</td>
</tr>
<tr>
<td></td>
<td>• 'Lambda' — Can be 'auto' (default) or a scalar</td>
</tr>
<tr>
<td></td>
<td>• 'Regularization' — Supports only 'ridge'</td>
</tr>
<tr>
<td></td>
<td>• 'Solver' — Supports only 'lbfgs'</td>
</tr>
<tr>
<td></td>
<td>• 'FitBias' — Supports only true</td>
</tr>
<tr>
<td></td>
<td>• 'Verbose' — Default value is 1</td>
</tr>
<tr>
<td></td>
<td>• 'BetaTolerance' — Default value is relaxed to $1e^{-3}$</td>
</tr>
<tr>
<td></td>
<td>• 'GradientTolerance' — Default value is relaxed to $1e^{-3}$</td>
</tr>
<tr>
<td></td>
<td>• 'IterationLimit' — Default value is relaxed to 20</td>
</tr>
<tr>
<td></td>
<td>• When fitcecoc uses a templateLinear object with tall arrays, the only available solver is LBFGS. The software implements LBFGS by distributing the calculation of the loss and gradient among different parts of the tall array at each iteration. If you do not specify initial values for Beta and Bias, the software refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| fitcnb    | • Supported syntaxes are:  
|           |   • `Mdl = fitcnb(Tbl,Y)`  
|           |   • `Mdl = fitcnb(X,Y)`  
|           |   • `Mdl = fitcnb(__,Name,Value)`  
|           |   • Options related to kernel densities, cross-validation, and hyperparameter optimization are not supported. The supported name-value pair arguments are:  
|           |   • 'DistributionNames' — 'kernel' value is not supported.  
|           |   • 'CategoricalPredictors'  
|           |   • 'Cost'  
|           |   • 'PredictorNames'  
|           |   • 'Prior'  
|           |   • 'ResponseName'  
|           |   • 'ScoreTransform'  
<p>|           |   • 'Weights' — Value must be a tall array. |</p>
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitctree</td>
<td>• Supported syntaxes for tall arrays return the additional output arguments FitInfo and HyperparameterOptimizationResults. The supported syntaxes are:</td>
</tr>
<tr>
<td></td>
<td>• ([\text{tree,FitInfo,HyperparameterOptimizationResults}] = \text{fitctree(Tbl,Y)})</td>
</tr>
<tr>
<td></td>
<td>• ([\text{tree,FitInfo,HyperparameterOptimizationResults}] = \text{fitctree(X,Y)})</td>
</tr>
<tr>
<td></td>
<td>• ([\text{tree,FitInfo,HyperparameterOptimizationResults}] = \text{fitctree(_,_,_,Name,Value)})</td>
</tr>
<tr>
<td></td>
<td>• The FitInfo output argument is an empty structure array currently reserved for possible future use.</td>
</tr>
<tr>
<td></td>
<td>• The HyperparameterOptimizationResults output argument is a BayesianOptimization object or a table of hyperparameters with associated values that describe the cross-validation optimization of hyperparameters.</td>
</tr>
</tbody>
</table>
|              | 'HyperparameterOptimizationResults' is nonempty when the 'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create the model. The values in 'HyperparameterOptimizationResults' depend on the value you specify for the 'HyperparameterOptimizationOpti
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ons' name-value pair argument when you create the model.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an object of class BayesianOptimization.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'gridsearch' or 'randomsearch', then HyperparameterOptimizationResults is a table of the hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst).</td>
</tr>
<tr>
<td></td>
<td>• Supported name-value pair arguments, and any differences, are:</td>
</tr>
<tr>
<td></td>
<td>• 'AlgorithmForCategorical'</td>
</tr>
<tr>
<td></td>
<td>• 'CategoricalPredictors'</td>
</tr>
<tr>
<td></td>
<td>• 'ClassNames'</td>
</tr>
<tr>
<td></td>
<td>• 'Cost'</td>
</tr>
<tr>
<td></td>
<td>• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify (X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).</td>
</tr>
<tr>
<td></td>
<td>• 'MaxNumCategories'</td>
</tr>
<tr>
<td></td>
<td>• 'MaxNumSplits' — for tall optimization, fitctree searches among integers, by default log-scaled</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>in the range</td>
</tr>
<tr>
<td></td>
<td>$[1, \max(2, \min(10000, \text{NumObservations}-1))]$.</td>
</tr>
<tr>
<td></td>
<td>- 'MergeLeaves'</td>
</tr>
<tr>
<td></td>
<td>- 'MinLeafSize'</td>
</tr>
<tr>
<td></td>
<td>- 'MinParentSize'</td>
</tr>
<tr>
<td></td>
<td>- 'NumVariablesToSample'</td>
</tr>
<tr>
<td></td>
<td>- 'OptimizeHyperparameters'</td>
</tr>
<tr>
<td></td>
<td>- 'PredictorNames'</td>
</tr>
<tr>
<td></td>
<td>- 'Prior'</td>
</tr>
<tr>
<td></td>
<td>- 'ResponseName'</td>
</tr>
<tr>
<td></td>
<td>- 'ScoreTransform'</td>
</tr>
<tr>
<td></td>
<td>- 'SplitCriterion'</td>
</tr>
<tr>
<td></td>
<td>- 'Weights'</td>
</tr>
<tr>
<td></td>
<td>- There is an additional name-value pair argument specific to tall arrays:</td>
</tr>
<tr>
<td></td>
<td>- 'MaxDepth' — A positive integer specifying the maximum depth of the output tree. Specify a value for this parameter to return a tree that has</td>
</tr>
<tr>
<td></td>
<td>fewer levels and requires fewer passes through the tall array to compute. Generally the algorithm of fitctree takes one pass through the data and</td>
</tr>
<tr>
<td></td>
<td>an additional pass for each tree level. There is no maximum tree depth by default.</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TreeBagger</td>
<td>• Supported syntaxes for tall X, Y, Tbl are:</td>
</tr>
<tr>
<td></td>
<td>• B = TreeBagger(NumTrees,Tbl,Y)</td>
</tr>
<tr>
<td></td>
<td>• B = TreeBagger(NumTrees,X,Y)</td>
</tr>
<tr>
<td></td>
<td>• B = TreeBagger(___,Name,Value)</td>
</tr>
<tr>
<td></td>
<td>• For tall arrays, <code>TreeBagger</code> supports classification. Regression is not supported.</td>
</tr>
<tr>
<td></td>
<td>• Supported name-value pairs are:</td>
</tr>
<tr>
<td></td>
<td>• 'NumPredictorsToSample' — Default value is the square root of the number of variables for classification.</td>
</tr>
<tr>
<td></td>
<td>• 'MinLeafSize' — Default value is 1 if the number of observations is less than 50,000. If the number of observations is 50,000 or greater, then the default value is [\max(1,\min(5,\floor{0.01\cdot Nobs\text{Chunk}}))], where (Nobs\text{Chunk}) is the number of observations in a chunk.</td>
</tr>
<tr>
<td></td>
<td>• 'ChunkSize' (only for tall arrays) — Default value is 50000.</td>
</tr>
<tr>
<td></td>
<td>In addition, <code>TreeBagger</code> supports these optional arguments of <code>fitctree</code>:</td>
</tr>
<tr>
<td></td>
<td>• 'AlgorithmForCategorical'</td>
</tr>
<tr>
<td></td>
<td>• 'CategoricalPredictors'</td>
</tr>
<tr>
<td></td>
<td>• 'MaxNumCategories'</td>
</tr>
<tr>
<td></td>
<td>• 'MergeLeaves'</td>
</tr>
<tr>
<td></td>
<td>• 'PredictorNames'</td>
</tr>
<tr>
<td>Function</td>
<td>Notes or Limitations</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'PredictorSelection'</td>
<td>• 'PredictorSelection'</td>
</tr>
<tr>
<td>'Prune'</td>
<td>• 'Prune'</td>
</tr>
<tr>
<td>'PruneCriterion'</td>
<td>• 'PruneCriterion'</td>
</tr>
<tr>
<td>'Surrogate'</td>
<td>• 'Surrogate'</td>
</tr>
<tr>
<td>'MaxNumSplits'</td>
<td>• 'MaxNumSplits'</td>
</tr>
<tr>
<td>'SplitCriterion'</td>
<td>• 'SplitCriterion'</td>
</tr>
<tr>
<td>'TreeBagger'</td>
<td>• For tall data, <em>TreeBagger</em> returns a CompactTreeBagger object that</td>
</tr>
<tr>
<td></td>
<td>contains most of the same properties as a full <em>TreeBagger</em> object. The main</td>
</tr>
<tr>
<td></td>
<td>difference is that the compact object is more memory efficient. The compact</td>
</tr>
<tr>
<td></td>
<td>object does not include properties that include the data, or that include an</td>
</tr>
<tr>
<td></td>
<td>array of the same size as the data.</td>
</tr>
<tr>
<td></td>
<td>• Supported CompactTreeBagger methods are:</td>
</tr>
<tr>
<td></td>
<td>• combine</td>
</tr>
<tr>
<td></td>
<td>• error</td>
</tr>
<tr>
<td></td>
<td>• margin</td>
</tr>
<tr>
<td></td>
<td>• meanMargin</td>
</tr>
<tr>
<td></td>
<td>• predict</td>
</tr>
<tr>
<td></td>
<td>• setDefaultYfit</td>
</tr>
<tr>
<td></td>
<td>The error, margin, meanMargin, and predict methods do not support the name-value</td>
</tr>
<tr>
<td></td>
<td>pairs 'Trees', 'TreeWeights', or 'UseInstanceForTree'. The error and meanMargin</td>
</tr>
<tr>
<td></td>
<td>methods additionally do not support 'Weights'.</td>
</tr>
<tr>
<td>'TreeBagger'</td>
<td>• <em>TreeBagger</em> creates a random forest by generating trees on disjoint chunks of</td>
</tr>
<tr>
<td></td>
<td>the data. When more data is available</td>
</tr>
</tbody>
</table>
than is required to create the random forest, the data is subsampled. For a similar example, see Random Forests for Big Data (Genuer, Poggi, Tuleau-Malot, Villa-Vialaneix 2015).

Depending on how the data is stored, it is possible that some chunks of data contain observations from only a few classes out of all the classes. In this case, `TreeBagger` might produce inferior results compared to the case where each chunk of data contains observations from most of the classes.

### Dimensionality Reduction

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
</table>
| pca      | • pca works directly with tall arrays by computing the covariance matrix and using the in-memory pcacov function to compute the principle components.  
• Supported syntaxes are:  
  • `coeff = pca(X)`  
  • `[coeff,score,latent] = pca(X)`  
  • `[coeff,score,latent,explained] = pca(X)`  
  • `[coeff,score,latent,tsquared] = pca(X)`  
  • `[coeff,score,latent,tsquared,explained] = pca(X)`  
• Name-value pair arguments are not supported. |
<table>
<thead>
<tr>
<th>Function</th>
<th>Notes or Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcacov, factoran</td>
<td>pcacov and factoran do not work directly on tall arrays. Instead, use $C = \text{gather(\text{cov}(X))}$ to compute the covariance matrix of a tall array. Then, you can use pcacov or factoran on the in-memory covariance matrix. Alternatively, you can use pca directly on a tall array.</td>
</tr>
</tbody>
</table>

**See Also**

datastore | tall

**More About**

- “Tall Arrays” (MATLAB)
- “Functions That Support Tall Arrays (A - Z)” (MATLAB)
Logistic Regression with Tall Arrays

This example shows how to use logistic regression and other techniques to perform data analysis on tall arrays. Tall arrays represent data that is too large to fit into computer memory.

Define Execution Environment

When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB® session or a local parallel pool (if you have Parallel Computing Toolbox™). You can use the mapreducer function to change the execution environment. Set the global execution environment to be the local MATLAB session.

mapreducer(0)

Get Data into MATLAB

Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that datastore replaces them with NaN values. Select a subset of the variables to work with, and include the name of the airline (UniqueCarrier) as a categorical variable. Create a tall table on top of the datastore.

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedVariableNames = {'DayOfWeek','UniqueCarrier','ArrDelay','DepDelay','Distance'};
ds.SelectedFormats{2} = '%C';
tt = tall(ds);
tt.DayOfWeek = categorical(tt.DayOfWeek,1:7,...
    {'Sun','Mon','Tues','Wed','Thu','Fri','Sat'},'Ordinal',true)

    tt =
    Mx5 tall table
    DayOfWeek    UniqueCarrier    ArrDelay    DepDelay    Distance
    _______    _____________    ________    ________    ________
Late Flights

Determine the flights that are late by 20 minutes or more by defining a logical variable that is true for a late flight. Add this variable to the tall table of data, noting that it is not yet evaluated. A preview of this variable includes the first few rows.

\[
\text{tt.LateFlight} = \text{tt.ArrDelay} \geq 20
\]

\[
\begin{array}{cccccc}
\text{DayOfWeek} & \text{UniqueCarrier} & \text{ArrDelay} & \text{DepDelay} & \text{Distance} & \text{LateFlight} \\
: & : & : & : & : & : \\
: & : & : & : & : & : \\
\end{array}
\]

Calculate the mean of \text{LateFlight} to determine the overall proportion of late flights. Use \text{gather} to trigger evaluation of the tall array and bring the result into memory.

\[
\text{m} = \text{mean(tt.LateFlight)}
\]

\[
\begin{array}{c}
\text{m} = \\
\text{tall double} \\
? \\
\end{array}
\]

\[
\text{m} = \text{gather(m)}
\]

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.92 sec
- Pass 2 of 2: Completed in 1.6 sec
Evaluation completed in 3.5 sec

m =

0.1580

Late Flights by Carrier

Examine whether certain types of flights tend to be late. First, check to see if certain carriers are more likely to have late flights.

```
tt.LateFlight = double(tt.LateFlight);
late_by_carrier = gather(grpstats(tt,'UniqueCarrier','mean','DataVar','LateFlight'))
```

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.3 sec
Evaluation completed in 5.3 sec

```
late_by_carrier =

29x4 table

+-----------+-----------+-----------+------------------+
<table>
<thead>
<tr>
<th>GroupLabel</th>
<th>UniqueCarrier</th>
<th>GroupCount</th>
<th>mean_LateFlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>'9E'</td>
<td>9E</td>
<td>521</td>
<td>0.13436</td>
</tr>
<tr>
<td>'AA'</td>
<td>AA</td>
<td>14930</td>
<td>0.16236</td>
</tr>
<tr>
<td>'AQ'</td>
<td>AQ</td>
<td>154</td>
<td>0.051948</td>
</tr>
<tr>
<td>'AS'</td>
<td>AS</td>
<td>2910</td>
<td>0.16014</td>
</tr>
<tr>
<td>'B6'</td>
<td>B6</td>
<td>806</td>
<td>0.23821</td>
</tr>
<tr>
<td>'CO'</td>
<td>CO</td>
<td>8138</td>
<td>0.16319</td>
</tr>
<tr>
<td>'DH'</td>
<td>DH</td>
<td>696</td>
<td>0.17672</td>
</tr>
<tr>
<td>'DL'</td>
<td>DL</td>
<td>16578</td>
<td>0.15261</td>
</tr>
<tr>
<td>'EA'</td>
<td>EA</td>
<td>920</td>
<td>0.15217</td>
</tr>
<tr>
<td>'EV'</td>
<td>EV</td>
<td>1699</td>
<td>0.21248</td>
</tr>
<tr>
<td>'F9'</td>
<td>F9</td>
<td>335</td>
<td>0.18209</td>
</tr>
<tr>
<td>'FL'</td>
<td>FL</td>
<td>1263</td>
<td>0.19952</td>
</tr>
<tr>
<td>'HA'</td>
<td>HA</td>
<td>273</td>
<td>0.047619</td>
</tr>
<tr>
<td>'HP'</td>
<td>HP</td>
<td>3660</td>
<td>0.13907</td>
</tr>
<tr>
<td>'ML (1)'</td>
<td>ML (1)</td>
<td>69</td>
<td>0.043478</td>
</tr>
<tr>
<td>'MQ'</td>
<td>MQ</td>
<td>3962</td>
<td>0.18778</td>
</tr>
<tr>
<td>'NW'</td>
<td>NW</td>
<td>10349</td>
<td>0.14542</td>
</tr>
<tr>
<td>'OH'</td>
<td>OH</td>
<td>1457</td>
<td>0.18874</td>
</tr>
<tr>
<td>'OO'</td>
<td>OO</td>
<td>3090</td>
<td>0.13916</td>
</tr>
</tbody>
</table>
```
Carriers B6 and EV have higher proportions of late flights. Carriers AQ, ML(1), and HA have relatively few flights, but lower proportions of them are late.

**Late Flights by Day of Week**

Next, check to see if different days of the week tend to have later flights.

```matlab
late_by_day = gather(grpstats(tt,'DayOfWeek','mean','DataVar','LateFlight'))
```

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.1 sec

```matlab
late_by_day =

7x4 table

<table>
<thead>
<tr>
<th>GroupLabel</th>
<th>DayOfWeek</th>
<th>GroupCount</th>
<th>mean_LateFlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Fri'</td>
<td>Fri</td>
<td>15839</td>
<td>0.12899</td>
</tr>
<tr>
<td>'Mon'</td>
<td>Mon</td>
<td>18077</td>
<td>0.14234</td>
</tr>
<tr>
<td>'Sat'</td>
<td>Sat</td>
<td>16958</td>
<td>0.15603</td>
</tr>
<tr>
<td>'Sun'</td>
<td>Sun</td>
<td>18019</td>
<td>0.15117</td>
</tr>
<tr>
<td>'Thu'</td>
<td>Thu</td>
<td>18227</td>
<td>0.18418</td>
</tr>
<tr>
<td>'Tues'</td>
<td>Tues</td>
<td>18163</td>
<td>0.15526</td>
</tr>
<tr>
<td>'Wed'</td>
<td>Wed</td>
<td>18240</td>
<td>0.18399</td>
</tr>
</tbody>
</table>
```

Wednesdays and Thursdays have the highest proportion of late flights, while Fridays have the lowest proportion.
**Late Flights by Distance**

Check to see if longer or shorter flights tend to be late. First, look at the density of the flight distance for flights that are late, and compare that with flights that are on time.

```matlab
ksdensity(tt.Distance(tt.LateFlight==1))
hold on
ksdensity(tt.Distance(tt.LateFlight==0))
hold off
legend('Late','On time')
```

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.7 sec
- Pass 2 of 2: Completed in 1.4 sec
Evaluation completed in 3.8 sec

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.4 sec
- Pass 2 of 2: Completed in 1.1 sec
Evaluation completed in 3.1 sec
Flight distance does not make a dramatic difference in whether a flight is early or late. However, the density appears to be slightly higher for on-time flights at distances of about 400 miles. The density is also higher for late flights at distances of about 2000 miles. Calculate some simple descriptive statistics for the late and on-time flights.

```matlab
late_by_distance = gather(grpstats(tt,'LateFlight',{mean,std},'DataVar','Distance'))
```

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.3 sec

```matlab
late_by_distance =

2x5 table
```
Late flights are about 60 miles longer on average, although this value makes up only a small portion of the standard deviation of the distance values.

**Logistic Regression Model**

Build a model for the probability of a late flight, using both continuous variables (such as Distance) and categorical variables (such as DayOfWeek) to predict the probabilities. This model can help to determine if the previous results observed for each predictor individually also hold true when you consider them together.

```matlab
glm = fitglm(tt,'LateFlight~Distance+DayOfWeek','Distribution','binomial')
```

```
Iteration [1]: 100% completed
Iteration [2]: 100% completed
Iteration [3]: 100% completed
Iteration [4]: 100% completed
Iteration [5]: 100% completed

glm =

Compact generalized linear regression model:
 logit(LateFlight) ~ 1 + DayOfWeek + Distance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
(Intercept) -1.855 0.023052 -80.469 0
DayOfWeek_Mon -0.072603 0.029798 -2.4365 0.01483
DayOfWeek_Tues 0.026909 0.029239 0.92029 0.35742
```

The model confirms that the previously observed conclusions hold true here as well:

- The Wednesday and Thursday coefficients are positive, indicating a higher probability of a late flight on those days. The Friday coefficient is negative, indicating a lower probability.
- The Distance coefficient is positive, indicating that longer flights have a higher probability of being late.

All of these coefficients have very small p-values. This is common with data sets that have many observations, since one can reliably estimate small effects with large amounts of data. In fact, the uncertainty in the model is larger than the uncertainty in the estimates for the parameters in the model.

**Prediction with Model**

Predict the probability of a late flight for each day of the week, and for distances ranging from 0 to 3000 miles. Create a table to hold the predictor values by indexing the first 100 rows in the original table `tt`.

```matlab
x = gather(tt(1:100,{'Distance' 'DayOfWeek'}));
x.Distance = linspace(0,3000)';
x.DayOfWeek(:) = 'Sun';
plot(x.Distance,predict(glm,x));

days = {'Sun' 'Mon' 'Tues' 'Wed' 'Thu' 'Fri' 'Sat'};
hold on
for j=2:length(days)
 x.DayOfWeek(:) = days{j};
 plot(x.Distance,predict(glm,x));
end
legend(days)
```
According to this model, a Wednesday or Thursday flight of 500 miles has the same probability of being late, about 18%, as a Friday flight of about 3000 miles.

Since these probabilities are all much less than 50%, the model is unlikely to predict that any given flight will be late using this information. Investigate the model more by focusing on the flights for which the model predicts a probability of 20% or more of being late, and compare that to the actual results.

\[ C = \text{gather} \left( \text{crosstab} \left( tt.\text{LateFlight}, \text{predict} \left( \text{glm}, tt \right) > .20 \right) \right) \]
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec

C =

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>99613</td>
<td>4391</td>
</tr>
<tr>
<td>18394</td>
<td>1125</td>
</tr>
</tbody>
</table>

Among the flights predicted to have a 20% or higher probability of being late, about 20% were late \( \frac{1125}{1125 + 4391} \). Among the remainder, less than 16% were late \( \frac{18394}{18394 + 99613} \).
Bayesian Optimization with Tall Arrays

This example shows how to use Bayesian optimization to select optimal parameters for training a kernel classifier by using the 'OptimizeHyperparameters' name-value pair argument. The sample data set airlinesmall.csv is a large data set that contains a tabular file of airline flight data. This example creates a tall table containing the data and uses the tall table to run the optimization procedure.

Get Data into MATLAB®

Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. For folders that contain a collection of files, you can specify the entire folder location, or use the wildcard character, '*.csv', to include multiple files with the same file extension in the datastore. Select a subset of the variables to work with, and treat 'NA' values as missing data so that datastore replaces them with NaN values. Create a tall table that contains the data in the datastore.

```matlab
ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek','DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt = tall(ds) % Tall table
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

```
tt =

Mx7 tall table

<table>
<thead>
<tr>
<th>Month</th>
<th>DayofMonth</th>
<th>DayOfWeek</th>
<th>DepTime</th>
<th>ArrDelay</th>
<th>Distance</th>
<th>DepDelay</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21</td>
<td>3</td>
<td>642</td>
<td>8</td>
<td>308</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>1</td>
<td>1021</td>
<td>8</td>
<td>296</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>5</td>
<td>2055</td>
<td>21</td>
<td>480</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>5</td>
<td>1332</td>
<td>13</td>
<td>296</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>4</td>
<td>629</td>
<td>4</td>
<td>373</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>3</td>
<td>1446</td>
<td>59</td>
<td>308</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>928</td>
<td>3</td>
<td>447</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>6</td>
<td>859</td>
<td>11</td>
<td>954</td>
<td>-1</td>
</tr>
</tbody>
</table>
```
When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB session or a local parallel pool (if you have Parallel Computing Toolbox™). You can use the `mapreducer` function to change the execution environment.

### Prepare Class Labels and Predictor Data

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for a late flight. This variable contains the class labels. A preview of this variable includes the first few rows.

\[
Y = tt.\text{DepDelay} > 10 \quad \text{Class labels}
\]

\[
Y =
\begin{bmatrix}
1 \\
0 \\
1 \\
1 \\
0 \\
1 \\
0 \\
0 \\
\vdots
\end{bmatrix}
M\times1 \text{ tall logical array}
\]

Create a tall array for the predictor data.

\[
X = tt(:,1:end-1) \quad \text{Predictor data}
\]

\[
M\times6 \text{ tall double matrix}
\begin{bmatrix}
10 & 21 & 3 & 642 & 8 & 308 \\
10 & 26 & 1 & 1021 & 8 & 296 \\
10 & 23 & 5 & 2055 & 21 & 480 \\
10 & 23 & 5 & 1332 & 13 & 296 \\
10 & 22 & 4 & 629 & 4 & 373 \\
10 & 28 & 3 & 1446 & 59 & 308 \\
10 & 8 & 4 & 928 & 3 & 447 \\
\end{bmatrix}
\]
Remove rows in X and Y that contain missing data.

\[
R = \text{rmmissing}([X \ Y]); \quad \% \text{Data with missing entries removed}
X = R(:,1:end-1);
Y = R(:,end);
\]

**Perform Bayesian Optimization Using `OptimizeHyperparameters`**

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair argument.

Standardize the predictor variables.

\[
Z = \text{zscore}(X);
\]

Find the optimal values for the 'KernelScale' and 'Lambda' name-value pair arguments that minimize five-fold cross-validation loss. For reproducibility, set the random seed for tall arrays and use the 'expected-improvement-plus' acquisition function.

\[
\text{rng}('\text{default}')
tallrng('\text{default}') \quad \% \text{For reproducibility}
\]

\[
\text{Mdl} = \text{fitckernel}(Z,Y,\text{'}\text{Verbose}',0,\text{'}\text{OptimizeHyperparameters}',\text{'}auto',...\text{'}\text{HyperparameterOptimizationOptions}',\text{struct}(\text{'}\text{AcquisitionFunctionName}',\text{'}expected-improvement-plus\text{')}));
\]

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 3: Completed in 9.1 sec
- Pass 2 of 3: Completed in 2 sec
- Pass 3 of 3: Completed in 2.9 sec
Evaluation completed in 17 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.4 sec
Evaluation completed in 2.7 sec

| Iter | Eval   | Objective | Objective | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result | runtime   | (observed) | (estim.)    |              |              |              |

| 1 | Best | 0.19684 | 142.25 | 0.19684 | 0.19684 | 1.2297 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec

| 2 | Accept | 0.19684 | 65.457 | 0.19684 | 0.19684 | 0.039643 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec

| 3 | Accept | 0.19684 | 64.04 | 0.19684 | 0.19684 | 0.02562 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2 sec

| 4 | Accept | 0.19684 | 70.552 | 0.19684 | 0.19684 | 92.644 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec

| 5 | Best | 0.11465 | 110.25 | 0.11465 | 0.12696 | 11.173 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec

| 6 | Accept | 0.11482 | 120.81 | 0.11465 | 0.11469 | 11.6 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.2 sec

| 7 | Accept | 0.19684 | 69.935 | 0.11465 | 0.11464 | 25.242 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec

| 8 | Accept | 0.11612 | 112.26 | 0.11465 | 0.11428 | 7.8238 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec

| 9 | Best | 0.10315 | 56.865 | 0.10315 | 0.1034 | 9.5079 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec

| 10 | Accept | 0.10361 | 53.425 | 0.10315 | 0.10339 | 9.8089 |

29-57
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2 sec
|   11 | Best   |     0.10269 |      53.639 |     0.10269 |     0.10271 |       8.7043 |     8.8678e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
|   12 | Best   |     0.10264 |      57.069 |     0.10264 |     0.10262 |       5.0702 |     8.7446e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2 sec
|   13 | Accept |      0.1032 |      53.495 |     0.10264 |     0.10266 |       6.0627 |     1.0286e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
|   14 | Best   |     0.10247 |      52.683 |     0.10247 |      0.1025 |       3.6969 |     8.965e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
|   15 | Accept |     0.19684 |      75.223 |     0.10247 |     0.10251 |    0.0010043 |     0.0052836 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.2 sec
Evaluation completed in 2.2 sec
|   16 | Accept |      0.1075 |      101.64 |     0.10247 |     0.10249 |       4.1228 |     1.0109e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
|   17 | Accept |     0.10223 |      53.351 |     0.10223 |     0.10251 |       7.3336 |     8.4868e-09 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2 sec
|   18 | Accept |     0.19684 |      63.202 |     0.10223 |     0.10223 |     0.0010043 |     0.0052836 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
|   19 | Accept |     0.10301 |      52.799 |     0.10223 |     0.10223 |       4.1588 |     4.1588 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
|   20 | Accept |     0.10291 |      54.454 |     0.10223 |     0.10223 |       7.3336 |     7.3336 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
|=====================================================================================================|

29 Tall Arrays
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>KernelScale</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Best</td>
<td>0.10194</td>
<td>49.856</td>
<td>0.10194</td>
<td>0.10225</td>
<td>3.8113</td>
<td>8.8671e-09</td>
</tr>
<tr>
<td>22</td>
<td>Best</td>
<td>0.10121</td>
<td>53.558</td>
<td>0.10121</td>
<td>0.10141</td>
<td>3.3132</td>
<td>8.9989e-09</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.10294</td>
<td>53.957</td>
<td>0.10121</td>
<td>0.10137</td>
<td>5.4153</td>
<td>1.1478e-05</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.10297</td>
<td>49.455</td>
<td>0.10121</td>
<td>0.10136</td>
<td>4.5918</td>
<td>7.4273e-07</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.10226</td>
<td>49.383</td>
<td>0.10121</td>
<td>0.10134</td>
<td>2.9349</td>
<td>8.2930e-09</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.10188</td>
<td>53.047</td>
<td>0.10121</td>
<td>0.10128</td>
<td>3.2244</td>
<td>1.0190e-07</td>
</tr>
<tr>
<td>27</td>
<td>Best</td>
<td>0.10096</td>
<td>52.627</td>
<td>0.10096</td>
<td>0.10121</td>
<td>3.2763</td>
<td>1.4374e-08</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.19684</td>
<td>61.924</td>
<td>0.10096</td>
<td>0.10121</td>
<td>0.0048849</td>
<td>0.0039902</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.1018</td>
<td>49.423</td>
<td>0.10096</td>
<td>0.10138</td>
<td>3.2511</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.10164</td>
<td>49.933</td>
<td>0.10096</td>
<td>0.10143</td>
<td>3.2002</td>
<td></td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 2031.7757 seconds.
Total objective function evaluation time: 2006.5588

Best observed feasible point:

<table>
<thead>
<tr>
<th>KernelScale</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2763</td>
<td>1.4374e-08</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.10096
Estimated objective function value = 0.10143
Function evaluation time = 52.6271

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>KernelScale</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2763</td>
<td>1.4374e-08</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.10143
Estimated function evaluation time = 51.861

Mdl = ClassificationKernel

Properties, Methods

Perform Bayesian Optimization by Using bayesopt

Alternatively, you can use the bayesopt function to find the optimal values of hyperparameters.

Split the data set into training and test sets. Specify a 1/3 holdout sample for the test set.
rng('default')
tallrng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',1/3);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Extract training and testing data and standardize the predictor data.

Ytrain = Y(trainingInds); % Training class labels
Xtrain = X(trainingInds,:);
[Ztrain,mu,stddev] = zscore(Xtrain); % Standardized training data

Ytest = Y(testInds); % Testing class labels
Xtest = X(testInds,:);
Ztest = (Xtest-mu)./stddev; % Standardized test data

Define the variables sigma and lambda to find the optimal values for the 'KernelScale' and 'Lambda' name-value pair arguments. Use optimizableVariable and specify a wide range for the variables because optimal values are unknown. Apply logarithmic transformation to the variables to search for the optimal values on a log scale.

N = gather(numel(Ytrain)); % Evaluate the length of the tall training array in memory

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1.3 sec

sigma = optimizableVariable('sigma',[1e-3,1e3],'Transform','log');
lambda = optimizableVariable('lambda',[(1e-3)/N, (1e3)/N],'Transform','log');

Create the objective function for Bayesian optimization. The objective function takes in a table that contains the variables sigma and lambda, and then computes the classification loss value for the binary Gaussian kernel classification model trained using the fitckernel function. Set 'Verbose',0 within fitckernel to suppress the iterative display of diagnostic information.

minfn = @(z)gather(loss(fitckernel(Ztrain,Ytrain, ...
    'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0), ...
    Ztest,Ytest));

Optimize the parameters [sigma,lambda] of the kernel classification model with respect to the classification loss by using bayesopt. By default, bayesopt displays iterative information about the optimization at the command line. For reproducibility, set
the `AcquisitionFunctionName` option to 'expected-improvement-plus'. The default acquisition function depends on run time and, therefore, can give varying results.

```matlab
results = bayesopt(minfn,[sigma,lambda],'
```
Objective function model

- Observed points
- Model mean
- Next point
- Model minimum feasible
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>sigma</th>
<th>lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.19649</td>
<td>157.57</td>
<td>0.19649</td>
<td>0.19649</td>
<td>1.2297</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.19649</td>
<td>195.79</td>
<td>0.19649</td>
<td>0.19649</td>
<td>0.03963</td>
<td></td>
</tr>
</tbody>
</table>

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 0.9 sec
- Pass 2 of 2: Completed in 2.1 sec
Evaluation completed in 3.4 sec

---

![Graph](image)

Min objective vs. Number of function evaluations

Evaluation completed in 1.6 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec

Evaluating tall expression using the Parallel Pool 'local':
Bayesian Optimization with Tall Arrays

- Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   3 | Accept |   0.19649 |      144.31 |    0.19649 |    0.19649 |     0.02562 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.5 sec
  Evaluation completed in 1.7 sec
  |   4 | Accept |   0.19649 |       92.09 |    0.19649 |    0.19649 |     92.644   |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.5 sec
  Evaluation completed in 1.6 sec
  |   5 | Accept |   0.19649 |      102.21 |    0.19649 |    0.19649 |    978.95    |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   6 | Accept |   0.19649 |      153.49 |    0.19649 |    0.19649 |   0.0089609 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.6 sec
  Evaluation completed in 1.8 sec
  |   7 | Accept |   0.19649 |      151.92 |    0.19649 |    0.19649 |   0.0010228 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.5 sec
  Evaluation completed in 1.7 sec
  |   8 | Accept |   0.19649 |      174.42 |    0.19649 |    0.19649 |     0.27475 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 2 sec
  Evaluation completed in 2.2 sec
  |   9 | Accept |   0.19649 |      145.09 |    0.19649 |    0.19649 |     0.81326 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 2.1 sec
  Evaluation completed in 2.3 sec
  |  10 | Accept |   0.19649 |      158.98 |    0.19649 |    0.19649 |   0.0040507 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.9 sec
  Evaluation completed in 2.1 sec
  |  11 | Accept |   0.19649 |      102.02 |    0.19649 |    0.19649 |    330.84    |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.5 sec
  |  12 | Accept |   0.19649 |       96.16 |    0.19649 |    0.19649 |     65.19    |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |  13 | Accept |   0.19649 |      99.916 |    0.19649 |    0.19649 |     46.548   |
  Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|  14 | Accept |    0.19649 |     100.04 |    0.19649 |    0.19649 |       721.08 |    0.012414 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.7 sec
|  15 | Accept |    0.19649 |     101.49 |    0.19649 |    0.19649 |       737.85 |   1.2515e-08 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.7 sec
|  16 | Accept |    0.19649 |     173.23 |    0.19649 |    0.19649 |      0.010073 |   0.00019456 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|  17 | Accept |    0.19649 |     157.35 |    0.19649 |    0.19649 |     0.025672 |   0.00019456 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|  18 | Accept |    0.19649 |     103.59 |    0.19649 |    0.19649 |     0.0053051 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
|  19 | Accept |    0.19649 |     170.31 |    0.19649 |    0.19649 |     0.0053051 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|  20 | Accept |    0.19649 |     173.82 |    0.19649 |    0.19649 |     0.12625  |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.7 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |       lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|  21 | Accept |    0.19649 |     149.3  |    0.19649 |    0.19649 |     0.00149  |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|  22 | Accept |    0.19649 |      98.03 |    0.19649 |    0.19649 |      52.749  |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.2 sec
|  23 | Best   | 0.10317   |     153.7  | 0.10317   | 0.10318 |     3.5534  |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.6 sec
  Evaluation completed in 1.8 sec
  |   24 | Best |     0.10282 |       140.2 |     0.10282 |     0.10271 |       3.6546 |   0.00024156 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   25 | Accept |     0.11286 |      133.23 |     0.10282 |     0.10292 |       4.3231 |   0.0013656 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   26 | Accept |     0.10409 |      156.29 |     0.10282 |     0.10304 |       3.4792 |   0.00021823 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   27 | Accept |     0.11883 |      128.77 |     0.10282 |      0.1029 |        3.672 |    0.0027929 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   28 | Accept |     0.10451 |      144.39 |     0.10282 |     0.10339 |       3.8815 |   0.00031253 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.4 sec
  Evaluation completed in 1.6 sec
  |   29 | Accept |     0.10374 |      141.5 |     0.10282 |     0.10339 |       3.6237 |   0.0003024 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.9 sec
  Evaluation completed in 2.1 sec
  |   30 | Accept |     0.10362 |      165.36 |     0.10282 |     0.10336 |       3.6775 |   0.00024926 |
  Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 1.9 sec
  Evaluation completed in 2.1 sec

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 4343.3484 seconds.
Total objective function evaluation time: 4164.5815

Best observed feasible point:
  sigma       lambda
  ______    __________
  3.6546    0.00024156

Observed objective function value = 0.10282
Estimated objective function value = 0.10336
Function evaluation time = 140.2034
Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>sigma</th>
<th>lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6237</td>
<td>0.0003024</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.10336
Estimated function evaluation time = 143.2776

results =

BayesianOptimization with properties:

ObjectiveFcn: @(z)gather(loss(fitckernel(Ztrain,Ytrain,'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0),Ztest,Ytest))
VariableDescriptions: [1×2 optimizableVariable]
Options: [1×1 struct]
MinObjective: 0.1028
XAtMinObjective: [1×2 table]
MinEstimatedObjective: 0.1034
XAtMinEstimatedObjective: [1×2 table]
NumObjectiveEvaluations: 30
TotalElasedTime: 4.3433e+03
NextPoint: [1×2 table]
ObjectiveTrace: [30×1 double]
ConstraintsTrace: []
UserDataTrace: {30×1 cell}
ObjectiveEvaluationTimeTrace: [30×1 double]
IterationTimeTrace: [30×1 double]
ErrorTrace: [30×1 double]
FeasibilityTrace: [30×1 logical]
FeasibilityProbabilityTrace: [30×1 double]
IndexOfMinimumTrace: [30×1 double]
ObjectiveMinimumTrace: [30×1 double]
EstimatedObjectiveMinimumTrace: [30×1 double]

Return the best feasible point in the Bayesian model results by using the bestPoint function. Use the default criterion min-visited-upper-confidence-interval, which determines the best feasible point as the visited point that minimizes an upper confidence interval on the objective function value.

zbest = bestPoint(results)
The table `zbest` contains the optimal estimated values for the 'KernelScale' and 'Lambda' name-value pair arguments. You can specify these values when training a new optimized kernel classifier by using

```matlab
Mdl = fitckernel(Ztrain,Ytrain,'KernelScale',zbest.sigma,'Lambda',zbest.lambda)
```

For tall arrays, the optimization procedure can take a long time. If the data set is too large to run the optimization procedure, you can try to optimize the parameters by using only partial data. Use the `datasample` function and specify 'Replace','false' to sample data without replacement.

**See Also**

`bayesopt | bestPoint | cvpartition | datastore | fitckernel | gather | loss | nanmean | nanstd | optimizableVariable | tall`
Parallel Statistics

- “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
- “Use Parallel Processing for Regression TreeBagger Workflow” on page 30-7
- “When to Run Statistical Functions in Parallel” on page 30-10
- “Working with parfor” on page 30-12
- “Reproducibility in Parallel Statistical Computations” on page 30-15
- “Implement Jackknife Using Parallel Computing” on page 30-20
- “Implement Cross-Validation Using Parallel Computing” on page 30-22
- “Implement Bootstrap Using Parallel Computing” on page 30-25
Quick Start Parallel Computing for Statistics and Machine Learning Toolbox

Note To use parallel computing as described in this chapter, you must have a Parallel Computing Toolbox license.

In this section...
“What Is Parallel Statistics Functionality?” on page 30-2
“How To Compute in Parallel” on page 30-5

What Is Parallel Statistics Functionality?

You can use any of the Statistics and Machine Learning Toolbox functions with Parallel Computing Toolbox constructs such as `parfor` and `spmd`. However, some functions, such as those with interactive displays, can lose functionality in parallel. In particular, displays and interactive usage are not effective on workers (see “Vocabulary for Parallel Computation” on page 30-9).

Additionally, the following functions are enhanced to use parallel computing internally. These functions use `parfor` internally to parallelize calculations.

- `bayesopt`
- `bootci`
- `bootstrp`
- `candexch`
- `compare`
- `cordexch`
- `crossval`
- `daugment`
- `dcovary`
- `jackknife`
- `kmeans`
The following functions for fitting multiclass models for support vector machines and other classifiers are also enhanced to use parallel computing internally.

- **fitcecoc**
- Methods of the class `ClassificationECOC`:
  - `resubEdge`
  - `resubLoss`
  - `resubMargin`
  - `resubPredict`
  - `crossval`
- Methods of the class `CompactClassificationECOC`
  - `edge`
  - `loss`
  - `margin`
  - `predict`
- Methods of the class `ClassificationPartitionedECOC`
• `kfoldEdge`
• `kfoldLoss`
• `kfoldMargin`
• `kfoldPredict`

• Methods of the class `ClassificationPartitionedLinearECOC`
  • `kfoldEdge`
  • `kfoldLoss`
  • `kfoldMargin`
  • `kfoldPredict`

The following functions perform hyperparameter optimization in parallel.

• `fitcdiscr`
• `fitcecoc`
• `fitctree`
• `fitclinear`
• `fitcknn`
• `fitrgp`
• `fitrtree`
• `fitcensemble`
• `fitcnb`
• `fitcsvm`
• `fitrensemble`
• `fitrlinear`
• `fitrsvm`
• `fitrkernel`
• `fitckernel`

This chapter gives the simplest way to use these enhanced functions in parallel. For more advanced topics, including the issues of reproducibility and nested `parfor` loops, see the other sections in this chapter.

For information on parallel statistical computing at the command line, enter
help parallelstats

**How To Compute in Parallel**

To have a function compute in parallel:

1. “Set Up a Parallel Environment” on page 30-5
2. “Set the UseParallel Option to true” on page 30-5
3. “Call the Function Using the Options Structure” on page 30-5

**Set Up a Parallel Environment**

To run a statistical computation in parallel, first set up a parallel environment.

**Note** Setting up a parallel environment can take several seconds.

For a multicore machine, enter the following at the MATLAB command line:

```
parpool(n)
```

*n* is the number of workers you want to use.

**Set the UseParallel Option to true**

Create an options structure with the `statset` function. To run in parallel, set the `UseParallel` option to `true`:

```
paroptions = statset('UseParallel',true);
```

**Call the Function Using the Options Structure**

Call your function with syntax that uses the options structure. For example:

```
% Run crossval in parallel
cvMse = crossval('mse',x,y,'predfun',regf,'Options',paroptions);

% Run bootstrap in parallel
sts = bootstrap(100,@(x)[mean(x) std(x)],y,'Options',paroptions);

% Run TreeBagger in parallel
b = TreeBagger(50,meas,spec,'OOBPred','on','Options',paroptions);
```

After you have finished computing in parallel, close the parallel environment:

deletemypool

**Tip** To save time, keep the pool open if you expect to compute in parallel again soon.
Use Parallel Processing for Regression TreeBagger Workflow

This example shows you how to:

- Use an ensemble of bagged regression trees to estimate feature importance.
- Improve computation speed by using parallel computing.

The sample data is a database of 1985 car imports with 205 observations, 25 predictors, and 1 response, which is insurance risk rating, or "symboling." The first 15 variables are numeric and the last 10 are categorical. The symboling index takes integer values from -3 to 3.

Load the sample data and separate it into predictor and response arrays.

```matlab
load imports-85;
Y = X(:,1);
X = X(:,2:end);
```

Set up the parallel environment to use two cores.

```matlab
mypool = parpool(2)
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 2 workers.

```matlab
mypool =
```

Pool with properties:

```matlab
 Connected: true
 NumWorkers: 2
 Cluster: local
 AttachedFiles: {}
 AutoAddClientPath: true
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true
```

Set the options to use parallel processing.

```matlab
paroptions = statset('UseParallel',true);
```
Estimate feature importance using leaf size 1 and 5000 trees in parallel. Time the function for comparison purposes.

```
tic
b = TreeBagger(5000,X,Y,'Method','r','OOBVarImp','on', ...
 'cat',16:25,'MinLeafSize',1,'Options',paroptions);
toc
```

Elapsed time is 47.468605 seconds.

Perform the same computation in serial for timing comparison.

```
tic
b = TreeBagger(5000,X,Y,'Method','r','OOBVarImp','on', ...
 'cat',16:25,'MinLeafSize',1);
toc
```

Elapsed time is 105.114259 seconds.

The results show that computing in parallel takes a fraction of the time it takes to compute serially. Note that the elapsed time can vary depending on your operating system.

**See Also**

TreeBagger | parpool | statset

**Related Examples**

- “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page 18-139
- “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 18-152
- “Comparison of TreeBagger and Bagged Ensembles” on page 18-54
Subtleties in Parallel Computing

There are two main subtleties in parallel computations:

- Nested parallel evaluations (see “No Nested parfor Loops” on page 30-13). Only the outermost `parfor` loop runs in parallel, the others run serially.
- Reproducible results when using random numbers (see “Reproducibility in Parallel Statistical Computations” on page 30-15). How can you get exactly the same results when repeatedly running a parallel computation that uses random numbers?

Vocabulary for Parallel Computation

- worker — An independent MATLAB session that runs code distributed by the client.
- client — The MATLAB session with which you interact, and that distributes jobs to workers.
- `parfor` — A Parallel Computing Toolbox function that distributes independent code segments to workers (see “Working with parfor” on page 30-12).
- random stream — A pseudorandom number generator, and the sequence of values it generates. MATLAB implements random streams with the `RandStream` class.
- reproducible computation — A computation that can be exactly replicated, even in the presence of random numbers (see “Reproducibility in Parallel Statistical Computations” on page 30-15).
Why Run in Parallel?

The main reason to run statistical computations in parallel is to gain speed, meaning to reduce the execution time of your program or functions. “Factors Affecting Speed” on page 30-10 discusses the main items affecting the speed of programs or functions. “Factors Affecting Results” on page 30-11 discusses details that can cause a parallel run to give different results than a serial run.

Note Some Statistics and Machine Learning Toolbox functions have built-in parallel computing capabilities. See Quick Start Parallel Computing for Statistics and Machine Learning Toolbox on page 30-2. You can also use any Statistics and Machine Learning Toolbox functions with Parallel Computing Toolbox functions such as parfor loops. To decide when to call functions in parallel, consider the factors affecting speed and results.

Factors Affecting Speed

Some factors that can affect the speed of execution of parallel processing are:

- Parallel environment setup. It takes time to run parpool to begin computing in parallel. If your computation is fast, the setup time can exceed any time saved by computing in parallel.
- Parallel overhead. There is overhead in communication and coordination when running in parallel. If function evaluations are fast, this overhead could be an appreciable part of the total computation time. Thus, solving a problem in parallel can be slower than solving the problem serially. For an example, see Improving Optimization Performance with Parallel Computing in MATLAB Digest, March 2009.
- No nested parfor loops. This is described in “Working with parfor” on page 30-12. parfor does not work in parallel when called from within another parfor loop. If you have programmed your custom functions to take advantage of parallel processing, the
limitation of no nested parfor loops can cause a parallel function to run slower than expected.

- When executing serially, parfor loops run slightly slower than for loops.
- Passing parameters. Parameters are automatically passed to worker sessions during the execution of parallel computations. If there are many parameters, or they take a large amount of memory, passing parameters can slow the execution of your computation.
- Contention for resources: network and computing. If the pool of workers has low bandwidth or high latency, parallel computation can be slow.

**Factors Affecting Results**

Some factors can affect results when using parallel processing. You might need to adjust your code to run in parallel, for example, you need independent loops and the workers must be able to access the variables. Some important factors are:

- Persistent or global variables. If any functions use persistent or global variables, these variables can take different values on different worker processors. The body of a parfor loop cannot contain global or persistent variable declarations.
- Accessing external files. The order of computations is not guaranteed during parallel processing, so external files can be accessed in unpredictable order, leading to unpredictable results. Furthermore, if multiple processors try to read an external file simultaneously, the file can become locked, leading to a read error, and halting function execution.
- Noncomputational functions, such as input, plot, and keyboard, can behave badly when used in your custom functions. Do not use these functions in a parfor loop, because they can cause a worker to become nonresponsive, since it is waiting for input.
- parfor does not allow break or return statements.
- The random numbers you use can affect the results of your computations. See “Reproducibility in Parallel Statistical Computations” on page 30-15.

For advice on converting for loops to use parfor, see “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).
Working with parfor

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“How Statistical Functions Use parfor” on page 30-12</td>
</tr>
<tr>
<td>“Characteristics of parfor” on page 30-13</td>
</tr>
</tbody>
</table>

**How Statistical Functions Use parfor**

parfor is a Parallel Computing Toolbox function similar to a for loop. Parallel statistical functions call parfor internally. parfor distributes computations to worker processors.


Characteristics of parfor

You might need to adjust your code to run in parallel, for example, you need independent loops and the workers must be able to access the variables. For advice on using parfor, see “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).

No Nested parfor Loops

parfor does not work in parallel when called from within another parfor loop, or from an spmd block. Parallelization occurs only at the outermost level.
Suppose, for example, you want to apply `jackknife` to your function `userfcn`, which calls `parfor`, and you want to call `jackknife` in a loop. The following figure shows three cases:

1. The outermost loop is `parfor`. Only that loop runs in parallel.
2. The outermost `parfor` loop is in `jackknife`. Only `jackknife` runs in parallel.
3. The outermost `parfor` loop is in `userfcn`. `userfcn` uses `parfor` in parallel.

**Bold** indicates the function that runs in parallel

```
1 parfor i=1:10
 x(i)=jackknife(@userfcn,...)
end
```

```
2 for i=1:10
 x(i)=jackknife(@userfcn,...)
end
```

```
3 for i=1:10
 x(i)=jackknife(@userfcn,...)
end
```

**When parfor Runs in Parallel**

For help converting nested loops to use `parfor`, see “Convert for-Loops Into parfor-Loops” (Parallel Computing Toolbox).

See also Quick Start Parallel Computing for Statistics and Machine Learning Toolbox on page 30-2.
Reproducibility in Parallel Statistical Computations

In this section...

| “Issues and Considerations in Reproducing Parallel Computations” on page 30-15 |
| “Running Reproducible Parallel Computations” on page 30-15 |
| “Parallel Statistical Computation Using Random Numbers” on page 30-16 |

Issues and Considerations in Reproducing Parallel Computations

A reproducible computation is one that gives the same results every time it runs. Reproducibility is important for:

- **Debugging** — To correct an anomalous result, you need to reproduce the result.
- **Confidence** — When you can reproduce results, you can investigate and understand them.
- **Modifying existing code** — When you change existing code, you want to ensure that you do not break anything.

Generally, you do not need to ensure reproducibility for your computation. Often, when you want reproducibility, the simplest technique is to run in serial instead of in parallel. In serial computation you can simply call the `rng` function as follows:

```matlab
s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results
```

This section addresses the case when your function uses random numbers, and you want reproducible results in parallel. This section also addresses the case when you want the same results in parallel as in serial.

Running Reproducible Parallel Computations

To run a Statistics and Machine Learning Toolbox function reproducingly:

1. Set the `UseSubstreams` option to `true`.  
**Parallel Statistical Computation Using Random Numbers**

**What Are Substreams?**

A substream is a portion of a random stream that RandStream can access quickly. There is a number $M$ such that for any positive integer $k$, RandStream can go to the $kM$th pseudorandom number in the stream. From that point, RandStream can generate the subsequent entries in the stream. Currently, RandStream has $M = 2^{72}$, about $5 \times 10^{21}$, or more.

<table>
<thead>
<tr>
<th>Beginning of stream</th>
<th>$M$</th>
<th>$2M$</th>
<th>$3M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substream 1</td>
<td>Substream 2</td>
<td>Substream 3</td>
<td></td>
</tr>
</tbody>
</table>

For example, to use the 'mlfg6331_64' stream for reproducible computation:

1. Create an appropriate options structure:
   ```
s = RandStream('mlfg6331_64');
options = statset('UseParallel',true, ...
 'Streams',s,'UseSubstreams',true);
```
3. Reset the random stream:
   ```
 reset(s);
   ```

For an example of a parallel computation run this reproducible way, see “Reproducible Parallel Bootstrap” on page 30-27.
The entries in different substreams have good statistical properties, similar to the properties of entries in a single stream: independence, and lack of $k$-way correlation at various lags. The substreams are so long that you can view the substreams as being independent streams, as in the following picture.

<table>
<thead>
<tr>
<th>Substream 1</th>
<th>Substream 2</th>
<th>Substream 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number 1</td>
<td>Random Number 1</td>
<td>Random Number 1</td>
</tr>
<tr>
<td>Random Number 2</td>
<td>Random Number 2</td>
<td>Random Number 2</td>
</tr>
<tr>
<td>Random Number 3</td>
<td>Random Number 3</td>
<td>Random Number 3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Two RandStream stream types support substreams: 'mlfg6331_64' and 'mrg32k3a'.

**How Substreams Enable Reproducible Parallel Computations**

When MATLAB performs computations in parallel with `parfor`, each worker receives loop iterations in an unpredictable order. Therefore, you cannot predict which worker gets which iteration, so cannot determine the random numbers associated with each iteration.

Substreams allow MATLAB to tie each iteration to a particular sequence of random numbers. `parfor` gives each iteration an index. The iteration uses the index as the substream number. Since the random numbers are associated with the iterations, not with the workers, the entire computation is reproducible.

To obtain reproducible results, simply reset the stream, and all the substreams generate identical random numbers when called again. This method succeeds when all the workers use the same stream, and the stream supports substreams. This concludes the discussion of how the procedure in “Running Reproducible Parallel Computations” on page 30-15 gives reproducible parallel results.

**Random Numbers on the Client or Workers**

A few functions generate random numbers on the client before distributing them to parallel workers. The workers do not use random numbers, so operate purely deterministically. For these functions, you can run a parallel computation reproducibly using any random stream type.
The functions that operate this way include:

- crossval
- plsregress
- sequentialfs

To obtain identical results, reset the random stream on the client, or the random stream you pass to the client. For example:

```matlab
s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results
```

While this method enables you to run reproducibly in parallel, the results can differ from a serial computation. The reason for the difference is `parfor` loops run in reverse order from `for` loops. Therefore, a serial computation can generate random numbers in a different order than a parallel computation. For unequivocal reproducibility, use the technique in “Running Reproducible Parallel Computations” on page 30-15.

**Distributing Streams Explicitly**

For testing or comparison using particular random number algorithms, you must set the random number generators. How do you set these generators in parallel, or initialize streams on each worker in a particular way? Or you might want to run a computation using a different sequence of random numbers than any other you have run. How can you ensure the sequence you use is statistically independent?

Parallel Statistics and Machine Learning Toolbox functions allow you to set random streams on each worker explicitly. For information on creating multiple streams, enter `help RandStream/create` at the command line. To create four independent streams using the 'mrg32k3a' generator:

```matlab
s = RandStream.create('mrg32k3a','NumStreams',4,...
 'CellOutput',true);
```

Pass these streams to a statistical function using the `Streams` option. For example:

```matlab
parpool(4) % if you have at least 4 cores
s = RandStream.create('mrg32k3a','NumStreams',4,...
 'CellOutput',true); % create 4 independent streams
paroptions = statset('UseParallel',true,...
 'Streams',s); % set the 4 different streams
```
x = [randn(700,1); 4 + 2*randn(300,1)];
latt = -4:0.01:12;
myfun = @(X) ksdensity(X,latt);
pdfestimate = myfun(x);
B = bootstrp(200,myfun,x,'Options',paroptions);

This method of distributing streams gives each worker a different stream for the computation. However, it does not allow for a reproducible computation, because the workers perform the 200 bootstraps in an unpredictable order. If you want to perform a reproducible computation, use substreams as described in “Running Reproducible Parallel Computations” on page 30-15.

If you set the UseSubstreams option to true, then set the Streams option to a single random stream of the type that supports substreams ('mlfg6331_64' or 'mrg32k3a'). This setting gives reproducible computations.
Implement Jackknife Using Parallel Computing

This example is from the jackknife function reference page, but runs in parallel.

```matlab
mypool=parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}
 NumWorkers: 2
 IdleTimeout: 30
 Cluster: [1x1 parallel.cluster.Local]
 RequestQueue: [1x1 parallel.RequestQueue]
 SpmdEnabled: 1

opts = statset('UseParallel',true);
sigma = 5;
rng('default')
y = normrnd(0,sigma,100,1);
m = jackknife(@var, y,1,'Options',opts);
n = length(y);
bias = -sigma^2 / n % known bias formula
jbias = (n - 1)*(mean(m)-var(y,1)) % jackknife bias estimate

bias =

 -0.2500

jbias =

 -0.3378

This simple example is not a good candidate for parallel computation:

% How long to compute in serial?
tic;m = jackknife(@var,y,1);toc
Elapsed time is 0.022771 seconds.

% How long to compute in parallel?
tic;m = jackknife(@var,y,1,'Options',opts);toc
Elapsed time is 0.299066 seconds.
```
jackknife does not use random numbers, so gives the same results every time, whether run in parallel or serial.
Implement Cross-Validation Using Parallel Computing

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Simple Parallel Cross Validation” on page 30-22</td>
</tr>
<tr>
<td>“Reproducible Parallel Cross Validation” on page 30-23</td>
</tr>
</tbody>
</table>

**Simple Parallel Cross Validation**

This example is the same as the first in the `crossval` function reference page, but runs in parallel.

```matlab
cmypool = parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.

cmypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}
 NumWorkers: 2
 IdleTimeout: 30
 Cluster: [1x1 parallel.cluster.Local]
 RequestQueue: [1x1 parallel.RequestQueue]
 SpmdEnabled: 1

copts = statset('UseParallel',true);

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =

 0.1028

This simple example is not a good candidate for parallel computation:

```matlab
% How long to compute in serial?
tic;cvMse = crossval('mse',X,y,'Predfun',regf);toc
Elapsed time is 0.073438 seconds.
```
Reproducible Parallel Cross Validation

To run crossval in parallel in a reproducible fashion, set the options and reset the random stream appropriately (see “Running Reproducible Parallel Computations” on page 30-15).

% How long to compute in parallel?
tic;cvMse = crossval('mse',X,y,'Predfun',regf,...
 'Options',opts);toc
Elapsed time is 0.289585 seconds.

mypool = parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}
 NumWorkers: 2
 IdleTimeout: 30
 Cluster: [1x1 parallel.cluster.Local]
 RequestQueue: [1x1 parallel.RequestQueue]
 SpmdEnabled: 1

s = RandStream('mlfg6331_64');
opts = statset('UseParallel',true,...
 'Streams',s,'UseSubstreams',true);

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
 0.1020

Reset the stream:
reset(s)
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

0.1020
Bootstrap in Serial and Parallel

Here is an example timing a bootstrap in parallel versus in serial. The example generates data from a mixture of two Gaussians, constructs a nonparametric estimate of the resulting data, and uses a bootstrap to get a sense of the sampling variability.

1. Generate the data:

   ```matlab
   % Generate a random sample of size 1000,
   % from a mixture of two Gaussian distributions
   x = [randn(700,1); 4 + 2*randn(300,1)];
   ``

2. Construct a nonparametric estimate of the density from the data:

   ```matlab
 latt = -4:0.01:12;
 myfun = @(X) ksdensity(X,latt);
 pdfestimate = myfun(x);
 ``

3. Bootstrap the estimate to get a sense of its sampling variability. Run the bootstrap in serial for timing comparison.

   ```matlab
   tic;B = bootstrp(200,myfun,x);toc
   Elapsed time is 10.878654 seconds.
   ``

4. Run the bootstrap in parallel for timing comparison:

   ```matlab
 mypool = parpool()
 Starting parpool using the 'local' profile ... connected to 2 workers.
 mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}
 NumWorkers: 2
 IdleTimeout: 30
 Cluster: [1x1 parallel.cluster.Local]
RequestQueue: [1x1 parallel.RequestQueue]
SpmdEnabled: 1

opt = statset('UseParallel',true);
tic;B = bootstrap(200,myfun,x,'Options',opt);toc

Elapsed time is 6.304077 seconds.

Computing in parallel is nearly twice as fast as computing in serial for this example.

Overlay the ksdensity density estimate with the 200 bootstrapped estimates obtained in the parallel bootstrap. You can get a sense of how to assess the accuracy of the density estimate from this plot.

hold on
for i=1:size(B,1),
 plot(latt,B(i,:),c:)
end
plot(latt,pdfestimate);
xlabel('x');ylabel('Density estimate')
Reproducible Parallel Bootstrap

To run the example in parallel in a reproducible fashion, set the options appropriately (see “Running Reproducible Parallel Computations” on page 30-15). First set up the problem and parallel environment as in “Bootstrap in Serial and Parallel” on page 30-25. Then set the options to use substreams along with a stream that supports substreams.

```matlab
s = RandStream('mlfg6331_64'); % has substreams
opts = statset('UseParallel',true,...
    'Streams',s,'UseSubstreams',true);
B2 = bootstrp(200,myfun,x,'Options',opts);
```

To rerun the bootstrap and get the same result:
reset(s) % set the stream to initial state
B3 = bootstrap(200,myfun,x,'Options',opts);
isequal(B2,B3) % check if same results

ans =
 1
Code Generation

- “Introduction to Code Generation” on page 31-2
- “General Code Generation Workflow” on page 31-5
- “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
- “Code Generation for Nearest Neighbor Searcher” on page 31-15
- “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
- “Code Generation and Classification Learner App” on page 31-31
- “Predict Class Labels Using MATLAB Function Block” on page 31-43
- “Code Generation Support, Usage Notes, and Limitations” on page 31-49
- “Specify Variable-Size Arguments for Code Generation” on page 31-57
- “System Objects for Classification and Code Generation” on page 31-64
- “Predict Class Labels Using Stateflow” on page 31-75
- “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 31-80
- “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
Introduction to Code Generation

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Code Generation Workflows” on page 31-2</td>
</tr>
<tr>
<td>“Code Generation Applications” on page 31-4</td>
</tr>
</tbody>
</table>

Generating C/C++ code requires MATLAB Coder. MATLAB Coder generates readable and portable C and C++ code from Statistics and Machine Learning Toolbox functions that support code generation. You can integrate the generated code into your projects as source code, static libraries, or dynamic libraries. You can also use the generated code within the MATLAB environment to accelerate computationally intensive portions of your MATLAB code.

For a list of the code-generation-enabled functions in Statistics and Machine Learning Toolbox, see “Code Generation Support, Usage Notes, and Limitations” on page 31-49. For the code generation usage notes and limitations for each function, see the Code Generation section on the function reference page. Note that the MATLAB Coder limitations apply to Statistics and Machine Learning Toolbox for code generation. For details, see “MATLAB Language Features Supported for C/C++ Code Generation” (MATLAB Coder). In addition to these limitations, code generation in Statistics and Machine Learning Toolbox does not support sparse matrix.

Code Generation Workflows

You can generate C/C++ code for the Statistics and Machine Learning Toolbox functions in several ways.

- General code generation workflow for functions that are not the object functions of machine learning models

![Code Generation Workflow Diagram](https://example.com/code_generation_diagram.png)

Define an *entry-point* function that calls the function that supports code generation, generate C/C++ code for the entry-point function by using `codegen`, and then verify the generated code. The entry-point function, also known as the *top-level* or *primary* function, is a function you define for code generation. Because you cannot call any
function at the top level using `codegen`, you must define an entry-point function. All functions within the entry-point function must support code generation.

For details, see “General Code Generation Workflow” on page 31-5.

- Code generation workflow for the object function (`predict`, `random`, `knnsearch`, or `rangesearch`) of a machine learning model

Save a trained model by using `saveCompactModel`, and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the object function. Then generate code for the entry-point function by using `codegen`, and verify the generated code. The input arguments of the entry-point function cannot be classification or regression model objects. Therefore, you need to work around this limitation by using `saveCompactModel` and `loadCompactModel`.

For details, see these examples

- “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
- “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
- “Code Generation for Nearest Neighbor Searcher” on page 31-15
- “Code Generation and Classification Learner App” on page 31-31
- “Specify Variable-Size Arguments for Code Generation” on page 31-57
- Code generation workflow for the `predict` and `update` functions of an SVM model:
Create a coder configurer by using `learnerCoderConfigurer`, generate code by using `generateCode`, and then verify the generated code. You can configure code generation options and specify the coder attributes of the model parameters using object properties. After you retrain the model with new data or settings, you can update model parameters in the generated C/C++ code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code.

For details, see “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90.

Code Generation Applications

Code generation for the Statistics and Machine Learning Toolbox functions also works with other toolboxes such as Simulink®, System object™, and Stateflow®, as described in these examples:

- “Predict Class Labels Using MATLAB Function Block” on page 31-43
- “System Objects for Classification and Code Generation” on page 31-64
- “Predict Class Labels Using Stateflow” on page 31-75

For more applications of code generation, see these examples:

- “Code Generation for Image Classification”
- “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 31-80

See Also

`codegen` | `learnerCoderConfigurer` | `loadCompactModel` | `saveCompactModel`

Related Examples

- “Getting Started with MATLAB Coder” (MATLAB Coder)
General Code Generation Workflow

The general code generation workflow for the Statistics and Machine Learning Toolbox functions that are not the object functions of machine learning models is the same as the workflow described in MATLAB Coder. For details, see “Getting Started with MATLAB Coder” (MATLAB Coder). To learn how to generate code for the object functions of machine learning models, see “Introduction to Code Generation” on page 31-2.

This example briefly explains the general code generation workflow as summarized in this flow chart:

![Flow Chart](image)

Define Entry-Point Function

An entry-point function, also known as the top-level or primary function, is a function you define for code generation. Because you cannot call any function at the top level using codegen, you must define an entry-point function that calls code-generation-enabled functions, and generate C/C++ code for the entry-point function by using codegen. All functions within the entry-point function must support code generation.

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

For example, to generate code that estimates the interquartile range of a data set using iqr, define this function.

```matlab
function r = iqrCodeGen(x) %#codegen
%IQRCODEGEN Estimate interquartile range
% iqrCodeGen returns the interquartile range of the data x,
% a single- or double-precision vector.
r = iqr(x);
end
```

You can allow for optional input arguments by specifying varargin as an input argument. For details, see “Code Generation for Variable Length Argument Lists”
(MATLAB Coder) and “Specify Variable-Size Arguments for Code Generation” on page 31-57.

Generate Code

Set Up Compiler

To generate C/C++ code, you must have access to a compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. To view and change the default C compiler, enter:

```mex -setup```

For more details, see “Change Default Compiler” (MATLAB).

**Generate Code Using codegen**

After setting up your compiler, generate code for the entry-point function by using `codegen` or the MATLAB Coder app. To learn how to generate code using the MATLAB Coder app, see “Generate MEX Functions by Using the MATLAB Coder App” (MATLAB Coder).

To generate code at the command line, use `codegen`. Because C and C++ are statically typed languages, you must determine the properties of all variables in the entry-point function at compile time. Specify the data types and sizes of all inputs of the entry-point function when you call `codegen` by using the `-args` option.

- To specify the data type and exact input array size, pass a MATLAB expression that represents the set of values with a certain data type and array size. For example, to specify that the generated code from `iqrCodeGen.m` must accept a double-precision numeric column vector with 100 elements, enter:

```testX = randn(100,1);
codegen iqrCodeGen -args {testX} -report```

The `-report` flag generates a code generation report. See “Code Generation Reports” (MATLAB Coder).

- To specify that at least one of the dimensions can have any length, use the `-args` option with `coder.typeof` as follows.

```-args {coder.typeof(example_value, size_vector, variable_dims)}````
The values of `example_value`, `size_vector`, and `variable_dims` specify the properties of the input array that the generated code can accept.

- An input array has the same data type as the example values in `example_value`.
- `size_vector` is the array size of an input array if the corresponding `variable_dims` value is `false`.
- `size_vector` is the upper bound of the array size if the corresponding `variable_dims` value is `true`.
- `variable_dims` specifies whether each dimension of the array has a variable size or a fixed size. A value of `true` (logical `1`) means that the corresponding dimension has a variable size; a value of `false` (logical `0`) means that the corresponding dimension has a fixed size.

Specifying a variable-size input is convenient when you have data with an unknown number of observations at compile time. For example, to specify that the generated code from `iqrCodeGen.m` can accept a double-precision numeric column vector of any length, enter:

```matlab
testX = coder.typeof(0,[Inf,1],[1,0]);
codegen iqrCodeGen -args {testX} -report
```

0 for the `example_value` value implies that the data type is `double` because `double` is the default numeric data type of MATLAB. `[Inf,1]` for the `size_vector` value and `[1,0]` for the `variable_dims` value imply that the size of the first dimension is variable and unbounded, and the size of the second dimension is fixed to be 1.

- To specify a character array, such as supported name-value pair arguments, specify the character array as a constant using `coder.Constant`. For example, suppose that `'Name'` is a valid name-value pair argument for `iqrCodeGen.m`, and the corresponding value `value` is numeric. Then enter:

```matlab
codegen iqrCodeGen -args {testX,coder.Constant('Name'),value} -report
```

For more details, see “C Code Generation at the Command Line” (MATLAB Coder) and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

**Build Type**

MATLAB Coder can generate code for these types:

- MEX function
- Standalone C/C++ code
- Standalone C/C++ code compiled to a static library
- Standalone C/C++ code compiled to a dynamically linked library
- Standalone C/C++ code compiled to an executable

You can specify the build type using the `-config` option of `codegen`. By default, `codegen` generates a MEX function with a platform-dependent extension in your current folder. For example, suppose that you generate the code on a 64-bit Windows® platform. Then, `codegen` generates the MEX function file `iqrCodeGen_mex.mexw64` in your current folder. A MEX function is a C/C++ program that is executable from the Command Window. Generating a MEX function allows you to analyze its input and output arguments using MATLAB tools before deploying the function outside the MATLAB environment.

For more details on setting code generation options, see the `-config` option of `codegen` and “Configure Build Settings” (MATLAB Coder).

**Code Generation Report**

You can use the `-report` flag to produce a code generation report. This report helps you debug code generation issues and view the generated C/C++ code. For details, see “Code Generation Reports” (MATLAB Coder).

**Verify Generated Code**

Pass some data to verify whether `iqr`, `iqrCodeGen`, and `iqrCodeGen_mex` return the same interquartile range.

```matlab
testX = randn(100,1);
r = iqr(testX);
r_entrypoint = iqrCodeGen(testX);
r_mex = iqrCodeGen_mex(testX);
```

Compare the outputs by using `isequal`.

```matlab
isequal(r,r_entrypoint,r_mex)
```

`isequal` returns logical 1 (true) if all the inputs are equal.

You can also verify the MEX function using a test file and `coder.runTest`. For details, see “Testing Code Generated from MATLAB Code” (MATLAB Coder).
See Also
codegen

More About
• “Introduction to Code Generation” on page 31-2
• “Code Generation Support, Usage Notes, and Limitations” on page 31-49
This example shows how to generate code for the prediction of classification and regression model objects at the command line. You can also generate code using the MATLAB® Coder™ app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20 for details.

Certain classification and regression model objects have a `predict` or `random` function that supports code generation. For a list of the model objects and object functions that support code generation, see “Code Generation Support, Usage Notes, and Limitations” on page 31-49. Prediction using these object functions requires a trained classification or regression model object, but the `-args` option of `codegen` does not accept these objects. Work around this limitation by using `saveCompactModel` and `loadCompactModel` as described in this example.

This flow chart shows the code generation workflow for the object functions of classification and regression model objects.

After you train a model, save the trained model by using `saveCompactModel`. Define an entry-point function that loads the saved model by using `loadCompactModel` and calls the object function. Then generate code for the entry-point function by using `codegen`, and verify the generated code.

**Train Classification Model**

Train a classification model object equipped with a code-generation-enabled `predict` function. In this case, train a support vector machine (SVM) classification model.

```matlab
load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
Y = species(inds);
Mdl = fitcsvm(X,Y);
```

This step can include data preprocessing, feature selection, and optimizing the model using cross-validation, for example.
Save Model Using `saveCompactModel`

Save the classification model to the file `SVMModel.mat` by using `saveCompactModel`.

```matlab
saveCompactModel(Mdl,'SVMModel');
```

`saveCompactModel` makes the full classification model `Mdl` compact, and then saves it to the MATLAB binary file `SVMModel.mat` as a structure array in the current folder.

Define Entry-Point Function

An entry-point function, also known as the top-level or primary function, is a function you define for code generation. Because you cannot call any function at the top level using `codegen`, you must define an entry-point function that calls code-generation-enabled functions, and generate C/C++ code for the entry-point function by using `codegen`. All functions within the entry-point function must support code generation.

Define an entry-point function that returns predicted labels for input predictor data. Within the function, load the trained classification model by using `loadCompactModel`, and then pass the loaded model to `predict`. In this case, define the `predictLabelsSVM` function, which predicts labels using the SVM model `Mdl`.

```matlab
type predictLabelsSVM.m % Display contents of predictLabelsSVM.m file

function label = predictLabelsSVM(x) %#codegen
 %PREDICTLABELSSVM Label new observations using trained SVM model Mdl
 % predictLabelsSVM predicts the vector of labels label using
 % the saved SVM model Mdl and the predictor data x.
 Mdl = loadCompactModel('SVMModel');
 label = predict(Mdl,x);
end
```

Add the `%#codegen` compiler directive (or pragma) to the entry-point function after the function signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

**Note:** If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function file.
Generate Code

Set Up Compiler

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Generate Code Using codegen

Generate code for the entry-point function using `codegen`. Because C and C++ are statically typed languages, you must determine the properties of all variables in the entry-point function at compile time. Specify the data types and sizes of all inputs of the entry-point function when you call `codegen` by using the `-args` option.

In this case, pass X as a value of the `-args` option to specify that the generated code must accept an input that has the same data type and array size as the training data X.

```python
codegen predictLabelsSVM -args {X}
```

If the number of observations is unknown at compile time, you can also specify the input as variable-size by using `coder.typeof`. For details, see “Specify Variable-Size Arguments for Code Generation” on page 31-57 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

Build Type

MATLAB Coder can generate code for the following build types:

- MEX function
- Standalone C/C++ code
- Standalone C/C++ code compiled to a static library
- Standalone C/C++ code compiled to a dynamically linked library
- Standalone C/C++ code compiled to an executable

You can specify the build type using the `-config` option of `codegen`. By default, `codegen` generates a MEX function with a platform-dependent extension in your current folder. If you generate the code on a 64-bit Windows® platform, then the generated MEX function file is `predictLabelsSVM_mex.mexw64`. A MEX function is a C/C++ program that is executable from the Command Window. Generating a MEX file allows you to...
analyze its input and output arguments using MATLAB tools before deploying the function outside the MATLAB environment.

For more details on setting code generation options, see the -config option of codegen and “Configure Build Settings” (MATLAB Coder).

**Code Generation Report**

You can use the -report flag to produce a code generation report. This report helps you debug code generation issues and view the generated C/C++ code. For details, see “Code Generation Reports” (MATLAB Coder).

**Verify Generated Code**

Pass some predictor data to verify whether predict, predictLabelsSVM, and the MEX function return the same labels.

```matlab
labels1 = predict(Mdl,X);
labels2 = predictLabelsSVM(X);
labels3 = predictLabelsSVM_mex(X);
```

Compare the predicted labels by using isequal.

```matlab
verifyMEX = isequal(labels1,labels2,labels3)
```

`isequal` returns logical 1 (true), which means all the inputs are equal. The comparison confirms that the predict function, predictLabelsSVM function, and MEX function return the same labels.

**See Also**

codegen | learnerCoderConfigurer | loadCompactModel | saveCompactModel

**Related Examples**

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
• “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
• “Code Generation and Classification Learner App” on page 31-31
• “Specify Variable-Size Arguments for Code Generation” on page 31-57
Code Generation for Nearest Neighbor Searcher

The object functions \texttt{knnsearch} and \texttt{rangesearch} of the nearest neighbor searcher objects, \texttt{ExhaustiveSearcher} and \texttt{KDTreeSearcher}, support code generation. This example shows how to generate code for finding the nearest neighbor using an exhaustive searcher object at the command line. The example shows two different ways to generate code, depending on the way you use the object: load the object by using \texttt{loadCompactModel} in an entry-point function, and pass a compile-time constant object to the generated code.

\textbf{Train Exhaustive Nearest Neighbor Searcher}

Load Fisher's iris data set.

\begin{verbatim}
load fisheriris
\end{verbatim}

Remove five irises randomly from the predictor data to use as a query set.

\begin{verbatim}
rng('default'); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);
\end{verbatim}

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the 'Distance' and 'P' name-value pair arguments to use the Minkowski distance with an exponent of 1 for finding the nearest neighbor.

\begin{verbatim}
Mdl = ExhaustiveSearcher(X,'Distance','minkowski','P',1);
\end{verbatim}

Find the index of the training data (X) that is the nearest neighbor of each point in the query data (Y).

\begin{verbatim}
Idx = knnsearch(Mdl,Y);
\end{verbatim}

\textbf{Generate Code Using saveCompactModel and loadCompactModel}

Generate code that loads an exhaustive searcher, takes query data as an input argument, and then finds the nearest neighbor.

Save the exhaustive searcher to a file using \texttt{saveCompactModel}.

\begin{verbatim}
saveCompactModel(Mdl,'searcherModel')
\end{verbatim}
saveCompactModel saves the model to the MATLAB binary file searcherModel.mat as a structure array in the current folder.

Define the entry-point function myknnsearch1 that takes query data as an input argument. Within the function, load the searcher object by using loadCompactModel, and then pass the loaded model to knnsearch.

```matlab
function idx = myknnsearch1(x) %#codegen
Mdl = loadCompactModel('searcherModel');
idx = knnsearch(Mdl,x);
end
```

**Note:** If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function files, myknnsearch1.m, myknnsearch2.m, and myknnsearch3.m.

Generate code for myknnsearch1 by using codegen. Specify the data type and dimension of the input argument by using coder.typeof so that the generated code accepts a variable-size array.

```matlab
codegen myknnsearch1 -args {coder.typeof(Y,[Inf,4],[1,0])}
```

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\myknnsearch1\html\report.mldatx').

For more detailed code generation example that uses saveCompactModel and loadCompactModel, see “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10. For more details about specifying variable-size arguments, see “Specify Variable-Size Arguments for Code Generation” on page 31-57.

Pass the query data (Y) to verify that myknnsearch1 and the MEX file return the same indices.

```matlab
myIdx1 = myknnsearch1(Y);
myIdx1_mex = myknnsearch1_mex(Y);
```

Compare myIdx1 and myIdx1_mex by using isequal.

```matlab
verifyMEX1 = isequal(Idx,myIdx1,myIdx1_mex)
```
isequal returns logical 1 (true) if all the inputs are equal. This comparison confirms that myknnsearch1 and the MEX file return the same results.

**Generate Code with Constant Folded Model Object**

Nearest neighbor searcher objects can be an input argument of a function you define for code generation. The `-args` option of codegen accept a compile-time constant searcher object.

Define the entry-point function `myknnsearch2` that takes both an exhaustive searcher model and query data as input arguments instead of loading the model in the function.

```matlab
type myknnsearch2.m % Display contents of myknnsearch2.m file
function idx = myknnsearch2(Mdl,x) %#codegen
 idx = knnsearch(Mdl,x);
end
```

To generate code that takes the model object as well as the query data, designate the model object as a compile-time constant by using `coder.Constant` and include the constant folded model object in the `-args` value of codegen.

```matlab
codegen myknnsearch2 -args {coder.Constant(Mdl),coder.typeof(Y,[Inf,4],[1,0])}
```

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\myknnsearch2\html\report.mldatx').

The code generation workflow with a constant folded model object follows general code generation workflow. For details, see “General Code Generation Workflow” on page 31-5.

Verify that `myknnsearch2` and the MEX file return the same results.

```matlab
myIdx2 = myknnsearch2(Mdl,Y);
myIdx2_mex = myknnsearch2_mex(Mdl,Y);
verifyMEX2 = isequal(Idx,myIdx2,myIdx2_mex)
```

```matlab
verifyMEX2 = logical
 1
```
Generate Code with Name-Value Pair Arguments

Define the entry-point function `myknnsearch3` that takes a model object, query data, and name-value pair arguments. You can allow for optional name-value arguments by specifying `varargin` as an input argument. For details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

```matlab
type myknnsearch3.m % Display contents of myknnsearch3.m file
function idx = myknnsearch3(Mdl,x,varargin) %#codegen
 idx = knnsearch(Mdl,x,varargin{:});
end
```

To generate code that allows a user-defined exponent for the Minkowski distance, include `{coder.Constant('P'),0}` in the `-args` value of `codegen`. Use `coder.Constant` because the name of a name-value pair argument must be a compile-time constant.

```matlab
codegen myknnsearch3 -args {coder.Constant(Mdl),coder.typeof(Y,[Inf,4],[1,0]),coder.Constant('P'),0}
```

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\myknnsearch3\html\report.mldatx')

Verify that `myknnsearch3` and the MEX file return the same results.

```matlab
newIdx = knnsearch(Mdl,Y,'P',2);
myIdx3 = myknnsearch3(Mdl,Y,'P',2);
myIdx3_mex = myknnsearch3_mex(Mdl,Y,'P',2);
verifyMEX3 = isequal(newIdx,myIdx3,myIdx3_mex)
```

`verifyMEX3 = logical 1`

See Also

- ExhaustiveSearcher
- KDTreeSearcher
- codegen
- knnsearch
- loadCompactModel
- rangesearch
- saveCompactModel

Related Examples

- “Introduction to Code Generation” on page 31-2
• “General Code Generation Workflow” on page 31-5
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
• “Specify Variable-Size Arguments for Code Generation” on page 31-57
Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App

This example shows how to generate C/C++ code for the prediction of classification and regression model objects by using the MATLAB® Coder™ app. You can also generate code at the command line using codegen. See “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10 for details.

Certain classification and regression model objects have a predict or random function that supports code generation. For a list of the model objects and object functions that support code generation, see “Code Generation Support, Usage Notes, and Limitations” on page 31-49. Prediction using these object functions requires a trained classification or regression model object, but an entry-point function for code generation cannot have these objects as input variables. Work around this limitation by using saveCompactModel and loadCompactModel as described in this example.

This flow chart shows the code generation workflow for the object functions of classification and regression model objects.

In this example, you train a classification ensemble model using k-nearest-neighbor weak learners and save the trained model by using saveCompactModel. Then, define an entry-point function that loads the saved model by using loadCompactModel and calls the object function. Write a script to test the entry-point function. Finally, generate code by using the MATLAB Coder app and verify the generated code.

**Train Classification Model**

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
```

Train a classification ensemble model with k-nearest-neighbor weak learners by using the random subspace method. For details of classifications that use a random subspace ensemble, see “Random Subspace Classification” on page 18-133.

```matlab
rng('default') % For reproducibility
learner = templateKNN('NumNeighbors',2);
```
Mdl = fitcensemble(X,Y,'Method','Subspace','NPredToSample',5,...
    'Learners',learner,'NumLearningCycles',13);

**Save Model Using saveCompactModel**

Save the trained ensemble model to a file named `knnEnsemble.mat` in your current folder.

```
saveCompactModel(Mdl,'knnEnsemble')
```

SaveCompactModel makes the full classification model `Mdl` compact, and then saves it to the MATLAB binary file `knnEnsemble.mat` as a structure array in the current folder.

**Define Entry-Point Function**

An entry-point function, also known as the top-level or primary function, is a function you define for code generation. You must define an entry-point function that calls code-generation-enabled functions and generate C/C++ code from the entry-point function. All functions within the entry-point function must support code generation.

In a new file in your current folder, define an entry-point function named `myknnEnsemblePredict` that does the following:

- Accept input data (`X`), the file name of the saved model (`fileName`), and valid name-value pair arguments of the `predict` function (`varargin`).
- Load a trained ensemble model by using `loadCompactModel`.
- Predict labels and corresponding scores from the loaded model.

You can allow for optional name-value arguments by specifying `varargin` as an input argument. For details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

```
type myknnEnsemblePredict.m % Display the contents of myknnEnsemblePredict.m file.

function [label,score] = myknnEnsemblePredict(X,fileName,varargin) %#codegen
 CompactMdl = loadCompactModel(fileName);
 [label,score] = predict(CompactMdl,X,varargin{:});
end
```

Add the `%#codegen` compiler directive (or pragma) to the entry-point function after the function signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the MATLAB Code Analyzer to help you
diagnose and fix violations that would result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

**Note:** If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function file (myknnEnsemblePredict.m) and the test file (test_myknnEnsemblePredict.m, described later on).

**Set Up Compiler**

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

**Create Test File**

Write a test script that calls the myknnEnsemblePredict function. In the test script, specify the input arguments and name-value pair arguments that you use in the generated code. You use this test script to define input types automatically when generating code using the MATLAB Coder app.

In this example, create the `test_myknnEnsemblePredict.m` file in your current folder, as shown.

```matlab
type test_myknnEnsemblePredict.m % Display the contents of test_myknnEnsemblePredict.m

% Load Sample data
load ionosphere

% Test myknnEnsemblePredict
[label,score] = myknnEnsemblePredict(X,'knnEnsemble','Learners',1:13);
```

For details, see “Automatically Define Input Types by Using the App” (MATLAB Coder).

**Generate Code Using MATLAB Coder App**

The MATLAB Coder app generates C or C++ code from MATLAB® code. The workflow-based user interface steps you through the code generation process. The following steps describe a brief workflow of the MATLAB Code App. For more details, see MATLAB Coder and “C Code Generation Using the MATLAB Coder App” (MATLAB Coder).

1. **Open the MATLAB Code App and Select the Entry-Point Function File.**
On the **Apps** tab, in the **Apps** section, click the **Show more** arrow to open the apps gallery. Under **Code Generation**, click **MATLAB Coder**. The app opens the **Select Source Files** page. Enter or select the name of the entry-point function, `myknnEnsemblePredict`.

![MATLAB Coder - myknnEnsemblePredict.prj](image)

Click **Next** to go to the **Define Input Types** page.

### 2. Define Input Types

Because C uses static typing, MATLAB Coder must determine the properties of all variables in the MATLAB files at compile time. Therefore, you need to specify the properties of the entry-point function inputs.
Enter or select the test script `test_myknnEnsemblePredict` and click **Autodefine Input Types**.

The MATLAB Coder app recognizes input types of the `myknnEnsemblePredict` function based on the test script.

Modify the input types:

- **X** — The app infers that input `X` is `double(351 x 34)`. The number of predictors must be fixed to be the same as the number of predictors in the trained model. However, you can have a different number of observations for prediction. If the number of observations is unknown, change `double(351 x 34)` to `double(:351 x 34)` or
double(:inf x 34). The setting double(:351 x 34) allows the number of observations up to 351, and the setting double(:inf x 34) allows an unbounded number of observations. In this example, specify double(:inf x 34) by clicking 351 and selecting :inf.

- **fileName** — Click **char**, select **Define Constant**, and type the file name with single quotes, 'knnEnsemble'.

- **vargrign{1}** — Names in name-value pair arguments must be compile-time constants. Click **char**, select **Define Constant**, and type 'Learners'.

- **vargrign{2}** — To allow user-defined indices up to 13 weak learners in the generated code, change double(1 x 13) to double(1 x :13).
Click **Next** to go to the **Check for Run-Time Issues** page. This optional step generates a MEX file, runs the MEX function, and reports issues. Click **Next** to go to the **Generate Code** page.

### 3. Generate C Code

Set **Build type** to MEX and click **Generate**. The app generates a MEX function, `myknnEnsemblePredict_mex`, which you can use to analyze its input and output arguments in MATLAB before deploying the function outside the MATLAB environment. Depending on the specified build type, MATLAB Coder generates a MEX function or standalone C/C++ code compiled to a static library, dynamic linked library, or executable. For details on setting a build type, see “Configure Build Settings” (MATLAB Coder).
Click **Next** to go to the **Finish Workflow** page.

**4. Review the Finish Workflow Page**

The **Finish Workflow** page indicates that code generation succeeded. This page also provides a project summary and links to generated output.

---

**MEX Generated Successfully**

You can now use the MEX function to accelerate MATLAB code. [Learn more](#)

**Project Summary**

- **Functions**: `myknnEnsemblePredict.m`
- **Project Type**: MATLAB Coder
- **Project File**: `myknnEnsemblePredict.prj`

**Generated Output**

- **C Code**: `.../mynn/Document/MATLAB/examples/stats-ex91480053/codegen/mex/myknnEnsemblePredict`
- **Binaries**: `.../mynn/Document/MATLAB/examples/stats-ex91480053/mynnEnsemblePredict_mex.mexw64`
- **Reports**: [Code Generation Report](#)

---

**Generate Code Using Script**

You can convert a MATLAB Coder project to the equivalent script of MATLAB commands after you define input types. Then you run the script to generate code. For details, see “Convert MATLAB Coder Project to MATLAB Script” (MATLAB Coder).
On the MATLAB Coder app toolbar, click the **Open action menu** button.

Select **Convert to script**, and then click **Save**. The app creates the file `myknnEnsemblePredict_script.m`, which reproduces the project in a configuration object and runs the `codegen` function.

Display the contents of the file `myknnEnsemblePredict_script.m`.

```matlab
type myknnEnsemblePredict_script.m

% MYKNNENSEMBLEPREDICT_SCRIPT Generate MEX-function myknnEnsemblePredict_mex
% from myknnEnsemblePredict.
%
% Script generated from project 'myknnEnsemblePredict.prj' on 17-Nov-2017.
% See also CODER, CODER.CONFIG, CODER.TYPEOF, CODEGEN.
%
% Create configuration object of class 'coder.MexCodeConfig'.
cfg = coder.config('mex');
cfg.GenerateReport = true;
cfg.ReportPotentialDifferences = false;

% Define argument types for entry-point 'myknnEnsemblePredict'.
ARGS = cell(1,1);
ARGS{1} = cell(4,1);
ARGS{1}{1} = coder.typeof(0,[Inf 34],[1 0]);
ARGS{1}{2} = coder.Constant('knnEnsemble');
ARGS{1}{3} = coder.Constant('Learners');
ARGS{1}{4} = coder.typeof(0,[1 13],[0 1]);

% Invoke MATLAB Coder.
codegen -config cfg myknnEnsemblePredict -args ARGS{1} -nargout 2

Run the script.

myknnEnsemblePredict_script

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\myknnEnsemblePredict\html\report.mldatx').
Verify Generated Code

Pass some predictor data to verify that `myknnEnsemblePredict` and the MEX function return the same results.

```matlab
[label1,score1] = predict(Mdl,X,'Learners',1:10);
[label2,score2] = myknnEnsemblePredict(X,'knnEnsemble','Learners',1:10);
[label3,score3] = myknnEnsemblePredict_mex(X,'knnEnsemble','Learners',1:10);
```

Compare `label1`, `label2`, and `label3` by using `isequal`.

```matlab
isequal(label1,label2,label3)
ans = logical
   1
```

`isequal` returns logical 1 (`true`), which means all the inputs are equal.

The `score3` output from the MEX function might include round-off differences compared with the output from the `predict` function. In this case, compare `score1` and `score3`, allowing a small tolerance.

```matlab
find(abs(score1-score3) > 1e-12)
ans =
   0x1 empty double column vector
```

`find` returns an empty vector if the element-wise absolute difference between `score1` and `score3` is not larger than the specified tolerance `1e-12`. The comparisons confirm that `myknnEnsemblePredict` and the MEX function return the same results.

See Also

codegen | learnerCoderConfigurer | loadCompactModel | saveCompactModel

More About

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
• “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
• “Code Generation and Classification Learner App” on page 31-31
• “Specify Variable-Size Arguments for Code Generation” on page 31-57
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)
Code Generation and Classification Learner App

Classification Learner is well suited for choosing and training classification models interactively, but it does not generate C/C++ code that labels data based on a trained model. The Generate Code feature in the Export section of the Classification Learner app generates MATLAB code for training a model but does not generate C/C++ code. This example shows how to generate C code from a function that predicts labels using an exported classification model. The example builds a model that predicts the credit rating of a business given various financial ratios, according to these steps:

1 Use the credit rating data set in the file CreditRating_Historical.dat, which is included with Statistics and Machine Learning Toolbox.
2 Reduce the data dimensionality using principal component analysis (PCA).
3 Train a set of models that support code generation for label prediction.
4 Export the model with the minimum 5-fold, cross-validated classification accuracy.
5 Generate C code from an entry-point function that transforms the new predictor data and then predicts corresponding labels using the exported model.

Load Sample Data

Load sample data and import the data into the Classification Learner app. Review the data using scatter plots and remove unnecessary predictors.

Use `readtable` to load the historical credit rating data set in the file CreditRating_Historical.dat into a table.

```
creditrating = readtable('CreditRating_Historical.dat');
```

On the Apps tab, click Classification Learner.

In Classification Learner, on the Classification Learner tab, in the File section, click New Session and select From Workspace.

In the New Session dialog box, select the table `creditrating`. All variables, except the one identified as the response, are double-precision numeric vectors. Click Start Session to compare classification models based on the 5-fold, cross-validated classification accuracy.
Classification Learner loads the data and plots a scatter plot of the variables WC_TA versus ID. Because identification numbers are not helpful to display in a plot, choose RE_TA for X under Predictors.

The scatter plot suggests that the two variables can separate the classes AAA, BBB, BB, and CCC fairly well. However, the observations corresponding to the remaining classes are mixed into these classes.

Identification numbers are not helpful for prediction. Therefore, in the Features section, click Feature Selection and then clear the ID check box. You can also remove unnecessary predictors from the beginning by using the check boxes in the New Session.
dialog box. This example shows how to remove unused predictors for code generation when you have included all predictors.

Enable PCA

Enable PCA to reduce the data dimensionality.

In the **Features** section, click **PCA**, and then select **Enable PCA**. This action applies PCA to the predictor data, and then transforms the data before training the models. Classification Learner uses only components that collectively explain 95% of the variability.

Train Models

Train a set of models that support code generation for label prediction.

Select the following classification models and options, which support code generation for label prediction, and then perform cross-validation (for more details, see “Code Generation Support, Usage Notes, and Limitations” on page 31-49). To select each model, in the **Model Type** section, click **Show more** arrow, and then click the model. After selecting a model and specifying any options, close any open menus, and then click **Train** in the **Training** section.

<table>
<thead>
<tr>
<th>Models and Options to Select</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Decision Trees, select All Trees</td>
<td>Classification trees of various complexities</td>
</tr>
<tr>
<td>Under Support Vector Machines, select All SVMs</td>
<td>SVMs of various complexities and using various kernels. Complex SVMs require time to fit.</td>
</tr>
<tr>
<td>Under Ensemble Classifiers, select Boosted Trees. In the Model Type section, click Advanced. Reduce Maximum number of splits to 5 and increase Number of learners to 100.</td>
<td>Boosted ensemble of classification trees</td>
</tr>
<tr>
<td>Under Ensemble Classifiers, select Bagged Trees. In the Model Type section, click Advanced. Increase Maximum number of splits to 50 and increase Number of learners to 100.</td>
<td>Random forest of classification trees</td>
</tr>
</tbody>
</table>
After cross-validating each model type, the Data Browser displays each model and its 5-fold, cross-validated classification accuracy, and highlights the model with the best accuracy.
Code Generation and Classification Learner App

History

<table>
<thead>
<tr>
<th>Version</th>
<th>Model Type</th>
<th>Accuracy</th>
<th>Last change</th>
<th>Features (PCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Tree</td>
<td>69.6%</td>
<td>Complex Tree</td>
<td>2/6 on</td>
</tr>
<tr>
<td>1.2</td>
<td>Tree</td>
<td>67.0%</td>
<td>Medium Tree</td>
<td>2/6 on</td>
</tr>
<tr>
<td>1.3</td>
<td>Tree</td>
<td>57.8%</td>
<td>Simple Tree</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.1</td>
<td>SVM</td>
<td>70.5%</td>
<td>Linear SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.2</td>
<td>SVM</td>
<td>64.4%</td>
<td>Quadratic SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.3</td>
<td>SVM</td>
<td>46.5%</td>
<td>Cubic SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.4</td>
<td>SVM</td>
<td>70.7%</td>
<td>Fine Gaussian SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.5</td>
<td>SVM</td>
<td>69.6%</td>
<td>Medium Gaussian SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>2.6</td>
<td>SVM</td>
<td>61.7%</td>
<td>Coarse Gaussian SVM</td>
<td>2/6 on</td>
</tr>
<tr>
<td>3</td>
<td>Ensemble</td>
<td>66.3%</td>
<td>'Number of learners' = '100'</td>
<td>2/6 on</td>
</tr>
<tr>
<td>4</td>
<td>Ensemble</td>
<td>70.6%</td>
<td>'Number of learners' = '100'</td>
<td>2/6 on</td>
</tr>
</tbody>
</table>

Current Model

Model 4: Trained

Results

- Accuracy: 70.6%
- Prediction speed: ~4900 obs/sec
- Training time: 15,313 sec
Select the model that yields the maximum 5-fold, cross-validated classification accuracy, which is the error-correcting output codes (ECOC) model of Fine Gaussian SVM learners. With PCA enabled, Classification Learner uses two predictors out of six.

In the **Plots** section, click **Confusion Matrix**.
The model does well distinguishing between A, B, and C classes. However, the model does not do as well distinguishing between particular levels within those groups, the lower B levels in particular.

Export Model to Workspace

Export the model to the MATLAB Workspace and save the model using `saveCompactModel`.

In the **Export** section, click **Export Model**, and then select **Export Compact Model**. Click **OK** in the dialog box.

The structure `trainedModel` appears in the MATLAB Workspace. The field `ClassificationSVM` of `trainedModel` contains the compact model.

At the command line, save the compact model to a file called `ClassificationLearnerModel.mat` in your current folder.

```matlab
saveCompactModel(trainedModel.ClassificationSVM,'ClassificationLearnerModel')
```

Generate C Code for Prediction

Prediction using the object functions requires a trained model object, but the -args option of `codegen` does not accept such objects. Work around this limitation by using `saveCompactModel` and `loadCompactModel`. Save a trained model by using `saveCompactModel`. Then, define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Finally, use `codegen` to generate code for the entry-point function.

Preprocess Data

Preprocess new data in the same way you preprocess the training data.

To preprocess, you need the following three model parameters:

- **removeVars** — Column vector of at most \(p \) elements identifying indices of variables to remove from the data, where \(p \) is the number of predictor variables in the raw data
- **pcaCenters** — Row vector of exactly \(q \) PCA centers
- **pcaCoefficients** — \(q \)-by-\(r \) matrix of PCA coefficients, where \(r \) is at most \(q \)
Specify the indices of predictor variables that you removed while selecting data using **Feature Selection** in Classification Learner. Extract the PCA statistics from `trainedModel`.

```matlab
removeVars = 1;
pcaCenters = trainedModel.PCACenters;
pcaCoefficients = trainedModel.PCACoefficients;
```

Save the model parameters to a file named `ModelParameters.mat` in your current folder.

```matlab
save('ModelParameters.mat','removeVars','pcaCenters','pcaCoefficients');
```

Define Entry-Point Function

An entry-point function is a function you define for code generation. Because you cannot call any function at the top level using `codegen`, you must define an entry-point function that calls code-generation-enabled functions, and then generate C/C++ code for the entry-point function by using `codegen`.

In your current folder, define a function named `mypredictCL.m` that:

- Accepts a numeric matrix (`X`) of raw observations containing the same predictor variables as the ones passed into Classification Learner
- Loads the classification model in `ClassificationLearnerModel.mat` and the model parameters in `ModelParameters.mat`
- Removes the predictor variables corresponding to the indices in `removeVars`
- Transforms the remaining predictor data using the PCA centers (`pcaCenters`) and coefficients (`pcaCoefficients`) estimated by Classification Learner
- Returns predicted labels using the model

```matlab
function label = mypredictCL(X) %#codegen
%MYPREDICTCL Classify credit rating using model exported from
%Classification Learner
% MYPREDICTCL loads trained classification model (SVM) and model
% parameters (removeVars, pcaCenters, and pcaCoefficients), removes the
% columns of the raw matrix of predictor data in X corresponding to the
% indices in removeVars, transforms the resulting matrix using the PCA
% centers in pcaCenters and PCA coefficients in pcaCoefficients, and then
% uses the transformed data to classify credit ratings. X is a numeric
% matrix with n rows and 7 columns. label is an n-by-1 cell array of
% predicted labels.
```
% Load trained classification model and model parameters
SVM = loadCompactModel('ClassificationLearnerModel');
data = coder.load('ModelParameters');
removeVars = data.removeVars;
pcaCenters = data.pcaCenters;
pcaCoefficients = data.pcaCoefficients;
SVM = loadCompactModel('ClassificationLearnerModel');

% Remove unused predictor variables
keepvars = 1:size(X,2);
idx = ~ismember(keepvars,removeVars);
keepvars = keepvars(idx);
XwoID = X(:,keepvars);

% Transform predictors via PCA
Xpca = bsxfun(@minus,XwoID,pcaCenters)*pcaCoefficients;

% Generate label from SVM
label = predict(SVM,Xpca);
end

Generate Code

Because C and C++ are statically typed languages, you must determine the properties of all variables in the entry-point function at compile time. Specify variable-size arguments using `coder.typeof` and generate code using the arguments.

Create a double-precision matrix called `x` for code generation using `coder.typeof`. Specify that the number of rows of `x` is arbitrary, but that `x` must have `p` columns.

```matlab
p = size(creditrating,2) - 1;
x = coder.typeof(0,[Inf,p],[1 0]);
```

For more details about specifying variable-size arguments, see “Specify Variable-Size Arguments for Code Generation” on page 31-57.

Generate a MEX function from `mypredictCL.m`. Use the `-args` option to specify `x` as an argument.

```bash
codegen mypredictCL -args x
```
codegen generates the MEX file `mypredictCL_mex.mexw64` in your current folder. The file extension depends on your platform.

Verify Generated Code

Verify that the MEX function returns the expected labels.

Remove the response variable from the original data set, and then randomly draw 15 observations.

```matlab
rng('default'); % For reproducibility
m = 15;
testsampT = datasample(creditrating(:,1:(end - 1)),m);
```

Predict corresponding labels by using `predictFcn` in the classification model trained by Classification Learner.

```matlab
testLabels = trainedModel.predictFcn(testsampT);
```

Convert the resulting table to a matrix.

```matlab
testsamp = table2array(testsampT);
```

The columns of `testsamp` correspond to the columns of the predictor data loaded by Classification Learner.

Pass the test data to `mypredictCL`. The function `mypredictCL` predicts corresponding labels by using `predict` and the classification model trained by Classification Learner.

```matlab
testLabelsPredict = mypredictCL(testsamp);
```

Predict corresponding labels by using the generated MEX function `mypredictCL_mex`.

```matlab
testLabelsMEX = mypredictCL_mex(testsamp);
```

Compare the sets of predictions.

```matlab
isequal(testLabels,testLabelsMEX,testLabelsPredict)
```

```matlab
ans =
    logical

    1
```
isequal returns logical 1 (true) if all the inputs are equal. `predictFcn`, `mypredictCL`, and the MEX function return the same values.

See Also
`codegen` | `coder.typeof` | `learnerCoderConfigurer` | `loadCompactModel` | `saveCompactModel`

Related Examples
- “Classification Learner App”
- “Introduction to Code Generation” on page 31-2
- “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
- “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
- “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
- “Specify Variable-Size Arguments for Code Generation” on page 31-57
Predict Class Labels Using MATLAB Function Block

This example shows how to add a MATLAB Function block to a Simulink® for label prediction. The MATLAB Function block accepts streaming data, and predicts the label and classification score using a trained, support vector machine (SVM) classification model. For details on using the MATLAB Function block, see “Create Model That Uses MATLAB Function Block” (Simulink).

The `ionosphere` data set, which is included in the Statistics and Machine Learning Toolbox™, contains radar-return qualities (`Y`) and predictor data (`X`). Radar returns are either of good quality (`'g'`) or of bad quality (`'b'`).

Load the `ionosphere` data set. Determine the sample size.

```matlab
load ionosphere
n = numel(Y)
```

```matlab
n = 351
```

The MATLAB Function block cannot return cell arrays. So, convert the response variable to a logical vector whose elements are 1 if the radar returns are good, and 0 otherwise.

```matlab
Y = strcmp(Y,'g');
```

Suppose that the radar returns are detected in sequence, and you have the first 300 observations, but you have not received the last 51 yet. Partition the data into present and future samples.

```matlab
prsntX = X(1:300,:);
prsntY = Y(1:300);
ftrX = X(301:end,:);
ftrY = Y(301:end);
```

Train an SVM model using all, presently available data. Specify predictor data standardization.

```matlab
Mdl = fitcsvm(prsntX,prsntY,'Standardize',true);
```
Mdl is a ClassificationSVM model. At the command line, you can use Mdl to make predictions for new observations. However, you cannot use Mdl as an input argument in a function meant for code generation.

Prepare Mdl to be loaded within the function using saveCompactModel.

saveCompactModel(Mdl,'SVMIonosphere');

saveCompactModel compacts Mdl, and then saves it in the MAT-file SVMIonosphere.mat.

Define a function named svmIonospherePredict.m that predicts whether a radar return is of good quality. The function should:

- Include the code generation directive %#codegen somewhere in the function.
- Accept radar-return predictor data. The data must be commensurate with X except for the number of rows.
- Load SVMIonosphere.mat using loadCompactModel.
- Return predicted labels and classification scores for predicting the quality of the radar return as good (that is, the positive-class score).

```
function [label,score] = svmIonospherePredict(X) %#codegen
%svmIonospherePredict Predict radar-return quality using SVM model
% svmIonospherePredict predicts labels and estimates classification
% scores of the radar returns in the numeric matrix of preditor data X
% using the compact SVM model in the file SVMIonosphere.mat. Rows of X
% correspond to observations and columns to predictor variables. label
% is the predicted label and score is the confidence measure for
% classifying the radar-return quality as good.
%
% Copyright 2016 The MathWorks Inc.
Mdl = loadCompactModel('SVMIonosphere');
[label,bothscores] = predict(Mdl,X);
score = bothscores(:,2);
end
```

svmIonospherePredict.m is located in your mlr/help/toolbox/stats/examples folder, where mlr is the value of matlabroot.

Load the Simulink® model slexSVMIonospherePredictExample.slx.
SimMdlName = 'slexSVMIonospherePredictExample';
open_system(SimMdlName);

The figure displays the Simulink® model. When the input node detects a radar return, it
directs that observation into the MATLAB Function block that dispatches to
svmIonospherePredict.m. After predicting the label and score, the model returns
these values to the workspace and displays the values within the model one at a time.
When you load slexSVMIonospherePredictExample.slx, MATLAB® also loads the
data set that it requires called radarReturnInput. However, this example shows how to
construct the required data set.

The model expects to receive input data as a structure array called radarReturnInput
containing these fields:

- **time** - The points in time at which the observations enter the model. In the example,
 the duration includes the integers from 0 though 50. The orientation must correspond
to the observations in the predictor data. So, for this example, time must be a column
 vector.
- **signals** - A 1-by-1 structure array describing the input data, and containing the fields
 values and dimensions. values is a matrix of predictor data. dimensions is the
 number of predictor variables.

Create an appropriate structure array for future radar returns.
radarReturnInput.time = (0:50)';
radarReturnInput.signals(1).values = ftrX;
radarReturnInput.signals(1).dimensions = size(ftrX,2);

You can change the name from radarReturnInput, and then specify the new name in the model. However, Simulink® expects the structure array to contain the described field names.

Simulate the model using the data held out of training, that is, the data in radarReturnInput.

sim(SimMdlName);

The figure shows the model after it processes all observations in radarReturnInput one at a time. The predicted label of \(X(351,:) \) is 1 and its positive-class score is 1.431. The variables tout, yout, and svmlogsout appear in the workspace. yout and svmlogsout are SimulinkData.Dataset objects containing the predicted labels and scores. For more details, see “Data Format for Logged Simulation Data” (Simulink).

Extract the simulation data from the simulation log.
labelsSL = svmlogsout.getElement(1).Values.Data;
scoresSL = svmlogsout.getElement(2).Values.Data;

labelsSL is a 51-by-1 numeric vector of predicted labels. labelsSL(j) = 1 means that the SVM model predicts that radar return j in the future sample is of good quality, and 0 means otherwise. scoresSL is a 51-by-1 numeric vector of positive-class scores, that is, signed distances from the decision boundary. Positive scores correspond to predicted labels of 1, and negative scores correspond to predicted labels of 0.

Predict labels and positive-class scores at the command line using `predict`.

[labelCMD,scoresCMD] = predict(Mdl,ftrX);
scoresCMD = scoresCMD(:,2);

labelCMD and scoresCMD are commensurate with labelsSL and scoresSL.

Compare the future-sample, positive-class scores returned by `slexSVMIonospherePredictExample` to those returned by calling `predict` at the command line.

err = sum((scoresCMD - scoresSL).^2);
err < eps

ans =

 logical
 1

The sum of squared deviations between the sets of scores is negligible.

If you also have a Simulink® Coder™ license, then you can generate C code from `slexSVMIonospherePredictExample.slx` in Simulink® or from the command line using `rtwbuild`. For more details, see “Generate C Code for a Model” (Simulink Coder).

See Also

`learnerCoderConfigurer` | `loadCompactModel` | `predict` | `rtwbuild` | `saveCompactModel`
Related Examples

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Image Classification”
- “System Objects for Classification and Code Generation” on page 31-64
- “Predict Class Labels Using Stateflow” on page 31-75
- “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 31-80
- “Data Format for Logged Simulation Data” (Simulink)
- “Generate C Code for a Model” (Simulink Coder)
Code Generation Support, Usage Notes, and Limitations

Generating C/C++ code requires MATLAB Coder. MATLAB Coder generates C/C++ code for the Statistics and Machine Learning Toolbox functions that support code generation, given these conditions:

- You cannot call any function at the top level when generating code by using `codegen`. Instead, call the function within an `entry-point` function, and then generate code from the entry-point function. The entry-point function, also known as the `top-level` or `primary` function, is a function you define for code generation. All functions within the entry-point function must support code generation.

- The MATLAB Coder limitations also apply to Statistics and Machine Learning Toolbox for code generation. In particular, code generation does not support categorical arrays and tables. For details, see “MATLAB Language Features Supported for C/C++ Code Generation” (MATLAB Coder).

To learn about code generation, see “Introduction to Code Generation” on page 31-2.

This table lists the Statistics and Machine Learning Toolbox functions that support code generation.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C++ code generation.

<table>
<thead>
<tr>
<th>Descriptive Statistics and Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>geomean*</td>
</tr>
<tr>
<td>grp2idx*</td>
</tr>
<tr>
<td>harmmean*</td>
</tr>
<tr>
<td>iqr*</td>
</tr>
<tr>
<td>kurtosis*</td>
</tr>
<tr>
<td>mad*</td>
</tr>
<tr>
<td>moment*</td>
</tr>
<tr>
<td>nancov*</td>
</tr>
<tr>
<td>nanmax*</td>
</tr>
</tbody>
</table>
nanmean*
nanmedian*
nanmin*
nanstd*
nansum*
nanvar*
prctile*
quantile*
skewness*
zscore*

Probability Distributions

betacdf
betafit
betainv
betalike
betapdf
betarnd*
betastat
binocdf
binoinv
binopdf
binornd*
binostat
cdf*
chi2cdf
chi2inv
chi2pdf
chi2rnd*
chi2stat
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>gevstat</td>
</tr>
<tr>
<td>gpcdf</td>
</tr>
<tr>
<td>gpinv</td>
</tr>
<tr>
<td>gppdf</td>
</tr>
<tr>
<td>gprnd*</td>
</tr>
<tr>
<td>gpstat</td>
</tr>
<tr>
<td>hygecdf</td>
</tr>
<tr>
<td>hygeinv</td>
</tr>
<tr>
<td>hygepdf</td>
</tr>
<tr>
<td>hygernd*</td>
</tr>
<tr>
<td>hygestat</td>
</tr>
<tr>
<td>icdf*</td>
</tr>
<tr>
<td>logncdf</td>
</tr>
<tr>
<td>logninv</td>
</tr>
<tr>
<td>lognpdf</td>
</tr>
<tr>
<td>lognrnd*</td>
</tr>
<tr>
<td>lognstat</td>
</tr>
<tr>
<td>mnpdf</td>
</tr>
<tr>
<td>nbincdf</td>
</tr>
<tr>
<td>nbininv</td>
</tr>
<tr>
<td>nbinpdf</td>
</tr>
<tr>
<td>nbinrnd*</td>
</tr>
<tr>
<td>nbinstat</td>
</tr>
<tr>
<td>ncfcdf</td>
</tr>
<tr>
<td>ncfinv</td>
</tr>
<tr>
<td>ncfpdf</td>
</tr>
<tr>
<td>ncfrrnd*</td>
</tr>
<tr>
<td>ncfstat</td>
</tr>
<tr>
<td>nctcdf</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>nctinv</td>
</tr>
<tr>
<td>nctpdf</td>
</tr>
<tr>
<td>nctrnd*</td>
</tr>
<tr>
<td>nctstat</td>
</tr>
<tr>
<td>ncx2cdf</td>
</tr>
<tr>
<td>ncx2rnd*</td>
</tr>
<tr>
<td>ncx2stat</td>
</tr>
<tr>
<td>normcdf</td>
</tr>
<tr>
<td>norminv</td>
</tr>
<tr>
<td>normpdf</td>
</tr>
<tr>
<td>normrnd*</td>
</tr>
<tr>
<td>normstat</td>
</tr>
<tr>
<td>pdf*</td>
</tr>
<tr>
<td>pearsrnd*</td>
</tr>
<tr>
<td>poisscdf</td>
</tr>
<tr>
<td>poissinv</td>
</tr>
<tr>
<td>poisspdf</td>
</tr>
<tr>
<td>poissrnd*</td>
</tr>
<tr>
<td>poisstat</td>
</tr>
<tr>
<td>randg</td>
</tr>
<tr>
<td>random*</td>
</tr>
<tr>
<td>randsample*</td>
</tr>
<tr>
<td>raylcdf</td>
</tr>
<tr>
<td>raylinv</td>
</tr>
<tr>
<td>raylpdf</td>
</tr>
<tr>
<td>raylrnd*</td>
</tr>
<tr>
<td>raylstat</td>
</tr>
<tr>
<td>tcdf</td>
</tr>
<tr>
<td>tinv</td>
</tr>
<tr>
<td>tpdf</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>trnd*</td>
</tr>
<tr>
<td>tstat</td>
</tr>
<tr>
<td>unidcdf</td>
</tr>
<tr>
<td>unidinv</td>
</tr>
<tr>
<td>unidpdf</td>
</tr>
<tr>
<td>unidrnd*</td>
</tr>
<tr>
<td>unidstat</td>
</tr>
<tr>
<td>unifcdf</td>
</tr>
<tr>
<td>unifinv</td>
</tr>
<tr>
<td>unifpdf</td>
</tr>
<tr>
<td>unifrnd*</td>
</tr>
<tr>
<td>unifstat</td>
</tr>
<tr>
<td>wblcdf</td>
</tr>
<tr>
<td>wblinv</td>
</tr>
<tr>
<td>wblpdf</td>
</tr>
<tr>
<td>wblrnd*</td>
</tr>
<tr>
<td>wblstat</td>
</tr>
</tbody>
</table>

Cluster Analysis

kmeans*

knnsearch* and knnsearch* of ExhaustiveSearcher and KDTreeSearcher

pdist*

pdist2*

rangesearch* and rangesearch* of ExhaustiveSearcher and KDTreeSearcher

squareform*

ExhaustiveSearcher*

KDTreeSearcher*

Regression

glmval*
<table>
<thead>
<tr>
<th>Code Generation Support, Usage Notes, and Limitations</th>
</tr>
</thead>
</table>

GeneralizedLinearModel
- `loadCompactModel`
- `predict` of `GeneralizedLinearModel` and `CompactGeneralizedLinearModel`
- `predict` of `GeneralizedLinearModel`
- `predict` of `RegressionEnsemble`, `RegressionBaggedEnsemble`, and `CompactRegressionEnsemble`
- `predict` of `RegressionGP` and `CompactRegressionGP`
- `predict` of `RegressionLinear`
- `predict` of `RegressionSVM` and `CompactRegressionSVM`
- `predict` of `RegressionTree` and `CompactRegressionTree`
- `random` of `GeneralizedLinearModel` and `CompactGeneralizedLinearModel`
- `random` of `LinearModel` and `CompactLinearModel`
- `update` of `CompactRegressionSVM`
- `GeneralizedLinearModel` and `CompactGeneralizedLinearModel`
- `LinearModel` and `CompactLinearModel`
- `RegressionEnsemble`, `RegressionBaggedEnsemble`, and `CompactRegressionEnsemble`
- `RegressionGP` and `CompactRegressionGP`
- `RegressionLinear`
- `RegressionSVM` and `CompactRegressionSVM`
- `RegressionTree` and `CompactRegressionTree`

Classification
- `loadCompactModel`
- `predict` of `ClassificationECOC` and `CompactClassificationECOC`
- `predict` of `ClassificationEnsemble`, `ClassificationBaggedEnsemble`, and `CompactClassificationEnsemble`
- `predict` of `ClassificationDiscriminant` and `CompactClassificationDiscriminant`
- `predict` of `ClassificationKNN`
- `predict` of `ClassificationLinear`
- `predict` of `ClassificationSVM` and `CompactClassificationSVM`
- `predict` of `ClassificationTree` and `CompactClassificationTree`
update* of CompactClassificationSVM
ClassificationECOC* and CompactClassificationECOC*
ClassificationEnsemble*, ClassificationBaggedEnsemble*, and CompactClassificationEnsemble*
ClassificationDiscriminant* and CompactClassificationDiscriminant*
ClassificationKNN*
ClassificationLinear*
ClassificationSVM* and CompactClassificationSVM*
ClassificationTree* and CompactClassificationTree*

Dimensionality Reduction
pca*

Industrial Statistics
coxphfit*

See Also
codegen | learnerCoderConfigurer | loadCompactModel | saveCompactModel

Related Examples
- “Introduction to Code Generation” on page 31-2
Specify Variable-Size Arguments for Code Generation

This example shows how to specify variable-size input arguments when you generate code for the object functions of classification and regression model objects. Variable-size data is data whose size might change at run time. Specifying variable-size input arguments is convenient when you have data with an unknown size at compile time. This example also describes how to include name-value pair arguments in an entry-point function and how to specify them when generating code.

For more detailed code generation workflow examples, see “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10 and “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20.

Train Classification Model

Load Fisher's iris data set. Convert the labels to a character matrix.

```matlab
load fisheriris
species = char(species);
```

Train a classification tree using the entire data set.

```matlab
Mdl = fitctree(meas,species);
```

Mdl is a *ClassificationTree* model.

Save Model Using saveCompactModel

Save the trained classification tree to a file named *ClassTreeIris.mat* in your current folder by using *saveCompactModel*.

```matlab
MdlName = 'ClassTreeIris';
saveCompactModel(Mdl,MdlName);
```

Define Entry-Point Function

In your current folder, define an entry-point function named *mypredictTree.m* that does the following:

- Accept measurements with columns corresponding to *meas* and accept valid name-value pair arguments.
• Load a trained classification tree by using `loadCompactModel`.
• Predict labels and corresponding scores, node numbers, and class numbers from the loaded classification tree.

You can allow for optional name-value pair arguments by specifying `varargin` as an input argument. For details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

```
function [label,score,node,cnum] = mypredictTree(x,savedmdl,varargin) %#codegen
%MYPREDICTTREE Predict iris species using classification tree
%MYPREDICTTREE predicts iris species for the n observations in the
% n-by-4 matrix x using the classification tree stored in the MAT-file
% whose name is in savedmdl, and then returns the predictions in the
% array label. Each row of x contains the lengths and widths of the petal
% and sepal of an iris (see the fisheriris data set). For other output
% argument descriptions, see the predict reference page.
CompactMdl = loadCompactModel(savedmdl);
[label,score,node,cnum] = predict(CompactMdl,x,varargin{:});
end
```

Note: If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function file.

Generate Code

Specify Variable-Size Arguments

Because C and C++ are statically typed languages, you must determine the properties of all variables in an entry-point function at compile time using the `-args` option of `codegen`.

Use `coder.Constant` to specify a compile-time constant input.

```
coder.Constant(v)
```

`coder.Constant(v)` creates a `coder.Constant` type variable whose values are constant, the same as `v`, during code generation.

Use `coder.typeof` to specify a variable-size input.

```
coder.typeof(example_value, size_vector, variable_dims)
```
The values of example_value, size_vector, and variable_dims specify the properties of the input array that the generated code can accept.

- An input array has the same data type as the example values in example_value.
- size_vector is the array size of an input array if the corresponding variable_dims value is false.
- size_vector is the upper bound of the array size if the corresponding variable_dims value is true.
- variable_dims specifies whether each dimension of the array has a variable size or a fixed size. A value of true (logical 1) means that the corresponding dimension has a variable size; a value of false (logical 0) means that the corresponding dimension has a fixed size.

The entry-point function mypredictTree accepts predictor data, the MAT-file name containing the trained model object, and optional name-value pair arguments. Suppose that you want to generate code that accepts a variable-size array for predictor data and the 'Subtrees' name-value pair argument with a variable-size vector for its value. Then you have four input arguments: predictor data, the MAT-file name, and the name and value of the 'Subtrees' name-value pair argument.

Define a 4-by-1 cell array and assign each input argument type of the entry-point function to each cell.

ARGS = cell(4,1);

For the first input, use coder.typeof to specify that the predictor data variable is double-precision with the same number of columns as the predictor data used in training the model, but that the number of observations (rows) is arbitrary.

p = numel(Mdl.PredictorNames);
ARGS{1} = coder.typeof(0,[Inf,p],[1,0]);

0 for the example_value value implies that the data type is double because double is the default numeric data type of MATLAB. [Inf,p] for the size_vector value and [1,0] for the variable_dims value imply that the size of the first dimension is variable and unbounded, and the size of the second dimension is fixed to be p.

The second input is the MAT-file name, which must be a compile-time constant. Use coder.Constant to specify the type of the second input.

ARGS{2} = coder.Constant(MdlName);
The last two inputs are the name and value of the 'Subtrees' name-value pair argument. Names of name-value pair arguments must be compile-time constants.

ARGS{3} = coder.Constant('Subtrees');

Use coder.typeof to specify that the value of 'Subtrees' is a double-precision row vector and that the upper bound of the row vector size is \(\max(\text{Mdl.PruneList}) \).

\[m = \max(\text{Mdl.PruneList}); \]
\[\text{ARGS}{4} = \text{coder.typeof}(0,[1,m],[0,1]); \]

Again, 0 for the example_value value implies that the data type is double because double is the default numeric data type of MATLAB. [1,m] for the size_vector value and [0,1] for the variable_dims value imply that the size of the first dimension is fixed to be 1, and the size of the second dimension is variable and its upper bound is \(m \).

Generate Code Using codegen

Generate a MEX function from the entry-point function mypredictTree using the cell array ARGS, which includes input argument types for mypredictTree. Specify the input argument types using the -args option. Specify the number of output arguments in the generated entry-point function using the -nargout option. The generate code includes the specified number of output arguments in the order in which they occur in the entry-point function definition.

```bash
codegen mypredictTree -args ARGS -nargout 2
```

codegen generates the MEX function mypredictTree_mex with a platform-dependent extension in your current folder.

The predict function accepts single-precision values, double-precision values, and 'all' for the 'SubTrees' name-value pair argument. However, you can specify only double-precision values when you use the MEX function for prediction because the data type specified by ARGS{4} is double.

Verify Generated Code

Predict labels for a random selection of 15 values from the training data using the generated MEX function and the subtree at pruning level 1. Compare the labels from the MEX function with those predicted by predict.

```bash
rng('default'); % For reproducibility
Xnew = datasample(meas,15);
```
[labelMEX, scoreMEX] = mypredictTree_mex(Xnew, MdlName, 'Subtrees', 1);
[labelPREDICT, scorePREDICT] = predict(Mdl, Xnew, 'Subtrees', 1);

labelPREDICT

labelPREDICT = 15x10 char array
'virginica'
'virginica'
'setosa'
'virginica'
'versicolor'
'setosa'
'setosa'
'versicolor'
'virginica'
'virginica'
'setosa'
'virginica'
'versicolor'
'virginica'
'versicolor'
'virginica'

labelMEX

labelMEX = 15x1 cell array
{'virginica'}
{'virginica'}
{'setosa'}
{'virginica'}
{'versicolor'}
{'setosa'}
{'setosa'}
{'versicolor'}
{'virginica'}
{'virginica'}
{'setosa'}
{'virginica'}
{'virginica'}
{'setosa'}
{'virginica'}
{'versicolor'}

The predicted labels are the same as the MEX function labels except for the data type. When the response data type is char and codegen cannot determine that the value of
Subtrees is a scalar, then the output from the generated code is a cell array of character vectors.

For the comparison, you can convert labelsPREDICT to a cell array and use isequal.

cell_labelPREDICT = cellstr(labelPREDICT);
verifyLabel = isequal(labelMEX,cell_labelPREDICT)

verifyLabel = logical
1

isequal returns logical 1 (true), which means all the inputs are equal.

Compare the second outputs as well. scoreMex might include round-off differences compared with scorePREDICT. In this case, compare scoreMEX and scorePREDICT, allowing a small tolerance.

find(abs(scorePREDICT-scoreMEX) > 1e-8)

ans =
0x1 empty double column vector

find returns an empty vector if the element-wise absolute difference between scorePREDICT and scoreMEX is not larger than the specified tolerance 1e-8. The comparison confirms that scorePREDICT and scoreMEX are equal within the tolerance 1e–8.

See Also
codegen | coder.Constant | coder.typeof | learnerCoderConfigurer |
loadCompactModel | saveCompactModel

Related Examples
• “Introduction to Code Generation” on page 31-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
See Also

- “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
- “Code Generation for Nearest Neighbor Searcher” on page 31-15
- “Code Generation and Classification Learner App” on page 31-31
System Objects for Classification and Code Generation

This example shows how to generate C code from a MATLAB® System object™ that classifies images of digits using a trained classification model. This example also shows how to use the System object for classification in Simulink®. A benefit of using System objects over a MATLAB function is System objects are more appropriate for processing large amounts of streaming data. For more details, see “What Are System Objects?” (MATLAB).

This example is based on “Code Generation for Image Classification”, which is an alternative workflow to “Digit Classification Using HOG Features” (Computer Vision System Toolbox).

Load Data

Load the digitimages.

load digitimages.mat

images is a 28-by-28-by-3000 array of uint16 integers. Each page is a raster image of a digit. Each element is a pixel intensity. Corresponding labels are in the 3000-by-1 numeric vector Y. For more details, enter Description at the command line.

Store the number of observations and number of predictor variables. Create a data partition that specifies to hold out 20% of the data. Extract training and test set indices from the data partition.

rng(1); % For reproducibility
n = size(images,3);
p = numel(images(:,:,1));
cvp = cvpartition(n,'Holdout',0.20);
idxTrn = training(cvp);
idxTest = test(cvp);

Rescale Data

Rescale the pixel intensities so that they range in the interval [0,1] within each image. Specifically, suppose p_{ij} is pixel intensity j within image i. For image i, rescale all of its pixel intensities using this formula:

$$
\hat{p}_{ij} = \frac{p_{ij} - \min_j(p_{ij})}{\max_j(p_{ij}) - \min_j(p_{ij})}.
$$
\(X = \text{double(images)}; \)

\[
\begin{align*}
\text{for } i &= 1:n \\
\quad \text{min}X &= \text{min}(\text{min}(X(:,:,i))); \\
\quad \text{max}X &= \text{max}(\text{max}(X(:,:,i))); \\
\quad X(:,:,i) &= (X(:,:,i) - \text{min}X)/(\text{max}X - \text{min}X);
\end{align*}
\]

\textbf{Reshape Data}

For code generation, the predictor data for training must be in a table of numeric variables or a numeric matrix.

Reshape the data to a matrix such that predictor variables correspond to columns and images to rows. Because \textit{reshape} takes elements column-wise, transpose its result.

\(X = \text{reshape}(X,[p,n])'; \)

\textbf{Train and Optimize Classification Models}

Cross-validate an ECOC model of SVM binary learners and a random forest based on the training observations. Use 5-fold cross-validation.

For the ECOC model, specify predictor standardization and optimize classification error over the ECOC coding design and the SVM box constraint. Explore all combinations of these values:

- For the ECOC coding design, use one-versus-one and one-versus-all.
- For the SVM box constraint, use three logarithmically-spaced values from 0.1 to 100 each. For all models, store the 5-fold cross-validated misclassification rates.

\[
\begin{align*}
\text{coding} &= \{'\text{onevsone}', '\text{onevsall}'\}; \\
\text{boxconstraint} &= \text{logspace(-1,2,3)}; \\
\text{cvLossECOC} &= \text{nan}\left(\text{numel(coding)},\text{numel(boxconstraint)}\right); \quad \% \text{For preallocation}
\end{align*}
\]

\[
\begin{align*}
\text{for } i &= 1:\text{numel(coding)} \\
\quad \text{for } j &= 1:\text{numel(boxconstraint)} \\
\quad \quad \text{t} &= \text{templateSVM('BoxConstraint',boxconstraint(j),'Standardize',true);} \\
\quad \quad \text{CVMdl} &= \text{fitcecoc}(X(idxTrn,:),Y(idxTrn),'Learners',t,'KFold',5,... \\
\quad \quad \quad \quad \quad \quad \quad 'Coding',coding{i}); \\
\quad \quad \text{cvLossECOC}(i,j) &= \text{kfoldLoss}(CVMdl); \\
\quad \quad \text{fprintf('cvLossECOC = %f for model using %s coding and box constraint=%f\n',...} \\
\quad \quad \quad \quad \quad \quad \quad \text{cvLossECOC(i,j),coding{i},boxconstraint(j))}
\end{align*}
\]
cvLossECOC = 0.058333 for model using onevsone coding and box constraint=0.100000
cvLossECOC = 0.057083 for model using onevsone coding and box constraint=3.162278
cvLossECOC = 0.050000 for model using onevsone coding and box constraint=100.000000
cvLossECOC = 0.120417 for model using onevsall coding and box constraint=0.100000
cvLossECOC = 0.121667 for model using onevsall coding and box constraint=3.162278
cvLossECOC = 0.127917 for model using onevsall coding and box constraint=100.000000

For the random forest, vary the maximum number of splits using the values in the sequence \(\{3^2, 3^3, \ldots, 3^m\} \). \(m \) is such that \(3^m \) is no greater than \(n - 1 \).

\[
n = \text{size}(X,1);
m = \text{floor}(\log(n - 1)/\log(3));
\text{maxNumSplits} = 3.(^2:m);
\text{cvLossRF} = \text{nan}(\text{numel}(\text{maxNumSplits}));
\text{for } i = 1:\text{numel}(\text{maxNumSplits})
\text{t} = \text{templateTree('MaxNumSplits',maxNumSplits(i))};
\text{CVMdl} = \text{fitensemble}(X(idxTrn,:),Y(idxTrn),'Method','bag','Learners',t,...
'KFold',5);
\text{cvLossRF(i)} = \text{kfoldLoss(CVMdl)};
\text{fprintf('cvLossRF = %f for model using %d as the maximum number of splits\n',...}
\text{cvLossRF(i)},\text{maxNumSplits}(i))
\text{end}
\]

cvLossRF = 0.323750 for model using 9 as the maximum number of splits
cvLossRF = 0.198333 for model using 27 as the maximum number of splits
cvLossRF = 0.075417 for model using 81 as the maximum number of splits
cvLossRF = 0.017083 for model using 243 as the maximum number of splits
cvLossRF = 0.012083 for model using 729 as the maximum number of splits
cvLossRF = 0.012083 for model using 2187 as the maximum number of splits

For each algorithm, determine the hyperparameter indices that yield the minimal misclassification rates.

\[
\text{minCVLossECOC} = \text{min}(\text{cvLossECOC}(:))
\text{linIdx} = \text{find}(\text{cvLossECOC} == \text{minCVLossECOC},1);
[\text{bestI},\text{bestJ}] = \text{ind2sub(size(cvLossECOC),linIdx)};
\text{bestCoding} = \text{coding{bestI}}
\text{bestBoxConstraint} = \text{boxconstraint(bestJ)}
\]

\[
\text{minCVLossRF} = \text{min}(\text{cvLossRF}(:))
\text{linIdx} = \text{find}(\text{cvLossRF} == \text{minCVLossRF},1);
\]
[bestI, bestJ] = ind2sub(size(cvLossRF), linIdx);
bestMNS = maxNumSplits(bestI)

minCVLossECOC =

0.0500

bestCoding =

'onevsone'

bestBoxConstraint =

100

minCVLossRF =

0.0121

bestMNS =

729

The random forest achieves a smaller cross-validated misclassification rate.

Train an ECOC model and a random forest using the training data. Supply the optimal hyperparameter combinations.

t = templateSVM('BoxConstraint', bestBoxConstraint, 'Standardize', true);
MdlECOC = fitcecoc(X(idxTrn,:), Y(idxTrn), 'Learners', t, 'Coding', bestCoding);
t = templateTree('MaxNumSplits', bestMNS);
MdlRF = fitcensemble(X(idxTrn,:), Y(idxTrn), 'Method', 'bag', 'Learners', t);

Create a variable for the test sample images, and use the trained models to predict test sample labels.

testImages = X(idxTest,:);
testLabelsECOC = predict(MdlECOC, testImages);
testLabelsRF = predict(MdlRF, testImages);
Save Classification Model to Disk

MdlECOC and MdlRF are predictive classification models, but you must prepare them for code generation. Save MdlECOC and MdlRF to your present working directory using `saveCompactModel`.

```matlab
saveCompactModel(MdlECOC,'DigitImagesECOC');
saveCompactModel(MdlRF,'DigitImagesRF');
```

Create System Object for Prediction

Create two System objects that, one for the ECOC model and the other for the random forest, that:

- Load the previously saved trained model using `loadCompactModel`
- Makes sequential predictions by the `step` method
- Enforces no size changes to the input data
- Enforces double-precision, scalar output

```matlab
classdef ECOCClassifier < matlab.System
    % ECOCCLASSIFIER Predict image labels from trained ECOC model
    %
    % ECOCCLASSIFIER loads the trained ECOC model from
    % |'DigitImagesECOC.mat'|, and predicts labels for new observations
    % based on the trained model. The ECOC model in
    % |'DigitImagesECOC.mat'| was cross-validated using the training data
    % in the sample data |digitimages.mat|.
    properties(Access = private)
        CompactMdl % The compacted, trained ECOC model
    end

    methods(Access = protected)
        function setupImpl(obj)
            % Load ECOC model from file
            obj.CompactMdl = loadCompactModel('DigitImagesECOC');
        end

        function y = stepImpl(obj,u)
            y = predict(obj.CompactMdl,u);
        end
```
function flag = isInputSizeMutableImpl(obj,index)
 % Return false if input size is not allowed to change while
 % system is running
 flag = false;
end

function dataout = getOutputDataTypeImpl(~)
 dataout = 'double';
end

function sizeout = getOutputSizeImpl(~)
 sizeout = [1 1];
end
end

classdef RFClassifier < matlab.System
 % RFCLASSIFIER Predict image labels from trained random forest
 %
 % RFCLASSIFIER loads the trained random forest from
 % '|DigitImagesRF.mat|', and predicts labels for new observations based
 % on the trained model. The random forest in '|DigitImagesRF.mat|
 % was cross-validated using the training data in the sample data
 % |digitimages.mat|.

 properties(Access = private)
 CompactMdl % The compacted, trained random forest
 end

 methods(Access = protected)
 function setupImpl(obj)
 % Load random forest from file
 obj.CompactMdl = loadCompactModel('DigitImagesRF');
 end

 function y = stepImpl(obj,u)
 y = predict(obj.CompactMdl,u);
 end

 function flag = isInputSizeMutableImpl(obj,index)
 % Return false if input size is not allowed to change while
 end
end
% system is running
flag = false;
end

function dataout = getOutputDataTypeImpl(~)
dataout = 'double';
end

function sizeout = getOutputSizeImpl(~)
sizeout = [1 1];
end
end
end

For System object basic requirements, see “Define Basic System Objects” (MATLAB).

Define Prediction Functions for Code Generation

Define two MATLAB functions called `predictDigitECOCSo.m` and `predictDigitRFSo.m`. The functions should:

- Include the code generation directive `%#codegen`.
- Accept image data commensurate with X.
- Predict labels using the `ECOCClassifier` and `RFClassifier` System objects, respectively.
- Return predicted labels.

```matlab
function label = predictDigitECOCSo(X) %#codegen
%PREDICTDIGITECOCSO Classify digit in image using ECOC Model System object
% PREDICTDIGITECOCSO classifies the 28-by-28 images in the rows of X
% using the compact ECOC model in the System object ECOCClassifier, and
% then returns class labels in label.
classifier = ECOCClassifier;
label = step(classifier,X);
end
```

```matlab
function label = predictDigitRFSo(X) %#codegen
%PREDICTDIGITRFSO Classify digit in image using RF Model System object
% PREDICTDIGITRFSO classifies the 28-by-28 images in the rows of X
```
% using the compact random forest in the System object RFClassifier, and
% then returns class labels in label.
classifier = RFClassifier;
label = step(classifier,X);
end

Compile MATLAB Function to MEX File

Compile the prediction function that achieves better test-sample accuracy to a MEX file using `codegen`. Specify the test set images using the `-args` argument.

```matlab
if(minCVLossECOC <= minCVLossRF)
    codegen predictDigitECOCSO -args testImages
else
    codegen predictDigitRFSO -args testImages
end
```

Verify that the generated MEX file produces the same predictions as the MATLAB function.

```matlab
if(minCVLossECOC <= minCVLossRF)
    mexLabels = predictDigitECOCSO_mex(testImages);
    verifyMEX = sum(mexLabels == testLabelsECOC) == numel(testLabelsECOC)
else
    mexLabels = predictDigitRFSO_mex(testImages);
    verifyMEX = sum(mexLabels == testLabelsRF) == numel(testLabelsRF)
end
```

`verifyMEX` is 1, which indicates that the predictions made by the generated MEX file and the corresponding MATLAB function are the same.

Predict Labels Using System Objects in Simulink

Create a video file that displays the test-set images frame by frame.

```matlab
v = VideoWriter('testImages.avi','Uncompressed AVI');
v.FrameRate = 1;
```
open(v);
dim = sqrt(p)*[1 1];
for j = 1:size(testImages,1)
 writeVideo(v,reshape(testImages(j,:),dim));
end
close(v);

Define a function called scalePixelIntensities.m that converts RGB images to grayscale, and then scales the resulting pixel intensities so that their values are in the interval [0,1].

\[
\text{function } x = \text{scalePixelIntensities}(\text{imdat})
\]

%SCALEPIXELINTENSITIES Scales image pixel intensities
% SCALEPIXELINTENSITIES scales the pixel intensities of the image such
% that the result x is a row vector of values in the interval [0,1].

\[
\text{imdat} = \text{rgb2gray}(\text{imdat});
\]

\[
\text{minimdat} = \text{min}(\text{min}(\text{imdat}));
\]

\[
\text{maximdat} = \text{max}(\text{max}(\text{imdat}));
\]

\[
\text{x} = (\text{imdat} - \text{minimdat})/(\text{maximdat} - \text{minimdat});
\]

end

Load the Simulink® model slexClassifyAndDisplayDigitImages.slx.

SimMdlName = 'slexClassifyAndDisplayDigitImages';
open_system(SimMdlName);
The figure displays the Simulink® model. At the beginning of simulation, the From Multimedia File block loads the video file of the test-set images. For each image in the video:

1. The From Multimedia File block converts and outputs the image to a 28-by-28 matrix of pixel intensities.
2. The Process Data block scales the pixel intensities using `scalePixelIntensities.m`, and outputs a 1-by-784 vector of scaled intensities.
3. The Classification Subsystem block predicts labels given the processed image data. The block chooses the System object that minimizes classification error. In this case, the block chooses the random forest. The block outputs a double-precision scalar label.
4. The Data Type Conversion block converts the label to an `int32` scalar.
5. The Insert Text block embeds the predicted label on the current frame.
6. The To Video Display block displays the annotated frame.

Simulate the model.

`sim(SimMdlName)`

The model displays all 600 test-set images and its prediction quickly; the last image remains in the video display. You can generate predictions and display them with corresponding images one by one by pressing the **Step Forward** button instead.
If you also have a Simulink® Coder™ license, then you can generate C code from `slexClassifyAndDisplayDigitImages.slx` in Simulink® or from the command line using `rtwbuild`. For more details, see “Generate C Code for a Model” (Simulink Coder).

See Also

`loadCompactModel` | `predict` | `predict` | `saveCompactModel`

Related Examples

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Image Classification”
- “Predict Class Labels Using MATLAB Function Block” on page 31-43
- “Predict Class Labels Using Stateflow” on page 31-75
- “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 31-80
- “Digit Classification Using HOG Features” (Computer Vision System Toolbox)
Predict Class Labels Using Stateflow

This example shows how to use a Stateflow® chart for label prediction. The example trains a discriminant analysis model for the Fisher iris data set by using `fitcdiscr`, and defines a function for code generation that loads the trained model and predicts labels for new data. The Stateflow chart in this example accepts streaming data and predicts labels using the function you define.

Fisher's iris data set, which is included in Statistics and Machine Learning Toolbox™, contains species (`species`) and measurements (`meas`) on sepal length, sepal width, petal length, and petal width for 150 iris specimens. The data set contains 50 specimens from each of three species: setosa, versicolor, and virginica.

Load the Fisher iris data set.

```matlab
load fisheriris
```

Convert `species` to an index vector where 1, 2, and 3 correspond to setosa, versicolor, and virginica, respectively.

```matlab
species = grp2idx(species);
```

Partition the data into a training set and a test set.

```matlab
rng('default') % For reproducibility
idx1 = randperm(150,75)';
idx2 = setdiff((1:150)',idx1);
X = meas(idx1,:);
Y = species(idx1,:);
trainX = meas(idx2,:);
trainY = species(idx2,:);
```

Use `trainX` and `trainY` to train a model, and use `X` and `Y` to test the trained model.

Train a quadratic discriminant analysis model.

```matlab
Mdl = fitcdiscr(trainX,trainY,'DiscrimType','quadratic');
```

`Mdl` is a `ClassificationDiscriminant` model. At the command line, you can use `Mdl` to make predictions for new observations. However, you cannot use `Mdl` as an input argument in a function for code generation. Prepare `Mdl` to be loaded within the function by using `saveCompactModel`.

```matlab
saveCompactModel(Mdl,'DiscrIris');
```
saveCompactModel compacts Mdl and saves it in the MAT-file DiscrIris.mat.

To display the predicted species in the display box of the Stateflow® model, define an enumeration class by using a classdef block in the MATLAB file IrisSpecies.m.

```matlab
classdef IrisSpecies < Simulink.IntEnumType
    enumeration
        Setosa(1)
        Versicolor(2)
        Virginica(3)
    end
end
```

For details about enumerated data, see “Define Enumerated Data Types” (Stateflow).

Define a function named mypredict.m that predicts the iris species from new measurement data by using the trained model. The function should:

- Include the code generation directive %#codegen somewhere in the function.
- Accept iris measurement data. The data must be consistent with X except for the number of rows.
- Load DiscrIris.mat using loadCompactModel.
- Return predicted iris species.

```matlab
function label = mypredict(X) %#codegen
    %MYPREDICT Predict species of iris flowers using discriminant model
    % mypredict predicts species of iris flowers using the compact
    % discriminant model in the file DiscrIris.mat. Rows of X correspond to
    % observations and columns correspond to predictor variables. label is
    % the predicted species.
    mdl = loadCompactModel('DiscrIris');
    labelTemp = predict(mdl,X);
    label = IrisSpecies(labelTemp);
end
```

Open the Simulink® model sf_countflowers.slx.

```matlab
sfName = 'sf_countflowers';
open_system(sfName);
```
The figures display the Simulink® model and the flow graph contained in the Stateflow® chart. When the input node detects measurement data, it directs the data into the chart. The chart then predicts a species of iris flower and counts the number of flowers for each species. The chart returns the predicted species to the workspace and displays the species within the model, one at a time. The data store memory block NumFlowers stores the number of flowers for each species.

The chart expects to receive input data as a structure array called fisheririsInput containing these fields:

- **time** - The points in time at which the observations enter the model. In the example, the duration includes the integers from 0 through 74. The orientation of time must correspond to the observations in the predictor data. So, for this example, time must be a column vector.

- **signals** - A 1-by-1 structure array describing the input data and containing the fields values and dimensions. The values field is a matrix of predictor data. The dimensions field is the number of predictor variables.

Create an appropriate structure array for iris flower measurements.

```matlab
fisheririsInput.time = [0:74]';
fisheririsInput.signals.dimensions = 4;
fisheririsInput.signals.values = X;
```
You can change the name from fisheririsInput, and then specify the new name in the model. However, Stateflow® expects the structure array to contain the described field names. For more details, see “Loading Data Structures to Root-Level Inputs” (Simulink).

Simulate the model.

```matlab
sim(sfName)
```

The figure shows the model after it processes all observations in fisheririsInput, one at a time. The predicted species of \(X(75,:) \) is virginica. The number of setosa, versicolor, and virginica in \(X \) is 22, 22, and 31, respectively.

The variable `logsout` appears in the workspace. `logsout` is a `SimulinkData.Dataset` object containing the predicted species. Extract the predicted species data from the simulation log.

```matlab
labelSF = logsout.getElement(1).Values.Data;
```

Predict species at the command line using `predict`.

```matlab
31-78
```
labelCMD = predict(Mdl,X);

Compare the predicted species returned by \texttt{sf_countflowers} to those returned by calling \texttt{predict} at the command line.

\texttt{isequal(labelCMD,labelSF)}

\texttt{ans =}

\texttt{logical}

\texttt{1}

\texttt{isequal} returns logical 1 (true) if all the inputs are equal. This comparison confirms that \texttt{sf_countflowers} returns the expected results.

If you also have a Simulink® Coder™ license, then you can generate C code from \texttt{sf_countflowers.slx} in Simulink® or from the command line using \texttt{rtwbuild}. For more details, see “Generate C Code for a Model” (Simulink Coder).

\textbf{See Also}
\texttt{loadCompactModel} | \texttt{predict} | \texttt{rtwbuild} | \texttt{saveCompactModel}

\textbf{More About}
\begin{itemize}
\item “Introduction to Code Generation” on page 31-2
\item “Code Generation for Image Classification”
\item “Predict Class Labels Using MATLAB Function Block” on page 31-43
\item “System Objects for Classification and Code Generation” on page 31-64
\item “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 31-80
\item “Chart Programming” (Stateflow)
\end{itemize}
Human Activity Recognition Simulink Model for Smartphone Deployment

This example shows how to prepare a Simulink® model that classifies human activity based on smartphone sensor signals for code generation and smartphone deployment. The example provides two Simulink models that are ready for deployment to an Android device and an iOS device. After you install the required support package for a target device, train the classification model and deploy the Simulink model to the device.

Prerequisites

Simulink support packages are required for the Simulink models in this example.

- Download and Install Simulink Support Package for Android Devices (required for Android deployment)
- Download and Install Simulink Support Package for Apple iOS Devices (required for iOS deployment)

Load Sample Data Set

Load the humanactivity data set.

```matlab
load humanactivity
```

The `humanactivity` data set contains 24,075 observations of five different physical human activities: Sitting, Standing, Walking, Running, and Dancing. Each observation has 60 features extracted from acceleration data measured by smartphone accelerometer sensors. The data set contains the following variables:

- `actid` — Response vector containing the activity IDs in integers: 1, 2, 3, 4, and 5 representing Sitting, Standing, Walking, Running, and Dancing, respectively
- `actnames` — Activity names corresponding to the integer activity IDs
- `feat` — Feature matrix of 60 features for 24,075 observations
- `featlabels` — Labels of the 60 features

The Sensor HAR (human activity recognition) App [1] was used to create the `humanactivity` data set. When measuring the raw acceleration data with this app, a person placed a smartphone in a pocket so that the smartphone was upside down and the screen faced toward the person. The software then calibrated the measured raw data accordingly and extracted the 60 features from the calibrated data. For details about the
calibration and feature extraction, see [2] and [3], respectively. The Simulink models
described later also use the raw acceleration data and include blocks for calibration and
feature extraction.

Prepare Data

This example uses 90% of the observations to train a model that classifies the five types of
human activities and 10% of the observations to validate the trained model. Use
cvpartition to specify a 10% holdout for the test set.

```matlab
rng('default') % For reproducibility
Partition = cvpartition(actid,'Holdout',0.10);
trainingInds = training(Partition); % Indices for the training set
XTrain = feat(trainingInds,:);
YTrain = actid(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = feat(testInds,:);
YTest = actid(testInds);
```

Convert the feature matrix \(X_{\text{Train}} \) and the response vector \(Y_{\text{Train}} \) into a table to load
the training data set in the Classification Learner app.

```matlab
tTrain = array2table([XTrain YTrain]);
```

Specify the variable name for each column of the table.

```matlab
tTrain.Properties.VariableNames = [featlabels' 'Activities'];
```

Train Boosted Tree Ensemble Using Classification Learner App

Train a classification model by using the Classification Learner app. To open the
Classification Learner app, enter classificationLearner at the command line.
Alternatively, click the Apps tab, and click the arrow at the right of the Apps section to
open the gallery. Then, under Machine Learning, click Classification Learner.

On the Classification Learner tab, in the File section, click New Session and select
From Workspace.

In the New Session dialog box, click the arrow for Workspace Variable, and then select
the table \(t\text{Train} \). Classification Learner detects the predictors and the response from the
table.
The default option is 5-fold cross-validation, which protects against overfitting. Click **Start Session**. Classification Learner loads the data set and plots a scatter plot of the first two features.
On the **Classification Learner** tab, click the arrow at the right of the **Model Type** section to open the gallery. Then, under **Ensemble Classifiers**, click **Boosted Trees**.

The Current Model pane of the Data Browser displays the default settings of the boosted tree ensemble model.
On the Classification Learner tab, in the Training section, click Train. When the training is complete, the History pane of the Data Browser displays the 5-fold, cross-validated classification accuracy.

On the Classification Learner tab, in the Export section, click Export Model, and then select Export Compact Model. Click OK in the dialog box. The structure trainedModel appears in the MATLAB Workspace. The field ClassificationEnsemble of trainedModel contains the compact model. Extract the trained model from the structure.

```matlab
classificationEnsemble = trainedModel.ClassificationEnsemble;
```
Train Boosted Tree Ensemble at Command Line

Alternatively, you can train the same classification model at the command line.

template = templateTree('MaxNumSplits',20);
classificationEnsemble = fitcensemble(XTrain,YTrain, ... 'Method','AdaBoostM2', ... 'NumLearningCycles',30, ... 'Learners',template, ... 'LearnRate',0.1, ... 'ClassNames',[1; 2; 3; 4; 5]);

Perform 5-fold cross-validation for classificationEnsemble and compute the validation accuracy.

partitionedModel = crossval(classificationEnsemble,'KFold',5);
validationAccuracy = 1-kfoldLoss(partitionedModel)

validationAccuracy = 0.9831

Evaluate Performance on Test Data

Evaluate performance on the test data set.

testAccuracy = 1-loss(classificationEnsemble,XTest,YTest)

testAccuracy = 0.9763

The trained model correctly classifies 97.63% of the human activities on the test data set. This result confirms that the trained model does not overfit to the training data set.

Note that the accuracy values can vary slightly depending on your operating system.

Save Trained Model

For code generation including a classification model object, use saveCompactModel and loadCompactModel.

Save the trained model by using saveCompactModel.

saveCompactModel(classificationEnsemble,'EnsembleModel.mat');

The function block predictActivity in the Simulink models loads the trained model by using loadCompactModel and uses the trained model to classify new data.
Deploy Simulink Model to Device

Now that you have prepared a classification model, you can open the Simulink model, depending on which type of smartphone you have, and deploy the model to your device. Note that the Simulink model requires the `EnsembleModel.mat` file and the calibration matrix file `slexHARAndroidCalibrationMatrix.mat` or `slexHARiOSCalibrationMatrix.mat`. If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder that includes these calibration matrix files.

Type `slexHARAndroidExample` to open the Simulink model for Android deployment.

Type `slexHARiOSExample` to open the Simulink model for iOS deployment.
The two Simulink models classify human activity based on acceleration data measured by a smartphone sensor. The models include the following blocks:

- The **Accelerometer** block receives raw acceleration data from accelerometer sensors on the device.
- The **calibrate** block is a MATLAB Function block that calibrates the raw acceleration data. This block uses the calibration matrix in the `slexHARAndroidCalibrationMatrix.mat` file or the `slexHARiOSCalibrationMatrix.mat` file. If you click the button located in the upper-right section of this page and open this example in MATLAB®, then MATLAB® opens the example folder that includes these files.
- The display blocks **Acc X**, **Acc Y**, and **Acc Z** are connected to the **calibrate** block and display calibrated data points for each axis on the device.
- Each of the **Buffer** blocks, **X Buffer**, **Y Buffer**, and **Z Buffer**, buffers 32 samples of an accelerometer axis with 12 samples of overlap between buffered frames. After collecting 20 samples, each **Buffer** block joins the 20 samples with 12 samples from the previous frame and passes the total 32 samples to the **extractFeatures** block. Each **Buffer** block receives an input sample every 0.1 second and outputs a buffered frame including 32 samples every 2 seconds.
- The **extractFeatures** block is a MATLAB Function block that extracts 60 features from a buffered frame of 32 accelerometer samples. This function block uses DSP System Toolbox™ and Signal Processing Toolbox™.
The **predictActivity** block is a MATLAB Function block that loads the trained model from the `EnsembleModel.mat` file by using `loadCompactModel` and classifies the user activity using the extracted features. The output is an integer between 1 and 5, corresponding to Sitting, Standing, Walking, Running, and Dancing, respectively.

- The **Predicted Activity** block displays the classified user activity values on the device.
- The **Video Output** subsystem uses a multiport switch block to choose the corresponding user activity image data to display on the device. The **Convert to RGB** block decomposes the selected image into separate RGB vectors and passes the image to the **Activity Display** block.

To deploy the Simulink model to your device, follow the steps in Run Model on Android Devices or Run Model on iOS Devices. After the configuration process is complete, click **Deploy to Hardware** to create an app with the same name as the model. Run the app, place the device in the same way as described earlier for collecting the training data, and try the five activities. The app displays the classified activity accordingly.

![APP INFO](image)

To ensure the accuracy of the app, you need to place your device in the same way as described for collecting the training data. If you want to place your device in a different location or orientation, then collect the data in your own way and use your data to train the classification model.
The accuracy of the app can be different from the accuracy of the test data set (testaccuracy), depending on the device. To improve the app, you can consider using additional sensors and updating the calibration matrix. Also, you can add another output block for audio feedback to the output subsystem using Audio System Toolbox™. Use a ThingSpeak™ write block to publish classified activities and acceleration data from your device to the Internet of Things. For details, see https://thingspeak.com/.

References

See Also

fitcensemble | loadCompactModel | predict | saveCompactModel

More About

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Image Classification”
- “Predict Class Labels Using MATLAB Function Block” on page 31-43
- “System Objects for Classification and Code Generation” on page 31-64
- “Predict Class Labels Using Stateflow” on page 31-75
Code Generation for Prediction and Update Using Coder Configurer

This example shows how to generate C/C++ code for the prediction of an SVM model using a coder configurer, and how to update model parameters of a deployed SVM model without having to regenerate the code. After training an SVM model, use the learnerCoderConfigurer function to create a coder configurer object, ClassificationSVMCoderConfigurer for an SVM classification model or RegressionSVMCoderConfigurer for an SVM regression model. A coder configurer offers convenient features to configure code generation options, generate C/C++ code, and update model parameters in the generated code.

- Configure code generation options and specify the coder attributes of SVM model parameters using object properties.
- Generate C/C++ code for the predict and update functions of the SVM model by using generateCode. Generating C/C++ code requires MATLAB Coder.
- Update model parameters in the generated C/C++ code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when you retrain the SVM model with new data or settings. Before updating model parameters, use validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow for the predict and update functions of an SVM model using a coder configurer.

Update Model Parameters in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder
attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
```

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector attribute specifies the upper bound of the predictor data size, and the VariableDimensions attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];
```
The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support vectors in the generated code.

```matlab
configurer.SupportVectors.SizeVector = [250 34];
```

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.

```matlab
configurer.SupportVectors.VariableDimensions = [true false];
```

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the predict and update functions of the ClassificationSVM model with default settings.

```matlab
generateCode(configurer)
```
These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'

generateCode generates these files for code generation.

generateCode generates the MATLAB files required to generate code, including the two entry-point functions predict.m and update.m for the predict and update functions of the ClassificationSVM model (Mdl), respectively. Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

[label, score] = predict(Mdl, X);
[label_mex, score_mex] = ClassificationSVMModel('predict', X);

Compare label and label_mex by using isequal.

isequal(label, label_mex)

ans = logical
 1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.

find(abs(score - score_mex) > 1e-8)

ans =

0x1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.
Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the updated MEX function.

labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)

ans = logical
 1

find(abs(score-score_mex) > 1e-8)
ans =

0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal within the tolerance.

See Also
ClassificationSVMCoderConfigurer | RegressionSVMCoderConfigurer | generateCode | generateFiles | learnerCoderConfigurer | update | validatedUpdateInputs
More About

- “Introduction to Code Generation” on page 31-2
- “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
- “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
- “Code Generation and Classification Learner App” on page 31-31
- “Specify Variable-Size Arguments for Code Generation” on page 31-57
Functions — Alphabetical List
addedvarplot

Added variable plot

Syntax

addedvarplot(X,y,num,inmodel)
addedvarplot(X,y,num,inmodel,stats)

Description

`addedvarplot(X,y,num,inmodel)` displays an added variable plot using the predictive terms in `X`, the response values in `y`, the added term in column `num` of `X`, and the model with current terms specified by `inmodel`. `X` is an `n`-by-`p` matrix of `n` observations of `p` predictive terms. `y` is vector of `n` response values. `num` is a scalar index specifying the column of `X` with the term to be added. `inmodel` is a logical vector of `p` elements specifying the columns of `X` in the current model. By default, all elements of `inmodel` are false.

Note `addedvarplot` automatically includes a constant term in all models. Do not enter a column of 1s directly into `X`.

`addedvarplot(X,y,num,inmodel,stats)` uses the `stats` output from the `stepwisefit` function to improve the efficiency of repeated calls to `addedvarplot`. Otherwise, this syntax is equivalent to the previous syntax.

Added variable plots are used to determine the unique effect of adding a new term to a multilinear model. The plot shows the relationship between the part of the response unexplained by terms already in the model and the part of the new term unexplained by terms already in the model. The “unexplained” parts are measured by the residuals of the respective regressions. A scatter of the residuals from the two regressions forms the added variable plot.

In addition to the scatter of residuals, the plot produced by `addedvarplot` shows 95% confidence intervals on predictions from the fitted line. The fitted line has intercept zero.
because, under typical linear model assumptions, both of the plotted variables have mean zero. The slope of the fitted line is the coefficient that the new term would have if it were added to the model with terms inmodel.

Added variable plots are sometimes known as partial regression leverage plots.

Examples

Load the data in hald.mat, which contains observations of the heat of reaction of various cement mixtures:

```matlab
load hald
whos
```

Name Size Bytes Class Attributes
Description 22x58 2552 char
hald 13x5 520 double
heat 13x1 104 double
ingredients 13x4 416 double

Create an added variable plot to investigate the addition of the third column of ingredients to a model consisting of the first two columns:

```matlab
inmodel = [true true false false];
addedvarplot(ingredients,heat,3,inmodel)
```
The wide scatter and the low slope of the fitted line are evidence against the statistical significance of adding the third column to the model.

See Also
stepwise | stepwisefit

Introduced before R2006a
addK

Class: clustering.evaluation.ClusterCriterion

Package: clustering.evaluation

Evaluate additional numbers of clusters

Syntax

eva_out = addK(eva,klist)

Description

eva_out = addK(eva,klist) returns a clustering evaluation object eva_out that contains the evaluation data stored in the input object eva, plus additional evaluation data for the proposed number of clusters specified in klist.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a clustering evaluation object using evalclusters.

klist — Additional numbers of clusters to evaluate
vector of positive integer values

Additional numbers of clusters to evaluate, specified as a vector of positive integer values. If any values in klist overlap with clustering solutions already evaluated in the input object eva, then addK ignores the overlapping values.
Output Arguments

eva_out — Updated clustering evaluation data
clustering evaluation object

Updated clustering evaluation data, returned as a clustering evaluation object. `eva_out` contains data on the proposed clustering solutions included in the input clustering evaluation object `eva`, plus data on the additional proposed numbers of clusters specified in `klist`.

For all clustering evaluation object classes, `addK` updates the `InspectedK` and `CriterionValues` properties to include the proposed clustering solutions specified in `klist` and their corresponding criterion values. `addK` might also update the `OptimalK` and `OptimalY` properties to reflect the new optimal number of clusters and optimal clustering solution.

For certain cluster evaluation objects classes, `addK` might also update the following additional property values:

- For gap evaluation objects — `LogW`, `ExpectedLogW`, `StdLogW`, and `SE`
- For silhouette evaluation objects — `ClusterSilhouettes`

Examples

Evaluate Additional Numbers of Clusters

Create a clustering evaluation object using `evalclusters`, then use `addK` to evaluate additional numbers of clusters.

Load the sample data.

```
load fisheriris
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Cluster the flower measurement data using `kmeans`, and use the Calinski-Harabasz criterion to evaluate proposed solutions of one through five clusters.

```
eva = evalclusters(meas,'kmeans','calinski','klist',1:5)
```
eva = CalinskiHarabaszEvaluation with properties:

 NumObservations: 150
 InspectedK: [1 2 3 4 5]
 CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279]
 OptimalK: 3

The clustering evaluation object eva contains data on each proposed clustering solution. The returned value of OptimalK indicates that the optimal solution is three clusters.

Evaluate proposed solutions of 6 through 10 clusters using the same criteria. Add these evaluations to the original clustering evaluation object eva.

eva = addK(eva,6:10)

eva = CalinskiHarabaszEvaluation with properties:

 NumObservations: 150
 InspectedK: [1 2 3 4 5 6 7 8 9 10]
 CriterionValues: [1x10 double]
 OptimalK: 3

The updated values for InspectedK and CriterionValues show that eva now evaluates proposed solutions of 1 through 10 clusters. The OptimalK value still equals 3, indicating that three clusters remain the optimal solution.

See Also
clustering.evaluation.CalinskiHarabaszEvaluation |
clustering.evaluation.DaviesBouldinEvaluation |
clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters
addlevels

Add levels to nominal or ordinal arrays

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Syntax

B = addlevels(A,newlevels)

Description

B = addlevels(A,newlevels) adds new levels specified by newlevels to the nominal or ordinal array A. addlevels adds the new levels at the end of the list of possible levels in A, but does not modify the value of any element. B does not contain elements at the new levels.

Examples

Add Levels To A Nominal Array

Add levels for additional species to Fisher's iris data.

Create a nominal array of the existing species in Fisher's iris data.

load fisheriris
species = nominal(species);
getlevels(species)

ans = 1x3 nominal array
 setosa versicolor virginica
Add two additional species.

```matlab
species = addlevels(species,{'spuria','ruthenica'});
getlevels(species)
```

```
ans = 1x5 nominal array
   setosa   versicolor   virginica   spuria   ruthenica
```

Even though there are new levels, there are no elements in `species` that are in these new levels.

```matlab
sum(species=='spuria')
an = 0
sum(species=='ruthenica')
an = 0
```

Input Arguments

A — Nominal or ordinal array

nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with `nominal` or `ordinal`.

newlevels — Levels to add

string array | cell array of character vectors | 2-D character matrix

Levels to add to the input nominal or ordinal array, specified as a string array, a cell array of character vectors, or a 2-D character matrix.

Data Types: char | string | cell

Output Arguments

B — Nominal or ordinal array

nominal array | ordinal array
Nominal or ordinal array, returned as a nominal or ordinal array object.

See Also
droplevels | mergelevels | nominal | ordinal | reorderlevels

Topics
“Add and Drop Category Levels” on page 2-24

Introduced in R2007a
addlistener

Class: qrandstream

Add listener for event

Syntax

\[\text{el} = \text{addlistener}(\text{hsource},'eventname',\text{callback}) \]
\[\text{el} = \text{addlistener}(\text{hsource},\text{property},'eventname',\text{callback}) \]

Description

\[\text{el} = \text{addlistener}(\text{hsource},'eventname',\text{callback}) \] creates a listener for the event named eventname, the source of which is handle object hsource. If hsource is an array of source handles, the listener responds to the named event on any handle in the array. callback is a function handle that is invoked when the event is triggered.

\[\text{el} = \text{addlistener}(\text{hsource},\text{property},'eventname',\text{callback}) \] adds a listener for a property event. eventname must be 'PreGet', 'PostGet', 'PreSet', or 'PostSet'. property must be either a property name or cell array of property names, or a meta.property or array of meta.property. The properties must belong to the class of hsource. If hsource is scalar, property can include dynamic properties.

For all forms, addlistener returns an event.listener. To remove a listener, delete the object returned by addlistener. For example, delete(el) calls the handle class delete method to remove the listener and delete it from the workspace.

See Also

delete | dynamicprops | event.listener | events | meta.property | notify | qrandstream | reset
anova

Class: GeneralizedLinearMixedModel

Analysis of variance for generalized linear mixed-effects model

Syntax

stats = anova(glme)
stats = anova(glme,Name,Value)

Description

stats = anova(glme) returns a table, stats, that contains the results of F-tests to determine if all coefficients representing each fixed-effects term in the generalized linear mixed-effects model glme are equal to 0.

stats = anova(glme,Name,Value) returns a table, stats, using additional options specified by one or more Name,Value pair arguments. For example, you can specify the method used to compute the approximate denominator degrees of freedom for the F-tests.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
DFMethod — Method for computing approximate denominator degrees of freedom

'residual' (default) | 'none'

Method for computing approximate denominator degrees of freedom to use in the F-test, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'residual'</td>
<td>The degrees of freedom are assumed to be constant and equal to (n - p), where (n) is the number of observations and (p) is the number of fixed effects.</td>
</tr>
<tr>
<td>'none'</td>
<td>All degrees of freedom are set to infinity.</td>
</tr>
</tbody>
</table>

The denominator degrees of freedom for the F-statistic correspond to the column DF2 in the output structure `stats`.

Example: 'DFMethod', 'none'

Output Arguments

stats — Results of F-tests for fixed-effects terms

* table

Results of F-tests for fixed-effects terms, returned as a table with one row for each fixed-effects term in `glme` and the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Name of the fixed-effects term</td>
</tr>
<tr>
<td>FStat</td>
<td>F-statistic for the term</td>
</tr>
<tr>
<td>DF1</td>
<td>Numerator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>DF2</td>
<td>Denominator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>(p)-value for the term</td>
</tr>
</tbody>
</table>
Each fixed-effects term is a continuous variable, a grouping variable, or an interaction between two or more continuous or grouping variables. For each fixed-effects term, anova performs an F-test (marginal test) to determine if all coefficients representing the fixed-effects term are equal to 0.

To perform tests for the type III hypothesis, when fitting the generalized linear mixed-effects model `fitglme`, you must use the 'effects' contrasts for the 'DummyVarCoding' name-value pair argument.

Examples

F-Tests for Fixed Effects

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (`newprocess`)
- Processing time for each batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (`supplier`)
- Number of defects in the batch (`defects`)

The data also includes `time_dev` and `temp_dev`, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using `newprocess`, `time_dev`, `temp_dev`, and `supplier` as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[\log \mu_{ij} = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time dev}_{ij} + \beta_3 \text{temp dev}_{ij} + \beta_4 \text{supplier C}_{ij} + \beta_5 \text{supplier B}_{ij} + b_i, \]

where

- defects\(_{ij}\) is the number of defects observed in the batch produced by factory \(i\) during batch \(j\).
- \(\mu_{ij}\) is the mean number of defects corresponding to factory \(i\) (where \(i = 1, 2, ..., 20\)) during batch \(j\) (where \(j = 1, 2, ..., 5\)).
- newprocess\(_{ij}\), time dev\(_{ij}\), and temp dev\(_{ij}\) are the measurements for each variable that correspond to factory \(i\) during batch \(j\). For example, newprocess\(_{ij}\) indicates whether the batch produced by factory \(i\) during batch \(j\) used the new process.
- supplier C\(_{ij}\) and supplier B\(_{ij}\) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i\) during batch \(j\).
- \(b_i \sim N(0, \sigma^2_b)\) is a random-effects intercept for each factory \(i\) that accounts for factory-specific variation in quality.

\[\text{glme} = \text{fitglme}(\text{mfr}, \text{''defects} \sim 1 + \text{newprocess} + \text{time dev} + \text{temp dev} + \text{supplier} + (1|\text{factory})\), 'Distribution', 'Poisson', 'Link', 'log', 'FitMethod', 'Laplace', 'DummyVarCoding', 'effects') \]

\[\text{glme} = \]

Generalized linear mixed-effects model fit by ML
Model information:
Number of observations 100
Fixed effects coefficients 6
Random effects coefficients 20
Covariance parameters 1
Distribution Poisson
Link Log
FitMethod Laplace

Formula:
defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
AIC BIC LogLikelihood Deviance
416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.4689</td>
<td>0.15988</td>
<td>9.1875</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.36766</td>
<td>0.17755</td>
<td>-2.0708</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.094521</td>
<td>0.82849</td>
<td>-0.11409</td>
<td>94</td>
<td>0.90941</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>-0.28317</td>
<td>0.9617</td>
<td>-0.29444</td>
<td>94</td>
<td>0.76907</td>
</tr>
<tr>
<td>'supplier_C'</td>
<td>-0.071868</td>
<td>0.078024</td>
<td>-0.9211</td>
<td>94</td>
<td>0.35936</td>
</tr>
<tr>
<td>'supplier_B'</td>
<td>0.071072</td>
<td>0.07739</td>
<td>0.91836</td>
<td>94</td>
<td>0.36078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1515</td>
<td>1.7864</td>
</tr>
<tr>
<td>-0.72019</td>
<td>-0.015134</td>
</tr>
<tr>
<td>-1.7395</td>
<td>1.5505</td>
</tr>
<tr>
<td>-2.1926</td>
<td>1.6263</td>
</tr>
<tr>
<td>-0.22679</td>
<td>0.083051</td>
</tr>
<tr>
<td>-0.082588</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

Random effects covariance parameters:
Group: factory (20 Levels)
<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.31381</td>
</tr>
</tbody>
</table>

Group: Error
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sqrt(Dispersion)'</td>
<td>1</td>
</tr>
</tbody>
</table>
Perform an F-test to determine if all fixed-effects coefficients are equal to 0.

```matlab
gstats = anova(glme)
gstats =
    ANOVA marginal tests: DFMethod = 'residual'

<table>
<thead>
<tr>
<th>Term</th>
<th>FStat</th>
<th>DF1</th>
<th>DF2</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>84.41</td>
<td>1</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>4.2881</td>
<td>1</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>0.013016</td>
<td>1</td>
<td>94</td>
<td>0.90941</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>0.086696</td>
<td>1</td>
<td>94</td>
<td>0.76907</td>
</tr>
<tr>
<td>'supplier'</td>
<td>0.59212</td>
<td>2</td>
<td>94</td>
<td>0.5552</td>
</tr>
</tbody>
</table>
```

The p-values for the intercept, `newprocess`, `time_dev`, and `temp_dev` are the same as in the coefficient table of the `glme` display. The small p-values for the intercept and `newprocess` indicate that these are significant predictors at the 5% significance level.

The large p-values for `time_dev` and `temp_dev` indicate that these are not significant predictors at this level.

The p-value of 0.5552 for `supplier` measures the combined significance for both coefficients representing the categorical variable `supplier`. This includes the dummy variables `supplier_C` and `supplier_B` as shown in the coefficient table of the `glme` display. The large p-value indicates that `supplier` is not a significant predictor at the 5% significance level.

Tips

- For each fixed-effects term, `anova` performs an F-test (marginal test) to determine if all coefficients representing the fixed-effects term are equal to 0.

 When fitting a generalized linear mixed-effects (GLME) model using `fitglme` and one of the maximum likelihood fit methods (`'Laplace'` or `'ApproximateLaplace'`):

 - If you specify the `'CovarianceMethod'` name-value pair argument as `'conditional'`, then the F-tests are conditional on the estimated covariance parameters.
• If you specify the 'CovarianceMethod' name-value pair as 'JointHessian', then the F-tests account for the uncertainty in estimation of covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ("MPL" or "REML"), anova uses the fitted linear mixed effects model from the final pseudo likelihood iteration for inference on fixed effects.

See Also
GeneralizedLinearMixedModel | coefCI | coefTest | disp | fitglme | fixedEffects
addTerms

Class: GeneralizedLinearModel

Add terms to generalized linear model

Syntax

mdl1 = addTerms(mdl,terms)

Description

mdl1 = addTerms(mdl,terms) returns a generalized linear model the same as mdl but with additional terms.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

terms

Terms to add to the mdl regression model. Specify as either a:

- Text representing one or more terms to add. For details, see “Wilkinson Notation” on page 32-21.
- Row or rows in the terms matrix (see modelspec in fitglm). For example, if there are three variables A, B, and C:

 [0 0 0] represents a constant term or intercept
 [0 1 0] represents B; equivalently, A^0 * B^1 * C^0
 [1 0 1] represents A*C
 [2 0 0] represents A^2
 [0 1 2] represents B*(C^2)
Output Arguments

mdl1

Generalized linear model, the same as mdl but with additional terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.

Examples

Add a term to a generalized linear regression model

Create a model using just one predictor, then add a second.

Generate artificial data for the model, Poisson random numbers with two underlying predictors X(1) and X(2).

rng default % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data. Use just the first predictor in the model.

mdl = fitglm(X,y,...
 'y ~ x1','distr','poisson')

mdl =
 Generalized linear regression model:
 log(y) ~ 1 + x1
 Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.7784</td>
<td>0.014043</td>
<td>197.85</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>1.1732</td>
<td>0.0033653</td>
<td>348.6</td>
<td>0</td>
</tr>
</tbody>
</table>
100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

Add the second predictor to the model.

```
mdl1 = addTerms(mdl,'x2')
```

```matlab
mdl1 =
Generalized linear regression model:
  log(y) ~ 1 + x1 + x2
  Distribution = Poisson
```

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0405</td>
<td>0.022122</td>
<td>47.034</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>0.9968</td>
<td>0.003362</td>
<td>296.49</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>1.987</td>
<td>0.0063433</td>
<td>313.24</td>
<td>0</td>
</tr>
</tbody>
</table>

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>Wilkinson Notation</td>
<td>Factors in Standard Notation</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

Alternatives

`step` adds or removes terms from a model using a greedy one-step algorithm.

References

See Also

`GeneralizedLinearModel | removeTerms | step | stepwiseglm`

Topics

“Generalized Linear Models” on page 12-12
addTerms

Class: LinearModel

Add terms to linear regression model

Syntax

mdl1 = addTerms(mdl,terms)

Description

mdl1 = addTerms(mdl,terms) returns a linear model mdl1 that is the same as the input model mdl, but with additional terms as specified by terms.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.

terms — Terms to add to regression model
formula | matrix

Terms to add to the regression model mdl, specified as one of the following:

- Formula representing one or more terms to add. For details, see Wilkinson Notation on page 32-25.
- Row or rows in the terms matrix (see the modelspec argument description in the fitting function fitlm). For example, if there are three variables A, B, and C:

 [0 0 0] represents a constant term or intercept
 [0 1 0] represents B; equivalently, A^0 * B^1 * C^0
 [1 0 1] represents A*C

Output Arguments

mdl1 — Regression model with additional terms
LinearModel object

Regression model with additional terms, returned as a LinearModel object. mdl1 is the same as mdl but includes the additional terms specified in terms. To overwrite mdl, set mdl1 equal to mdl.

Examples

Add Terms to Linear Regression Model

Create a model of the carsmall data without any interactions, then add an interaction term.

Load the carsmall data and make a model of the MPG as a function of weight and model year.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Add an interaction term to mdl.

terms = 'Year*Weight';
mdl1 = addTerms(mdl,terms)

mdl1 =
Linear regression model:
 MPG ~ 1 + Weight*Year + Weight^2

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _____ ______ _______
Number of observations: 94, Error degrees of freedom: 87
Root Mean Squared Error: 2.76
R-squared: 0.89, Adjusted R-Squared 0.882
F-statistic vs. constant model: 117, p-value = 1.88e-39

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.
For details, see Wilkinson and Rogers [1].

Alternatives

Use `stepwiselm` to select a model from a starting model, continuing until no single step is beneficial.

Use `removeTerms` to remove particular terms.

Use `step` to optimally improve the model by adding or removing terms.

References

See Also

`LinearModel` | `removeTerms` | `step` | `stepwiselm`

Topics

“Linear Regression” on page 11-11
adtest

Anderson-Darling test

Syntax

h = adtest(x)
h = adtest(x,Name,Value)
[h,p] = adtest(__)
[h,p,adstat,cv] = adtest(__)

Description

h = adtest(x) returns a test decision for the null hypothesis that the data in vector x is from a population with a normal distribution, using the Anderson-Darling test on page 32-33. The alternative hypothesis is that x is not from a population with a normal distribution. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = adtest(x,Name,Value) returns a test decision for the Anderson-Darling test with additional options specified by one or more name-value pair arguments. For example, you can specify a null distribution other than normal, or select an alternative method for calculating the p-value.

[h,p] = adtest(__) also returns the p-value, p, of the Anderson-Darling test, using any of the input arguments from the previous syntaxes.

[h,p,adstat,cv] = adtest(__) also returns the test statistic, adstat, and the critical value, cv, for the Anderson-Darling test.

Examples
Anderson-Darling Test for a Normal Distribution

Load the sample data. Create a vector containing the first column of the students' exam grades data.

```matlab
load examgrades
x = grades(:,1);
```

Test the null hypothesis that the exam grades come from a normal distribution. You do not need to specify values for the population parameters.

```matlab
[h,p,adstat,cv] = adtest(x)
```

$h = \text{logical} 0$

$p = 0.1854$

$adstat = 0.5194$

$cv = 0.7470$

The returned value of $h = 0$ indicates that adtest fails to reject the null hypothesis at the default 5% significance level.

Anderson-Darling Test for Extreme Value Distribution

Load the sample data. Create a vector containing the first column of the students' exam grades data.

```matlab
load examgrades
x = grades(:,1);
```

Test the null hypothesis that the exam grades come from an extreme value distribution. You do not need to specify values for the population parameters.

```matlab
[h,p] = adtest(x,'Distribution','ev')
```

$h = \text{logical} 0$
The returned value of \(h = 0 \) indicates that \texttt{adtest} fails to reject the null hypothesis at the default 5% significance level.

\textbf{Anderson-Darling Test Using Specified Probability Distribution}

Load the sample data. Create a vector containing the first column of the students' exam grades data.

\begin{verbatim}
load examgrades
x = grades(:,1);
\end{verbatim}

Create a normal probability distribution object with mean \(\mu = 75 \) and standard deviation \(\sigma = 10 \).

\begin{verbatim}
dist = makedist('normal','mu',75,'sigma',10)
dist =
 NormalDistribution
 Normal distribution
 mu = 75
 sigma = 10
\end{verbatim}

Test the null hypothesis that \(x \) comes from the hypothesized normal distribution.

\begin{verbatim}
[h,p] = adtest(x,'Distribution',dist)
\end{verbatim}

\begin{verbatim}
h = logical
 0
\end{verbatim}

\begin{verbatim}
p = 0.4687
\end{verbatim}

The returned value of \(h = 0 \) indicates that \texttt{adtest} fails to reject the null hypothesis at the default 5% significance level.
Input Arguments

x — Sample data
vector

Sample data, specified as a vector. Missing observations in x, indicated by NaN, are ignored.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'MCTol',0.01 conducts the hypothesis test at the 1% significance level, and determines the p-value, p, using a Monte Carlo simulation with a maximum Monte Carlo standard error for p of 0.01.

Distribution — Hypothesized distribution

'norm' (default) | 'exp' | 'ev' | 'logn' | 'weibull' | probability distribution object

Hypothesized distribution of data vector x, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'norm'</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>'exp'</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>'ev'</td>
<td>Extreme value distribution</td>
</tr>
<tr>
<td>'logn'</td>
<td>Lognormal distribution</td>
</tr>
<tr>
<td>'weibull'</td>
<td>Weibull distribution</td>
</tr>
</tbody>
</table>

In this case, you do not need to specify population parameters. Instead, adtest estimates the distribution parameters from the sample data and tests x against a composite hypothesis that it comes from the selected distribution family with parameters unspecified.

Alternatively, you can specify any continuous probability distribution object for the null distribution. In this case, you must specify all the distribution parameters, and adtest...
tests x against a simple hypothesis that it comes from the given distribution with its specified parameters.

Example: 'Distribution','exp'

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

MCTol — Maximum Monte Carlo standard error
positive scalar value

Maximum Monte Carlo standard error on page 32-34 for the p-value, p, specified as the comma-separated pair consisting of 'MCTol' and a positive scalar value. If you use MCTol, adtest determines p using a Monte Carlo simulation, and the name-value pair argument Asymptotic must have the value false.

Example: 'MCTol',0.01

Data Types: single | double

Asymptotic — Method for calculating p-value
false (default) | true

Method for calculating the p-value of the Anderson-Darling test, specified as the comma-separated pair consisting of 'Asymptotic' and either true or false. If you specify 'true', adtest estimates the p-value using the limiting distribution of the Anderson-Darling test statistic. If you specify false, adtest calculates the p-value based on an analytical formula. For sample sizes greater than 120, the limiting distribution estimate is likely to be more accurate than the small sample size approximation method.

- If you specify a distribution family with unknown parameters for the Distribution name-value pair, Asymptotic must be false.
- If you use MCTol to calculate the p-value using a Monte Carlo simulation, Asymptotic must be false.

Example: 'Asymptotic',true

Data Types: logical
Output Arguments

h — Hypothesis test result

\[1 \mid 0 \]

Hypothesis test result, returned as a logical value.

- If \(h = 1 \), this indicates the rejection of the null hypothesis at the \(\text{Alpha} \) significance level.
- If \(h = 0 \), this indicates a failure to reject the null hypothesis at the \(\text{Alpha} \) significance level.

p — p-value

Scalar value in the range \([0,1]\)

\(p \)-value of the Anderson-Darling test, returned as a scalar value in the range \([0,1]\). \(p \) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. \(p \) is calculated using one of these methods:

- If the hypothesized distribution is a fully specified probability distribution object, \(\text{adtest} \) calculates \(p \) analytically. If 'Asymptotic' is true, \(\text{adtest} \) uses the asymptotic distribution of the test statistic. If you specify a value for 'MCTol', \(\text{adtest} \) uses a Monte Carlo simulation.
- If the hypothesized distribution is specified as a distribution family with unknown parameters, \(\text{adtest} \) retrieves the critical value from a table and uses inverse interpolation to determine the \(p \)-value. If you specify a value for 'MCTol', \(\text{adtest} \) uses a Monte Carlo simulation.

adstat — Test statistic

Scalar value

Test statistic for the Anderson-Darling test, returned as a scalar value.

- If the hypothesized distribution is a fully specified probability distribution object, \(\text{adtest} \) computes \(\text{adstat} \) using specified parameters.
- If the hypothesized distribution is specified as a distribution family with unknown parameters, \(\text{adtest} \) computes \(\text{adstat} \) using parameters estimated from the sample data.

cv — Critical value

Scalar value
Critical value for the Anderson-Darling test at the significance level Alpha, returned as a scalar value. `adtest` determines cv by interpolating into a table based on the specified Alpha significance level.

Definitions

Anderson-Darling Test

The Anderson-Darling test is commonly used to test whether a data sample comes from a normal distribution. However, it can be used to test for another hypothesized distribution, even if you do not fully specify the distribution parameters. Instead, the test estimates any unknown parameters from the data sample.

The test statistic belongs to the family of quadratic empirical distribution function statistics, which measure the distance between the hypothesized distribution, \(F(x) \) and the empirical cdf, \(F_n(x) \) as

\[
n \int_{-\infty}^{\infty} (F_n(x) - F(x))^2 w(x) dF(x),
\]

over the ordered sample values \(x_1 < x_2 < ... < x_n \), where \(w(x) \) is a weight function and \(n \) is the number of data points in the sample.

The weight function for the Anderson-Darling test is

\[
w(x) = \left[F'(x)(1 - F(x)) \right]^{-1},
\]

which places greater weight on the observations in the tails of the distribution, thus making the test more sensitive to outliers and better at detecting departure from normality in the tails of the distribution.

The Anderson-Darling test statistic is

\[
A_n^2 = -n - \sum_{i=1}^{n} \frac{2i-1}{n} \left[\ln(F(X_i)) + \ln(1 - F(X_{n+1-i})) \right],
\]
where \(\{X_1 < ... < X_n\} \) are the ordered sample data points and \(n \) is the number of data points in the sample.

In \texttt{adtest}, the decision to reject or not reject the null hypothesis is based on comparing the \(p \)-value for the hypothesis test with the specified significance level, not on comparing the test statistic with the critical value.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the \(p \)-value.

The Monte Carlo standard error is calculated as

\[
SE = \sqrt{\frac{(\hat{p})(1 - \hat{p})}{\text{mc reps}}},
\]

where \(\hat{p} \) is the estimated \(p \)-value of the hypothesis test, and \(\text{mc reps} \) is the number of Monte Carlo replications performed.

\texttt{adtest} chooses the number of Monte Carlo replications, \(\text{mc reps} \), large enough to make the Monte Carlo standard error for \(\hat{p} \) less than the value specified for \texttt{MCTol}.

See Also

\texttt{jbtest} | \texttt{kstest}

Introduced in R2013a
andrewsplot

Andrews plot

Syntax

andrewsplot(X)
andrewsplot(X,...,'Standardize',standopt)
andrewsplot(X,...,'Quantile',alpha)
andrewsplot(X,...,'Group',group)
andrewsplot(X,...,'PropName',PropVal,...)
h = andrewsplot(X,...)

Description

andrewsplot(X) creates an Andrews plot of the multivariate data in the matrix X. The rows of X correspond to observations, the columns to variables. Andrews plots represent each observation by a function \(f(t) \) of a continuous dummy variable \(t \) over the interval \([0,1]\). \(f(t) \) is defined for the \(i \)th observation in \(X \) as

\[
f(t) = X(i,1) / \sqrt{2} + X(i,2) \sin(2\pi t) + X(i,3) \cos(2\pi t) + \ldots
\]

andrewsplot treats NaN values in X as missing values and ignores the corresponding rows.

andrewsplot(X,...,'Standardize',standopt) creates an Andrews plot where \(\text{standopt} \) is one of the following:

- 'on' — scales each column of X to have mean 0 and standard deviation 1 before making the plot.
- 'PCA' — creates an Andrews plot from the principal component scores of X, in order of decreasing eigenvalue. (See pca.)
- 'PCAStd' — creates an Andrews plot using the standardized principal component scores. (See pca.)
andrewsplot(X,...,'Quantile',alpha) plots only the median and the alpha and (1 - alpha) quantiles of f(t) at each value of t. This is useful if X contains many observations.

andrewsplot(X,...,'Group',group) plots the data in different groups with different colors. Groups are defined by group, a numeric array containing a group index for each observation. group can also be a categorical array, character matrix, string array, or cell array of character vectors containing a group name for each observation.

andrewsplot(X,...,'PropName',PropVal,...) sets optional lineseries object properties to the specified values for all lineseries objects created by andrewsplot. (See Line Properties.)

h = andrewsplot(X,...) returns a column vector of handles to the lineseries objects created by andrewsplot, one handle per row of X. If you use the 'Quantile' input parameter, h contains one handle for each of the three lineseries objects created. If you use both the 'Quantile' and the 'Group' input parameters, h contains three handles for each group.

Examples

Create Andrews Plot to Visualize Grouped Data

This example shows how to create an Andrews plot to visualize grouped sample data.

Load the sample data.

load fisheriris

Create an Andrews plot, grouping the sample data by species.

andrewsplot(meas,'group',species)
Create a second, simplified Andrews plot that only displays the median and quartiles of each group.

```matlab
andrewsplot(meas,'group',species,'quantile',.25)
```
See Also
glyphplot | parallelcoords

Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
anova

Class: CompactLinearModel

Analysis of variance for linear model

Syntax

tbl = anova(mdl)
tbl = anova(mdl,anovatype)
tbl = anova(mdl,anovatype,sstype)

Description

tbl = anova(mdl) returns a table with summary ANOVA statistics.
tbl = anova(mdl,anovatype) returns ANOVA statistics of the chosen type.
tbl = anova(mdl,anovatype,sstype) computes ANOVA statistics using the chosen type of sum of squares.

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

anovatype — ANOVA type
'component' (default) | 'summary'

ANOVA type, specified as one of the following:

- 'component' — tbl displays a ‘components’ ANOVA table, with sums of squares and F tests attributable to each term in the model except the constant term.
• 'summary' — tbl displays a summary ANOVA table with an F test for the model as a whole.

• If there are both linear and higher-order terms, there is also an F test for the higher-order terms as a group.

• If mdl is a full LinearModel object and the sample data contains replications (multiple observations sharing the same predictor values), there is also an F test for lack-of-fit computed by decomposing the residual sum of squares into a sum of squares for the replicated observations and the remaining sum of squares. If mdl is a compacted CompactLinearModel object, then the ANOVA table presents, but does not decompose, the residual sum of squares.

sstype — Sum of squares type

'h' (default) | 1 | 2 | 3

Sum of squares type, specified as one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type I sum of squares. The reduction in residual sum of squares obtained by adding that term to a fit that already includes the terms listed before it.</td>
</tr>
<tr>
<td>2</td>
<td>Type II sum of squares. The reduction in residual sum of squares obtained by adding that term to a model consisting of all other terms that do not contain the term in question</td>
</tr>
<tr>
<td>3</td>
<td>Type III sum of squares. The reduction in residual sum of squares obtained by adding that term to a model containing all other terms, but with their effects constrained to obey the usual “sigma restrictions” that make models estimable.</td>
</tr>
<tr>
<td>'h'</td>
<td>Hierarchical model. Similar to Type II, but uses both continuous and categorical factors to determine the hierarchy of terms.</td>
</tr>
</tbody>
</table>

For Type III sum of squares:
• If `mdl` is a `CompactLinearModel` object and the model is non-hierarchical, `anova` errors.

• If `mdl` is a full `LinearModel` object and the model is non-hierarchical, then `anova` refits the model using effects coding whenever it needs to compute Type III sums of squares.

• If `mdl` is either a `CompactLinearModel` or a `LinearModel` object and the model is hierarchical, `anova` computes the results without refitting the model.

`sstype` only applies if `anovatype` is 'component'.

For more information about sum of squares types, see the `sstype` argument on the `anovan` function reference page.

Data Types: char | string | single | double

Output Arguments

tbl — ANOVA summary statistics table

table

ANOVA summary statistics table, returned as table

The contents of `tbl` depends on the ANOVA type specified in `anovatype`.

• If `anovatype` is 'component', then `tbl` contains:

 • Sum of squares
 • Degrees of freedom
 • Mean squares
 • F statistic
 • p-value
 • Formula used for model

• If `anovatype` is 'summary', then `tbl` contains:

 • Total Sum of Squares
 • Model Sum of Squares
 • Linear Sum of Squares (present if model has powers or interactions)
• Nonlinear Sum of Squares (present if model has powers or interactions)
• Residual Sum of Squares
 • Lack-of-fit Sum of Squares (present if model has replicates)
 • Pure error Sum of Squares (present if model has replicates)

Examples

Component ANOVA Table for Linear Model

Create a component ANOVA table from a model of the hospital data.

Load the hospital data and make a model of the blood pressure as a function of age and gender.

```matlab
load hospital
tbl = table(hospital.Age,hospital.Sex,hospital.BloodPressure(:,2), ...  'VariableNames',{'Age','Sex','BloodPressure'});
tbl.Sex = categorical(tbl.Sex);
mdl = fitlm(tbl,'BloodPressure ~ Sex + Age^2');

Create an ANOVA table.

tbl = anova(mdl)
tbl=4×5 table
    SumSq    DF    MeanSq     F    pValue
    ______    __    ______    _______    ________
    Age      18.705     1    18.705    0.40055     0.52831
    Sex      222.09     1    222.09     4.7558    0.031643
    Age^2    30.934     1    30.934    0.66242     0.41772
    Error    4483.1    96    46.699
```

Summary ANOVA Table for Linear Model

Create a summary ANOVA table from a model of the carsmall data.
Load the `carsmall` data and make a model of the MPG as a function of weight and model year.

```matlab
load carsmall
cars = table(MPG,Weight);
cars.Year = ordinal(Model_Year);
mdl = fitlm(cars,'MPG ~ Year + Weight^2');
```

Create a summary ANOVA table.

```matlab
tbl = anova(mdl,'summary')
```

```
tbl=7×5 table
    SumSq    DF    MeanSq     F     pValue
     ______    __    ______    ______   ______
       Total    6005.3    93    64.573
      Model      5317     4    1329.3    171.88    5.5208e-41
    . Linear      5240.3     3    1746.8    225.87    1.7302e-41
    . Nonlinear    76.688     1    76.688    9.9164     0.0022303
   Residual      688.27    89    7.7334
    . Lack of fit   663.77    86    7.7183    0.9451       0.62874
    . Pure error      24.5     3    8.1667
```

The summary ANOVA table shows tests for groups of terms. The nonlinear group consists of just the `Weight^2` term, so it has the same \(P \)-value as that term in the component ANOVA table. The \(F \) statistic comparing the residual sum of squares to a "pure error" estimate from replicated observations shows no evidence of lack of fit.

Alternatives

More complete ANOVA statistics are available in the `anova1`, `anova2`, and `anovan` functions.

See Also

`CompactLinearModel` | `LinearModel` | `table`
Topics
“ANOVA” on page 11-21
“Linear Regression” on page 11-11
anova

Class: LinearMixedModel

Analysis of variance for linear mixed-effects model

Syntax

```matlab
code = anova(lme)
code = anova(lme,Name,Value)
```

Description

`stats = anova(lme)` returns the dataset array `stats` that includes the results of the F-tests for each fixed-effects term in the linear mixed-effects model `lme`.

`stats = anova(lme,Name,Value)` also returns the dataset array `stats` with additional options specified by one or more `Name,Value` pair arguments.

Input Arguments

- `lme` — Linear mixed-effects model
 LinearMixedModel object

 Linear mixed-effects model, specified as a `LinearMixedModel` object constructed using `fitlme` or `fitlmematrix`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

32-45
DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom to use in the F-test, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual'
Default. The degrees of freedom are assumed to be constant and equal to \(n - p \), where \(n \) is the number of observations and \(p \) is the number of fixed effects.

'satterthwaite'
Satterthwaite approximation.

'none'
All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

Output Arguments

stats — Results of F-tests for fixed-effects terms

dataset array

Results of F-tests for fixed-effects terms, returned as a dataset array with the following columns.

<table>
<thead>
<tr>
<th>Term</th>
<th>Name of the fixed effects term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fstat</td>
<td>F-statistic for the term</td>
</tr>
<tr>
<td>DF1</td>
<td>Numerator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>DF2</td>
<td>Denominator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value of the test for the term</td>
</tr>
</tbody>
</table>

There is one row for each fixed-effects term. Each term is a continuous variable, a grouping variable, or an interaction between two or more continuous or grouping variables. For each fixed-effects term, anova performs an F-test (marginal test) to determine if all coefficients representing the fixed-effects term are 0. To perform tests for
the type III hypothesis, you must use the 'effects' contrasts while fitting the linear mixed-effects model.

Examples

F-Tests for Fixed Effects

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The data shows the deviations from the target quality characteristic measured from the products that five operators manufacture during three shifts: morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

```matlab
shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);
```

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if performance significantly differs according to the time of the shift. Use the restricted maximum likelihood method and 'effects' contrasts.

'effects' contrasts indicate that the coefficients sum to 0, and fitlme creates two contrast-coded variables in the fixed-effects design matrix, X_1 and X_2, where

\[
Shift_{Evening} = \begin{cases}
0, & \text{if Morning} \\
1, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]

and

\[
Shift_{Morning} = \begin{cases}
1, & \text{if Morning} \\
0, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]
The model corresponds to

\[
\text{MorningShift}: QCD_{n,m} = \beta_0 + \beta_2 \text{Shift_Morning}_i + b_{0m} + \epsilon_{im}, \quad m = 1, 2, \ldots, 5, \\
\text{EveningShift}: QCD_{n,m} = \beta_0 + \beta_1 \text{Shift_Evening}_i + b_{0m} + \epsilon_{im}, \\
\text{NightShift}: QCD_{n,m} = \beta_0 - \beta_1 \text{Shift_Evening}_i - \beta_2 \text{Shift_Morning}_i + b_{0m} + \epsilon_{im},
\]

where \(b \sim N(0, \sigma_b^2) \) and \(\epsilon \sim N(0, \sigma^2) \).

\[\text{lme} = \text{fitlme(shift,}'QCD_{ev} \sim \text{Shift} + (1|\text{Operator}')',...\]
\[\text{'FitMethod','REML','DummyVarCoding','effects'})\]

\[\text{lme} = \]
Linear mixed-effects model fit by REML

Model information:
Number of observations 15
Fixed effects coefficients 3
Random effects coefficients 5
Covariance parameters 2

Formula:
\[QCD_{ev} \sim 1 + \text{Shift} + (1 | \text{Operator})\]

Model fit statistics:
\[
\begin{array}{llll}
AIC & BIC & \text{LogLikelihood} & \text{Deviance} \\
58.913 & 61.337 & -24.456 & 48.913 \\
\end{array}
\]

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>3.6525</td>
<td>0.9411</td>
<td>3.8812</td>
<td>12</td>
<td>0.00218</td>
</tr>
<tr>
<td>'Shift_Evening'</td>
<td>-0.53293</td>
<td>0.3121</td>
<td>-1.7078</td>
<td>12</td>
<td>0.1134</td>
</tr>
<tr>
<td>'Shift_Morning'</td>
<td>-0.91973</td>
<td>0.3121</td>
<td>-2.9473</td>
<td>12</td>
<td>0.0122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6021</td>
<td>5.703</td>
</tr>
<tr>
<td>-1.2129</td>
<td>0.14699</td>
</tr>
<tr>
<td>-1.5997</td>
<td>-0.23981</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perform an F-test to determine if all fixed-effects coefficients are 0.

anova(lme)

ans =

 ANOVA marginal tests: DFMethod = 'Residual'

 Term | FStat | DF1 | DF2 | pValue |
 -----------|--------|-----|------|----------|
 '(Intercept)' | 15.063 | 1 | 12 | 0.0021832 |
 'Shift' | 11.091 | 2 | 12 | 0.0018721 |

The P-value for the constant term, 0.0021832, is the same as in the coefficient table in the lme display. The P-value of 0.0018721 for Shift measures the combined significance for both coefficients representing Shift.

ANOVA for Fixed-Effects in LME Model

Load the sample data.

load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.
Store the data in a dataset array called `ds`, for practical purposes, and define `Tomato`, `Soil`, and `Fertilizer` as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where `Fertilizer` and `Tomato` are the fixed-effects variables, and the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil types) independently. Use the 'effects' contrasts when fitting the data for the type III sum of squares.

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)',...
'DummyVarCoding','effects')
```

```matlab
lme =
Linear mixed-effects model fit by ML
```

Model information:
- Number of observations: 60
- Fixed effects coefficients: 20
- Random effects coefficients: 18
- Covariance parameters: 3

Formula:
```
Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)
```

Model fit statistics:
```
AIC    BIC    LogLikelihood    Deviance
522.57 570.74    -238.29       476.57
```

Fixed effects coefficients (95% CIs):
```
Name                          Estimate    SE        tStat       DF
'(Intercept)'                104.6       3.3008     31.69       40
'Tomato_Cherry'           -7.7667      5.9353    -1.3085      40
'Tomato_Grape'               5.1833      4.6951      1.104      40
'Tomato_Heirloom'           30.233       5.9353     5.0938      40
'Fertilizer_1'              -0.73333    4.6951    -0.15619     40
'Fertilizer_2'               3.1667      4.6951     0.67316     40
'Fertilizer_3'                0.73333    4.6951     0.15619     40
'Tomato_Cherry:Fertilizer_1' -0.73333    4.6951    -0.15619     40
'Tomato_Grape:Fertilizer_1'  -7.5667      4.6951    -1.6116     40
'Tomato_Heirloom:Fertilizer_1' 5.1833      4.6951      1.104      40
```
'Tomato_Plum:Fertilizer_1' 2.7667 4.6951 0.58927 40
'Tomato_Cherry:Fertilizer_2' 7.6 4.6951 1.6187 40
'Tomato_Grape:Fertilizer_2' -1.9 4.6951 -0.40468 40
'Tomato_Heirloom:Fertilizer_2' 5.5167 4.6951 1.175 40
'Tomato_Plum:Fertilizer_2' -3.9 4.6951 -0.83066 40
'Tomato_Cherry:Fertilizer_3' -6.0667 4.6951 -1.2921 40
'Tomato_Grape:Fertilizer_3' 3.7667 4.6951 0.80226 40
'Tomato_Heirloom:Fertilizer_3' 3.1833 4.6951 0.67802 40
'Tomato_Plum:Fertilizer_3' 1.1 4.6951 0.23429 40

pValue Lower Upper
5.9086e-30 97.929 111.27
0.81473 -10.596 13.396
0.19816 -19.762 4.2291
0.066821 -23.179 0.81242
8.777e-06 18.238 42.229
7.026e-15 -33.011 -23.522
0.41507 -6.6779 2.8112
4.577e-05 5.9888 15.478
0.87667 -10.222 8.7558
0.11491 -17.056 1.9224
0.27619 -4.3058 14.672
0.55899 -6.7224 12.256
0.11337 -1.8891 17.089
0.68787 -11.389 7.5891
0.24695 -3.9724 15.006
0.4111 -13.389 5.5891
0.20373 -15.556 3.4224
0.42714 -5.7224 13.256
0.50167 -6.3058 12.672
0.81596 -8.3891 10.589

Random effects covariance parameters (95% CIs):
Group: Soil (3 Levels)

Group: Soil:Tomato (15 Levels)
Perform an analysis of variance to test for the fixed-effects.

anova(lme)

ans =
 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2 pValue
 (Intercept) 1004.2 1 40 5.9086e-30
 Tomato 7.1663 4 40 0.00018935
 Fertilizer 58.833 3 40 1.0024e-14
 Tomato:Fertilizer 1.4182 12 40 0.19804

The \(P \)-value for the constant term, 5.9086e-30, is the same as in the coefficient table in the lme display. The \(P \)-values of 0.00018935, 1.0024e-14, and 0.19804 for Tomato, Fertilizer, and Tomato:Fertilizer represent the combined significance for all tomato coefficients, fertilizer coefficients, and coefficients representing the interaction between the tomato and fertilizer, respectively. The \(P \)-value of 0.19804 indicates that the interaction between tomato and fertilizer is not significant.

Satterthwaite Approximation for Degrees of Freedom

Load the sample data.

load(fullfile(matlabroot,'examples','stats','weight.mat'))
weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

```
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit the model using the 'effects' contrasts.

```
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)',...
             'DummyVarCoding','effects')
```

```
lme =
 Linear mixed-effects model fit by ML

Model information:
  Number of observations             120
  Fixed effects coefficients           9
  Random effects coefficients         40
  Covariance parameters                4

Formula:  
  y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
  AIC        BIC       LogLikelihood    Deviance

Fixed effects coefficients (95% CIs):
Name               Estimate    SE         tStat    DF  pValue
'(Intercept)'     0.77122     0.24309     3.1725    111
'InitialWeight'   0.0031879   0.0013814   2.3078    111
'Program_A'       -0.11017    0.080377    -1.3707    111
'Program_B'       0.25061     0.08045     3.1151    111
'Program_C'       -0.14344    0.080475    -1.7824    111
'Week'            0.19881     0.033727    5.8946    111
'Program_A:Week' -0.025607    0.058417   -0.43835   111
'Program_B:Week'  0.013164    0.058417    0.22535   111
'Program_C:Week'  0.0049357   0.058417    0.084492  111

   pValue    Lower    Upper
```
The \(P \)-values 0.022863 and 4.1099e-08 indicate significant effects of the initial weights of the subjects and the time factor in the amount of weight lost. The weight loss of subjects who are in program B is significantly different relative to the weight loss of subjects that are in program A. The lower and upper limits of the covariance parameters for the random effects do not include zero, thus they are significant.

Perform an F-test that all fixed-effects coefficients are zero.

\[\text{anova(lme)} \]

\[\text{ans} = \]

\[\text{ANOVA marginal tests: DFMethod = 'Residual'} \]

<table>
<thead>
<tr>
<th>Term</th>
<th>FStat</th>
<th>DF1</th>
<th>DF2</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>10.065</td>
<td>1</td>
<td>111</td>
<td>0.0019549</td>
</tr>
<tr>
<td>'InitialWeight'</td>
<td>5.326</td>
<td>1</td>
<td>111</td>
<td>0.022863</td>
</tr>
</tbody>
</table>
The p-values for the constant term, initial weight, and week are the same as in the coefficient table in the previous lme output display. The p-value of 0.014286 for Program represents the combined significance for all program coefficients. Similarly, the p-value for the interaction between program and week (Program:Week) measures the combined significance for all coefficients representing this interaction.

Now, use the Satterthwaite method to compute the degrees of freedom.

```matlab
anova(lme,'DFMethod','satterthwaite')
```

```
Term                  FStat   DF1   DF2       pValue
'(Intercept)'        10.065   1   20.445      0.004695
'InitialWeight'      5.326    1     20      0.031827
'Program'            3.6798   3    19.14      0.030233
'Week'               34.747   1    20     9.1346e-06
'Program:Week'      0.066648   3    20      0.97697
```

The Satterthwaite method produces smaller denominator degrees of freedom and slightly larger p-values.

Tips

- For each fixed-effects term, anova performs an F-test (marginal test), that all coefficients representing the fixed-effects term are 0. To perform tests for type III hypotheses, you must set the 'DummyVarCoding' name-value pair argument to 'effects' contrasts while fitting your linear mixed-effects model.
See Also
LinearMixedModel | fitlme | fitlmematrix
anova1

One-way analysis of variance

Syntax

\[
p = \text{anova1}(y)
\]
\[
p = \text{anova1}(y,\text{group})
\]
\[
p = \text{anova1}(y,\text{group},\text{displayopt})
\]
\[
[p,\text{tbl}] = \text{anova1}(\text{____})
\]
\[
[p,\text{tbl},\text{stats}] = \text{anova1}(\text{____})
\]

Description

\[p = \text{anova1}(y)\] returns the \(p\)-value for a balanced one-way ANOVA on page 9-3. It also displays the standard ANOVA table (\text{tbl}) and a box plot of the columns of \(y\). \text{anova1} tests the hypothesis that the samples in \(y\) are drawn from populations with the same mean against the alternative hypothesis that the population means are not all the same.

\[p = \text{anova1}(y,\text{group})\] returns the \(p\)-value for a balanced one-way ANOVA by group. It also displays the standard ANOVA table and a box-plot on page 32-72 of the observations of \(y\) by group.

\[p = \text{anova1}(y,\text{group},\text{displayopt})\] enables the ANOVA table and box plot displays when \text{displayopt} is 'on' (default) and suppresses the displays when \text{displayopt} is 'off'.

\[p,\text{tbl} = \text{anova1}(\text{____})\] returns the ANOVA table (including column and row labels) in the cell array \text{tbl}. To copy a text version of the ANOVA table to the clipboard, select \text{Edit > Copy Text}.

\[p,\text{tbl},\text{stats} = \text{anova1}(\text{____})\] returns a structure, \text{stats}, which you can use to perform a multiple comparison test on page 9-26. A multiple comparison test enables you to determine which pairs of group means are significantly different. To perform this test, use \text{multcompare}, providing the \text{stats} structure as an input argument.
Examples

One-Way ANOVA

Create sample data matrix y with columns that are constants, plus random normal disturbances with mean 0 and standard deviation 1.

```matlab
y = meshgrid(1:5);
rng default; % For reproducibility
y = y + normrnd(0,1,5,5)
y = 5x5
    1.5377  0.6923  1.6501  3.7950  5.6715
    2.8339  1.5664  6.0349  3.8759  3.7925
   -1.2588  2.3426  3.7254  5.4897  5.7172
    1.8622  5.5784  2.9369  5.4090  6.6302
    1.3188  4.7694  3.7147  5.4172  5.4889
```

Perform one-way ANOVA.

```matlab
p = anova1(y)
```
ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>53.7238</td>
<td>4</td>
<td>13.4309</td>
<td>6.05</td>
<td>0.0023</td>
</tr>
<tr>
<td>Error</td>
<td>44.408</td>
<td>20</td>
<td>2.2204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98.1318</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ANOVA table shows the between-groups variation (Columns) and within-groups variation (Error). SS is the sum of squares, and df is the degrees of freedom. The total degrees of freedom is total number of observations minus one, which is $25 - 1 = 24$. The between-groups degrees of freedom is number of groups minus one, which is $5 - 1 = 4$. The within-groups degrees of freedom is total degrees of freedom minus the between groups degrees of freedom, which is $24 - 4 = 20$.

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic is the ratio of the mean squared errors ($13.4309/2.2204$). The p-value is the probability that the test statistic can take a value greater than the value of the computed test $p = 0.0023$.
statistic, i.e., $P(F > 6.05)$. The small p-value of 0.0023 indicates that differences between column means are significant.

Compare Beam Strength Using One-Way ANOVA

Input the sample data.

```matlab
strength = [82 86 79 83 84 85 86 87 74 82 ... 78 75 76 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',... 'al1','al1','al1','al1','al1','al1',... 'al2','al2','al2','al2','al2','al2'};
```

The data are from a study of the strength of structural beams in Hogg (1987). The vector strength measures deflections of beams in thousandths of an inch under 3000 pounds of force. The vector alloy identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2 ('al2'). Although alloy is sorted in this example, grouping variables do not need to be sorted.

Test the null hypothesis that the steel beams are equal in strength to the beams made of the two more expensive alloys. Turn the figure display off and return the ANOVA results in a cell array.

```matlab
[p,tbl] = anova1(strength,alloy,'off')
```

```
p = 1.5264e-04

tbl = 4x6 cell array
Columns 1 through 5
{'Source'}    {'SS'     }    {'df'}    {'MS'     }    {'F'     }
{'Groups'}    {[184.8000]}    {[ 2]}    {[ 92.4000]}    {[ 15.4000]}
{'Error' }    {[102.0000]}    {[17]}    {[  6.0000]}    {0x0 double}
{'Total' }    {[286.8000]}    {[19]}    {0x0 double}    {0x0 double}

Column 6
{'Prob>F'    }
{[1.5264e-04]}
{0x0 double}
{0x0 double}
```
The total degrees of freedom is total number of observations minus one, which is 20 – 1 = 19. The between-groups degrees of freedom is number of groups minus one, which is 3 – 1 = 2. The within-groups degrees of freedom is total degrees of freedom minus the between groups degrees of freedom, which is 19 – 2 = 17.

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic is the ratio of the mean squared errors. The p-value is the probability that the test statistic can take a value greater than or equal to the value of the test statistic. The p-value of 1.5264e-04 suggests rejection of the null hypothesis.

You can retrieve the values in the ANOVA table by indexing into the cell array. Save the F-statistic value and the p-value in the new variables Fstat and pvalue.

Fstat = tbl{2,5}
Fstat = 15.4000
pvalue = tbl{2,6}
pvalue = 1.5264e-04

Multiple Comparisons for One-Way ANOVA

Input the sample data.

```matlab
strength = [82 86 79 83 84 85 86 87 74 82 ...
    78 75 76 77 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',
       'al1','al1','al1','al1','al1','al1',...
       'al2','al2','al2','al2','al2','al2'};
```

The data are from a study of the strength of structural beams in Hogg (1987). The vector strength measures deflections of beams in thousandths of an inch under 3000 pounds of force. The vector alloy identifies each beam as steel (st), alloy 1 (al1), or alloy 2 (al2). Although alloy is sorted in this example, grouping variables do not need to be sorted.

Perform one-way ANOVA using anova1. Return the structure stats, which contains the statistics multcompare needs for performing “Multiple Comparisons” on page 9-26.

```matlab
[~,~,stats] = anova1(strength,alloy);
```
ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>184.8</td>
<td>2</td>
<td>92.4</td>
<td>15.4</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>102</td>
<td>17</td>
<td>6</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>286.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The small p-value of 0.0002 suggests that the strength of the beams is not the same.

Perform a multiple comparison of the mean strength of the beams.

$[c,~,~,gnames] = \text{multcompare}(\text{stats});$
Display the comparison results with the corresponding group names.

[gnames(c(:,1)), gnames(c(:,2)), num2cell(c(:,3:6))]

ans = 3x6 cell array
Columns 1 through 5
{'st'} {'al1'} {[3.6064]} {[7]} {[10.3936]}
{'st'} {'al2'} {[1.6064]} {[5]} {[8.3936]}
{'al1'} {'al2'} {[-5.6280]} {[2]} {[1.6280]}

Column 6
{[1.6831e-04]}
The first two columns show the pair of groups that are compared. The fourth column shows the difference between the estimated group means. The third and fifth columns show the lower and upper limits for the 95% confidence intervals of the true difference of means. The sixth column shows the p-value for a hypothesis that the true difference of means for the corresponding groups is equal to zero.

The first two rows show that both comparisons involving the first group (steel) have confidence intervals that do not include zero. Because the corresponding p-values (1.6831e-04 and 0.0040, respectively) are small, those differences are significant.

The third row shows that the differences in strength between the two alloys is not significant. A 95% confidence interval for the difference is [-5.6, 1.6], so you cannot reject the hypothesis that the true difference is zero. The corresponding p-value of 0.3560 in the sixth column confirms this result.

In the figure, the blue bar represents the comparison interval for mean material strength for steel. The red bars represent the comparison intervals for the mean material strength for alloy 1 and alloy 2. Neither of the red bars overlap with the blue bar, which indicates that the mean material strength for steel is significantly different from that of alloy 1 and alloy 2. To confirm the significant difference by clicking the bars that represent alloy 1 and 2.

Input Arguments

y — sample data

vector | matrix

Sample data, specified as a vector or a matrix.

- If `y` is a vector, you must specify the `group` input argument. `group` must be a categorical variable, numeric vector, logical vector, character array, string array, or cell array of character vectors, with one name for each element of `y`. The `anova1` function treats the `y` values corresponding to the same value of `group` as part of the same group. Use this design when groups have different numbers of elements (unbalanced ANOVA).
• If \(y \) is a matrix and you do not specify \(\text{group} \), \(\text{anova1} \) treats each column of \(y \) as a separate group. In this design, the function evaluates whether the population means of the columns are equal. Use this design when each group has the same number of elements (balanced ANOVA).

\[
\begin{align*}
\mathbf{y} &= \begin{bmatrix}
 y_1 & y_2 & y_3 & y_4 & \cdots & y_N \\
\end{bmatrix} \\
\mathbf{g} &= \{ 'A', 'A', 'C', 'B', 'B', \ldots, 'D' \}
\end{align*}
\]

• If \(y \) is a matrix and you specify \(\text{group} \), then \(\text{group} \) must be a character array, string array, or cell array of character vectors, with one name for each column of \(y \). The \(\text{anova1} \) function treats the columns that have the same group name as part of the same group.
If `group` contains empty or NaN-valued elements, `anova1` disregards the corresponding observations in `y`.

Data Types: `single` | `double`

group — Grouping variable
numeric vector | logical vector | character array | string array | cell array of character vectors

Grouping variable, specified as a numeric or logical vector, character array, string array, or cell array of character vectors, containing group names.

- If `y` is a vector, `group` must be a categorical variable, numeric vector, logical vector, character array, string array, or cell array of character vectors, with one name for each element of `y`. The `anova1` function treats the `y` values corresponding to the same value of `group` as part of the same group.

\[
Y = \begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} & \cdots & Y_{1k} \\
Y_{21} & Y_{22} & Y_{23} & \cdots & Y_{2k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & Y_{n3} & \cdots & Y_{nk}
\end{bmatrix}
\]

- If `y` is a matrix, then `group` must be a character array, string array, or cell array of character vectors, with one group name for each column of `y`. The `anova1` function treats the columns of `y` that have the same group name as part of the same group.

\[N \text{ is the total number of observations.}\]
If you do not want to specify group names, enter an empty array ([]) or omit this argument.

If group contains empty or NaN-valued elements, the corresponding observations in y are disregarded.

For more information on grouping variables, see “Grouping Variables” on page 2-57.

For example, if y is a vector, with observations categorized into groups 1, 2, and 3, then you can specify the grouping variables as follows.

Example: 'group', [1,2,1,3,1,...,3,1]

For example, if y is a matrix, with six columns categorized into groups red, white, and black, then you can specify the grouping variables as follows.

Example: 'group',{'white','red','white','black','red'}

Data Types: single | double | logical | char | string | cell

displayopt — Indicator to display ANOVA table and box plot
'on' (default) | 'off'

Indicator to display ANOVA table and box plot, specified as 'on' or 'off'. When displayopt is 'off', anova1 returns the output arguments, only. It does not display the standard ANOVA table and box-plot of the columns of y.

Example: p = anova(x,group,'off')
Output Arguments

\(p \) — \(p \)-value for the F-test
scalar value

\(p \)-value for the F-test, returned as a scalar value. \(p \)-value is the probability that the F-statistic can take a value larger than the computed test-statistic value. `anova1` tests the null hypothesis that all group means are equal to each other against the alternative hypothesis that at least one group mean is different from the others. The function derives the \(p \)-value from the cdf of the F-distribution.

A \(p \)-value that is smaller than the significance level indicates that at least one of the sample means is significantly different from the others. Common significance levels are 0.05 or 0.01.

\(tbl \) — ANOVA table

cell array

ANOVA table, returned as a cell array. `tbl` has six columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>The source of the variability.</td>
</tr>
<tr>
<td>SS</td>
<td>The sum of squares due to each source.</td>
</tr>
<tr>
<td>df</td>
<td>The degrees of freedom associated with each source. Suppose (N) is the total number of observations and (k) is the number of groups. Then, (N - k) is the within-groups degrees of freedom (Error), (k - 1) is the between-groups degrees of freedom (Columns), and (N - 1) is the total degrees of freedom. (N - 1 = (N - k) + (k - 1))</td>
</tr>
<tr>
<td>MS</td>
<td>The mean squares for each source, which is the ratio (SS/df).</td>
</tr>
<tr>
<td>F</td>
<td>(F)-statistic, which is the ratio of the mean squares.</td>
</tr>
</tbody>
</table>
Prob>F

The *p*-value, which is the probability that the *F*-statistic can take a value larger than the computed test-statistic value. *anoval* derives this probability from the cdf of *F*-distribution.

The rows of the ANOVA table show the variability in the data that is divided by the source.

Row

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Variability due to the differences among the group means (variability between groups)</td>
</tr>
<tr>
<td>Error</td>
<td>Variability due to the differences between the data in each group and the group mean (variability within groups)</td>
</tr>
<tr>
<td>Total</td>
<td>Total variability</td>
</tr>
</tbody>
</table>

stats — Statistics for multiple comparison tests

Statistics for multiple comparison tests on page 9-26, returned as a structure. *stats* has six fields.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnames</td>
<td>Names of the groups</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations in each group</td>
</tr>
<tr>
<td>source</td>
<td>Source of the stats output</td>
</tr>
<tr>
<td>means</td>
<td>Estimated values of the means</td>
</tr>
<tr>
<td>df</td>
<td>Error (within-groups) degrees of freedom (N − k, where N is the total number of observations and k is the number of groups)</td>
</tr>
<tr>
<td>s</td>
<td>Square root of the mean squared error</td>
</tr>
</tbody>
</table>
Definitions

Box-Plot

`anova1` returns box plots of the observations in `y`, by group. Box plots provide a visual comparison of the group location parameters.

If `y` is a vector, then the plot shows one box for each value of `group`. If `y` is a matrix and you do not specify `group`, then the plot shows one box for each column of `y`. On each box, the central mark is the median and the edges of the box are the 25th and 75th percentiles (1st and 3rd quantiles). The whiskers extend to the most extreme data points that are not considered outliers. The outliers are plotted individually. The interval endpoints are the extremes of the notches. The extremes correspond to \(q_2 - 1.57(q_3 - q_1)/\sqrt{n} \) and \(q_2 + 1.57(q_3 - q_1)/\sqrt{n} \), where \(q_2 \) is the median (50th percentile), \(q_1 \) and \(q_3 \) are the 25th and 75th percentiles, respectively, and \(n \) is the number of observations without any NaN values.

Two medians are significantly different at the 5% significance level if their intervals do not overlap. This test is different from the F-test that ANOVA performs, but large differences in the center lines of the boxes correspond to large F-statistic values and correspondingly small p-values. For more information about box plots, see `boxplot`.

References

See Also

`anova2` | `anovan` | `boxplot` | `multcompare`

Topics

“Perform One-Way ANOVA” on page 9-6
“One-Way ANOVA” on page 9-3
“Multiple Comparisons” on page 9-26

Introduced before R2006a
anova2

Two-way analysis of variance

anova2 performs two-way analysis of variance (ANOVA) with balanced designs. To perform two-way ANOVA with unbalanced designs, see anovan.

Syntax

\[p = \text{anova2}(y,\text{reps}) \]
\[p = \text{anova2}(y,\text{reps},\text{displayopt}) \]
\[[p,\text{tbl}] = \text{anova2}(__) \]
\[[p,\text{tbl},\text{stats}] = \text{anova2}(__) \]

Description

\[p = \text{anova2}(y,\text{reps}) \] returns the \(p \)-values for a balanced two-way ANOVA for comparing the means of two or more columns and two or more rows of the observations in \(y \).

\(\text{reps} \) is the number of replicates for each combination of factor groups, which must be constant, indicating a balanced design. For unbalanced designs, use anovan. The anova2 function tests the main effects for column and row factors and their interaction effect. To test the interaction effect, \(\text{reps} \) must be greater than 1.

anova2 also displays the standard ANOVA table.

\[p = \text{anova2}(y,\text{reps},\text{displayopt}) \] enables the ANOVA table display when \(\text{displayopt} \) is 'on' (default) and suppresses the display when \(\text{displayopt} \) is 'off'.

\[[p,\text{tbl}] = \text{anova2}(__) \] returns the ANOVA table (including column and row labels) in cell array \(\text{tbl} \). To copy a text version of the ANOVA table to the clipboard, select Edit > Copy Text menu.

\[[p,\text{tbl},\text{stats}] = \text{anova2}(__) \] returns a \text{stats} structure, which you can use to perform a multiple comparison test on page 9-26. A multiple comparison test enables you.
to determine which pairs of group means are significantly different. To perform this test, use `multcompare`, providing the `stats` structure as input.

Examples

Two-Way ANOVA

Load the sample data.

```matlab
load popcorn
popcorn
popcorn = 6×3
5.5000    4.5000    3.5000
5.5000    4.5000    4.0000
6.0000    4.0000    3.0000
6.5000    5.0000    4.0000
7.0000    5.5000    5.0000
7.0000    5.0000    4.5000
```

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix `popcorn` are brands, Gourmet, National, and Generic, respectively. The rows are popper types, oil and air. In the study, researchers popped a batch of each brand three times with each popper, that is, the number of replications is 3. The first three rows correspond to the oil popper, and the last three rows correspond to the air popper. The response values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Save the ANOVA table in the cell array `tbl` for easy access to results.

```matlab
[p,tbl] = anova2(popcorn,3);
```
The column Prob>F shows the \(p \)-values for the three brands of popcorn (0.0000), the two popper types (0.0001), and the interaction between brand and popper type (0.7462). These values indicate that popcorn brand and popper type affect the yield of popcorn, but there is no evidence of an interaction effect of the two.

Display the cell array containing the ANOVA table.

tbl

tbl = 6x6 cell array
 Columns 1 through 5

 { 'Source' }, { 'SS' }, { 'df' }, { 'MS' }, { 'F' }, { 'Prob>F' }
 { 'Columns' }, { 15.7500 }, { 2 }, { 7.8750 }, { 56.7000 }, { 0 }
 { 'Rows' }, { 4.5 }, { 1 }, { 4.5 }, { 32.4 }, { 0.0001 }
 { 'Interaction' }, { 0.0833 }, { 2 }, { 0.04167 }, { 0.3 }, { 0.7462 }
 { 'Error' }, { 1.6667 }, { 12 }, { 0.13889 }
Store the F-statistic for the factors and factor interaction in separate variables.

$$F_{brands} = tbl(2,5)$$

$F_{brands} = 56.7000$

$$F_{poppertype} = tbl(3,5)$$

$F_{poppertype} = 32.4000$

$$F_{interaction} = tbl(4,5)$$

$F_{interaction} = 0.3000$

Multiple Comparisons for Two-Way ANOVA

Load the sample data.

```matlab
load popcorn
popcorn
```

$\text{popcorn} = 6 \times 3$

<table>
<thead>
<tr>
<th></th>
<th>5.5000</th>
<th>4.5000</th>
<th>3.5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5000</td>
<td>4.5000</td>
<td>4.0000</td>
</tr>
<tr>
<td>2</td>
<td>6.0000</td>
<td>4.0000</td>
<td>3.0000</td>
</tr>
<tr>
<td>3</td>
<td>6.5000</td>
<td>5.0000</td>
<td>4.0000</td>
</tr>
<tr>
<td>4</td>
<td>7.0000</td>
<td>5.5000</td>
<td>5.0000</td>
</tr>
</tbody>
</table>
The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper types oil and air. In the study, researchers popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a multiple comparison test on the main effects.

\[
\text{[~,~,stats] = anova2(popcorn,3,'off')}\]

\[
\text{stats = struct with fields:}
\]
\[
\begin{align*}
\text{source: 'anova2'} \\
\text{sigmasq: 0.1389} \\
\text{colmeans: [6.2500 4.7500 4]} \\
\text{coln: 6} \\
\text{rowmeans: [4.5000 5.5000]} \\
\text{rown: 9} \\
\text{inter: 1} \\
\text{pval: 0.7462} \\
\text{df: 12}
\end{align*}
\]

The stats structure includes

- The mean squared error (sigmasq)
- The estimates of the mean yield for each popcorn brand (colmeans)
- The number of observations for each popcorn brand (coln)
- The estimate of the mean yield for each popper type (rowmeans)
- The number of observations for each popper type (rown)
- The number of interactions (inter)
- The p-value that shows the significance level of the interaction term (pval)
- The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of popcorn brands (columns).

\[
c = \text{multcompare(stats)}
\]
Note: Your model includes an interaction term. A test of main effects can be difficult to interpret when the model includes interactions.

The first two columns of \(c \) show the groups that are compared. The fourth column shows the difference between the estimated group means. The third and fifth columns show the lower and upper limits for 95% confidence intervals for the true mean difference. The sixth column contains the \(p \)-value for a hypothesis test that the corresponding mean
difference is equal to zero. All p-values (0, 0, and 0.0116) are very small, which indicates that the popcorn yield differs across all three brands.

The figure shows the multiple comparison of the means. By default, the group 1 mean is highlighted and the comparison interval is in blue. Because the comparison intervals for the other two groups do not intersect with the intervals for the group 1 mean, they are highlighted in red. This lack of intersection indicates that both means are different than group 1 mean. Select other group means to confirm that all group means are significantly different from each other.

Perform a multiple comparison test to see the popcorn yield differs between the two popper types (rows).

c = multcompare(stats,'Estimate','row')

Note: Your model includes an interaction term. A test of main effects can be difficult to interpret when the model includes interactions.
The small p-value of 0.0001 indicates that the popcorn yield differs between the two popper types (air and oil). The figure shows the same results. The disjoint comparison intervals indicate that the group means are significantly different from each other.
Input Arguments

y — Sample data

matrix

Sample data, specified as a matrix. The columns correspond to groups of one factor, and the rows correspond to the groups of the other factor and the replications. Replications are the measurements or observations for each combination of groups (levels) of the row and column factor. For example, in the following data the row factor A has three levels, column factor B has two levels, and there are two replications (reps = 2). The subscripts indicate row, column, and replication, respectively.

\[
\begin{bmatrix}
 y_{11} & y_{12} \\
 y_{12} & y_{12} \\
 y_{21} & y_{22} \\
 y_{22} & y_{22} \\
 y_{31} & y_{32} \\
 y_{32} & y_{32}
\end{bmatrix}
\]

Data Types: single | double

reps — Number of replications

1 (default) | an integer number

Number of replications for each combination of groups, specified as an integer number. For example, the following data has two replications (reps = 2) for each group combination of row factor A and column factor B.

\[
\begin{bmatrix}
 y_{11} & y_{12} \\
 y_{12} & y_{12} \\
 y_{21} & y_{22} \\
 y_{22} & y_{22} \\
 y_{31} & y_{32} \\
 y_{32} & y_{32}
\end{bmatrix}
\]
When `reps` is 1 (default), `anova2` returns two p-values in vector `p`:

- The p-value for the null hypothesis that all samples from factor B (i.e., all column samples in `y`) are drawn from the same population.
- The p-value for the null hypothesis, that all samples from factor A (i.e., all row samples in `y`) are drawn from the same population.

When `reps` is greater than 1, `anova2` also returns the p-value for the null hypothesis that factors A and B have no interaction (i.e., the effects due to factors A and B are additive).

Example: `p = anova(y, 3)` specifies that each combination of groups (levels) has three replications.

Data Types: `single` | `double`

`displayopt — Indicator to display the ANOVA table`
`'on' (default) | 'off'`

Indicator to display the ANOVA table as a figure, specified as `'on'` or `'off'`.

Output Arguments

`p — p-value`
scalar value

p-value for the F-test, returned as a scalar value. A small p-value indicates that the results are statistically significant. Common significance levels are 0.05 or 0.01. For example:

- A sufficiently small p-value for the null hypothesis for group means of row factor A suggests that at least one row-sample mean is significantly different from the other row-sample means; i.e., there is a main effect due to factor A.
- A sufficiently small p-value for the null hypothesis for group (level) means of column factor B suggests that at least one column-sample mean is significantly different from the other column-sample means; i.e., there is a main effect due to factor B.
- A sufficiently small p-value for combinations of groups (levels) of factors A and B suggests that there is an interaction between factors A and B.

`tbl — ANOVA table`
cell array
ANOVA table, returned as a cell array. \(\texttt{tbl} \) has six columns.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Source of the variability.</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares due to each source.</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom associated with each source.</td>
</tr>
<tr>
<td>MS</td>
<td>Mean squares for each source, which is the ratio (\text{SS} / \text{df}).</td>
</tr>
<tr>
<td>F</td>
<td>(F)-statistic, which is the ratio of the mean squares.</td>
</tr>
<tr>
<td>Prob>F</td>
<td>(p)-value, which is the probability that the (F)-statistic can take a value larger than the computed test-statistic value. (\text{anova2}) derives this probability from the cdf of the (F)-distribution.</td>
</tr>
</tbody>
</table>

The rows of the ANOVA table show the variability in the data, divided by the source into three or four parts, depending on the value of \(\text{reps} \).

<table>
<thead>
<tr>
<th>Row</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>Variability due to the differences among the column means</td>
</tr>
<tr>
<td>Rows</td>
<td>Variability due to the differences among the row means</td>
</tr>
<tr>
<td>Interaction</td>
<td>Variability due to the interaction between rows and columns (if (\text{reps}) is greater than its default value of 1)</td>
</tr>
<tr>
<td>Error</td>
<td>Remaining variability not explained by any systematic source</td>
</tr>
</tbody>
</table>

Data Types: cell

stats — Statistics for multiple comparison test
structure
Statistics for multiple comparisons tests on page 9-26, returned as a structure. Use `multcompare` to perform multiple comparison tests, supplying `stats` as an input argument. `stats` has nine fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source</code></td>
<td>Source of the <code>stats</code> output</td>
</tr>
<tr>
<td><code>sigmasq</code></td>
<td>Mean squared error</td>
</tr>
<tr>
<td><code>colmeans</code></td>
<td>Estimated values of the column means</td>
</tr>
<tr>
<td><code>coln</code></td>
<td>Number of observations for each group in columns</td>
</tr>
<tr>
<td><code>rowmeans</code></td>
<td>Estimated values of the row means</td>
</tr>
<tr>
<td><code>rown</code></td>
<td>Number of observations for each group in rows</td>
</tr>
<tr>
<td><code>inter</code></td>
<td>Number of interactions</td>
</tr>
<tr>
<td><code>pval</code></td>
<td>p-value for the interaction term</td>
</tr>
<tr>
<td><code>df</code></td>
<td>Error degrees of freedom ((\text{reps} - 1) \times c \times r) where \text{reps} is the number of replications and (c) and (r) are the number of groups in factors, respectively.</td>
</tr>
</tbody>
</table>

Data Types: `struct`

References

See Also

`anova1` | `anovan` | `multcompare`

Topics

“Perform Two-Way ANOVA” on page 9-18
“Two-Way ANOVA” on page 9-15
“Multiple Comparisons” on page 9-26
Introduced before R2006a
anovan

N-way analysis of variance

Syntax

\[p = \text{anovan}(y,\text{group}) \]
\[p = \text{anovan}(y,\text{group},\text{Name},\text{Value}) \]
\[[p,\text{tbl}] = \text{anovan}(______) \]
\[[p,\text{tbl,stats}] = \text{anovan}(_____) \]
\[[p,\text{tbl,stats,terms}] = \text{anovan}(_____) \]

Description

\[p = \text{anovan}(y,\text{group}) \] returns a vector of \(p \)-values, one per term, for multiway \((n\)-way) analysis of variance (ANOVA) for testing the effects of multiple factors on the mean of the vector \(y \).

anovan also displays a figure showing the standard ANOVA table.

\[p = \text{anovan}(y,\text{group},\text{Name},\text{Value}) \] returns a vector of \(p \)-values for multiway \((n\)-way) ANOVA using additional options specified by one or more Name,Value pair arguments.

For example, you can specify which predictor variable is continuous, if any, or the type of sum of squares to use.

\[[p,\text{tbl}] = \text{anovan}(_____) \] returns the ANOVA table (including factor labels) in cell array tbl for any of the input arguments specified in the previous syntaxes. Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.

\[[p,\text{tbl,stats}] = \text{anovan}(_____) \] returns a stats structure that you can use to perform a multiple comparison test on page 9-26, which enables you to determine which pairs of group means are significantly different. You can perform such a test using the multcompare function by providing the stats structure as input.
[\text{p, tbl, stats, terms}] = \text{anovan}(___) \text{ returns the main and interaction terms used in the ANOVA computations in terms.}

Examples

Three-Way ANOVA

Load the sample data.

\[
y = [52.7 \ 57.5 \ 45.9 \ 44.5 \ 53.0 \ 57.0 \ 45.9 \ 44.0]';
y = \text{[52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]'};
g1 = [1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2];
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g2 = {'hi' 'hi' 'lo' 'lo' 'hi' 'hi' 'lo' 'lo'};
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
g3 = {'may' 'may' 'may' 'may' 'june' 'june' 'june' 'june'};
\]

\text{\text{y}} \text{ is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two levels, and every observation in y is identified by a combination of factor levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi' of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.}

Test if the response is the same for all factor levels.

\text{p = anovan(y,\{g1, g2, g3\})}
In the ANOVA table, X_1, X_2, and X_3 correspond to the factors g_1, g_2, and g_3, respectively. The p-value 0.4174 indicates that the mean responses for levels 1 and 2 of the factor g_1 are not significantly different. Similarly, the p-value 0.914 indicates that the mean responses for levels 'may' and 'june', of the factor g_3 are not significantly different. However, the p-value 0.0028 is small enough to conclude that the mean responses are
significantly different for the two levels, 'hi' and 'lo' of the factor $g2$. By default, \texttt{anovan} computes p-values just for the three main effects.

Test the two-factor interactions. This time specify the variable names.

```matlab
p = anovan(y, [g1 g2 g3], 'model', 'interaction', 'varnames', {'g1', 'g2', 'g3'})
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum Sq.</th>
<th>d.f.</th>
<th>Mean Sq.</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g1$</td>
<td>3.781</td>
<td>1</td>
<td>3.781</td>
<td>336.11</td>
<td>0.0347</td>
</tr>
<tr>
<td>$g2$</td>
<td>199.001</td>
<td>1</td>
<td>199.001</td>
<td>17689</td>
<td>0.0048</td>
</tr>
<tr>
<td>$g3$</td>
<td>0.061</td>
<td>1</td>
<td>0.061</td>
<td>5.44</td>
<td>0.2578</td>
</tr>
<tr>
<td>$g1\times g2$</td>
<td>18.301</td>
<td>1</td>
<td>18.301</td>
<td>1626.78</td>
<td>0.0158</td>
</tr>
<tr>
<td>$g1\times g3$</td>
<td>0.211</td>
<td>1</td>
<td>0.211</td>
<td>18.78</td>
<td>0.1444</td>
</tr>
<tr>
<td>$g2\times g3$</td>
<td>0.011</td>
<td>1</td>
<td>0.011</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Error</td>
<td>0.011</td>
<td>1</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>221.379</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constrained (Type III) sums of squares.

```matlab
p = 6x1
0.0347
0.0048
0.2578
0.0158
0.1444
```
The interaction terms are represented by g_1g_2, g_1g_3, and g_2g_3 in the ANOVA table. The first three entries of p are the p-values for the main effects. The last three entries are the p-values for the two-way interactions. The p-value of 0.0158 indicates that the interaction between g_1 and g_2 is significant. The p-values of 0.1444 and 0.5 indicate that the corresponding interactions are not significant.

Two-Way ANOVA for Unbalanced Design

Load the sample data.

```matlab
load carbig
```

The data has measurements on 406 cars. The variable `org` shows where the cars were made and `when` shows when in the year the cars were manufactured.

Study how the mileage depends on when and where the cars were made. Also include the two-way interactions in the model.

```matlab
p = anovan(MPG,{org when},'model',2,'varnames',{'origin','mfg date'})
```
The 'model',2 name-value pair argument represents the two-way interactions. The p-value for the interaction term, 0.3059, is not small, indicating little evidence that the effect of the time of manufacture (mfg date) depends on where the car was made (origin). The main effects of origin and manufacturing date, however, are significant, both p-values are 0.
Multiple Comparisons for Three-Way ANOVA

Load the sample data.

```matlab
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
```

y is the response vector and $g1$, $g2$, and $g3$ are the grouping variables (factors). Each factor has two levels, and every observation in y is identified by a combination of factor levels. For example, observation $y(1)$ is associated with level 1 of factor $g1$, level 'hi' of factor $g2$, and level 'may' of factor $g3$. Similarly, observation $y(6)$ is associated with level 2 of factor $g1$, level 'hi' of factor $g2$, and level 'june' of factor $g3$.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple comparison tests.

```matlab
[~,~,stats] = anovan(y,{g1 g2 g3},'model','interaction',...
    'varnames',{'g1','g2','g3'});
```
The \(p \)-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of factor g3 are not significantly different. The \(p \)-value of 0.0347 indicates that the mean responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the \(p \)-value of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are significantly different.

```matlab
results = multcompare(stats,'Dimension',[1 2])
```
multcompare compares the combinations of groups (levels) of the two grouping variables, g1 and g2. In the results matrix, the number 1 corresponds to the combination of level 1 of g1 and level hi of g2, the number 2 corresponds to the combination of level 2 of g1 and level hi of g2. Similarly, the number 3 corresponds to
the combination of level 1 of g1 and level lo of g2, and the number 4 corresponds to the
combination of level 2 of g1 and level lo of g2. The last column of the matrix contains the
p-values.

For example, the first row of the matrix shows that the combination of level 1 of g1 and
level hi of g2 has the same mean response values as the combination of level 2 of g1 and
level hi of g2. The p-value corresponding to this test is 0.0280, which indicates that the
mean responses are significantly different. You can also see this result in the figure. The
blue bar shows the comparison interval for the mean response for the combination of
level 1 of g1 and level hi of g2. The red bars are the comparison intervals for the mean
response for other group combinations. None of the red bars overlap with the blue bar,
which means the mean response for the combination of level 1 of g1 and level hi of g2 is
significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval for
the group. The bar you click on turns to blue. The bars for the groups that are
significantly different are red. The bars for the groups that are not significantly different
are gray. For example, if you click on the comparison interval for the combination of level
1 of g1 and level lo of g2, the comparison interval for the combination of level 2 of g1
and level lo of g2 overlaps, and is therefore gray. Conversely, the other comparison
intervals are red, indicating significant difference.

Input Arguments

y — Sample data

c_numeric vector

Sample data, specified as a numeric vector.

Data Types: single | double

group — Grouping variables

cell array

Grouping variables, i.e. the factors and factor levels of the observations in y, specified as
a cell array. Each of the cells in group contains a list of factor levels identifying the
observations in y with respect to one of the factors. The list within each cell can be a
categorical array, numeric vector, character matrix, string array, or single-column cell
array of character vectors, and must have the same number of elements as y.
By default, `anovan` treats all grouping variables as fixed effects.

For example, in a study you want to investigate the effects of gender, school, and the education method on the academic success of elementary school students, then you can specify the grouping variables as follows.

Example: `{'Gender','School','Method'}`

Data Types: `cell`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'alpha',0.01,'model','interaction','sstype',2` specifies `anovan` to compute the 99% confidence bounds and p-values for the main effects and two-way interactions using type II sum of squares.

alpha — Confidence level

0.05 (default) | scalar value in the range 0 to 1

Confidence level for confidence bounds, specified as the comma-separated pair consisting of `'alpha'` and a scalar value in the range 0 to 1. For a value α, the confidence level is $100(1-\alpha)\%$.

Example: `'alpha',0.01` corresponds to 99% confidence intervals

Data Types: `single` | `double`

continuous — Indicator for continuous predictors

vector of indices
Indicator for continuous predictors, representing which grouping variables should be treated as continuous predictors rather than as categorical predictors, specified as the comma-separated pair consisting of 'continuous' and a vector of indices.

For example, if there are three grouping variables and second one is continuous, then you can specify as follows.

Example: 'continuous',[2]

Data Types: single | double

display — Indicator to display ANOVA table

'on' (default) | 'off'

Indicator to display ANOVA table, specified as the comma-separated pair consisting of 'display' and 'on' or 'off'. When displayopt is 'off', anovan only returns the output arguments, and does not display the standard ANOVA table as a figure.

Example: 'display','off'

model — Type of the model

'linear' (default) | 'interaction' | 'full' | integer value | terms matrix

Type of the model, specified as the comma-separated pair consisting of 'model' and one of the following:

- 'linear' — The default 'linear' model computes only the p-values for the null hypotheses on the N main effects.
- 'interaction' — The 'interaction' model computes the p-values for null hypotheses on the N main effects and the two-factor interactions.
- 'full' — The 'full' model computes the p-values for null hypotheses on the N main effects and interactions at all levels.
- An integer — For an integer value of k, (k ≤ N) for model type, anovan computes all interaction levels through the kth level. For example, the value 3 means main effects plus two- and three-factor interactions. The values k = 1 and k = 2 are equivalent to the 'linear' and 'interaction' specifications, respectively. The value k = N is equivalent to the 'full' specification.
- Terms matrix — A matrix of term definitions having the same form as the input to the x2fx function. All entries must be 0 or 1 (no higher powers).
For more precise control over the main and interaction terms that \texttt{anovan} computes, you can specify a matrix containing one row for each main or interaction term to include in the ANOVA model. Each row defines one term using a vector of \(N \) zeros and ones. The table below illustrates the coding for a 3-factor ANOVA for factors \(A \), \(B \), and \(C \).

<table>
<thead>
<tr>
<th>Matrix Row</th>
<th>ANOVA Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>([1 0 0])</td>
<td>Main term (A)</td>
</tr>
<tr>
<td>([0 1 0])</td>
<td>Main term (B)</td>
</tr>
<tr>
<td>([0 0 1])</td>
<td>Main term (C)</td>
</tr>
<tr>
<td>([1 1 0])</td>
<td>Interaction term (AB)</td>
</tr>
<tr>
<td>([1 0 1])</td>
<td>Interaction term (AC)</td>
</tr>
<tr>
<td>([0 1 1])</td>
<td>Interaction term (BC)</td>
</tr>
<tr>
<td>([1 1 1])</td>
<td>Interaction term (ABC)</td>
</tr>
</tbody>
</table>

For example, if there are three factors \(A \), \(B \), and \(C \), and \texttt{'model'}, \([0 1 0;0 0 1;0 1 1]\), then \texttt{anovan} tests for the main effects \(B \) and \(C \), and the interaction effect \(BC \), respectively.

A simple way to generate the terms matrix is to modify the \texttt{terms} output, which codes the terms in the current model using the format described above. If \texttt{anovan} returns \([0 1 0;0 0 1;0 1 1]\) for \texttt{terms}, for example, and there is no significant interaction \(BC \), then you can recompute ANOVA on just the main effects \(B \) and \(C \) by specifying \([0 1 0;0 0 1]\) for \texttt{model}.

Example: \texttt{'model'}, \([0 1 0;0 0 1;0 1 1]\)
Example: \texttt{'model'}, \texttt{'interaction'}

\textbf{Data Types:} char | string | single | double

\textbf{\textit{nested} — Nesting relationships}
matrix of 0’s and 1’s

Nesting relationships among the grouping variables, specified as the comma-separated pair consisting of \texttt{'nested'} and a matrix \(M \) of 0’s and 1’s, i.e.\(M(i,j) = 1 \) if variable \(i \) is nested in variable \(j \).

For example, if there are two grouping variables District and School, where School is nested in District, then you can express this relationship as follows.
Example: 'nested', [0 0; 1 0]
Data Types: single | double

random — Indicator for random variables
vector of indices

Indicator for random variables, representing which grouping variables are random, specified as the comma-separated pair consisting of 'random' and a vector of indices. By default, anovan treats all grouping variables as fixed.

anovan treats an interaction term as random if any of the variables in the interaction term is random.

Example: 'random', [3]
Data Types: single | double

sstype — Type of sum of squares
3 (default) | 1 | 2 | 'h'

Type of sum squares, specified as the comma-separated pair consisting of 'sstype' and the following:

- 1 — Type I sum of squares. The reduction in residual sum of squares obtained by adding that term to a fit that already includes the terms listed before it.
- 2 — Type II sum of squares. The reduction in residual sum of squares obtained by adding that term to a model consisting of all other terms that do not contain the term in question.
- 3 — Type III sum of squares. The reduction in residual sum of squares obtained by adding that term to a model containing all other terms, but with their effects constrained to obey the usual “sigma restrictions” that make models estimable.
- 'h' — Hierarchical model. Similar to type 2, but with continuous as well as categorical factors used to determine the hierarchy of terms.

The sum of squares for any term is determined by comparing two models. For a model containing main effects but no interactions, the value of sstype only influences computations on unbalanced data.

Suppose you are fitting a model with two factors and their interaction, and that the terms appear in the order A, B, AB. Let R(·) represent the residual sum of squares for a model, so for example R(A, B, AB) is the residual sum of squares fitting the whole model, R(A) is
the residual sum of squares fitting just the main effect of A, and \(R(1) \) is the residual sum of squares fitting just the mean. The three types of sums of squares are as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>Type 1 Sum of Squares</th>
<th>Type 2 Sum of Squares</th>
<th>Type 3 Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(R(1) - R(A))</td>
<td>(R(B) - R(A, B))</td>
<td>(R(B, AB) - R(A, B, AB))</td>
</tr>
<tr>
<td>B</td>
<td>(R(A) - R(A, B))</td>
<td>(R(A) - R(A, B))</td>
<td>(R(A, AB) - R(A, B, AB))</td>
</tr>
<tr>
<td>AB</td>
<td>(R(A, B) - R(A, B, AB))</td>
<td>(R(A, B) - R(A, B, AB))</td>
<td>(R(A, B) - R(A, B, AB))</td>
</tr>
</tbody>
</table>

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that in fitting \(R(B, AB) \), the array of \(AB \) effects is constrained to sum to 0 over \(A \) for each value of \(B \), and over \(B \) for each value of \(A \).

Example: 'sstype','h'

Data Types: single | double | char | string

varnames — Names of grouping variables

X1, X2, ..., XN (default) | character matrix | string array | cell array of character vectors

Names of grouping variables, specified as the comma-separating pair consisting of 'varnames' and a character matrix, a string array, or a cell array of character vectors.

Example: 'varnames',{'Gender','City'}

Data Types: char | string | cell

Output Arguments

p — p-values

vector

\(p \)-values, returned as a vector.

Output vector \(p \) contains \(p \)-values for the null hypotheses on the \(N \) main effects and any interaction terms specified. Element \(p(1) \) contains the \(p \)-value for the null hypotheses that samples at all levels of factor \(A \) are drawn from the same population; element \(p(2) \) contains the \(p \)-value for the null hypotheses that samples at all levels of factor \(B \) are drawn from the same population; and so on.
For example, if there are three factors \(A, B, \) and \(C, \) and 'model', \([0\ 1\ 0;0\ 0\ 1;0\ 1\ 1]\), then the output vector \(p \) contains the \(p \)-values for the null hypotheses on the main effects \(B \) and \(C \) and the interaction effect \(BC \), respectively.

A sufficiently small \(p \)-value corresponding to a factor suggests that at least one group mean is significantly different from the other group means; that is, there is a main effect due to that factor. It is common to declare a result significant if the \(p \)-value is less than 0.05 or 0.01.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. The ANOVA table has seven columns:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Source of the variability.</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares due to each source.</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom associated with each source.</td>
</tr>
<tr>
<td>MS</td>
<td>Mean squares for each source, which is the ratio SS/df.</td>
</tr>
<tr>
<td>Singular?</td>
<td>Indication of whether the term is singular.</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)-statistic, which is the ratio of the mean squares.</td>
</tr>
<tr>
<td>Prob>F</td>
<td>The (p)-values, which is the probability that the (F)-statistic can take a value larger than a computed test-statistic value. \textit{anovan} derives these probabilities from the cdf of (F)-distribution.</td>
</tr>
</tbody>
</table>

The ANOVA table also contains the following columns if at least one of the grouping variables is specified as random using the name-value pair argument random:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type of each source; 'fixed' for a fixed effect or 'random' for a random effect.</td>
</tr>
<tr>
<td>Column name</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Expected MS</td>
<td>Text representation of the expected value for the mean square. $Q(\text{source})$ represents a quadratic function of source and $V(\text{source})$ represents the variance of source.</td>
</tr>
<tr>
<td>MS denom</td>
<td>Denominator of the F-statistic.</td>
</tr>
<tr>
<td>d.f. denom</td>
<td>Degrees of freedom for the denominator of the F-statistic.</td>
</tr>
<tr>
<td>Denom. defn.</td>
<td>Text representation of the denominator of the F-statistic. MS(source) represents the mean square of source.</td>
</tr>
<tr>
<td>Var. est.</td>
<td>Variance component estimate.</td>
</tr>
<tr>
<td>Var. lower bnd</td>
<td>Lower bound of the 95% confidence interval for the variance component estimate.</td>
</tr>
<tr>
<td>Var. upper bnd</td>
<td>Upper bound of the 95% confidence interval for the variance component estimate.</td>
</tr>
</tbody>
</table>

stats — Statistics

structure

Statistics to use in a multiple comparison test on page 9-26 using the `multcompare` function, returned as a structure.

`anovan` evaluates the hypothesis that the different groups (levels) of a factor (or more generally, a term) have the same effect, against the alternative that they do not all have the same effect. Sometimes it is preferable to perform a test to determine which pairs of levels are significantly different, and which are not. Use the `multcompare` function to perform such tests by supplying the `stats` structure as input.

The `stats` structure contains the fields listed below, in addition to a number of other fields required for doing multiple comparisons using the `multcompare` function:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coeffs</td>
<td>Estimated coefficients</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>coeffnames</td>
<td>Name of term for each coefficient</td>
</tr>
<tr>
<td>vars</td>
<td>Matrix of grouping variable values for each term</td>
</tr>
<tr>
<td>resid</td>
<td>Residuals from the fitted model</td>
</tr>
</tbody>
</table>

The `stats` structure also contains the following fields if at least one of the grouping variables is specified as random using the name-value pair argument `random`:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ems</td>
<td>Expected mean squares</td>
</tr>
<tr>
<td>denom</td>
<td>Denominator definition</td>
</tr>
<tr>
<td>rtnames</td>
<td>Names of random terms</td>
</tr>
<tr>
<td>varest</td>
<td>Variance component estimates (one per random term)</td>
</tr>
<tr>
<td>varci</td>
<td>Confidence intervals for variance components</td>
</tr>
</tbody>
</table>

terms — Main and interaction terms

Matrix

Main and interaction terms, returned as a matrix. The terms are encoded in the output matrix `terms` using the same format described above for input `model`. When you specify `model` itself in this format, the matrix returned in `terms` is identical.

References

See Also

`anovar1 | anova2 | fitrm | multcompare | ranova`
Topics

“Perform N-Way ANOVA” on page 9-39
“ANOVA with Random Effects” on page 9-48
“Multiple Comparisons” on page 9-26
“N-Way ANOVA” on page 9-36

Introduced before R2006a
anova

Class: RepeatedMeasuresModel

Analysis of variance for between-subject effects

Syntax

anovatbl = anova(rm)
anovatbl = anova(rm,'WithinModel',WM)

Description

anovatbl = anova(rm) returns the analysis of variance results for the repeated measures model rm.

anovatbl = anova(rm,'WithinModel',WM) returns the analysis of variance results it performs using the response or responses specified by the within-subject model WM.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

WM — Within-subject model
'separatemeans' (default) | 'orthogonalcontrasts' | character vector or string scalar defining a model specification | r-by-nc matrix specifying nc contrasts

Within-subject model, specified as one of the following:

• 'separatemeans' — The response is the average of the repeated measures (average across the within-subject model).
• 'orthogonalcontrasts' — This is valid when the within-subject model has a single numeric factor T. Responses are the average, the slope of centered T, and, in general, all orthogonal contrasts for a polynomial up to $T^{(p-1)}$, where p is the number of rows in the within-subject model. anova multiplies Y, the response you use in the repeated measures model rm by the orthogonal contrasts, and uses the columns of the resulting product matrix as the responses.

anova computes the orthogonal contrasts for T using the Q factor of a QR factorization on page 32-111 of the Vandermonde matrix on page 32-111.

• A character vector or string scalar that defines a model specification in the within-subject factors. Responses are defined by the terms in that model. anova multiplies Y, the response matrix you use in the repeated measures model rm by the terms of the model, and uses the columns of the result as the responses.

For example, if there is a Time factor and 'Time' is the model specification, then anova uses two terms, the constant and the uncentered Time term. The default is '1' to perform on the average response.

• An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y represents the matrix of repeated measures you use in the repeated measures model rm, then the output tbl contains a separate analysis of variance for each column of $Y*C$.

The anova table contains a separate univariate analysis of variance results for each response.

Example: 'WithinModel','Time'
Example: 'WithinModel','orthogonalcontrasts'

Output Arguments

anova — Results of analysis of variance table

Results of analysis of variance for between-subject effects, returned as a table. This includes all terms on the between-subjects model and the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within</td>
<td>Within-subject factors</td>
</tr>
</tbody>
</table>
Column Name | Definition
--- | ---
Between | Between-subject factors
SumSq | Sum of squares
DF | Degrees of freedom
MeanSq | Mean squared error
F | F-statistic
pValue | p-value corresponding to the F-statistic

Examples

Analysis of Variance for Average Response

Load the sample data.

```matlab
load fisheriris
```

The column vector `species` consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```matlab
t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4),... 'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4],'VarNames',{'Measurements'});
```

Fit a repeated measures model where the measurements are the responses and the species is the predictor variable.

```matlab
rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);
```

Perform analysis of variance.

```matlab
anova(rm)
```

```
ans=3×7 table
     Within    Between    SumSq    DF     MeanSq     F     pValue
          ____    ______    ______    ___    _______    ______    ___________
```

32-107
There are 150 observations and 3 species. The degrees of freedom for species is 3 - 1 = 2, and for error it is 150 - 3 = 147. The small p-value of 1.1517e-61 indicates that the measurements differ significantly according to species.

Panel Data

Load the sample panel data.

```matlab
load(fullfile(matlabroot,'examples','stats','panelData.mat'));
```

The dataset array, `panelData`, contains yearly observations on eight cities for 6 years. The first variable, `Growth`, measures economic growth (the response variable). The second and third variables are city and year indicators, respectively. The last variable, `Employ`, measures employment (the predictor variable). This is simulated data.

Store the data in a table array and define city as a nominal variable.

```matlab
t = table(panelData.Growth,panelData.City,panelData.Year,...
    'VariableNames',{'Growth','City','Year'});
```

Convert the data in a proper format to do repeated measures analysis.

```matlab
t = unstack(t,'Growth','Year','NewDataVariableNames',
    {'year1','year2','year3','year4','year5','year6'});
```

Add the mean employment level over the years as a predictor variable to the table `t`.

```matlab
t(:,8) = table(grpstats(panelData.Employ,panelData.City));
t.Properties.VariableNames{'Var8'} = 'meanEmploy';
```

Define the within-subjects variable.

```matlab
Year = [1 2 3 4 5 6]';
```

Fit a repeated measures model, where the growth figures over the 6 years are the responses and the mean employment is the predictor variable.
```matlab
rm = fitrm(t,'year1-year6 ~ meanEmploy','WithinDesign',Year);

Perform analysis of variance.

anovatbl = anova(rm,'WithinModel',Year)
```

```
anovatbl=3x7 table
Within       Between        SumSq       DF      MeanSq         F         pValue
_________    __________    __________    __    __________    ________    _________
Contrast1    constant          588.17    1         588.17    0.038495      0.85093
Contrast1    meanEmploy    3.7064e+05    1     3.7064e+05      24.258    0.0026428
Contrast1    Error              91675    6          15279
```

Longitudinal Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','longitudinalData.mat'))
```

The matrix `Y` contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of `Y` corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

```matlab
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']
```

Store the data in a proper table array format to do repeated measures analysis.

```matlab
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...
'VariableNames',{'Gender','t0','t2','t4','t6','t8'});
```

Define the within-subjects variable.

```matlab
Time = [0 2 4 6 8]
```

Fit a repeated measures model, where blood levels are the responses and gender is the predictor variable.

```matlab
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
```
Perform analysis of variance.

\[
\text{anova} = \text{anova(rm)}
\]

\[
\begin{array}{cccccc}
\text{Within} & \text{Between} & \text{SumSq} & \text{DF} & \text{MeanSq} & \text{F} & \text{pValue} \\
\hline
\text{Constant} & \text{constant} & 54702 & 1 & 54702 & 1079.2 & 1.1897e-14 \\
\text{Constant} & \text{Gender} & 2251.7 & 1 & 2251.7 & 44.425 & 1.0693e-05 \\
\text{Constant} & \text{Error} & 709.6 & 14 & 50.685 & & \\
\end{array}
\]

There are 2 genders and 16 observations, so the degrees of freedom for gender is \((2 - 1) = 1\) and for error it is \((16 - 2) \times (2 - 1) = 14\). The small \textit{p}-value of 1.0693e-05 indicates that there is a significant effect of gender on blood pressure.

Repeat analysis of variance using orthogonal contrasts.

\[
\text{anova} = \text{anova(rm,'WithinModel','orthogonalcontrasts')}
\]

\[
\begin{array}{cccccc}
\text{Within} & \text{Between} & \text{SumSq} & \text{DF} & \text{MeanSq} & \text{F} & \text{pValue} \\
\hline
\text{Constant} & \text{constant} & 54702 & 1 & 54702 & 1079.2 & 1.1897e-14 \\
\text{Constant} & \text{Gender} & 2251.7 & 1 & 2251.7 & 44.425 & 1.0693e-05 \\
\text{Constant} & \text{Error} & 709.6 & 14 & 50.685 & & \\
\text{Time} & \text{constant} & 310.83 & 1 & 310.83 & 31.023 & 6.9065e-05 \\
\text{Time} & \text{Gender} & 13.341 & 1 & 13.341 & 1.3315 & 0.26785 \\
\text{Time} & \text{Error} & 140.27 & 14 & 10.019 & & \\
\text{Time}^2 & \text{constant} & 565.42 & 1 & 565.42 & 98.901 & 1.0003e-07 \\
\text{Time}^2 & \text{Gender} & 1.4076 & 1 & 1.4076 & 0.24621 & 0.62746 \\
\text{Time}^2 & \text{Error} & 80.039 & 14 & 5.7171 & & \\
\text{Time}^3 & \text{constant} & 2.6127 & 1 & 2.6127 & 1.4318 & 0.25134 \\
\text{Time}^3 & \text{Gender} & 7.8853e-06 & 1 & 7.8853e-06 & 4.3214e-06 & 0.99837 \\
\text{Time}^3 & \text{Error} & 25.546 & 14 & 1.8247 & & \\
\text{Time}^4 & \text{constant} & 2.8404 & 1 & 2.8404 & 0.47924 & 0.50009 \\
\text{Time}^4 & \text{Gender} & 2.9016 & 1 & 2.9016 & 0.48956 & 0.49559 \\
\text{Time}^4 & \text{Error} & 82.977 & 14 & 5.9269 & & \\
\end{array}
\]
Definitions

Vandermonde Matrix

Vandermonde matrix is the matrix where columns are the powers of the vector a, that is, $V(i,j) = a(i)^{(n-j)}$, where n is the length of a.

QR Factorization

QR factorization of an m-by-n matrix A is the factorization that matrix into the product $A = Q^*R$, where R is an m-by-n upper triangular matrix and Q is an m-by-m unitary matrix.

See Also

fitrm | manova | qr | ranova | vander

Topics

“Model Specification for Repeated Measures Models” on page 9-78
ansaribradley

Ansari-Bradley test

Syntax

h = ansaribradley(x,y)
h = ansaribradley(x,y,Name,Value)
[h,p] = ansaribradley(__)
[h,p,stats] = ansaribradley(__)

Description

h = ansaribradley(x,y) returns a test decision for the null hypothesis that the data in vectors x and y comes from the same distribution, using the Ansari-Bradley test on page 32-117. The alternative hypothesis is that the data in x and y comes from distributions with the same median and shape but different dispersions (e.g., variances). The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = ansaribradley(x,y,Name,Value) returns a test decision for the Ansari-Bradley test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level, conduct a one-sided test, or use a normal approximation to calculate the value of the test statistic.

[h,p] = ansaribradley(__) also returns the p-value, p, of the test, using any of the input arguments in the previous syntaxes.

[h,p,stats] = ansaribradley(__) also returns the structure stats containing information about the test statistic.

Examples
Ansari-Bradley Test for Equal Variances

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model years 1982 and 1976.

```matlab
load carsmall
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);
```

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal variances.

```matlab
[h,p,stats] = ansaribradley(x,y)
```

```matlab
h = 0
p = 0.8426
stats = struct with fields:
    W: 526.9000
    Wstar: 0.1986
```

The returned value of \(h = 0 \) indicates that `ansaribradley` does not reject the null hypothesis at the default 5% significance level.

Ansari-Bradley One-Sided Hypothesis Test

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model years 1982 and 1976.

```matlab
load carsmall
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);
```

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal variances, against the alternative hypothesis that the variance of cars from 1982 is greater than that of cars from 1976.

```matlab
[h,p,stats] = ansaribradley(x,y,'Tail','right')
```

```matlab
h = 0
```
\[p = 0.5787 \]

\[
\text{stats} = \text{struct with fields:}
\begin{align*}
W & : 526.9000 \\
W_{\text{star}} & : 0.1986
\end{align*}
\]

The returned value of \(h = 0 \) indicates that \texttt{ansaribradley} does not reject the null hypothesis that the variance in miles per gallon is the same for the two model years, when the alternative is that the variance of cars from 1982 is greater than that of cars from 1976.

Input Arguments

\[x \rightarrow \text{Sample data} \]

- **vector** | **matrix** | **multidimensional array**

Sample data, specified as a vector, matrix, or multidimensional array.

- If \(x \) and \(y \) are specified as vectors, they do not need to be the same length.
- If \(x \) and \(y \) are specified as matrices, they must have the same number of columns. \texttt{ansaribradley} performs separate tests along each column and returns a vector of results.
- If \(x \) and \(y \) are specified as multidimensional arrays on page 32-117, \texttt{ansaribradley} works along the first nonsingleton dimension on page 32-118. \(x \) and \(y \) must have the same size along all remaining dimensions.

Data Types: \texttt{single} | \texttt{double}

\[y \rightarrow \text{Sample data} \]

- **vector** | **matrix** | **multidimensional array**

Sample data, specified as a vector, matrix, or multidimensional array.

- If \(x \) and \(y \) are specified as vectors, they do not need to be the same length.
- If \(x \) and \(y \) are specified as matrices, they must have the same number of columns. \texttt{ansaribradley} performs separate tests along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays on page 32-117, ansaribradley works along the first nonsingleton dimension on page 32-118. x and y must have the same size along all remaining dimensions.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the 1% significance level.

Alpha — Significance level

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

Dim — Dimension

first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

Tail — Type of alternative hypothesis

'both' (default) | 'left' | 'right'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
Test the alternative hypothesis that the dispersion parameters of \(x \) and \(y \) are not equal.

Test the alternative hypothesis that the dispersion parameter of \(x \) is greater than that of \(y \).

Test the alternative hypothesis that the dispersion parameter of \(x \) is less than that of \(y \).

Example: 'Tail','right'

Method — Computation method

'exact' | 'approximate'

Computation method for the test statistic, specified as the comma-separated pair consisting of 'Method' and one of the following.

'exact' Compute \(p \) using an exact calculation of the distribution of the test statistic \(W \). This is the default if \(n \), the total number of rows in \(x \) and \(y \), is 25 or less. Note that \(n \) is computed before any NaN values (representing missing data) are removed.

'approximate' Compute \(p \) using a normal approximation for the statistic \(W^* \). This is the default if \(n \), the total number of rows in \(x \) and \(y \), is greater than 25.

Example: 'Method','exact'

Output Arguments

\(h \) — Hypothesis test result

\[1 \mid 0 \]

Hypothesis test result, returned as \(1 \) or \(0 \).

- If \(h = 1 \), this indicates the rejection of the null hypothesis at the \(\alpha \) significance level.
- If \(h = 0 \), this indicates a failure to reject the null hypothesis at the \(\alpha \) significance level.

\(p \) — \(p \)-value

Scalar value in the range \([0,1]\)
p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics

structure

Test statistics for the Ansari-Bradley test, returned as a structure containing:

- **W** — Value of the test statistic, which is the sum of the Ansari-Bradley ranks for the x sample.
- **Wstar** — Approximate normal statistic W^*.

Definitions

Ansari-Bradley Test

The Ansari-Bradley test is a nonparametric alternative to the two-sample F-test of equal variances. It does not require the assumption that x and y come from normal distributions. The dispersion of a distribution is generally measured by its variance or standard deviation, but the Ansari-Bradley test can be used with samples from distributions that do not have finite variances.

This test requires that the samples have equal medians. Under that assumption, and if the distributions of the samples are continuous and identical, the test is independent of the distributions. If the samples do not have the same medians, the results can be misleading. In that case, Ansari and Bradley recommend subtracting the median, but then the distribution of the resulting test under the null hypothesis is no longer independent of the common distribution of x and y. If you want to perform the tests with medians subtracted, you should subtract the medians from x and y before calling `ansaribradley`.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then x is a three-dimensional array.
First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \(x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \(x \).

See Also

\text{ttest2 | vartest2 | vartestn}

Introduced before R2006a
aoctool

Interactive analysis of covariance

Syntax

```
aoctool(x,y,group)
aoctool(x,y,group,alpha)
aoctool(x,y,group,alpha,xname,yname,gname)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
```

```
h = aoctool(...)  
[h,atab,ctab] = aoctool(...)  
[h,atab,ctab,stats] = aoctool(...)  
```

Description

aoctool(x,y,group) fits a separate line to the column vectors, x and y, for each group defined by the values in the array group. group may be a categorical variable, numeric vector, character array, string array, or cell array of character vectors. These types of models are known as one-way analysis of covariance (ANOCOVA) models. The output consists of three figures:

- An interactive graph of the data and prediction curves
- An ANOVA table
- A table of parameter estimates

You can use the figures to change models and to test different parts of the model. More information about interactive use of the aoctool function appears in “Analysis of Covariance Tool” on page 9-58.

aoctool(x,y,group,alpha) determines the confidence levels of the prediction intervals. The confidence level is $100(1-\alpha)\%$. The default value of alpha is 0.05.

aoctool(x,y,group,alpha,xname,yname,gname) specifies the name to use for the x, y, and g variables in the graph and tables. If you enter simple variable names for the
x, y, and g arguments, the aoctool function uses those names. If you enter an expression for one of these arguments, you can specify a name to use in place of that expression by supplying these arguments. For example, if you enter m(:,2) as the x argument, you might choose to enter 'Col 2' as the xname argument.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt) enables the graph and table displays when displayopt is 'on' (default) and suppresses those displays when displayopt is 'off'.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model) specifies the initial model to fit. The value of model can be any of the following:

• 'same mean' — Fit a single mean, ignoring grouping
• 'separate means' — Fit a separate mean to each group
• 'same line' — Fit a single line, ignoring grouping
• 'parallel lines' — Fit a separate line to each group, but constrain the lines to be parallel
• 'separate lines' — Fit a separate line to each group, with no constraints

h = aoctool(...) returns a vector of handles to the line objects in the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the entries in ANOVA table (atab) and the table of coefficient estimates (ctab). (You can copy a text version of either table to the clipboard by using the Copy Text item on the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The ANOVA table output includes tests of the hypotheses that the slopes or intercepts are all the same, against a general alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of values are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input. You can test either the slopes, the intercepts, or population marginal means (the heights of the curves at the mean x value).

Examples

This example illustrates how to fit different models non-interactively. After loading the smaller car data set and fitting a separate-slopes model, you can examine the coefficient estimates.
load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','', 'off','separate lines');
c(:,1:2)
ans =
 'Term' 'Estimate'
 'Intercept' [45.97983716833132]
 ' 70' [-8.58050531454973]
 ' 76' [-3.89017396094922]
 ' 82' [12.47067927549897]
 'Slope' [-0.00780212907455]
 ' 70' [0.00195840368824]
 ' 76' [0.00113831038418]
 ' 82' [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept close to 45.98 and a slope close to -0.0078. Each group's coefficients are offset from these values somewhat. For instance, the intercept for the cars made in 1970 is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the parallel-lines fit is significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','', 'off','parallel lines');
c(:,1:2)
ans =
 'Term' 'Estimate'
 'Intercept' [43.38984085130596]
 ' 70' [-3.27948192983761]
 ' 76' [-1.35036234809006]
 ' 82' [4.62984427792768]
 'Slope' [-0.00664751826198]

Again, there are different intercepts for each group, but this time the slopes are constrained to be the same.

See Also
anova1|multcompare|polytool
Introduced before R2006a
append

Class: TreeBagger

Append new trees to ensemble

Syntax

B = append(B,other)

Description

B = append(B,other) appends the trees from the other ensemble to those in B. This method checks for consistency of the X and Y properties of the two ensembles, as well as consistency of their compact objects and out-of-bag indices, before appending the trees. The output ensemble B takes training parameters such as FBoot, Prior, Cost, and other from the B input. There is no attempt to check if these training parameters are consistent between the two objects.

See Also

CompactTreeBagger.combine
barttest

Bartlett’s test

Syntax

\[
\text{ndim} = \text{barttest}(x,\alpha) \\
[\text{ndim}, \text{prob}, \text{chisquare}] = \text{barttest}(x,\alpha)
\]

Description

\[
\text{ndim} = \text{barttest}(x,\alpha)
\]

returns the number of dimensions necessary to explain the nonrandom variation in the data matrix \(x\) at the \(\alpha\) significance level.

\[
[\text{ndim}, \text{prob}, \text{chisquare}] = \text{barttest}(x,\alpha)
\]

also returns the significance values for the hypothesis tests \(\text{prob}\), and the \(\chi^2\) values associated with the tests \(\text{chisquare}\).

Examples

Determine Dimensions Needed to Explain Nonrandom Data Variation

Generate a 20-by-6 matrix of random numbers from a multivariate normal distribution with mean \(\mu = [0 0]\) and covariance \(\Sigma = [1 0.99; 0.99 1]\).

\[
\begin{align*}
\text{rng default} & \quad \% \text{for reproducibility} \\
\mu &= [0 \ 0]; \\
\sigma &= [1 \ 0.99; \ 0.99 \ 1]; \\
X &= \text{mvnrnd}(\mu,\sigma,20); \quad \% \text{columns 1 and 2} \\
X(:,3:4) &= \text{mvnrnd}(\mu,\sigma,20); \quad \% \text{columns 3 and 4} \\
X(:,5:6) &= \text{mvnrnd}(\mu,\sigma,20); \quad \% \text{columns 5 and 6}
\end{align*}
\]

Determine the number of dimensions necessary to explain the nonrandom variation in data matrix \(X\). Report the significance values for the hypothesis tests.

\[
[\text{ndim}, \text{prob}] = \text{barttest}(X,0.05)
\]
ndim = 3
prob = 5x1

0.0000
0.0000
0.0000
0.5148
0.3370

The returned value of ndim indicates that three dimensions are necessary to explain the nonrandom variation in X.

Input Arguments

x — Input data
matrix of scalar values

Input data, specified as a matrix of scalar values.

Data Types: single | double

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as a scalar value in the range (0,1).

Example: 0.1

Data Types: single | double

Output Arguments

ndim — Number of dimensions
positive integer value

Number of dimensions, returned as a positive integer value. The dimension is determined by a series of hypothesis tests. The test for ndim = 1 tests the hypothesis that the variances of the data values along each principal component are equal, the test for ndim
= 2 tests the hypothesis that the variances along the second through last components are equal, and so on. The null hypothesis is that the number of dimensions is equal to the number of the largest unequal eigenvalues of the covariance matrix of x.

prob — Significance value

vector of scalar values in the range $(0, 1)$

Significance value for the hypothesis tests, returned as a vector of scalar values in the range $(0, 1)$. Each element in prob corresponds to an element of chisquare.

chisquare — Test statistics

vector of scalar values

Test statistics for each dimension’s hypothesis test, returned as a vector of scalar values.

See Also

Introduced before R2006a
BayesianOptimization

Bayesian optimization results

Description

A BayesianOptimization object contains the results of a Bayesian optimization. It is the output of bayesopt or a fit function that accepts the OptimizeHyperparameters name-value pair such as fitcdiscr. In addition, a BayesianOptimization object contains data for each iteration of bayesopt that can be accessed by a plot function or an output function.

Creation

Create a BayesianOptimization object using the bayesopt function or a fit function with the OptimizeHyperparameters name-value pair.

Properties

Problem Definition Properties

ObjectiveFcn — ObjectiveFcn argument used by bayesopt
function handle

This property is read-only.

ObjectiveFcn argument used by bayesopt, returned as a function handle.

• If you call bayesopt directly, ObjectiveFcn is the bayesopt objective function argument.

• If you call a fit function containing the 'OptimizeHyperparameters' name-value pair argument, ObjectiveFcn is a function handle that returns the misclassification rate for classification or returns the logarithm of one plus the cross-validation loss for regression, measured by five-fold cross-validation.
Data Types: function_handle

VariableDescriptions — VariableDescriptions argument that bayesopt used
vector of optimizableVariable objects

This property is read-only.

VariableDescriptions argument that bayesopt used, returned as a vector of optimizableVariable objects.

- If you called bayesopt directly, VariableDescriptions is the bayesopt variable description argument.
- If you called a fit function with the OptimizeHyperparameters name-value pair, VariableDescriptions is the vector of hyperparameters.

Options — Options that bayesopt used
structure

This property is read-only.

Options that bayesopt used, returned as a structure.

- If you called bayesopt directly, Options is the options used in bayesopt, which are the name-value pairs See bayesopt “Input Arguments” on page 32-157.
- If you called a fit function with the OptimizeHyperparameters name-value pair, Options are the default bayesopt options, modified by the HyperparameterOptimizationOptions name-value pair.

Options is a read-only structure containing the following fields.

<table>
<thead>
<tr>
<th>Option Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquisitionFunctionName</td>
<td>Acquisition function name. See “Acquisition Function Types” on page 10-4.</td>
</tr>
<tr>
<td>IsObjectiveDeterministic</td>
<td>true means the objective function is deterministic, false otherwise.</td>
</tr>
<tr>
<td>ExplorationRatio</td>
<td>Used only when AcquisitionFunctionName is 'expected-improvement-plus' or 'expected-improvement-per-second-plus'. See “Plus” on page 10-6.</td>
</tr>
<tr>
<td>Option Name</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Objective function evaluation limit.</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit.</td>
</tr>
<tr>
<td>XConstraintFcn</td>
<td>Deterministic constraints on variables. See “Deterministic Constraints — XConstraintFcn” on page 10-45.</td>
</tr>
<tr>
<td>ConditionalVariableFcn</td>
<td>Conditional variable constraints. See “Conditional Constraints — ConditionalVariableFcn” on page 10-46.</td>
</tr>
<tr>
<td>NumCoupledConstraints</td>
<td>Number of coupled constraints. See “Coupled Constraints” on page 10-48.</td>
</tr>
<tr>
<td>CoupledConstraintTolerances</td>
<td>Coupled constraint tolerances. See “Coupled Constraints” on page 10-48.</td>
</tr>
<tr>
<td>AreCoupledConstraintsDeterministic</td>
<td>Logical vector specifying whether each coupled constraint is deterministic.</td>
</tr>
<tr>
<td>Verbose</td>
<td>Command-line display level.</td>
</tr>
<tr>
<td>OutputFcn</td>
<td>Function called after each iteration. See “Bayesian Optimization Output Functions” on page 10-23.</td>
</tr>
<tr>
<td>SaveVariableName</td>
<td>Variable name for the @assignInBase output function.</td>
</tr>
<tr>
<td>SaveFileName</td>
<td>File name for the @saveToFile output function.</td>
</tr>
<tr>
<td>PlotFcn</td>
<td>Plot function called after each iteration. See “Bayesian Optimization Plot Functions” on page 10-14</td>
</tr>
<tr>
<td>InitialX</td>
<td>Points where bayesopt evaluated the objective function.</td>
</tr>
<tr>
<td>InitialObjective</td>
<td>Objective function values at InitialX.</td>
</tr>
<tr>
<td>InitialConstraintViolations</td>
<td>Coupled constraint function values at InitialX.</td>
</tr>
<tr>
<td>Option Name</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>InitialErrorValues</td>
<td>Error values at InitialX.</td>
</tr>
<tr>
<td>InitialObjectiveEvaluationTimes</td>
<td>Objective function evaluation times at InitialX.</td>
</tr>
<tr>
<td>InitialIterationTimes</td>
<td>Time for each iteration, including objective function evaluation and other computations.</td>
</tr>
</tbody>
</table>

Data Types: struct

Solution Properties

MinObjective — Minimum observed value of objective function

real scalar

This property is read-only.

Minimum observed value of objective function, returned as a real scalar. When there are coupled constraints or evaluation errors, this value is the minimum over all observed points that are feasible according to the final constraint and Error models.

Data Types: double

XAtMinObjective — Observed point with minimum objective function value

1-by-D table

This property is read-only.

Observed point with minimum objective function value, returned as a 1-by-D table, where D is the number of variables.

Data Types: table

MinEstimatedObjective — Minimum estimated value of objective function

real scalar

This property is read-only.

Minimum estimated value of objective function, returned as a real scalar.
MinEstimatedObjective uses the final objective model.

MinEstimatedObjective is the same as the CriterionValue result of bestPoint with default criterion.
Data Types: double

XAtMinEstimatedObjective — Point with minimum estimated objective function value
1-by-D table

This property is read-only.

Point with minimum estimated objective function value, returned as a 1-by-D table, where D is the number of variables. `XAtMinEstimatedObjective` uses the final objective model.

Data Types: table

NumObjectiveEvaluations — Number of objective function evaluations
positive integer

This property is read-only.

Number of objective function evaluations, returned as a positive integer. This includes the initial evaluations to form a posterior model as well as evaluation during the optimization iterations.

Data Types: double

TotalElapsedTime — Total elapsed time of optimization in seconds
positive scalar

This property is read-only.

Total elapsed time of optimization in seconds, returned as a positive scalar.

Data Types: double

NextPoint — Next point to evaluate if optimization continues
1-by-D table

This property is read-only.

Next point to evaluate if optimization continues, returned as a 1-by-D table, where D is the number of variables.

Data Types: table
Trace Properties

XTrace — Points where the objective function was evaluated

T-by-D table

This property is read-only.

Points where the objective function was evaluated, returned as a T-by-D table, where T is the number of evaluation points and D is the number of variables.

Data Types: table

ObjectiveTrace — Objective function values

column vector of length T

This property is read-only.

Objective function values, returned as a column vector of length T, where T is the number of evaluation points. ObjectiveTrace contains the history of objective function evaluations.

Data Types: double

ObjectiveEvaluationTimeTrace — Objective function evaluation times

column vector of length T

This property is read-only.

Objective function evaluation times, returned as a column vector of length T, where T is the number of evaluation points. ObjectiveEvaluationTimeTrace includes the time in evaluating coupled constraints, because the objective function computes these constraints.

Data Types: double

IterationTimeTrace — Iteration times

column vector of length T

This property is read-only.

Iteration times, returned as a column vector of length T, where T is the number of evaluation points. IterationTimeTrace includes both objective function evaluation time and other overhead.
Data Types: double

ConstraintsTrace — Coupled constraint values
T-by-K array

This property is read-only.

Coupled constraint values, returned as a T-by-K array, where T is the number of evaluation points and K is the number of coupled constraints.

Data Types: double

ErrorTrace — Error indications
column vector of length T of -1 or 1 entries

This property is read-only.

Error indications, returned as a column vector of length T of -1 or 1 entries, where T is the number of evaluation points. Each 1 entry indicates that the objective function errored or returned NaN on the corresponding point in XTrace. Each -1 entry indicates that the objective function value was computed.

Data Types: double

FeasibilityTrace — Feasibility indications
logical column vector of length T

This property is read-only.

Feasibility indications, returned as a logical column vector of length T, where T is the number of evaluation points. Each 1 entry indicates that the final constraint model predicts feasibility at the corresponding point in XTrace.

Data Types: logical

FeasibilityProbabilityTrace — Probability that evaluation point is feasible
column vector of length T

This property is read-only.

Probability that evaluation point is feasible, returned as a column vector of length T, where T is the number of evaluation points. The probabilities come from the final constraint model, including the error constraint model, on the corresponding points in XTrace.
Data Types: double

IndexOfMinimumTrace — Which evaluation gave minimum feasible objective
column vector of integer indices of length T

This property is read-only.

Which evaluation gave minimum feasible objective, returned as a column vector of integer indices of length T, where T is the number of evaluation points. Feasibility is determined with respect to the constraint models that existed at each iteration, including the error constraint model.

Data Types: double

ObjectiveMinimumTrace — Minimum observed objective
column vector of length T

This property is read-only.

Minimum observed objective, returned as a column vector of integer indices of length T, where T is the number of evaluation points.

Data Types: double

EstimatedObjectiveMinimumTrace — Minimum estimated objective
column vector of length T

This property is read-only.

Minimum estimated objective, returned as a column vector of integer indices of length T, where T is the number of evaluation points. The estimated objective at each iteration is determined with respect to the objective model that existed at that iteration.

Data Types: double

UserDataTrace — Auxiliary data from the objective function
cell array of length T

This property is read-only.

Auxiliary data from the objective function, returned as a cell array of length T, where T is the number of evaluation points. Each entry in the cell array is the UserData returned in the third output of the objective function.
Data Types: cell

Object Functions

- `bestPoint` - Best point in a Bayesian optimization according to a criterion.
- `plot` - Plot Bayesian optimization results.
- `predictConstraints` - Predict coupled constraint violations at a set of points.
- `predictError` - Predict error value at a set of points.
- `predictObjective` - Predict objective function at a set of points.
- `predictObjectiveEvaluationTime` - Predict objective function run times at a set of points.
- `resume` - Resume a Bayesian optimization.

Examples

Create a BayesianOptimization Object Using `bayesopt`

This example shows how to create a `BayesianOptimization` object by using `bayesopt` to minimize cross-validation loss.

Optimize hyperparameters of a KNN classifier for the `ionosphere` data, that is, find KNN hyperparameters that minimize the cross-validation loss. Have `bayesopt` minimize over the following hyperparameters:

- Nearest-neighborhood sizes from 1 to 30
- Distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, set the partition, and set the `AcquisitionFunctionName` option to 'expected-improvement-plus'. Set options give no iterative display.

```matlab
load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
```
results = bayesopt(fun,[num,dst], 'Verbose', 0, ...
 'AcquisitionFunctionName','expected-improvement-plus')
results =
 BayesianOptimization with properties:

 ObjectiveFcn: [function_handle]
 VariableDescriptions: [1x2 optimizableVariable]
 Options: [1x1 struct]
 MinObjective: 0.1197
 XAtMinObjective: [1x2 table]
 MinEstimatedObjective: 0.1213
 XAtMinEstimatedObjective: [1x2 table]
 NumObjectiveEvaluations: 30
 TotalElapsedTime: 85.2246
 NextPoint: [1x2 table]
 XTrace: [30x2 table]
Create a BayesianOptimization Object Using a Fit Function

This example shows how to minimize the cross-validation loss in the ionosphere data using Bayesian optimization of an SVM classifier.

Load the data.

load ionosphere

Optimize the classification using the 'auto' parameters.

rng default % For reproducibility
Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto')
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>BoxConstraint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.21937</td>
<td>42.136</td>
<td>0.21937</td>
<td>0.21937</td>
<td>64.836</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.28779</td>
<td>0.21937</td>
<td>0.22807</td>
<td>0.036335</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>0.13105</td>
<td>17.291</td>
<td>0.13105</td>
<td>0.14149</td>
<td>0.0022147</td>
</tr>
<tr>
<td></td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>BoxConstraint</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Accept</td>
<td>0.1453</td>
<td>0.22018</td>
<td>0.11966</td>
<td>0.12253</td>
<td>0.0010033</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.13105</td>
<td>0.35185</td>
<td>0.11966</td>
<td>0.12251</td>
<td>0.0010043</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.1933</td>
<td>0.11966</td>
<td>0.12253</td>
<td>0.20826</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.60213</td>
<td>0.11966</td>
<td>0.12253</td>
<td>0.001001</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.12536</td>
<td>0.48054</td>
<td>0.11966</td>
<td>0.12297</td>
<td>0.0010319</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.13105</td>
<td>8.9495</td>
<td>0.11966</td>
<td>0.12296</td>
<td>0.0010691</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.11966</td>
<td>0.26795</td>
<td>0.11966</td>
<td>0.12243</td>
<td>0.0010304</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.13675</td>
<td>0.29908</td>
<td>0.11966</td>
<td>0.12058</td>
<td>4.5585</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.12251</td>
<td>0.24766</td>
<td>0.11966</td>
<td>0.12074</td>
<td>31.648</td>
</tr>
<tr>
<td>30</td>
<td>Best</td>
<td>0.11966</td>
<td>0.2919</td>
<td>0.11966</td>
<td>0.12109</td>
<td>65.767</td>
</tr>
</tbody>
</table>
Observed objective function value = 0.11966
Estimated objective function value = 0.12109
Function evaluation time = 0.2919

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001165</td>
<td>0.025831</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.12109
Estimated function evaluation time = 0.3133

Mdl = ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 HyperparameterOptimizationResults: [1x1 BayesianOptimization]
 Alpha: [98x1 double]
 Bias: -4.7721
 KernelParameters: [1x1 struct]
 BoxConstraints: [351x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [351x1 logical]
 Solver: 'SMO'

Properties, Methods

The fit achieved about 12% loss for the default 5-fold cross validation.

Examine the BayesianOptimization object that is returned in the HyperparameterOptimizationResults property of the returned model.

disp(Mdl.HyperparameterOptimizationResults)

BayesianOptimization with properties:

 ObjectiveFcn: @createObjFcn/inMemoryObjFcn
 VariableDescriptions: [5x1 optimizableVariable]
Options: [1x1 struct]
MinObjective: 0.1197
XAtMinObjective: [1x2 table]
MinEstimatedObjective: 0.1211
XAtMinEstimatedObjective: [1x2 table]
NumObjectiveEvaluations: 30
TotalElapsedTime: 192.3889
NextPoint: [1x2 table]
XTrace: [30x2 table]
ObjectiveTrace: [30x1 double]
ConstraintsTrace: []
UserDataTrace: {30x1 cell}
ObjectiveEvaluationTimeTrace: [30x1 double]
IterationTimeTrace: [30x1 double]
ErrorTrace: [30x1 double]
FeasibilityTrace: [30x1 logical]
FeasibilityProbabilityTrace: [30x1 double]
IndexOfMinimumTrace: [30x1 double]
ObjectiveMinimumTrace: [30x1 double]
EstimatedObjectiveMinimumTrace: [30x1 double]

See Also
bayesopt | fitcdiscr | fitcecoc | fitcensemble | fitcknn | fitclinear | fitcnb | fitcsvm | fitctree | fitrensemble | fitrgp | fitrlinear | fitrsvm | fitrtree

Topics
“Bayesian Optimization Workflow” on page 10-30

Introduced in R2016b
bayesopt

Select optimal machine learning hyperparameters using Bayesian optimization

Syntax

results = bayesopt(fun,vars)
results = bayesopt(fun,vars,Name,Value)

Description

results = bayesopt(fun,vars) attempts to find values of vars that minimize fun(vars).

results = bayesopt(fun,vars,Name,Value) modifies the optimization process according to the Name,Value arguments.

Examples

Create a BayesianOptimization Object Using bayesopt

This example shows how to create a BayesianOptimization object by using bayesopt to minimize cross-validation loss.

Optimize hyperparameters of a KNN classifier for the ionosphere data, that is, find KNN hyperparameters that minimize the cross-validation loss. Have bayesopt minimize over the following hyperparameters:

- Nearest-neighborhood sizes from 1 to 30
- Distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, set the partition, and set the AcquisitionFunctionName option to 'expected-improvement-plus'. Set options give no iterative display.
load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
 'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
 'AcquisitionFunctionName','expected-improvement-plus')
results =
BayesianOptimization with properties:

 ObjectiveFcn: [function_handle]
 VariableDescriptions: [1x2 optimizableVariable]
 Options: [1x1 struct]
 MinObjective: 0.1197
 XAtMinObjective: [1x2 table]
 MinEstimatedObjective: 0.1213
 XAtMinEstimatedObjective: [1x2 table]
 NumObjectiveEvaluations: 30
 TotalElapsedTime: 85.2246
 NextPoint: [1x2 table]
 XTrace: [30x2 table]
Bayesian Optimization with Coupled Constraints

A coupled constraint is one that can be evaluated only by evaluating the objective function. In this case, the objective function is the cross-validated loss of an SVM model. The coupled constraint is that the number of support vectors is no more than 100. The model details are in “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55.

Create the data for classification.

```matlab
rng default
grnpop = mvnrnd([1,0],eye(2),10);  
redpop = mvnrnd([0,1],eye(2),10);  
redpts = zeros(100,2);            
grnpts = redpts;                  
for i = 1:100                    
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);  
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);  
end

cdata = [grnpts;redpts];         
grp = ones(200,1);                
grp(101:200) = -1;                
c = cvpartition(200,'KFold',10);  
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');  
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
```

The objective function is the cross-validation loss of the SVM model for partition c. The coupled constraint is the number of support vectors minus 100.5. This ensures that 100...
support vectors give a negative constraint value, but 101 support vectors give a positive value. The model has 200 data points, so the coupled constraint values range from -99.5 (there is always at least one support vector) to 99.5. Positive values mean the constraint is not satisfied.

```matlab
function [objective,constraint] = mysvmfun(x,cdata,grp,c)
    SVMMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',... 
                      'BoxConstraint',x.box,... 
                      'KernelScale',x.sigma);
    cvModel = crossval(SVMMModel,'CVPartition',c);
    objective = kfoldLoss(cvModel);
    constraint = sum(SVMMModel.IsSupportVector)-100.5;

    fun = @(x)mysvmfun(x,cdata,grp,c); 

    Set the NumCoupledConstraints to 1 so the optimizer knows that there is a coupled constraint. Set options to plot the constraint model.

    results = bayesopt(fun,[sigma,box],'IsObjectiveDeterministic',true,... 
                      'NumCoupledConstraints',1,'PlotFcn',... 
                      {@plotMinObjective,@plotConstraintModels},... 
                      'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
Constraint 1 model
Most points lead to an infeasible number of support vectors.

Parallel Bayesian Optimization

Improve the speed of a Bayesian optimization by using parallel objective function evaluation.
Prepare variables and the objective function for Bayesian optimization.

The objective function is the cross-validation error rate for the ionosphere data, a binary classification problem. Use `fitcsvm` as the classifier, with `BoxConstraint` and `KernelScale` as the parameters to optimize.

```matlab
load ionosphere
box = optimizableVariable('box',[1e-4,1e3],'Transform','log');
kern = optimizableVariable('kern',[1e-4,1e3],'Transform','log');
vars = [box,kern];
fun = @(vars)kfoldLoss(fitcsvm(X,Y,'BoxConstraint',vars.box,'KernelScale',vars.kern,...
    'Kfold',5));
```

Search for the parameters that give the lowest cross-validation error by using parallel Bayesian optimization.

```matlab
results = bayesopt(fun,vars,'UseParallel',true);
```

Copying objective function to workers...
Done copying objective function to workers.
<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.10852</td>
<td>0.27066</td>
<td>0.27066</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Best</td>
<td>0.27066</td>
<td>0.10422</td>
<td>0.27066</td>
<td>0.27066</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.11258</td>
<td>0.27066</td>
<td>0.27066</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.10982</td>
<td>0.27066</td>
<td>0.27066</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Best</td>
<td>0.15385</td>
<td>0.099978</td>
<td>0.15385</td>
<td>0.15386</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Best</td>
<td>0.12821</td>
<td>0.12967</td>
<td>0.12821</td>
<td>0.12821</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Accept</td>
<td>0.19373</td>
<td>0.10296</td>
<td>0.12821</td>
<td>0.12821</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Accept</td>
<td>0.37322</td>
<td>20.593</td>
<td>0.12821</td>
<td>0.12821</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Accept</td>
<td>0.1339</td>
<td>0.086394</td>
<td>0.12821</td>
<td>0.13216</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Accept</td>
<td>0.5812</td>
<td>19.209</td>
<td>0.12821</td>
<td>0.13415</td>
</tr>
</tbody>
</table>

Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective

Plot showing the min objective vs. number of function evaluations.
<table>
<thead>
<tr>
<th>Iter</th>
<th>Active workers</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6</td>
<td>Accept</td>
<td>0.14245</td>
<td>0.10978</td>
<td>0.12821</td>
<td>0.1376</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>Accept</td>
<td>0.17664</td>
<td>23.135</td>
<td>0.12821</td>
<td>0.1289</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>Accept</td>
<td>0.23647</td>
<td>22.508</td>
<td>0.12821</td>
<td>0.12809</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.093674</td>
<td>0.12821</td>
<td>0.12809</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.093674</td>
<td>0.12821</td>
<td>0.12814</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>Best</td>
<td>0.12251</td>
<td>0.13437</td>
<td>0.12251</td>
<td>0.12571</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>Best</td>
<td>0.11966</td>
<td>0.18898</td>
<td>0.11966</td>
<td>0.12289</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>Accept</td>
<td>0.1339</td>
<td>0.16574</td>
<td>0.11966</td>
<td>0.12306</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Best</td>
<td>0.10541</td>
<td>0.29174</td>
<td>0.10541</td>
<td>0.1142</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Accept</td>
<td>0.11681</td>
<td>3.4201</td>
<td>0.10541</td>
<td>0.1179</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 38.2851 seconds.
Total objective function evaluation time: 95.7048

Best observed feasible point:

<table>
<thead>
<tr>
<th>box</th>
<th>kern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00083077</td>
<td>0.0090062</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.10256
Estimated objective function value = 0.11786
Function evaluation time = 0.32152

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>box</th>
<th>kern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimated objective function value = 0.11786
Estimated function evaluation time = 0.28326

Return the best feasible point in the Bayesian model results by using the bestPoint function. Use the default criterion min-visited-upper-confidence-interval, which determines the best feasible point as the visited point that minimizes an upper confidence interval on the objective function value.

\[
z_{best} = \text{bestPoint}(\text{results})
\]

\[
z_{best} = \begin{pmatrix} 0.0011252 \\ 0.011984 \end{pmatrix}
\]

The table \(z_{best}\) contains the optimal estimated values for the 'BoxConstraint' and 'KernelScale' name-value pair arguments. Use these values to train a new optimized classifier.

\[
\text{Mdl} = \text{fitcsvm}(X,Y,\text{'BoxConstraint'},z_{best}\text{.box},\text{'KernelScale'},z_{best}\text{.kern});
\]

Observe that the optimal parameters are in \(\text{Mdl}\).

\[
\text{Mdl.BoxConstraints}(1)
\]

\[
\text{ans} = 0.0011
\]

\[
\text{Mdl.KernelParameters.Scale}
\]

\[
\text{ans} = 0.0120
\]

Input Arguments

fun — Objective function
function handle | \texttt{parallel.pool.Constant} whose Value is a function handle
Objective function, specified as a function handle or, when the UseParallel name-value pair is true, a parallel.pool.Constant whose Value is a function handle. Typically, fun returns a measure of loss (such as a misclassification error) for a machine learning model that has tunable hyperparameters to control its training. fun has these signatures:

```matlab
objective = fun(x)
% or
[objective, constraints] = fun(x)
% or
[objective, constraints, UserData] = fun(x)
```

fun accepts `x`, a 1-by-`D` table of variable values, and returns `objective`, a real scalar representing the objective function value `fun(x)`.

Optionally, fun also returns:

- `constraints`, a real vector of coupled constraint violations. For a definition, see “Coupled Constraints” on page 32-169. `constraint(j) > 0` means constraint `j` is violated. `constraint(j) < 0` means constraint `j` is satisfied.
- `UserData`, an entity of any type (such as a scalar, matrix, structure, or object). For an example of a custom plot function that uses `UserData`, see “Create a Custom Plot Function” on page 10-16.

For details about using `parallel.pool.Constant` with `bayesopt`, see “Placing the Objective Function on Workers” on page 10-10.

Example: `@objfun`

Data Types: `function_handle`

`vars — Variable descriptions`
vector of `optimizableVariable` objects defining the hyperparameters to be tuned

Variable descriptions, specified as a vector of `optimizableVariable` objects defining the hyperparameters to be tuned.

Example: `[X1,X2]`, where `X1` and `X2` are `optimizableVariable` objects

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: results = bayesopt(fun, vars, 'AcquisitionFunctionName', 'expected-improvement-plus')

Algorithm Control

AcquisitionFunctionName — Function to choose next evaluation point

String. Function to choose next evaluation point, specified as one of the listed choices. For algorithm descriptions, see “Acquisition Function Types” on page 10-4.

Example: 'AcquisitionFunctionName', 'expected-improvement-per-second-plus'

IsObjectiveDeterministic — Specify deterministic objective function

Logical. Specify deterministic objective function, specified as false or true. If fun is stochastic (that is, fun(x) can return different values for the same x), then set IsObjectiveDeterministic to false. In this case, bayesopt estimates a noise level during optimization.

Example: 'IsObjectiveDeterministic', true

ExplorationRatio — Propensity to explore

Scalar. Propensity to explore, specified as a positive real. Applies to the 'expected-improvement-plus' and 'expected-improvement-per-second-plus' acquisition functions. See “Plus” on page 10-6.

Example: 'ExplorationRatio', 0.2

GPActiveSetSize — Fit Gaussian Process model to GPActiveSetSize or fewer points

Positive integer. Specify the number of points to use to fit the Gaussian Process model.
Fit Gaussian Process model to `GPActiveSetSize` or fewer points, specified as a positive integer. When `bayesopt` has visited more than `GPActiveSetSize` points, subsequent iterations that use a GP model fit the model to `GPActiveSetSize` points. `bayesopt` chooses points uniformly at random without replacement among visited points. Using fewer points leads to faster GP model fitting, at the expense of possibly less accurate fitting.

Example: `'GPActiveSetSize',80`

Data Types: `double`

UseParallel — Compute in parallel

`false` (default) | `true`

Compute in parallel, specified as `false` (do not compute in parallel) or `true` (compute in parallel). `bayesopt` performs parallel objective function evaluations concurrently on parallel workers. For algorithmic details, see “Parallel Bayesian Optimization” on page 10-9.

Example: `'UseParallel',true`

Data Types: `logical`

ParallelMethod — Imputation method for parallel worker objective function values

`'clipped-model-prediction'` (default) | `'model-prediction'` | `'max-observed'` | `'min-observed'`

Imputation method for parallel worker objective function values, specified as `'clipped-model-prediction'`, `'model-prediction'`, `'max-observed'`, or `'min-observed'`. To generate a new point to evaluate, `bayesopt` fits a Gaussian process to all points, including the points being evaluated on workers. To fit the process, `bayesopt` imputes objective function values for the points that are currently on workers. `ParallelMethod` specifies the method used for imputation.

- `'clipped-model-prediction'` — Impute the maximum of these quantities:
 - Mean Gaussian process prediction at the point \(x \)
 - Minimum observed objective function among feasible points visited
 - Minimum model prediction among all feasible points
- `'model-prediction'` — Impute the mean Gaussian process prediction at the point \(x \).
• 'max-observed' — Impute the maximum observed objective function value among feasible points.
• 'min-observed' — Impute the minimum observed objective function value among feasible points.

Example: 'ParallelMethod','max-observed'

MinWorkerUtilization — Tolerance on number of active parallel workers

floor(0.8*Nworkers) (default) | positive integer

Tolerance on the number of active parallel workers, specified as a positive integer. After bayesopt assigns a point to evaluate, and before it computes a new point to assign, it checks whether fewer than MinWorkerUtilization workers are active. If so, bayesopt assigns random points within bounds to all available workers. Otherwise, bayesopt calculates the best point for one worker. bayesopt creates random points much faster than fitted points, so this behavior leads to higher utilization of workers, at the cost of possibly poorer points. For details, see “Parallel Bayesian Optimization” on page 10-9.

Example: 'MinWorkerUtilization',3

Data Types: double

Starting and Stopping

MaxObjectiveEvaluations — Objective function evaluation limit

30 (default) | positive integer

Objective function evaluation limit, specified as a positive integer.

Example: 'MaxObjectiveEvaluations',60

Data Types: double

MaxTime — Time limit

Inf (default) | positive real

Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc.

Run time can exceed MaxTime because bayesopt does not interrupt function evaluations.

Example: 'MaxTime',3600
Data Types: double

NumSeedPoints — Number of initial evaluation points
4 (default) | positive integer

Number of initial evaluation points, specified as a positive integer. `bayesopt` chooses these points randomly within the variable bounds, according to the setting of the `Transform` setting for each variable (uniform for 'none', logarithmically spaced for 'log').

Example: 'NumSeedPoints',10

Data Types: double

Constraints

XConstraintFcn — Deterministic constraints on variables
[] (default) | function handle

Deterministic constraints on variables, specified as a function handle.

For details, see “Deterministic Constraints — XConstraintFcn” on page 10-45.

Example: 'XConstraintFcn',@xconstraint

Data Types: function_handle

ConditionalVariableFcn — Conditional variable constraints
[] (default) | function handle

Conditional variable constraints, specified as a function handle.

For details, see “Conditional Constraints — ConditionalVariableFcn” on page 10-46.

Example: 'ConditionalVariableFcn',@condfun

Data Types: function_handle

NumCoupledConstraints — Number of coupled constraints
0 (default) | positive integer

Number of coupled constraints, specified as a positive integer. For details, see “Coupled Constraints” on page 10-48.

Note `NumCoupledConstraints` is required when you have coupled constraints.
Example: 'NumCoupledConstraints',3
Data Types: double

AreCoupledConstraintsDeterministic — Indication of whether coupled constraints are deterministic
true for all coupled constraints (default) | logical vector

Indication of whether coupled constraints are deterministic, specified as a logical vector of length NumCoupledConstraints. For details, see “Coupled Constraints” on page 10-48.

Example: 'AreCoupledConstraintsDeterministic',[true,false,true]
Data Types: logical

Reports, Plots, and Halting

Verbose — Command-line display level
1 (default) | 0 | 2

Command-line display level, specified as 0, 1, or 2.

- 0 — No command-line display.
- 1 — At each iteration, display the iteration number, result report (see the next paragraph), objective function model, objective function evaluation time, best (lowest) observed objective function value, best (lowest) estimated objective function value, and the observed constraint values (if any). When optimizing in parallel, the display also includes a column showing the number of active workers, counted after assigning a job to the next worker.

The result report for each iteration is one of the following:

- **Accept** — The objective function returns a finite value, and all constraints are satisfied.
- **Best** — Constraints are satisfied, and the objective function returns the lowest value among feasible points.
- **Error** — The objective function returns a value that is not a finite real scalar.
- **Infeas** — At least one constraint is violated.
- **2** — Same as 1, adding diagnostic information such as time to select the next point, model fitting time, indication that "plus" acquisition functions declare overexploiting,
and parallel workers are being assigned to random points due to low parallel utilization.

Example: 'Verbose',2

Data Types: double

OutputFcn — Function called after each iteration

 `{}` (default) | function handle | cell array of function handles

Function called after each iteration, specified as a function handle or cell array of function handles. An output function can halt the solver, and can perform arbitrary calculations, including creating variables or plotting. Specify several output functions using a cell array of function handles.

There are two built-in output functions:

- @assignInBase — Constructs a BayesianOptimization instance at each iteration and assigns it to a variable in the base workspace. Choose a variable name using the SaveVariableName name-value pair.
- @saveToFile — Constructs a BayesianOptimization instance at each iteration and saves it to a file in the current folder. Choose a file name using the SaveFileName name-value pair.

You can write your own output functions. For details, see “Bayesian Optimization Output Functions” on page 10-23.

Example: 'OutputFcn',{@saveToFile @myOutputFunction}

Data Types: cell | function_handle

SaveFileName — File name for the @saveToFile output function

'BayesoptResults.mat' (default) | character vector | string scalar

File name for the @saveToFile output function, specified as a character vector or string scalar. The file name can include a path, such as '
../optimizations/ September2.mat'.

Example: 'SaveFileName','September2.mat'

Data Types: char | string

SaveVariableName — Variable name for the @assignInBase output function

'BayesoptResults' (default) | character vector | string scalar
Variable name for the @assignInBase output function, specified as a character vector or string scalar.
Example: 'SaveVariableName','September2Results'
Data Types: char | string

PlotFcn — Plot function called after each iteration
[@plotObjectiveModel,@plotMinObjective] (default) | 'all' | function handle | cell array of function handles

Plot function called after each iteration, specified as 'all', a function handle, or a cell array of function handles. A plot function can halt the solver, and can perform arbitrary calculations, including creating variables, in addition to plotting.

Specify no plot function as [].

'all' calls all built-in plot functions. Specify several plot functions using a cell array of function handles.

The built-in plot functions appear in the following tables.

<table>
<thead>
<tr>
<th>Model Plots — Apply When D ≤ 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@plotAcquisitionFunction</td>
<td>Plot the acquisition function surface.</td>
</tr>
</tbody>
</table>
| @plotConstraintModels | Plot each constraint model surface. Negative values indicate feasible points. Also plot a $P(\text{feasible})$ surface. Also plot the error model, if it exists, which ranges from −1 to 1. Negative values mean that the model probably does not error, positive values mean that it probably does error. The model is: \[
\text{Plotted error} = 2 \times \text{Probability(error)} - 1.\] |
| @plotObjectiveEvaluationTimeModel | Plot the objective function evaluation time model surface. |
Model Plots — Apply When $D \leq 2$

<table>
<thead>
<tr>
<th>Description</th>
<th>@plotObjectiveModel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot the fun model surface, the estimated location of the minimum, and the location of the next proposed point to evaluate. For one-dimensional problems, plot envelopes one credible interval above and below the mean function, and envelopes one noise standard deviation above and below the mean.</td>
<td></td>
</tr>
</tbody>
</table>

Trace Plots — Apply to All D

<table>
<thead>
<tr>
<th>Description</th>
<th>@plotObjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot each observed function value versus the number of function evaluations.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>@plotObjectiveEvaluationTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot each observed function evaluation run time versus the number of function evaluations.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>@plotMinObjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot the minimum observed and estimated function values versus the number of function evaluations.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>@plotElapsedTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot three curves: the total elapsed time of the optimization, the total function evaluation time, and the total modeling and point selection time, all versus the number of function evaluations.</td>
<td></td>
</tr>
</tbody>
</table>

You can write your own plot functions. For details, see “Bayesian Optimization Plot Functions” on page 10-14.

Note

When there are coupled constraints, iterative display and plot functions can give counterintuitive results such as:

- A *minimum objective* plot can increase.
- The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the optimization progresses. *bayesopt* determines feasibility with respect to its constraint model, and this model changes as *bayesopt* evaluates points. So a “minimum objective” plot can increase when the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is later deemed infeasible.
Example: 'PlotFcnc','all'
Data Types: char | string | cell | function_handle

Initialization

InitialX — Initial evaluation points
NumSeedPoints-by-D random initial points within bounds (default) | N-by-D table

Initial evaluation points, specified as an N-by-D table, where N is the number of evaluation points, and D is the number of variables.

Note If only InitialX is provided, it is interpreted as initial points to evaluate. The objective function is evaluated at InitialX.

If any other initialization parameters are also provided, InitialX is interpreted as prior function evaluation data. The objective function is not evaluated. Any missing values are set to NaN.

Data Types: table

InitialObjective — Objective values corresponding to InitialX
[] (default) | length-N vector

Objective values corresponding to InitialX, specified as a length-N vector, where N is the number of evaluation points.

Example: 'InitialObjective',[17;-3;-12.5]

Data Types: double

InitialConstraintViolations — Constraint violations of coupled constraints
[] (default) | N-by-K matrix

Constraint violations of coupled constraints, specified as an N-by-K matrix, where N is the number of evaluation points and K is the number of coupled constraints. For details, see “Coupled Constraints” on page 10-48.

Data Types: double

InitialErrorValues — Errors for InitialX
[] (default) | length-N vector with entries -1 or 1
Errors for InitialX, specified as a length-N vector with entries -1 or 1, where N is the number of evaluation points. Specify -1 for no error, and 1 for an error.

Example: ' InitialErrorValues', [-1, -1, -1, -1, 1]

Data Types: double

InitialUserData — Initial data corresponding to InitialX

[] (default) | length-N cell vector

Initial data corresponding to InitialX, specified as a length-N cell vector, where N is the number of evaluation points.

Example: ' InitialUserData', {2, 3, -1}

Data Types: cell

InitialObjectiveEvaluationTimes — Evaluation times of objective function at InitialX

[] (default) | length-N vector

Evaluation times of objective function at InitialX, specified as a length-N vector, where N is the number of evaluation points. Time is measured in seconds.

Data Types: double

InitialIterationTimes — Times for the first N iterations

{} (default) | length-N vector

Times for the first N iterations, specified as a length-N vector, where N is the number of evaluation points. Time is measured in seconds.

Data Types: double

Output Arguments

results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, returned as a BayesianOptimization object.
Definitions

Coupled Constraints

Coupled constraints are those constraints whose value comes from the objective function calculation. See “Coupled Constraints” on page 10-48.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel',true name-value pair argument in the call to this function.

See Also
BayesianOptimization | bestPoint | optimizableVariable

Topics
“Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55
“Bayesian Optimization Algorithm” on page 10-2

Introduced in R2016b
bbdesign

Box-Behnken design

Syntax

```plaintext
dBB = bbdesign(n)
[dBB,blocks] = bbdesign(n)
[...] = bbdesign(n,param,val)
```

Description

`dBB = bbdesign(n)` generates a Box-Behnken design for `n` factors. `n` must be an integer 3 or larger. The output matrix `dBB` is `m`-by-`n`, where `m` is the number of runs in the design. Each row represents one run, with settings for all factors represented in the columns. Factor values are normalized so that the cube points take values between -1 and 1.

`[dBB,blocks] = bbdesign(n)` requests a blocked design. The output `blocks` is an `m`-by-1 vector of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions to minimize the effect of inter-block differences on the parameter estimates.

`[...] = bbdesign(n,param,val)` specifies one or more optional parameter/value pairs for the design. The following table lists valid parameter/value pairs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'center'</td>
<td>Number of center points.</td>
<td>Integer. The default depends on <code>n</code>.</td>
</tr>
<tr>
<td>'blocksize'</td>
<td>Maximum number of points per block.</td>
<td>Integer. The default is Inf.</td>
</tr>
</tbody>
</table>

Examples

The following creates a 3-factor Box-Behnken design:
dBB = bbdesign(3)
dBB =
 -1 -1 0
 -1 1 0
 1 -1 0
 1 1 0
 -1 0 -1
 -1 0 1
 1 0 -1
 1 0 1
 0 -1 -1
 0 -1 1
 0 1 -1
 0 1 1
 0 0 0
 0 0 0
 0 0 0

The center point is run 3 times to allow for a more uniform estimate of the prediction variance over the entire design space.

Visualize the design as follows:

plot3(dBB(:,1),dBB(:,2),dBB(:,3),'ro',
 'MarkerFaceColor','b')
X = [1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1; ...
 1 1 1 -1 1 1 1 -1 1 1 -1 -1];
Y = [-1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1; ...
 1 -1 1 1 -1 1 1 -1 1 1 -1 -1];
Z = [1 1 1 -1 -1 -1 -1 -1 1 1 1 1; ...
 1 1 1 1 -1 -1 -1 1 1 1 1 1;]
line(X,Y,Z,'Color','b')
axis square equal
See Also
ccdesign

Introduced before R2006a
bestPoint

Best point in a Bayesian optimization according to a criterion

Syntax

\[
x = \text{bestPoint} \left(\text{results} \right) \\
x = \text{bestPoint} \left(\text{results}, \text{Name}, \text{Value} \right) \\
\left[x, \text{CriterionValue} \right] = \text{bestPoint}(__) \\
\left[x, \text{CriterionValue}, \text{iteration} \right] = \text{bestPoint}(__) \\
\]

Description

\(x = \text{bestPoint} \left(\text{results} \right) \) returns the best feasible point in the Bayesian model \(\text{results} \) according to the default criterion 'min-visited-upper-confidence-interval'.

\(x = \text{bestPoint} \left(\text{results}, \text{Name}, \text{Value} \right) \) modifies the best point using name-value pairs.

\(\left[x, \text{CriterionValue} \right] = \text{bestPoint}(__), \) for any previous syntax, also returns the value of the criterion at \(x \).

\(\left[x, \text{CriterionValue}, \text{iteration} \right] = \text{bestPoint}(__) \) also returns the iteration number at which the best point was returned. Applies when the Criterion name-value pair is 'min-observed', 'min-visited-mean', or the default 'min-visited-upper-confidence-interval'.

Examples

Best Point of an Optimized KNN Classifier

This example shows how to obtain the best point of an optimized classifier.
Optimize a KNN classifier for the *ionosphere* data, meaning find parameters that minimize the cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, and set the `AcquisitionFunctionName` option to 'expected-improvement-plus'.

```matlab
load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus');
```
Obtain the best point according to the default 'min-visited-upper-confidence-interval' criterion.

\[
x = \text{bestPoint}\left(\text{results}\right)
\]

\[
x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]

The lowest estimated cross-validation loss occurs for ten nearest neighbors and 'chebychev' distance.
Careful examination of the objective function model plot shows a point with one nearest neighbor and 'chebychev' distance that has a lower objective function value. Find this point using a different criterion.

\[x = \text{bestPoint}(\text{results},'\text{Criterion}', '\text{min-observed}') \]

\[
\begin{array}{|c|c|}
\hline
n & dst \\
\hline
1 & chebychev \\
\hline
\end{array}
\]

Also find the minimum observed objective function value, and the iteration number at which it was observed.

\[[x,\text{CriterionValue},\text{iteration}] = \text{bestPoint}(\text{results},'\text{Criterion}', '\text{min-observed}') \]

\[
\begin{array}{|c|c|}
\hline
n & dst \\
\hline
1 & chebychev \\
\hline
\end{array}
\]

CriterionValue = 0.1197

iteration = 11

Input Arguments

- **results** — Bayesian optimization results
 - BayesianOptimization object

 Bayesian optimization results, specified as a BayesianOptimization object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.
Example: x = bestPoint(results,'Criterion','min-observed')

Criterion — Best point criterion

<table>
<thead>
<tr>
<th>Criterion Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'min-observed'</td>
<td>x is the feasible point with minimum observed objective.</td>
</tr>
<tr>
<td>'min-mean'</td>
<td>x is the feasible point where the objective model mean is minimized.</td>
</tr>
<tr>
<td>'min-upper-confidence-interval'</td>
<td>x is the feasible point minimizing an upper confidence interval of the objective model. See (\alpha).</td>
</tr>
<tr>
<td>'min-visited-mean'</td>
<td>x is the feasible point where the objective model mean is minimized among the visited points.</td>
</tr>
<tr>
<td>'min-visited-upper-confidence-interval'</td>
<td>x is the feasible point minimizing an upper confidence interval of the objective model among the visited points. See (\alpha).</td>
</tr>
</tbody>
</table>

Example: 'Criterion','min-visited-mean'

alpha — Probability that modeled objective mean exceeds CriterionValue

\(\theta \cdot 0.01 \) (default) | scalar between \(\theta \) and 1

Probability that the modeled objective mean exceeds CriterionValue, specified as the comma-separated pair consisting of 'alpha' and a scalar between \(\theta \) and 1. \(\alpha \) relates to the 'min-upper-confidence-interval' and 'min-visited-upper-confidence-interval' Criterion values. The definition for the upper confidence interval is the value \(Y \) where

\[
P(\text{mean}_Q(\text{fun}(x)) > Y) = \alpha,
\]

where \(\text{fun} \) is the objective function, and the mean is calculated with respect to the posterior distribution \(Q \).

Example: 'alpha',0.05

Data Types: double
Output Arguments

\textbf{x — Best point}
1-by-D table

Best point, returned as a 1-by-D table, where D is the number of variables. The meaning of “best” is with respect to \texttt{Criterion}.

\textbf{CriterionValue — Value of criterion}
real scalar

Value of criterion, returned as a real scalar. The value depends on the setting of the \texttt{Criterion} name-value pair, which has a default value of 'min-visited-upper-confidence-interval'.

<table>
<thead>
<tr>
<th>Criterion Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'min-observed'</td>
<td>Minimum observed objective.</td>
</tr>
<tr>
<td>'min-mean'</td>
<td>Minimum of model mean.</td>
</tr>
<tr>
<td>'min-upper-confidence-interval'</td>
<td>Value (Y) satisfying the equation (P(\text{mean}(\text{fun}(x)) > Y) = \alpha).</td>
</tr>
<tr>
<td>'min-visited-mean'</td>
<td>Minimum of observed model mean.</td>
</tr>
<tr>
<td>'min-visited-upper-confidence-interval'</td>
<td>Value (Y) satisfying the equation (P(\text{mean}(\text{fun}(x)) > Y) = \alpha) among observed points.</td>
</tr>
</tbody>
</table>

\textbf{iteration — Iteration number at which best point was observed}
positive integer

Iteration number at which best point was observed, returned as a positive integer. The best point is defined by \texttt{CriterionValue}.

\textbf{See Also}
BayesianOptimization | bayesopt

\textbf{Introduced in R2016b}
betacdf

Beta cumulative distribution function

Syntax

p = betacdf(x,a,b)
p = betacdf(x,a,b,'upper')

Description

p = betacdf(x,a,b) returns the beta cdf at each of the values in x using the corresponding parameters in a and b. x, a, and b can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in a and b must all be positive, and the values in x must lie on the interval [0,1].

p = betacdf(x,a,b,'upper') returns the complement of the beta cdf at each of the values in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

The beta cdf for a given value x and given pair of parameters a and b is

\[p = F(x | a, b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}(1-t)^{b-1} dt \]

where \(B(\cdot) \) is the Beta function.

Examples

Compute Beta Distribution CDF

Compute the cdf for a beta distribution with parameters \(a = 2 \) and \(b = 2 \).
\[x = 0.1:0.2:0.9; \\
\text{a} = 2; \\
\text{b} = 2; \\
p = \text{betacdf}(x, \text{a}, \text{b}) \\
p = \text{1x5} \\
\begin{array}{cccccc}
0.0280 & 0.2160 & 0.5000 & 0.7840 & 0.9720 \\
\end{array} \\
\]

\[\text{a} = [1 \ 2 \ 3]; \\
p = \text{betacdf}(0.5, \text{a}, \text{a}) \\
p = \text{1x3} \\
\begin{array}{ccc}
0.5000 & 0.5000 & 0.5000 \\
\end{array} \]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

betafit | betainv | betalike | betapdf | betarnd | betastat | cdf

Topics

“Beta Distribution” on page B-4
Introduced before R2006a
betafit

Beta parameter estimates

Syntax

`phat = betafit(data)`
`[phat,pci] = betafit(data,alpha)`

Description

`phat = betafit(data)` computes the maximum likelihood estimates of the beta distribution parameters \(a \) and \(b \) from the data in the vector `data` and returns a column vector containing the \(a \) and \(b \) estimates, where the beta cdf is given by

\[
F(x | a,b) = \frac{1}{B(a,b)} \int_0^x t^{a-1}(1-t)^{b-1} dt
\]

and \(B(\cdot) \) is the Beta function. The elements of `data` must lie in the open interval (0, 1), where the beta distribution is defined. However, it is sometimes also necessary to fit a beta distribution to data that include exact zeros or ones. For such data, the beta likelihood function is unbounded, and standard maximum likelihood estimation is not possible. In that case, `betafit` maximizes a modified likelihood that incorporates the zeros or ones by treating them as if they were values that have been left-censored at `sqrt(realmin)` or right-censored at `1-eps/2`, respectively.

`[phat,pci] = betafit(data,alpha)` returns confidence intervals on the \(a \) and \(b \) parameters in the 2-by-2 matrix `pci`. The first column of the matrix contains the lower and upper confidence bounds for parameter \(a \), and the second column contains the confidence bounds for parameter \(b \). The optional input argument `alpha` is a value in the range \([0, 1]\) specifying the width of the confidence intervals. By default, `alpha` is 0.05, which corresponds to 95% confidence intervals. The confidence intervals are based on a normal approximation for the distribution of the logs of the parameter estimates.
Examples

This example generates 100 beta distributed observations. The true a and b parameters are 4 and 3, respectively. Compare these to the values returned in p by the beta fit. Note that the columns of ci both bracket the true parameters.

```matlab
data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =
   5.5328    3.8097
ci =
   3.6538    2.6197
   8.3781    5.5402
```

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
betacdf | betainv | betalike | betapdf | betarnd | betastat | mle

Topics
“Beta Distribution” on page B-4

Introduced before R2006a
betainv

Beta inverse cumulative distribution function

Syntax

\[X = \text{betainv}(P,A,B) \]

Description

\[X = \text{betainv}(P,A,B) \] computes the inverse of the beta cdf with parameters specified by \(A \) and \(B \) for the corresponding probabilities in \(P \). \(P, A, \) and \(B \) can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(A \) and \(B \) must all be positive, and the values in \(P \) must lie on the interval \([0, 1]\).

The inverse beta cdf for a given probability \(p \) and a given pair of parameters \(a \) and \(b \) is

\[
x = F^{-1}(p \mid a,b) = \{ x : F(x \mid a,b) = p \}
\]

where

\[
p = F(x \mid a,b) = \frac{1}{B(a,b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} dt
\]

and \(B(\cdot) \) is the Beta function. Each element of output \(X \) is the value whose cumulative probability under the beta cdf defined by the corresponding parameters in \(A \) and \(B \) is specified by the corresponding value in \(P \).

Examples

\[
p = [0.01 \ 0.5 \ 0.99];
x = \text{betainv}(p,10,5)
\]
According to this result, for a beta cdf with $a = 10$ and $b = 5$, a value less than or equal to 0.3726 occurs with probability 0.01. Similarly, values less than or equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99.

Algorithms

The betainv function uses Newton's method with modifications to constrain steps to the allowable range for x, i.e., [0 1].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
betacdf | betafit | betainv | betalike | betapdf | betarnd | betastat | icdf

Topics
“Beta Distribution” on page B-4

Introduced before R2006a
betalike

Beta negative log-likelihood

Syntax

```matlab
nlogL = betalike(params,data)
[nlogL,AVAR] = betalike(params,data)
```

Description

`nlogL = betalike(params,data)` returns the negative of the beta log-likelihood function for the beta parameters `a` and `b` specified in vector `params` and the observations specified in the column vector `data`.

The elements of `data` must lie in the open interval `(0, 1)`, where the beta distribution is defined. However, it is sometimes also necessary to fit a beta distribution to data that include exact zeros or ones. For such data, the beta likelihood function is unbounded, and standard maximum likelihood estimation is not possible. In that case, `betalike` computes a modified likelihood that incorporates the zeros or ones by treating them as if they were values that have been left-censored at `sqrt(realmin)` or right-censored at `1-eps/2`, respectively.

`[nlogL,AVAR] = betalike(params,data)` also returns `AVAR`, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in `params` are the maximum likelihood estimates. `AVAR` is the inverse of Fisher's information matrix. The diagonal elements of `AVAR` are the asymptotic variances of their respective parameters.

`betalike` is a utility function for maximum likelihood estimation of the beta distribution. The likelihood assumes that all the elements in the data sample are mutually independent. Since `betalike` returns the negative beta log-likelihood function, minimizing `betalike` using `fminsearch` is the same as maximizing the likelihood.
Examples

This example continues the betafit example, which calculates estimates of the beta parameters for some randomly generated beta distributed data.

\[
\begin{align*}
\text{r} &= \text{betarnd}(4,3,100,1); \\
[n\text{logl},AVAR] &= \text{betalike(betafit(r),r)} \\
n\text{logl} &= \\
-27.5996 \\
\end{align*}
\]

\[
\begin{align*}
AVAR &= \\
0.2783 & 0.1316 \\
0.1316 & 0.0867
\end{align*}
\]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
betacdf | betafit | betainv | betapdf | betarnd | betastat

Topics
“Beta Distribution” on page B-4

Introduced before R2006a
betapdf

Beta probability density function

Syntax

\[Y = \text{betapdf}(X, A, B) \]

Description

\[Y = \text{betapdf}(X, A, B) \] computes the beta pdf at each of the values in \(X \) using the corresponding parameters in \(A \) and \(B \). \(X, A, \) and \(B \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The parameters in \(A \) and \(B \) must all be positive, and the values in \(X \) must lie on the interval \([0, 1]\).

The beta probability density function for a given value \(x \) and given pair of parameters \(a \) and \(b \) is

\[
y = f(x \mid a, b) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1} I_{[0,1]}(x)
\]

where \(B(\cdot) \) is the Beta function. The uniform distribution on \((0, 1)\) is a degenerate case of the beta pdf where \(a = 1 \) and \(b = 1 \).

A **likelihood function** is the pdf viewed as a function of the parameters. Maximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of \(x \).

Examples

\[
a = [0.5 \; 1; \; 2 \; 4]
a =
\begin{bmatrix}
0.5000 & 1.0000 \\
2.0000 & 4.0000
\end{bmatrix}
\]

32-189
y = betapdf(0.5,a,a)
y =
 0.6366 1.0000
 1.5000 2.1875

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
betacdf | betafit | betainv | betalike | betarnd | betastat | pdf

Topics
“Beta Distribution” on page B-4

Introduced before R2006a
betarnd

Beta random numbers

Syntax

\[
R = \text{betarnd}(A,B)
\]

\[
R = \text{betarnd}(A,B,m,n,...)
\]

\[
R = \text{betarnd}(A,B,[m,n,...])
\]

Description

\(R = \text{betarnd}(A,B) \) generates random numbers from the beta distribution with parameters specified by \(A \) and \(B \). \(A \) and \(B \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(R \). A scalar input for \(A \) or \(B \) is expanded to a constant array with the same dimensions as the other input.

\(R = \text{betarnd}(A,B,m,n,...) \) or \(R = \text{betarnd}(A,B,[m,n,...]) \) generates an \(m \)-by-\(n \)-by-... array containing random numbers from the beta distribution with parameters \(A \) and \(B \). \(A \) and \(B \) can each be scalars or arrays of the same size as \(R \).

Examples

\[
a = [1 1; 2 2];
b = [1 2; 1 2];
\]

\[
r = \text{betarnd}(a,b)
\]

\[
r =
\begin{array}{cc}
0.6987 & 0.6139 \\
0.9102 & 0.8067
\end{array}
\]

\[
r = \text{betarnd}(10,10,[1 5])
\]

\[
r =
\begin{array}{cccccc}
0.5974 & 0.4777 & 0.5538 & 0.5465 & 0.6327
\end{array}
\]

\[
r = \text{betarnd}(4,2,2,3)
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
betacdf | betafit | betainv | betalike | betapdf | betastat | random

Topics
"Beta Distribution" on page B-4

Introduced before R2006a
betastat
Beta mean and variance

Syntax

[M,V] = betastat(A,B)

Description

[M,V] = betastat(A,B), with A>0 and B>0, returns the mean of and variance for the beta distribution with parameters specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of M and V. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.

The mean of the beta distribution with parameters a and b is \(a / (a + b) \) and the variance is

\[
\frac{ab}{(a + b + 1)(a + b)^2}
\]

Examples

If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)
m =
 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
v =
 0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

32-193
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
betacdf | betafit | betainv | betalike | betapdf | betarnd

Topics
“Beta Distribution” on page B-4

Introduced before R2006a
binocdf

Binomial cumulative distribution function

Syntax

\[y = \text{binocdf}(x,N,p) \]
\[y = \text{binocdf}(x,N,p,'upper') \]

Description

\(y = \text{binocdf}(x,N,p) \) computes a binomial cdf at each of the values in \(x \) using the corresponding number of trials in \(N \) and probability of success for each trial in \(p \). \(x, N, \) and \(p \) can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The values in \(N \) must all be positive integers, the values in \(x \) must lie on the interval \([0, N]\), and the values in \(p \) must lie on the interval \([0, 1]\).

\(y = \text{binocdf}(x,N,p,'upper') \) returns the complement of the binomial cdf at each value in \(x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The binomial cdf for a given value \(x \) and a given pair of parameters \(n \) and \(p \) is

\[
y = F(x \mid n,p) = \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i} I_{(0,1,...,n)}(i).
\]

The result, \(y \), is the probability of observing up to \(x \) successes in \(n \) independent trials, where the probability of success in any given trial is \(p \). The indicator function \(I_{(0,1,...,n)}(i) \) ensures that \(x \) only adopts values of \(0,1,...,n \).

Examples
Compute Binomial CDF

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any game, then the probability of that team winning more than 100 games in a season is:

\[1 - \text{binocdf}(100, 162, 0.5) \]

\[\text{ans} = 0.0010 \]

The result is \(0.001 \) (i.e., \(1 - 0.999 \)). If a team wins 100 or more games in a season, this result suggests that it is likely that the team's true probability of winning any game is greater than 0.5.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binofit | binoinv | binopdf | binornd | binostat | cdf

Topics
"Binomial Distribution" on page B-9

Introduced before R2006a
binofit

Binomial parameter estimates

Syntax

```matlab
phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)
```

Description

`phat = binofit(x,n)` returns a maximum likelihood estimate of the probability of success in a given binomial trial based on the number of successes, `x`, observed in `n` independent trials. If `x = (x(1), x(2), ... x(k))` is a vector, `binofit` returns a vector of the same size as `x` whose `i`th entry is the parameter estimate for `x(i)`. All `k` estimates are independent of each other. If `n = (n(1), n(2), ..., n(k))` is a vector of the same size as `x`, the binomial fit, `binofit`, returns a vector whose `i`th entry is the parameter estimate based on the number of successes `x(i)` in `n(i)` independent trials. A scalar value for `x` or `n` is expanded to the same size as the other input.

`[phat,pci] = binofit(x,n)` returns the probability estimate, `phat`, and the 95% confidence intervals, `pci`. `binofit` uses the Clopper-Pearson method to calculate confidence intervals.

`[phat,pci] = binofit(x,n,alpha)` returns the \(100(1 - \alpha)\)% confidence intervals. For example, `alpha = 0.01` yields 99% confidence intervals.

Note `binofit` behaves differently than other Statistics and Machine Learning Toolbox functions that compute parameter estimates, in that it returns independent estimates for each entry of `x`. By comparison, `expfit` returns a single parameter estimate based on all the entries of `x`.

Unlike most other distribution fitting functions, the `binofit` function treats its input `x` vector as a collection of measurements from separate samples. If you want to treat `x` as a
single sample and compute a single parameter estimate for it, you can use
\text{binofit}(\text{sum}(x),\text{sum}(n)) \text{ when } n \text{ is a vector, and } \text{binofit}(\text{sum}(X),N*\text{length}(X)) \text{ when } n \text{ is a scalar.}

\section*{Examples}

This example generates a binomial sample of 100 elements, where the probability of
success in a given trial is 0.6, and then estimates this probability from the outcomes in
the sample.

\begin{verbatim}
 r = binornd(100,0.6);
 [phat,pci] = binofit(r,100)
 phat =
 0.5800
 pci =
 0.4771 0.6780
\end{verbatim}

The 95\% confidence interval,pci, contains the true value, 0.6.

\section*{References}

\section*{Extended Capabilities}

\subsection*{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).
See Also

binocdf | binoinv | binopdf | binornd | binostat | mle

Topics

“Binomial Distribution” on page B-9

Introduced before R2006a
binoinv

Binomial inverse cumulative distribution function

Syntax

\[X = \text{binoinv}(Y,N,P) \]

Description

\[X = \text{binoinv}(Y,N,P) \] returns the smallest integer \(X \) such that the binomial cdf evaluated at \(X \) is equal to or exceeds \(Y \). You can think of \(Y \) as the probability of observing \(X \) successes in \(N \) independent trials where \(P \) is the probability of success in each trial. Each \(X \) is a positive integer less than or equal to \(N \).

\(Y \), \(N \), and \(P \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(N \) must be positive integers, and the values in both \(P \) and \(Y \) must lie on the interval \([0 1]\).

Examples

If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of games this team might win over a season of 162 games?

\[
\text{binoinv}([0.05 \ 0.95],162,0.5)
\]

\[
\text{ans} = \\
71 \quad 91
\]

This result means that in 90% of baseball seasons, a .500 team should win between 71 and 91 games.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
binocdf | binofit | binopdf | binornd | binostat | icdf

Topics
“Binomial Distribution” on page B-9

Introduced before R2006a
binopdf

Binomial probability density function

Syntax

\(Y = \text{binopdf}(X,N,P) \)

Description

\(Y = \text{binopdf}(X,N,P) \) computes the binomial pdf at each of the values in \(X \) using the corresponding number of trials in \(N \) and probability of success for each trial in \(P \). \(Y, N, \) and \(P \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs.

The parameters in \(N \) must be positive integers, and the values in \(P \) must lie on the interval \([0, 1]\).

The binomial probability density function for a given value \(x \) and given pair of parameters \(n \) and \(p \) is

\[
y = f(x | n, p) = \binom{n}{x} p^x q^{(n-x)} I_{(0,1,\ldots,n)}(x)
\]

where \(q = 1 - p \). The result, \(y \), is the probability of observing \(x \) successes in \(n \) independent trials, where the probability of success in any given trial is \(p \). The indicator function \(I_{(0,1,\ldots,n)}(x) \) ensures that \(x \) only adopts values of 0, 1, \ldots, \(n \).

Examples

A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the boards have defects, what is the probability that the inspector will find no defective boards on any given day?
What is the most likely number of defective boards the inspector will find?

```
defects=0:200;
y = binopdf(defects,200,.02);
[x,i]=max(y);
defects(i)
ans =
   4
```

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
`binocdf | binofit | binoinv | binornd | binostat | pdf`

Topics
“Binomial Distribution” on page B-9

Introduced before R2006a
binornd

Binomial random numbers

Syntax

R = binornd(N,P)
R = binornd(N,P,m,n,...)
R = binornd(N,P,[m,n,...])

Description

R = binornd(N,P) generates random numbers from the binomial distribution with parameters specified by the number of trials, N, and probability of success for each trial, P. N and P can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for N or P is expanded to a constant array with the same dimensions as the other input.

R = binornd(N,P,m,n,...) or R = binornd(N,P,[m,n,...]) generates an m-by-n-by-... array containing random numbers from the binomial distribution with parameters N and P. N and P can each be scalars or arrays of the same size as R.

Examples

n = 10:10:60;

r1 = binornd(n,1./n)
r1 =
 2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])
r2 =
 0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)
r3 =
 0 1 1 1 0 3
Algorithms

The binornd function uses the direct method using the definition of the binomial distribution as a sum of Bernoulli random variables.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

binocdf | binofit | binoinv | binopdf | binostat | random

Topics

“Binomial Distribution” on page B-9

Introduced before R2006a
binostat

Binomial mean and variance

Syntax

\[[M, V] = \text{binostat}(N, P) \]

Description

\[[M, V] = \text{binostat}(N, P) \]
returns the mean of and variance for the binomial distribution with parameters specified by the number of trials, \(N \), and probability of success for each trial, \(P \). \(N \) and \(P \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(M \) and \(V \). A scalar input for \(N \) or \(P \) is expanded to a constant array with the same dimensions as the other input.

The mean of the binomial distribution with parameters \(n \) and \(p \) is \(np \). The variance is \(npq \), where \(q = 1 - p \).

Examples

\(n = \logspace(1,5,5) \)
\(n = \)
\begin{align*}
&10 & 100 & 1000 & 10000 & 100000 \\
\end{align*}
\[[m, v] = \text{binostat}(n, 1./n) \]
\(m = \)
\begin{align*}
&1 & 1 & 1 & 1 & 1 \\
\end{align*}
\(v = \)
\begin{align*}
&0.9000 & 0.9900 & 0.9990 & 0.9999 & 1.0000 \\
\end{align*}
\[[m, v] = \text{binostat}(n, 1/2) \]
\(m = \)
\begin{align*}
&5 & 50 & 500 & 5000 & 50000 \\
\end{align*}
\(v = \)
\begin{align*}
&1.0e+04 * \\
&0.0003 & 0.0025 & 0.0250 & 0.2500 & 2.5000 \\
\end{align*}
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
binocdf | binofit | binoinv | binopdf | binornd

Topics
“Binomial Distribution” on page B-9

Introduced before R2006a
binScatterPlot

Scatter plot of bins for tall arrays

Syntax

binScatterPlot(X,Y)
binScatterPlot(X,Y,nbins)
binScatterPlot(X,Y,Xedges,Yedges)
binScatterPlot(X,Y,Name,Value)
h = binScatterPlot(__)

Description

binScatterPlot(X,Y) creates a binned scatter plot of the data in X and Y. The binScatterPlot function uses an automatic binning algorithm that returns bins with a uniform area, chosen to cover the range of elements in X and Y and reveal the underlying shape of the distribution.

binScatterPlot(X,Y,nbins) specifies the number of bins to use in each dimension.

binScatterPlot(X,Y,Xedges,Yedges) specifies the edges of the bins in each dimension using the vectors Xedges and Yedges.

binScatterPlot(X,Y,Name,Value) specifies additional options with one or more name-value pair arguments using any of the previous syntaxes. For example, you can specify 'Color' and a valid color option to change the color theme of the plot, or 'Gamma' with a positive scalar to adjust the level of detail.

h = binScatterPlot(__) returns a Histogram2 object. Use this object to inspect properties of the plot.

Examples
Binned Scatter Plot of Normally-Distributed Random Data

Create two tall vectors of random data. Create a binned scatter plot for the data.

\[X = \text{tall}(\text{randn}(1e5,1)); \]

Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.

\[Y = \text{tall}(\text{randn}(1e5,1)); \]
\[\text{binScatterPlot}(X,Y) \]
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.49 sec

The resulting figure contains a slider to adjust the level of detail in the image.

Specify Number of Scatter Plot Bins

Specify a scalar value as the third input argument to use the same number of bins in each dimension, or a two-element vector to use a different number of bins in each dimension.

Plot a binned scatter plot of random data sorted into 100 bins in each dimension.

```matlab
X = tall(randn(1e5,1));
Y = tall(randn(1e5,1));
binScatterPlot(X,Y,100)
```
Use 20 bins in the x-dimension and continue to use 100 bins in the y-dimension.

`binScatterPlot(X,Y,[20 100])`
Specify Bin Edges for Scatter Plot

Plot a binned scatter plot of random data with specific bin edges. Use bin edges of `Inf` and `-Inf` to capture outliers.
Create a binned scatter plot with 100 bin edges between [-2 2] in each dimension. The data outside the specified bin edges is not included in the plot.

\[
X = \text{tall}(\text{randn}(1\text{e5},1));
\]

Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.

\[
Y = \text{tall}(\text{randn}(1\text{e5},1));
\]

Xedges = linspace(-2,2);
Yedges = linspace(-2,2);
binScatterPlot(X,Y,Xedges,Yedges)

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 1.5 sec
Use coarse bins extending to infinity on the edges of the plot to capture outliers.

\[
\text{Xedges} = [-\infty \ \text{linspace}(-2,2) \ \infty]; \\
\text{Yedges} = [-\infty \ \text{linspace}(-2,2) \ \infty]; \\
\text{binScatterPlot}(X,Y,\text{Xedges},\text{Yedges})
\]
\begin{verbatim}
X = tall(randn(1e5,1));

Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.

Y = tall(randn(1e5,1));
binScatterPlot(X,Y,'Color','c')
\end{verbatim}

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.5 sec
Input Arguments

X,Y — Data to distribute among bins (as separate arguments)
tall vectors | tall matrices | tall multidimensional arrays

Data to distribute among bins, specified as separate arguments of tall vectors, matrices, or multidimensional arrays. X and Y must be the same size. If X and Y are not vectors, then binScatterPlot treats them as single column vectors, X(:) and Y(:).

Corresponding elements in X and Y specify the x and y coordinates of 2-D data points, [X(k),Y(k)]. The underlying data types of X and Y can be different, but binScatterPlot concatenates these inputs into a single N-by-2 tall matrix of the dominant underlying data type.

binScatterPlot ignores all NaN values. Similarly, binScatterPlot ignores Inf and -Inf values, unless the bin edges explicitly specify Inf or -Inf as a bin edge.

Note If X or Y contain integers of type int64 or uint64 that are larger than flintmax, then it is recommended that you explicitly specify the bin edges. binScatterPlot automatically bins the input data using double precision, which lacks integer precision for numbers greater than flintmax.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical

nbins — Number of bins in each dimension
scalar | vector

Number of bins in each dimension, specified as a positive scalar integer or two-element vector of positive integers. If you do not specify nbins, then binScatterPlot automatically calculates how many bins to use based on the values in X and Y.

- If nbins is a scalar, then binScatterPlot uses that many bins in each dimension.
- If nbins is a vector, then nbins(1) specifies the number of bins in the x-dimension and nbins(2) specifies the number of bins in the y-dimension.

Example: binScatterPlot(X,Y,20) uses 20 bins in each dimension.
Example: binScatterPlot(X,Y,[10 20]) uses 10 bins in the x-dimension and 20 bins in the y-dimension.
Xedges — Bin edges in x-dimension
vector

Bin edges in x-dimension, specified as a vector. `Xedges(1)` is the first edge of the first bin in the x-dimension, and `Xedges(end)` is the outer edge of the last bin.

The value `\[X(k),Y(k)\]` is in the `(i,j)`th bin if `Xedges(i) \leq X(k) < Xedges(i+1)` and `Yedges(j) \leq Y(k) < Yedges(j+1)`. The last bins in each dimension also include the last (outer) edge. For example, `\[X(k),Y(k)\]` falls into the `i`th bin in the last row if `Xedges(end-1) \leq X(k) \leq Xedges(end)` and `Yedges(i) \leq Y(k) < Yedges(i+1)`.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `logical`

Yedges — Bin edges in y-dimension
vector

Bin edges in y-dimension, specified as a vector. `Yedges(1)` is the first edge of the first bin in the y-dimension, and `Yedges(end)` is the outer edge of the last bin.

The value `\[X(k),Y(k)\]` is in the `(i,j)`th bin if `Xedges(i) \leq X(k) < Xedges(i+1)` and `Yedges(j) \leq Y(k) < Yedges(j+1)`. The last bins in each dimension also include the last (outer) edge. For example, `\[X(k),Y(k)\]` falls into the `i`th bin in the last row if `Xedges(end-1) \leq X(k) \leq Xedges(end)` and `Yedges(i) \leq Y(k) < Yedges(i+1)`.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `logical`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `binScatterPlot(X,Y,'BinWidth',[5 10])`

BinMethod — Binning algorithm

'auto' (default) | 'scott' | 'integers'

Binning algorithm, specified as the comma-separated pair consisting of `BinMethod` and one of these values.
Value	Description
'auto' | The default 'auto' algorithm uses a maximum of 100 bins and chooses a bin width to cover the data range and reveal the shape of the underlying distribution.
'scott' | Scott’s rule is optimal if the data is close to being jointly normally distributed. This rule is appropriate for most other distributions, as well. It uses a bin size of $[3.5*\text{std}(X)*\text{numel}(X)^{(-1/4)}, \ 3.5*\text{std}(Y)*\text{numel}(Y)^{(-1/4)}]$.
'integers' | The integer rule is useful with integer data, as it creates a bin for each integer. It uses a bin width of 1 and places bin edges halfway between integers. To avoid accidentally creating too many bins, you can use this rule to create a limit of 65536 bins (2^{16}). If the data range is greater than 65536, then the integer rule uses wider bins instead.

Note The BinMethod property of the resulting Histogram2 object always has a value of 'manual'.

BinWidth — Width of bins in each dimension

scalar | vector

Width of bins in each dimension, specified as the comma-separated pair consisting of 'BinWidth' and a scalar or two-element vector of positive integers, [xWidth yWidth]. A scalar value indicates the same bin width for each dimension.

If you specify BinWidth, then binScatterPlot can use a maximum of 1024 bins (2^{10}) along each dimension. If instead the specified bin width requires more bins, then binScatterPlot uses a larger bin width corresponding to the maximum number of bins.

Example: `binScatterPlot(X,Y,'BinWidth',[5 10])` uses bins with size 5 in the x-dimension and size 10 in the y-dimension.
Color — Plot color theme
'b' (default) | 'y' | 'm' | 'c' | 'r' | 'g' | 'k'

Plot color theme, specified as the comma-separated pair consisting of 'Color' and one of these options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'b'</td>
<td>Blue</td>
</tr>
<tr>
<td>'m'</td>
<td>Magenta</td>
</tr>
<tr>
<td>'c'</td>
<td>Cyan</td>
</tr>
<tr>
<td>'r'</td>
<td>Red</td>
</tr>
<tr>
<td>'g'</td>
<td>Green</td>
</tr>
<tr>
<td>'y'</td>
<td>Yellow</td>
</tr>
<tr>
<td>'k'</td>
<td>Black</td>
</tr>
</tbody>
</table>

Gamma — Gamma correction
1 (default) | positive scalar

Gamma correction, specified as the comma-separated pair consisting of 'Gamma' and a positive scalar. Use this option to adjust the brightness and color intensity to affect the amount of detail in the image.

- gamma < 1 — As gamma decreases, the shading of bins with smaller bin counts becomes progressively darker, including more detail in the image.
- gamma > 1 — As gamma increases, the shading of bins with smaller bin counts becomes progressively lighter, removing detail from the image.
- The default value of 1 does not apply any correction to the display.

XBinLimits — Bin limits in x-dimension
vector

Bin limits in x-dimension, specified as the comma-separated pair consisting of 'XBinLimits' and a two-element vector, [xbmin,xbmax]. The vector indicates the first and last bin edges in the x-dimension.

binScatterPlot only plots data that falls within the bin limits inclusively, Data(Data(:,1)>=xbmin & Data(:,1)<=xbmax).
YBinLimits — Bin limits in y-dimension

vector

Bin limits in y-dimension, specified as the comma-separated pair consisting of 'YBinLimits' and a two-element vector, [ybmin, ybmax]. The vector indicates the first and last bin edges in the y-dimension.

binScatterPlot only plots data that falls within the bin limits inclusively, Data(Data(:,2)>=ybmin & Data(:,2)<=ybmax).

Output Arguments

h — Binned scatter plot

histogram2 object

Binned scatter plot, returned as a histogram2 object. For more information, see Histogram2.

See Also

Introduced in R2016b
biplot

Biplot

Syntax

biplot(coefs)

\[h = \text{biplot}(\text{coefs},'\text{Name}',\text{Value}) \]

Description

\[\text{biplot}(\text{coefs}) \] creates a biplot of the coefficients in the matrix \(\text{coefs} \). The biplot is 2-D if \(\text{coefs} \) has two columns or 3-D if it has three columns. \(\text{coefs} \) usually contains principal component coefficients created with \text{pca}, \text{pcacov}, or factor loadings estimated with \text{factoran}. The axes in the biplot represent the principal components or latent factors (columns of \(\text{coefs} \)), and the observed variables (rows of \(\text{coefs} \)) are represented as vectors.

A biplot allows you to visualize the magnitude and sign of each variable's contribution to the first two or three principal components, and how each observation is represented in terms of those components.

\[\text{biplot} \] imposes a sign convention, forcing the element with largest magnitude in each column of \(\text{coefs} \) to be positive. This flips some of the vectors in \(\text{coefs} \) to the opposite direction, but often makes the plot easier to read. Interpretation of the plot is unaffected, because changing the sign of a coefficient vector does not change its meaning.

\[\text{biplot} \] scales the scores so that they fit on the plot: It divides each score by the maximum absolute value of all scores, and multiplies by the maximum coefficient length of \(\text{coefs} \). Then \text{biplot} changes the sign of score coordinates according to the sign convention for the \(\text{coefs} \).

\[h = \text{biplot}(\text{coefs},'\text{Name}',\text{Value}) \] specifies one or more name/value input pairs and returns a column vector of handles to the graphics objects created by \text{biplot}. The \(h \) contains, in order, handles corresponding to variables (line handles, followed by marker handles, followed by text handles), to observations (if present, marker handles followed by text handles), and to the axis lines.
Input Arguments

Name-Value Pair Arguments

Scores

Plots both coefs and the scores in the matrix scores in the biplot. scores usually contains principal component scores created with pca or factor scores estimated with factoran. Each observation (row of scores) is represented as a point in the biplot.

VarLabels

Labels each vector (variable) with the text in the character array, string array or cell array varlabels.

ObsLabels

Uses the text in the character array, string array or cell array obslabels as observation names when displaying data cursors.

Positive

• true — restricts the biplot to the positive quadrant (in 2-D) or octant (in 3-D).
• false — makes the biplot over the range +/- max(coefs(:)) for all coordinates.

Default: false

PropertyName

Specifies optional property name/value pairs for all Primitive Line graphics objects created by biplot.

Examples

Biplot of Coefficients and Scores

Load the sample data.

load carsmall

load carsmall
Define the variable matrix and delete the rows with missing values.

```matlab
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
```

Perform a principal component analysis of the data.

```matlab
[coefs,score] = pca(zscore(x));
```

View the data and the original variables in the space of the first three principal components.

```matlab
vbls = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3),'Scores',score(:,1:3),'Varlabels',vbls);
```
See Also
factoran | nnmf | pca | pcacov | rotatefactors

Introduced before R2006a
bootci

Bootstrap confidence interval

Syntax

```matlab
ci = bootci(nboot,bootfun,...)  
ci = bootci(nboot,{bootfun,...},'alpha',alpha)  
ci = bootci(nboot,{bootfun,...},...,'type',type)  
ci = bootci(nboot,{bootfun,...},...,'type','student','nbootstd',nbootstd)  
ci = bootci(nboot,{bootfun,...},...,'type','student','stderr',stderr)  
ci = bootci(nboot,{bootfun,...},...,'Weights',weights)  
ci = bootci(nboot,{bootfun,...},...,'Options',options)  
[ci,bootstat] = bootci(...)```

**Description**

`ci = bootci(nboot,bootfun,...)` computes the 95% bootstrap confidence interval of the statistic computed by the function `bootfun`. `nboot` is a positive integer indicating the number of bootstrap samples used in the computation. `bootfun` is a function handle specified with @. The third and later input arguments to `bootci` are data (scalars, column vectors, or matrices) that are used to create inputs to `bootfun`. `bootci` creates each bootstrap sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). Scalar data are passed to `bootfun` unchanged.

If `bootfun` returns a scalar, `ci` is a vector containing the lower and upper bounds of the confidence interval. If `bootfun` returns a vector of length `m`, `ci` is an array of size 2-by-`m`, where `ci(1,:)` are lower bounds and `ci(2,:)` are upper bounds. If `bootfun` returns an array of size `m`-by-`n`-by-`p`-by-..., `ci` is an array of size 2-by-`m`-by-`n`-by-`p`-by-..., where `ci(1,:,:,:)` is an array of lower bounds and `ci(2,:,:,:)` is an array of upper bounds.

`ci = bootci(nboot,{bootfun,...},'alpha',alpha)` computes the 100*(1-alpha) bootstrap confidence interval of the statistic defined by the function `bootfun`. 

32-225
bootfun and the data that bootci passes to it are contained in a single cell array. alpha is a scalar between 0 and 1. The default value of alpha is 0.05.

\[
\text{ci} = \text{bootci}(nboot,\{\text{bootfun},\ldots\},\ldots,'\text{type}',\text{type})
\]
computes the bootstrap confidence interval of the statistic defined by the function bootfun. type is the confidence interval type, chosen from among the following:

- 'norm' or 'normal' — Normal approximated interval with bootstrapped bias and standard error.
- 'per' or 'percentile' — Basic percentile method.
- 'cper' or 'corrected percentile' — Bias corrected percentile method.
- 'bca' — Bias corrected and accelerated percentile method. This is the default.
- 'stud' or 'student' — Studentized confidence interval.

\[
\text{ci} = \text{bootci}(nboot,\{\text{bootfun},\ldots\},\ldots,'\text{type}','\text{student}',\text{nbootstd},\text{nbootstd})
\]
computes the studentized bootstrap confidence interval of the statistic defined by the function bootfun. The standard error of the bootstrap statistics is estimated using bootstrap, with nbootstd bootstrap data samples. nbootstd is a positive integer value. The default value of nbootstd is 100.

\[
\text{ci} = \text{bootci}(nboot,\{\text{bootfun},\ldots\},\ldots,'\text{type}','\text{student}',\text{stderr},\text{stderr})
\]
computes the studentized bootstrap confidence interval of statistics defined by the function bootfun. The standard error of the bootstrap statistics is evaluated by the function stderr. stderr is a function handle. stderr takes the same arguments as bootfun and returns the standard error of the statistic computed by bootfun.

\[
\text{ci} = \text{bootci}(nboot,\{\text{bootfun},\ldots\},\ldots,'\text{Weights}',\text{weights})
\]
specifies observation weights. weights must be a vector of non-negative numbers with at least one positive element. The number of elements in weights must be equal to the number of rows in non-scalar input arguments to bootfun. To obtain one bootstrap replicate, bootstrp samples N out of N with replacement using these weights as multinominal sampling probabilities.

\[
\text{ci} = \text{bootci}(nboot,\{\text{bootfun},\ldots\},\ldots,'\text{Options}',\text{options})
\]
specifies options that govern the computation of bootstrap iterations. One option requests that bootci perform bootstrap iterations using multiple processors, if the Parallel Computing Toolbox is available. Two options specify the random number streams to be used in bootstrap resampling. This argument is a struct that you can create with a call to statset. You can
retrieve values of the individual fields with a call to statget. Applicable statset parameters are:

- 'UseParallel' — If true and if a parpool of the Parallel Computing Toolbox is open, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox is not installed, or a parpool is not open, computation occurs in serial mode. Default is false, or serial computation.
- UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams — A RandStream object or cell array of such objects. If you do not specify Streams, bootci uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
  - You have an open Parallel pool
  - UseParallel is true
  - UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

[ci,bootstat] = bootci(...) also returns the bootstrapped statistic computed for each of the nboot bootstrap replicate samples. Each row of bootstat contains the results of applying bootfun to one bootstrap sample. If bootfun returns a matrix or array, then this output is converted to a row vector for storage in bootstat.

**Examples**

Compute the confidence interval for the capability index in statistical process control:

```matlab
y = normrnd(1,1,30,1); % Simulated process data
LSL = -3; USL = 3; % Process specifications
capable = @(x)(USL-LSL)/(6* std(x)); % Process capability
ci = bootci(2000,capable,y) % BCa confidence interval
 ci =
 0.8122
 1.2657

sci = bootci(2000,{capable,y},'type','student') % Studentized ci
 sci =
 0.7739
 1.2707
```
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
bootstrap | jackknife | parfor | randsample | statget | statset

Introduced in R2006a
**bootstrap**

Bootstrap sampling

**Syntax**

```plaintext
bootstat = bootstrp(nboot,bootfun,d1,...)
[bootstat,bootsam] = bootstrp(...)
bootstat = bootstrp(...,'Name',Value)
```

**Description**

`bootstat = bootstrp(nboot,bootfun,d1,...)` draws `nboot` bootstrap data samples, computes statistics on each sample using `bootfun`, and returns the results in the matrix `bootstat`. `nboot` must be a positive integer. `bootfun` is a function handle specified with @. Each row of `bootstat` contains the results of applying `bootfun` to one bootstrap sample. If `bootfun` returns a matrix or array, then this output is converted to a row vector for storage in `bootstat`.

The third and later input arguments (d1,...) are data (scalars, column vectors, or matrices) used to create inputs to `bootfun`. `bootstrp` creates each bootstrap sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). `bootfun` accepts scalar data unchanged.

`[bootstat,bootsam] = bootstrp(...)` returns an n-by-nboot matrix of bootstrap indices, `bootsam`. Each column in `bootsam` contains indices of the values that were drawn from the original data sets to constitute the corresponding bootstrap sample. For example, if d1,... each contain 16 values, and nboot = 4, then `bootsam` is a 16-by-4 matrix. The first column contains the indices of the 16 values drawn from d1,..., for the first of the four bootstrap samples, the second column contains the indices for the second of the four bootstrap samples, and so on. (The bootstrap indices are the same for all input data sets.) To get the output samples `bootsam` without applying a function, set `bootfun` to empty ([]).

`bootstat = bootstrp(...,'Name',Value)` uses additional arguments specified by one or more `Name`, `Value` pair arguments. The name-value pairs must appear after the data arguments. The available name-value pairs:
'Weights' — Observation weights. The weights value must be a vector of nonnegative numbers with at least one positive element. The number of elements in weights must be equal to the number of rows in non-scalar input arguments to bootstrap. To obtain one bootstrap replicate, bootstrap samples $N$ out of $N$ with replacement using these weights as multinomial sampling probabilities.

'Options' — The value is a structure that contains options specifying whether to compute bootstrap iterations in parallel, and specifying how to use random numbers during the bootstrap sampling. Create the options structure with statset. Applicable statset parameters are:

- 'UseParallel' — If true Parallel Computing Toolbox is installed, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox is not installed, computation occurs in serial mode. Default is false, meaning serial computation.
- UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams — A RandStream object or cell array of such objects. If you do not specify Streams, bootstrap uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
  - You have an open Parallel pool
  - UseParallel is true
  - UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Examples

Bootstrapping a Correlation Coefficient Standard Error

This example shows how to compute a correlation coefficient standard error using bootstrap resampling of the sample data.

Load a data set containing the LSAT scores and law-school GPA for 15 students. These 15 data points are resampled to create 1000 different data sets, and the correlation between the two variables is computed for each data set.
load lawdata
rng default  % For reproducibility
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);

Display the first 5 bootstrapped correlation coefficients.

bootstat(1:5,:)

ans = 5×1
    0.9874
    0.4918
    0.5459
    0.8458
    0.8959

Display the indices of the data selected for the first 5 bootstrap samples.

bootsam(:,1:5)

ans = 15×5
     13     3    11     8    12
     14     7     1     7     4
     2    14     5    10     8
     14    12     1    11    11
     10    15     2    12    14
     2    10    13     5    15
     5     1    11    11     9
     9    13     5    10     3
    15    15    15     3     3
    15    11     1     2     4
    :

figure
histogram(bootstat)
The histogram shows the variation of the correlation coefficient across all the bootstrap samples. The sample minimum is positive, indicating that the relationship between LSAT score and GPA is not accidental.

Finally, compute a bootstrap standard of error for the estimated correlation coefficient.

```
se = std(bootstat)
se = 0.1285
```
**Estimate the Density of Bootstrapped Statistic**

This example shows how to estimate the kernel density of bootstrapped means.

Compute a sample of 100 bootstrapped means of random samples taken from the vector Y.

```matlab
rng default; % For reproducibility
y = exprnd(5,100,1);
m = bootstrp(100,@mean,y);

Plot an estimate of the density of these bootstrapped means.

```matlab
figure;
[fi,xi] = ksdensity(m);
plot(xi,fi);
```
Bootstrapping Multiple Statistics

This example shows how to compute and plot the means and standard deviations of bootstrapped 100 samples from a data vector.

Compute a sample of 100 bootstrapped means and standard deviations of random samples taken from the vector y.

```matlab
rng('default') % For reproducibility
y = exprnd(5,100,1);
stats = bootstrp(100,@(x)[mean(x) std(x)],y);
```
Plot the bootstrap estimate pairs.

```matlab
plot(stats(:,1),stats(:,2), 'o')
```

Bootstrapping a Regression Model

This example shows how to estimate the standard errors for a coefficient vector in a linear regression by bootstrapping the residuals.

Load the sample data.

```matlab
load hald
```
Perform a linear regression and compute the residuals.

\[
x = [\text{ones(size(heat))}, \text{ingredients}];
\]
\[
y = \text{heat};
\]
\[
b = \text{regress}(y,x);
\]
\[
yfit = x*b;
\]
\[
resid = y - yfit;
\]

Estimate the standard errors by bootstrapping the residuals.

\[
se = \text{std} \left(\text{bootstrp} \left(1000, @(bootr) \text{regress}(yfit+bootr,x), resid\right) \right)
\]

\[
se = 1\times5
\]
\[
\begin{align*}
56.1752 & & 0.5940 & & 0.5815 & & 0.5989 & & 0.5691 \\
\end{align*}
\]

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', `statset('UseParallel',true)`

For more information, see the 'Options' name-value pair argument.

See Also

RandStream | bootci | histogram | ksdensity | parfor | random | randsample | statget | statset
Introduced before R2006a
boxplot

Box plot

Syntax

boxplot(x)
boxplot(x,g)
boxplot(ax,___)
boxplot(___,Name,Value)

Description

boxplot(x) creates a box plot of the data in x. If x is a vector, boxplot plots one box. If x is a matrix, boxplot plots one box for each column of x.

On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the '+' symbol.

boxplot(x,g) creates a box plot using one or more grouping variables contained in g. boxplot produces a separate box for each set of x values that share the same g value or values.

boxplot(ax,___) creates a box plot using the axes specified by the axes graphic object ax, using any of the previous syntaxes.

boxplot(___,Name,Value) creates a box plot with additional options specified by one or more Name,Value pair arguments. For example, you can specify the box style or order.

Examples
Create a Box Plot

Load the sample data.

load carsmall

Create a box plot of the miles per gallon (MPG) measurements. Add a title and label the axes.

boxplot(MPG)
xlabel('All Vehicles')
ylabel('Miles per Gallon (MPG)')
title('Miles per Gallon for All Vehicles')
The boxplot shows that the median miles per gallon for all vehicles in the sample data is approximately 24. The minimum value is about 9, and the maximum value is about 44.

Create Box Plots for Grouped Data

Load the sample data.

```matlab
load carsmall
```

Create a box plot of the miles per gallon (MPG) measurements from the sample data, grouped by the vehicles' country of origin (Origin). Add a title and label the axes.

```matlab
boxplot(MPG,Origin)
title('Miles per Gallon by Vehicle Origin')
xlabel('Country of Origin')
ylabel('Miles per Gallon (MPG)')
```
Each box visually represents the MPG data for cars from the specified country. Italy's "box" appears as a single line because the sample data contains only one observation for this group.

Create Notched Box Plots

Generate two sets of sample data. The first sample, x_1, contains random numbers generated from a normal distribution with $\mu = 5$ and $\sigma = 1$. The second sample, x_2, contains random numbers generated from a normal distribution with $\mu = 6$ and $\sigma = 1$.

32-241
rng default % For reproducibility
x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);

Create notched box plots of x1 and x2. Label each box with its corresponding mu value.

figure
boxplot([x1,x2],'Notch','on','Labels',{'mu = 5','mu = 6'})
title('Compare Random Data from Different Distributions')

The boxplot shows that the difference between the medians of the two groups is approximately 1. Since the notches in the box plot do not overlap, you can conclude, with 95% confidence, that the true medians do differ.
The following figure shows the box plot for the same data with the maximum whisker length specified as 1.0 times the interquartile range. Data points beyond the whiskers are displayed using +.

```matlab
figure
boxplot([x1,x2],'Notch','on','Labels',{'mu = 5','mu = 6'},'Whisker',1)
title('Compare Random Data from Different Distributions')
```

With the smaller whiskers, `boxplot` displays more data points as outliers.
Create Compact Box Plots

Create a 100-by-25 matrix of random numbers generated from a standard normal distribution to use as sample data.

```matlab
rng default  % For reproducibility
x = randn(100,25);
```

Create two box plots for the data in `x` on the same figure. Use the default formatting for the top plot, and compact formatting for the bottom plot.

```matlab
figure
subplot(2,1,1)
boxplot(x)

subplot(2,1,2)
boxplot(x,'PlotStyle','compact')
```
Each plot presents the same data, but the compact formatting may improve readability for plots with many boxes.

Input Arguments

- **x — Input data**
 numeric vector | numeric matrix

Input data, specified as a numeric vector or numeric matrix. If x is a vector, boxplot plots one box. If x is a matrix, boxplot plots one box for each column of x.
On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the '+ ' symbol.

Data Types: single | double

g — Grouping variables

numeric vector | character array | string array | cell array | categorical array

Grouping variables, specified as a numeric vector, character array, string array, cell array, or categorical array. You can specify multiple grouping variables in g by using a cell array of these variable types or a matrix. If you specify multiple grouping variables, they must all be the same length.

If x is a vector, then the grouping variables must contain one row for each element of x. If x is a matrix, then the grouping variables must contain one row for each column of x. Groups that contain a missing value (NaN), an empty character vector, an empty or <missing> string, or an <undefined> value in a grouping variable are omitted, and are not counted in the number of groups considered by other parameters.

By default, boxplot sorts character and string grouping variables in the order they initially appear in the data, categorical grouping variables by the order of their levels, and numeric grouping variables in numeric order. To control the order of groups, do one of the following:

- Use categorical variables in g and specify the order of their levels.
- Use the 'GroupOrder' name-value pair argument.
- Pre-sort your data.

Data Types: single | double | char | string | cell | categorical

ax — Axes on which to plot

axes graphic object

Axes on which to plot, specified as an axes graphic object. If you do not specify ax, then boxplot creates the plot using the current axis. For more information on creating an axes graphic object, see axes and Axes.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Notch','on','Labels','{mu = 5','mu = 6'} creates a notched box plot and labels the two boxes mu = 5 and mu = 6, from left to right.

Box Appearance

BoxStyle — Box style

'outline' | 'filled'

Box style, specified as the comma-separated pair consisting of 'BoxStyle' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'outline'</td>
<td>Plot boxes using an unfilled box with dashed whiskers. This is the default if 'PlotStyle' is 'traditional'.</td>
</tr>
<tr>
<td>'filled'</td>
<td>Plot boxes using a narrow filled box with lines for whiskers. This is the default if 'PlotStyle' is 'compact'.</td>
</tr>
</tbody>
</table>

Example: 'BoxStyle','filled'

Colors — Box colors

RGB triplet | character vector or string scalar of color names

Box colors, specified as the comma-separated pair consisting of 'Colors' and an RGB triplet, character vector, or string scalar. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color, respectively. Each intensity must be in the range [0,1].

The following table lists the available color characters and their equivalent RGB triplet values.
You can specify multiple colors either as a character vector or string scalar of color names (for example, 'rgbm') or a three-column matrix of RGB values. The sequence is replicated or truncated as required, so for example, 'rb' gives boxes that alternate red and blue.

If you do not specify the name-value pair 'ColorGroup', then boxplot uses the same color scheme for all boxes. If you do specify 'ColorGroup', then the default is a modified hsv colormap.

Example: 'Colors','rgbm'

MedianStyle — Median style

'line' | 'target'

Median style, specified as the comma-separated pair consisting of 'MedianStyle' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'line'</td>
<td>Draw a line to represent the median in each box. This is the default when 'PlotStyle' is 'traditional'.</td>
</tr>
<tr>
<td>'target'</td>
<td>Draw a black dot inside a white circle to represent the median in each box. This is the default when 'PlotStyle' is 'compact'.</td>
</tr>
</tbody>
</table>
Notch — Marker for comparison intervals
'off' (default) | 'on' | 'marker'

Marker for comparison intervals, specified as the comma-separated pair consisting of 'Notch' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'off'</td>
<td>Omit comparison intervals from box display.</td>
</tr>
<tr>
<td>'on'</td>
<td>If 'PlotStyle' is 'traditional', draw comparison intervals using notches. If 'PlotStyle' is 'compact', draw comparison intervals using triangular markers.</td>
</tr>
<tr>
<td>'marker'</td>
<td>Draw comparison intervals using triangular markers.</td>
</tr>
</tbody>
</table>

Two medians are significantly different at the 5% significance level if their intervals do not overlap. boxplot represents interval endpoints using the extremes of the notches or the centers of the triangular markers. The notch extremes correspond to \(q_2 - 1.57(q_3 - q_1)/\sqrt{n} \) and \(q_2 + 1.57(q_3 - q_1)/\sqrt{n} \), where \(q_2 \) is the median (50th percentile), \(q_1 \) and \(q_3 \) are the 25th and 75th percentiles, respectively, and \(n \) is the number of observations without any NaN values. If the sample size is small, the notches might extend beyond the end of the box.

Example: 'Notch','on'

OutlierSize — Marker size for outliers
positive numeric value

Marker size for outliers, specified as the comma-separated pair consisting of 'OutlierSize' and a positive numeric value. The specified value represents the marker size in points.

If 'PlotStyle' is 'traditional', then the default value for OutlierSize is 6. If 'PlotStyle' is 'compact', then the default value for OutlierSize is 4.

Example: 'OutlierSize',8

Data Types: single | double

PlotStyle — Plot style
'traditional' (default) | 'compact'
Plot style, specified as the comma-separated pair consisting of 'PlotStyle' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'traditional'</td>
<td>Plot boxes using a traditional box style.</td>
</tr>
<tr>
<td>'compact'</td>
<td>Plot boxes using a smaller box style designed for plots with many groups. This style changes the defaults for some other parameters.</td>
</tr>
</tbody>
</table>

Example: 'PlotStyle','compact'

Symbol — Symbol and color for outliers

Symbol and color for outliers, specified as the comma-separated pair consisting of 'Symbol' and a line specification. See the LineSpec parameter in plot for available line specifications.

If 'PlotStyle' is 'traditional', then the default value is 'r+', which plots each outlier using a red '+' symbol.

If 'PlotStyle' is 'compact', then the default value is 'o', which plots each outlier using an 'o' symbol in the same color as the corresponding box.

If you omit the symbol, then the outliers appear invisible. If you omit the color, then the outliers appear in the same color as the box.

Example: 'kx'

Widths — Box width

Box width, specified as the comma-separated pair consisting of 'Widths' and a numeric scalar or numeric vector. If the number of boxes is not equal to the number of width values specified, then the list of values is replicated or truncated as necessary.

This name-value pair argument does not alter the spacing between boxes. Therefore, if you specify a large value for 'Widths', the boxes might overlap.

The default box width is equal to half of the minimum separation between boxes, which is 0.5 when the 'Positions' name-value pair argument takes its default value.
Example: 'Widths', 0.3
Data Types: single | double

Group Appearance

ColorGroup — Grouping variable for box color change

[] (default) | numeric vector | character array | string array | cell array | categorical array

Grouping variable for box color change, specified as the comma-separated pair consisting of 'ColorGroup' and a grouping variable. The grouping variable is a numeric vector, character array, string array, cell array, or categorical array. The box color changes when the specified grouping variable changes. The default value [] indicates that the box color does not change based on the group.

Data Types: single | double | char | string | cell | categorical

FactorDirection — Order of factors on plot

'data' (default) | 'list' | 'auto'

Order of factors on plot, specified as the comma-separated pair consisting of 'FactorDirection' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'data'</td>
<td>Factors appear with the first value next to the plot origin.</td>
</tr>
<tr>
<td>'list'</td>
<td>Factors appear left-to-right if on the x-axis, or top-to-bottom if on the y-axis.</td>
</tr>
<tr>
<td>'auto'</td>
<td>If the grouping variables are numeric, then boxplot uses 'data'. If the grouping variables are character arrays, string arrays, cell arrays, or categorical arrays, then boxplot uses 'list'.</td>
</tr>
</tbody>
</table>

FullFactors — Plot all group factors

'off' (default) | 'on'

Plot all group factors, specified as the comma-separated pair consisting of 'FullFactors' and either 'off' or 'on'. If 'off', then boxplot plots one box for each unique row of grouping variables. If 'on', then boxplot plots one box for each
possible combination of grouping variable values, including combinations that do not appear in the data.

Example: 'FullFactors','on'

FactorGap — Distance between different grouping factors

[] | positive numeric value | vector of positive numeric values | 'auto'

Distance between different grouping factors, specified as the comma-separated pair consisting of 'FactorGap' and a positive numeric value, a vector of positive numeric values, or 'auto'. If you specify a vector, then the vector length must be less than or equal to the number of grouping variables.

'FactorGap' represents the distance of the gap between different factors of a grouping variable, expressed as a percentage of the width of the plot. For example, if you specify [3,1], then the gap is three percent of the width of the plot between groups with different values of the first grouping variable, and one percent between groups with the same value of the first grouping variable but different values for the second.

If you specify 'auto', then boxplot selects a gap distance automatically. The value [] indicates no change in gap size between different factors.

If 'PlotStyle' is 'traditional', then the default value for FactorGap is []. If 'PlotStyle' is 'compact', then the default value is 'auto'.

Example: 'FactorGap', [3,1]

Data Types: single | double | char | string

FactorSeparator — Separation between grouping factors

[] | positive integer | vector of positive integers | 'auto'

Separation between grouping factors, specified as the comma-separated pair consisting of 'FactorSeparator' and a positive integer or a vector of positive integers, or 'auto'. If you specify a vector, then the length of the vector should be less than or equal to the number of grouping variables. The integer values must be in the range [1,G], where G is the number of grouping variables.

'FactorSeparator' specifies which factors should have their values separated by a grid line. For example, [1,2] adds a separator line when the first or second grouping variable changes value.

If 'PlotStyle' is 'traditional', then the default value for FactorSeparator is []. If 'PlotStyle' is 'compact', then the default value is 'auto'.
Example: 'FactorSeparator',[1,2]
Data Types: single | double | char | string

GroupOrder — Plotting order of groups

[
] (default) | string array | cell array

Plotting order of groups, specified as the comma-separated pair consisting of 'GroupOrder' and a string array or cell array containing the names of the grouping variables. If you have multiple grouping variables, separate values with a comma. You can also use categorical arrays as grouping variables to control the order of the boxes. The default value [] does not reorder the boxes.

Data Types: string | cell

Data Limits and Maximum Distances

DataLim — Extreme data limits

[-Inf,Inf] (default) | two-element numeric vector

Extreme data limits, specified as the comma-separated pair consisting of 'DataLim' and a two-element numeric vector containing the lower and upper limits, respectively. The values specified for 'DataLim' are used by 'ExtremeMode' to determine which data points are extreme.

Data Types: single | double

ExtremeMode — Handling method for extreme data

'clip' (default) | 'compress'

Handling method for extreme data, specified as the comma-separated pair consisting of 'ExtremeMode' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'clip'</td>
<td>If any data values fall outside the limits specified by 'DataLim', then boxplot displays these values at DataLim on the plot.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'compress'</td>
<td>If 'ExtremeMode' is 'compress', boxplot displays extreme data points with the box.</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>'compress'</td>
<td>If any data values fall outside the limits specified by 'DataLim', then boxplot displays these values evenly distributed in a region just outside DataLim, retaining the relative order of the points.</td>
</tr>
</tbody>
</table>

If any data points lie outside the limit specified by 'DataLim', then the limit is marked with a dotted line. If any data points are compressed, then two gray lines mark the compression region. Values at –Inf or Inf can be clipped or compressed, but NaN values do not appear on the plot. Box notches are drawn to scale and may extend beyond the bounds if the median is inside the limit. Box notches are not drawn if the median is outside the limits.

Example: 'ExtremeMode','compress'

Jitter — Maximum outlier displacement distance

numeric value

Maximum outlier displacement distance, specified as the comma-separated pair consisting of 'Jitter' and a numeric value. Jitter is the maximum distance to displace outliers along the factor axis by a uniform random amount, in order to make duplicate points visible. If you specify 'Jitter' equal to 1, then the jitter regions just touch between the closest adjacent groups.

If 'PlotStyle' is 'traditional', then the default value for Jitter is 0. If 'PlotStyle' is 'compact', then the default value is 0.5.

Example: 'Jitter',1

Data Types: single | double

Whisker — Maximum whisker length

1.5 (default) | positive numeric value

Maximum whisker length, specified as the comma-separated pair consisting of 'Whisker' and a positive numeric value.

boxplot draws points as outliers if they are greater than \(q_3 + w \times (q_3 - q_1) \) or less than \(q_1 - w \times (q_3 - q_1) \), where \(w \) is the maximum whisker length, and \(q_1 \) and \(q_3 \) are the 25th and 75th percentiles of the sample data, respectively.
The default value for 'Whisker' corresponds to approximately +/-2.7σ and 99.3 percent coverage if the data are normally distributed. The plotted whisker extends to the adjacent value, which is the most extreme data value that is not an outlier.

Specify 'Whisker' as 0 to give no whiskers and to make every point outside of q_1 and q_3 an outlier.

Example: 'Whisker',0

Data Types: single | double

Plot Appearance

Labels — Box labels

character array | string array | cell array | numeric vector | numeric matrix

Box labels, specified as the comma-separated pair consisting of 'Labels' and a character array, string array, cell array, or numeric vector containing the box label names. Specify one label per x value or one label per group. To specify multiple label variables, use a numeric matrix or a cell array containing any of the accepted data types.

To remove labels from a plot, use the following command: `set(gca,'XTickLabel',{});`.

Data Types: char | string | cell | single | double

LabelOrientation — Label orientation

'inline' | 'horizontal'

Label orientation, specified as the comma-separated pair consisting of 'LabelOrientation' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'inline'</td>
<td>Rotate box labels to be vertical. This is the default when 'PlotStyle' is 'compact'.</td>
</tr>
<tr>
<td>'horizontal'</td>
<td>Leave box labels horizontal. This is the default when 'PlotStyle' is 'traditional'.</td>
</tr>
</tbody>
</table>

If the labels are on the y axis, then both settings leave the labels horizontal.

Example: 'LabelOrientation','inline'

32-255
LabelVerbosity — Labels to display on plot

'all' | 'minor' | 'majorminor'

Labels to display on plot, specified as the comma-separated pair consisting of LabelVerbosity and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'all'</td>
<td>Display a label for every factor. This is the default when 'PlotStyle' is 'traditional'.</td>
</tr>
<tr>
<td>'minor'</td>
<td>Display a label for a factor only when that factor has a different value from the previous group.</td>
</tr>
<tr>
<td>'majorminor'</td>
<td>Display a label for a factor when that factor or any factor major to it has a different value from the previous group. This is the default when 'PlotStyle' is 'compact'.</td>
</tr>
</tbody>
</table>

Example: 'LabelVerbosity','minor'

Orientation — Plot orientation

'vertical' (default) | 'horizontal'

Plot orientation, specified as the comma-separated pair consisting of Orientation and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'vertical'</td>
<td>Plot x on the y-axis.</td>
</tr>
<tr>
<td>'horizontal'</td>
<td>Plot x on the x-axis.</td>
</tr>
</tbody>
</table>

Example: 'horizontal'

Positions — Box positions

numeric vector

Box positions, specified as the comma-separated pair consisting of 'Positions' and a numeric vector containing one entry for each group or x value. The default is 1:NumGroups, where NumGroups is the number of groups.

Data Types: single | double
Tips

- `boxplot` creates a visual representation of the data, but does not return numeric values. To calculate the relevant summary statistics for the sample data, use the following functions:
 - `min` — Find the minimum value in the sample data.
 - `max` — Find the maximum value in the sample data.
 - `median` — Find the median value in the sample data.
 - `quantile` — Find the quantile values in the sample data.
 - `grpstats` — Calculate summary statistics for the sample data, organized by group.
- You can see data values and group names using the data cursor (MATLAB) in the figure window. The cursor shows the original values of any points affected by the `datalim` parameter. You can label the group to which an outlier belongs using the `gname` function.
- To modify graphics properties of a box plot component, use `findobj` with the `Tag` property to find the component's handle. `Tag` values for box plot components depend on parameter settings, and are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter Settings</th>
<th>Tag Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>All settings</td>
<td>• 'Box'</td>
</tr>
<tr>
<td></td>
<td>• 'Outliers'</td>
</tr>
<tr>
<td>When 'PlotStyle' is 'traditional'</td>
<td>• 'Median'</td>
</tr>
<tr>
<td></td>
<td>• 'Upper Whisker'</td>
</tr>
<tr>
<td></td>
<td>• 'Lower Whisker'</td>
</tr>
<tr>
<td></td>
<td>• 'Upper Adjacent Value'</td>
</tr>
<tr>
<td></td>
<td>• 'Lower Adjacent Value'</td>
</tr>
<tr>
<td>When 'PlotStyle' is 'compact'</td>
<td>• 'Whisker'</td>
</tr>
<tr>
<td></td>
<td>• 'MedianOuter'</td>
</tr>
<tr>
<td></td>
<td>• 'MedianInner'</td>
</tr>
<tr>
<td>When 'Notch' is 'marker'</td>
<td>• 'NotchLo'</td>
</tr>
<tr>
<td></td>
<td>• 'NotchHi'</td>
</tr>
</tbody>
</table>
References

See Also
anoval | grpstats | kruskalwallis | max | median | min | multcompare | quantile

Topics
“Box Plots” on page 4-6
“Grouping Variables” on page 2-57

Introduced before R2006a
boundary

Piecewise distribution boundaries

Syntax

[p, q] = boundary(pd)
[p, q] = boundary(pd, j)

Description

[p, q] = boundary(pd) returns the boundary points between segments in pd, the piecewise distribution. p is a vector of the cumulative probabilities at the boundaries, and q is a vector of the corresponding quantiles.

[p, q] = boundary(pd, j) returns boundary values of the jth boundary.

Examples

Boundaries in paretotails Object

Generate a sample data set and create a paretotails object by fitting a piecewise distribution with Pareto tails to the generated data. Find the boundary points between segments in a paretotails object by using the object function boundary.

Generate a sample data set containing 20% outliers.

rng('default'); % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a
fitted object consists of the empirical distribution for the middle 80\% of the data set and generalized Pareto distributions (GPDs) for the lower and upper 10\% of the data set.

\[
\text{pd} = \text{paretotails}(x,0.1,0.9)
\]

\[
\text{pd} =
\]

\[
\text{Piecewise distribution with 3 segments}
\]

\[
-\text{Inf} < x < -1.33251 \ (0 < p < 0.1): \text{lower tail, GPD(-0.0063504,0.567017)}
\]

\[
-1.33251 < x < 1.80149 \ (0.1 < p < 0.9): \text{interpolated empirical cdf}
\]

\[
1.80149 < x < \text{Inf} \ (0.9 < p < 1): \text{upper tail, GPD(0.24874,3.00974)}
\]

Return the boundary values between the piecewise segments by using the \text{boundary} function.

\[
[p,q] = \text{boundary}(\text{pd})
\]

\[
p = 2\times1
\]

\[
0.1000
\]

\[
0.9000
\]

\[
q = 2\times1
\]

\[
-1.3325
\]

\[
1.8015
\]

The values in \text{p} are the cumulative probabilities at the boundaries, and the values in \text{q} are the corresponding quantiles.

Plot the \text{cdf} of the \text{paretotails} object and mark the boundary points on the figure.

\[
\text{xi} = \text{sort}(x);
\text{plot(xi,cdf(pd,xi))}
\text{hold on}
\text{plot(q,p,'ro')}
\text{legend('Pareto Tails Object','Boundary Points','Location','best')}
\text{hold off}
\]
Input Arguments

pd — Piecewise distribution with Pareto tails
daretails object

Piecewise distribution with Pareto tails, specified as a `paretotails` object.

j — Boundary index
positive integer

Boundary index indicating which boundary to return, specified as a positive integer.
Data Types: single | double

Output Arguments

p — Cumulative probability at boundary
numeric vector of range (0, 1) values

Cumulative probability at each boundary, returned as a numeric vector of range (0, 1) values.

q — Quantile at boundary
numeric vector

Quantile at each boundary, returned as a numeric vector.

See Also
lowerparams | nsegments | paretotails | segment | upperparams

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

Introduced in R2007a
CalinskiHarabaszEvaluation

Package: clustering.evaluation

Superclasses:
Calinski-Harabasz criterion clustering evaluation object

Description

CalinskiHarabaszEvaluation is an object consisting of sample data, clustering data, and Calinski-Harabasz criterion values used to evaluate the optimal number of clusters. Create a Calinski-Harabasz criterion clustering evaluation object using evalclusters.

Construction

eva = evalclusters(x,clust,'CalinskiHarabasz') creates a Calinski-Harabasz criterion clustering evaluation object.

eva = evalclusters(x,clust,'CalinskiHarabasz',Name,Value) creates a Calinski-Harabasz criterion clustering evaluation object using additional options specified by one or more name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of variables.

Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

Clustering algorithm, specified as one of the following.
'kmeans' Cluster the data in x using the \texttt{kmeans} clustering algorithm, with 'EmptyAction' set to 'singleton' and 'Replicates' set to 5.

'linkage' Cluster the data in x using the \texttt{clusterdata} agglomerative clustering algorithm, with 'Linkage' set to 'ward'.

'gmdistribution' Cluster the data in x using the \texttt{gmdistribution} Gaussian mixture distribution algorithm, with 'SharedCov' set to true and 'Replicates' set to 5.

If \texttt{criterion} is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a clustering algorithm using a function handle (MATLAB). The function must be of the form \texttt{C = clustfun(DATA,K)}, where \texttt{DATA} is the data to be clustered, and \texttt{K} is the number of clusters. The output of \texttt{clustfun} must be one of the following:

- A vector of integers representing the cluster index for each observation in \texttt{DATA}. There must be \texttt{K} unique values in this vector.
- A numeric \texttt{n-by-K} matrix of score for \texttt{n} observations and \texttt{K} classes. In this case, the cluster index for each observation is determined by taking the largest score value in each row.

If \texttt{criterion} is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also specify \texttt{clust} as a \texttt{n-by-K} matrix containing the proposed clustering solutions. \texttt{n} is the number of observations in the sample data, and \texttt{K} is the number of proposed clustering solutions. Column \texttt{j} contains the cluster indices for each of the \texttt{N} points in the \texttt{j}th clustering solution.

Data Types: \texttt{single} | \texttt{double} | \texttt{char} | \texttt{string} | \texttt{function_handle}

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: 'KList',[1:6] specifies to test 1, 2, 3, 4, 5, and 6 clusters to find the optimal number.

KList — List of number of clusters to evaluate

\texttt{vector}
List of number of clusters to evaluate, specified as the comma-separated pair consisting of 'KList' and a vector of positive integer values. You must specify KList when clust is a clustering algorithm name or a function handle. When criterion is 'gap', clust must be a character vector, a string scalar, or a function handle, and you must specify KList.

Example: 'KList',[1:6]

Data Types: single | double

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering algorithm name or function handle. If the clustering solutions are provided in the input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK, stored as a vector of numerical values.

Distance

Distance metric used for clustering data, stored as a valid distance metric name.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing equals true, then the corresponding value in the data matrix x is not used in the clustering solution.
NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to $OptimalK$, stored as a column vector of positive integer values. If the clustering solutions are provided in the input, $OptimalY$ is empty.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

Inherited Methods

- addK: Evaluate additional numbers of clusters
- plot: Plot clustering evaluation object criterion values
- compact: Compact clustering evaluation object

Examples

Evaluate the Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering evaluation criterion.

Load the sample data.

```matlab
load fisheriris;
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster the data using \texttt{kmeans}.

```matlab
rng('default'); \% For reproducibility
eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6])
```

```matlab
eva =
    CalinskiHarabaszEvaluation with properties:
        NumObservations: 150
            InspectedK: [1 2 3 4 5 6]
            CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
            OptimalK: 3
```

The \texttt{OptimalK} value indicates that, based on the Calinski-Harabasz criterion, the optimal number of clusters is three.

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

```matlab
figure;
plot(eva);
```
The plot shows that the highest Calinski-Harabasz value occurs at three clusters, suggesting that the optimal number of clusters is three.

Create a grouped scatter plot to examine the relationship between petal length and width. Group the data by suggested clusters.

```matlab
PetalLength = meas(:,3);
PetalWidth = meas(:,4);
ClusterGroup = eva.OptimalY;
figure;
gscatter(PetalLength,PetalWidth,ClusterGroup,'rgb','xod');
```
The plot shows cluster 3 in the lower-left corner, completely separated from the other two clusters. Cluster 3 contains flowers with the smallest petal widths and lengths. Cluster 1 is in the upper-right corner, and contains flowers with the largest petal widths and lengths. Cluster 2 is near the center of the plot, and contains flowers with measurements between these two extremes.
Definitions

Calinski-Harabasz Criterion

The Calinski-Harabasz criterion is sometimes called the variance ratio criterion (VRC). The Calinski-Harabasz index is defined as

\[VRC_k = \frac{SS_B}{SS_W} \times \frac{(N - k)}{(k - 1)}, \]

where \(SS_B \) is the overall between-cluster variance, \(SS_W \) is the overall within-cluster variance, \(k \) is the number of clusters, and \(N \) is the number of observations.

The overall between-cluster variance \(SS_B \) is defined as

\[SS_B = \sum_{i=1}^{k} n_i \|m_i - m\|^2, \]

where \(k \) is the number of clusters, \(n_i \) is the number of observations in cluster \(i \), \(m_i \) is the centroid of cluster \(i \), \(m \) is the overall mean of the sample data, and \(\|m_i - m\| \) is the \(L^2 \) norm (Euclidean distance) between the two vectors.

The overall within-cluster variance \(SS_W \) is defined as

\[SS_W = \sum_{i=1}^{k} \sum_{x \in c_i} \|x - m_i\|^2, \]

where \(k \) is the number of clusters, \(x \) is a data point, \(c_i \) is the \(i \)th cluster, \(m_i \) is the centroid of cluster \(i \), and \(\|x - m_i\| \) is the \(L^2 \) norm (Euclidean distance) between the two vectors.

Well-defined clusters have a large between-cluster variance (\(SS_B \)) and a small within-cluster variance (\(SS_W \)). The larger the \(VRC_k \) ratio, the better the data partition. To determine the optimal number of clusters, maximize \(VRC_k \) with respect to \(k \). The optimal number of clusters is the solution with the highest Calinski-Harabasz index value.
The Calinski-Harabasz criterion is best suited for k-means clustering solutions with squared Euclidean distances.

References

See Also

DaviesBouldinEvaluation | GapEvaluation | SilhouetteEvaluation | evalclusters

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)
candexch

D-optimal design from candidate set using row exchanges

Syntax

```matlab
rlist = candexch(C,nrows)
rlist = candexch(C,nrows,Name,Value)
```

Description

$rlist = candexch(C,nrows)$ uses a row-exchange algorithm to select a D-optimal design from the candidate set C.

$rlist = candexch(C,nrows,Name,Value)$ generates a D-optimal design with additional options specified by one or more Name,Value pair arguments.

Input Arguments

C

N-by-P matrix containing the values of P model terms at each of N points.

Default:

nrows

The desired number of rows in the design.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as

```
Name1,Value1,...,NameN,ValueN.
```

32-272
display

When 'on', displays iteration number. Disable the display by setting to 'off'.

Default: 'on', except when the UseParallel option is true

init

n rows-by-P matrix giving an initial design.

Default: A random subset of the rows of C

maxiter

Maximum number of iterations, a positive integer.

Default: 10

options

A structure that specifies whether to run in parallel, and specifies the random stream or streams. This option requires Parallel Computing Toolbox.

Create the options structure with statset. Option fields:

- **UseParallel** — Set to true to compute in parallel. Default is false.
- **UseSubstreams** — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- **Streams** — A RandStream object or cell array of such objects. If you do not specify Streams, candexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case

 - You have an open Parallel pool
 - UseParallel is true
 - UseSubstreams is false

 In that case, use a cell array the same size as the Parallel pool.

Default: []
An nobs-by-p matrix of factor settings, specifying a set of nobs fixed design points to include in the design. candexch finds nrows additional rows to add to the start design. The parameter provides the same functionality as the daugment function, using a row-exchange algorithm rather than a coordinate-exchange algorithm.

Default: []

tries

Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first.

Default: 1

Output Arguments

rlist

Vector of length nrows listing the selected rows.

Examples

This example shows how to generate a D-optimal design when there is a restriction on the candidate set, so the rowexch function isn't appropriate.

```matlab
F = (fullfact([5 5 5])-1)/4; % factor settings in unit cube
T = sum(F,2)<=1.51;         % find rows matching a restriction
F = F(T,:);                 % take only those rows
C = [ones(size(F,1),1) F F.^2];
    % compute model terms including
    % a constant and all squared terms
R = candexch(C,12);         % find a D-optimal 12-point subset
X = F(R,:);                 % get factor settings
```
Algorithms

candexch selects a starting design X at random, and uses a row-exchange algorithm to iteratively replace rows of X by rows of C in an attempt to improve the determinant of $X'*X$.

Alternatives

The `rowexch` function also generates D-optimal designs using a row-exchange algorithm, but it automatically generates a candidate set that is appropriate for a specified model. The `daugment` function augments a set of fixed design points using a coordinate-exchange algorithm; the 'start' parameter provides the same functionality using the row exchange algorithm.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also

candgen | cordexch | daugment | rowexch | x2fx

Topics

“Specify Candidate Sets” on page 27-22
“D-Optimal Designs” on page 27-16

Introduced before R2006a
candgen

Candidate set generation

Syntax

dC = candgen(nfactors,'model')
[dC,C] = candgen(nfactors,'model')
[...] = candgen(nfactors,'model','Name',value)

Description

dC = candgen(nfactors,'model') generates a candidate set dC of treatments
appropriate for estimating the parameters in the model with nfactors factors. dC has
nfactors columns and one row for each candidate treatment. model is one of the
following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in the
model. The entries in any row of model are powers for the factors in the columns. For
example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model specifies
the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a
constant term, which can be omitted.

[dC,C] = candgen(nfactors,'model') also returns the design matrix C evaluated at
the treatments in dC. The order of the columns of C for a full quadratic model with n
terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Pass C to candexch to generate a D-optimal design using a coordinate-exchange algorithm.

 [...] = candgen(nfactors,'model','Name',value) specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify Name inside single quotes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds</td>
<td>Lower and upper bounds for each factor, specified as a 2-by-nfactors matrix. Alternatively, this value can be a cell array containing nfactors elements, each element specifying the vector of allowable values for the corresponding factor.</td>
</tr>
<tr>
<td>categorical</td>
<td>Indices of categorical predictors.</td>
</tr>
<tr>
<td>levels</td>
<td>Vector of number of levels for each factor.</td>
</tr>
</tbody>
</table>

Note The rowexch function automatically generates a candidate set using candgen, and then creates a D-optimal design from that candidate set using candexch. Call candexch separately to specify your own candidate set to the row-exchange algorithm.

Examples

The following example uses rowexch to generate a five-run design for a two-factor pure quadratic model using a candidate set that is produced internally:

```
dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =
    -1    1
    0    0
    1    1
    1    0
    1    1
```

The same thing can be done using candgen and candexch in sequence:
candgen

\[
\begin{bmatrix}
-1 & -1 \\
0 & -1 \\
1 & -1 \\
-1 & 0 \\
0 & 0 \\
1 & 0 \\
-1 & 1 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & -1 & -1 & 1 & 1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & -1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 \\
1 \\
7 \\
3 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & -1 \\
-1 & -1 \\
-1 & 1 \\
1 & -1 \\
-1 & 0
\end{bmatrix}
\]

See Also

candexch | rowexch

Introduced before R2006a
canoncorr

Canonical correlation

Syntax

[A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description

[A,B] = canoncorr(X,Y) computes the sample canonical coefficients for the n-by-d1 and n-by-d2 data matrices X and Y. X and Y must have the same number of observations (rows) but can have different numbers of variables (columns). A and B are d1-by-d and d2-by-d matrices, where d = min(rank(X), rank(Y)). The jth columns of A and B contain the canonical coefficients, i.e., the linear combination of variables making up the jth canonical variable for X and Y, respectively. Columns of A and B are scaled to make the covariance matrices of the canonical variables the identity matrix (see U and V below). If X or Y is less than full rank, canoncorr gives a warning and returns zeros in the rows of A or B corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the sample canonical correlations. The jth element of r is the correlation between the jth columns of U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables, scores. U and V are n-by-d matrices computed as

\[U = (X - \text{repmat} (\text{mean}(X), N, 1)) \ast A \]
\[V = (Y - \text{repmat} (\text{mean}(Y), N, 1)) \ast B \]

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure stats containing information relating to the sequence of d null hypotheses \(H_0^{(k)} \), that the (k+1)st through dth correlations are all zero, for k = 0:(d-1). stats contains seven fields, each a 1-by-
A d vector with elements corresponding to the values of k, as described in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks</td>
<td>Wilks' lambda (likelihood ratio) statistic</td>
</tr>
<tr>
<td>df1</td>
<td>Degrees of freedom for the chi-squared statistic, and the numerator degrees of freedom for the F statistic</td>
</tr>
<tr>
<td>df2</td>
<td>Denominator degrees of freedom for the F statistic</td>
</tr>
<tr>
<td>F</td>
<td>Rao's approximate F statistic for $H_0^{(k)}$</td>
</tr>
<tr>
<td>pF</td>
<td>Right-tail significance level for F</td>
</tr>
<tr>
<td>chisq</td>
<td>Bartlett's approximate chi-squared statistic for $H_0^{(k)}$ with Lawley's modification</td>
</tr>
<tr>
<td>pChisq</td>
<td>Right-tail significance level for chisq</td>
</tr>
</tbody>
</table>

`stats` has two other fields (dfe and p) which are equal to df1 and pChisq, respectively, and exist for historical reasons.

Examples

Compute Sample Canonical Correlation

Load the sample data.

```matlab
load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;

Compute the sample canonical correlation.

```matlab
[A,B,r,U,V] = canoncorr(X(~nans,1:3),X(~nans,4:5));
```

Plot the canonical variables scores.

```matlab
plot(U(:,1),V(:,1),'.'
xlabel('0.0025*Disp+0.020*HP-0.000025*Wgt')
ylabel('-0.17*Accel-0.092*MPG')
```


References


See Also

manova1 | pca
Introduced before R2006a
capability

Process capability indices

Syntax

\[ S = \text{capability}(\text{data}, \text{specs}) \]

Description

\( S = \text{capability}(\text{data}, \text{specs}) \) estimates capability indices for measurements in \( \text{data} \) given the specifications in \( \text{specs} \). \( \text{data} \) can be either a vector or a matrix of measurements. If \( \text{data} \) is a matrix, indices are computed for the columns. \( \text{specs} \) can be either a two-element vector of the form \([L,U]\) containing lower and upper specification limits, or (if \( \text{data} \) is a matrix) a two-row matrix with the same number of columns as \( \text{data} \). If there is no lower bound, use \(-\text{Inf}\) as the first element of \( \text{specs} \). If there is no upper bound, use \text{Inf} as the second element of \( \text{specs} \).

The output \( S \) is a structure with the following fields:

- \( \mu \) — Sample mean
- \( \sigma \) — Sample standard deviation
- \( P \) — Estimated probability of being within limits
- \( P_{L} \) — Estimated probability of being below \( L \)
- \( P_{U} \) — Estimated probability of being above \( U \)
- \( C_{p} \) — \( (U-L)/(6*\sigma) \)
- \( C_{pL} \) — \( (\mu-L)/(3*\sigma) \)
- \( C_{pu} \) — \( (U-\mu)/(3*\sigma) \)
- \( C_{pk} \) — \( \min(C_{pL},C_{pu}) \)

Indices are computed under the assumption that data values are independent samples from a normal population with constant mean and variance.
Indices divide a “specification width” (between specification limits) by a “process width” (between control limits). Higher ratios indicate a process with fewer measurements outside of specification.

Examples

Compute Capability Indices

Simulate a sample from a process with a mean of 3 and a standard deviation of 0.005.

```matlab
rng default; % for reproducibility
data = normrnd(3,0.005,100,1);
```

Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99.

```matlab
S = capability(data,[2.99 3.01])
```

```
S = struct with fields:
 mu: 3.0006
 sigma: 0.0058
 P: 0.9129
 Pl: 0.0339
 Pu: 0.0532
 Cp: 0.5735
 Cpl: 0.6088
 Cpu: 0.5382
 Cpk: 0.5382
```

Visualize the specification and process widths.

```matlab
capaplot(data,[2.99 3.01]);
grid on
```
References


See Also

*capaplot* | *histfit*
Introduced in R2006b
capaplot

Process capability plot

Syntax

```
p = capaplot(data,specs)
[p,h] = capaplot(data,specs)
```

Description

```
p = capaplot(data,specs) estimates the mean of and variance for the observations in input vector data, and plots the pdf of the resulting T distribution. The observations in data are assumed to be normally distributed. The output, p, is the probability that a new observation from the estimated distribution will fall within the range specified by the two-element vector specs. The portion of the distribution between the lower and upper bounds specified in specs is shaded in the plot.
```

```
[p,h] = capaplot(data,specs) additionally returns handles to the plot elements in h.
```

capaplot treats NaN values in data as missing, and ignores them.

Examples

Create a Process Capability Plot

Randomly generate sample data from a normal process with a mean of 3 and a standard deviation of 0.005.

```
rng default; % For reproducibility
data = normrnd(3,0.005,100,1);
```

Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99.
\[ S = \text{capability}(\text{data}, [2.99 \ 3.01]) \]

\[ S = \text{struct with fields:} \]
\[ \quad \text{mu: 3.0006} \]
\[ \quad \text{sigma: 0.0058} \]
\[ \quad P: 0.9129 \]
\[ \quad Pl: 0.0339 \]
\[ \quad Pu: 0.0532 \]
\[ \quad Cp: 0.5735 \]
\[ \quad Cpl: 0.6088 \]
\[ \quad Cpu: 0.5382 \]
\[ \quad Cpk: 0.5382 \]

Visualize the specification and process widths.

\[ \text{capaplot}(\text{data}, [2.99 \ 3.01]); \]
\[ \text{grid on} \]
See Also

capability | histfit

Introduced before R2006a
caseread

Read case names from file

Syntax

names = caseread('filename')
names = caseread

Description

names = caseread('filename') reads the contents of *filename* and returns a character array of names. *filename* is the name of a file in the current folder, or the complete path name of any file elsewhere. *caseread* treats each line as a separate case.

names = caseread displays the **Select File to Open** dialog box for interactive selection of the input file.

Examples

Read the file months.dat created using the *casewrite* function.

type months.dat

January
February
March
April
May

names = caseread('months.dat')
names =
January
February
March
April
May
See Also

casewrite | gname | tblread | tdfread

Introduced before R2006a
casewrite

Write case names to file

Syntax

casewrite(strmat,'filename')
casewrite(strmat)

Description

casewrite(strmat,'filename') writes the contents of the character array or string
array strmat to filename. Each row of strmat represents one case name. filename is
the name of a file in the current folder, or the complete path name of any file elsewhere.
casewrite writes each name to a separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for interactive
specification of the output file.

Examples

strmat = char('January','February',...              
        'March','April','May')
strmat =
January
February
March
April
May

casewrite(strmat,'months.dat')
type months.dat

January
February
March
April
May

See Also
caseread | gname | tblwrite | tdfread

Introduced before R2006a
DaviesBouldinEvaluation

Package: clustering.evaluation

Superclasses:
Davies-Bouldin criterion clustering evaluation object

Description

DaviesBouldinEvaluation is an object consisting of sample data, clustering data, and Davies-Bouldin criterion values used to evaluate the optimal number of clusters. Create a Davies-Bouldin criterion clustering evaluation object using evalclusters.

Construction

eva = evalclusters(x, clust, 'DaviesBouldin') creates a Davies-Bouldin criterion clustering evaluation object.

eva = evalclusters(x, clust, 'DaviesBouldin', Name, Value) creates a Davies-Bouldin criterion clustering evaluation object using additional options specified by one or more name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of variables.

Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

Clustering algorithm, specified as one of the following.
Cluster the data in x using the kmeans clustering algorithm, with 'EmptyAction' set to 'singleton' and 'Replicates' set to 5.

Cluster the data in x using the clusterdata agglomerative clustering algorithm, with 'Linkage' set to 'ward'.

Cluster the data in x using the gmdistribution Gaussian mixture distribution algorithm, with 'SharedCov' set to true and 'Replicates' set to 5.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a clustering algorithm using a function handle (MATLAB). The function must be of the form `C = clustfun(DATA,K)`, where DATA is the data to be clustered, and K is the number of clusters. The output of clustfun must be one of the following:

- A vector of integers representing the cluster index for each observation in DATA. There must be K unique values in this vector.
- A numeric n-by-K matrix of score for n observations and K classes. In this case, the cluster index for each observation is determined by taking the largest score value in each row.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also specify clust as a n-by-K matrix containing the proposed clustering solutions. n is the number of observations in the sample data, and K is the number of proposed clustering solutions. Column j contains the cluster indices for each of the N points in the jth clustering solution.

Data Types: single | double | char | string | function_handle

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:5] specifies to test 1, 2, 3, 4, and 5 clusters to find the optimal number.

**KList — List of number of clusters to evaluate**

vector
List of number of clusters to evaluate, specified as the comma-separated pair consisting of 'KList' and a vector of positive integer values. You must specify KList when clust is a clustering algorithm name or a function handle. When criterion is 'gap', clust must be a character vector, a string scalar, or a function handle, and you must specify KList.

Example: 'KList',[1:6]
Data Types: single | double

Properties

**ClusteringFunction**

Clustering algorithm used to cluster the input data, stored as a valid clustering algorithm name or function handle. If the clustering solutions are provided in the input, ClusteringFunction is empty.

**CriterionName**

Name of the criterion used for clustering evaluation, stored as a valid criterion name.

**CriterionValues**

Criterion values corresponding to each proposed number of clusters in InspectedK, stored as a vector of numerical values.

**InspectedK**

List of the number of proposed clusters for which to compute criterion values, stored as a vector of positive integer values.

**Missing**

Logical flag for excluded data, stored as a column vector of logical values. If Missing equals true, then the corresponding value in the data matrix x is not used in the clustering solution.

**NumObservations**

Number of observations in the data matrix X, minus the number of missing (NaN) values in X, stored as a positive integer value.
OptimalK
Optimal number of clusters, stored as a positive integer value.

OptimalY
Optimal clustering solution corresponding to OptimalK, stored as a column vector of positive integer values. If the clustering solutions are provided in the input, OptimalY is empty.

X
Data used for clustering, stored as a matrix of numerical values.

Methods

Inherited Methods

addK Evaluate additional numbers of clusters
plot Plot clustering evaluation object criterion values
compact Compact clustering evaluation object

Examples

Evaluate the Clustering Solution Using Davies-Bouldin Criterion
Evaluate the optimal number of clusters using the Davies-Bouldin clustering evaluation criterion.

Generate sample data containing random numbers from three multivariate distributions with different parameter values.

rng('default'); % For reproducibility
mu1 = [2 2];
sigma1 = [0.9 -0.0255; -0.0255 0.9];
mu2 = [5 5];
sigma2 = [0.5 0 ; 0 0.3];
mu3 = [-2, -2];
sigma3 = [1 0 ; 0 0.9];
N = 200;
X = [mvnrnd(mu1,sigma1,N);...
    mvnrnd(mu2,sigma2,N);...
    mvnrnd(mu3,sigma3,N)];

Evaluate the optimal number of clusters using the Davies-Bouldin criterion. Cluster the data using kmeans.

E = evalclusters(X,'kmeans','DaviesBouldin','klist',[1:6])

E =
    DaviesBouldinEvaluation with properties:

    NumObservations: 600
    InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 0.4663 0.4454 0.8316 1.0444 0.9236]
    OptimalK: 3

The OptimalK value indicates that, based on the Davies-Bouldin criterion, the optimal number of clusters is three.

Plot the Davies-Bouldin criterion values for each number of clusters tested.

figure;
plot(E)
The plot shows that the lowest Davies-Bouldin value occurs at three clusters, suggesting that the optimal number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.

```matlab
figure;
gscatter(X(:,1),X(:,2),E.OptimalY,'rgb','xod')
```
The plot shows three distinct clusters within the data: Cluster 1 is in the lower-left corner, cluster 2 is in the upper-right corner, and cluster 3 is near the center of the plot.

**Definitions**

**Davies-Bouldin Criterion**

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-cluster distances. The Davies-Bouldin index is defined as
\[ DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \{ D_{i,j} \}, \]

where \( D_{i,j} \) is the within-to-between cluster distance ratio for the \( i \)th and \( j \)th clusters. In mathematical terms,

\[ D_{i,j} = \frac{\bar{d}_i + \bar{d}_j}{d_{i,j}}. \]

\( \bar{d}_i \) is the average distance between each point in the \( i \)th cluster and the centroid of the \( i \)th cluster. \( \bar{d}_j \) is the average distance between each point in the \( j \)th cluster and the centroid of the \( j \)th cluster. \( d_{i,j} \) is the Euclidean distance between the centroids of the \( i \)th and \( j \)th clusters.

The maximum value of \( D_{i,j} \) represents the worst-case within-to-between cluster ratio for cluster \( i \). The optimal clustering solution has the smallest Davies-Bouldin index value.

**References**


**See Also**

CalinskiHarabaszEvaluation | GapEvaluation | SilhouetteEvaluation | evalclusters

evalclusters

**Topics**

Class Attributes (MATLAB)

Property Attributes (MATLAB)
cat

Class: dataset

Concatenate dataset arrays

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

\[ ds = \text{cat}(\text{dim}, \, ds_1, \, ds_2, \, ...) \]

Description

\[ ds = \text{cat}(\text{dim}, \, ds_1, \, ds_2, \, ...) \] concatenates the dataset arrays \( ds_1, \, ds_2, \, ... \) along dimension \( \text{dim} \) by calling the \text{dataset/horzcat} or \text{dataset/vertcat} method. \( \text{dim} \) must be 1 or 2.

See Also
horzcat | vertcat
catsplit

Class: classregtree

(Removed) Categorical splits used for branches in decision tree

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

```
v=catsplit(t)
v=catsplit(t,j)
```

**Description**

```
v=catsplit(t) returns an n-by-2 cell array v. Each row in v gives left and right values for a categorical split. For each branch node j based on a categorical predictor variable z, the left child is chosen if z is in v(j,1) and the right child is chosen if z is in v(j,2). The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom.
```

```
v=catsplit(t,j) takes an array j of rows and returns the splits for the specified rows.
```

**See Also**

classregtree
cdf

Cumulative distribution function for Gaussian mixture distribution

Syntax

\[ y = \text{cdf}(gm,X) \]

Description

\[ y = \text{cdf}(gm,X) \] returns the cumulative distribution function (cdf) of the Gaussian mixture distribution \( gm \), evaluated at the values in \( X \).

Examples

Compute cdf Values

Create a \textit{gmdistribution} object and compute its cdf values.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian mixture distribution.

\[
\begin{align*}
\text{mu} &= \begin{bmatrix} 1 & 2; \end{bmatrix} -3 -5]; \\
\text{sigma} &= \begin{bmatrix} 1 & 1; \end{bmatrix}; \quad \% \text{ shared diagonal covariance matrix}
\end{align*}
\]

Create a \textit{gmdistribution} object by using the \textit{gmdistribution} function. By default, the function creates an equal proportion mixture.

\[
\begin{align*}
gm &= \text{gmdistribution(mu,sigma)} \\
gm &= \text{Gaussian mixture distribution with 2 components in 2 dimensions} \\
\text{Component 1:} \\
\text{Mixing proportion: 0.500000} \\
\text{Mean: 1 2} \\
\end{align*}
\]
Component 2:
Mixing proportion: 0.500000
Mean:    -3   -5

Compute the cdf values of gm.

\[
X = \begin{bmatrix}
0 & 0;1 & 2;3 & 3;5 & 3
\end{bmatrix};
\]
cdf(gm,X)

ans = 4×1

0.5011
0.6250
0.9111
0.9207

Plot cdf

Create a gmdistribution object and plot its cdf.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate Gaussian mixture components.

\[
p = \begin{bmatrix}0.4 & 0.6;\end{bmatrix}; \quad \text{Mixing proportions}
\]
\[
mu = \begin{bmatrix}1 & 2; -3 & -5;\end{bmatrix}; \quad \text{Means}
\]
\[
sigma = \text{cat}(3,\begin{bmatrix}2 & 0.5;\end{bmatrix},\begin{bmatrix}1 & 1;\end{bmatrix}); \quad \text{Covariances 1-by-2-by-2 array}
\]

\[
sigma =
\]
\[
sigma(:,:,1) =
\begin{bmatrix}2.0000 & 0.5000\end{bmatrix}
\]
\[
sigma(:,:,2) =
\begin{bmatrix}1 & 1\end{bmatrix}
\]

The cat function concatenates the covariances along the third array dimension. The defined covariance matrices are diagonal. The \text{sigma}(1,:,i) \text{ contains the diagonal elements of the covariance matrix of component i.}
Create a `gmdistribution` object by using the `gmdistribution` function.

```matlab
gm = gmdistribution(mu,sigma,p)
```

```matlab
gm =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.400000
Mean: 1 2

Component 2:
Mixing proportion: 0.600000
Mean: -3 -5
```

Plot the cdf of the Gaussian mixture distribution by using `ezsurf`.

```matlab
ezsurf(@(x,y)cdf(gm,[x y]),[-10 10],[-10 10])
```
Input Arguments

**gm — Gaussian mixture distribution**

*gm* is a `gmdistribution` object.

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a `gmdistribution` object.

You can create a `gmdistribution` object using `gmdistribution` or `fitgmdist`. Use the `gmdistribution` function to create a `gmdistribution` object by specifying the
distribution parameters. Use the `fitgmdist` function to fit a `gmdistribution` model to data given a fixed number of components.

**X** — Values at which to evaluate cdf

*n-by-m* numeric matrix

Values at which to evaluate the cdf, specified as an *n*-by-*m* numeric matrix, where *n* is the number of observations and *m* is the number of variables in each observation.

Data Types: `single` | `double`

### Output Arguments

**y** — cdf values

*n*-by-1 numeric vector

cdf values of the Gaussian mixture distribution `gm`, evaluated at `X`, returned as an *n*-by-1 numeric vector, where *n* is the number of observations in `X`.

### See Also

- `fitgmdist`
- `gmdistribution`
- `mvncdf`
- `pdf`
- `random`

### Topics

“Gaussian Mixture Models” on page 5-145
“Create Gaussian Mixture Model” on page 5-147
“Fit Gaussian Mixture Model to Data” on page 5-151
“Simulate Data from Gaussian Mixture Model” on page 5-156
“Cluster Using Gaussian Mixture Models” on page 16-29

### Introduced in R2007b
**ccdesign**

Central composite design

**Syntax**

\[
dCC = \text{ccdesign}(n) \\
[dCC, blocks] = \text{ccdesign}(n) \\
[...] = \text{ccdesign}(n,'Name',value)
\]

**Description**

\(dCC = \text{ccdesign}(n)\) generates a central composite design for \(n\) factors. \(n\) must be an integer 2 or larger. The output matrix \(dCC\) is \(m\)-by-\(n\), where \(m\) is the number of runs in the design. Each row represents one run, with settings for all factors represented in the columns. Factor values are normalized so that the cube points take values between -1 and 1.

\([dCC, blocks] = \text{ccdesign}(n)\) requests a blocked design. The output \(blocks\) is an \(m\)-by-1 vector of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions to minimize the effect of inter-block differences on the parameter estimates.

\([...] = \text{ccdesign}(n,'Name',value)\) specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify \(Name\) in single quotes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
<th>Value Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>center</td>
<td>Number of center points.</td>
<td>Integer</td>
<td>Number of center points to include.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'uniform'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Select number of center points to give uniform precision.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Values</td>
<td>Value Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'orthogonal'</td>
<td>Select number of center points to give an orthogonal design. This is the default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction</td>
<td>Fraction of full-factorial cube, expressed as an exponent of 1/2.</td>
<td>0</td>
<td>Whole design. Default when ( n \leq 4 ).</td>
</tr>
<tr>
<td>1</td>
<td>1/2 fraction. Default when ( 4 &lt; n \leq 7 ) or ( n &gt; 11 ).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/4 fraction. Default when ( 7 &lt; n \leq 9 ).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/8 fraction. Default when ( n = 10 ).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1/16 fraction. Default when ( n = 11 ).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Type of CCD.</td>
<td>'circumscribed'</td>
<td>Circumscribed (CCC). This is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'inscribed'</td>
<td>Inscribed (CCI).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'faced'</td>
<td>Faced (CCF).</td>
</tr>
<tr>
<td>blocksize</td>
<td>Maximum number of points per block.</td>
<td>Integer</td>
<td>The default is Inf.</td>
</tr>
</tbody>
</table>

**Examples**

**Two-Factor Central Composite Design**

Create a 2-factor central composite design.

```matlab
dCC = ccdesign(2,'type','circumscribed')
dCC = 16×2
```
The center point is run 8 times to reduce the correlations among the coefficient estimates.

Visualize the design.

```matlab
plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b')
X = [1 -1 -1 -1; 1 1 1 -1];
Y = [-1 -1 1 -1; 1 -1 1 1];
line(X,Y,'Color','b')
axis square equal
```
See Also

bbdesign

Introduced before R2006a
cdf

Package: prob

Cumulative distribution function

Syntax

\[
\begin{align*}
  y &= \text{cdf}('\text{name}',x,A) \\
  y &= \text{cdf}('\text{name}',x,A,B) \\
  y &= \text{cdf}('\text{name}',x,A,B,C) \\
  y &= \text{cdf}('\text{name}',x,A,B,C,D) \\
  y &= \text{cdf}(pd,x) \\
  y &= \text{cdf}(\_\_,'upper')
\end{align*}
\]

Description

\[
\begin{align*}
  y &= \text{cdf}('\text{name}',x,A) \text{ returns the cumulative distribution function (cdf) for the one-} \\
  \text{parameter distribution family specified by 'name' and the distribution parameter A,} \\
  \text{evaluated at the values in } x. \\
  y &= \text{cdf}('\text{name}',x,A,B) \text{ returns the cdf for the two-parameter distribution family} \\
  \text{specified by 'name' and the distribution parameters A and B, evaluated at the values in } x. \\
  y &= \text{cdf}('\text{name}',x,A,B,C) \text{ returns the cdf for the three-parameter distribution family} \\
  \text{specified by 'name' and the distribution parameters A, B, and C, evaluated at the values in } x. \\
  y &= \text{cdf}('\text{name}',x,A,B,C,D) \text{ returns the cdf for the four-parameter distribution} \\
  \text{family specified by 'name' and the distribution parameters A, B, C, and D, evaluated at} \\
  \text{the values in } x. \\
  y &= \text{cdf}(pd,x) \text{ returns the cdf of the probability distribution object } pd, \text{ evaluated at the} \\
  \text{values in } x.
\end{align*}
\]
\[ y = \text{cdf}(\_\_\_, 'upper') \] returns the complement of the cdf using an algorithm that more accurately computes the extreme upper-tail probabilities. 'upper' can follow any of the input arguments in the previous syntaxes.

## Examples

### Compute Normal Distribution cdf

Create a standard normal distribution object with the mean, \( \mu \), equal to 0 and the standard deviation, \( \sigma \), equal to 1.

\[
\text{mu} = 0;  \\
\text{sigma} = 1;  \\
\text{pd} = \text{makedist('Normal', 'mu', mu, 'sigma', sigma)};
\]

Define the input vector \( x \) to contain the values at which to calculate the cdf.

\[
x = [-2, -1, 0, 1, 2];
\]

Compute the cdf values for the standard normal distribution at the values in \( x \).

\[
y = \text{cdf(pd, x)}
\]

\[
y = 1\times5
\]

\[
0.0228  \quad 0.1587  \quad 0.5000  \quad 0.8413  \quad 0.9772
\]

Each value in \( y \) corresponds to a value in the input vector \( x \). For example, at the value \( x \) equal to 1, the corresponding cdf value \( y \) is equal to 0.8413.

Alternatively, you can compute the same cdf values without creating a probability distribution object. Use the cdf function, and specify a standard normal distribution using the same parameter values for \( \mu \) and \( \sigma \).

\[
y2 = \text{cdf('Normal', x, mu, sigma)}
\]

\[
y2 = 1\times5
\]

\[
0.0228  \quad 0.1587  \quad 0.5000  \quad 0.8413  \quad 0.9772
\]
The cdf values are the same as those computed using the probability distribution object.

**Compute Poisson Distribution cdf**

Create a Poisson distribution object with the rate parameter, $\lambda$, equal to 2.

```matlab
lambda = 2;
pd = makedist('Poisson','lambda',lambda);
```

Define the input vector $x$ to contain the values at which to calculate the cdf.

```matlab
x = [0,1,2,3,4];
```

Compute the cdf values for the Poisson distribution at the values in $x$.

```matlab
y = cdf(pd,x)
y = 1×5
 0.1353 0.4060 0.6767 0.8571 0.9473
```

Each value in $y$ corresponds to a value in the input vector $x$. For example, at the value $x$ equal to 3, the corresponding cdf value $y$ is equal to 0.8571.

Alternatively, you can compute the same cdf values without creating a probability distribution object. Use the `cdf` function, and specify a Poisson distribution using the same value for the rate parameter, $\lambda$.

```matlab
y2 = cdf('Poisson',x,lambda)
y2 = 1×5
 0.1353 0.4060 0.6767 0.8571 0.9473
```

The cdf values are the same as those computed using the probability distribution object.
Plot Standard Normal Distribution cdf

Create a standard normal distribution object.

\[ \text{pd} = \text{makedist('Normal')} \]

\[ \text{pd} = \]
\[ \text{NormalDistribution} \]
\[ \text{Normal distribution} \]
\[ \mu = 0 \]
\[ \sigma = 1 \]

Specify the \( x \) values and compute the cdf.

\[ x = -3:.1:3; \]
\[ \text{cdf} \_\text{normal} = \text{cdf(pd,x)}; \]

Plot the cdf of the standard normal distribution.

\[ \text{plot}(x,\text{cdf} \_\text{normal},'\text{LineWidth}',2) \]
Create three gamma distribution objects. The first uses the default parameter values. The second specifies $a = 1$ and $b = 2$. The third specifies $a = 2$ and $b = 1$. 

```matlab
pd_gamma = makedist('Gamma')
```

```
Gamma distribution
a = 1
b = 1
```

**Plot Gamma Distribution cdf**

Create three gamma distribution objects. The first uses the default parameter values. The second specifies $a = 1$ and $b = 2$. The third specifies $a = 2$ and $b = 1$. 

```matlab
pd_gamma = makedist('Gamma')
```

```
Gamma distribution
a = 1
b = 1
```
pd_12 = makedist('Gamma','a',1,'b',2)

pd_12 =
    GammaDistribution
    Gamma distribution
    a = 1
    b = 2

pd_21 = makedist('Gamma','a',2,'b',1)

pd_21 =
    GammaDistribution
    Gamma distribution
    a = 2
    b = 1

Specify the x values and compute the cdf for each distribution.

x = 0:.1:5;
cdf_gamma = cdf(pd_gamma,x);
cdf_12 = cdf(pd_12,x);
cdf_21 = cdf(pd_21,x);

Create a plot to visualize how the cdf of the gamma distribution changes when you specify different values for the shape parameters a and b.

figure;
J = plot(x,cdf_gamma);
hold on;
K = plot(x,cdf_12,'r--');
L = plot(x,cdf_21,'k-.');
set(J,'LineWidth',2);
set(K,'LineWidth',2);
legend([J K L],'a = 1, b = 1','a = 1, b = 2','a = 2, b = 1','Location','southeast');
hold off;
Fit Pareto Tails to t Distribution and Compute the cdf

Fit Pareto tails to a $t$ distribution at cumulative probabilities 0.1 and 0.9.

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)

p = 2×1

0.1000
0.9000
q = 2×1
   -1.8487
    2.0766

Compute the cdf at the values in q.

cdf(obj,q)

ans = 2×1
   0.1000
   0.9000

**Input Arguments**

'name' — Probability distribution name
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

<table>
<thead>
<tr>
<th>name</th>
<th>Distribution</th>
<th>Input Parameter A</th>
<th>Input Parameter B</th>
<th>Input Parameter C</th>
<th>Input Parameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>“Beta Distribution” on page B-4</td>
<td>a: first shape parameter</td>
<td>b: second shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>“Binomial Distribution” on page B-9</td>
<td>n: number of trials</td>
<td>p: probability of success for each trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>“Birnbaum-Saunders Distribution” on page B-13</td>
<td>β: scale parameter</td>
<td>γ: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Burr'</td>
<td>“Burr Type XII Distribution” on page B-15</td>
<td>$\alpha$: scale parameter</td>
<td>$c$: first shape parameter</td>
<td>$k$: second shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Chisquare'</td>
<td>“Chi-Square Distribution” on page B-28</td>
<td>$\nu$: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>“Exponential Distribution” on page B-32</td>
<td>$\mu$: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Extreme Value'</td>
<td>“Extreme Value Distribution” on page B-36</td>
<td>$\mu$: location parameter</td>
<td>$\sigma$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'F'</td>
<td>“F Distribution” on page B-42</td>
<td>$\nu_1$: numerator degrees of freedom</td>
<td>$\nu_2$: denominator degrees of freedom</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>“Gamma Distribution” on page B-45</td>
<td>$\alpha$: shape parameter</td>
<td>$b$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Extreme Value'</td>
<td>“Generalized Extreme Value Distribution” on page B-50</td>
<td>$k$: shape parameter</td>
<td>$\sigma$: scale parameter</td>
<td>$\mu$: location parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Pareto'</td>
<td>“Generalized Pareto Distribution” on page B-55</td>
<td>$k$: tail index (shape) parameter</td>
<td>$\sigma$: scale parameter</td>
<td>$\mu$: threshold (location) parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Geometric'</td>
<td>“Geometric Distribution” on page B-61</td>
<td>$p$: probability parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>“Half-Normal Distribution” on page B-69</td>
<td>$\mu$: location parameter</td>
<td>$\sigma$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Hypergeometric'</td>
<td>&quot;Hypergeometric Distribution&quot; on page B-75</td>
<td>m: size of the population</td>
<td>k: number of items with the desired characteristic in the population</td>
<td>n: number of samples drawn</td>
<td>—</td>
</tr>
<tr>
<td>'Inverse Gaussian'</td>
<td>&quot;Inverse Gaussian Distribution&quot; on page B-78</td>
<td>μ: scale parameter</td>
<td>λ: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>&quot;Logistic Distribution&quot; on page B-91</td>
<td>μ: mean</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'LogLogistic'</td>
<td>&quot;Loglogistic Distribution&quot; on page B-93</td>
<td>μ: mean of logarithmic values</td>
<td>σ: scale parameter of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>&quot;Lognormal Distribution&quot; on page B-95</td>
<td>μ: mean of logarithmic values</td>
<td>σ: standard deviation of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>&quot;Nakagami Distribution&quot; on page B-114</td>
<td>μ: shape parameter</td>
<td>ω: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Negative Binomial'</td>
<td>&quot;Negative Binomial Distribution&quot; on page B-116</td>
<td>r: number of successes</td>
<td>p: probability of success in a single trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral F'</td>
<td>&quot;Noncentral F Distribution&quot; on page B-124</td>
<td>ν₁: numerator degrees of freedom</td>
<td>ν₂: denominator degrees of freedom</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Noncentral t'</td>
<td>&quot;Noncentral t Distribution&quot; on page B-127</td>
<td>( \nu ): degrees of freedom</td>
<td>( \delta ): noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral Chi-square'</td>
<td>&quot;Noncentral Chi-Square Distribution&quot; on page B-121</td>
<td>( \nu ): degrees of freedom</td>
<td>( \delta ): noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Normal'</td>
<td>&quot;Normal Distribution&quot; on page B-130</td>
<td>( \mu ): mean</td>
<td>( \sigma ): standard deviation</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>&quot;Poisson Distribution&quot; on page B-137</td>
<td>( \lambda ): mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>&quot;Rayleigh Distribution&quot; on page B-140</td>
<td>( b ): scale parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rician'</td>
<td>&quot;Rician Distribution&quot; on page B-143</td>
<td>( s ): noncentrality parameter</td>
<td>( \sigma ): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Stable'</td>
<td>&quot;Stable Distribution&quot; on page B-145</td>
<td>( \alpha ): first shape parameter</td>
<td>( \beta ): second shape parameter</td>
<td>( \gamma ): scale parameter</td>
<td>( \delta ): location parameter</td>
</tr>
<tr>
<td>'T'</td>
<td>&quot;Student's t Distribution&quot; on page B-158</td>
<td>( \nu ): degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>&quot;t Location-Scale Distribution&quot; on page B-166</td>
<td>( \mu ): location parameter</td>
<td>( \sigma ): scale parameter</td>
<td>( \nu ): shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Uniform'</td>
<td>&quot;Uniform Distribution (Continuous)&quot; on page B-175</td>
<td>( a ): lower endpoint (minimum)</td>
<td>( b ): upper endpoint (maximum)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Discrete Uniform'</td>
<td>&quot;Uniform Distribution (Discrete)&quot; on page B-181</td>
<td>( n ): maximum observable value</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Weibull Distribution on page B-184

<table>
<thead>
<tr>
<th>name</th>
<th>Distribution</th>
<th>Input Parameter A</th>
<th>Input Parameter B</th>
<th>Input Parameter C</th>
<th>Input Parameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Weibull'</td>
<td>&quot;Weibull Distribution&quot; on page B-184</td>
<td><em>a</em>: scale parameter</td>
<td><em>b</em>: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Example: 'Normal'

**x — Values at which to evaluate cdf**

scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value or an array of scalar values.

If one or more of the input arguments `x`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `cdf` expands each scalar input into a constant array of the same size as the array inputs.

Example: `[0.1, 0.25, 0.5, 0.75, 0.9]`

Data Types: `single` | `double`

**A — First probability distribution parameter**

scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments `x`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `cdf` expands each scalar input into a constant array of the same size as the array inputs.

Data Types: `single` | `double`

**B — Second probability distribution parameter**

scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments `x`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `cdf` expands each scalar input into a constant array of the same size as the array inputs.
Data Types: single | double

**C — Third probability distribution parameter**

scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the same. In this case, cdf expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

**D — Fourth probability distribution parameter**

scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the same. In this case, cdf expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

**pd — Probability distribution**

probability distribution object

Probability distribution, specified as a probability distribution object created with a function or app in this table.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td><strong>Distribution Fitter</strong></td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>
paretotails | Create a piecewise distribution object that has generalized Pareto distributions in the tails.

Output Arguments

\( y \) — cdf values
scalar value | array of scalar values

cdf values, returned as a scalar value or an array of scalar values. \( y \) is the same size as \( x \) after any necessary scalar expansion. Each element in \( y \) is the cdf value of the distribution, specified by the corresponding elements in the distribution parameters (\( A, B, C, \) and \( D \)) or the probability distribution object (\( pd \)), evaluated at the corresponding element in \( x \).

Alternative Functionality

- \( \text{cdf} \) is a generic function that accepts either a distribution by its name ‘name’ or a probability distribution object \( pd \). It is faster to use a distribution-specific function, such as \( \text{normcdf} \) for the normal distribution and \( \text{binocdf} \) for the binomial distribution. For a list of distribution-specific functions, see “Supported Distributions” on page 5-16.
- Use the Probability Distribution Function app to create an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The input argument 'name' must be a compile-time constant. For example, to use the normal distribution, include `coder.Constant('Normal')` in the -args value of codegen.

• Code generation does not support the probability distribution object (pd) input argument.

See Also

`Distribution Fitter | ecdf | fitdist | icdf | makedist | mle | paretotails | pdf | random`

Topics

“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
**cdfplot**

Empirical cumulative distribution function (cdf) plot

**Syntax**

```matlab
cdfplot(x)
h = cdfplot(x)
[h,stats] = cdfplot(x)
```

**Description**

cdfplot(x) creates an empirical cumulative distribution function (cdf) plot for the data in x. For a value \( t \) in x, the empirical cdf \( F(t) \) is the proportion of the values in x less than or equal to \( t \).

\( h = \text{cdfplot}(x) \) returns a handle of the empirical cdf plot line object. Use \( h \) to query or modify properties of the object after you create it. For a list of properties, see Line Properties.

\( [h,\text{stats}] = \text{cdfplot}(x) \) also returns a structure including summary statistics for the data in x.

**Examples**

**Compare Empirical cdf to Theoretical cdf**

Plot the empirical cdf of a sample data set and compare it to the theoretical cdf of the underlying distribution of the sample data set. In practice, a theoretical cdf can be unknown.

Generate a random sample data set from the extreme value distribution with a location parameter of 0 and a scale parameter of 3.
rng('default')  % For reproducibility
y = evrnd(0,3,100,1);

Plot the empirical cdf of the sample data set and the theoretical cdf on the same figure.

cdfplot(y)
hold on
x = linspace(min(y),max(y));
plot(x,evcdf(x,0,3))
legend('Empirical CDF','Theoretical CDF','Location','best')
hold off

The plot shows the similarity between the empirical cdf and the theoretical cdf.
Alternatively, you can use the `ecdf` function. The `ecdf` function also plots the 95% confidence intervals estimated by using Greenwood's Formula. For details, see “Greenwood’s Formula” on page 32-1374.

```matlab
ecdf(y,'Bounds','on')
hold on
plot(x,ecdf(x,0,3))
grid on
title('Empirical CDF')
legend('Empirical CDF','Lower Confidence Bound','Upper Confidence Bound','Theoretical CDF','Location','best')
hold off
```
**Test for Standard Normal Distribution**

Perform the one-sample Kolmogorov-Smirnov test by using `kstest`. Confirm the test decision by visually comparing the empirical cumulative distribution function (cdf) to the standard normal cdf.

Load the `examgrades` data set. Create a vector containing the first column of the exam grade data.

```matlab
load examgrades
test1 = grades(:,1);
```

Test the null hypothesis that the data comes from a normal distribution with a mean of 75 and a standard deviation of 10. Use these parameters to center and scale each element of the data vector, because `kstest` tests for a standard normal distribution by default.

```matlab
x = (test1-75)/10;
h = kstest(x)
```

```matlab
h = logical
0
```

The returned value of \( h = 0 \) indicates that `kstest` fails to reject the null hypothesis at the default 5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

```matlab
cdfplot(x)
hold on
x_values = linspace(min(x),max(x));
plot(x_values,normcdf(x_values,0,1),'r-')
legend('Empirical CDF','Standard Normal CDF','Location','best')
```
The figure shows the similarity between the empirical cdf of the centered and scaled data vector and the cdf of the standard normal distribution.

**Input Arguments**

\( x \) — Input data  
numeric vector

Input data, specified as a numeric vector.

Data Types: `single` | `double`
Output Arguments

**h** — Handle of plot line object

chart line object

Handle of the empirical cdf plot line object, returned as a chart line object. Use **h** to query or modify properties of the object after you create it. For a list of properties, see Line Properties.

**stats** — Summary statistics

structure

Summary statistics for the data in **x**, returned as a structure with the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minimum value</td>
</tr>
<tr>
<td>max</td>
<td>Maximum value</td>
</tr>
<tr>
<td>mean</td>
<td>Sample mean</td>
</tr>
<tr>
<td>median</td>
<td>Sample median (50th percentile)</td>
</tr>
<tr>
<td>std</td>
<td>Sample standard deviation</td>
</tr>
</tbody>
</table>

Tips

- **cdfplot** is useful for examining the distribution of a sample data set. You can overlay a theoretical cdf on the same plot of **cdfplot** to compare the empirical distribution of the sample to the theoretical distribution. For an example, see “Compare Empirical cdf to Theoretical cdf” on page 32-329.

- The **kstest**, **kstest2**, and **lillietest** functions compute test statistics derived from an empirical cdf. **cdfplot** is useful in helping you to understand the output from these functions. For an example, see “Test for Standard Normal Distribution” on page 32-331.
Alternative Functionality

You can use the `ecdf` function to find the empirical cdf values and create an empirical cdf plot. The `ecdf` function enables you to indicate censored data and compute the confidence bounds for the estimated cdf values.

See Also
ecdf | ecdfhist | probplot | qqplot

Topics
“Distribution Plots” on page 4-9
“Hypothesis Testing” on page 8-6

Introduced before R2006a
cell2dataset

Convert cell array to dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

ds = cell2dataset(C)
ds = cell2dataset(C,Name,Value)

Description

ds = cell2dataset(C) converts a cell array to a dataset array.

ds = cell2dataset(C,Name,Value) performs the conversion using additional options specified by one or more Name,Value pair arguments.

Examples

Convert Cell Array to Dataset Array

Convert a cell array to a dataset array using the default options.

Create a cell array to convert.

C = {'Name','Gender','SystolicBP','DiastolicBP';
     'CLARK','M',124,93;
     'BROWN','F',122,80;
     'MARTIN','M',130,92}

C = 4x4 cell array
     {'Name'} {'Gender'} {'SystolicBP'} {'DiastolicBP'}
Convert the cell array to a dataset array.

ds = cell2dataset(C)

```
ds =
 Name Gender SystolicBP DiastolicBP
 'CLARK' 'M' 124 93
 'BROWN' 'F' 122 80
 'MARTIN' 'M' 130 92
```

The first row of C become the variable names in the output dataset array, ds.

### Create a Dataset Array with Multicolumn Variables

Convert a cell array to a dataset array containing multicolumn variables.

Create a cell array to convert.

```
C = {'Name', 'Gender', 'SystolicBP', 'DiastolicBP';
 'CLARK', 'M', 124, 93;
 'BROWN', 'F', 122, 80;
 'MARTIN', 'M', 130, 92}
```

Convert the cell array to a dataset array, combining the systolic and diastolic blood pressure measurements into one variable named BloodPressure.

```
ds = cell2dataset(C, 'NumCols', [1,1,2]);
ds.Properties.VarNames{3} = 'BloodPressure';
ds
```

```
d =
 Name Gender SystolicBP BloodPressure
 'CLARK' 'M' 124 124
 'BROWN' 'F' 122 122
 'MARTIN' 'M' 130 130
```
The output dataset array has three observations and three variables.

### Input Arguments

**C** — Input cell array

cell array

Input cell array to convert to a dataset array, specified as an M-by-N cell array. Each column of C becomes a variable in the output dataset array, ds. By default, `cell2dataset` assumes that the first row of C contains variable names.

Data Types: `cell` | `string`

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: 'ReadVarNames',false,'ReadObsNames',true specifies that the first row of the cell array does not contain variable names, but the first column contains observation names.

#### ReadVarNames — Indicator for whether or not to read variable names

type: `true` (default) | `false`

Indicator for whether or not to read variable names from the first row of the input cell array, specified as the comma-separated pair consisting of 'ReadVarNames' and either `true` or `false`. The default value is `true`, unless variable names are specified using the name-value pair argument `VarNames`. When `ReadVarNames` is `false`, `cell2dataset` creates default variable names if you do not provide any.

Example: 'ReadVarNames',false
VarNames — Variable names for output dataset array
string array | cell array of character vectors

Variable names for the output dataset array, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors. You must provide a variable name for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.

Example: 'VarNames',{'myVar1','myVar2','myVar3'}

ReadObsNames — Indicator for whether or not to read observation names
false (default) | true

Indicator for whether or not to read observation names from the input cell array, specified as the comma-separated pair consisting of 'ReadObsNames' and either true or false. When ReadObsNames has the value true, cell2dataset creates observation names in ds using the first column of C, and sets ds.Properties.DimNames equal to {C{1,1},'Variables'}.

Example: 'ReadObsNames',true

ObsNames — Observation names for output dataset array
string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of 'ObsNames' and a string array or cell array of character vectors. The names do not need to be valid MATLAB identifiers, but they must be unique.

NumCols — Number of columns for each variable
vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of 'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is greater than one, cell2dataset combines multiple columns in C into a single variable in ds. The vector you assign to NumCols must sum to size(C,2), or size(C,1) of ReadObsNames is equal to true.

For example, to convert a cell array with eight columns into a dataset array with five variables, specify a vector with five elements that sum to eight, such as 'NumCols', [1,1,3,1,2].
Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned by default with a variable for each column of C, an observation for each row of C (except for the first row), and variable names corresponding to the first row of C.

- If you set ReadVarNames equal to false (or specify VarNames), then there is an observation in ds for each row of C, and cell2dataset creates default variable names (or uses the names in VarNames).
- If you set ReadObsNames equal to true, then cell2dataset uses the first column of C as observation names.
- If you specify NumCols, then the number of variables in ds is equal to the length of the specified vector of column numbers.

See Also
dataset | dataset2cell | struct2dataset

Topics
“Create a Dataset Array from Workspace Variables” on page 2-69
“Create a Dataset Array from a File” on page 2-75
“Dataset Arrays” on page 2-137

Introduced in R2012b
cellstr

Class: dataset

Create cell array of character vectors from dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

B = cellstr(A)
B = cellstr(A,VARS)

Description

B = cellstr(A) returns the contents of the dataset A, converted to a cell array of character vectors. The variables in the dataset must support the conversion and must have compatible sizes.

B = cellstr(A,VARS) returns the contents of the dataset variables specified by VARS. VARS is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

See Also

dataset.double | dataset.replacedata
chi2cdf

Chi-square cumulative distribution function

Syntax

\[ p = \text{chi2cdf}(x, v) \]
\[ p = \text{chi2cdf}(x, v, 'upper') \]

Description

\( p = \text{chi2cdf}(x, v) \) computes the chi-square cdf at each of the values in \( x \) using the corresponding degrees of freedom in \( v \). \( x \) and \( v \) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The degrees of freedom parameters in \( v \) must be positive, and the values in \( x \) must lie on the interval \([0, \infty]\).

\( p = \text{chi2cdf}(x, v, 'upper') \) returns the complement of the chi-square cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The \( \chi^2 \) cdf for a given value \( x \) and degrees-of-freedom \( \nu \) is

\[
p = F(x \mid \nu) = \int_0^x \frac{t^{(\nu-2)/2} e^{-t/2}}{2^{\nu/2} \Gamma(\nu/2)} dt
\]

where \( \Gamma(\cdot) \) is the Gamma function.

The chi-square density function with \( \nu \) degrees-of-freedom is the same as the gamma density function with parameters \( \nu/2 \) and 2.

Examples
Compute Chi-Square CDF

\[
\text{probability} = \text{chi2cdf}(5,1:5)
\]
\[
\text{probability} = \begin{bmatrix}
0.9747 & 0.9179 & 0.8282 & 0.7127 & 0.5841 \\
\end{bmatrix}
\]

\[
\text{probability} = \text{chi2cdf}(1:5,1:5)
\]
\[
\text{probability} = \begin{bmatrix}
0.6827 & 0.6321 & 0.6084 & 0.5940 & 0.5841 \\
\end{bmatrix}
\]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | chi2inv | chi2pdf | chi2rnd | chi2stat

Topics
“Chi-Square Distribution” on page B-28
Introduced before R2006a
Chi-square goodness-of-fit test

Syntax

h = chi2gof(x)
h = chi2gof(x,Name,Value)
[h,p] = chi2gof(___)
[h,p,stats] = chi2gof(___)
**Test for Normal Distribution**

Create a standard normal probability distribution object. Generate a data vector \( x \) using random numbers from the distribution.

```matlab
pd = makedist('Normal');
rng default; % for reproducibility
x = random(pd,100,1);
```

Test the null hypothesis that the data in \( x \) comes from a population with a normal distribution.

```matlab
h = chi2gof(x)
```

\( h = 0 \)

The returned value \( h = 0 \) indicates that \( \text{chi2gof} \) does not reject the null hypothesis at the default 5% significance level.

**Test Hypothesis at Different Significance Level**

Create a standard normal probability distribution object. Generate a data vector \( x \) using random numbers from the distribution.

```matlab
pd = makedist('Normal');
rng default; % for reproducibility
x = random(pd,100,1);
```

Test the null hypothesis that the data in \( x \) comes from a population with a normal distribution at the 1% significance level.

```matlab
[h,p] = chi2gof(x,'Alpha',0.01)
```

\( h = 0 \)

\( p = 0.3775 \)

The returned value \( h = 0 \) indicates that \( \text{chi2gof} \) does not reject the null hypothesis at the 1% significance level.
Test for Weibull Distribution Using Probability Distribution Object

Load the light bulb lifetime sample data.

```matlab
load lightbulb
```

Create a vector from the first column of the data matrix, which contains the lifetime in hours of the light bulbs.

```matlab
x = lightbulb(:,1);
```

Test the null hypothesis that the data in `x` comes from a population with a Weibull distribution. Use `fitdist` to create a probability distribution object with A and B parameters estimated from the data.

```matlab
pd = fitdist(x,'Weibull');
```

```matlab
h = chi2gof(x,'CDF',pd)
```

```matlab
h = 1
```

The returned value `h = 1` indicates that `chi2gof` rejects the null hypothesis at the default 5% significance level.

Test for Poisson Distribution

Create six bins, numbered 0 through 5, to use for data pooling.

```matlab
bins = 0:5;
```

Create a vector containing the observed counts for each bin and compute the total number of observations.

```matlab
obsCounts = [6 16 10 12 4 2];
n = sum(obsCounts);
```

Fit a Poisson probability distribution object to the data and compute the expected count for each bin. Use the transpose operator `.'` to transform `bins` and `obsCounts` from row vectors to column vectors.

```matlab
pd = fitdist(bins','Poisson','Frequency',obsCounts');
```

```matlab
expCounts = n * pdf(pd,bins);
```
Test the null hypothesis that the data in obsCounts comes from a Poisson distribution with a lambda parameter equal to lambdaHat.

\[ h, p, st = \text{chi2gof}(\text{bins}, 'Ctrs', \text{bins}, ... \]
\[ 'Frequency', \text{obsCounts}, ... \]
\[ 'Expected', \text{expCounts}, ... \]
\[ 'NParams', 1) \]

\[ h = 0 \]

\[ p = 0.4654 \]

st = struct with fields:
  chi2stat: 2.5550
  df: 3
  edges: [-0.5000 0.5000 1.5000 2.5000 3.5000 5.5000]
  0: [6 16 10 12 6]

The returned value \( h = 0 \) indicates that \text{chi2gof} does not reject the null hypothesis at the default 5% significance level. The vector E contains the expected counts for each bin under the null hypothesis, and O contains the observed counts for each bin.

**Test for Normal Distribution Using Function Handle**

Use the probability distribution function \text{normcdf} as a function handle in the chi-square goodness-of-fit test (\text{chi2gof}).

Test the null hypothesis that the sample data in the input vector x comes from a normal distribution with parameters \( \mu \) and \( \sigma \) equal to the mean (\text{mean}) and standard deviation (\text{std}) of the sample data, respectively.

\[ \text{rng('default')} \ % \text{For reproducibility} \]
\[ x = \text{normrnd}(50,5,100,1); \]
\[ h = \text{chi2gof}(x, 'cdf', \{@\text{normcdf}, \text{mean}(x), \text{std}(x)\}) \]

\[ h = 0 \]

The returned result \( h = 0 \) indicates that \text{chi2gof} does not reject the null hypothesis at the default 5% significance level.
Input Arguments

\[ \text{x} \quad \text{— Sample data} \]

vector

Sample data for the hypothesis test, specified as a vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:

`'NBins',8,'Alpha',0.01` pools the data into eight bins and conducts the hypothesis test at the 1% significance level.

**NBins — Number of bins**

10 (default) | positive integer value

Number of bins to use for the data pooling, specified as the comma-separated pair consisting of 'NBins' and a positive integer value. If you specify a value for NBins, do not specify a value for Ctrs or Edges.

Example: `NBins',8`

Data Types: `single` | `double`

**Ctrs — Bin centers**

vector

Bin centers, specified as the comma-separated pair consisting of 'Ctrs' and a vector of center values for each bin. If you specify a value for Ctrs, do not specify a value for NBins or Edges.

Example: `Ctrs',[1 2 3 4 5]`

Data Types: `single` | `double`

**Edges — Bin edges**

vector
Bin edges, specified as the comma-separated pair consisting of 'Edges' and a vector of edge values for each bin. If you specify a value for Edges, do not specify a value for NBins or Ctrs.

Example: 'Edges',[-2.5 -1.5 -0.5 0.5 1.5 2.5]

Data Types: single | double

CDF — cdf of hypothesized distribution

The cdf of the hypothesized distribution, specified as the comma-separated pair consisting of 'CDF' and a probability distribution object, function handle, or cell array.

- If CDF is a probability distribution object, the degrees of freedom account for whether you estimate the parameters using fitdist or specify them using makedist.
- If CDF is a function handle, the distribution function must take x as its only argument.
- If CDF is a cell array, the first element must be a function handle, and the remaining elements must be parameter values, one per cell. The function must take x as its first argument, and the other parameters in the array as later arguments.

If you specify a value for CDF, do not specify a value for Expected.

Example: 'CDF',pd_object

Data Types: single | double

Expected — Expected counts

Expected counts for each bin, specified as the comma-separated pair of 'Expected' and a vector of nonnegative values. If Expected depends on estimated parameters, use NParams to ensure that chi2gof correctly calculates the degrees of freedom. If you specify a value for Expected, do not specify a value for CDF.


Data Types: single | double

NParams — Number of estimated parameters

Number of estimated parameters used to describe the null distribution, specified as the comma-separated pair consisting of 'NParams' and a positive integer value. This value
adjusts the degrees of freedom of the test based on the number of estimated parameters used to compute the cdf or expected counts.

The default value for NParams depends on how you specify the null distribution:

- If you specify CDF as a probability distribution object, NParams is equal to the number of estimated parameters used to create the object.
- If you specify CDF as a function name or handle, the default value of NParams is 0.
- If you specify CDF as a cell array, the default value of NParams is the number of parameters in the array.
- If you specify Expected, the default value of NParams is 0.

Example: 'NParams',1
Data Types: single | double

EMin — Minimum expected count per bin

5 (default) | nonnegative integer value

Minimum expected count per bin, specified as the comma-separated pair consisting of 'EMin' and a nonnegative integer value. If the bin at the extreme end of either tail has an expected value less than EMin, it is combined with a neighboring bin until the count in each extreme bin is at least 5. If any interior bins have a count less than 5, chi2gof displays a warning, but does not combine the interior bins. In that case, you should use fewer bins, or provide bin centers or edges, to increase the expected counts in all bins. Specify EMin as 0 to prevent the combining of bins.

Example: 'EMin',0
Data Types: single | double

Frequency — Frequency

vector of nonnegative integer values

Frequency of data values, specified as the comma-separated pair consisting of 'Frequency' and a vector of nonnegative integer values that is the same length as the vector x.

Example: 'Frequency',[20 16 13 10 8]
Data Types: single | double

Alpha — Significance level

0.05 (default) | scalar value in the range (0,1)
Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha', 0.01

Data Types: single | double

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

- If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics, returned as a structure containing the following:

- chi2stat — Value of the test statistic.
- df — Degrees of freedom of the test.
- edges — Vector of bin edges after pooling.
- O — Vector of observed counts for each bin.
- E — Vector of expected counts for each bin.
Definitions

Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test determines if a data sample comes from a specified probability distribution, with parameters estimated from the data.

The test groups the data into bins, calculating the observed and expected counts for those bins, and computing the chi-square test statistic

$$\chi^2 = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{E_i},$$

where $O_i$ are the observed counts and $E_i$ are the expected counts based on the hypothesized distribution. The test statistic has an approximate chi-square distribution when the counts are sufficiently large.

Algorithms

chi2gof compares the value of the test statistic to a chi-square distribution with degrees of freedom equal to $nbins - 1 - nparams$, where $nbins$ is the number of bins used for the data pooling and $nparams$ is the number of estimated parameters used to determine the expected counts. If there are not enough degrees of freedom to conduct the test, chi2gof returns the $p$-value as NaN.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
kstest | lillietest

Topics
“Chi-Square Distribution” on page B-28

Introduced before R2006a
chi2inv

Chi-square inverse cumulative distribution function

**Syntax**

\[ X = \text{chi2inv}(P,V) \]

**Description**

\[ X = \text{chi2inv}(P,V) \] computes the inverse of the chi-square cdf with degrees of freedom specified by \( V \) for the corresponding probabilities in \( P \). \( P \) and \( V \) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The degrees of freedom parameters in \( V \) must be positive, and the values in \( P \) must lie in the interval \([0, 1]\).

The inverse chi-square cdf for a given probability \( p \) and \( v \) degrees of freedom is

\[ x = F^{-1}(p \mid v) = \{ x : F(x \mid v) = p \} \]

where

\[ p = F(x \mid v) = \int_0^x \frac{t^{(v-2)/2}e^{-t/2}}{2^{v/2}\Gamma(v/2)} dt \]

and \( \Gamma(\cdot) \) is the Gamma function. Each element of output \( X \) is the value whose cumulative probability under the chi-square cdf defined by the corresponding degrees of freedom parameter in \( V \) is specified by the corresponding value in \( P \).

**Examples**

Find a value that exceeds 95% of the samples from a chi-square distribution with 10 degrees of freedom.
\[ x = \text{chi2inv}(0.95, 10) \]
\[ x = 18.3070 \]

You would observe values greater than 18.3 only 5% of the time by chance.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

chi2cdf | chi2pdf | chi2rnd | chi2stat | icdf

**Topics**

“Chi-Square Distribution” on page B-28

**Introduced before R2006a**
chi2pdf

Chi-square probability density function

Syntax

Y = chi2pdf(X,V)

Description

Y = chi2pdf(X,V) computes the chi-square pdf at each of the values in X using the corresponding degrees of freedom in V. X and V can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of the output Y. A scalar input is expanded to a constant array with the same dimensions as the other input. The degrees of freedom parameters in V must be positive, and the values in X must lie on the interval [0 Inf].

The chi-square pdf for a given value x and ν degrees of freedom is

\[ y = f(x | ν) = \frac{x^{(ν-2)/2}e^{-x/2}}{2^{ν/2} Γ(ν / 2)} \]

where Γ(·) is the Gamma function.

If x is standard normal, then x² is distributed chi-square with one degree of freedom. If \( x_1, x_2, ..., x_n \) are \( n \) independent standard normal observations, then the sum of the squares of the \( x \)'s is distributed chi-square with \( n \) degrees of freedom (and is equivalent to the gamma density function with parameters \( ν/2 \) and 2).

Examples

nu = 1:6;
x = nu;
y = chi2pdf(x,nu)
\begin{align*}
y &= 0.2420 \quad 0.1839 \quad 0.1542 \quad 0.1353 \quad 0.1220 \quad 0.1120 \\
\end{align*}

The mean of the chi-square distribution is the value of the degrees of freedom parameter, \( \nu \). The above example shows that the probability density of the mean falls as \( \nu \) increases.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

**See Also**

- `chi2cdf`
- `chi2inv`
- `chi2rnd`
- `chi2stat`
- `pdf`

**Topics**

“Chi-Square Distribution” on page B-28

**Introduced before R2006a**
**chi2rnd**

Chi-square random numbers

**Syntax**

\[
R = \text{chi2rnd}(V)
\]

\[
R = \text{chi2rnd}(V,m,n,...)
\]

\[
R = \text{chi2rnd}(V,[m,n,...])
\]

**Description**

\(R = \text{chi2rnd}(V)\) generates random numbers from the chi-square distribution with degrees of freedom parameters specified by \(V\). \(V\) can be a vector, a matrix, or a multidimensional array. \(R\) is the same size as \(V\). The degrees of freedom parameters in \(V\) must be positive.

\(R = \text{chi2rnd}(V,m,n,...)\) or \(R = \text{chi2rnd}(V,[m,n,...])\) generates an \(m\)-by-\(n\)-by-... array containing random numbers from the chi-square distribution with degrees of freedom parameter \(V\). \(V\) can be a scalar or an array of the same size as \(R\).

**Examples**

Note that the first and third commands are the same, but are different from the second command.

\[
r = \text{chi2rnd}(1:6)
\]

\[
r =
\begin{bmatrix}
0.0037 & 3.0377 & 7.8142 & 0.9021 & 3.2019 & 9.0729 \\
\end{bmatrix}
\]

\[
r = \text{chi2rnd}(6,[1 6])
\]

\[
r =
\begin{bmatrix}
\end{bmatrix}
\]

\[
r = \text{chi2rnd}(1:6,1,6)
\]

\[
r =
\begin{bmatrix}
0.7638 & 6.0955 & 0.8273 & 3.2506 & 1.5469 & 10.9197 \\
\end{bmatrix}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

See Also
chi2cdf | chi2inv | chi2pdf | chi2stat | random

Topics
“Chi-Square Distribution” on page B-28

Introduced before R2006a
**chi2stat**

Chi-square mean and variance

**Syntax**

\[
[M,V] = \text{chi2stat}(NU)
\]

**Description**

\[
[M,V] = \text{chi2stat}(NU)
\]

returns the mean of and variance for the chi-square distribution with degrees of freedom parameters specified by \(NU\). \(NU\) can be a vector, a matrix, or a multidimensional array. The degrees of freedom parameters in \(NU\) must be positive.

The mean of the chi-square distribution is \(\nu\), the degrees of freedom parameter, and the variance is \(2\nu\).

**Examples**

\[
u = 1:10;
\]

\[
u = \nu^\prime * \nu;
\]

\[
[M,V] = \text{chi2stat}(nu)
\]

\[
m =
\]

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\end{array}
\]

\[
v =
\]

\[
\begin{array}{cccccccccc}
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
\end{array}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
chi2cdf | chi2inv | chi2pdf | chi2rnd

Topics
“Chi-Square Distribution” on page B-28

Introduced before R2006a
children

Class: classregtree

(Removed) Child nodes

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

C = children(t)
C = children(t,nodes)

Description

C = children(t) returns an n-by-2 array C containing the numbers of the child nodes for each node in the tree t, where n is the number of nodes. Leaf nodes have child node 0.

C = children(t,nodes) takes a vector nodes of node numbers and returns the children for the specified nodes.

References


See Also
classregtree | numnodes | parent
cholcov

Cholesky-like covariance decomposition

Syntax

T = cholcov(SIGMA)
[T,num] = cholcov(SIGMA)
[T,num] = cholcov(SIGMA,0)

Description

T = cholcov(SIGMA) computes T such that SIGMA = T' * T. SIGMA must be square, symmetric, and positive semi-definite. If SIGMA is positive definite, then T is the square, upper triangular Cholesky factor. If SIGMA is not positive definite, T is computed from an eigenvalue decomposition of SIGMA. T is not necessarily triangular or square in this case. Any eigenvectors whose corresponding eigenvalue is close to zero (within a small tolerance) are omitted. If any remaining eigenvalues are negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number num of negative eigenvalues of SIGMA, and T is empty if num is positive. If num is zero, SIGMA is positive semi-definite. If SIGMA is not square and symmetric, num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num equal to zero if SIGMA is positive definite, and T is the Cholesky factor. If SIGMA is not positive definite, num is a positive integer and T is empty. [...] = cholcov(SIGMA,1) is equivalent to [...] = cholcov(SIGMA).

Examples

The following 4-by-4 covariance matrix is rank-deficient:

C1 = [2 1 1 2;1 2 1 2;1 1 2 2;2 2 2 3]
C1 =
   2 1 1 2
   1 2 1 2
   1 1 2 2
   2 2 2 3
rank(C1)
ans =
    3

Use cholcov to factor C1:

T = cholcov(C1)
T =
    -0.2113    0.7887   -0.5774         0
     0.7887   -0.2113   -0.5774         0
    1.1547    1.1547    1.1547    1.7321

C2 = T'*T
C2 =
    2.0000    1.0000    1.0000    2.0000
     1.0000    2.0000    1.0000    2.0000
     1.0000    1.0000    2.0000    2.0000
    2.0000    2.0000    2.0000    3.0000

Use T to generate random data with the specified covariance:

C3 = cov(randn(1e6,3)*T)
C3 =
    1.9973    0.9982    0.9995    1.9975
    0.9982    1.9962    0.9969    1.9956
    0.9995    0.9969    1.9980    1.9972
    1.9975    1.9956    1.9972    2.9951

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
chol | cov

Introduced in R2007a
classcount

Class: classregtree

(Removed) Class counts

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[ P = \text{classcount}(t) \]
\[ P = \text{classcount}(t, \text{nodes}) \]

**Description**

\[ P = \text{classcount}(t) \text{ returns an } n\text{-by-}m \text{ array } P \text{ of class counts for the nodes in the classification tree } t, \text{ where } n \text{ is the number of nodes and } m \text{ is the number of classes. For any node number } i, \text{ the class counts } P(i,:) \text{ are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node } i. \]

\[ P = \text{classcount}(t, \text{nodes}) \text{ takes a vector } \text{nodes} \text{ of node numbers and returns the class counts for the specified nodes.} \]

**References**


**See Also**

classregtree | numnodes
**ClassificationBaggedEnsemble**

**Package:** classreg.learning.classif  
**Superclasses:**
Classification ensemble grown by resampling

**Description**

ClassificationBaggedEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners.

**Construction**

Create a bagged classification ensemble object using `fitcensemble`.

**Properties**

**CategoricalPredictors**

Categorical predictor indices, specified as a vector of positive integers. **CategoricalPredictors** contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

**ClassNames**

List of the elements in Y with duplicates removed. **ClassNames** can be a numeric vector, categorical vector, logical vector, character array, or cell array of character vectors. **ClassNames** has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)
CombineWeights
Character vector describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

ExpandedPredictorNames
Expanded predictor names, stored as a cell array of character vectors.
If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

FitInfo
Numeric array of fit information. The FitInfoDescription property describes the content of this array.

FitInfoDescription
Character vector describing the meaning of the FitInfo array.

FResample
Numeric scalar between 0 and 1. FResample is the fraction of training data fitcensemble resampled at random for every weak learner when constructing the ensemble.

HyperparameterOptimizationResults
Description of the cross-validation optimization of hyperparameters, stored as a BayesianOptimization object or a table of hyperparameters and associated values. Nonempty when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on the setting of the HyperparameterOptimizationOptions name-value pair at creation:

- 'bayesopt' (default) — Object of class BayesianOptimization
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)
Method
Character vector describing the method that creates ens.

ModelParameters
Parameters used in training ens.

NumTrained
Number of trained weak learners in ens, a scalar.

PredictorNames
Cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination
Character vector describing the reason fitensemble stopped adding weak learners to the ensemble.

Replace
Logical value indicating if the ensemble was trained with replacement (true) or without replacement (false).

ResponseName
Character vector with the name of the response variable Y.

ScoreTransform
Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function
Trained
Trained learners, a cell array of compact classification models.

TrainedWeights
Numeric vector of trained weights for the weak learners in ens. TrainedWeights has \( T \) elements, where \( T \) is the number of weak learners in learners.

UseObsForLearner
Logical matrix of size \( N \)-by-\( \text{NumTrained} \), where \( N \) is the number of observations in the training data and \( \text{NumTrained} \) is the number of trained weak learners. UseObsForLearner(\( I,J \)) is true if observation \( I \) was used for training learner \( J \), and is false otherwise.

W
Scaled weights, a vector with length \( n \), the number of rows in \( X \). The sum of the elements of \( W \) is 1.

X
Matrix of predictor values that trained the ensemble. Each column of \( X \) represents one variable, and each row represents one observation.

Y
A categorical array, cell array of character vectors, character array, logical vector, or a numeric vector with the same number of rows as \( X \). Each row of \( Y \) represents the classification of the corresponding row of \( X \).
Methods

- `oobEdge` Out-of-bag classification edge
- `oobLoss` Out-of-bag classification error
- `oobMargin` Out-of-bag classification margins
- `oobPermutedPredictorImportance` Predictor importance estimates by permutation of out-of-bag predictor observations for random forest of classification trees
- `oobPredict` Predict out-of-bag response of ensemble

Inherited Methods

- `compact` Compact classification ensemble
- `crossval` Cross validate ensemble
- `resubEdge` Classification edge by resubstitution
- `resubLoss` Classification error by resubstitution
- `resubMargin` Classification margins by resubstitution
- `resubPredict` Predict ensemble response by resubstitution
- `resume` Resume training ensemble

- `edge` Classification edge
- `loss` Classification error
- `margin` Classification margins
- `predict` Predict labels using ensemble of classification models
- `predictorImportance` Estimates of predictor importance
- `removeLearners` Remove members of compact classification ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Train Bagged Ensemble of Classification Trees

Load the ionosphere data set.

load ionosphere

Train a bagged ensemble of 100 classification trees using all measurements.

rng(1) % For reproducibility
Mdl = fitcensemble(X,Y,'Method','bag')

Mdl =
    classreg.learning.classif.ClassificationBaggedEnsemble
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'    'g'}
    ScoreTransform: 'none'
    NumObservations: 351
    NumTrained: 100
    Method: 'Bag'
    LearnerNames: {'Tree'}
    ReasonForTermination: 'Terminated normally after completing the requested number of
                        iterations.'
    FitInfo: []
    FitInfoDescription: 'None'
    FResample: 1
    Replace: 1
    UseObsForLearner: [351x100 logical]

Properties, Methods

Mdl is a ClassificationBaggedEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained
classification trees (CompactClassificationTree model objects) that compose the
ensemble.

Plot a graph of the first trained classification tree.

view(Mdl.Trained{1}, 'Mode', 'graph')
By default, fitcensemble grows deep decision trees for bagged ensembles.

Estimate the in-sample misclassification rate.

\[ L = \text{resubLoss}(Mdl) \]

\[ L = 0 \]

L is 0, which indicates that Mdl is perfect at classifying the training data.
Tip

For a bagged ensemble of classification trees, the Trained property of ens stores a cell vector of ens.NumTrained CompactClassificationTree model objects. For a textual or graphical display of tree \( t \) in the cell vector, enter

\[
\text{view(ens.Trained}\{t\})
\]

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Only the predict function supports code generation.
- When you train an ensemble by using fitcensemble, code generation limitations for the weak learners used in the ensemble also apply to the ensemble. For more details, see the Code Generation sections of CompactClassificationDiscriminant and CompactClassificationTree.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

ClassificationEnsemble | compareHoldout | fitcensemble | fitctree | view

Topics

“Framework for Ensemble Learning” on page 18-40

Introduced in R2011a
ClassificationECOC class

Superclasses:
Multiclass model for support vector machines or other classifiers

Description

ClassificationECOC is an error-correcting output codes (ECOC) classifier for multiclass learning by reduction to multiple binary classifiers such as support vector machines (SVMs). Train a ClassificationECOC classifier using fitcecoc and the training data.

Trained ClassificationECOC classifiers store the training data, parameter values, prior probabilities, and coding matrices. You can use these classifiers to:

• Estimate resubstitution predictions. For details, see resubPredict.
• Predict labels or posterior probabilities for new data. For details, see predict.

Construction

Create a ClassificationECOC object by using fitcecoc.

Properties

BinaryLearners — Trained binary learners
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. BinaryLearners has as many elements as classes in Y.

The software trained BinaryLearner{j} according to the binary problem specified by CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each element of BinaryLearners is a CompactClassificationSVM classifier.

Data Types: cell
BinaryLoss — Binary learner loss function
character vector representing the loss function name

Binary learner loss function, specified as a character vector representing the loss function name.

If you train using binary learners that use different loss functions, then the software sets BinaryLoss to 'hamming'. To potentially increase accuracy, set a different binary loss function than this default during prediction or loss computation using the BinaryLoss name-value pair argument of predict or loss.

Data Types: char

BinaryY — Binary learner class labels
numeric matrix

Binary learner class labels, specified as a numeric matrix. BinaryY is a NumObservations-by-L matrix, where L is the number of binary learners (size(CodingMatrix,2)).

Elements of BinaryY are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes how learner j assigns observation k to a dichotomous class corresponding to the value of BinaryY(k,j).

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner j assigns observation k to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner j removes observation k from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner j assigns observation k to a positive class.</td>
</tr>
</tbody>
</table>

Data Types: double

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
Data Types: `single` | `double`

**ClassNames — Unique class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. `ClassNames` has the same data type as the class labels `Y`. (The software treats string arrays as cell arrays of character vectors.) `ClassNames` also determines the class order.

Data Types: `categorical` | `char` | `logical` | `single` | `double` | `cell`

**CodingMatrix — Class-assignment codes**
numeric matrix

Class-assignment codes for the binary learners, specified as a numeric matrix. `CodingMatrix` is a $K$-by-$L$ matrix, where $K$ is the number of classes and $L$ is the number of binary learners.

Elements of `CodingMatrix` are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes the meaning of `CodingMatrix(i,j)`, that is, the class that learner $j$ assigns to observations in class $i$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner $j$ assigns observations in class $i$ to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner $j$ removes observations in class $i$ from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner $j$ assigns observations in class $i$ to a positive class.</td>
</tr>
</tbody>
</table>

Data Types: `double` | `single` | `int8` | `int16` | `int32` | `int64`

**CodingName — Coding design name**
character vector

Coding design name, specified as a character vector. For more details, see “Coding Design” on page 32-392.

Data Types: `char`
**Cost — Misclassification costs**

square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. `Cost` has `K` rows and columns, where `K` is the number of classes.

`Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. The order of the rows and columns of `Cost` corresponds to the order of the classes in `ClassNames`.

`fitcecoc` incorporates misclassification costs differently among different types of binary learners.

Data Types: double

**ExpandedPredictorNames — Expanded predictor names**

cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

Data Types: cell

**HyperparameterOptimizationResults — Description of the cross-validation optimization of hyperparameters**

BayesianOptimization object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, stored as a BayesianOptimization object or a table of hyperparameters and associated values. Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- 'bayesopt' (default) — Object of class BayesianOptimization
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

Data Types: table
**LearnerWeights — Binary learner weights**

numeric row vector

Binary learner weights, specified as a numeric row vector. `LearnerWeights` has length equal to the number of binary learners (`size(CodingMatrix,2)`).

`LearnerWeights(j)` is the sum of the observation weights that binary learner `j` used to train its classifier.

The software uses `LearnerWeights` to fit posterior probabilities by minimizing the Kullback-Leibler divergence.

Data Types: `double` | `single`

**ModelParameters — Parameter values**

object

Parameter values, e.g., the name-value pair argument values, used to train the ECOC classifier, specified as an object. `ModelParameters` does not contain estimated parameters.

Access properties of `ModelParameters` using dot notation. For example, list the templates containing parameters the binary learners using `Mdl.ModelParameters.BinaryLearner`.

**NumObservations — Number of observations**

positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: `double`

**PredictorNames — Predictor names**

cell array of character vectors

Predictor names in order of their appearance in the predictor data `X`, specified as a cell array of character vectors. The length of `PredictorNames` is equal to the number of columns in `X`.

Data Types: `cell`

**Prior — Prior class probabilities**

numeric vector
This property is read-only.

Prior class probabilities, specified as a numeric vector. `Prior` has as many elements as there are classes in `ClassNames`, and the order of the elements corresponds to the elements of `ClassNames`.

`fitcecoc` incorporates misclassification costs differently among different types of binary learners.

Data Types: `double`

`ResponseName` — Response variable name
character vector

Response variable name, specified as a character vector.

Data Types: `char`

`ScoreTransform` — Score transformation function to apply to predicted scores
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

To change the score transformation function to `function`, for example, use dot notation.

- For a built-in function, enter this code and replace `function` with a value in the table.

```
Mdl.ScoreTransform = 'function';
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>( \frac{1}{1 + e^{-2x}} )</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>( \log\left(\frac{x}{1-x}\right) )</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>( \frac{1}{1 + e^{-x}} )</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>( x ) (no transformation)</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------------------</td>
</tr>
</tbody>
</table>
| 'sign'           | -1 for \( x < 0 \)  
                      | 0 for \( x = 0 \)  
                      | 1 for \( x > 0 \)  |
| 'symmetric'      | \( 2x - 1 \)                                       |
| 'symmetricismax' | Sets the score for the class with the largest     
                      | score to 1, and sets the scores for all other     
                      | classes to \(-1\)                                     |
| 'symmetriclogit' | \( \frac{2}{1 + e^{-x}} - 1 \)                   |

- For a MATLAB function or a function that you define, enter its function handle.

```matlab
Mdl.ScoreTransform = @function;
```

*function* must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: char | function_handle

**W — Observation weights**

numeric vector

Observation weights used to train the classifier, specified as a numeric vector. \( W \) has \( \text{NumObservations} \) elements.

The software normalizes the weights used for training so that `nansum(W)` is 1.

Data Types: single | double

**X — Unstandardized predictor data used to train the classifier**

numeric matrix

Unstandardized predictor data used to train the classifier, specified as a numeric matrix. \( X \) is a \( \text{NumObservations} \)-by-\( p \) matrix, where \( p \) is the number of predictors.

Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

Data Types: single | double
Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of
class labels

treated as character vectors.

Observed class labels used to train the classifier, specified as a categorical or character
array, logical or numeric vector, or cell array of character vectors. Y has
NumObservations elements, and is the same data type as the input argument Y of
fitcecoc. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of Tbl or
X.

Methods

compact Compact multiclass, error-correcting output codes model
crossval Cross-validate multiclass, error-correcting output codes model
resubEdge Classification edge by resubstitution for multiclass, error-correcting output
codes model
resubLoss Classification loss by resubstitution for multiclass, error-correcting output
codes model
resubMargin Classification margins by resubstitution for multiclass, error-correcting
output codes model
resubPredict Predict resubstitution responses for multiclass, error-correcting output
codes model
Inherited Methods

discardSupportVectors  Discard support vectors of linear support vector machine binary learners
edge                 Classification edge for multiclass, error-correcting output codes model
loss                 Classification loss for multiclass, error-correcting output codes model
margin               Classification margins for multiclass, error-correcting output codes model
predict              Predict labels using multiclass, error-correcting output codes model
selectModels         Choose subset of regularized linear classification models

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Multiclass Model Using SVM Learners

Train an error-correcting output codes (ECOC) multiclass model using support vector machine (SVM) binary learners.

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

Train an ECOC multiclass model using the default options.

Mdl = fitcecoc(X,Y)
Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners, and uses a one-versus-one coding design. You can access Mdl properties using dot notation.

Display the coding design matrix.

Mdl.ClassNames

ans = 3x1 cell array
    {'setosa' }    
    {'versicolor'}
    {'virginica' }

CodingMat = Mdl.CodingMatrix

CodingMat = 3×3
     1   1   0
    -1   0   1
     0  -1  -1

A one-versus-one coding design on three classes yields three binary learners. Columns of CodingMat correspond to learners, and rows correspond to classes. The class order corresponds to the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1; -1; 0] and indicates that the software trains the first SVM binary learner using all observations classified as 'setosa' and 'versicolor'. Since 'setosa' corresponds to 1, it is the positive class, and since 'versicolor' corresponds to -1, it is the negative class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1} % The first binary learner
ans =
    classreg.learning.classif.CompactClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: [-1 1]
    ScoreTransform: 'none'
    Beta: [4x1 double]
    Bias: 1.4505
    KernelParameters: [1x1 struct]

Properties, Methods

Compute the in-sample classification error.

isLoss = resubLoss(Mdl)

isLoss = 0.0067

The classification error is small, but the classifier might have been overfit. You can cross-validate the classifier using crossval.

**Inspect Binary Learner Properties of ECOC Classifiers**

Access properties of binary learners, such as estimated parameters, using dot notation.

Load Fisher's iris data set. Use the petal dimensions as predictors.

load fisheriris
X = meas(:,3:4);
Y = species;

Train an ECOC classifier using the SVM binary learners and the default coding design (one-versus-one). Standardize the predictors and save the support vectors.

t = templateSVM('Standardize',1,'SaveSupportVectors',true);
predictorNames = {'petalLength','petalWidth'};
responseName = 'irisSpecies';
classNames = {'setosa','versicolor','virginica'}; % Specify class order
Mdl = fitcecoc(X,Y,'Learners',t,'ResponseName',responseName,...
               'PredictorNames',predictorNames,'ClassNames',classNames)
Mdl = ClassificationECOC
    PredictorNames: {'petalLength' 'petalWidth'}
    ResponseName: 'irisSpecies'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
    BinaryLearners: {3x1 cell}
    CodingName: 'onevsone'

Properties, Methods

t is a template object that contains options for SVM classification. All properties are empty ([]), except for Method, SaveSupportVectors, StandardizeData, and Type. The function fitcecoc uses the default values of the empty properties. Mdl is a ClassificationECOC classifier. You can access properties of Mdl using dot notation.

Display the class names and the coding design matrix.

Mdl.ClassNames
ans = 3x1 cell array
     {'setosa'   }
     {'versicolor'}
     {'virginica'}

Mdl.CodingMatrix
ans = 3×3
     1     1     0
    -1     0     1
    0    -1    -1

L = size(Mdl.CodingMatrix,2); % Number of SVMs

The columns correspond to SVM binary learners, and the rows correspond to the distinct classes. The row order corresponds to the order of the ClassNames property of Mdl. For each column:
• A 1 indicates that fitcecoc trained the SVM using observations in the corresponding class as members of the positive group.
• A -1 indicates that fitcecoc trained the SVM using observations in the corresponding class as members of the negative group.
• A 0 indicates that the SVM did not use observations in the corresponding class.

For example, fitcecoc assigns all observations to 'setosa' or 'versicolor', but not 'virginica', in the first SVM.

You can access properties of the SVMs using cell subscripting and dot notation. Store the standardized support vectors of each SVM. Unstandardize the support vectors.

```matlab
sv = cell(L,1); % Preallocate for support vector indices
for j = 1:L
 SVM = Mdl.BinaryLearners{j};
 sv{j} = SVM.SupportVectors;
 sv{j} = bsxfun(@plus,bsxfun(@times,sv{j},SVM.Sigma),SVM.Mu);
end
```

sv is a cell array of matrices containing the unstandardized support vectors for the SVMs.

Plot the data, and identify the support vectors.

```matlab
figure
h = zeros(3 + L,1); % Preallocate for handles
h(1:3) = gscatter(X(:,1),X(:,2),Y);
hold on
markers = {'ko','ro','bo'};
for j = 1:L
 svs = sv{j};
 h(j + 3) = plot(svs(:,1),svs(:,2),markers{j},...
 'MarkerSize',10 + (j - 1)*3);
end
title('Fisher''s Iris -- ECOC Support Vectors')
xlabel(predictorNames{1})
ylabel(predictorNames{2})
legend(h,[classNames,{'Support vectors - SVM 1',...
 'Support vectors - SVM 2','Support vectors - SVM 3'}],...
 'Location','Best')
hold off
```
You can pass `Mdl` to:

- `predict` to classify new observations.
- `resubLoss` to estimate the in-sample classification error.
- `crossval` to perform 10-fold cross-validation.

**Cross-Validate ECOC Classifier**

Load Fisher's iris data set. Specify the predictor data `X` and the response data `Y`. 

32-389
load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',1)

is a SVM template. Most of the template object's properties are empty. When training the ECOC classifier, the software sets the applicable properties to their default values.
Md1 = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Md1 is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Md1 using 10-fold cross-validation.

CVMd1 = crossval(Md1);

CVMd1 is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the classification error.

loss = kfoldLoss(CVMd1)

loss = 0.0400

The classification error is 4%, which indicates that the ECOC classifier generalizes fairly well.

Definitions

Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or more classes to a set of binary classifiers.

ECOC classification requires a coding design, which determines the classes that the binary learners train on, and a decoding scheme, which determines how the results (predictions) of the binary classifiers are aggregated.

Suppose that:

• There are three classes.
• The coding design is one-versus-one.
• The decoding scheme uses loss \( g \).
• The learners are SVMs.

To build this classification model, ECOC follows these steps.
1 A one-versus-one coding design is

<table>
<thead>
<tr>
<th></th>
<th>Learner 1</th>
<th>Learner 2</th>
<th>Learner 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Class 2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Class 3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Learner 1 trains on observations having Class 1 and Class 2, and treats Class 1 as the positive class and Class 2 as the negative class. The other learners are trained similarly. Let $M$ be the coding design matrix with elements $m_{kl}$, and $s_l$ be the predicted classification score for the positive class of learner $l$.

2 A new observation is assigned to the class ($\hat{k}$) that minimizes the aggregation of the losses for the $L$ binary learners. That is,

$$
\hat{k} = \arg\min_k \sum_{l=1}^L |m_{kl}| g(m_{kl}, s_l).
$$

ECOC models can improve classification accuracy, even compared to other multiclass models [2].

**Coding Design**

A coding design is a matrix where elements direct which classes are trained by each binary learner, that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a binary learner. In a ternary coding design (adopted by the software), for a particular column (or binary learner):

- Rows containing a 1 indicate to the binary learner to group all observations in the corresponding classes into a positive class.
- Rows containing a -1 indicate to the binary learner to group all observations in the corresponding classes into a negative class.
Rows containing a 0 indicate to the binary learner to ignore all observations in the corresponding classes.

Coding matrices with large, minimal, pair-wise row distances based on the Hamming measure are desirable. For details on the pair-wise row distance, see “Random Coding Design Matrices” on page 32-1795 and [4].

This table describes popular coding designs. For the example, suppose $K$ (the number of distinct classes) is 3.

<table>
<thead>
<tr>
<th>Coding Design</th>
<th>Description</th>
<th>Number of Learners</th>
<th>Minimal Pair-Wise Row Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>one-versus-all (OVA)</td>
<td>For each binary learner, one class is positive and the rest are negative.</td>
<td>$K$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>This design exhausts all combinations of positive class assignments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>one-versus-one (OVO)</td>
<td>For each binary learner, one class is positive, another is negative, and the</td>
<td>$K(K - 1)/2$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>rest are ignored. This design exhausts all combinations of class pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coding Design</td>
<td>Description</td>
<td>Number of Learners</td>
<td>Minimal Pair-Wise Row Distance</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>binary complete</td>
<td>This design partitions the classes into all binary combinations, and does not ignore any classes. That is, all class assignments are -1 and 1 with at least one positive and negative class in the assignment for each binary learner.</td>
<td>$2^k - 1 - 1$</td>
<td>$2^{k-2}$</td>
</tr>
<tr>
<td>ternary complete</td>
<td>This design partitions the classes into all ternary combinations. That is, all class assignments are 0, -1, and 1 with at least one positive and negative class in the assignment for each binary learner.</td>
<td>$(3^k - 2^k + 1)/2$</td>
<td>$3^{k-2}$</td>
</tr>
<tr>
<td>ordinal</td>
<td>For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first two classes are negative, and the rest positive, and so on.</td>
<td>$K - 1$</td>
<td>1</td>
</tr>
<tr>
<td>Coding Design</td>
<td>Description</td>
<td>Number of Learners</td>
<td>Minimal Pair-Wise Row Distance</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>dense random</td>
<td>For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one of each type. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
<td>Random, but approximately $10 \log_2 K$</td>
<td>Variable</td>
</tr>
<tr>
<td>sparse random</td>
<td>For each binary learner, the software randomly assigns classes as positive or negative with probability 0.25 for each, and ignores classes with probability 0.5. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
<td>Random, but approximately $15 \log_2 K$</td>
<td>Variable</td>
</tr>
</tbody>
</table>

This plot compares the number of binary learners for the coding designs with increasing $K$. 

---

32-395
**Algorithms**

**Random Coding Design Matrices**

For a given number of classes, for example, $K$, the software generates random coding design matrices as follows.

1. The software generates one of the following:
   a. Dense random — The software assigns a 1 or -1 with equal probability to each element of the $K$-by-$L_d$ coding design matrix, where $L_d \approx \lceil 10 \log_2 K \rceil$. 

\[ \text{Number of binary learners (log10-scale)} \]
\[ \text{K} \]

---

32-396
b Sparse random — The software assigns a 1 to each element of the $K$-by-$L_s$ coding design matrix with probability 0.25, a -1 with probability 0.25, and a 0 with probability 0.5, where $L_s = \lceil 15 \log_2 K \rceil$.

2 If a column does not contain at least one 1 and at least one -1, then the software removes that column.

3 For distinct columns $u$ and $v$, if $u = v$ or $u = -v$, then the software removes $v$ from the coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest, minimal pairwise row distance based on the Hamming measure ([4]) given by

$$
\Delta(k_1,k_2) = 0.5 \sum_{l=1}^{L} \left| m_{k_1,l} - m_{k_2,l} \right|,
$$

where $m_{k,l}$ is an element of coding design matrix $j$.

**Support Vector Storage**

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM template that specifies storing support vectors to fitcecoc. For example, enter:

```matlab
t = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',t);
```

You can remove the support vectors and related values by passing the resulting ClassificationECOC model to discardSupportVectors.

**Alternatives**

You can use these alternative algorithms to train a multiclass model:

- Classification ensembles—see fitcensemble and ClassificationEnsemble
- Classification trees—see fitctree and ClassificationTree
Discriminant analysis classifiers—see `fitcdiscr` and `ClassificationDiscriminant`

k-nearest neighbor classifiers—see `fitcknn` and `ClassificationKNN`

Naive Bayes classifiers—see `fitcnb` and `ClassificationNaiveBayes`

References


ExtendedCapabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The `predict` function supports code generation.
- When you train an ECOC model by using `fitcecoc`, the following restrictions apply.
  - You cannot fit posterior probabilities by using the 'FitPosterior' name-value pair argument.
  - All binary learners must be either SVM classifiers or linear classification models.
  For the 'Learners' name-value pair argument, you can specify:
    - 'svm' or 'linear'
    - An SVM template object or a cell vector of such objects (see `templateSVM`)
    - A linear classification model template object or a cell vector of such objects (see `templateLinear`)
Code generation limitations for SVM classifiers and linear classification models also apply to ECOC classifiers, depending on the choice of binary learners. For more details, see “Code Generation” on page 32-554 of the ClassificationSVM class and “Code Generation” on page 32-442 of the ClassificationLinear class.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationPartitionedECOC | CompactClassificationECOC | compareHoldout | fitcecoc | fitcsvm

Introduced in R2014b
**ClassificationDiscriminant class**

**Superclasses:**

Discriminant analysis classification

**Description**

A `ClassificationDiscriminant` object encapsulates a discriminant analysis classifier, which is a Gaussian mixture model for data generation. A `ClassificationDiscriminant` object can predict responses for new data using the `predict` method. The object contains the data used for training, so can compute resubstitution predictions.

**Construction**

Create a `ClassificationDiscriminant` object by using `fitcdiscr`.

**Properties**

**BetweenSigma**

p-by-p matrix, the between-class covariance, where p is the number of predictors.

**CategoricalPredictors**

Categorical predictor indices, which is always empty ([ ]).

**ClassNames**

List of the elements in the training data Y with duplicates removed. `ClassNames` can be a categorical array, cell array of character vectors, character array, logical vector, or a numeric vector. `ClassNames` has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)
**Coeffs**

k-by-k structure of coefficient matrices, where k is the number of classes. \(\text{Coeffs}(i,j)\) contains coefficients of the linear or quadratic boundaries between classes i and j. Fields in \(\text{Coeffs}(i,j)\):

- **DiscrimType**
- **Class1** — ClassNames(i)
- **Class2** — ClassNames(j)
- **Const** — A scalar
- **Linear** — A vector with p components, where p is the number of columns in X
- **Quadratic** — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is

\[
\text{Const} + \text{Linear} \ast x + x' \ast \text{Quadratic} \ast x = 0,
\]

where \(x\) is a column vector of length p.

If `fitcdiscr` had the FillCoeffs name-value pair set to 'off' when constructing the classifier, \(\text{Coeffs}\) is empty ([]).

**Cost**

Square matrix, where \(\text{Cost}(i,j)\) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of \(\text{Cost}\) corresponds to the order of the classes in ClassNames. The number of rows and columns in \(\text{Cost}\) is the number of unique classes in the response.

Change a \(\text{Cost}\) matrix using dot notation: \(\text{obj.Cost} = \text{costMatrix}\).

**Delta**

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of \(\text{obj}\) has magnitude smaller than \(\text{Delta}\), \(\text{obj}\) sets this coefficient to 0, and so you can eliminate the corresponding predictor from the model. Set \(\text{Delta}\) to a higher value to eliminate more predictors.

\(\text{Delta}\) must be 0 for quadratic discriminant models.
Change Delta using dot notation: \( \text{obj.Delta} = \text{newDelta} \).

**DeltaPredictor**

Row vector of length equal to the number of predictors in \( \text{obj} \). If \( \text{DeltaPredictor}(i) < \text{Delta} \) then coefficient \( i \) of the model is 0.

If \( \text{obj} \) is a quadratic discriminant model, all elements of \( \text{DeltaPredictor} \) are 0.

**DiscrimType**

Character vector specifying the discriminant type. One of:

- 'linear'
- 'quadratic'
- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Change DiscrimType using dot notation: \( \text{obj.DiscrimType} = \text{newDiscrimType} \).

You can change between linear types, or between quadratic types, but cannot change between linear and quadratic types.

**Gamma**

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using dot notation: \( \text{obj.Gamma} = \text{newGamma} \).

- If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
- If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type to 'linear'.
- You cannot set values below the value of the MinGamma property.
- For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for DiscrimType 'diagQuadratic').

**HyperparameterOptimizationResults**

Description of the cross-validation optimization of hyperparameters, stored as a BayesianOptimization object or a table of hyperparameters and associated values.
Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- `'bayesopt'` (default) — Object of class `BayesianOptimization`
- `'gridsearch'` or `'randomsearch'` — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

**LogDetSigma**

Logarithm of the determinant of the within-class covariance matrix. The type of `LogDetSigma` depends on the discriminant type:

- Scalar for linear discriminant analysis
- Vector of length $K$ for quadratic discriminant analysis, where $K$ is the number of classes

**MinGamma**

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is invertible. If the correlation matrix is not singular, `MinGamma` is 0.

**ModelParameters**

Parameters used in training `obj`.

**Mu**

Class means, specified as a $K$-by-$p$ matrix of scalar values class means of size. $K$ is the number of classes, and $p$ is the number of predictors. Each row of `Mu` represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the `ClassNames` attribute.

**NumObservations**

Number of observations in the training data, a numeric scalar. `NumObservations` can be less than the number of rows of input data $X$ when there are missing values in $X$ or response $Y$. 
**PredictorNames**

Cell array of names for the predictor variables, in the order in which they appear in the training data \( X \).

**Prior**

Numeric vector of prior probabilities for each class. The order of the elements of \( \text{Prior} \) corresponds to the order of the classes in \( \text{ClassNames} \).

Add or change a \( \text{Prior} \) vector using dot notation: \( \text{obj.Prior} = \text{priorVector} \).

**ResponseName**

Character vector describing the response variable \( Y \).

**ScoreTransform**

Character vector representing a built-in transformation function, or a function handle for transforming scores. 'none' means no transformation; equivalently, 'none' means \( @(x)x \). For a list of built-in transformation functions and the syntax of custom transformation functions, see \( \text{fitcdiscr} \).

Implement dot notation to add or change a \( \text{ScoreTransform} \) function using one of the following:

- \( \text{cobj.ScoreTransform} = 'function' \)
- \( \text{cobj.ScoreTransform} = @function \)

**Sigma**

Within-class covariance matrix or matrices. The dimensions depend on \( \text{DiscrimType} \):

- 'linear' (default) — Matrix of size \( p \)-by-\( p \), where \( p \) is the number of predictors
- 'quadratic' — Array of size \( p \)-by-\( p \)-by-\( K \), where \( K \) is the number of classes
- 'diagLinear' — Row vector of length \( p \)
- 'diagQuadratic' — Array of size 1-by-\( p \)-by-\( K \)
- 'pseudoLinear' — Matrix of size \( p \)-by-\( p \)
- 'pseudoQuadratic' — Array of size \( p \)-by-\( p \)-by-\( K \)
Scaled weights, a vector with length n, the number of rows in X.

Matrix of predictor values. Each column of X represents one predictor (variable), and each row represents one observation.

X centered

X data with class means subtracted. If Y(i) is of class j,

\[ X_{\text{centered}}(i,:) = X(i,:) - \text{Mu}(j,:), \]

where Mu is the class mean property.

A categorical array, cell array of character vectors, character array, logical vector, or a numeric vector with the same number of rows as X. Each row of Y represents the classification of the corresponding row of X.

Methods

- compact: Compact discriminant analysis classifier
- crossval: Cross-validated discriminant analysis classifier
- cvshrink: Cross-validate regularization of linear discriminant
- resubEdge: Classification edge by resubstitution
- resubLoss: Classification error by resubstitution
- resubMargin: Classification margins by resubstitution
- resubPredict: Predict resubstitution response of classifier
Inherited Methods

edge  
logP  
loss  
mahal  
margin  
nLinearCoeffs  
predict

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Discriminant Analysis Model

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using the entire data set.

Mdl = fitcdiscr(meas,species)

Mdl =
    ClassificationDiscriminant
        ResponseName: 'Y'
        CategoricalPredictors: []
        ClassNames: {'setosa'  'versicolor'  'virginica'}
        ScoreTransform: 'none'
        NumObservations: 150
        DiscrimType: 'linear'
        Mu: [3x4 double]
        Coeffs: [3x3 struct]
Properties, Methods

Mdl is a ClassificationDiscriminant model. To access its properties, use dot notation. For example, display the group means for each predictor.

Mdl.Mu
ans = 3×4

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0060</td>
<td>3.4280</td>
<td>1.4620</td>
<td>0.2460</td>
</tr>
<tr>
<td>5.9360</td>
<td>2.7700</td>
<td>4.2600</td>
<td>1.3260</td>
</tr>
<tr>
<td>6.5880</td>
<td>2.9740</td>
<td>5.5520</td>
<td>2.0260</td>
</tr>
</tbody>
</table>

To predict labels for new observations, pass Mdl and predictor data to predict.

Definitions

Discriminant Classification

The model for discriminant analysis is:

- Each class \( (Y) \) generates data \( (X) \) using a multivariate normal distribution. That is, the model assumes \( X \) has a Gaussian mixture distribution (gmdistribution).
- For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
- For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

\[
\hat{y} = \arg\min_{y=1,...,K} \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]

where
• $\hat{y}$ is the predicted classification.
• $K$ is the number of classes.
• $\hat{P}(k \mid x)$ is the posterior probability on page 20-7 of class $k$ for observation $x$.
• $C(y \mid k)$ is the cost on page 20-8 of classifying an observation as $y$ when its true class is $k$.

For details, see “Prediction Using Discriminant Analysis Models” on page 20-7.

**Regularization**

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, $\gamma$ and $\delta$, that control regularization as follows. `cvshrink` helps you select appropriate values of the parameters.

Let $\Sigma$ represent the covariance matrix of the data $X$, and let $\hat{X}$ be the centered data (the data $X$ minus the mean by class). Define

$$D = \text{diag}(\hat{X}^T \ast \hat{X}).$$

The regularized covariance matrix $\hat{\Sigma}$ is

$$\hat{\Sigma} = (1 - \gamma)\Sigma + \gamma D.$$  

Whenever $\gamma \geq \text{MinGamma}$, $\hat{\Sigma}$ is nonsingular.

Let $\mu_k$ be the mean vector for those elements of $X$ in class $k$, and let $\mu_0$ be the global mean vector (the mean of the rows of $X$). Let $C$ be the correlation matrix of the data $X$, and let $\hat{C}$ be the regularized correlation matrix:

$$\hat{C} = (1 - \gamma)C + \gamma I,$$

where $I$ is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point $x$ is

$$(x - \mu_0)^T \tilde{\Sigma}^{-1} (\mu_k - \mu_0) = \left[ (x - \mu_0)^T D_{-1/2} \right] \left[ \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right].$$

The parameter $\delta$ enters into this equation as a threshold on the final term in square brackets. Each component of the vector $\left[ \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right]$ is set to zero if it is smaller in magnitude than the threshold $\delta$. Therefore, for class $k$, if component $j$ is thresholded to zero, component $j$ of $x$ does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When $\delta \geq \text{DeltaPredictor}(i)$, all classes $k$ have

$$\left| \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right| \leq \delta.$$

Therefore, when $\delta \geq \text{DeltaPredictor}(i)$, the regularized classifier does not use predictor $i$.

**References**


**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train a discriminant analysis model by using fitcdiscr or create a compact discriminant analysis model by using makecdiscr, the following restrictions apply.
• The class labels input argument value (Y) cannot be a categorical array.
• The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
CompactClassificationDiscriminant | compareHoldout | fitcdiscr

Topics
“Discriminant Analysis Classification” on page 20-2

Introduced in R2011b
ClassificationEnsemble

**Package:** classreg.learning.classif

**Superclasses:**

Ensemble classifier

**Description**

ClassificationEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners. It stores data used for training, can compute resubstitution predictions, and can resume training if desired.

**Construction**

Create a classification ensemble object using `fitcensemble`.

**Properties**

**CategoricalPredictors**

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty `[]`.

**ClassNames**

List of the elements in Y with duplicates removed. `ClassNames` can be a numeric vector, categorical vector, logical vector, character array, or cell array of character vectors. `ClassNames` has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)
**CombineWeights**

Character vector describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

**Cost**

Square matrix, where \( \text{Cost}(i,j) \) is the cost of classifying a point into class \( j \) if its true class is \( i \) (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of \( \text{Cost} \) corresponds to the order of the classes in \( \text{ClassNames} \). The number of rows and columns in \( \text{Cost} \) is the number of unique classes in the response. This property is read-only.

**ExpandedPredictorNames**

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then \( \text{ExpandedPredictorNames} \) includes the names that describe the expanded variables. Otherwise, \( \text{ExpandedPredictorNames} \) is the same as \( \text{PredictorNames} \).

**FitInfo**

Numeric array of fit information. The \( \text{FitInfoDescription} \) property describes the content of this array.

**FitInfoDescription**

Character vector describing the meaning of the \( \text{FitInfo} \) array.

**HyperparameterOptimizationResults**

Description of the cross-validation optimization of hyperparameters, stored as a \( \text{BayesianOptimization} \) object or a table of hyperparameters and associated values. Nonempty when the \( \text{OptimizeHyperparameters} \) name-value pair is nonempty at creation. Value depends on the setting of the \( \text{HyperparameterOptimizationOptions} \) name-value pair at creation:

- 'bayesopt' (default) — Object of class \( \text{BayesianOptimization} \)
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)
LearnerNames
Cell array of character vectors with names of weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is {'Tree'}.  

Method
Character vector describing the method that creates ens.

ModelParameters
Parameters used in training ens.

NumObservations
Numeric scalar containing the number of observations in the training data.

NumTrained
Number of trained weak learners in ens, a scalar.

PredictorNames
Cell array of names for the predictor variables, in the order in which they appear in X.

Prior
Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds to the order of the classes in ClassNames. The number of elements of Prior is the number of unique classes in the response. This property is read-only.

ReasonForTermination
Character vector describing the reason fitcensemble stopped adding weak learners to the ensemble.

ResponseName
Character vector with the name of the response variable Y.

ScoreTransform
Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means
@(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see `fitctree`.

Add or change a `ScoreTransform` function using dot notation:

```matlab
ens.ScoreTransform = 'function'
```

or

```matlab
ens.ScoreTransform = @function
```

**Trained**

A cell vector of trained classification models.

- If `Method` is `'LogitBoost'` or `'GentleBoost'`, then `ClassificationEnsemble` stores trained learner $j$ in the `CompactRegressionLearner` property of the object stored in `Trained{j}`. That is, to access trained learner $j$, use `ens.Trained{j}.CompactRegressionLearner`.
- Otherwise, cells of the cell vector contain the corresponding, compact classification models.

**TrainedWeights**

Numeric vector of trained weights for the weak learners in `ens`. `TrainedWeights` has $T$ elements, where $T$ is the number of weak learners in `learners`.

**UsePredForLearner**

Logical matrix of size $P$-by-$NumTrained$, where $P$ is the number of predictors (columns) in the training data $X$. `UsePredForLearner(i,j)` is `true` when learner $j$ uses predictor $i$, and is `false` otherwise. For each learner, the predictors have the same order as the columns in the training data $X$.

If the ensemble is not of type `Subspace`, all entries in `UsePredForLearner` are `true`.

**W**

Scaled weights, a vector with length $n$, the number of rows in $X$. The sum of the elements of $W$ is 1.
Matrix of predictor values that trained the ensemble. Each column of X represents one variable, and each row represents one observation.

Numeric vector, categorical vector, logical vector, character array, or cell array of character vectors. Each row of Y represents the classification of the corresponding row of X.

Methods

compact Compact classification ensemble
crossval Cross validate ensemble
resubEdge Classification edge by resubstitution
resubLoss Classification error by resubstitution
resubMargin Classification margins by resubstitution
resubPredict Predict ensemble response by resubstitution
resume Resume training ensemble

Inherited Methods

dge Classification edge
dloss Classification error
dmargins Classification margins
dpredict Predict labels using ensemble of classification models
dpredictorImportance Estimates of predictor importance
dremoveLearners Remove members of compact classification ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Train Boosted Classification Ensemble

Load the ionosphere data set.

load ionosphere

Train a boosted ensemble of 100 classification trees using all measurements and the AdaBoostM1 method.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1')

Mdl =
    classreg.learning.classif.ClassificationEnsemble
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
    NumObservations: 351
    NumTrained: 100
    Method: 'AdaBoostM1'
    LearnerNames: {'Tree'}
    ReasonForTermination: 'Terminated normally after completing the requested number of
    iterations of the boosting algorithm.'
    FitInfo: [100x1 double]
    FitInfoDescription: {2x1 cell}

Properties, Methods

Mdl is a ClassificationEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained classification trees (CompactClassificationTree model objects) that compose the ensemble.

Plot a graph of the first trained classification tree.

view(Mdl.Trained{1},'Mode','graph')
By default, fitcensemble grows shallow trees for boosted ensembles of trees.

Predict the label of the mean of $X$.

```
predMeanX = predict(Mdl,mean(X))
predMeanX = 1x1 cell array
 {'g'}
```
Tip

For an ensemble of classification trees, the Trained property of ens stores an ens.NumTrained-by-1 cell vector of compact classification models. For a textual or graphical display of tree t in the cell vector, enter:

- \text{view(ens.Trained\{t\}.CompactRegressionLearner)} for ensembles aggregated using LogitBoost or GentleBoost.
- \text{view(ens.Trained\{t\})} for all other aggregation methods.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train an ensemble by using fitcensemble, code generation limitations for the weak learners used in the ensemble also apply to the ensemble. For more details, see the Code Generation sections of ClassificationKNN, CompactClassificationDiscriminant, and CompactClassificationTree.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

ClassificationTree | CompactClassificationEnsemble | compareHoldout | fitcensemble | view

Introduced in R2011a
ClassificationKNN

$k$-nearest neighbor classification

Description

ClassificationKNN is a nearest-neighbor classification model in which you can alter both the distance metric and the number of nearest neighbors. Because a ClassificationKNN classifier stores training data, you can use the model to compute resubstitution predictions. Alternatively, use the model to classify new observations using the predict method.

Creation

Create a ClassificationKNN model using fitcknn.

Properties

KNN Properties

BreakTies — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by predict when multiple classes have the same smallest cost, specified as one of the following:

- 'smallest' — Use the smallest index among tied groups.
- 'nearest' — Use the class with the nearest neighbor among tied groups.
- 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the $k$ nearest neighbors. BreakTies applies when IncludeTies is false.

Distance — Distance metric
'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | function handle | ...

Distance metric, specified as a character vector or a function handle. The values allowed depend on the NSMethod property.

<table>
<thead>
<tr>
<th>NSMethod</th>
<th>Distance Metric Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>'exhaustive'</td>
<td>Any distance metric of ExhaustiveSearcher</td>
</tr>
<tr>
<td>'kdtree'</td>
<td>'cityblock', 'chebychev', 'euclidean', or 'minkowski'</td>
</tr>
</tbody>
</table>

The following table lists the ExhaustiveSearcher distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix $C$. The default value of $C$ is the sample covariance matrix of $X$, as computed by nancov($X$). To specify a different value for $C$, set the DistParameter property of mdl using dot notation.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, set the DistParameter property of mdl using dot notation.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between X and a query point is scaled, meaning divided by a scale value S. The default value of S is the standard deviation computed from X, S = nanstd(X). To specify another value for S, set the DistParameter property of mdl using dot notation.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>@distfun</td>
<td>Distance function handle. distfun has the form function D2 = distfun(ZI,ZJ) % calculation of distance ... where • ZI is a 1-by-N vector containing one row of X or Y. • ZJ is an M2-by-N matrix containing multiple rows of X or Y. • D2 is an M2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:) .</td>
</tr>
</tbody>
</table>

For more information, see “Distance Metrics” on page 18-16.

Change Distance using dot notation: mdl.Distance = newDistance.

If NSMethod is 'kdtree', you can use dot notation to change Distance only for the metrics 'cityblock', 'chebychev', 'euclidean', and 'minkowski'.

Data Types: char | function_handle

**DistanceWeight — Distance weighting function**

'equal' | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'equal'</td>
<td>No weighting</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>'inverse'</td>
<td>Weight is 1/distance</td>
</tr>
<tr>
<td>'squaredinverse'</td>
<td>Weight is 1/distance$^2$</td>
</tr>
<tr>
<td>@fcn</td>
<td>$fcn$ is a function that accepts a matrix of nonnegative distances and returns a matrix of the same size containing nonnegative distance weights. For example, 'squaredinverse' is equivalent to @(d)d.^(–2).</td>
</tr>
</tbody>
</table>

Change `DistanceWeight` using dot notation: `mdl.DistanceWeight = newDistanceWeight.`

Data Types: char | function_handle

**DistParameter — Parameter for distance metric**

positive definite covariance matrix | positive scalar | vector of positive scale values

Parameter for the distance metric, specified as one of the values described in this table.

<table>
<thead>
<tr>
<th>Distance Metric</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mahalanobis'</td>
<td>Positive definite covariance matrix $C$</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance exponent, a positive scalar</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Vector of positive scale values with length equal to the number of columns of $X$</td>
</tr>
</tbody>
</table>

For any other distance metric, the value of `DistParameter` must be `[]`.

You can alter `DistParameter` using dot notation: `mdl.DistParameter = newDistParameter`. However, if `Distance` is 'mahalanobis' or 'seuclidean', then you cannot alter `DistParameter`.

Data Types: single | double

**IncludeTies — Tie inclusion flag**

false (default) | true

Tie inclusion flag indicating whether `predict` includes all the neighbors whose distance values are equal to the $k$th smallest distance, specified as false or true. If `IncludeTies` is true, `predict` includes all of these neighbors. Otherwise, `predict` uses exactly $k$ neighbors (see the `BreakTies` property).
Change IncludeTies using dot notation: `mdl.IncludeTies = newIncludeTies`.

Data Types: `logical`

**NSMethod — Nearest neighbor search method**

`'kdtree'` | `'exhaustive'`

This property is read-only.

Nearest neighbor search method, specified as either `'kdtree'` or `'exhaustive'`.

- `'kdtree'` — Creates and uses a Kd-tree to find nearest neighbors.
- `'exhaustive'` — Uses the exhaustive search algorithm. When predicting the class of a new point `xnew`, the software computes the distance values from all points in `X` to `xnew` to find nearest neighbors.

The default value is `'kdtree'` when `X` has 10 or fewer columns, `X` is not sparse, and the distance metric is a `'kdtree'` type. Otherwise, the default value is `'exhaustive'`.

**NumNeighbors — Number of nearest neighbors**

Positive integer value

Number of nearest neighbors in `X` used to classify each point during prediction, specified as a positive integer value.


Data Types: `single` | `double`

**Other Classification Properties**

**CategoricalPredictors — Categorical predictor indices**

`[]` | vector of positive integers

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

Data Types: `double`
ClassNames — Names of classes in training data Y

categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Names of the classes in the training data Y with duplicates removed, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as Y. (The software treats string arrays as cell arrays of character vectors.)

Data Types: categorical | char | logical | single | double | cell

Cost — Cost of misclassification

square matrix

Cost of the misclassification of a point, specified as a square matrix. Cost(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns in Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response.

By default, Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j. In other words, the cost is 0 for correct classification and 1 for incorrect classification.


Data Types: single | double

ExpandedPredictorNames — Expanded predictor names

cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors. Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

Data Types: cell

ModelParameters — Parameters used in training ClassificationKNN

structure
This property is read-only.

Parameters used in training the ClassificationKNN model, specified as a structure.

Data Types: struct

**Mu — Predictor means**

numeric vector

This property is read-only.

Predictor means, specified as a numeric vector of length numel(PredictorNames).

If you do not standardize mdl when training the model using fitcknn, then Mu is empty ([]).

Data Types: single | double

**NumObservations — Number of observations**

positive integer scalar

This property is read-only.

Number of observations used in training the ClassificationKNN model, specified as a positive integer scalar. This number can be less than the number of rows in the training data because rows containing NaN values are not part of the fit.

Data Types: double

**PredictorNames — Predictor variable names**

cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The variable names are in the same order in which they appear in the training data X.

Data Types: cell

**Prior — Prior probabilities for each class**

numeric vector

Prior probabilities for each class, specified as a numeric vector. The order of the elements in Prior corresponds to the order of the classes in ClassNames.
Add or change a Prior vector using dot notation: `mdl.Prior = priorVector`.

Data Types: `single` | `double`

**ResponseName — Response variable name**

character vector

This property is read-only.

Response variable name, specified as a character vector.

Data Types: `char`

**RowsUsed — Rows used in fitting**

`[]` | logical vector

This property is read-only.

Rows of the original data `X` used in fitting the `ClassificationKNN` model, specified as a logical vector. This property is empty if all rows are used.

Data Types: `logical`

**ScoreTransform — Score transformation**

`'none'` (default) | `'doublelogit'` | `'invlogit'` | `'ismax'` | `'logit'` | function handle | ...

Score transformation, specified as either a character vector or a function handle.

This table summarizes the available character vectors.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'doublelogit'</code></td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td><code>'invlogit'</code></td>
<td>$\log(x/(1-x))$</td>
</tr>
<tr>
<td><code>'ismax'</code></td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td><code>'logit'</code></td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td><code>'none' or 'identity'</code></td>
<td>$x$ (no transformation)</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>'sign'</td>
<td>-1 for x &lt; 0</td>
</tr>
<tr>
<td></td>
<td>0 for x = 0</td>
</tr>
<tr>
<td></td>
<td>1 for x &gt; 0</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>2x - 1</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>2/(1 + e^{-x}) - 1</td>
</tr>
</tbody>
</table>

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Change `ScoreTransform` using dot notation: `mdl.ScoreTransform = newScoreTransform`.

Data Types: `char` | `function_handle`

**Sigma — Predictor standard deviations**

numeric vector

This property is read-only.

Predictor standard deviations, specified as a numeric vector of length `numel(PredictorNames)`.

If you do not standardize the predictor variables during training, then `Sigma` is empty (`[]`).

Data Types: `single` | `double`

**W — Observation weights**

vector of nonnegative values

This property is read-only.

Observation weights, specified as a vector of nonnegative values with the same number of rows as `Y`. Each entry in `W` specifies the relative importance of the corresponding observation in `Y`.

Data Types: `single` | `double`
**X — Unstandardized predictor data**
numeric matrix

This property is read-only.

Unstandardized predictor data, specified as a numeric matrix. Each column of X represents one predictor (variable), and each row represents one observation.

Data Types: single | double

**Y — Class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. Each value in Y is the observed class label for the corresponding row in X.

Y has the same data type as the data in Y used for training the model. (The software treats string arrays as cell arrays of character vectors.)

Data Types: single | double | logical | char | cell | categorical

**Hyperparameter Optimization Properties**

**HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters**
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or a table of hyperparameters and associated values. This property is nonempty when the 'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model using fitcknn. The value depends on the setting of the 'HyperparameterOptimizationOptions' name-value pair argument when you create the model:

- 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

### Object Functions

- **compareHoldout**  
  Compare accuracies of two classification models using new data
- **crossval**  
  Cross-validated k-nearest neighbor classifier
- **edge**  
  Edge of k-nearest neighbor classifier
- **loss**  
  Loss of k-nearest neighbor classifier
- **margin**  
  Margin of k-nearest neighbor classifier
- **predict**  
  Predict labels using k-nearest neighbor classification model
- **resubEdge**  
  Edge of k-nearest neighbor classifier by resubstitution
- **resubLoss**  
  Loss of k-nearest neighbor classifier by resubstitution
- **resubMargin**  
  Margin of k-nearest neighbor classifier by resubstitution
- **resubPredict**  
  Predict resubstitution response of k-nearest neighbor classifier

### Examples

#### Train k-Nearest Neighbor Classifier

Train a $k$-nearest neighbor classifier for Fisher's iris data, where $k$, the number of nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

```matlab
load fisheriris
X = meas;
Y = species;
```

$X$ is a numeric matrix that contains four petal measurements for 150 irises. $Y$ is a cell array of character vectors that contains the corresponding iris species.

Train a 5-nearest neighbor classifier. Standardize the noncategorical predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)
```

```matlab
Mdl =
 ClassificationKNN
 ResponseName: 'Y'
 CategoricalPredictors: []
```
Mdl is a trained ClassificationKNN classifier, and some of its properties appear in the Command Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames
ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.Prior
ans = 1x3
    0.3333    0.3333    0.3333

Mdl.Prior contains the class prior probabilities, which you can specify using the 'Prior' name-value pair argument in fitcknn. The order of the class prior probabilities corresponds to the order of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5, 0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to predict to label new measurements or crossval to cross-validate the classifier.
Tips

- The **compact** function reduces the size of most classification models by removing the training data properties and any other properties that are not required to predict the labels of new observations. Because $k$-nearest neighbor classification models require all of the training data to predict labels, you cannot reduce the size of a **ClassificationKNN** model.

Alternative Functionality

**knnsearch** finds the $k$-nearest neighbors of points. **rangesearch** finds all the points within a fixed distance. You can use these functions for classification, as shown in “Classify Query Data” on page 18-24. If you want to perform classification, then using **ClassificationKNN** models can be more convenient because you can train a classifier in one step (using **fitcknn**) and classify in other steps (using **predict**). Alternatively, you can train a $k$-nearest neighbor classification model using one of the cross-validation options in the call to **fitcknn**. In this case, **fitcknn** returns a **ClassificationPartitionedModel** cross-validated model object.

Extended Capabilities

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The **predict** function supports code generation.
- When you train a $k$-nearest neighbor classification model by using **fitcknn**, the following restrictions apply.
  - The class labels input argument value (Y) cannot be a categorical array.
  - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To
dummy-code variables that you want treated as categorical, preprocess the categorical data by using `dummyvar` before fitting the model.

- The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
- The value of the 'Distance' name-value pair argument cannot be a custom distance function.
- The value of the 'DistanceWeight' name-value pair argument can be a custom distance weight function, but it cannot be an anonymous function.
- The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

fitcknn | predict

Topics

“Construct KNN Classifier” on page 18-36
“Examine Quality of KNN Classifier” on page 18-37
“Predict Classification Using KNN Classifier” on page 18-38
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
ClassificationLinear class

Linear model for binary classification of high-dimensional data

Description

ClassificationLinear is a trained linear model object for binary classification; the linear model is a support vector machine (SVM) or logistic regression model. fitclinear fits a ClassificationLinear model by minimizing the objective function using techniques that reduce computation time for high-dimensional data sets (e.g., stochastic gradient descent). The classification loss plus the regularization term compose the objective function.

Unlike other classification models, and for economical memory usage, ClassificationLinear model objects do not store the training data. However, they do store, for example, the estimated linear model coefficients, prior-class probabilities, and the regularization strength.

You can use trained ClassificationLinear models to predict labels or classification scores for new data. For details, see predict.

Construction

Create a ClassificationLinear object by using fitclinear.

Properties

Linear Classification Properties

Lambda — Regularization term strength

nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as a nonnegative scalar or vector of nonnegative values.
Data Types: `double` | `single`

**Learner — Linear classification model type**

'logistic' | 'svm'

Linear classification model type, specified as 'logistic' or 'svm'.

In this table, \( f(x) = x\beta + b \).

- \( \beta \) is a vector of \( p \) coefficients.
- \( x \) is an observation from \( p \) predictor variables.
- \( b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss Function</th>
<th>FittedLoss Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Deviance (logistic): [ \ell[y, f(x)] = \log[1 + \exp(-yf(x))] ]</td>
<td>'logit'</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>Hinge: [ \ell[y, f(x)] = \max[0, 1 - yf(x)] ]</td>
<td>'hinge'</td>
</tr>
</tbody>
</table>

**Beta — Linear coefficient estimates**

numeric vector

Linear coefficient estimates, specified as a numeric vector with length equal to the number of predictors.

Data Types: `double`

**Bias — Estimated bias term**

numeric scalar

Estimated bias term or model intercept, specified as a numeric scalar.

Data Types: `double`

**FittedLoss — Loss function used to fit linear model**

' hinge' | 'logit'

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.
Value	Algorithm	Loss Function	Learner Value
'hinge' | Support vector machine | Hinge: $\ell(y, f(x)) = \max(0, 1 - yf(x))$ | 'svm'
'logit' | Logistic regression | Deviance (logistic): $\ell(y, f(x)) = \log\{1 + \exp[-yf(x)]\}$ | 'logistic'

**Regularization — Complexity penalty type**
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss function (see FittedLoss) and a regularization value from this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso (L1)'</td>
<td>Lasso ($L_1$) penalty: $\lambda \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'ridge (L2)'</td>
<td>Ridge ($L_2$) penalty: $\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2$</td>
</tr>
</tbody>
</table>

$\lambda$ specifies the regularization term strength (see Lambda).

The software excludes the bias term ($\beta_0$) from the regularization penalty.

**Other Classification Properties**

*CategoricalPredictors — Indices of categorical predictors*
[]

Indices of categorical predictors, whose value is always empty ([]) because a ClassificationLinear model does not support categorical predictors.

*ClassNames — Unique class labels*
categorical array | character array | logical vector | numeric vector | cell array of character vectors
Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y. (The software treats string arrays as cell arrays of character vectors.) ClassNames also determines the class order.

Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs

square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has $K$ rows and columns, where $K$ is the number of classes.

Cost($i,j$) is the cost of classifying a point into class $j$ if its true class is $i$. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

Data Types: double

ModelParameters — Parameters used for training model

structure

Parameters used for training the ClassificationLinear model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.

Data Types: struct

PredictorNames — Predictor names

cell array of character vectors

Predictor names in order of their appearance in the predictor data $X$, specified as a cell array of character vectors. The length of PredictorNames is equal to the number of columns in $X$.

Data Types: cell

ExpandedPredictorNames — Expanded predictor names

cell array of character vectors
Expanded predictor names, specified as a cell array of character vectors.

Because a ClassificationLinear model does not support categorical predictors, ExpandedPredictorNames and PredictorNames are equal.

Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.

Data Types: double

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For linear classification models and before transformation, the predicted classification score for the observation x (row vector) is \( f(x) = x\beta + b \), where \( \beta \) and \( b \) correspond to Mdl.Beta and Mdl.Bias, respectively.

To change the score transformation function to, for example, function, use dot notation.

- For a built-in function, enter this code and replace function with a value in the table.

\[
\text{Mdl.ScoreTransform} = 'function';
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>( 1/(1 + e^{-2x}) )</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>( \log(x / (1-x)) )</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>( 1/(1 + e^{-x}) )</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>(-1) for (x &lt; 0) (0) for (x = 0) (1) for (x &gt; 0)</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>(2x - 1)</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(2/(1 + e^{-x}) - 1)</td>
</tr>
</tbody>
</table>

- For a MATLAB function, or a function that you define, enter its function handle.

    ```matlab
 Mdl.ScoreTransform = @function;
    ```

    *function* must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.

    Data Types: **char | function_handle**

**ResponseName — Response variable name**

character vector

Response variable name, specified as a character vector.

Data Types: **char**

### Methods

- **edge** Classification edge for linear classification models
- **loss** Classification loss for linear classification models
- **margin** Classification margins for linear classification models
- **predict** Predict labels for linear classification models
- **selectModels** Choose subset of regularized, binary linear classification models
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Linear Classification Model

Train a binary, linear classification model using support vector machines, dual SGD, and ridge regularization.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Train the model using the entire data set. Determine how well the optimization algorithm fit the model to the data by extracting a fit summary.

rng(1); % For reproducibility
[Mdl,FitInfo] = fitclinear(X,Ystats)

Mdl =
    ClassificationLinear
        ResponseName: 'Y'
        ClassNames: [0 1]
        ScoreTransform: 'none'
            Beta: [34023x1 double]
            Bias: -1.0059
            Lambda: 3.1674e-05
            Learner: 'svm'
Properties, Methods

FitInfo = struct with fields:
    Lambda: 3.1674e-05
    Objective: 5.3783e-04
    PassLimit: 10
    NumPasses: 10
    BatchLimit: []
    NumIterations: 238561
    GradientNorm: NaN
    GradientTolerance: 0
    RelativeChangeInBeta: 0.0562
    BetaTolerance: 1.0000e-04
    DeltaGradient: 1.4582
    DeltaGradientTolerance: 1
    TerminationCode: 0
    TerminationStatus: {'Iteration limit exceeded.'}
    Alpha: [31572x1 double]
    History: []
    FitTime: 0.1901
    Solver: {'dual'}

Mdl is a ClassificationLinear model. You can pass Mdl and the training or new data to loss to inspect the in-sample classification error. Or, you can pass Mdl and new predictor data to predict to predict class labels for new observations.

FitInfo is a structure array containing, among other things, the termination status (TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is good practice to use FitInfo to determine whether optimization-termination measurements are satisfactory. Because training time is small, you can try to retrain the model, but increase the number of passes through the data. This can improve measures like DeltaGradient.

**Predict Class Labels Using Linear Classification Model**

Load the NLP data set.

load nlpdata
n = size(X,1); % Number of observations
Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

\[ Y_{stats} = Y == 'stats'; \]

Hold out 5% of the data.

\[ \text{rng}(1); \quad \% \text{For reproducibility} \]
\[ \text{cvp} = \text{cvpartition}(n,'Holdout',0.05) \]

\[ \text{cvp} = \]
Hold-out cross validation partition
NumObservations: 31572
NumTestSets: 1
  TrainSize: 29994
  TestSize: 1578

\text{cvp} \text{ is a CVPartition object that defines the random partition of } n \text{ data into training and test sets.}

Train a binary, linear classification model using the training set that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. For faster training time, orient the predictor data matrix so that the observations are in columns.

\[ \text{idxTrain} = \text{training}(\text{cvp}); \quad \% \text{Extract training set indices} \]
\[ X = X'; \]
\[ \text{Mdl} = \text{fitclinear}(X(:,\text{idxTrain}),Y_{stats}(\text{idxTrain}),'ObservationsIn','columns'); \]

Predict observations and classification error for the hold out sample.

\[ \text{idxTest} = \text{test}(\text{cvp}); \quad \% \text{Extract test set indices} \]
\[ \text{labels} = \text{predict}(	ext{Mdl},X(:,\text{idxTest}),'ObservationsIn','columns'); \]
\[ L = \text{loss}(	ext{Mdl},X(:,\text{idxTest}),Y_{stats}(\text{idxTest}),'ObservationsIn','columns') \]

\[ L = 7.1753 \times 10^{-4} \]

\text{Mdl} misclassifies fewer than 1% of the out-of-sample observations.
**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train a linear classification model by using fitlinear, the following restrictions apply.
  - The predictor data input argument value (X) must be a full, numeric matrix.
  - The class labels input argument value (Y) cannot be a categorical array.
  - The value of the 'ClassNames' name-value pair argument or property cannot be a categorical array.
  - You can specify only one regularization strength, either 'auto' or a nonnegative scalar for the 'Lambda' name-value pair argument.
  - The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
ClassificationECOC | ClassificationKernel |
ClassificationPartitionedLinear | ClassificationPartitionedLinearECOC |
fitlearn | predict

*Introduced in R2016a*
ClassificationNaiveBayes class

Superclasses:
Naive Bayes classification

Description
ClassificationNaiveBayes is a naive Bayes classifier for multiclass learning. Use fitcnb and the training data to train a ClassificationNaiveBayes classifier.

Trained ClassificationNaiveBayes classifiers store the training data, parameter values, data distribution, and prior probabilities. You can use these classifiers to:

- Estimate resubstitution predictions. For details, see resubPredict.
- Predict labels or posterior probabilities for new data. For details, see predict.

Construction
Create a ClassificationNaiveBayes object by using fitcnb.

Properties
CategoricalPredictors — Indices of categorical predictors
vector of positive integers

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

CategoricalLevels — Multivariate multinomial levels
cell vector of numeric vectors
Multivariate multinomial levels, specified as a cell vector of numeric vectors. 
\texttt{CategoricalLevels} has length equal to the number of predictors (\texttt{size(X,2)}).

The cells of \texttt{CategoricalLevels} correspond to predictors that you specified as 'mvmn' 
(i.e., having a multivariate multinomial distribution) during training. Cells that do not 
correspond to a multivariate multinomial distribution are empty ([]).

If predictor \( j \) is multivariate multinomial, then \texttt{CategoricalLevels}\{\( j \)\} is a list of all
distinct values of predictor \( j \) in the sample (\texttt{NaNs} removed from \texttt{unique(X(:,j))}).

Data Types: cell

\textbf{ClassNames — Distinct class names}

categorical array | character array | logical vector | numeric vector | cell array of 
character vectors

Distinct class names, specified as a categorical or character array, logical or numeric 
vector, or cell vector of character vectors.

\texttt{ClassNames} is the same data type as \( Y \), and has \( K \) elements or rows for character arrays. 
(The software treats string arrays as cell arrays of character vectors.)

Data Types: categorical | char | logical | single | double | cell

\textbf{Cost — Misclassification cost}

square matrix

Misclassification cost, specified as a \( K \)-by-\( K \) square matrix.

The value of \texttt{Cost(i,j)} is the cost of classifying a point into class \( j \) if its true class is \( i \). 
The order of the rows and columns of \texttt{Cost} correspond to the order of the classes in 
\texttt{ClassNames}.

The value of \texttt{Cost} does not influence training. You can reset \texttt{Cost} after training \texttt{Mdl} 
using dot notation, e.g., \texttt{Mdl.Cost} = [0 0.5; 1 0];.

Data Types: double | single

\textbf{DistributionNames — Predictor distributions}

'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of character vectors

Predictor distributions \texttt{fitcnb} uses to model the predictors, specified as a character 
vector or cell array of character vectors.
This table summarizes the available distributions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'kernel'</td>
<td>Kernel smoothing density estimate.</td>
</tr>
<tr>
<td>'mn'</td>
<td>Multinomial bag-of-tokens model on page 32-454. Indicates that all predictors have this distribution.</td>
</tr>
<tr>
<td>'mvmn'</td>
<td>Multivariate multinomial distribution.</td>
</tr>
<tr>
<td>'normal'</td>
<td>Normal (Gaussian) distribution.</td>
</tr>
</tbody>
</table>

If `Distribution` is a 1-by-`P` cell array of character vectors, then the software models feature `j` using the distribution in element `j` of the cell array.

Data Types: `char` | `cell`

**DistributionParameters — Distribution parameter estimates**

cell array

Distribution parameter estimates, specified as a cell array. `DistributionParameters` is a `K`-by-`D` cell array, where cell `(k,d)` contains the distribution parameter estimates for instances of predictor `d` in class `k`. The order of the rows corresponds to the order of the classes in the property `ClassNames`, and the order of the predictors corresponds to the order of the columns of `X`.

If class `k` has no observations for predictor `j`, then `Distribution{k,j}` is empty ([``]).

The elements of `DistributionParameters` depends on the distributions of the predictors. This table describes the values in `DistributionParameters{k,j}`.

<table>
<thead>
<tr>
<th>Distribution of Predictor <code>j</code></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>kernel</code></td>
<td>A <code>KernelDistribution</code> model. Display properties using cell indexing and dot notation. For example, to display the estimated bandwidth of the kernel density for predictor 2 in the third class, use <code>Mdl.DistributionParameters{3,2}.BandWidth</code>.</td>
</tr>
<tr>
<td><strong>Distribution of Predictor j</strong></td>
<td><strong>Value</strong></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>mn</td>
<td>A scalar representing the probability that token $j$ appears in class $k$. For details, see &quot;Algorithms&quot; on page 32-455.</td>
</tr>
<tr>
<td>mvmn</td>
<td>A numeric vector containing the probabilities for each possible level of predictor $j$ in class $k$. The software orders the probabilities by the sorted order of all unique levels of predictor $j$ (stored in the property CategoricalLevels). For more details, see &quot;Algorithms&quot; on page 32-455.</td>
</tr>
<tr>
<td>normal</td>
<td>A 2-by-1 numeric vector. The first element is the sample mean and the second element is the sample standard deviation.</td>
</tr>
</tbody>
</table>

**Data Types:** cell

**ExpandedPredictorNames — Expanded predictor names**
cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

**Data Types:** cell

**HyperparameterOptimizationResults — Description of the cross-validation optimization of hyperparameters**
BayesianOptimization object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, stored as a BayesianOptimization object or a table of hyperparameters and associated values. Nonempty when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on the setting of the HyperparameterOptimizationOptions name-value pair at creation:

- 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

Data Types: table

**Kernel — Kernel smoother types**

'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of character vectors

Kernel smoother types, specified as a character vector or cell array of character vectors. *Kernel* has length equal to the number of predictors (size(X,2)). *Kernel{j}* corresponds to predictor *j*, and contains a character vector describing the type of kernel smoother. This table describes the supported kernel smoother types. Let $I\{u\}$ denote the indicator function.

<table>
<thead>
<tr>
<th>Value</th>
<th>Kernel</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'box'</td>
<td>Box (uniform)</td>
<td>$f(x) = 0.5I{</td>
</tr>
<tr>
<td>'epanechnikov'</td>
<td>Epanechnikov</td>
<td>$f(x) = 0.75(1-x^2)I{</td>
</tr>
<tr>
<td>'normal'</td>
<td>Gaussian</td>
<td>$f(x) = \frac{1}{\sqrt{2\pi}}\exp\left(-0.5x^2\right)$</td>
</tr>
<tr>
<td>'triangle'</td>
<td>Triangular</td>
<td>$f(x) = (1-</td>
</tr>
</tbody>
</table>

If a cell is empty ([]), then the software did not fit a kernel distribution to the corresponding predictor.

Data Types: char | cell

**ModelParameters — Parameter values used to train**

Object

Parameter values used to train the classifier (such as the name-value pair argument values), specified as an object. This table summarizes the properties of ModelParameters. The properties correspond to the name-value pair argument values set for training the classifier.
<table>
<thead>
<tr>
<th>Property</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistributionNames</td>
<td>Data distribution or distributions. This is the same value as the property DistributionNames.</td>
</tr>
<tr>
<td>Kernel</td>
<td>Kernel smoother type. This is the same as the property Kernel.</td>
</tr>
<tr>
<td>Method</td>
<td>Training method. For naive Bayes, the value is 'NaiveBayes'.</td>
</tr>
<tr>
<td>Support</td>
<td>Kernel-smoothing density support. This is the same as the property Support.</td>
</tr>
<tr>
<td>Type</td>
<td>Learning type. For classification, the value is 'classification'.</td>
</tr>
<tr>
<td>Width</td>
<td>Kernel smoothing window width. This is the same as the property Width.</td>
</tr>
</tbody>
</table>

Access fields of ModelParameters using dot notation. For example, access the kernel support using Mdl.ModelParameters.Support.

**NumObservations — Number of training observations**

numeric scalar

Number of training observations, specified as a numeric scalar.

If X or Y contain missing values, then NumObservations might be less than the length of Y.

Data Types: double

**PredictorNames — Predictor names**

cell array of character vectors

Predictor names, specified as a cell array of character vectors. The order of the elements in PredictorNames corresponds to the order in X.

Data Types: cell

**Prior — Class prior probabilities**

numeric vector
Class prior probabilities, specified as a numeric row vector. `Prior` is a 1-by-$K$ vector, and the order of its elements correspond to the elements of `ClassNames`.

`fitcnb` normalizes the prior probabilities you set using the name-value pair parameter 'Prior' so that \( \text{sum}(\text{Prior}) = 1 \).

The value of `Prior` does not change the best-fitting model. Therefore, you can reset `Prior` after training `Mdl` using dot notation, e.g., `Mdl.Prior = [0.2 0.8];`.

Data Types: `double` | `single`

**ResponseName — Response name**
character vector

Response name, specified as a character vector.

Data Types: `char`

**ScoreTransform — Classification score transformation function**
'`doublelogit'` | '`invlogit'` | 'ismax' | 'logit' | 'none' | function handle | ...

Classification score transformation function, specified as a character vector or function handle.

To change the score transformation function to e.g., `function`, use dot notation.

- For a built-in function, enter this code and replace `function` with a value in the table.

  `Mdl.ScoreTransform = 'function';`

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>( 1/(1 + e^{-2x}) )</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>( \log(x / (1-x)) )</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>( 1/(1 + e^{-x}) )</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>( x ) (no transformation)</td>
</tr>
</tbody>
</table>
### Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'sign'               | -1 for $x < 0$
|                      | 0 for $x = 0$
|                      | 1 for $x > 0$                                    |
| 'symmetric'          | $2x - 1$                                         |
| 'symmetricismax'     | Sets the score for the class with the largest  |
|                      | score to 1, and sets the scores for all other  |
|                      | classes to $-1$                                 |
| 'symmetriclogit'     | $2/(1 + e^{-x}) - 1$                             |

- For a MATLAB function, or a function that you define, enter its function handle.

```
Mdl.ScoreTransform = @function;
```

*function* should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

**Data Types:** char | function_handle

---

**Support — Kernel smoother density support**

- **cell vector**

Kernel smoother density support, specified as a cell vector. `Support` has length equal to the number of predictors (`size(X,2)`). The cells represent the regions to apply the kernel density.

This table describes the supported options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-by-2 numeric row vector</td>
<td>For example, [L, U], where L and U are the finite lower and upper bounds, respectively, for the density support.</td>
</tr>
<tr>
<td>'positive'</td>
<td>The density support is all positive real values.</td>
</tr>
<tr>
<td>'unbounded'</td>
<td>The density support is all real values.</td>
</tr>
</tbody>
</table>

If a cell is empty ([]), then the software did not fit a kernel distribution to the corresponding predictor.

**W — Observation weights**

- **numeric vector**
Observation weights, specified as a numeric vector.

The length of \( W \) is \( \text{NumObservations} \).

`fitcnb` normalizes the value you set for the name-value pair parameter 'Weights' so that the weights within a particular class sum to the prior probability for that class.

Data Types: `double`

**Width — Kernel smoother window width**

numeric matrix

Kernel smoother window width, specified as a numeric matrix. \( \text{Width} \) is a \( K \)-by-\( P \) matrix, where \( K \) is the number of classes in the data, and \( P \) is the number of predictors (\( \text{size}(X,2) \)).

\( \text{Width}(k,j) \) is the kernel smoother window width for the kernel smoothing density of predictor \( j \) within class \( k \). NaNs in column \( j \) indicate that the software did not fit predictor \( j \) using a kernel density.

**X — Unstandardized predictor data**

numeric matrix

Unstandardized predictor data, specified as a numeric matrix. \( X \) has \( \text{NumObservations} \) rows and \( P \) columns.

Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

The software excludes rows removed due to missing values from \( X \).

Data Types: `double`

**Y — Observed class labels**

categorical array | character array | logical vector | numeric vector | cell array of character vectors

Observed class labels, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. \( Y \) is the same data type as the input argument \( Y \) of `fitcnb`. (The software treats string arrays as cell arrays of character vectors.)

Each row of \( Y \) represents the observed classification of the corresponding row of \( X \).

The software excludes elements removed due to missing values from \( Y \).
Data Types: categorical | char | logical | single | double | cell

Methods

- compact: Compact naive Bayes classifier
- crossval: Cross-validated naive Bayes classifier
- resubEdge: Classification edge for naive Bayes classifiers by resubstitution
- resubLoss: Classification loss for naive Bayes classifiers by resubstitution
- resubMargin: Classification margins for naive Bayes classifiers by resubstitution
- resubPredict: Predict naive Bayes classifier resubstitution response

Inherited Methods

- edge: Classification edge for naive Bayes classifiers
- logP: Log unconditional probability density for naive Bayes classifier
- loss: Classification error for naive Bayes classifier
- margin: Classification margins for naive Bayes classifiers
- predict: Predict labels using naive Bayes classification model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train a Naive Bayes Classifier

Construct a naive Bayes classifier for Fisher's iris data. Also, specify prior probabilities after training.

Load Fisher's iris data.
load fisheriris
X = meas;
Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a naive Bayes classifier.

Mdl = fitcnb(X,Y)

Mdl = ClassificationNaiveBayes
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
    NumObservations: 150
    DistributionNames: {'normal' 'normal' 'normal' 'normal'}
    DistributionParameters: {3x4 cell}

Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier, and some of its properties display in the Command Window. By default, the software treats each predictor as independent, and fits them using normal distributions.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.Prior

ans = 1x3
    0.3333    0.3333    0.3333
Mdl.Prior contains the class prior probabilities, which are settable using the name-value pair argument 'Prior' in fitcnb. The order of the class prior probabilities corresponds to the order of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5, 0.2, and 0.3 respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to e.g., predict to label new measurements, or crossval to cross validate the classifier.

Definitions

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor \( j \) is the nonnegative number of occurrences of token \( j \) in this observation. The number of categories (bins) in this multinomial model is the number of distinct tokens, that is, the number of predictors.

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally independent, given the class. Though the assumption is usually violated in practice, naive Bayes classifiers tend to yield posterior distributions that are robust to biased class density estimates, particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum a posteriori decision rule). Explicitly, the algorithm:

1. Estimates the densities of the predictors within each class.
2. Models posterior probabilities according to Bayes rule. That is, for all \( k = 1,...,K \),
\[
\hat{P}(Y = k \mid X_1,...,X_P) = \frac{\pi(Y = k) \prod_{j=1}^{P} P(X_j \mid Y = k)}{\sum_{k=1}^{K} \pi(Y = k) \prod_{j=1}^{P} P(X_j \mid Y = k)},
\]

where:

- \( Y \) is the random variable corresponding to the class index of an observation.
- \( X_1,...,X_P \) are the random predictors of an observation.
- \( \pi(Y = k) \) is the prior probability that a class index is \( k \).

3. Classifies an observation by estimating the posterior probability for each class, and then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability

\[
\hat{P}(Y = k \mid X_1,...,X_P) \propto \pi(Y = k) P_{mn}(X_1,...,X_P \mid Y = k),
\]

where \( P_{mn}(X_1,...,X_P \mid Y = k) \) is the probability mass function of a multinomial distribution.

**Algorithms**

- If you specify 'DistributionNames','mn' when training Mdl using fitcnb, then the software fits a multinomial distribution using the bag-of-tokens model on page 32-1956. The software stores the probability that token \( j \) appears in class \( k \) in the property DistributionParameters\{\( k,j \} \). Using additive smoothing [2], the estimated probability is

\[
P(token \mid class \, k) = \frac{1 + c_{jk}}{P + c_k},
\]

where:
• \[ c_{j|k} = \frac{\sum_{i: y_i \in \text{class } k} x_{ij} w_i}{\sum_{i: y_i \in \text{class } k} w_i}; \] which is the weighted number of occurrences of token \( j \) in class \( k \).

• \( n_k \) is the number of observations in class \( k \).

• \( w_i \) is the weight for observation \( i \). The software normalizes weights within a class such that they sum to the prior probability for that class.

• \[ c_k = \sum_{j=1}^{P} c_{j|k}; \] which is the total weighted number of occurrences of all tokens in class \( k \).

• If you specify 'DistributionNames','mvmn' when training \( \text{Mdl} \) using \( \text{fitcnb} \), then:

1. For each predictor, the software collects a list of the unique levels, stores the sorted list in \( \text{CategoricalLevels} \), and considers each level a bin. Each predictor/class combination is a separate, independent multinomial random variable.

2. For predictor \( j \) in class \( k \), the software counts instances of each categorical level using the list stored in \( \text{CategoricalLevels}\{j\} \).

3. The software stores the probability that predictor \( j \), in class \( k \), has level \( L \) in the property \( \text{DistributionParameters}\{k,j\} \), for all levels in \( \text{CategoricalLevels}\{j\} \). Using additive smoothing [2], the estimated probability is

\[
P(\text{predictor } j = L | \text{class } k) = \frac{1 + m_{j|k}(L)}{m_j + m_k},
\]

where:
\[ m_{j|k}(L) = \frac{\sum_{i:y_i \in \text{class } k} I\{x_{ij} = L\}w_i}{n_k} \]

which is the weighted number of observations for which predictor \( j \) equals \( L \) in class \( k \).

\( n_k \) is the number of observations in class \( k \).

\[ I\{x_{ij} = L\} = 1 \text{ if } x_{ij} = L, \ 0 \text{ otherwise.} \]

\( w_i \) is the weight for observation \( i \). The software normalizes weights within a class such that they sum to the prior probability for that class.

\( m_j \) is the number of distinct levels in predictor \( j \).

\( m_k \) is the weighted number of observations in class \( k \).

**References**


**See Also**

`CompactClassificationNaiveBayes` | `compareHoldout` | `fitcnb` | `loss` | `predict`

**Topics**

“Naive Bayes Classification” on page 21-2

“Grouping Variables” on page 2-57
ClassificationPartitionedECOC

Cross-validated multiclass ECOC model for support vector machines (SVMs) and other classifiers

Description

ClassificationPartitionedECOC is a set of error-correcting output codes (ECOC) models trained on cross-validated folds. Estimate the quality of the cross-validated classification by using one or more “kfold” functions: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on training-fold (in-fold) observations to predict the response for validation-fold (out-of-fold) observations. For example, suppose you cross-validate using five folds. In this case, the software randomly assigns each observation into five groups of equal size (roughly). The training fold contains four of the groups (roughly 4/5 of the data), and the validation fold contains the other group (roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in the last four groups and reserves the observations in the first group for validation.
2 The software trains the second model (stored in CVMdl.Trained{2}) by using the observations in the first group and the last three groups. The software reserves the observations in the second group for validation.
3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in group i by using the ith model. In short, the software estimates a response for every observation by using the model trained without that observation.

Creation

You can create a ClassificationPartitionedECOC model in two ways:

• Create a cross-validated ECOC model from an ECOC model by using the crossval object function.
• Create a cross-validated ECOC model by using the fitcecoc function and specifying one of the name-value pair arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Properties

Cross-Validation Properties

**CrossValidatedModel** — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.

For example, 'ECOC' specifies a cross-validated ECOC model.

Data Types: char

**KFold** — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.

Data Types: double

**ModelParameters** — Cross-validation parameter values
object

Cross-validation parameter values, specified as an object. The parameter values correspond to the name-value pair argument values used to cross-validate the ECOC classifier. **ModelParameters** does not contain estimated parameters.

You can access the properties of **ModelParameters** using dot notation.

**NumObservations** — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double

**Partition** — Data partition
cvpartition model
Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

**Trained — Compact classifiers trained on cross-validation folds**
cell array of CompactClassificationECOC models

Compact classifiers trained on cross-validation folds, specified as a cell array of CompactClassificationECOC models. Trained has \( k \) cells, where \( k \) is the number of folds.

Data Types: cell

**W — Observation weights**
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. \( W \) has NumObservations elements.

The software normalizes the weights used for training so that nansum(\( W \)) is 1.

Data Types: single | double

**X — Unstandardized predictor data**
numeric matrix

Unstandardized predictor data used to cross-validate the classifier, specified as a numeric matrix. \( X \) is a NumObservations-by-\( p \) matrix, where \( p \) is the number of predictors.

Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

Data Types: single | double

**Y — Observed class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. \( Y \) has NumObservations elements and has the same data type as the input argument \( Y \) that you pass to fitcecoc to cross-validate the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of \( Y \) represents the observed classification of the corresponding row of \( X \).
Data Types: categorical | char | logical | single | double | cell

**ECOC Properties**

**BinaryLoss — Binary learner loss function**

'binodeviance' | 'exponential' | 'hamming' | 'hinge' | 'linear' | 'logit' | 'quadratic'

Binary learner loss function, specified as a character vector representing the loss function name.

If you train using binary learners that use different loss functions, then the software sets BinaryLoss to 'hamming'. To potentially increase accuracy, specify a binary loss function other than the default during a prediction or loss computation by using the 'BinaryLoss' name-value pair argument of kfoldPredict or kfoldLoss.

Data Types: char

**BinaryY — Binary learner class labels**

numeric matrix | []

Binary learner class labels, specified as a numeric matrix or [].

- If the coding matrix is the same across all folds, then BinaryY is a NumObservations-by-L matrix, where L is the number of binary learners (size(CodingMatrix,2)).

  The elements of BinaryY are −1, 0, or 1, and the values correspond to dichotomous class assignments. This table describes how learner j assigns observation k to a dichotomous class corresponding to the value of BinaryY(k,j).

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>Learner j assigns observation k to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner j removes observation k from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner j assigns observation k to a positive class.</td>
</tr>
</tbody>
</table>

- If the coding matrix varies across folds, then BinaryY is empty ([]).
Data Types: double

**CodingMatrix — Codes specifying class assignments**
numeric matrix | []

Codes specifying class assignments for the binary learners, specified as a numeric matrix or [].

- If the coding matrix is the same across all folds, then CodingMatrix is a $K$-by-$L$ matrix, where $K$ is the number of classes and $L$ is the number of binary learners.

  The elements of CodingMatrix are $-1$, $0$, or $1$, and the values correspond to dichotomous class assignments. This table describes how learner $j$ assigns observations in class $i$ to a dichotomous class corresponding to the value of CodingMatrix($i,j$).

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-1$</td>
<td>Learner $j$ assigns observations in class $i$ to a negative class.</td>
</tr>
<tr>
<td>$0$</td>
<td>Before training, learner $j$ removes observations in class $i$ from the data set.</td>
</tr>
<tr>
<td>$1$</td>
<td>Learner $j$ assigns observations in class $i$ to a positive class.</td>
</tr>
</tbody>
</table>

- If the coding matrix varies across folds, then CodingMatrix is empty ([]). You can obtain the coding matrix for each fold by using the Trained property. For example, CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the cross-validated ECOC model CVMdl.

Data Types: double | single | int8  | int16 | int32 | int64

**Other Classification Properties**

**CategoricalPredictors — Categorical predictor indices**
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
Data Types: single | double

**ClassNames — Unique class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y. (The software treats string arrays as cell arrays of character vectors.) ClassNames also determines the class order.

Data Types: categorical | char | logical | single | double | cell

**Cost — Misclassification costs**
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.

Data Types: double

**PredictorNames — Predictor names**
cell array of character vectors

Predictor names in order of their appearance in the predictor data X, specified as a cell array of character vectors. The length of PredictorNames is equal to the number of columns in X.

Data Types: cell

**Prior — Prior class probabilities**
numeric vector

This property is read-only.
Prior class probabilities, specified as a numeric vector. **Prior** has as many elements as there are classes in **ClassNames**, and the order of the elements corresponds to the elements of **ClassNames**.

**fitcecoc** incorporates misclassification costs differently among different types of binary learners.

Data Types: double

**ResponseName — Response variable name**
character vector

Response variable name, specified as a character vector.

Data Types: char

**ScoreTransform — Score transformation function to apply to predicted scores**
'**doublelogit**' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

To change the score transformation function to *function*, for example, use dot notation.

- For a built-in function, enter this code and replace *function* with a value in the table.

\[
\text{Mdl.ScoreTransform} = 'function';
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>( \frac{1}{1 + e^{-2x}} )</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>( \log(x / (1-x)) )</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>( \frac{1}{1 + e^{-x}} )</td>
</tr>
<tr>
<td>'none'</td>
<td>or 'identity'</td>
</tr>
</tbody>
</table>
| 'sign'           | -1 for \( x < 0 \)  
                  | 0 for \( x = 0 \)  
<pre><code>              | 1 for \( x &gt; 0 \)  |
</code></pre>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'symmetric'</td>
<td>$2x - 1$</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to $-1$</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>$2/(1 + e^{-x}) - 1$</td>
</tr>
</tbody>
</table>

- For a MATLAB function or a function that you define, enter its function handle.

```
Md1.ScoreTransform = @function;
```

*function* must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: char | function_handle

**Object Functions**

- `kfoldEdge` Classification edge for cross-validated ECOC model
- `kfoldLoss` Classification loss for cross-validated ECOC model
- `kfoldMargin` Classification margins for cross-validated ECOC model
- `kfoldPredict` Classify observations in cross-validated ECOC model
- `kfoldfun` Cross-validate function using cross-validated ECOC model

**Examples**

**Cross-Validate ECOC Classifier**

Load Fisher's iris data set. Specify the predictor data `X` and the response data `Y`.

```
load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility
```

Create an SVM template, and standardize the predictors.

```
t = templateSVM('Standardize',1)
```
t =
Fit template for classification SVM.

Alpha: [0x1 double]
BoxConstraint: []
CacheSize: []
CachingMethod: ''
ClipAlphas: []
DeltaGradientTolerance: []
Epsilon: []
GapTolerance: []
KKTNormTolerance: []
IterationLimit: []
KernelFunction: ''
KernelScale: []
KernelOffset: []
KernelPolynomialOrder: []
NumPrint: []
Nu: []
OutlierFraction: []
RemoveDuplicates: []
ShrinkagePeriod: []
Solver: ''
StandardizeData: 1
SaveSupportVectors: []
VerbosityLevel: []
Version: 2
Method: 'SVM'
Type: 'classification'

t is an SVM template. Most of the template object's properties are empty. When training
the ECOC classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot
notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);
CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the classification error.

\[
\text{loss} = \text{kfoldLoss(CVMdl)}
\]

\[
\text{loss} = 0.0400
\]

The classification error is 4%, which indicates that the ECOC classifier generalizes fairly well.

### Train ECOC Classifiers Using Ensembles and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees with surrogate splits. Estimate the classification error using 10-fold cross-validation.

Load and inspect the arrhythmia data set.

```
load arrhythmia
[n,p] = size(X)

n = 452
p = 279

isLabels = unique(Y);
nLabels = numel(isLabels)
nLabels = 13

tabulate(categorical(Y))
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.99%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.06%</td>
</tr>
</tbody>
</table>
The data set contains 279 predictors, and the sample size of 452 is relatively small. Of the 16 distinct labels, only 13 are represented in the response (Y). Each label describes various degrees of arrhythmia, and 54.20% of the observations are in class 1.

Create an ensemble template. You must specify at least three arguments: a method, a number of learners, and the type of learner. For this example, specify 'GentleBoost' for the method, 100 for the number of learners, and a decision tree template that uses surrogate splits because there are missing observations.

```matlab
tTree = templateTree('surrogate','on');
tEnsemble = templateEnsemble('GentleBoost',100,tTree);
```

tEnsemble is a template object. Most of its properties are empty, but the software fills them with their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary learners. With a Parallel Computing Toolbox license, you can speed up the computation by using parallel computing, which sends each binary learner to a worker in the pool. (The number of workers depends on your system configuration.) Additionally, specify that the prior probabilities are $1/K$, where $K = 13$ is the number of distinct classes.

```matlab
pool = parpool; % Invoke workers
options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...
 'Prior','uniform','Options',options);
```

Mdl is a ClassificationECOC model.

Cross-validate the ECOC classifier using 10-fold cross-validation.

```matlab
CVMdl = crossval(Mdl,'Options',options);
```

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that some classes are not represented while the software trains at least one fold. Therefore, those
folds cannot predict labels for the missing classes. You can inspect the results of a fold using cell indexing and dot notation. For example, access the results of the first fold by entering `CVMdl.Trained{1}`.

Use the cross-validated ECOC classifier to predict validation-fold labels. You can compute the confusion matrix by using `confusionchart`. Move and resize the chart by changing the inner position property to ensure that the percentages appear in the row summary.

```matlab
goofLabel = kfoldPredict(CVMdl,'Options',options);
ConfMat = confusionchart(Y,oofLabel,'RowSummary','total-normalized');
ConfMat.InnerPosition = [0.10 0.12 0.85 0.85];
```
See Also
ClassificationECOC | CompactClassificationECOC | crossval | cvpartition | fitcecoc

Introduced in R2014b
ClassificationPartitionedEnsemble

Package: classreg.learning.partition
Superclasses:

Cross-validated classification ensemble

Description

ClassificationPartitionedEnsemble is a set of classification ensembles trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more “kfold” methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly 4/5 of the data and every test fold contains roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y with the first 1/5 excluded, the second model stored in Trained{2} was trained on X and Y with the second 1/5 excluded, and so on. When you call kfoldPredict, it computes predictions for the first 1/5 of the data using the first model, for the second 1/5 of data using the second model, and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation.

Construction

cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble. For syntax details, see the crossval method reference page.

cvens = fitcensemble(X,Y,Name,Value) creates a cross-validated ensemble when Name is one of 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. For syntax details, see the fitcensemble function reference page.
Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables, logical vector, character array, or cell array of character vectors. ClassNames has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)

Combiner

Cell array of combiners across all folds.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response. This property is read-only.

CrossValidatedModel

Name of the cross-validated model, a character vector.

Kfold

Number of folds used in a cross-validated ensemble, a positive integer.

ModelParameters

Object holding parameters of cvens.

NumObservations

Number of data points used in training the ensemble, a positive integer.
**NTrainedPerFold**

Number of data points used in training each fold of the ensemble, a positive integer.

**Partition**

Partition of class `cvpartition` used in creating the cross-validated ensemble.

**PredictorNames**

Cell array of names for the predictor variables, in the order in which they appear in `X`.

**Prior**

Numeric vector of prior probabilities for each class. The order of the elements of `Prior` corresponds to the order of the classes in `ClassNames`. The number of elements of `Prior` is the number of unique classes in the response. This property is read-only.

**ResponseName**

Name of the response variable `Y`, a character vector.

**ScoreTransform**

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see `fitctree`.

Add or change a `ScoreTransform` function using dot notation:

```matlab
ens.ScoreTransform = 'function'
```

or

```matlab
ens.ScoreTransform = @function
```

**Trainable**

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains its training data and weights.
**Trained**

Cell array of compact ensembles trained on cross-validation folds.

**W**

Scaled weights, a vector with length \( n \), the number of rows in \( X \).

**X**

A matrix of predictor values. Each column of \( X \) represents one variable, and each row represents one observation.

**Y**

Numeric vector, categorical vector, logical vector, character array, or cell array of character vectors. Each row of \( Y \) is the response to the data in the corresponding row of \( X \).

**Methods**

- `kfoldEdge` Classification edge for observations not used for training
- `kfoldLoss` Classification loss for observations not used for training
- `resume` Resume training learners on cross-validation folds

**Inherited Methods**

- `kfoldEdge` Classification edge for observations not used for training
- `kfoldfun` Cross validate function
- `kfoldLoss` Classification loss for observations not used for training
- `kfoldMargin` Classification margins for observations not used for training
- `kfoldPredict` Predict response for observations not used for training

**Copy Semantics**

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Evaluate K-Fold Cross-Validation Error for Classification Ensemble

Evaluate the k-fold cross-validation error for a classification ensemble that models the Fisher iris data.

Load the sample data set.

```matlab
load fisheriris
```

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

```matlab
t = templateTree('MaxNumSplits',1); % Weak learner template tree object
t
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);
```

Create a cross-validated ensemble from `ens` and find the k-fold cross-validation error.

```matlab
rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)
```

```
L = 0.0467
```

See Also

ClassificationEnsemble | ClassificationPartitionedModel | RegressionPartitionedEnsemble | fitctree
ClassificationPartitionedKernel

Cross-validated, binary kernel classification model

Description

ClassificationPartitionedKernel is a binary kernel classification model, trained on cross-validated folds. You can estimate the quality of classification, or how well the kernel classification model generalizes, using one or more “kfold“ functions: kfoldPredict, kfoldLoss, kfoldMargin, and kfoldEdge.

Every “kfold“ method uses models trained on training-fold (in-fold) observations to predict the response for validation-fold (out-of-fold) observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five groups of equal size (roughly). The training fold contains four of the groups (that is, roughly 4/5 of the data) and the validation fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1. The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in the last four groups and reserves the observations in the first group for validation.
2. The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and the last three groups. The software reserves the observations in the second group for validation.
3. The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in group $i$ by using the $i$th model. In short, the software estimates a response for every observation by using the model trained without that observation.

**Note** ClassificationPartitionedKernel model objects do not store the predictor data set.
Creation

You can create a `ClassificationPartitionedKernel` model by training a classification kernel model using `fitckernel` and specifying one of these name-value pair arguments: 'Crossval', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Properties

Cross-Validation Properties

`CrossValidatedModel` — Cross-validated model name
cell character vector

This property is read-only.

Cross-validated model name, specified as a character vector.

For example, 'Kernel' specifies a cross-validated kernel model.

Data Types: `char`

`KFold` — Number of cross-validated folds
positive integer scalar

This property is read-only.

Number of cross-validated folds, specified as a positive integer scalar.

Data Types: `double`

`ModelParameters` — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the name-value pair argument values used to cross-validate the kernel classifier. `ModelParameters` does not contain estimated parameters.

You can access the properties of `ModelParameters` using dot notation.
**NumObservations — Number of observations**
positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double

**Partition — Data partition**
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

**Trained — Kernel classifiers trained on cross-validation folds**
cell array of ClassificationKernel models

This property is read-only.

Kernel classifiers trained on cross-validation folds, specified as a cell array of ClassificationKernel models. Trained has k cells, where k is the number of folds.

Data Types: cell

**W — Observation weights**
numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. W has NumObservations elements.

The software normalizes the weights used for training so that nansum(W) is 1.

Data Types: single | double

**Y — Observed class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.
Observed class labels used to cross-validate the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and has the same data type as the input argument Y that you pass to fitckernel to cross-validate the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.

Data Types: categorical | char | logical | single | double | cell

**Other Classification Properties**

**CategoricalPredictors — Categorical predictor indices**

`[]`

This property is read-only.

Categorical predictor indices, specified as an empty numeric value. In general, CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. Because ClassificationKernel models can be trained on numeric predictor data only, this property is empty ([]).

**ClassNames — Unique class labels**

categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as the observed class labels property Y and determines the class order.

Data Types: categorical | char | logical | single | double | cell

**Cost — Misclassification costs**

square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K is the number of classes.
Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

Data Types: double

PredictorNames — Predictor names  
{'x1', 'x2', ...}

This property is read-only.

Predictor names in order of their appearance in the predictor data X, specified as a cell array of character vectors of the form {'x1', 'x2',...}. The length of PredictorNames is equal to the number of columns in X.

Data Types: cell

Prior — Prior class probabilities  
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as there are classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.

Data Types: double

ResponseName — Response variable name  
'Y'

This property is read-only.

Response variable name, specified as 'Y'. Because ClassificationKernel models cannot be trained on tabular data, this property is always 'Y'.

Data Types: char

ScoreTransform — Score transformation function  
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For a kernel classification model Mdl, and before the score transformation, the predicted classification score for the observation x (row vector) is \( f(x) = T(x)\beta + b \).
• \( T(\cdot) \) is a transformation of an observation for feature expansion.
• \( \beta \) is the estimated column vector of coefficients.
• \( b \) is the estimated scalar bias.

To change the CVMdl score transformation function to \( function \), for example, use dot notation.

• For a built-in function, enter this code and replace \( function \) with a value from the table.

\[
\text{CVMdl.ScoreTransform} = 'function';
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>( \frac{1}{1 + e^{-2x}} )</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>( \log\left(\frac{x}{1-x}\right) )</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>( \frac{1}{1 + e^{-x}} )</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>( x ) (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>(-1 ) for ( x &lt; 0 ) \n0 for ( x = 0 ) \n1 for ( x &gt; 0 )</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>( 2x - 1 )</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>( \frac{2}{1 + e^x} - 1 )</td>
</tr>
</tbody>
</table>

• For a MATLAB function or a function that you define, enter its function handle.

\[
\text{CVMdl.ScoreTransform} = @function;
\]

\( function \) must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.

Data Types: char | function_handle
Object Functions

- **kfoldEdge**  Classification edge for cross-validated kernel classification model
- **kfoldLoss**  Classification loss for cross-validated kernel classification model
- **kfoldMargin**  Classification margins for cross-validated kernel classification model
- **kfoldPredict**  Classify observations in cross-validated kernel classification model

Examples

Cross-Validate Kernel Classification Model

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
rng('default') % For reproducibility

Cross-validate a binary kernel classification model. By default, the software uses 10-fold cross-validation.

```matlab
CVMdl = fitckernel(X,Y,'CrossVal','on')
```

```matlab
CVMdl =
    classreg.learning.partition.ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
    ResponseName: 'Y'
    NumObservations: 351
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
```

```
numel(CVMdl.Trained)
```

```matlab
ans = 10
```
CVMdl is a ClassificationPartitionedKernel model. Because fitckernel implements 10-fold cross-validation, CVMdl contains 10 ClassificationKernel models that the software trains on training-fold (in-fold) observations.

Estimate the cross-validated classification error.

```matlab
kfoldLoss(CVMdl)
ans = 0.0940
```

The classification error rate is approximately 9%.

See Also
- ClassificationKernel
- fitckernel

Introduced in R2018b
ClassificationPartitionedKernelECOC

Cross-validated kernel error-correcting output codes (ECOC) model for multiclass classification

Description

ClassificationPartitionedKernelECOC is an error-correcting output codes (ECOC) model composed of kernel classification models, trained on cross-validated folds. Estimate the quality of the classification by cross-validation using one or more “kfold” functions: kfoldPredict, kfoldLoss, kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on training-fold (in-fold) observations to predict the response for validation-fold (out-of-fold) observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five groups of equal size (roughly). The training fold contains four of the groups (that is, roughly 4/5 of the data) and the validation fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1. The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in the last four groups and reserves the observations in the first group for validation.
2. The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and the last three groups. The software reserves the observations in the second group for validation.
3. The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in group i by using the ith model. In short, the software estimates a response for every observation by using the model trained without that observation.

Note ClassificationPartitionedKernelECOC model objects do not store the predictor data set.
Creation

You can create a ClassificationPartitionedKernelECOC model by training an ECOC model using fitcecoc and specifying these name-value pair arguments:

- 'Learners' - Set the value to 'kernel', a template object returned by templateKernel, or a cell array of such template objects.
- One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

For more details, see fitcecoc.

Properties

Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

This property is read-only.

Cross-validated model name, specified as a character vector.

For example, 'KernelECOC' specifies a cross-validated kernel ECOC model.

Data Types: char

KFold — Number of cross-validated folds
positive integer scalar

This property is read-only.

Number of cross-validated folds, specified as a positive integer scalar.

Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.
Cross-validation parameter values, specified as an object. The parameter values correspond to the name-value pair argument values used to cross-validate the ECOC classifier. ModelParameters does not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

NumObservations — Number of observations

positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double

Partition — Data partition

cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

Trained — Compact classifiers trained on cross-validation folds

cell array of CompactClassificationECOC models

This property is read-only.

Compact classifiers trained on cross-validation folds, specified as a cell array of CompactClassificationECOC models. Trained has \(k \) cells, where \(k \) is the number of folds.

Data Types: cell

W — Observation weights

numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. \(W \) has NumObservations elements.

The software normalizes the weights used for training so that \(\text{nansum}(W) = 1 \).
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Observed class labels used to cross-validate the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and has the same data type as the input argument Y that you pass to fitcecoc to cross-validate the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.

Data Types: categorical | char | logical | single | double | cell

ECOC Properties

BinaryLoss — Binary learner loss function
'binodeviance' | 'exponential' | 'hamming' | 'hinge' | 'linear' | 'logit' | 'quadratic'

This property is read-only.

Binary learner loss function, specified as a character vector representing the loss function name.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is 'hinge'. If all binary learners are kernel classification models using logistic regression, then BinaryLoss is 'quadratic'. To potentially increase accuracy, specify a binary loss function other than the default during a prediction or loss computation by using the 'BinaryLoss' name-value pair argument of kfoldPredict or kfoldLoss.

Data Types: char

BinaryY — Binary learner class labels
numeric matrix | []

This property is read-only.
Binary learner class labels, specified as a numeric matrix or [].

- If the coding matrix is the same across all folds, then `BinaryY` is a
 `NumObservations`-by-`L` matrix, where `L` is the number of binary learners
 (size(`CodingMatrix`,2)).

The elements of `BinaryY` are –1, 0, or 1, and the values correspond to dichotomous
class assignments. This table describes how learner `j` assigns observation `k` to a
dichotomous class corresponding to the value of `BinaryY(k,j)`.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>–1</td>
<td>Learner <code>j</code> assigns observation <code>k</code> to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner <code>j</code> removes observation <code>k</code> from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner <code>j</code> assigns observation <code>k</code> to a positive class.</td>
</tr>
</tbody>
</table>

- If the coding matrix varies across folds, then `BinaryY` is empty ([]).

Data Types: `double`

CodingMatrix — Codes specifying class assignments

numeric matrix | []

This property is read-only.

Codes specifying class assignments for the binary learners, specified as a numeric matrix
or [].

- If the coding matrix is the same across all folds, then `CodingMatrix` is a `K`-by-`L`
 matrix, where `K` is the number of classes and `L` is the number of binary learners.

The elements of `CodingMatrix` are –1, 0, or 1, and the values correspond to
dichotomous class assignments. This table describes how learner `j` assigns
observations in class `i` to a dichotomous class corresponding to the value of
`CodingMatrix(i,j)`.
Value	Dichotomous Class Assignment
-1 | Learner \(j \) assigns observations in class \(i \) to a negative class.
0 | Before training, learner \(j \) removes observations in class \(i \) from the data set.
1 | Learner \(j \) assigns observations in class \(i \) to a positive class.

- If the coding matrix varies across folds, then `CodingMatrix` is empty (`[]`). You can obtain the coding matrix for each fold by using the `Trained` property. For example, `CVMdl.Trained{1}.CodingMatrix` is the coding matrix in the first fold of the cross-validated ECOC model `CVMdl`.

Data Types: `double` | `single` | `int8` | `int16` | `int32` | `int64`

Other Classification Properties

CategoricalPredictors — Categorical predictor indices

`[]`

This property is read-only.

Categorical predictor indices, specified as an empty numeric value. In general, `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. Because `ClassificationKernel` models can be trained on numeric predictor data only, this property is empty (`[]`).

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. `ClassNames` has the same data type as the observed class labels property `Y` and determines the class order.

Data Types: `categorical` | `char` | `logical` | `single` | `double` | `cell`
Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

Data Types: double

PredictorNames — Predictor names
{'}x1','x2',...'}

This property is read-only.

Predictor names in order of their appearance in the predictor data X, specified as a cell array of character vectors of the form {'}x1','x2',...'}. The length of PredictorNames is equal to the number of columns in X.

Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as there are classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.

Data Types: double

ResponseName — Response variable name
'{Y}'

This property is read-only.

Response variable name, specified as '{Y}'. Because ClassificationKernel models cannot be trained on tabular data, this property is always '{Y}'

Data Types: char
ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For a kernel classification model Mdl, and before the score transformation, the predicted classification score for the observation \(x \) (row vector) is \(f(x) = T(x)\beta + b \).

- \(T(\cdot) \) is a transformation of an observation for feature expansion.
- \(\beta \) is the estimated column vector of coefficients.
- \(b \) is the estimated scalar bias.

To change the CVMdl score transformation function to \(\text{function} \), for example, use dot notation.

- For a built-in function, enter this code and replace \(\text{function} \) with a value from the table.

\[
\text{CVMdl.ScoreTransform} = '\text{function}';
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for \(x < 0 \)
0 for \(x = 0 \)
1 for \(x > 0 \) |
<p>| 'symmetric' | (2x - 1) |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to (-1) |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'symmetriclogit'</td>
<td>(\frac{2}{1 + e^{-x}} - 1)</td>
</tr>
</tbody>
</table>

- For a MATLAB function or a function that you define, enter its function handle.

```matlab
CVMdl.ScoreTransform = @function;
```

function must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.

Data Types: char | function_handle

Object Functions

- `kfoldEdge`
 Classification edge for cross-validated kernel ECOC model
- `kfoldLoss`
 Classification loss for cross-validated kernel ECOC model
- `kfoldMargin`
 Classification margins for cross-validated kernel ECOC model
- `kfoldPredict`
 Classify observations in cross-validated kernel ECOC model

Examples

Cross-Validate Multiclass Kernel Classification Model

Create a cross-validated, multiclass kernel ECOC classification model using `fitcecoc`.

Load Fisher's iris data set. `X` contains flower measurements, and `Y` contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```

Cross-validate a multiclass kernel ECOC classification model that can identify the species of a flower based on the flower's measurements.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
```

`CVMdl = `
`classreg.learning.partition.ClassificationPartitionedKernelECOC`
CrossValidatedModel: 'KernelECOC'
ResponseName: 'Y'
NumObservations: 150
 KFold: 10
 Partition: [1x1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC cross-validated model. fitcecoc implements 10-fold cross-validation by default. Therefore, CVMdl.Trained contains a 10-by-1 cell array of ten CompactClassificationECOC models, one for each fold. Each compact ECOC model is composed of binary kernel classification models.

Estimate the classification error by passing CVMdl to kfoldLoss.

error = kfoldLoss(CVMdl)
error = 0.0333

The estimated classification error is about 3% misclassified observations.

To change default options when training ECOC models composed of kernel classification models, create a kernel classification model template using templateKernel, and then pass the template to fitcecoc.

See Also
ClassificationKernel | CompactClassificationECOC | fitcecoc | fitckernel

Introduced in R2018b
ClassificationPartitionedLinear

Package: classreg.learning.partition
Superclasses:

Cross-validated linear model for binary classification of high-dimensional data

Description

ClassificationPartitionedLinear is a set of linear classification models trained on cross-validated folds. To obtain a cross-validated, linear classification model, use fitclinear and specify one of the cross-validation options. You can estimate the quality of classification, or how well the linear classification model generalizes, using one or more of these “kfold” methods: kfoldPredict, kfoldLoss, kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-fold observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five roughly equally sized groups. The training fold contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1. The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the last four groups and reserves the observations in the first group for validation.

2. The software trains the second model, which is stored in CVMdl.Trained{2}, using the observations in the first group and last three groups. The software reserves the observations in the second group for validation.

3. The software proceeds in a similar fashion for the third through fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1 using the first model, group 2 for the second model, and so on. In short, the software estimates a response for every observation using the model trained without that observation.
Note ClassificationPartitionedLinear model objects do not store the predictor data set.

Construction

CVMdl = fitclinear(X,Y,Name,Value) creates a cross-validated, linear classification model when Name is either 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'. For more details, see fitclinear.

Properties

Cross-Validation Properties

CrossValidatedModel — Cross-validated model name

character vector

Cross-validated model name, specified as a character vector.

For example, 'Linear' specifies a cross-validated linear model for binary classification or regression.

Data Types: char

KFold — Number of cross-validated folds

positive integer

Number of cross-validated folds, specified as a positive integer.

Data Types: double

ModelParameters — Cross-validation parameter values

object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate the linear model, specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations

positive numeric scalar
Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double

Partition — Data partition

cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

Trained — Linear classification models trained on cross-validation folds

cell array of ClassificationLinear model objects

Linear classification models trained on cross-validation folds, specified as a cell array of ClassificationLinear models. Trained has \(k \) cells, where \(k \) is the number of folds.

Data Types: cell

W — Observation weights

numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. \(W \) has NumObservations elements.

The software normalizes \(W \) so that the weights for observations within a particular class sum up to the prior probability of that class.

Data Types: single | double

Y — Observed class labels

categorical array | character array | logical vector | vector of numeric values | cell array of character vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. \(Y \) has NumObservations elements, and is the same data type as the input argument \(Y \) that you passed to fitclinear to cross-validate the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of \(Y \) represents the observed classification of the corresponding observation in the predictor data.

Data Types: categorical | char | logical | single | double | cell
Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y. (The software treats string arrays as cell arrays of character vectors.) ClassNames also determines the class order.

Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in their order of appearance in predictor data used to train CVMdl, specified as a cell array of character vectors. PredictorNames has length equal to the number of predictor variables in the predictor data.

Data Types: cell
Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as there are classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.

Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.

Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For linear classification models and before transformation, the predicted classification score for the observation x (row vector) is $f(x) = x\beta + b$, where β and b correspond to Mdl.Beta and Mdl.Bias, respectively.

To change the score transformation function to, for example, function, use dot notation.

- For a built-in function, enter this code and replace function with a value in the table.

  ```matlab
  Mdl.ScoreTransform = 'function';
  ```

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>(-1) for (x < 0) \ns(0) for (x = 0) \ns(1) for (x > 0)</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>(2x - 1)</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to –1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(\frac{2}{1 + e^{-x}} - 1)</td>
</tr>
</tbody>
</table>

- For a MATLAB function, or a function that you define, enter its function handle.

  ```matlab
  Mdl.ScoreTransform = @function;
  
  function must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.
  ```

Data Types: char | function_handle

Methods

- `kfoldEdge` Classification edge for observations not used for training
- `kfoldLoss` Classification loss for observations not used in training
- `kfoldMargin` Classification margins for observations not used in training
- `kfoldPredict` Predict labels for observations not used for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Create Cross-Validated Binary Linear Classification Model

Load the NLP data set.

```
load nlpdata
```

X is a sparse matrix of predictor data, and *Y* is a categorical vector of class labels. There are more than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

```
Ystats = Y == 'stats';
```

Cross-validate a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

```
rng(1); % For reproducibility
CVMdl = fitclinear(X,Ystats,'CrossVal','on')
```

```
CVMdl = 
    classreg.learning.partition.ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
    ResponseName: 'Y'
    NumObservations: 31572
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: [0 1]
    ScoreTransform: 'none'
```

Properties, Methods

CVMdl is a *ClassificationPartitionedLinear* cross-validated model. Because *fitclinear* implements 10-fold cross-validation by default, *CVMdl.Trained* contains ten *ClassificationLinear* models that contain the results of training linear classification models for each of the folds.
Estimate labels for out-of-fold observations and estimate the generalization error by passing CVMdl to kfoldPredict and kfoldLoss, respectively.

```matlab
oofLabels = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)
```

```matlab
g = 7.6017e-04
```

The estimated generalization error is less than 0.1% misclassified observations.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, implement 5-fold cross-validation.

Load the NLP data set.

```matlab
load nlpdata
```

`X` is a sparse matrix of predictor data, and `Y` is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

```matlab
Ystats = Y == 'stats';
```

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{-0.5}$.

```matlab
Lambda = logspace(-6,-0.5,11);
```

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Estimate the coefficients using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

```matlab
X = X';
 rng(10); % For reproducibility
 CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
```
CVMdl = classificationLinear

numCLModels = numel(CVMdl.Trained)

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear
implements 5-fold cross-validation, CVMdl contains 5 ClassificationLinear models
that the software trains on each fold.

Display the first trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 =

ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023×11 double]
 Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 1.5849e-04 5.6234e-04 0.0020 0.0071 0.0251 0.0891 0.3162]
 Learner: 'logistic'
Mdl1 is a ClassificationLinear model object. fitclinear constructed Mdl1 by training on the first four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

```MATLAB
ce = kfoldLoss(CVMdl);
```

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

```MATLAB
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...  'Learner','logistic','Solver','sparsa','Regularization','lasso',...  'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);
```

In the same figure, plot the cross-validated, classification error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

```MATLAB
figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...  log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
```
Choose the index of the regularization strength that balances predictor variable sparsity and low classification error. In this case, a value between 10^{-4} to 10^{-1} should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate labels for new observations, pass MdlFinal and the new data to predict.
See Also
ClassificationLinear | fitlinear | kfoldLoss | kfoldPredict

Introduced in R2016a
ClassificationPartitionedLinearECOC

Package: classreg.learning.partition
Superclasses:

Cross-validated linear error-correcting output codes model for multiclass classification of high-dimensional data

Description

ClassificationPartitionedLinearECOC is a set of error-correcting output codes (ECOC) models composed of linear classification models, trained on cross-validated folds. Estimate the quality of classification by cross-validation using one or more “kfold” functions: kfoldPredict, kfoldLoss, kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-fold observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five roughly equal-sized groups. The training fold contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows.

1 The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the last four groups and reserves the observations in the first group for validation.
2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and last three groups. The software reserves the observations in the second group for validation.
3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1 using the first model, group 2 for the second model, and so on. In short, the software estimates a response for every observation using the model trained without that observation.

Note ClassificationPartitionedLinearECOC model objects do not store the predictor data set.
Construction

CVMdl = fitcecoc(X,Y,'Learners',t,Name,Value) returns a cross-validated, linear ECOC model when:

- t is 'Linear' or a template object returned by templateLinear.
- Name is one of 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'.

For more details, see fitcecoc.

Properties

Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.

For example, 'ECOC' specifies a cross-validated ECOC model.

Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.

Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate the ECOC classifier, specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar
Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationECOC models

Compact classifiers trained on cross-validation folds, specified as a cell array of CompactClassificationECOC models. Trained has \(k \) cells, where \(k \) is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. \(W \) has \(\text{NumObservations} \) elements.

The software normalizes the weights used for training so that \(\text{nansum}(W) = 1 \).
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. \(Y \) has \(\text{NumObservations} \) elements, and is the same data type as the input argument \(Y \) that you passed to \texttt{fitcecoc} to cross-validate the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of \(Y \) represents the observed classification of the observation in the predictor data.
Data Types: char | cell | categorical | logical | single | double
ECOC Properties

BinaryLoss — Binary learner loss function

Character vector representing the loss function name.

Binary learner loss function, specified as a character vector representing the loss function name.

If you train using binary learners that use different loss functions, then the software sets `BinaryLoss` to 'hamming'. To potentially increase accuracy, set a different binary loss function than this default during prediction or loss computation using the `BinaryLoss` name-value pair argument of `predict` or `loss`.

Data Types: `char`

BinaryY — Binary learner class labels

Numeric matrix | []

Binary learner class labels, specified as a numeric matrix or [].

- If the coding matrix is the same across folds, then `BinaryY` is a `NumObservations`-by-`L` matrix, where `L` is the number of binary learners (`size(CodingMatrix,2)`).

 Elements of `BinaryY` are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes how learner `j` assigns observation `k` to a dichotomous class corresponding to the value of `BinaryY(k,j)`.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner <code>j</code> assigns observation <code>k</code> to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner <code>j</code> removes observation <code>k</code> from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner <code>j</code> assigns observation <code>k</code> to a positive class.</td>
</tr>
</tbody>
</table>

- If the coding matrix varies across folds, then `BinaryY` is empty ([]).

Data Types: `double`

CodingMatrix — Codes specifying class assignments

Numeric matrix | []

Codes specifying class assignments for the binary learners, specified as a numeric matrix or [].

- If the coding matrix is the same across folds, then CodingMatrix is a K-by-L matrix. K is the number of classes and L is the number of binary learners.

 Elements of CodingMatrix are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes how learner j assigns observations in class i to a dichotomous class corresponding to the value of CodingMatrix(i,j).

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner j assigns observations in class i to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner j removes observations in class i from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner j assigns observations in class i to a positive class.</td>
</tr>
</tbody>
</table>

- If the coding matrix varies across folds, then CodingMatrix is empty ([]). Obtain the coding matrix for each fold using the Trained property. For example, CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the cross-validated ECOC model CVMdl.

Data Types: double | single | int8 | int16 | int32 | int64

Other Classification Properties

CategoricalPredictors — Categorical predictor indices

vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

ClassNames — Unique class labels

categorical array | character array | logical vector | numeric vector | cell array of character vectors
Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. `ClassNames` has the same data type as the class labels `Y`. (The software treats string arrays as cell arrays of character vectors.) `ClassNames` also determines the class order.

Data Types: `categorical` | `char` | `logical` | `single` | `double` | `cell`

Cost — Misclassification costs

square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. `Cost` has `K` rows and columns, where `K` is the number of classes.

`Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. The order of the rows and columns of `Cost` corresponds to the order of the classes in `ClassNames`.

`fitcecoc` incorporates misclassification costs differently among different types of binary learners.

Data Types: `double`

PredictorNames — Predictor names

cell array of character vectors

Predictor names in their order of appearance in predictor data used to train `CVMdl`, specified as a cell array of character vectors. `PredictorNames` has length equal to the number of predictor variables in the predictor data.

Data Types: `cell`

Prior — Prior class probabilities

numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. `Prior` has as many elements as there are classes in `ClassNames`, and the order of the elements corresponds to the elements of `ClassNames`.

`fitcecoc` incorporates misclassification costs differently among different types of binary learners.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For linear classification models and before transformation, the predicted classification score for the observation x (row vector) is \(f(x) = x\beta + b \), where \(\beta \) and \(b \) correspond to Mdl.Beta and Mdl.Bias, respectively.

To change the score transformation function to, for example, \(\text{function} \), use dot notation.

- For a built-in function, enter this code and replace \(\text{function} \) with a value in the table.

\[
\text{Mdl.ScoreTransform} = '\text{function}';
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for \(x < 0 \)
| | 0 for \(x = 0 \)
| | 1 for \(x > 0 \) |
| 'symmetric' | \(2x - 1 \) |
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1.</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(2/(1 + e^{-x}) - 1)</td>
</tr>
</tbody>
</table>

- For a MATLAB function, or a function that you define, enter its function handle.

```matlab
Mdl.ScoreTransform = @function;
```

function must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.

Data Types: `char` | `function_handle`

Methods

- `kfoldEdge` Classification edge for observations not used for training
- `kfoldLoss` Classification loss for observations not used in training
- `kfoldMargin` Classification margins for observations not used in training
- `kfoldPredict` Predict labels for observations not used for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Create Cross-Validated Multiclass Linear Classification Model

Load the NLP data set.

```matlab
load nlpdata
```

\(X\) is a sparse matrix of predictor data, and \(Y\) is a categorical vector of class labels.
Cross-validate a multiclass, linear classification model that can identify which MATLAB® toolbox a documentation web page is from based on counts of words on the page.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','linear','CrossVal','on')
```

CVMdl = classreg.learning.partition.ClassificationPartitionedLinearECOC

```
CrossValidatedModel: 'LinearECOC'
ResponseName: 'Y'
NumObservations: 31572
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: [1x13 categorical]
ScoreTransform: 'none'
```

Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC cross-validated model. Because fitcecoc implements 10-fold cross-validation by default, CVMdl.Trained contains a 10-by-1 cell vector of ten CompactClassificationECOC models that contain the results of training ECOC models composed of binary, linear classification models for each of the folds.

Estimate labels for out-of-fold observations and estimate the generalization error by passing CVMdl to kfoldPredict and kfoldLoss, respectively.

```matlab
oofLabels = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)
```

```
ge = 0.0958
```

The estimated generalization error is about 10% misclassified observations.

To improve generalization error, try specifying another solver, such as LBFGS. To change default options when training ECOC models composed of linear classification models, create a linear classification model template using templateLinear, and then pass the template to fitcecoc.
Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for an ECOC model composed of linear classification models that use logistic regression learners, implement 5-fold cross-validation.

Load the NLP data set.

```matlab
load nlpdata
```

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or 'comm'.

```matlab
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
```

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-7} through 10^{-2}.

```matlab
Lambda = logspace(-7,-2,11);
```

Create a linear classification model template that specifies to use logistic regression learners, use lasso penalties with strengths in Lambda, train using SpaRSA, and lower the tolerance on the gradient of the objective function to $1e^{-8}$.

```matlab
t = templateLinear('Learner','logistic','Solver','sparsa',...
   'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);
```

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

```matlab
X = X';
rng(10); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5);
```

CVMdl is a ClassificationPartitionedLinearECOC model.

Dissect CVMdl, and each model within it.

```matlab
numECOCModels = numel(CVMdl.Trained)
```

numECOCModels = 5
ECOCMdl1 = CVMdl.Trained{1}

ECOCMdl1 =
 classreg.learning.classif.CompactClassificationECOC
 ResponseName: 'Y'
 ClassNames: [comm dsp simulink others]
 ScoreTransform: 'none'
 BinaryLearners: {6×1 cell}
 CodingMatrix: [4×6 double]

Properties, Methods

numCLModels = numel(ECOCMdl1.BinaryLearners)

numCLModels = 6

CLMdl1 = ECOCMdl1.BinaryLearners{1}

CLMdl1 =
 ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [-1 1]
 ScoreTransform: 'logit'
 Beta: [34023×11 double]
 Bias: [-0.3125 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.1593 -0.0737 -0.1759 -0.3452 -0.5174]
 Lambda: [1.0000e-07 3.1623e-07 1.0000e-06 3.1623e-06 1.0000e-05 3.1623e-05 1.0000e-04 3.1623e-04 1.0000e-03 0.0032 0.0100]
 Learner: 'logistic'

Properties, Methods

Because fitcecoc implements 5-fold cross-validation, CVMdl contains a 5-by-1 cell array of CompactClassificationECOC models that the software trains on each fold. The BinaryLearners property of each CompactClassificationECOC model contains the ClassificationLinear models. The number of ClassificationLinear models within each compact ECOC model depends on the number of distinct labels and coding design. Because Lambda is a sequence of regularization strengths, you can think of CLMdl1 as 11 models, one for each regularization strength in Lambda.

Determine how well the models generalize by plotting the averages of the 5-fold classification error for each regularization strength. Identify the regularization strength that minimizes the generalization error over the grid.
Train an ECOC model composed of linear classification model using the entire data set, and specify the minimal regularization strength.
t = templateLinear('Learner','logistic','Solver','sparsa',...
'Regularization','lasso','Lambda',minLambda,'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');

To estimate labels for new observations, pass MdlFinal and the new data to predict.

See Also
ClassificationECOC | ClassificationLinear | fitcecoc | fitclinear |
kfoldLoss | kfoldPredict

Introduced in R2016a
ClassificationPartitionedModel

Package: classreg.learning.partition

Cross-validated classification model

Description

ClassificationPartitionedModel is a set of classification models trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more “kfold” methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, the software randomly assigns each observation into five roughly equally sized groups. The training fold contains four of the groups (i.e., roughly 4/5 of the data) and the test fold contains the other group (i.e., roughly 1/5 of the data). In this case, cross validation proceeds as follows:

- The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the last four groups and reserves the observations in the first group for validation.
- The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and last three groups, and reserves the observations in the second group for validation.
- The software proceeds in a similar fashion for the third to fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1 using the first model, group 2 for the second model, and so on. In short, the software estimates a response for every observation using the model trained without that observation.

Construction

CVMdl = crossval(Mdl) creates a cross-validated classification model from a classification model (Mdl).
Alternatively:
- \(\text{CVDiscrMdl} = \text{fitcdiscr}(X,Y,\text{Name},\text{Value}) \)
- \(\text{CVKNNMdl} = \text{fitcknn}(X,Y,\text{Name},\text{Value}) \)
- \(\text{CVNBMdl} = \text{fitcnb}(X,Y,\text{Name},\text{Value}) \)
- \(\text{CVSVMMdl} = \text{fitcsvm}(X,Y,\text{Name},\text{Value}) \)
- \(\text{CVTreeMdl} = \text{fitctree}(X,Y,\text{Name},\text{Value}) \)

create a cross-validated model when name is either 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. For syntax details, see \text{fitcdiscr}, \text{fitcknn}, \text{fitcnb}, \text{fitcsvm}, and \text{fitctree}.

Input Arguments

\text{Mdl}

A classification model. \text{Mdl} can be any of the following:
- A classification tree trained using \text{fitctree}
- A discriminant analysis classifier trained using \text{fitcdiscr}
- A naive Bayes classifier trained using \text{fitcnb}
- A nearest-neighbor classifier trained using \text{fitcknn}
- A support vector machine classifier trained using \text{fitcsvm}

Properties

\text{CategoricalPredictors}

Categorical predictor indices, specified as a vector of positive integers. \text{CategoricalPredictors} contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

If \text{Mdl} is a trained discriminant analysis classifier, then \text{CategoricalPredictors} is always empty ([]).
ClassNames

Unique class labels used in training the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors.

Cost

Square matrix, where \(\text{Cost}(i,j) \) is the cost of classifying a point into class \(j \) if its true class is \(i \) (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response.

If CVModel is a cross-validated ClassificationDiscriminant, ClassificationKNN, or ClassificationNaiveBayes model, then you can change its cost matrix to e.g., CostMatrix, using dot notation.

CVModel.Cost = CostMatrix;

CrossValidatedModel

Name of the cross-validated model, which is a character vector.

KFold

Number of folds used in cross-validated model, which is a positive integer.

ModelParameters

Object holding parameters of CVModel.

Partition

The partition of class CVPartition used in creating the cross-validated model.

PredictorNames

Predictor variable names, specified as a cell array of character vectors. The order of the elements of PredictorNames corresponds to the order in which the predictor names appear in the training data.
Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds to the order of the classes in ClassNames.

If CVModel is a cross-validated ClassificationDiscriminant or ClassificationNaiveBayes model, then you can change its vector of priors to e.g., priorVector, using dot notation.

CVModel.Prior = priorVector;

ResponseName

Response variable name, specified as a character vector.

ScoreTransform

Score transformation, specified as a character vector or function handle. ScoreTransform represents a built-in transformation function or a function handle for transforming predicted classification scores.

To change the score transformation function to function, for example, use dot notation.

- For a built-in function, enter a character vector:

 Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$\frac{1}{1 + e^{-2x}}$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log\left(\frac{x}{(1-x)}\right)$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$\frac{1}{1 + e^{x}}$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for $x < 0$
 | 0 for $x = 0$
<pre><code> | 1 for $x > 0$ |
</code></pre>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'symmetric'</td>
<td>$2x - 1$</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>$\frac{2}{1 + e^{-x}} - 1$</td>
</tr>
</tbody>
</table>

- For a MATLAB function or a function that you define, enter its function handle.

  ```matlab
  Mdl.ScoreTransform = @function;
  
  function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).
  ```

Trained

The trained learners, which is a cell array of compact classification models.

W

The scaled weights, which is a vector with length n, the number of rows in X.

X

Numeric matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

Y

Categorical or character array, logical or numeric vector, or cell array of character vectors specifying the class labels for each observation. Y has the same number of rows as X, and each entry of Y is the response to the data in the corresponding row of X.
Methods

kfoldEdge Classification edge for observations not used for training
kfoldfun Cross validate function
kfoldLoss Classification loss for observations not used for training
kfoldMargin Classification margins for observations not used for training
kfoldPredict Predict response for observations not used for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Evaluate the Classification Error of a Classification Tree Classifier

Evaluate the k-fold cross-validation error for a classification tree model.

Load Fisher's iris data set.

load fisheriris

Train a classification tree using default options.

Mdl = fitctree(meas,species);

Cross validate the classification tree model.

CVMdl = crossval(Mdl);

Estimate the 10-fold cross-validation loss.

L = kfoldLoss(CVMdl)

L = 0.0533
Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

Load the `ionosphere` data set.

```matlab
load ionosphere
```

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize the predictors and specify the class order.

```matlab
rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...
    'ClassNames',{'b','g'});
```

`CVSVMModel` is a trained `ClassificationPartitionedModel` cross-validated classifier.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an observation being classified as 'g'.

```matlab
ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);
```

`ScoreSVMModel` is a trained `ClassificationPartitionedModel` cross-validated classifier containing the optimal score transformation function estimated from the training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for the first 10 out-of-sample observations.

```matlab
[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);
indx = ~isnan(OOSPostProbs(:,2));
hoObs = find(indx); % Holdout observation numbers
OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];
table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...
    'VariableNames',{'ObservationIndex','PosteriorProbability'})
```

```
ans=10×2 table
    ObservationIndex    PosteriorProbability
        ________    _________________
          6               0.17378
          7               0.89637
          8               0.0076609
```

32-525
Tips

To estimate posterior probabilities of trained, cross-validated SVM classifiers, use `fitSVMPosterior`.

See Also

`ClassificationKNN` | `ClassificationNaiveBayes` |
`CompactClassificationDiscriminant` | `CompactClassificationSVM` |
`CompactClassificationTree` | `fitSVMPosterior` | `fitcdiscr` | `fitcknn` | `fitcnb` |
| `fitsvm` | `fitctree`

Topics

“Cross Validating a Discriminant Analysis Classifier” on page 20-23
ClassificationSVM

Support vector machine (SVM) for one-class and binary classification

Description

ClassificationSVM is a support vector machine (SVM) classifier on page 32-548 for one-class and two-class learning. Trained ClassificationSVM classifiers store training data, parameter values, prior probabilities, support vectors, and algorithmic implementation information. Use these classifiers to perform tasks such as fitting a score-to-posterior-probability transformation function (see fitPosterior) and predicting labels for new data (see predict).

Creation

Create a ClassificationSVM object by using fitcsvm.

Properties

SVM Properties

Alpha — Trained classifier coefficients

| numeric vector |

This property is read-only.

Trained classifier coefficients, specified as an s-by-1 numeric vector. \(s \) is the number of support vectors in the trained classifier, \(\text{sum(Mdl.IsSupportVector)} \).

Alpha contains the trained classifier coefficients from the dual problem, that is, the estimated Lagrange multipliers. If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, Alpha contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero coefficient to one
observation from the set of duplicates and a coefficient of 0 to all other duplicate observations in the set.

Data Types: single | double

Beta — Linear predictor coefficients

numeric vector

This property is read-only.

Linear predictor coefficients, specified as a numeric vector. The length of Beta is equal to the number of predictors used to train the model.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Beta stores one value for each predictor variable, including the dummy variables. For example, if there are three predictors, one of which is a categorical variable with three levels, then Beta is a numeric vector containing five values.

If KernelParameters.Function is 'linear', then the classification score for the observation \(x \) is

\[
f(x) = \frac{x}{s} \beta + b.
\]

Mdl stores \(\beta \), \(b \), and \(s \) in the properties Beta, Bias, and KernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor data that were applied during training. Specifically, if you specify 'Standardize',true when using fitcsvm, then you must standardize the predictor data manually by using the mean Mdl.Mu and standard deviation Mdl.Sigma, and then divide the result by the kernel scale in Mdl.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before estimation.

If KernelParameters.Function is not 'linear', then Beta is empty ([]).

Data Types: single | double

Bias — Bias term

scalar
This property is read-only.

Bias term, specified as a scalar.

Data Types: single | double

BoxConstraints — Box constraints

numeric vector

This property is read-only.

Box constraints, specified as a numeric vector of \(n \)-by-1 box constraints on page 32-546. \(n \) is the number of observations in the training data (see the `NumObservations` property).

If you remove duplicates by using the `RemoveDuplicates` name-value pair argument of `fitcsvm`, then for a given set of duplicate observations, MATLAB sums the box constraints and then attributes the sum to one observation. MATLAB attributes the box constraints of 0 to all other observations in the set.

Data Types: single | double

CacheInfo — Caching information

structure array

This property is read-only.

Caching information, specified as a structure array. The caching information contains the fields described in this table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>The cache size (in MB) that the software reserves to train the SVM classifier. For details, see 'CacheSize'.</td>
</tr>
<tr>
<td>Algorithm</td>
<td>The caching algorithm that the software uses during optimization. Currently, the only available caching algorithm is Queue. You cannot set the caching algorithm.</td>
</tr>
</tbody>
</table>

Display the fields of `CacheInfo` by using dot notation. For example, `Mdl.CacheInfo.Size` displays the value of the cache size.

Data Types: struct
IsSupportVector — Support vector indicator

logical vector

This property is read-only.

Support vector indicator, specified as an \(n \)-by-1 logical vector that flags whether a corresponding observation in the predictor data matrix is a “Support Vector” on page 32-548. \(n \) is the number of observations in the training data (see NumObservations).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, IsSupportVector flags only one observation as a support vector.

Data Types: logical

KernelParameters — Kernel parameters

structure array

This property is read-only.

Kernel parameters, specified as a structure array. The kernel parameters property contains the fields listed in this table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Kernel function used to compute the elements of the Gram matrix on page 32-2000. For details, see 'KernelFunction'.</td>
</tr>
<tr>
<td>Scale</td>
<td>Kernel scale parameter used to scale all elements of the predictor data on which the model is trained. For details, see 'KernelScale'.</td>
</tr>
</tbody>
</table>

To display the values of KernelParameters, use dot notation. For example, Mdl.KernelParameters.Scale displays the kernel scale parameter value.

The software accepts KernelParameters as inputs and does not modify them.

Data Types: struct

Nu — One-class learning parameter

positive scalar

This property is read-only.

One-class learning on page 32-547 parameter \(\nu \), specified as a positive scalar.
Data Types: `single` | `double`

OutlierFraction — Proportion of outliers

numeric scalar

This property is read-only.

Proportion of outliers in the training data, specified as a numeric scalar.

Data Types: `double`

Solver — Optimization routine

'ISDA' | 'L1QP' | 'SMO'

This property is read-only.

Optimization routine used to train the SVM classifier, specified as 'ISDA', 'L1QP', or 'SMO'. For more details, see 'Solver'.

SupportVectorLabels — Support vector class labels

s-by-1 numeric vector

This property is read-only.

Support vector class labels, specified as an s-by-1 numeric vector. s is the number of support vectors in the trained classifier, `sum(Mdl.IsSupportVector)`.

A value of `+1` in `SupportVectorLabels` indicates that the corresponding support vector is in the positive class (`ClassNames{2}`). A value of `–1` indicates that the corresponding support vector is in the negative class (`ClassNames{1}`).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of `fitcsvm`, then for a given set of duplicate observations that are support vectors, `SupportVectorLabels` contains one unique support vector label.

Data Types: `single` | `double`

SupportVectors — Support vectors

s-by-p numeric matrix

This property is read-only.
Support vectors in the trained classifier, specified as an s-by-p numeric matrix. s is the number of support vectors in the trained classifier, $\text{sum} \left(\text{Mdl.IsSupportVector} \right)$, and p is the number of predictor variables in the predictor data.

SupportVectors contains rows of the predictor data X that MATLAB considers to be support vectors. If you specify 'Standardize',true when training the SVM classifier using fitcsvm, then SupportVectors contains the standardized rows of X.

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, SupportVectors contains one unique support vector.

Data Types: single | double

Other Classification Properties

$\text{CategoricalPredictors} — \text{Categorical predictor indices}$
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. $\text{CategoricalPredictors}$ contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

$\text{ClassNames} — \text{Unique class labels}$
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors.

Data Types: single | double | logical | char | cell | categorical

$\text{Cost} — \text{Misclassification cost}$
numeric square matrix

This property is read-only.
Misclassification cost, specified as a numeric square matrix, where \(\text{Cost}(i, j) \) is the cost of classifying a point into class \(j \) if its true class is \(i \).

During training, the software updates the prior probabilities by incorporating the penalties described in the cost matrix.

- For two-class learning, \(\text{Cost} \) always has this form: \(\text{Cost}(i, j) = 1 \) if \(i \neq j \), and \(\text{Cost}(i, j) = 0 \) if \(i = j \). The rows correspond to the true class and the columns correspond to the predicted class. The order of the rows and columns of \(\text{Cost} \) corresponds to the order of the classes in \text{ClassNames}.
- For one-class learning, \(\text{Cost} = 0 \).

For more details, see Algorithms on page 32-550.

Data Types: double

ExpandedPredictorNames — Expanded predictor names

cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors. If the model uses dummy variable encoding for categorical variables, then
\text{ExpandedPredictorNames} \ includes the names that describe the expanded variables. Otherwise, \text{ExpandedPredictorNames} \ is the same as \text{PredictorNames}.

Data Types: cell

Gradient — Training data gradient values

numeric vector

This property is read-only.

Training data gradient values, specified as a numeric vector. The length of \text{Gradient} is equal to the number of observations (see \text{NumObservations}).

Data Types: single | double

ModelParameters — Parameters used to train model

structure array

This property is read-only.
Parameters used to train the ClassificationSVM model, specified as a structure array. ModelParameters contains parameter values such as the name-value pair argument values used to train the SVM classifier. ModelParameters does not contain estimated parameters.

Access the fields of ModelParameters by using dot notation. For example, access the initial values for estimating Alpha by using Mdl.ModelParameters.Alpha.

Data Types: struct

Mu — Predictor means
numeric vector | []

This property is read-only.

Predictor means, specified as a numeric vector. If you specify 'Standardize',1 or 'Standardize',true when you train an SVM classifier using fitcsvm, then the length of Mu is equal to the number of predictors.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Mu stores one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Mu is an empty vector ([]).

Data Types: single | double

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.

Data Types: single | double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.
Predictor variable names, specified as a cell array of character vectors. The order of the elements of `PredictorNames` corresponds to the order in which the predictor names appear in the training data.

Data Types: `cell`

Prior — Prior probabilities

numeric vector

This property is read-only.

Prior probabilities for each class, specified as a numeric vector. The order of the elements of `Prior` corresponds to the elements of `Mdl.ClassNames`.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities by incorporating the penalties described in the cost matrix.

For more details, see Algorithms on page 32-550.

Data Types: `single` | `double`

ResponseName — Response variable name

character vector

This property is read-only.

Response variable name, specified as a character vector.

Data Types: `char`

RowsUsed — Rows used in fitting

`[]` | logical vector

This property is read-only.

Rows of the original data X used in fitting the `ClassificationSVM` model, specified as a logical vector. This property is empty if all rows are used.

Data Types: `logical`

ScoreTransform — Score transformation

character vector | function handle
Score transformation, specified as a character vector or function handle. ScoreTransform represents a built-in transformation function or a function handle for transforming predicted classification scores.

To change the score transformation function to function, for example, use dot notation.

- For a built-in function, enter a character vector.

\[
\text{Mdl.ScoreTransform} = 'function';
\]

This table describes the available built-in functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log\left(\frac{x}{1-x}\right))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | \(-1\) for \(x < 0 \) \\
| | \(0 \) for \(x = 0 \) \\
| | \(1 \) for \(x > 0 \) |
| 'symmetric' | \(2x - 1 \) |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to \(-1\) |
| 'symmetriclogit' | \(\frac{2}{1 + e^{-x}} - 1 \) |

- For a MATLAB function or a function that you define, enter its function handle.

\[
\text{Mdl.ScoreTransform} = @function;
\]

\(function \) should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: char | function_handle

\textbf{Sigma — Predictor standard deviations}
[] (default) | numeric vector
This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If you specify 'Standardize',true when you train the SVM classifier using fitcsvm, then the length of Sigma is equal to the number of predictor variables.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Sigma stores one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Sigma is an empty vector ([]).

Data Types: single | double

W — Observation weights
ones(n,1) (default) | numeric vector

This property is read-only.

Observation weights used to train the SVM classifier, specified as an n-by-1 numeric vector. n is the number of observations (see NumObservations).

fitcsvm normalizes the observation weights specified in the 'Weights' name-value pair argument so that the elements of W within a particular class sum up to the prior probability of that class.

Data Types: single | double

X — Unstandardized predictors
numeric matrix | table

This property is read-only.

Unstandardized predictors used to train the SVM classifier, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

MATLAB excludes observations containing at least one missing value, and removes corresponding elements from Y.
Data Types: single | double

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels used to train the SVM classifier, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. Y is the same data type as the input argument Y of `fitcsvm`. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.

MATLAB excludes elements containing missing values, and removes corresponding observations from X.

Data Types: single | double | logical | char | cell | categorical

Convergence Control Properties

ConvergenceInfo — Convergence information
structure array

This property is read-only.

Convergence information, specified as a structure array.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converged</td>
<td>Logical flag indicating whether the algorithm converged (1 indicates convergence).</td>
</tr>
<tr>
<td>ReasonForConvergence</td>
<td>Character vector indicating the criterion the software uses to detect convergence.</td>
</tr>
<tr>
<td>Gap</td>
<td>Scalar feasibility gap between the dual and primal objective functions.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>GapTolerance</td>
<td>Scalar feasibility gap tolerance. Set this tolerance, for example to 1e-2, by using the name-value pair argument 'GapTolerance',1e-2 of fitcsvm.</td>
</tr>
<tr>
<td>DeltaGradient</td>
<td>Scalar-attained gradient difference between upper and lower violators</td>
</tr>
<tr>
<td>DeltaGradientTolerance</td>
<td>Scalar tolerance for the gradient difference between upper and lower violators. Set this tolerance, for example to 1e-2, by using the name-value pair argument 'DeltaGradientTolerance',1e-2 of fitcsvm.</td>
</tr>
<tr>
<td>LargestKKTViolation</td>
<td>Maximal scalar Karush-Kuhn-Tucker (KKT) violation value.</td>
</tr>
<tr>
<td>KKTolerance</td>
<td>Scalar tolerance for the largest KKT violation. Set this tolerance, for example to 1e-3, by using the name-value pair argument 'KKT_tolerance',1e-3 of fitcsvm.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>History</td>
<td>Structure array containing convergence information at set optimization iterations. The fields are:</td>
</tr>
<tr>
<td></td>
<td>• NumIterations: numeric vector of iteration indices for which the software records convergence information</td>
</tr>
<tr>
<td></td>
<td>• Gap: numeric vector of Gap values at the iterations</td>
</tr>
<tr>
<td></td>
<td>• DeltaGradient: numeric vector of DeltaGradient values at the iterations</td>
</tr>
<tr>
<td></td>
<td>• LargestKKTViolation: numeric vector of LargestKKTViolation values at the iterations</td>
</tr>
<tr>
<td></td>
<td>• NumSupportVectors: numeric vector indicating the number of support vectors at the iterations</td>
</tr>
<tr>
<td></td>
<td>• Objective: numeric vector of Objective values at the iterations</td>
</tr>
<tr>
<td>Objective</td>
<td>Scalar value of the dual objective function.</td>
</tr>
</tbody>
</table>

Data Types: struct

NumIterations — Number of iterations

positive integer

This property is read-only.

Number of iterations required by the optimization routine to attain convergence, specified as a positive integer.

To set the limit on the number of iterations to 1000, for example, specify '`IterationLimit',1000` when you train the SVM classifier using `fitcsvm`.

Data Types: double

ShrinkagePeriod — Number of iterations between reductions of active set

nonnegative integer
This property is read-only.

Number of iterations between reductions of the active set, specified as a nonnegative integer.

To set the shrinkage period to 1000, for example, specify 'ShrinkagePeriod',1000 when you train the SVM classifier using fitcsvm.

Data Types: single | double

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Description of cross-validation optimization of hyperparameters

BayesianOptimization object | table

This property is read-only.

Description of the cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or a table of hyperparameters and associated values. This property is nonempty when the 'OptimizeHyperparameters' name-value pair argument of fitcsvm is nonempty at creation. The value of HyperparameterOptimizationResults depends on the setting of the Optimizer field in the HyperparameterOptimizationOptions structure of fitcsvm at creation, as described in this table.

<table>
<thead>
<tr>
<th>Value of Optimizer Field</th>
<th>Value of HyperparameterOptimizationResults</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bayesopt' (default)</td>
<td>Object of class BayesianOptimization</td>
</tr>
<tr>
<td>'gridsearch' or 'randomsearch'</td>
<td>Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)</td>
</tr>
</tbody>
</table>

Object Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compact</td>
<td>Reduce size of support vector machine (SVM) classifier</td>
</tr>
<tr>
<td>compareHoldout</td>
<td>Compare accuracies of two classification models using new data</td>
</tr>
<tr>
<td>crossval</td>
<td>Cross-validate support vector machine (SVM) classifier</td>
</tr>
</tbody>
</table>
discardSupportVectors Discard support vectors for linear support vector machine (SVM) classifier
edge Find classification edge for support vector machine (SVM) classifier
fitPosterior Fit posterior probabilities for support vector machine (SVM) classifier
loss Find classification error for support vector machine (SVM) classifier
margin Find classification margins for support vector machine (SVM) classifier
predict Predict labels using support vector machine (SVM) classifier
resubEdge Find classification edge for support vector machine (SVM) classifier by resubstitution
resubLoss Find classification loss for support vector machine (SVM) classifier by resubstitution
resubMargin Find classification margins for support vector machine (SVM) classifier by resubstitution
resubPredict Predict resubstitution responses for support vector machine (SVM) classifier
resume Resume training support vector machine (SVM) classifier

Examples

Train SVM Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths and all observed setosa irises.

```matlab
load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
y = species(inds);
```

Train an SVM classifier using the processed data set.

```matlab
SVMMModel = fitcsvm(X,y)
```

SVMMModel =
 ClassificationSVM
 ResponseName: 'Y'
CategoricalPredictors: []
 ClassNames: {'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 100
 Alpha: [24x1 double]
 Bias: -14.4149
 KernelParameters: [1x1 struct]
 BoxConstraints: [100x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [100x1 logical]
 Solver: 'SMO'

Properties, Methods

SVMModel is a trained ClassificationSVM classifier. Display the properties of SVMModel. For example, to determine the class order, use dot notation.

classOrder = SVMModel.ClassNames

classOrder = 2x1 cell array
 {'versicolor'}
 {'virginica'}

The first class ('versicolor') is the negative class, and the second ('virginica') is the positive class. You can change the class order during training by using the 'ClassNames' name-value pair argument.

Plot a scatter diagram of the data and circle the support vectors.

sv = SVMModel.SupportVectors;
figure
gscatter(X(:,1),X(:,2),y)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('versicolor','virginica','Support Vector')
hold off
The support vectors are observations that occur on or beyond their estimated class boundaries.

You can adjust the boundaries (and, therefore, the number of support vectors) by setting a box constraint during training using the 'BoxConstraint' name-value pair argument.

Train and Cross-Validate SVM Classifier

Load the ionosphere data set.

```
load ionosphere
```
Train and cross-validate an SVM classifier. Standardize the predictor data and specify the order of the classes.

```matlab
rng(1);  % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'},'CrossVal','on')
```

CVSVMModel =
 classreg.learning.partition.ClassificationPartitionedModel
 CrossValidatedModel: 'SVM'
 PredictorNames: {1x34 cell}
 ResponseName: 'Y'
 NumObservations: 351
 KFold: 10
 Partition: [1x1 cvpartition]
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'

Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated SVM classifier. By default, the software implements 10-fold cross-validation.

Alternatively, you can cross-validate a trained ClassificationSVM classifier by passing it to crossval.

Inspect one of the trained folds using dot notation.

```matlab
CVSVMModel.Trained{1}
```

ans =
 classreg.learning.classif.CompactClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 Alpha: [78x1 double]
 Bias: -0.2209
 KernelParameters: [1x1 struct]
 Mu: [1x34 double]
 Sigma: [1x34 double]
 SupportVectors: [78x34 double]
 SupportVectorLabels: [78x1 double]
Properties, Methods

Each fold is a `CompactClassificationSVM` classifier trained on 90% of the data. Estimate the generalization error.

```matlab
genError = kfoldLoss(CVSVMModel)
genError = 0.1168
```

On average, the generalization error is approximately 12%.

Definitions

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating observations, which helps to prevent overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors. However, increasing the box constraint can lead to longer training times.

Gram Matrix

The Gram matrix of a set of n vectors \(\{x_1, \ldots, x_n; x_j \in \mathbb{R}^p \} \) is an n-by-n matrix with element (j,k) defined as \(G(x_j, x_k) = \langle \phi(x_j), \phi(x_k) \rangle \), an inner product of the transformed predictors using the kernel function ϕ.

For nonlinear SVM, the algorithm forms a Gram matrix using the rows of the predictor data X. The dual formalization replaces the inner product of the observations in X with corresponding elements of the resulting Gram matrix (called the “kernel trick”). Consequently, nonlinear SVM operates in the transformed predictor space to find a separating hyperplane.
Karush-Kuhn-Tucker Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal nonlinear programming solutions.

In SVM, the KKT complementarity conditions are

\[
\begin{align*}
\alpha_j \left[y_j f(x_j) - 1 + \xi_j \right] &= 0 \\
\xi_j (C - \alpha_j) &= 0
\end{align*}
\]

for all \(j = 1, \ldots, n \), where \(f(x_j) = \phi(x_j)' \beta + b \), \(\phi \) is a kernel function (see Gram matrix on page 32-2000), and \(\xi_j \) is a slack variable. If the classes are perfectly separable, then \(\xi_j = 0 \) for all \(j = 1, \ldots, n \).

One-Class Learning

One-class learning, or unsupervised SVM, aims to separate data from the origin in the high-dimensional predictor space (not the original predictor space), and is an algorithm used for outlier detection.

The algorithm resembles that of SVM for binary classification on page 32-2002. The objective is to minimize the dual expression

\[
0.5 \sum_{jk} \alpha_j \alpha_k G(x_j, x_k)
\]

with respect to \(\alpha_1, \ldots, \alpha_n \), subject to

\[
\sum \alpha_j = n \nu
\]

and \(0 \leq \alpha_j \leq 1 \) for all \(j = 1, \ldots, n \). The value of \(G(x_j, x_k) \) is in element \((j,k)\) of the Gram matrix on page 32-2000.

A small value of \(\nu \) leads to fewer support vectors and, therefore, a smooth, crude decision boundary. A large value of \(\nu \) leads to more support vectors and, therefore, a curvy, flexible
decision boundary. The optimal value of ν should be large enough to capture the data complexity and small enough to avoid overtraining. Also, $0 < \nu \leq 1$.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of $a_1, ..., a_n$.

SVM classifiers that yield fewer support vectors for a given training set are preferred.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that separates the data into two classes. For separable classes, the optimal hyperplane maximizes a margin (space that does not contain any observations) surrounding itself, which creates boundaries for the positive and negative classes. For inseparable classes, the objective is the same, but the algorithm imposes a penalty on the length of the margin for every observation that is on the wrong side of its class boundary.

The linear SVM score function is

$$f(x) = x^\prime \beta + b,$$

where:

- x is an observation (corresponding to a row of X).
- The vector β contains the coefficients that define an orthogonal vector to the hyperplane (corresponding to Mdl.Beta). For separable data, the optimal margin length is $\frac{2}{\|\beta\|}$.
- b is the bias term (corresponding to Mdl.Bias).

The root of $f(x)$ for particular coefficients defines a hyperplane. For a particular hyperplane, $f(z)$ is the distance from point z to the hyperplane.

The algorithm searches for the maximum margin length, while keeping observations in the positive ($y = 1$) and negative ($y = -1$) classes separate.
For separable classes, the objective is to minimize $\|\beta\|$ with respect to the β and b subject to $y_j f(x_j) \geq 1$, for all $j = 1,...,n$. This is the primal formalization for separable classes.

For inseparable classes, the algorithm uses slack variables (ξ_j) to penalize the objective function for observations that cross the margin boundary for their class. $\xi_j = 0$ for observations that do not cross the margin boundary for their class, otherwise $\xi_j \geq 0$.

The objective is to minimize $0.5\|\beta\|^2 + C \sum \xi_j$ with respect to the β, b, and ξ_j subject to $y_j f(x_j) \geq 1 - \xi_j$ and $\xi_j \geq 0$ for all $j = 1,...,n$, and for a positive scalar box constraint on page 32-2000 C. This is the primal formalization for inseparable classes.

The algorithm uses the Lagrange multipliers method to optimize the objective, which introduces n coefficients $\alpha_1,..,\alpha_n$ (corresponding to Model.Alpha). The dual formalizations for linear SVM are as follows:

- **For separable classes**, minimize

 $$0.5 \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k x_j^t x_k - \sum_{j=1}^{n} \alpha_j$$

 with respect to $\alpha_1,..,\alpha_n$, subject to $\sum \alpha_j y_j = 0$, $\alpha_j \geq 0$ for all $j = 1,...,n$, and Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001.

- **For inseparable classes**, the objective is the same as for separable classes, except for the additional condition $0 \leq \alpha_j \leq C$ for all $j = 1,...,n$.

The resulting score function is

$$\hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j x^t x_j + \hat{b}.$$

\hat{b} is the estimate of the bias and $\hat{\alpha}_j$ is the jth estimate of the vector $\hat{\alpha}$, $j = 1,...,n$. Written this way, the score function is free of the estimate of β as a result of the primal formalization.
The SVM algorithm classifies a new observation z using $\text{sign} \left(\hat{f}(z) \right)$.

In some cases, a nonlinear boundary separates the classes. Nonlinear SVM works in a transformed predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

$$0.5 \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k G(x_j, x_k) - \sum_{j=1}^{n} \alpha_j$$

with respect to $\alpha_1, ..., \alpha_n$, subject to $\sum \alpha_j y_j = 0$, $0 \leq \alpha_j \leq C$ for all $j = 1, ..., n$, and the KKT complementarity conditions. $G(x_k, x_j)$ are elements of the Gram matrix on page 32-2000.

The resulting score function is

$$\hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j G(x, x_j) + \hat{b}.$$

For more details, see Understanding Support Vector Machines on page 18-183, [1], and [3].

Algorithms

- For the mathematical formulation of the SVM binary classification algorithm, see “Support Vector Machines for Binary Classification” on page 32-2002 and “Understanding Support Vector Machines” on page 18-183.
- `NaN`, `<undefined>`, empty character vector (''), empty string ('"'), and `<missing>` values indicate missing values. `fitcsvm` removes entire rows of data corresponding to a missing response. When computing total weights (see the next bullets), `fitcsvm` ignores any weight corresponding to an observation with at least one missing predictor. This action can lead to unbalanced prior probabilities in balanced-class problems. Consequently, observation box constraints might not equal `BoxConstraint`.
- `fitcsvm` removes observations that have zero weight or prior probability.
For two-class learning, if you specify the cost matrix C (see Cost), then the software updates the class prior probabilities p (see Prior) to p_c by incorporating the penalties described in C.

Specifically, `fitcsvm` completes these steps:

1. Compute $p_c^* = p^C$.
2. Normalize p_c^* so that the updated prior probabilities sum to 1.

$$p_c = \frac{1}{K} \frac{p_c^*}{\sum_{j=1}^{K} p_{c,j}^*}$$

K is the number of classes.
3. Reset the cost matrix to the default

$$C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
4. Remove observations from the training data corresponding to classes with zero prior probability.

For two-class learning, `fitcsvm` normalizes all observation weights (see Weights) to sum to 1. The function then renormalizes the normalized weights to sum up to the updated prior probability of the class to which the observation belongs. That is, the total weight for observation j in class k is

$$w_j^* = \sum_{\forall j \in \text{Class } k} w_j p_{c,k}.$$

w_j is the normalized weight for observation j; $p_{c,k}$ is the updated prior probability of class k (see previous bullet).

For two-class learning, `fitcsvm` assigns a box constraint to each observation in the training data. The formula for the box constraint of observation j is

$$C_j = nC_0 w_j^*.$$
n is the training sample size, \(C_0 \) is the initial box constraint (see the

'SBoxConstraint' name-value pair argument), and \(w_j^* \) is the total weight of
observation \(j \) (see previous bullet).

- If you set 'Standardize',true and the 'Cost', 'Prior', or 'Weights' name-
value pair argument, then fitcsvm standardizes the predictors using their
 corresponding weighted means and weighted standard deviations. That is, fitcsvm
 standardizes predictor \(j \) (\(x_j \)) using

\[
x_j^* = \frac{x_j - \mu_j^*}{\sigma_j^*}.
\]

\[
\mu_j^* = \frac{1}{\sum \limits_k w_k^*} \sum \limits_k w_k^* x_{jk}.
\]

\(x_{jk} \) is observation \(k \) (row) of predictor \(j \) (column).

\[
(\sigma_j^*)^2 = \frac{v_1}{v_1^2 - v_2} \sum \limits_k w_k^* (x_{jk} - \mu_j^*)^2.
\]

\[
v_1 = \sum \limits_j w_j^*.
\]

\[
v_2 = \sum (w_j^*)^2.
\]

- Assume that \(p \) is the proportion of outliers that you expect in the training data, and
 that you set 'OutlierFraction',\(p \).

 - For one-class learning, the software trains the bias term such that 100\(p \)% of the
 observations in the training data have negative scores.
 - The software implements robust learning for two-class learning. In other words,
 the software attempts to remove 100\(p \)% of the observations when the optimization
 algorithm converges. The removed observations correspond to gradients that are
 large in magnitude.
• If your predictor data contains categorical variables, then the software generally uses full dummy encoding for these variables. The software creates one dummy variable for each level of each categorical variable.

• The PredictorNames property stores one element for each of the original predictor variable names. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then PredictorNames is a 1-by-3 cell array of character vectors containing the original names of the predictor variables.

• The ExpandedPredictorNames property stores one element for each of the predictor variables, including the dummy variables. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then ExpandedPredictorNames is a 1-by-5 cell array of character vectors containing the names of the predictor variables and the new dummy variables.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the dummy variables.

• The SupportVectors property stores the predictor values for the support vectors, including the dummy variables. For example, assume that there are m support vectors and three predictors, one of which is a categorical variable with three levels. Then SupportVectors is an n-by-5 matrix.

• The X property stores the training data as originally input and does not include the dummy variables. When the input is a table, X contains only the columns used as predictors.

• For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the software uses ordinal encoding for these variables.

• For a variable with k ordered levels, the software creates $k - 1$ dummy variables. The jth dummy variable is -1 for levels up to j, and +1 for levels $j + 1$ through k.

• The names of the dummy variables stored in the ExpandedPredictorNames property indicate the first level with the value +1. The software stores $k - 1$ additional predictor names for the dummy variables, including the names of levels 2, 3, ..., k.

• All solvers implement $L1$ soft-margin minimization.

• For one-class learning, the software estimates the Lagrange multipliers, $\alpha_1, ..., \alpha_n$, such that
\[
\sum_{j=1}^{n} \alpha_j = n\nu.
\]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train an SVM model by using fitcsvm, the following restrictions apply.
 - The class labels input argument value \((Y) \) cannot be a categorical array.
 - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
• The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function. For generating code that predicts posterior probabilities given new observations, pass a trained SVM model to fitPosterior or fitSVMPosterior. The ScoreTransform property of the returned model contains an anonymous function that represents the score-to-posterior-probability function and is configured for code generation.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationPartitionedModel | CompactClassificationSVM | fitcsvm

Topics
Using Support Vector Machines on page 18-189
Understanding Support Vector Machines on page 18-183

Introduced in R2014a
ClassificationSVMCoderConfigurer

Coder configurer for support vector machine (SVM) classification model

Description

A ClassificationSVMCoderConfigurer object is a coder configurer of an SVM classification model (ClassificationSVM and CompactClassificationSVM).

A coder configurer offers convenient features to configure code generation options, generate C/C++ code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of SVM model parameters using object properties.
• Generate C/C++ code for the predict and update functions of the SVM classification model by using generateCode. Generating C/C++ code requires MATLAB Coder.
• Update model parameters in the generated C/C++ code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when you retrain the SVM model with new data or settings. Before updating model parameters, use validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of an SVM classification model, see the Code Generation sections of CompactClassificationSVM, predict, and update.
Creation

After training an SVM classification model by using fitcsvm, create a coder configurer for the model by using learnerCoderConfigurer.

Properties

Code Generation Options

X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of predictor data to pass to the generated C/C++ code for the predict function of the SVM classification model, specified as a LearnerCoderInput object.

A LearnerCoderInput object includes the following attributes:

- **SizeVector**
 - Array size of the predictor data if the corresponding VariableDimensions value is false.
 - Upper bound of the array size if the corresponding VariableDimensions value is true.
- **VariableDimensions** — Indicator specifying whether each dimension of the predictor data has a variable size or fixed size. A value of `true` (logical 1) means that the corresponding dimension has a variable size; a value of `false` (logical 0) means that the corresponding dimension has a fixed size. The default value is `false` (logical 0) for all dimensions.
- **DataType** — Data type of the predictor data.
- **Tunability** — Always `true`, meaning that the generated C/C++ code accepts predictor data that satisfies the other three attributes.

When you create the coder configurer `configurer` by using the `learnerCoderConfigurer` function, the input argument `X` of the function specifies the `SizeVector` and `DataType` attributes. You can modify these two attributes and specify the `VariableDimensions` attribute by using dot notation.
For example, if you want to generate C/C++ code that accepts predictor data with 100 observations of three predictor variables, then specify the coder attributes of \(X \) as follows:

```matlab
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];
```

\([0 \ 0]\) indicates that the first and second dimensions of \(X \) (number of observations and number of predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify the coder attributes of \(X \) as follows:

```matlab
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];
```

\([1 \ 0]\) indicates that the first dimension of \(X \) (number of observations) has a variable size and the second dimension of \(X \) (number of predictor variables) has a fixed size. The specified number of observations, 100 in this example, becomes the maximum allowed number of observations in the generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict

1 (default) | 2

Number of output arguments to return from the generated C/C++ code for the `predict` function of the SVM classification model, specified as 1 or 2.

- 1 — `predict` returns predicted class labels in the generated C/C++ code.
- 2 — `predict` returns predicted class labels and scores (or posterior probabilities) in the generated C/C++ code.

After creating the coder configurer `configurer`, you can specify the number of outputs by using dot notation.

```matlab
configurer.NumOutputs = 2;
```

The `NumOutputs` property is equivalent to the `-nargout` compiler option of `codegen`. This option specifies the number of output arguments in the entry-point function of code generation. The object function `generateCode` generates two entry-point functions—`predict.m` and `update.m` for the `predict` and `update` functions of an SVM classification model, respectively—and generates C/C++ code for the two entry-point

32-558
functions. The specified value for the NumOutputs property corresponds to the number of output arguments in the entry-point function predict.m.

Data Types: double

OutputFileName — File name of generated C/C++ code

'ClassificationSVMModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of the coder configurer configurer generates C/C++ code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain operating system configurations. Also, the name must be a valid MATLAB function name.

After creating configurer, you can specify the file name by using dot notation.

```matlab
configurer.OutputFileName = 'myModel';
```

Data Types: char

Verbose — Verbosity level

true (logical 1) (default) | false (logical 0)

Verbosity level, specified as `true` (logical 1) or `false` (logical 0). The verbosity level controls the display of notification messages at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>true</code> (logical 1)</td>
<td>The software displays notification messages when your changes to the coder attributes of a parameter result in changes for other dependent parameters.</td>
</tr>
<tr>
<td><code>false</code> (logical 0)</td>
<td>The software does not display notification messages.</td>
</tr>
</tbody>
</table>

To enable updating machine learning model parameters in the generated code, you need to configure the coder attributes of the parameters before generating code. The coder attributes of parameters are dependent on each other, so the software stores the dependencies as configuration constraints. If you modify the coder attributes of a parameter by using the coder configurer configurer, and the modification requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters. The
verbosity level determines whether or not the software displays notification messages for these subsequent changes.

After creating `configurer`, you can modify the verbosity level by using dot notation.

```csharp
configurer.Verbose = false;
```

Data Types: logical

Properties for Coder Attributes of SVM Classification Model Parameters

The properties listed in this section specify the coder attributes of the SVM classification model parameters that you can update. To enable updating the parameters in the generated code, you need to specify the coder attributes of the parameters before generating code. Use a `LearnerCoderInput` object to specify the coder attributes of each parameter.

LearnerCoderInput object To generate C/C++ code that allows updating the parameters of a machine learning model, you must specify the coder attributes of each parameter. A coder configurer uses a `LearnerCoderInput` object to specify the coder attributes of the model parameters and their array values.

A `LearnerCoderInput` object has the attributes described in this table.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| SizeVector | • Array size if the corresponding `VariableDimensions` value is false.
 • Upper bound of the array size if the corresponding `VariableDimensions` value is true.
 To allow an unbounded array, specify the bound as `Inf`. | Array size of the corresponding model parameter |
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VariableDimensions</td>
<td>Indicator specifying whether each dimension of the array has a variable size or fixed size. A value of true (logical 1) means that the corresponding dimension has a variable size; a value of false (logical 0) means that the corresponding dimension has a fixed size.</td>
<td>false (logical 0) for all dimensions, indicating a fixed size</td>
</tr>
<tr>
<td>DataType</td>
<td>Data type of the array</td>
<td>Data type of the corresponding model parameter</td>
</tr>
<tr>
<td>Tunability</td>
<td>Indicator specifying whether or not update in the generated C/C++ code allows the array values to be updated</td>
<td>Determined depending on the model parameter</td>
</tr>
</tbody>
</table>

You can modify the coder attributes by using dot notation. For example, after creating the coder configurer `configurer`, specify the coder attributes of the coefficients `Alpha`.

```matlab
compiler.Alpha.SizeVector = [100 1];
compiler.Alpha.VariableDimensions = [1 0];
compiler.Alpha.DataType = 'double';
compiler.Alpha.Tunability = 1;
```

If you specify the verbosity level (Verbose) as true (default), then the software displays notification messages when you modify the coder attributes of a machine learning model parameter and the modification changes the coder attributes of other dependent parameters.

Alpha — Coder attributes of trained classifier coefficients

LearnerCoderInput object

Coder attributes of the trained classifier coefficients (Alpha of an SVM classification model), specified as a `LearnerCoderInput` object.

If you train an SVM model with a linear kernel function and discard support vectors by using `discardSupportVectors`, the Tunability value of the LearnerCoderInput object must be false for Alpha. Otherwise, the Tunability value must be true.
Beta — Coder attributes of linear predictor coefficients
LearnerCoderInput object

Coder attributes of the linear predictor coefficients (Beta of an SVM classification model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using discardSupportVectors, the Tunability value of the LearnerCoderInput object must be true for Beta. Otherwise, the Tunability value must be false.

Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of an SVM classification model), specified as a LearnerCoderInput object.

The Tunability value of the LearnerCoderInput object must be true for Bias.

Cost — Coder attributes of misclassification cost
LearnerCoderInput object

Coder attributes of the misclassification cost (Cost of an SVM classification model), specified as a LearnerCoderInput object.

For two-class (binary) classification, the default Tunability value of the LearnerCoderInput object is true for Cost. The Tunability value must be false for one-class classification.

Mu — Coder attributes of predictor means
LearnerCoderInput object

Coder attributes of the predictor means (Mu of an SVM classification model), specified as a LearnerCoderInput object.

If you train an SVM model using standardized predictor data by specifying 'Standardize',true, the default Tunability value of the LearnerCoderInput object is true for Mu. Otherwise, the default value is false.

Prior — Coder attributes of prior probabilities
LearnerCoderInput object

Coder attributes of the prior probabilities (Prior of an SVM classification model), specified as a LearnerCoderInput object.
For two-class (binary) classification, the default Tunability value of the LearnerCoderInput object is true for Prior. The Tunability value must be false for one-class classification.

Scale — Coder attributes of kernel scale parameter
LearnerCoderInput object

Coder attributes of the kernel scale parameter (KernelParameters.Scale of an SVM classification model), specified as a LearnerCoderInput object.

The default Tunability value of the LearnerCoderInput object is true for Scale.

Sigma — Coder attributes of predictor standard deviations
LearnerCoderInput object

Coder attributes of the predictor standard deviations (Sigma of an SVM classification model), specified as a LearnerCoderInput object.

If you train an SVM model using standardized predictor data by specifying 'Standardize',true, the default Tunability value of the LearnerCoderInput object is true for Sigma. Otherwise, the default value is false.

SupportVectorLabels — Coder attributes of support vector class labels
LearnerCoderInput object

Coder attributes of the support vector class labels (SupportVectorLabels of an SVM classification model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using discardSupportVectors, the Tunability value of the LearnerCoderInput object must be false for SupportVectorLabels. Otherwise, the Tunability value must be true.

SupportVectors — Coder attributes of support vectors
LearnerCoderInput object

Coder attributes of the support vectors (SupportVectors of an SVM classification model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using discardSupportVectors, the Tunability value of the LearnerCoderInput object must be false for SupportVectors. Otherwise, the Tunability value must be true.
Customization of Code Generation

To customize the code generation workflow, use the `generateFiles` function and the following three properties with `codegen`, instead of using the `generateCode` function.

After generating the two entry-point function files (`predict.m` and `update.m`) by using the `generateFiles` function, you can modify these files according to your code generation workflow. For example, you can modify the `predict.m` file to include data preprocessing, or you can add these entry-point functions to another code generation project. Then, you can generate C/C++ code by using the `codegen` function and the `codegen` arguments appropriate for the modified entry-point functions or code generation project. Use the three properties described in this section as a starting point to set the `codegen` arguments.

CodeGenerationArguments — codegen arguments

cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the `generateCode` function if you do not need to customize your workflow.

Instead of using `generateCode` with the coder configurer `configurer`, you can generate C/C++ code as follows:

```matlab
generateFiles(configurer) cgArgs = configurer.CodeGenerationArguments; codegen(cgArgs)
```

If you customize the code generation workflow, modify `cgArgs` accordingly before calling `codegen`.

If you modify other properties of `configurer`, the software updates the `CodeGenerationArguments` property accordingly.

Data Types: `cell`

PredictInputs — Input argument of predict

cell array of a `coder.PrimitiveType` object

This property is read-only.
Input argument of the entry-point function `predict.m` for code generation, specified as a cell array of a `coder.PrimitiveType` object. The `coder.PrimitiveType` object includes the coder attributes of predictor data stored in the `X` property.

The `coder.PrimitiveType` object in `PredictInputs` is equivalent to `configurer.CodeGenerationArguments{6}` for the coder configurer `configurer`.

If you modify the coder attributes of predictor data, then the software updates the `coder.PrimitiveType` object accordingly.

Data Types: `cell`

UpdateInputs — List of tunable input arguments of update

Cell array of a structure including `coder.PrimitiveType` objects

This property is read-only.

List of the tunable input arguments of the entry-point function `update.m` for code generation, specified as a cell array of a structure including `coder.PrimitiveType` objects. Each `coder.PrimitiveType` object includes the coder attributes of a tunable machine learning model parameter.

The structure in `UpdateInputs` is equivalent to `configurer.CodeGenerationArguments{3}` for the coder configurer `configurer`.

If you modify the coder attributes of a model parameter by using the coder configurer properties (“Properties for Coder Attributes of SVM Classification Model Parameters” on page 32-560), then the software updates the corresponding `coder.PrimitiveType` object accordingly. If you specify the `Tunability` attribute of a machine learning model parameter as `false`, then the software removes the corresponding `coder.PrimitiveType` object from the `UpdateInputs` list.

Data Types: `cell`

Object Functions

- `generateCode` Generate C/C++ code using coder configurer
- `generateFiles` Generate MATLAB files for code generation using coder configurer
- `validatedUpdateInputs` Validate and extract machine learning model parameters to update
Examples

Generate Code Using Coder Configurer

Train a machine learning model and then generate code for the predict and update functions of the model by using a coder configurer.

Load the ionosphere data set and train a binary support vector machine (SVM) classification model.

load ionosphere
Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM object.

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer =
ClassificationSVMCoderConfigurer with properties:

Update Inputs:
 Alpha: [1x1 LearnerCoderInput]
 SupportVectors: [1x1 LearnerCoderInput]
 SupportVectorLabels: [1x1 LearnerCoderInput]
 Scale: [1x1 LearnerCoderInput]
 Bias: [1x1 LearnerCoderInput]
 Prior: [1x1 LearnerCoderInput]
 Cost: [1x1 LearnerCoderInput]

Predict Inputs:
 X: [1x1 LearnerCoderInput]

Code Generation Parameters:
 NumOutputs: 1
 OutputFileName: 'ClassificationSVMModel'
Properties, Methods

`configure` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `ClassificationSVM` model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'

`generateCode` generates these files for code generation.

`generateCode` generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions of the `ClassificationSVM` model (Mdl), respectively. Then `generateCode` creates a MEX function named `ClassificationSVMModel` for the two entry-point functions and the code for the MEX function in the `codegen\mex\ClassificationSVMModel` folder and copies the MEX function to the current folder.

Display the contents of the `predict.m`, `update.m`, and `initialize.m` files.

```matlab
type predict.m % Display contents of predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:15:40
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end
```

```matlab
type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:15:40
initialize('update',varargin{:});
end
```

```matlab
type initialize.m % Display contents of initialize.m
```

32-567
function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:15:40
coder.inline('always');
persistent model;
if isempty(model)
 model = loadCompactModel('ClassificationSVMModel.mat');
end
switch(command)
 case 'update'
 % Update struct fields: Alpha
 % SupportVectors
 % SupportVectorLabels
 % Scale
 % Bias
 % Prior
 % Cost

 model = update(model,varargin{:});
 case 'predict'
 % Predict Inputs: X

 X = varargin{1};
 if nargin == 2
 [varargout{1:nargout}] = predict(model,X);
 else
 PVPairs = cell(1,nargin-2);
 for i = 1:nargin-2
 PVPairs{1,i} = varargin{i+1};
 end
 [varargout{1:nargout}] = predict(model,X,PVPairs{:});
 end
end
end

Update Model Parameters in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model
using the whole data set and update parameters in the generated code without
regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses
for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model
using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using
learnerCoderConfigurer. Specify the predictor data X. The
learnerCoderConfigurer function uses the input X to configure the coder attributes of
the predict function input. Also, set the number of outputs to 2 so that the generated
code returns predicted labels and scores.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:), 'NumOutputs',2);
```

configurer is a ClassificationSVMCoderConfigurer object, which is a coder
configurer of a ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can
update the parameters in the generated code after retraining the model. This example
specifies the coder attributes of predictor data that you want to pass to the generated
code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The
SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data
has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];
```
The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support vectors in the generated code.

```matlab
configurer.SupportVectors.SizeVector = [250 34];
```

SizeVector attribute for Alpha has been modified to satisfy configuration constraints. SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

```matlab
configurer.SupportVectors.VariableDimensions = [true false];
```

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints. VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the predict and update functions of the ClassificationSVM model with default settings.

```matlab
generateCode(configurer)
```
These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
generateCode generates these files for code generation.

generateCode generates the MATLAB files required to generate code, including the two entry-point functions predict.m and update.m for the predict and update functions of the ClassificationSVM model (Mdl), respectively. Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

\[
\begin{align*}
\text{[label, score]} &= \text{predict(Mdl,}X)\text{;} \\
\text{[label}_\text{mex}, \text{score}_\text{mex}] &= \text{ClassificationSVMModel('predict',}X)\text{;}
\end{align*}
\]

Compare label and label_mex by using isequal.

\[
\text{isequal(label, label}_\text{mex})
\]

\[
\text{ans = logical}
\]

\[
1
\]

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.

\[
\text{find(abs(score-score}_\text{mex}) > 1e-8)
\]

\[
\text{ans =}
\]

\[
\text{0x1 empty double column vector}
\]

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.
Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the updated MEX function.

labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)

ans = logical
 1

find(abs(score-score_mex) > 1e-8)
ans =
 0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal within the tolerance.

See Also
ClassificationSVM | CompactClassificationSVM | learnerCoderConfigurer | predict | update
Topics

“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

Introduced in R2018b
ClassificationTree class

Superclasses:
Binary decision tree for classification

Description

A ClassificationTree object represents a decision tree with binary splits for classification. An object of this class can predict responses for new data using the predict method. The object contains the data used for training, so it can also compute resubstitution predictions.

Construction

Create a ClassificationTree object by using fitctree.

Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

CategoricalSplit

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in CategoricalSplits gives left and right values for a categorical split. For each branch node with categorical split j based on a categorical predictor variable z, the left child is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Find the nodes for these splits by selecting 'categorical' cuts from top to bottom in the CutType property.
Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the number of nodes. Leaf nodes have child node 0.

ClassCount

An n-by-k array of class counts for the nodes in tree, where n is the number of nodes and k is the number of classes. For any node number i, the class counts ClassCount(i,:) are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node i.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a categorical array, cell array of character vectors, character array, logical vector, or a numeric vector. ClassNames has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)

ClassProbability

An n-by-k array of class probabilities for the nodes in tree, where n is the number of nodes and k is the number of classes. For any node number i, the class probabilities ClassProbability(i,:) are the estimated probabilities for each class for a point satisfying the conditions for node i.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response. This property is read-only.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For each branch node i based on a categorical predictor variable X, the left child is chosen if X is among the categories listed in CutCategories{i,1}, and the right child is chosen if X is among those listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.
CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For each branch node i based on a continuous predictor variable X, the left child is chosen if $X < \text{CutPoint}(i)$ and the right child is chosen if $X \geq \text{CutPoint}(i)$. CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of nodes. For each node i, CutType{i} is:

- 'continuous' — If the cut is defined in the form $X < v$ for a variable X and cut point v.
- 'categorical' — If the cut is defined by whether a variable X takes a value in a set of categories.
- '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node in tree, where n is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, CutPredictor contains an empty character vector.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.
If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a `BayesianOptimization` object or a table of hyperparameters and associated values. Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- 'bayesopt' (default) — Object of class `BayesianOptimization`
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

IsBranchNode

An n-element logical vector that is `true` for each branch node and `false` for each leaf node of `tree`.

ModelParameters

Parameters used in training `tree`. To display all parameter values, enter `tree.ModelParameters`. To access a particular parameter, use dot notation.

NumObservations

Number of observations in the training data, a numeric scalar. `NumObservations` can be less than the number of rows of input data `X` when there are missing values in `X` or `response Y`.

NodeClass

An n-element cell array with the names of the most probable classes in each node of `tree`, where n is the number of nodes in the tree. Every element of this array is a character vector equal to one of the class names in `ClassNames`.

NodeError

An n-element vector of the errors of the nodes in `tree`, where n is the number of nodes. `NodeError(i)` is the misclassification probability for node i.
NodeProbability

An n-element vector of the probabilities of the nodes in `tree`, where n is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for each node is the measure of impurity (Gini index or deviance) for this node weighted by the node probability. If the tree is grown by twoing, the risk for each node is zero.

NodeSize

An n-element vector of the sizes of the nodes in `tree`, where n is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

NumNodes

The number of nodes in `tree`.

Parent

An n-element vector containing the number of the parent node for each node in `tree`, where n is the number of nodes. The parent of the root node is 0.

PredictorNames

Cell array of character vectors containing the predictor names, in the order which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of `Prior` corresponds to the order of the classes in `ClassNames`. The number of elements of `Prior` is the number of unique classes in the response. This property is read-only.
PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then PruneAlpha has $M + 1$ elements sorted in ascending order. $\text{PruneAlpha}(1)$ is for pruning level 0 (no pruning), $\text{PruneAlpha}(2)$ is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the deepest leaf and the root node.

ResponseName

A character vector that specifies the name of the response variable (Y).

RowsUsed

An n-element logical vector indicating which rows of the original predictor data (X) were used in fitting. If the software uses all rows of X, then RowsUsed is an empty array ($[]$).

ScoreTransform

Function handle for transforming predicted classification scores, or character vector representing a built-in transformation function.

\texttt{none} means no transformation, or @(x)x.

To change the score transformation function to, e.g., \textit{function}, use dot notation.

- For available functions (see \textit{fitctree}), enter

 \texttt{Mdl.ScoreTransform = 'function';}

- You can set a function handle for an available function, or a function you define yourself by entering

 \texttt{tree.ScoreTransform = @function;}

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, $\text{SurrogateCutCategories}\{k\}$ is a cell array. The length of $\text{SurrogateCutCategories}\{k\}$ is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutCategories{k} is either an empty character vector for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split, and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogateCutFlip{k} is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z\(<\)C and the cut assignment for this surrogate split is +1, or if Z\(\geq\)C and the cut assignment for this surrogate split is -1. Similarly, the right child is chosen if Z\(\geq\)C and the cut assignment for this surrogate split is +1, or if Z\(<\)C and the cut assignment for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric vector. The length of SurrogateCutPoint{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutPoint{k} is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z\(<\)C and SurrogateCutFlip for this surrogate split is +1, or if Z\(\geq\)C and SurrogateCutFlip for this surrogate split is -1. Similarly, the right child is chosen if Z\(\geq\)C and SurrogateCutFlip for this surrogate split is +1, or if Z\(<\)C and SurrogateCutFlip for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n is the number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form $Z < V$ for a variable Z and cut point V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits in each node in tree, where n is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length n, the number of rows in X.

32-581
X

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

Y

A categorical array, cell array of character vectors, character array, logical vector, or a numeric vector. Each row of Y represents the classification of the corresponding row of X.

Methods

- `compact` Compact tree
- `crossval` Cross-validated decision tree
- `cvloss` Classification error by cross validation
- `prune` Produce sequence of subtrees by pruning
- `resubEdge` Classification edge by resubstitution
- `resubLoss` Classification error by resubstitution
- `resubMargin` Classification margins by resubstitution
- `resubPredict` Predict resubstitution response of tree

Inherited Methods

- `edge` Classification edge
- `loss` Classification error
- `margin` Classification margins
- `surrogateAssociation` Mean predictive measure of association for surrogate splits in decision tree
- `predict` Predict labels using classification tree
- `predictorImportance` Estimates of predictor importance
- `view` View tree
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Grow a Classification Tree

Grow a classification tree using the ionosphere data set.

load ionosphere
tc = fitctree(X,Y)

tc =
 ClassificationTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351

Properties, Methods

Control Tree Depth

You can control the depth of the trees using the MaxNumSplits, MinLeafSize, or MinParentSize name-value pair parameters. fitctree grows deep decision trees by default. You can grow shallower trees to reduce model complexity or computation time.

Load the ionosphere data set.

load ionosphere

The default values of the tree depth controllers for growing classification trees are:

• \(n - 1 \) for MaxNumSplits. \(n \) is the training sample size.
• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a classification tree using the default values for tree depth control. Cross-validate the model using 10-fold cross-validation.

```matlab
rng(1); % For reproducibility
MdlDefault = fitctree(X,Y,'CrossVal','on');
```

Draw a histogram of the number of imposed splits on the trees. Also, view one of the trees.

```matlab
numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;
histogram(mdlDefaultNumSplits)
```
view(MdlDefault.Trained{1}, 'Mode', 'graph')
The average number of splits is around 15.

Suppose that you want a classification tree that is not as complex (deep) as the ones trained using the default number of splits. Train another classification tree, but set the maximum number of splits at 7, which is about half the mean number of splits from the default classification tree. Cross-validate the model using 10-fold cross-validation.

```matlab
Mdl7 = fitctree(X,Y,'MaxNumSplits',7,'CrossVal','on');
view(Mdl7.Trained{1},'Mode','graph')
```
Compare the cross-validation classification errors of the models.

classErrorDefault = kfoldLoss(MdlDefault)

classErrorDefault = 0.1140

classError7 = kfoldLoss(Mdl7)

classError7 = 0.1254

Mdl7 is much less complex and performs only slightly worse than MdlDefault.
Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair argument:

- Gini's Diversity Index (gdi) — The Gini index of a node is
 \[1 - \sum_i p^2(i), \]
 where the sum is over the classes \(i \) at the node, and \(p(i) \) is the observed fraction of classes with class \(i \) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') — With \(p(i) \) defined the same as for the Gini index, the deviance of a node is
 \[-\sum_i p(i) \log_2 p(i). \]
 A pure node has deviance 0; otherwise, the deviance is positive.

- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let \(L(i) \) denote the fraction of members of class \(i \) in the left child node after a split, and \(R(i) \) denote the fraction of members of class \(i \) in the right child node after a split. Choose the split criterion to maximize
 \[
 P(L)P(R) \left(\sum_i |L(i) - R(i)| \right)^2,
 \]
 where \(P(L) \) and \(P(R) \) are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.
• Node error — The node error is the fraction of misclassified classes at a node. If \(j \) is the class with the largest number of training samples at a node, the node error is

\[
1 - p(j).
\]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a classification tree using fitctree, the following restrictions apply.
 • The class labels input argument value (Y) cannot be a categorical array.
 • Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
 • The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
 • The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.
 • You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair argument must be 'off'.

For more information, see “Introduction to Code Generation” on page 31-2.
See Also
ClassificationEnsemble | CompactClassificationTree | RegressionTree |
cmpareHoldout | fitctree | predict

Topics
“Decision Trees” on page 19-2

Introduced in R2011a
classify

Discriminant analysis

Syntax

class = classify(sample, training, group)
class = classify(sample, training, group, 'type')
class = classify(sample, training, group, 'type', prior)
[class, err] = classify(...)
[class, err, POSTERIOR] = classify(...)
[class, err, POSTERIOR, logp] = classify(...)
[class, err, POSTERIOR, logp, coeff] = classify(...)

Description

class = classify(sample, training, group) classifies each row of the data in sample into one of the groups in training. sample and training must be matrices with the same number of columns. group is a grouping variable for training. Its unique values define groups; each element defines the group to which the corresponding row of training belongs. group can be a categorical variable, a numeric vector, a character array, a string array, or a cell array of character vectors. training and group must have the same number of rows. classify treats <undefined> values, NaNs, empty character vectors, empty strings, and <missing> string values in group as missing data values, and ignores the corresponding rows of training. The output class indicates the group to which each row of sample has been assigned, and is of the same type as group.

class = classify(sample, training, group, 'type') allows you to specify the type of discriminant function. Specify type inside single quotes. type is one of:

- linear — Fits a multivariate normal density to each group, with a pooled estimate of covariance. This is the default.
- diaglinear — Similar to linear, but with a diagonal covariance matrix estimate (naive Bayes classifiers).
- quadratic — Fits multivariate normal densities with covariance estimates stratified by group.
• **diagquadratic** — Similar to **quadratic**, but with a diagonal covariance matrix estimate (naive Bayes classifiers).

• **mahalanobis** — Uses Mahalanobis distances with stratified covariance estimates.

```
class = classify(sample,training,group,'type',prior)
```
allows you to specify prior probabilities for the groups. **prior** is one of:

- A numeric vector the same length as the number of unique values in **group** (or the number of levels defined for **group**, if **group** is categorical). If **group** is numeric or categorical, the order of **prior** must correspond to the ordered values in **group**. Otherwise, the order of **prior** must correspond to the order of the first occurrence of the values in **group**.
- A 1-by-1 structure with fields:
 - `prob` — A numeric vector.
 - `group` — Of the same type as **group**, containing unique values indicating the groups to which the elements of **prob** correspond.

As a structure, **prior** can contain groups that do not appear in **group**. This can be useful if **training** is a subset a larger training set. **classify** ignores any groups that appear in the structure but not in the **group** array.

- The character vector or string scalar 'empirical', indicating that group prior probabilities should be estimated from the group relative frequencies in **training**.

prior defaults to a numeric vector of equal probabilities, i.e., a uniform distribution. **prior** is not used for discrimination by Mahalanobis distance, except for error rate calculation.

```
[class,err] = classify(...)
```
also returns an estimate **err** of the misclassification error rate based on the **training** data. **classify** returns the apparent error rate, i.e., the percentage of observations in **training** that are misclassified, weighted by the prior probabilities for the groups.

```
[class,err,POSTERIOR] = classify(...)
```
also returns a matrix **POSTERIOR** of estimates of the posterior probabilities that the jth training group was the source of the ith sample observation, i.e., Pr(group j|obs i). **POSTERIOR** is not computed for Mahalanobis discrimination.

```
[class,err,POSTERIOR,logp] = classify(...)
```
also returns a vector **logp** containing estimates of the logarithms of the unconditional predictive probability density
of the sample observations, \(p(\text{obs } i) = \sum p(\text{obs } i | \text{group } j) \Pr(\text{group } j) \) over all groups. \(\log p \) is not computed for Mahalanobis discrimination.

\[\text{[class, err, POSTERIOR, logp, coeff]} = \text{classify(...)} \]
also returns a structure array \(\text{coeff} \) containing coefficients of the boundary curves between pairs of groups. Each element \(\text{coeff}(I, J) \) contains information for comparing group \(I \) to group \(J \) in the following fields:

- **type** — Type of discriminant function, from the \(\text{type} \) input.
- **name1** — Name of the first group.
- **name2** — Name of the second group.
- **const** — Constant term of the boundary equation (\(K \))
- **linear** — Linear coefficients of the boundary equation (\(L \))
- **quadratic** — Quadratic coefficient matrix of the boundary equation (\(Q \))

For the linear and diaglinear types, the quadratic field is absent, and a row \(x \) from the sample array is classified into group \(I \) rather than group \(J \) if \(0 < K + x^*L \). For the other types, \(x \) is classified into group \(I \) if \(0 < K + x^*L + x^*Q*x' \).

Examples

Classify Using Discriminant Analysis

For training data, use Fisher's sepal measurements for iris versicolor and virginica:

\[\text{load fisheriris} \]
\[\text{SL} = \text{meas}(51:\text{end},1); \]
\[\text{SW} = \text{meas}(51:\text{end},2); \]
\[\text{group} = \text{species}(51:\text{end}); \]
\[\text{h1} = \text{gscatter(SL,SW,group,'rb','v^',[],'off');} \]
\[\text{set(h1,'LineWidth',2)} \]
\[\text{legend('Fisher versicolor','Fisher virginica',...} \]
\[\text{'Location','NW')} \]
Classify a grid of measurements on the same scale:

\[
[X,Y] = \text{meshgrid}(\text{linspace}(4.5,8),\text{linspace}(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = \text{classify}([X\ Y],[SL\ SW],...
\text{group},'Quadratic');
\]

Visualize the classification:

\[
\text{hold on};
gscatter(X,Y,C,'rb','.',1,'off');
K = \text{coeff}(1,2).\text{const};
L = \text{coeff}(1,2).\text{linear};
Q = \text{coeff}(1,2).\text{quadratic};
\]
Function to compute $K + L*v + v'*Q*v$ for multiple vectors
% v=[x;y]. Accepts x and y as scalars or column vectors.
f = @(x,y) K + [x y]*L + sum(([x y]*Q) .* [x y], 2);

h2 = ezplot(f,[4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')

Classify with Fisher Training Data

- Fisher versicolor
- Fisher virginica
- data1
- data2
- data3
Alternative Functionality

The fitcdiscr function also performs discriminant analysis. You can train a classifier by using the fitcdiscr function and predict labels of new data by using the predict function. The fitcdiscr supports cross-validation and hyperparameter optimization and does not require you to fit the classifier every time you make a new prediction or you change prior probabilities.

References

See Also
ClassificationDiscriminant | fitcdiscr | fitcnb | fitctree | mahal | predict

Topics
“Discriminant Analysis Classification” on page 20-2
“Grouping Variables” on page 2-57

Introduced before R2006a
classname

Class: classregtree

(Removed) Class names for classification decision tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

CNAMES = classname(T)
CNAMES = classname(T,J)

Description

CNAMES = classname(T) returns a cell array of character vectors with class names for this classification decision tree.

CNAMES = classname(T,J) takes an array J of class numbers and returns the class names for the specified numbers.

See Also
classregtree
classprob

Class: classregtree

(Removed) Class probabilities

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

```matlab
P = classprob(t)
P = classprob(t,nodes)
```

Description

`P = classprob(t)` returns an `n`-by-`m` array `P` of class probabilities for the nodes in the classification tree `t`, where `n` is the number of nodes and `m` is the number of classes. For any node number `i`, the class probabilities `P(i,:)` are the estimated probabilities for each class for a point satisfying the conditions for node `i`.

`P = classprob(t,nodes)` takes a vector `nodes` of node numbers and returns the class probabilities for the specified nodes.

References

See Also

classregtree | numnodes
classregtree class

(Removed) Classification and regression trees

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Construction

classregtree (Removed) Construct classification and regression trees
Methods

catsplit (Removed) Categorical splits used for branches in decision tree
children (Removed) Child nodes
classcount (Removed) Class counts
classname (Removed) Class names for classification decision tree
classprob (Removed) Class probabilities
cutcategories (Removed) Cut categories
cutpoint (Removed) Decision tree cut point values
cuttype (Removed) Cut types
cutvar (Removed) Cut variable names
disp (Removed) Display classregtree object
display (Removed) Display classregtree object
eval (Removed) Predicted responses
isbranch (Removed) Test node for branch
meansurrrvarassoc (Removed) Mean predictive measure of association for surrogate splits in decision tree
nodeclass (Removed) Class values of nodes of classification tree
nodeerr (Removed) Return vector of node errors
nodemean (Removed) Mean values of nodes of regression tree
nodeprob (Removed) Node probabilities
nodesize (Removed) Return node size
numnodes (Removed) Number of nodes
parent (Removed) Parent node
prune (Removed) Prune tree
prunelist (Removed) Pruning levels for decision tree nodes
risk (Removed) Node risks
subsasgn (Removed) Subscripted reference for classregtree object
subsref (Removed) Subscripted reference for classregtree object
surrcutcategories (Removed) Categories used for surrogate splits in decision tree
surrcutflip (Removed) Numeric cutpoint assignments used for surrogate splits in decision tree
surrcutpoint (Removed) Cutpoints used for surrogate splits in decision tree
surrctype (Removed) Types of surrogate splits used at branches in decision tree
surrcutvar (Removed) Variables used for surrogate splits in decision tree
surrvarassoc (Removed) Predictive measure of association for surrogate splits in decision tree
Properties

Objects of the `classregtree` class have no properties accessible by dot indexing, get methods, or set methods. To obtain information about a `classregtree` object, use the appropriate method.

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

See Also

Topics

“Framework for Ensemble Learning” on page 18-40
“Decision Trees” on page 19-2
“Grouping Variables” on page 2-57
classregtree

Class: classregtree

(Removed) Construct classification and regression trees

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

t = classregtree(X,y)
t = classregtree(X,y,'Name',value)

Description

t = classregtree(X,y) creates a decision tree t for predicting the response y as a function of the predictors in the columns of X. X is an n-by-m matrix of predictor values. If y is a vector of n response values, classregtree performs regression. If y is a categorical variable, character array, or cell array of character vectors, classregtree performs classification. Either way, t is a binary tree where each branching node is split based on the values of a column of X. NaN values in X or y are taken to be missing values. Observations with all missing values for X or missing values for y are not used in the fit. Observations with some missing values for X are used to find splits on variables for which these observations have valid values.

t = classregtree(X,y,'Name',value) specifies one or more optional parameter name/value pairs. Specify Name in single quotes. The following options are available:

For all trees:

• categorical — Vector of indices of the columns of X that are to be treated as unordered categorical variables

• method — Either 'classification' (default if y is text or a categorical variable) or 'regression' (default if y is numeric).
- **names** — A cell array of names for the predictor variables, in the order in which they appear in the X from which the tree was created.

- **prune** — 'on' (default) to compute the full tree and the optimal sequence of pruned subtrees, or 'off' for the full tree without pruning.

- **minparent** — A number k such that impure nodes must have k or more observations to be split (default is 10).

- **minleaf** — A minimal number of observations per tree leaf (default is 1). If you supply both 'minparent' and 'minleaf', *classregtree* uses the setting which results in larger leaves: $\text{minparent} = \max(\text{minparent}, 2*\text{minleaf})$

- **mergeleaves** — 'on' (default) to merge leaves that originate from the same parent node and give the sum of risk values greater or equal to the risk associated with the parent node. If 'off', *classregtree* does not merge leaves.

- **nvartosample** — Number of predictor variables randomly selected for each split. By default all variables are considered for each decision split.

- **stream** — Random number stream. Default is the MATLAB default random number stream.

- **surrogate** — 'on' to find surrogate splits at each branch node. Default is 'off'. If you set this parameter to 'on', *classregtree* can run significantly slower and consume significantly more memory.

- **weights** — Vector of observation weights. By default the weight of every observation is 1. The length of this vector must be equal to the number of rows in X.

For regression trees only:

- **qetoler** — Defines tolerance on quadratic error per node for regression trees. Splitting nodes stops when quadratic error per node drops below $\text{qetoler} * \text{qed}$, where qed is the quadratic error for the entire data computed before the decision tree is grown: $\text{qed} = \text{norm}(y - \text{ybar})$ with ybar estimated as the average of the input array Y. Default value is 1e-6.

For classification trees only:

- **cost** — Square matrix C, where $C(i, j)$ is the cost of classifying a point into class j if its true class is i (default has $C(i, j)=1$ if $i\neq j$, and $C(i, j)=0$ if $i=j$). Alternatively, this value can be a structure S having two fields: S.group containing the group names as a categorical variable, character array, or cell array of character vectors; and S.cost containing the cost matrix C.
• splitcriterion — Criterion for choosing a split. One of 'gdi' (default) or Gini's diversity index, 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction.

• priorprob — Prior probabilities for each class, specified as 'empirical' or 'equal', or as a vector (one value for each distinct group name) or as a structure S with two fields:
 • S.group containing the group names as a categorical variable, character array, or cell array of character vectors.
 • S.prob containing a vector of corresponding probabilities.

If the input value is 'empirical' (default), class probabilities are determined from class frequencies in Y. If the input value is 'equal', all class probabilities are set equal. If both observation weights and class prior probabilities are supplied, the weights are renormalized to add up to the value of the prior probability in the respective class.

References

See Also
eval | fitctree | fitrtree | prune | test | view

Topics
“Grouping Variables” on page 2-57
“Framework for Ensemble Learning” on page 18-40

Introduced in R2007a
cluster

Construct agglomerative clusters from linkages

Syntax

T = cluster(Z,'cutoff',c)
T = cluster(Z,'cutoff',c,'depth',d)
T = cluster(Z,'cutoff',c,'criterion',criterion)
T = cluster(Z,'maxclust',n)

Description

T = cluster(Z,'cutoff',c) constructs clusters from the agglomerative hierarchical cluster tree, Z, as generated by the linkage function. Z is a matrix of size (m - 1)-by-3, where m is the number of observations in the original data. c is a threshold for cutting Z into clusters. Clusters are formed when a node and all of its subnodes have inconsistent value less than c. All leaves at or below the node are grouped into a cluster. t is a vector of size m containing the cluster assignments of each observation.

If c is a vector, T is a matrix of cluster assignments with one column per cutoff value.

T = cluster(Z,'cutoff',c,'depth',d) evaluates inconsistent values by looking to a depth d below each node. The default depth is 2.

T = cluster(Z,'cutoff',c,'criterion',criterion) uses the specified criterion for forming clusters, where criterion is 'inconsistent' (default) or 'distance'. The 'distance' criterion uses the distance between the two subnodes merged at a node to measure node height. All leaves at or below a node with height less than c are grouped into a cluster.

T = cluster(Z,'maxclust',n) constructs a maximum of n clusters using the 'distance' criterion. cluster finds the smallest height at which a horizontal cut through the tree leaves n or fewer clusters.

If n is a vector, T is a matrix of cluster assignments with one column per maximum value.
Examples

Compare Cluster Assignments to Classes

Compare cluster assignments of flowers to their species classification.

Load the sample data.

```matlab
load fisheriris
```

Compute three clusters of the Fisher iris data using the 'average' method and the 'chebychev' metric.

```matlab
Z = linkage(meas,'average','chebychev');
c = cluster(Z,'maxclust',3);
```

Create a dendrogram plot of Z. To see the three clusters, use 'ColorThreshold' with a cutoff halfway between the third-from-last and second-from-last linkages.

```matlab
cutoff = median([Z(end-2,3) Z(end-1,3)]);
dendrogram(Z,'ColorThreshold',cutoff)
```
Display the last two rows of Z to see how the three clusters are combined into one. The `linkage` function combines the 293rd (blue) cluster with the 297th (red) cluster to form the 298th cluster with a linkage of 1.7583. `linkage` then combines the 296th (green) cluster with the 298th cluster.

```matlab
lastTwo = Z(end-1:end,:)
```

```
lastTwo = 2×3
         293.0000  297.0000    1.7583
         296.0000  298.0000    3.4445
```

See how the cluster assignments correspond to the three species. For example, one of the clusters contains 50 flowers of the second species and 40 flowers of the third species.

```matlab
crosstab(c,species)
```
Cluster Data and Plot Result

Randomly generate sample data with 20,000 observations.

```matlab
rng('default') % For reproducibility
X = rand(20000,3);
```

Create a hierarchical cluster tree using Ward's linkage. In this case, 'savememory' is set to 'on' by default. In general, choose the best value for 'savememory' based on the dimensions of X and the available memory.

```matlab
Z = linkage(X,'ward');
```

Cluster data into four groups and plot the result.

```matlab
c = cluster(Z,'Maxclust',4);
scatter3(X(:,1),X(:,2),X(:,3),10,c)
```
See Also
clusterdata | cophenet | inconsistent | linkage | pdist

Introduced before R2006a
cluster

Construct clusters from Gaussian mixture distribution

Syntax

idx = cluster(gm,X)
[idx,nlogL] = cluster(gm,X)
[idx,nlogL,P] = cluster(gm,X)
[idx,nlogL,P,logpdf] = cluster(gm,X)
[idx,nlogL,P,logpdf,d2] = cluster(gm,X)

Description

idx = cluster(gm,X) partitions the data in X into k clusters determined by the k Gaussian mixture components in gm. The value in idx(i) is the cluster index of observation i and indicates the component with the largest posterior probability given the observation i.

[idx,nlogL] = cluster(gm,X) also returns the negative loglikelihood of the Gaussian mixture model gm given the data X.

[idx,nlogL,P] = cluster(gm,X) also returns the posterior probabilities of each Gaussian mixture component in gm given each observation in X.

[idx,nlogL,P,logpdf] = cluster(gm,X) also returns a logarithm of the estimated probability density function (pdf) evaluated at each observation in X.

[idx,nlogL,P,logpdf,d2] = cluster(gm,X) also returns the squared Mahalanobis distance of each observation in X to each Gaussian mixture component in gm.

Examples
Cluster Data

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the `mvnrnd` function. Fit a Gaussian mixture model (GMM) to the generated data by using the `fitgmdist` function. Then, use the `cluster` function to partition the data into two clusters determined by the fitted GMM components.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture components.

\[\mu_1 = [2 \\ 2]; \quad \mu_2 = [-2 \\ -1]; \]
\[\Sigma_1 = [2 \\ 0; 0 \\ 1]; \quad \Sigma_2 = [1 \\ 0; 0 \\ 1]; \]

Generate an equal number of random variates from each component, and combine the two sets of random variates.

```
rng('default') % For reproducibility
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];
```

The combined data set \(X \) contains random variates following a mixture of two bivariate Gaussian distribution.

Fit a two-component GMM to \(X \).

```
gm = fitgmdist(X,2);
```

Plot \(X \) by using `scatter`. Visualize the fitted model \(gm \) by using `pdf` and `ezcontour`.

```
figure
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-6 8],[-4 6])
```
Partition the data into clusters by passing the fitted GMM and the data to `cluster`.

```matlab
dx = cluster(gm,X);
```

Use `gscatter` to create a scatter plot grouped by `idx`.

```matlab
figure;
gscatter(X(:,1),X(:,2),idx);
legend('Cluster 1','Cluster 2','Location','best');
```
Input Arguments

gm — Gaussian mixture distribution

gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the gmdistribution function to create a gmdistribution object by specifying the
distribution parameters. Use the fitgmdist function to fit a gmdistribution model to
data given a fixed number of components.

X — Data

n-by-m numeric matrix

Data, specified as an *n*-by-*m* numeric matrix, where *n* is the number of observations and
m is the number of variables in each observation.

To provide meaningful clustering results, *X* must come from the same population as the
data used to create *gm*.

If a row of *X* contains NaNs, then *cluster* excludes the row from the computation. The
corresponding value in *idx*, *P*, *logpdf*, and *d2* is NaN.

Data Types: single | double

Output Arguments

idx — Cluster index

n-by-1 positive integer vector

Cluster index, returned as an *n*-by-1 positive integer vector, where *n* is the number of
observations in *X*.

idx(i) is the cluster index of observation *i* and indicates the Gaussian mixture
component with the largest posterior probability given the observation *i*.

nlogL — Negative loglikelihood

numeric value

Negative loglikelihood value of the Gaussian mixture model *gm* given the data *X*, returned
as a numeric value.

P — Posterior probability

n-by-*k* numeric vector

Posterior probability of each Gaussian mixture component in *gm* given each observation in
X, returned as an *n*-by-*k* numeric vector, where *n* is the number of observations in *X* and *k*
is the number of mixture components in *gm*.
P(i, j) is the posterior probability of the jth Gaussian mixture component given observation i, Probability(component j | observation i).

logpdf — Logarithm of estimated pdf

n-by-1 numeric vector

Logarithm of the estimated pdf, evaluated at each observation in X, returned as an *n*-by-1 numeric vector, where *n* is the number of observations in X.

logpdf(i) is the logarithm of the estimated pdf at observation i. The cluster function computes the estimated pdf by using the likelihood of each component given each observation and the component probabilities.

\[
\text{logpdf}(i) = \log \sum_{j=1}^{k} L(C_j | O_i) P(C_j),
\]

where \(L(C_j | O_i)\) is the likelihood of component j given observation i, and \(P(C_j)\) is the probability of component j. The cluster function computes the likelihood term by using the multivariate normal pdf of the jth Gaussian mixture component evaluated at observation i. The component probabilities are the mixing proportions of mixture components, the ComponentProportion property of gm.

d2 — Squared Mahalanobis distance

n-by-*k* numeric matrix

Squared Mahalanobis distance of each observation in X to each Gaussian mixture component in gm, returned as an *n*-by-*k* numeric matrix, where *n* is the number of observations in X and *k* is the number of mixture components in gm.

d2(i, j) is the squared distance of observation i to the jth Gaussian mixture component.

See Also

fitgmdist | gmdistribution | mahal | posterior

Topics

“Gaussian Mixture Models” on page 5-145
“Cluster Using Gaussian Mixture Models” on page 16-29
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
“Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48

Introduced in R2007b
ClusterCriterion

Package: clustering.evaluation

Clustering evaluation object

Description

Create a clustering evaluation object using evalclusters.

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering algorithm name or function handle. If the clustering solutions are provided in the input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK, stored as a vector of numerical values.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing equals true, then the corresponding value in the data matrix x is not used in the clustering solution.
NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of positive integer values. If the clustering solutions are provided in the input, OptimalY is empty.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

- addK: Evaluate additional numbers of clusters
- plot: Plot clustering evaluation object criterion values
- compact: Compact clustering evaluation object

See Also

CalinskiHarabaszEvaluation | DaviesBouldinEvaluation | GapEvaluation | SilhouetteEvaluation | evalclusters

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)
clusterdata

Agglomerative clusters from data

Syntax

\[
T = \text{clusterdata}(X,\text{cutoff}) \\
T = \text{clusterdata}(X,\text{Name},\text{Value})
\]

Description

\[
T = \text{clusterdata}(X,\text{cutoff})
\]
returns the cluster indices (T) for each observation (row) of the data (X) while adhering to a threshold for cutting the hierarchical tree (cutoff).

\[
T = \text{clusterdata}(X,\text{Name},\text{Value})
\]
clusters with additional options specified by one or more Name,Value pair arguments.

Input Arguments

\[x\]

Matrix with two or more rows. The rows represent observations, the columns represent categories or dimensions.

\[\text{cutoff}\]

When \(0 < \text{cutoff} < 2\), clusterdata forms clusters when inconsistent values are greater than cutoff (see inconsistent). When cutoff is an integer \(\geq 2\), clusterdata interprets cutoff as the maximum number of clusters to keep in the hierarchical tree generated by linkage.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Criterion

Either 'inconsistent' or 'distance'.

Cutoff

Cutoff for inconsistent or distance metric, a positive scalar. When $0 < \text{Cutoff} < 2$, `clusterdata` forms clusters when inconsistent values are greater than Cutoff (see inconsistent). When Cutoff is an integer ≥ 2, `clusterdata` interprets Cutoff as the maximum number of clusters to keep in the hierarchical tree generated by `linkage`.

Depth

Depth for computing inconsistent values, a positive integer.

Distance

Any of the distance metric names allowed by `pdist`:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance (default).</td>
</tr>
<tr>
<td>'squaredeuclidean'</td>
<td>Squared Euclidean distance. (This option is provided for efficiency only. It does not satisfy the triangle inequality.)</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between observations is scaled by dividing by the corresponding element of the standard deviation, $S = \text{nanstd}(X)$.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance using the sample covariance of X, $C = \text{nancov}(X)$.</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To use a different exponent P, specify P after 'minkowski', where P is a positive scalar value: 'minkowski', P</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>@distfun</td>
<td>Custom distance function handle. A distance function has the form</td>
</tr>
</tbody>
</table>

```matlab
function D2 = distfun(ZI,ZJ)
% calculation of distance
...
```

where

- **ZI** is a 1-by-n vector containing a single observation.
- **ZJ** is an m2-by-n matrix containing multiple observations.
 `distfun` must accept a matrix ZJ with an arbitrary number of observations.
- **D2** is an m2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:),.

If your data is not sparse, generally it is faster to use a built-in distance than to use a function handle.

For more information on these distance metrics, see “Distance Metrics” on page 32-4703.

Linkage

Any of the linkage methods allowed by the `linkage` function:

- 'average'
- 'centroid'
For details, see the definitions in the linkage function reference page.

Maxclust

Maximum number of clusters to form, a positive integer.

Savememory

Either 'on' or 'off'. When applicable, the 'on' setting causes clusterdata to construct clusters without computing the distance matrix. Savememory is applicable when:

- Linkage is 'centroid', 'median', or 'ward'
- Distance is 'euclidean' (default)

When Savememory is 'on', linkage run time is proportional to the number of dimensions (number of columns of X). When Savememory is 'off', linkage memory requirement is proportional to N^2, where N is the number of observations. So choosing the best (least-time) setting for Savememory depends on the problem dimensions, number of observations, and available memory. The default Savememory setting is a rough approximation of an optimal setting.

Default: 'on' when X has 20 columns or fewer, or the computer does not have enough memory to store the distance matrix; otherwise 'off'

Output Arguments

T

T is a vector of size m containing a cluster number for each observation.

- When $0 < \text{cutoff} < 2$, $T = \text{clusterdata}(X, \text{cutoff})$ is equivalent to:
Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'Cutoff',cutoff);

• When cutoff is an integer ≥ 2, T = clusterdata(X,cutoff) is equivalent to:

 Y = pdist(X,'euclid');
 Z = linkage(Y,'single');
 T = cluster(Z,'Maxclust',cutoff);

Examples

Create Hierarchical Cluster Tree From Sample Data

This example shows how to create a hierarchical cluster tree from sample data, and visualize the clusters using a 3-dimensional scatter plot.

Generate sample data matrices containing random numbers from the standard uniform distribution.

```matlab
rng('default');  % For reproducibility
X = [gallery('uniformdata',[10 3],12);...
    gallery('uniformdata',[10 3],13)+1.2;...
    gallery('uniformdata',[10 3],14)+2.5];
```

Compute the distances between items and create a hierarchical cluster tree from the sample data. List all of the items in cluster 2.

```matlab
T = clusterdata(X,'Maxclust',3);
find(T==2)
```

```
ans = 10×1
11
12
13
14
15
16
17
18
19
```
Plot the data with each cluster shown in a different color.

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')

Create Hierarchical Cluster Tree Using Ward's Linkage

This example shows how to create a hierarchical cluster tree using Ward's linkage, and visualize the clusters using a 3-dimensional scatter plot.
Create a 20,000-by-3 matrix of sample data generated from the standard uniform distribution.

```matlab
rng('default');  % For reproducibility
X = rand(20000,3);
```

Create a hierarchical cluster tree from the sample data using Ward's linkage. Set 'savememory' to 'on' to construct clusters without computing the distance matrix.

```matlab
c = clusterdata(X,'Linkage','ward','Savememory','on','Maxclust',4);
```

Plot the data with each cluster shown in a different color.

```matlab
scatter3(X(:,1),X(:,2),X(:,3),10,c)
```
Tips

- The centroid and median methods can produce a cluster tree that is not monotonic. This occurs when the distance from the union of two clusters, \(r \) and \(s \), to a third cluster is less than the distance between \(r \) and \(s \). In this case, in a dendrogram drawn with the default orientation, the path from a leaf to the root node takes some downward steps. To avoid this, use another method. The following image shows a nonmonotonic cluster tree.

![Dendrogram Example](image)

In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance between this new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3. This leads to a nonmonotonic tree.

- You can provide the output \(T \) to other functions including dendrogram to display the tree, cluster to assign points to clusters, inconsistent to compute inconsistent measures, and cophenet to compute the cophenetic correlation coefficient.

See Also

cluster|inconsistent|kmeans|linkage|pdist

Introduced before R2006a
cmdscale

Classical multidimensional scaling

Syntax

Y = cmdscale(D)
[Y,e] = cmdscale(D)
[Y,e] = cmdscale(D,p)

Description

Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p configuration matrix Y. Rows of Y are the coordinates of n points in p-dimensional space for some p < n. When D is a Euclidean distance matrix, the distances between those points are given by D. p is the dimension of the smallest space in which the n points whose inter-point distances are given by D can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is Euclidean, the first p elements of e are positive, the rest zero. If the first k elements of e are much larger than the remaining (n-k), then you can use the first k columns of Y as k-dimensional points whose inter-point distances approximate D. This can provide a useful dimension reduction for visualization, e.g., for k = 2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more general dissimilarity matrix, then some elements of e are negative, and cmdscale chooses p as the number of positive eigenvalues. In this case, the reduction to p or fewer dimensions provides a reasonable approximation to D only if the negative elements of e are small in magnitude.

[Y,e] = cmdscale(D,p) also accepts a positive integer p between 1 and n. p specifies the dimensionality of the desired embedding Y. If a p dimensional embedding is possible, then Y will be of size n-by-p and e will be of size p-by-1. If only a q dimensional embedding with q < p is possible, then Y will be of size n-by-q and e will be of size p-by-1. Specifying p may reduce the computational burden when n is very large.

You can specify D as either a full dissimilarity matrix, or in upper triangle vector form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and
have zeros along the diagonal and positive elements everywhere else. A dissimilarity matrix in upper triangle form must have real, positive entries. You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. cmdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y equal or approximate $\sqrt{1-D}$. To use a different transformation, you must transform the similarities prior to calling cmdscale.

Examples

Construct a Map Using Multidimensional Scaling

This example shows how to construct a map of 10 US cities based on the distances between those cities, using cmdscale.

First, create the distance matrix and pass it to cmdscale. In this example, D is a full distance matrix: it is square and symmetric, has positive entries off the diagonal, and has zeros on the diagonal.

cities = ...
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [0 587 1212 701 1936 604 748 2139 2182 543;
 587 0 920 940 1745 1188 713 1858 1737 597;
 1212 920 0 879 831 1726 1631 949 1021 1494;
 701 940 879 0 1374 968 1420 1645 1891 1220;
 1936 1745 831 1374 0 2339 2451 347 959 2300;
 604 1188 1726 968 2339 0 1092 2594 2734 923;
 748 713 1631 1420 2451 1092 0 2571 2408 205;
 2139 1858 949 1645 347 2594 2571 0 678 2442;
 2182 1737 1021 1891 959 2734 2408 678 0 2329;
 543 597 1494 1220 2300 923 205 2442 2329 0];
[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are negative, indicating that the original distances are not Euclidean. This is because of the curvature of the earth.

format short g
[eigvals eigvals/max(abs(eigvals))]

ans = 10×2
However, in this case, the two largest positive eigenvalues are much larger in magnitude than the remaining eigenvalues. So, despite the negative eigenvalues, the first two coordinates of Y are sufficient for a reasonable reproduction of D.

```matlab
Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)
```

```matlab
maxrelerr =
     0.0075371
```

Here is a plot of the reconstructed city locations as a map. The orientation of the reconstruction is arbitrary.

```matlab
plot(Y(:,1),Y(:,2),'.')
text(Y(:,1)+25,Y(:,2),cities)
xlabel('Miles')
ylabel('Miles')
```
Evaluate Reconstructions Using Different Distance Metrics

Determine how the quality of reconstruction varies when you reduce points to distances using different metrics.

Generate ten points in 4-D space that are close to 3-D space. Take a linear transformation of the points so that their transformed values are close to a 3-D subspace that does not align with the coordinate axes.

```matlab
rng default  % Set the seed for reproducibility
A = [normrnd(0,1,10,3) normrnd(0,0.1,10,1)];
```
B = randn(4,4);
X = A*B;

Reduce the points in X to distances by using the Euclidean metric. Find a configuration Y with the inter-point distances.

D = pdist(X,'euclidean');
Y = cmdscale(D);

Compare the quality of the reconstructions when using 2, 3, or 4 dimensions. The small maxerr3 value indicates that the first 3 dimensions provide a good reconstruction.

maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))
maxerr2 = 0.1631
maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))
maxerr3 = 0.0187
maxerr4 = max(abs(pdist(X)-pdist(Y)))
maxerr4 = 7.9936e-15

Reduce the points in X to distances by using the 'cityblock' metric. Find a configuration Y with the inter-point distances.

D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);

Evaluate the quality of the reconstruction. e contains at least one negative element of large magnitude, which might account for the poor quality of the reconstruction.

maxerr = max(abs(pdist(X)-pdist(Y)))
maxerr = 9.0488
min(e)
ans = -5.6586

References

See Also
mdscale | pdist | procrustes

Introduced before R2006a
coefCI

Confidence intervals of coefficient estimates of generalized linear model

Syntax

\[
\text{ci} = \text{coefCI}(\text{mdl})
\]

\[
\text{ci} = \text{coefCI}(\text{mdl},\alpha)
\]

Description

\[
\text{ci} = \text{coefCI}(\text{mdl}) \text{ returns confidence intervals for the coefficients in } \text{mdl}.
\]

\[
\text{ci} = \text{coefCI}(\text{mdl},\alpha) \text{ returns confidence intervals with confidence level } 1 - \alpha.
\]

Input Arguments

mdl

Generalized linear model, specified as a full `GeneralizedLinearModel` object constructed using `fitglm` or `stepwiseglm`, or a compacted `CompactGeneralizedLinearModel` object constructed using `compact`.

alpha

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

Default: 0.05
Output Arguments

ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of coefficient j of mdl. The name of coefficient j of mdl is in mdl.CoefficientNames.

Examples

Confidence Interval for Coefficients of a Generalized Linear Model

Find confidence intervals for the coefficients of a fitted generalized nonlinear model.

Generate artificial data for the model using Poisson random numbers with two underlying predictors X(1) and X(2).

```matlab
rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,...
    'y ~ x1 + x2','distr','poisson')
```

mdl =

Generalized linear regression model:
log(y) ~ 1 + x1 + x2
Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0405</td>
<td>0.022122</td>
<td>47.034</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>0.9968</td>
<td>0.003362</td>
<td>296.49</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>1.987</td>
<td>0.006343</td>
<td>313.24</td>
<td>0</td>
</tr>
</tbody>
</table>
100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Find 95% (default) confidence intervals on the coefficients of the model.

```matlab
ci = coefCI(mdl)
```

```
   row 1    0.9966    1.0844
   row 2    0.9901    1.0035
   row 3    1.9744    1.9996
```

Find 99% confidence intervals on the coefficients.

```matlab
alpha = .01;
ci = coefCI(mdl, alpha)
```

```
   row 1    0.9824    1.0986
   row 2    0.9880    1.0056
   row 3    1.9703    2.0036
```

Definitions

Confidence Interval

Assume that model assumptions hold (data comes from a generalized linear model represented by the formula `mdl`.Formula and the specified link function, and with observations that are independent conditional on the predictor values). Then row j of the confidence interval matrix ci gives a confidence interval \([ci(j,1),ci(j,2)]\) computed such that, with repeated experimentation, a proportion \(1 - \alpha\) of the intervals will contain the true value of the coefficient.

See Also

CompactGeneralizedLinearModel | GeneralizedLinearModel
Topics
“Generalized Linear Model Workflow” on page 12-40
coefCI

Class: GeneralizedLinearMixedModel

Confidence intervals for coefficients of generalized linear mixed-effects model

Syntax

feCI = coefCI(glme)
feCI = coefCI(glme,Name,Value)
[feCI,reCI] = coefCI(__)

Description

feCI = coefCI(glme) returns the 95% confidence intervals for the fixed-effects coefficients in the generalized linear mixed-effects model glme.

feCI = coefCI(glme,Name,Value) returns the confidence intervals using additional options specified by one or more Name,Value pair arguments. For example, you can specify a different confidence level or the method used to compute the approximate degrees of freedom.

[feCI,reCI] = coefCI(__) also returns the confidence intervals for the random-effects coefficients using any of the previous syntaxes.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, NameN, ValueN.

Alpha — Confidence level
0.05 (default) | scalar value in the range [0, 1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range [0, 1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha', 0.01

Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'residual'</td>
<td>The degrees of freedom value is assumed to be constant and equal to n – p, where n is the number of observations and p is the number of fixed effects.</td>
</tr>
<tr>
<td>'none'</td>
<td>The degrees of freedom is set to infinity.</td>
</tr>
</tbody>
</table>

Example: 'DFMethod', 'none'

Output Arguments

feCI — Fixed-effects confidence intervals
p-by-2 matrix
Fixed-effects confidence intervals, returned as a p-by-2 matrix. \texttt{feCI} contains the confidence limits that correspond to the p-by-1 fixed-effects vector returned by the \texttt{fixedEffects} method. The first column of \texttt{feCI} contains the lower confidence limits and the second column contains the upper confidence limits.

When fitting a GLME model using \texttt{fitglme} and one of the maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'):

- If you specify the 'CovarianceMethod' name-value pair argument as 'conditional', then the confidence intervals are conditional on the estimated covariance parameters.
- If you specify the 'CovarianceMethod' name-value pair argument as 'JointHessian', then the confidence intervals account for the uncertainty in the estimated covariance parameters.

When fitting a GLME model using \texttt{fitglme} and one of the pseudo likelihood fit methods ('MPL' or 'REML'), \texttt{coefci} uses the fitted linear mixed effects model from the final pseudo likelihood iteration to compute confidence intervals on the fixed effects.

\textbf{reCI — Random-effects confidence intervals}

q-by-2 matrix

Random-effects confidence intervals, returned as a q-by-2 matrix. \texttt{reCI} contains the confidence limits corresponding to the q-by-1 random-effects vector B returned by the \texttt{randomEffects} method. The first column of \texttt{reCI} contains the lower confidence limits, and the second column contains the upper confidence limits.

When fitting a GLME model using \texttt{fitglme} and one of the maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'), \texttt{coefCI} computes the confidence intervals using the conditional mean squared error of prediction (CMSEP) approach conditional on the estimated covariance parameters and the observed response. Alternatively, you can interpret the confidence intervals from \texttt{coefCI} as approximate Bayesian credible intervals conditional on the estimated covariance parameters and the observed response.

When fitting a GLME model using \texttt{fitglme} and one of the pseudo likelihood fit methods ('MPL' or 'REML'), \texttt{coefci} uses the fitted linear mixed effects model from the final pseudo likelihood iteration to compute confidence intervals on the random effects.
Examples

95% Confidence Intervals for Fixed Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]
This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time_dev}_{ij} + \beta_3 \text{temp_dev}_{ij} + \beta_4 \text{supplier_C}_{ij} + \beta_5 \text{supplier_B}_{ij} + b_i,
\]

where

- \(\text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \(i \) during batch \(j \).
- \(\mu_{ij} \) is the mean number of defects corresponding to factory \(i \) (where \(i = 1, 2, \ldots, 20 \)) during batch \(j \) (where \(j = 1, 2, \ldots, 5 \)).
- \(\text{newprocess}_{ij}, \text{time_dev}_{ij}, \text{and temp_dev}_{ij} \) are the measurements for each variable that correspond to factory \(i \) during batch \(j \). For example, \(\text{newprocess}_{ij} \) indicates whether the batch produced by factory \(i \) during batch \(j \) used the new process.
- \(\text{supplier_C}_{ij} \) and \(\text{supplier_B}_{ij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i \) during batch \(j \).
- \(b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \(i \) that accounts for factory-specific variation in quality.

\[
\text{glme} = \text{fitglme}('mfr', '\text{defects} \sim 1 + \text{newprocess} + \text{time_dev} + \text{temp_dev} + \text{supplier} + (1|\text{factory}'), '\text{Distribution}', 'Poisson', '\text{Link}', '\text{log}', '\text{FitMethod}', '\text{Laplace}', '\text{DummyVarCoding}', '\text{effects}');
\]

Use \text{fixedEffects} to display the estimates and names of the fixed-effects coefficients in \text{glme}.

\[
[\text{beta, betanames}] = \text{fixedEffects}('\text{glme}');
\]

\[
\text{beta} = 6 \times 1
\]

\[
\begin{align*}
1.4689 \\
-0.3677 \\
-0.0945 \\
-0.2832 \\
-0.0719 \\
0.0711
\end{align*}
\]
betanames = 6×1 table
Name

'(Intercept)' 'newprocess' 'time_dev' 'temp_dev' 'supplier_C' 'supplier_B'

Each row of beta contains the estimated value for the coefficient named in the corresponding row of betanames. For example, the value -0.0945 in row 3 of beta is the estimated coefficient for the predictor variable time_dev.

Compute the 95% confidence intervals for the fixed-effects coefficients.

feCI = coefCI(glme)

feCI = 6×2

1.1515 1.7864
-0.7202 -0.0151
-1.7395 1.5505
-2.1926 1.6263
-0.2268 0.0831
-0.0826 0.2247

Column 1 of feCI contains the lower bound of the 95% confidence interval. Column 2 contains the upper bound. Row 1 corresponds to the intercept term. Rows 2, 3, and 4 correspond to newprocess, time_dev, and temp_dev, respectively. Rows 5 and 6 correspond to the indicator variables supplier_C and supplier_B, respectively. For example, the 95% confidence interval for the coefficient for time_dev is [-1.7395, 1.5505]. Some of the confidence intervals include 0, which indicates that those predictors are not significant at the 5% significance level. To obtain specific P-values for each fixed-effects term, use fixedEffects. To test significance for entire terms, use anova.
99% Confidence Intervals for Random Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients.

The number of defects can be modeled using a Poisson distribution

$$\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij})$$

This corresponds to the generalized linear mixed-effects model

$$\log(\mu_{ij}) = \beta_0 + \beta_1\text{newprocess}_{ij} + \beta_2\text{time}_\text{dev}_{ij} + \beta_3\text{temp}_\text{dev}_{ij} + \beta_4\text{supplier}_C_{ij} + \beta_5\text{supplier}_B_{ij} + b_i,$$
where

- \(\text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \(i \) during batch \(j \).
- \(\mu_{ij} \) is the mean number of defects corresponding to factory \(i \) (where \(i = 1, 2, \ldots, 20 \)) during batch \(j \) (where \(j = 1, 2, \ldots, 5 \)).
- \(\text{newprocess}_{ij} \), \(\text{time}_\text{dev}_{ij} \), and \(\text{temp}_\text{dev}_{ij} \) are the measurements for each variable that correspond to factory \(i \) during batch \(j \). For example, \(\text{newprocess}_{ij} \) indicates whether the batch produced by factory \(i \) during batch \(j \) used the new process.
- \(\text{supplier}_C_{ij} \) and \(\text{supplier}_B_{ij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i \) during batch \(j \).
- \(b_i \sim N(0, \sigma^2_b) \) is a random-effects intercept for each factory \(i \) that accounts for factory-specific variation in quality.

\[
\text{glme} = \text{fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)'),'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
\]

Use \text{randomEffects} to compute and display the estimates of the empirical Bayes predictors (EBPs) for the random effects associated with factory.

\[
[B,Bnames] = \text{randomEffects(glme)}
\]

\[
B = 20\times1
\]

\[
\begin{align*}
0.2913 \\
0.1542 \\
-0.2633 \\
-0.4257 \\
0.5453 \\
-0.1069 \\
0.3040 \\
-0.1653 \\
-0.1458 \\
-0.0816 \\
\vdots
\end{align*}
\]
Each row of B contains the estimated EBPs for the random-effects coefficient named in the corresponding row of Bnames. For example, the value -0.2633 in row 3 of B is the estimated coefficient of '(Intercept)' for level '3' of factory.

Compute the 99% confidence intervals of the EBPs for the random effects.

\[
[\text{feCI}, \text{reCI}] = \text{coefCI}(\text{glme}, '\text{Alpha}', 0.01);
\]

reCI

\[
\text{reCI} = 20 \times 2
\]

-0.2125 0.7951
-0.3510 0.6595
-0.8219 0.2954
-0.9953 0.1440
0.0730 1.0176
-0.6362 0.4224
-0.1796 0.7877
-0.7044 0.3738
-0.6795 0.3880
-0.6142 0.4509
Column 1 of `reCI` contains the lower bound of the 99% confidence interval. Column 2 contains the upper bound. Each row corresponds to a level of `factory`, in the order shown in `Bnames`. For example, row 3 corresponds to the coefficient of `(Intercept)` for level '3' of `factory`, which has a 99% confidence interval of [-0.8219, 0.2954]. For additional statistics related to each random-effects term, use `randomEffects`.

References

See Also

`GeneralizedLinearMixedModel` | `anova` | `coefTest` | `covarianceParameters` | `fixedEffects` | `randomEffects`
coefCI

Class: CompactLinearModel

Confidence intervals of coefficient estimates of linear model

Syntax

\[ci = \text{coefCI}(mdl) \]
\[ci = \text{coefCI}(mdl,\alpha) \]

Description

\[ci = \text{coefCI}(mdl) \] returns confidence intervals for the coefficients in \(mdl\).

\[ci = \text{coefCI}(mdl,\alpha) \] returns confidence intervals using the confidence level \(1 - \alpha\).

Input Arguments

\texttt{mdl} — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full \texttt{LinearModel} object constructed using \texttt{fitlm} or \texttt{stepwiselm}, or a compacted \texttt{CompactLinearModel} object constructed using \texttt{compact}.

\texttt{alpha} — Confidence interval
0.05 (default) | numeric value in the range \([0,1]\)

Confidence interval, specified as a numeric value in the range \([0,1]\). \texttt{alpha} is the probability that the confidence interval does not contain the true value.
Output Arguments

\textbf{ci} — Confidence intervals
numeric matrix

Confidence intervals, returned as a \(k \)-by-2 numeric matrix. The \(j \)th row of \(\text{ci} \) is the confidence interval of coefficient \(j \) of \(\text{mdl} \). The name of coefficient \(j \) is stored in the \(\text{mdl} \) property \text{CoefficientNames}.

Examples

\textbf{Fit Linear Model Using Default Confidence Intervals}

Fit a linear regression model for auto mileage based on the \texttt{carbig} data. Then obtain the default 95\% confidence intervals for the resulting model coefficients.

Load the data and create a table.

```matlab
load carbig
Origin = nominal(Origin);
tbl = table(Horsepower,Weight,MPG,Origin);
```

Fit a linear regression model. Use horsepower, weight, and origin as predictor variables, and miles per gallon as the response variable.

```matlab
modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);
```

View the names of the coefficients.

```matlab
mdl.CoefficientNames
ans = 1x9 cell array
    Columns 1 through 4
    {'(Intercept)'}    {'Horsepower'}    {'Weight'}    {'Origin_France'}
    Columns 5 through 7
    {'Origin_Germany'}    {'Origin_Italy'}    {'Origin_Japan'}
```
Find confidence intervals for the coefficients of the model.

\[
\text{ci} = \text{coefCI}(\text{mdl})
\]

\[
\text{ci} = \begin{bmatrix}
43.3611 & 59.9390 \\
-0.0748 & -0.0315 \\
-0.0059 & -0.0037 \\
-17.3623 & -0.3477 \\
-15.7503 & 0.7434 \\
-17.2091 & 0.0613 \\
-14.5106 & 1.8738 \\
-18.5820 & -1.5036 \\
-17.3114 & -0.9642
\end{bmatrix}
\]

Fit Linear Model with Custom Confidence Intervals

Fit a linear regression model for auto mileage based on the carbig data. Then obtain confidence intervals for the resulting model coefficients at the 99% level.

Load the data and create a table.

```matlab
load carbig
Origin = nominal(Origin);
tbl = table(Horsepower,Weight,MPG,Origin);
```

Fit a linear regression model using horsepower, weight, and origin as the predictor variables, and miles per gallon as the response variable.

```matlab
modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);
```

Find 99% confidence intervals for the coefficients.

```matlab
\text{ci} = \text{coefCI}(\text{mdl}, .01)
\```


### Definitions

#### Confidence Interval

Assume that model assumptions hold (data comes from a generalized linear model represented by the formula `mdl.Formula`, and with observations that are independent conditional on the predictor values). Then row $j$ of the confidence interval matrix $ci$ gives a confidence interval $[ci(j,1),ci(j,2)]$ computed such that, with repeated experimentation, a proportion $1 - \alpha$ of the intervals will contain the true value of the coefficient.

#### Alternatives

You can create the intervals from the model coefficients in `mdl.Coefficients.Estimate` and an appropriate multiplier of the standard errors $\sqrt{\text{diag}(mdl.CoefficientCovariance)}$. The multiplier is $\text{tinv}(1-\alpha/2,\text{dof})$, where `level` is the confidence level, and `dof` is the degrees of freedom (number of data points minus the number of coefficients).

### See Also

`CompactLinearModel | LinearModel`
Topics
“Linear Regression” on page 11-11
**coefCI**

**Class:** LinearMixedModel

Confidence intervals for coefficients of linear mixed-effects model

**Syntax**

feCI = coefCI(lme)  
feCI = coefCI(lme,Name,Value)  
[feCI,reCI] = coefCI(__)

**Description**

feCI = coefCI(lme) returns the 95% confidence intervals for the fixed-effects coefficients in the linear mixed-effects model lme.

feCI = coefCI(lme,Name,Value) returns the 95% confidence intervals for the fixed-effects coefficients in the linear mixed-effects model lme with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the confidence level or method to compute the degrees of freedom.

[feCI,reCI] = coefCI(__) also returns the 95% confidence intervals for the random-effects coefficients in the linear mixed-effects model lme.

**Input Arguments**

lme — Linear mixed-effects model  
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha', 0.01

Data Types: single | double

**DFMethod — Method for computing approximate degrees of freedom**

'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for confidence interval computation, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual'

Default. The degrees of freedom are assumed to be constant and equal to n - p, where n is the number of observations and p is the number of fixed effects.

'satterthwaite'

Satterthwaite approximation.

'none'

All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.

Example: 'DFMethod', 'satterthwaite'
Output Arguments

**feCI — Fixed-effects confidence intervals**

\[ p \times 2 \] matrix

Fixed-effects confidence intervals, returned as a \( p \times 2 \) matrix. \( \text{feCI} \) contains the confidence limits that correspond to the \( p \) fixed-effects estimates in the vector \( \text{beta} \) returned by the \text{fixedEffects} method. The first column of \( \text{feCI} \) has the lower confidence limits and the second column has the upper confidence limits.

**reCI — Random-effects confidence intervals**

\[ q \times 2 \] matrix

Random-effects confidence intervals, returned as a \( q \times 2 \) matrix. \( \text{reCI} \) contains the confidence limits corresponding to the \( q \) random-effects estimates in the vector \( \text{B} \) returned by the \text{randomEffects} method. The first column of \( \text{reCI} \) has the lower confidence limits and the second column has the upper confidence limits.

Examples

**95% Confidence Intervals for Fixed-Effects Coefficients**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'))
```

\( \text{weight} \) contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define \text{Subject} and \text{Program} as categorical variables.

```matlab
tbl = table(InitialWeight, Program, Subject, Week, y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fixed-effects coefficient estimates.

fe = fixedEffects(lme)

fe = 9×1

0.6610
0.0032
0.3608
-0.0333
0.1132
0.1732
0.0388
0.0305
0.0331

The first estimate, 0.6610, corresponds to the constant term. The second row, 0.0032, and
the third row, 0.3608, are estimates for the coefficient of initial weight and week,
respectively. Rows four to six correspond to the indicator variables for programs B-D, and
the last three rows correspond to the interaction of programs B-D and week.

Compute the 95% confidence intervals for the fixed-effects coefficients.

fecI = coefCI(lme)

fecI = 9×2

0.1480    1.1741
0.0005    0.0059
0.1004    0.6211
-0.2932    0.2267
-0.1471    0.3734
0.0395    0.3069
-0.1503    0.2278
-0.1585    0.2196
-0.1559    0.2221

Some confidence intervals include 0. To obtain specific \( P \)-values for each fixed-effects
term, use the fixedEffects method. To test for entire terms use the anova method.
Confidence Intervals with Specified Options

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and horsepower, and a potentially correlated random effect for intercept and acceleration grouped by model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficient estimates.

fe = fixedEffects(lme)

fe = 3×1
75.1325
-0.5833
-0.1695

Compute the 99% confidence intervals for fixed-effects coefficients using the residuals method to determine the degrees of freedom. This is the default method.

feCI = coefCI(lme,'Alpha',0.01)

feCI = 3×2
44.2690   55.9961
-0.9300   -0.2365
-0.1883   -0.1507

Compute the 99% confidence intervals for fixed-effects coefficients using the Satterthwaite approximation to compute the degrees of freedom.

feCI = coefCI(lme,'Alpha',0.01,'DFMethod','satterthwaite')
feCI = 3×2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>44.0949</td>
<td>56.1701</td>
</tr>
<tr>
<td>-0.9640</td>
<td>-0.2025</td>
</tr>
<tr>
<td>-0.1884</td>
<td>-0.1507</td>
</tr>
</tbody>
</table>

The Satterthwaite approximation produces similar confidence intervals than the residual method.

**Compute Confidence Intervals for Random Effects**

Load the sample data.

load(fullfile(matlabroot,'examples','stats','shift.mat'))

The data shows the deviations from the target quality characteristic measured from the products that five operators manufacture during three shifts: morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if there is significant difference in the performance according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the estimate of the BLUPs for random effects.

randomEffects(lme)

ans = 5×1

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5775</td>
</tr>
<tr>
<td>1.1757</td>
</tr>
<tr>
<td>-2.1715</td>
</tr>
</tbody>
</table>
Compute the 95% confidence intervals for random effects.

\[
\begin{bmatrix}
2.3655 \\
-1.9472 \\
\end{bmatrix}
\]

\[
[~,\text{reCI}] = \text{coefCI}(\text{lme})
\]

\[
\text{reCI} = 5 \times 2
\]

\[
\begin{bmatrix}
-1.3916 & 2.5467 \\
-0.7934 & 3.1449 \\
-4.1407 & -0.2024 \\
0.3964 & 4.3347 \\
-3.9164 & 0.0219 \\
\end{bmatrix}
\]

Compute the 99% confidence intervals for random effects using the residuals method to determine the degrees of freedom. This is the default method.

\[
[~,\text{reCI}] = \text{coefCI}(\text{lme},'\text{Alpha}',0.01)
\]

\[
\text{reCI} = 5 \times 2
\]

\[
\begin{bmatrix}
-2.1831 & 3.3382 \\
-1.5849 & 3.9364 \\
-4.9322 & 0.5891 \\
-0.3951 & 5.1261 \\
-4.7079 & 0.8134 \\
\end{bmatrix}
\]

Compute the 99% confidence intervals for random effects using the Satterthwaite approximation to determine the degrees of freedom.

\[
[~,\text{reCI}] = \text{coefCI}(\text{lme},'\text{Alpha}',0.01,'\text{DFMethod}','\text{satterthwaite}')
\]

\[
\text{reCI} = 5 \times 2
\]

\[
\begin{bmatrix}
-2.6840 & 3.8390 \\
-2.0858 & 4.4372 \\
-5.4330 & 1.0900 \\
-0.8960 & 5.6270 \\
-5.2087 & 1.3142 \\
\end{bmatrix}
\]
The Satterthwaite approximation might produce smaller DF values than the residual method. That is why these confidence intervals are larger than the previous ones computed using the residual method.

**See Also**
LinearMixedModel | coefTest | fixedEffects | randomEffects
**coefCI**

**Class:** NonLinearModel

Confidence intervals of coefficient estimates of nonlinear regression model

**Syntax**

```plaintext
ci = coefCI(mdl)
ci = coefCI(mdl,alpha)
```

**Description**

`ci = coefCI(mdl)` returns confidence intervals for the coefficients in `mdl`.

`ci = coefCI(mdl,alpha)` returns confidence intervals with confidence level $1 - \alpha$.

**Input Arguments**

`mdl`

Nonlinear regression model, constructed by `fitnlm`.

`alpha`

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

**Default:** 0.05
Output Arguments

ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of coefficient j of mdl. The name of coefficient j of mdl is in mdl.CoeffNames.

Examples

Default Confidence Intervals

Create a nonlinear model for auto mileage based on the carbig data. Then obtain confidence intervals for the resulting model coefficients.

Load the data and create a nonlinear model.

load carbig
ds = dataset(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1) + ...  
  b(3)*x(:,2) + b(4)*x(:,1).*x(:,2);
beta0 = [1 1 1 1];
mdl = fitnlm(ds,modelfun,beta0)

mdl =
    Nonlinear regression model:
                MPG ~ b1 + b2*Horsepower + b3*Weight + b4*Horsepower*Weight

    Estimated Coefficients:
                                Estimate     SE         tStat     pValue
                                _____      ______    _______    _______
               b1            63.558     2.3429     27.127    1.2343e-91
               b2           -0.25084    0.02728    -9.1952    2.3226e-18
               b3          -0.010772   0.0007738    -13.921    5.1372e-36
               b4        5.3554e-05   6.6491e-06      8.0542    9.9336e-15

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
R-Squared: 0.748, Adjusted R-Squared 0.746
F-statistic vs. constant model: 385, p-value = 7.26e-116
All the coefficients have extremely small $P$-values. This means a confidence interval around the coefficients will not contain the point 0, unless the confidence level is very high.

Find 95% confidence intervals for the coefficients of the model.

```matlab
ci = coefCI(mdl)
ci = 4×2
 58.9515 68.1644
 -0.3045 -0.1972
 -0.0123 -0.0093
 0.0000 0.0001
```

The confidence interval for $b4$ seems to contain 0. Examine it in more detail.

```matlab
ci(4,:) ans = 1×2
10^{-4} ×
 0.4048 0.6663
```

As expected, the confidence interval does not contain the point 0.

### Definitions

#### Confidence Interval

Assume that model assumptions hold (the data comes from a model represented by the formula $mdl$. Formula, with independent normally distributed errors). Then row $j$ of the confidence interval matrix $ci$ gives a confidence interval $[ci(j,1),ci(j,2)]$ that contains coefficient $j$ with probability $1 - \alpha$. 

32-662
Alternatives

You can create the intervals from the model coefficients in \texttt{mdl.Coefficients.Estimate} and an appropriate multiplier of the standard errors \texttt{sqrt(diag(mdl.CoefficientCovariance))}. The multiplier is \texttt{tinv(1-alpha/2,dof)}, where \texttt{level} is the confidence level, and \texttt{dof} is the degrees of freedom (number of data points minus the number of coefficients).

See Also
NonLinearModel

Topics
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
**coefTest**

Linear hypothesis test on generalized linear regression model coefficients

**Syntax**

\[ p = \text{coefTest}(\text{mdl}) \]
\[ p = \text{coefTest}(\text{mdl},H) \]
\[ p = \text{coefTest}(\text{mdl},H,C) \]
\[ [p,F] = \text{coefTest}(\text{mdl},...) \]
\[ [p,F,r] = \text{coefTest}(\text{mdl},...) \]

**Description**

\( p = \text{coefTest}(\text{mdl}) \) computes the \( p \)-value for an \( F \) test that all coefficient estimates in \( \text{mdl} \) are zero, except for the intercept term.

\( p = \text{coefTest}(\text{mdl},H) \) performs an \( F \) test that \( H*B = 0 \), where \( B \) represents the coefficient vector.

\( p = \text{coefTest}(\text{mdl},H,C) \) performs an \( F \) test that \( H*B = C \).

\([p,F] = \text{coefTest}(\text{mdl},...)\) returns the \( F \) test statistic.

\([p,F,r] = \text{coefTest}(\text{mdl},...)\) returns the numerator degrees of freedom for the test.

**Input Arguments**

\texttt{mdl}

Generalized linear model, specified as a full \texttt{GeneralizedLinearModel} object constructed using \texttt{fitglm} or \texttt{stepwiseglm}, or a compacted \texttt{CompactGeneralizedLinearModel} object constructed using \texttt{compact}.
**H**

Numeric matrix having one column for each coefficient in the model. When H is an input, the output p is the p-value for an F test that \( H*B = 0 \), where B represents the coefficient vector.

**C**

Numeric vector with the same number of rows as H. When C is an input, the output p is the p-value for an F test that \( H*B = C \), where B represents the coefficient vector.

**Output Arguments**

**p**

p-value of the \( F \) test (see “Definitions” on page 32-666).

**F**

Value of the test statistic for the \( F \) test (see “Definitions” on page 32-666).

**r**

Numerator degrees of freedom for the \( F \) test (see “Definitions” on page 32-666). The \( F \) statistic has r degrees of freedom in the numerator and mdl.DFE degrees of freedom in the denominator.

**Examples**

**Test Generalized Linear Model Coefficients**

Test a generalized linear model to see if its coefficients differ from zero.

Create a generalized linear regression model of Poisson data.

```matlab
X = 2 + randn(100,1);
mu = exp(1 + X/2);
y = poissrnd(mu);
mdl = fitglm(X,y,'y ~ x1','distr','poisson');
```
Test whether the fitted model has coefficients that differ significantly from zero.

\[ p = \text{coefTest}(mdl) \]
\[ p = 3.1394 \times 10^{-36} \]

There is no doubt that the coefficient of \( x1 \) is nonzero.

**Definitions**

**Test Statistics**

The \( p \)-value, \( F \) statistic, and numerator degrees of freedom are valid under these assumptions:

- The data comes from a model represented by the formula \( mdl.\text{Formula} \).
- The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let \( \beta \) represent the (unknown) coefficient vector of the linear regression. Suppose \( H \) is a full-rank matrix of size \( r \)-by-\( s \), where \( s \) is the number of terms in \( \beta \). Let \( v \) be a vector the same size as \( \beta \). The following is a test statistic for the hypothesis that \( H\beta = v \):

\[
F = (H\hat{\beta} - v)'(HCH')^{-1}(H\hat{\beta} - v).
\]

Here \( \hat{\beta} \) is the estimate of the coefficient vector \( \beta \) in \( mdl.\text{Coeffs} \), and \( C \) is the estimated covariance of the coefficient estimates in \( mdl.\text{CoeffCov} \). When the hypothesis is true, the test statistic \( F \) has an “F Distribution” on page B-42 with \( r \) and \( u \) degrees of freedom.

**Alternatives**

The values of commonly used test statistics are available in the \( mdl.\text{Coefficients} \) table.
See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | linhyptest

Topics
“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12
coefTest

Class: GeneralizedLinearMixedModel

Hypothesis test on fixed and random effects of generalized linear mixed-effects model

Syntax

pVal = coefTest(glme)
pVal = coefTest(glme,H)
pVal = coefTest(glme,H,C)
pVal = coefTest(glme,H,C,Name,Value)
[pVal,F,DF1,DF2] = coefTest(__)

Description

pVal = coefTest(glme) returns the p-value of an F-test of the null hypothesis that all fixed-effects coefficients of the generalized linear mixed-effects model glme, except for the intercept, are equal to 0.

pVal = coefTest(glme,H) returns the p-value of an F-test using a specified contrast matrix, H. The null hypothesis is $H_0: H\beta = 0$, where $\beta$ is the fixed-effects vector.

pVal = coefTest(glme,H,C) returns the p-value for an F-test using the hypothesized value, C. The null hypothesis is $H_0: H\beta = C$, where $\beta$ is the fixed-effects vector.

pVal = coefTest(glme,H,C,Name,Value) returns the p-value for an F-test on the fixed- and/or random-effects coefficients of the generalized linear mixed-effects model glme, with additional options specified by one or more name-value pair arguments. For example, you can specify the method to compute the approximate denominator degrees of freedom for the F-test.

[pVal,F,DF1,DF2] = coefTest(__) also returns the F-statistic, F, and the numerator and denominator degrees of freedom for F, respectively DF1 and DF2, using any of the previous syntaxes.
Input Arguments

**glme — Generalized linear mixed-effects model**  
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

**H — Fixed-effects contrasts**  
$m$-by-$p$ matrix

Fixed-effects contrasts, specified as an $m$-by-$p$ matrix, where $p$ is the number of fixed-effects coefficients in `glme`. Each row of $H$ represents one contrast. The columns of $H$ (left to right) correspond to the rows of the $p$-by-1 fixed-effects vector $\beta$ (top to bottom) whose estimate is returned by the `fixedEffects` method.

Data Types: `single` | `double`

**C — Hypothesized value**  
$m$-by-1 vector

Hypothesized value for testing the null hypothesis $H\beta = C$, specified as an $m$-by-1 vector. Here, $\beta$ is the vector of fixed-effects whose estimate is returned by `fixedEffects`.

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**DFMethod — Method for computing approximate degrees of freedom**  
'field' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'residual'</td>
<td>The degrees of freedom value is assumed to be constant and equal to ( n - p ), where ( n ) is the number of observations and ( p ) is the number of fixed effects.</td>
</tr>
<tr>
<td>'none'</td>
<td>The degrees of freedom is set to infinity.</td>
</tr>
</tbody>
</table>

Example: 'DFMethod', 'none'

**REContrast — Random-effects contrasts**

\( m \)-by-\( q \) matrix

Random-effects contrasts, specified as the comma-separated pair consisting of 'REContrast' and an \( m \)-by-\( q \) matrix, where \( q \) is the number of random effects parameters in \textit{glme}. The columns of the matrix (left to right) correspond to the rows of the \( q \)-by-1 random-effects vector \( B \) (top to bottom), whose estimate is returned by the \textit{randomEffects} method.

Data Types: single | double

### Output Arguments

**pVal — \( p \)-value**

scalar value

\( p \)-value for the \( F \)-test on the fixed- and/or random-effects coefficients of the generalized linear mixed-effects model \textit{glme}, returned as a scalar value.

When fitting a GLME model using \textit{fitglme} and one of the maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'), \textit{coefTest} uses an approximation of the conditional mean squared error of prediction (CMSEP) of the estimated linear combination of fixed- and random-effects to compute \( p \)-values. This accounts for the uncertainty in the fixed-effects estimates, but not for the uncertainty in the covariance parameter estimates. For tests on fixed effects only, if you specify the 'CovarianceMethod' name-value pair argument in \textit{fitglme} as 'JointHessian', then \textit{coefTest} accounts for the uncertainty in the estimation of covariance parameters.

When fitting a GLME model using \textit{fitglme} and one of the pseudo likelihood fit methods ('MPL' or 'REML'), \textit{coefTest} bases the inference on the fitted linear mixed effects model from the final pseudo likelihood iteration.
F — F-statistic
scalar value

F-statistic, returned as a scalar value.

DF1 — Numerator degrees of freedom for F
scalar value

Numerator degrees of freedom for the F-statistic F, returned as a scalar value.

• If you test the null hypothesis $H_0: H\beta = 0$ or $H_0: H\beta = C$, then $DF1$ is equal to the number of linearly independent rows in $H$.
• If you test the null hypothesis $H_0: H\beta + KB = C$, then $DF1$ is equal to the number of linearly independent rows in $[H,K]$.

DF2 — Denominator degrees of freedom for F
scalar value

Denominator degrees of freedom for the F-statistic F, returned as a scalar value. The value of $DF2$ depends on the option specified by the 'DFMethod' name-value pair argument.

Examples

Test the Significance of Coefficients

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

$$\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij})$$

This corresponds to the generalized linear mixed-effects model

$$\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time} \_ \text{dev}_{ij} + \beta_3 \text{temp} \_ \text{dev}_{ij} + \beta_4 \text{supplier} \_ \text{C}_{ij} + \beta_5 \text{supplier} \_ \text{B}_{ij} + b_i,$$

where

- $\text{defects}_{ij}$ is the number of defects observed in the batch produced by factory $i$ during batch $j$.
- $\mu_{ij}$ is the mean number of defects corresponding to factory $i$ (where $i = 1, 2, \ldots, 20$) during batch $j$ (where $j = 1, 2, \ldots, 5$).
• \(\text{newprocess}_{ij}\), \(\text{time\_dev}_{ij}\), and \(\text{temp\_dev}_{ij}\) are the measurements for each variable that correspond to factory \(i\) during batch \(j\). For example, \(\text{newprocess}_{ij}\) indicates whether the batch produced by factory \(i\) during batch \(j\) used the new process.

• \(\text{supplier\_C}_{ij}\) and \(\text{supplier\_B}_{ij}\) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i\) during batch \(j\).

• \(b_i \sim N(0, \sigma^2_b)\) is a random-effects intercept for each factory \(i\) that accounts for factory-specific variation in quality.

\[
glme = \text{fitglme(mfr,'defects} - 1 + \text{newprocess + time\_dev + temp\_dev + supplier} + (1|\text{factory})'\text{,'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')}
\]

Test if there is any significant difference between supplier C and supplier B.

\[
H = [0,0,0,0,1,-1];
\]

\[
[pVal,F,DF1,DF2] = \text{coefTest(glme,H)}
\]

\[
pVal = 0.2793
\]
\[
F = 1.1842
\]
\[
DF1 = 1
\]
\[
DF2 = 94
\]

The large \(p\)-value indicates that there is no significant difference between supplier C and supplier B at the 5% significance level. Here, \text{coefTest} also returns the \(F\)-statistic, the numerator degrees of freedom, and the approximate denominator degrees of freedom.

Test if there is any significant difference between supplier A and supplier B.

If you specify the 'DummyVarCoding' name-value pair argument as 'effects' when fitting the model using \text{fitglme}, then

\[
\beta_A + \beta_B + \beta_C = 0,
\]
where $\beta_A$, $\beta_B$, and $\beta_C$ correspond to suppliers A, B, and C, respectively. $\beta_A$ is the effect of A minus the average effect of A, B, and C. To determine the contrast matrix corresponding to a test between supplier A and supplier B,

$$\beta_B - \beta_A = \beta_B - (-\beta_B - \beta_C) = 2\beta_B + \beta_C.$$ 

From the output of `disp(glme)`, column 5 of the contrast matrix corresponds to $\beta_C$, and column 6 corresponds to $\beta_B$. Therefore, the contrast matrix for this test is specified as $H = [0,0,0,0,1,2]$.

$$H = [0,0,0,0,1,2];$$

$$[pVal,F,DF1,DF2] = \text{coefTest}(glme,H)$$

$pVal = 0.6177$

$F = 0.2508$

$DF1 = 1$

$DF2 = 94$

The large $p$-value indicates that there is no significant difference between supplier A and supplier B at the 5% significance level.

References


See Also

GeneralizedLinearMixedModel | anova | coefCI | covarianceParameters | fixedEffects | randomEffects
**coefTest**

**Class:** CompactLinearModel

Linear hypothesis test on linear regression model coefficients

**Syntax**

```matlab
p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest(mdl,___)
[p,F,r] = coefTest(mdl,___)
```

**Description**

`p = coefTest(mdl)` computes the p-value for an F test that all coefficient estimates in `mdl` are zero, except for the intercept term.

`p = coefTest(mdl,H)` performs an F test that `H × B = 0`, where `B` represents the coefficient vector.

`p = coefTest(mdl,H,C)` performs an F test that `H × B = C`.

`[p,F] = coefTest(mdl,___)` returns the F test statistic, `F`, using any of the previous syntaxes.

`[p,F,r] = coefTest(mdl,___)` returns the numerator degrees of freedom, `r`, for the test.

**Input Arguments**

`mdl` — Linear model object
LinearModel object | CompactLinearModel object
Linear model object, specified as a full `LinearModel` object constructed using `fitlm` or `stepwiselm`, or a compacted `CompactLinearModel` object constructed using `compact`.

**H — Hypothesized model coefficients**
numeric matrix

Hypothesized model coefficients, specified as a numeric matrix with one column for each coefficient in the model. If H is an input, then the output p is the p-value for an F test that \( H \times B = 0 \), where \( B \) represents the coefficient vector.

**C — Hypothesized value**
numeric vector

Hypothesized value for testing the null hypothesis, specified as a numeric vector with the same number of rows as H. When C is an input, the output p is the p-value for an F test that \( H \times B = C \), where \( B \) represents the coefficient vector.

**Output Arguments**

**p — p-value for F test**
numeric value in the range [0,1]

p-value of the F test, returned as a numeric value in the range [0,1].

**F — Test statistic for F test**
numeric value

Value of the test statistic for the F test, returned as a numeric value.

**r — Numerator degrees of freedom for F test**
positive integer

Numerator degrees of freedom for the F test, returned as a positive integer. The F statistic has \( r \) degrees of freedom in the numerator and `mdl.DFE` degrees of freedom in the denominator.

**Examples**
**Test Significance of Linear Regression Model**

Fit a linear regression model of mileage as a function of the weight, weight squared, and model year from the `carsmall` data set. Test the coefficients to see if all should be zero.

Load the data and make a table, where the model year is an ordinal variable.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2');
```

Test the model for significant differences from a constant model.

```matlab
p = coefTest(mdl)
```

```
p = 5.5208e-41
```

The returned $p$-value indicates that the fitted model contains more than the intercept term.

**Test Significance of Linear Model Coefficient**

Test the $Weight^2$ coefficient in a linear model of mileage as a function of the weight, weight squared, and model year.

Load the data and make a table, where the model year is an ordinal variable.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2');
```

Test the significance of the $Weight^2$ coefficient. To do so, find the coefficient corresponding to $Weight^2$.

```matlab
mdl.CoefficientNames
```
Weight^2 is the fifth (final) coefficient.

Test the significance of the Weight^2 coefficient.

\[
p = \text{coefTest}(mdl,[0 0 0 0 1])
\]
\[
p = 0.0022
\]

**Definitions**

**Test Statistics**

The \( p \)-value, \( F \) statistic, and numerator degrees of freedom are valid under these assumptions:

- The data comes from a model represented by the formula `mdl.formula`.
- The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let \( \beta \) represent the (unknown) coefficient vector of the linear regression. Suppose \( H \) is a full-rank matrix of size \( r \)-by-\( s \), where \( s \) is the number of terms in \( \beta \). Let \( v \) be a vector the same size as \( \beta \). The following is a test statistic for the hypothesis that \( H\beta = v \):

\[
F = (H\hat{\beta} - v)'(HCH')^{-1}(H\hat{\beta} - v).
\]

Here \( \hat{\beta} \) is the estimate of the coefficient vector \( \beta \) in `mdl.Coeffs`, and \( C \) is the estimated covariance of the coefficient estimates in `mdl.CoeffCov`. When the hypothesis is true, the test statistic \( F \) has an “F Distribution” on page B-42 with \( r \) and \( u \) degrees of freedom.

**Alternatives**

The values of commonly used test statistics are available in the `mdl.Coefficients` table.
anova provides a test for each model term.

See Also
CompactLinearModel | LinearModel | anova | linhyptest

Topics
“Linear Regression” on page 11-11
coefTest

Class: LinearMixedModel

Hypothesis test on fixed and random effects of linear mixed-effects model

Syntax

pVal = coefTest(lme)
pVal = coefTest(lme,H)
pVal = coefTest(lme,H,C)
pVal = coefTest(lme,H,C,Name,Value)
[pVal,F,DF1,DF2] = coefTest(____)

Description

pVal = coefTest(lme) returns the p-value for an F-test that all fixed-effects coefficients except for the intercept are 0.

pVal = coefTest(lme,H) returns the p-value for an F-test on fixed-effects coefficients of linear mixed-effects model lme, using the contrast matrix H. It tests the null hypothesis that $H\beta = 0$, where $\beta$ is the fixed-effects vector.

pVal = coefTest(lme,H,C) returns the p-value for an F-test on fixed-effects coefficients of the linear mixed-effects model lme, using the contrast matrix H. It tests the null hypothesis that $H\beta = C$, where $\beta$ is the fixed-effects vector.

pVal = coefTest(lme,H,C,Name,Value) returns the p-value for an F-test on the fixed- and/or random-effects coefficients of the linear mixed-effects model lme, with additional options specified by one or more name-value pair arguments. For example, 'REContrast',K tells coefTest to test the null hypothesis that $H_0: H\beta + KB = C$, where $\beta$ is the fixed-effects vector and $B$ is the random-effects vector.

[pVal,F,DF1,DF2] = coefTest(____) also returns the F-statistic $F$, and the numerator and denominator degrees of freedom for $F$, respectively $DF1$ and $DF2$. 
**Input Arguments**

**lme** — Linear mixed-effects model

LinearMixedModel object

Linear mixed-effects model, specified as a `LinearMixedModel` object constructed using `fitlme` or `fitlmematrix`.

**H** — Fixed-effects contrasts

*m-by-*p matrix

Fixed-effects contrasts, specified as an *m*-by-*p* matrix, where *p* is the number of fixed-effects coefficients in `lme`. Each row of `H` represents one contrast. The columns of `H` (left to right) correspond to the rows of the *p*-by-1 fixed-effects vector `beta` (top to bottom), returned by the `fixedEffects` method.

Data Types: `single` | `double`

**C** — Hypothesized value

*m*-by-1 vector

Hypothesized value for testing the null hypothesis \( H^* \beta = C \), specified as an *m*-by-1 matrix. Here, `beta` is the vector of fixed-effects estimates returned by the `fixedEffects` method.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**DFMethod** — Method for computing approximate denominator degrees of freedom

'`residual' (default) | 'satterthwaite' | 'none'

Method for computing the approximate denominator degrees of freedom for the *F*-test, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.
Default. The degrees of freedom are assumed to be constant and equal to $n - p$, where $n$ is the number of observations and $p$ is the number of fixed effects.

Satterthwaite approximation.

All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.

Example: 'DFMethod','satterthwaite'

**REContrast — Random-effects contrasts**

$m$-by-$q$ matrix

Random-effects contrasts, specified as the comma-separated pair consisting of 'REContrast' and an $m$-by-$q$ matrix $K$, where $q$ is the number of random effects parameters in `lme`. The columns of $K$ (left to right) correspond to the rows of the random-effects best linear unbiased predictor vector $B$ (top to bottom), returned by the `randomEffects` method.

Data Types: single | double

**Output Arguments**

**pVal — $p$-value**

scalar value

$p$-value for the $F$-test on the fixed and/or random-effects coefficients of the linear mixed-effects model `lme`, returned as a scalar value.

**F — $F$-statistic**

scalar value

$F$-statistic, returned as a scalar value.

**DF1 — Numerator degrees of freedom for $F$**

 scalar value

Numerator degrees of freedom for $F$, returned as a scalar value.
If you test the null hypothesis $H_0: H\beta = 0$, or $H_0: H\beta = C$, then $DF_1$ is equal to the number of linearly independent rows in $H$.

If you test the null hypothesis $H_0: H\beta + KB = C$, then $DF_1$ is equal to the number of linearly independent rows in $[H, K]$.

**DF2 — Denominator degrees of freedom for $F$**  
Scalar value

Denominator degrees of freedom for $F$, returned as a scalar value. The value of $DF_2$ depends on the option you select for $DFMethod$.

**Examples**

**Test Fixed-Effects Coefficients for Categorical Data**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The data shows the absolute deviations from the target quality characteristic measured from the products that five operators manufacture during three different shifts: morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the absolute deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

```matlab
shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);
```

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if there is significant difference in the performance according to the time of the shift.

```matlab
lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)')
```

`lme =`  
Linear mixed-effects model fit by ML

Model information:
Number of observations              15
Fixed effects coefficients           3
Random effects coefficients          5
Covariance parameters                2

Formula:
QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
AIC       BIC       LogLikelihood    Deviance
59.012    62.552    -24.506          49.012

Fixed effects coefficients (95% CIs):
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>3.1196</td>
<td>0.88681</td>
<td>3.5178</td>
<td>12</td>
<td>0.0042407</td>
</tr>
<tr>
<td>'Shift_Morning'</td>
<td>-0.3868</td>
<td>0.48344</td>
<td>-0.80009</td>
<td>12</td>
<td>0.43921</td>
</tr>
<tr>
<td>'Shift_Night'</td>
<td>1.9856</td>
<td>0.48344</td>
<td>4.1072</td>
<td>12</td>
<td>0.0014535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1874</td>
<td>5.0518</td>
</tr>
<tr>
<td>-1.4401</td>
<td>0.66653</td>
</tr>
<tr>
<td>0.93227</td>
<td>3.0389</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>1.8297</td>
<td>0.94915</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5272</td>
</tr>
</tbody>
</table>

Group: Error
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.76439</td>
<td>0.49315</td>
<td>1.1848</td>
</tr>
</tbody>
</table>

Test if all fixed-effects coefficients except for the intercept are 0.
pVal = coefTest(lme)
pVal = 7.5956e-04

The small *P*-value indicates that not all fixed-effects coefficients are 0.
Test the significance of the `Shift` term using a contrast matrix.

```matlab
H = [0 1 0; 0 0 1];
pVal = coefTest(lme,H)
pVal = 7.5956e-04
```

Test the significance of the `Shift` term using the `anova` method.

```matlab
anova(lme)
anova =
```

```
 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2 pValue
 '(Intercept)' 12.375 1 12 0.0042407
 'Shift' 13.864 2 12 0.00075956
```

The $P$-value for `Shift`, 0.00075956, is the same as the $P$-value of the previous hypothesis test.

Test if there is any difference between the evening and morning shifts.

```matlab
pVal = coefTest(lme,[0 1 -1])
pVal = 3.6147e-04
```

This small $P$-value indicates that the performance of the operators are not the same in the morning and the evening shifts.

**Hypothesis Tests for Fixed-Effects Coefficients**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'))
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')
lme =  
Linear mixed-effects model fit by ML

Model information:
  Number of observations    120
  Fixed effects coefficients    9
  Random effects coefficients  40
  Covariance parameters       4

Formula:
  y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
  AIC       BIC       LogLikelihood    Deviance

Fixed effects coefficients (95% CIs):
  Name                    Estimate     SE           tStat       DF
  '(Intercept)'             0.66105     0.25892     2.5531    111
  'InitialWeight'         0.0031879   0.0013814     2.3078    111
  'Program_B'               0.36079     0.13139      2.746    111
  'Program_C'             -0.033263     0.13117    -0.25358    111
  'Program_D'               0.11317     0.13132     0.86175    111
  'Week'                     0.1732     0.067454      2.5677    111
  'Program_B:Week'         0.038771    0.095394     0.40644    111
  'Program_C:Week'         0.030543    0.095394     0.32018    111
  'Program_D:Week'         0.033114    0.095394     0.34713    111

  pValue       Lower         Upper
  0.012034       0.14798       1.1741
  0.022863    0.00045067    0.0059252
  0.0070394      0.10044       0.3734
  0.80029      -0.29319      0.22666
  0.39068      -0.14706       0.3734
Random effects covariance parameters (95% CIs):
Group: Subject (20 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.18407</td>
<td>0.12281</td>
<td>0.27587</td>
</tr>
<tr>
<td>'Week'</td>
<td>'(Intercept)'</td>
<td>'corr'</td>
<td>0.66841</td>
<td>0.21076</td>
<td>0.88573</td>
</tr>
<tr>
<td>'Week'</td>
<td>'Week'</td>
<td>'std'</td>
<td>0.15033</td>
<td>0.11004</td>
<td>0.20537</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.10261</td>
<td>0.087882</td>
<td>0.11981</td>
</tr>
</tbody>
</table>

Test for the significance of the interaction between Program and Week.

\[
H = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0;
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0;
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1;
\end{bmatrix};
\]

\[
pVal = \text{coefTest}(lme,H)
\]

\[
pVal = 0.9775
\]

The high _p_-value indicates that the interaction between Program and Week is not statistically significant.

Now, test whether all coefficients involving Program are 0.

\[
H = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0;
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0;
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0;
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0;
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0;
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1;
\end{bmatrix};
\]

\[
C = [0;0;0;0;0;0;0;0];
\]

\[
pVal = \text{coefTest}(lme,H,C)
\]
pVal = 0.0274

The $P$-value of 0.0274 indicates that not all coefficients involving Program are zero.

**Hypothesis Tests for Fixed- and Random-Effects Coefficients**

Load the sample data.

```matlab
load flu
```

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear mixed-effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses and region as the predictor variable, combine the nine columns corresponding to the regions into an array. The new dataset array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows which region each estimate is from, and the grouping variable Date.

```matlab
flu2 = stack(flu,2:10,'NewDataVarName','FluRate',... 'IndVarName','Region');
flu2.Date = nominal(flu2.Date);
```

Fit a linear mixed-effects model with fixed effects for the region and a random intercept that varies by Date.

```matlab
lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')
```

```matlab
lme =
Linear mixed-effects model fit by ML

Model information:
 Number of observations 468
 Fixed effects coefficients 9
 Random effects coefficients 52
 Covariance parameters 2

Formula:
 FluRate ~ 1 + Region + (1 | Date)
```
Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>318.71</td>
<td>364.35</td>
<td>-148.36</td>
<td>296.71</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.2233</td>
<td>0.096678</td>
<td>12.654</td>
<td>459</td>
</tr>
<tr>
<td>'Region_MidAtl'</td>
<td>0.010192</td>
<td>0.052221</td>
<td>0.19518</td>
<td>459</td>
</tr>
<tr>
<td>'Region_ENCentral'</td>
<td>0.051923</td>
<td>0.052221</td>
<td>0.9943</td>
<td>459</td>
</tr>
<tr>
<td>'Region_WNCentral'</td>
<td>0.23687</td>
<td>0.052221</td>
<td>4.5359</td>
<td>459</td>
</tr>
<tr>
<td>'Region_SAtl'</td>
<td>0.075481</td>
<td>0.052221</td>
<td>1.4454</td>
<td>459</td>
</tr>
<tr>
<td>'Region_ESCentral'</td>
<td>0.33917</td>
<td>0.052221</td>
<td>6.495</td>
<td>459</td>
</tr>
<tr>
<td>'RegionWSCentral'</td>
<td>0.069</td>
<td>0.052221</td>
<td>1.3213</td>
<td>459</td>
</tr>
<tr>
<td>'Region_Mtn'</td>
<td>0.046673</td>
<td>0.052221</td>
<td>0.89377</td>
<td>459</td>
</tr>
<tr>
<td>'Region_Pac'</td>
<td>-0.16013</td>
<td>0.052221</td>
<td>-3.0665</td>
<td>459</td>
</tr>
</tbody>
</table>

pValue  | Lower  | Upper  |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.085e-31</td>
<td>1.0334</td>
<td>1.4133</td>
</tr>
<tr>
<td>0.84534</td>
<td>-0.092429</td>
<td>0.11281</td>
</tr>
<tr>
<td>0.3206</td>
<td>-0.050698</td>
<td>0.15454</td>
</tr>
<tr>
<td>7.3324e-06</td>
<td>0.13424</td>
<td>0.33949</td>
</tr>
<tr>
<td>0.14902</td>
<td>-0.02714</td>
<td>0.1781</td>
</tr>
<tr>
<td>2.1623e-10</td>
<td>0.23655</td>
<td>0.44179</td>
</tr>
<tr>
<td>0.18705</td>
<td>-0.033621</td>
<td>0.17162</td>
</tr>
<tr>
<td>0.37191</td>
<td>-0.055948</td>
<td>0.14929</td>
</tr>
<tr>
<td>0.0022936</td>
<td>-0.26276</td>
<td>-0.057514</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.6443</td>
<td>0.5297</td>
<td></td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.26627</td>
<td>0.24878</td>
<td>0.285</td>
</tr>
</tbody>
</table>

Test the hypothesis that the random effects-term for week 10/9/2005 is zero.
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
K = zeros(length(STATS),1);
K(STATS.Level == '10/9/2005') = 1;
pVal = coefTest(lme,[0 0 0 0 0 0 0 0 0],0,'REContrast',K')

pVal = 0.1692

Refit the model this time with a random intercept and slope.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');

Test the hypothesis that the combined coefficient of region WNCentral for week 10/9/2005 is zero.

[~,~,STATS] = randomEffects(lme); STATS.Level = nominal(STATS.Level);
K = zeros(length(STATS),1);
K(STATS.Level == '10/9/2005' & flu2.Region == 'WNCentral') = 1;
pVal = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

pVal = 1.1911e-12

Also return the $F$-statistic with the numerator and denominator degrees of freedom.

[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

pVal = 1.1911e-12
F = 53.4446
DF1 = 1
DF2 = 459

Repeat the test using the Satterthwaite approximation for the denominator degrees of freedom.

[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K',... 'DFMethod','satterthwaite')

pVal = NaN
F = 53.4446
DF1 = 1
DF2 = 0
See Also
LinearMixedModel | anova | coefCI
**coefTest**

**Class:** NonLinearModel

Linear hypothesis test on nonlinear regression model coefficients

**Syntax**

\[ p = \text{coefTest}(mdl) \]
\[ p = \text{coefTest}(mdl,H) \]
\[ p = \text{coefTest}(mdl,H,C) \]
\[ [p,F] = \text{coefTest}(mdl,...) \]
\[ [p,F,r] = \text{coefTest}(mdl,...) \]

**Description**

\[ p = \text{coefTest}(mdl) \] computes the \( p \)-value for an \( F \) test that all coefficient estimates in \( mdl \) are zero.

\[ p = \text{coefTest}(mdl,H) \] performs an \( F \) test that \( H^*B = 0 \), where \( B \) represents the coefficient vector.

\[ p = \text{coefTest}(mdl,H,C) \] performs an \( F \) test that \( H^*B = C \).

\[ [p,F] = \text{coefTest}(mdl,...) \] returns the \( F \) test statistic.

\[ [p,F,r] = \text{coefTest}(mdl,...) \] returns the numerator degrees of freedom for the test.

**Input Arguments**

\( mdl \)

Nonlinear regression model, constructed by `fitnlm`. 
H

Numeric matrix having one column for each coefficient in the model. When H is an input, the output p is the p-value for an F test that H*B = 0, where B represents the coefficient vector.

C

Numeric vector with the same number of rows as H. When C is an input, the output p is the p-value for an F test that H*B = C, where B represents the coefficient vector.

Output Arguments

p

p-value of the F test (see “Definitions” on page 32-694).

F

Value of the test statistic for the F test (see “Definitions” on page 32-694).

r

Numerator degrees of freedom for the F test (see “Definitions” on page 32-694). The F statistic has r degrees of freedom in the numerator and mdl.DFE degrees of freedom in the denominator.

Examples

Test Nonlinear Regression Model Coefficients

Make a nonlinear model of mileage as a function of the weight from the carsmall data set. Test the coefficients to see if all should be zero.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Test the model for significant differences from a constant model.

p = coefTest(mdl)

p = 1.3708e-36

There is no doubt that the model contains nonzero terms.

Definitions

Test Statistics

The $p$-value, $F$ statistic, and numerator degrees of freedom are valid under these assumptions:

- The data comes from a normal distribution.
- The entries are independent.

Suppose these assumptions hold. Let $\beta$ represent the unknown coefficient vector of the linear regression. Suppose $H$ is a full-rank matrix of size $r$-by-$s$, where $s$ is the number of terms in $\beta$. Let $v$ be a vector the same size as $\beta$. The following is a test statistic for the hypothesis that $H\beta = v$:

$$F = (H\hat{\beta} - v)' (HCH')^{-1} (H\hat{\beta} - v).$$

Here $\hat{\beta}$ is the estimate of the coefficient vector $\beta$ in mdl.Coeffs, and $C$ is the estimated covariance of the coefficient estimates in mdl.CoeffCov. When the hypothesis is true, the test statistic $F$ has an “$F$ Distribution” on page B-42 with $r$ and $u$ degrees of freedom.
Alternatives

The values of commonly used test statistics are available in the mdl.Coefficients table.

See Also
NonLinearModel

Topics
“Nonlinear Regression” on page 13-2
coeftest

Class: RepeatedMeasuresModel

Linear hypothesis test on coefficients of repeated measures model

Syntax

tbl = coeftest(rm,A,C,D)

Description

tbl = coeftest(rm,A,C,D) returns a table tbl containing the multivariate analysis of variance (manova) for the repeated measures model rm.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

A — Specification representing between-subjects model
a-by-p matrix

Specification representing the between-subjects model, specified as an a-by-p numeric matrix, with rank $a \leq p$.

Data Types: single | double

C — Specification representing within-subjects hypothesis
r-by-c matrix

Specification representing the within-subjects (within time) hypotheses, specified as an r-by-c numeric matrix, with rank $c \leq r \leq n - p$. 

32-696
Data Types: single | double

D — Hypothesized value
0 (default) | scalar value | a-by-c matrix

Hypothesized value, specified as a scalar value or an a-by-c matrix.
Data Types: single | double

Output Arguments

tbl — Results of multivariate analysis of variance

Table

Results of multivariate analysis of variance for the repeated measures model rm, returned as a table containing the following columns.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Type of test statistic used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Value of the corresponding test statistic</td>
</tr>
<tr>
<td>F</td>
<td>F-statistic value</td>
</tr>
<tr>
<td>RSquare</td>
<td>Measure of variance explained</td>
</tr>
<tr>
<td>df1</td>
<td>Numerator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>df2</td>
<td>Denominator degrees of freedom for the F-statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value associated with the test statistic value</td>
</tr>
</tbody>
</table>

Examples

Test Coefficients for First and Last Repeated Measures

Load the sample data.

load repeatedmeas
The table **between** includes the between-subject variables age, IQ, group, gender, and eight repeated measures y1 through y8 as responses. The table **within** includes the within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Test that the coefficients of all terms in the between-subjects model are the same for the first and last repeated measurement variable.

```matlab
coeftest(rm,eye(8),[1 0 0 0 0 0 0 -1])
```

```
ans=4×7 table
Statistic Value F RSquare df1 df2 pValue
_________ _______ ______ _______ ___ ___ _______
Pillai 0.3355 1.3884 0.3355 8 22 0.25567
Wilks 0.6645 1.3884 0.3355 8 22 0.25567
Hotelling 0.50488 1.3884 0.3355 8 22 0.25567
Roy 0.50488 1.3884 0.3355 8 22 0.25567
```

The *P*-value of 0.25567 indicates that there is not enough statistical evidence to conclude that the coefficients of all terms in the between-subjects model for the first and last repeated measures variable are different.

### Tips

- This test is defined as $A*B*C = D$, where $B$ is the matrix of coefficients in the repeated measures model. $A$ and $C$ are numeric matrices of the proper size for this multiplication. $D$ is a scalar or numeric matrix of the proper size. The default is $D = 0$.

### See Also

- `fitrm`
- `manova`
combine

Class: CompactTreeBagger

Combine two ensembles

Syntax

$B_1 = \text{combine}(B_1,B_2)$

Description

$B_1 = \text{combine}(B_1,B_2)$ appends decision trees from ensemble $B_2$ to those stored in $B_1$ and returns ensemble $B_1$. This method requires that the class and variable names be identical in both ensembles.

See Also

TreeBagger.append
combnk

Enumeration of combinations

Syntax

C = combnk(v,k)

Description

C = combnk(v,k) returns all combinations of the n elements in v taken k at a time.

C = combnk(v,k) produces a matrix C with k columns and n!/k!(n - k)! rows, where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15 elements.

Examples

Combinations of characters.

C = combnk('tendril',4);
last5 = C(31:35,:)
last5 =
tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)
c =
   3  4
   2  4
   2  3
See Also
perms | randperm

Introduced before R2006a
compact

Class: ClassificationDiscriminant

Compact discriminant analysis classifier

Syntax

cobj = compact(obj)

Description

`cobj = compact(obj)` creates a compact version of `obj`.

Input Arguments

`obj`

Discriminant analysis classifier created using `fitcdiscr`.

Output Arguments

`cobj`

Compact classifier. `cobj` has class `CompactClassificationDiscriminant`. You can predict classifications using `cobj` exactly as you can using `obj`. However, since `cobj` does not contain training data, you cannot perform some actions, such as cross validation.

Examples

Compare the size of the discriminant analysis classifier for Fisher's iris data to the compact version of the classifier:
load fisheriris
fullobj = fitcdiscr(meas,species);
cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans =
    18578     11498

See Also
ClassificationDiscriminant | fitcdiscr

Topics
“Discriminant Analysis Classification” on page 20-2
compact

**Class:** ClassificationECOC

Compact multiclass, error-correcting output codes model

**Syntax**

```matlab
CMdl = compact(Mdl)
```

**Description**

`CMdl = compact(Mdl)` returns a compact, multiclass, error-correcting output codes (ECOC) model (`CMdl`), which is the compact version of the trained ECOC model `Mdl`.

`CMdl` does not contain the training data, whereas `Mdl` contains the training data in its properties `Mdl.X` and `Mdl.Y`.

**Input Arguments**

- **Mdl** — Multiclass ECOC model
  ClassificationECOC model

  Multiclass ECOC model, specified as a `ClassificationECOC` model returned by `fitcecoc`.

**Output Arguments**

- **CMdl** — Compact ECOC model
  CompactClassificationECOC model

  Compact ECOC model, returned as a `CompactClassificationECOC` model.

  Predict class labels using `CMdl` exactly as you would using `Mdl`. However, since `CMdl` does not contain training data, you cannot implement cross validation.
Examples

Reduce the Size of Full ECOC Models

Full ECOC models (i.e., ClassificationECOC models) hold the training data. For efficiency, you might not want to predict new labels using a large classifier.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
```

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
```

`t` is an SVM template object. The software uses default values for empty options in `t` during training. `Mdl` is a ClassificationECOC model.

Reduce the size of the trained ECOC model.

```matlab
CMdl = compact(Mdl)
```

`CMdl` is a CompactClassificationECOC model. It does not store the training data nor some of the properties that `Mdl` stores.
Display how much memory each classifier uses.

\texttt{whos('Mdl','CMdl')} \\

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMdl</td>
<td>1x1</td>
<td>12956</td>
<td>classreg.learning.classif.CompactClassificationECOC</td>
</tr>
<tr>
<td>Mdl</td>
<td>1x1</td>
<td>25784</td>
<td>ClassificationECOC</td>
</tr>
</tbody>
</table>

The full ECOC model (Mdl) is approximately double the size of the compact ECOC model (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor values to \texttt{predict} to efficiently label new observations.

\textbf{See Also}

ClassificationECOC | CompactClassificationECOC | fitcecoc | predict
compact

Compact classification ensemble

Syntax

cens = compact(ens)

Description

cens = compact(ens) creates a compact version of ens. You can predict classifications using cens exactly as you can using ens. However, since cens does not contain training data, you cannot perform some actions, such as cross validation.

Input Arguments

ens

A classification ensemble created with fitcensemble.

Output Arguments

Cens

A compact classification ensemble. Cens has class CompactClassificationEnsemble.

Examples

View Size of Compact Classification Ensemble

Compare the size of a classification ensemble for the Fisher iris data to the compact version of the ensemble.
Load the Fisher iris data set.
load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

\[ t = \text{templateTree('MaxNumSplits',1);} \] % Weak learner template tree object
\[ \text{ens} = \text{fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);} \]

Create a compact version of \text{ens} and compare ensemble sizes.
\[ \text{cens} = \text{compact(ens);} \]
\[ b = \text{whos('ens');} \] % \text{b.bytes} = size of \text{ens}
\[ c = \text{whos('cens');} \] % \text{c.bytes} = size of \text{cens}
\[ [b.bytes ~ c.bytes]; \] % Shows \text{cens} uses less memory
\[ \text{ans} = 1x2 \]
\[ \begin{array}{cc}
   392654 & 352622 \\
\end{array} \]

The compact version of the ensemble uses less memory than the full ensemble. Note that the ensemble sizes can vary slightly, depending on your operating system.

**See Also**
ClassificationTree | fitcensemble

**Topics**
“Framework for Ensemble Learning” on page 18-40
compact

Class: ClassificationNaiveBayes

Compact naive Bayes classifier

Syntax

CMdl = compact(Mdl)

Description

CMdl = compact(Mdl) returns a compact naive Bayes classifier (CMdl), which is the compact version of the trained naive Bayes classifier Mdl.

CMdl stores less than Mdl, e.g., CMdl does not store the training data.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Output Arguments

CMdl — Compact naive Bayes classifier
CompactClassificationNaiveBayes model

Compact naive Bayes classifier, returned as a CompactClassificationNaiveBayes model.

Predict class labels using CMdl exactly as you would using Mdl. However, since CMdl does not contain training data, you cannot perform certain tasks, such as cross validation.
Examples

Reduce the Size of Naive Bayes Classifiers

Full naive Bayes classifiers (i.e., ClassificationNaiveBayes models) hold the training data. For efficiency, you might not want to predict new labels using a large classifier. This example shows how to reduce the size of a full naive Bayes classifier.

Load the ionosphere data set.

```matlab
load ionosphere
X = X(:,3:end); % Remove two predictors for stability
```

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally distributed given its label. It is good practice to specify the order of the labels.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})
```

```
Mdl =
 ClassificationNaiveBayes
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 DistributionNames: {1x32 cell}
 DistributionParameters: {2x32 cell}
```

Properties, Methods

Mdl is a ClassificationNaiveBayes model.

Reduce the size of the naive Bayes classifier.

```matlab
CMdl = compact(Mdl)
```

```
CMdl =
 classreg.learning.classif.CompackClassificationNaiveBayes
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
```
ScoreTransform: 'none'
DistributionNames: {1x32 cell}
DistributionParameters: {2x32 cell}

Properties, Methods

CMdl is a CompactClassificationNaiveBayes model.

Display how much memory each classifier uses.

whos('Mdl','CMdl')

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMdl</td>
<td>1x1</td>
<td>15244</td>
<td>classreg.learning.classif.CompactClassificationNaiveBayes</td>
</tr>
<tr>
<td>Mdl</td>
<td>1x1</td>
<td>111374</td>
<td>ClassificationNaiveBayes</td>
</tr>
</tbody>
</table>

The full naive Bayes classifier (Mdl) is much larger than the compact naive Bayes classifier (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor values to predict to efficiently label new observations.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | predict
compact

Reduce size of support vector machine (SVM) classifier

Syntax

CompactSVMModel = compact(SVMModel)

Description

CompactSVMModel = compact(SVMModel) returns a compact support vector machine (SVM) classifier (CompactSVMModel), the compact version of the trained SVM classifier SVMModel. CompactSVMModel is a CompactClassificationSVM object.

CompactSVMModel does not contain the training data, whereas SVMModel contains the training data in its X and Y properties. Therefore, although you can predict class labels using CompactSVMModel, you cannot perform tasks such as cross-validation with the compact SVM classifier.

Examples

Reduce Size of SVM Classifiers

Reduce the size of a full SVM classifier by removing the training data. Full SVM classifiers (that is, ClassificationSVM classifiers) hold the training data. To improve efficiency, use a smaller classifier.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'})
SVMModel = ClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
    NumObservations: 351
        Alpha: [90x1 double]
        Bias: -0.1343
    KernelParameters: [1x1 struct]
        Mu: [1x34 double]
        Sigma: [1x34 double]
    BoxConstraints: [351x1 double]
    ConvergenceInfo: [1x1 struct]
    IsSupportVector: [351x1 logical]
    Solver: 'SMO'

Properties, Methods

SVMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)

CompactSVMModel =
    classreg.learning.classif.CompactClassificationSVM
        ResponseName: 'Y'
        CategoricalPredictors: []
            ClassNames: {'b'  'g'}
        ScoreTransform: 'none'
            Alpha: [90x1 double]
            Bias: -0.1343
        KernelParameters: [1x1 struct]
            Mu: [1x34 double]
            Sigma: [1x34 double]
        BoxConstraints: [351x1 double]
        ConvergenceInfo: [1x1 struct]
        SupportVectors: [90x34 double]
        SupportVectorLabels: [90x1 double]

Properties, Methods
CompactSVMModel is a CompactClassificationSVM classifier.

Display the amount of memory each classifier uses.

\[
\text{whos('SVMModel','CompactSVMModel')}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactSVMModel</td>
<td>1x1</td>
<td>30512</td>
<td>classreg.learning.classif.CompactClassificationSVM</td>
</tr>
<tr>
<td>SVMModel</td>
<td>1x1</td>
<td>140834</td>
<td>ClassificationSVM</td>
</tr>
</tbody>
</table>

The full SVM classifier (SVMModel) is more than four times larger than the compact SVM classifier (CompactSVMModel).

To label new observations efficiently, you can remove SVMModel from the MATLAB® Workspace, and then pass CompactSVMModel and new predictor values to predict.

To further reduce the size of your compact SVM classifier, use the discardSupportVectors function to discard support vectors.

### Input Arguments

**SVMModel** — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

### See Also

ClassificationSVM | CompactClassificationSVM | discardSupportVectors | fitcsvm

*Introduced in R2014a*
compact

Class: ClassificationTree
Compact tree

Syntax

ctree = compact(tree)

Description

ctree = compact(tree) creates a compact version of tree.

Input Arguments

tree
A classification tree created using fitctree.

Output Arguments

ctree
A compact decision tree. ctree has class CompactClassificationTree. You can predict classifications using ctree exactly as you can using tree. However, since ctree does not contain training data, you cannot perform some actions, such as cross validation.

Examples
Create a Compact Classification Tree

Compare the size of the classification tree for Fisher's iris data to the compact version of the tree.

```matlab
load fisheriris
fulltree = fitctree(meas,species);
ctree = compact(fulltree);
b = whos('fulltree'); % b.bytes = size of fulltree
c = whos('ctree'); % c.bytes = size of ctree
[b.bytes c.bytes] % shows ctree uses half the memory
```

ans = 1x2

```
11260 4572
```

See Also
ClassificationTree | CompactClassificationTree | fitctree | predict
compact

Class: LinearModel

Compact linear regression model

Syntax

compactMdl = compact(mdl)

Description

compactMdl = compact(mdl) returns a compact linear regression model, compactMdl, which is the compact version of the full, fitted linear regression model mdl.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.

Output Arguments

compactMdl — Compact linear regression model
CompactLinearModel object

Compact linear regression model, returned as a CompactLinearModel object.

Predict response values using compactMdl exactly as you would using mdl. However, since compactMdl does not contain training data, you cannot perform certain tasks, such as cross-validation.
Examples

Compact a Linear Regression Model

This example shows how to reduce the size of a full, fitted linear regression model by
discarding the sample data and some information related to the fitting process.

Load the data into the workspace.

load(fullfile(matlabroot,'examples','stats','largedata4reg.mat'))

The simulated sample data contains 15,000 observations and 45 predictor variables.

Fit a simple linear regression model to the data.

mdl = fitlm(X,Y)

mdl =
Linear regression model:
    y ~ [Linear formula with 46 terms in 45 predictors]

Estimated Coefficients:
            Estimate       SE     tStat    pValue
  ___    _______    _______    _______    ___________
(Intercept)            3.2903    1.2333e-05     2.6679e+05              0
x1              -0.0006461    5.9019e-09    -1.0947e+05              0
x2             -0.00024739    1.0256e-08         -24121              0
x3             -9.5161e-05    1.3149e-08        -7236.9              0
x4              0.00013143    1.8311e-08         7177.3              0
x5               7.163e-05    2.3367e-08         3065.4              0
x6              4.5064e-06    2.6264e-08         171.58              0
x7             -2.6258e-05     3.006e-08        -873.51              0
x8              6.284e-05    3.0262e-08         2076.5              0
x9             -0.00014288    3.3258e-08        -4296.1              0
x10            -2.2642e-05    3.6555e-08        -619.41              0
x11            -6.0227e-05    4.203e-08         -1412.4              0
x12             1.1665e-05    4.0048e-08         291.27              0
x13             3.8595e-05    4.203e-08         918.26              0
x14            -0.0001021    4.7592e-08        -2105.5              0
x15            -6.5674e-06    4.9221e-08        -133.43              0
x16             8.5598e-06    5.0296e-08         170.19              0
x17            -3.9107e-05     5.3e-08          -737.87              0
Number of observations: 15000, Error degrees of freedom: 14954
Root Mean Squared Error: 0.00151
R-squared: 1, Adjusted R-Squared 1
F-statistic vs. constant model: 2.82e+08, p-value = 0

Compact the model.

compactMdl = compact(mdl)

compactMdl =
Compact linear regression model:
    y ~ [Linear formula with 46 terms in 45 predictors]

Estimated Coefficients:
    Estimate       SE         tStat     pValue
 x18  -6.5841e-06   5.5355e-08   -118.94   0
 x19  -1.7053e-05   5.7431e-08   -296.94   0
 x20  -3.8911e-06   6.2724e-08   -62.036   0
 x21  -9.7219e-06   6.3515e-08   -153.06   0
 x22  -1.8749e-06   6.5388e-08   -28.673  4.6032e-176
 x23  -4.7514e-06   6.6636e-08   -71.303   0
 x24  -1.7756e-05   6.8495e-08   -259.23   0
 x25  -9.6673e-06   7.0054e-08   -138.60   0
 x26   7.6237e-06   7.2442e-08    105.24   0
 x27  -8.4338e-07   7.7519e-08   -10.88   1.8249e-27
 x28   7.0502e-06   8.1889e-08    86.094   0
 x29  -1.4703e-05   8.7126e-08   -168.75   0
 x30   2.7008e-05   9.0084e-08    299.80   0
 x31   6.3685e-07   9.1253e-08    6.9793  3.0977e-12
 x32  -1.9916e-05   1.0034e-07   -198.48   0
 x33   1.7369e-05   1.0190e-07    170.45   0
 x34  -9.931e-06   1.0706e-07   -92.764   0
 x35  -1.5195e-05   1.0858e-07   -139.94   0
 x36  -1.0118e-05   1.1122e-07   -90.976   0
 x37   2.4595e-06   1.1254e-07    21.856  2.9315e-104
 x38  -2.2928e-06   1.1493e-07   -19.95   2.0535e-87
 x39   1.1397e-05   1.1855e-07    96.136   0
 x40   4.0239e-06   1.2327e-07    32.643  7.75e-226
 x41  -8.6667e-06   1.2535e-07   -69.142   0
 x42  -8.2932e-06   1.3095e-07   -63.334   0
 x43   2.7309e-06   1.3452e-07    20.301  2.0697e-90
 x44  -6.9235e-06   1.3725e-07   -50.444   0
 x45   1.1165e-06   1.4021e-07     7.963  1.7956e-15

32-719
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.2903</td>
<td>1.2333e-05</td>
<td>2.6679e+05</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>-0.0006461</td>
<td>5.9019e-09</td>
<td>-1.0947e+05</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>-0.00024739</td>
<td>1.0256e-08</td>
<td>-24121</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>-9.5161e-05</td>
<td>1.3149e-08</td>
<td>-7236.9</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>0.00013143</td>
<td>1.8311e-08</td>
<td>7177.3</td>
<td>0</td>
</tr>
<tr>
<td>x5</td>
<td>7.163e-05</td>
<td>2.3367e-08</td>
<td>3065.4</td>
<td>0</td>
</tr>
<tr>
<td>x6</td>
<td>4.5064e-06</td>
<td>2.6264e-08</td>
<td>171.58</td>
<td>0</td>
</tr>
<tr>
<td>x7</td>
<td>-2.6258e-05</td>
<td>3.006e-08</td>
<td>-873.51</td>
<td>0</td>
</tr>
<tr>
<td>x8</td>
<td>6.284e-05</td>
<td>3.0262e-08</td>
<td>2076.5</td>
<td>0</td>
</tr>
<tr>
<td>x9</td>
<td>-0.00014288</td>
<td>3.3258e-08</td>
<td>-4296.1</td>
<td>0</td>
</tr>
<tr>
<td>x10</td>
<td>-2.2642e-05</td>
<td>3.6555e-08</td>
<td>-619.41</td>
<td>0</td>
</tr>
<tr>
<td>x11</td>
<td>-6.0227e-05</td>
<td>3.7353e-08</td>
<td>-1612.4</td>
<td>0</td>
</tr>
<tr>
<td>x12</td>
<td>1.1665e-05</td>
<td>4.0048e-08</td>
<td>291.27</td>
<td>0</td>
</tr>
<tr>
<td>x13</td>
<td>3.8595e-05</td>
<td>4.203e-08</td>
<td>918.26</td>
<td>0</td>
</tr>
<tr>
<td>x14</td>
<td>0.00010021</td>
<td>5.3e-08</td>
<td>-737.87</td>
<td>0</td>
</tr>
<tr>
<td>x15</td>
<td>-6.5674e-06</td>
<td>4.9221e-08</td>
<td>-133.43</td>
<td>0</td>
</tr>
<tr>
<td>x16</td>
<td>8.5598e-06</td>
<td>5.0296e-08</td>
<td>170.19</td>
<td>0</td>
</tr>
<tr>
<td>x17</td>
<td>-3.9107e-05</td>
<td>5.3e-08</td>
<td>-737.87</td>
<td>0</td>
</tr>
<tr>
<td>x18</td>
<td>-6.5841e-06</td>
<td>5.5355e-08</td>
<td>-118.94</td>
<td>0</td>
</tr>
<tr>
<td>x19</td>
<td>-1.7053e-05</td>
<td>5.7431e-08</td>
<td>-296.94</td>
<td>0</td>
</tr>
<tr>
<td>x20</td>
<td>-3.8911e-06</td>
<td>6.2724e-08</td>
<td>-62.036</td>
<td>0</td>
</tr>
<tr>
<td>x21</td>
<td>-9.7219e-06</td>
<td>6.3515e-08</td>
<td>-153.06</td>
<td>0</td>
</tr>
<tr>
<td>x22</td>
<td>-1.8749e-06</td>
<td>6.5388e-08</td>
<td>-28.673</td>
<td>4.6032e-176</td>
</tr>
<tr>
<td>x23</td>
<td>-4.7514e-06</td>
<td>6.6636e-08</td>
<td>-71.303</td>
<td>0</td>
</tr>
<tr>
<td>x24</td>
<td>-1.7756e-05</td>
<td>6.8495e-08</td>
<td>-259.23</td>
<td>0</td>
</tr>
<tr>
<td>x25</td>
<td>-9.6673e-06</td>
<td>7.0054e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x26</td>
<td>7.6237e-06</td>
<td>7.2442e-08</td>
<td>105.24</td>
<td>0</td>
</tr>
<tr>
<td>x27</td>
<td>-8.4338e-07</td>
<td>7.7519e-08</td>
<td>-10.88</td>
<td>1.8249e-27</td>
</tr>
<tr>
<td>x28</td>
<td>7.0502e-06</td>
<td>8.1889e-08</td>
<td>86.094</td>
<td>0</td>
</tr>
<tr>
<td>x29</td>
<td>-1.4703e-05</td>
<td>8.7126e-08</td>
<td>-168.75</td>
<td>0</td>
</tr>
<tr>
<td>x30</td>
<td>2.7008e-05</td>
<td>9.0084e-08</td>
<td>299.8</td>
<td>0</td>
</tr>
<tr>
<td>x31</td>
<td>6.3685e-07</td>
<td>9.1253e-08</td>
<td>6.979</td>
<td>3.0977e-12</td>
</tr>
<tr>
<td>x32</td>
<td>-1.9916e-05</td>
<td>1.0034e-07</td>
<td>-198.48</td>
<td>0</td>
</tr>
<tr>
<td>x33</td>
<td>1.7369e-05</td>
<td>1.019e-07</td>
<td>170.45</td>
<td>0</td>
</tr>
<tr>
<td>x34</td>
<td>-9.931e-06</td>
<td>1.0706e-07</td>
<td>-92.764</td>
<td>0</td>
</tr>
<tr>
<td>x35</td>
<td>-1.5195e-05</td>
<td>1.0858e-07</td>
<td>-139.94</td>
<td>0</td>
</tr>
<tr>
<td>x36</td>
<td>-1.0118e-05</td>
<td>1.1122e-07</td>
<td>-90.976</td>
<td>0</td>
</tr>
<tr>
<td>x37</td>
<td>2.4595e-06</td>
<td>1.1254e-07</td>
<td>21.856</td>
<td>2.9315e-104</td>
</tr>
<tr>
<td>x38</td>
<td>-2.2928e-06</td>
<td>1.1493e-07</td>
<td>-19.95</td>
<td>2.0535e-87</td>
</tr>
<tr>
<td>x39</td>
<td>1.1397e-05</td>
<td>1.1855e-07</td>
<td>96.136</td>
<td>0</td>
</tr>
<tr>
<td>x40</td>
<td>4.0239e-06</td>
<td>1.2327e-07</td>
<td>32.643</td>
<td>7.75e-226</td>
</tr>
<tr>
<td>x41</td>
<td>-8.6667e-06</td>
<td>1.2535e-07</td>
<td>-69.142</td>
<td>0</td>
</tr>
</tbody>
</table>
The compact model discards the original sample data and some information related to the fitting process.

Compare the size of the full model `mdl` and the compact model `compactMdl`.

```matlab
vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]
```

```
ans = 1×2
 83506 11410618
```

The compacted model consumes less memory than the full model.

**See Also**

- `CompactLinearModel`
- `LinearModel`
- `fitlm`
- `stepwiselm`

**Introduced in R2016a**
compact

Class: GeneralizedLinearModel
Compact generalized linear regression model

Syntax

```
compactMdl = compact(mdl)
```

Description

`compactMdl = compact(mdl)` returns a compact generalized linear regression model, `compactMdl`, which is the compact version of the full, fitted regression model `mdl`. The compact model uses less memory than the full model because it does not include a copy of the data or anything comparable in size to the data. However, the compact model also does not support properties (such as `Residuals`) or methods (such as `addTerms`) that require the data.

Input Arguments

`mdl` — Full, fitted generalized linear regression model
GeneralizedLinearModel object

Full, fitted generalized linear regression model, specified as a `GeneralizedLinearModel` object constructed using `fitglm` or `stepwiseglm`.

Output Arguments

`compactMdl` — Compact generalized linear regression model
CompactGeneralizedLinearModel object

Compact generalized linear regression model, returned as a `CompactGeneralizedLinearModel` object.
Predict response values using compactMdl exactly as you would using mdl. However, since compactMdl does not contain training data, you cannot perform certain tasks, such as cross-validation.

**Examples**

**Compact a Generalized Linear Regression Model**

Reduce the size of a full, fitted generalized linear regression model by discarding the sample data and some information related to the fitting process.

Load the data into the workspace. The simulated sample data contains 15,000 observations and 45 predictor variables.

```matlab
load(fullfile(matlabroot,'examples','stats','largedata4reg.mat'))
```

Fit a generalized linear regression model to the data using the first 15 predictor variables.

```matlab
mdl = fitglm(X(:,1:15),Y)
```

```
mdl =
Generalized linear regression model:
 y ~ [Linear formula with 16 terms in 15 predictors]
 Distribution = Normal

Estimated Coefficients:
 Estimate SE tStat pValue
 ___________ __________ _______ ___________
(Intercept) 3.2903 0.00010447 31497 0
x1 -0.0006461 4.9991e-08 -12924 0
x2 -0.00024739 8.6874e-08 -2847.7 0
x3 -9.5161e-05 1.1138e-07 -854.38 0
x4 0.00013143 1.551e-07 847.35 0
x5 7.163e-05 1.9793e-07 361.9 0
x6 -2.6258e-05 2.5462e-07 -103.13 0
x7 6.284e-05 2.5633e-07 245.15 0
x8 -0.00014288 2.817e-07 -507.19 0
x9 -2.2642e-05 3.0963e-07 -73.127 0
```

32-723
Compact the model. The compact model discards the original sample data and some information related to the fitting process, so it uses less memory than the full model.

```
compactMdl = compact(mdl)
```

```
compactMdl =
Compact generalized linear regression model:
 y ~ [Linear formula with 16 terms in 15 predictors]
 Distribution = Normal

Estimated Coefficients:
 Estimate SE tStat pValue
 ___________ __________ _______ ___________
 (Intercept) 3.2903 0.00010447 31497 0
 x1 -0.0006461 4.9991e-08 -12924 0
 x2 -0.00024739 8.6874e-08 -2847.7 0
 x3 -9.5161e-05 1.1138e-07 -854.38 0
 x4 0.00013143 1.551e-07 847.35 0
 x5 7.163e-05 1.9793e-07 361.9 0
 x6 4.5064e-06 2.2247e-07 20.257 4.9539e-90
 x7 -2.6258e-05 2.5462e-07 -103.13 0
 x8 6.284e-05 2.5633e-07 245.15 0
 x9 -0.00014288 2.817e-07 -507.19 0
 x10 -2.2642e-05 3.0963e-07 -73.127 0
 x11 -6.0227e-05 3.1639e-07 -190.36 0
 x12 1.1665e-05 3.3921e-07 34.388 1.6995e-249
 x13 3.8595e-05 3.5601e-07 108.41 0
 x14 0.00010021 4.0312e-07 248.57 0
```

15000 observations, 14984 error degrees of freedom
Estimated Dispersion: 0.000164
F-statistic vs. constant model: 1.18e+07, p-value = 0

See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | fitglm | stepwiseglm

Introduced in R2016b
compact

Create compact regression ensemble

Syntax

cens = compact(ens)

Description

cens = compact(ens) creates a compact version of ens. You can predict regressions using cens exactly as you can using ens. However, since cens does not contain training data, you cannot perform some actions, such as cross validation.

Input Arguments

en

A regression ensemble created with fitrensemble.

Output Arguments

cens

A compact regression ensemble. cens is of class CompactRegressionEnsemble.

Examples

View Size of Compact Regression Ensemble

Compare the size of a regression ensemble for the carsmall data to the size of the compact version of the ensemble.
Load the carsmall data set and select acceleration, number of cylinders, displacement, horsepower, and vehicle weight as predictors.

```matlab
load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];
```

Train an ensemble of regression trees.

```matlab
ens = fitrensemble(X,MPG);
```

Create a compact version of `ens` and compare ensemble sizes.

```matlab
cens = compact(ens);
b = whos('ens');
c = whos('cens');
[b.bytes c.bytes] % b.bytes = size of ens and c.bytes = size of cens
```

```matlab
ans = 1×2
 415490 389558
```

The compact ensemble uses less memory.

**See Also**

CompactRegressionEnsemble | RegressionEnsemble
compact

Class: RegressionGP

Create compact Gaussian process regression model

Syntax

cgprMdl = compact(gprMdl)

Description

cgprMdl = compact(gprMdl) returns a compact version of the trained Gaussian process regression (GPR) model, gprMdl.

Input Arguments

- **gprMdl** — Gaussian process regression model
  RegressionGP object

  Gaussian process regression model, specified as a RegressionGP object.

Output Arguments

- **cgprMdl** — Compact Gaussian process regression model
  CompactRegressionGP object

  Compact Gaussian process regression model, returned as a CompactRegressionGP object.

Examples
Compute Predictions and Regression Loss for Test Data

Generate example training data.

```matlab
rng(1) % For reproducibility
n = 100000;
X = linspace(0,1,n)';
X = [X,X.^2];
y = 1 + X*[1;2] + sin(20*X*[1;-2]) + 0.2*randn(n,1);
```

Train a GPR model using the subset of regressors ('sr') approximation method and predict using the subset of data ('sd') method. Use 50 points in the active set and sparse greedy matrix approximation ('sgma') method for active set selection. Because the scales of the first and second predictors are different, it is good practice to standardize the data.

```matlab
gprMdl = fitrgp(X,y,'KernelFunction','squaredExponential','FitMethod','sr','PredictMethod','sd','Basis','none','ActiveSetSize',50,'ActiveSetMethod','sgma','Standardize',1,'KernelParameters',[1;1]);
```

`fitrgp` accepts any combination of fitting, prediction, and active set selection methods. In some cases it might not be possible to compute the standard deviations of the predicted responses, hence the prediction intervals. See “Tips” on page 32-731. And, in some cases, using the exact method might be expensive because of the size of the training data.

Create a compact GPR object.

```matlab
cgprMdl = compact(gprMdl);
```

Generate the test data.

```matlab
n = 4000;
Xnew = linspace(0,1,n)';
Xnew = [Xnew,Xnew.^2];
ynew = 1 + Xnew*[1;2] + sin(20*Xnew*[1;-2]) + 0.2*randn(n,1);
```

Use the compact object to predict the response in test data and the prediction intervals.

```matlab
[ypred,~,yci] = predict(cgprMdl,Xnew);
```

Plot the true response, predicted response, and prediction intervals.

```matlab
figure;
plot(ynew,'r');
```
hold on;
plot(ypred,'b')
plot(yci(:,1),'k--');
plot(yci(:,2),'k--');
legend('Data','Pred','Lower 95%','Upper 95%','Location','Best');
xlabel('x');
ylabel('y');
hold off

Compute the mean squared error loss on the test data using the trained GPR model.

L = loss(cgprMdl,Xnew,ynew)

L = 0.0497
**Tips**

- The compact object does not contain the training data that `fitrgp` uses in training the GPR model, `gprMdl`.
- You can use the compact object to make predictions (see `predict`) or compute the regression error (see `loss`).
- Computation of standard deviations, `ysd`, and prediction intervals, `yint`, is not supported when `PredictMethod` is 'bcd'.
- If `gprMdl` is a `CompactRegressionGP` object, you cannot compute standard deviations, `ysd`, or prediction intervals, `yint`, for `PredictMethod` equal to 'sr' or 'fic'. To compute `ysd` and `yint` for `PredictMethod` equal to 'sr' or 'fic', use the full regression (`RegressionGP`) object.

**See Also**
CompactRegressionGP | `fitrgp` | `loss` | `predict`

*Introduced in R2015b*
compact

Class: RegressionSVM

Compact support vector machine regression model

Syntax

compactMdl = compact(mdl)

Description

compactMdl = compact(mdl) returns a compact support vector machine (SVM) regression model, compactMdl, which is the compact version of the full, trained SVM regression model mdl.

compactMdl does not contain the training data, whereas mdl contains the training data in its properties mdl.X and mdl.Y.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Output Arguments

compactMdl — Compact SVM regression model
CompactRegressionSVM model

Compact SVM regression model, returned as a CompactRegressionSVM model.
Predict response values using `compactMdl` exactly as you would using `mdl`. However, since `compactMdl` does not contain training data, you cannot perform certain tasks, such as cross validation.

### Examples

#### Compact an SVM Regression Model

This example shows how to reduce the size of a full, trained SVM regression model by discarding the training data and some information related to the training process.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default % for reproducibility
```

The sample data contains 4177 observations. All of the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model using a Gaussian kernel function and an automatic kernel scale. Standardize the data.

```matlab
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true)
```

```matlab
dmdl =RegressionSVM
 PredictorNames: {1x8 cell}
 ResponseName: 'Var9'
 CategoricalPredictors: 1
 ResponseTransform: 'none'
 Alpha: [3635x1 double]
 Bias: 10.8144
 KernelParameters: [1x1 struct]
 Mu: [1x10 double]
 Sigma: [1x10 double]
 NumObservations: 4177
```
BoxConstraints: [4177x1 double]
ConvergenceInfo: [1x1 struct]
IsSupportVector: [4177x1 logical]
Solver: 'SMO'

Properties, Methods

Compact the model.
compactMdl = compact(mdl)

compactMdl =

    classreg.learning.regr.CompactRegressionSVM
    PredictorNames: {1x8 cell}
    ResponseName: 'Var9'
    CategoricalPredictors: 1
    ResponseTransform: 'none'
    Alpha: [3635x1 double]
    Bias: 10.8144
    KernelParameters: [1x1 struct]
    Mu: [1x10 double]
    Sigma: [1x10 double]
    SupportVectors: [3635x10 double]

Properties, Methods

The compacted model discards the training data and some information related to the training process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans =

    323793      775968

The compacted model consumes about half the memory of the full model.
Reduce Memory Consumption of SVM Regression Model

This example shows how to reduce the memory consumption of a full, trained SVM regression model by compacting the model and discarding the support vectors.

Load the carsmall sample data.

load carsmall
rng default  % for reproducibility

Train a linear SVM regression model using Weight as the predictor variable and MPG as the response variable. Standardize the data.

mdl = fitrsvm(Weight,MPG,'Standardize',true);

Note that MPG contains several NaN values. When training a model, fitrsvm will remove rows that contain NaN values from both the predictor and response data. As a result, the trained model uses only 94 of the 100 total observations contained in the sample data.

Compact the regression model to discard the training data and some information related to the training process.

compactMdl = compact(mdl);

compactMdl is a CompactRegressionSVM model that has the same parameters, support vectors, and related estimates as mdl, but no longer stores the training data.

Discard the support vectors and related estimates for the compacted model.

mdlOut = discardSupportVectors(compactMdl);

mdlOut is a CompactRegressionSVM model that has the same parameters as mdl and compactMdl, but no longer stores the support vectors and related estimates.

Compare the sizes of the three SVM regression models, compactMdl, mdl, and mdlOut.

vars = whos('compactMdl','mdl','mdlOut');
[v harmless(1).bytes,v harmless(2).bytes,v harmless(3).bytes]

ans =
3601 13727 2305

compact
The compacted model `compactMdl` consumes 3601 bytes of memory, while the full model `mdl` consumes 13727 bytes of memory. The model `mdlOut`, which also discards the support vectors, consumes 2305 bytes of memory.

References


See Also

`CompactRegressionSVM | RegressionSVM | fitrsvm`

Introduced in R2015b
compact

Class: RegressionTree

Compact regression tree

Syntax

ctree = compact(tree)

Description

ctree = compact(tree) creates a compact version of tree.

Input Arguments

tree

A regression tree created using fitrtree.

Output Arguments

ctree

A compact regression tree. ctree has class CompactRegressionTree. You can predict regressions using ctree exactly as you can using tree. However, since ctree does not contain training data, you cannot perform some actions, such as cross validation.

Examples
Reduce Memory Consumption of Regression Tree Model

Compare the size of a full regression tree model to the compacted model.

Load the carsmall data set. Consider Acceleration, Displacement, Horsepower, and Weight as predictor variables.

```matlab
load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];
```

Grow a regression tree using the entire data set.

```matlab
Mdl = fitrtree(X,MPG)
```

```
Mdl = RegressionTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 NumObservations: 94
```

Properties, Methods

Mdl is a RegressionTree model. It is a full model, that is, it stores information such as the predictor and response data fitrtree used in training. For a properties list of full regression tree models, see RegressionTree.

Create a compact version of the full regression tree. That is, one that contains enough information to make predictions only.

```matlab
CMdl = compact(Mdl)
```

```
CMdl =
 classreg.learning.regr.CompactRegressionTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
```

Properties, Methods
CMdl is a CompactRegressionTree model. For a properties list of compact regression tree models, see CompactRegressionTree.

Inspect the amounts of memory that the full and compact regression trees consume.

```matlab
mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]
```

```
ans = 1x2
 11778 6276
```

```
cMdlInfo.bytes/mdlInfo.bytes
```

```
ans = 0.5329
```

In this case, the compact regression tree model consumes about 25% less memory than the full model consumes.

**See Also**
CompactRegressionTree | RegressionTree | fitrtree | predict
compact

Class: TreeBagger

Compact ensemble of decision trees

Description

CMdl = compact(Mdl) creates a compact version of Mdl, a TreeBagger model object. You can predict regressions using CMdl exactly as you can using Mdl. However, since CMdl does not contain training data, you cannot perform some actions, such as make out-of-bag predictions using oobPredict.

Input Arguments

Mdl

A regression ensemble created with TreeBagger.

Output Arguments

CMdl

A compact regression ensemble. CMdl is of class CompactTreeBagger.

Examples

Reduce Size of Bag of Trees

Create a compact bag of trees for efficiently making predictions on new data.

Load the ionosphere data set.

load ionosphere
Train a bag of 100 classification trees using all measurements and the AdaBoostM1 method.

Mdl = TreeBagger(100,X,Y,'Method','classification')

Mdl = 
    TreeBagger
Ensemble with 100 bagged decision trees:
    Training X:              [351x34]
    Training Y:              [351x1]
    Method:       classification
    NumPredictors:                   34
    NumPredictorsToSample:                    6
    MinLeafSize:                    1
    InBagFraction:                    1
    SampleWithReplacement:                    1
    ComputeOOBPrediction:                    0
    ComputeOOBPredictorImportance:                    0
    Proximity:                   
    ClassNames:             'b'             'g'

Properties, Methods

Mdl is a TreeBagger model object that contains the training data, among other things.

Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl = 
    CompactTreeBagger
Ensemble with 100 bagged decision trees:
    Method:       classification
    NumPredictors:                   34
    ClassNames: 'b' 'g'

Properties, Methods

CMdl is a CompactTreeBagger model object. CMdl is almost the same as Mdl. One exception is that it does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.
mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1x2
    1031399    890204

Mdl consumes more space than CMdl.

CMdl.Trees stores the trained classification trees (CompactClassificationTree model objects) that compose Mdl.

Display a graph of the first tree in the compact model.

view(CMdl.Trees{1},'Mode','graph');
By default, TreeBagger grows deep trees.

Predict the label of the mean of $X$ using the compact ensemble.

$$\text{predMeanX} = \text{predict}(\text{CMdl}, \text{mean}(X))$$

$$\text{predMeanX} = 1x1 \text{ cell array}$$

$$\text{\{'g'\}}$$
See Also
CompactTreeBagger | error | predict

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
CompactClassificationDiscriminant

**Package:** classreg.learning.classif

Compact discriminant analysis class

**Description**

A `CompactClassificationDiscriminant` object is a compact version of a discriminant analysis classifier. The compact version does not include the data for training the classifier. Therefore, you cannot perform some tasks with a compact classifier, such as cross validation. Use a compact classifier for making predictions (classifications) of new data.

**Construction**

```matlab
cobj = compact(obj)
```
constructs a compact classifier from a full classifier.

```matlab
cobj = makecdiscr(Mu,Sigma)
```
constructs a compact discriminant analysis classifier from the class means `Mu` and covariance matrix `Sigma`. For syntax details, see `makecdiscr`.

**Input Arguments**

- **obj**
  Discriminant analysis classifier, created using `fitcdiscr`.

**Properties**

- **BetweenSigma**
  p-by-p matrix, the between-class covariance, where p is the number of predictors.
CategoricalPredictors

Categorical predictor indices, which is always empty ([]).

ClassNames

List of the elements in the training data Y with duplicates removed. ClassNames can be a categorical array, cell array of character vectors, character array, logical vector, or a numeric vector. ClassNames has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)

Coeffs

k-by-k structure of coefficient matrices, where k is the number of classes. Coeffs(i,j) contains coefficients of the linear or quadratic boundaries between classes i and j. Fields in Coeffs(i,j):

- DiscrimType
- Class1 — ClassNames(i)
- Class2 — ClassNames(j)
- Const — A scalar
- Linear — A vector with p components, where p is the number of columns in X
- Quadratic — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is

\[ \text{Const} + \text{Linear} * x + x' * \text{Quadratic} * x = 0, \]

where x is a column vector of length p.

If fitcdiscr had the FillCoeffs name-value pair set to 'off' when constructing the classifier, Coeffs is empty ([]).

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response.

**Delta**

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of `obj` has magnitude smaller than `Delta`, `obj` sets this coefficient to 0, and so you can eliminate the corresponding predictor from the model. Set `Delta` to a higher value to eliminate more predictors.

`Delta` must be 0 for quadratic discriminant models.


**DeltaPredictor**

Row vector of length equal to the number of predictors in `obj`. If `DeltaPredictor(i) < Delta` then coefficient `i` of the model is 0.

If `obj` is a quadratic discriminant model, all elements of `DeltaPredictor` are 0.

**DiscrimType**

Character vector specifying the discriminant type. One of:

- 'linear'
- 'quadratic'
- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Change `DiscrimType` using dot notation: `obj.DiscrimType = newDiscrimType`.

You can change between linear types, or between quadratic types, but cannot change between linear and quadratic types.

**Gamma**


32-747
• If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
• If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type to 'linear'.
• You cannot set values below the value of the MinGamma property.
• For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for DiscrimType 'diagQuadratic').

**LogDetSigma**

Logarithm of the determinant of the within-class covariance matrix. The type of LogDetSigma depends on the discriminant type:

• Scalar for linear discriminant analysis
• Vector of length K for quadratic discriminant analysis, where K is the number of classes

**MinGamma**

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is invertible. If the correlation matrix is not singular, MinGamma is 0.

**Mu**

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

**PredictorNames**

Cell array of names for the predictor variables, in the order in which they appear in the training data X.

**Prior**

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: obj.Prior = priorVector.
ResponseName

Character vector describing the response variable Y.

ScoreTransform

Character vector representing a built-in transformation function, or a function handle for transforming scores. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see fitcdiscr.

Implement dot notation to add or change a ScoreTransform function using one of the following:

- obj.ScoreTransform = 'function'
- obj.ScoreTransform = @function

Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

- 'linear' (default) — Matrix of size p-by-p, where p is the number of predictors
- 'quadratic' — Array of size p-by-p-by-K, where K is the number of classes
- 'diagLinear' — Row vector of length p
- 'diagQuadratic' — Array of size 1-by-p-by-K
- 'pseudoLinear' — Matrix of size p-by-p
- 'pseudoQuadratic' — Array of size p-by-p-by-K
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge</td>
<td>Classification edge</td>
</tr>
<tr>
<td>logP</td>
<td>Log unconditional probability density for discriminant analysis classifier</td>
</tr>
<tr>
<td>loss</td>
<td>Classification error</td>
</tr>
<tr>
<td>mahal</td>
<td>Mahalanobis distance to class means</td>
</tr>
<tr>
<td>margin</td>
<td>Classification margins</td>
</tr>
<tr>
<td>nLinearCoeffs</td>
<td>Number of nonzero linear coefficients</td>
</tr>
<tr>
<td>predict</td>
<td>Predict labels using discriminant analysis classification model</td>
</tr>
</tbody>
</table>

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Construct a Compact Discriminant Analysis Classifier

Load the sample data.

load fisheriris

Construct a discriminant analysis classifier for the sample data.

fullobj = fitcdiscr(meas,species);

Construct a compact discriminant analysis classifier, and compare its size to that of the full classifier.

cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans = 1x2
The compact classifier is smaller than the full classifier.

**Construct Classifier Using Means and Covariances**

Construct a compact discriminant analysis classifier from the means and covariances of the Fisher iris data.

```matlab
load fisheriris
mu(1,:) = mean(meas(1:50,:));
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
cc = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147;
cpct = makecdiscr(mu,sigstar,...
 'ClassNames',
 'setosa','versicolor','virginica');
```

**Definitions**

**Discriminant Classification**

The model for discriminant analysis is:

- Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model assumes X has a Gaussian mixture distribution (`gmdistribution`).
  - For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
predict classifies so as to minimize the expected classification cost:
\[
\hat{y} = \arg\min_{y=1,\ldots,K} \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where

- \( \hat{y} \) is the predicted classification.
- \( K \) is the number of classes.
- \( \hat{P}(k \mid x) \) is the posterior probability on page 20-7 of class \( k \) for observation \( x \).
- \( C(y \mid k) \) is the cost on page 20-8 of classifying an observation as \( y \) when its true class is \( k \).

For details, see “Prediction Using Discriminant Analysis Models” on page 20-7.

**Regularization**

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, \( \gamma \) and \( \delta \), that control regularization as follows. cvshrink helps you select appropriate values of the parameters.

Let \( \Sigma \) represent the covariance matrix of the data \( X \), and let \( \hat{X} \) be the centered data (the data \( X \) minus the mean by class). Define
\[
D = \text{diag}(\hat{X}^T \ast \hat{X}).
\]

The regularized covariance matrix \( \tilde{\Sigma} \) is
\[
\tilde{\Sigma} = (1 - \gamma) \Sigma + \gamma D.
\]

Whenever \( \gamma \geq \text{MinGamma} \), \( \tilde{\Sigma} \) is nonsingular.
Let $\mu_k$ be the mean vector for those elements of $X$ in class $k$, and let $\mu_0$ be the global mean vector (the mean of the rows of $X$). Let $C$ be the correlation matrix of the data $X$, and let $\tilde{C}$ be the regularized correlation matrix:

$$\tilde{C} = (1 - \gamma)C + \gamma I,$$

where $I$ is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point $x$ is

$$(x - \mu_0)^T \tilde{\Sigma}^{-1} (\mu_k - \mu_0) = [(x - \mu_0)^T D^{-1/2}] [\tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0)].$$

The parameter $\delta$ enters into this equation as a threshold on the final term in square brackets. Each component of the vector $[\tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0)]$ is set to zero if it is smaller in magnitude than the threshold $\delta$. Therefore, for class $k$, if component $j$ is thresholded to zero, component $j$ of $x$ does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When $\delta \geq \text{DeltaPredictor}(i)$, all classes $k$ have

$$\left| \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right| \leq \delta.$$ 

Therefore, when $\delta \geq \text{DeltaPredictor}(i)$, the regularized classifier does not use predictor $i$.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
• When you train a discriminant analysis model by using `fitcdiscr` or create a compact discriminant analysis model by using `makecdiscr`, the following restrictions apply.
  
  • The class labels input argument value (Y) cannot be a categorical array.
  • The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
  • The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
`ClassificationDiscriminant` | `compact` | `compareHoldout` | `fitcdiscr` | `makecdiscr` | `predict`

**Topics**
“Discriminant Analysis Classification” on page 20-2

**Introduced in R2011b**
CompactClassificationECOC

**Package:** classreg.learning.classif

Compact multiclass model for support vector machines or other classifiers

**Description**

CompactClassificationECOC is a compact, multiclass, error-correcting output codes (ECOC) model.

The compact classifier does not include the data used for training the ECOC multiclass model. Therefore, you cannot perform tasks, such as cross-validation, using the compact classifier.

Use a compact ECOC multiclass model for labeling new data (in other words, predicting the labels of new data).

**Construction**

CompactMdl = compact(Mdl) returns a compact, multiclass ECOC model (CompactModel) from a full, trained, multiclass, ECOC model (Mdl).

CompactMdl = fitcecoc(X,Y,'Learners',t) returns a compact ECOC model composed of either linear classification models (ClassificationLinear model objects) or kernel classification models (ClassificationKernel model objects). t must be 'linear' or 'kernel', a linear classification model template object returned by templateLinear, or a kernel classification model template object returned by templateKernel. For more details, see fitcecoc.

**Input Arguments**

Mdl — Full, trained, multiclass, ECOC model
ClassificationECOC classifier

Full, trained, multiclass, ECOC model, specified as a ClassificationECOC classifier trained by fitcecoc.
X — **Predictor data**
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix.

The length of Y and the number of observations in X must be equal.

Data Types: single | double

Y — **Class labels**
categorical array | character array | string array | logical vector | vector of numeric values |
| cell array of character vectors

Class labels to which the classification linear model is trained, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

If Y is a character array, each element must correspond to one row of the array. The length of Y and the number of observations in X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

**Properties**

**BinaryLearners — Trained binary learners**
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. BinaryLearners has as many elements as classes in Y.

The software trained BinaryLearner{j} according to the binary problem specified by CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each element of BinaryLearners is a CompactClassificationSVM classifier.

Data Types: cell

**BinaryLoss — Binary learner loss function**
character vector representing the loss function name

Binary learner loss function, specified as a character vector representing the loss function name.

If you train using binary learners that use different loss functions, then the software sets BinaryLoss to 'hamming'. To potentially increase accuracy, set a different binary loss
function than this default during prediction or loss computation using the `BinaryLoss` name-value pair argument of `predict` or `loss`.

Data Types: `char`

**CategoricalPredictors — Categorical predictor indices**

vector of positive integers | `[]`

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

Data Types: `single` | `double`

**ClassNames — Unique class labels**

categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. `ClassNames` has the same data type as the class labels `Y`. (The software treats string arrays as cell arrays of character vectors.) `ClassNames` also determines the class order.

Data Types: `categorical` | `char` | `logical` | `single` | `double` | `cell`

**CodingMatrix — Class-assignment codes**

numeric matrix

Class-assignment codes for the binary learners, specified as a numeric matrix. `CodingMatrix` is a $K$-by-$L$ matrix, where $K$ is the number of classes and $L$ is the number of binary learners.

Elements of `CodingMatrix` are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes the meaning of `CodingMatrix(i,j)`, that is, the class that learner $j$ assigns to observations in class $i$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>–1</td>
<td>Learner $j$ assigns observations in class $i$ to a negative class.</td>
</tr>
</tbody>
</table>
Value | Dichotomous Class Assignment
--- | ---
0 | Before training, learner \( j \) removes observations in class \( i \) from the data set.
1 | Learner \( j \) assigns observations in class \( i \) to a positive class.

Data Types: double | single | int8 | int16 | int32 | int64

**Cost — Misclassification costs**

square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. \( \text{Cost} \) has \( K \) rows and columns, where \( K \) is the number of classes.

\( \text{Cost}(i,j) \) is the cost of classifying a point into class \( j \) if its true class is \( i \). The order of the rows and columns of \( \text{Cost} \) corresponds to the order of the classes in \( \text{ClassNames} \).

\( \text{fitcecoc} \) incorporates misclassification costs differently among different types of binary learners.

Data Types: double

**ExpandedPredictorNames — Expanded predictor names**

cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then \( \text{ExpandedPredictorNames} \) includes the names that describe the expanded variables. Otherwise, \( \text{ExpandedPredictorNames} \) is the same as \( \text{PredictorNames} \).

**LearnerWeights — Binary learner weights**

numeric row vector

Binary learner weights, specified as a numeric row vector. \( \text{LearnerWeights} \) has length equal to the number of binary learners (\( \text{size(CodingMatrix,2)} \)).

\( \text{LearnerWeights}(j) \) is the sum of the observation weights that binary learner \( j \) used to train its classifier.
The software uses **LearnerWeights** to fit posterior probabilities by minimizing the Kullback-Leibler divergence.

**Data Types:** double | single

**PredictorNames — Predictor names**

cell array of character vectors

Predictor names in order of their appearance in the predictor data \( X \), specified as a cell array of character vectors. The length of **PredictorNames** is equal to the number of columns in \( X \).

**Data Types:** cell

**Prior — Prior class probabilities**

numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. **Prior** has as many elements as there are classes in **ClassNames**, and the order of the elements corresponds to the elements of **ClassNames**.

**fitcecoc** incorporates misclassification costs differently among different types of binary learners.

**Data Types:** double

**ResponseName — Response variable name**

character vector

Response variable name, specified as a character vector.

**Data Types:** char

**ScoreTransform — Score transformation function to apply to predicted scores**

'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

To change the score transformation function to **function**, for example, use dot notation.

- For a built-in function, enter this code and replace **function** with a value in the table.
Mdl.ScoreTransform = 'function';

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$\frac{1}{1 + e^{-2x}}$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$\frac{1}{1 + e^x}$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign'             | -1 for $x < 0$  
|                    | 0 for $x = 0$  
|                    | 1 for $x > 0$                                                            |
| 'symmetric'        | $2x - 1$                                                                   |
| 'symmetricismax'   | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1 |
| 'symmetriclogit'   | $\frac{2}{1 + e^x} - 1$                                                   |

- For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

`function` must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: char | function_handle
Methods

discardSupportVectors Discard support vectors of linear support vector machine binary learners
edge Classification edge for multiclass, error-correcting output codes model
loss Classification loss for multiclass, error-correcting output codes model
margin Classification margins for multiclass, error-correcting output codes model
predict Predict labels using multiclass, error-correcting output codes model
selectModels Choose subset of regularized linear classification models

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Reduce the Size of Full ECOC Models

Full ECOC models (i.e., ClassificationECOC classifiers) hold the training data. For efficiency, you might not want to predict new labels using a large classifier.

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

Train an ECOC model using default SVMs as binary learners.

Mdl = fitcecoc(X,Y)
Mdl = 
    ClassificationECOC
Mdl is a ClassificationECOC model.

Reduce the size of the ECOC model.

CMdl = compact(Mdl)

CMdl is a CompactClassificationECOC model.

Display how much memory each classifier consumes.

whos('Mdl','CMdl')

The full ECOC model (Mdl) is almost twice the size of the compact ECOC model (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor values to predict to efficiently label new observations.
Train and Cross-Validate ECOC Classifiers

Train an ECOC classifier using different binary learners and the one-versus-all coding design. Then, cross validate the classifier.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
classNames = unique(species(~strcmp(species,''))); % Remove empty classes

classNames = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

K = numel(classNames) % Number of classes
K = 3
rng(1); % For reproducibility

classNames are the unique classes in the data set, and K is the number of classes. You can useclassNames to specify the order of the classes during training.

For a one-versus-all coding design, there are K = 3 binary learners. Specify templates for the binary learners such that:

- Binary learner 1 and 2 are naive Bayes classifiers. By default, each predictor is conditionally, normally distributed given its label.
- Binary learner 3 is an SVM classifier. Specify to use the Gaussian kernel.

```matlab
tNB = templateNaiveBayes();
tSVM = templateSVM('KernelFunction','gaussian');
tLearners = {tNB tNB tSVM};
```

`tNB` and `tSVM` are template objects for naive Bayes and SVM learning, respectively. They indicate what options to use during training. Most of their properties are empty, except for those specified using name-value pair arguments. The software fills in the empty properties with their default values during training.
Train and cross-validate an ECOC classifier using the binary learner templates and the one-versus-all coding design. Specify the order of the classes. By default, naive Bayes classifiers use posterior probabilities as scores, whereas SVM classifiers use distance from the decision boundary. Therefore, to aggregate the binary learners, you must specify fitting posterior probabilities.

\[
CVMdl = \text{fitcecoc}(X,Y,'\text{ClassNames}',\text{classNames},'\text{CrossVal}','on',... \\
\quad '\text{Learners}',tLearners,'\text{FitPosterior}',1);
\]

\(CVMdl\) is not a ClassificationECOC model, but a ClassificationPartitionedECOC cross-validated model. By default, the software implements 10-fold cross-validation. The scores across the binary learners are in the same form (that is, they are posterior probabilities), so the software can aggregate the results of the binary classifications properly.

Inspect one of the trained folds using dot notation.

\[
CVMdl.Trained{1}
\]

\[
\text{ans =}
\text{classreg.learning.classif.CompactClassificationECOC}
\]

\[
\quad \text{ResponseName: 'Y'}
\]

\[
\quad \text{CategoricalPredictors: []}
\]

\[
\quad \text{ClassNames: {'setosa' 'versicolor' 'virginica'}}
\]

\[
\quad \text{ScoreTransform: 'none'}
\]

\[
\quad \text{BinaryLearners: {3x1 cell}}
\]

\[
\quad \text{CodingMatrix: [3x3 double]}
\]

Properties, Methods

Each fold is a CompactClassificationECOC model trained on 90% of the data.

You can access the results of the binary learners using dot notation and cell indexing. Display the trained SVM classifier (the third binary learner) in the first fold.

\[
CVMdl.Trained{1}.BinaryLearners{3}
\]

\[
\text{ans =}
\text{classreg.learning.classif.CompactClassificationSVM}
\]

\[
\quad \text{ResponseName: 'Y'}
\]

\[
\quad \text{CategoricalPredictors: []}
\]

\[
\quad \text{ClassNames: [-1 1]}
\]
Estimate the generalization error.

\[
\text{genError} = \text{kfoldLoss(CVMdl)}
\]

\[
\text{genError} = 0.0333
\]

On average, the generalization error is approximately 3%.

Algorithms

Random Coding Design Matrices

For a given number of classes, for example, \(K \), the software generates random coding design matrices as follows.

1. The software generates one of the following:
 a. Dense random — The software assigns a 1 or -1 with equal probability to each element of the \(K \)-by-\(L_d \) coding design matrix, where \(L_d \approx [10 \log_2 K] \).
 b. Sparse random — The software assigns a 1 to each element of the \(K \)-by-\(L_s \) coding design matrix with probability 0.25, a -1 with probability 0.25, and a 0 with probability 0.5, where \(L_s \approx [15 \log_2 K] \).

2. If a column does not contain at least one 1 and at least one -1, then the software removes that column.

3. For distinct columns \(u \) and \(v \), if \(u = v \) or \(u = -v \), then the software removes \(v \) from the coding design matrix.
The software randomly generates 10,000 matrices by default, and retains the matrix with the largest, minimal pairwise row distance based on the Hamming measure ([4]) given by

\[
\Delta(k_1,k_2) = 0.5 \sum_{l=1}^{L} |m_{k_1,l} - m_{k_2,l}|,
\]

where \(m_{k,l} \) is an element of coding design matrix \(j \).

Support Vector Storage

For linear, SVM binary learners, and for efficiency, `fitcecoc` empties the properties `Alpha`, `SupportVectorLabels`, and `SupportVectors`. `fitcecoc` lists `Beta`, rather than `Alpha`, in the model display.

To store `Alpha`, `SupportVectorLabels`, and `SupportVectors`, pass a linear, SVM template that specifies storing support vectors to `fitcecoc`. For example, enter:

```matlab
T = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',T);
```

You can remove the support vectors and related values by passing the resulting `ClassificationECOC` model to `discardSupportVectors`.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train an ECOC model by using fitcecoc, the following restrictions apply.
 • You cannot fit posterior probabilities by using the 'FitPosterior' name-value pair argument.
 • All binary learners must be either SVM classifiers or linear classification models. For the 'Learners' name-value pair argument, you can specify:
 • 'svm' or 'linear'
 • An SVM template object or a cell vector of such objects (see templateSVM)
 • A linear classification model template object or a cell vector of such objects (see templateLinear)
 • Code generation limitations for SVM classifiers and linear classification models also apply to ECOC classifiers, depending on the choice of binary learners. For more details, see “Code Generation” on page 32-554 of the ClassificationSVM class and “Code Generation” on page 32-442 of the ClassificationLinear class.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationECOC | compact | compareHoldout | fitcecoc

Introduced in R2014b
CompactClassificationEnsemble

Package: classreg.learning.classif

Compact classification ensemble class

Description

Compact version of a classification ensemble (of class ClassificationEnsemble). The compact version does not include the data for training the classification ensemble. Therefore, you cannot perform some tasks with a compact classification ensemble, such as cross validation. Use a compact classification ensemble for making predictions (classifications) of new data.

Construction

ens = compact(fullEns) constructs a compact decision ensemble from a full decision ensemble.

Input Arguments

fullEns

A classification ensemble created by fitcensemble.

Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables, logical vector, character array, or cell array of character vectors. ClassNames has the same data type as the data in the argument Y. (The software treats string arrays as cell arrays of character vectors.)

CombineWeights

Character vector describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

Cost

Square matrix, where Cost(i, j) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response. This property is read-only.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

NumTrained

Number of trained weak learners in ens, a scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds to the order of the classes in ClassNames. The number of elements of Prior is the number of unique classes in the response. This property is read-only.
ResponseName

Character vector with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

```matlab
ens.ScoreTransform = 'function'
```

or

```matlab
ens.ScoreTransform = @function
```

Trained

A cell vector of trained classification models.

- If Method is 'LogitBoost' or 'GentleBoost', then CompactClassificationEnsemble stores trained learner \(j \) in the CompactRegressionLearner property of the object stored in Trained{\(j \)}. That is, to access trained learner \(j \), use ens.Trained{\(j \)}.CompactRegressionLearner.
- Otherwise, cells of the cell vector contain the corresponding, compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens.TrainedWeights has \(T \) elements, where \(T \) is the number of weak learners in learners.

UsePredForLearner

Logical matrix of size \(P \)-by-NumTrained, where \(P \) is the number of predictors (columns) in the training data \(X \). UsePredForLearner(\(i, j \)) is true when learner \(j \) uses predictor \(i \), and is false otherwise. For each learner, the predictors have the same order as the columns in the training data \(X \).

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.
Methods

edge Classification edge
loss Classification error
margin Classification margins
predict Predict labels using ensemble of classification models
predictorImportance Estimates of predictor importance
removeLearners Remove members of compact classification ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Reduce Size of Classification Ensemble

Create a compact classification ensemble for efficiently making predictions on new data.

Load the ionosphere data set.

load ionosphere

Train a boosted ensemble of 100 classification trees using all measurements and the AdaBoostM1 method.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1')

Mdl =
 classreg.learning.classif.ClassificationEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 NumTrained: 100
Method: 'AdaBoostM1'
LearnerNames: {'Tree'}
ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
FitInfo: [100x1 double]
FitInfoDescription: {2x1 cell}

Properties, Methods

Mdl is a ClassificationEnsemble model object that contains the training data, among other things.

Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl =
 classreg.learning.classif.CompactClassificationEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumTrained: 100

Properties, Methods

CMdl is a CompactClassificationEnsemble model object. CMdl is almost the same as Mdl. One exception is that CMdl does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1×2
 818912 573200

Mdl consumes more space than CMdl.
CMdl.Trained stores the trained classification trees (CompactClassificationTree model objects) that compose Mdl.

Display a graph of the first tree in the compact ensemble.

view(CMdl.Trained{1},'Mode','graph');

By default, fitensemble grows shallow trees for boosted ensembles of trees.

Predict the label of the mean of X using the compact ensemble.

predMeanX = predict(CMdl,mean(X))
predMeanX = 1x1 cell array
 {'g'}

Tip

For an ensemble of classification trees, the Trained property of ens stores an ens.NumTrained-by-1 cell vector of compact classification models. For a textual or graphical display of tree \(t \) in the cell vector, enter:

- `view(ens.Trained{t}.CompactRegressionLearner)` for ensembles aggregated using LogitBoost or GentleBoost.
- `view(ens.Trained{t})` for all other aggregation methods.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train an ensemble by using fitensemble, code generation limitations for the weak learners used in the ensemble also apply to the ensemble. For more details, see the Code Generation sections of ClassificationKNN, CompactClassificationDiscriminant, and CompactClassificationTree.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationEnsemble | compact | compareHoldout | fitensemble | fitctree | predict | view
Introduced in R2011a
CompactClassificationNaiveBayes

Package: classreg.learning.classif

Compact naive Bayes classifier

Description

CompactClassificationNaiveBayes is a compact naive Bayes classifier.

The compact classifier does not include the data used for training the naive Bayes classifier. Therefore, you cannot perform tasks, such as cross validation, using the compact classifier.

Use a compact naive Bayes classifier to label new data (i.e., predicting the labels of new data) more efficiently.

Construction

CMdl = compact(Mdl) returns a compact naive Bayes classifier (CMdl) from a full, trained naive Bayes classifier (Mdl).

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Properties

CategoricalPredictors — Indices of categorical predictors
vector of positive integers
Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

CategoricalLevels — Multivariate multinomial levels
cell vector of numeric vectors

Multivariate multinomial levels, specified as a cell vector of numeric vectors. `CategoricalLevels` has length equal to the number of predictors `(size(X,2))`.

The cells of `CategoricalLevels` correspond to predictors that you specified as 'mvmn' (i.e., having a multivariate multinomial distribution) during training. Cells that do not correspond to a multivariate multinomial distribution are empty ([]).

If predictor `j` is multivariate multinomial, then `CategoricalLevels{j}` is a list of all distinct values of predictor `j` in the sample (NaNs removed from `unique(X(:,j))`).

Data Types: cell

ClassNames — Distinct class names
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Distinct class names, specified as a categorical or character array, logical or numeric vector, or cell vector of character vectors.

`ClassNames` is the same data type as `Y`, and has `K` elements or rows for character arrays. (The software treats string arrays as cell arrays of character vectors.)

Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a `K`-by-`K` square matrix.

The value of `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. The order of the rows and columns of `Cost` correspond to the order of the classes in `ClassNames`. 32-777
The value of Cost does not influence training. You can reset Cost after training Mdl using dot notation, e.g., Mdl.Cost = [0 0.5; 1 0].

Data Types: double | single

DistributionNames — Predictor distributions

'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of character vectors

Predictor distributions fitcnb uses to model the predictors, specified as a character vector or cell array of character vectors.

This table summarizes the available distributions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'kernel'</td>
<td>Kernel smoothing density estimate.</td>
</tr>
<tr>
<td>'mn'</td>
<td>Multinomial bag-of-tokens model on page 32-454. Indicates that all predictors have this distribution.</td>
</tr>
<tr>
<td>'mvmn'</td>
<td>Multivariate multinomial distribution.</td>
</tr>
<tr>
<td>'normal'</td>
<td>Normal (Gaussian) distribution.</td>
</tr>
</tbody>
</table>

If Distribution is a 1-by-\(P\) cell array of character vectors, then the software models feature \(j\) using the distribution in element \(j\) of the cell array.

Data Types: char | cell

DistributionParameters — Distribution parameter estimates

cell array

Distribution parameter estimates, specified as a cell array. DistributionParameters is a \(K\)-by-\(D\) cell array, where cell \((k,d)\) contains the distribution parameter estimates for instances of predictor \(d\) in class \(k\). The order of the rows corresponds to the order of the classes in the property ClassNames, and the order of the predictors corresponds to the order of the columns of \(X\).

If class \(k\) has no observations for predictor \(j\), then Distribution\(\{k,j\}\) is empty (\([]\))

The elements of DistributionParameters depends on the distributions of the predictors. This table describes the values in DistributionParameters\(\{k,j\}\).
<table>
<thead>
<tr>
<th>Distribution of Predictor (j)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>A KernelDistribution model. Display properties using cell indexing and dot notation. For example, to display the estimated bandwidth of the kernel density for predictor 2 in the third class, use (\text{Mdl.DistributionParameters{3,2}.BandWidth}).</td>
</tr>
<tr>
<td>(mn)</td>
<td>A scalar representing the probability that token (j) appears in class (k). For details, see “Algorithms” on page 32-455.</td>
</tr>
<tr>
<td>(mvmn)</td>
<td>A numeric vector containing the probabilities for each possible level of predictor (j) in class (k). The software orders the probabilities by the sorted order of all unique levels of predictor (j) (stored in the property (\text{CategoricalLevels})). For more details, see “Algorithms” on page 32-455.</td>
</tr>
<tr>
<td>normal</td>
<td>A 2-by-1 numeric vector. The first element is the sample mean and the second element is the sample standard deviation.</td>
</tr>
</tbody>
</table>

Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

Kernel — Kernel smoother types

'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of character vectors

Kernel smoother types, specified as a character vector or cell array of character vectors. `Kernel` has length equal to the number of predictors (\(\text{size}(X,2) \)). `Kernel\{j\}`
corresponds to predictor j, and contains a character vector describing the type of kernel smoother. This table describes the supported kernel smoother types. Let $I\{u\}$ denote the indicator function.

<table>
<thead>
<tr>
<th>Value</th>
<th>Kernel</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'box'</td>
<td>Box (uniform)</td>
<td>$f(x) = 0.5 I{</td>
</tr>
<tr>
<td>'epanechnikov'</td>
<td>Epanechnikov</td>
<td>$f(x) = 0.75 (1 - x^2) I{</td>
</tr>
<tr>
<td>'normal'</td>
<td>Gaussian</td>
<td>$f(x) = \frac{1}{\sqrt{2\pi}} \exp(-0.5x^2)$</td>
</tr>
<tr>
<td>'triangle'</td>
<td>Triangular</td>
<td>$f(x) = (1 -</td>
</tr>
</tbody>
</table>

If a cell is empty ([]), then the software did not fit a kernel distribution to the corresponding predictor.

Data Types: char | cell

PredictorNames — Predictor names
cell array of character vectors

Predictor names, specified as a cell array of character vectors. The order of the elements in PredictorNames corresponds to the order in X.

Data Types: cell

Prior — Class prior probabilities
numeric vector

Class prior probabilities, specified as a numeric row vector. Prior is a 1-by-K vector, and the order of its elements correspond to the elements of ClassNames.

fitcnb normalizes the prior probabilities you set using the name-value pair parameter 'Prior' so that $\text{sum}(\text{Prior}) = 1$.

The value of Prior does not change the best-fitting model. Therefore, you can reset Prior after training Mdl using dot notation, e.g., Mdl.Prior = [0.2 0.8];.

Data Types: double | single
ResponseName — Response name
character vector

Response name, specified as a character vector.

Data Types: char

ScoreTransform — Classification score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Classification score transformation function, specified as a character vector or function handle.

To change the score transformation function to e.g., function, use dot notation.

- For a built-in function, enter this code and replace function with a value in the table.

```matlab
Mdl.ScoreTransform = 'function';
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for $x < 0$
| | 0 for $x = 0$
| | 1 for $x > 0$ |
| 'symmetric' | $2x - 1$ |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1 |
| 'symmetriclogit' | $2/(1 + e^{-x}) - 1$ |

- For a MATLAB function, or a function that you define, enter its function handle.

```matlab
Mdl.ScoreTransform = @function;
```
function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: char | function_handle

Support — Kernel smoother density support

Kernel smoother density support, specified as a cell vector. Support has length equal to the number of predictors (size(X,2)). The cells represent the regions to apply the kernel density.

This table describes the supported options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-by-2 numeric row vector</td>
<td>For example, [L,U], where L and U are the finite lower and upper bounds, respectively, for the density support.</td>
</tr>
<tr>
<td>'positive'</td>
<td>The density support is all positive real values.</td>
</tr>
<tr>
<td>'unbounded'</td>
<td>The density support is all real values.</td>
</tr>
</tbody>
</table>

If a cell is empty ([]), then the software did not fit a kernel distribution to the corresponding predictor.

Width — Kernel smoother window width

Kernel smoother window width, specified as a numeric matrix. Width is a K-by-P matrix, where K is the number of classes in the data, and P is the number of predictors (size(X, 2)).

Width(k,j) is the kernel smoother window width for the kernel smoothing density of predictor j within class k. NaNs in column j indicate that the software did not fit predictor j using a kernel density.
Methods

- `edge` Classification edge for naive Bayes classifiers
- `logP` Log unconditional probability density for naive Bayes classifier
- `loss` Classification error for naive Bayes classifier
- `margin` Classification margins for naive Bayes classifiers
- `predict` Predict labels using naive Bayes classification model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Reduce the Size of Naive Bayes Classifiers

Full naive Bayes classifiers (i.e., `ClassificationNaiveBayes` models) hold the training data. For efficiency, you might not want to predict new labels using a large classifier. This example shows how to reduce the size of a full naive Bayes classifier.

Load the `ionosphere` data set.

```matlab
compute ionosphere
X = X(:,3:end); % Remove two predictors for stability
```

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally distributed given its label. It is good practice to specify the order of the labels.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})
```

```
Mdl = ClassificationNaiveBayes
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
    NumObservations: 351
```
Mdl is a ClassificationNaiveBayes model.

Reduce the size of the naive Bayes classifier.

CMdl = compact(Mdl)

CMdl is a CompactClassificationNaiveBayes model.

Display how much memory each classifier uses.

whos('Mdl','CMdl')

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMdl</td>
<td>1x1</td>
<td>15244</td>
<td>classreg.learning.classif.CompactClassificationNaiveBayes</td>
</tr>
<tr>
<td>Mdl</td>
<td>1x1</td>
<td>111374</td>
<td>ClassificationNaiveBayes</td>
</tr>
</tbody>
</table>

The full naive Bayes classifier (Mdl) is much larger than the compact naive Bayes classifier (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor values to predict to efficiently label new observations.
Train and Cross Validate Naive Bayes Classifiers

Load the ionosphere data set.

```
load ionosphere
X = X(:,3:end); % Remove two predictors for stability
```

Train and cross validate a naive Bayes classifier. Assume that each predictor is conditionally, normally distributed given its label. It is good practice to specify the order of the classes.

```
rng(1); % For reproducibility
CVMdl = fitcnb(X,Y,'ClassNames',{'b','g'},'CrossVal','on')
```

```
CVMdl =  
    classreg.learning.partition.ClassificationPartitionedModel 
    CrossValidatedModel: 'NaiveBayes' 
        PredictorNames: {1x32 cell} 
        ResponseName: 'Y' 
        NumObservations: 351 
        KFold: 10 
            Partition: [1x1 cvpartition] 
            ClassNames: {'b' 'g'} 
            ScoreTransform: 'none'
```

Properties, Methods

CVMdl is not a ClassificationNaiveBayes model, but a ClassificationPartitionedModel cross-validated, naive Bayes model. By default, the software implements 10-fold cross validation.

Alternatively, you can cross validate a trained ClassificationNaiveBayes model by passing it to crossval.

Inspect one of the trained folds using dot notation.

```
CVMdl.Trained{1}
```

```
ans =  
    classreg.learning.classif.CompactClassificationNaiveBayes 
        ResponseName: 'Y' 
        CategoricalPredictors: [] 
            ClassNames: {'b' 'g'}
```
Each fold is a CompactClassificationNaiveBayes model trained on 90% of the data.

Estimate the generalization error.

generate = kfoldLoss(CVMdl)

generate = 0.1795

On average, the generalization error is approximately 17%.

One way to attempt reducing an unsatisfactory generalization error is to specify different conditional distributions for the predictors, or tune the parameters of the conditional distributions.

Definitions

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of token j in this observation. The number of categories (bins) in this multinomial model is the number of distinct tokens, that is, the number of predictors.

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally independent, given the class. Though the assumption is usually violated in practice, naive Bayes classifiers tend to yield posterior distributions that are robust to biased class density estimates, particularly where the posterior is 0.5 (the decision boundary) [1].
Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum a posteriori decision rule). Explicitly, the algorithm:

1. Estimates the densities of the predictors within each class.
2. Models posterior probabilities according to Bayes rule. That is, for all $k = 1, \ldots, K$,

$$
\hat{P}(Y = k | X_1, \ldots, X_P) = \frac{\pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)}{\sum_{k=1}^{K} \pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)},
$$

where:

- Y is the random variable corresponding to the class index of an observation.
- X_1, \ldots, X_P are the random predictors of an observation.
- $\pi(Y = k)$ is the prior probability that a class index is k.
3. Classifies an observation by estimating the posterior probability for each class, and then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability

$$
\hat{P}(Y = k | X_1, \ldots, X_P) \propto \pi(Y = k)P_{mn}(X_1, \ldots, X_P | Y = k), \text{ where } P_{mn}(X_1, \ldots, X_P | Y = k) \text{ is the probability mass function of a multinomial distribution.}
$$

Algorithms

- If you specify 'DistributionNames','mn' when training Mdl using fitcnb, then the software fits a multinomial distribution using the bag-of-tokens model on page 32-1956. The software stores the probability that token j appears in class k in the property DistributionParameters{k,j}. Using additive smoothing [2], the estimated probability is

$$
P(\text{token } j \mid \text{class } k) = \frac{1 + c_{jk}}{P + c_k},
$$

where:
•

\[c_{j|k} = \frac{\sum_{i:y_i \in \text{class } k} x_{ij} w_i}{\sum_{i:y_i \in \text{class } k} w_i} \]; which is the weighted number of occurrences of token \(j \) in class \(k \).

• \(n_k \) is the number of observations in class \(k \).

• \(w_i \) is the weight for observation \(i \). The software normalizes weights within a class such that they sum to the prior probability for that class.

•

\[c_k = \sum_{j=1}^{P} c_{j|k} \]; which is the total weighted number of occurrences of all tokens in class \(k \).

• If you specify 'DistributionNames','mvmn' when training \(Mdl \) using \(\text{fitcnb} \), then:

1. For each predictor, the software collects a list of the unique levels, stores the sorted list in \(\text{CategoricalLevels} \), and considers each level a bin. Each predictor/class combination is a separate, independent multinomial random variable.

2. For predictor \(j \) in class \(k \), the software counts instances of each categorical level using the list stored in \(\text{CategoricalLevels}\{j\} \).

3. The software stores the probability that predictor \(j \), in class \(k \), has level \(L \) in the property \(\text{DistributionParameters}\{k,j\} \), for all levels in \(\text{CategoricalLevels}\{j\} \). Using additive smoothing [2], the estimated probability is

\[P(\text{predictor } j = L \mid \text{class } k) = \frac{1 + m_{j|k}(L)}{m_j + m_k}, \]

where:
\[
\sum_{i:y_i \in \text{class } k} I\{x_{ij} = L\}w_i
\]

\[\hat{m}_{jlk}(L) = n_k \frac{\sum_{i} w_i}{\sum_{i} w_i};\]

which is the weighted number of observations for which predictor \(j\) equals \(L\) in class \(k\).

- \(n_k\) is the number of observations in class \(k\).
- \(I\{x_{ij} = L\} = 1\) if \(x_{ij} = L\), 0 otherwise.
- \(w_i\) is the weight for observation \(i\). The software normalizes weights within a class such that they sum to the prior probability for that class.
- \(m_j\) is the number of distinct levels in predictor \(j\).
- \(m_k\) is the weighted number of observations in class \(k\).

References

See Also

ClassificationNaiveBayes | compareHoldout | fitcnb | loss | predict

Topics

“Naive Bayes Classification” on page 21-2
“Grouping Variables” on page 2-57
CompactClassificationSVM

Compact support vector machine (SVM) for one-class and binary classification

Description

CompactClassificationSVM is a compact version of the support vector machine (SVM) classifier. The compact classifier does not include the data used for training the SVM classifier. Therefore, you cannot perform some tasks, such as cross-validation, using the compact classifier. Use a compact SVM classifier for tasks such as predicting the labels of new data.

Creation

Create a CompactClassificationSVM model from a full, trained ClassificationSVM classifier by using compact.

Properties

SVM Properties

Alpha — Trained classifier coefficients
numeric vector

This property is read-only.

Trained classifier coefficients, specified as an s-by-1 numeric vector. s is the number of support vectors in the trained classifier, sum(Mdl.IsSupportVector).

Alpha contains the trained classifier coefficients from the dual problem, that is, the estimated Lagrange multipliers. If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, Alpha contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero coefficient to one
observation from the set of duplicates and a coefficient of \(\theta \) to all other duplicate observations in the set.

Data Types: single | double

Beta — Linear predictor coefficients

numeric vector

This property is read-only.

Linear predictor coefficients, specified as a numeric vector. The length of Beta is equal to the number of predictors used to train the model.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Beta stores one value for each predictor variable, including the dummy variables. For example, if there are three predictors, one of which is a categorical variable with three levels, then Beta is a numeric vector containing five values.

If **KernelParameters.Function** is 'linear', then the classification score for the observation \(x \) is

\[
f(x) = (x / s)' \beta + b.
\]

Mdl stores \(\beta, b, \) and \(s \) in the properties **Beta**, **Bias**, and **KernelParameters.Scale**, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor data that were applied during training. Specifically, if you specify 'Standardize',true when using fitcsvm, then you must standardize the predictor data manually by using the mean Mdl.Mu and standard deviation Mdl.Sigma, and then divide the result by the kernel scale in Mdl.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before estimation.

If **KernelParameters.Function** is not 'linear', then Beta is empty ([]).

Data Types: single | double

Bias — Bias term

scalar
This property is read-only.

Bias term, specified as a scalar.

Data Types: single | double

KernelParameters — Kernel parameters
structure array

This property is read-only.

Kernel parameters, specified as a structure array. The kernel parameters property contains the fields listed in this table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Kernel function used to compute the elements of the Gram matrix on page 32-2000. For details, see 'KernelFunction'.</td>
</tr>
<tr>
<td>Scale</td>
<td>Kernel scale parameter used to scale all elements of the predictor data on which the model is trained. For details, see 'KernelScale'.</td>
</tr>
</tbody>
</table>

To display the values of KernelParameters, use dot notation. For example, Mdl.KernelParameters.Scale displays the kernel scale parameter value.

The software accepts KernelParameters as inputs and does not modify them.

Data Types: struct

SupportVectorLabels — Support vector class labels
s-by-1 numeric vector

This property is read-only.

Support vector class labels, specified as an s-by-1 numeric vector. s is the number of support vectors in the trained classifier, sum(Mdl.IsSupportVector).

A value of +1 in SupportVectorLabels indicates that the corresponding support vector is in the positive class (ClassNames{2}). A value of −1 indicates that the corresponding support vector is in the negative class (ClassNames{1}).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, SupportVectorLabels contains one unique support vector label.
Data Types: single | double

SupportVectors — Support vectors
s-by-p numeric matrix

This property is read-only.

Support vectors in the trained classifier, specified as an s-by-p numeric matrix. s is the number of support vectors in the trained classifier, sum(Mdl.IsSupportVector), and p is the number of predictor variables in the predictor data.

SupportVectors contains rows of the predictor data X that MATLAB considers to be support vectors. If you specify 'Standardize',true when training the SVM classifier using fitcsvm, then SupportVectors contains the standardized rows of X.

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm, then for a given set of duplicate observations that are support vectors, SupportVectors contains one unique support vector.

Data Types: single | double

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training the model, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification cost
numeric square matrix

This property is read-only.

Misclassification cost, specified as a numeric square matrix, where \(\text{Cost}(i,j) \) is the cost of classifying a point into class \(j \) if its true class is \(i \).

During training, the software updates the prior probabilities by incorporating the penalties described in the cost matrix.

- For two-class learning, \(\text{Cost} \) always has this form: \(\text{Cost}(i,j) = 1 \) if \(i \neq j \), and \(\text{Cost}(i,j) = 0 \) if \(i = j \). The rows correspond to the true class and the columns correspond to the predicted class. The order of the rows and columns of \(\text{Cost} \) corresponds to the order of the classes in \(\text{ClassNames} \).
- For one-class learning, \(\text{Cost} = 0 \).

For more details, see Algorithms on page 32-550.

Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, then \(\text{ExpandedPredictorNames} \) includes the names that describe the expanded variables. Otherwise, \(\text{ExpandedPredictorNames} \) is the same as \(\text{PredictorNames} \).

Data Types: cell

Mu — Predictor means
numeric vector | []

This property is read-only.

Predictor means, specified as a numeric vector. If you specify 'Standardize',1 or 'Standardize',true when you train an SVM classifier using \(\text{fitcsvm} \), then the length of \(\text{Mu} \) is equal to the number of predictors.
MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Mu stores one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Mu is an empty vector ([]).

Data Types: single | double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of PredictorNames corresponds to the order in which the predictor names appear in the training data.

Data Types: cell

Prior — Prior probabilities
numeric vector

This property is read-only.

Prior probabilities for each class, specified as a numeric vector. The order of the elements of Prior corresponds to the elements of Mdl.ClassNames.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities by incorporating the penalties described in the cost matrix.

For more details, see Algorithms on page 32-550.

Data Types: single | double

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform represents a built-in transformation function or a function handle for transforming predicted classification scores.

To change the score transformation function to function, for example, use dot notation.
• For a built-in function, enter a character vector.

```matlab
Mdl.ScoreTransform = 'function';
```

This table describes the available built-in functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log\left(\frac{x}{1-x}\right))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>-1 for (x < 0) 0 for (x = 0) 1 for (x > 0)</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>(2x - 1)</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to (-1)</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(\frac{2}{1 + e^{-x}} - 1)</td>
</tr>
</tbody>
</table>

• For a MATLAB function or a function that you define, enter its function handle.

```matlab
Mdl.ScoreTransform = @function;
```

function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Data Types: `char` | `function_handle`

Sigma — Predictor standard deviations

[] (default) | numeric vector

This property is read-only.

Predictor standard deviations, specified as a numeric vector.
If you specify 'Standardize',true when you train the SVM classifier using fitcsvm, then the length of Sigma is equal to the number of predictor variables.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is, MATLAB creates one dummy variable for each level of each categorical variable. Sigma stores one value for each predictor variable, including the dummy variables. However, MATLAB does not standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Sigma is an empty vector ([]).

Data Types: single | double

Object Functions

- compareHoldout: Compare accuracies of two classification models using new data
- discardSupportVectors: Discard support vectors for linear support vector machine (SVM) classifier
- edge: Find classification edge for support vector machine (SVM) classifier
- fitPosterior: Fit posterior probabilities for compact support vector machine (SVM) classifier
- loss: Find classification error for support vector machine (SVM) classifier
- margin: Find classification margins for support vector machine (SVM) classifier
- predict: Predict labels using support vector machine (SVM) classifier
- update: Update support vector machine (SVM) model parameters for code generation

Examples

Reduce Size of SVM Classifiers

Reduce the size of a full SVM classifier by removing the training data. Full SVM classifiers (that is, ClassificationSVM classifiers) hold the training data. To improve efficiency, use a smaller classifier.

Load the ionosphere data set.
load ionosphere

Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMMModel = fitcsvm(X,Y,'Standardize',true,...
 'ClassNames',{'b','g'})

SVMMModel =
 ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 Alpha: [90x1 double]
 Bias: -0.1343
 KernelParameters: [1x1 struct]
 Mu: [1x34 double]
 Sigma: [1x34 double]
 BoxConstraints: [351x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [351x1 logical]
 Solver: 'SMO'

Properties, Methods

SVMMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMMModel = compact(SVMMModel)

CompactSVMMModel =
 classreg.learning.classif.CompactClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 Alpha: [90x1 double]
 Bias: -0.1343
 KernelParameters: [1x1 struct]
 Mu: [1x34 double]
CompactSVMModel is a CompactClassificationSVM classifier.

Display the amount of memory each classifier uses.

```matlab
whos('SVMModel','CompactSVMModel')
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactSVMModel</td>
<td>1x1</td>
<td>30512</td>
<td>classreg.learning.classif.CompactClassificationSVM</td>
</tr>
<tr>
<td>SVMModel</td>
<td>1x1</td>
<td>140834</td>
<td>ClassificationSVM</td>
</tr>
</tbody>
</table>

The full SVM classifier (SVMModel) is more than four times larger than the compact SVM classifier (CompactSVMModel).

To label new observations efficiently, you can remove SVMModel from the MATLAB® Workspace, and then pass CompactSVMModel and new predictor values to `predict`.

To further reduce the size of your compact SVM classifier, use the `discardSupportVectors` function to discard support vectors.

Train and Cross-Validate SVM Classifier

Load the ionosphere data set.

```matlab
load ionosphere
```

Train and cross-validate an SVM classifier. Standardize the predictor data and specify the order of the classes.

```matlab
rng(1); % For reproducibility
CVSVMMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'},'CrossVal','on')
```

`CVSVMMModel = `

classreg.learning.partition.ClassificationPartitionedModel
CrossValidatedModel: 'SVM'
PredictorNames: {1x34 cell}
ResponseName: 'Y'
NumObservations: 351
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: {'b' 'g'}
ScoreTransform: 'none'

Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated SVM classifier. By default, the software implements 10-fold cross-validation.

Alternatively, you can cross-validate a trained ClassificationSVM classifier by passing it to crossval.

Inspect one of the trained folds using dot notation.

CVSVMModel.Trained{1}

ans =
 classreg.learning.classif.CompactClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 Alpha: [78x1 double]
 Bias: -0.2209
 KernelParameters: [1x1 struct]
 Mu: [1x34 double]
 Sigma: [1x34 double]
 SupportVectors: [78x34 double]
 SupportVectorLabels: [78x1 double]

Properties, Methods

Each fold is a CompactClassificationSVM classifier trained on 90% of the data.

Estimate the generalization error.
genError = kfoldLoss(CVSVMModel)
genError = 0.1168

On average, the generalization error is approximately 12%.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict and update functions support code generation.
- When you train an SVM model by using fitcsvm, the following restrictions apply.
 - The class labels input argument value (Y) cannot be a categorical array.
 - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you
cannot use the 'CategoricalPredictors' name-value pair argument. To
dummy-code variables that you want treated as categorical, preprocess the
categorical data by using dummyvar before fitting the model.

- The value of the 'ClassNames' name-value pair argument cannot be a categorical
array.
- The value of the 'ScoreTransform' name-value pair argument cannot be an
anonymous function. For generating code that predicts posterior probabilities
given new observations, pass a trained SVM model to fitPosterior or
fitSVMPosterior. The ScoreTransform property of the returned model
contains an anonymous function that represents the score-to-posterior-probability
function and is configured for code generation.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationSVM | compact | discardSupportVectors | fitcsvm

Topics
Using Support Vector Machines on page 18-189
Understanding Support Vector Machines on page 18-183

Introduced in R2014a
CompactClassificationTree

Package: classreg.learning.classif

Compact classification tree

Description

Compact version of a classification tree (of class ClassificationTree). The compact version does not include the data for training the classification tree. Therefore, you cannot perform some tasks with a compact classification tree, such as cross validation. Use a compact classification tree for making predictions (classifications) of new data.

Construction

ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree

A decision tree constructed using fitctree.

Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. *CategoricalPredictors* contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in *CategoricalSplits* gives left and right values for a categorical split. For each branch
node with categorical split \(j \) based on a categorical predictor variable \(z \), the left child is chosen if \(z \) is in \(\text{CategoricalSplits}(j,1) \) and the right child is chosen if \(z \) is in \(\text{CategoricalSplits}(j,2) \). The splits are in the same order as nodes of the tree. Find the nodes for these splits by selecting 'categorical' cuts from top to bottom in the \(\text{CutType} \) property.

Children

An \(n \)-by-2 array containing the numbers of the child nodes for each node in \(\text{tree} \), where \(n \) is the number of nodes. Leaf nodes have child node 0.

ClassCount

An \(n \)-by-\(k \) array of class counts for the nodes in \(\text{tree} \), where \(n \) is the number of nodes and \(k \) is the number of classes. For any node number \(i \), the class counts \(\text{ClassCount}(i,:) \) are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node \(i \).

ClassNames

List of the elements in \(Y \) with duplicates removed. \(\text{ClassNames} \) can be a numeric vector, vector of categorical variables, logical vector, character array, or cell array of character vectors. \(\text{ClassNames} \) has the same data type as the data in the argument \(Y \). (The software treats string arrays as cell arrays of character vectors.)

If the value of a property has at least one dimension of length \(k \), then \(\text{ClassNames} \) indicates the order of the elements along that dimension (e.g., \(\text{Cost} \) and \(\text{Prior} \)).

ClassProbability

An \(n \)-by-\(k \) array of class probabilities for the nodes in \(\text{tree} \), where \(n \) is the number of nodes and \(k \) is the number of classes. For any node number \(i \), the class probabilities \(\text{ClassProbability}(i,:) \) are the estimated probabilities for each class for a point satisfying the conditions for node \(i \).

Cost

Square matrix, where \(\text{Cost}(i,j) \) is the cost of classifying a point into class \(j \) if its true class is \(i \) (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of \(\text{Cost} \) corresponds to the order of the classes in \(\text{ClassNames} \). The number of rows and columns in \(\text{Cost} \) is the number of unique classes in the response. This property is read-only.
CutCategories

An n-by-2 cell array of the categories used at branches in `tree`, where `n` is the number of nodes. For each branch node `i` based on a categorical predictor variable `x`, the left child is chosen if `x` is among the categories listed in `CutCategories{i,1}`, and the right child is chosen if `x` is among those listed in `CutCategories{i,2}`. Both columns of `CutCategories` are empty for branch nodes based on continuous predictors and for leaf nodes.

`CutPoint` contains the cut points for 'continuous' cuts, and `CutCategories` contains the set of categories.

CutPoint

An n-element vector of the values used as cut points in `tree`, where `n` is the number of nodes. For each branch node `i` based on a continuous predictor variable `x`, the left child is chosen if `x<CutPoint(i)` and the right child is chosen if `x>=CutPoint(i)`. `CutPoint` is `NaN` for branch nodes based on categorical predictors and for leaf nodes.

`CutPoint` contains the cut points for 'continuous' cuts, and `CutCategories` contains the set of categories.

CutType

An n-element cell array indicating the type of cut at each node in `tree`, where `n` is the number of nodes. For each node `i`, `CutType{i}` is:

- 'continuous' — If the cut is defined in the form `x < v` for a variable `x` and cut point `v`.
- 'categorical' — If the cut is defined by whether a variable `x` takes a value in a set of categories.
- '' — If `i` is a leaf node.

`CutPoint` contains the cut points for 'continuous' cuts, and `CutCategories` contains the set of categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node in `tree`, where `n` is the number of nodes. These variables are sometimes known as *cut variables*. For leaf nodes, `CutPredictor` contains an empty character vector.
CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

IsBranchNode

An n-element logical vector that is true for each branch node and false for each leaf node of tree.

NodeClass

An n-element cell array with the names of the most probable classes in each node of tree, where n is the number of nodes in the tree. Every element of this array is a character vector equal to one of the class names in ClassNames.

NodeError

An n-element vector of the errors of the nodes in tree, where n is the number of nodes. NodeError(i) is the misclassification probability for node i.

NodeProbability

An n-element vector of the probabilities of the nodes in tree, where n is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for each node is the measure of impurity (Gini index or deviance) for this node weighted by the node probability. If the tree is grown by twoing, the risk for each node is zero.
NodeSize

An n-element vector of the sizes of the nodes in `tree`, where n is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

NumNodes

The number of nodes in `tree`.

Parent

An n-element vector containing the number of the parent node for each node in `tree`, where n is the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in `X`.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of `Prior` corresponds to the order of the classes in `ClassNames`. The number of elements of `Prior` is the number of unique classes in the response. This property is read-only.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then `PruneAlpha` has $M + 1$ elements sorted in ascending order. `PruneAlpha(1)` is for pruning level 0 (no pruning), `PruneAlpha(2)` is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of `tree`, where n is the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the deepest leaf and the root node.

ResponseName

Character vector describing the response variable Y.
ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ctree.ScoreTransform = 'function'

or

ctree.ScoreTransform = @function

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutCategories{k} is either an empty character vector for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrSurrogateCutFlip{k} is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if Z≥C and the cut assignment for this surrogate split is -1. Similarly, the right child is chosen if Z≥C and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split
variable at this node does not appear. For nonbranch (leaf) nodes, \textit{SurrogateCutFlip} contains an empty array.

\textbf{SurrogateCutPoint}

An n-element cell array of the numeric values used for surrogate splits in \textit{tree}, where n is the number of nodes in \textit{tree}. For each node k, \textit{SurrogateCutPoint}{\{k\}} is a numeric vector. The length of \textit{SurrogateCutPoint}{\{k\}} is equal to the number of surrogate predictors found at this node. Every element of \textit{SurrogateCutPoint}{\{k\}} is either \texttt{NaN} for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if $Z < C$ and \textit{SurrogateCutFlip} for this surrogate split is $+1$, or if $Z \geq C$ and \textit{SurrogateCutFlip} for this surrogate split is -1. Similarly, the right child is chosen if $Z \geq C$ and \textit{SurrogateCutFlip} for this surrogate split is $+1$, or if $Z < C$ and \textit{SurrogateCutFlip} for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by \textit{SurrogateCutPredictor}. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, \textit{SurrogateCutPoint} contains an empty cell.

\textbf{SurrogateCutType}

An n-element cell array indicating types of surrogate splits at each node in \textit{tree}, where n is the number of nodes in \textit{tree}. For each node k, \textit{SurrogateCutType}{\{k\}} is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in \textit{SurrogateCutPredictor}. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, \textit{SurrogateCutType} contains an empty cell. A surrogate split type can be either \texttt{'continuous'} if the cut is defined in the form $Z < V$ for a variable Z and cut point V or \texttt{'categorical'} if the cut is defined by whether Z takes a value in a set of categories.

\textbf{SurrogateCutPredictor}

An n-element cell array of the names of the variables used for surrogate splits in each node in \textit{tree}, where n is the number of nodes in \textit{tree}. Every element of \textit{SurrogateCutPredictor} is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order; and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, \textit{SurrogateCutPredictor} contains an empty cell.
SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

Methods

- edge: Classification edge
- loss: Classification error
- margin: Classification margins
- surrogateAssociation: Mean predictive measure of association for surrogate splits in decision tree
- predict: Predict labels using classification tree
- predictorImportance: Estimates of predictor importance
- view: View tree

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Construct a Compact Classification Tree

Construct a compact classification tree for the Fisher iris data.
load fisheriris
tree = fitctree(meas,species);
c = compact(tree);

Compare the size of the resulting tree to that of the original tree.

t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]

ans = 1×2
 4572 11260

The compact tree is smaller than the original tree.

Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair argument:

- Gini's Diversity Index (gdi) — The Gini index of a node is

\[1 - \sum_i p^2(i), \]

where the sum is over the classes \(i \) at the node, and \(p(i) \) is the observed fraction of classes with class \(i \) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') — With \(p(i) \) defined the same as for the Gini index, the deviance of a node is

\[-\sum_i p(i) \log_2 p(i). \]
A pure node has deviance 0; otherwise, the deviance is positive.

- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class i in the left child node after a split, and $R(i)$ denote the fraction of members of class i in the right child node after a split. Choose the split criterion to maximize

$$P(L)P(R)\left(\sum_i |L(i) - R(i)|\right)^2,$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

- Node error — The node error is the fraction of misclassified classes at a node. If j is the class with the largest number of training samples at a node, the node error is

$$1 - p(j).$$

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train a classification tree using fitctree, the following restrictions apply.
 - The class labels input argument value (Y) cannot be a categorical array.
 - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
• The value of the 'ClassNames' name-value pair argument cannot be a categorical array.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous function.
• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair argument must be 'off'.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationTree | compact | compareHoldout | fitctree

Introduced in R2011a
CompactLinearModel class

Compact linear regression model class

Description

CompactLinearModel is a compact linear regression model object. It consumes less memory than a full, fitted linear regression model (LinearModel model) because it does not store the data used to fit the model. Because the compact model does not store the input data, you cannot use it to perform certain tasks. However, you can use a compact linear regression model to predict responses using new input data.

Construction

compactMdl = compact(mdl) returns a compact linear regression model compactMdl from the full, fitted linear regression model mdl. For more information, see compact.

Input Arguments

mdl — Full, fitted linear regression model
 LinearModel object

Full, fitted linear regression model, specified as a LinearModel object.

Properties

CoefficientCovariance — Covariance matrix of coefficient estimates
 numeric matrix

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the number of coefficients in the fitted model.

CoefficientNames — Coefficient names
 cell array of character vectors
Coefficient names, specified as a cell array of character vectors containing a label for each coefficient.

Coefficients — Coefficient values

`table`

Coefficient values, specified as a table. `Coefficients` has one row for each coefficient and the following columns:

- **Estimate** — Estimated coefficient value
- **SE** — Standard error of the estimate
- **tStat** — t statistic for a test that the coefficient is zero
- **pValue** — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in `mdl` the estimated coefficient vector is

```matlab
beta = mdl.Coefficients.Estimate
```

Use `coefTest` to perform other tests on the coefficients.

DFE — Degrees of freedom for error

`positive integer value`

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer value.

Formula — Model information

`LinearFormula object | NonLinearFormula object`

Model information, specified as a `LinearFormula` object or `NonLinearFormula` object. If you fit a linear or generalized linear regression model, then `Formula` is a `LinearFormula` object. If you fit a nonlinear regression model, then `Formula` is a `NonLinearFormula` object.

LogLikelihood — Log likelihood

`numeric value`

Log likelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.
ModelCriterion — Criterion for model comparison

structure

Criterion for model comparison, specified as a structure with the following fields:

- **AIC** — Akaike information criterion. \(AIC = -2 \log L + 2m \), where \(\log L \) is the loglikelihood and \(m \) is the number of estimated parameters.

- **AICc** — Akaike information criterion corrected for the sample size. \(AICc = AIC + \frac{2m(m+1)}{n-m-1} \), where \(n \) is the number of observations.

- **BIC** — Bayesian information criterion. \(BIC = -2 \log L + m \log(n) \).

- **CAIC** — Consistent Akaike information criterion. \(CAIC = -2 \log L + m(\log(n) + 1) \).

Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property by using dot notation. For example, in the model `mdl`, the AIC value `aic` is:

\[
aic = mdl.ModelCriterion.AIC
\]

MSE — Mean squared error

numeric value

Mean squared error (residuals), specified as a numeric value. Mean square error is calculated as \(MSE = \frac{SSE}{DFE} \), where \(MSE \) is the mean square error, \(SSE \) is the sum of squared errors, and \(DFE \) is the degrees of freedom.

NumCoefficients — Number of model coefficients

positive integer

Number of model coefficients, specified as a positive integer. `NumCoefficients` includes coefficients that are set to zero when the model terms are rank deficient.

NumEstimatedCoefficients — Number of estimated coefficients

positive integer
Number of estimated coefficients in the model, specified as a positive integer. NumEstimatedCoefficients does not include coefficients that are set to zero when the model terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.

NumObservations — Number of observations
positive integer

Number of observations the fitting function used in fitting, specified as a positive integer. This is the number of observations supplied in the original table, dataset, or matrix, minus any excluded rows (set with the Exclude name-value pair) or rows with missing values.

NumPredictors — Number of predictor variables
positive integer

Number of predictor variables used to fit the model, specified as a positive integer.

NumVariables — Number of variables
positive integer

Number of variables in the input data, specified as a positive integer. NumVariables is the number of variables in the original table or dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

PredictorNames — Names of predictors used to fit the model
cell array of character vectors

Names of predictors used to fit the model, specified as a cell array of character vectors.

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.

RMSE — Root mean squared error
numeric value

Root mean squared error (residuals), specified as a numeric value. The root mean squared error (RMSE) is equal to $RMSE = \sqrt{MSE}$, where MSE is the mean squared error.
Robust — Robust fit information
structure

Robust fit information, specified as a structure with the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WgtFun</td>
<td>Robust weighting function, such as 'bisquare' (see robustfit)</td>
</tr>
<tr>
<td>Tune</td>
<td>Value specified for tuning parameter (can be [])</td>
</tr>
<tr>
<td>Weights</td>
<td>Vector of weights used in final iteration of robust fit. This field is</td>
</tr>
<tr>
<td></td>
<td>empty for compacted CompactLinearModel models.</td>
</tr>
</tbody>
</table>

This structure is empty unless fitlm constructed the model using robust regression.

R­squared — R­squared value for the model
structure

R-squared value for the model, specified as a structure.

For a linear or nonlinear model, Rsquared is a structure with two fields:

- Ordinary — Ordinary (unadjusted) R-squared
- Adjusted — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

- Ordinary — Ordinary (unadjusted) R-squared
- Adjusted — R-squared adjusted for the number of coefficients
- LLR — Log-likelihood ratio
- Deviance — Deviance
- AdjGeneralized — Adjusted generalized R-squared

The R-squared value is the proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:

\[\text{Rsquared} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}. \]

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in mdl is
r2 = mdl.Rsquared.Adjusted

SSE — Sum of squared errors

numeric value

Sum of squared errors (residuals), specified as a numeric value.

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]

SSR — Regression sum of squares

numeric value

Regression sum of squares, specified as a numeric value. The regression sum of squares is equal to the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]

SST — Total sum of squares

numeric value

Total sum of squares, specified as a numeric value. The total sum of squares is equal to the sum of squared deviations of response vector \(y \) from \(\text{mean}(y) \).

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]

VariableInfo — Information about input variables

table

Information about input variables contained in Variables, specified as a table with one row for each model term and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Character vector giving variable class, such as 'double'</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Range</td>
<td>Cell array giving variable range:</td>
</tr>
<tr>
<td></td>
<td>• Continuous variable — Two-element vector $[\text{min}, \text{max}]$, the minimum and maximum values</td>
</tr>
<tr>
<td></td>
<td>• Categorical variable — Cell array of distinct variable values</td>
</tr>
<tr>
<td>InModel</td>
<td>Logical vector, where true indicates the variable is in the model</td>
</tr>
<tr>
<td>IsCategorical</td>
<td>Logical vector, where true indicates a categorical variable</td>
</tr>
</tbody>
</table>

VariableNames — Names of variables used in fit

cell array of character vectors

Names of variables used in fit, specified as a cell array of character vectors.

- If the fit is based on a table or dataset, this property provides the names of the variables in that table or dataset.
- If the fit is based on a predictor matrix and response vector, **VariableNames** is the values in the **VarNames** name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

Methods

- **anova** Analysis of variance for linear model
- **coefCI** Confidence intervals of coefficient estimates of linear model
- **coefTest** Linear hypothesis test on linear regression model coefficients
- **disp** Display linear regression model
- **feval** Evaluate linear regression model prediction
- **plotEffects** Plot main effects of each predictor in linear regression model
- **plotInteraction** Plot interaction effects of two predictors in linear regression model
- **plotSlice** Plot of slices through fitted linear regression surface
- **predict** Predict response of linear regression model
- **random** Simulate responses for linear regression model
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Compact a Linear Regression Model

This example shows how to reduce the size of a full, fitted linear regression model by discarding the sample data and some information related to the fitting process.

Load the data into the workspace.

load(fullfile(matlabroot,'examples','stats','largedata4reg.mat'))

The simulated sample data contains 15,000 observations and 45 predictor variables.

Fit a simple linear regression model to the data.

mdl = fitlm(X,Y)

mdl =
Linear regression model:
 y ~ [Linear formula with 46 terms in 45 predictors]

Estimated Coefficients:
 Estimate SE tStat pValue
 ____________ __________ ___________ ___________
 (Intercept) 3.2903 1.2333e-05 2.6679e+05 0
 x1 -0.0006461 5.9019e-09 -1.0947e+05 0
 x2 -0.00024739 1.0256e-08 -24121 0
 x3 -9.5161e-05 1.3149e-08 -7236.9 0
 x4 0.00013143 1.8311e-08 7177.3 0
 x5 7.163e-05 2.3367e-08 3065.4 0
 x6 4.5064e-06 2.6267e-08 171.58 0
 x7 -2.6258e-05 3.006e-08 -873.51 0
 x8 6.284e-05 3.0262e-08 2076.5 0
 x9 -0.00014288 3.3258e-08 -4296.1 0
 x10 -2.2642e-05 3.6555e-08 -619.41 0
 x11 -6.0227e-05 3.7353e-08 -1612.4 0
Number of observations: 15000, Error degrees of freedom: 14954
Root Mean Squared Error: 0.00151
R-squared: 1, Adjusted R-Squared 1
F-statistic vs. constant model: 2.82e+08, p-value = 0

Compact the model.

compactMdl = compact(mdl)
compactMdl =
Compact linear regression model:
 y ~ [Linear formula with 46 terms in 45 predictors]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.2903</td>
<td>1.233e-05</td>
<td>2.6679e+05</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>-0.0006461</td>
<td>5.9019e-09</td>
<td>-1.0947e+05</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>-0.00024739</td>
<td>1.0256e-08</td>
<td>-24121</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>-9.5161e-05</td>
<td>1.3149e-08</td>
<td>-7236.9</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>0.00013143</td>
<td>1.8311e-08</td>
<td>7177.3</td>
<td>0</td>
</tr>
<tr>
<td>x5</td>
<td>7.163e-05</td>
<td>2.3367e-08</td>
<td>3065.4</td>
<td>0</td>
</tr>
<tr>
<td>x6</td>
<td>4.5064e-06</td>
<td>2.6264e-08</td>
<td>171.58</td>
<td>0</td>
</tr>
<tr>
<td>x7</td>
<td>-2.6258e-05</td>
<td>3.006e-08</td>
<td>-873.51</td>
<td>0</td>
</tr>
<tr>
<td>x8</td>
<td>6.284e-05</td>
<td>3.0262e-08</td>
<td>2076.5</td>
<td>0</td>
</tr>
<tr>
<td>x9</td>
<td>-0.00014288</td>
<td>3.3258e-08</td>
<td>-619.41</td>
<td>0</td>
</tr>
<tr>
<td>x10</td>
<td>-2.2642e-05</td>
<td>3.6555e-08</td>
<td>-1612.4</td>
<td>0</td>
</tr>
<tr>
<td>x11</td>
<td>-6.0227e-05</td>
<td>4.0048e-08</td>
<td>-291.27</td>
<td>0</td>
</tr>
<tr>
<td>x12</td>
<td>0.1665e-05</td>
<td>4.203e-08</td>
<td>918.26</td>
<td>0</td>
</tr>
<tr>
<td>x13</td>
<td>3.8595e-05</td>
<td>4.203e-08</td>
<td>291.27</td>
<td>0</td>
</tr>
<tr>
<td>x14</td>
<td>-0.00010021</td>
<td>4.7592e-08</td>
<td>2105.5</td>
<td>0</td>
</tr>
<tr>
<td>x15</td>
<td>-6.5674e-06</td>
<td>4.9962e-08</td>
<td>-133.43</td>
<td>0</td>
</tr>
<tr>
<td>x16</td>
<td>8.5598e-06</td>
<td>5.0266e-08</td>
<td>170.19</td>
<td>0</td>
</tr>
<tr>
<td>x17</td>
<td>-3.9107e-05</td>
<td>5.3e-08</td>
<td>-737.87</td>
<td>0</td>
</tr>
<tr>
<td>x18</td>
<td>-6.5841e-06</td>
<td>5.3555e-08</td>
<td>-296.94</td>
<td>0</td>
</tr>
<tr>
<td>x19</td>
<td>-1.7053e-05</td>
<td>5.7431e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x20</td>
<td>-3.8911e-06</td>
<td>6.2724e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x21</td>
<td>-9.7219e-06</td>
<td>6.3515e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x22</td>
<td>-1.8749e-06</td>
<td>6.3888e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x23</td>
<td>-4.7514e-06</td>
<td>6.6636e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x24</td>
<td>-1.7756e-05</td>
<td>6.8495e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x25</td>
<td>-9.6673e-06</td>
<td>7.0054e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x26</td>
<td>-7.6237e-06</td>
<td>7.2442e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x27</td>
<td>-8.4338e-07</td>
<td>7.7519e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x28</td>
<td>-7.0502e-06</td>
<td>8.1889e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x29</td>
<td>-1.4703e-05</td>
<td>8.7126e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x30</td>
<td>-2.7008e-05</td>
<td>9.0084e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x31</td>
<td>6.3685e-07</td>
<td>9.1253e-08</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x32</td>
<td>-1.9916e-05</td>
<td>1.0034e-07</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x33</td>
<td>1.7369e-05</td>
<td>1.019e-07</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x34</td>
<td>-9.931e-06</td>
<td>1.0706e-07</td>
<td>-138</td>
<td>0</td>
</tr>
<tr>
<td>x35</td>
<td>-1.5195e-05</td>
<td>1.0858e-07</td>
<td>-138</td>
<td>0</td>
</tr>
</tbody>
</table>
x36 -1.0118e-05 1.1122e-07 -90.976 0
x37 2.4595e-06 1.1254e-07 21.856 2.9315e-104
x38 -2.2928e-06 1.1493e-07 -19.95 2.0535e-87
x39 1.1397e-05 1.1855e-07 96.136 0
x40 4.0239e-06 1.2327e-07 32.643 7.75e-226
x41 -8.6667e-06 1.2535e-07 -69.142 0
x42 -8.2932e-06 1.3095e-07 -63.334 0
x43 2.7309e-06 1.3452e-07 20.301 2.0697e-90
x44 -6.9235e-06 1.3725e-07 -50.444 0
x45 1.1165e-06 1.4021e-07 7.9633 1.7956e-15

Number of observations: 15000, Error degrees of freedom: 14954
Root Mean Squared Error: 0.00151
R-squared: 1, Adjusted R-Squared 1
F-statistic vs. constant model: 2.82e+08, p-value = 0

The compact model discards the original sample data and some information related to the fitting process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans = 1×2
 83506 11410618

The compacted model consumes less memory than the full model.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The predict and random functions support code generation.
• When you fit a model by using fitlm or stepwiselm, you cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalVars' name-value pair argument. Code generation does not support categorical predictors. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
LinearModel| compact | fitlm | plotPartialDependence

Topics
“Linear Regression” on page 11-11

Introduced in R2016a
CompactGeneralizedLinearModel

Package: classreg.regr

Compact generalized linear regression model class

Description

CompactGeneralizedLinearModel is a compact generalized linear regression model object. It consumes less memory than a full generalized linear regression model (GeneralizedLinearModel) because it does not store the data used to fit the model. The compact model does not store the input data, so you cannot use it to perform certain tasks. However, you can use a compact generalized linear regression model to predict responses using new input data.

Fitting operations (fitlm, fitglm, ...) automatically use compact objects when you work with tall arrays. Fitting operations with in-memory tables and arrays produce full objects. You can use the compact method to make them smaller.

Construction

compactMdl = compact(mdl) returns a compact generalized linear regression model compactMdl from the full generalized linear regression model mdl. For more information, see compact.

Input Arguments

mdl — Full generalized linear regression model
GeneralizedLinearModel object

Full generalized linear regression model, specified as a GeneralizedLinearModel object.
Properties

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

Covariance matrix of coefficient estimates, specified as a \(p \)-by-\(p \) matrix of numeric values. \(p \) is the number of coefficients in the fitted model.

CoefficientNames — Coefficient names
cell array of character vectors

Coefficient names, specified as a cell array of character vectors containing a label for each coefficient.

Coefficients — Coefficient values
table

Coefficient values, specified as a table. `Coefficients` has one row for each coefficient and the following columns:

- **Estimate** — Estimated coefficient value
- **SE** — Standard error of the estimate
- **tStat** — \(t \) statistic for a test that the coefficient is zero
- **pValue** — \(p \)-value for the \(t \) statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in `mdl` the estimated coefficient vector is

\[
\text{beta} = \text{mdl.Coefficients.Estimate}
\]

Use `coefTest` to perform other tests on the coefficients.

Deviance — Deviance of fit
numeric value

Deviance of fit, specified as a numeric value. Deviance is useful for comparing two models when one is a special case of the other. The difference between the deviance of the two models has a chi-square distribution with degrees of freedom equal to the difference in the number of estimated parameters between the two models. For more information on deviance, see “Deviance” on page 32-2746.
DFE — Degrees of freedom for error

positive integer value

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer value.

Dispersion — Scale factor of the variance of the response

structure

Scale factor of the variance of the response, specified as a structure. Dispersion multiplies the variance function for the distribution.

For example, the variance function for the binomial distribution is \(p(1-p)/n \), where \(p \) is the probability parameter and \(n \) is the sample size parameter. If Dispersion is near 1, the variance of the data appears to agree with the theoretical variance of the binomial distribution. If Dispersion is larger than 1, the data are “overdispersed” relative to the binomial distribution.

DispersionEstimated — Flag to indicate use of dispersion scale factor

logical value

Flag to indicate use of dispersion scale factor, specified as a logical value. Use DispersionEstimated to indicate whether fitglm used the Dispersion scale factor to compute standard errors for the coefficients in Coefficients.SE. If DispersionEstimated is false, then fitglm used the theoretical value of the variance.

- DispersionEstimated can be false only for 'binomial' or 'poisson' distributions.
- To set DispersionEstimated, set the DispersionFlag name-value pair in fitglm.

Distribution — Generalized distribution information

structure

Generalized distribution information, specified as a structure with the following fields relating to the generalized distribution.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the distribution. Options are: 'normal', 'binomial', 'poisson', 'gamma', or 'inverse gaussian'.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
DevianceFunction | Function that computes the components of the deviance as a function of the fitted parameter values and the response values.
VarianceFunction | Function that computes the theoretical variance for the distribution as a function of the fitted parameter values. When DispersionEstimated is true, Dispersion multiplies the variance function in the computation of the coefficient standard errors.

Formula — Model information

LinearFormula object | NonLinearFormula object

Model information, specified as a `LinearFormula` object or `NonLinearFormula` object. If you fit a linear or generalized linear regression model, then `Formula` is a `LinearFormula` object. If you fit a nonlinear regression model, then `Formula` is a `NonLinearFormula` object.

Link — Link function

structure

Link function, specified as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the link function, or '' if you specified the link as a function handle rather than a character vector</td>
</tr>
<tr>
<td>LinkFunction</td>
<td>The function that defines f, a function handle</td>
</tr>
<tr>
<td>DevianceFunction</td>
<td>Derivative of f, a function handle</td>
</tr>
<tr>
<td>VarianceFunction</td>
<td>Inverse of f, a function handle</td>
</tr>
</tbody>
</table>

The link is a function f that links the distribution parameter μ to the fitted linear combination Xb of the predictors:

$$f(\mu) = Xb.$$

LogLikelihood — Log likelihood

numeric value

Log likelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.
ModelCriterion — Criterion for model comparison
structure

Criterion for model comparison, specified as a structure with the following fields:

- AIC — Akaike information criterion. \(\text{AIC} = -2\log L + 2m \), where \(\log L \) is the loglikelihood and \(m \) is the number of estimated parameters.
- AICc — Akaike information criterion corrected for the sample size. \(\text{AICc} = \text{AIC} + \frac{2m(m+1)}{(n-m-1)} \), where \(n \) is the number of observations.
- BIC — Bayesian information criterion. \(\text{BIC} = -2\log L + m \log(n) \).
- CAIC — Consistent Akaike information criterion. \(\text{CAIC} = -2\log L + m(\log(n) + 1) \).

Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property by using dot notation. For example, in the model \(\text{mdl} \), the AIC value \(\text{aic} \) is:

\[\text{aic} = \text{mdl.ModelCriterion.AIC} \]

NumCoefficients — Number of model coefficients
positive integer

Number of model coefficients, specified as a positive integer. \(\text{NumCoefficients} \) includes coefficients that are set to zero when the model terms are rank deficient.

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

Number of estimated coefficients in the model, specified as a positive integer. \(\text{NumEstimatedCoefficients} \) does not include coefficients that are set to zero when the model terms are rank deficient. \(\text{NumEstimatedCoefficients} \) is the degrees of freedom for regression.
NumObservations — Number of observations
positive integer

Number of observations the fitting function used in fitting, specified as a positive integer. This is the number of observations supplied in the original table, dataset, or matrix, minus any excluded rows (set with the Exclude name-value pair) or rows with missing values.

NumPredictors — Number of predictor variables
positive integer

Number of predictor variables used to fit the model, specified as a positive integer.

NumVariables — Number of variables
positive integer

Number of variables in the input data, specified as a positive integer. NumVariables is the number of variables in the original table or dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

PredictorNames — Names of predictors used to fit the model
cell array of character vectors

Names of predictors used to fit the model, specified as a cell array of character vectors.

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.

R_squared — R-squared value for the model
structure

R-squared value for the model, specified as a structure.

For a linear or nonlinear model, R_squared is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

For a generalized linear model, R_squared is a structure with five fields:
• **Ordinary** — Ordinary (unadjusted) R-squared
• **Adjusted** — R-squared adjusted for the number of coefficients
• **LLR** — Log-likelihood ratio
• **Deviance** — Deviance
• **AdjGeneralized** — Adjusted generalized R-squared

The R-squared value is the proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:

\[\text{R}^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}. \]

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in `mdl` is

\[r_2 = \text{mdl.Rsquared.Adjusted} \]

SSE — Sum of squared errors
numeric value

Sum of squared errors (residuals), specified as a numeric value.

The Pythagorean theorem implies

\[\text{SST} = \text{SSE} + \text{SSR}. \]

SSR — Regression sum of squares
numeric value

Regression sum of squares, specified as a numeric value. The regression sum of squares is equal to the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies

\[\text{SST} = \text{SSE} + \text{SSR}. \]

SST — Total sum of squares
numeric value

Total sum of squares, specified as a numeric value. The total sum of squares is equal to the sum of squared deviations of response vector \(y \) from \(\text{mean}(y) \).

The Pythagorean theorem implies
SST = SSE + SSR.

VariableInfo — Information about input variables

Table

Information about input variables contained in Variables, specified as a table with one row for each model term and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Character vector giving variable class, such as 'double'</td>
</tr>
<tr>
<td>Range</td>
<td>Cell array giving variable range:</td>
</tr>
<tr>
<td></td>
<td>• Continuous variable — Two-element vector $[\text{min}, \text{max}]$, the</td>
</tr>
<tr>
<td></td>
<td>minimum and maximum values</td>
</tr>
<tr>
<td></td>
<td>• Categorical variable — Cell array of distinct variable values</td>
</tr>
<tr>
<td>InModel</td>
<td>Logical vector, where true indicates the variable is in the model</td>
</tr>
<tr>
<td>IsCategorical</td>
<td>Logical vector, where true indicates a categorical variable</td>
</tr>
</tbody>
</table>

VariableNames — Names of variables used in fit

Cell array of character vectors

Names of variables used in fit, specified as a cell array of character vectors.

- If the fit is based on a table or dataset, this property provides the names of the variables in that table or dataset.
- If the fit is based on a predictor matrix and response vector, VariableNames is the values in the VarNames name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.
Methods

coefCI Confidence intervals of coefficient estimates of generalized linear model
coefTest Linear hypothesis test on generalized linear regression model coefficients
devianceTest Analysis of deviance
disp Display generalized linear regression model
feval Evaluate generalized linear regression model prediction
plotSlice Plot of slices through fitted generalized linear regression surface
predict Predict response of generalized linear regression model
random Simulate responses for generalized linear regression model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Compact a Generalized Linear Regression Model

Reduce the size of a full, fitted generalized linear regression model by discarding the sample data and some information related to the fitting process.

Load the data into the workspace. The simulated sample data contains 15,000 observations and 45 predictor variables.

load(fullfile(matlabroot,'examples','stats','largedata4reg.mat'))

Fit a generalized linear regression model to the data using the first 15 predictor variables.

mdl = fitglm(X(:,1:15),Y)

mdl =
Generalized linear regression model:
 y ~ [Linear formula with 16 terms in 15 predictors]
Distribution = Normal

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.2903</td>
<td>0.00010447</td>
<td>31497</td>
<td>0.0</td>
</tr>
<tr>
<td>x1</td>
<td>-0.000646</td>
<td>4.9991e-08</td>
<td>-12924</td>
<td>0.0</td>
</tr>
<tr>
<td>x2</td>
<td>-0.00024739</td>
<td>8.6874e-08</td>
<td>-2847.7</td>
<td>0.0</td>
</tr>
<tr>
<td>x3</td>
<td>-9.5161e-05</td>
<td>1.1138e-07</td>
<td>-854.38</td>
<td>0.0</td>
</tr>
<tr>
<td>x4</td>
<td>0.00013143</td>
<td>1.551e-07</td>
<td>847.35</td>
<td>0.0</td>
</tr>
<tr>
<td>x5</td>
<td>7.163e-05</td>
<td>1.9793e-07</td>
<td>361.9</td>
<td>0.0</td>
</tr>
<tr>
<td>x6</td>
<td>4.5064e-06</td>
<td>2.2247e-07</td>
<td>20.257</td>
<td>4.9539e-90</td>
</tr>
<tr>
<td>x7</td>
<td>-2.6258e-05</td>
<td>2.5462e-07</td>
<td>-103.13</td>
<td>0.0</td>
</tr>
<tr>
<td>x8</td>
<td>6.284e-05</td>
<td>2.5633e-07</td>
<td>245.15</td>
<td>0.0</td>
</tr>
<tr>
<td>x9</td>
<td>-0.00014288</td>
<td>2.817e-07</td>
<td>-507.19</td>
<td>0.0</td>
</tr>
<tr>
<td>x10</td>
<td>-2.2642e-05</td>
<td>3.0963e-07</td>
<td>-73.127</td>
<td>0.0</td>
</tr>
<tr>
<td>x11</td>
<td>-6.0227e-05</td>
<td>3.1639e-07</td>
<td>-190.36</td>
<td>0.0</td>
</tr>
<tr>
<td>x12</td>
<td>1.1665e-05</td>
<td>3.3921e-07</td>
<td>34.388</td>
<td>1.6995e-249</td>
</tr>
<tr>
<td>x13</td>
<td>3.8595e-05</td>
<td>3.5601e-07</td>
<td>108.41</td>
<td>0.0</td>
</tr>
<tr>
<td>x14</td>
<td>0.00010021</td>
<td>4.0312e-07</td>
<td>248.57</td>
<td>0.0</td>
</tr>
</tbody>
</table>

15000 observations, 14984 error degrees of freedom
Estimated Dispersion: 0.000164
F-statistic vs. constant model: 0.000164, p-value = 0.0

Compact the model. The compact model discards the original sample data and some information related to the fitting process, so it uses less memory than the full model.

compactMdl = compact(mdl)

compactMdl =
Compact generalized linear regression model:
 y ~ [Linear formula with 16 terms in 15 predictors]
Distribution = Normal

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.2903</td>
<td>0.00010447</td>
<td>31497</td>
<td>0.0</td>
</tr>
<tr>
<td>x1</td>
<td>-0.000646</td>
<td>4.9991e-08</td>
<td>-12924</td>
<td>0.0</td>
</tr>
<tr>
<td>x2</td>
<td>-0.00024739</td>
<td>8.6874e-08</td>
<td>-2847.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

32-835
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict and random functions support code generation.
- When you fit a model by using fitglm or stepwiseglm, the following restrictions apply.
 - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalVars' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
 - The Link, Derivative, and Inverse fields of the 'Link' name-value pair argument cannot be anonymous functions. That is, you cannot generate code using
a generalized linear model that was created using anonymous functions for links. Instead, define functions for link components.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
GeneralizedLinearModel | compact | fitglm | plotPartialDependence

Topics
“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12

Introduced in R2016b
CompactRegressionEnsemble

Package: classreg.learning.regr

Compact regression ensemble class

Description

Compact version of a regression ensemble (of class RegressionEnsemble). The compact version does not include the data for training the regression ensemble. Therefore, you cannot perform some tasks with a compact regression ensemble, such as cross validation. Use a compact regression ensemble for making predictions (regressions) of new data.

Construction

```matlab
ens = compact(fullEns)
```

constructs a compact decision ensemble from a full decision ensemble.

Input Arguments

- **fullEns**

 A regression ensemble created by `fitrensemble`.

Properties

- **CategoricalPredictors**

 Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

- **CombineWeights**

 A character vector describing how the ensemble combines learner predictions.
ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

A character vector with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @((x)x).

Add or change a ResponseTransform function using dot notation:

```
ens.ResponseTransform = @function
```

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.
Methods

loss Regression error
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance
removeLearners Remove members of compact regression ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Reduce Size of Regression Ensemble

Create a compact regression ensemble for efficiently making predictions on new data.

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a boosted ensemble of 100 regression trees using the LSBoost. Specify that Cylinders is a categorical variable.

Mdl = fitrensemble(X,Y,'PredictorNames',{'W','C'},...
 'CategoricalPredictors',2)

Mdl =
classreg.learning.regr.RegressionEnsemble
 PredictorNames: {'W' 'C'}
 ResponseName: 'Y'
 CategoricalPredictors: 2
 ResponseTransform: 'none'
 NumObservations: 94
Mdl is a RegressionEnsemble model object that contains the training data, among other things.

Create a compact version of Mdl.

```matlab
CMdl = compact(Mdl)
```

```matlab
CMdl =
    classreg.learning.regr.CompactRegressionEnsemble
    PredictorNames: {'W'  'C'}
    ResponseName: 'Y'
    CategoricalPredictors: 2
    ResponseTransform: 'none'
    NumTrained: 100
```

CMdl is a CompactRegressionEnsemble model object. CMdl is almost the same as Mdl. One exception is that CMdl does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.

```matlab
mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]
```

```matlab
ans = 1x2
    452006   430682
```

Mdl consumes more space than CMdl.
CMdl.Trained stores the trained regression trees (CompactRegressionTree model objects) that compose Mdl.

Display a graph of the first tree in the compact ensemble.

view(CMdl.Trained{1}, 'Mode', 'graph');

By default, fitrensemble grows shallow trees for boosted ensembles of trees.

Predict the fuel economy of a typical car using the compact ensemble.
typicalX = [mean(X(:,1)) mode(X(:,2))];
predMeanX = predict(CMdl,typicalX)

predMeanX = 26.2520

Tip
For a compact ensemble of regression trees, the Trained property of ens stores a cell vector of ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of tree t in the cell vector, enter

view(ens.Trained{t})

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The predict function supports code generation.
- When you train an ensemble by using fitrensemble, code generation limitations for regression trees also apply to ensembles of regression trees. For more details, see “Code Generation” on page 32-867 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
RegressionEnsemble | compact | fitrensemble | plotPartialDependence | predict | templateTree | view

Introduced in R2011a
CompactRegressionGP

Package: classreg.learning.regr

Compact Gaussian process regression model class

Description

CompactRegressionGP is a compact Gaussian process regression (GPR) model. The compact model consumes less memory than a full model, because it does not include the data used for training the GPR model.

Because the compact model does not include the training data, you cannot perform some tasks, such as cross-validation, using the compact model. However, you can use the compact model for making predictions or calculate regression loss for new data (use `predict` and `loss`).

Construction

`compactMdl = compact(gprMdl)` returns a compact GPR model, `compactMdl`, from a full, trained GPR model, `gprMdl`. For more information, see `compact`.

Input Arguments

`gprMdl` — Full, trained Gaussian process regression model
RegressionGP model

Full, trained Gaussian process regression model, specified as a `RegressionGP` model, returned by `fitrgp`.

Properties

Fitting

`FitMethod` — Method used to estimate the parameters

- 'none'
- 'exact'
- 'sd'
- 'sr'
- 'fic'

32-844
Method used to estimate the basis function coefficients, \(\beta \); noise standard deviation, \(\sigma \); and kernel parameters, \(\theta \), of the GPR model, stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>Fit Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>No estimation. <code>fitrgp</code> uses the initial parameter values as the parameter values.</td>
</tr>
<tr>
<td>'exact'</td>
<td>Exact Gaussian process regression.</td>
</tr>
<tr>
<td>'sd'</td>
<td>Subset of data points approximation.</td>
</tr>
<tr>
<td>'sr'</td>
<td>Subset of regressors approximation.</td>
</tr>
<tr>
<td>'fic'</td>
<td>Fully independent conditional approximation.</td>
</tr>
</tbody>
</table>

BasisFunction — Explicit basis function

'none' | 'constant' | 'linear' | 'pureQuadratic' | function handle

Explicit basis function used in the GPR model, stored as a character vector or a function handle. It can be one of the following. If \(n \) is the number of observations, the basis function adds the term \(H^*\beta \) to the model, where \(H \) is the basis matrix and \(\beta \) is a \(p \)-by-1 vector of basis coefficients.

<table>
<thead>
<tr>
<th>Explicit Basis</th>
<th>Basis Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>Empty matrix.</td>
</tr>
<tr>
<td>'constant'</td>
<td>(H = 1)</td>
</tr>
<tr>
<td></td>
<td>((n)-by-1 vector of 1s, where (n) is the number of observations)</td>
</tr>
<tr>
<td>'linear'</td>
<td>(H = [1, X])</td>
</tr>
</tbody>
</table>
Explicit Basis | Basis Matrix
---|---
'pureQuadratic' | \(\mathbf{H} = [1, \mathbf{X}, \mathbf{X}_2], \)

where

\[
\mathbf{X}_2 = \begin{bmatrix}
x_{11}^2 & x_{12}^2 & \cdots & x_{1d}^2 \\
x_{21}^2 & x_{22}^2 & \cdots & x_{2d}^2 \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1}^2 & x_{n2}^2 & \cdots & x_{nd}^2
\end{bmatrix}.
\]

Function handle | Function handle, \(\text{hfcn} \), that \(\text{fitrgp} \) calls as:

\[\mathbf{H} = \text{hfcn}(\mathbf{X}), \]

where \(\mathbf{X} \) is an \(n \)-by-\(d \) matrix of predictors and \(\mathbf{H} \) is an \(n \)-by-\(p \) matrix of basis functions.

Data Types: char | function_handle

CategoricalPredictors — Indices of categorical predictors
vector of positive integers

Categorical predictor indices, specified as a vector of positive integers. \(\text{CategoricalPredictors} \) contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (\([\]\)).

Data Types: single | double

Beta — Estimated coefficients
vector

Estimated coefficients for the explicit basis functions, stored as a vector. You can define the explicit basis function by using the \(\text{BasisFunction} \) name-value pair argument in \(\text{fitrgp} \).

Data Types: double
Sigma — Estimated noise standard deviation

scalar value

Estimated noise standard deviation of the GPR model, stored as a scalar value.

Data Types: double

ModelParameters — Parameters used for training

GPParams object

Parameters used for training the GPR model, stored as a GPParams object.

Kernel Function

KernelFunction — Form of the covariance function

'squaredExponential' | 'matern32' | 'matern52' | 'ardsquaredexponential' | 'ardmatern32' | 'ardmatern52' | function handle

Form of the covariance function used in the GPR model, stored as a character vector containing the name of the built-in covariance function or a function handle. It can be one of the following.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'squaredExponential'</td>
<td>Squared exponential kernel.</td>
</tr>
<tr>
<td>'matern32'</td>
<td>Matern kernel with parameter 3/2.</td>
</tr>
<tr>
<td>'matern52'</td>
<td>Matern kernel with parameter 5/2.</td>
</tr>
<tr>
<td>'ardsquaredexponential'</td>
<td>Squared exponential kernel with a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern32'</td>
<td>Matern kernel with parameter 3/2 and a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern52'</td>
<td>Matern kernel with parameter 5/2 and a separate length scale per predictor.</td>
</tr>
</tbody>
</table>
Function handle

A function handle that `fitrgp` can call like this:

\[K_{mn} = kfcn(X_m, X_n, \theta) \]

where \(X_m \) is an \(m \)-by-\(d \) matrix, \(X_n \) is an \(n \)-by-\(d \) matrix and \(K_{mn} \) is an \(m \)-by-\(n \) matrix of kernel products such that \(K_{mn}(i,j) \) is the kernel product between \(X_m(i,:) \) and \(X_n(j,:) \).

\(\theta \) is the \(r \)-by-1 unconstrained parameter vector for \(kfcn \).

Data Types: `char` | `function_handle`

KernelInformation — Information about the parameters of the kernel function

Information about the parameters of the kernel function used in the GPR model, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the kernel function</td>
</tr>
<tr>
<td>KernelParameters</td>
<td>Vector of the estimated kernel parameters</td>
</tr>
<tr>
<td>KernelParameterNames</td>
<td>Names associated with the elements of KernelParameters.</td>
</tr>
</tbody>
</table>

Data Types: `struct`

Prediction

PredictMethod — Method used to make predictions

- `'exact'` | `'bcd'` | `'sd'` | `'sr'` | `'fic'`

Method that `predict` uses to make predictions from the GPR model, stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>PredictMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'exact'</code></td>
<td>Exact Gaussian process regression</td>
</tr>
<tr>
<td><code>'bcd'</code></td>
<td>Block Coordinate Descent</td>
</tr>
<tr>
<td>PredictMethod</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>'sd'</td>
<td>Subset of Data points approximation</td>
</tr>
<tr>
<td>'sr'</td>
<td>Subset of Regressors approximation</td>
</tr>
<tr>
<td>'fic'</td>
<td>Fully Independent Conditional approximation</td>
</tr>
</tbody>
</table>

Alpha — Weights

numeric vector

Weights used to make predictions from the trained GPR model, stored as a numeric vector. `predict` computes the predictions for a new predictor matrix X_{new} by using the product

$$K(X_{new}, A) \alpha.$$

$K(X_{new}, A)$ is the matrix of kernel products between X_{new} and active set vector A and α is a vector of weights.

Data Types: double

ResponseTransform — Transformation applied to predicted response

'none' (default)

Transformation applied to the predicted response, stored as a character vector describing how the response values predicted by the model are transformed. In RegressionGP, `ResponseTransform` is 'none' by default, and RegressionGP does not use `ResponseTransform` when making predictions.

Active Set Selection

ActiveSetVectors — Subset of training data

matrix

Subset of training data used to make predictions from the GPR model, stored as a matrix. `predict` computes the predictions for a new predictor matrix X_{new} by using the product

$$K(X_{new}, A) \alpha.$$
\(K(\mathbf{X}_{\text{new}}, \mathbf{A}) \) is the matrix of kernel products between \(\mathbf{X}_{\text{new}} \) and active set vector \(\mathbf{A} \) and \(\alpha \) is a vector of weights.

ActiveSetVectors is equal to the training data \(\mathbf{X} \) for exact GPR fitting and a subset of the training data \(\mathbf{X} \) for sparse GPR methods. When there are categorical predictors in the model, ActiveSetVectors contains dummy variables for the corresponding predictors.

Data Types: double

ActiveSetMethod — Method used to select the active set

'\text{sgma}' | 'entropy' | 'likelihood' | 'random'

Method used to select the active set for sparse methods ('sd','sr', or 'fic'), stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>ActiveSetMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sgma'</td>
<td>Sparse greedy matrix approximation</td>
</tr>
<tr>
<td>'entropy'</td>
<td>Differential entropy-based selection</td>
</tr>
<tr>
<td>'likelihood'</td>
<td>Subset of regressors log likelihood-based selection</td>
</tr>
<tr>
<td>'random'</td>
<td>Random selection</td>
</tr>
</tbody>
</table>

The selected active set is used in parameter estimation or prediction, depending on the choice of FitMethod and PredictMethod in fitrgp.

ActiveSetSize — Size of the active set

integer value

Size of the active set for sparse methods ('sd','sr', or 'fic'), stored as an integer value.

Data Types: double

Methods

- **loss** Regression error for Gaussian process regression model
- **predict** Predict response of Gaussian process regression model
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a Gaussian process regression model by using fitrgp, you cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. Code generation does not support categorical predictors. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

RegressionGP | compact | fitrgp | plotPartialDependence

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2015b
CompactRegressionSVM

Package: classreg.learning.regr

Compact support vector machine regression model

Description

CompactRegressionSVM is a compact support vector machine (SVM) regression model. It consumes less memory than a full, trained support vector machine model (RegressionSVM model) because it does not store the data used to train the model.

Because the compact model does not store the training data, you cannot use it to perform certain tasks, such as cross validation. However, you can use a compact SVM regression model to predict responses using new input data.

Construction

compactMdl = compact(mdl) returns a compact SVM regression model compactMdl from a full, trained SVM regression model, mdl. For more information, see compact.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Properties

Alpha — Dual problem coefficients
vector of numeric values

Dual problem coefficients, specified as a vector of numeric values. Alpha contains m elements, where m is the number of support vectors in the trained SVM regression model.
The dual problem introduces two Lagrange multipliers for each support vector. The values of Alpha are the differences between the two estimated Lagrange multipliers for the support vectors. For more details, see “Understanding Support Vector Machine Regression” on page 25-2.

If you specified to remove duplicates using RemoveDuplicates, then, for a particular set of duplicate observations that are support vectors, Alpha contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero coefficient to one observation from the set of duplicates and a coefficient of 0 to all other duplicate observations in the set.

Data Types: single | double

Beta — Primal linear problem coefficients

vector of numeric values | '[]'

Primal linear problem coefficients, stored as a numeric vector of length \(p \), where \(p \) is the number of predictors in the SVM regression model.

The values in Beta are the linear coefficients for the primal optimization problem.

If the model is obtained using a kernel function other than 'linear', this property is empty ('[]').

The predict method computes predicted response values for the model as \(YFIT = (X/S) \times Beta + Bias \), where \(S \) is the value of the kernel scale stored in the KernelParameters.Scale property.

Data Types: double

Bias — Bias term

scalar value

Bias term in the SVM regression model, stored as a scalar value.

Data Types: double

CategoricalPredictors — Indices of categorical predictors

vector of positive integers

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
Data Types: single | double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

Data Types: cell

KernelParameters — Kernel function parameters
structure

Kernel function parameters, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Kernel function name (a character vector).</td>
</tr>
<tr>
<td>Scale</td>
<td>Numeric scale factor used to divide predictor values.</td>
</tr>
</tbody>
</table>

You can specify values for `KernelParameters.Function` and `KernelParameters.Scale` by using the `KernelFunction` and `KernelScale` name-value pair arguments in `fitrsvm`, respectively.

Data Types: struct

Mu — Predictor means
vector of numeric values | '[]'

Predictor means, stored as a vector of numeric values.

If the training data is standardized, then `Mu` is a numeric vector of length `p`, where `p` is the number of predictors used to train the model. In this case, the `predict` method centers predictor matrix `X` by subtracting the corresponding element of `Mu` from each column.

If the training data is not standardized, then `Mu` is empty ('[]').

Data Types: single | double
PredictorNames — Predictor names
cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in the order in which they appear in `X`. `PredictorNames` has a length equal to the number of columns in `X`.

Data Types: `cell`

ResponseName — Response variable name
character vector

Response variable name, stored as a character vector.

Data Types: `char`

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. `ResponseTransform` describes how the software transforms raw response values.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: `char` | `function_handle`

Sigma — Predictor standard deviations
vector of numeric values | '[]'

Predictor standard deviations, stored as a vector of numeric values.

If the training data is standardized, then `Sigma` is a numeric vector of length `p`, where `p` is the number of predictors used to train the model. In this case, the `predict` method scales the predictor matrix `X` by dividing each column by the corresponding element of `Sigma`, after centering each element using `Mu`.

If the training data is not standardized, then `Sigma` is empty ('[]').

Data Types: `single` | `double`

SupportVectors — Support vectors
matrix of numeric values
Support vectors, stored as an \(m \)-by-\(p \) matrix of numeric values. \(m \) is the number of support vectors \(\text{sum(Mdl.IsSupportVector)} \), and \(p \) is the number of predictors in \(X \).

If you specified to remove duplicates using \text{RemoveDuplicates}, then for a given set of duplicate observations that are support vectors, \text{SupportVectors} contains one unique support vector.

Data Types: \text{single} | \text{double}

Methods

- \text{discardSupportVectors} Discard support vectors
- \text{loss} Regression error for support vector machine regression model
- \text{predict} Predict responses using support vector machine regression model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Compact an SVM Regression Model

This example shows how to reduce the size of a full, trained SVM regression model by discarding the training data and some information related to the training process.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);rng default  \% for reproducibility
```

The sample data contains 4177 observations. All of the predictor variables are continuous except for \text{sex}, which is a categorical variable with possible values 'M' (for males), 'F'
(for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model using a Gaussian kernel function and an automatic kernel scale. Standardize the data.

```matlab
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true)
mdl =
    RegressionSVM
    PredictorNames: {1x8 cell}
    ResponseName: 'Var9'
    CategoricalPredictors: 1
    ResponseTransform: 'none'
    Alpha: [3635x1 double]
    Bias: 10.8144
    KernelParameters: [1x1 struct]
    Mu: [1x10 double]
    Sigma: [1x10 double]
    NumObservations: 4177
    BoxConstraints: [4177x1 double]
    ConvergenceInfo: [1x1 struct]
    IsSupportVector: [4177x1 logical]
    Solver: 'SMO'
```

Properties, Methods

Compact the model.

```matlab
compactMdl = compact(mdl)
compactMdl =
    classreg.learning.regr.CompactRegressionSVM
    PredictorNames: {1x8 cell}
    ResponseName: 'Var9'
    CategoricalPredictors: 1
    ResponseTransform: 'none'
    Alpha: [3635x1 double]
    Bias: 10.8144
    KernelParameters: [1x1 struct]
    Mu: [1x10 double]
    Sigma: [1x10 double]
SupportVectors: [3635x10 double]

Properties, Methods

The compacted model discards the training data and some information related to the training process.

Compare the size of the full model `mdl` and the compact model `compactMdl`.

```matlab
vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]
```

```matlab
ans =
 323793 775968
```

The compacted model consumes about half the memory of the full model.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• When you train an SVM regression model by using fitrsvm, the following restrictions apply.
  • Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
  • The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
RegressionSVM|compact|fitrsvm|plotPartialDependence|update

Introduced in R2015b
CompactRegressionTree

Package: classreg.learning.regr

Compact regression tree

Description

Compact version of a regression tree (of class RegressionTree). The compact version does not include the data for training the regression tree. Therefore, you cannot perform some tasks with a compact regression tree, such as cross validation. Use a compact regression tree for making predictions (regressions) of new data.

Construction

ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree — Full, trained regression tree
RegressionTree object

Full, trained regression tree, specified as a RegressionTree object constructed by fitrtree.

Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in CategoricalSplits gives left and right values for a categorical split. For each branch node with categorical split j based on a categorical predictor variable z, the left child is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For each branch node i based on a categorical predictor variable x, the left child is chosen if x is among the categories listed in CutCategories{i,1}, and the right child is chosen if x is among those listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For each branch node i based on a continuous predictor variable x, the left child is chosen if CutPoint<v(i) and the right child is chosen if x>=CutPoint(i).

CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut point v.
• 'categorical' — If the cut is defined by whether a variable \( x \) takes a value in a set of categories.
• ' ' — If \( i \) is a leaf node.

**CutPoint** contains the cut points for 'continuous' cuts, and **CutCategories** contains the set of categories.

**CutPredictor**

An \( n \)-element cell array of the names of the variables used for branching in each node in \( \text{tree} \), where \( n \) is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, **CutPredictor** contains an empty character vector.

**CutPoint** contains the cut points for 'continuous' cuts, and **CutCategories** contains the set of categories.

**ExpandedPredictorNames**

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then **ExpandedPredictorNames** includes the names that describe the expanded variables. Otherwise, **ExpandedPredictorNames** is the same as **PredictorNames**.

**IsBranchNode**

An \( n \)-element logical vector \( \text{ib} \) that is \( \text{true} \) for each branch node and \( \text{false} \) for each leaf node of \( \text{tree} \).

**NodeError**

An \( n \)-element vector \( \text{e} \) of the errors of the nodes in \( \text{tree} \), where \( n \) is the number of nodes. \( \text{e}(i) \) is the misclassification probability for node \( i \).

**NodeMean**

An \( n \)-element numeric array with mean values in each node of \( \text{tree} \), where \( n \) is the number of nodes in the tree. Every element in **NodeMean** is the average of the true \( Y \) values over all observations in the node.

**NodeProbability**

An \( n \)-element vector \( \text{p} \) of the probabilities of the nodes in \( \text{tree} \), where \( n \) is the number of nodes. The probability of a node is computed as the proportion of observations from the
original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

**NodeRisk**

An \( n \)-element vector of the risk of the nodes in the tree, where \( n \) is the number of nodes. The risk for each node is the node error weighted by the node probability.

**NodeSize**

An \( n \)-element vector \( \text{sizes} \) of the sizes of the nodes in \( \text{tree} \), where \( n \) is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

**NumNodes**

The number of nodes \( n \) in \( \text{tree} \).

**Parent**

An \( n \)-element vector \( \text{p} \) containing the number of the parent node for each node in \( \text{tree} \), where \( n \) is the number of nodes. The parent of the root node is 0.

**PredictorNames**

A cell array of names for the predictor variables, in the order in which they appear in \( X \).

**PruneAlpha**

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to \( M \), then \( \text{PruneAlpha} \) has \( M + 1 \) elements sorted in ascending order. \( \text{PruneAlpha}(1) \) is for pruning level 0 (no pruning), \( \text{PruneAlpha}(2) \) is for pruning level 1, and so on.

**PruneList**

An \( n \)-element numeric vector with the pruning levels in each node of \( \text{tree} \), where \( n \) is the number of nodes. The pruning levels range from 0 (no pruning) to \( M \), where \( M \) is the distance between the deepest leaf and the root node.

**ResponseName**

Name of the response variable \( Y \), a character vector.
**ResponseTransform**

Function handle for transforming the raw response values (mean squared error). The function handle must accept a matrix of response values and return a matrix of the same size. The default 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

```matlab
ctree.ResponseTransform = @function
```

**SurrogateCutCategories**

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutCategories{k} is either an empty character vector for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split, and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an empty cell.

**SurrogateCutFlip**

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is the number of nodes in tree. For each node k, SurrogateCutFlip{k} is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if Z≥C and the cut assignment for this surrogate split is -1. Similarly, the right child is chosen if Z≥C and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.
**SurrogateCutPoint**

An $n$-element cell array of the numeric values used for surrogate splits in tree, where $n$ is the number of nodes in tree. For each node $k$, SurrogateCutPoint{$k$} is a numeric vector. The length of SurrogateCutPoint{$k$} is equal to the number of surrogate predictors found at this node. Every element of SurrogateCutPoint{$k$} is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut $C$ based on a continuous predictor variable $Z$, the left child is chosen if $Z<C$ and SurrogateCutFlip for this surrogate split is +1, or if $Z\geq C$ and SurrogateCutFlip for this surrogate split is -1. Similarly, the right child is chosen if $Z\geq C$ and SurrogateCutFlip for this surrogate split is +1, or if $Z<C$ and SurrogateCutFlip for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by SurrogateCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

**SurrogateCutType**

An $n$-element cell array indicating types of surrogate splits at each node in tree, where $n$ is the number of nodes in tree. For each node $k$, SurrogateCutType{$k$} is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form $Z<V$ for a variable $Z$ and cut point $V$ or 'categorical' if the cut is defined by whether $Z$ takes a value in a set of categories.

**SurrogateCutPredictor**

An $n$-element cell array of the names of the variables used for surrogate splits in each node in tree, where $n$ is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.
SurrogatePredictorAssociation

An \( n \)-element cell array of the predictive measures of association for surrogate splits in tree, where \( n \) is the number of nodes in tree. For each node \( k \), \( \text{SurrogatePredictorAssociation}{k} \) is a numeric vector. The length of \( \text{SurrogatePredictorAssociation}{k} \) is equal to the number of surrogate predictors found at this node. Every element of \( \text{SurrogatePredictorAssociation}{k} \) gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in \( \text{SurrogateCutPredictor} \). The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, \( \text{SurrogatePredictorAssociation} \) contains an empty cell.

Methods

- **loss** Regression error
- **surrogateAssociation** Mean predictive measure of association for surrogate splits in decision tree
- **predict** Predict responses using regression tree
- **predictorImportance** Estimates of predictor importance
- **view** View tree

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Construct and Compact a Regression Tree

Load the sample data.

```matlab
load carsmall
```

Construct a regression tree for the sample data.
tree = fitrtree([Weight, Cylinders],MPG,...
   'MinParentSize',20,...
   'PredictorNames',{'W','C'});

Make a compact version of the tree.
ctree = compact(tree);

Compare the size of the compact tree to that of the full tree.
t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]

ans = 1x2
      3708     6954

The compact tree is smaller than the full tree.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The predict function supports code generation.
• When you train a regression tree model by using fitrtree, the following restrictions apply.
  • Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
  • The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous function.
You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair argument must be 'off'.

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
RegressionTree | compact | fitrtree | plotPartialDependence

*Introduced in R2011a*
CompactTreeBagger class

Compact ensemble of decision trees grown by bootstrap aggregation

Description

CompactTreeBagger class is a lightweight class that contains the trees grown using TreeBagger. CompactTreeBagger does not preserve any information about how TreeBagger grew the decision trees. It does not contain the input data used for growing trees, nor does it contain training parameters such as minimal leaf size or number of variables sampled for each decision split at random. You can only use CompactTreeBagger for predicting the response of the trained ensemble given new data X, and other related functions.

CompactTreeBagger lets you save the trained ensemble to disk, or use it in any other way, while discarding training data and various parameters of the training configuration irrelevant for predicting response of the fully grown ensemble. This reduces storage and memory requirements, especially for ensembles trained on large data sets.

Construction

CompactTreeBagger Create CompactTreeBagger object

CMdl = compact(Mdl) creates a compact version of Mdl, a TreeBagger model object. You can predict regressions using CMdl exactly as you can using Mdl. However, since CMdl does not contain training data, you cannot perform some actions, such as make out-of-bag predictions using oobPredict.
Methods

- **combine**: Combine two ensembles
- **error**: Error (misclassification probability or MSE)
- **margin**: Classification margin
- **mdsprox**: Multidimensional scaling of proximity matrix
- **meanMargin**: Mean classification margin
- **outlierMeasure**: Outlier measure for data
- **predict**: Predict responses using ensemble of bagged decision trees
- **proximity**: Proximity matrix for data
- **setDefaultYfit**: Set default value for predict

Properties

**ClassNames**

The `ClassNames` property is a cell array containing the class names for the response variable `Y` supplied to `TreeBagger`. This property is empty for regression trees.

**DefaultYfit**

The `DefaultYfit` property controls what predicted value `CompactTreeBagger` returns when no prediction is possible, for example when the `predict` method needs to predict for an observation which has only false values in the matrix supplied through `'useifort'` argument.

For classification, you can set this property to either '' or 'MostPopular'. If you choose 'MostPopular' (default), the property value becomes the name of the most probable class in the training data.

For regression, you can set this property to any numeric scalar. The default is the mean of the response for the training data.
**DeltaCriterionDecisionSplit**

The DeltaCriterionDecisionSplit property is a numeric array of size 1-by-Nvars of changes in the split criterion summed over splits on each variable, averaged across the entire ensemble of grown trees.

**Method**

The Method property is 'classification' for classification ensembles and 'regression' for regression ensembles.

**NumPredictorSplit**

The NumPredictorSplit property is a numeric array of size 1-by-Nvars, where every element gives a number of splits on this predictor summed over all trees.

**NumTrees**

The NumTrees property is a scalar equal to the number of decision trees in the ensemble.

**PredictorNames**

The PredictorNames property is a cell array containing the names of the predictor variables (features). These names are taken from the optional 'names' parameter that supplied to TreeBagger. The default names are 'x1', 'x2', etc.

**SurrogateAssociation**

The SurrogateAssociation property is a matrix of size Nvars-by-Nvars with predictive measures of variable association, averaged across the entire ensemble of grown trees. If you grew the ensemble setting 'surrogate' to 'on', this matrix for each tree is filled with predictive measures of association averaged over the surrogate splits. If you grew the ensemble setting 'surrogate' to 'off' (default), SurrogateAssociation is diagonal.

**Trees**

The Trees property is a cell array of size NumTrees-by-1 containing the trees in the ensemble.
Examples

Reduce Size of Bag of Trees

Create a compact bag of trees for efficiently making predictions on new data.

Load the ionosphere data set.

load ionosphere

Train a bag of 100 classification trees using all measurements and the AdaBoostM1 method.

Mdl = TreeBagger(100,X,Y,'Method','classification')

Mdl = TreeBagger
Ensemble with 100 bagged decision trees:
    Training X:     [351x34]
    Training Y:     [351x1]
    Method:       classification
    NumPredictors:                   34
    NumPredictorsToSample:                    6
    MinLeafSize:                    1
    InBagFraction:                    1
    SampleWithReplacement:                    1
    ComputeOOBPrediction:                    0
    ComputeOOBPredictorImportance:                    0
    Proximity:                   []
    ClassNames:             'b'             'g'

Properties, Methods

Mdl is a TreeBagger model object that contains the training data, among other things.

Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl = CompactTreeBagger
Ensemble with 100 bagged decision trees:
Method: classification
NumPredictors: 34
ClassNames: 'b' 'g'

Properties, Methods

CMdl is a CompactTreeBagger model object. CMdl is almost the same as Mdl. One exception is that it does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1x2
1031399  890204

Mdl consumes more space than CMdl.

CMdl.Trees stores the trained classification trees (CompactClassificationTree model objects) that compose Mdl.

Display a graph of the first tree in the compact model.

view(CMdl.Trees{1},'Mode','graph');
By default, TreeBagger grows deep trees.

Predict the label of the mean of \( X \) using the compact ensemble.

\[
predMeanX = \text{predict}(\text{CMdl},\text{mean}(X))
\]

\[
predMeanX = 1x1 \ cell \ array
\begin{array}{c}
\{'g'\}
\end{array}
\]
Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

Tip

The Trees property of CMdl stores a cell vector of CMdl.NumTrees CompactClassificationTree or CompactRegressionTree model objects. For a textual or graphical display of tree $t$ in the cell vector, enter

view(CMdl.Trees{t})

See Also

ClassificationTree | RegressionTree | TreeBagger | compact | error | plotPartialDependence | predict | view | view

Topics

“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
“Framework for Ensemble Learning” on page 18-40
“Decision Trees” on page 19-2
“Grouping Variables” on page 2-57
CompactTreeBagger

Class: CompactTreeBagger

Create CompactTreeBagger object

Description

When you use the TreeBagger constructor to grow trees, it creates a CompactTreeBagger object. You can obtain the compact object from the full TreeBagger object using the TreeBagger/compact method. You do not create an instance of CompactTreeBagger directly.

See Also

TreeBagger

Topics

“Grouping Variables” on page 2-57
“Framework for Ensemble Learning” on page 18-40

Introduced in R2009a
compare

Class: GeneralizedLinearMixedModel

Compare generalized linear mixed-effects models

Syntax

results = compare(glme,altglme)
results = compare(glme,altglme,Name,Value)

Description

results = compare(glme,altglme) returns the results of a likelihood ratio test on page 32-882 that compares the generalized linear mixed-effects models glme and altglme. To conduct a valid likelihood ratio test, both models must use the same response vector in the fit, and glme must be nested in altglme. Always input the smaller model first, and the larger model second.

compare tests the following null and alternate hypotheses:

- \( H_0 \): Observed response vector is generated by glme.
- \( H_1 \): Observed response vector is generated by model altglme.

results = compare(glme,altglme,Name,Value) returns the results of a likelihood ratio test using additional options specified by one or more Name,Value pair arguments. For example, you can check if the first input model, glme, is nested in the second input model, altglme.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.
You can create a GeneralizedLinearMixedModel object by fitting a generalized linear mixed-effects model to your sample data using fitglme. To conduct a valid likelihood ratio test on two models that have response distributions other than normal, you must fit both models using the 'ApproximateLaplace' or 'Laplace' fit method. Models with response distributions other than normal that are fitted using 'MPL' or 'REMPL' cannot be compared using a likelihood ratio test.

**altglme — Alternative generalized linear mixed-effects model**

GeneralizedLinearMixedModel object

Alternative generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. altglme be must fit to the same response vector as glme, but with different model specifications. glme must be nested in altglme, such that you can obtain glme from altglme by setting some of the model parameters of altglme to fixed values such as 0.

You can create a GeneralizedLinearMixedModel object by fitting a generalized linear mixed-effects model to your sample data using fitglme. To conduct a valid likelihood ratio test on two models that have response distributions other than normal, you must fit both models using the 'ApproximateLaplace' or 'Laplace' fit method. Models with response distributions other than normal that are fitted using 'MPL' or 'REMPL' cannot be compared using a likelihood ratio test.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**CheckNesting — Indicator to check nesting between two models**

true (default) | false

Indicator to check nesting on page 32-882 between two models, specified as the comma-separated pair consisting of 'CheckNesting' and either true or false. If 'CheckNesting' is true, then compare checks if the smaller model glme is nested in the larger model altglme. If the nesting requirements are not satisfied, then compare returns an error. If 'CheckNesting' is false, then compare does not perform this check.

Example: 'CheckNesting',true
Output Arguments

**results — Results of likelihood ratio test**  
*table*

Results of the likelihood ratio test, returned as a table with two rows. The first row is for `glme`, and the second row is for `altglme`. The columns of `results` contain the following.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Name of the model</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike information criterion for the model</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion for the model</td>
</tr>
<tr>
<td>LogLik</td>
<td>Maximized log likelihood for the model</td>
</tr>
<tr>
<td>LRStat</td>
<td>Likelihood ratio test statistic for comparing <code>altglme</code> and <code>glme</code></td>
</tr>
<tr>
<td>deltaDF</td>
<td>DF for <code>altglme</code> minus DF for <code>glme</code></td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for the likelihood ratio test</td>
</tr>
</tbody>
</table>

**Examples**

**Compare Mixed-Effects Models**

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a fixed-effects-only model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Specify the response distribution as Poisson, the link function as log, and the fit method as Laplace. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

FEglm = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Fit a second model that uses the same fixed-effects predictors, response distribution, link function, and fit method. This time, include a random-effects intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations.

The number of defects can be modeled using a Poisson distribution

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[ \log(\mu_{ij}) = \beta_0 + \beta_1\text{newprocess}_{ij} + \beta_2\text{time_dev}_{ij} + \beta_3\text{temp_dev}_{ij} + \beta_4\text{supplier}_C_{ij} + \beta_5\text{supplier}_B_{ij} + b_i, \]

where

• \text{defects}_{ij} is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
• \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, ..., 20 \)) during batch \( j \) (where \( j = 1, 2, ..., 5 \)).
• `newprocess_{ij}`, `time_dev_{ij}`, and `temp_dev_{ij}` are the measurements for each variable that correspond to factory $i$ during batch $j$. For example, `newprocess_{ij}` indicates whether the batch produced by factory $i$ during batch $j$ used the new process.

• `supplier_C_{ij}` and `supplier_B_{ij}` are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory $i$ during batch $j$.

• $b_i \sim N(0, \sigma_b^2)$ is a random-effects intercept for each factory $i$ that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Compare the two models using a theoretical likelihood ratio test. Specify 'CheckNesting' as true, so `compare` returns a warning if the nesting requirements are not satisfied.

```matlab
results = compare(FEglme,glme,'CheckNesting',true)
```

```
results =
 Theoretical Likelihood Ratio Test
 Model DF AIC BIC LogLik LRStat deltaDF
 FEglme 6 431.02 446.65 -209.51 209.51 0
 glme 7 416.35 434.58 -201.17 16.672 1

 pValue

 4.4435e-05
```

Since `compare` did not return an error, the nesting requirements are satisfied. The small $p$-value indicates that `compare` rejects the null hypothesis that the observed response vector is generated by the model `FEglme`, and instead accepts the alternate model `glme`. The smaller AIC and BIC values for `glme` also support the conclusion that `glme` provides a better fitting model for the response.
Definitions

Likelihood Ratio Test

A likelihood ratio test compares the specifications of two nested models by assessing the significance of restrictions to an extended model with unrestricted parameters. Under the null hypothesis $H_0$, the likelihood ratio test statistic has an approximate chi-squared reference distribution with degrees of freedom $\delta DF$.

When comparing two models, `compare` computes the $p$-value for the likelihood ratio test by comparing the observed likelihood ratio test statistic with this chi-squared reference distribution. A small $p$-value leads to a rejection of $H_0$ in favor of $H_1$, and acceptance of the alternate model `altglme`. On the other hand, a large $p$-value indicates that we cannot reject $H_0$, and reflects insufficient evidence to accept the model `altglme`.

The $p$-values obtained using the likelihood ratio test can be conservative when testing for the presence or absence of random-effects terms, and anti-conservative when testing for the presence or absence of fixed-effects terms. Instead, use the `fixedEffects` or `coefTest` methods to test for fixed effects.

To conduct a valid likelihood ratio test on GLME models, both models must be fitted using a Laplace or approximate Laplace fit method. Models fitted using a maximum pseudo likelihood (MPL) or restricted maximum pseudo likelihood (REMPL) method cannot be compared using a likelihood ratio test. When comparing models fitted using MPL, the maximized log likelihood of the pseudodata from the final pseudo likelihood iteration is used in the likelihood ratio test. If you compare models with non-normal distributions fitted using MPL, then `compare` gives a warning that the likelihood ratio test is using maximized log likelihood of pseudodata from the final pseudo likelihood iteration. To use the true maximized log likelihood in the likelihood ratio test, fit both `glme` and `altglme` using approximate Laplace or Laplace prior to model comparison.

Nesting Requirements

To conduct a valid likelihood ratio test, `glme` must be nested in `altglme`. The `'CheckNesting',true` name-value pair argument checks the following requirements, and returns an error if any are not satisfied:

- You must fit both models (`glme` and `altglme`) using the `'ApproximateLaplace'` or `'Laplace'` fit method. You cannot compare GLME models fitted using `'MPL'` or `'REMPL'` using a likelihood ratio test.
You must fit both models using the same response vector, response distribution, and link function.

The smaller model (glme) must be nested within the larger model (altglme), such that you can obtain glme from altglme by setting some of the model parameters of altglme to fixed values such as 0.

The maximized log likelihood of the larger model (altglme) must be greater than or equal to the maximized log likelihood of the smaller model (glme).

The weight vectors used to fit glme and altglme must be identical.

The random-effects design matrix of the larger model (altglme) must contain the random-effects design matrix of the smaller model (glme).

The fixed-effects design matrix of the larger model (altglme) must contain the fixed-effects design matrix of the smaller model (glme).

**Akaike and Bayesian Information Criteria**

The Akaike information criterion (AIC) is \( AIC = -2 \log L_M + 2(\text{param}) \).

\( \log L_M \) depends on the method used to fit the model.

- If you use 'Laplace' or 'ApproximateLaplace', then \( \log L_M \) is the maximized log likelihood.
- If you use 'MPL', then \( \log L_M \) is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.
- If you use 'REML', then \( \log L_M \) is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.

\( \text{param} \) is the total number of parameters estimated in the model. For most GLME models, \( \text{param} \) is equal to \( nc + p + 1 \), where \( nc \) is the total number of parameters in the random-effects covariance, excluding the residual variance, and \( p \) is the number of fixed-effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then \( \text{param} \) is equal to \( (nc + p) \).

The Bayesian information criterion (BIC) is \( BIC = -2^{*}\log L_M + \ln(n_{eff})(\text{param}) \).

\( \log L_M \) depends on the method used to fit the model.

- If you use 'Laplace' or 'ApproximateLaplace', then \( \log L_M \) is the maximized log likelihood.
• If you use 'MPL', then log$L_M$ is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.

• If you use 'REPL', then log$L_M$ is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.

$n_{eff}$ is the effective number of observations.

• If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then $n_{eff} = n$, where $n$ is the number of observations.

• If you use 'REPL', then $n_{eff} = n - p$.

`param` is the total number of parameters estimated in the model. For most GLME models, `param` is equal to $nc + p + 1$, where $nc$ is the total number of parameters in the random-effects covariance, excluding the residual variance, and $p$ is the number of fixed-effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then `param` is equal to $(nc + p)$.

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters estimated, $p$. So, when the number of parameters increase, the values of AIC and BIC tend to increase as well. When comparing different models, the model with the lowest AIC or BIC value is considered as the best fitting model.

For models fitted using 'MPL' and 'REPL', AIC and BIC are based on the log likelihood (or restricted log likelihood) of pseudo data from the final pseudo likelihood iteration. Therefore, a direct comparison of AIC and BIC values between models fitted using 'MPL' and 'REPL' is not appropriate.

See Also
GeneralizedLinearMixedModel | covarianceParameters | fixedEffects | randomEffects
**compare**

**Class:** LinearMixedModel

Compare linear mixed-effects models

**Syntax**

```matlab
results = compare(lme,altlme)
results = compare(___,Name,Value)
```

```matlab
[results,siminfo] = compare(lme,altlme,'NSim',nsim)
[results,siminfo] = compare(___,Name,Value)
```

**Description**

`results = compare(lme,altlme)` returns the results of a likelihood ratio test on page 32-897 that compares the linear mixed-effects models `lme` and `altlme`. Both models must use the same response vector in the fit and `lme` must be nested in `altlme` for a valid theoretical likelihood ratio test. Always input the smaller model first, and the larger model second.

`compare` tests the following null and alternate hypotheses:

$H_0$: Observed response vector is generated by `lme`.

$H_1$: Observed response vector is generated by model `altlme`.

It is recommended that you fit `lme` and `altlme` using the maximum likelihood (ML) method prior to model comparison. If you use the restricted maximum likelihood (REML) method, then both models must have the same fixed-effects design matrix.

To test for fixed effects, use `compare` with the simulated likelihood ratio test on page 32-897 when `lme` and `altlme` are fit using ML or use the `fixedEffects`, `anova`, or `coefTest` methods.
results = compare(___,'Name',Value) also returns the results of a likelihood ratio test that compares linear mixed-effects models lme and altlme with additional options specified by one or more Name,Value pair arguments.

For example, you can check if the first input model is nested in the second input model.

[results,siminfo] = compare(lme,altlme,'NSim',nsim) returns the results of a simulated likelihood ratio test that compares linear mixed-effects models lme and altlme.

You can fit lme and altlme using ML or REML. Also, lme does not have to be nested in altlme. If you use the restricted maximum likelihood (REML) method to fit the models, then both models must have the same fixed-effects design matrix.

[results,siminfo] = compare(___,'Name',Value) also returns the results of a simulated likelihood ratio test that compares linear mixed-effects models lme and altlme with additional options specified by one or more Name,Value pair arguments.

For example, you can change the options for performing the simulated likelihood ratio test, or change the confidence level of the confidence interval for the $p$-value.

### Input Arguments

- **lme — Linear mixed-effects model**
  LinearMixedModel object

  Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.

- **altlme — Alternative linear mixed-effects model**
  LinearMixedModel object

  Alternative linear mixed-effects model fit to the same response vector but with different model specifications, specified as a LinearMixedModel object. lme must be nested in altlme, that is, lme should be obtained from altlme by setting some parameters to fixed values, such as 0. You can create a linear mixed-effects object using fitlme or fitlmematrix.

- **nsim — Number of replications for simulations**
  positive integer number
Number of replications for simulations in the simulated likelihood ratio test, specified as a positive integer number. You must specify nsim to do a simulated likelihood ratio test.

Example: 'NSim',1000

Data Types: double | single

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double

**Options — Options for performing simulated likelihood ratio test**

structure

Options for performing the simulated likelihood ratio test in parallel, specified as the comma-separated pair consisting of 'Options', and a structure created by statset('LinearMixedModel').

These options require Parallel Computing Toolbox.

compare uses the following fields.
'UseParallel'
• False for serial computation. Default.
• True for parallel computation.

You need Parallel Computing Toolbox for parallel computation.

'UseSubstreams'
• False for not using a separate substream of the random number generator for each iteration. Default.
• True for using a separate substream of the random number generator for each iteration. You can only use this option with random stream types that support substreams.

'Streams'
• If 'UseSubstreams' is True, then 'Streams' must be a single random number stream, or a scalar cell array containing a single stream.
• If 'UseSubstreams' is False and
  • 'UseParallel' is False, then 'Streams' must be a single random number stream, or a scalar cell array containing a single stream.
  • 'UseParallel' is True, then 'Streams' must be equal to the number of processors used. If a parallel pool is open, then the 'Streams' is the same length as the size of the parallel pool. If 'UseParallel' is True, a parallel pool might open up for you. But since 'Streams' must be equal to the number of processors used, it is best to open a pool explicitly using the parpool command, before calling compare with the 'UseParallel','True' option.
For information on parallel statistical computing at the command line, enter
help parallelstats

Data Types: struct

CheckNesting — Indicator to check nesting between two models
false (default) | true

Indicator to check nesting on page 32-898 between two models, specified as the comma-separated pair consisting of 'CheckNesting' and one of the following.

false
  Default. No checks.
true
  compare checks if the smaller model lme is nested in the bigger model altlme.

lme must be nested in the alternate model altlme for a valid theoretical likelihood ratio test on page 32-897. compare returns an error message if the nesting requirements are not satisfied.

Although valid for both tests, the nesting requirements are weaker for the simulated likelihood ratio test on page 32-897.

Example: 'CheckNesting',true

Data Types: single | double

Output Arguments

results — Results of likelihood ratio test or simulated likelihood ratio test
dataset array

Results of the likelihood ratio test or simulated likelihood ratio test, returned as a dataset array with two rows. The first row is for lme, and the second row is for altlme. The columns of results depend on whether the test is a likelihood ratio or a simulated likelihood ratio test.

- If you use the likelihood ratio test on page 32-897, then results contains the following columns.

  Model       Name of the model
DF
Degrees of freedom, that is, the number of free parameters in the model

AIC
Akaike information criterion for the model

BIC
Bayesian information criterion for the model

LogLik
Maximized log likelihood for the model

LRStat
Likelihood ratio test statistic for comparing \textit{altlme} versus \textit{lme}

deltaDF
DF for \textit{altlme} minus DF for \textit{lme}

pValue
p-value for the likelihood ratio test

• If you use the simulated likelihood ratio test on page 32-897, then \textit{results} contains the following columns.

<table>
<thead>
<tr>
<th>Model</th>
<th>Name of the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>Degrees of freedom, that is, the number of free parameters in the model</td>
</tr>
<tr>
<td>LogLik</td>
<td>Maximized log likelihood for the model</td>
</tr>
<tr>
<td>LRStat</td>
<td>Likelihood ratio test statistic for comparing \textit{altlme} versus \textit{lme}</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for the likelihood ratio test</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of the confidence interval for \textit{pValue}</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of the confidence interval for \textit{pValue}</td>
</tr>
</tbody>
</table>

\textbf{siminfo — Simulation output}

\textbf{structure}

Simulation output, returned as a structure with the following fields.

<table>
<thead>
<tr>
<th>nsim</th>
<th>Value set for \textit{nsim}.</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Value set for 'Alpha'.</td>
</tr>
<tr>
<td>pValueSim</td>
<td>Simulation-based \textit{p}-value.</td>
</tr>
</tbody>
</table>
pValueSimCI  Confidence interval for pValueSim. The first element of the vector is the lower limit and the second element of the vector contains the upper limit.

deltaDF  The number of free parameters in altlme minus the number of free parameters in lme. DF for altlme minus DF for lme.

TH0  A vector of simulated likelihood ratio test statistics under the null hypothesis that the model lme generated the observed response vector y.

Examples

Test for Random Effects

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses and region as the predictor variable, combine the nine columns corresponding to the regions into an array. The new dataset array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate','...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model, with a varying intercept and varying slope for each region, grouped by Date.

altlme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');
Fit a linear mixed-effects model with fixed effects for the region and a random intercept that varies by Date.

\[
lme = \text{fitlme}(\text{flu2}, 'FluRate \sim 1 + \text{Region} + (1|\text{Date})');
\]

Compare the two models. Also check if lme2 is nested in lme.

\[
\text{compare(lme, altlme, 'CheckNesting', true)}
\]

\[
\begin{array}{ccccccccc}
\text{Model} & \text{DF} & \text{AIC} & \text{BIC} & \text{LogLik} & \text{LRStat} & \text{deltaDF} & \text{pValue} \\
lme & 11 & 318.71 & 364.35 & -148.36 & & & \\
altlme & 55 & -305.51 & -77.346 & 207.76 & 712.22 & 44 & 0 \\
\end{array}
\]

The small \( p \)-value of 0 indicates that model altlme is significantly better than the simpler model lme.

**Test for Fixed and Random Effects**

Load the sample data.

\[
\text{load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))}
\]

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

\[
ds = \text{fertilizer}; \\
ds.\text{Tomato} = \text{nominal}(ds.\text{Tomato}); \\
ds.\text{Soil} = \text{nominal}(ds.\text{Soil}); \\
ds.\text{Fertilizer} = \text{nominal}(ds.\text{Fertilizer});
\]
Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil types) independently.

lmeBig = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects term (1 | Soil).

lmeSmall = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Compare the two models using the simulated likelihood ratio test with 1000 replications. You must use this test to test for both fixed- and random-effect terms. Note that both models are fit using the default fitting method, ML. That’s why, there is no restriction on the fixed-effects design matrices. If you use restricted maximum likelihood (REML) method, both models must have identical fixed-effects design matrices.

[table,siminfo] = compare(lmeSmall,lmeBig,'nsim',1000)

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmeSmall</td>
<td>10</td>
<td>511.06</td>
<td>532</td>
<td>-245.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lmeBig</td>
<td>23</td>
<td>522.57</td>
<td>570.74</td>
<td>-238.29</td>
<td>14.491</td>
<td>0.57343</td>
</tr>
</tbody>
</table>

Lower       Upper
0.54211     0.60431

The high P-value suggests that the larger model, lme is not significantly better than the smaller model, lme2. The smaller values of “Akaike and Bayesian Information Criteria” on page 32-899 for lme2 also support this.
Models with Correlated and Uncorrelated Random Effects

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and the cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year.

First, prepare the design matrices.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Now, fit the model using fitlmatrix with the defined design matrices and grouping variables.

lme = fitlmatrix(X,MPG,Z,G,'FixedEffectPredictors', ....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors', ....
{{'Intercept','Acceleration'}},'RandomEffectGroups',{Model_Year});

Refit the model with uncorrelated random effects for intercept and acceleration. First prepare the random effects design and the random effects grouping variables.

Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};

lme2 = fitlmatrix(X,MPG,Z,G,'FixedEffectPredictors', ....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors', ....
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{... 
{'Model_Year','Model_Year'}});

Compare lme and lme2 using the simulated likelihood ratio test.

compare(lme2,lme,'CheckNesting',true,'NSim',1000)

ans =
SIMULATED LIKELIHOOD RATIO TEST: NSIM = 1000, ALPHA = 0.05

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>AIC</th>
<th>BIC</th>
<th>LogLik</th>
<th>LRStat</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>lme2</td>
<td>6</td>
<td>2194.5</td>
<td>2218.3</td>
<td>-1091.3</td>
<td>3.0323</td>
<td>0.094905</td>
<td>0.077462</td>
<td>0.11477</td>
</tr>
<tr>
<td>lme</td>
<td>7</td>
<td>2193.5</td>
<td>2221.3</td>
<td>-1089.7</td>
<td>3.0323</td>
<td>0.094905</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The high $p$-value indicates that lme2 is not a significantly better fit than lme.

Simulated Likelihood Ratio Test Using Parallel Computing

Load the sample data.

load(fullfile(matlabroot,'examples','stats','fertilizer.mat'));

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects term (1|Soil).
lme2 = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Create the options structure for LinearMixedModel.

opt = statset('LinearMixedModel')

opt = struct with fields:
    Display: 'off'
    MaxFunEvals: []
    MaxIter: 10000
    TolBnd: []
    TolFun: 1.0000e-06
    TolTypeFun: []
    TolX: 1.0000e-12
    TolTypeX: []
    GradObj: []
    Jacobian: []
    DerivStep: []
    FunValCheck: []
    Robust: []
    RobustWgtFun: []
    WgtFun: []
    Tune: []
    UseParallel: []
    UseSubstreams: []
    Streams: {}
    OutputFcn: []

Change the options for parallel testing.

opt.UseParallel = true;

Start a parallel environment.

mypool = parpool();

Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.

Compare lme2 and lme using the simulated likelihood ratio test with 1000 replications and parallel computing.

compare(lme2,lme,'nsim',1000,'Options',opt)

ans =
    Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05
The high $p$-value suggests that the larger model, lme, is not significantly better than the smaller model, lme2. The smaller values of AIC and BIC for lme2 also support this.

**Definitions**

**Likelihood Ratio Test**

Under the null hypothesis $H_0$, the observed likelihood ratio test statistic has an approximate chi-squared reference distribution with degrees of freedom $\delta DF$. When comparing two models, compare computes the $p$-value for the likelihood ratio test by comparing the observed likelihood ratio test statistic with this chi-squared reference distribution.

The $p$-values obtained using the likelihood ratio test can be conservative when testing for the presence or absence of random-effects terms and anticonservative when testing for the presence or absence of fixed-effects terms. Hence, use the `fixedEffects`, `anova`, or `coefTest` method or the simulated likelihood ratio test while testing for fixed effects.

**Simulated Likelihood Ratio Test**

To perform the simulated likelihood ratio test, compare first generates the reference distribution of the likelihood ratio test statistic under the null hypothesis. Then, it assesses the statistical significance of the alternate model by comparing the observed likelihood ratio test statistic to this reference distribution.

`compare` produces the simulated reference distribution of the likelihood ratio test statistic under the null hypothesis as follows:
- Generate random data $ysim$ from the fitted model $lme$.
- Fit the model specified in $lme$ and alternate model $altlme$ to the simulated data $ysim$.
- Calculate the likelihood ratio test statistic using results from step 2 and store the value.
- Repeat step 1 to 3 $nsim$ times.

Then, `compare` computes the $p$-value for the simulated likelihood ratio test by comparing the observed likelihood ratio test statistic with the simulated reference distribution. The $p$-value estimate is the ratio of the number of times the simulated likelihood ratio test statistic is equal to or exceeds the observed value plus one, to the number of replications plus one.

Suppose the observed likelihood ratio statistic is $T$, and the simulated reference distribution is stored in vector $T_{H_0}$. Then,

$$p - value = \frac{n_{sim} \sum_{j=1}^{n_{sim}} I(T_{H_0}(j) \geq T) + 1}{n_{sim} + 1}.$$

To account for the uncertainty in the simulated reference distribution, `compare` computes a $100* (1 - \alpha)\%$ confidence interval for the true $p$-value.

You can use the simulated likelihood ratio test to compare arbitrary linear mixed-effects models. That is, when you are using the simulated likelihood ratio test, $lme$ does not have to be nested within $altlme$, and you can fit $lme$ and $altlme$ using either maximum likelihood (ML) or restricted maximum likelihood (REML) methods. If you use the restricted maximum likelihood (REML) method to fit the models, then both models must have the same fixed-effects design matrix.

**Nesting Requirements**

The 'CheckNesting','True' name-value pair argument checks the following requirements.

For a simulated likelihood ratio test:
- You must use the same method to fit both models ($lme$ and $altlme$). `compare` cannot compare a model fit using ML to a model fit using REML.
• You must fit both models to the same response vector.
• If you use REML to fit lme and altlme, then both models must have the same fixed-effects design matrix.
• The maximized log likelihood or restricted log likelihood of the bigger model (altlme) must be greater than or equal to that of the smaller model (lme).

For a theoretical test, 'CheckNesting','True' checks all the requirements listed for a simulated likelihood ratio test and the following:
• Weight vectors you use to fit lme and altlme must be identical.
• If you use ML to fit lme and altlme, the fixed-effects design matrix of the bigger model (altlme) must contain that of the smaller model (lme).
• The random-effects design matrix of the bigger model (altlme) must contain that of the smaller model (lme).

**Akaike and Bayesian Information Criteria**

Akaike information criterion (AIC) is \( AIC = -2 \log L_M + 2(nc + p + 1) \), where \( \log L_M \) is the maximized log likelihood (or maximized restricted log likelihood) of the model, and \( nc + p + 1 \) is the number of parameters estimated in the model. \( p \) is the number of fixed-effects coefficients, and \( nc \) is the total number of parameters in the random-effects covariance excluding the residual variance.

Bayesian information criterion (BIC) is \( BIC = -2 \log L_M + \ln(n_{eff})(nc + p + 1) \), where \( \log L_M \) is the maximized log likelihood (or maximized restricted log likelihood) of the model, \( n_{eff} \) is the effective number of observations, and \( (nc + p + 1) \) is the number of parameters estimated in the model.

- If the fitting method is maximum likelihood (ML), then \( n_{eff} = n \), where \( n \) is the number of observations.
- If the fitting method is restricted maximum likelihood (REML), then \( n_{eff} = n - p \).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters estimated, \( p \). So, when the number of parameters increase, the values of AIC and BIC tend to increase as well. When comparing different models, the model with the lowest AIC or BIC value is considered as the best fitting model.
### Deviance

`LinearMixedModel` computes the deviance of model $M$ as minus two times the loglikelihood of that model. Let $L_M$ denote the maximum value of the likelihood function for model $M$. Then, the deviance of model $M$ is

$$-2 \times \log L_M.$$ 

A lower value of deviance indicates a better fit. Suppose $M_1$ and $M_2$ are two different models, where $M_1$ is nested in $M_2$. Then, the fit of the models can be assessed by comparing the deviances $Dev_1$ and $Dev_2$ of these models. The difference of the deviances is

$$Dev = Dev_1 - Dev_2 = 2(\log L_{M_2} - \log L_{M_1}).$$

Usually, the asymptotic distribution of this difference has a chi-square distribution with degrees of freedom $v$ equal to the number of parameters that are estimated in one model but fixed (typically at 0) in the other. That is, it is equal to the difference in the number of parameters estimated in $M_1$ and $M_2$. You can get the $p$-value for this test using $1 - \text{chi2cdf}(Dev, V)$, where $Dev = Dev_2 - Dev_1$.

However, in mixed-effects models, when some variance components fall on the boundary of the parameter space, the asymptotic distribution of this difference is more complicated. For example, consider the hypotheses

$H_0$: $D = \begin{pmatrix} D_{11} & 0 \\ 0 & 0 \end{pmatrix}$, $D$ is a $q$-by-$q$ symmetric positive semidefinite matrix.

$H_1$: $D$ is a $(q+1)$-by-$(q+1)$ symmetric positive semidefinite matrix.

That is, $H_1$ states that the last row and column of $D$ are different from zero. Here, the bigger model $M_2$ has $q + 1$ parameters and the smaller model $M_1$ has $q$ parameters. And $Dev$ has a 50:50 mixture of $\chi^2_q$ and $\chi^2_{(q+1)}$ distributions (Stram and Lee, 1994).

### References


## Extended Capabilities

### Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `Options', statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

### See Also

* `LinearMixedModel` | `anova` | `covarianceParameters` | `fitlme` | `fitlmematrix` | `fixedEffects` | `randomEffects`
compareHoldout

Package:

Compare accuracies of two classification models using new data

Compare accuracies of two classification models using new data

h = compareHoldout(C1,C2,T1,T2,ResponseVarName)

h = compareHoldout(C1,C2,T1,T2,Y)
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(___,Name,Value)
[h,p,e1,e2] = compareHoldout(___)
the same response variable but can contain different sets of predictors. By default, the software conducts the mid-p-value McNemar test to compare the accuracies.

\( h = 1 \) indicates rejecting the null hypothesis at the 5% significance level. \( h = 0 \) indicates not rejecting the null hypothesis at the 5% level.

The following are examples of tests you can conduct:

- Compare the accuracies of a simple classification model and a model that is more complex by passing the same set of predictor data (that is, \( T_1 = T_2 \)).
- Compare the accuracies of two potentially different models using two potentially different sets of predictors.
- Perform various types of feature selection. For example, you can compare the accuracy of a model trained using a set of predictors to the accuracy of one trained on a subset or different set of those predictors. You can choose the set of predictors arbitrarily, or use a feature selection technique such as PCA or sequential feature selection (see \texttt{pca} and \texttt{sequentialfs}).

\( h = \text{compareHoldout}(C_1,C_2,T_1,T_2,Y) \) returns the test decision from testing the null hypothesis that the trained classification models \( C_1 \) and \( C_2 \) have equal accuracy for predicting the true class labels \( Y \). The alternative hypothesis is that the labels have unequal accuracy.

The first classification model \( C_1 \) uses the predictor data \( T_1 \), and the second classification model \( C_2 \) uses the predictor data \( T_2 \). By default, the software conducts the mid-p-value McNemar test to compare the accuracies.

\( h = \text{compareHoldout}(C_1,C_2,X_1,X_2,Y) \) returns the test decision from testing the null hypothesis that the trained classification models \( C_1 \) and \( C_2 \) have equal accuracy for predicting the true class labels \( Y \). The alternative hypothesis is that the labels have unequal accuracy.

The first classification model \( C_1 \) uses the predictor data \( X_1 \), and the second classification model \( C_2 \) uses the predictor data \( X_2 \). By default, the software conducts the mid-p-value McNemar test to compare the accuracies.

\( h = \text{compareHoldout}(\_\_,\_\_,\text{Name,Value}) \) specifies options using one or more name-value pair arguments in addition to the input argument combinations in previous syntaxes. For example, you can specify the type of alternative hypothesis, specify the type of test, and supply a cost matrix.
[h, p, e1, e2] = compareHoldout(___) returns the p-value for the hypothesis test (p) and the respective classification losses on page 32-926 of each set of predicted class labels (e1 and e2) using any of the input arguments in the previous syntaxes.

**Examples**

**Compare Accuracies of Full and Reduced Classification Models**

Train two k-nearest neighbor classifiers, one using a subset of the predictors used for the other. Conduct a statistical test comparing the accuracies of the two models on a test set.

Load the carsmall data set.

```matlab
load carsmall
```

Create two tables of input data, where the second table excludes the predictor Acceleration. Specify Model_Year as the response variable.

```matlab
T1 = table(Acceleration,Displacement,Horsepower,MPG,Model_Year);
T2 = T1(:,2:end);
```

Create a partition that splits the data into training and test sets. Keep 30% of the data for testing.

```matlab
rng(1) % For reproducibility
CVP = cvpartition(Model_Year,'holdout',0.3);
idxTrain = training(CVP); % Training-set indices
idxTest = test(CVP); % Test-set indices
```

CVP is a cross-validation partition object that specifies the training and test sets.

Train the ClassificationKNN models using the T1 and T2 data.

```matlab
C1 = fitcknn(T1(idxTrain,:),'Model_Year');
C2 = fitcknn(T2(idxTrain,:),'Model_Year');
```

C1 and C2 are trained ClassificationKNN models.

Test whether the two models have equal predictive accuracies on the test set.

```matlab
h = compareHoldout(C1,C2,T1(idxTest,:),T2(idxTest,:),'Model_Year')
```
\( h = 0 \) indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

**Compare Accuracies of Two Different Classification Models**

Train two classification models using different algorithms. Conduct a statistical test comparing the misclassification rates of the two models on a test set.

Load the `ionosphere` data set.

```matlab
load ionosphere;
```

Create a partition that evenly splits the data into training and test sets.

```matlab
rng(1); % For reproducibility
CVP = cvpartition(Y,'holdout',0.5); % Training-set indices
idxTrain = training(CVP); % Test-set indices
idxTest = test(CVP); % Training-set indices
```

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM model, specify to use the radial basis function kernel and a heuristic procedure to determine the kernel scale.

```matlab
C1 = fitcsvm(X(idxTrain,:),Y(idxTrain), ... 'Standardize',true,... 'KernelFunction','RBF','KernelScale','auto');
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','Bag');
```

C1 is a trained `ClassificationSVM` model. C2 is a trained `ClassificationBaggedEnsemble` model.

Test whether the two models have equal predictive accuracies. Use the same test-set predictor data for each model.

```matlab
h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))
```
h = logical
    0

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

**Compare Classification Model to More Complex Model**

Train two classification models using the same algorithm, but adjust a hyperparameter to make the algorithm more complex. Conduct a statistical test to assess whether the simpler model has better accuracy on test data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and test sets.

rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);  % Training-set indices
idxTrain = training(CVP);           % Test-set indices
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary classification) and one that uses the radial basis function kernel. Use the default kernel scale of 1.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);
C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...
    'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar test, and compare the results with the mid-p-value test (the cost-insensitive testing default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation
MidP = zeros(4,1);
[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...
   X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',... 
   'Test','asymptotic');
[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...
   X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');
table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans=4×2 table
    Asymp    MidP
     ________    ________
        h            1     1
        p        7.2801e-09 2.7649e-10
        e1        0.13714  0.13714
        e2        0.33143  0.33143

The p-value is close to zero for both tests, providing strong evidence to reject the null hypothesis that the simpler model is less accurate than the more complex model. No matter what test you specify, compareHoldout returns the same type of misclassification measure for both models.

**Conduct Cost-Sensitive Comparison of Two Classification Models**

For data sets with imbalanced class representations, or for data sets with imbalanced false-positive and false-negative costs, you can statistically compare the predictive performance of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia;
Y = categorical(Y);
tabulate(Y);

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
</tbody>
</table>
There are 16 classes, however some are not represented in the data set (for example, class 13). Most observations are classified as not having arrhythmia (class 1). The data set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those observations with unknown arrhythmia status (class 16) from the data set.

```matlab
idx = (Y ~= '16');
Y = Y(idx);
X = X(idx,:);
Y(Y ~= '1') = 'WithArrhythmia';
Y(Y == '1') = 'NoArrhythmia';
Y = removecats(Y);
```

Create a partition that evenly splits the data into training and test sets.

```matlab
rng(1); % For reproducibility
CVP = cvpartition(Y,'holdout',0.5); % Training-set indices
idxTrain = training(CVP); % Test-set indices
idxTest = test(CVP); % Training-set indices
CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifying a patient with arrhythmia into the "no arrhythmia" class is five times worse than misclassifying a patient without arrhythmia into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the true class and the columns indicate the predicted class. When you conduct a cost-sensitive analysis, a good practice is to specify the order of the classes.

```matlab
cost = [0 1;5 0];
ClassNames = {'NoArrhythmia','WithArrhythmia'};
```

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1 and another that uses LogitBoost. Because the data set contains missing values, specify to use surrogate splits. Train the models using the cost matrix.
t = templateTree('Surrogate','on');
numTrees = 50;
C1 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1', ...
 'NumLearningCycles',numTrees,'Learners',t, ...
 'Cost',cost,'ClassNames',ClassNames);
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','LogitBoost', ...
 'NumLearningCycles',numTrees,'Learners',t, ...
 'Cost',cost,'ClassNames',ClassNames);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),Y(idxTest),...
 'Cost',cost)

h = logical
 0

p = 0.1944

e1 = 0.5953

e2 = 0.4698

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables (features) from a larger set. Then, statistically compare the out-of-sample accuracy between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and test sets.
rng(1); % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP); % Training-set indices
idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire set of predictors. Inspect the importance measure for each predictor:

t = templateTree('MaxNumSplits',1); % Weak-learner template tree object
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1',...
 'Learners',t);
predImp = predictorImportance(C2);

figure;
bar(predImp);
h = gca;
h.XTick = 1:2:h.XLim(2)

h =
 Axes with properties:

 XLim: [-0.2000 35.2000]
 YLim: [0 0.0090]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Show all properties

 title('Predictor Importance');
xlabel('Predictor');
ylabel('Importance measure');
Identify the top five predictors in terms of their importance.

\[
[~,idxSort] = \text{sort}(ext{predImp},'\text{descend}');
\]
\[
idx5 = \text{id}xSort(1:5);
\]

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the five predictors with the greatest importance.

\[
\text{C1} = \text{fitcensemble}(X(idxTrain,idx5),Y(idxTrain),'\text{Method}',\text{''AdaBoostM1''},...\nonumber\
\text{\quad'}\text{\text{'Learners'}','t});
\]

Test whether the two models have equal predictive accuracies. Specify the reduced test-set predictor data for C1 and the full test-set predictor data for C2.

\[
[h,p,e1,e2] = \text{compareHoldout}(\text{C1,C2,X(idxTest,idx5)},X(idxTest,:),Y(idxTest))
\]
\[h = \text{logical} \quad 0 \]

\[p = 0.7744 \]
\[e_1 = 0.0914 \]
\[e_2 = 0.0857 \]

\(h = 0 \) indicates to not reject the null hypothesis that the two models have equal predictive accuracies. This result favors the simpler ensemble, \(C_1 \).

Input Arguments

C1 — First trained classification model

trained classification model object | trained, compact classification model object

First trained classification model, specified as any trained classification model object or compact classification model object described in this table.

<table>
<thead>
<tr>
<th>Trained Model Type</th>
<th>Model Object</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification tree</td>
<td>ClassificationTree</td>
<td>fitctree</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>ClassificationDiscriminant</td>
<td>fitcdiscr</td>
</tr>
<tr>
<td>Ensemble of bagged classification models</td>
<td>ClassificationBaggedEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>Ensemble of classification models</td>
<td>ClassificationEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>Multiclass, error-correcting output codes (ECOC)</td>
<td>ClassificationECOC</td>
<td>fitcecoc</td>
</tr>
<tr>
<td>kNN</td>
<td>ClassificationKNN</td>
<td>fitcknn</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>ClassificationNaiveBayes</td>
<td>fitcnb</td>
</tr>
<tr>
<td>Support vector machine (SVM)</td>
<td>ClassificationSVM</td>
<td>fitcsvm</td>
</tr>
<tr>
<td>Trained Model Type</td>
<td>Model Object</td>
<td>Returned By</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Compact discriminant analysis</td>
<td>CompactClassificationDiscriminant</td>
<td>compact</td>
</tr>
<tr>
<td>Compact ECOC</td>
<td>CompactClassificationECOC</td>
<td>compact</td>
</tr>
<tr>
<td>Compact ensemble of classification models</td>
<td>CompactClassificationEnsemble</td>
<td>compact</td>
</tr>
<tr>
<td>Compact naive Bayes</td>
<td>CompactClassificationNaiveBayes</td>
<td>compact</td>
</tr>
<tr>
<td>Compact SVM</td>
<td>CompactClassificationSVM</td>
<td>compact</td>
</tr>
<tr>
<td>Compact classification tree</td>
<td>CompactClassificationTree</td>
<td>compact</td>
</tr>
</tbody>
</table>

C2 — Second trained classification model

trained classification model object | trained, compact classification model object

Second trained classification model, specified as any trained classification model object or compact classification model object that is a valid choice for C1.

T1 — Test-set predictor data for first classification model

table

Test-set predictor data for the first classification model, C1, specified as a table. Each row of T1 corresponds to one observation, and each column corresponds to one predictor variable. Optionally, T1 can contain an additional column for the response variable. T1 must contain all the predictors used to train C1. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

T1 and T2 must have the same number of rows and the same response values. If T1 and T2 contain the response variable used to train C1 and C2, then you do not need to specify ResponseVarName or Y.

Data Types: table

T2 — Test-set predictor data for second classification model

table

Test-set predictor data for the second classification model, C2, specified as a table. Each row of T2 corresponds to one observation, and each column corresponds to one predictor variable. Optionally, T2 can contain an additional column for the response variable. T2 must contain all the predictors used to train C2. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
T1 and T2 must have the same number of rows and the same response values. If T1 and T2 contain the response variable used to train C1 and C2, then you do not need to specify ResponseVarName or Y.

Data Types: table

X1 — Test-set predictor data for first classification model
classic.matrix

Test-set predictor data for the first classification model, C1, specified as a numeric matrix.

Each row of X1 corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a predictor or feature). The variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the number of rows in Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
classic.matrix

Test-set predictor data for the second classification model, C2, specified as a numeric matrix.

Each row of X2 corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a predictor or feature). The variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the number of rows in Y.

Data Types: double | single

ResponseVarName — Response variable name
name of a variable in T1 and T2

Response variable name, specified as the name of a variable in T1 and T2. If T1 and T2 contain the response variable used to train C1 and C2, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable is stored as T1.Response, then specify it as 'Response'. Otherwise, the software treats all columns of T1 and T2, including Response, as predictors.
The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: `char` | `string`

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

True class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

When you specify `Y`, `compareHoldout` treats all variables in the matrices `X1` and `X2` or the tables `T1` and `T2` as predictor variables.

If `Y` is a character array, then each element must correspond to one row of the array.

The number of rows in the predictor data must equal the number of rows in `Y`.

Data Types: categorical | char | string | logical | single | double | cell

Note NaNs, `<undefined>` values, empty character vectors (``), empty strings (""), and `<missing>` values indicate missing values. `compareHoldout` removes missing values in `Y` and the corresponding rows of `X1` and `X2`. Additionally, `compareHoldout` predicts classes whether `X1` and `X2` have missing observations.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:

```matlab
compareHoldout(C1,C2,X1,X2,Y,'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0])
```
tests whether the first set of predicted class labels is more accurate than the second set, conducts the asymptotic McNemar test, and penalizes misclassifying observations with the true label `ClassNames{1}` twice as much as misclassifying observations with the true label `ClassNames{2}`.
Alpha — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

Alternative — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of 'Alternative' and one of the values listed in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Alternative Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unequal'</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 and C2 applied to X2 have unequal accuracies.</td>
</tr>
<tr>
<td>'greater'</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 is more accurate than C2 applied to X2.</td>
</tr>
<tr>
<td>'less'</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 is less accurate than C2 applied to X2.</td>
</tr>
</tbody>
</table>

Example: 'Alternative','greater'

ClassNames — Class names
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. You must set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

- Specify the order of any input argument dimension that corresponds to class order. For example, use ClassNames to specify the order of the dimensions of Cost.
• Select a subset of classes for testing. For example, suppose that the set of all distinct class names in \(Y \) is \{'a','b','c'\}. To train and test models using observations from classes 'a' and 'c' only, specify 'ClassNames',\{'a','c'\}.

The default is the set of all distinct class names in \(Y \).

Example: 'ClassNames',\{'b','g'\}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost

square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure array.

• If you specify the square matrix \(\text{Cost} \), then \(\text{Cost}(i,j) \) is the cost of classifying a point into class \(j \) if its true class is \(i \). That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of \(\text{Cost} \), additionally specify the 'ClassNames' name-value pair argument.

• If you specify the structure \(S \), then \(S \) must have two fields:
 - \(S\text{.ClassNames} \), which contains the class names as a variable of the same data type as \(Y \). You can use this field to specify the order of the classes.
 - \(S\text{.ClassificationCosts} \), which contains the cost matrix, with rows and columns ordered as in \(S\text{.ClassNames} \).

If you specify \(\text{Cost} \), then `compareHoldout` cannot conduct one-sided, exact, or mid-p tests. You must also specify 'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing options, see the 'CostTest' name-value pair argument.

A best practice is to supply the same cost matrix used to train the classification models.

The default is \(\text{Cost}(i,j) = 1 \) if \(i \neq j \), and \(\text{Cost}(i,j) = 0 \) if \(i = j \).

Example: 'Cost',[0 1 2; 1 0 2; 2 2 0]

Data Types: single | double | struct

CostTest — Cost-sensitive test type

'likelihood' (default) | 'chisquare'
Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest' and 'chisquare' or 'likelihood'. If you do not specify a cost matrix using the Cost name-value pair argument, compareHoldout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

<table>
<thead>
<tr>
<th>Value</th>
<th>Asymptotic Test Type</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chisquare'</td>
<td>Chi-square test</td>
<td>Optimization Toolbox to implement quadprog</td>
</tr>
<tr>
<td>'likelihood'</td>
<td>Likelihood ratio test</td>
<td>None</td>
</tr>
</tbody>
</table>

For more details, see “Cost-Sensitive Testing” on page 32-921.

Example: 'CostTest','chisquare'

Test — Test to conduct

'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and 'asymptotic', 'exact', or 'midp'.

This table summarizes the available options for cost-insensitive testing.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'asymptotic'</td>
<td>Asymptotic McNemar test</td>
</tr>
<tr>
<td>'exact'</td>
<td>Exact-conditional McNemar test</td>
</tr>
<tr>
<td>'midp' (default)</td>
<td>Mid-p-value McNemar test</td>
</tr>
</tbody>
</table>

For more details, see “McNemar Tests” on page 32-923.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost name-value pair argument and choose a cost-sensitive test using the CostTest name-value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'
Output Arguments

h — Hypothesis test result

| h = 1 indicates the rejection of the null hypothesis at the \(\text{Alpha} \) significance level.
| h = 0 indicates failure to reject the null hypothesis at the \(\text{Alpha} \) significance level.

Data Types: logical

p — \(p \)-value

| scalar in the interval \([0,1]\)
| \(p \)-value of the test, returned as a scalar in the interval \([0,1]\). \(p \) is the probability that a random test statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.

compareHoldout estimates \(p \) using the distribution of the test statistic, which varies with the type of test. For details on test statistics derived from the available variants of the McNemar test, see “McNemar Tests” on page 32-923. For details on test statistics derived from cost-sensitive tests, see “Cost-Sensitive Testing” on page 32-921.

Data Types: double

e1 — Classification loss

| numeric scalar
| Classification loss, returned as a numeric scalar. \(e1 \) summarizes the accuracy of the first set of class labels predicting the true class labels (Y). **compareHoldout** applies the first test-set predictor data (X1) to the first classification model (C1) to estimate the first set of class labels. Then, the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, \(e1 \) is the misclassification rate. That is, \(e1 \) is the proportion of misclassified observations, which is a scalar in the interval \([0,1]\).

For cost-sensitive testing, \(e1 \) is the misclassification cost. That is, \(e1 \) is the weighted average of the misclassification costs, in which the weights are the respective estimated proportions of misclassified observations.
For more information, see “Classification Loss” on page 32-926.

Data Types: double

e2 — Classification loss

numeric scalar

Classification loss, returned as a numeric scalar. `e2` summarizes the accuracy of the second set of class labels predicting the true class labels (`Y`). `compareHoldout` applies the second test-set predictor data (`X2`) to the second classification model (`C2`) to estimate the second set of class labels. Then, the function compares the estimated labels to `Y` to obtain the classification loss.

For cost-insensitive testing, `e2` is the misclassification rate. That is, `e2` is the proportion of misclassified observations, which is a scalar in the interval `[0,1]`.

For cost-sensitive testing, `e2` is the misclassification cost. That is, `e2` is the weighted average of the misclassification costs, in which the weights are the respective estimated proportions of misclassified observations.

For more information, see “Classification Loss” on page 32-926.

Data Types: double

Limitations

- `compareHoldout` does not compare ECOC models composed of linear or kernel classification models (that is, `ClassificationLinear` or `ClassificationKernel` model objects). To compare `ClassificationECOC` models composed of linear or kernel classification models, use `testcholdout` instead.

- Similarly, `compareHoldout` does not compare `ClassificationLinear` or `ClassificationKernel` model objects. To compare these models, use `testcholdout` instead.
Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. By conducting a cost-sensitive analysis, you can account for the cost imbalance when you train the classification models and when you statistically compare them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to be a poorly performing classification loss. Use misclassification cost instead to compare classification models.

Misclassification costs are often imbalanced in applications. For example, consider classifying subjects based on a set of predictors into two categories: healthy and sick. Misclassifying a sick subject as healthy poses a danger to the subject's life. However, misclassifying a healthy subject as sick typically causes some inconvenience, but does not pose significant danger. In this situation, you assign misclassification costs such that misclassifying a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

- n_{ijk} and $\hat{\pi}_{ijk}$ are the number and estimated proportion of test-sample observations with the following characteristics. k is the true class, i is the label assigned by the first classification model, and j is the label assigned by the second classification model. The unknown true value of $\hat{\pi}_{ijk}$ is π_{ijk}. The test-set sample size is $\sum_{i,j,k} n_{ijk} = n_{\text{test}}$.

- Additionally, $\sum_{i,j,k} \pi_{ijk} = \sum_{i,j,k} \hat{\pi}_{ijk} = 1$.

- c_{ij} is the relative cost of assigning label j to an observation with true class i. $c_{ii} = 0$, $c_{ij} \geq 0$, and, for at least one (i,j) pair, $c_{ij} > 0$.

- All subscripts take on integer values from 1 through K, which is the number of classes.

- The expected difference in the misclassification costs of the two classification models is
The hypothesis test is

\[H_0 : \delta = 0 \]
\[H_1 : \delta \neq 0. \]

The available cost-sensitive tests are appropriate for two-tailed testing.

Available asymptotic tests that address imbalanced costs are a chi-square test and a likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman chi-square test statistics, but with a Laplace correction factor to account for any \(n_{ijk} = 0 \). The test statistic is

\[
t^*_{\chi^2} = \sum_{i \neq j} \sum_k \left(\frac{\left(n_{ijk} + 1 - \left(n_{\text{test}} + K^3 \right) \hat{\pi}^{(1)}_{ijk} \right)^2}{n_{ijk} + 1} \right).
\]

If \(1 - F_{\chi^2}(t^*_{\chi^2};1) < \alpha \), then reject \(H_0 \).

• \(\hat{\pi}^{(1)}_{ijk} \) are estimated by minimizing \(t^*_{\chi^2} \) under the constraint that \(\delta = 0 \).

• \(F_{\chi^2}(x;1) \) is the \(\chi^2 \) cdf with one degree of freedom evaluated at \(x \).

• Likelihood ratio test — The likelihood ratio test is based on \(N_{ijk} \), which are binomial random variables with sample size \(n_{\text{test}} \) and success probability \(\pi_{ijk} \). The random variables represent the random number of observations with: true class \(k \), label \(i \) assigned by the first classification model, and label \(j \) assigned by the second classification model. Jointly, the distribution of the random variables is multinomial.

The test statistic is

\[
\delta = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} (c_{ki} - c_{kj}) \pi_{ijk}.
\]
\[
I_{LRT}^* = 2\log \left[\frac{P\left(\bigcap_{i,j,k} N_{ijk} = n_{ijk}; n_{test}, \pi_{ijk} = \pi_{ijk}^{(2)} \right)}{P\left(\bigcap_{i,j,k} N_{ijk} = n_{ijk}; n_{test}, \pi_{ijk} = \pi_{ijk}^{(3)} \right)} \right].
\]

If \(1 - F_{\chi^2} \left(t_{LRT}^*; 1 \right) < \alpha\), then reject \(H_0\).

- \(\hat{\pi}_{ijk}^{(2)} = \frac{n_{ijk}}{n_{test}}\) is the unrestricted MLE of \(\pi_{ijk}\).
- \(\hat{\pi}_{ijk}^{(3)} = \frac{n_{ijk}}{\text{solution to } \lambda(c_{ki} - c_{kj})} + \lambda(c_{ki} - c_{kj})\) is the MLE under the null hypothesis that \(\delta = 0\). \(\lambda\) is the solution to \(\lambda(c_{ki} - c_{kj})\).

\[
\sum_{i,j,k} \frac{n_{ijk}(c_{ki} - c_{kj})}{n_{test} + \lambda(c_{ki} - c_{kj})} = 0.
\]

- \(F_{\chi^2}(x; 1)\) is the \(\chi^2\) cdf with one degree of freedom evaluated at \(x\).

\section*{McNemar Tests}

McNemar Tests are hypothesis tests that compare two population proportions while addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

\begin{enumerate}
 \item Partition the data into training and test sets.
 \item Train both classification models using the training set.
 \item Predict class labels using the test set.
 \item Summarize the results in a two-by-two table similar to this figure.
\end{enumerate}
The misclassification rates for Models 1 and 2 are \(\hat{\pi}_{12} = \frac{n_{12}}{n} \) and \(\hat{\pi}_{21} = \frac{n_{21}}{n} \), respectively. A two-sided test for comparing the accuracy of the two models is

\[
H_0 : \pi_{12} = \pi_{21} \\
H_1 : \pi_{12} \neq \pi_{21}.
\]

The null hypothesis suggests that the population exhibits marginal homogeneity, which reduces the null hypothesis to \(H_0 : \pi_{12} = \pi_{21} \). Also, under the null hypothesis, \(N_{12} \sim \text{Binomial}(n_{12} + n_{21}, 0.5) \) [1].

These facts are the basis for the available McNemar test variants: the asymptotic, exact-conditional, and mid-p-value McNemar tests. The definitions that follow summarize the available variants.

- Asymptotic — The asymptotic McNemar test statistics and rejection regions (for significance level \(\alpha \)) are:
• For one-sided tests, the test statistic is

\[t_{a1}^* = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \]

If \(1 - \Phi \left(|t_1^*| \right) < \alpha \), where \(\Phi \) is the standard Gaussian cdf, then reject \(H_0 \).

• For two-sided tests, the test statistic is

\[t_{a2}^* = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}} \]

If \(1 - F_{\chi^2}(t_2^*; m) < \alpha \), where \(F_{\chi^2}(x; m) \) is the \(\chi^2 \) cdf evaluated at \(x \), then reject \(H_0 \).

The asymptotic test requires large-sample theory, specifically, the Gaussian approximation to the binomial distribution.

• The total number of discordant pairs, \(n_d = n_{12} + n_{21} \), must be greater than 10 ([1], Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed probability of falsely rejecting the null hypothesis can exceed \(\alpha \), as suggested in simulation studies in [18]. However, the asymptotic McNemar test performs well in terms of statistical power.

• Exact-Conditional — The exact-conditional McNemar test statistics and rejection regions (for significance level \(\alpha \)) are ([36], [38]):

• For one-sided tests, the test statistic is

\[t_1^* = n_{12} \]

If \(F_{\text{Bin}}(t_1^*; n_d, 0.5) < \alpha \), where \(F_{\text{Bin}}(x; n, p) \) is the binomial cdf with sample size \(n \) and success probability \(p \) evaluated at \(x \), then reject \(H_0 \).

• For two-sided tests, the test statistic is
If \(F_{\text{Bin}}(t^*_2; n_2, 0.5) < \alpha / 2 \), then reject \(H_0 \).

The exact-conditional test always attains nominal coverage. Simulation studies in [18] suggest that the test is conservative, and then show that the test lacks statistical power compared to other variants. For small or highly discrete test samples, consider using the mid-p-value test ([1], Ch. 3.6.3).

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions (for significance level \(\alpha \)) are ([32]):

 • For one-sided tests, the test statistic is

 \[t_1^* = n_{12}. \]

 If \(F_{\text{Bin}}(t_1^* - 1; n_{12} + n_{21}, 0.5) + 0.5f_{\text{Bin}}(t_1^*; n_{12} + n_{21}, 0.5) < \alpha \), where \(F_{\text{Bin}}(x; n, p) \) and \(f_{\text{Bin}}(x; n, p) \) are the binomial cdf and pdf, respectively, with sample size \(n \) and success probability \(p \) evaluated at \(x \), then reject \(H_0 \).

 • For two-sided tests, the test statistic is

 \[t_2^* = \min(n_{12}, n_{21}). \]

 If \(F_{\text{Bin}}(t_2^* - 1; n_{12} + n_{21} - 0.5) + 0.5f_{\text{Bin}}(t_2^*; n_{12} + n_{21}, 0.5) < \alpha / 2 \), then reject \(H_0 \).

The mid-p-value test addresses the over-conservative behavior of the exact-conditional test. The simulation studies in [18] demonstrate that this test attains nominal coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. Two classification losses are the misclassification rate and cost.

\texttt{compareHoldout} returns the classification losses (see \texttt{e1} and \texttt{e2}) under the alternative hypothesis (that is, the unrestricted classification losses). \(n_{ijk} \) is the number of test-sample
observations with: true class \(k \), label \(i \) assigned by the first classification model, and label \(j \) assigned by the second classification model. The corresponding estimated proportion is

\[
\hat{\pi}_{ijk} = \frac{n_{ijk}}{\sum_{i,j,k} n_{ijk}}. \quad \text{The test-set sample size is } \sum_{i,j,k} n_{ijk} = n_{\text{test}}. \quad \text{The indices are taken from 1 through } K, \text{ the number of classes.}
\]

- The misclassification rate, or classification error, is a scalar in the interval \([0,1]\) representing the proportion of misclassified observations. That is, the misclassification rate for the first classification model is

\[
e_1 = \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{i \neq k} \hat{\pi}_{ijk}.
\]

For the misclassification rate of the second classification model \((e_2)\), switch the indices \(i\) and \(j\) in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.

- The misclassification cost is a nonnegative scalar that is a measure of classification quality relative to the values of the specified cost matrix. Its interpretation depends on the specified costs of misclassification. The misclassification cost is the weighted average of the costs of misclassification (specified in a cost matrix, \(C\)) in which the weights are the respective estimated proportions of misclassified observations. The misclassification cost for the first classification model is

\[
e_1 = \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{i \neq k} \hat{\pi}_{ijk} c_{ki},
\]

where \(c_{kj}\) is the cost of classifying an observation into class \(j \) if its true class is \(k \). For the misclassification cost of the second classification model \((e_2)\), switch the indices \(i\) and \(j\) in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as the misclassification cost increases.
Tips

- One way to perform cost-insensitive feature selection is:

 1. Train the first classification model (C1) using the full predictor set.
 2. Train the second classification model (C2) using the reduced predictor set.
 3. Specify X1 as the full test-set predictor data and X2 as the reduced test-set predictor data.
 4. Enter `compareHoldout(C1,C2,X1,X2,Y,'Alternative','less')`. If `compareHoldout` returns 1, then there is enough evidence to suggest that the classification model that uses fewer predictors performs better than the model that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between the accuracies of the two models. To perform this assessment, remove the `'Alternative','less'` specification in step 4. `compareHoldout` conducts a two-sided test, and \(h = 0 \) indicates that there is not enough evidence to suggest a difference in the accuracy of the two models.

- Cost-sensitive tests perform numerical optimization, which requires additional computational resources. The likelihood ratio test conducts numerical optimization indirectly by finding the root of a Lagrange multiplier in an interval. For some data sets, if the root lies close to the boundaries of the interval, then the method can fail. Therefore, if you have an Optimization Toolbox license, consider conducting the cost-sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive Testing” on page 32-921.

Alternative Functionality

To directly compare the accuracy of two sets of class labels in predicting a set of true class labels, use `testcholdout`.

References

See Also
testcholdout | testckfold

Topics
“Hypothesis Tests”

Introduced in R2015a
confusionchart

Create confusion matrix chart for classification problem

Syntax

```matlab
cm = confusionchart(trueLabels,predictedLabels)
cm = confusionchart(m)
cm = confusionchart(m,classLabels)
cm = confusionchart(parent,___)
cm = confusionchart(____,Name,Value)
```

Description

`cm = confusionchart(trueLabels,predictedLabels)` creates a confusion matrix chart from true labels `trueLabels` and predicted labels `predictedLabels` and returns a `ConfusionMatrixChart` object. The rows of the confusion matrix correspond to the true class and the columns correspond to the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified observations, respectively. Use `cm` to modify the confusion matrix chart after it is created. For a list of properties, see `ConfusionMatrixChart Properties`.

`cm = confusionchart(m)` creates a confusion matrix chart from the numeric confusion matrix `m`. Use this syntax if you already have a numeric confusion matrix in the workspace.

`cm = confusionchart(m,classLabels)` specifies class labels that appear along the x-axis and y-axis. Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

`cm = confusionchart(parent,___)` creates the confusion chart in the figure, panel, or tab specified by `parent`.

`cm = confusionchart(____,Name,Value)` specifies additional `ConfusionMatrixChart` properties using one or more name-value pair arguments. Specify the properties after all other input arguments. For a list of properties, see `ConfusionMatrixChart Properties`.
Examples

Create Confusion Matrix Chart

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a k-nearest neighbor (KNN) classifier, where the number of nearest neighbors in the predictors (k) is 5. A good practice is to standardize numeric predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);
```

Predict the labels of the training data.

```matlab
predictedY = resubPredict(Mdl);
```

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY.

```matlab
cm = confusionchart(Y,predictedY);
```
The confusion matrix displays the total number of observations in each cell. The rows of the confusion matrix correspond to the true class, and the columns correspond to the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified observations, respectively.

By default, confusionchart sorts the classes into their natural order as defined by sort. In this example, the class labels are character vectors, so confusionchart sorts the classes alphabetically. Use sortClasses to sort the classes by a specified order or by the confusion matrix values.

The NormalizedValues property contains the values of the confusion matrix. Display these values using dot notation.

cm.NormalizedValues
ans = 3×3

50 0 0
0 47 3
0 4 46

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add a title.

cm.Title = 'Iris Flower Classification Using KNN';

Add column and row summaries.

cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';
A row-normalized row summary displays the percentages of correctly and incorrectly classified observations for each true class. A column-normalized column summary displays the percentages of correctly and incorrectly classified observations for each predicted class.

Sort Classes by Precision or Recall

Create a confusion matrix chart and sort the classes of the chart according to the class-wise true positive rate (recall) or the class-wise positive predictive value (precision).

Load and inspect the arrhythmia data set.
load arrhythmia
isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.99%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.06%</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0.88%</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.11%</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>4.87%</td>
</tr>
</tbody>
</table>

The data contains 16 distinct labels that describe various degrees of arrhythmia, but the response (Y) includes only 13 distinct labels.

Train a classification tree and predict the resubstitution response of the tree.

Mdl = fitctree(X,Y);
predictedY = resubPredict(Mdl);

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY. Specify 'RowSummary' as 'row-normalized' to display the true positive rates and false positive rates in the row summary. Also, specify 'ColumnSummary' as 'column-normalized' to display the positive predictive values and false discovery rates in the column summary.

fig = figure;
cm = confusionchart(Y,predictedY,'RowSummary','row-normalized','ColumnSummary','column-normalized');
% Resize the container of the confusion chart so percentages appear in the row summary
fig_Position = fig.Position;
fig_Position(3) = fig_Position(3)*1.5;
fig.Position = fig_Position;
To sort the confusion matrix according to the true positive rate, normalize the cell values across each row by setting the `Normalization` property to 'row-normalized' and then use `sortClasses`. After sorting, reset the `Normalization` property back to 'absolute' to display the total number of observations in each cell.

```matlab
cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';
```
To sort the confusion matrix according to the positive predictive value, normalize the cell values across each column by setting the `Normalization` property to 'column-normalized' and then use `sortClasses`. After sorting, reset the `Normalization` property back to 'absolute' to display the total number of observations in each cell.

```matlab
cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';
```
Confusion Matrix for Classification Using Tall Arrays

Perform classification on a tall array of the fisheriris data set, compute a confusion matrix for the known and predicted tall labels by using the confusionmat function, and plot the confusion matrix by using the confusionchart function.

When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB session or a local parallel pool (if you have Parallel Computing Toolbox™). You can use the mapreducer function to change the execution environment.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Convert the in-memory arrays `meas` and `species` to tall arrays.

```matlab
tx = tall(meas);
ty = tall(species);
```
Find the number of observations in the tall array.

```matlab
numObs = gather(length(ty));   % gather collects tall array into memory
```

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.23 sec

Set the random number stream for reproducibility, and randomly select training samples.

```matlab
s = RandStream('mlfg6331_64'); % For reproducibility
numTrain = floor(numObs/2);  
[txTrain,trIdx] = datasample(s,tx,numTrain,'Replace',false);
tyTrain = ty(trIdx);
```

Fit a decision tree classifier model on the training samples.

```matlab
mdl = fitctree(txTrain,tyTrain);
```

Predict labels for the test samples by using the trained model.

```matlab
txTest = tx(~trIdx,:);
label = predict(mdl,txTest);
```

Compute the confusion matrix for the resulting classification.

```matlab
tyTest = ty(~trIdx);
[C,order] = confusionmat(tyTest,label)
```

```
C =

3x3 tall double matrix

20     0     0
0    27     2
0     1    25
```

32-939
order =

3×1 tall cell array

{'setosa' }
{'versicolor'}
{'virginica' }

The confusion matrix shows that two measurements in the versicolor class are misclassified as virginica, and one measurement in the virginica class is misclassified as versicolor. All the measurements belonging to setosa are classified correctly.

To compute and plot the confusion matrix, use gather and confusionchart.

```matlab
cm = confusionchart(gather(tyTest),gather(label))
```

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.021 sec
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.021 sec
ConfusionMatrixChart with properties:

- NormalizedValues: [3x3 double]
- ClassLabels: [3x1 categorical]

Show all properties
Input Arguments

trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If trueLabels is a vector, then each element corresponds to one observation. If trueLabels is a character array, then it must be two-dimensional with each row corresponding to the label of one observation.

predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If predictedLabels is a vector, then each element corresponds to one observation. If predictedLabels is a character array, then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. m must be square and its elements must be positive integers. The element m(i, j) is the number of times an observation of the ith true class was predicted to be of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If classLabels is a vector, then it must have the same number of elements as the confusion matrix has rows and columns. If classLabels is a character array, then it must be two-dimensional with each row corresponding to the label of one class.

parent — Parent container
Figure object | Panel object | Tab object
Parent container in which to plot, specified as a Figure, Panel, or Tab object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `cm = confusionchart(trueLabels,predictedLabels,'Title','My Title Text','ColumnSummary','column-normalized')`

Note The properties listed here are only a subset. For a complete list, see ConfusionMatrixChart Properties.

Title — Title

```
' ' (default) | character vector | string scalar
```

Title of the confusion matrix chart, specified as a character vector or string scalar.

Example: `cm = confusionchart(__,'Title','My Title Text')`

Example: `cm.Title = 'My Title Text'`

ColumnSummary — Column summary

```
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'
```

Column summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>'off'</th>
<th>Do not display a column summary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each predicted class.</td>
</tr>
</tbody>
</table>
Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the number of observations of the corresponding predicted class. The percentages of correctly classified observations can be thought of as class-wise precisions (or positive predictive values).

'total-normalized'

Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the total number of observations.

Example: `cm = confusionchart(__,'ColumnSummary','column-normalized')`
Example: `cm.ColumnSummary = 'column-normalized'`

RowSummary — Row summary

'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>'off'</th>
<th>Do not display a row summary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each true class.</td>
</tr>
<tr>
<td>'row-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the number of observations of the corresponding true class. The percentages of correctly classified observations can be thought of as class-wise recalls (or true positive rates).</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: `cm = confusionchart(__,'RowSummary','row-normalized')`
Example: cm.RowSummary = 'row-normalized'

Normalization — Normalization of cell values

'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

<table>
<thead>
<tr>
<th>Normalization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of observations in each cell.</td>
</tr>
<tr>
<td>'column-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same predicted class.</td>
</tr>
<tr>
<td>'row-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same true class.</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Normalize each cell value by the total number of observations.</td>
</tr>
</tbody>
</table>

Modifying the normalization of cell values also affects the colours of the cells.

Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

See Also

Functions

categorical | confusionmat | sortClasses

Properties

ConfusionMatrixChart Properties

Introduced in R2018b
ConfusionMatrixChart Properties

Confusion matrix chart appearance and behavior

Description

ConfusionMatrixChart properties control the appearance and behavior of a ConfusionMatrixChart object. By changing property values, you can modify certain aspects of the confusion matrix chart. For example, you can add a title:

```matlab
cm = confusionchart([1 3 5; 2 4 6; 11 7 3]);
cm.Title = 'My Confusion Matrix Title';
```

Properties

Labels

Title — Title

' ' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.

Example: `cm = confusionchart(__,'Title','My Title Text')`
Example: `cm.Title = 'My Title Text'`

XLabel — Label for x-axis

'Predicted class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.

Example: `cm = confusionchart(__,'XLabel','My Label')`
Example: `cm.XLabel = 'My Label'`

YLabel — Label for y-axis

'True class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
ConfusionMatrixChart Properties

Example: `cm = confusionchart(__,'YLabel','My Label')`
Example: `cm.YLabel = 'My Label'`

ClassLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

This property is read-only.

Class labels of the confusion matrix chart, stored as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector.

Row and Column Summaries

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>ColumnSummary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'off'</td>
<td>Do not display a column summary.</td>
</tr>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each predicted class.</td>
</tr>
<tr>
<td>'column-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the number of observations of the corresponding predicted class. The percentages of correctly classified observations can be thought of as class-wise precisions (or positive predictive values).</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: `cm = confusionchart(__,'ColumnSummary','column-normalized')`
Example: `cm.ColumnSummary = 'column-normalized'`
RowSummary — Row summary

'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>'off'</th>
<th>Do not display a row summary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each true class.</td>
</tr>
<tr>
<td>'row-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the number of observations of the corresponding true class. The percentages of correctly classified observations can be thought of as class-wise recalls (or true positive rates).</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: `cm = confusionchart(__,'RowSummary','row-normalized')`

Example: `cm.RowSummary = 'row-normalized'`

Data

NormalizedValues — Values of the confusion matrix

numeric matrix

This property is read-only.

Values of the confusion matrix, stored as a numeric matrix. This property equals the values of the confusion matrix normalized using the method of the Normalization property. The software recalculates the normalized values of the confusion matrix each time you modify the Normalization property.

Normalization — Normalization of cell values

'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:
Display the total number of observations in each cell.

Normalize each cell value by the number of observations that has the same predicted class.

Normalize each cell value by the number of observations that has the same true class.

Normalize each cell value by the total number of observations.

Modifying the normalization of cell values also affects the colours of the cells.

Example: `cm = confusionchart(__,'Normalization','total-normalized')`
Example: `cm.Normalization = 'total-normalized'`

Color and Styling

GridVisible — State of grid visibility

`'on'` (default) | `'off'`

State of grid visibility, specified as one of the following:

- `'on'` — Display grid lines between the chart cells.
- `'off'` — Do not display grid lines between the chart cells.

Example: `cm = confusionchart(__,'GridVisible','off')`
Example: `cm.GridVisible = 'off'`

DiagonalColor — Color for diagonal cells

`[0 0.4471 0.7412]` (default) | color name | RGB triplet

Color for diagonal cells, specified as a color name or an RGB triplet. The color of each diagonal cell is proportional to the cell value and the `DiagonalColor` property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values are colored with a minimum amount of color, proportional to the `DiagonalColor` property.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`; for example, `[0.4 0.6 0.7]`. Alternatively, you can specify some common colors by
The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: cm = confusionchart(__,'DiagonalColor','blue')

Example: cm.DiagonalColor = 'blue'

OffDiagonalColor — Color for off-diagonal cells
```
[0.8510 0.3255 0.0980] (default) | color name | RGB triplet
```

Color for off-diagonal cells, specified as a color name or an RGB triplet. The color of each diagonal cell is proportional to the cell value and the OffDiagonalColor property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values are colored with a minimum amount of color, proportional to the OffDiagonalColor property.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0, 1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Equivalent RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>'green' or 'g'</td>
<td>Green</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>'blue' or 'b'</td>
<td>Blue</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>'yellow' or 'y'</td>
<td>Yellow</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>'magenta' or 'm'</td>
<td>Magenta</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>'cyan' or 'c'</td>
<td>Cyan</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>'white' or 'w'</td>
<td>White</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>'black' or 'k'</td>
<td>Black</td>
<td>[0 0 0]</td>
</tr>
</tbody>
</table>

The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: `cm = confusionchart(__,'OffDiagonalColor','blue')`

Example: `cm.OffDiagonalColor = 'blue'`

FontColor — Text color for title, axis labels, and class labels

[0.1500 0.1500 0.1500] (default) | color name | RGB triplet

Text color for title, axis labels, and class labels, specified as a color name or an RGB triplet.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range $[0,1]$; for example, $[0.4 0.6 0.7]$. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Equivalent RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red' or 'r'</td>
<td>Red</td>
<td>[1 0 0]</td>
</tr>
<tr>
<td>'green' or 'g'</td>
<td>Green</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>'blue' or 'b'</td>
<td>Blue</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>'yellow' or 'y'</td>
<td>Yellow</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>'magenta' or 'm'</td>
<td>Magenta</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>'cyan' or 'c'</td>
<td>Cyan</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>'white' or 'w'</td>
<td>White</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Equivalent RGB Triplet</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>'black' or 'k'</td>
<td>Black</td>
<td>[0 0 0]</td>
</tr>
</tbody>
</table>

The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: `cm = confusionchart(__,'FontColor','blue')`
Example: `cm.FontColor = 'blue'

Font

FontName — Font name

system supported font name

Font name, specified as a system supported font name. The default font depends on the specific operating system and locale.

Example: `cm = confusionchart(__,'FontName','Cambria')`
Example: `cm.FontName = 'Cambria'`

FontSize — Font size

positive scalar

Font size used for the title, axis labels, class labels, and cell labels, specified as a positive scalar. The default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not enough room to display the cell labels within the cells, then the cell labels use a smaller font size. If the cell labels become too small, then they are hidden.

Example: `cm = confusionchart(__,'FontSize',12)`
Example: `cm.FontSize = 12`

Position

ActivePositionProperty — Position property to hold constant

'outerposition' (default) | 'innerposition'

Position property to hold constant during resize operations, specified as 'outerposition' or 'innerposition'. The default value of 'outerposition' means that the OuterPosition property remains constant. The InnerPosition
property value can change when the parent container changes size, the data changes, or
the labels change.

Example:
```matlab
cm = confusionchart(__,'ActivePositionProperty','innerposition')
```
Example:
```matlab
cm.ActivePositionProperty = 'innerposition'
```

OuterPosition — Outer size and position

[0 0 1 1] (default) | four-element vector

Outer size and position within the parent container (a figure, panel, or tab), specified as a
four-element vector of the form [left bottom width height]. The outer position
includes the title, axis labels, and class labels.

- The left and bottom elements define the distance from the lower left corner of the
 container to the lower left corner of the chart.
- The width and height elements are the chart dimensions, which include the chart
cells, plus a margin for the surrounding text.

The default value of [0 0 1 1] is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units
property.

Example:
```matlab
cm = confusionchart(__,'OuterPosition',[0.1 0.1 0.8 0.8])
```
Example:
```matlab
cm.OuterPosition = [0.1 0.1 0.8 0.8]
```

InnerPosition — Inner size and position

[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab)
returned as a four-element vector of the form [left bottom width height]. The
inner position does not include the title, axis labels, or class labels.

- The left and bottom elements define the distance from the lower left corner of the
 container to the lower left corner of the chart.
- The width and height elements are the chart dimensions, which include only the
 chart cells.

Example:
```matlab
cm = confusionchart(__,'InnerPosition',[0.1 0.1 0.8 0.8])
```
Example:
```matlab
cm.InnerPosition = [0.1 0.1 0.8 0.8]
```
Position — Inner size and position

four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a four-element vector of the form [left bottom width height]. This property is equivalent to the InnerPosition property.

Units — Position units

'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values:

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normalized'</td>
<td>Normalized with respect to the container, which is typically the figure or a panel. The lower left corner of the container maps to (0,0), and the upper right corner maps to (1,1).</td>
</tr>
<tr>
<td>'inches'</td>
<td>Inches.</td>
</tr>
<tr>
<td>'centimeters'</td>
<td>Centimeters.</td>
</tr>
<tr>
<td>'characters'</td>
<td>Based on the default uicontrol font of the graphics root object: * Character width = width of letter x. * Character height = distance between the baselines of two lines of text.</td>
</tr>
<tr>
<td>'points'</td>
<td>Typography points. One point equals 1/72 inch.</td>
</tr>
</tbody>
</table>
Units

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pixels'</td>
<td>Pixels. Starting in R2015b, distances in pixels are independent of your system resolution on Windows and Macintosh systems:</td>
</tr>
<tr>
<td></td>
<td>• On Windows systems, a pixel is 1/96th of an inch.</td>
</tr>
<tr>
<td></td>
<td>• On Macintosh systems, a pixel is 1/72nd of an inch.</td>
</tr>
<tr>
<td></td>
<td>On Linux® systems, the size of a pixel is determined by your system resolution.</td>
</tr>
</tbody>
</table>

When specifying the units as a name-value pair during object creation, you must set the **Units** property before specifying the properties that you want to use these units for, such as **OuterPosition**.

Visible — State of visibility

'off' (default) | 'on'

State of visibility, specified as one of these values:

- 'on' — Display the chart.
- 'off' — Hide the chart without deleting it. You still can access the properties of an invisible chart.

Parent/Child

Parent — Parent container

figure object | panel object | tab object

Parent container, specified as a figure, panel, or tab object.

HandleVisibility — Visibility of object handle

'off' (default) | 'on' | 'callback'

Visibility of the chart object handle in the **Children** property of the parent, specified as one of these values:
• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended changes to the UI by another function. To temporarily hide the handle during the execution of that function, set the HandleVisibility to 'off'.
• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all object handles, regardless of their HandleVisibility property setting.

See Also

Functions
categorical | confusionchart | sortClasses

Introduced in R2018b
confusionmat

Compute confusion matrix for classification problem

Syntax

C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'Order',grouporder)
[C,order] = confusionmat(__)

Description

C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat,'Order',grouporder) uses grouporder to order the rows and columns of C.

[C,order] = confusionmat(__) also returns the order of the rows and columns of C in the variable order using any of the input arguments in previous syntaxes.

Examples

Display Confusion Matrix

Display the confusion matrix for data with two misclassifications and one missing classification.

Create vectors for the known groups and the predicted groups.

g1 = [3 2 2 3 1 1]'; % Known groups
g2 = [4 2 3 NaN 1 1]'; % Predicted groups

Return the confusion matrix.

C = confusionmat(g1,g2)
C = 4×4

2 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

The indices of the rows and columns of the confusion matrix C are identical and arranged by default in the sorted order of \([g1; g2]\), that is, \((1, 2, 3, 4)\).

The confusion matrix shows that the two data points known to be in group 1 are classified correctly. For group 2, one of the data points is misclassified into group 3. Also, one of the data points known to be in group 3 is misclassified into group 4. `confusionmat` treats the `NaN` value in the grouping variable `g2` as a missing value and does not include it in the rows and columns of C.

Plot the confusion matrix as a confusion matrix chart by using `confusionchart`.

```matlab
classificationchart(C);
```
You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion matrix chart directly from the true and predicted labels by using `confusionchart`.

```matlab
cm = confusionchart(g1,g2)
```
The `ConfusionMatrixChart` object stores the numeric confusion matrix in the `NormalizedValues` property and the classes in the `ClassLabels` property. Display these properties using dot notation.

```matlab
cm = ConfusionMatrixChart with properties:

    NormalizedValues: [4x4 double]
    ClassLabels: [4x1 double]
```

Show all properties
Specify Group Order of Confusion Matrix

Display the confusion matrix for data with two misclassifications and one missing classification, and specify the group order.

Create vectors for the known groups and the predicted groups.

```matlab
g1 = [3 2 2 3 1 1]'; % Known groups
g2 = [4 2 3 NaN 1 1]'; % Predicted groups
```

Specify the group order and return the confusion matrix.

```matlab
C = confusionmat(g1,g2,'Order',[4 3 2 1])
```

The indices of the rows and columns of the confusion matrix `C` are identical and arranged in the order specified by the group order, that is, `[4, 3, 2, 1]`.

32-961
The second row of the confusion matrix C shows that one of the data points known to be in group 3 is misclassified into group 4. The third row of C shows that one of the data points belonging to group 2 is misclassified into group 3, and the fourth row shows that the two data points known to be in group 1 are classified correctly. confusionmat treats the NaN value in the grouping variable $g2$ as a missing value and does not include it in the rows and columns of C.

Confusion Matrix for Classification

Perform classification on a sample of the fisheriris data set and display the confusion matrix for the resulting classification.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Randomize the measurements and groups in the data.

```matlab
rng(0,'twister'); % For reproducibility
numObs = length(species);
p = randperm(numObs);
meas = meas(p,:);
species = species(p);
```

Train a discriminant analysis classifier by using measurements in the first half of the data.

```matlab
half = floor(numObs/2);
training = meas(1:half,:);
trainingSpecies = species(1:half);
Mdl = fitcdiscr(training,trainingSpecies);
```

Predict labels for the measurements in the second half of the data by using the trained classifier.

```matlab
sample = meas(half+1:end,:);
grouphat = predict(Mdl,sample);
```

Specify the group order and display the confusion matrix for the resulting classification.

```matlab
group = species(half+1:end);
[C,order] = confusionmat(group,grouphat,'Order',
 {'setosa','versicolor','virginica'})
```
The confusion matrix shows that the measurements belonging to setosa and virginica are classified correctly, while two of the measurements belonging to versicolor are misclassified as virginica. The output order contains the order of the rows and columns of the confusion matrix in the sequence specified by the group order {'setosa','versicolor','virginica'}.

Confusion Matrix for Classification Using Tall Arrays

Perform classification on a tall array of the fisheriris data set, compute a confusion matrix for the known and predicted tall labels by using the confusionmat function, and plot the confusion matrix by using the confusionchart function.

When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB session or a local parallel pool (if you have Parallel Computing Toolbox™). You can use the mapreducer function to change the execution environment.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Convert the in-memory arrays meas and species to tall arrays.

```matlab
tx = tall(meas);
ty = tall(species);
```

Find the number of observations in the tall array.

```matlab
numObs = gather(length(ty));  
% gather collects tall array into memory
```
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.23 sec

Set the random number stream for reproducibility, and randomly select training samples.

```matlab
s = RandStream('mlfg6331_64'); % For reproducibility
numTrain = floor(numObs/2);
[txTrain,trIdx] = datasample(s,tx,numTrain,'Replace',false);
tyTrain = ty(trIdx);
```

Fit a decision tree classifier model on the training samples.

```matlab
mdl = fitctree(txTrain,tyTrain);
```

Predict labels for the test samples by using the trained model.

```matlab
txTest = tx(~trIdx,:);
label = predict(mdl,txTest);
```

Compute the confusion matrix for the resulting classification.

```matlab
tyTest = ty(~trIdx);
[C,order] = confusionmat(tyTest,label)
```

```
C =

3×3 tall double matrix

   20   0   0
    0  27   2
    0   1  25

order =
```
3×1 tall cell array

{ 'setosa' }
{ 'versicolor' }
{ 'virginica' }

The confusion matrix shows that two measurements in the versicolor class are misclassified as virginica, and one measurement in the virginica class is misclassified as versicolor. All the measurements belonging to setosa are classified correctly.

To compute and plot the confusion matrix, use gather and confusionchart.

```
cm = confusionchart(gather(tyTest), gather(label))
```

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.021 sec
Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.021 sec
cm = ConfusionMatrixChart with properties:

 NormalizedValues: [3×3 double]
 ClassLabels: [3×1 categorical]

Show all properties
Input Arguments

group — Known groups
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector

Known groups for categorizing observations, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

group is a grouping variable of the same type as grouphat. The group argument must have the same number of observations as grouphat, as described in “Grouping Variables” on page 2-57. The confusionmat function treats character arrays and string arrays as cell arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined' values in group as missing values and does not count them as distinct groups or categories.

Example: {'Male','Female','Female','Male','Female'}
Data Types: single | double | logical | char | string | cell | categorical

grouphat — Predicted groups
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector

Predicted groups for categorizing observations, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

grouphat is a grouping variable of the same type as group. The grouphat argument must have the same number of observations as group, as described in “Grouping Variables” on page 2-57. The confusionmat function treats character arrays and string arrays as cell arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined' values in grouphat as missing values and does not count them as distinct groups or categories.

Example: [1 0 0 1 0]
Data Types: single | double | logical | char | string | cell | categorical

grouporder — Group order
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector
Group order, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

grouporder is a grouping variable containing all the distinct elements in group and grouphat. Specify grouporder to define the order of the rows and columns of C. If grouporder contains elements that are not in group or grouphat, the corresponding entries in C are 0.

By default, the group order depends on the data type of s = [group;grouphat]:

- For numeric and logical vectors, the order is the sorted order of s.
- For categorical vectors, the order is the order returned by categories(s).
- For other data types, the order is the order of first appearance in s.

Example: 'order',{'setosa','versicolor','virginica'}

Data Types: single | double | logical | char | string | cell | categorical

Output Arguments

C — Confusion matrix

matrix

Confusion matrix, returned as a square matrix with size equal to the total number of distinct elements in the group and grouphat arguments. C(i,j) is the count of observations known to be in group i but predicted to be in group j.

The rows and columns of C have identical ordering of the same group indices. By default, the group order depends on the data type of s = [group;grouphat]:

- For numeric and logical vectors, the order is the sorted order of s.
- For categorical vectors, the order is the order returned by categories(s).
- For other data types, the order is the order of first appearance in s.

To change the order, specify grouporder,

The confusionmat function treats NaN, empty, and 'undefined' values in the grouping variables as missing values and does not include them in the rows and columns of C.
order — Order of rows and columns

numeric vector | logical vector | categorical vector | cell array of character vectors

Order of rows and columns in C, returned as a numeric vector, logical vector, categorical vector, or cell array of character vectors. If `group` and `grouphat` are character arrays, string arrays, or cell arrays of character vectors, then the variable `order` is a cell array of character vectors. Otherwise, `order` is of the same type as `group` and `grouphat`.

Alternative Functionality

- Use `confusionchart` to calculate and plot a confusion matrix. Additionally, `confusionchart` displays summary statistics about your data and sorts the classes of the confusion matrix according to the class-wise precision (positive predictive value), class-wise recall (true positive rate), or total number of correctly classified observations.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

categories | confusionchart | crosstab

Topics

“Grouping Variables” on page 2-57

Introduced in R2008b
controlchart

Shewhart control charts

Syntax

controlchart(X)
colorchart(x,group)
colorchart(X,group)
[stats,plotdata] = controlchart(x,[group])
colorchart(x,group,'name',value)

Description

colorchart(X) produces an xbar chart of the measurements in matrix X. Each row of X is considered to be a subgroup of measurements containing replicate observations taken at the same time. The rows should be in time order. If X is a time series object, the time samples should contain replicate observations.

The chart plots the means of the subgroups in time order, a center line (CL) at the average of the means, and upper and lower control limits (UCL, LCL) at three standard errors from the center line. The standard error is the estimated process standard deviation divided by the square root of the subgroup size. Process standard deviation is estimated from the average of the subgroup standard deviations. Out of control measurements are marked as violations and drawn with a red circle. Data cursor mode is enabled, so clicking any data point displays information about that point.

colorchart(x,group) accepts a grouping variable group for a vector of measurements x. group is a categorical variable, numeric vector, character vector, string array, or cell array of character vectors the same length as x. Consecutive measurements x(n) sharing the same value of group(n) for 1 ≤ n ≤ length(x) are defined to be a subgroup. Subgroups can have different numbers of observations.

colorchart(X,group) accepts a grouping variable group for a matrix of measurements in X. In this case, group is only used to label the time axis; it does not change the default grouping by rows.
[stats, plotdata] = controlchart(x, [group]) returns a structure stats of subgroup statistics and parameter estimates, and a structure plotdata of plotted values. plotdata contains one record for each chart.

The fields in stats and plotdata depend on the chart type.

The fields in stats are selected from the following:

- mean — Subgroup means
- std — Subgroup standard deviations
- range — Subgroup ranges
- n — Subgroup size, or total inspection size or area
- i — Individual data values
- ma — Moving averages
- mr — Moving ranges
- count — Count of defects or defective items
- mu — Estimated process mean
- sigma — Estimated process standard deviation
- p — Estimated proportion defective
- m — Estimated mean defects per unit

The fields in plotdata are the following:

- pts — Plotted point values
- cl — Center line
- lcl — Lower control limit
- ucl — Upper control limit
- se — Standard error of plotted point
- n — Subgroup size
- ooc — Logical that is true for points that are out of control

controlchart(x, group, 'name', value) specifies one or more of the following optional parameter name/value pairs, with name in single quotes:

- charttype — The name of a chart type chosen from among the following:
• 'xbar' — Xbar or mean
• 's' — Standard deviation
• 'r' — Range
• 'ewma' — Exponentially weighted moving average
• 'i' — Individual observation
• 'mr' — Moving range of individual observations
• 'ma' — Moving average of individual observations
• 'p' — Proportion defective
• 'np' — Number of defectives
• 'u' — Defects per unit
• 'c' — Count of defects

Alternatively, a parameter can be a string array or cell array listing multiple compatible chart types. There are four sets of compatible types:

• 'xbar', 's', 'r', and 'ewma'
• 'i', 'mr', and 'ma'
• 'p' and 'np'
• 'u' and 'c'

• display — Either 'on' (default) to display the control chart, or 'off' to omit the display

• label — A character vector, string array, or cell array of character vectors, one per subgroup. This label is displayed as part of the data cursor for a point on the plot.

• lambda — A parameter between 0 and 1 controlling how much the current prediction is influenced by past observations in an EWMA plot. Higher values of 'lambda' give less weight to past observations and more weight to the current observation. The default is 0.4.

• limits — A three-element vector specifying the values of the lower control limit, center line, and upper control limits. Default is to estimate the center line and to compute control limits based on the estimated value of sigma. Not permitted if there are multiple chart types.

• mean — Value for the process mean, or an empty value (default) to estimate the mean from X. This is the p parameter for p and np charts, the mean defects per unit for u and c charts, and the normal mu parameter for other charts.
• **nsigma** — The number of sigma multiples from the center line to a control limit. Default is 3.

• **parent** — The handle of the axes to receive the control chart plot. Default is to create axes in a new figure. Not permitted if there are multiple chart types.

• **rules** — The name of a control rule, or a string array or cell array containing multiple control rule names. These rules, together with the control limits, determine if a point is marked as out of control. The default is to apply no control rules, and to use only the control limits to decide if a point is out of control. See controlrules for more information. Control rules are applied to charts that measure the process level (xbar, i, c, u, p, and np) rather than the variability (r, s), and they are not applied to charts based on moving statistics (ma, mr, ewma).

• **sigma** — Either a value for sigma, or a method of estimating sigma chosen from among 'std' (the default) to use the average within-subgroup standard deviation, 'range' to use the average subgroup range, and 'variance' to use the square root of the pooled variance. When creating i, mr, or ma charts for data not in subgroups, the estimate is always based on a moving range.

• **specs** — A vector specifying specification limits. Typically this is a two-element vector of lower and upper specification limits. Since specification limits typically apply to individual measurements, this parameter is primarily suitable for i charts. These limits are not plotted on r, s, or mr charts.

• **unit** — The total number of inspected items for p and np charts, and the size of the inspected unit for u and c charts. In both cases X must be the count of the number of defects or defectives found. Default is 1 for u and c charts. This argument is required (no default) for p and np charts.

• **width** — The width of the window used for computing the moving ranges and averages in mr and ma charts, and for computing the sigma estimate in i, mr, and ma charts. Default is 5.

Examples

XBar and R Charts

Load the sample data.

```matlab
close all
load parts
```

Create xbar and r control charts for the data.
```matlab
st = controlchart(runout,'charttype',{'xbar' 'r'});

Display the process mean and standard deviation.

fprintf('Parameter estimates:  mu = %g, sigma = %g\n',st.mu,st.sigma);

Parameter estimates:  mu = -0.0863889, sigma = 0.130215

See Also
controlrules
```
Topics
“Grouping Variables” on page 2-57

Introduced in R2006b
controlrules

Western Electric and Nelson control rules

Syntax

R = controlrules('rules',x,cl,se)
[R,RULES] = controlrules('rules',x,cl,se)

Description

R = controlrules('rules',x,cl,se) determines which points in the vector x violate the control rules in rules. cl is a vector of center-line values. se is a vector of standard errors. (Typically, control limits on a control chart are at the values cl - 3*se and cl + 3*se.) rules is the name of a control rule, or a string array or cell array containing multiple control rule names. If x has n values and rules contains m rules, then R is an n-by-m logical array, with R(i,j) assigned the value 1 if point i violates rule j, 0 if it does not.

The following are accepted values for rules (specified inside single quotes):

- we1 — 1 point above cl + 3*se
- we2 — 2 of 3 above cl + 2*se
- we3 — 4 of 5 above cl + se
- we4 — 8 of 8 above cl
- we5 — 1 below cl - 3*se
- we6 — 2 of 3 below cl - 2*se
- we7 — 4 of 5 below cl - se
- we8 — 8 of 8 below cl
- we9 — 15 of 15 between cl - se and cl + se
- we10 — 8 of 8 below cl - se or above cl + se
- n1 — 1 point below cl - 3*se or above cl + 3*se
• n2 — 9 of 9 on the same side of cl
• n3 — 6 of 6 increasing or decreasing
• n4 — 14 alternating up/down
• n5 — 2 of 3 below cl – 2*se or above cl + 2*se, same side
• n6 — 4 of 5 below cl – se or above cl + se, same side
• n7 — 15 of 15 between cl – se and cl + se
• n8 — 8 of 8 below cl – se or above cl + se, either side
• we — All Western Electric rules
• n — All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set of points ending at point i triggered the rule. Point i is considered to have violated the rule only if it is one of the points violating the rule's condition.

Any points with NaN as their x, cl, or se values are not considered to have violated rules, and are not counted in the rules for other points.

Control rules can be specified in the controlchart function as values for the 'rules' parameter.

[R,RULES] = controlrules('rules',x,cl,se) returns a cell array of text RULES listing the rules applied.

Examples

Use Western Electric Control Rule

Load the sample data.

load parts;

Create an Xbar chart using the we2 rule to mark out of control measurements.

```matlab
st = controlchart(runout,'rules','we2');
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
```
You can see the out of control points marked with a red circle.

Use `controlrules` to identify the measurements that violate the control rule.

```matlab
R = controlrules('we2',x,cl,se);
I = find(R)
```

```
I = 6×1
    21
    23
    24
```
See Also
controlchart

Introduced in R2006b
cophenet

Cophenetic correlation coefficient

Syntax

c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description

c = cophenet(Z,Y) computes the cophenetic correlation coefficient for the hierarchical cluster tree represented by Z. Z is the output of the linkage function. Y contains the distances or dissimilarities used to construct Z, as output by the pdist function. Z is a matrix of size (m–1)-by-3, with distance information in the third column. Y is a vector of size m*(m-1)/2.

[c, d] = cophenet(Z,Y) returns the cophenetic distances d in the same lower triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear correlation coefficient between the cophenetic distances obtained from the tree, and the original distances (or dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully the tree represents the dissimilarities among observations.

The cophenetic distance between two observations is represented in a dendrogram by the height of the link at which those two observations are first joined. That height is the distance between the two subclusters that are merged by that link.

The output value, c, is the cophenetic correlation coefficient. The magnitude of this value should be very close to 1 for a high-quality solution. This measure can be used to compare alternative cluster solutions obtained using different algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

\[c = \frac{\sum_{i<j} (Y_{ij} - y)(Z_{ij} - z)}{\sqrt{\sum_{i<j} (Y_{ij} - y)^2} \sqrt{\sum_{i<j} (Z_{ij} - z)^2}} \]
where:

• Y_{ij} is the distance between objects i and j in Y.
• Z_{ij} is the cophenetic distance between objects i and j, from $Z(:,3)$.
• y and z are the average of Y and $Z(:,3)$, respectively.

Examples

```matlab
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =
   0.8279
```

See Also

`cluster` | `dendrogram` | `inconsistent` | `linkage` | `pdist` | `squareform`

Introduced before R2006a
copulacdf

Copula cumulative distribution function

Syntax

\[y = \text{copulacdf}('Gaussian',u,rho) \]
\[y = \text{copulacdf}('t',u,rho,nu) \]
\[y = \text{copulacdf}(\text{family},u,\alpha) \]

Description

\[y = \text{copulacdf}('Gaussian',u,rho) \] returns the cumulative probability of the Gaussian copula, with linear correlation parameters \(\rho \) evaluated at the points in \(u \).

\[y = \text{copulacdf}('t',u,rho,nu) \] returns the cumulative probability of the \(t \) copula, with linear correlation parameters, \(\rho \), and degrees of freedom parameter \(\nu \) evaluated at the points in \(u \).

\[y = \text{copulacdf}(\text{family},u,\alpha) \] returns the cumulative probability of the bivariate Archimedean copula of the type specified by \(\text{family} \), with scalar parameter \(\alpha \) evaluated at the points in \(u \).

Examples

Compute the Clayton Copula cdf

Define two 10-by-10 matrices containing the values at which to compute the cdf.

\[u = \text{linspace}(0,1,10); \]
\[[u1,u2] = \text{meshgrid}(u,u); \]

Compute the cdf of a Clayton copula that has an alpha parameter equal to 1, at the values in \(u \).
y = copulacdf('Clayton', [u1(:), u2(:)], 1);

Plot the cdf as a surface, and label the axes.

surf(u1, u2, reshape(y, 10, 10))
xlabel('u1')
ylabel('u2')

Input Arguments

u — Values at which to evaluate cdf
matrix of scalar values in the range [0,1]
Values at which to evaluate the cdf, specified as a matrix of scalar values in the range [0,1]. If u is an n-by-p matrix, then its values represent n points in the p-dimensional unit hypercube. If u is an n-by-2 matrix, then its values represent n points in the unit square.

If you specify a bivariate Archimedean copula type (‘Clayton’, ‘Frank’, or ‘Gumbel’), then u must be an n-by-2 matrix.

Data Types: single | double

rho — Linear correlation parameters

scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

- If u is an n-by-p matrix, then rho is a p-by-p correlation matrix.
- If u is an n-by-2 matrix, then rho can be a scalar correlation coefficient.

Data Types: single | double

nu — Degrees of freedom

positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.

Data Types: single | double

family — Bivariate Archimedean copula family

'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

- ‘Clayton’ Clayton copula
- ‘Frank’ Frank copula
- ‘Gumbel’ Gumbel copula

alpha — Bivariate Archimedean copula parameter

scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha depend on the specified copula family.
Copula Family	Permitted Alpha Values
'Clayton' | $[0, \infty)$
'Frank' | $(-\infty, \infty)$
'Gumbel' | $[1, \infty)$

Data Types: single | double

Output Arguments

* y — **Cumulative distribution function**
vector of scalar values

Cumulative distribution function of the copula, evaluated at the points in u, returned as a vector of scalar values.

See Also

copulaparam | copulapdf | copularnd | copulastat

Topics

“Generate Correlated Data Using Rank Correlation” on page 5-139
“Copulas: Generate Correlated Samples” on page 5-159

Introduced in R2006a
copulafit

Fit copula to data

Syntax

rhohat = copulafit('Gaussian',u)

[rhohat,nuhat] = copulafit('t',u)
[rhohat,nuhat,nuci] = copulafit('t',u)

paramhat = copulafit(family,u)
[paramhat,paramci] = copulafit(family,u)

___ = copulafit(___,Name,Value)

Description

rhohat = copulafit('Gaussian',u) returns an estimate, rhohat, of the matrix of linear correlation parameters for a Gaussian copula, given the data in u.

[rhohat,nuhat] = copulafit('t',u) returns an estimate, rhohat, of the matrix of linear correlation parameters for a t copula, and an estimate of the degrees of freedom parameter, nuhat, given the data in u.

[rhohat,nuhat,nuci] = copulafit('t',u) also returns an approximate 95% confidence interval, nuci, for the degrees of freedom estimated in nuhat.

paramhat = copulafit(family,u) returns an estimate, paramhat, of the copula parameter for a bivariate Archimedean copula of the type specified by family, given the data in u.

[paramhat,paramci] = copulafit(family,u) also returns an approximate 95% confidence interval, paramci, for the copula parameter estimated in paramhat.

___ = copulafit(___,Name,Value) returns any of the previous syntaxes, with additional options specified by one or more Name,Value pair arguments. For example,
you can specify the confidence interval to compute, or specify control parameters for the iterative parameter estimation algorithm using a options structure.

Examples

Fit a t Copula to Data

Load and plot simulated stock return data.

```matlab
load stockreturns
x = stocks(:,1);
y = stocks(:,2);
figure;
scatterhist(x,y)
```
Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative distribution function.

\[u = \text{ksdensity}(x,x,\text{function}'cdf'); \]
\[v = \text{ksdensity}(y,y,\text{function}'cdf'); \]

\begin{verbatim}
figure;
scatterhist(u,v)
xlabel('u')
ylabel('v')
\end{verbatim}
Fit a t copula to the data.

```matlab
rng default  % For reproducibility
[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
```

$$Rho =$$

\[
\begin{array}{cc}
1.0000 & 0.7220 \\
0.7220 & 1.0000 \\
\end{array}
\]

$$nu =$$
Generate a random sample from the t copula.

```matlab
r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);

figure;
scatterhist(u1,v1)
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')
```
Transform the random sample back to the original scale of the data.

\[x_1 = \text{ksdensity}(x, u_1, 'function', 'icdf'); \]
\[y_1 = \text{ksdensity}(y, v_1, 'function', 'icdf'); \]

```matlab
figure;
scatterhist(x1, y1)
set(get(gca,'children'),'marker','.')```

**Input Arguments**

- **u** — Copula values
  - matrix of scalar values in the range (0,1)
Copula values, specified as a matrix of scalar values in the range (0,1). If \( u \) is an \( n \)-by-\( p \) matrix, then its values represent \( n \) points in the \( p \)-dimensional unit hypercube. If \( u \) is an \( n \)-by-2 matrix, then its values represent \( n \) points in the unit square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'), then \( u \) must be an \( n \)-by-2 matrix.

Data Types: single | double

**family — Bivariate Archimedean copula family**

'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

- 'Clayton': Clayton copula
- 'Frank': Frank copula
- 'Gumbel': Gumbel copula

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'Method','ApproximateML' computes 99% confidence intervals for the estimated copula parameter and uses an approximation method to fit the copula.

**Alpha — Significance level for confidence intervals**

0.05 (default) | scalar value in the range (0,1)

Significance level for confidence intervals, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1). copulafit returns approximate \( 100 \times (1-\text{Alpha})\% \) confidence intervals.

Example: 'Alpha',0.01

Data Types: single | double

**Method — Method for fitting \( t \) copula**

'ML' (default) | 'ApproximateML'
Method for fitting t copula, specified as the comma-separated pair consisting of 'Method' and either 'ML' or 'ApproximateML'.

If you specify 'ApproximateML', then copulafit fits a t copula for large samples by maximizing an objective function that approximates the profile log likelihood for the degrees of freedom parameter [1]. This method can be significantly faster than maximum likelihood ('ML'), but the estimates and confidence limits may not be accurate for small to moderate sample sizes.

Example: 'Method','ApproximateML'

Options — Control parameter specifications

structure

Control parameter specifications, specified as the comma-separated pair consisting of 'Options' and an options structure created by statset. To see the fields and default values used by copulafit, type statset('copulafit') at the command prompt.

This name-value pair is not applicable when you specify the copula type as 'Gaussian'.

Data Types: struct

Output Arguments

rhohat — Estimated correlation parameters for the fitted Gaussian copula

matrix of scalar values

Estimated correlation parameters for the fitted Gaussian copula, given the data in u, returned as a matrix of scalar values.

nuhat — Estimated degrees of freedom parameter for the fitted t copula

scalar value

Estimated degrees of freedom parameter for the fitted t copula, returned as a scalar value.

nuci — Approximate confidence interval for the degrees of freedom parameter

1-by-2 matrix of scalar values

Approximate confidence interval for the degrees of freedom parameter, returned as a 1-by-2 matrix of scalar values. The first column contains the lower boundary, and the second
column contains the upper boundary. By default, \texttt{copulafit} returns the approximate 95\% confidence interval. You can specify a different confidence interval using the \texttt{'Alpha'} name-value pair.

\textbf{paramhat — Estimated copula parameter for the fitted Archimedean copula}

\texttt{scalar value}

Estimated copula parameter for the fitted Archimedean copula, returned as a scalar value.

\textbf{paramci — Approximate confidence interval for the copula parameter}

\texttt{1-by-2 matrix of scalar values}

Approximate confidence interval for the copula parameter, returned as a 1-by-2 matrix of scalar values. The first column contains the lower boundary, and the second column contains the upper boundary. By default, \texttt{copulafit} returns the approximate 95\% confidence interval. You can specify a different confidence interval using the \texttt{'Alpha'} name-value pair.

\textbf{Algorithms}

By default, \texttt{copulafit} uses maximum likelihood to fit a copula to \texttt{u}. When \texttt{u} contains data transformed to the unit hypercube by parametric estimates of their marginal cumulative distribution functions, this is known as the \textit{Inference Functions for Margins (IFM)} method. When \texttt{u} contains data transformed by the empirical cdf (see \texttt{ecdf}), this is known as \textit{Canonical Maximum Likelihood (CML)}.

\textbf{References}


\textbf{See Also}

\texttt{copulacdf | copulaparam | copulapdf | copularnd | copulastat}

\textbf{Topics}

\textquote{Generate Correlated Data Using Rank Correlation} on page 5-139
“Copulas: Generate Correlated Samples” on page 5-159

Introduced in R2007b
copulaparam

Copula parameters as function of rank correlation

Syntax

rho = copulaparam('Gaussian',r)
rho = copulaparam('t',r,nu)
alpha = copulaparam(family,r)
___ = copulaparam(___,Name,Value)

Description

rho = copulaparam('Gaussian',r) returns the linear correlation parameters, rho, that correspond to a Gaussian copula with Kendall’s rank correlation, r.

rho = copulaparam('t',r,nu) returns the linear correlation parameters, rho, that correspond to a t copula with Kendall’s rank correlation, r, and degrees of freedom, nu.

alpha = copulaparam(family,r) returns the copula parameter, alpha, that corresponds to a bivariate Archimedean copula of the type specified by family, with Kendall’s rank correlation, r.

___ = copulaparam(___,Name,Value) returns the correlation parameter using any of the previous syntaxes, with additional options specified by one or more Name,Value pair arguments. For example, you can specify whether the input rank correlation value is Spearman’s rho or Kendall’s tau.

Examples
Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian copula with Kendall's tau rank correlation equal to -0.5.

Compute the linear correlation parameter from the rank correlation value.

```matlab
rng default % For reproducibility
tau = -0.5;
rho = copulaparam('Gaussian',tau)
rho = -0.7071
```

Use a Gaussian copula to generate a two-column matrix of dependent random values.

```matlab
u = copularnd('gaussian',rho,100);
```

Each column contains 100 random values between 0 and 1, inclusive, sampled from a continuous uniform distribution.

Create a scatterhist plot to visualize the random numbers generated using the copula.

```matlab
figure
scatterhist(u(:,1),u(:,2))
```
The histograms show that the data in each column of the copula has a marginal uniform distribution. The scatterplot shows that the data in the two columns is negatively correlated.

Use the inverse cdf function `betainv` to transform each column of the uniform marginal distributions into random numbers from a beta distribution. In the first column, the first shape parameter $A$ is equal to 1, and a second shape parameter $B$ is equal to 2. In the second column, the first shape parameter $A$ is equal to 1.5, and a second shape parameter $B$ is equal to 2.

```
b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];
```

Create a `scatterhist` plot to visualize the correlated beta distribution data.
The histograms show the marginal beta distributions for each variable. The scatterplot shows the negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for Kendall's \textit{tau}.

\begin{verbatim}
tau_sample = corr(b,'type','kendall')
\end{verbatim}

\begin{verbatim}
tau_sample = 2x2

1.0000   -0.5135
\end{verbatim}
The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for \( \tau \).

**Input Arguments**

**r — Copula rank correlation**  
scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

- If \( r \) is a scalar correlation coefficient, then \( \rho \) is a scalar correlation coefficient corresponding to a bivariate copula.
- If \( r \) is a \( p \)-by-\( p \) correlation matrix, then \( \rho \) is a \( p \)-by-\( p \) correlation matrix.

If the copula is specified as one of the bivariate Archimedean copula types ('Clayton', 'Frank', or 'Gumbel'), then \( r \) is a scalar value.

**nu — Degrees of freedom**  
positive integer value

Degrees of freedom for the \( t \) copula, specified as a positive integer value.

Data Types: single | double

**family — Bivariate Archimedean copula family**  
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

- 'Clayton'
- 'Frank'
- 'Gumbel'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'type','Spearman' computes Spearman’s rank correlation.

**type — Type of rank correlation**

'value' | 'Spearman'

Type of rank correlation, specified as the comma-separated pair consisting of 'type' and one of the following.

- 'Kendall' — Indicates that the input value for \( r \) is a Kendall’s \( \tau \) correlation value
- 'Spearman' — Indicates that the input value for \( r \) is a Spearman’s \( \rho \) rank correlation value

`copulaparam` uses an approximation to Spearman’s rank correlation for copula families that do not have an existing analytic formula. The approximation is based on a smooth fit to values computed at discrete values of the copula parameters. For a \( t \) copula, the approximation is accurate for degrees of freedom larger than 0.05.

Example: 'type','Spearman'

**Output Arguments**

**rho — Linear correlation parameter**

scalar value | matrix of scalar values

Linear correlation parameter, returned as a scalar value or matrix of scalar values.

- If \( r \) is a scalar correlation coefficient, then \( \rho \) is a scalar correlation coefficient corresponding to a bivariate copula.
- If \( r \) is a \( p \)-by-\( p \) correlation matrix, then \( \rho \) is a \( p \)-by-\( p \) correlation matrix.

**alpha — Bivariate Archimedean copula parameter**

scalar value

Bivariate Archimedean copula parameter, returned as a scalar value. Permitted values for \( \alpha \) depend on the specified copula family.
<table>
<thead>
<tr>
<th>Copula Family</th>
<th>Permitted Alpha Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Clayton'</td>
<td>[0,∞)</td>
</tr>
<tr>
<td>'Frank'</td>
<td>(-∞,∞)</td>
</tr>
<tr>
<td>'Gumbel'</td>
<td>[1,∞)</td>
</tr>
</tbody>
</table>

Data Types: single | double

See Also
copulacdf | copulafit | copulapdf | copularnd | copulastat | ecdf

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-139
“Copulas: Generate Correlated Samples” on page 5-159

Introduced in R2006a
copulapdf

Copula probability density function

Syntax

\[ y = \text{copulapdf('Gaussian',} u, \text{rho}) \]
\[ y = \text{copulapdf('t',} u, \text{rho,nu}) \]
\[ y = \text{copulapdf(family,} u, \text{alpha}) \]

Description

\[ y = \text{copulapdf('Gaussian',} u, \text{rho}) \] returns the probability density of the Gaussian copula with linear correlation parameters, \( \rho \), evaluated at the points in \( u \).

\[ y = \text{copulapdf('t',} u, \text{rho,nu}) \] returns the probability density of the \( t \) copula with linear correlation parameters, \( \rho \), and degrees of freedom parameter, \( \nu \), evaluated at the points in \( u \).

\[ y = \text{copulapdf(family,} u, \text{alpha}) \] returns the probability density of the bivariate Archimedean copula of the type specified by \( \text{family} \), with scalar parameter, \( \alpha \), evaluated at the points in \( u \).

Examples

Compute the Clayton Copula pdf

Define two 10-by-10 matrices containing the values at which to compute the pdf.

\[ u = \text{linspace(0,1,10);} \]
\[ [u1,u2] = \text{meshgrid(u,u);} \]

Compute the pdf of a Clayton copula that has an alpha parameter equal to 1, at the values in \( u \).
\begin{verbatim}
y = copulapdf('Clayton', [u1(:,), u2(:)], 1);

Plot the pdf as a surface, and label the axes.
surf(u1, u2, reshape(y, 10, 10))
xlabel('u1')
ylabel('u2')
\end{verbatim}

\section*{Input Arguments}

\textbf{u} — Values at which to evaluate pdf

matrix of scalar values in the range [0,1]
Values at which to evaluate the pdf, specified as a matrix of scalar values in the range [0,1]. If \( u \) is an \( n \)-by-\( p \) matrix, then its values represent \( n \) points in the \( p \)-dimensional unit hypercube. If \( u \) is an \( n \)-by-2 matrix, then its values represent \( n \) points in the unit square.

If you specify a bivariate Archimedean copula type (‘Clayton’, ‘Frank’, or ‘Gumbel’), then \( u \) must be an \( n \)-by-2 matrix.

Data Types: single | double

**rho — Linear correlation parameters**

| scalar values | matrix of scalar values |

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

- If \( u \) is an \( n \)-by-\( p \) matrix, then \( \rho \) is a \( p \)-by-\( p \) correlation matrix.
- If \( u \) is an \( n \)-by-2 matrix, then \( \rho \) can be a scalar correlation coefficient.

Data Types: single | double

**nu — Degrees of freedom**

| positive integer value |

Degrees of freedom for the \( t \) copula, specified as a positive integer value.

Data Types: single | double

**family — Bivariate Archimedean copula family**

| ‘Clayton’ | ‘Frank’ | ‘Gumbel’ |

Bivariate Archimedean copula family, specified as one of the following.

- ‘Clayton’ Clayton copula
- ‘Frank’ Frank copula
- ‘Gumbel’ Gumbel copula

**alpha — Bivariate Archimedean copula parameter**

| scalar value |

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for \( \alpha \) depend on the specified copula family.
Copula Family	Permitted Alpha Values
'Clayton' | $[0, \infty)$
'Frank' | $(-\infty, \infty)$
'Gumbel' | $[1, \infty)$

Data Types: single | double

**Output Arguments**

$y$ — Probability density function  
vector of scalar values

Probability density function, evaluated at the values in $u$, returned as a vector of scalar values.

**See Also**
copulacdf | copulaparam | copularnd | copulastat

**Topics**

“Generate Correlated Data Using Rank Correlation” on page 5-139  
“Copulas: Generate Correlated Samples” on page 5-159

**Introduced in R2006a**
copulastat

Copula rank correlation

Syntax

\[ r = \text{copulastat}('\text{Gaussian}', \rho) \]
\[ r = \text{copulastat}('t', \rho, \nu) \]
\[ r = \text{copulastat}(\text{family}, \alpha) \]
\[ r = \text{copulastat}(\text{__}, \text{Name, Value}) \]

Description

\[ r = \text{copulastat}('\text{Gaussian}', \rho) \] returns the Kendall’s rank correlation, \( r \), that corresponds to a Gaussian copula with linear correlation parameters \( \rho \).

\[ r = \text{copulastat}('t', \rho, \nu) \] returns the Kendall’s rank correlation, \( r \), that corresponds to a \( t \) copula with linear correlation parameters, \( \rho \), and degrees of freedom parameter, \( \nu \).

\[ r = \text{copulastat}(\text{family}, \alpha) \] returns the Kendall’s rank correlation, \( r \), that corresponds to a bivariate Archimedean copula that has the type specified by \( \text{family} \) and scalar parameter \( \alpha \).

\[ r = \text{copulastat}(\text{__}, \text{Name, Value}) \] returns the copula rank correlation with additional options specified by one or more \( \text{Name, Value} \) pair arguments, using any of the previous syntaxes. For example, you can return Spearman’s \( \rho \) rank correlation.

Examples
Compute the Gaussian Copula Rank Correlation

Compute the rank correlation for a Gaussian copula with the specified linear correlation parameter $\rho$.

$$\rho = -0.7071;$$
$$\tau = \text{copulastat}('\text{gaussian}',\rho)$$

$$\tau = -0.5000$$

Use the copula to generate dependent random values from a beta distribution that has parameters $a$ and $b$ equal to 2.

rng default  % For reproducibility
$$u = \text{copularnd}('\text{gaussian}',\rho,100);$$
$$b = \text{betainv}(u,2,2);$$

Verify that the sample has a rank correlation approximately equal to $\tau$.

$$\tau_{\text{sample}} = \text{corr}(b,'\text{type}','k')$$

$$\tau_{\text{sample}} = 2\times2$$

1.0000  -0.5135
-0.5135  1.0000

Input Arguments

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

- If $\rho$ is a scalar correlation coefficient, then $r$ is a scalar correlation coefficient corresponding to a bivariate copula.
- If $\rho$ is a $p$-by-$p$ correlation matrix, then $r$ is a $p$-by-$p$ correlation matrix.

Data Types: single | double
nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha depend on the specified copula family.

<table>
<thead>
<tr>
<th>Copula Family</th>
<th>Permitted Alpha Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Clayton'</td>
<td>[0,∞)</td>
</tr>
<tr>
<td>'Frank'</td>
<td>(-∞,∞)</td>
</tr>
<tr>
<td>'Gumbel'</td>
<td>[1,∞)</td>
</tr>
</tbody>
</table>

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'type', 'Spearman' computes Spearman’s rank correlation.

type — Type of rank correlation
'Kendall' (default) | 'Spearman'
Type of rank correlation, specified as the comma-separated pair consisting of 'type' and one of the following.

• 'Kendall' — Compute Kendall's \( \tau \).
• 'Spearman' — Compute Spearman's \( \rho \) (rank correlation).

copulastat uses an approximation to Spearman’s rank correlation for copula families that do not have an existing analytic formula. The approximation is based on a smooth fit to values computed at discrete values of the copula parameters. For a \( t \) copula, the approximation is accurate for degrees of freedom larger than 0.05.

Example: 'type','Spearman'

**Output Arguments**

\( \text{r} \) — Copula rank correlation

scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

- If \( \rho \) is a scalar correlation coefficient, then \( \text{r} \) is a scalar correlation coefficient corresponding to a bivariate copula.
- If \( \rho \) is a \( p \)-by-\( p \) correlation matrix, then \( \text{r} \) is a \( p \)-by-\( p \) correlation matrix.

**See Also**

copulacdf | copulaparam | copulapdf | copularnd

**Topics**

“Generate Correlated Data Using Rank Correlation” on page 5-139
“Copulas: Generate Correlated Samples” on page 5-159

**Introduced in R2006a**
copularnd

Copula random numbers

Syntax

\[ u = \text{copularnd('Gaussian',rho,n)} \]
\[ u = \text{copularnd('t',rho,nu,n)} \]
\[ u = \text{copularnd(family,alpha,n)} \]

Description

\[ u = \text{copularnd('Gaussian',rho,n)} \] returns \( n \) random vectors generated from a Gaussian copula with linear correlation parameters \( \rho \).

\[ u = \text{copularnd('t',rho,nu,n)} \] returns \( n \) random vectors generated from a \( t \) copula with linear correlation parameters \( \rho \) and degrees of freedom \( \nu \).

\[ u = \text{copularnd(family,alpha,n)} \] returns \( n \) random vectors generated from a bivariate Archimedean copula that has the type specified by \( \text{family} \) and the scalar parameter \( \alpha \).

Examples

Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian copula with Kendall's \( \tau \) rank correlation equal to -0.5.

Compute the linear correlation parameter from the rank correlation value.

```matlab
rng default % For reproducibility
tau = -0.5;
rho = copulaparam('Gaussian',tau)
```
rho = -0.7071

Use a Gaussian copula to generate a two-column matrix of dependent random values.

\texttt{u = copularnd('gaussian', rho, 100);} 

Each column contains 100 random values between 0 and 1, inclusive, sampled from a continuous uniform distribution.

Create a \texttt{scatterhist} plot to visualize the random numbers generated using the copula.

\texttt{figure}
\texttt{scatterhist(u(:,1), u(:,2))}
The histograms show that the data in each column of the copula has a marginal uniform distribution. The scatterplot shows that the data in the two columns is negatively correlated.

Use the inverse cdf function `betainv` to transform each column of the uniform marginal distributions into random numbers from a beta distribution. In the first column, the first shape parameter $A$ is equal to 1, and a second shape parameter $B$ is equal to 2. In the second column, the first shape parameter $A$ is equal to 1.5, and a second shape parameter $B$ is equal to 2.

$$b = \text{[betainv}(u(:,1),1,2), \text{betainv}(u(:,2),1.5,2)]$$

Create a `scatterhist` plot to visualize the correlated beta distribution data.

```matlab
figure
scatterhist(b(:,1),b(:,2))
```
The histograms show the marginal beta distributions for each variable. The scatterplot shows the negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for Kendall's $\tau$.

```matlab
tau_sample = corr(b,'type','kendall')
```

```
tau_sample = 2x2
 1.0000 -0.5135
 -0.5135 1.0000
```
The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for \( \tau \).

## Input Arguments

**rho — Linear correlation parameters**  
Scalar values | Matrix of scalar values  
---  
Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

- If \( \rho \) is a \( p \)-by-\( p \) correlation matrix, then the output argument \( u \) is an \( n \)-by-\( p \) matrix.
- If \( \rho \) is a scalar correlation coefficient, then the output argument \( u \) is an \( n \)-by-2 matrix.

Data Types: single | double

**n — Number of random vectors to return**  
Positive scalar value  
Number of random vectors to return, specified as a positive scalar value.

- If you specify the copula type as 'Gaussian' or 't', and \( \rho \) is a \( p \)-by-\( p \) correlation matrix, then \( u \) is an \( n \)-by-\( p \) matrix.
- If you specify the copula type as 'Gaussian' or 't', and \( \rho \) is a scalar correlation coefficient, then \( u \) is an \( n \)-by-2 matrix.
- If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then \( u \) is an \( n \)-by-2 matrix.

Data Types: single | double

**nu — Degrees of freedom**  
Positive integer value  
Degrees of freedom for the \( t \) copula, specified as a positive integer value.

Data Types: single | double

**family — Bivariate Archimedean copula family**  
'Clayton' | 'Frank' | 'Gumbel'
Bivariate Archimedean copula family, specified as one of the following.

- 'Clayton'
- 'Frank'
- 'Gumbel'

alpha — Bivariate Archimedean copula parameter

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha depend on the specified copula family.

<table>
<thead>
<tr>
<th>Copula Family</th>
<th>Permitted Alpha Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Clayton'</td>
<td>[0,∞)</td>
</tr>
<tr>
<td>'Frank'</td>
<td>(-∞,∞)</td>
</tr>
<tr>
<td>'Gumbel'</td>
<td>[1,∞)</td>
</tr>
</tbody>
</table>

Data Types: single | double

Output Arguments

u — Copula random numbers

matrix of scalar values

Copula random numbers, returned as a matrix of scalar values. Each column of u is a sample from a Uniform(0,1) marginal distribution.

- If you specify the copula type as 'Gaussian' or 't', and rho is a p-by-p correlation matrix, then u is an n-by-p matrix.
- If you specify the copula type as 'Gaussian' or 't', and rho is a scalar correlation coefficient, then u is an n-by-2 matrix.
- If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then u is an n-by-2 matrix.

See Also
copulacdf | copulaparam | copulapdf | copulastat
Topics
“Generate Correlated Data Using Rank Correlation” on page 5-139
“Copulas: Generate Correlated Samples” on page 5-159

Introduced in R2006a
cordexch

Coordinate exchange

Syntax

dCE = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns,'model')
[dCE,X] = cordexch(...,'name',value)

Description

dCE = cordexch(nfactors,nruns) uses a coordinate-exchange algorithm to generate a $D$-optimal design $dCE$ with $nruns$ runs (the rows of $dCE$) for a linear additive model with $nfactors$ factors (the columns of $dCE$). The model includes a constant term.

[dCE,X] = cordexch(nfactors,nruns) also returns the associated design matrix $X$, whose columns are the model terms evaluated at each treatment (row) of $dCE$.

[dCE,X] = cordexch(nfactors,nruns,'model') uses the linear regression model specified in $model$. $model$ is one of the following:

- 'linear' — Constant and linear terms. This is the default.
- 'interaction' — Constant, linear, and interaction terms
- 'quadratic' — Constant, linear, interaction, and squared terms
- 'purequadratic' — Constant, linear, and squared terms

The order of the columns of $X$ for a full quadratic model with $n$ terms is:

1. The constant term
2. The linear terms in order $1, 2, ..., n$
3. The interaction terms in order $(1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n-1, n)$
4. The squared terms in order $1, 2, ..., n$

Other models use a subset of these terms, in the same order.
Alternatively, `model` can be a matrix specifying polynomial terms of arbitrary order. In this case, `model` should have one column for each factor and one row for each term in the model. The entries in any row of `model` are powers for the factors in the columns. For example, if a model has factors $X_1$, $X_2$, and $X_3$, then a row $[0 \ 1 \ 2]$ in `model` specifies the term $(X_1.^{0}) \cdot (X_2.^{1}) \cdot (X_3.^{2})$. A row of all zeros in `model` specifies a constant term, which can be omitted.

$[dCE,X] = cordexch(...,'name',value)$ specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify `name` inside single quotes.

<table>
<thead>
<tr>
<th>name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds</td>
<td>Lower and upper bounds for each factor, specified as a 2-by-nfactors matrix. Alternatively, this value can be a cell array containing nfactors elements, each element specifying the vector of allowable values for the corresponding factor.</td>
</tr>
<tr>
<td>categorical</td>
<td>Indices of categorical predictors.</td>
</tr>
<tr>
<td>display</td>
<td>Either 'on' or 'off' to control display of the iteration counter. The default is 'on'.</td>
</tr>
<tr>
<td>excludefun</td>
<td>Handle to a function that excludes undesirable runs. If the function is f, it must support the syntax $b = f(S)$, where $S$ is a matrix of treatments with nfactors columns and $b$ is a vector of Boolean values with the same number of rows as $S$. $b(i)$ is true if the method should exclude $i$th row $S$.</td>
</tr>
<tr>
<td>init</td>
<td>Initial design as a nruns-by-nfactors matrix. The default is a randomly selected set of points.</td>
</tr>
<tr>
<td>levels</td>
<td>Vector of number of levels for each factor. Not used when bounds is specified as a cell array.</td>
</tr>
<tr>
<td>maxiter</td>
<td>Maximum number of iterations. The default is 10.</td>
</tr>
<tr>
<td>tries</td>
<td>Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1.</td>
</tr>
<tr>
<td>name</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>options</td>
<td>A structure that specifies whether to run in parallel, and specifies the random stream or streams. This option requires Parallel Computing Toolbox.</td>
</tr>
</tbody>
</table>

Create the options structure with statset. Structure fields:

- **UseParallel** — Set to true to compute in parallel. Default is false.
- **UseSubstreams** — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- **Streams** — A RandStream object or cell array of such objects. If you do not specify Streams, cordexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
  - You have an open Parallel pool
  - UseParallel is true
  - UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

**Examples**

Suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \epsilon
\]

Use cordexch to generate a D-optimal design with seven runs:

```matlab
defactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =
-1 1 1
```

32-1020
Columns of the design matrix \( X \) are the model terms evaluated at each row of the design \( dCE \). The terms appear in order from left to right: constant term, linear terms (1, 2, 3), interaction terms (12, 13, 23). Use \( X \) to fit the model, as described in “Linear Regression” on page 11-11, to response data measured at the design points in \( dCE \).

**Algorithms**

Both \texttt{cordexch} and \texttt{rowexch} use iterative search algorithms. They operate by incrementally changing an initial design matrix \( X \) to increase \( D = |X^TX| \) at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, \( D \)-optimal designs. Run each algorithm multiple times and select the best result for your final design. Both functions have a ‘\texttt{tries}’ parameter that automates this repetition and comparison.

Unlike the row-exchange algorithm used by \texttt{rowexch}, \texttt{cordexch} does not use a candidate set. (Or rather, the candidate set is the entire design space.) At each step, the coordinate-exchange algorithm exchanges a single element of \( X \) with a new element evaluated at a neighboring point in design space. The absence of a candidate set reduces demands on memory, but the smaller scale of the search means that the coordinate-exchange algorithm is more likely to become trapped in a local minimum.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `options = statset('UseParallel',true)`

For more information, see the 'Options' name-value pair argument.

See Also
daugment | dcovary | rowexch

Introduced before R2006a
corr

Linear or rank correlation

Syntax

rho = corr(X)
rho = corr(X,Y)
[rho,pval] = corr(X,Y)
[rho,pval] = corr(___ ,Name,Value)

Description

rho = corr(X) returns a matrix of the pairwise linear correlation coefficient between each pair of columns in the input matrix X.

rho = corr(X,Y) returns a matrix of the pairwise correlation coefficient between each pair of columns in the input matrices X and Y.

[rho,pval] = corr(X,Y) also returns pval, a matrix of p-values for testing the hypothesis of no correlation against the alternative hypothesis of a nonzero correlation.

[rho,pval] = corr(___ ,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntaxes. For example, 'Type','Kendall' specifies computing Kendall's tau correlation coefficient.

Examples

Find Correlation Between Two Matrices

Find the correlation between two matrices and compare it to the correlation between two column vectors.

Generate sample data.
rng('default')
X = randn(30,4);
Y = randn(30,4);

Introduce correlation between column two of the matrix X and column four of the matrix Y.

Y(:,4) = Y(:,4)+X(:,2);

Calculate the correlation between columns of X and Y.

[rho,pval] = corr(X,Y)

rho = 4×4

<table>
<thead>
<tr>
<th></th>
<th>-0.1686</th>
<th>-0.0363</th>
<th>0.2278</th>
<th>0.3245</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3022</td>
<td>0.0332</td>
<td>-0.0866</td>
<td>0.7653</td>
<td></td>
</tr>
<tr>
<td>-0.3632</td>
<td>-0.0987</td>
<td>-0.0200</td>
<td>-0.3693</td>
<td></td>
</tr>
<tr>
<td>-0.1365</td>
<td>-0.1804</td>
<td>0.0853</td>
<td>0.0279</td>
<td></td>
</tr>
</tbody>
</table>

pval = 4×4

<table>
<thead>
<tr>
<th></th>
<th>0.3731</th>
<th>0.8489</th>
<th>0.2260</th>
<th>0.0802</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1045</td>
<td>0.8619</td>
<td>0.6491</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>0.0485</td>
<td>0.6039</td>
<td>0.9166</td>
<td>0.0446</td>
<td></td>
</tr>
<tr>
<td>0.4721</td>
<td>0.3400</td>
<td>0.6539</td>
<td>0.8837</td>
<td></td>
</tr>
</tbody>
</table>

As expected, the correlation coefficient between column two of X and column four of Y, \( \rho_{2,4} \), is the highest, and it represents a high positive correlation between the two columns. The corresponding \( p \)-value, \( pval(2,4) \), is zero to the four digits shown. Because the \( p \)-value is less than the significance level of 0.05, it indicates rejection of the hypothesis that no correlation exists between the two columns.

Calculate the correlation between X and Y using corrcov.

[r,p] = corrcov(X,Y)

r = 2×2

<table>
<thead>
<tr>
<th></th>
<th>1.0000</th>
<th>-0.0329</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0329</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>
p = 2×2
     1.0000    0.7213
     0.7213    1.0000

The MATLAB® function *corrcoef*, unlike the *corr* function, converts the input matrices X and Y into column vectors, \(X(:)\) and \(Y(:)\), before computing the correlation between them. Therefore, the introduction of correlation between column two of matrix X and column four of matrix Y no longer exists, because those two columns are in different sections of the converted column vectors.

The value of the off-diagonal elements of \(r\), which represents the correlation coefficient between X and Y, is low. This value indicates little to no correlation between X and Y. Likewise, the value of the off-diagonal elements of \(p\), which represents the \(p\)-value, is much higher than the significance level of 0.05. This value indicates that not enough evidence exists to reject the hypothesis of no correlation between X and Y.

**Test Alternative Hypotheses for Correlation**

Test alternative hypotheses for positive, negative, and nonzero correlation between the columns of two matrices. Compare values of the correlation coefficient and \(p\)-value in each case.

Generate sample data.

```matlab
rng('default')
X = randn(50,4);
Y = randn(50,4);
```

Introduce positive correlation between column one of the matrix X and column four of the matrix Y.

```matlab
Y(:,4) = Y(:,4)+0.7*X(:,1);
```

Introduce negative correlation between column two of X and column two of Y.

```matlab
Y(:,2) = Y(:,2)-2*X(:,2);
```

Test the alternative hypothesis that the correlation is greater than zero.
[rho,pval] = corr(X,Y,'Tail','right')

rho = 4x4

0.0627  -0.1438   -0.0035    0.7060
-0.1197  -0.8600   -0.0440    0.1984
-0.1119    0.2210   -0.3433    0.1070
-0.3526   -0.2224    0.1023    0.0374

pval = 4x4

0.3327    0.8405    0.5097    0.0000
0.7962    1.0000    0.6192    0.0836
0.7803    0.0615    0.9927    0.2298
0.9940    0.9397    0.2398    0.3982

As expected, the correlation coefficient between column one of X and column four of Y, \( \rho(1,4) \), has the highest positive value, representing a high positive correlation between the two columns. The corresponding \( p \)-value, \( pval(1,4) \), is zero to the four digits shown, which is lower than the significance level of 0.05. These results indicate rejection of the null hypothesis that no correlation exists between the two columns and lead to the conclusion that the correlation is greater than zero.

Test the alternative hypothesis that the correlation is less than zero.

[rho,pval] = corr(X,Y,'Tail','left')

rho = 4x4

0.0627  -0.1438   -0.0035    0.7060
-0.1197  -0.8600   -0.0440    0.1984
-0.1119    0.2210   -0.3433    0.1070
-0.3526   -0.2224    0.1023    0.0374

pval = 4x4

0.6673    0.1595    0.4903    1.0000
0.2038    0.0000    0.3808    0.9164
0.2197    0.9385    0.0073    0.7702
0.0060    0.0603    0.7602    0.6018
As expected, the correlation coefficient between column two of X and column two of Y, \( \rho(2,2) \), has the negative number with the largest absolute value (\(-0.86\)), representing a high negative correlation between the two columns. The corresponding \( p \)-value, \( p\text{val}(2,2) \), is zero to the four digits shown, which is lower than the significance level of 0.05. Again, these results indicate rejection of the null hypothesis and lead to the conclusion that the correlation is less than zero.

Test the alternative hypothesis that the correlation is not zero.

\[
[rho, pval] = \text{corr}(X,Y)
\]

\[
\begin{bmatrix}
0.0627 & -0.1438 & -0.0035 & 0.7060 \\
-0.1197 & -0.8600 & -0.0440 & 0.1984 \\
-0.1119 & 0.2210 & -0.3433 & 0.1070 \\
-0.3526 & -0.2224 & 0.1023 & 0.0374 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.6654 & 0.3190 & 0.9807 & 0.0000 \\
0.4075 & 0.0000 & 0.7615 & 0.1673 \\
0.4393 & 0.1231 & 0.0147 & 0.4595 \\
0.0120 & 0.1206 & 0.4797 & 0.7964 \\
\end{bmatrix}
\]

The \( p \)-values, \( p\text{val}(1,4) \) and \( p\text{val}(2,2) \), are both zero to the four digits shown. Because the \( p \)-values are lower than the significance level of 0.05, the correlation coefficients \( \rho(1,4) \) and \( \rho(2,2) \) are significantly different from zero. Therefore, the null hypothesis is rejected; the correlation is not zero.

## Input Arguments

**X — Input matrix**

matrix

Input matrix, specified as an \( n \times k \) matrix. The rows of X correspond to observations, and the columns correspond to variables.

Example: \( X = \text{randn}(10,5) \)
Data Types: single | double

Y — Input matrix
matrix

Input matrix, specified as an \( n \)-by-\( k_2 \) matrix when \( X \) is specified as an \( n \)-by-\( k_1 \) matrix. The rows of \( Y \) correspond to observations, and the columns correspond to variables.

Example: \( Y = \text{randn}(20,7) \)

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: \( \text{corr}(X,Y,'Type','Kendall','Rows','complete') \) returns Kendall's tau correlation coefficient using only the rows that contain no missing values.

Type — Type of correlation

'Pearson' (default) | 'Kendall' | 'Spearman'

Type of correlation, specified as the comma-separated pair consisting of 'Type' and one of these values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Pearson'</td>
<td>“Pearson's Linear Correlation Coefficient” on page 32-1030</td>
</tr>
<tr>
<td>'Kendall'</td>
<td>“Kendall's Tau Coefficient” on page 32-1031</td>
</tr>
<tr>
<td>'Spearman'</td>
<td>“Spearman's Rho” on page 32-1032</td>
</tr>
</tbody>
</table>

corr computes the \( p \)-values for Pearson's correlation using a Student's \( t \) distribution for a transformation of the correlation. This correlation is exact when \( X \) and \( Y \) come from a normal distribution. corr computes the \( p \)-values for Kendall's tau and Spearman's rho using either the exact permutation distributions (for small sample sizes) or large-sample approximations.

Example: 'Type','Spearman'
**Rows — Rows to use in computation**

'all' (default) | 'complete' | 'pairwise'

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows' and one of these values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'all'</td>
<td>Use all rows of the input regardless of missing values (NaNs).</td>
</tr>
<tr>
<td>'complete'</td>
<td>Use only rows of the input with no missing values.</td>
</tr>
<tr>
<td>'pairwise'</td>
<td>Compute ( \rho(i,j) ) using rows with no missing values in column ( i ) or ( j ).</td>
</tr>
</tbody>
</table>

The 'complete' value, unlike the 'pairwise' value, always produces a positive definite or positive semidefinite \( \rho \). Also, the 'complete' value generally uses fewer observations to estimate \( \rho \) when rows of the input (\( X \) or \( Y \)) contain missing values.

Example: 'Rows','pairwise'

**Tail — Alternative hypothesis**

'both' (default) | 'right' | 'left'

Alternative hypothesis, specified as the comma-separated pair consisting of 'Tail' and one of the values in the table. 'Tail' specifies the alternative hypothesis against which to compute \( p \)-values for testing the hypothesis of no correlation.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'both'</td>
<td>Test the alternative hypothesis that the correlation is not 0.</td>
</tr>
<tr>
<td>'right'</td>
<td>Test the alternative hypothesis that the correlation is greater than 0.</td>
</tr>
<tr>
<td>'left'</td>
<td>Test the alternative hypothesis that the correlation is less than 0.</td>
</tr>
</tbody>
</table>

corr computes the \( p \)-values for the two-tailed test by doubling the more significant of the two one-tailed \( p \)-values.

Example: 'Tail','left'
Output Arguments

**rho — Pairwise linear correlation coefficient**

matrix

Pairwise linear correlation coefficient, returned as a matrix.

- If you input only a matrix $X$, \( \rho \) is a symmetric $k$-by-$k$ matrix, where $k$ is the number of columns in $X$. The entry $\rho(a, b)$ is the pairwise linear correlation coefficient between column $a$ and column $b$ in $X$.
- If you input matrices $X$ and $Y$, \( \rho \) is a $k_1$-by-$k_2$ matrix, where $k_1$ and $k_2$ are the number of columns in $X$ and $Y$, respectively. The entry $\rho(a, b)$ is the pairwise linear correlation coefficient between column $a$ in $X$ and column $b$ in $Y$.

**pval — p-values**

matrix

$p$-values, returned as a matrix. Each element of \( pval \) is the $p$-value for the corresponding element of \( \rho \).

If $pval(a, b)$ is small (less than 0.05), then the correlation $\rho(a, b)$ is significantly different from zero.

Definitions

**Pearson's Linear Correlation Coefficient**

Pearson's linear correlation coefficient is the most commonly used linear correlation coefficient. For column $X_a$ in matrix $X$ and column $Y_b$ in matrix $Y$, having means

\[
\bar{X}_a = \frac{\sum (X_{a,i})}{n}, \quad \text{and} \quad \bar{Y}_b = \frac{\sum (X_{b,j})}{n},
\]

Pearson's linear correlation coefficient \( \rho(a, b) \) is defined as:

\[
\rho(a, b) = \frac{\sum (X_{a,i} - \bar{X}_a)(X_{b,j} - \bar{Y}_b)}{\sqrt{\sum (X_{a,i} - \bar{X}_a)^2 \sum (X_{b,j} - \bar{Y}_b)^2}}.
\]
\[ \rho(a, b) = \frac{\sum_{i=1}^{n} (X_{a,i} - \bar{X}_{a})(Y_{b,i} - \bar{Y}_{b})}{\left( \sum_{i=1}^{n} (X_{a,i} - \bar{X}_{a})^2 \sum_{j=1}^{n} (Y_{b,j} - \bar{Y}_{b})^2 \right)^{1/2}}, \]

where \( n \) is the length of each column.

Values of the correlation coefficient can range from \(-1\) to \(+1\). A value of \(-1\) indicates perfect negative correlation, while a value of \(+1\) indicates perfect positive correlation. A value of 0 indicates no correlation between the columns.

**Kendall's Tau Coefficient**

Kendall's tau is based on counting the number of \((i,j)\) pairs, for \(i<j\), that are concordant—that is, for which \(X_{a,i} - X_{a,j}\) and \(Y_{b,i} - Y_{b,j}\) have the same sign. The equation for Kendall's tau includes an adjustment for ties in the normalizing constant and is often referred to as tau-b.

For column \(X_a\) in matrix \(X\) and column \(Y_b\) in matrix \(Y\), Kendall's tau coefficient is defined as:

\[ \tau = \frac{2K}{n(n-1)}, \]

where \( K = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \xi^*(X_{a,i}, X_{a,j}, Y_{b,j}, Y_{b,j}), \) and

\[ \xi^*(X_{a,i}, X_{a,j}, Y_{b,j}, Y_{b,j}) = \begin{cases} 
1 & \text{if } (X_{a,i} - X_{a,j})(Y_{b,i} - Y_{b,j}) > 0 \\
0 & \text{if } (X_{a,i} - X_{a,j})(Y_{b,i} - Y_{b,j}) = 0 \\
-1 & \text{if } (X_{a,i} - X_{a,j})(Y_{b,i} - Y_{b,j}) < 0 
\end{cases} \]

Values of the correlation coefficient can range from \(-1\) to \(+1\). A value of \(-1\) indicates that one column ranking is the reverse of the other, while a value of \(+1\) indicates that the two rankings are the same. A value of 0 indicates no relationship between the columns.
Spearman's Rho

Spearman's rho is equivalent to “Pearson's Linear Correlation Coefficient” on page 32-1030 applied to the rankings of the columns $X_a$ and $Y_b$.

If all the ranks in each column are distinct, the equation simplifies to:

$$\rho(a,b) = 1 - \frac{6\sum d^2}{n(n^2 - 1)},$$

where $d$ is the difference between the ranks of the two columns, and $n$ is the length of each column.

Tips

The difference between `corr(X,Y)` and the MATLAB function `corrcoef(X,Y)` is that `corrcoef(X,Y)` returns a matrix of correlation coefficients for two column vectors $X$ and $Y$. If $X$ and $Y$ are not column vectors, `corrcoef(X,Y)` converts them to column vectors.

References


Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.
This function supports tall arrays for out-of-memory data with the limitation:

Only the 'Pearson' type is supported.

For more information, see “Tall Arrays” (MATLAB).

See Also
corrcov | partialcorr | tiedrank

Introduced before R2006a
corrcov

Convert covariance matrix to correlation matrix

Syntax

R = corrcov(C)
[R,sigma] = corrcov(C)

Description

R = corrcov(C) computes the correlation matrix R corresponding to the covariance matrix C. C must be square, symmetric, and positive semi-definite.

[R,sigma] = corrcov(C) also computes the vector of standard deviations sigma.

Examples

Use cov and corrcoef to compute covariances and correlations, respectively, for sample data on weight and blood pressure (systolic, diastolic) in hospital.mat:

load hospital
X = [hospital.Weight hospital.BloodPressure];
C = cov(X)
C =
    706.0404   27.7879   41.0202
    27.7879   45.0622   23.8194
    41.0202   23.8194   48.0590
R = corrcoef(X)
R =
    1.0000   0.1558   0.2227
    0.1558   1.0000   0.5118
    0.2227   0.5118   1.0000

Compare R with the correlation matrix computed from C by corrcov:

corrcov(C)
ans =
Extended Capabilities

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
cholcov | corr | corrcoef | cov

*Introduced in R2007b*
covarianceParameters

Class: GeneralizedLinearMixedModel

Extract covariance parameters of generalized linear mixed-effects model

Syntax

psi = covarianceParameters(glme)
[psi,dispersion] = covarianceParameters(glme)
[psi,dispersion,stats] = covarianceParameters(glme)
[___] = covarianceParameters(glme,Name,Value)

Description

psi = covarianceParameters(glme) returns the estimated prior covariance parameters of random-effects predictors in the generalized linear mixed-effects model glme.

[psi,dispersion] = covarianceParameters(glme) also returns an estimate of the dispersion parameter.

[psi,dispersion,stats] = covarianceParameters(glme) also returns a cell array stats containing the covariance parameter estimates and related statistics.

[___] = covarianceParameters(glme,Name,Value) returns any of the above output arguments using additional options specified by one or more Name,Value pair arguments. For example, you can specify the confidence level for the confidence limits of covariance parameters.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object
Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range [0,1]. For a value `α`, the confidence level is $100 \times (1 - \alpha)\%$.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: `single` | `double`

**Output Arguments**

**psi — Estimated prior covariance parameters**

cell array

Estimated prior covariance parameters for the random-effects predictors, returned as a cell array of length `R`, where `R` is the number of grouping variables used in the model. `psi{r}` contains the covariance matrix of random effects associated with grouping variable `g_r`, where `r = 1, 2, ..., R`, The order of grouping variables in `psi` is the same as the order entered when fitting the model. For more information on grouping variables, see “Grouping Variables” on page 2-57.

**dispersion — Dispersion parameter**

scalar value

Dispersion parameter, returned as a scalar value.
stats — Covariance parameter estimates and related statistics

cell array

Covariance parameter estimates and related statistics, returned as a cell array of length \((R + 1)\), where \(R\) is the number of grouping variables used in the model. The first \(R\) cells of stats each contain a dataset array with the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Grouping variable name</td>
</tr>
<tr>
<td>Name1</td>
<td>Name of the first predictor variable</td>
</tr>
<tr>
<td>Name2</td>
<td>Name of the second predictor variable</td>
</tr>
<tr>
<td>Type</td>
<td>If Name1 and Name2 are the same, then Type is std (standard deviation). If Name1 and Name2 are different, then Type is corr (correlation).</td>
</tr>
<tr>
<td>Estimate</td>
<td>If Name1 and Name2 are the same, then Estimate is the standard deviation of the random effect associated with predictor Name1 or Name2. If Name1 and Name2 are different, then Estimate is the correlation between the random effects associated with predictors Name1 and Name2.</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of the confidence interval for the covariance parameter</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of the confidence interval for the covariance parameter</td>
</tr>
</tbody>
</table>

Cell \(R + 1\) contains related statistics for the dispersion parameter.

It is recommended that the presence or absence of covariance parameters in glme be tested using the compare method, which uses a likelihood ratio test.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'), covarianceParameters derives the confidence intervals in stats based on a Laplace approximation to the log likelihood of the generalized linear mixed-effects model.
When fitting a GLME model using `fitglme` and one of the pseudo likelihood fit methods ('MPL' or 'REML'), `covarianceParameters` derives the confidence intervals in `stats` based on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

**Examples**

**Obtain Estimated Covariance Parameters**

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (`newprocess`)
- Processing time for each batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (`supplier`)
- Number of defects in the batch (`defects`)

The data also includes `time_dev` and `temp_dev`, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using `newprocess`, `time_dev`, `temp_dev`, and `supplier` as fixed-effects predictors. Include a random-effects term for intercept grouped by `factory`, to account for quality differences that might exist due to factory-specific variations. The response variable `defects` has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time} \_\text{dev}_{ij} + \beta_3 \text{temp} \_\text{dev}_{ij} + \beta_4 \text{supplier} \_C_{ij} + \beta_5 \text{supplier} \_B_{ij} + b_i,
\]

where

- \( \text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
- \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, \ldots, 20 \)) during batch \( j \) (where \( j = 1, 2, \ldots, 5 \)).
- \( \text{newprocess}_{ij} \), \( \text{time} \_\text{dev}_{ij} \), and \( \text{temp} \_\text{dev}_{ij} \) are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, \( \text{newprocess}_{ij} \) indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.
- \( \text{supplier} \_C_{ij} \) and \( \text{supplier} \_B_{ij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).
- \( b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

\[
\text{glme} = \text{fitglme(mfr,}'\text{defects} \sim 1 + \text{newprocess} + \text{time} \_\text{dev} + \text{temp} \_\text{dev} + \text{supplier} + (1|\text{factory})',\text{Distribution}'\text{Poisson}',\text{Link}'\log',\text{FitMethod}'\text{Laplace}',\text{DummyVarCoding}'\text{effects}');
\]

Compute and display the estimate of the prior covariance parameter for the random-effects predictor:

\[
[\psi,\text{dispersion,stats}] = \text{covarianceParameters(glme)};
\psi[1]
\]

\[
\text{ans} = 0.0985
\]
psi{1} is an estimate of the prior covariance matrix of the first grouping variable. In this example, there is only one grouping variable (factory), so psi{1} is an estimate of \( \sigma_b^2 \).

Display the dispersion parameter.

dispersion
dispersion = 1

Display the estimated standard deviation of the random effect associated with the predictor. The first cell of stats contains statistics for factory, while the second cell contains statistics for the dispersion parameter.

stats{1}

ans =
  Covariance Type: Isotropic

<table>
<thead>
<tr>
<th>Group</th>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>factory</td>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.31381</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19253</td>
<td>0.51148</td>
</tr>
</tbody>
</table>

The estimated standard deviation of the random effect associated with the predictor is 0.31381. The 95% confidence interval is [0.19253 , 0.51148]. Because the confidence interval does not contain 0, the random intercept is significant at the 5% significance level.

See Also
- GeneralizedLinearMixedModel
- compare
- fitglme
- fixedEffects
- randomEffects
covarianceParameters

**Class:** LinearMixedModel

Extract covariance parameters of linear mixed-effects model

**Syntax**

```matlab
psi = covarianceParameters(lme)
[psi,mse] = covarianceParameters(lme)
[psi,mse,stats] = covarianceParameters(lme)
[psi,mse,stats] = covarianceParameters(lme,Name,Value)
```

**Description**

`psi = covarianceParameters(lme)` returns the estimated covariance parameters that parameterize the prior covariance of random effects.

`[psi,mse] = covarianceParameters(lme)` also returns an estimate of the residual variance.

`[psi,mse,stats] = covarianceParameters(lme)` also returns a cell array, `stats`, containing the covariance parameters and related statistics.

`[psi,mse,stats] = covarianceParameters(lme,Name,Value)` returns the covariance parameters and related statistics in `stats` with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the confidence level for the confidence limits of covariance parameters.

**Input Arguments**

`lme` — Linear mixed-effects model
LinearMixedModel object
Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value \( \alpha \), the confidence level is \( 100*(1-\alpha)\% \).

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double

**Output Arguments**

**psi — Estimate of covariance parameters**

cell array

Estimate of covariance parameters that parameterize the prior covariance of the random effects, returned as a cell array of length \( R \), such that \( \text{psi}\{r\} \) contains the covariance matrix of random effects associated with grouping variable \( g_r \), \( r = 1, 2, ..., R \). The order of grouping variables is the same order you enter when you fit the model.

**mse — Residual variance estimate**

scalar value

Residual variance estimate, returned as a scalar value.

**stats — Covariance parameter estimates and related statistics**

cell array
Covariance parameter estimates and related statistics, returned as a cell array of length \( R + 1 \) containing dataset arrays with the following columns.

<table>
<thead>
<tr>
<th>Group</th>
<th>Grouping variable name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name1</td>
<td>Name of the first predictor variable</td>
</tr>
<tr>
<td>Name2</td>
<td>Name of the second predictor variable</td>
</tr>
</tbody>
</table>
| Type    | \( \text{std} \) (standard deviation), if \( \text{Name1} \) and \( \text{Name2} \) are the same  
|         | \( \text{corr} \) (correlation), if \( \text{Name1} \) and \( \text{Name2} \) are different |
| Estimate| Standard deviation of the random effect associated with predictor \( \text{Name1} \) or \( \text{Name2} \), if \( \text{Name1} \) and \( \text{Name2} \) are the same  
|         | Correlation between the random effects associated with predictors \( \text{Name1} \) and \( \text{Name2} \), if \( \text{Name1} \) and \( \text{Name2} \) are different |
| Lower   | Lower limit of a 95\% confidence interval for the covariance parameter |
| Upper   | Upper limit of a 95\% confidence interval for the covariance parameter |

\( \text{stats}\{r\} \) is a dataset array containing statistics on covariance parameters for the \( r \)th grouping variable, \( r = 1, 2, ..., R \). \( \text{stats}\{R+1\} \) contains statistics on the residual standard deviation. The dataset array for the residual error has the fields \text{Group}, \text{Name}, \text{Estimate}, \text{Lower}, and \text{Upper}.

### Examples

#### Two Random-Effects Terms for Intercept

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five
plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called `ds`, for practical purposes, and define `Tomato`, `Soil`, and `Fertilizer` as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where `Fertilizer` is the fixed-effects variable, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently. This model corresponds to

\[ y_{ijk} = \beta_0 + \sum_{j=2}^{5} \beta_{2j} I[T]_{ij} + b_{0jk}(S \times T)_{jk} + e_{ijk}, \]

where \( i = 1, 2, ..., 60 \) corresponds to the observations, \( j = 2, ..., 5 \) corresponds to the tomato types, and \( k = 1, 2, 3 \) corresponds to the blocks (soil). \( S_k \) represents the \( k \) th soil type, and \( (S \times T)_{jk} \) represents the \( j \) th tomato type nested in the \( k \) th soil type. \( I[T]_{ij} \) is the dummy variable representing the level \( j \) of the tomato type.

The random effects and observation error have the following prior distributions:

\[ b_{0k} \sim N(0, \sigma_S^2), \quad b_{0jk} \sim N(0, \sigma_{S \times T}^2), \quad \text{and} \quad e_{ijk} \sim N(0, \sigma^2). \]

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer + (1|Soil) + (1|Soil:Tomato)');
```

Compute the covariance parameter estimates (estimates of \( \sigma_S^2 \) and \( \sigma_{S \times T}^2 \)) of the random-effects terms.

```matlab
psi = covarianceParameters(lme)
```

\[ \text{psi} = 2 \times 1 \text{ cell array} \]

\[ \{[4.2642e-17]\} \]

\[ \{[352.8481]\} \]
Compute the residual variance ($\sigma^2$).

\[
[-, \text{mse}] = \text{covarianceParameters(lme)}
\]

\[
\text{mse} = 151.9007
\]

**Potentially Correlated Random-Effects Terms**

Load the sample data.

\[
\text{load(fullfile(matlabroot, 'examples', 'stats', 'weight.mat'))};
\]

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a dataset array. Define `Subject` and `Program` as categorical variables.

\[
\text{ds} = \text{dataset(InitialWeight, Program, Subject, Week, y)};
\]

\[
\text{ds.Subject} = \text{nominal(ds.Subject)};
\]

\[
\text{ds.Program} = \text{nominal(ds.Program)};
\]

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

For `'reference'` dummy variable coding, `fitlme` uses Program A as reference and creates the necessary dummy variables $I[.]$. This model corresponds to

\[
y_{im} = \beta_0 + \beta_1 IW_i + \beta_2 \text{Week}_i + \beta_3 I[PB]_i + \beta_4 I[PC]_i + \beta_5 I[PD]_i + b_{0m} + b_{1m} \text{Week}_{im} + e_{im}
\]

where $i$ corresponds to the observation number, $i = 1, 2, ..., 120$, and $m$ corresponds to the subject number, $m = 1, 2, ..., 20$. $\beta_j$ are the fixed-effects coefficients, $j = 0, 1, ..., 8$, and $b_{0m}$ and $b_{1m}$ are random effects. $IW$ stands for initial weight and $I[.]$ is a dummy variable representing a type of program. For example, $I[PB]_i$ is the dummy variable representing Program B.
The random effects and observation error have the following prior distributions:

\[
\begin{pmatrix}
    b_{0im} \\
    b_{1im}
\end{pmatrix}
\sim N\left(0,\begin{pmatrix}
    \sigma_0^2 & \sigma_{0,1} \\
    \sigma_{0,1} & \sigma_1^2
\end{pmatrix}\right)
\]

and

\[e_{im} \sim N(0, \sigma^2).\]

```matlab
lme = fitlme(ds,'y ~ InitialWeight + Program + (Week|Subject)');
Compute the estimates of covariance parameters for the random effects.
[psi,mse,stats] = covarianceParameters(lme)
psi = 1x1 cell array
 {2x2 double}
mse = 0.0105
stats = 2x1 cell array
 {3x7 classreg.regr.lmeutils.titledataset}
 {1x5 classreg.regr.lmeutils.titledataset}
```

`mse` is the estimated residual variance. It is the estimate for \(\sigma^2\).

To see the covariance parameters estimates for the random-effects terms (\(\sigma_0^2\), \(\sigma_1^2\), and \(\sigma_{0,1}\)), index into `psi`.

```matlab
psi{1}
ans = 2x2
 0.0572 0.0490
 0.0490 0.0624
```

The estimate of the variance of the random effects term for the intercept, \(\sigma_0^2\), is 0.0572.

The estimate of the variance of the random effects term for week, \(\sigma_1^2\), is 0.0624. The
estimate for the covariance of the random effects terms for the intercept and week, \( \sigma_{0.1} \), is 0.0490.

stats is a 2-by-1 cell array. The first cell of stats contains the confidence intervals for the standard deviation of the random effects and the correlation between the random effects for intercept and week. To display them, index into stats.

stats{1}

ans =

Covariance Type: FullCholesky

<table>
<thead>
<tr>
<th>Group</th>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.23927</td>
</tr>
<tr>
<td>Subject</td>
<td>'Week'</td>
<td>'(Intercept)'</td>
<td>'corr'</td>
<td>0.81971</td>
</tr>
<tr>
<td>Subject</td>
<td>'Week'</td>
<td>'Week'</td>
<td>'std'</td>
<td>0.2497</td>
</tr>
</tbody>
</table>

The display shows the name of the grouping parameter (Group), the random-effects variables (Name1, Name2), the type of the covariance parameters (Type), the estimate (Estimate) for each parameter, and the 95\% confidence intervals for the parameters (Lower, Upper). The estimates in this table are related to the estimates in psi as follows.

The standard deviation of the random-effects term for intercept is 0.23927 = sqrt(0.0527). Likewise, the standard deviation of the random effects term for week is 0.2497 = sqrt(0.0624). Finally, the correlation between the random-effects terms of intercept and week is 0.81971 = 0.0490/(0.23927*0.2497).

Note that this display also shows which covariance pattern you use when fitting the model. In this case, the covariance pattern is FullCholesky. To change the covariance pattern for the random-effects terms, you must use the 'CovariancePattern' name-value pair argument when fitting the model.

The second cell of stats includes similar statistics for the residual standard deviation. Display the contents of the second cell.

stats{2}
ans =
<table>
<thead>
<tr>
<th>Group</th>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>'Res Std'</td>
<td>0.10261</td>
<td>0.087882</td>
<td>0.11981</td>
</tr>
</tbody>
</table>

The estimate for residual standard deviation is the square root of \( \text{mse} \), \( 0.10261 = \sqrt{0.0105} \).

## Two Grouping Variables

Load the sample data.

```matlab
load carbig
```

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and weight, a potentially correlated random effect for intercept and acceleration grouped by model year, and an independent random effect for weight, grouped by the origin of the car. This model corresponds to

\[
\text{MPG}_{ink} = \beta_0 + \beta_1 \text{Acc}_i + \beta_2 \text{Weight}_i + b_{10m} + b_{11m} \text{Acc}_i + b_{21k} \text{Weight}_i + \epsilon_{ink}
\]

where \( m = 1, 2, ..., 13 \) represents the levels for the variable `Model_Year`, and \( k = 1, 2, ..., 8 \) represents the levels for the variable `Origin`. \( \text{MPG}_{ink} \) is the miles per gallon for the \( i \)th observation, \( |m| \) th model year, and \( |k| \) th origin that correspond to the \( i \)th observation. The random-effects terms and the observation error have the following prior distributions:

\[
b_{1m} = \begin{pmatrix} b_{10m} \\ b_{11m} \end{pmatrix} \sim N\left(0, \begin{pmatrix} \sigma^2_{10} & \sigma_{10,11} \\ \sigma_{10,11} & \sigma^2_{11} \end{pmatrix}\right),
\]

\[
b_{2k} \sim N(0, \sigma^2_2),
\]

\[
\epsilon_{ink} \sim N(0, \sigma^2).
\]

Here, the random-effects term \( b_{1m} \) represents the first random effect at level \( m \) of the first grouping variable. The random-effects term \( b_{10m} \) corresponds to the first random
effects term (1), for the intercept (0), at the $m$th level ($m$) of the first grouping variable. Likewise $b_{11m}$ is the level $m$ for the first predictor (1) in the first random-effects term (1).

Similarly, $b_{2k}$ stands for the second random effects-term at level $k$ of the second grouping variable.

$\sigma_{10}^2$ is the variance of the random-effects term for the intercept, $\sigma_{11}^2$ is the variance of the random effects term for the predictor acceleration, and $\sigma_{10,11}$ is the covariance of the random-effects terms for the intercept and the predictor acceleration. $\sigma_{2}^2$ is the variance of the second random-effects term, and $\sigma^2$ is the residual variance.

First, prepare the design matrices for fitting the linear mixed-effects model.

\[
X = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} & \text{Weight} \end{bmatrix};
\]

\[
Z = \{\begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} \end{bmatrix}, [\text{Weight}]\};
\]

\[
\text{Model\_Year} = \text{nominal} (\text{Model\_Year});
\]

\[
\text{Origin} = \text{nominal} (\text{Origin});
\]

\[
G = \{\text{Model\_Year}, \text{Origin}\};
\]

Fit the model using the design matrices.

\[
lme = \text{fitlmematrix}(X, \text{MPG}, Z, G, 'FixedEffectPredictors', ..., '\text{FixedEffectPredictors}', ..., '\text{FixedEffectPredictors}', ..., '\text{FixedEffectPredictors}', ..., '\text{FixedEffectPredictors}', ..., '\text{FixedEffectPredictors}', ..., '\text{FixedEffectPredictors}', ...)
\]

\[
\text{RandomEffectGroups}', '\text{Model\_Year}', '\text{Origin}')
\]

Compute the estimates of covariance parameters for the random effects.

\[
[\psi, \text{mse}, \text{stats}] = \text{covarianceParameters}(lme)
\]

\[
\psi = \begin{bmatrix} 2 x 1 \text{ cell array} \\
{\begin{bmatrix} 2 x 2 \text{ double} \end{bmatrix}} \\
\{[6.7587e-08] \}
\end{bmatrix}
\]

\[
\text{mse} = 9.0802
\]

\[
\text{stats} = \begin{bmatrix} 3 x 1 \text{ cell array} \\
{\begin{bmatrix} 3 x 7 \text{ classreg.regr.lmeutils.titledataset} \end{bmatrix}} \\
{\begin{bmatrix} 1 x 7 \text{ classreg.regr.lmeutils.titledataset} \end{bmatrix}}
\end{bmatrix}
\]
The residual variance $\text{mse}$ is 9.0755. $\mathbf{psi}$ is a 2-by-1 cell array, and $\mathbf{stats}$ is a 3-by-1 cell array. To see the contents, you must index into these cell arrays.

First, index into the first cell of $\mathbf{psi}$.

$\mathbf{psi}\{1\}$

ans = 2×2

8.3081   -0.8359
-0.8359    0.1093

The first cell of $\mathbf{psi}$ contains the covariance parameters for the correlated random effects for intercept $\sigma_{10}^2$ as 8.5160, and for acceleration $\sigma_{11}^2$ as 0.1087. The estimate for the covariance of the random-effects terms for the intercept and acceleration $\sigma_{10,11}$ is -0.8387.

Now, index into the second cell of $\mathbf{psi}$.

$\mathbf{psi}\{2\}$

ans = 6.7587e-08

The second cell of $\mathbf{psi}$ contains the estimate for the variance of the random-effects term for weight $\sigma_2^2$.

Index into the first cell of $\mathbf{stats}$.

$\mathbf{stats}\{1\}$

ans =
Covariance Type: FullCholesky

<table>
<thead>
<tr>
<th>Group</th>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_Year</td>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
</tr>
<tr>
<td>Model_Year</td>
<td>'Acceleration'</td>
<td>'Intercept'</td>
<td>'corr'</td>
</tr>
<tr>
<td>Model_Year</td>
<td>'Acceleration'</td>
<td>'Acceleration'</td>
<td>'std'</td>
</tr>
</tbody>
</table>
This table shows the standard deviation estimates for the random-effects terms for intercept and acceleration. Note that the standard deviations estimates are the square roots of the diagonal elements in the first cell of psi. Specifically, \(2.9182 = \sqrt{8.5160}\) and \(0.32968 = \sqrt{0.1087}\). The correlation is a function of the covariance of intercept and acceleration, and the standard deviations of intercept and acceleration. The covariance of intercept and acceleration is the off-diagonal value in the first cell of psi, \(-0.8387\). So, the correlation is \(-0.8387/(0.32968*2.92182) = -0.87\).

The grouping variable for intercept and acceleration is Model_Year.

Index into the second cell of stats.

stats{2}

ans =
   Covariance Type: FullCholesky

<table>
<thead>
<tr>
<th>Group</th>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>'Weight'</td>
<td>'Weight'</td>
<td>'std'</td>
<td>0.00025997</td>
</tr>
</tbody>
</table>

   Lower             Upper
9.1727e-05          0.00073682

The second cell of stats has the standard deviation estimate and the 95% confidence limits for the standard deviation of the random-effects term for Weight. The grouping variable is Origin.

Index into the third cell of stats.

stats{3}

ans =

<table>
<thead>
<tr>
<th>Group</th>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>'Res Std'</td>
<td>3.0133</td>
<td>2.8034</td>
<td>3.239</td>
</tr>
</tbody>
</table>
The third cell of `stats` contains the estimate for residual standard deviation and the 95% confidence limits. The estimate for residual standard deviation is the square root of $mse$, $\sqrt{9.0755} = 3.0126$.

Construct 99% confidence intervals for the covariance parameters.

```matlab
[~,~,stats] = covarianceParameters(lme,'Alpha',0.01);
stats{1}
```

```
an =
 Covariance Type: FullCholesky
 Group Name1 Name2 Type
 Model_Year 'Intercept' 'Intercept' 'std'
 Model_Year 'Acceleration' 'Intercept' 'corr'
 Model_Year 'Acceleration' 'Acceleration' 'std'

 Estimate Lower Upper
 2.8824 0.824 10.083
 -0.87704 -0.99176 0.018238
 0.33066 0.15873 0.68881
```

```
stats{2}
```

```
an =
 Covariance Type: FullCholesky
 Group Name1 Name2 Type Estimate
 Origin 'Weight' 'Weight' 'std' 0.00025997

 Lower Upper
 6.612e-05 0.0010222
```

```
stats{3}
```

```
an =
 Group Name Estimate Lower Upper
 Error 'Res Std' 3.0133 2.7405 3.3134
```
See Also
LinearMixedModel | compare | fixedEffects | randomEffects
coxphfit

Cox proportional hazards regression

Syntax

b = coxphfit(X,T)
b = coxphfit(X,T,Name,Value)
[b,logl,H,stats] = coxphfit(__)

Description

b = coxphfit(X,T) returns a p-by-1 vector, b, of coefficient estimates for a Cox proportional hazards regression on page 32-1064 of the observed responses T on the predictors X, where T is either an n-by-1 vector or an n-by-2 matrix, and X is an n-by-p matrix.

The model does not include a constant term, and X cannot contain a column of 1s.

b = coxphfit(X,T,Name,Value) returns a vector of coefficient estimates, with additional options specified by one or more Name,Value pair arguments.

[b,logl,H,stats] = coxphfit(__) also returns the loglikelihood, logl, a structure, stats, that contains additional statistics, and a two-column matrix, H, that contains the T values in the first column and the estimated baseline cumulative hazard, in the second column. You can use any of the input arguments in the previous syntaxes.

Examples

Use Cox Proportional Hazards Regression to Model Lifetime of Light Bulbs

Load the sample data.

load(fullfile(matlabroot,'examples','stats','lightbulb.mat'));
The first column of the light bulb data has the lifetime (in hours) of two different types of bulbs. The second column has the binary variable indicating whether the bulb is fluorescent or incandescent. 0 indicates that the bulb is incandescent, and 1 indicates that it is fluorescent. The third column contains the censorship information, where 0 indicates the bulb was observed until failure, and 1 indicates the bulb was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, also accounting for censoring. The predictor variable is the type of bulb.

\[
b = \text{coxphfit(lightbulb(:,2),lightbulb(:,1), ...}
\text{ 'Censoring',lightbulb(:,3))}
\]

\[
b = 4.7262
\]

The estimate of the hazard ratio is \( e^b = 112.8646 \). This means that the hazard for the incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

### Change Algorithm Parameters for Cox Proportional Hazards Model

Load the sample data.

\[
\text{load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))}
\]

The first column of the data has the lifetime (in hours) of two types of bulbs. The second column has the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates that the bulb is fluorescent and 0 indicates that it is incandescent. The third column contains the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the item (bulb) is censored.

Fit a Cox proportional hazards model, also accounting for censoring. The predictor variable is the type of bulb.

\[
b = \text{coxphfit(lightbulb(:,2),lightbulb(:,1), ...}
\text{ 'Censoring',lightbulb(:,3))}
\]

\[
b = 4.7262
\]

Display the default control parameters for the algorithm `coxphfit` uses to estimate the coefficients.

\[
\text{statset('coxphfit')}
\]
ans = struct with fields:
    Display: 'off'
    MaxFunEvals: 200
    MaxIter: 100
    TolBnd: 1.0000e-06
    TolFun: 1.0000e-08
    TolTypeFun: []
    TolX: 1.0000e-08
    TolTypeX: []
    GradObj: []
    Jacobian: []
    DerivStep: []
    FunValCheck: []
    Robust: []
    RobustWgtFun: []
    WgtFun: []
    Tune: []
    UseParallel: []
    UseSubstreams: []
    Streams: {}
    OutputFcn: []

Save the options under a different name and change how the results will be displayed and the maximum number of iterations, Display and MaxIter.

coxphopt = statset('coxphfit');
coxphopt.Display = 'final';
coxphopt.MaxIter = 50;

Run coxphfit with the new algorithm parameters.

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...
    'Censoring',lightbulb(:,3),'Options',coxphopt)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

b = 4.7262

coxphfit displays a report on the final iteration. Changing the maximum number of iterations did not affect the coefficient estimate.
**Fit and Compare Cox and Weibull Survivor Functions**

Generate Weibull data depending on predictor \( X \).

```matlab
rng('default') % for reproducibility
X = 4*rand(100,1);
A = 50*exp(-0.5*X);
B = 2;
y = wblrnd(A,B);
```

The response values are generated from a Weibull distribution with a shape parameter depending on the predictor variable \( X \) and a scale parameter of 2.

Fit a Cox proportional hazards model.

```matlab
[b,logL,H,stats] = coxphfit(X,y);
[b logL]
ans = 1×2
0.9409 -331.1479
```

The coefficient estimate is 0.9409 and the log likelihood value is –331.1479.

Request the model statistics.

```matlab
stats
```

```matlab
stats = struct with fields:
 covb: 0.0158
 beta: 0.9409
 se: 0.1256
 z: 7.4889
 p: 6.9462e-14
 csres: [100x1 double]
 devres: [100x1 double]
 martres: [100x1 double]
 schres: [100x1 double]
 sshres: [100x1 double]
 scores: [100x1 double]
 sscores: [100x1 double]
```

The covariance matrix of the coefficient estimates, \( \text{covb} \), contains only one value, which is equal to the variance of the coefficient estimate in this example. The coefficient
estimate, $\beta$, is the same as $b$ and is equal to 0.9409. The standard error of the coefficient estimate, $se$, is 0.1256, which is the square root of the variance 0.0158. The $z$-statistic, $z$, is $\beta/se = 0.9409/0.1256 = 7.4880$. The p-value, $p$, indicates that the effect of $X$ is significant.

Plot the Cox estimate of the baseline survivor function together with the known Weibull function.

```matlab
stairs(H(:,1),exp(-H(:,2)),'LineWidth',2)
xx = linspace(0,100);
line(xx,1-wblcdf(xx,50*exp(-0.5*mean(X)),B),'color','r','LineWidth',2)
xlim([0,50])
legend('Estimated Survivor Function','Weibull Survivor Function')
```
The fitted model gives a close estimate to the survivor function of the actual distribution.

**Input Arguments**

**X — Observations on predictor variables**

matrix

Observations on predictor variables, specified as an \(n\)-by-\(p\) matrix of \(p\) predictors for each of \(n\) observations.

The model does not include a constant term, thus \(X\) cannot contain a column of 1s.

If \(X\), \(T\), or the value of 'Frequency' or 'Strata' contain NaN values, then \texttt{coxphfit} removes rows with NaN values from all data when fitting a Cox model.

Data Types: double

**T — Time-to-event data**

vector | two-column matrix

Time-to-event data, specified as an \(n\)-by-1 vector or a two-column matrix.

- When \(T\) is an \(n\)-by-1 vector, it represents the event time of right-censored time-to-event data.
- When \(T\) is an \(n\)-by-2 matrix, each row represents the risk interval (start,stop] in the counting process format for time-dependent covariates. The first column is the start time and the second column is the stop time. For an example, see “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42.

If \(X\), \(T\), or the value of 'Frequency' or 'Strata' contain NaN values, then \texttt{coxphfit} removes rows with NaN values from all data when fitting a Cox model.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Baseline',0,'Censoring',censoreddata,'Frequency',freq specifies that `coxphfit` calculates the baseline hazard rate relative to 0, considering the censoring information in the vector censoreddata, and the frequency of observations on T and X given in the vector freq.

**B0 — Coefficient initial values**
0.01/\text{std}(X) (default) | numeric vector

Coefficient initial values, specified as the comma-separated value consisting of 'B0' and a numeric vector.

Data Types: double

**Baseline — X values at which to compute the baseline hazard**
mean(X) (default) | scalar value

X values at which to compute the baseline hazard, specified as the comma-separated pair consisting of 'Baseline' and a scalar value.

The default is mean(X), so the hazard rate at X is \( h(t) \exp((X-\text{mean}(X))*b) \). Enter 0 to compute the baseline relative to 0, so the hazard rate at X is \( h(t) \exp(X*b) \). Changing the baseline does not affect the coefficient estimates, but the hazard ratio changes.

Example: 'Baseline',0

Data Types: double

**Censoring — Indicator for censoring**
an array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of 'Censoring' and a Boolean array of the same size as T. Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed. For an example, see “Cox Proportional Hazards Model for Censored Data” on page 14-37.

Example: 'Censoring',cens

Data Types: logical

**Frequency — Frequency or weights of observations**
an array of 1s (default) | vector of nonnegative scalar values

Data Types: double
Frequency or weights of observations, specified as the comma-separated pair consisting of 'Frequency' and an array that is the same size as T containing nonnegative scalar values. The array can contain integer values corresponding to frequencies of observations or nonnegative values corresponding to observation weights.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows with NaN values from all data when fitting a Cox model.

The default is 1 per row of X and T.

Example: 'Frequency',w

Data Types: double

**Strata — Stratification variables**

[] (default) | matrix of real values

Stratification variables, specified as the comma-separated pair consisting of a matrix of real values. The matrix must have the same number of rows as T, with each row corresponding to an observation.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows with NaN values from all data when fitting a Cox model.

The default, [], is no stratification variable.

Example: 'Strata',Gender

Data Types: single | double

**Ties — Method to handle tied failure times**

'breslow' (default) | 'efron'

Method to handle tied failure times, specified as the comma-separated pair consisting of 'Ties' and either 'breslow' (Breslow's method) or 'efron' (Efron's method).

Example: 'Ties','efron'

**Options — Algorithm control parameters**

structure

Algorithm control parameters for the iterative algorithm used to estimate b, specified as the comma-separated pair consisting of 'Options' and a structure. A call to statset creates this argument. For parameter names and default values, type


`statset('coxphfit'). You can set the options under a new name and use that in the name-value pair argument.

Example: 'Options',statset('coxphfit')

**Output Arguments**

**b — Coefficient estimates**

vector

Coefficient estimates for a Cox proportional hazards regression on page 32-1064, returned as a \( p \)-by-1 vector.

**logl — Loglikelihood**

scalar

Loglikelihood of the fitted model, returned as a scalar.

You can use log likelihood values to compare different models and assess the significance of effects of terms in the model.

**H — Estimated baseline cumulative hazard**

two-column matrix | (2+k) column matrix

Estimated baseline cumulative hazard rate evaluated at \( T \) values, returned as one of the following.

- If the model is unstratified, then \( H \) is a two-column matrix. The first column of the matrix contains \( T \) values, and the second column contains cumulative hazard rate estimates.
- If the model is stratified, then \( H \) is a \((2+k)\) column matrix, where the last \( k \) columns correspond to the stratification variables using the `Strata` name-value pair argument.

**stats — Coefficient statistics**

structure

Coefficient statistics, returned as a structure that contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>Coefficient estimates (same as b)</td>
</tr>
<tr>
<td>se</td>
<td>Standard errors of coefficient estimates, b</td>
</tr>
</tbody>
</table>
z-statistics for b (that is, b divided by standard error)

<table>
<thead>
<tr>
<th>z</th>
<th>p-values for b</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Estimated covariance matrix for b</td>
</tr>
<tr>
<td>covb</td>
<td>Cox-Snell residuals</td>
</tr>
<tr>
<td>csres</td>
<td>Deviance residuals</td>
</tr>
<tr>
<td>devres</td>
<td>Martingale residuals</td>
</tr>
<tr>
<td>martres</td>
<td>Schoenfeld residuals</td>
</tr>
<tr>
<td>schres</td>
<td>Scaled Schoenfeld residuals</td>
</tr>
<tr>
<td>sshres</td>
<td>Score residuals</td>
</tr>
<tr>
<td>scores</td>
<td>Scaled score residuals</td>
</tr>
</tbody>
</table>

coxphfit returns the Cox-Snell, martingale, and deviance residuals as a column vector with one row per observation. It returns the Schoenfeld, scaled Schoenfeld, score, and scaled score residuals as matrices of the same size as X. Schoenfeld and scaled Schoenfeld residuals of censored data are NaNs.

Definitions

Cox Proportional Hazards Regression

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates to remove the effect of confounding variables and to quantify the effect of predictor variables. The method represents the effects of explanatory and confounding variables as a multiplier of a common baseline hazard function, $h_0(t)$.

For a baseline relative to 0, this model corresponds to

$$h(X_i, t) = h_0(t) \exp \left( \sum_{j=1}^{p} x_{ij} b_j \right),$$

where $X_i = (x_{i1}, x_{i2}, \ldots, x_{ip})$ is the predictor variable for the $i$th subject, $h(X_i, t)$ is the hazard rate at time $t$ for $X_i$, and $h_0(t)$ is the baseline hazard rate function. The baseline hazard function is the nonparametric part of the Cox proportional hazards regression.
function, whereas the impact of the predictor variables is a loglinear regression. The assumption is that the baseline hazard function depends on time, \( t \), but the predictor variables do not depend on time. See “Cox Proportional Hazards Model” on page 14-30 for details, including the extensions for stratification and time-dependent variables, tied events, and observation weights.

References


Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- \( X \) can be a single- or double-precision matrix and can be variable-size.
- The value of the 'Ties' name-value pair argument must be a compile-time constant. For example, to use Efron's method to handle tied failure times, include \{coder.Constant('Ties'),coder.Constant('efron')\} in the -args value of codegen.
- Names in name-value pair arguments must be compile-time constants.

See Also

ecdf | statset | wblfit

Topics

“Hazard and Survivor Functions for Different Groups” on page 14-18
“Survivor Functions for Two Groups” on page 14-25
“Cox Proportional Hazards Model for Censored Data” on page 14-37
“Cox Proportional Hazards Model with Time-Dependent Covariates” on page 14-42
“What Is Survival Analysis?” on page 14-2
“Kaplan-Meier Method” on page 14-11
“Cox Proportional Hazards Model” on page 14-30

Introduced before R2006a
createns

Create nearest neighbor searcher object

Syntax

NS = createns(X)
NS = createns(X,Name,Value)

Description

NS = createns(X) creates either an ExhaustiveSearcher or KDTreeSearcher model object using the \( n \)-by-\( K \) numeric matrix of the training data \( X \).

NS = createns(X,Name,Value) specifies additional options using one or more name-value pair arguments. For example, you can specify NSMethod to determine which type of object to create.

Examples

Train Default Exhaustive Nearest Neighbor Searcher

Load Fisher’s iris data set.

load fisheriris
X = meas;
[n,k] = size(X)

n = 150
k = 4

\( X \) has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbor searcher using the entire data set as training data.
Mdl1 = ExhaustiveSearcher(X)

Mdl1 =
  ExhaustiveSearcher with properties:
    Distance: 'euclidean'
    DistParameter: []
    X: [150x4 double]

Mdl1 is an ExhaustiveSearcher model object, and its properties appear in the Command Window. The object contains information about the trained algorithm, such as the distance metric. You can alter property values using dot notation.

Alternatively, you can prepare an exhaustive nearest neighbor searcher by using createns and specifying 'exhaustive' as the search method.

Mdl2 = createns(X,'NSMethod','exhaustive')

Mdl2 =
  ExhaustiveSearcher with properties:
    Distance: 'euclidean'
    DistParameter: []
    X: [150x4 double]

Mdl2 is also an ExhaustiveSearcher model object, and it is equivalent to Mdl1.

To search X for the nearest neighbors to a batch of query data, pass the ExhaustiveSearcher model object and the query data to knnsearch or rangesearch.

Grow Default Kd-Tree

Grow a four-dimensional Kd-tree that uses the Euclidean distance.

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)
\[ n = 150 \]
\[ k = 4 \]

\( X \) has 150 observations and 4 predictors.

Grow a four-dimensional \( Kd \)-tree using the entire data set as training data.

\[
\text{Mdl1} = \text{KDTreeSearcher}(X)
\]

\[
\text{Mdl1} = \text{KDTreeSearcher with properties:}
\]
\[
\begin{align*}
\text{BucketSize}: & \ 50 \\
\text{Distance}: & \ '\text{euclidean}' \\
\text{DistParameter}: & \ [] \\
\text{X}: & \ [150\times4 \text{ double}]
\end{align*}
\]

\( \text{Mdl1} \) is a \text{KDTreeSearcher} model object, and its properties appear in the Command Window. The object contains information about the grown four-dimensional \( Kd \)-tree, such as the distance metric. You can alter property values using dot notation.

Alternatively, you can grow a \( Kd \)-tree by using \text{createns}.

\[
\text{Mdl2} = \text{createns}(X)
\]

\[
\text{Mdl2} = \text{KDTreeSearcher with properties:}
\]
\[
\begin{align*}
\text{BucketSize}: & \ 50 \\
\text{Distance}: & \ '\text{euclidean}' \\
\text{DistParameter}: & \ [] \\
\text{X}: & \ [150\times4 \text{ double}]
\end{align*}
\]

\( \text{Mdl2} \) is also a \text{KDTreeSearcher} model object, and it is equivalent to \( \text{Mdl1} \). Because \( X \) has four columns and the default distance metric is Euclidean, \text{createns} creates a \text{KDTreeSearcher} model by default.

To find the nearest neighbors in \( X \) to a batch of query data, pass the \text{KDTreeSearcher} model object and the query data to \text{knnsearch} or \text{rangesearch}.
Grow *K*-Tree Using Minkowski Distance Metric

Grow a *K*-tree that uses the Minkowski distance with an exponent of five.

Load Fisher's iris data set. Create a variable for the petal dimensions.

```matlab
load fisheriris
X = meas(:,3:4);
```

Grow a *K*-tree. Specify the Minkowski distance with an exponent of five.

```matlab
Mdl = createns(X,'Distance','minkowski','P',5)
```

```
Mdl =
 KDTreeSearcher with properties:
 BucketSize: 50
 Distance: 'minkowski'
 DistParameter: 5
 X: [150x2 double]
```

Because *X* has two columns and the distance metric is Minkowski, *createns* creates a *KDTreeSearcher* model object by default.

Search for Nearest Neighbors of Query Data Using Mahalanobis Distance

Create an exhaustive searcher object by using the *createns* function. Pass the object and query data to the *knnsearch* function to find *k*-nearest neighbors.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Remove five irises randomly from the predictor data to use as a query set.

```matlab
rng('default'); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);
```

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the Mahalanobis distance for finding nearest neighbors.
Mdl = createns(X,'Distance','mahalanobis')

Mdl = 
    ExhaustiveSearcher with properties:
        Distance: 'mahalanobis'
        DistParameter: [4x4 double]
        X: [145x4 double]

Because the distance metric is Mahalanobis, createns creates an
ExhaustiveSearcher model object by default.

The software uses the covariance matrix of the predictors (columns) in the training data
for computing the Mahalanobis distance. To display this value, use Mdl.DistParameter.

Mdl.DistParameter
ans = 4x4

    0.6547   -0.0368    1.2320    0.5026
-0.0368    0.1914   -0.3227   -0.1193
  1.2320   -0.3227    3.0671    1.2842
  0.5026   -0.1193    1.2842    0.5800

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each
point in the query data (Y).

IdxNN = knnsearch(Mdl,Y,'K',2)

IdxNN = 5x2

    5  6
   98  95
  104 128
  135  65
  102 115

Each row ofIdxNN corresponds to a query data observation. The column order
corresponds to the order of the nearest neighbors with respect to ascending distance. For
example, based on the Mahalanobis metric, the second nearest neighbor of Y(3,:) is
X(128,:).
**Input Arguments**

**X — Training data**

numeric matrix

Training data, specified as a numeric matrix. X has n rows, each corresponding to an observation (that is, an instance or example), and K columns, each corresponding to a predictor (that is, a feature).

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as

```Name1,Value1,...,NameN,ValueN```

Example: `NS = createns(X,'Distance','mahalanobis')` creates an ExhaustiveSearcher model object that uses the Mahalanobis distance metric when searching for nearest neighbors.

For Exhaustive and Kd-Tree Nearest Neighbor Searchers

NSMethod — Nearest neighbor search method

`'kdtree' | 'exhaustive'

Nearest neighbor search method used to define the type of object created, specified as the comma-separated pair consisting of `NSMethod` and `'kdtree'` or `'exhaustive'`.

- `'kdtree'` — `createns` creates a KDTreeSearcher model object using the Kd-tree algorithm.
- `'exhaustive'` — `createns` creates an ExhaustiveSearcher model object using the exhaustive search algorithm.

The default value is `'kdtree'` when these three conditions are true:

- The number of columns of X (K) is less than or equal to 10 (that is, K ≤ 10).
- X is not sparse.
- Distance is `'euclidean'`, `'cityblock'`, `'chebychev'`, or `'minkowski'`.
Otherwise, the default value is 'exhaustive'.

Example: 'NSMethod', 'exhaustive'

Distance — Distance metric

'euclidean' (default) | character vector or string scalar of distance metric name | custom distance function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future query points, specified as the comma-separated pair consisting of 'Distance' and a character vector or string scalar of distance metric name or function handle.

For both types of nearest neighbor searchers, createns supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
</tbody>
</table>

If createns uses the exhaustive search algorithm ('NSMethod' is 'exhaustive'), then createns also supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values)</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as row vectors)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values)</td>
</tr>
</tbody>
</table>

If `createns` uses the exhaustive search algorithm ('NSMethod' is 'exhaustive'), then you can also specify a function handle for a custom distance metric by using @ (for example, @distfun). A custom distance function must:

- Have the form function `D2 = distfun(ZI,ZJ).`
- Take as arguments:
 - A 1-by-`K` vector `ZI` containing a single row from `X` or from the query points `Y`, where `K` is the number of columns in `X`.
 - An `m`-by-`K` matrix `ZJ` containing multiple rows of `X` or `Y`, where `m` is a positive integer.
 - Return an `m`-by-1 vector of distances `D2`, where `D2(j)` is the distance between the observations `ZI` and `ZJ(j,:)`.

For more details, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric

2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',3

Data Types: `single` | `double`

For Exhaustive Nearest Neighbor Searchers

Cov — Covariance matrix for Mahalanobis distance metric

`nancov(X)` (default) | positive definite matrix
Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair consisting of 'Cov' and a K-by-K positive definite matrix, where K is the number of columns in X. This argument is valid only if 'Distance' is 'mahalanobis'.

Example: 'Cov',eye(3)

Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric

`nanstd(X)` (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-separated pair consisting of 'Scale' and a nonnegative numeric vector of length K, where K is the number of columns in X. The software scales each difference between the training and query data using the corresponding element of Scale. This argument is valid only if 'Distance' is 'seuclidean'.

Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)

Data Types: single | double

For Nearest Neighbor Searchers Using Kd-Tree

BucketSize — Maximum number of data points in each leaf node

50 (default) | positive integer

Maximum number of data points in each leaf node of the Kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer.

This argument is valid only when you create a `KDTreeSearcher` model object.

Example: 'BucketSize',10

Data Types: single | double

Output Arguments

NS — Nearest neighbor searcher

`ExhaustiveSearcher` model object | `KDTreeSearcher` model object

Nearest neighbor searcher, returned as an `ExhaustiveSearcher` model object or a `KDTreeSearcher` model object.
Once you create a nearest neighbor searcher model object, you can find the neighboring points in the training data to the query data by performing a nearest neighbor search using knnsearch or a radius search using rangesearch.

See Also
ExhaustiveSearcher | KDTreeSearcher | knnsearch | rangesearch

Topics
“k-Nearest Neighbor Search and Radius Search” on page 18-19

Introduced in R2010a
crosstab

Cross-tabulation

Syntax

tbl = crosstab(x1,x2)
tbl = crosstab(x1,...,xn)
[tbl,chi2,p] = crosstab(__)
[tbl,chi2,p,labels] = crosstab(__)

Description

tbl = crosstab(x1,x2) returns a cross-tabulation, tbl, of two vectors of the same length, x1 and x2.

tbl = crosstab(x1,...,xn) returns a multi-dimensional cross-tabulation, tbl, of data for multiple input vectors, x1, x2, ..., xn.

[tbl,chi2,p] = crosstab(__) also returns the chi-square statistic, chi2, and its p-value, p, for a test that tbl is independent in each dimension. You can use any of the previous syntaxes.

[tbl,chi2,p,labels] = crosstab(__) also returns a cell array, labels, which contains one column of labels for each input argument, x1 ... xn.

Examples

Cross-Tabulate Two Data Vectors

Create two sample data vectors, containing three and four distinct values, respectively.

x = [1 1 2 3 1];
y = [1 2 5 3 1];
Cross-tabulate x and y.

\[\text{table} = \text{crosstab}(x,y) \]

\[
\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{array}
\]

The rows in \texttt{table} correspond to the three distinct values in \(x \), and the columns correspond to the four distinct values in \(y \).

Cross-Tabulate Independent Data Vectors

Generate two independent vectors, \(x_1 \) and \(x_2 \), each containing 50 discrete uniform random numbers in the range \(1:3 \).

\[
\text{rng default; \hspace{1em} \% for reproducibility} \\
x_1 = \text{unidrnd}(3,50,1); \\
x_2 = \text{unidrnd}(3,50,1);
\]

Cross-tabulate \(x_1 \) and \(x_2 \).

\[\text{[table,chi2,p]} = \text{crosstab}(x_1,x_2) \]

\[
\begin{array}{ccc}
1 & 6 & 7 \\
5 & 5 & 2 \\
11 & 7 & 6 \\
\end{array}
\]

\[\text{chi2} = 7.5449 \]

\[p = 0.1097 \]

The returned p value of \(0.1097 \) indicates that, at the 5% significance level, \texttt{crosstab} fails to reject the null hypothesis that \texttt{table} is independent in each dimension.
Cross-Tabulate Grouped Data

Load the sample data, which contains measurements of large model cars during the years 1970-1982.

```matlab
load carbig
```

Cross-tabulate the data of four-cylinder cars (cyl4) based on model year (when) and country of origin (org).

```matlab
[table,chi2,p,labels] = crosstab(cyl4,when,org);
```

Use `labels` to determine the index location in `table` for the number of four-cylinder cars made in the USA during the late period of the data.

```matlab
labels
```

```matlab
labels = 3x3 cell array
    {'Other' }    {'Early'}    {'USA' }
    {'Four'    }    {'Mid'  }    {'Europe'}
    {0x0 double}    {'Late' }    {'Japan' }
```

The first column of `labels` corresponds to the data in `cyl4`, and indicates that row 2 of `table` contains data on cars with four cylinders. The second column of `labels` corresponds to the data in `when`, and indicates that column 3 of `table` contains data on cars made during the late period. The third column of `labels` corresponds to the data in `org`, and indicates that location 1 of the third dimension of `table` contains data on cars made in the USA.

Therefore, `table(2,3,1)` contains the number of four-cylinder cars made in the USA during the late period.

```matlab
table(2,3,1)
```

```matlab
ans = 38
```

The data contains 38 four-cylinder cars made in the USA during the late period.

Generate Contingency Table Using `crosstab`

Load the hospital data.
load hospital

The hospital dataset array contains data on 100 hospital patients, including last name, gender, age, weight, smoking status, and systolic and diastolic blood pressure measurements.

To determine whether smoking status is independent of gender, use crosstab to create a 2-by-2 contingency table of smokers and nonsmokers, grouped by gender.

[tbl,chi2,p,labels] = crosstab(hospital.Sex, hospital.Smoker)

tbl = 2x2

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>21</td>
</tr>
</tbody>
</table>

chi2 = 4.5083

p = 0.0337

labels = 2x2 cell array

{'Female'} {'0'}
{'Male' } {'1'}

The rows of the resulting contingency table tbl correspond to the patient's gender, with row 1 containing data for females and row 2 containing data for males. The columns correspond to the patient's smoking status, with column 1 containing data for nonsmokers and column 2 containing data for smokers. The returned result chi2 = 4.5083 is the value of the chi-squared test statistic for a Pearson's chi-squared test of independence. The returned value p = 0.0337 is an approximate p-value based on the chi-squared distribution.

Input Arguments

x1 — Input vector

vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1, x2, ..., xn, must be the same length.
Data Types: single | double | char | string | logical

x2 — Input vector
vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1, x2, ..., xn, must be the same length.

Data Types: single | double | char | string | logical

x1, ... , xn — Input vectors

vectors of grouping variables

Input vectors, specified as vectors of grouping variables. If you use this syntax to specify more than two input vectors, then crosstab generates a multi-dimensional cross-tabulation table. All input vectors, including x1, x2, ..., xn, must be the same length.

Data Types: single | double | char | string | logical

Output Arguments

tbl — Cross-tabulation table

matrix of integer values

Cross-tabulation table, returned as a matrix of integer values.

If you specify two input vectors, x1 and x2, then tbl is an m-by-n matrix, where m is the number of distinct values in x1 and n is the number of distinct values in x2.

If you specify three or more input vectors, then tbl(i,j,...,n) is a count of indices where grp2idx(x1) is i, grp2idx(x2) is j, grp2idx(x3) is k, and so on.

chi2 — Chi-square statistic

positive scalar value

Chi-square statistic, returned as a positive scalar value. The null hypothesis is that the proportion in any entry of tbl is the product of the proportions in each dimension.

p — p-Value

scalar value in the range [0,1]
p-value for the chi-square test statistic, returned as a scalar value in the range \([0,1]\). `crosstab` tests that `tbl` is independent in each dimension.

labels — Data labels

cell array

Data labels, returned as a cell array. The entries in the first column are labels for the rows of `tbl`, the entries in the second column are labels for the columns, and so on, for a multi-dimensional `tbl`.

Algorithms

crosstab uses `grp2idx` to assign a positive integer to each distinct value. `tbl(i,j)` is a count of indices where `grp2idx(x1)` is `i` and `grp2idx(x2)` is `j`. The numerical order of `grp2idx(x1)` and `grp2idx(x2)` order rows and columns of `tbl`, respectively.

In this case, the returned value of `tbl(i,j,...,n)` is a count of indices where `grp2idx(x1)` is `i`, `grp2idx(x2)` is `j`, `grp2idx(x3)` is `k`, and so on.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with the limitation:

The fourth output, `labels`, is returned as a cell array containing \(M \) unevaluated tall cell arrays, where \(M \) is the number of input grouping variables. Each unevaluated tall cell array, `labels{j}`, contains the labels for one grouping variable.

For more information, see “Tall Arrays” (MATLAB).

See Also

`grp2idx` | `tabulate`
Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
crossval

Loss estimate using cross-validation

Syntax

vals = crossval(fun,X)
vals = crossval(fun,X,Y,...)
mse = crossval('mse',X,y,'Predfun',predfun)
mcr = crossval('mcr',X,y,'Predfun',predfun)
val = crossval(criterion,X1,X2,...,y,'Predfun',predfun)
vals = crossval(...,'name',value)

Description

vals = crossval(fun,X) performs 10-fold cross-validation for the function fun, applied to the data in X.

fun is a function handle to a function with two inputs, the training subset of X, XTRAIN, and the test subset of X, XTEST, as follows:

testval = fun(XTRAIN,XTEST)

Each time it is called, fun should use XTRAIN to fit a model, then return some criterion testval computed on XTEST using that fitted model.

X can be a column vector or a matrix. Rows of X correspond to observations; columns correspond to variables or features. Each row of vals contains the result of applying fun to one test set. If testval is a non-scalar value, crossval converts it to a row vector using linear indexing and stored in one row of vals.

vals = crossval(fun,X,Y,...) is used when data are stored in separate variables X, Y, ... All variables (column vectors, matrices, or arrays) must have the same number of rows. fun is called with the training subsets of X, Y, ..., followed by the test subsets of X, Y, ..., as follows:

testvals = fun(XTRAIN,YTRAIN,...,XTEST,YTEST,...)
mse = crossval('mse', X, y, 'Predfun', predfun) returns mse, a scalar containing a 10-fold cross-validation estimate of mean-squared error for the function predfun. X can be a column vector, matrix, or array of predictors. y is a column vector of response values. X and y must have the same number of rows.

predfun is a function handle called with the training subset of X, the training subset of y, and the test subset of X as follows:

yfit = predfun(XTRAIN, ytrain, XTEST)

Each time it is called, predfun should use XTRAIN and ytrain to fit a regression model and then return fitted values in a column vector yfit. Each row of yfit contains the predicted values for the corresponding row of XTEST. crossval computes the squared errors between yfit and the corresponding response test set, and returns the overall mean across all test sets.

mcr = crossval('mcr', X, y, 'Predfun', predfun) returns mcr, a scalar containing a 10-fold cross-validation estimate of misclassification rate (the proportion of misclassified samples) for the function predfun. The matrix X contains predictor values and the vector y contains class labels. predfun should use XTRAIN and YTRAIN to fit a classification model and return yfit as the predicted class labels for XTEST. crossval computes the number of misclassifications between yfit and the corresponding response test set, and returns the overall misclassification rate across all test sets.

val = crossval(criterion, X1, X2, ..., y, 'Predfun', predfun), where criterion is 'mse' or 'mcr', returns a cross-validation estimate of mean-squared error (for a regression model) or misclassification rate (for a classification model) with predictor values in X1, X2, ... and, respectively, response values or class labels in y. X1, X2, ... and y must have the same number of rows. predfun is a function handle called with the training subsets of X1, X2, ..., the training subset of y, and the test subsets of X1, X2, ..., as follows:

yfit=predfun(X1TRAIN, X2TRAIN, ..., ytrain, X1TEST, X2TEST, ...)

yfit should be a column vector containing the fitted values.

vals = crossval(..., 'name', value) specifies one or more optional parameter name/value pairs from the following table. Specify name inside single quotes.
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdout</td>
<td>A scalar specifying the ratio or the number of observations (p) for holdout cross-validation. When (0 < p < 1), approximately (p*n) observations for the test set are randomly selected. When (p) is an integer, (p) observations for the test set are randomly selected.</td>
</tr>
<tr>
<td>kfold</td>
<td>A positive integer that is greater than 1 specifying the number of folds (k) for (k)-fold cross-validation.</td>
</tr>
<tr>
<td>leaveout</td>
<td>Specifies leave-one-out cross-validation. The value must be 1.</td>
</tr>
<tr>
<td>mcreps</td>
<td>A positive integer specifying the number of Monte-Carlo repetitions for validation. If the first input of crossval is ('mse') or ('mcr'), crossval returns the mean of mean-squared error or misclassification rate across all of the Monte-Carlo repetitions. Otherwise, crossval concatenates the values vals from all of the Monte-Carlo repetitions along the first dimension.</td>
</tr>
<tr>
<td>partition</td>
<td>An object (c) of the cvpartition on page 32-1169 class, specifying the cross-validation type and partition.</td>
</tr>
<tr>
<td>stratify</td>
<td>A column vector group specifying groups for stratification. Both training and test sets have roughly the same class proportions as in group. NaNs, empty character vectors, empty strings, (<\text{missing}>) values, and (<\text{undefined}>) values in group are treated as missing data values, and the corresponding rows of the data are ignored.</td>
</tr>
</tbody>
</table>
Name | Value
--- | ---
options | A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with `statset`. Option fields:
- **UseParallel** — Set to `true` to compute in parallel. Default is `false`.

 You need Parallel Computing Toolbox for parallel computation.
- **UseSubstreams** — Set to `true` to compute in parallel in a reproducible fashion. Default is `false`. To compute reproducibly, set `Streams` to a type allowing substreams: `'mlfg6331_64'` or `'mrg32k3a'`.
- **Streams** — A `RandStream` object or cell array consisting of one such object. If you do not specify `Streams`, `crossval` uses the default stream.

Only one of `kfold`, `holdout`, `leaveout`, or `partition` can be specified, and `partition` cannot be specified with `stratify`. If both `partition` and `mcreps` are specified, the first Monte-Carlo repetition uses the partition information in the `cvpartition` object, and the `repartition` method is called to generate new partitions for each of the remaining repetitions. If no cross-validation type is specified, the default is 10-fold cross-validation.

Note When using cross-validation with classification algorithms, stratification is preferred. Otherwise, some test sets may not include observations from all classes.

Examples

Example 1

Compute mean-squared error for regression using 10-fold cross-validation:

```matlab
load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
```
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'predfun',regf)
cvMse =
 0.1015

Example 2

Compute misclassification rate using stratified 10-fold cross-validation:

load('fisheriris');
y = species;
X = meas;
cp = cvpartition(y,'k',10); % Stratified cross-validation

classf = @(XTRAIN, ytrain,XTEST)(classify(XTEST,XTRAIN,...
ytrain));

cvMCR = crossval('mcr',X,y,'predfun',classf,'partition',cp)
cvMCR =
 0.0200

Example 3

Compute the confusion matrix using stratified 10-fold cross-validation:

load('fisheriris');
y = species;
X = meas;
order = unique(y); % Order of the group labels
cp = cvpartition(y,'k',10); % Stratified cross-validation

f = @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),'order',order);

cfMat = crossval(f,X,y,'partition',cp);
cfMat = reshape(sum(cfMat),3,3)
cfMat =
 50 0 0
 0 48 2
 0 1 49

cfMat is the summation of 10 confusion matrices from 10 test sets.
References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
cvpartition

Topics
“Grouping Variables” on page 2-57

Introduced in R2008a
crossval

Class: ClassificationDiscriminant

Cross-validated discriminant analysis classifier

Syntax

cvmodel = crossval(obj)
cvmodel = crossval(obj,Name,Value)

Description

cvmodel = crossval(obj) creates a partitioned model from obj, a fitted discriminant analysis classifier. By default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(obj,Name,Value) creates a partitioned model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
CVPartition

Object of class cvpartition, created by the cvpartition function. crossval splits the data into subsets with cvpartition.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Default: []

Holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Default: []

KFold

Number of folds to use in a cross-validated classifier, a positive integer value greater than 1.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Default: 10

Leaveout

Set to 'on' for leave-one-out cross validation.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Examples

Create a classification model for the Fisher iris data, and then create a cross-validation model. Evaluate the quality the model using kfoldLoss.

load fisheriris
obj = fitcdiscr(meas,species);
cvmodel = crossval(obj);
L = kfoldLoss(cvmodel)
L = 0.0200

Tips

- Assess the predictive performance of `obj` on cross-validated data using the “kfold” methods and properties of `cvmode`, such as `kfoldLoss`.

Alternatives

You can create a cross-validation classifier directly from the data, instead of creating a discriminant analysis classifier followed by a cross-validation classifier. To do so, include one of these options in `fitcdiscr`: 'CrossVal', 'CVP', 'Holdout', 'K', or 'Leaveout'.

See Also

crossval|fitcdiscr|kfoldEdge|kfoldLoss|kfoldMargin|kfoldPredict|kfoldfun

Topics

“Discriminant Analysis Classification” on page 20-2
crossval

Class: ClassificationECOC

Cross-validate multiclass, error-correcting output codes model

Syntax

CVMdl = crossval(Mdl)
CVMdl = crossval(Mdl,Name,Value)

Description

CVMdl = crossval(Mdl) returns a cross-validated (partitioned), multiclass, error-correcting output codes (ECOC) model (CVMdl) from a trained ECOC model (Mdl).

By default, crossval uses 10-fold cross validation on the training data to create CVMdl.

CVMdl = crossval(Mdl,Name,Value) returns a partitioned ECOC model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the number of folds or a holdout sample proportion.

Input Arguments

Mdl — Multiclass ECOC model
ClassificationECOC model

Multiclass ECOC model, specified as a ClassificationECOC model returned by fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CVPartition — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1. Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.
1 Randomly partition the data into \(k \) sets.
2 For each set, reserve the set as validation data, and train the model using the other \(k - 1 \) sets.
3 Store the \(k \) compact, trained models in the cells of a \(k \)-by-1 cell vector in the \texttt{Trained} property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: \texttt{CVPartition}, \texttt{Holdout}, \texttt{KFold}, or \texttt{Leaveout}.

Example: \texttt{'}KFold',5\texttt{'}

Data Types: \texttt{single} | \texttt{double}

Leaveout — Leave-one-out cross-validation flag

\texttt{'}off' (default) | \texttt{'}on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of \texttt{'}Leaveout' and \texttt{'}on'} or \texttt{'}off'\texttt{'.} If you specify \texttt{'}Leaveout','on'}, then, for each of the \(n \) observations (where \(n \) is the number of observations excluding missing observations, specified in the \texttt{NumObservations} property of the model), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other \(n - 1 \) observations.
2 Store the \(n \) compact, trained models in the cells of an \(n \)-by-1 cell vector in the \texttt{Trained} property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: \texttt{CVPartition}, \texttt{Holdout}, \texttt{KFold}, or \texttt{Leaveout}.

Example: \texttt{'}Leaveout','on'}

Options — Estimation options

\texttt{[]} (default) | structure array returned by \texttt{statset}

Estimation options, specified as the comma-separated pair consisting of \texttt{'}Options'} and a structure array returned by \texttt{statset}.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify \texttt{'}Options'}, \texttt{statset('UseParallel',1)}.

32-1095
Output Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, returned as a ClassificationPartitionedECOC model.

Examples

Cross-Validate ECOC Classifier

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',1)

t =
Fit template for classification SVM.

 Alpha: [0x1 double]
 BoxConstraint: []
 CacheSize: []
 CachingMethod: ''
 ClipAlphas: []
 DeltaGradientTolerance: []
 Epsilon: []
 GapTolerance: []
 KKTolerance: []
 IterationLimit: []
 KernelFunction: ''
 KernelScale: []
 KernelOffset: []
 KernelPolynomialOrder: []
 NumPrint: []
 Nu: []
t is an SVM template. Most of the template object's properties are empty. When training the ECOC classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

```matlab
Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});
```

Mdl is a `ClassificationECOC` classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

```matlab
CVMdl = crossval(Mdl);
```

CVMdl is a `ClassificationPartitionedECOC` cross-validated ECOC classifier.

Estimate the classification error.

```matlab
loss = kfoldLoss(CVMdl)
```

loss = 0.0400

The classification error is 4%, which indicates that the ECOC classifier generalizes fairly well.

Cross Validate an ECOC Classifier Using Parallel Computing

Consider the arrhythmia data set. There are 16 classes in the study, 13 of which are represented in the data. The first class indicates that the subject did not have arrhythmia,
and the last class indicates that the subject's arrhythmia state was not recorded. Suppose that the other classes are ordinal levels indicating the severity of arrhythmia.

Train an ECOC classifier with a custom coding design specified by the description of the classes.

Load the arrhythmia data set.

```matlab
load arrhythmia
Y = categorical(Y);
K = unique(Y); % Number of distinct classes

Construct a coding matrix that describes the nature of the classes.

```matlab
OrdMat = designecoc(11,'ordinal');
nOM = size(OrdMat);
class1VSOrd = [1; -ones(11,1); 0];
class1VSClass16 = [1; zeros(11,1); -1];
OrdVSClass16 = [0; ones(11,1); -1];
Coding = [class1VSOrd class1VSClass16 OrdVSClass16; ...
 zeros(1,nOM(2)); OrdMat; zeros(1,nOM(2))];
```

Train an ECOC classifier using the custom coding design (Coding) and parallel computing. Specify to use an ensemble of 50 classification trees boosted using GentleBoost.

```matlab
t = templateEnsemble('GentleBoost',50,'Tree');
options = statset('UseParallel',1);
Mdl = fitcecoc(X,Y,'Coding',Coding,'Learners',t,'Options',options);
```

Mdl is a ClassificationECOC model. You can access its properties using dot notation.

Cross validate Mdl using 8-fold cross validation and parallel computing.

```matlab
rng(1); % For reproducibility
CVMdl = crossval(Mdl,'Options',options,'KFold',8);
```

Warning: One or more folds do not contain points from all the groups.

Since some of the classes have low relative frequency, some of the folds do not train using observations from those classes. CVMdl is a ClassificationPartitionedECOC cross-validated ECOC model.

Estimate the generalization error using parallel computing.
The out-of-sample classification error is 32%, which indicates that this model does not generalize well. To improve the model, try training using a different boosting method, such as RobustBoost, or a different algorithm altogether, such as SVM.

**Tips**

Assess the predictive performance of Mdl on cross-validated data using the kfold functions and properties of CVMdl, such as kfoldLoss.

**Alternatives**

Instead of training an ECOC model and then cross validating it, you can create a cross-validated ECOC model directly using fitcecoc and by specifying any of these name-value pair arguments: CrossVal, CVPartition, Holdout, Leaveout, or KFold.

**Extended Capabilities**

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.
See Also
ClassificationECOC | ClassificationPartitionedECOC |
CompactClassificationECOC | cvpartition | fitcecoc | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
crossval

Cross validate ensemble

Syntax

cvens = crossval(ens)
cvens = crossval(ens,Name,Value)

Description

cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble. Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

cvpartition

A partition of class cvpartition. Sets the partition for cross validation.
Use no more than one of the name-value pairs cvpartition, holdout, kfold, or leaveout.

**holdout**

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

**kfold**

Number of folds for cross validation, a numeric positive scalar greater than 1.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

**leaveout**

If 'on', use leave-one-out cross validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

**nprint**

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds.

**Default:** 'off', meaning no printout

**Output Arguments**

**cvens**

A cross-validated classification ensemble of class ClassificationPartitionedEnsemble.
Examples

Cross-Validate Classification Ensemble

Create a cross-validated classification model for the Fisher iris data, and assess its quality using the kfoldLoss method.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Create a cross-validated ensemble from ens and find the classification error averaged over all folds.

rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)

L = 0.0467

Alternatives

You can create a cross-validation ensemble directly from the data, instead of creating an ensemble followed by a cross-validation ensemble. To do so, include one of these five options in fitcensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

See Also
ClassificationPartitionedEnsemble | cvpartition
**crossval**

Cross-validated k-nearest neighbor classifier

**Syntax**

\[
\text{cvmodel} = \text{crossval}(\text{mdl})
\]
\[
\text{cvmodel} = \text{crossval}(\text{mdl},\text{Name},\text{Value})
\]

**Description**

\[
\text{cvmodel} = \text{crossval}(\text{mdl})\] creates a cross-validated (partitioned) model from \(\text{mdl}\), a fitted KNN classification model. By default, \text{crossval} uses 10-fold cross-validation on the training data to create \text{cvmodel}, a ClassificationPartitionedModel object.

\[
\text{cvmodel} = \text{crossval}(\text{mdl},\text{Name},\text{Value})\] creates a partitioned model with additional options specified by one or more name-value pair arguments. For example, specify \'Leaveout\',\'on\' for leave-one-out cross-validation.

**Examples**

**Cross-Validated k-Nearest Neighbor Model**

Create a cross-validated k-nearest neighbor model, and assess classification performance using the model.

Load the Fisher iris data set.

load fisheriris
\[
\text{X} = \text{meas};
\]
\[
\text{Y} = \text{species};
\]

Create a classifier for nearest neighbors.

\[
\text{mdl} = \text{fitcknn}(\text{X},\text{Y});
\]
Create a cross-validated classifier.

`cvmdl = crossval(mdl)`

```matlab
cvmdl =
 classreg.learning.partition.ClassificationPartitionedModel
 CrossValidatedModel: 'KNN'
 PredictorNames: {'x1' 'x2' 'x3' 'x4'}
 ResponseName: 'Y'
 NumObservations: 150
 KFold: 10
 Partition: [1x1 cvpartition]
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
```

Properties, Methods

Find the cross-validated loss of the classifier.

`cvmdlloss = kfoldLoss(cvmdl)`

`cvmdlloss = 0.0467`

The cross-validated loss is less than 5%. You can expect `mdl` to have a similar error rate.

**Input Arguments**

`mdl` — *k*-nearest neighbor classifier model
ClassificationKNN object

`k`-nearest neighbor classifier model, specified as a `ClassificationKNN` object.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`. 
Example: `crossval.mdl,'KFold',5)` creates a partitioned model with 5-fold cross-validation.

**CVP** — Cross-validation partition

`[]` (default) | `cvpartition` object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVP' and a `cvpartition` object created by the `cvpartition` function. `crossval` splits the data into subsets with `cvpartition`.

Use only one of these four options at a time: 'CVP', 'Holdout', 'KFold', or 'Leaveout'.

**Holdout** — Fraction of data for holdout validation

Scalar value in the range $$(0,1)$$

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range $$(0,1)$$. Use only one of these four options at a time: 'CVP', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'Holdout', 0.3

Data Types: `single` | `double`

**KFold** — Number of folds

10 (default) | Positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. Use only one of these four options at a time: 'CVP', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'KFold', 3

Data Types: `single` | `double`

**Leaveout** — Leave-one-out cross-validation flag

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. Leave-one-out is a special case of 'KFold' in which the number of folds equals the number of observations.
Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'Leaveout', 'on'

**Tips**

- Assess the predictive performance of mdl on cross-validated data by using the “kfold” methods and properties of cvmodel, such as kfoldLoss.

**Alternative Functionality**

You can create a cross-validated model directly from the data instead of creating a model followed by a cross-validated model. To do so, specify one of these options in fitcknn: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

**See Also**

ClassificationKNN | ClassificationPartitionedModel | crossval | fitcknn | kfoldEdge | kfoldLoss | kfoldMargin | kfoldPredict | kfoldfun

**Topics**

“Examine Quality of KNN Classifier” on page 18-37
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

**Introduced in R2012a**
crossval

Class: ClassificationNaiveBayes

Cross-validated naive Bayes classifier

Syntax

CVMdl = crossval(Mdl)
CVMdl = crossval(Mdl,Name,Value)

Description

CVMdl = crossval(Mdl) returns a partitioned naive Bayes classifier (CVMdl) from a trained naive Bayes classifier (Mdl).

By default, crossval uses 10-fold cross validation on the training data to create CVMdl.

CVMdl = crossval(Mdl,Name,Value) returns a partitioned naive Bayes classifier with additional options specified by one or more Name,Value pair arguments.

For example, you can specify a holdout sample proportion.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**CVP** — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVP' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVP', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVP', cvp.

**Holdout** — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout',p, then the software completes these steps:

1. Randomly select and reserve \( p \times 100\% \) of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVP, Holdout, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

**KFold** — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold',k, then the software completes these steps.
Randomly partition the data into \( k \) sets. For each set, reserve the set as validation data, and train the model using the other \( k - 1 \) sets. Store the \( k \) compact, trained models in the cells of a \( k \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \( n \) observations (where \( n \) is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other \( n - 1 \) observations.
2. Store the \( n \) compact, trained models in the cells of an \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

**Output Arguments**

**CVMdl — Cross-validated naive Bayes classifier**

ClassificationPartitionedModel model

Cross-validated naive Bayes classifier, returned as a ClassificationPartitionedModel model.
Examples

Cross Validate a Naive Bayes Classifier Using crossval

Load the ionosphere data set.

```matlab
load ionosphere
X = X(:,3:end); % Remove first two predictors for stability
rng(1); % For reproducibility
```

Train a naive Bayes classifier. It is good practice to define the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'b','g'});
```

Mdl is a trained `ClassificationNaiveBayes` classifier. 'b' is the negative class and 'g' is the positive class.

Cross validate the classifier using 10-fold cross validation.

```matlab
CVMdl = crossval(Mdl)
```

CVMdl = classreg.learning.partition.ClassificationPartitionedModel

```matlab
CrossValidatedModel: 'NaiveBayes'
PredictorNames: {1x32 cell}
ResponseName: 'Y'
NumObservations: 351
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: {'b' 'g'}
ScoreTransform: 'none'
```

Properties, Methods

```matlab
FirstModel = CVMdl.Trained{1}
```

FirstModel = classreg.learning.classif.CompactClassificationNaiveBayes

```matlab
ResponseName: 'Y'
CategoricalPredictors: []
```
CVMdl is a `ClassificationPartitionedModel` cross-validated classifier. The software:

1. Randomly partitions the data into 10, equally sized sets.
2. Trains a naive Bayes classifier on nine of the sets.
3. Repeats steps 1 and 2 $k = 10$ times. It excludes one partition each time, and trains on the other nine partitions.
4. Combines generalization statistics for each fold.

`FirstModel` is the first of the 10 trained classifiers. It is a `CompactClassificationNaiveBayes` model.

You can estimate the generalization error by passing `CVMdl` to `kfoldLoss`.

Specify a Holdout-Sample Proportion for Naive Bayes Cross Validation

By default, `crossval` uses 10-fold cross validation to cross validate a naive Bayes classifier. You have several other options, such as specifying a different number of folds or holdout-sample proportion. This example shows how to specify a holdout-sample proportion.

Load the `ionosphere` data set.

```matlab
load ionosphere
X = X(:,3:end); % Remove first two predictors for stability
rng(1); % For reproducibility
```

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally distributed given its label. It is good practice to define the class order.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'b','g'});
```
Mdl is a trained ClassificationNaiveBayes classifier. 'b' is the negative class and 'g' is the positive class.

Cross validate the classifier by specifying a 30% holdout sample.

```matlab
CVMdl = crossval(Mdl,'Holdout',0.30)
```

CVMdl is a ClassificationPartitionedModel. TrainedModel is a CompactClassificationNaiveBayes classifier trained using 70% of the data.

Estimate the generalization error.

```matlab
kfoldLoss(CVMdl)
```

ans = 0.2571
The out-of-sample misclassification error is approximately 2.6%.

**Tips**

Assess the predictive performance of `Mdl` on cross-validated data using the “kfold” function and properties of `CVMdl`, such as `kfoldLoss`.

**Alternatives**

Instead of creating a naive Bayes classifier followed by a cross-validation classifier, create a cross-validated classifier directly using `fitcnb` and by specifying any of these name-value pair arguments: `'CrossVal'`, `'CVPartition'`, `'Holdout'`, `'Leaveout'`, or `'KFold'`.

**See Also**

`ClassificationNaiveBayes` | `ClassificationPartitionedModel` | `CompactClassificationNaiveBayes` | `fitcnb` | `kfoldLoss`
crossval

Cross-validate support vector machine (SVM) classifier

Syntax

CVSVMModel = crossval(SVMModel)
CVSVMModel = crossval(SVMModel,Name,Value)

Description

CVSVMModel = crossval(SVMModel) returns a cross-validated (partitioned) support vector machine (SVM) classifier (CVSVMModel) from a trained SVM classifier (SVMModel). By default, crossval uses 10-fold cross-validation on the training data to create CVSVMModel, a ClassificationPartitionedModel classifier.

CVSVMModel = crossval(SVMModel,Name,Value) returns a partitioned SVM classifier with additional options specified by one or more name-value pair arguments. For example, you can specify the number of folds or holdout sample proportion.

Examples

Cross-Validate SVM Classifier

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier. 'b' is the negative class and 'g' is the positive class.
Cross-validate the classifier using 10-fold cross-validation.

CVSVMModel = crossval(SVMModel)

CVSVMModel = 
    classreg.learning.partition.ClassificationPartitionedModel
    CrossValidatedModel: 'SVM'
    PredictorNames: {1x34 cell}
    ResponseName: 'Y'
    NumObservations: 351
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'

Properties, Methods

FirstModel = CVSVMModel.Trained{1}

FirstModel = 
    classreg.learning.classif.CompactClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
    Alpha: [78x1 double]
    Bias: -0.2209
    KernelParameters: [1x1 struct]
    Mu: [1x34 double]
    Sigma: [1x34 double]
    SupportVectors: [78x34 double]
    SupportVectorLabels: [78x1 double]

Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated classifier. During cross-validation, the software completes these steps:

1  Randomly partition the data into 10 sets of equal size.
2  Train an SVM classifier on nine of the sets.
3 Repeat steps 1 and 2 \( k = 10 \) times. The software leaves out one partition each time and trains on the other nine partitions.

4 Combine generalization statistics for each fold.

FirstModel is the first of the 10 trained classifiers. It is a CompactClassificationSVM classifier.

You can estimate the generalization error by passing CVSVMModel to kfoldLoss.

**Specify Holdout Sample Proportion for SVM Cross-Validation**

Specify a holdout sample proportion for cross-validation. By default, crossval uses 10-fold cross-validation to cross-validate an SVM classifier. However, you have several other options for cross-validation. For example, you can specify a different number of folds or holdout sample proportion.

Load the ionosphere data set.

```matlab
load ionosphere
rng(1); % For reproducibility
```

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

```matlab
SVMMModel = fitcsvm(X,Y, 'Standardize',true,'ClassNames',{'b','g'});
```

SVMMModel is a trained ClassificationSVM classifier.

Cross-validate the classifier by specifying a 15% holdout sample.

```matlab
CVSVMModel = crossval(SVMMModel,'Holdout',0.15)
```

CVSVMModel =
```
classreg.learning.partition.ClassificationPartitionedModel
 CrossValidatedModel: 'SVM'
 PredictorNames: {1x34 cell}
 ResponseName: 'Y'
 NumObservations: 351
 KFold: 1
 Partition: [1x1 cvpartition]
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
```
Properties, Methods

**CVSVMModel** is a *ClassificationPartitionedModel*.

Display properties of the classifier trained using 85% of the data.

```matlab
TrainedModel = CVSVMModel.Trained{1}
```

```matlab
TrainedModel =
 classreg.learning.classif.CompactClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 Alpha: [74x1 double]
 Bias: -0.2952
 KernelParameters: [1x1 struct]
 Mu: [1x34 double]
 Sigma: [1x34 double]
 SupportVectors: [74x34 double]
 SupportVectorLabels: [74x1 double]
```

Properties, Methods

**TrainedModel** is a *CompactClassificationSVM* classifier trained using 85% of the data.

Estimate the generalization error.

```matlab
kfoldLoss(CVSVMModel)
```

```matlab
ans = 0.0769
```

The out-of-sample misclassification error is approximately 8%.
**Input Arguments**

**SVMModel** — Full, trained SVM classifier

*ClassificationSVM* classifier

Full, trained SVM classifier, specified as a *ClassificationSVM* model trained with *fitcsvm*.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of *Name, Value* arguments. *Name* is the argument name and *Value* is the corresponding value. *Name* must appear inside quotes. You can specify several name and value pair arguments in any order as

```
Name1,Value1,...,NameN,ValueN
```

Example: `crossval(SVMModel,'KFold',5)` specifies using five folds in a cross-validated model.

**CVPartition** — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of

'CVPartition' and a *cvpartition* partition object as created by *cvpartition*. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using `cvp = cvpartition(500,'KFold',5)`. Then, you can specify the cross-validated model by using 'CVPartition', cvp.

**Holdout** — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', *p*, then the software completes these steps:

1. Randomly select and reserve *p*\*100% of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'Holdout',0.1`

Data Types: `double` | `single`

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of `'KFold'` and a positive integer value greater than 1. If you specify `'KFold',k`, then the software completes these steps.

1 Randomly partition the data into `k` sets.
2 For each set, reserve the set as validation data, and train the model using the other `k - 1` sets.
3 Store the `k` compact, trained models in the cells of a `k`-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'KFold',5`

Data Types: `single` | `double`

**Leaveout — Leave-one-out cross-validation flag**

`'off'` (default) | `'on'`

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of `'Leaveout'` and `'on'` or `'off'`. If you specify `'Leaveout','on'`, then, for each of the `n` observations (where `n` is the number of observations excluding missing observations, specified in the `NumObservations` property of the model), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other `n - 1` observations.
2 Store the `n` compact, trained models in the cells of an `n`-by-1 cell vector in the `Trained` property of the cross-validated model.
To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

Tips

Assess the predictive performance of SVMModel on cross-validated data by using the “kfold” methods and properties of CVSVMModel, such as kfoldLoss.

Alternative Functionality

Instead of training an SVM classifier and then cross-validating it, you can create a cross-validated classifier directly by using fitcsvm and specifying any of these name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'Leaveout', or 'KFold'.

See Also

ClassificationPartitionedModel | ClassificationSVM | CompactClassificationSVM | cvpartition | fitcsvm

Introduced in R2014a
crossval

Class: ClassificationTree
Cross-validated decision tree

Syntax

cvmodel = crossval(model)
cvmodel = crossval(model,Name,Value)

Description

cvmodel = crossval(model) creates a partitioned model from model, a fitted classification tree. By default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

model
A classification model, produced using fitctree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CVPartition — Cross-validation partition
[] (default) | cvpartition object
Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition object created by the cvpartition function. crossval splits the data into subsets with cvpartition.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

**Holdout — Fraction of data for holdout validation**
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1).

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'Holdout', 0.3
Data Types: single | double

**KFold — Number of folds**
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'KFold', 3
Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. Leave-one-out is a special case of 'KFold' in which the number of folds equals the number of observations.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'Leaveout', 'on'
**Output Arguments**

`cvm` — Partitioned model
ClassificationPartitionedModel object

Partitioned model, returned as a `ClassificationPartitionedModel` object.

**Examples**

**Create a Cross-Validation Model**

Create a classification model for the ionosphere data, then create a cross-validation model. Evaluate the quality the model using `kfoldLoss`.

```matlab
load ionosphere
tree = fitctree(X,Y);
cvmodel = crossval(tree);
L = kfoldLoss(cvmodel)
```

```matlab
L = 0.1111
```

**Tips**

- Assess the predictive performance of `model` on cross-validated data using the “kfold” methods and properties of `cvm`, such as `kfoldLoss`.

**Alternatives**

You can create a cross-validation tree directly from the data, instead of creating a decision tree followed by a cross-validation tree. To do so, include one of these five options in `fitctree`: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.
See Also
crossval | fitctree
crossval

Cross validate ensemble

Syntax

cvens = crossval(ens)
cvens = crossval(ens,Name,Value)

Description

cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble. Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

cvpartition

A partition of class cvpartition. Sets the partition for cross validation.
Use no more than one of the name-value pairs `cvguchi`, `holdout`, `kfold`, and `leaveout`.

**holdout**

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvguchi'.

**kfold**

Number of folds for cross validation, a positive integer value greater than 1.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvguchi'.

**leaveout**

If 'on', use leave-one-out cross-validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvguchi'.

**nprint**

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds.

**Default**: 'off', meaning no printout

**Output Arguments**

**cvens**

A cross-validated classification ensemble of class `RegressionPartitionedEnsemble`. 
Examples

Create Cross-Validated Regression Model

Create a cross-validated regression model for the carsmall data, and evaluate its quality using the kfoldLoss method.

Load the carsmall data set and select acceleration, displacement, horsepower, and vehicle weight as predictors.

```matlab
load carsmall;
X = [Acceleration Displacement Horsepower Weight];
```

Train a regression ensemble.

```matlab
rens = fitrensemble(X,MPG);
```

Create a cross-validated ensemble from rens and find the cross-validation loss.

```matlab
rng(10,'twister') % For reproducibility
cvens = crossval(rens);
L = kfoldLoss(cvens)
L = 31.8744
```

Alternatives

You can create a cross-validation ensemble directly from the data, instead of creating an ensemble followed by a cross-validation ensemble. To do so, include one of these five options in fitrensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

See Also
RegressionPartitionedEnsemble | cvpartition | kfoldLoss
crossval

**Class:** RegressionGP

Cross-validate Gaussian process regression model

**Syntax**

```matlab
cvMdl = crossval(gprMdl)
cvmdl = crossval(gprMdl,Name,Value)
```

**Description**

`cvMdl = crossval(gprMdl)` returns the partitioned model, `cvMdl`, built from the Gaussian process regression (GPR) model, `gprMdl`, using 10-fold cross validation.

`cvmdl` is a `RegressionPartitionedModel` object, and `gprMdl` is a `RegressionGP` (full) object.

`cvmdl = crossval(gprMdl,Name,Value)` returns the partitioned model, `cvmdl`, with additional options specified by one or more `Name`, `Value` pair arguments. For example, you can specify the number of folds or the fraction of the data to use for testing.

**Input Arguments**

`gprMdl` — Gaussian process regression model
RegressionGP object

Gaussian process regression model, specified as a `RegressionGP` (full) object. You cannot call `crossval` on a compact regression object.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.

32-1129
You can specify several name and value pair arguments in any order as 
Name1,Value1,...,NameN,ValueN.

**CVPartition — Random partition for a k-fold cross validation**
cvpartition object

Random partition for a k-fold cross validation, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition object.

Example: 'CVPartition', cvp uses the random partition defined by cvp.

If you specify CVPartition, then you cannot specify Holdout, KFold, or LeaveOut.

**Holdout — Fraction of data to use for testing**
scalar value in the range from 0 to 1

Fraction of the data to use for testing in holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range from 0 to 1. If you specify 'Holdout', p, then crossval:
1. Randomly reserves p*100% of the data as validation data, and trains the model using the rest of the data
2. Stores the compact, trained model in cvgprMdl.Trained.

Example: 'Holdout', 0.3 uses 30% of the data for testing and 70% of the data for training.

If you specify Holdout, then you cannot specify CVPartition, KFold, or Leaveout.

Data Types: single | double

**KFold — Number of folds**
10 (default) | positive integer value greater than 1

Number of folds to use in cross-validated GPR model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. Kfold must be greater than 1. If you specify 'Kfold', k then crossval:
1. Randomly partitions the data into k sets.
2. For each set, reserves the set as test data, and trains the model using the other k - 1 sets.
3. Stores the k compact, trained models in the cells of a k-by-1 cell array in cvgprMdl.Trained.

Example: 'KFold', 5 uses 5 folds in cross-validation. That is, for each fold, it uses that fold as test data, and trains the model on the remaining 4 folds.
If you specify KFold, then you cannot specify CVPartition, Holdout, or Leaveout.

Data Types: single | double

**Leaveout — Indicator for leave-one-out cross-validation**

'off' (default) | 'on'

Indicator for leave-one-out cross-validation, specified as the comma-separated pair consisting of 'LeaveOut' and either 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations, crossval:
1. Reserves the observation as test data, and trains the model using the other n - 1 observations.
2. Stores the n compact, trained models in the cells of a n-by-1 cell array in cvgprMdl.Trained.

Example: 'Leaveout','on'

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.

**Output Arguments**

cvgprMdl — Partitioned Gaussian process regression model
RegressionPartitionedModel object

Partitioned Gaussian process regression model, returned as a RegressionPartitionedModel object.

**Examples**

**Partition Data for Cross-Validation**

Download the housing data [1], from the UCI Machine Learning Repository [4].

The dataset has 506 observations. The first 13 columns contain the predictor values and the last column contains the response values. The goal is to predict the median value of owner-occupied homes in suburban Boston as a function of 13 predictors.

Load the data and define the response vector and the predictor matrix.
load('housing.data');
X = housing(:,1:13);
y = housing(:,end);

Fit a GPR model using the squared exponential kernel function with separate length scale for each predictor. Standardize the predictor variables.

gprMdl = fitrgp(X,y,'KernelFunction','ardsquaredexponential','Standardize',1);

Create a cross-validation partition for data using predictor 4 as a grouping variable.

rng('default') % For reproducibility
cvp = cvpartition(X(:,4),'kfold',10);

Create a 10-fold cross-validated model using the partitioned data in cvp.

cvgprMdl = crossval(gprMdl,'CVPartition',cvp);

Compute the regression loss for in-fold observations using models trained on out-of-fold observations.

L = kfoldLoss(cvgprMdl)

L =
    9.5299

Predict the response for in-fold observations, i.e. observations not used for training.

ypred = kfoldPredict(cvgprMdl);

For every fold, kfoldPredict predicts responses for observations in that fold using the models trained on out-of-fold observations.

Plot the actual responses and prediction data.

plot(y,'r.');
hold on;
plot(ypred,'b--.);
axis([0 510 -15 65]);
legend('True response','GPR prediction','Location','Best');
hold off;
Train GPR Model Using 4-Fold Cross Validation

Download the abalone data [2], [3], from the UCI Machine Learning Repository [4] and save it in your current directory with the name ‘abalone.data’.

Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);

The dataset has 4177 observations. The goal is to predict the age of abalone from 8 physical measurements.

Fit a GPR model using the subset of regressors (sr) method for parameter estimation and fully independent conditional (fic) method for prediction. Standardize the predictors and use a squared exponential kernel function with a separate length scale for each predictor.

gprMdl = fitrgp(tbl,tbl(:,end),'KernelFunction','ardsquaredexponential',... 'FitMethod','sr','PredictMethod','fic','Standardize',1);

Cross-validate the model using 4-fold cross validation. This partitions the data into 4 sets. For each set, fitrgp uses that set (25% of the data) as the test data, and trains the model on the remaining 3 sets (75% of the data).
rng('default') % For reproducibility
cvgprMdl = crossval(gprMdl,'KFold',4);

Compute the loss over individual folds.

L = kfoldLoss(cvgprMdl,'mode','individual')

L =
    4.3669
    4.6896
    4.0565
    4.3162

Compute the average cross-validated loss on over all folds. The default is the mean squared error.

L2 = kfoldLoss(cvgprMdl)

L2 =
    4.3573

This is equal to the mean loss over individual folds.

mse = mean(L)

mse =
    4.3573

Tips

- You can only use one of the name-value pair arguments at a time.
- You cannot compute the prediction intervals for a cross-validated model.

Alternatives

Alternatively, you can train a cross-validated model using the related name-value pair arguments in fitrgp.
If you supply a custom 'ActiveSet' in the call to \texttt{fitrgp}, then you cannot cross validate the GPR model.

**References**


**See Also**

RegressionGP | RegressionPartitionedModel | fitrgp | kfoldLoss | kfoldPredict

**Topics**

“Train GPR Model Using Cross-Validation” on page 32-2252

**Introduced in R2015b**
crossval

Class: RegressionSVM

Cross-validated support vector machine regression model

Syntax

CVMdl = crossval(mdl)
CVMdl = crossval(mdl,Name,Value)

Description

CVMdl = crossval(mdl) returns a cross-validated (partitioned) support vector machine regression model, CVMdl, from a trained SVM regression model, mdl.

CVMdl = crossval(mdl,Name,Value) returns a cross-validated model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
CVPartition — Cross-validation partition

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps:

1 Randomly partition the data into k sets.
For each set, reserve the set as validation data, and train the model using the other $k - 1$ sets.

Store the $k$ compact, trained models in the cells of a $k$-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold', 5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the $n$ observations (where $n$ is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other $n - 1$ observations.
2. Store the $n$ compact, trained models in the cells of an $n$-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

**Output Arguments**

**CVMdl — Cross-validated SVM regression model**

RegressionPartitionedSVM model

Cross-validated SVM regression model, returned as a RegressionPartitionedSVM model.
Examples

Train Cross-Validated SVM Regression Model Using crossval

This example shows how to train a cross-validated SVM regression model using crossval.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current folder with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
 rng default % for reproducibility
```

The sample data contains 4177 observations. All the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone and determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2. Standardize the data.

```matlab
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);
mdl
```

`mdl` is a trained RegressionSVM regression model.

Cross validate the model using 10-fold cross validation.

```matlab
CVMdl = crossval(mdl)
CVMdl =
```

```matlab
classreg.learning.partition.RegressionPartitionedSVM
 CrossValidatedModel: 'SVM'
 PredictorNames: {1x8 cell}
 CategoricalPredictors: 1
 ResponseName: 'Var9'
 NumObservations: 4177
 KFold: 10
 Partition: [1x1 cvpartition]
 ResponseTransform: 'none'
```
Properties, Methods

CVMdl is a RegressionPartitionedSVM cross-validated regression model. The software:

1. Randomly partitions the data into 10 equally sized sets.
2. Trains an SVM regression model on nine of the 10 sets.
3. Repeats steps 1 and 2 \( k = 10 \) times. It leaves out one of the partitions each time, and trains on the other nine partitions.
4. Combines generalization statistics for each fold.

Calculate the resubstitution loss for the cross-validated model.

```matlab
loss = kfoldLoss(CVMdl)
loss =
 4.5712
```

Specify Cross-Validation Holdout Proportion for SVM Regression

This example shows how to specify a holdout proportion for training a cross-validated SVM regression model.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current folder with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default \% for reproducibility
```

The sample data contains 4177 observations. All the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone and determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale. Standardize the data.
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the regression model by specifying a 10% holdout sample.

CVMdl = crossval(mdl,'Holdout',0.1)

CVMdl =

    classreg.learning.partition.RegressionPartitionedSVM
    CrossValidatedModel: 'SVM'
    PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
    ResponseName: 'Var9'
    NumObservations: 4177
    KFold: 1
    Partition: [1x1 cvpartition]
    ResponseTransform: 'none'

Properties, Methods

CVMdl is a RegressionPartitionedSVM model object.

Calculate the resubstitution loss for the cross-validated model.

loss = kfoldLoss(CVMdl)

loss =

    5.2499

Alternatives

Instead of training an SVM regression model and then cross-validating it, you can create a cross-validated model directly by using fitrsvm and specifying any of these name-value pair arguments: 'CrossVal','CVPartition','Holdout','Leaveout', or 'KFold'.
References


See Also
CompactRegressionSVM | RegressionPartitionedSVM | RegressionSVM | fitrsvm | kfoldLoss | kfoldPredict

Introduced in R2015b
crossval

Class: RegressionTree

Cross-validated decision tree

Syntax

cvmodel = crossval(model)
cvmodel = crossval(model,Name,Value)

Description

cvmodel = crossval(model) creates a partitioned model from model, a fitted regression tree. By default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

model

A regression model, produced using fitrtree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
**CVPARTITION**

Object of class `cvpartition`, created by the `cvpartition` function. `crossval` splits the data into subsets with `cvpartition`.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Default: []

**Holdout**

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated tree: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

**KFold**

Number of folds to use in a cross-validated tree, a positive integer value greater than 1.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Default: 10

**Leaveout**

Set to 'on' for leave-one-out cross-validation.

**Output Arguments**

cvmodel

A partitioned model of class `RegressionPartitionedModel`.

**Examples**
Cross-Validate Regression Tree

Load the carsmall data set. Consider Acceleration, Displacement, Horsepower, and Weight as predictor variables.

load carsmall
X = [Acceleration Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Mdl is a RegressionTree model.

Cross-validate the regression tree using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a RegressionPartitionedModel cross-validated model. crossval stores the ten trained, compact regression trees in the Trained property of CVMdl.

Display the compact regression tree that crossval trained using all observations except those in the first fold.

CVMdl.Trained{1}

ans =
    classreg.learning.regr.CompactRegressionTree
    PredictorNames: {'x1'  'x2'  'x3'  'x4'}
    ResponseName: 'Y'
    CategoricalPredictors: []
    ResponseTransform: 'none'

Estimate the generalization error of Mdl by computing the 10-fold cross-validated mean-squared error.

L = kfoldLoss(CVMdl)

L = 23.8065
Tips

• Assess the predictive performance of model on cross-validated data using the “kfold” methods and properties of cvmodel, such as kfoldLoss.

Alternatives

You can create a cross-validation tree directly from the data, instead of creating a decision tree followed by a cross-validation tree. To do so, include one of these five options in fitrtree: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

See Also
crossval | fitrtree
cutcategories

Class: classregtree

(Removed) Cut categories

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

\[
C = \text{cutcategories}(t) \\
C = \text{cutcategories}(t,\text{nodes})
\]

Description

\(C = \text{cutcategories}(t)\) returns an \(n\)-by-2 cell array \(C\) of the categories used at branches in the decision tree \(t\), where \(n\) is the number of nodes. For each branch node \(i\) based on a categorical predictor variable \(x\), the left child is chosen if \(x\) is among the categories listed in \(C\{i,1\}\), and the right child is chosen if \(x\) is among those listed in \(C\{i,2\}\). Both columns of \(C\) are empty for branch nodes based on continuous predictors and for leaf nodes.

\(C = \text{cutcategories}(t,\text{nodes})\) takes a vector \(\text{nodes}\) of node numbers and returns the categories for the specified nodes.

References

See Also
classregtree | cutpoint | cuttype | cutvar
cutpoint

Class: classregtree

(Removed) Decision tree cut point values

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[ v = \text{cutpoint}(t) \]
\[ v = \text{cutpoint}(t,\text{nodes}) \]

**Description**

\[ v = \text{cutpoint}(t) \] returns an \( n \)-element vector \( v \) of the values used as cut points in the decision tree \( t \), where \( n \) is the number of nodes. For each branch node \( i \) based on a continuous predictor variable \( x \), the left child is chosen if \( x < v(i) \) and the right child is chosen if \( x \geq v(i) \). \( v \) is NaN for branch nodes based on categorical predictors and for leaf nodes.

\[ v = \text{cutpoint}(t,\text{nodes}) \] takes a vector \( \text{nodes} \) of node numbers and returns the cut points for the specified nodes.

**References**


**See Also**

classregtree | cutcategories | cuttype | cutvar
cuttype

**Class:** classregtree

(Removed) Cut types

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[
c = \text{cuttype}(t)
\]

\[
c = \text{cuttype}(t,nodes)
\]

**Description**

\(c = \text{cuttype}(t)\) returns an \(n\)-element cell array \(c\) indicating the type of cut at each node in the tree \(t\), where \(n\) is the number of nodes. For each node \(i\), \(c\{i\}\) is:

- **'continuous'** — If the cut is defined in the form \(x < v\) for a variable \(x\) and cut point \(v\).
- **'categorical'** — If the cut is defined by whether a variable \(x\) takes a value in a set of categories.
- **''** — If \(i\) is a leaf node.

\text{cutvar} \text{returns the cut points for 'continuous' cuts, and cutcategories returns the set of categories.}

\(c = \text{cuttype}(t,nodes)\) takes a vector \(nodes\) of node numbers and returns the cut types for the specified nodes.
References


See Also

classregtree | cutcategories | cutvar | numnodes
cutvar

Class: classregtree

(Removed) Cut variable names

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[ v = \text{cutvar}(t) \]
\[ v = \text{cutvar}(t, \text{nodes}) \]
\[ [v, \text{num}] = \text{cutvar}(...) \]

**Description**

\( v = \text{cutvar}(t) \) returns an \( n \)-element cell array \( v \) of the names of the variables used for branching in each node of the tree \( t \), where \( n \) is the number of nodes. These variables are sometimes known as *cut variables*. For leaf nodes, \( v \) contains an empty character vector.

\( v = \text{cutvar}(t, \text{nodes}) \) takes a vector \( \text{nodes} \) of node numbers and returns the cut variables for the specified nodes.

\[ [v, \text{num}] = \text{cutvar}(...) \] also returns a vector \( \text{num} \) containing the number of each variable.

**References**

See Also

children | classregtree | numnodes

32-1153
cvloss

Class: ClassificationTree

Classification error by cross validation

Syntax

E = cvloss(tree)
[E,SE] = cvloss(tree)
[E,SE,Nleaf] = cvloss(tree)
[E,SE,Nleaf,BestLevel] = cvloss(tree)
[___] = cvloss(tree,Name,Value)

Description

E = cvloss(tree) returns the cross-validated classification error (loss) for tree, a classification tree. The cvloss method uses stratified partitioning to create cross-validated sets. That is, for each fold, each partition of the data has roughly the same class proportions as in the data used to train tree.

[E,SE] = cvloss(tree) returns the standard error of E.

[E,SE,Nleaf] = cvloss(tree) returns the number of leaves of tree.

[E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for tree.

[___] = cvloss(tree,Name,Value) cross validates with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. You can specify several name-value pair arguments in any order as Name1,Value1, ...,NameN,ValueN.
**Input Arguments**

`tree` — Trained classification tree
ClassificationTree model object

Trained classification tree, specified as a ClassificationTree model object produced by fitctree.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Subtrees — Pruning level**

`0` (default) | vector of nonnegative integers | `'all'`

Pruning level, specified as the comma-separated pair consisting of `'Subtrees'` and a vector of nonnegative integers in ascending order or `'all'`.

If you specify a vector, then all elements must be at least 0 and at most `max(tree.PruneList)`. 0 indicates the full, unpruned tree and `max(tree.PruneList)` indicates the completely pruned tree (i.e., just the root node).

If you specify `'all'`, then `cvloss` operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using `0:max(tree.PruneList)`.

`cvloss` prunes `tree` to each level indicated in `Subtrees`, and then estimates the corresponding output arguments. The size of `Subtrees` determines the size of some output arguments.

To invoke `Subtrees`, the properties `PruneList` and `PruneAlpha` of `tree` must be nonempty. In other words, grow `tree` by setting `'Prune','on'`, or by pruning `tree` using `prune`.

Example: `'Subtrees','all'`

Data Types: `single` | `double` | `char` | `string`

**TreeSize — Tree size**

`'se'` (default) | `'min'`
Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following values:

- 'se' — cvloss uses the smallest tree whose cost is within one standard error of the minimum cost.
- 'min' — cvloss uses the minimal cost tree.

Example: 'TreeSize','min'

**KFold — Number of cross-validation samples**

10 (default) | positive integer value greater than 1

Number of cross-validation samples, specified as the comma-separated pair consisting of KFold and a positive integer value greater than 1.

Example: 'KFold',8

**Output Arguments**

**E — Cross-validation classification error**

numeric vector | scalar value

Cross-validation classification error (loss), returned as a vector or scalar depending on the setting of the Subtrees name-value pair.

**SE — Standard error**

numeric vector | scalar value

Standard error of E, returned as a vector or scalar depending on the setting of the Subtrees name-value pair.

**Nleaf — Number of leaf nodes**

numeric vector | scalar value

Number of leaf nodes in tree, returned as a vector or scalar depending on the setting of the Subtrees name-value pair. Leaf nodes are terminal nodes, which give classifications, not splits.

**BestLevel — Best pruning level**

scalar value
Best pruning level, returned as a scalar value. By default, a scalar representing the largest pruning level that achieves a value of $E$ within $SE$ of the minimum error. If you set `TreeSize` to `'min'`, `BestLevel` is the smallest value in `Subtrees`.

**Examples**

**Compute the Cross-Validation Error**

Compute the cross-validation error for a default classification tree.

Load the `ionosphere` data set.

```matlab
load ionosphere
```

Grow a classification tree using the entire data set.

```matlab
Mdl = fitctree(X,Y);
```

Compute the cross-validation error.

```matlab
rng(1); % For reproducibility
E = cvloss(Mdl)
```

```matlab
E = 0.1111
```

$E$ is the 10-fold misclassification error.

**Find the Best Pruning Level Using Cross Validation**

Apply $k$-fold cross validation to find the best level to prune a classification tree for all of its subtrees.

Load the `ionosphere` data set.

```matlab
load ionosphere
```

Grow a classification tree using the entire data set. View the resulting tree.

```matlab
Mdl = fitctree(X,Y);
view(Mdl,'Mode','graph')
```
Compute the 5-fold cross-validation error for each subtree except for the highest pruning level. Specify to return the best pruning level over all subtrees.

```matlab
rng(1); % For reproducibility
m = max(Mdl.PruneList) - 1
m = 7
[E,~,~,bestLevel] = cvloss(Mdl,'SubTrees',0:m,'KFold',5)
E = 8×1
```

32-1158
bestLevel = 6

Of the 7 pruning levels, the best pruning level is 6.

Prune the tree to the best level. View the resulting tree.

MdlPrune = prune(Mdl,'Level',bestLevel);
view(MdlPrune,'Mode','graph')
Alternatives

You can construct a cross-validated tree model with `crossval`, and call `kfoldLoss` instead of `cvloss`. If you are going to examine the cross-validated tree more than once, then the alternative can save time.

However, unlike `cvloss`, `kfoldLoss` does not return `SE`, `Nleaf`, or `BestLevel`. `kfoldLoss` also does not allow you to examine any error other than the classification error.
See Also

crossval | fitctree | kfoldLoss | loss
cvloss

**Class:** RegressionTree

Regression error by cross validation

**Syntax**

```
E = cvloss(tree)
[E,SE] = cvloss(tree)
[E,SE,Nleaf] = cvloss(tree)
[E,SE,Nleaf,BestLevel] = cvloss(tree)
[E,...] = cvloss(tree,Name,Value)
```

**Description**

'E = cvloss(tree) returns the cross-validated regression error (loss) for tree, a regression tree.

'E,SE] = cvloss(tree) returns the standard error of E.'

'E,SE,Nleaf] = cvloss(tree) returns the number of leaves (terminal nodes) in tree.'

'E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for tree.'

'E,...] = cvloss(tree,Name,Value) cross validates with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.'

**Input Arguments**

*tree — Trained regression tree*

RegressionTree object
Trained regression tree, specified as a `RegressionTree` object constructed using `fitrtree`.

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

#### `Subtrees` — Pruning level

0 (default) | vector of nonnegative integers | `all`

Pruning level, specified as the comma-separated pair consisting of `'Subtrees'` and a vector of nonnegative integers in ascending order or `'all'`.

If you specify a vector, then all elements must be at least 0 and at most `max(tree.PruneList)`. 0 indicates the full, unpruned tree and `max(tree.PruneList)` indicates the completely pruned tree (i.e., just the root node).

If you specify `'all'`, then `cvloss` operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using `0:max(tree.PruneList)`.

`cvloss` prunes `tree` to each level indicated in `Subtrees`, and then estimates the corresponding output arguments. The size of `Subtrees` determines the size of some output arguments.

To invoke `Subtrees`, the properties `PruneList` and `PruneAlpha` of `tree` must be nonempty. In other words, grow `tree` by setting `'Prune','on'`, or by pruning `tree` using `prune`.

Example: `'Subtrees','all'`

Data Types: `single` | `double` | `char` | `string`

#### `TreeSize` — Tree size

`'se'` (default) | `'min'`

Tree size, specified as the comma-separated pair consisting of `'TreeSize'` and one of the following:

- `'se'` — `cvloss` uses the smallest tree whose cost is within one standard error of the minimum cost.

32-1163
• 'min' — `cvloss` uses the minimal cost tree.

**KFold** — **Number of folds**
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1.

Example: 'KFold',8

**Output Arguments**

**E** — **Mean squared error**
scalar value | numeric vector

Cross-validation mean squared error (loss), returned as a vector or scalar depending on the setting of the **Subtrees** name-value pair.

**SE** — **Standard error**
scalar value | numeric vector

Standard error of **E**, returned as vector or scalar depending on the setting of the **Subtrees** name-value pair.

**Nleaf** — **Number of leaf nodes**
vector of integer values

Number of leaf nodes in **tree**, returned as a vector or scalar depending on the setting of the **Subtrees** name-value pair. Leaf nodes are terminal nodes, which give responses, not splits.

**BestLevel** — **Best pruning level**
scalar value

Best pruning level as defined in the **TreeSize** name-value pair, returned as a scalar whose value depends on **TreeSize**:

• If **TreeSize** is 'se', then BestLevel is the largest pruning level that achieves a value of **E** within **SE** of the minimum error.
• If **TreeSize** is 'min', then BestLevel is the smallest value in **Subtrees**.


Examples

Compute the Cross-Validation Error

Compute the cross-validation error for a default regression tree.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Compute the cross-validation error.

rng(1); % For reproducibility
E = cvloss(Mdl)
E = 25.7383

E is the 10-fold weighted, average MSE (weighted by number of test observations in the folds).

Find the Best Pruning Level Using Cross Validation

Apply k-fold cross validation to find the best level to prune a regression tree for all of its subtrees.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set. View the resulting tree.

Mdl = fitrtree(X,MPG);
view(Mdl,'Mode','graph')
Compute the 5-fold cross-validation error for each subtree except for the first two lowest and highest pruning level. Specify to return the best pruning level over all subtrees.

```matlab
rng(1); % For reproducibility
m = max(Mdl.PruneList) - 1
m = 15
 [~,~,~,bestLevel] = cvloss(Mdl,'SubTrees',2:m,'KFold',5)
bestLevel = 14
```
Of the 15 pruning levels, the best pruning level is 14.

Prune the tree to the best level. View the resulting tree.

```plaintext
MdlPrune = prune(Mdl,'Level',bestLevel);
view(MdlPrune,'Mode','graph')
```
Alternatives

You can construct a cross-validated tree model with `crossval`, and call `kfoldLoss` instead of `cvloss`. If you are going to examine the cross-validated tree more than once, then the alternative can save time.

However, unlike `cvloss`, `kfoldLoss` does not return SE, Nleaf, or **BestLevel**.

See Also

crossval | fitrtree | kfoldLoss | loss
cvpartition class

Data partitions for cross validation

Description

An object of the cvpartition class defines a random partition on a set of data of a specified size. Use this partition to define test and training sets for validating a statistical model using cross validation.

Construction

cvpartition

Create cross-validation partition for data

Methods

disp
Display cvpartition object
display
Display cvpartition object
repartition
Repartition data for cross-validation
test
Test indices for cross-validation
training
Training indices for cross-validation
Properties

NumObservations  Number of observations (including observations with missing group values)
NumTestSets  Number of test sets
TestSize  Size of each test set
TrainSize  Size of each training set
Type  Type of partition

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

Examples

Use a 10-fold stratified cross validation to compute the misclassification error for classify on iris data.

load('fisheriris');
CVO = cvpartition(species,'k',10);
err = zeros(CVO.NumTestSets,1);
for i = 1:CVO.NumTestSets
    trIdx = CVO.training(i);
    teIdx = CVO.test(i);
    ytest = classify(meas(teIdx,:),meas(trIdx,:),... 
        species(trIdx,:));
    err(i) = sum(~strcmp(ytest,species(teIdx)));
end
cvErr = sum(err)/sum(CVO.TestSize);

See Also
crossval
Topics
“Grouping Variables” on page 2-57
cvpartition

Class: cvpartition

Create cross-validation partition for data

Syntax

c = cvpartition(n,'KFold',k)
c = cvpartition(n,'HoldOut',p)
c = cvpartition(group,'KFold',k)
c = cvpartition(group,'KFold',k,'Stratify',stratifyOption)
c = cvpartition(group,'HoldOut',p)
c = cvpartition(group,'HoldOut',p,'Stratify',stratifyOption)
c = cvpartition(n,'LeaveOut')
c = cvpartition(n,'resubstitution')

Description

c = cvpartition(n,'KFold',k) constructs an object c of the cvpartition class on page 32-1169 defining a random nonstratified partition for k-fold cross-validation on n observations. The partition divides the observations into k disjoint subsamples (or folds), chosen randomly but with roughly equal size. The default value of k is 10.

c = cvpartition(n,'HoldOut',p) creates a random nonstratified partition for holdout validation on n observations. This partition divides the observations into a training set and a test (or holdout) set. The parameter p must be a scalar. When 0 < p < 1, cvpartition randomly selects approximately p*n observations for the test set. When p is an integer, cvpartition randomly selects p observations for the test set. The default value of p is 1/10.

c = cvpartition(group,'KFold',k) creates a random partition for a stratified k-fold cross-validation. group is a numeric vector, categorical array, character array, string
array, or cell array of character vectors indicating the class of each observation. Each subsample has roughly equal size and roughly the same class proportions as in group.

When you supply group as the first input argument to cvpartition, the function creates cross-validation partitions that do not include rows of observations corresponding to missing values in group.

c = cvpartition(group,'KFold',k,'Stratify',stratifyOption) returns an object c defining a random partition for k-fold cross-validation. When you supply group as the first input argument to cvpartition, then the function implements stratification by default. If you also specify 'Stratify',false, then the function creates nonstratified random partitions.

You can specify 'Stratify',true only if the first input argument to cvpartition is group.

\[ c = \text{cvpartition}(\text{group},'\text{HoldOut}',p) \]
randomly partitions observations into a training set and a holdout (or test) set with stratification, using the class information in group. Both the training and test sets have roughly the same class proportions as in group.

\[ c = \text{cvpartition}(\text{group},'\text{HoldOut}',p,'\text{Stratify}',\text{stratifyOption}) \]
returns an object c defining a random partition into a training set and a holdout (or test) set. When you supply group as the first input argument to cvpartition, then the function implements stratification by default. If you also specify 'Stratify',false, then the function creates nonstratified random partitions.

\[ c = \text{cvpartition}(\text{n},'\text{LeaveOut}') \]
creates a random partition for leave-one-out cross-validation on n observations. Leave-one-out is a special case of 'KFold' in which the number of folds equals the number of observations.

\[ c = \text{cvpartition}(\text{n},'\text{resubstitution}') \]
creates an object c that does not partition the data. Both the training set and the test set contain all of the original n observations.

**Examples**

**Find Misclassification Rate for K-Fold Cross-Validation**

Use stratified 10-fold cross-validation to compute misclassification rate.
Load Fisher's iris data set.

```matlab
load fisheriris;
y = species;
X = meas;
```

Create a random partition for a stratified 10-fold cross-validation.

```matlab
c = cvpartition(y,'KFold',10);
```

Create a function that computes the number of misclassified test samples.

```matlab
fun = @(xTrain,yTrain,xTest,yTest)(sum(~strcmp(yTest,...
 classify(xTest,xTrain,yTrain))));
```

Return the estimated misclassification rate using cross-validation.

```matlab
rate = sum(crossval(fun,X,y,'partition',c))... /sum(c.TestSize)
rate = 0.0200
```

**Create Nonstratified Partition**

Find the proportion of each class in a 5-fold nonstratified partition of the `fisheriris` data.

Load Fisher's iris data set.

```matlab
load fisheriris;
```

Find the number of instances of each class in the data.

```matlab
[C,~,idx] = unique(species);
C % Unique classes
C = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

n = accumarray(idx(:,1),1) % Number of instances for each class in species
The three classes occur in equal proportion.

Create a random, nonstratified 5-fold partition.

```matlab
cv = cvpartition(species,'KFold',5,'Stratify',false)
```

```matlab
cv = 
K-fold cross validation partition
    NumObservations: 150
    NumTestSets: 5
    TrainSize: 120  120  120  120  120
    TestSize: 30  30  30  30  30
```

Show that the three classes do not occur in equal proportion for each fold of the data set.

```matlab
for i = 1:cv.NumTestSets
    disp(['Fold ',num2str(i)])
    testClasses = species(cv.test(i));
    [C,~,idx] = unique(testClasses);
    C % Unique classes
    nCount = accumarray(idx(:),1) % Number of instances for each class in a fold
end
```

Fold 1

```matlab
C = 3x1 cell array
    {'setosa'    }
    {'versicolor' }
    {'virginica' }
```

```matlab
nCount = 3x1
     8
    13
     9
```

Fold 2
C = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

nCount = 3x1

 10
 11
 9

Fold 3
C = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

nCount = 3x1

 10
 8
 12

Fold 4
C = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

nCount = 3x1

 12
 8
 10

Fold 5
C = 3x1 cell array
 {'setosa' }
Because `cv` is a random nonstratified partition of the `fisheriris` data, the class proportions in each of the five folds are not guaranteed to be equal to the class proportions in `species`. That is, the classes do not occur equally in each fold, as they do in `species`. Cross-validation produces randomness in the results, so your number of instances for each class in a fold can vary from those shown.

Create Nonstratified Holdout Set for Tall Array

Compare the number of instances for each class in a nonstratified holdout set with a stratified holdout set of a tall array.

Create a numeric vector of two classes, where class 1 and class 2 occur in the ratio 1:10.

```matlab
group = [ones(20,1);2*ones(200,1)]
```

```plaintext
group = 220×1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
```

Create a tall array from `group`.
tgroup = tall(group)
Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.

Holdout is the only cvpartition option that is supported for tall arrays. Create a random, nonstratified holdout partition.

CV0 = cvpartition(tgroup,'Holdout',1/4,'Stratify',false)

Return the result of CV0.test to memory by using the gather function.

testIdx0 = gather(CV0.test);

Find the number of times each class occurs in the holdout set.

accumarray(group(testIdx0),1) % Number of instances for each class in the holdout set
ans = 2x1
 3
cvpartition produces randomness in the results, so your number of instances for each class can vary from those shown.

Because CV0 is a nonstratified partition, class 1 and class 2 in the holdout set are not guaranteed to occur in the same ratio that they do in tgroup. However, because of the inherent randomness in cvpartition, you can sometimes obtain a holdout set for which the classes occur in the same ratio that they do in tgroup even though you specify 'Stratify',false. A similar result can be illustrated for the training set.

Return the result of CV0.training to memory.

```
trainIdx0 = gather(CV0.training);
```

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.061 sec

Find the number of times each class occurs in the training set.

```
accumarray(group(trainIdx0),1) % Number of instances for each class in the training set
ans = 2x1
    17
   148
```

The classes in the nonstratified training set are not guaranteed to occur in the same ratio that they do in tgroup.

Create a random, stratified holdout partition.

```
CV1 = cvpartition(tgroup,'Holdout',1/4)
```

```
CV1 =
    Hold-out cross validation partition
    NumObservations: [1x1 tall]
    NumTestSets: 1
    TrainSize: [1x1 tall]
    TestSize: [1x1 tall]
```

Return the result of CV1.test to memory.
testIdx1 = gather(CV1.test);

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.079 sec

Find the number of times each class occurs in the holdout set.

accumarray(group(testIdx1),1) % Number of instances for each class in the holdout set
ans = 2×1
 5
 50

In the case of the stratified holdout partition, the class ratio in the holdout set and the class ratio in tgroup are the same (1:10).

Algorithms

- If you supply group as the first input argument to cvpartition, the function creates cross-validation partitions that do not include rows of observations corresponding to missing values in group.
- When you supply group as the first input argument to cvpartition, then the function implements stratification by default. You can specify 'Stratify',false to create nonstratified random partitions.
- You can specify 'Stratify',true only if the first input argument to cvpartition is group.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.
• When you use cvpartition with tall arrays, the first input argument must be a grouping variable, tGroup. If you specify a tall scalar as the first input argument, cvpartition gives an error.

• cvpartition supports only Holdout cross-validation for tall arrays; for example, c = cvpartition(tGroup,'HoldOut',p). By default, cvpartition randomly partitions observations into a training set and a test set with stratification, using the class information in tGroup. The parameter p is a scalar such that 0 < p < 1.

• To create nonstratified Holdout partitions, specify the value of the 'Stratify' name-value pair argument as false; for example, c = cvpartition(tGroup,'Holdout',p,'Stratify',false).

For more information, see “Tall Arrays” (MATLAB).

See Also
crossval | repartition

Topics
“Grouping Variables” on page 2-57

Introduced in R2008a
cvshrink

Class: ClassificationDiscriminant

Cross-validate regularization of linear discriminant

Syntax

err = cvshrink(obj)
[err, gamma] = cvshrink(obj)
[err, gamma, delta] = cvshrink(obj)
[err, gamma, delta, numpred] = cvshrink(obj)
[err, ...] = cvshrink(obj, Name, Value)

Description

err = cvshrink(obj) returns a vector of cross-validated classification error values for differing values of the regularization parameter Gamma.

[err, gamma] = cvshrink(obj) also returns the vector of Gamma values.

[err, gamma, delta] = cvshrink(obj) also returns the vector of Delta values.

[err, gamma, delta, numpred] = cvshrink(obj) returns the vector of number of nonzero predictors for each setting of the parameters Gamma and Delta.

[err, ...] = cvshrink(obj, Name, Value) cross validates with additional options specified by one or more Name, Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

delta

- Scalar delta — cvshrink uses this value of delta with every value of gamma for regularization.
- Row vector delta — For each i and j, cvshrink uses delta(j) with gamma(i) for regularization.
- Matrix delta — The number of rows of delta must equal the number of elements in gamma. For each i and j, cvshrink uses delta(i, j) with gamma(i) for regularization.

Default: 0

gamma

Vector of Gamma values for cross-validation.

Default: 0:0.1:1

NumDelta

Number of Delta intervals for cross-validation. For every value of Gamma, cvshrink cross-validates the discriminant using NumDelta + 1 values of Delta, uniformly spaced from zero to the maximal Delta at which all predictors are eliminated for this value of Gamma. If you set delta, cvshrink ignores NumDelta.

Default: 0

NumGamma

Number of Gamma intervals for cross-validation. cvshrink cross-validates the discriminant using NumGamma + 1 values of Gamma, uniformly spaced from MinGamma to 1. If you set gamma, cvshrink ignores NumGamma.

Default: 10
verbose

Verbosity level, an integer from 0 to 2. Higher values give more progress messages.

Default: 0

Output Arguments

err

Numeric vector or matrix of errors. err is the misclassification error rate, meaning the average fraction of misclassified data over all folds.

- If delta is a scalar (default), err(i) is the misclassification error rate for obj regularized with gamma(i).
- If delta is a vector, err(i,j) is the misclassification error rate for obj regularized with gamma(i) and delta(j).
- If delta is a matrix, err(i,j) is the misclassification error rate for obj regularized with gamma(i) and delta(i,j).

gamma

Vector of Gamma values used for regularization. See “Gamma and Delta” on page 32-1187.

delta

Vector or matrix of Delta values used for regularization. See “Gamma and Delta” on page 32-1187.

- If you give a scalar for the delta name-value pair, the output delta is a row vector the same size as gamma, with entries equal to the input scalar.
- If you give a row vector for the delta name-value pair, the output delta is a matrix with the same number of columns as the row vector, and with the number of rows equal to the number of elements of gamma. The output delta(i,j) is equal to the input delta(j).
- If you give a matrix for the delta name-value pair, the output delta is the same as the input matrix. The number of rows of delta must equal the number of elements in gamma.
numpred

Numeric vector or matrix containing the number of predictors in the model at various regularizations. **numpred** has the same size as **err**.

- If **delta** is a scalar (default), **numpred(i)** is the number of predictors for **obj** regularized with **gamma(i)** and **delta**.
- If **delta** is a vector, **numpred(i,j)** is the number of predictors for **obj** regularized with **gamma(i)** and **delta(j)**.
- If **delta** is a matrix, **numpred(i,j)** is the number of predictors for **obj** regularized with **gamma(i)** and **delta(i,j)**.

Examples

Regularize Data with Many Predictors

Regularize a discriminant analysis classifier, and view the tradeoff between the number of predictors in the model and the classification accuracy.

Create a linear discriminant analysis classifier for the **ovariancancer** data. Set the **SaveMemory** and **FillCoeffs** options to keep the resulting model reasonably small.

```matlab
load ovariancancer
obj = fitcdiscr(obs,grp,...
    'SaveMemory','on','FillCoeffs','off');
```

Use 10 levels of **Gamma** and 10 levels of **Delta** to search for good parameters. This search is time-consuming. Set **Verbose** to 1 to view the progress.

```matlab
rng('default') % for reproducibility
[err,gamma,delta,numpred] = cvshrink(obj,...
    'NumGamma',9,'NumDelta',9,'Verbose',1);
```

Done building cross-validated model.
Processing Gamma step 1 out of 10.
Processing Gamma step 2 out of 10.
Processing Gamma step 3 out of 10.
Processing Gamma step 4 out of 10.
Processing Gamma step 5 out of 10.
Processing Gamma step 6 out of 10.
Processing Gamma step 7 out of 10.
Processing Gamma step 8 out of 10.
Processing Gamma step 9 out of 10.
Processing Gamma step 10 out of 10.

Plot the classification error rate against the number of predictors.

```matlab
plot(err,numpred,'k.'
xlabel('Error rate');
ylabel('Number of predictors');
```
Definitions

Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, γ and δ, that control regularization as follows. `cvshrink` helps you select appropriate values of the parameters.

Let Σ represent the covariance matrix of the data X, and let \hat{X} be the centered data (the data X minus the mean by class). Define

$$D = \text{diag}(\hat{X}^T \ast \hat{X}).$$

The regularized covariance matrix $\tilde{\Sigma}$ is

$$\tilde{\Sigma} = (1 - \gamma) \Sigma + \gamma D.$$

Whenever $\gamma \geq \text{MinGamma}$, Σ is nonsingular.

Let μ_k be the mean vector for those elements of X in class k, and let μ_0 be the global mean vector (the mean of the rows of X). Let C be the correlation matrix of the data X, and let \tilde{C} be the regularized correlation matrix:

$$\tilde{C} = (1 - \gamma) C + \gamma I,$$

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

$$\left(x - \mu_0 \right)^T \tilde{\Sigma}^{-1} (\mu_k - \mu_0) = \left[\left(x - \mu_0 \right)^T D^{-1/2} \right] \left[\tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right].$$

The parameter δ enters into this equation as a threshold on the final term in square brackets. Each component of the vector $\left[\tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right]$ is set to zero if it is smaller.
in magnitude than the threshold δ. Therefore, for class k, if component j is thresholded to zero, component j of x does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When $\delta \geq \text{DeltaPredictor}(i)$, all classes k have

$$\left| \tilde{C}^{-1}D^{-1/2}(\mu_k - \mu_0) \right| \leq \delta.$$

Therefore, when $\delta \geq \text{DeltaPredictor}(i)$, the regularized classifier does not use predictor i.

Tips

- Examine the err and numpred outputs to see the tradeoff between cross-validated error and number of predictors. When you find a satisfactory point, set the corresponding gamma and delta properties in the model using dot notation. For example, if (i,j) is the location of the satisfactory point, set

  ```matlab
  obj.Gamma = gamma(i);
  obj.Delta = delta(i,j);
  ```

See Also

ClassificationDiscriminant | fitcdiscr

Topics

“Regularize a Discriminant Analysis Classifier” on page 20-28
“Discriminant Analysis Classification” on page 20-2
cvshrink

Cross validate shrinking (pruning) ensemble

Syntax

vals = cvshrink(ens)
[val, nlearn] = cvshrink(ens)
[val, nlearn] = cvshrink(ens, Name, Value)

Description

vals = cvshrink(ens) returns an L-by-T matrix with cross-validated values of the mean squared error. L is the number of lambda values in the ens.Regularization structure. T is the number of threshold values on weak learner weights. If ens does not have a Regularization property filled in by the regularize method, pass a lambda name-value pair.

[val, nlearn] = cvshrink(ens) returns an L-by-T matrix of the mean number of learners in the cross-validated ensemble.

[val, nlearn] = cvshrink(ens, Name, Value) cross validates with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Input Arguments

ens

A regression ensemble, created with fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

cvpartition

A partition created with cvpartition to use in a cross-validated tree. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

kfold

Number of folds to use in a cross-validated tree, a positive integer. If you do not supply a cross-validation method, cvshrink uses 10-fold cross validation. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

lambda

Vector of nonnegative regularization parameter values for lasso. If empty, cvshrink does not perform cross validation.

Default: []

leaveout

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

threshold

Numeric vector with lower cutoffs on weights for weak learners. cvshrink discards learners with weights below threshold in its cross-validation calculation.

Default: 0
Output Arguments

vals

L-by-T matrix with cross-validated values of the mean squared error. L is the number of values of the regularization parameter 'lambda', and T is the number of 'threshold' values on weak learner weights.

nlearn

L-by-T matrix with cross-validated values of the mean number of learners in the cross-validated ensemble. L is the number of values of the regularization parameter 'lambda', and T is the number of 'threshold' values on weak learner weights.

Examples

Cross-Validate Regression Ensemble

Create a regression ensemble for predicting mileage from the carsmall data. Cross-validate the ensemble.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.

ens = fitrensemble(X,MPG,'Method','Bag','Learners','Tree');

Specify values for lambda and threshold. Use these values to cross-validate the ensemble.

rng(10,'twister') % For reproducibility
[valsnlearn] = cvshrink(ens,'lambda', [.01 .1 1], 'threshold', [0 .01 .1])

vals = 3x3

17.7488 17.6537 123.2749
17.7374 17.6304 123.4240
Clearly, setting a threshold of \(0.1\) leads to unacceptable errors, while a threshold of \(0.01\) gives similar errors to a threshold of \(0\). The mean number of learners with a threshold of \(0.01\) is \(11.6\), whereas the mean number is about \(13.1\) when the threshold is \(0\).

See Also

regularize | shrink
datasample
Randomly sample from data, with or without replacement

Syntax

\[
\begin{align*}
y &= \text{datasample}(\text{data},k) \\
y &= \text{datasample}(\text{data},k,\text{dim}) \\
y &= \text{datasample}(__,\text{Name},\text{Value}) \\
y &= \text{datasample}(s,\text{___}) \\
y,\text{idx} &= \text{datasample}(\text{___})
\end{align*}
\]

Description

\[
y = \text{datasample}(\text{data},k) \text{ returns } k \text{ observations sampled uniformly at random, with replacement, from the data in } \text{data}.
\]

\[
y = \text{datasample}(\text{data},k,\text{dim}) \text{ returns a sample taken along dimension } \text{dim} \text{ of } \text{data}.
\]

\[
y = \text{datasample}(\text{___},\text{Name},\text{Value}) \text{ returns a sample for any of the input arguments in the previous syntaxes, with additional options specified by one or more name-value pair arguments. For example, } '\text{Replace}', \text{false} \text{ specifies sampling without replacement.}
\]

\[
y = \text{datasample}(s,\text{___}) \text{ uses the random number stream } s \text{ to generate random numbers. The option } s \text{ can precede any of the input arguments in the previous syntaxes.}
\]

\[
[y,\text{idx}] = \text{datasample}(\text{___}) \text{ also returns an index vector indicating which values datasample sampled from data using any of the input arguments in the previous syntaxes.}
\]

Examples

Sample Unique Values from Vector

Create the random number stream for reproducibility.
s = RandStream('mlfg6331_64');

Draw five unique values from the integers 1 to 10.

\[\text{y} = \text{datasample}(\text{s},1:10,5,'\text{Replace}',\text{false}) \]

\[\text{y} = 1\times5 \]

\[
\begin{array}{ccccc}
9 & 8 & 3 & 6 & 2 \\
\end{array}
\]

Generate Random Characters for Specified Probabilities

Create the random number stream for reproducibility.

\[\text{s} = \text{RandStream('mlfg6331_64')}; \]

Generate 48 random characters from the sequence ACGT per specified probabilities.

\[\text{seq} = \text{datasample}(\text{s},'\text{ACGT}',48,'\text{Weights}',[0.15 \ 0.35 \ 0.35 \ 0.15]) \]

\[\text{seq} = \text{GGCGGCGCAAGGCGCCGGACCTGGCTGCACGCCGTTCCCTGCTACTCG} \]

Select Random Subset of Matrix Columns

Set the random seed for reproducibility of the results.

\[\text{rng}(10, '\text{twister}') \]

Generate a matrix with 10 rows and 1000 columns.

\[\text{X} = \text{randn}(10,1000); \]

Create the random number stream for reproducibility within `datasample`.

\[\text{s} = \text{RandStream('mlfg6331_64')}; \]

Randomly select five unique columns from X.

\[\text{Y} = \text{datasample}(\text{s},\text{X},5,2,'\text{Replace}',\text{false}) \]
Create a Bootstrap Replicate Data Set

Resample observations from a dataset array to create a bootstrap replicate data set. See “Bootstrap Resampling” on page 3-15 for more information about bootstrapping.

Load the sample data set.

load hospital

Create a data set that has the same size as the hospital data set and contains random samples chosen with replacement from the hospital data set.

\[
y = \text{datasample}(\text{hospital}, \text{size(hospital,1)});\]

Sample in Parallel from Two Data Vectors

Select samples from data based on indices of a sample chosen from another vector.

Generate two random vectors.

x1 = \text{randn}(100,1);
x2 = \text{randn}(100,1);

Select a sample of 10 elements from vector \(x1\), and return the indices of the sample in vector \(idx\).
[y1,idx] = datasample(x1,10);

Select a sample of 10 elements from vector x2 using the indices in vector idx.

y2 = x2(idx);

Input Arguments

data — Input data
VECTOR | MATRIX | MULTIDIMENSIONAL ARRAY | TABLE | DATASET ARRAY

Input data from which to sample, specified as a vector, matrix, multidimensional array, table, or dataset array. By default, datasample samples from the first nonsingleton dimension of data. For example, if data is a matrix, then datasample samples from the rows. Change this behavior with the dim input argument.

Data Types: SINGLE | DOUBLE | LOGICAL | CHAR | STRING | TABLE

k — Number of samples
POSITIVE INTEGER

Number of samples, specified as a positive integer.

Example: datasample(data, 100) returns 100 observations sampled uniformly and at random from the data in data.

Data Types: SINGLE | DOUBLE

dim — Dimension to sample
1 (DEFAULT) | POSITIVE INTEGER

Dimension to sample, specified as a positive integer. For example, if data is a matrix and dim is 2, y contains a selection of columns in data. If data is a table or dataset array and dim is 2, y contains a selection of variables in data. Use dim to ensure sampling along a specific dimension regardless of whether data is a vector, matrix, or N-dimensional array.

Data Types: SINGLE | DOUBLE

s — Random number stream
GLOBAL STREAM (DEFAULT) | RANDSTREAM

Random number stream, specified as the global stream or RandStream. For example, s = RandStream('mlfg6331_64') creates a random number stream that uses the
multiplicative lagged Fibonacci generator algorithm. For details, see “Creating and Controlling a Random Number Stream” (MATLAB).

The `rng` function provides a simple way to control the global stream. For example, `rng(seed)` seeds the random number generator using the nonnegative integer seed. For details, see “Managing the Global Stream” (MATLAB).

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: 'Replace',false,'Weights',ones(datasize,1) samples without replacement and with probability proportional to the elements of `Weights`, where `datasize` is the size of the dimension being sampled.

Replace — Indicator for sampling with replacement.

`true` (default) | `false`

Indicates whether to sample with replacement, specified as the comma-separated pair consisting of 'Replace' and either `true` or `false`.

Sample with replacement if 'Replace' is `true`, or without replacement if 'Replace' is `false`. If 'Replace' is `false`, then `k` must not be larger than the size of the dimension being sampled. For example, if `data = [1 3 Inf; 2 4 5]` and `y = datasample(data,k,'Replace',false)`, then `k` cannot be larger than 2.

Data Types: `logical`

Weights — Sampling weights.

`ones(datasize,1)` (default) | vector of nonnegative numeric values

Sampling weights, specified as the comma-separated pair consisting of 'Weights' and a vector of nonnegative numeric values. The vector is of size `datasize`, where `datasize` is the size of the dimension being sampled. The vector must have at least one positive value and cannot contain `NaN` values. The `datasample` function samples with probability proportional to the elements of 'Weights'.

Example: 'Weights',[0.1 0.5 0.35 0.46]

Data Types: `single` | `double`
Output Arguments

\(y \) — Sample
vector | matrix | multidimensional array | table | dataset array

Sample, returned as a vector, matrix, multidimensional array, table, or dataset array.

- If \(\text{data} \) is a vector, then \(y \) is a vector containing \(k \) elements selected from \(\text{data} \).
- If \(\text{data} \) is a matrix and \(\text{dim} = 1 \), then \(y \) is a matrix containing \(k \) rows selected from \(\text{data} \). Or, if \(\text{dim} = 2 \), then \(y \) is a matrix containing \(k \) columns selected from \(\text{data} \).
- If \(\text{data} \) is an \(N \)-dimensional array and \(\text{dim} = 1 \), then \(y \) is an \(N \)-dimensional array of samples taken along the first nonsingleton dimension of \(\text{data} \). Or, if you specify a value for the \text{dim} name-value pair argument, \text{datasample} samples along the dimension \text{dim}.
- If \(\text{data} \) is a table and \(\text{dim} = 1 \), then \(y \) is a table containing \(k \) rows selected from \(\text{data} \). Or, if \(\text{dim} = 2 \), then \(y \) is a table containing \(k \) variables selected from \(\text{data} \).
- If \(\text{data} \) is a dataset array and \(\text{dim} = 1 \), then \(y \) is a dataset array containing \(k \) rows selected from \(\text{data} \). Or, if \(\text{dim} = 2 \), then \(y \) is a dataset array containing \(k \) variables selected from \(\text{data} \).

If the input \(\text{data} \) contains missing observations that are represented as \text{NaN} values, \text{datasample} samples from the entire input, including the \text{NaN} values. For example, \(y = \text{datasample}([\text{NaN} \ 6 \ 14],2) \) can return \(y = \text{NaN} \ 14 \).

When the sample is taken with replacement (default), \(y \) can contain repeated observations from \(\text{data} \). Set the Replace name-value pair argument to \text{false} to sample without replacement.

\(\text{idx} \) — Indices
vector

Indices, returned as a vector indicating which elements \text{datasample} chooses from \(\text{data} \) to create \(y \). For example:

- If \(\text{data} \) is a vector, then \(y = \text{data}(\text{idx}) \).
- If \(\text{data} \) is a matrix and \(\text{dim} = 1 \), then \(y = \text{data}(\text{idx},:) \).
- If \(\text{data} \) is a matrix and \(\text{dim} = 2 \), then \(y = \text{data}(:,\text{idx}) \).
Tips

- To sample random integers with replacement from a range, use `randi`.
- To sample random integers without replacement, use `randperm` or `datasample`.
- To randomly sample from data, with or without replacement, use `datasample`.

Algorithms

datasample uses `randperm`, `rand`, or `randi` to generate random values. Therefore, datasample changes the state of the MATLAB global random number generator. Control the random number generator using `rng`.

For selecting weighted samples without replacement, datasample uses the algorithm of Wong and Easton [1].

Alternative Functionality

You can use `randi` or `randperm` to generate indices for random sampling with or without replacement, respectively. However, datasample can be more convenient to use because it samples directly from your data. datasample also allows weighted sampling.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.
• `datasample` is useful as a precursor to plotting and fitting a random subset of a large data set. Sampling a large data set preserves trends in the data without requiring the use of all the data points. If the sample is small enough to fit in memory, then you can apply plotting and fitting functions that do not directly support tall arrays.

• `datasample` supports sampling only along the first dimension of the data.

• For tall arrays, `datasample` does not support sampling with replacement. You must specify `'Replace',false`, for example, `datasample(data,k,'Replace',false)`.

• The value of `'Weights'` must be a numeric tall array of the same height as `data`.

• For the syntax `[Y,idx] = datasample(__)`, the output `idx` is a tall logical vector of the same height as `data`. The vector indicates whether each data point is included in the sample.

• If you specify a random number stream, then the underlying generator must support multiple streams and substreams. If you do not specify a random number stream, then `datasample` uses the stream controlled by `tallrng`.

For more information, see “Tall Arrays” (MATLAB).

See Also

`RandStream` | `rand` | `randi` | `randperm` | `rng` | `tallrng`

Introduced in R2011b
dataset class

Arrays for statistical data

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

Dataset arrays are used to collect heterogeneous data and metadata including variable and observation names into a single container variable. Dataset arrays are suitable for storing column-oriented or tabular data that are often stored as columns in a text file or in a spreadsheet, and can accommodate variables of different types, sizes, units, etc.

Dataset arrays can contain different kinds of variables, including numeric, logical, character, string, categorical, and cell. However, a dataset array is a different class than the variables that it contains. For example, even a dataset array that contains only variables that are double arrays cannot be operated on as if it were itself a double array. However, using dot subscripting, you can operate on variable in a dataset array as if it were a workspace variable.

You can subscript dataset arrays using parentheses much like ordinary numeric arrays, but in addition to numeric and logical indices, you can use variable and observation names as indices.

Construction

Use the `dataset` constructor to create a dataset array from variables in the MATLAB workspace. You can also create a dataset array by reading data from a text or spreadsheet file. You can access each variable in a dataset array much like fields in a structure, using dot subscripting. See the following section for a list of operations available for dataset arrays.
dataset

Construct dataset array
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Concatenate dataset arrays</td>
</tr>
<tr>
<td>cellstr</td>
<td>Create cell array of character vectors from dataset array</td>
</tr>
<tr>
<td>dataset2cell</td>
<td>Convert dataset array to cell array</td>
</tr>
<tr>
<td>dataset2struct</td>
<td>Convert dataset array to structure</td>
</tr>
<tr>
<td>datasetfun</td>
<td>Apply function to dataset array variables</td>
</tr>
<tr>
<td>disp</td>
<td>Display dataset array</td>
</tr>
<tr>
<td>display</td>
<td>Display dataset array</td>
</tr>
<tr>
<td>double</td>
<td>Convert dataset variables to double array</td>
</tr>
<tr>
<td>end</td>
<td>Last index in indexing expression for dataset array</td>
</tr>
<tr>
<td>export</td>
<td>Write dataset array to file</td>
</tr>
<tr>
<td>get</td>
<td>Access dataset array properties</td>
</tr>
<tr>
<td>horzcat</td>
<td>Horizontal concatenation for dataset arrays</td>
</tr>
<tr>
<td>intersect</td>
<td>Set intersection for dataset array observations</td>
</tr>
<tr>
<td>isempty</td>
<td>True for empty dataset array</td>
</tr>
<tr>
<td>ismember</td>
<td>Dataset array elements that are members of set</td>
</tr>
<tr>
<td>ismissing</td>
<td>Find dataset array elements with missing values</td>
</tr>
<tr>
<td>join</td>
<td>Merge observations</td>
</tr>
<tr>
<td>length</td>
<td>Length of dataset array</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions of dataset array</td>
</tr>
<tr>
<td>numel</td>
<td>Number of elements in dataset array</td>
</tr>
<tr>
<td>replacedata</td>
<td>Replace dataset variables</td>
</tr>
<tr>
<td>replaceWithMissing</td>
<td>Insert missing data indicators into a dataset array</td>
</tr>
<tr>
<td>set</td>
<td>Set and display properties</td>
</tr>
<tr>
<td>setdiff</td>
<td>Set difference for dataset array observations</td>
</tr>
<tr>
<td>setxor</td>
<td>Set exclusive or for dataset array observations</td>
</tr>
<tr>
<td>single</td>
<td>Convert dataset variables to single array</td>
</tr>
<tr>
<td>size</td>
<td>Size of dataset array</td>
</tr>
<tr>
<td>sortrows</td>
<td>Sort rows of dataset array</td>
</tr>
<tr>
<td>stack</td>
<td>Stack data from multiple variables into single variable</td>
</tr>
<tr>
<td>subsasgn</td>
<td>Subscripted assignment to dataset array</td>
</tr>
<tr>
<td>subsref</td>
<td>Subscripted reference for dataset array</td>
</tr>
<tr>
<td>summary</td>
<td>Print summary of dataset array</td>
</tr>
<tr>
<td>union</td>
<td>Set union for dataset array observations</td>
</tr>
</tbody>
</table>
Properties

A dataset array D has properties that store metadata (information about your data). Access or assign to a property using \(P = D.\text{Properties}.\text{PropName} \) or \(D.\text{Properties}.\text{PropName} = P \), where PropName is one of the following:

- **Description**: Character vector describing data set
- **DimNames**: Two-element cell array of character vectors giving names of dimensions of data set
- **ObsNames**: Cell array of nonempty, distinct character vectors giving names of observations in data set
- **Units**: Units of variables in data set
- **UserData**: Variable containing additional information associated with data set
- **VarDescription**: Cell array of character vectors giving descriptions of variables in data set
- **VarNames**: Cell array giving names of variables in data set

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

Examples

Load a dataset array from a .mat file and create some simple subsets:

```matlab
load hospital
h1 = hospital(1:10,:)
h2 = hospital(:,{'LastName' 'Age' 'Sex' 'Smoker'})

% Access and modify metadata
hospital.Properties.Description
hospital.Properties.VarNames{4} = 'Wgt'

% Create a new dataset variable from an existing one
hospital.AtRisk = hospital.Smoker | (hospital.Age > 40)
```
% Use individual variables to explore the data
boxplot(hospital.Age,hospital.Sex)
h3 = hospital(hospital.Age<30,...
 {'LastName' 'Age' 'Sex' 'Smoker'})

% Sort the observations based on two variables
h4 = sortrows(hospital,{'Sex','Age'})

See Also
tdfread | textscan | xlsread

Topics
“Dataset Arrays” on page 2-137
dataset

Class: dataset

Construct dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

A = dataset(varspec,'ParamName',Value)
A = dataset('File',filename,'ParamName',Value)
A = dataset('XLSFile',filename,'ParamName',Value)
A = dataset('XPTFile',xptfilename,'ParamName',Value)

Description

A = dataset(varspec,'ParamName',Value) creates dataset array A using the workspace variable input method varspec and one or more optional name/value pairs (see Parameter Name/Value Pairs).

The input method varspec can be one or more of the following:

- **VAR** — a workspace variable. dataset uses the workspace name for the variable name in A. To include multiple variables, specify VAR_1,VAR_2,...,VAR_N. Variables can be arrays of any size, but all variables must have the same number of rows. VAR can also be an expression. In this case, dataset creates a default name automatically.
- **{VAR,name]** — a workspace variable, VAR and a variable name, name. dataset uses name as the variable name. To include multiple variables and names, specify {VAR_1,name_1}, {VAR_2,name_2},..., {VAR_N,name_N}.
- **{VAR,name_1,...,name_m]** — an m-columned workspace variable, VAR. dataset uses the names name_1,...,name_m as variable names. You must include a name for every column in VAR. Each column becomes a separate variable in A.
You can combine these input methods to include as many variables and names as needed. Names must be valid, unique MATLAB identifiers. For example input combinations, see Examples. For optional name/value pairs see Inputs.

To convert numeric arrays, cell arrays, structure arrays, or tables to dataset arrays, you can also use (respectively):

- `mat2dataset`
- `cell2dataset`
- `struct2dataset`
- `table2dataset`

Note Dataset arrays may contain built-in types or array objects as variables. Array objects must implement each of the following:

- Standard MATLAB parenthesis indexing of the form `var(i, ...)` where `i` is a numeric or logical vector corresponding to rows of the variable
- A `size` method with a `dim` argument
- A `vertcat` method

```matlab
A = dataset('File', filename, 'ParamName', Value)
```
creates dataset array `A` from column-oriented data in the text file specified by `filename`. Variables in `A` are of type `double` if data in the corresponding column of the file, following the column header, are entirely numeric; otherwise the variables in `A` are cell arrays of character vectors. `dataset` converts empty fields to either `NaN` (for a numeric variable) or the empty character vector (for a character-valued variable). `dataset` ignores insignificant white space in the file. You cannot specify both a file and workspace variables as input. See Name/Value Pairs for more information.

```matlab
A = dataset('XLSFile', filename, 'ParamName', Value)
```
creates dataset array `A` from column-oriented data in the Excel spreadsheet specified by `filename`. Variables in `A` are of type `double` if data in the corresponding column of the spreadsheet, following the column header, are entirely numeric; otherwise the variables in `A` are cell arrays of character vectors. See Name/Value Pairs for more information.

```matlab
A = dataset('XPTFile', xptfilename, 'ParamName', Value)
```
creates a dataset array from a SAS® XPORT format file. Variable names from the XPORT format file are
preserved. Numeric data types in the XPORT format file are preserved but all other data types are converted to cell arrays of character vectors. The XPORT format allows for 28 missing data types. dataset represents these in the file by an upper case letter, '.' or '_'. dataset converts all missing data to NaN values in A. See Name/Value Pairs for more information.

Parameter Name/Value Pairs

Specify one or more of the following name/value pairs when constructing a dataset:

VarNames

A string array or cell array \{name_1,...,name_m\} naming the m variables in A with the specified variable names. Names must be valid, unique MATLAB identifiers. The number of names must equal the number of variables in A. You cannot use the VarNames parameter if you provide names for individual variables using \{VAR,name\} pairs. To specify VarNames when using a file as input, set ReadVarNames to false.

ObsNames

A string array or cell array \{name_1,...,name_n\} naming the n observations in A with the specified observation names. The names need not be valid MATLAB identifiers, but must be unique. The number of names must equal the number of observations (rows) in A. To specify ObsNames when using a file as input, set ReadObsNames to false.

Name/value pairs available when using text files as inputs:

Delimiter

A character vector or string scalar indicating the character separating columns in the file. Values are

- '\t' (tab, the default when no format is specified)
- ' ' (space, the default when a format is specified)
- ',' (comma)
- ';;' (semicolon)
- '|' (bar)
Format

A format character vector or string scalar, as accepted by `textscan`. `dataset` reads the file using `textscan`, and creates variables in `A` according to the conversion specifiers in the format character vector or string scalar. You may also provide any name/value pairs accepted by `textscan`. Using the `Format` parameter is much faster for large files. If `ReadObsNames` is `true`, then `format` should include a format specifier for the first column of the file.

HeaderLines

Numeric value indicating the number of lines to skip at the beginning of a file.

Default: 0

TreatAsEmpty

Specifies characters to treat as the empty character vector in a numeric column. Values may be a character array, a string array, or a cell array of character vectors. The parameter applies only to numeric columns in the file; `dataset` does not accept numeric literals such as `'99'`.

Name/value pairs available when using text files or Excel spreadsheets as inputs:

ReadVarNames

A logical value indicating whether (`true`) or not (`false`) to read variable names from the first row of the file. The default is `true`. If `ReadVarNames` is `true`, variable names in the column headers of the file or range (if using an Excel spreadsheet) cannot be empty.

ReadObsNames

A logical value indicating whether (`true`) or not (`false`) to read observation names from the first column of the file or range (if using an Excel spreadsheet). The default is `false`. If `ReadObsNames` and `ReadVarNames` are both `true`, `dataset` saves the header of the first column in the file or range as the name of the first dimension in `A.Properties.DimNames`.

When reading from an XPT format file, the `ReadObsNames` parameter name/value pair determines whether or not to try to use the first variable in the file as observation names. Specify as a logical value (default `false`). If the contents of the first variable are not valid observation names then `dataset` reads the variable into a variable of the dataset array and does not set the observation names.
Name/value pairs available when using Excel spreadsheets as input:

Sheet

A positive scalar value of type double indicating the sheet number, or a quoted sheet name.

Range

A character vector or string scalar of the form 'C1:C2' where C1 and C2 are the names of cells at opposing corners of a rectangular region to be read, as for xlsread. By default, the rectangular region extends to the right-most column containing data. If the spreadsheet contains empty columns between columns of data, or if the spreadsheet contains figures or other non-tabular information, specify a range that contains only data.

Examples

Create a dataset array from workspace variables, including observation names:

load cereal
cereal = dataset(Calories,Protein,Fat,Sodium,Fiber,Carbo,...
 Sugars,'ObsNames',Name)
cereal.Properties.VarDescription = Variables(4:10,2);

Create a dataset array from a single, multi-columned workspace variable, designating variable names for each column:

load cities
categories = cellstr(categories);
cities = dataset({ratings,categories{:}},{},...
 'ObsNames',cellstr(names))

Load data from a text or spreadsheet file

patients = dataset('File','hospital.dat',...
 'Delimiter','','ReadObsNames',true)
patients2 = dataset('XLSFile','hospital.xls',...
 'ReadObsNames',true)

1 Load patient data from the CSV file hospital.dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):
patients = dataset('file','hospital.dat', ...
 'format','%s%s%s%f%f%f%f%f%f', ...
 'Delimiter',',','ReadObsNames',true);

You can also load the data without specifying a format. dataset will automatically create dataset variables that are either double arrays or cell arrays of character vectors, depending on the contents of the file:

patients = dataset('file','hospital.dat',...
 'delimiter',',',...
 'ReadObsNames',true);

2 Make the \{0,1\}-valued variable smoke nominal, and change the labels to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories of smokers:

patients.smoke = addlevels(patients.smoke,...
 {'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that were present in A, caused some array elements to have undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also
cell2dataset | mat2dataset | struct2dataset | tdfread | textscan | xlsread

Topics
“Create a Dataset Array from Workspace Variables” on page 2-69
“Create a Dataset Array from a File” on page 2-75
“Dataset Arrays in the Variables Editor” on page 2-123
“Dataset Arrays” on page 2-137

Introduced in R2007a
dataset2cell

Class: dataset

Convert dataset array to cell array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

\[C = \text{dataset2cell}(D) \]

Description

\(C = \text{dataset2cell}(D) \) converts the dataset array \(D \) to a cell array \(C \). Each variable of \(D \) becomes a column in \(C \). If \(D \) is an \(M \)-by-\(N \) array, then \(C \) is \((M+1)\)-by-\(N \), with the variable names of \(D \) in the first row. If \(D \) contains observation names, then \(C \) is \((M+1)\)-by-\((N+1)\), with the observation names in the first column.

See Also

cell2dataset | dataset | dataset.export

Topics

“Dataset Arrays” on page 2-137
dataset2struct

Class: dataset

Convert dataset array to structure

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

S = dataset2struct(D)
S = dataset2struct(D,'AsScalar',true)

Description

S = dataset2struct(D) converts a dataset array to a structure array. Each variable of D becomes a field in S. If D is an M-by-N dataset array, then S is M-by-1 and has N fields. If D contains observation names, then S contains those names in the additional field ObsNames.

S = dataset2struct(D,'AsScalar',true) converts a dataset array to a scalar structure. Each variable of D becomes a field in S. If D is an M-by-N dataset array, then S has N fields, each of which as M rows. If D contains observation names, then S contains those names in the additional field ObsNames.

Input Arguments

D

M-by-N dataset array.
Output Arguments

S

M-by-1 structure array, with N fields. If the input dataset array contains observation names, then S has an additional field ObsNames.

If you specify 'AsScalar', true, then S is a scalar structure, with N fields, each with M rows.

Examples

Convert Dataset Array to Structure Array

Load sample dataset array.

load('hospital')

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});
size(D)

ans = 1x2

8 3

The dataset array D has 8 observations and 3 variables.

Convert D to a structure array.

S = dataset2struct(D)

S = 8x1 struct array with fields:
 ObsNames
 LastName
 Sex
 Age
The structure is 8x1, corresponding to the 8 observations in the dataset array. S also has the field ObsNames, since D had observation names.

Display the field data for the first element of S.

S(1)

ans = struct with fields:
 ObsNames: 'YPL-320'
 LastName: 'SMITH'
 Sex: Male
 Age: 38

This information corresponds to the first observation (row) of the dataset array.

Convert Dataset Array to Scalar Structure

Load sample dataset array.

load('hospital')

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});

size(D)

ans = 1x2
 8 3

The dataset array D has 8 observations and 3 variables.

Convert D to a scalar structure array.

S = dataset2struct(D,'AsScalar',true)

S = struct with fields:
 ObsNames: {8x1 cell}
 LastName: {8x1 cell}
 Sex: [8x1 nominal]
Age: [8x1 double]

The data in the fields of the scalar structure is 8x1, corresponding to the 8 observations in the dataset array. S also has the field ObsNames, since D had observation names.

Display the data for the field LastName.

S.LastName

ans = 8x1 cell array
 {'SMITH' }
 {'JOHNSON' }
 {'WILLIAMS'}
 {'JONES' }
 {'BROWN' }
 {'DAVIS' }
 {'MILLER' }
 {'WILSON' }

The structure field LastName contains all of the data that was in the original dataset array variable, LastName.

See Also
dataset | dataset2cell | struct2dataset

Topics
“Dataset Arrays” on page 2-137
dataset2table

Convert dataset array to table

Syntax

t = dataset2table(ds)

Description

t = dataset2table(ds) converts a dataset array to a table.

Examples

Convert Dataset Array to Table

Load the sample data, which contains nutritional information for 77 cereals.

load cereal;

Create a dataset array containing the calorie, protein, fat, and name data for the first five cereals. Label the variables.

Calories = Calories(1:5);
Protein = Protein(1:5);
Fat = Fat(1:5);
Name = Name(1:5);

cereal = dataset(Calories, Protein, Fat, 'ObsNames', Name)

cereal =

<table>
<thead>
<tr>
<th></th>
<th>Calories</th>
<th>Protein</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Bran</td>
<td>70</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>100% Natural Bran</td>
<td>120</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>All-Bran</td>
<td>70</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>All-Bran with Extra Fiber</td>
<td>50</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
cereal.Properties.VarDescription = Variables(4:6,2);

Convert the dataset array to a table.

t = dataset2table(cereal)

t=5×3 table

<table>
<thead>
<tr>
<th>Calories</th>
<th>Protein</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Bran</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>100% Natural Bran</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>All-Bran</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>All-Bran with Extra Fiber</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>Almond Delight</td>
<td>110</td>
<td>2</td>
</tr>
</tbody>
</table>

Input Arguments

ds — Input dataset array
dataset array

Input dataset array to convert to a table, specified as a dataset array. Each variable in ds becomes a variable in the output table t.

Output Arguments

t — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions, variable units, variable names, and row names. For more information, see “Tables” (MATLAB).

See Also
dataset | table
Topics
“Dataset Arrays” on page 2-137
“Tables” (MATLAB)

Introduced in R2013b
datasetfun

Class: dataset

Apply function to dataset array variables

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

```matlab
b = datasetfun(fun,A)
[b,c,...] = datasetfun(fun,A)
[b,...] = datasetfun(fun,A,...,'UniformOutput',false)
[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
[b,...] = datasetfun(fun,A,...,'DataVars',vars)
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)
```

Description

`b = datasetfun(fun,A)` applies the function specified by `fun` to each variable of the dataset array `A`, and returns the results in the vector `b`. The `i`th element of `b` is equal to `fun` applied to the `i`th dataset variable of `A`. `fun` is a function handle to a function that takes one input argument and returns a scalar value. `fun` must return values of the same class each time it is called, and `datasetfun` concatenates them into the vector `b`. The outputs from `fun` must be one of the following types: numeric, logical, character, structure, or cell.

To apply functions that return results that are nonscalar or of different sizes and types, use the 'UniformOutput' or 'DatasetOutput' parameters described below.

Do not rely on the order in which `datasetfun` computes the elements of `b`, which is unspecified.
If `fun` is bound to more than one built-in function or file, (that is, if it represents a set of overloaded functions), `datasetfun` follows MATLAB dispatching rules in calling the function. (See “Function Precedence Order” (MATLAB).)

```matlab
[b,c,...] = datasetfun(fun,A), where `fun` is a function handle to a function that returns multiple outputs, returns vectors `b`, `c`, ..., each corresponding to one of the output arguments of `fun`. `datasetfun` calls `fun` each time with as many outputs as there are in the call to `datasetfun`. `fun` may return output arguments having different classes, but the class of each output must be the same each time `fun` is called.
```

```matlab
[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows you to specify a function `fun` that returns values of different sizes or types. `datasetfun` returns a cell array (or multiple cell arrays), where the `i`th cell contains the value of `fun` applied to the `i`th dataset variable of `A`. Setting 'UniformOutput' to true is equivalent to the default behavior.
```

```matlab
[b,...] = datasetfun(fun,A,...,'DatasetOutput',true) specifies that the output(s) of `fun` are returned as variables in a dataset array (or multiple dataset arrays). `fun` must return values with the same number of rows each time it is called, but it may return values of any type. The variables in the output dataset array(s) have the same names as the variables in the input. Setting 'DatasetOutput' to false (the default) specifies that the type of the output(s) from `datasetfun` is determined by 'UniformOutput'.
```

```matlab
[b,...] = datasetfun(fun,A,...,'DataVars',vars) allows you to apply `fun` only to the dataset variables in `A` specified by `vars`. `vars` is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.
```

```matlab
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames) specifies observation names for the dataset output when 'DatasetOutput' is true.
```

```matlab
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun), where `efun` is a function handle, specifies the MATLAB function to call if the call to `fun` fails. The error-handling function is called with the following input arguments:
```

- A structure with the fields `identifier`, `message`, and `index`, respectively containing the identifier of the error that occurred, the text of the error message, and the linear index into the input array(s) at which the error occurred
- The set of input arguments at which the call to the function failed
The error-handling function should either re-throw an error, or return the same number of outputs as `fun`. These outputs are then returned as the outputs of `datasetfun`. If 'UniformOutput' is true, the outputs of the error handler must also be scalars of the same type as the outputs of `fun`. For example, the following code could be saved in a file as the error-handling function:

```matlab
function [A,B] = errorFunc(S,varargin)

warning(S.identifier,S.message);
A = NaN;
B = NaN;
```

If an error-handling function is not specified, the error from the call to `fun` is rethrown.

Examples

Work With Datasets Using Function Handles

Use function handles to compute the mean and plot a histogram of selected variables in a dataset array.

Load the sample data.

```matlab
load hospital
```

Use `datasetfun` to compute the means of the `Weight` and `BloodPressure` variables, and store the results in a dataset array.

```matlab
stats = datasetfun(@mean,hospital,...
    'DataVars',{'Weight','BloodPressure'},...
    'UniformOutput',false)
```

```matlab
stats = 1x2 cell array
    {[154]}    {1x2 double}
```

The variable `BloodPressure` contains two columns: One for the systolic measurement, and one for the diastolic measurement.

Display the mean of the blood pressure variable.

```matlab
stats{2}
```
ans = 1×2

122.7800 82.9600

Plot a histogram of the blood pressure variable.

datasetfun(@hist,hospital,...
 'DataVars','BloodPressure',...
 'UniformOutput',false);

title('{\bf Blood Pressure}')
legend('Systolic','Diastolic','Location','N')
See Also
grpstats
daugment

D-optimal augmentation

Syntax

\[
dCE2 = \text{daugment}(dCE, mruns)\\
[dCE2, X] = \text{daugment}(dCE, mruns)\\
[dCE2, X] = \text{daugment}(dCE, mruns, \text{model})\\
[dCE2, X] = \text{daugment}(..., \text{param1}, \text{val1}, \text{param2}, \text{val2}, ...)\]

Description

\(dCE2 = \text{daugment}(dCE, mruns)\) uses a coordinate-exchange algorithm to *D*-optimally add \(mruns\) runs to an existing experimental design \(dCE\) for a linear additive model.

\([dCE2, X] = \text{daugment}(dCE, mruns)\) also returns the design matrix \(X\) associated with the augmented design.

\([dCE2, X] = \text{daugment}(dCE, mruns, \text{model})\) uses the linear regression model specified in \(\text{model}\). \(\text{model}\) is one of the following:

- 'linear' — Constant and linear terms. This is the default.
- 'interaction' — Constant, linear, and interaction terms
- 'quadratic' — Constant, linear, interaction, and squared terms
- 'purequadratic' — Constant, linear, and squared terms

The order of the columns of \(X\) for a full quadratic model with \(n\) terms is:

1. The constant term
2. The linear terms in order 1, 2, ..., \(n\)
3. The interaction terms in order (1, 2), (1, 3), ..., (1, \(n\)), (2, 3), ..., (\(n-1\), \(n\))
4. The squared terms in order 1, 2, ..., \(n\)

Other models use a subset of these terms, in the same order.
Alternatively, *model* can be a matrix specifying polynomial terms of arbitrary order. In this case, *model* should have one column for each factor and one row for each term in the model. The entries in any row of *model* are powers for the factors in the columns. For example, if a model has factors X_1, X_2, and X_3, then a row $[0 \ 1 \ 2]$ in *model* specifies the term $(X_1.^0) \cdot (X_2.^1) \cdot (X_3.^2)$. A row of all zeros in *model* specifies a constant term, which can be omitted.

$$[dCE2,X] = \text{daugment(...,param1,val1,param2,val2,...)}$$

specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bounds'</td>
<td>Lower and upper bounds for each factor, specified as a 2-by-nfactors matrix, where nfactors is the number of factors. Alternatively, this value can be a cell array containing nfactors elements, each element specifying the vector of allowable values for the corresponding factor.</td>
</tr>
<tr>
<td>'categorical'</td>
<td>Indices of categorical predictors.</td>
</tr>
<tr>
<td>'display'</td>
<td>Either 'on' or 'off' to control display of the iteration counter. The default is 'on'.</td>
</tr>
<tr>
<td>'excludefun'</td>
<td>Handle to a function that excludes undesirable runs. If the function is f, it must support the syntax $b = f(S)$, where S is a matrix of treatments with nfactors columns, where nfactors is the number of factors, and b is a vector of Boolean values with the same number of rows as S. $b(i)$ is true if the ith row S should be excluded.</td>
</tr>
<tr>
<td>'init'</td>
<td>Initial design as an mruns-by-nfactors matrix, where nfactors is the number of factors. The default is a randomly selected set of points.</td>
</tr>
<tr>
<td>'levels'</td>
<td>Vector of number of levels for each factor.</td>
</tr>
<tr>
<td>'maxiter'</td>
<td>Maximum number of iterations. The default is 10.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>'options'</td>
<td>The value is a structure that contains options specifying whether to compute multiple tries in parallel, and specifying how to use random numbers when generating the starting points for the tries. Create the options structure with <code>statset</code>. Applicable <code>statset</code> parameters are:</td>
</tr>
<tr>
<td></td>
<td>• 'UseParallel' — If <code>true</code> and if Parallel Computing Toolbox is installed, compute in parallel. If the Parallel Computing Toolbox is not installed, or 'UseParallel', <code>false</code>, then computation occurs in serial mode. Default is <code>false</code>, meaning serial computation.</td>
</tr>
<tr>
<td></td>
<td>• <code>UseSubstreams</code> — Set to <code>true</code> to compute in parallel in a reproducible fashion. Default is <code>false</code>. To compute reproducibly, set <code>Streams</code> to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.</td>
</tr>
<tr>
<td></td>
<td>• <code>Streams</code> — A <code>RandStream</code> object or cell array of such objects. If you do not specify <code>Streams</code>, <code>daugment</code> uses the default stream or streams. If you choose to specify <code>Streams</code>, use a single object except in the case</td>
</tr>
<tr>
<td></td>
<td>• You have an open Parallel pool</td>
</tr>
<tr>
<td></td>
<td>• <code>UseParallel</code> is <code>true</code></td>
</tr>
<tr>
<td></td>
<td>• <code>UseSubstreams</code> is <code>false</code></td>
</tr>
<tr>
<td></td>
<td>In that case, use a cell array the same size as the Parallel pool.</td>
</tr>
<tr>
<td>'tries'</td>
<td>Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1.</td>
</tr>
</tbody>
</table>

Note The `daugment` function augments an existing design using a coordinate-exchange algorithm; the 'start' parameter of the `candexch` function provides the same functionality using a row-exchange algorithm.
Examples

The following eight-run design is adequate for estimating main effects in a four-factor model:

```matlab
dCEmain = cordexch(4,8)
dCEmain =
   1   -1   -1    1
 -1   -1    1    1
 -1    1   -1    1
  1    1    1   -1
  1    1    1    1
 -1    1   -1   -1
  1   -1   -1   -1
 -1   -1    1   -1
```

To estimate the six interaction terms in the model, augment the design with eight additional runs:

```matlab
dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =
   1   -1   -1    1
 -1   -1    1    1
 -1    1   -1    1
  1    1    1   -1
  1    1    1    1
 -1    1   -1   -1
  1   -1   -1   -1
 -1   -1    1   -1
 -1     1    1    1
 -1    1   -1    1
 -1     1    1   -1
  1    1    1    1
 -1    1   -1    1
  1    1   -1    1
 -1    1    1   -1
  1    1   -1   -1
  1   -1    1    1
 -1    1    1    1
```

The augmented design is full factorial, with the original eight runs in the first eight rows.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

See Also

candexch | cordexch | dcovary

Introduced before R2006a
d covary

D-optimal design with fixed covariates

Syntax

\[
dCV = \text{d covary}(\text{n factors}, \text{fixed})
\]

\[
[dCV, X] = \text{d covary}(\text{n factors}, \text{fixed})
\]

\[
[dCV, X] = \text{d covary}(\text{n factors}, \text{fixed}, model)
\]

\[
[dCV, X] = \text{daugment}(\ldots, \text{param1}, \text{val1}, \text{param2}, \text{val2}, \ldots)
\]

Description

\(dCV = \text{d covary}(\text{n factors}, \text{fixed})\) uses a coordinate-exchange algorithm to generate a *D*-optimal design for a linear additive model with \text{n factors} factors, subject to the constraint that the model include the fixed covariate factors in \text{fixed}. The number of runs in the design is the number of rows in \text{fixed}. The design \(dCV\) augments \text{fixed} with initial columns for treatments of the model terms.

\([dCV, X] = \text{d covary}(\text{n factors}, \text{fixed})\) also returns the design matrix \(X\) associated with the design.

\([dCV, X] = \text{d covary}(\text{n factors}, \text{fixed}, model)\) uses the linear regression model specified in \text{model}. \text{model} is one of the following:

- 'linear' — Constant and linear terms. This is the default.
- 'interaction' — Constant, linear, and interaction terms
- 'quadratic' — Constant, linear, interaction, and squared terms
- 'purequadratic' — Constant, linear, and squared terms

The order of the columns of \(X\) for a full quadratic model with \(n\) terms is:

1. The constant term
2. The linear terms in order 1, 2, ..., \(n\)
3. The interaction terms in order \((1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n - 1, n)\)

32-1231
The squared terms in order 1, 2, ..., \(n \)

Other models use a subset of these terms, in the same order.

Alternatively, \(\text{model} \) can be a matrix specifying polynomial terms of arbitrary order. In this case, \(\text{model} \) should have one column for each factor and one row for each term in the model. The entries in any row of \(\text{model} \) are powers for the factors in the columns. For example, if a model has factors \(X_1, X_2, \) and \(X_3 \), then a row \([0 \ 1 \ 2]\) in \(\text{model} \) specifies the term \((X_1.^0) \cdot (X_2.^1) \cdot (X_3.^2)\). A row of all zeros in \(\text{model} \) specifies a constant term, which can be omitted.

\[
[dCV,X] = \text{daugment}(..., \text{param1,val1, param2,val2,} ...)
\]

specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bounds'</td>
<td>Lower and upper bounds for each factor, specified as a 2-by-(\text{n})factors matrix. Alternatively, this value can be a cell array containing (\text{n})factors elements, each element specifying the vector of allowable values for the corresponding factor.</td>
</tr>
<tr>
<td>'categorical'</td>
<td>Indices of categorical predictors.</td>
</tr>
<tr>
<td>'display'</td>
<td>Either 'on' or 'off' to control display of the iteration counter. The default is 'on'.</td>
</tr>
<tr>
<td>'excludefun'</td>
<td>Handle to a function that excludes undesirable runs. If the function is (f), it must support the syntax (b = f(S)), where (S) is a matrix of treatments with (\text{n})factors columns and (b) is a vector of Boolean values with the same number of rows as (S). (b(i)) is true if the (i)th row (S) should be excluded.</td>
</tr>
<tr>
<td>'init'</td>
<td>Initial design as an (\text{n})runs-by-(\text{n})factors matrix. The default is a randomly selected set of points.</td>
</tr>
<tr>
<td>'levels'</td>
<td>Vector of number of levels for each factor.</td>
</tr>
<tr>
<td>'maxiter'</td>
<td>Maximum number of iterations. The default is 10.</td>
</tr>
</tbody>
</table>
Examples

Example 1

Suppose you want a design to estimate the parameters in a three-factor linear additive model, with eight runs that necessarily occur at different times. If the process experiences temporal linear drift, you may want to include the run time as a variable in the model. Produce the design as follows:
time = linspace(-1,1,8)';
[dCV1,X] = dcovary(3,time,'linear')
dCV1 =
 -1.0000 1.0000 1.0000 -1.0000
 1.0000 -1.0000 -1.0000 -0.7143
 -1.0000 -1.0000 -1.0000 -0.4286
 1.0000 -1.0000 1.0000 -0.1429
 1.0000 1.0000 -1.0000 0.1429
 -1.0000 1.0000 -1.0000 0.4286
 1.0000 1.0000 1.0000 0.7143
 -1.0000 -1.0000 1.0000 1.0000
X =
 1.0000 -1.0000 1.0000 1.0000 -1.0000
 1.0000 1.0000 -1.0000 -1.0000 -0.7143
 1.0000 -1.0000 -1.0000 -1.0000 -0.4286
 1.0000 1.0000 -1.0000 1.0000 -0.1429
 1.0000 1.0000 1.0000 -1.0000 0.1429
 1.0000 -1.0000 1.0000 -1.0000 0.4286
 1.0000 1.0000 1.0000 1.0000 0.7143
 1.0000 -1.0000 -1.0000 1.0000 1.0000

The column vector time is a fixed factor, normalized to values between ±1. The number of rows in the fixed factor specifies the number of runs in the design. The resulting design dCV gives factor settings for the three controlled model factors at each time.

Example 2

The following example uses the dummyvar function to block an eight-run experiment into 4 blocks of size 2 for estimating a linear additive model with two factors:

```matlab
fixed = dummyvar([1 1 2 2 3 3 4 4]);
dCV2 = dcovary(2,fixed(:,1:3),'linear')
dCV2 =
    1   1   1   0   0
   -1  -1   1   0   0
   -1   1   0   1   0
    1  -1   0   1   0
    1   1   0   0   1
   -1  -1   0   0   1
   -1   1   0   0   0
    1  -1   0   0   0
```

The first two columns of dCV2 contain the settings for the two factors; the last three columns are dummy variable codings for the four blocks.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
cordexch | daugment | dummyvar

Introduced before R2006a
delete

Class: qrandstream

Delete handle object

Syntax

delete(h)

Description

delete(h) deletes the handle object h, where h is a scalar handle. The delete method deletes a handle object but does not clear the handle from the workspace. A deleted handle is no longer valid.

See Also

clear | isValid | qrandstream
dendrogram

Dendrogram plot

Syntax

dendrogram(tree)
dendrogram(tree,Name,Value)
dendrogram(tree,P)
dendrogram(tree,P,Name,Value)

H = dendrogram(__)
[H,T,outperm] = dendrogram(__)

Description

dendrogram(tree) generates a dendrogram plot of the hierarchical binary cluster tree. A dendrogram consists of many U-shaped lines that connect data points in a hierarchical tree. The height of each U represents the distance between the two data points being connected.

• If there are 30 or fewer data points in the original data set, then each leaf in the dendrogram corresponds to one data point.

• If there are more than 30 data points, then dendrogram collapses lower branches so that there are 30 leaf nodes. As a result, some leaves in the plot correspond to more than one data point.

dendrogram(tree,Name,Value) uses additional options specified by one or more name-value pair arguments.

dendrogram(tree,P) generates a dendrogram plot with no more than P leaf nodes. If there are more than P data points in the original data set, then dendrogram collapses the lower branches of the tree. As a result, some leaves in the plot correspond to more than one data point.
dendrogram(tree,P,Name,Value) uses additional options specified by one or more name-value pair arguments.

H = dendrogram(___) generates a dendrogram plot and returns a vector of line handles. You can use any of the input arguments from the previous syntaxes.

[H,T,outperm] = dendrogram(___) also returns a vector containing the leaf node number for each object in the original data set, T, and a vector giving the order of the node labels of the leaves as shown in the dendrogram, outperm.

- It is useful to return T when the number of leaf nodes, P, is less than the total number of data points, so that some leaf nodes in the display correspond to multiple data points.
- The order of the node labels given in outperm is from left to right for a horizontal dendrogram, and from bottom to top for a vertical dendrogram.

Examples

Plot Dendrogram

Generate sample data.

rng('default') % For reproducibility
X = rand(10,3);

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram using the default options.

tree = linkage(X,'average');
figure()
dendrogram(tree)
Specify Dendrogram Leaf Node Order

Generate sample data.

```matlab
rng('default') % For reproducibility
X = rand(10,3);
```

Create a hierarchical binary cluster tree using `linkage`.

```matlab
tree = linkage(X,'average');
```
D = pdist(X);
leafOrder = optimalleaforder(tree,D)
leafOrder = 1×10

Plot the dendrogram using an optimal leaf order.

figure()
dendrogram(tree,'Reorder',leafOrder)

The order of the leaf nodes in the dendrogram plot corresponds - from left to right - to the permutation in leafOrder.
Specify Number of Nodes in Dendrogram Plot

Generate sample data.

```matlab
rng('default') % For reproducibility
X = rand(100,2);
```

There are 100 data points in the original data set, \(X \).

Create a hierarchical binary cluster tree using `linkage`. Then, plot the dendrogram for the complete tree (100 leaf nodes) by setting the input argument \(P \) equal to 0.

```matlab
tree = linkage(X,'average');
dendrogram(tree,0)
```
Now, plot the dendrogram with only 25 leaf nodes. Return the mapping of the original data points to the leaf nodes shown in the plot.

```matlab
figure
[~,T] = dendrogram(tree,25);
```

List the original data points that are in leaf node 7 of the dendrogram plot.

```matlab
find(T==7)
```

```
ans = 7×1

7
33
60
```
Change Dendrogram Orientation and Line Width

Generate sample data.

```
rng('default') % For reproducibility
X = rand(10,3);
```

Create a hierarchical binary cluster tree using `linkage`. Then, plot the dendrogram with a vertical orientation, using the default color threshold. Return handles to the lines so you can change the dendrogram line widths.

```
tree = linkage(X,'average');
H = dendrogram(tree,'Orientation','left','ColorThreshold','default');
set(H,'LineWidth',2)
```
Input Arguments

tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an \((M - 1)\)-by-3 matrix that you generate using `linkage`, where \(M\) is the number of data points in the original data set.

P — Maximum number of leaf nodes
30 (default) | positive integer value

Maximum number of leaf nodes to include in the dendrogram plot, specified as a positive integer value.
• If there are \(P \) or fewer data points in the original data set, then each leaf in the dendrogram corresponds to one data point.

• If there are more than \(P \) data points, then dendrogram collapses lower branches so that there are \(P \) leaf nodes. As a result, some leaves in the plot correspond to more than one data point.

If you do not specify \(P \), then dendrogram uses 30 as the maximum number of leaf nodes. To display the complete tree, set \(P \) equal to 0.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Orientation','left','Reorder',myOrder specifies a vertical dendrogram with leaves in the order specified by myOrder.

Reorder — Order of leaf nodes

vector

Order of leaf nodes in the dendrogram plot, specified as the comma-separated pair consisting of 'Reorder' and a vector giving the order of nodes in the complete tree. The order vector must be a permutation of the vector 1:M, where \(M \) is the number of data points in the original data set. Specify the order from left to right for horizontal dendrograms, and from bottom to top for vertical dendrograms.

If \(M \) is greater than the number of leaf nodes in the dendrogram plot, \(P \) (by default, \(P \) is 30), then you can only specify a permutation vector that does not separate the groups of leaves that correspond to collapsed nodes.

Data Types: single | double

CheckCrossing — Indicator for whether to check for crossing branches

true (default) | false

Indicator for whether to check for crossing branches in the dendrogram plot, specified as the comma-separated pair consisting of 'CheckCrossing' and either true or false. This option is only useful when you specify a value for Reorder.
When CheckCrossing has the value true, dendrogram issues a warning if the order of the leaf nodes causes crossing branches in the plot. If the dendrogram plot does not show a complete tree (because the number of data points in the original data set is greater than P), dendrogram only issues a warning when the order of the leaf nodes causes branch to cross in the dendrogram as shown in the plot. That is, there is no warning if the order causes crossing branches in the complete tree but not in the dendrogram as shown in the plot.

Data Types: logical

ColorThreshold — Threshold for unique colors
'default' | scalar value in the range (0,max(tree(:,3)))

Threshold for unique colors in the dendrogram plot, specified as the comma-separated pair consisting of 'ColorThreshold' and either 'default' or a scalar value in the range (0,max(tree(:,3))). If ColorThreshold has the value T, then dendrogram assigns a unique color to each group of nodes in the dendrogram whose linkage is less than T.

- If ColorThreshold has the value 'default', then the threshold, T, is 70% of the maximum linkage, 0.7*max(tree(:,3)).
- If you do not specify a value for ColorThreshold, or if you specify a threshold outside the range (0,max(tree(:,3))), then dendrogram uses only one color for the dendrogram plot.

Orientation — Orientation of dendrogram
'top' (default) | 'bottom' | 'left' | 'right'

Orientation of the dendrogram in the figure window, specified as the comma-separated pair consisting of 'Orientation' and one of these values:

- 'top' Top to bottom
- 'bottom' Bottom to top
- 'left' Left to right
- 'right' Right to left

Labels — Label for each data point
character array | string array | cell array of character vectors

Label for each data point in the original data set, specified as the comma-separated pair consisting of 'Labels' and a character array, string array or cell array of character vectors.
vectors. `dendrogram` labels any leaves in the dendrogram plot containing a single data point with that data point’s label.

Output Arguments

H — Handles to lines

vector

Handles to lines in the dendrogram plot, returned as a vector.

T — Leaf node numbers

column vector

Leaf node numbers for each data point in the original data set, returned as a column vector of length M, where M is the number of data points in the original data set.

When there are fewer than P data points in the original data (P is 30, by default), all data points are displayed in the dendrogram, with each node containing a single data point. In this case, T is the identity map, $T = (1:M)'$.

T is useful when P is less than the total number of data points. That is, when some leaf nodes in the dendrogram display correspond to multiple data points. For example, to find out which data points are contained in leaf node k of the dendrogram plot, use `find(T==k)`.

outperm — Permutation of node labels

vector

Permutation of the node labels of the leaves of the dendrogram as shown in the plot, returned as a row vector. `outperm` gives the order from left to right for a horizontal dendrogram, and from bottom to top for a vertical dendrogram. If there are P leaves in the dendrogram plot, `outperm` is a permutation of the vector $1:P$.

See Also

`cluster` | `clusterdata` | `cophenet` | `inconsistent` | `linkage` | `pdist` | `silhouette`

Introduced before R2006a
Description property

Class: dataset

Character vector describing data set

Note The `dataset` data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® `table` data type instead. See MATLAB `table` documentation for more information.

Description

`Description` is a character vector describing the data set. The default is an empty character vector.
designecoc

Coding matrix for reducing error-correcting output code to binary

Syntax

\[
M = \text{designecoc}(K, \text{name}) \\
M = \text{designecoc}(K, \text{name}, \text{Name,Value})
\]

Description

\[
M = \text{designecoc}(K, \text{name}) \text{ returns the coding matrix } M \text{ that reduces the error-correcting output code (ECOC) design specified by name and K classes to a binary problem. } \\
M \text{ has } K \text{ rows and } L \text{ columns, with each row corresponding to a class and each column corresponding to a binary learner. name and K determine the value of } L.
\]

You can view or customize \(M \), and then specify it as the coding matrix for training an ECOC multiclass classifier using \text{fitcecoc}.

\[
M = \text{designecoc}(K, \text{name}, \text{Name,Value}) \text{ returns the coding matrix with additional options specified by one or more Name,Value pair arguments.}
\]

For example, you can specify the number of trials when generating a dense or sparse, random coding matrix.

Examples

Train ECOC Classifiers Using a Custom Coding Design

Consider the arrhythmia data set. There are 16 classes in the study, 13 of which are represented in the data. The first class indicates that the subject did not have arrhythmia, and the last class indicates that the subject's arrhythmia state was not recorded. Suppose that the other classes are ordinal levels indicating the severity of arrhythmia. Train an ECOC classifier using a custom coding design specified by the description of the classes.
Load the `arrhythmia` data set.

```matlab
class1VSOrd = [1; -ones(11,1); 0];
class1VSClass16 = [1; zeros(11,1); -1];
OrdVSClass16 = [0; ones(11,1); -1];
Coding = [class1VSOrd class1VSClass16 OrdVSClass16,...
          zeros(1,nOM(2)); OrdMat; zeros(1,nOM(2))];
```

Train an ECOC classifier using the custom coding design `Coding` and specify that the binary learners are decision trees.

```matlab
Mdl = fitcecoc(X,Y,'Coding',Coding,'Learner','Tree');
```

Estimate the in-sample classification error.

```matlab
genErr = resubLoss(Mdl)
genErr = 0.1460
```
Choose Among Several Random Coding Designs

If you request a random coding matrix by specifying `sparserandom` or `denserandom`, then, by default, `designecoc` generates 10,000 random matrices. Then, it chooses the matrix with the largest, minimal, pair-wise row distances based on the Hamming measure. You can specify to generate more matrices to increase the chance of obtaining a better one, or you can generate several coding matrices, and then see which performs best.

Load the `arrhythmia` data set. Reserve the observations classified into class 16 (i.e., those that do not have an arrhythmia classification) as new data.

```matlab
load arrhythmia
oosIdx = Y == 16;
isIdx = ~oosIdx;
Y = categorical(Y(isIdx));
tabulate(Y)
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>56.98%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>10.23%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.49%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.49%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>3.02%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.81%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.70%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.47%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>2.09%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.63%</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0.93%</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.16%</td>
</tr>
</tbody>
</table>

K = numel(unique(Y));

Generate four random coding design matrices such that the first two are dense and the second two are sparse. Specify to find the best out of 20,000 variates.

```matlab
rng(1); % For reproducibility
Coding = cell(4,1); % Preallocate for coding matrices
CodingTypes = {'denserandom','denserandom','sparserandom','sparserandom'};
for j = 1:4;
    Coding{j} = designecoc(K,CodingTypes{j},'NumTrials',2e4);
end
```
Coding is a 4-by-1 cell array, where each cell is a coding design matrix. The matrices have \(K \) rows, but the number of columns (i.e., binary learners) might vary.

Train and cross validate ECOC classifiers using the 15-fold cross validation. Specify that each ECOC classifier be trained using a classification tree, and the random coding matrix stored in Coding.

```matlab
Mdl = cell(4,1); % Preallocate for the ECOC classifiers
for j = 1:4;
    Mdl{j} = fitcecoc(X(isIdx,:),Y,'Learners','tree',...
                    'Coding',Coding{j},'KFold',15);
end
```

Warning: One or more folds do not contain points from all the groups.

Mdl is a 4-by-1 cell array of ClassificationPartitionedECOC models. Several classes have low relative frequency in the data, and so there is a chance that, during cross validation, some in-sample folds will not train using observations from those classes.

Estimate the 15-fold classification error for each classifier.

```matlab
genErr = nan(4,1);
for j = 1:4;
    genErr(j) = kfoldLoss(Mdl{j});
end
```

```
genErr
genErr = 4x1
       0.2349
       0.2140
       0.2116
       0.2279
```

Though the generalization error is still high, the best performing model, based solely on the out-of-sample classification error, is the model that used the coding design Coding{3}.
You can try to improve the generalization error by tuning some parameters of the binary learners. For example, you can specify to use the twoing rule or deviance for the split criterion, rather than the default Gini’s diversity index. You might also specify to use surrogate splits since there are missing values in the data.

Input Arguments

K — Number of classes
positive integer

Number of classes, specified as a positive integer.

\(K \) specifies the number of rows of the coding matrix \(M \).

Data Types: single | double

name — Coding design name
'binarycomplete' | 'denserandom' | 'onevsall' | 'onevsone' | 'sparserandom' | ...

Coding design name, specified as a value in the following table. The table summarizes the coding schemes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Number of Binary Learners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allpairs' and 'onevsone'</td>
<td>(K(K - 1)/2)</td>
<td>For each binary learner, one class is positive, another is negative, and the software ignores the rest. This design exhausts all combinations of class pair assignments.</td>
</tr>
<tr>
<td>Value</td>
<td>Number of Binary Learners</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>'binarycomplete'</td>
<td>$2^{(K-1)} - 1$</td>
<td>This design partitions the classes into all binary combinations, and does not ignore any classes. For each binary learner, all class assignments are -1 and 1 with at least one positive and negative class in the assignment.</td>
</tr>
<tr>
<td>'denserandom'</td>
<td>Random, but approximately $10 \log_2 K$</td>
<td>For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one of each type. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
<tr>
<td>'onevsall'</td>
<td>K</td>
<td>For each binary learner, one class is positive and the rest are negative. This design exhausts all combinations of positive class assignments.</td>
</tr>
<tr>
<td>'ordinal'</td>
<td>$K - 1$</td>
<td>For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first two classes are negative, the rest positive, and so on.</td>
</tr>
<tr>
<td>Value</td>
<td>Number of Binary Learners</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>'sparserandom'</td>
<td>Random, but approximately 15 $\log_2 K$</td>
<td>For each binary learner, the software randomly assigns classes as positive or negative with probability 0.25 for each, and ignores classes with probability 0.5. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
<tr>
<td>'ternarycomplete'</td>
<td>$\left(3^K - 2^{(K+1)} + 1\right)/2$</td>
<td>This design partitions the classes into all ternary combinations. All class assignments are 0, -1, and 1 with at least one positive and one negative class in the assignment.</td>
</tr>
</tbody>
</table>

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: 'NumTrials',1000 specifies to generate 1000 random matrices.

NumTrials — Number of random coding matrices to generate

`10000` (default) | positive integer

Number of random coding matrices to generate, specified as the comma-separated pair consisting of 'NumTrials' and a positive integer.

The software:

- Generates `NumTrials` matrices, and selects the one with the maximal, pair-wise row distance.
- Ignores `NumTrials` for all values of name except 'denserandom' and 'sparserandom'.
Example: 'NumTrials',1000
Data Types: single | double

Output Arguments

M — Coding matrix
numeric matrix

Coding matrix that reduces an ECOC scheme to binary, returned as a numeric matrix. M has K rows and L columns, where L is the number of binary learners. Each row corresponds to a class and each column corresponds to a binary learner.

The elements of M are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This table describes the meaning of M(i,j), that is, the class that learner j assigns to observations in class i.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner j assigns observations in class i to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner j removes observations in class i from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner j assigns observations in class i to a positive class.</td>
</tr>
</tbody>
</table>

The binary learners for designs denserandom, binarycomplete, and onevsall do not assign 0 to observations in any class.

Tips

- The number of binary learners grows with the number of classes. For a problem with many classes, the binarycomplete and ternarycomplete coding designs are not efficient. However:
 - If K ≤ 4, then use ternarycomplete coding design rather than sparserandom.
 - If K ≤ 5, then use binarycomplete coding design rather than denserandom.
You can display the coding design matrix of a trained ECOC classifier by entering `Mdl.CodingMatrix` into the Command Window.

- You should form a coding matrix using intimate knowledge of the application, and taking into account computational constraints. If you have sufficient computational power and time, then try several coding matrices and choose the one with the best performance (e.g., check the confusion matrices for each model using `confusionmat`).
- Leave-one-out cross-validation (`Leaveout`) is inefficient for data sets with many observations. Instead, use k-fold cross-validation (`KFold`).

Algorithms

Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates custom coding matrices by ensuring:

- Every element is -1, 0, or 1.
- Every column contains at least one -1 and one 1.
- For all distinct column vectors u and v, $u \neq v$ and $u \neq -v$.
- All rows vectors are unique.
- The matrix can separate any two classes. That is, you can travel from any row to any other row following these rules:
 - You can move vertically from 1 to -1 or -1 to 1.
 - You can move horizontally from a nonzero element to another nonzero element.
 - You can use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be separated by the design. For example, in the coding design

$$\begin{bmatrix}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{bmatrix}$$
classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally from the -1 in row 2 to column 2 since there is a 0 in that position). Therefore, the software rejects this coding design.

Random Coding Design Matrices

For a given number of classes, for example, \(K \), the software generates random coding design matrices as follows.

1. The software generates one of the following:
 a. Dense random — The software assigns a 1 or -1 with equal probability to each element of the \(K \)-by-\(L_d \) coding design matrix, where \(L_d = \left\lfloor 10 \log_2 K \right\rfloor \).
 b. Sparse random — The software assigns a 1 to each element of the \(K \)-by-\(L_s \) coding design matrix with probability 0.25, a -1 with probability 0.25, and a 0 with probability 0.5, where \(L_s = \left\lfloor 15 \log_2 K \right\rfloor \).

2. If a column does not contain at least one 1 and at least one -1, then the software removes that column.

3. For distinct columns \(u \) and \(v \), if \(u = v \) or \(u = -v \), then the software removes \(v \) from the coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest, minimal pairwise row distance based on the Hamming measure ([4]) given by

\[
\Delta(k_1,k_2) = 0.5 \sum_{l=1}^{L} |m_{k_1,l}||m_{k_2,l}||m_{k_1,l} - m_{k_2,l}|,
\]

where \(m_{k,l} \) is an element of coding design matrix \(j \).

References

See Also
ClassificationECOC | fitcecoc

Introduced in R2014b
devianceTest

Analysis of deviance

Syntax

```matlab
tbl = devianceTest(mdl)
```

Description

`tbl = devianceTest(mdl)` returns an analysis of deviance table for the `mdl` generalized linear model. `tbl` gives the result of a test of whether the fitted model fits significantly better than a constant model.

Input Arguments

`mdl`

Generalized linear model, specified as a full `GeneralizedLinearModel` object constructed using `fitglm` or `stepwiseglm`, or a compacted `CompactGeneralizedLinearModel` object constructed using `compact`.

Output Arguments

`tbl`

Table containing two rows and four columns.

- The first row relates to a constant model.
- The second row relates to the full model in `mdl`.
- The columns are:
| **Deviance** | Deviance is twice the difference between the log likelihoods of the corresponding model (mdl or constant) and the saturated model. The test statistic for the deviance test is twice the difference between the log likelihoods of the tested model mdl and the constant model. For more information, see Deviance on page 32-1262. |
| **DFE** | Error degrees of freedom. It is the number of observations minus the number of parameters in the corresponding model. |
| **chi2Stat** | F statistic or Chi-squared statistic, depending on whether the dispersion is estimated (F statistic) or not (Chi-squared statistic) |
| | • Chi-squared statistic is the difference between the deviance of the constant model and the deviance of the full model. |
| | • F statistic is the difference between the deviance of the constant model and the deviance of the full model, divided by the estimated dispersion. |
| **pValue** | p-value associated with the test. It is the Chi-squared statistic with (number of coefficients in the model minus one) degrees of freedom, or F statistic with (number of coefficients in the model minus one) numerator degrees of freedom, and DFE denominator degrees of freedom. |
Examples

Deviance Test

Perform a deviance test on a generalized linear model.

Construct a generalized linear model.

```matlab
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[.4;.2;.3]);
y = poissrnd(mu);
mdl = fitglm(X,y,'linear','Distribution','poisson');
```

Test whether the model differs from a constant in a statistically significant way.

```matlab
tbl = devianceTest(mdl)
```

<table>
<thead>
<tr>
<th>Deviance</th>
<th>DFE</th>
<th>chi2Stat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(y) ~ 1</td>
<td>128.58</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>log(y) ~ 1 + x1 + x2 + x3 + x4 + x5</td>
<td>83.726</td>
<td>94</td>
<td>44.858</td>
</tr>
</tbody>
</table>

The P-value is very small, indicating that the model significantly differs from a constant.

Definitions

Deviance

Deviance of a model M_1 is twice the difference between the loglikelihood of that model and the saturated model, M_S. The saturated model is the model with the maximum number of parameters that can be estimated. For example, if there are n observations y_i, $i = 1, 2, ..., n$, with potentially different values for $X_i^T\beta$, then you can define a saturated model with n parameters. Let $L(b,y)$ denote the maximum value of the likelihood function for a model. Then the deviance of model M_1 is
where b_1 are the estimated parameters for model M_1 and b_S are the estimated parameters for the saturated model. The deviance has a chi-square distribution with $n - p$ degrees of freedom, where n is the number of parameters in the saturated model and p is the number of parameters in model M_1.

If M_1 and M_2 are two different generalized linear models, then the fit of the models can be assessed by comparing the deviances D_1 and D_2 of these models. The difference of the deviances is

$$D = D_2 - D_1 = -2 \left(\log L(b_2, y) - \log L(b_S, y) \right) + 2 \left(\log L(b_1, y) - \log L(b_S, y) \right)$$

$$= -2 \left(\log L(b_2, y) - \log L(b_1, y) \right).$$

Asymptotically, this difference has a chi-square distribution with degrees of freedom v equal to the number of parameters that are estimated in one model but fixed (typically at 0) in the other. That is, it is equal to the difference in the number of parameters estimated in M_1 and M_2. You can get the p-value for this test using $1 - \text{chi2cdf}(D, V)$, where $D = D_2 - D_1$.

See Also

CompactGeneralizedLinearModel | GeneralizedLinearModel

Topics

“Generalized Linear Models” on page 12-12
designMatrix

Class: GeneralizedLinearMixedModel

Fixed- and random-effects design matrices

Syntax

```matlab
D = designMatrix(glme)
D = designMatrix(glme,'Fixed')

D = designMatrix(glme,'Random')
Dsub = designMatrix(glme,'Random',gnumbers)
[Dsub,gnames] = designMatrix(glme,'Random',gnumbers)
```

Description

- **D = designMatrix(glme)** or **D = designMatrix(glme,'Fixed')** returns the fixed-effects design matrix for the generalized linear mixed-effects model `glme`.

- **D = designMatrix(glme,'Random')** returns the random-effects design matrix for the generalized linear mixed-effects model `glme`.

- **Dsub = designMatrix(glme,'Random',gnumbers)** returns a subset of the random-effects design matrix for the generalized linear mixed-effects model `glme` that corresponds to the grouping variables indicated by `gnumbers`.

- **[Dsub,gnames] = designMatrix(glme,'Random',gnumbers)** also returns the grouping variable names that correspond to `gnumbers`.

Input Arguments

- **glme — Generalized linear mixed-effects model**
 GeneralizedLinearMixedModel object
Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

gnumbers — Grouping variable numbers
array of integer values

Grouping variable numbers, specified as an array of integer values containing elements in the range \([1, R]\), where \(R\) is the length of the cell array that contains the grouping variables for the generalized linear mixed-effects model \(glme\).

For example, you can specify the grouping variables \(g_1, g_3,\) and \(g_r\) as \([1, 3, r]\).

Data Types: single | double

Output Arguments

D — Design matrix
matrix

Design matrix of a generalized linear mixed-effects model \(glme\) returned as one of the following:

- Fixed-effects design matrix — \(n\)-by-\(p\) matrix consisting of the fixed-effects design matrix of \(glme\), where \(n\) is the number of observations and \(p\) is the number of fixed-effects terms.
- Random-effects design matrix — \(n\)-by-\(k\) matrix, consisting of the random-effects design matrix of \(glme\). Here, \(k\) is equal to \(\text{length}(B)\), where \(B\) is the random-effects coefficients vector of generalized linear mixed-effects model \(glme\). The random-effects design matrix is returned as a sparse matrix. For more information, see “Sparse Matrices“ (MATLAB).

If \(glme\) has \(R\) grouping variables \(g_1, g_2, \ldots, g_R\), with levels \(m_1, m_2, \ldots, m_R\), respectively, and if \(q_1, q_2, \ldots, q_R\) are the lengths of the random-effects vectors that are associated with \(g_1, g_2, \ldots, g_R\), respectively, then \(B\) is a column vector of length \(q_1*m_1 + q_2*m_2 + \ldots + q_R*m_R\).

\(B\) is made by concatenating the empirical Bayes predictors of random effects vectors corresponding to each level of each grouping variable as \([g_1\text{level}_1; g_1\text{level}_2; \ldots; g_1\text{level}_{m_1}; g_2\text{level}_1; g_2\text{level}_2; \ldots; g_2\text{level}_{m_2}; \ldots; g_R\text{level}_1; g_R\text{level}_2; \ldots; g_R\text{level}_{m_R}]'\).
Data Types: single | double

Dsub — Submatrix of random-effects design matrix

matrix

Submatrix of random-effects design matrix that corresponds to the grouping variables specified by gnumbers, returned as an \(n \)-by-\(k \) matrix, where \(k \) is length of the column vector Bsub.

Bsub contains the concatenated empirical Bayes predictors of random-effects vectors, corresponding to each level of the grouping variables, specified by gnumbers.

If, for example, gnumbers is \([1, 3, r]\), this corresponds to the grouping variables \(g_1\), \(g_3\), and \(g_r\). Then, Bsub contains the empirical Bayes predictors of random-effects vectors corresponding to each level of the grouping variables \(g_1\), \(g_3\), and \(g_r\), such as

\[
[g_1 \text{level}_1; g_1 \text{level}_2; \ldots; g_1 \text{level}_{m_1}; g_3 \text{level}_1; g_3 \text{level}_2; \ldots; g_3 \text{level}_{m_3}; \quad \\
g_r \text{level}_1; g_r \text{level}_2; \ldots; g_r \text{level}_{m_r}]'.
\]

Thus, \(Dsub^*Bsub\) represents the contribution of all random effects corresponding to grouping variables \(g_1\), \(g_3\), and \(g_r\) to the response of glme.

If gnumbers is empty, then Dsub is the full random-effects design matrix.

Data Types: single | double

gnames — Names of grouping variables

\(k\)-by-1 cell array

Names of grouping variables corresponding to the integers in gnumbers if the design type is 'Random', returned as a \(k\)-by-1 cell array. If the design type is 'Fixed', then gnames is an empty matrix [].

Data Types: cell

Examples

Obtain Fixed- and Random-Effects Design Matrices

Load the sample data.
load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

$$\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}).$$

This corresponds to the generalized linear mixed-effects model

$$\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_C_{ij} + \beta_5 \text{supplier}_B_{ij} + b_i,$$

where
• defects_{ij} is the number of defects observed in the batch produced by factory i during batch j.

• μ_{ij} is the mean number of defects corresponding to factory i (where $i = 1, 2, ..., 20$) during batch j (where $j = 1, 2, ..., 5$).

• newprocess_{ij}, time_dev_{ij}, and temp_dev_{ij} are the measurements for each variable that correspond to factory i during batch j. For example, newprocess_{ij} indicates whether the batch produced by factory i during batch j used the new process.

• supplier_C_{ij} and supplier_B_{ij} are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory i during batch j.

• $b_i \sim N(0, \sigma^2_b)$ is a random-effects intercept for each factory i that accounts for factory-specific variation in quality.

\[
glme = \text{fitglme}(\text{mfr}, \text{'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)'});
\]

Extract the fixed-effects design matrix and display rows 1 through 10.

\[
\text{Dfe} = \text{designMatrix}(\text{glme}, \text{'Fixed'});
\]

```matlab
disp(Dfe(1:10,:))
```

\[
\begin{array}{cccccc}
1.0000 & 0 & 0.1834 & 0.2259 & 1.0000 & 0 \\
1.0000 & 0 & 0.3035 & 0.0725 & 0 & 1.0000 \\
1.0000 & 0 & 0.0717 & 0.1630 & 1.0000 & 0 \\
1.0000 & 0 & 0.1069 & 0.0809 & -1.0000 & -1.0000 \\
1.0000 & 0 & 0.0241 & 0.0319 & 1.0000 & 0 \\
1.0000 & 0 & 0.1214 & 0.1114 & 0 & 1.0000 \\
1.0000 & 0 & 0.0033 & 0.0553 & 1.0000 & 0 \\
1.0000 & 0 & 0.2350 & 0.0616 & 1.0000 & 0 \\
1.0000 & 0 & 0.0488 & 0.0177 & 0 & 1.0000 \\
1.0000 & 0 & 0.1148 & 0.0105 & 1.0000 & 0 \\
\end{array}
\]

Column 1 of the fixed-effects design matrix Dfe contains the constant term. Column 2, 3, and 4 contain the newprocess, time_dev, and temp_dev terms, respectively. Columns 5 and 6 contain dummy variables for supplier_C and supplier_B, respectively.

Extract the random-effects design matrix and display rows 1 through 10.
Dre = designMatrix(glme,'Random');
disp(Dre(1:10,:))

(1,1) 1
(2,1) 1
(3,1) 1
(4,1) 1
(5,1) 1
(6,2) 1
(7,2) 1
(8,2) 1
(9,2) 1
(10,2) 1

Convert the sparse matrix Dre to a full matrix and display rows 1 through 10.

full(Dre(1:10,:))

ans = 10×20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Each column corresponds to a level of the grouping variable factory.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | residuals | response
designMatrix

Class: LinearMixedModel

Fixed- and random-effects design matrices

Syntax

D = designMatrix(lme)
D = designMatrix(lme,'Fixed')

D = designMatrix(lme,'Random')
Dsub = designMatrix(lme,'Random',gnumbers)
[Dsub,gnames] = designMatrix(lme,'Random',gnumbers)

Description

D = designMatrix(lme) or D = designMatrix(lme,'Fixed') returns the fixed-effects design matrix for the linear mixed-effects model lme.

D = designMatrix(lme,'Random') returns the random-effects design matrix for the linear mixed-effects model lme.

Dsub = designMatrix(lme,'Random',gnumbers) returns a subset of the random-effects design matrix for the linear mixed-effects model lme corresponding to the grouping variables indicated by the integers in gnumbers.

[Dsub,gnames] = designMatrix(lme,'Random',gnumbers) also returns the grouping variable names corresponding to the integers in gnumbers.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object
Linear mixed-effects model, specified as a `LinearMixedModel` object constructed using `fitlme` or `fitlmematrix`.

gnumbers — Grouping variable numbers
integer array

Grouping variable numbers, specified as an integer array, where \(R \) is the length of the cell array that contains the grouping variables for the linear mixed-effects model \(\text{lme} \).

For example, you can specify the grouping variables \(g_1, g_3, \) and \(g_r \) as follows.

Example: \([1,3,r]\)

Data Types: `double` | `single`

Output Arguments

D — Design matrix
matrix

Design matrix of a linear mixed-effects model \(\text{lme} \) returned as one of the following:

- Fixed-effects design matrix — \(n \)-by-\(p \) matrix consisting of the fixed-effects design of \(\text{lme} \), where \(n \) is the number of observations and \(p \) is the number of fixed-effects terms.
- Random-effects design matrix — \(n \)-by-\(k \) matrix, consisting of the random-effects design matrix of \(\text{lme} \). Here, \(k \) is equal to `length(B)`, where \(B \) is the random-effects coefficients vector of linear mixed-effects model \(\text{lme} \).

If \(\text{lme} \) has \(R \) grouping variables \(g_1, g_2, ..., g_R \), with levels \(m_1, m_2, ..., m_R \), respectively, and if \(q_1, q_2, ..., q_R \) are the lengths of the random-effects vectors that are associated with \(g_1, g_2, ..., g_R \), respectively, then \(B \) is a column vector of length \(q_1 * m_1 + q_2 * m_2 + ... + q_R * m_R \).

\(B \) is made by concatenating the best linear unbiased predictors of random-effects vectors corresponding to each level of each grouping variable as \([g_1\text{level}_1; \newline g_1\text{level}_2; \ldots; g_1\text{level}_{m_1}; g_2\text{level}_1; g_2\text{level}_2; \ldots; g_2\text{level}_{m_2}; \ldots; \newline g_R\text{level}_1; g_R\text{level}_2; \ldots; g_R\text{level}_{m_R}]'\).

Data Types: `single` | `double`

Dsub — Submatrix of random-effects design matrix
matrix
Submatrix of random-effects design matrix corresponding to the grouping variables indicated by the integers in `gnumbers`, returned as an n-by-k matrix, where k is length of the column vector `Bsub`.

`Bsub` contains the concatenated best linear unbiased predictors (BLUPs) of random-effects vectors, corresponding to each level of the grouping variables, specified by `gnumbers`.

If, for example, `gnumbers` is `[1,3,r]`, this corresponds to the grouping variables g_1, g_3, and g_r. Then, `Bsub` contains the concatenated BLUPs of random-effects vectors corresponding to each level of the grouping variables g_1, g_3, and g_r, such as

$$[g_1 \text{level}_1; g_1 \text{level}_2; \ldots; g_1 \text{level}_{m_1}; g_3 \text{level}_1; g_3 \text{level}_2; \ldots; g_3 \text{level}_{m_3}; g_r \text{level}_1; g_r \text{level}_2; \ldots; g_r \text{level}_{m_r}]'$$

Thus, `Dsub*Bsub` represents the contribution of all random effects corresponding to grouping variables g_1, g_3, and g_r to the response of `lme`.

If `gnumbers` is empty, then `Dsub` is the full random-effects design matrix.

Data Types: `single` | `double`

`gnames` — Names of grouping variables

k-by-1 cell array

Names of grouping variables corresponding to the integers in `gnumbers` if the design type is `'Random'`, returned as a k-by-1 cell array. If the design type is `'Fixed'`, then `gnames` is an empty matrix `[]`.

Data Types: `cell`

Examples

Display Fixed- and Random-Effects Design Matrices

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The data shows the deviations from the target quality characteristic measured from the products that 5 operators manufacture during three different shifts, morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviation of the quality characteristics from the target value. This is simulated data.

Shift and **Operator** are nominal variables.

```matlab
shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);
```

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if performance significantly differs according to the time of the shift.

```matlab
lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');
```

Display the fixed-effects design matrix.

```matlab
designMatrix(lme)
```

```
ans = 15×3
   1     1     0
   1     0     0
   1     0     1
   1     1     0
   1     0     0
   1     0     1
   1     1     0
   1     0     0
   1     0     1
   1     1     0
   ⋮
```

The column of 1s represents the constant term in the model. **fitlme** takes the evening shift as the reference group and creates two dummy variables to represent the morning and night shifts, respectively.

Display the random-effects design matrix.

```matlab
designMatrix(lme,'random')
```

```
ans =
   (1,1)    1
   (2,1)    1
```
The first number, i, in the (i,j) indices corresponds to the observation number, and j corresponds to the level of the grouping variable, Operator, i.e., the operator number.

Show the full display of the random-effects design matrix.

```matlab
default('designMatrix(lme,'random')
ans = 15x5
   1    0    0    0    0
   1    0    0    0    0
   1    0    0    0    0
   0    1    0    0    0
   0    1    0    0    0
   0    1    0    0    0
   0    0    1    0    0
   0    0    1    0    0
   0    0    0    1    0
   ...```

Each column corresponds to a level of the grouping variable, Operator.

**Random-Effects Design Matrix of Multiple Grouping Variables**

Load the sample data.
The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called `ds`, for practical purposes, and define `Tomato`, `Soil`, and `Fertilizer` as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where `Fertilizer` and `Tomato` are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
```

Store and examine the full random-effects design matrix.

```matlab
D = full(designMatrix(lme,'random'));
```

The first three columns of matrix `D` contain the indicator variables `fitlme` creates for the three levels (Loamy, Silty, Sandy, respectively) of the first grouping variable, `Soil`. The next 15 columns contain the indicator variables created for the second grouping variable, `|Tomato` nested under `Soil`. These are basically the elementwise products of the dummy variables representing the levels of `Soil` (Loamy, Silty, and Sandy, respectively) and the levels of `Tomato` (Cherry, Grape, Heirloom, Plum, Vine, respectively).

**Subset of the Random-Effects Design Matrix**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'));
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five
plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
```

Compute the random-effects design matrix for the second grouping variable, and display the first 12 rows.

```matlab
[Dsub,gname] = designMatrix(lme,'random',2);
full(Dsub(1:12,:))
```

```
ans = 12×15
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Dsub contains the dummy variables created for the second grouping variable, that is, tomato nested under soil. These are the elementwise products of the dummy variables representing the levels of Soil (Loamy, Silty, Sandy, respectively) and the levels of Tomato (Cherry, Grape, Heirloom, Plum, Vine, respectively).

Display the name of the grouping variable.
gname

gname = 1x1 cell array
 {'Soil:Tomato'}

See Also
LinearMixedModel | fitlmematrix | fitted
dfittool

Open Distribution Fitter app

Note The distributionFitter function was introduced in R2017a as a replacement for the dfittool function. Both functions continue to work to start the Distribution Fitter app.

This page contains programmatic syntax information for the Distribution Fitter app. For general usage information, see Distribution Fitter.

Syntax

dfittool
dfittool(y)
dfittool(y,cens)
dfittool(y,cens,freq)
dfittool(y,cens,freq,dsname)

Description

dfittool opens the Distribution Fitter app, or brings focus to the app if it is already open.

dfittool(y) opens the Distribution Fitter app populated with the data specified by the vector y.

dfittool(y,cens) uses the vector cens to specify whether each observation in y is censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency of each element of y.

dfittool(y,cens,freq,dsname) creates a data set with the name dsname, using the data vector, y, censoring indicator, cens, and frequency vector, freq.
Examples

Open Distribution Fitter App with Existing Data

Load the carsmall sample data.

load carsmall

Open the Distribution Fitter app using the MPG miles per gallon data.

dfittool(MPG)
The Distribution Fitter app opens, populated with the MPG data, and displays the density (PDF) plot. You can use the app to display different plots and fit distributions to this data.

Open Distribution Fitter App with Censoring Data

Load the sample data.
load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))

The first column of the data contains the lifetime (in hours) of two types of light bulbs. The second column contains information about the type of light bulb. 1 indicates fluorescent bulbs, and 0 indicates the incandescent bulb. The third column contains censoring information. 1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Open the Distribution Fitter app using the first column of lightbulb as the input data, and the third column as the censoring data. Name the data lifetime.

dfittool(lightbulb(:,1),lightbulb(:,3),[],'lifetime')

To open the Data dialog box, click Data. In the Manage data sets pane, click to highlight the lifetime data set row. Finally, to open the View Data Set dialog, click View. The lifetime data appears in the second column and the corresponding censoring indicator appears in the third column.
Input Arguments

\textbf{y — Input data}
array of scalar values | variable representing an array of scalar values

Input data, specified as an array of scalar values or a variable representing an array of such values.

Data Types: single | double

\textbf{cens — Censoring indicator}
zeros(n) (default) | vector of 0 and 1 values

Censoring indicator, specified as a vector of 0 and 1 values. The length of \texttt{cens} must be equal to the length of \texttt{y}. If \texttt{y(j)} is censored, then \(\texttt{cens(j)==1} \). If \texttt{y(j)} is not
censored, then (cens(j)==0). If cens is omitted or empty, then no y values are censored.

If you have frequency data (freq) but not censoring data (cens), then you must specify empty brackets ([[]]) for cens.

Data Types: single | double

freq — Frequency data
ones(n) (default) | vector of scalar values

Frequency data, specified as a vector of scalar values. The length of freq must be equal to the length of y. If freq is omitted or empty, then all y values have a frequency of 1.

If you have frequency data (freq) but not censoring data (cens), then you must specify empty brackets ([]) for cens.

Data Types: single | double

dsname — Data set name
character vector | string scalar

Data set name, specified as a character vector enclosed in single quotes or a string scalar enclosed in double quotes.

If you want to specify a data set name, but do not have censoring data (cens) or frequency data (freq), then you must specify empty brackets ([]) for both freq and cens.

Example: 'MyData'

Data Types: char | string

See Also
distributionFitter | fitdist | makedist

Topics
“Fit a Distribution Using the Distribution Fitter App” on page 5-95
“Model Data Using the Distribution Fitter App” on page 5-68
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
Introduced before R2006a
Dimensions property

Class: qrandset

Number of dimensions

Description

Number of dimensions in the point set. The Dimensions property of a point set contains a positive integer that indicates the number of dimensions for which the points have values. For example, a point set with Dimensions=5 produces points that each have five values.

Set this property by specifying the number of dimensions when constructing a new point set. After construction, you cannot change the value. The default number of dimensions is 2.
DimNames property

Class: dataset

Two-element cell array of character vectors giving names of dimensions of data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A two-element cell array of character vectors giving the names of the two dimensions of the data set. The default is {'Observations' 'Variables'}.
discardSupportVectors

Discard support vectors of linear support vector machine binary learners

Syntax

Mdl = discardSupportVectors(MdlSV)

Description

Mdl = discardSupportVectors(MdlSV) returns a trained, multiclass, error-correcting output codes (ECOC) model (Mdl) containing at least one linear, support vector machine (SVM) binary learner. Mdl is similar to the trained ECOC model MdlSV, except:

- The Alpha, SupportVectors, and SupportVectorLabels properties of all linear SVM binary learners are empty ([]).
- If you display any linear SVM binary learners stored in the cell array of trained models Mdl.BinaryLearners, the software lists the Beta property instead of Alpha.

Input Arguments

MdlSV — Full or compact, trained, multiclass ECOC model
ClassificationECOC model | CompactClassificationECOC model

Full or compact, trained, multiclass ECOC model containing at least one linear, SVM binary learner, specified as a ClassificationECOC or CompactClassificationECOC model.

Output Arguments

Mdl — Full or compact, trained, multiclass ECOC model
ClassificationECOC model | CompactClassificationECOC model
Full or compact, trained, multiclass ECOC model, returned as a ClassificationECOC or CompactClassificationECOC model. Mdl is the same type as MdlSV.

The properties Alpha, SupportVectorLabels, and SupportVectors of all linear, SVM binary learners in the cell array Mdl.BinaryLearners are empty. The software lists the property Beta when you display any linear, SVM binary learner, and does not list Alpha.

Examples

Retain and Discard Support Vectors of SVM Binary Learners

By default, fitcecoc empties the Alpha, SupportVectorLabels, and SupportVectors properties of the linear, SVM binary learners stored in the BinaryLearners property of the trained ECOC model. You can retain the support vectors and related values, and then discard them from the model.

Load Fisher's iris data set.

```matlab
load fisheriris
rng(1); % For reproducibility
```

Train an ECOC model using the entire data set. Specify retaining the support vectors by passing in the appropriate SVM template.

```matlab
t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(meas,species,'Learners',t);
```

Mdl is a trained ClassificationECOC model. By default, fitcecoc uses linear, SVM binary learners. It implements a one-versus-one coding design, which requires three binary learners for three-class learning.

Access the estimated α values using dot notation.

```matlab
alpha = cell(3,1);
alpha{1} = MdlSV.BinaryLearners{1}.Alpha;
alpha{2} = MdlSV.BinaryLearners{2}.Alpha;
alpha{3} = MdlSV.BinaryLearners{3}.Alpha;
alpha
```

alpha =
alpha is a 3-by-1 cell array that stores the estimated values of \(\alpha \).

Discard the support vectors and related values from the ECOC model.

\[
Mdl = \text{discardSupportVectors}(MdlSV);
\]

\(Mdl \) is similar to \(MdlSV \), except that the \text{Alpha}, \text{SupportVectorLabels}, and \text{SupportVectors} of all linear SVM binary learners are empty (\text{[]}).

\[
\text{areAllEmpty} = @(x) \text{isempty}([x.\text{Alpha} x.\text{SupportVectors} x.\text{SupportVectorLabels}]);
\]
\[
\text{cellfun}(\text{areAllEmpty},Mdl.\text{BinaryLearners})
\]

\[
\text{ans} =
\]

3x1 logical array

\[
\begin{align*}
1 \\
1 \\
1
\end{align*}
\]

Compare the sizes of the two ECOC models.

\[
\text{vars} = \text{whos}('MdlSV','Mdl');
\]
\[
100*(1 - \text{vars}(1).\text{bytes}/\text{vars}(2).\text{bytes})
\]

\[
\text{ans} =
\]

5.1575

\(Mdl \) is about 5% smaller than \(MdlSV \).

Reduce your memory footprint by compacting \(Mdl \), and then clearing \(MdlSV \) and \(Mdl \) from the workspace.
CMdl = compact(Mdl);
clear MdlSV Mdl;

Predict the label for a random row of the training data using the more efficient SVM model.

idx = randsample(size(meas,1),1)
predictedLabel = predict(CMdl,meas(idx,:))
trueLabel = species(idx)

idx =

 63

predictedLabel =

 1x1 cell array
 {'versicolor'}

trueLabel =

 1x1 cell array
 {'versicolor'}

Tip

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',t);
You can remove the support vectors and related values by passing the resulting ClassificationECOC model to discardSupportVectors.

Algorithms

For each linear, SVM binary learner in an ECOC model, predict and resubPredict estimate SVM scores \(f(x) \) using

\[
f(x) = x'\beta + b.
\]

\(\beta \) is the Beta property and \(b \) is the Bias property of the binary learners. You can access these properties for each linear, SVM binary learner in the cell array \(Mdl.BinaryLearners \). For more details on the SVM score calculation, see “Support Vector Machines for Binary Classification” on page 32-2002.

See Also

ClassificationECOC | ClassificationSVM | CompactClassificationECOC | discardSupportVectors | fitcecoc | fitcsvm | templateSVM

Introduced in R2015a
discardSupportVectors

Package: classreg.learning.classif

Discard support vectors for linear support vector machine (SVM) classifier

Syntax

Mdl = discardSupportVectors(MdlSV)

Description

Mdl = discardSupportVectors(MdlSV) returns the trained, linear support vector machine (SVM) model Mdl. Both Mdl and the trained, linear SVM model MdlSV are the same type of object. That is, they both are either ClassificationSVM objects or CompactClassificationSVM objects. However, Mdl and MdlSV differ in the following ways:

- The Alpha, SupportVectors, and SupportVectorLabels properties are empty ([]) in Mdl.
- If you display Mdl, the software lists the Beta property instead of Alpha.

Examples

Discard Support Vectors

Create a linear SVM model that is more memory-efficient by discarding support vectors and other related parameters.

Load the ionosphere data set.

load ionosphere

Train a linear SVM model using the entire data set.
MdlSV = fitcsvm(X,Y)

MdlSV = ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 Alpha: [103x1 double]
 Bias: -3.8828
 KernelParameters: [1x1 struct]
 BoxConstraints: [351x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [351x1 logical]
 Solver: 'SMO'

Display the number of support vectors in MdlSV.

numSV = size(MdlSV.SupportVectors,1)

numSV = 103

Display the number of predictor variables in X.

p = size(X,2)

p = 34

By default, fitcsvm trains a linear SVM model for two-class learning. The software lists Alpha in the display. The model includes 103 support vectors and 34 predictors. If you discard the support vectors, the resulting model consumes less memory.

Discard the support vectors and other related parameters.

Mdl = discardSupportVectors(MdlSV)

Mdl = ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
ClassNames: {'b' 'g'}
ScoreTransform: 'none'
NumObservations: 351
 Beta: [34x1 double]
 Bias: -3.8828
KernelParameters: [1x1 struct]
 BoxConstraints: [351x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [351x1 logical]
 Solver: 'SMO'

Properties, Methods

Display the coefficients in Mdl.
Mdl.Alpha
ans =
 []

Display the support vectors in Mdl.
Mdl.SupportVectors
ans =
 []

Display the support vector class labels in Mdl.
Mdl.SupportVectorLabels
ans =
 []

The software lists Beta in the display instead of Alpha. The Alpha, SupportVectors, and SupportVectorLabels properties are empty.

Compare the sizes of the models.
vars = whos('MdlSV','Mdl');
100*(1 - vars(1).bytes-vars(2).bytes)
Reduce Memory Consumption of SVM Models

Compact an SVM model by discarding the stored support vectors and other related estimates. Predict the label for a row of the training data by using the compacted model.

Load the ionosphere data set.

```matlab
load ionosphere
rng(1); % For reproducibility
```

Train an SVM model using the default options.

```matlab
MdlSV = fitcsvm(X,Y);
```

MdlSV is a `ClassificationSVM` model containing nonempty values for its `Alpha`, `SupportVectors`, and `SupportVectorLabels` properties.

Reduce the size of the SVM model by discarding the training data, support vectors, and related estimates.

```matlab
CMdlSV = compact(MdlSV); % Discard training data
CMdl = discardSupportVectors(CMdlSV); % Discard support vectors
```

CMdl is a `CompactClassificationSVM` model.

Compare the sizes of the SVM models MdlSV and CMdl.

```matlab
vars = whos('MdlSV','CMdl');
100*(1 - vars(1).bytes/vars(2).bytes)
```

ans = 97.1896

The compacted model CMdl consumes much less memory than the full model.
Predict the label for a random row of the training data by using CMdl. The predict function accepts compacted SVM models, and, for linear SVM models, does not require the Alpha, SupportVectors, and SupportVectorLabels properties to predict labels for new observations.

```matlab
idx = randsample(size(X,1),1)
idx = 147
predictedLabel = predict(CMdl,X(idx,:))
predictedLabel = 1x1 cell array
   {'b'}
```

```matlab
trueLabel = Y(idx)
trueLabel = 1x1 cell array
   {'b'}
```

Input Arguments

MdLSV — Trained, linear SVM model

- `ClassificationSVM` model
- `CompactClassificationSVM` model

Trained, linear SVM model, specified as a `ClassificationSVM` or `CompactClassificationSVM` model.

If the field `MdLSV.KernelParameters.Function` is not 'linear' (that is, `MdLSV` is not a linear SVM model), the software returns an error.

Tips

- For a trained, linear SVM model, the `SupportVectors` property is an \(n_{sv} \)-by-\(p \) matrix. \(n_{sv} \) is the number of support vectors (at most the training sample size) and \(p \) is the number of predictors, or features. The `Alpha` and `SupportVectorLabels` properties are vectors with \(n_{sv} \) elements. These properties can be large for complex data sets containing many observations or examples. The `Beta` property is a vector with \(p \) elements.
• If the trained SVM model has many support vectors, use `discardSupportVectors` to reduce the amount of space consumed by the trained, linear SVM model. You can display the size of the support vector matrix by entering `size(MdlSV.SupportVectors)`.

Algorithms

`predict` and `resubPredict` estimate SVM scores $f(x)$, and subsequently label and estimate posterior probabilities using

$$f(x) = x'\beta + b.$$

β is `Mdl.Beta` and b is `Mdl.Bias`, that is, the Beta and Bias properties of `Mdl`, respectively. For more details, see “Support Vector Machines for Binary Classification” on page 32-2002.

See Also

`ClassificationECOC` | `ClassificationSVM` | `CompactClassificationSVM` | `discardSupportVectors` | `fitcsvm` | `templateSVM`

Introduced in R2015a
discardSupportVectors

Discard support vectors

Syntax

mdlOut = discardSupportVectors(mdl)

Description

mdlOut = discardSupportVectors(mdl) returns the trained, linear support vector machine (SVM) regression model mdlOut, which is similar to the trained, linear SVM regression model mdl, except:

- The Alpha and SupportVectors properties are empty ([]).
- If you display mdlOut, the software lists the Beta property instead of the Alpha property.

Input Arguments

mdl — Trained, linear SVM regression model

RegressionSVM model | CompactRegressionSVM model

Trained, linear SVM regression model, specified as a RegressionSVM or CompactRegressionSVM model.

If you train the model using a kernel function that is not linear (i.e., if the field mdl.KernelFunction is something other than 'linear'), the software returns an error. You can only discard support vectors for linear models.

Output Arguments

mdlOut — Trained, linear SVM regression model

RegressionSVM model | CompactRegressionSVM model
Trained, linear SVM regression model, returned as a RegressionSVM or CompactRegressionSVM model. mdlOut is the same type as mdl.

After discarding the support vectors, the properties Alpha and SupportVectors are empty ([]). The software lists the property Beta in its display, and does not list the property Alpha. The predict and resubPredict methods compute predicted responses using the coefficients stored in the Beta property.

Examples

Discard Support Vectors for SVM Regression Model

This model shows how to reduce the disk space used by a trained, linear SVM regression model by discarding the support vectors and other related parameters.

Load the carsmall data set. Specify Horsepower and Weight as the predictor variables (X), and MPG as the response variable (Y).

```matlab
load carsmall
X = [Horsepower,Weight];
Y = MPG;
```

Train a linear SVM regression model, standardizing the data. Display the number of support vectors.

```matlab
mdl = fitrsvm(X,Y,'Standardize',true)
numSV = size(mdl.SupportVectors,1)
```

mdl =

```
RegressionSVM
   PredictorNames: {'x1'  'x2'}
   ResponseName: 'Y'
   CategoricalPredictors: []
   ResponseTransform: 'none'
   Alpha: [77x1 double]
   Bias: 22.9131
   KernelParameters: [1x1 struct]
     Mu: [109.3441 2.9625e+03]
     Sigma: [45.3545 805.9668]
   NumObservations: 93
```
By default, \texttt{fitrsvm} trains a linear SVM regression model. The software lists \texttt{Alpha} in the display. The model has 77 support vectors.

Note that the predictor and response variables contain several NaN values. When training a model, \texttt{fitrsvm} will remove rows that contain NaN values from both the predictor and response data. As a result, the trained model uses only 93 of the 100 total observations contained in the sample data.

Discard the support vectors and other related parameters.

\begin{verbatim}
mdlOut = discardSupportVectors(mdl)
mdlOut.Alpha
mdlOut.SupportVectors
\end{verbatim}

\begin{verbatim}
mdlOut =

RegressionSVM
 PredictorNames: {'x1' 'x2'}
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 Beta: [2x1 double]
 Bias: 22.9131
 KernelParameters: [1x1 struct]
 Mu: [109.3441 2.9625e+03]
 Sigma: [45.3545 805.9668]
 NumObservations: 93
 BoxConstraints: [93x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [93x1 logical]
 Solver: 'SMO'
\end{verbatim}
Properties, Methods

ans =
 []

ans =
 []

The software lists Beta in the display instead of Alpha. The Alpha and SupportVectors properties are empty.

Compare the sizes of the models.

vars = whos('mdl','mdlOut');
[vars(1).bytes,vars(2).bytes]

ans =
 15004 13156

mdlOut consumes less memory than mdl because it does not store the support vectors.

Reduce Memory Consumption of SVM Regression Model

This example shows how to reduce the memory consumption of a full, trained SVM regression model by compacting the model and discarding the support vectors.

Load the carsmall sample data.

load carsmall
rng default % for reproducibility

Train a linear SVM regression model using Weight as the predictor variable and MPG as the response variable. Standardize the data.

mdl = fitrsvm(Weight,MPG,'Standardize',true);
Note that MPG contains several NaN values. When training a model, fitrsvm will remove rows that contain NaN values from both the predictor and response data. As a result, the trained model uses only 94 of the 100 total observations contained in the sample data.

Compact the regression model to discard the training data and some information related to the training process.

compactMdl = compact(mdl);

compactMdl is a CompactRegressionSVM model that has the same parameters, support vectors, and related estimates as mdl, but no longer stores the training data.

Discard the support vectors and related estimates for the compacted model.

mdlOut = discardSupportVectors(compactMdl);

mdlOut is a CompactRegressionSVM model that has the same parameters as mdl and compactMdl, but no longer stores the support vectors and related estimates.

Compare the sizes of the three SVM regression models, compactMdl, mdl, and mdlOut.

vars = whos('compactMdl','mdl','mdlOut');
[vars(1).bytes,vars(2).bytes,vars(3).bytes]

ans =
3601 13727 2305

The compacted model compactMdl consumes 3601 bytes of memory, while the full model mdl consumes 13727 bytes of memory. The model mdlOut, which also discards the support vectors, consumes 2305 bytes of memory.

Tips

For a trained, linear SVM regression model, the SupportVectors property is an \(n_{sv} \)-by-\(p \) matrix. \(n_{sv} \) is the number of support vectors (at most the training sample size) and \(p \) is the number of predictor variables. If any of the predictors are categorical, then \(p \) includes the number of dummy variables necessary to account for all of the categorical predictor levels. The Alpha property is a vector with \(n_{sv} \) elements.

The SupportVectors and Alpha properties can be large for complex data sets that contain many observations or examples. However, the Beta property is a vector with \(p \)
elements, which may be considerably smaller. You can use a trained SVM regression model to predict response values even if you discard the support vectors because the predict and resubPredict methods use Beta to compute the predicted responses.

If the trained, linear SVM regression model has many support vectors, use discardSupportVectors to reduce the amount of disk space that the trained, linear SVM regression model consumes. You can display the size of the support vector matrix by entering \(\text{size(mdlIn.SupportVectors)} \).

Algorithms

The predict and resubPredict estimate response values using the formula

\[
f(x) = \left(\frac{X}{S} \right) \beta + \beta_0,
\]

where:

- \(\beta \) is the Beta value, stored as mdl.Beta.
- \(\beta_0 \) is the bias value, stored as mdl.Bias.
- \(X \) is the training data.
- \(S \) is the kernel scale value, stored as mdl.KernelParameters.Scale.

In this way, the software can use the value of mdl.Beta to make predictions even after discarding the support vectors.

See Also

CompactRegressionSVM | RegressionSVM | fitrsvm | predict | resubPredict

Introduced in R2015b
disp

Class: classregtree

(Removed) Display classregtree object

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

display(t)

Description

display(t) prints the classregtree object t.

See Also

classregtree | view
disp

Class: cvpartition

Display cvpartition object

Syntax

disp(c)

Description

disp(c) prints the cvpartition object c.

See Also
cvpartition
disp

Class: dataset

Display dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

disp(ds)

Description

`disp(ds)` prints the dataset array `ds`, including variable names and observation names (if present), without printing the dataset name. In all other ways it's the same as leaving the semicolon off an expression.

For numeric or categorical variables that are 2-D and have three or fewer columns, `disp` prints the actual data using either short g, long g, or bank format, depending on the current command line setting. Otherwise, `disp` prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide, `disp` prints quoted text. Otherwise, `disp` prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, `disp` prints the contents of each cell (or its size and type if too large). Otherwise, `disp` prints the size of each dataset element.

For time series variables, `disp` prints columns for both the time and the data. If the variable is 2-D and has three or fewer columns, `disp` prints the actual data. Otherwise, `disp` prints the size and type of each dataset element.

For other types of variables, `disp` prints the size and type of each dataset element.
See Also

dataset | display | format
disp

Display generalized linear regression model

Syntax

disp(mdl)

Description

disp(mdl) displays the mdl linear model.

Input Arguments

mdl

Generalized linear model, specified as a full GeneralizedLinearModel object constructed using fitglm or stepwiseglm, or a compacted CompactGeneralizedLinearModel object constructed using compact.

Examples

Display a Generalized Linear Regression Model

Create and display a generalized linear regression model.

Create a generalized linear regression model of Poisson data.

```matlab
X = 2 + randn(100,1);
mu = exp(1 + X/2);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'y ~ x1','distr','poisson');
```
Display the model.

disp(mdl)

Generalized linear regression model:
 \(\log(y) \sim 1 + x1 \)
 Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.99516</td>
<td>0.080089</td>
<td>12.426</td>
<td>1.8947e-35</td>
</tr>
<tr>
<td>x1</td>
<td>0.50906</td>
<td>0.025557</td>
<td>19.919</td>
<td>2.7949e-88</td>
</tr>
</tbody>
</table>

100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 374, p-value = 2.53e-83

Alternatives

Enter \(mdl \) at the command line to obtain a display, where \(mdl \) is the name of your model.

See Also

CompactGeneralizedLinearModel | GeneralizedLinearModel

Topics

“Generalized Linear Models” on page 12-12
disp

Class: GeneralizedLinearMixedModel

Display generalized linear mixed-effects model

Syntax

disp(glme)

Description

disp(glme) displays fitted generalized linear mixed-effects model glme.

Input Arguments

- **glme** — Generalized linear mixed-effects model
 GeneralizedLinearMixedModel object

 Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Examples

Display a Generalized Linear Mixed-Effects Model

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time_dev}_{ij} + \beta_3 \text{temp_dev}_{ij} + \beta_4 \text{supplier_C}_{ij} + \beta_5 \text{supplier_B}_{ij} + b_i, \]

where

- \(\text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \(i \) during batch \(j \).
• μ_{ij} is the mean number of defects corresponding to factory i (where $i = 1, 2, \ldots, 20$) during batch j (where $j = 1, 2, \ldots, 5$).

• newprocess$_{ij}$, time$_{dev}$$_{ij}$, and temp$_{dev}$$_{ij}$ are the measurements for each variable that correspond to factory i during batch j. For example, newprocess$_{ij}$ indicates whether the batch produced by factory i during batch j used the new process.

• supplier$_C$$_{ij}$ and supplier$_B$$_{ij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory i during batch j.

• $b_i \sim N(0, \sigma^2_b)$ is a random-effects intercept for each factory i that accounts for factory-specific variation in quality.

\[
glme = \text{fitglme(mfr, 'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)' }\]

Display the model.

disp(glme)

Generalized linear mixed-effects model fit by ML

Model information:
- Number of observations: 100
- Fixed effects coefficients: 6
- Random effects coefficients: 20
- Covariance parameters: 1
- Distribution: Poisson
- Link: Log
- FitMethod: Laplace

Formula:
- defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
- AIC: 416.35
- BIC: 434.58
- LogLikelihood: -201.17
- Deviance: 402.35

Fixed effects coefficients (95% CIs):
'newprocess' -0.36766 0.17755 -2.0708 94 0.041122
'time_dev' -0.094521 0.82849 -0.11409 94 0.90941
'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907
'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936
'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

Lower Upper
1.1515 1.7864
-0.72019 -0.015134
-1.7395 1.5505
-2.1926 1.6263
-0.22679 0.083051
-0.082588 0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
Name1 Name2 Type Estimate
'(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error
Name Estimate
'sqrt(Dispersion)' 1

The Model information table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson's notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only factory), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, std indicates that fitglme returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-effects parameters. To compute and display these values, use covarianceParameters.

Definitions

Akaike and Bayesian Information Criteria

The Akaike information criterion (AIC) is \(AIC = -2 \log L_M + 2 \text{param} \).

\(\log L_M \) depends on the method used to fit the model.

- If you use 'Laplace' or 'ApproximateLaplace', then \(\log L_M \) is the maximized log likelihood.
- If you use 'MPL', then \(\log L_M \) is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.
- If you use 'REML', then \(\log L_M \) is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.

\text{param} is the total number of parameters estimated in the model. For most GLME models, \text{param} is equal to \(nc + p + 1 \), where \(nc \) is the total number of parameters in the random-effects covariance, excluding the residual variance, and \(p \) is the number of fixed-effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then \text{param} is equal to \((nc + p) \).

The Bayesian information criterion (BIC) is \(BIC = -2 \log L_M + \ln(\text{neff}) \text{param} \).

\(\log L_M \) depends on the method used to fit the model.
If you use 'Laplace' or 'ApproximateLaplace', then logL_M is the maximized log likelihood.

If you use 'MPL', then logL_M is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.

If you use 'REPL', then logL_M is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.

\(n_{\text{eff}} \) is the effective number of observations.

- If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then \(n_{\text{eff}} = n \), where \(n \) is the number of observations.
- If you use 'REPL', then \(n_{\text{eff}} = n - p \).

\(param \) is the total number of parameters estimated in the model. For most GLME models, \(param \) is equal to \(nc + p + 1 \), where \(nc \) is the total number of parameters in the random-effects covariance, excluding the residual variance, and \(p \) is the number of fixed-effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then \(param \) is equal to \((nc + p) \).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters estimated, \(p \). So, when the number of parameters increase, the values of AIC and BIC tend to increase as well. When comparing different models, the model with the lowest AIC or BIC value is considered as the best fitting model.

For models fitted using 'MPL' and 'REPL', AIC and BIC are based on the log likelihood (or restricted log likelihood) of pseudo data from the final pseudo likelihood iteration. Therefore, a direct comparison of AIC and BIC values between models fitted using 'MPL' and 'REPL' is not appropriate.

See Also
GeneralizedLinearMixedModel | covarianceParameters | fitglme
disp

Class: CompactLinearModel
Display linear regression model

Syntax

display(mdl)

Description

display(mdl) displays the mdl linear model.

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

Examples

Display a Linear Regression Model

Create and display a linear regression model.

Create a linear regression model.

X = randn(100,5);
y = X*[1;2;3;4;5] + 6 + randn(100,1);
mdl = fitlm(X,y);
Display the model.

disp(mdl)

Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>6.0382</td>
<td>0.099458</td>
<td>60.71</td>
<td>3.2792e-77</td>
</tr>
<tr>
<td>x1</td>
<td>0.92794</td>
<td>0.087307</td>
<td>10.628</td>
<td>8.5494e-18</td>
</tr>
<tr>
<td>x2</td>
<td>1.9244</td>
<td>0.10044</td>
<td>19.16</td>
<td>3.1678e-34</td>
</tr>
<tr>
<td>x3</td>
<td>2.8965</td>
<td>0.099879</td>
<td>29</td>
<td>1.1117e-48</td>
</tr>
<tr>
<td>x4</td>
<td>4.0453</td>
<td>0.10832</td>
<td>37.346</td>
<td>3.4862e-58</td>
</tr>
<tr>
<td>x5</td>
<td>5.0029</td>
<td>0.11799</td>
<td>42.401</td>
<td>4.452e-63</td>
</tr>
</tbody>
</table>

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 0.972
R-squared: 0.976, Adjusted R-Squared 0.975
F-statistic vs. constant model: 778, p-value = 8e-75

Alternatives

Type the name of your model (for example, mdl) at the command line to obtain a display.

See Also

CompactLinearModel | LinearModel

Topics

“Linear Regression” on page 11-11
“Stepwise Regression” on page 11-126
“Robust Regression — Reduce Outlier Effects” on page 11-132
disp

Class: LinearMixedModel

Display linear mixed-effects model

Syntax

`display(lme)`

Description

`display(lme)` displays the fitted linear mixed-effects model `lme`.

Input Arguments

`lme` — Linear mixed-effects model

LinearMixedModel object

Linear mixed-effects model, specified as a `LinearMixedModel` object constructed using `fitlme` or `fitlmematrix`.

Examples

Randomized Block Design

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The dataset array shows the absolute deviations from the target quality characteristic measured from the products that five operators manufacture during three shifts, morning, evening, and night. This is a randomized block design, where the operators are the
blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the absolute deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

```matlab
shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);
```

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if performance significantly differs according to the time of the shift.

```matlab
lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');
```

Display the model.

```matlab
disp(lme)
```

Linear mixed-effects model fit by ML

Model information:
- Number of observations: 15
- Fixed effects coefficients: 3
- Random effects coefficients: 5
- Covariance parameters: 2

Formula:
- QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
- AIC: 59.012
- BIC: 62.552
- LogLikelihood: -24.506
- Deviance: 49.012

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>3.1196</td>
<td>0.88681</td>
<td>3.5178</td>
<td>12</td>
<td>0.0042407</td>
</tr>
<tr>
<td>'Shift_Morning'</td>
<td>-0.3868</td>
<td>0.48344</td>
<td>-0.80009</td>
<td>12</td>
<td>0.43921</td>
</tr>
<tr>
<td>'Shift_Night'</td>
<td>1.9856</td>
<td>0.48344</td>
<td>4.1072</td>
<td>12</td>
<td>0.0014535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1874</td>
<td>5.0518</td>
</tr>
<tr>
<td>-1.4401</td>
<td>0.66653</td>
</tr>
<tr>
<td>0.93227</td>
<td>3.0389</td>
</tr>
</tbody>
</table>
Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>1.8297</td>
<td>0.94915</td>
<td>3.5272</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.76439</td>
<td>0.49315</td>
<td>1.1848</td>
</tr>
</tbody>
</table>

This display includes the model performance statistics, “Akaike and Bayesian Information Criteria” on page 32-1320, “Akaike and Bayesian Information Criteria” on page 32-1320, loglikelihood, and “Deviance” on page 32-1321.

The fixed-effects coefficients table includes the names and estimates of the coefficients in the first two columns. The third column SE shows the standard errors of the coefficients. The column tStat includes the t-statistic values that correspond to each coefficient. DF is the residual degrees of freedom, and the pValue is the P-value that corresponds to the corresponding t-statistic value. The columns Lower and Upper display the lower and upper limits of a 95% confidence interval for each fixed-effects coefficient.

The first table for the random effects shows the types and the estimates of the random effects covariance parameters, with the lower and upper limits of a 95% confidence interval for each parameter. The display also shows the name of the grouping variable, operator, and the total number of levels, 5.

The second table for the random effects shows the estimate of the observation error, with the lower and upper limits of a 95% confidence interval.

Definitions

Akaike and Bayesian Information Criteria

Akaike information criterion (AIC) is $AIC = -2 \log L_M + 2(nc + p + 1)$, where $\log L_M$ is the maximized log likelihood (or maximized restricted log likelihood) of the model, and $nc + p$
+ 1 is the number of parameters estimated in the model. \(p \) is the number of fixed-effects coefficients, and \(nc \) is the total number of parameters in the random-effects covariance excluding the residual variance.

Bayesian information criterion (BIC) is \(\text{BIC} = -2\log L_M + \ln(n_{\text{eff}})(nc + p + 1) \), where \(\log L_M \) is the maximized log likelihood (or maximized restricted log likelihood) of the model, \(n_{\text{eff}} \) is the effective number of observations, and \((nc + p + 1) \) is the number of parameters estimated in the model.

- If the fitting method is maximum likelihood (ML), then \(n_{\text{eff}} = n \), where \(n \) is the number of observations.
- If the fitting method is restricted maximum likelihood (REML), then \(n_{\text{eff}} = n - p \).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters estimated, \(p \). So, when the number of parameters increase, the values of AIC and BIC tend to increase as well. When comparing different models, the model with the lowest AIC or BIC value is considered as the best fitting model.

Deviance

`LinearMixedModel` computes the deviance of model \(M \) as minus two times the loglikelihood of that model. Let \(L_M \) denote the maximum value of the likelihood function for model \(M \). Then, the deviance of model \(M \) is

\[
-2 \log L_M.
\]

A lower value of deviance indicates a better fit. Suppose \(M_1 \) and \(M_2 \) are two different models, where \(M_1 \) is nested in \(M_2 \). Then, the fit of the models can be assessed by comparing the deviances \(\text{Dev}_1 \) and \(\text{Dev}_2 \) of these models. The difference of the deviances is

\[
\text{Dev} = \text{Dev}_1 - \text{Dev}_2 = 2(\log LM_2 - \log LM_1).
\]

Usually, the asymptotic distribution of this difference has a chi-square distribution with degrees of freedom \(v \) equal to the number of parameters that are estimated in one model but fixed (typically at 0) in the other. That is, it is equal to the difference in the number of parameters estimated in \(M_1 \) and \(M_2 \). You can get the \(p \)-value for this test using \(1 - \text{chi2cdf}(\text{Dev}, v) \), where \(\text{Dev} = \text{Dev}_2 - \text{Dev}_1 \).
However, in mixed-effects models, when some variance components fall on the boundary of the parameter space, the asymptotic distribution of this difference is more complicated. For example, consider the hypotheses

\[H_0: \begin{pmatrix} D_{11} & 0 \\ 0 & 0 \end{pmatrix}, \quad D \text{ is a } q\text{-by-}q \text{ symmetric positive semidefinite matrix.} \]

\[H_1: D \text{ is a } (q+1)\text{-by-}(q+1) \text{ symmetric positive semidefinite matrix.} \]

That is, \(H_1 \) states that the last row and column of \(D \) are different from zero. Here, the bigger model \(M_2 \) has \(q + 1 \) parameters and the smaller model \(M_1 \) has \(q \) parameters. And \(\text{Dev} \) has a 50:50 mixture of \(\chi^2_q \) and \(\chi^2_{(q+1)} \) distributions (Stram and Lee, 1994).

References

See Also

LinearMixedModel | fitlme | fitlmematrix
disp

Class: NonLinearModel

Display nonlinear regression model

Syntax

disp(mdl)

Description

disp(mdl) displays the mdl nonlinear model at the command line.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Examples

Display a Nonlinear Regression Model

Create and display a nonlinear regression model.

Load the reaction data, and specify both a model function and starting values for the iterations.

load reaction
modelfun = 'rate~(b1+x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
beta0 = [1 .05 .02 .1 2];

Create a model of the data.
mdl = fitnlm(reactants,rate,modelfun,beta0);

Display the model.

disp(mdl)

Nonlinear regression model:
 rate ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:
 Estimate SE tStat pValue
 _____ ________ ______ _______
 b1 1.2526 0.86701 1.4447 0.18654
 b2 0.062776 0.043561 1.4411 0.18753
 b3 0.040048 0.030885 1.2967 0.23089
 b4 0.11242 0.075157 1.4957 0.17309
 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatives

Enter mdl at the command line to obtain a display, where mdl is the name of your model.

See Also
NonLinearModel

Topics
“Nonlinear Regression” on page 13-2
disp

Class: qrandset

Display qrandset object

Syntax

disp(p)

Description

disp(p) displays the properties of the quasi-random point set s, without printing the variable name. disp prints out the number of dimensions and points in the point-set, and follows this with the list of all property values for the object.

See Also

qrandset
disp

Class: qrandstream

Display qrandstream object

Syntax

disp(q)

Description

disp(q) displays the quasi-random stream q, without printing the variable name. disp prints the type and number of dimensions in the stream, and follows it with the list of point set properties.

See Also

qrandstream
display

Class: classregtree

(Removed) Display classregtree object

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

display(t)
display(A)

Description

display(t) prints the classregtree object t. classregtree calls display when a you do not use a semicolon to terminate a statement.

display(A) prints the categorical array A. categorical calls display when a you do not use a semicolon to terminate a statement.

See Also

classregtree | eval | prune | test
display

Class: cvpartition

Display cvpartition object

Syntax

display(c)

Description

display(c) prints the cvpartition object c. cvpartition calls display when you do not use a semicolon to terminate a statement.

See Also

cvpartition
display

Class: dataset

Display dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

display(ds)

Description

display(ds) prints the dataset array ds, including variable names and observation names (if present). dataset calls display when a you do not use a semicolon to terminate a statement.

For numeric or categorical variables that are 2-D and have three or fewer columns, display prints the actual data. Otherwise, display prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide, display prints quoted text. Otherwise, display prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, display prints the contents of each cell (or its size and type if too large). Otherwise, display prints the size of each dataset element.

For time series variables, display prints columns for both the time and the data. If the variable is 2-D and has three or fewer columns, display prints the actual data. Otherwise, display prints the size and type of each dataset element.

For other types of variables, display prints the size and type of each dataset element.
See Also

dataset | display | format
distributionFitter

Open Distribution Fitter app

This page contains programmatic syntax information for the Distribution Fitter app. For general usage information, see Distribution Fitter.

Syntax

distributionFitter

distributionFitter(y)
distributionFitter(y,cens)
distributionFitter(y,cens,freq)
distributionFitter(y,cens,freq,dsname)

Description

distributionFitter opens the Distribution Fitter app, or brings focus to the app if it is already open.

distributionFitter(y) opens the Distribution Fitter app populated with the data specified by the vector y.

distributionFitter(y,cens) uses the vector cens to specify whether each observation in y is censored.

distributionFitter(y,cens,freq) uses the vector freq to specify the frequency of each element of y.

distributionFitter(y,cens,freq,dsname) creates a data set with the name dsname, using the data vector, y, censoring indicator, cens, and frequency vector, freq.

Examples
Open Distribution Fitter App with Existing Data

Load the carsmall sample data.

```matlab
load carsmall
```

Open the Distribution Fitter app using the MPG miles per gallon data.

```matlab
distributionFitter(MPG)
```
TheDistributionFitterappopens,populatedwiththeMPGdata,anddisplaysthedensity
(PDF)plot. You can use the app to display different plots and fit distributions to this data.

Open Distribution Fitter App with Censoring Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))
```

The first column of the data contains the lifetime (in hours) of two types of light bulbs. The second column contains information about the type of light bulb. 1 indicates fluorescent bulbs, and 0 indicates the incandescent bulb. The third column contains censoring information. 1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Open the Distribution Fitter app using the first column of `lightbulb` as the input data, and the third column as the censoring data. Name the data `lifetime`.

```matlab
distributionFitter(lightbulb(:,1),lightbulb(:,3),[],'lifetime')
```

To open the Data dialog box, click **Data**. In the **Manage data sets** pane, click to highlight the `lifetime` data set row. Finally, to open the View Data Set dialog, click **View**. The lifetime data appears in the second column and the corresponding censoring indicator appears in the third column.
Input Arguments

\(y \) — Input data
array of scalar values | variable representing an array of scalar values

Input data, specified as an array of scalar values or a variable representing an array of such values.

Data Types: single | double

\(cens \) — Censoring indicator
zeros(n) (default) | vector of 0 and 1 values

Censoring indicator, specified as a vector of 0 and 1 values. The length of \(cens \) must be equal to the length of \(y \). If \(y(j) \) is censored, then \((cens(j)==1)\). If \(y(j) \) is not
censored, then \((\text{cens}(j)==0)\). If \text{cens} is omitted or empty, then no \(y\) values are censored.

If you have frequency data \((\text{freq})\) but not censoring data \((\text{cens})\), then you must specify empty brackets \([[]]\) for \text{cens}.

Data Types: single | double

\textbf{freq — Frequency data}

\text{ones}(n) \ (\text{default}) | \text{vector of scalar values}

Frequency data, specified as a vector of scalar values. The length of \text{freq} must be equal to the length of \(y\). If \text{freq} is omitted or empty, then all \(y\) values have a frequency of 1.

If you have frequency data \((\text{freq})\) but not censoring data \((\text{cens})\), then you must specify empty brackets \([[]]\) for \text{cens}.

Data Types: single | double

\textbf{dsname — Data set name}

\text{character vector} | \text{string scalar}

Data set name, specified as a character vector enclosed in single quotes or a string scalar enclosed in double quotes.

If you want to specify a data set name, but do not have censoring data \((\text{cens})\) or frequency data \((\text{freq})\), then you must specify empty brackets \([[]]\) for both \text{freq} and \text{cens}.

Example: 'MyData'

Data Types: char | string

\section*{See Also}

\texttt{fitdist} | \texttt{makedist}

\section*{Topics}

“Fit a Distribution Using the Distribution Fitter App” on page 5-95
“Model Data Using the Distribution Fitter App” on page 5-68
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
Introduced in R2017a
Probability Distribution Function

Interactive density and distribution plots

Description
The Probability Distribution Function user interface creates an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution. Explore the effects of changing parameter values on the shape of the plot, either by specifying parameter values or using interactive sliders.

Required Products
• MATLAB
• Statistics and Machine Learning Toolbox

Note: disttool does not provide printing, code generating, or data importing functionality in MATLAB Online™.

Open the Probability Distribution Function App
• At the command prompt, enter disttool.

Examples

Explore the Probability Distribution Function User Interface
This example shows how to use the Probability Distribution Function user interface to explore the shape of cdf and pdf plots for different probability distributions and parameter values.

Open the Probability Distribution Function user interface.

disttool
The interface opens with a plot of the cdf of the Normal distribution. The initial parameter settings are $\mu = 0$ and $\sigma = 1$.

Select PDF from the **Function type** drop-down menu to plot the pdf of the Normal distribution using the same parameter values.
Change the value of the location parameter \(\mu \) to 1.
As the parameter values change, the shape of the plot also changes. Also, the value of \(X\) remains the same, but the density value changes because of the new parameter value.

Use the **Distribution** drop-down menu to change the distribution type from **Normal** to **Weibull**.
The shape of the plot changes, along with the names and values of the parameters.

Parameters

Distribution — Probability distribution

Normal (default) | Exponential | Poisson | Weibull | ...
Specify the probability distribution to explore by selecting a distribution name from the drop-down list. The drop-down list includes approximately 25 probability distribution options, including Normal, Exponential, Poisson, Weibull, and more.

Function type — Probability distribution function type

CDF (default) | PDF

Specify the probability distribution function type as CDF (cumulative distribution function) or PDF (probability density function) by selecting the function name from the drop-down list.

Probability — Cumulative distribution function value

numeric value in the range [0,1]

Specify the cumulative distribution function (cdf) value of interest as a numeric value in the range [0,1]. The corresponding random variable value appears in the X field below the plot. Alternatively, you can specify a value for X, and the Probability value will update automatically.

This option only appears if Function type is CDF. If Function type is PDF, then the probability density at the specified X value displays to the left of the plot.

X — Random variable

numeric value

Specify the random variable of interest as a numeric value. If the Function type is CDF, then the corresponding cumulative distribution function (cdf) value appears in the Probability field to the left of the plot. Alternatively, you can specify a value for Probability, and the X value will update automatically. If the Function type is PDF, then the corresponding probability density value appears to the left of the plot.

Parameters — Parameter boundaries and values

numeric value

Specify the parameter boundaries and values as numeric values. Each column contains a field for the upper bound, value, and lower bound of one parameter. The name and number of available parameters changes based on the distribution specified in the Distribution drop-down list. For example, if you select the Normal distribution, then disttool enables two columns: One column for the Mu parameter and one column for the Sigma parameter. If you select the Exponential distribution, then disttool enables one column for the Mu parameter.
Tips

To change the value of X (on the y-axis), or Probability or Density (on the x-axis):

• Type the values of interest into the Probability or X fields;
• Click on the point of interest on the plot; or
• Click and drag the reference lines across the plot.

See Also

Functions
distributionFitter | fitdist | makedist

Introduced before R2006a
double

Class: dataset

Convert dataset variables to double array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

\[b = \text{double}(A) \]
\[b = \text{double}(a,\text{vars}) \]

Description

\[b = \text{double}(A) \] returns the contents of the dataset \(A \), converted to one double array. The classes of the variables in the dataset must support the conversion.

\[b = \text{double}(a,\text{vars}) \] returns the contents of the dataset variables specified by \(\text{vars} \). \(\text{vars} \) is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

See Also

dataset | replacedata | single
droplevels

Drop levels from a nominal or ordinal array

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Syntax

B = droplevels(A)
B = droplevels(A,oldlevels)

Description

B = droplevels(A) drops unused levels from the nominal or ordinal array A. The array B has the same size, type, and values as A, but has a list of potential levels that includes only those present in some element of A.

B = droplevels(A,oldlevels) removes the specified levels oldlevels from A.

droplevels removes levels, but does not remove elements. Elements of B that correspond to elements of A having levels in oldlevels all have an undefined level.

Examples

Drop Levels From an Ordinal Array

Bin patient ages into ordinal levels corresponding to 10-year intervals.

```matlab
load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90),'%d'),{'s'});
A = ordinal(hospital.Age,labels,[]);edges);
getlabels(A)
```
ans = 1x10 cell array
Columns 1 through 7

{'0s'} {'10s'} {'20s'} {'30s'} {'40s'} {'50s'} {'60s'}

Columns 8 through 10

{'70s'} {'80s'} {'90s'}

Drop any levels that have no patients in them.

A = droplevels(A);
gll etlabels(A)

ans = 1x4 cell array

{'20s'} {'30s'} {'40s'} {'50s'}

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

oldlevels — Levels to remove
string array | cell array of character vectors | 2-D character matrix

Levels to remove from the nominal or ordinal array, specified as a string array, a cell array of character vectors, or a 2-D character matrix.

Data Types: char | string | cell

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.
See Also
addlevels | mergelevels | nominal | ordinal | reorderlevels

Topics
“Add and Drop Category Levels” on page 2-24

Introduced in R2007a
dummyvar

Create dummy variables

Syntax

\[D = \text{dummyvar}(\text{group}) \]

Description

\[D = \text{dummyvar}(\text{group}) \] returns a matrix \(D \) containing zeros and ones, whose columns are dummy variables for the grouping variables on page 2-57 in \(\text{group} \). Each column of \(\text{group} \) is a single grouping variable, with values indicating category levels. The rows of \(\text{group} \) represent observations across all variables.

Examples

Create Dummy Variables from Categorical Grouping Variable

Create a column vector of categorical data specifying color types.

\[\text{Colors} = \{\text{'Red';'Blue';'Green';'Red';'Green';'Blue'}\}; \]
\[\text{Colors} = \text{categorical(Colors)}; \]

Create dummy variables for each color type.

\[D = \text{dummyvar}(\text{Colors}) \]

\[D = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix} \]
The columns in D correspond to the levels in Colors. For example, the first column of dummyvar corresponds to the first level, 'Blue', in Colors.

Display the category levels of Colors.

categories(Colors)
ans = 3x1 cell array
 {'Blue' }
 {'Green'}
 {'Red' }

Create Dummy Variables from Numeric Grouping Variables

Create a matrix group of data containing the effects of two machines and three operators on a process.

machine = [1 1 1 1 2 2 2 2]';
operator = [1 2 3 1 2 3 1 2]';
group = [machine operator]
group = 8×2
 1 1
 1 2
 1 3
 1 1
 2 2
 2 3
 2 1
 2 2

Create dummy variables of the data in group.

D = dummyvar(group)

D = 8×5
The first two columns of D represent observations of machine 1 and machine 2, respectively. The remaining columns represent observations of the three operators.

Create Dummy Variables from Multiple Grouping Variables

Create a cell array of phone types and a numeric vector of area codes.

```matlab
phone = {'mobile';'landline';'mobile';'mobile';'mobile';'landline';'landline'};
codes = [802 802 603 603 802 603 802]';
```

Because the area code data has two levels (rather than 802 levels corresponding to the integers 1:802), convert `codes` to a categorical vector.

```matlab
newcodes = categorical(codes);
```

Combine the `phone` and `newcodes` grouping variables into the cell array `group`.

```matlab
group = {phone,newcodes};
```

Create dummy variables for the groups in `group`.

```matlab
D = dummyvar(group)
```

```matlab
D = 7×4
    1 0 1 0
    1 0 0 1
    1 0 0 0
    0 1 0 1
    0 1 0 0
    0 1 1 0
    0 1 0 1
```
The first two columns of D correspond to the phone types, and the last two columns correspond to the area codes.

Input Arguments

group — Grouping variables
positive integer vector | categorical column vector | cell array | positive integer matrix

Grouping variables, specified as a positive integer vector or categorical column vector representing levels within a single variable, a cell array containing one or more grouping variables on page 2-57, or a positive integer matrix representing levels within multiple variables.

If group is a categorical vector, then the groups and their order match the output of the categories function applied to group. If group is a numeric vector, then dummyvar assumes that the groups and their order are 1:max(group). In this respect, dummyvar treats a numeric grouping variable differently from grp2idx. For information on the order of groups within grouping variables, see “Grouping Variables” on page 2-57.

Example: [2 1 1 1 2 3 3 2]'
Example: {Origin,Cylinders}

Output Arguments

D — Dummy variables
numeric matrix

Dummy variables, returned as an n-by-s numeric matrix, where n is the number of rows of group and s is the sum of the number of levels in each column of group. From left to right, the columns of D are dummy variables created from the first column of group, followed by dummy variables created from the second column of group, and so on.

Data Types: single | double
Tips

- Use dummy variables in regression analysis and ANOVA to indicate values of categorical predictors.
- `dummyvar` treats NaN values and undefined categorical levels in `group` as missing data and returns NaN values in `D`.
- If a column of ones is introduced in the matrix `D`, then the resulting matrix \(X = [\text{ones(size(D,1)},1) \ D] \) is rank deficient. If `group` has multiple columns, then the matrix `D` itself is rank deficient because dummy variables produced from any column of `group` always sum to a column of ones. Regression and ANOVA calculations often address this issue by eliminating one dummy variable (implicitly setting the coefficients for dropped columns to zero) from each group of dummy variables produced by a column of `group`.
- If `group` is a numeric vector with levels that do not correspond exactly to the integers \(1:\text{max(group)} \), first convert the data to a categorical vector by using `categorical`. You can then pass the result to `dummyvar`. For an example, see “Create Dummy Variables from Multiple Grouping Variables” on page 32-1350.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

`anova1` | `categories` | `grp2idx` | `regress`

Topics

“Grouping Variables” on page 2-57
“Dummy Indicator Variables” on page 2-60
“Regression with Categorical Covariates” on page 2-63
Introduced before R2006a
dwtest

Durbin-Watson test

Syntax

\[p = \text{dwtest}(r,x) \]
\[p = \text{dwtest}(r,x,\text{Name,Value}) \]
\[[p,d] = \text{dwtest}(\text{___}) \]

Description

\(p = \text{dwtest}(r,x) \) returns the \(p \)-value for the Durbin-Watson test on page 32-1357 of the null hypothesis that the residuals from a linear regression are uncorrelated. The alternative hypothesis is that there is autocorrelation among the residuals.

\(p = \text{dwtest}(r,x,\text{Name,Value}) \) returns the \(p \)-value for the Durbin-Watson test with additional options specified by one or more name-value pair arguments. For example, you can conduct a one-sided test or calculate the \(p \)-value using a normal approximation.

\[[p,d] = \text{dwtest}(\text{___}) \] also returns the Durbin-Watson test statistic, \(d \), using any of the input arguments from the previous syntaxes.

Examples

Test Residuals For Correlation

Load the sample census data.

\[
\text{load census}
\]

Create a design matrix using the census date (\text{cdate}) as the predictor. Add a column of 1 values to include a constant term.

\[
n = \text{length(cdate)}; \\
x = [\text{ones}(n,1),\text{cdate}];
\]
Fit a linear regression to the data.

\[[b, bint, r] = \text{regress}(\text{pop}, x); \]

Test the null hypothesis that there is no autocorrelation among the residuals, \(r \).

\[[p, d] = \text{dwtest}(r, x) \]

\(p = 3.6190\times10^{-15} \)

\(d = 0.1308 \)

The returned value \(p = 3.6190\times10^{-15} \) indicates rejection of the null hypothesis at the 5% significance level.

One-Sided Hypothesis Test

Load the sample census data.

\[\text{load census} \]

Create a design matrix using the census date (\(\text{cdate} \)) as the predictor. Add a column of 1 values to include a constant term.

\[n = \text{length}(\text{cdate}); \]

\[x = [\text{ones}(n,1), \text{cdate}]; \]

Fit a linear regression to the data.

\[[b, bint, r] = \text{regress}(\text{pop}, x); \]

Test the null hypothesis that there is no autocorrelation among regression residuals, against the alternative hypothesis that the autocorrelation is greater than zero.

\[[p, d] = \text{dwtest}(r, x, '\text{Tail}', '\text{right}') \]

\(p = 1.8095\times10^{-15} \)

\(d = 0.1308 \)

The returned value \(p = 1.8095\times10^{-15} \) indicates rejection of the null hypothesis at the 5% significance level, in favor of the alternative hypothesis that the autocorrelation among residuals is greater than zero.
Input Arguments

\(x \) — Design matrix

Design matrix for a linear regression, specified as a matrix. Include a column of 1 values in the design matrix so the model contains a constant term.

Data Types: single | double

\(r \) — Regression residuals

Regression residuals, specified as a vector. Obtain \(r \) by performing a linear regression using a function such as \textit{regress}, or by using the backslash operator.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: \texttt{'Tail','right','Method','approximate'} specifies a right-tailed hypothesis test and calculates the \(p \)-value using a normal approximation.

\textbf{Method — Computation method for} \textit{p-value}

\texttt{'exact' | 'approximate'}

Computation method for the \(p \)-value, specified as the comma-separated pair consisting of \texttt{'Method'} and one of the following.

\begin{itemize}
 \item \texttt{'exact'} \quad Calculate an exact \(p \)-value using the Pan algorithm. This is the default if the sample size is less than 400.
 \item \texttt{'approximate'} \quad Calculate the \(p \)-value using a normal approximation. This is the default if the sample size is 400 or larger.
\end{itemize}
Tail — Type of alternative hypothesis

'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

- 'both' Test the alternate hypothesis that autocorrelation among the residuals is not zero.
- 'right' Test the alternative hypothesis that autocorrelation among the residuals is greater than zero.
- 'left' Test the alternative hypothesis that autocorrelation among the residuals is less than zero.

Example: 'Tail','right'

Output Arguments

- **p — p-value**
 scalar value in the range [0,1]

 p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

- **d — Test statistic**
 nonnegative scalar value

 Test statistic of the hypothesis test, returned as a nonnegative scalar value.

Definitions

Durbin-Watson Test

The Durbin-Watson test is used to test the null hypothesis that linear regression residuals are uncorrelated, against the alternative that autocorrelation exists.

The test statistic for the Durbin-Watson test is
where T is the number of observations, and e_t is the residual at time t.

The p-value of the Durbin-Watson test is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. A significantly small p-value casts doubt on the validity of the null hypothesis and indicates correlation among residuals. The p-value can be calculated exactly using the Pan algorithm. Alternatively, the p-value can be estimated using a normal approximation.

See Also

regress

Introduced in R2006a
dwtest

Class: LinearModel

Durbin-Watson test of linear model

Syntax

\[P = \text{dwtest}(mdl) \]

\[[P, DW] = \text{dwtest}(mdl) \]

\[[P, DW] = \text{dwtest}(mdl, \text{method}) \]

\[[P, DW] = \text{dwtest}(mdl, \text{method}, \text{tail}) \]

Description

\(P = \text{dwtest}(mdl) \) returns the \(p \)-value of the Durbin-Watson test on the \(mdl \) linear model.

\([P, DW] = \text{dwtest}(mdl) \) also returns the Durbin-Watson statistic, \(DW \).

\([P, DW] = \text{dwtest}(mdl, \text{method}) \) specifies the method \text{dwtest} uses to compute the \(p \)-value.

\([P, DW] = \text{dwtest}(mdl, \text{method}, \text{tail}) \) specifies the alternative hypothesis.

Input Arguments

\(mdl \) — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a \text{LinearModel} object constructed using \text{fitlm} or \text{stepwiselm}.

\(\text{method} \) — Algorithm for computing \(p \)-value

'exact' | 'approximate'

32-1359
Algorithm for computing the p-value, specified as one of the following:

- `'exact'` — Calculates an exact p-value using Pan’s algorithm.
- `'approximate'` — Calculates the p-value using a normal approximation.

The default is `'exact'` when the sample size is less than 400, `'approximate'` otherwise.

Tail — *Alternative hypothesis to test*

- `'both'` (default) | `'right'` | `'left'`

Alternative hypothesis to test, specified as one of the following:

<table>
<thead>
<tr>
<th>Tail</th>
<th>Alternative Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'both'</code></td>
<td>Serial correlation is not 0.</td>
</tr>
<tr>
<td><code>'right'</code></td>
<td>Serial correlation is greater than 0 (right-tailed test).</td>
</tr>
<tr>
<td><code>'left'</code></td>
<td>Serial correlation is less than 0 (left-tailed test).</td>
</tr>
</tbody>
</table>

`dwtest` tests whether `mdl` has no serial correlation against the specified alternative hypotheses.

Output Arguments

P — *p-value of the test*

numeric value

p-value of the test, returned as a numeric value. `dwtest` tests if the residuals are uncorrelated, against the alternative that there is autocorrelation among them. Small values of `P` indicate that the residuals are correlated.

DW — *Durbin-Watson statistic*

numeric value

Durbin-Watson statistic, returned as a numeric value.

Examples
Test Residuals for Autocorrelation

Examine whether the residuals from a fitted model of census data over time have autocorrelated residuals.

Load the census data and create a linear model.

```matlab
load census
mdl = fitlm(cdate,pop);
```

Find the p-value of the Durbin-Watson autocorrelation test.

```matlab
P = dwtest(mdl)
```

$P = 3.6190\text{e-15}$

There is significant autocorrelation in the residuals.

Definitions

Durbin-Watson Statistic

Let r be the vector of residuals (in `mdl.residuals.response`). The Durbin-Watson statistic is

$$DW = \frac{\sum_{i=1}^{n-1} (r_{i+1} - r_i)^2}{\sum_{i=1}^{n} r_i^2}.$$

Algorithms

Approximate calculation of the p-value uses a normal approximation [1]. Exact calculation uses Pan’s algorithm [2].
References

See Also
LinearModel

Topics
“Linear Regression” on page 11-11

ecdf

Empirical cumulative distribution function

Syntax

\[[f, x] = ecdf(y) \]
\[[f, x] = ecdf(y, Name, Value) \]
\[[f, x, flo, fup] = ecdf(____) \]

ecdf(____)
ecdf(ax,____)

Description

\[[f, x] = ecdf(y) \] returns the empirical cumulative distribution function (cdf), \(f \), evaluated at the points in \(x \), using the data in the vector \(y \).

In survival and reliability analysis, this empirical cdf is called the Kaplan-Meier estimate. And the data might correspond to survival or failure times.

\[[f, x] = ecdf(y, Name, Value) \] returns the empirical function values, \(f \), evaluated at the points in \(x \), with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the type of function to evaluate or which data is censored.

\[[f, x, flo, fup] = ecdf(____) \] also returns the 95% lower and upper confidence bounds for the evaluated function values. You can use any of the input arguments in the previous syntaxes.

ecdf computes the confidence bounds using Greenwood's formula on page 32-1374. They are not simultaneous confidence bounds.

ecdf(____) plots the evaluated function.

ecdf(ax,____) plots the evaluated function using axes with the handle, \(ax \), instead of the current axes returned by gca.
Examples

Compute Empirical Cumulative Distribution Function

Compute the Kaplan-Meier estimate of the cumulative distribution function (cdf) for simulated survival data.

Generate survival data from a Weibull distribution with parameters 3 and 1.

```matlab
rng('default')  % for reproducibility
failuretime = random('wbl',3,1,15,1);
```

Compute the Kaplan-Meier estimate of the cdf for survival data.

```matlab
[f,x] = ecdf(failuretime);
[f,x]
```

```matlab
ans = 16×2

0    0.0895
0.0667    0.0895
0.1333    0.1072
0.2000    0.1303
0.2667    0.1313
0.3333    0.2718
0.4000    0.2968
0.4667    0.6147
0.5333    0.6684
0.6000    1.3749
```

Plot the estimated cdf.

```matlab
ecdf(failuretime)
```
Empirical Hazard Function of Right-Censored Data

Compute and plot the hazard function of simulated right-censored survival data.

Generate failure times from a Birnbaum-Saunders distribution.

```matlab
rng default  % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9, generate a logical array that indicates simulated failure times that are larger than 0.9 as censored data, and store this information in a vector.
\(T = 0.9; \)
\[\text{cens} = (\text{failuretime}>\text{T}); \]

Plot the empirical hazard function for the data.

\[\text{ecdf(failuretime,'function','cumulative hazard',...} \]
\[\text{'censoring',cens,'bounds','on'}); \]

Compare Empirical Cumulative Distribution Function (CDF) with Known CDF

Generate right-censored survival data and compare the empirical cumulative distribution function (cdf) with the known cdf.
Generate failure times from an exponential distribution with mean failure time of 15.

```matlab
rng default  % for reproducibility
y = exprnd(15,75,1);
```

Generate drop-out times from an exponential distribution with mean failure time of 30.

```matlab
d = exprnd(30,75,1);
```

Generate the observed failure times. They are the minimum of the generated failure times and the drop-out times.

```matlab
t = min(y,d);
```

Create a logical array that indicates generated failure times that are larger than the drop-out times. The data for which this is true are censored.

```matlab
censored = (y>d);
```

Compute the empirical cdf and confidence bounds.

```matlab
[f,x,flo,fup] = ecdf(t,'censoring',censored);
```

Plot the cdf and confidence bounds.

```matlab
figure()
ecdf(t,'censoring',censored,'bounds','on');
hold on
```
Superimpose a plot of the known population cdf.

```matlab
xx = 0:.1:max(t);
yy = 1-exp(-xx/15);
plot(xx,yy,'g-','LineWidth',2)
axis([0 50 0 1])
legend('Empirical','LCB','UCB','Population',...
      'Location','SE')
hold off
```
Empirical Survivor Function with 99% Confidence Bounds

Generate survival data and plot the empirical survivor function with 99% confidence bounds.

Generate lifetime data from a Weibull distribution with parameters 100 and 2.

```matlab
rng default  % for reproducibility
R = wblrnd(100,2,100,1);
```

Plot the survivor function for the data with 99% confidence bounds.
ecdf(R,'function','survivor','alpha',0.01,'bounds','on')
hold on

Fit the Weibull survivor function.

x = 1:1:250;
wblsurv = 1-cdf('weibull',x,100,2);
plot(x,wblsurv,'g-','LineWidth',2)
legend('Empirical','LCB','UCB','Population','Location','NE')
The survivor function based on the actual distribution is within the confidence bounds.

Input Arguments

`y` — Input data

column vector

Input data, specified as a column vector. For example, in survival or reliability analysis, data might be survival or failure times for each item or individual.

Data Types: `single` | `double`
ax — Axes handle

handle

Axes handle for the figure `ecdf` plots to, specified as a handle.

For instance, if `h` is a handle for a figure, then `ecdf` can plot to that figure as follows.

Example: `ecdf(h,x)`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'censoring',c,'function','cumulative hazard','alpha',0.025,'bounds','on'` specifies that `ecdf` returns the cumulative hazard function and plots the 97.5% confidence bounds, accounting for the censored data specified by vector `c`.

censoring — Indicator of censored data

array of 0s (default) | vector of 0s and 1s

Indicator of censored data, specified as the comma-separated pair including 'censoring' and a Boolean array of the same size as `x`. Enter 1 for observations that are right-censored and 0 for observations that are fully observed. Default is all observations are fully observed.

For instance, if vector `cdata` stores the censored data information, you can enter the censoring information as follows.

Example: `'censoring',cdata`

Data Types: `logical`

frequency — Frequency of observations

array of 1s (default) | vector of nonnegative scalars

Frequency of observations, specified as the comma-separated pair consisting of 'frequency' and a vector containing nonnegative integer counts. This vector is the same size as the vector `x`. The jth element of this vector gives the number of times the jth element of `x` was observed. Default is one observation per element of `x`.

32-1372
For instance, if \texttt{failurefreq} is a vector of frequencies, then you can enter it as follows.

Example: \texttt{'}frequency',failurefreq\texttt{'}

Data Types: \texttt{single} | \texttt{double}

\textbf{alpha — Confidence level}

0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval of the evaluated function, specified as the comma-separated pair consisting of \texttt{'}alpha' and a scalar value between in the range (0,1). Default is 0.05 for 95% confidence. For a given value \texttt{alpha}, the confidence level is \(100(1-\alpha)\%\).

For instance, for a 99% confidence interval, you can specify the alpha value as follows.

Example: \texttt{'}alpha',0.01\texttt{'}

Data Types: \texttt{single} | \texttt{double}

\textbf{function — Type of function returned}

\texttt{'}cdf' (default) | 'survivor' | 'cumulative hazard'

Type of function that \texttt{ecdf} evaluates and returns, specified as the comma-separated pair consisting of \texttt{'}function' and one of the following.

<table>
<thead>
<tr>
<th>\texttt{'}function'</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{'}cdf'</td>
<td>Default. Cumulative distribution function.</td>
</tr>
<tr>
<td>\texttt{'}survivor'</td>
<td>Survivor function.</td>
</tr>
<tr>
<td>\texttt{'}cumulative hazard'</td>
<td>Cumulative hazard function.</td>
</tr>
</tbody>
</table>

Example: \texttt{'}function',\texttt{'}cumulative hazard'\texttt{'}

\textbf{bounds — Indicator for including bounds}

\texttt{'}off' (default) | \texttt{'}on' |

Indicator for including bounds, specified as the comma-separated pair consisting of \texttt{'}bounds' and one of the following.

<table>
<thead>
<tr>
<th>\texttt{'}bounds'</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{'}off'</td>
<td>Default. Specify to omit bounds.</td>
</tr>
<tr>
<td>\texttt{'}on'</td>
<td>Specify to include bounds.</td>
</tr>
</tbody>
</table>

\textbf{Note} This name-value argument is used only for plotting.
Example: 'bounds', 'on'

Output Arguments

f — Function values
column vector

Function values evaluated at the points in \(x \), returned as a column vector.

x — Distinct observed points
column vector

Distinct observed points in data vector \(y \), returned as a column vector.

flo — Lower confidence bound
column vector

Lower confidence bound for the evaluated function, returned as a column vector. `ecdf` computes the confidence bounds using Greenwood’s formula on page 32-1374. They are not simultaneous confidence bounds.

fup — Upper confidence bound
column vector

Upper confidence bound for the evaluated function, returned as a column vector. `ecdf` computes the confidence bounds using Greenwood’s formula on page 32-1374. They are not simultaneous confidence bounds.

Definitions

Greenwood’s Formula

Approximation for the variance of Kaplan-Meier estimator.

The variance estimate is given by

\[
V(S(t)) = S^2(t) \sum_{t_i < T} \frac{d_i}{n_i (r_i - d_i)},
\]
where r_i is the number at risk at time t_i, and d_i is the number of failures at time t_i.

References

See Also
cdfplot | ecdfhist

Topics
“Hazard and Survivor Functions for Different Groups” on page 14-18
“Survivor Functions for Two Groups” on page 14-25
“What Is Survival Analysis?” on page 14-2
“Kaplan-Meier Method” on page 14-11

Introduced before R2006a
ecdfhist

Histogram based on empirical cumulative distribution function

Syntax

\[[n,c] = \text{ecdfhist}(f,x) \]
\[[n,c] = \text{ecdfhist}(f,x,m) \]
\[n = \text{ecdfhist}(f,x,\text{centers}) \]
\[\text{ecdfhist}(__) \]

Description

\[[n,c] = \text{ecdfhist}(f,x) \] returns the heights, \(n \), of histogram bars for 10 equally spaced bins and the position of the bin centers, \(c \).

ecdfhist computes the bar heights from the increases in the empirical cumulative distribution function, \(f \), at evaluation points, \(x \). It normalizes the bar heights so that the area of the histogram is equal to 1. In contrast, \text{histogram} produces bars with heights representing bin counts.

\[[n,c] = \text{ecdfhist}(f,x,m) \] returns the histogram bars using \(m \) bins.

\(n = \text{ecdfhist}(f,x,\text{centers}) \) returns the heights of the histogram bars with bin centers specified by \(\text{centers} \).

\text{ecdfhist}(__) plots the histogram bars.

Examples
Return Histogram Bar Heights and Bin Centers

Compute the histogram bar heights based on the empirical cumulative distribution function.

Generate failure times from a Birnbaum-Saunders distribution.

```matlab
rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

```matlab
T = 0.9;
cens = (failuretime>T);
```

Compute the empirical cumulative distribution function for the data.

```matlab
[f,x] = ecdf(failuretime,'censoring',cens);
```

Now, find the bar heights of the histogram using the cumulative distribution function estimate.

```matlab
[n,c] = ecdfhist(f,x);
[n' c']
```

```
ans = 10×2
        2.3529     0.0715
        1.7647     0.1565
        1.4117     0.2415
        1.5294     0.3265
        1.0588     0.4115
        0.4706     0.4965
        0.4706     0.5815
        0.9412     0.6665
        0.2353     0.7515
        0.2353     0.8365
```
Return Bar Heights and Bin Centers for a Given Number of Bins

Compute the bar heights for six bins using the empirical cumulative distribution function and also return the bin centers.

Generate failure times from a Birnbaum-Saunders distribution.

```matlab
rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

```matlab
T = 0.9;
cens = (failuretime>T);
```

First, compute the empirical cumulative distribution function for the data.

```matlab
[f,x] = ecdf(failuretime,'censoring',cens);
```

Now, estimate the histogram with six bins using the cumulative distribution function estimate.

```matlab
[n,c] = ecdfhist(f,x,6);
[n' c']
```

ans = 6×2

```
1.9764  0.0998
1.7647  0.2415
1.1294  0.3831
0.4235  0.5248
0.7764  0.6665
0.2118  0.8081
```

Draw Histogram for Given Bin Centers

Draw the histogram of the empirical cumulative distribution histogram for specified bin centers.

Generate failure times from a Birnbaum-Saunders distribution.
rng default; % For reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

T = 0.9;
cens = (failuretime>T);

Define bin centers.

centers = 0.1:0.1:1;

Compute the empirical cumulative distribution function for the data and draw the histogram for specified bin centers.

[f,x] = ecdf(failuretime,'censoring',cens);
ecdfhist(f,x,centers)
axis([0 1 0 2.5])
Compare Histogram with Known Probability Distribution Function

Generate right-censored survival data and compare the histogram from cumulative distribution function with the known probability distribution function.

Generate failure times from an exponential distribution with mean failure time of 15.

```matlab
rng default; % For reproducibility
y = exprnd(15,75,1);
```

Generate drop-out times from an exponential distribution with mean failure time of 30.
d = exprnd(30, 75, 1);

Record the minimum of these times as the observed failure times.

\[t = \min(y, d) \]

Generate censoring by finding the generated failure times that are greater than the drop-out times.

\[\text{censored} = (y > d) \]

Calculate the empirical cdf and plot a histogram using the empirical cumulative distribution function.

\[
[f, x] = \text{ecdf}(t, 'censoring', \text{censored});
\]
\[
\text{ecdfhist}(f, x)
\]
\[
h = \text{findobj(gca, 'Type', 'patch');}
\]
\[
h.\text{FaceColor} = [.8 .8 1];
\]
\[
\text{hold on}
\]
Superimpose a plot of the known population pdf.

```matlab
xx = 0:.1:max(t);
yy = exp(-xx/15)/15;
plot(xx,yy,'r-','LineWidth',2)
hold off
```
Input Arguments

\textbf{f} — Empirical cdf values
vector

Empirical cdf values at given evaluation points, \textit{x}, specified as a vector.

For instance, you can use \texttt{ecdf} to obtain the empirical cdf values and enter them in \texttt{ecdfhist} as follows.

Example: \texttt{[f,x] = ecdf(failure); ecdfhist(f,x);}
Data Types: single | double

x — Evaluation points
vector

Evaluation points at which empirical cdf values, f, are calculated, specified as a vector.

For instance, you can use `ecdf` to obtain the empirical cdf values and enter them in `ecdfhist` as follows.

Example:
```
[f,x] = ecdf(failure); ecdfhist(f,x);
```

Data Types: single | double

m — Number of bins
scalar

Number of bins, specified as a scalar.

For instance, you can draw a histogram with 8 bins as follows.

Example:
```
ecdfhist(f,x,8)
```

Data Types: single | double

centers — Center points of bins
vector

Center points of bins, specified as a vector.

Example:
```
centers = 2:2:10; ecdfhist(f,x,centers);
```

Data Types: single | double

Output Arguments

n — Heights of histogram bars
row vector

Heights of histogram bars `ecdfhist` calculates based on the empirical cdf values, returned as a row vector.

c — Position of bin centers
row vector
Position of bin centers, returned as a row vector.

See Also
ecdf | histc | histogram

Topics
“Nonparametric and Empirical Probability Distributions” on page 5-39

Introduced before R2006a
edge

Edge of \(k \)-nearest neighbor classifier

Syntax

\[
E = \text{edge}(\text{mdl}, \text{tbl}, \text{ResponseVarName})
\]
\[
E = \text{edge}(\text{mdl}, \text{tbl}, Y)
\]
\[
E = \text{edge}(\text{mdl}, X, Y)
\]
\[
E = \text{edge}(_, _,'\text{Weights}', \text{weights})
\]

Description

\(E = \text{edge}(\text{mdl}, \text{tbl}, \text{ResponseVarName}) \) returns the classification edge for \(\text{mdl} \) with data \(\text{tbl} \) and classification \(\text{tbl.\text{ResponseVarName}} \). If \(\text{tbl} \) contains the response variable used to train \(\text{mdl} \), then you do not need to specify \(\text{ResponseVarName} \).

The classification edge (\(E \)) is a scalar value that represents the mean of the classification margins on page 32-1389.

\(E = \text{edge}(\text{mdl}, \text{tbl}, Y) \) returns the classification edge for \(\text{mdl} \) with data \(\text{tbl} \) and classification \(Y \).

\(E = \text{edge}(\text{mdl}, X, Y) \) returns the classification edge for \(\text{mdl} \) with data \(X \) and classification \(Y \).

\(E = \text{edge}(_, _,'\text{Weights}', \text{weights}) \) computes the edge with additional observation weights \(\text{weights} \), using any of the input arguments in the previous syntaxes.

Examples

Edge Calculation

Create a \(k \)-nearest neighbor classifier for the Fisher iris data, where \(k = 5 \).
Load the Fisher iris data set.

```
load fisheriris
X = meas;
Y = species;
```

Create a classifier for five nearest neighbors.

```
mdl = fitcknn(X,Y,'NumNeighbors',5);
```

Examine the edge of the classifier for minimum, mean, and maximum observations classified as 'setosa', 'versicolor', and 'virginica', respectively.

```
NewX = [min(X);mean(X);max(X)];
Y = {'setosa';'versicolor';'virginica'};
E = edge(mdl,NewX,Y)
```

```
E = 1
```

All five nearest neighbors of each NewX point classify as the corresponding Y entry.

Input Arguments

- **mdl** — *k*-nearest neighbor classifier model
 ClassificationKNN object

 k-nearest neighbor classifier model, specified as a *ClassificationKNN* object.

- **tbl** — Sample data
table

 Sample data used to train the model, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

 If tbl contains the response variable used to train mdl, then you do not need to specify ResponseVarName or Y.

 If you train mdl using sample data contained in a table, then the input data for edge must also be in a table.
Data Types: `table`

ResponseVarName — Response variable name
name of a variable in `tbl`

Response variable name, specified as the name of a variable in `tbl`. If `tbl` contains the response variable used to train `mdl`, then you do not need to specify `ResponseVarName`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable is stored as `tbl.response`, then specify it as `'response'`. Otherwise, the software treats all columns of `tbl`, including `tbl.response`, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: `char` | `string`

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of `X` represents one observation, and each column represents one variable.

Data Types: `single` | `double`

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Each row of `Y` represents the classification of the corresponding row of `X`.

Data Types: `categorical` | `char` | `string` | `logical` | `single` | `double` | `cell`

weights — Observation weights
`ones(size(X,1),1)` (default) | numeric vector | name of variable in `tbl`

Observation weights, specified as a numeric vector or the name of a variable in `tbl`.

If you specify `weights` as a numeric vector, then the size of `weights` must be equal to the number of rows in `X` or `tbl`.

32-1388
If you specify `weights` as the name of a variable in `tbl`, then the name must be a character vector or string scalar. For example, if the weights are stored as `tbl.w`, then specify `weights` as `'w'`. Otherwise, the software treats all columns of `tbl`, including `tbl.w`, as predictors.

If you specify `weights`, then the `edge` function weights the observation in each row of `X` or `tbl` with the corresponding weight in `weights`.

Example: 'Weights','w'

Data Types: single | double | char | string

Definitions

Margin

The classification margin for each observation is the difference between the classification score for the true class and the maximal classification score for the false classes.

The classification margins form a column vector with the same number of rows as `X` or `tbl`.

Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors with that classification divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page 32-4943.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
ClassificationKNN | fitcknn | loss | margin

Topics
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
edge

Class: ClassificationLinear
Classification edge for linear classification models

Syntax

\[e = \text{edge}(\text{Mdl},X,Y) \]
\[e = \text{edge}(___,\text{Name},\text{Value}) \]

Description

\[e = \text{edge}(\text{Mdl},X,Y) \] returns the classification edges on page 32-1399 for the binary, linear classification model \(\text{Mdl} \) using predictor data in \(X \) and corresponding class labels in \(Y \). \(e \) contains a classification edge for each regularization strength in \(\text{Mdl} \).

\[e = \text{edge}(___,\text{Name},\text{Value}) \] uses any of the previous syntaxes and additional options specified by one or more \text{Name,Value} pair arguments. For example, you can specify that columns in the predictor data correspond to observations or supply observation weights.

Input Arguments

\(\text{Mdl} \) — Binary, linear classification model
\text{ClassificationLinear} model object

Binary, linear classification model, specified as a \text{ClassificationLinear} model object. You can create a \text{ClassificationLinear} model object using \text{fitclinear}.

\(X \) — Predictor data
full matrix | sparse matrix

Predictor data, specified as an \(n \)-by-\(p \) full or sparse matrix. This orientation of \(X \) indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.
Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn', 'columns', then you might experience a significant reduction in computation time.

The length of Y and the number of observations in X must be equal.

Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in Y must be a subset of Mdl.ClassNames.
- If Y is a character array, then each element must correspond to one row of the array.
- The length of Y and the number of observations in X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn', 'columns', then you might experience a significant reduction in optimization-execution time.
Weights — Observation weights
numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. If you supply weights, edge computes the weighted classification edge.

Let n be the number of observations in X.

- numel(Weights) must be n.
- By default, Weights is ones(n,1).

dge normalizes Weights to sum up to the value of the prior probability in the respective class.

Data Types: double | single

Output Arguments

e — Classification edges
numeric scalar | numeric row vector

Classification edges, returned as a numeric scalar or row vector.

e is the same size as Mdl.Lambda. e(j) is the classification edge of the linear classification model trained using the regularization strength Mdl.Lambda(j).

Examples

Estimate Test-Sample Edge

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.
The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

\[
Y_{\text{stats}} = Y == '\text{stats}';
\]

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Specify to holdout 30% of the observations. Optimize the objective function using SpaRSA.

\[
\text{rng}(1); \quad \% \text{For reproducibility}
\]

\[
\text{CVMdl} = \text{fitclinear}(X,Y_{\text{stats}},'\text{Solver}','\text{sparsa}','\text{Holdout}',0.30);
\]

\[
\text{CMdl} = \text{CVMdl.Trained}{1};
\]

\text{CVMdl} is a \text{ClassificationPartitionedLinear} model. It contains the property \text{Trained}, which is a 1-by-1 cell array holding a \text{ClassificationLinear} model that the software trained using the training set.

Extract the training and test data from the partition definition.

\[
\text{trainIdx} = \text{training(CVMdl.Partition)};
\]

\[
\text{testIdx} = \text{test(CVMdl.Partition)};
\]

Estimate the training- and test-sample edges.

\[
\text{eTrain} = \text{edge(CMdl,X(trainIdx,:),Y_{\text{stats}}(trainIdx))}
\]

\[
eTrain = 15.6660
\]

\[
\text{eTest} = \text{edge(CMdl,X(testIdx,:),Y_{\text{stats}}(testIdx))}
\]

\[
eTest = 15.4767
\]

Feature Selection Using Test-Sample Edges

One way to perform feature selection is to compare test-sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set.
load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages. For quicker execution time, orient the predictor data so that individual observations correspond to columns.

Ystats = Y == 'stats';
X = X';
rng(1); % For reproducibility

Create a data partition which holds out 30% of the observations for testing.

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition); % Test-set indices
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Partition is a cvpartition object that defines the data set partition.

Randomly choose half of the predictor variables.

p = size(X,1); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Train two binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that observations correspond to columns.

CVMdl = fitclinear(X,Ystats,'CVPartition',Partition,'Solver','sparsa',... 'ObservationsIn','columns');
PCVMdl = fitclinear(X(idxPart,:),Ystats,'CVPartition',Partition,'Solver','sparsa',... 'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Extract the trained ClassificationLinear models from the cross-validated models.

CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};
Estimate the test sample edge for each classifier.

```matlab
fullEdge = edge(CMdl,XTest,YTest,'ObservationsIn','columns')
fullEdge = 15.4767
partEdge = edge(PCMdl,XTest(idxPart,:),YTest,'ObservationsIn','columns')
partEdge = 13.4458
```

Based on the test-sample edges, the classifier that uses all of the predictors is the better model.

Find Good Lasso Penalty Using Edge

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample edges.

Load the NLP data set. Preprocess the data as in “Feature Selection Using Test-Sample Edges” on page 32-1394.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Lambda = logspace(-8,1,11);
```

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-8} through 10^1.

Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

```matlab
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
                  'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
                  'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
```
CVMdl =
 classreg.learning.partition.ClassificationPartitionedLinear
 CrossValidatedModel: 'Linear'
 ResponseName: 'Y'
 NumObservations: 31572
 KFold: 1
 Partition: [1x1 cvpartition]
 ClassNames: [0 1]
 ScoreTransform: 'none'

Properties, Methods

Extract the trained linear classification model.
Mdl = CVMdl.Trained{1}
Mdl =
 ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023x11 double]
 Bias: [1x11 double]
 Lambda: [1x11 double]
 Learner: 'logistic'

Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample edges.
e = edge(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns')
e = 1x11
 0.9986 0.9986 0.9986 0.9986 0.9986 0.9932 0.9766 0.9202 0.8337 0.8128 0.8128

Because there are 11 regularization strengths, e is a 1-by-11 vector of edges.
Plot the test-sample edges for each regularization strength. Identify the regularization strength that maximizes the edges over the grid.

```matlab
figure;
plot(log10(Lambda),log10(e),'-o')
 [~, maxEIdx] = max(e);
 maxLambda = Lambda(maxEIdx);
 hold on
 plot(log10(maxLambda),log10(e(maxEIdx)),'ro');
 ylabel('log_{10} test-sample edge')
 xlabel('log_{10} Lambda')
 legend('Edge','Max edge')
 hold off
```
Several values of Lambda yield similarly high edges. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

\[
\text{LambdaFinal} = \text{Lambda}(5);
\]

Train a linear classification model using the entire data set and specify the regularization strength yielding the maximal edge.

\[
\text{MdlFinal} = \text{fitclinear}(X,Y\text{stats},'ObservationsIn','columns',... \\
 'Learner','logistic','Solver','sparsa','Regularization','lasso',... \\
 'Lambda',\text{LambdaFinal});
\]

To estimate labels for new observations, pass \text{MdlFinal} and the new data to \text{predict}.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[
m = 2yf(x).
\]

\(x\) is an observation. If the true label of \(x\) is the positive class, then \(y\) is 1, and -1 otherwise. \(f(x)\) is the positive-class classification score for the observation \(x\). The classification margin is commonly defined as \(m = yf(x)\).
If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row vector, into the positive class is defined by

$$f_j(x) = x\beta_j + b_j.$$

For the model with regularization strength j, β_j is the estimated column vector of coefficients (the model property $\text{Beta}(:,j)$) and b_j is the estimated, scalar bias (the model property $\text{Bias}(j)$).

The raw classification score for classifying x into the negative class is $-f(x)$. The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

Algorithms

By default, observation weights are prior class probabilities. If you supply weights using Weights, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the normalized weights to estimate the weighted edge.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
ClassificationLinear | fitclinear | margin | predict

Introduced in R2016a
edge

Classification edge

Syntax

\[
E = \text{edge}(\text{obj},X,Y)
\]
\[
E = \text{edge}(\text{obj},X,Y,\text{Name},\text{Value})
\]

Description

\(E = \text{edge}(\text{obj},X,Y)\) returns the classification edge for \(\text{obj}\) with data \(X\) and classification \(Y\).

\(E = \text{edge}(\text{obj},X,Y,\text{Name},\text{Value})\) computes the edge with additional options specified by one or more \(\text{Name},\text{Value}\) pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class `ClassificationDiscriminant` or `CompactClassificationDiscriminant`, typically constructed with `fitcdiscr`.

X

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in \(X\) must equal the number of predictors in \(\text{obj}\).

Y

Class labels, with the same data type as exists in \(\text{obj}\). The number of elements of \(Y\) must equal the number of rows of \(X\).
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

weights

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge computes the weighted classification edge.

Default: ones(size(X,1),1)

Output Arguments

E

Edge, a scalar representing the weighted average value of the margin.

Examples

Compute the classification edge and margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

load fisheriris
X = meas(:,1:2);
obj = fitcdiscr(X,species);
E = edge(obj,X,species)

E =
 0.4980

M = margin(obj,X,species);
M(end-10:end)

ans =
 0.6551
 0.4838
 0.6551
The classifier trained on all the data is better:

```matlab
obj = fitcdiscr(meas,species);
E = edge(obj,meas,species)
```

```
E = 
0.9454
```

```matlab
M = margin(obj,meas,species);
M(end-10:end)
```

```
ans = 
0.9983 
1.0000 
0.9991 
0.9978 
1.0000 
1.0000 
0.9999 
0.9882 
0.9937 
1.0000 
0.9649
```

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class prior probabilities. If you supply additional weights, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.
Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationDiscriminant | fitcdiscr | loss | margin | predict

Topics

“Discriminant Analysis Classification” on page 20-2
edge

Classification edge for multiclass, error-correcting output codes model

Syntax

e = edge(Mdl,tbl,ResponseVarName)
e = edge(Mdl,tbl,Y)
e = edge(Mdl,X,Y)
e = edge(___,Name,Value)

Description

e = edge(Mdl,tbl,ResponseVarName) returns the classification edge on page 32-1415 (e) for the error-correcting output code (ECOC) multiclass classifier Mdl using predictor data in table tbl and class labels tbl.ResponseVarName. Each row of tbl and ResponseVarName is an observation.

e = edge(Mdl,tbl,Y) returns the classification edge for the classifier Mdl using predictor data in table tbl and class labels in vector Y. Each row of tbl and Y is an observation.

e = edge(Mdl,X,Y) returns the classification edge (e) for the classifier Mdl using predictor data in matrix X and class labels in vector Y. Each row of X and Y is an observation.

e = edge(___,Name,Value) computes the classification edge with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.
Input Arguments

Mdl — Full or compact, multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object

Full or compact, multiclass ECOC model, specified as a ClassificationECOC or CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or CompactClassificationECOC.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain additional columns for the response variable and observation weights. tbl must contain all the predictors used to train Mdl. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained Mdl using sample data contained in a table, then the input data for this method must also be in a table.

Note If Mdl.BinaryLearners contains linear or kernel classification models (that is, ClassificationLinear or ClassificationKernel model objects), then you cannot specify sample data in a table. Instead, pass a matrix (X) and class labels (Y).

Data Types: table

ResponseVarName — Response variable name
name of a variable in tbl

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all columns of tbl, including y, as predictors when training the model.
The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The variables composing the columns of X should be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y and the number of rows of X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle
Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>(-\infty,\infty)</td>
<td>(\log[1 + \exp(-2y_js_j)]/[2\log(2)])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>(-\infty,\infty)</td>
<td>(\exp(-y_js_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_js_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>(-\infty,\infty))</td>
<td>(\max(0,1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>(-\infty,\infty)</td>
<td>((1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>(-\infty,\infty)</td>
<td>(\log[1 + \exp(-y_js_j)]/[2\log(2)])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, \texttt{customFunction}, specify its function handle 'BinaryLoss', \texttt{'@customFunction'}.

\texttt{customFunction} has this form:

\[
\text{bLoss} = \text{customFunction}(M,s)
\]

where:

- \(M \) is the \(K \)-by-\(L \) coding matrix stored in \texttt{Mdl.CodingMatrix}.
- \(s \) is the 1-by-\(L \) row vector of classification scores.
- \(\text{bLoss} \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \(K \) is the number of classes.
- \(L \) is the number of binary learners.
For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then `BinaryLoss` is 'hinge'
- Ensembles trained by AdaboostM1 or GentleBoost, then `BinaryLoss` is 'exponential'
- Ensembles trained by LogitBoost, then `BinaryLoss` is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in `fitcecoc`), then `BinaryLoss` is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the `BinaryLoss` property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'. `Mdl.BinaryLearners` must contain linear classification models.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', you can experience a significant reduction in execution time.
Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel', 1).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

Weights — Observation weights
ones(size(X,1)) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in tbl. If you supply weights, edge computes the weighted classification edge on page 32-1415.

Weights requires the same length as the number of observations in X or tbl. The software normalizes Weights to sum up to the value of the prior probability in the respective class.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or string scalar. For example, if the weights are stored as tbl.w, then specify it as 'w'. Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If Mdl.BinaryLearners contains linear classification models, then you must specify a vector.

Data Types: single | double | char | string
Output Arguments

e — Classification edge

numeric scalar | numeric vector

Classification edge on page 32-1415, returned as a numeric scalar or vector. e represents the (weighted) mean of the classification margins on page 32-1415.

If `Mdl.BinaryLearners` contains linear classification models, then `e` is a 1-by-\(L\) vector, where \(L\) is the number of regularization strengths in the linear classification models (i.e., `numel(Mdl.BinaryLearners{1}.Lambda)`). \(e(j)\) is the edge for the model trained using regularization strength `Mdl.BinaryLearners{1}.Lambda(j)`.

Otherwise, `e` is a scalar.

Examples

Estimate the Test-Sample Edge of ECOC Models

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);  
classOrder = unique(Y); % Class order
rng(1); % For reproducibility
```

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);  
CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);  
CMdl = CVMdl.Trained{1};  
testInds = test(CVMdl.Partition);  
XTest = X(testInds,:);  
YTest = Y(testInds,:);  
```

CVMdl is a `ClassificationPartitionedECOC` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `CompactClassificationECOC` model that the software trained using the training set.
Estimate the test-sample edge.

e = edge(CMdl,XTest,YTest)

e = 0.4573

The estimated test sample margin average is approximately 0.45.

Estimate the Test-Sample Weighted Margin Mean of ECOC Models

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility
```

Suppose that the observations were measured sequentially, and that the last 75 observations were better quality because of a technology upgrade. One way to incorporate this advancement is to weigh the better-quality observations more than the other observations.

Define a weight vector that weights the better-quality observations two times greater than the other observations.

```matlab
n = size(X,1);
weights = [ones(n-75,1);2*ones(75,1)];
```

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample and the weighting scheme. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,...
    'Weights',weights,'ClassNames',classOrder);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
wTest = weights(testInds,:);
```
CVMdl is a trained ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC classifier that the software trained using the training set.

Estimate the test-sample weighted edge using the weighting scheme.

```matlab
e = edge(CMdl,XTest,YTest,'Weights',wTest)
e = 0.4798
```

The test sample weighted average margin is approximately 0.48.

Select ECOC Model Features by Comparing Test-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare test-sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility
```

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

```matlab
Partition = cvpartition(Y,'Holdout',0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

Partition defines the data set partition.

Define these two data sets:
- `fullX` contains all predictors.
- `partX` contains the petal dimensions.

```matlab
fullX = X;
partX = X(:,3:4);
```
Train an ECOC model using SVM binary classifiers for each predictor set, and specify the partition definition. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
PCVMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};
```

CVMdl and PCVMdl are ClassificationPartitionedECOC models. They contain the property `Trained`, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

Estimate the test sample edge for each classifier.

```matlab
fullEdge = edge(CMdl,XTest,YTest)
fullEdge = 0.4573
partEdge = edge(PCMdl,XTest(:,3:4),YTest)
partEdge = 0.4839
```

PCMdl achieves an edge that resembles the more complex model CMdl.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the
margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \(m_{kj} \) is element \((k,j)\) of the coding design matrix \(M \) (that is, the code corresponding to class \(k \) of binary learner \(j \)).
- \(s_j \) is the score of binary learner \(j \) for an observation.
- \(g \) is the binary loss function.
- \(\hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}.
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \).
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)]/\left[2\log(2)\right]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_js_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0,1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_js_j)]/\left[2\log(2)\right]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

Tip

To compare margins or edges of several classifiers, use template objects to specify a common score transform function among the classifiers when you train them using fitcecoc.

Algorithms

If you trained Mdl specifying to standardize the predictor data, then the software standardizes the columns of X using the corresponding means and standard deviations that the software stored in $\text{Mdl.BinaryLearner}\{j\}.\text{Mu}$ and $\text{Mdl.BinaryLearner}\{j\}.\text{Sigma}$ for learner j.

32-1417
References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `Options`, `statset('UseParallel',true)`

For more information, see the 'Options' name-value pair argument.
See Also
ClassificationECOC | ClassificationKernel | ClassificationLinear | CompactClassificationECOC | fitcecoc | margin | predict | resubEdge

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
edge

Classification edge

Syntax

\[
E = \text{edge}(\text{ens}, \text{tbl}, \text{ResponseVarName}) \\
E = \text{edge}(\text{ens}, \text{tbl}, Y) \\
E = \text{edge}(\text{ens}, X, Y) \\
E = \text{edge}(\text{___}, \text{Name}, \text{Value})
\]

Description

\(E = \text{edge}(\text{ens}, \text{tbl}, \text{ResponseVarName})\) returns the classification edge for \(\text{ens}\) with data \(\text{tbl}\) and classification \(\text{tbl}.\text{ResponseVarName}\).

\(E = \text{edge}(\text{ens}, \text{tbl}, Y)\) returns the classification edge for \(\text{ens}\) with data \(\text{tbl}\) and classification \(Y\).

\(E = \text{edge}(\text{ens}, X, Y)\) returns the classification edge for \(\text{ens}\) with data \(X\) and classification \(Y\).

\(E = \text{edge}(\text{___}, \text{Name}, \text{Value})\) computes the edge with additional options specified by one or more \text{Name,Value} pair arguments, using any of the previous syntaxes.

Input Arguments

- **ens**

 A classification ensemble constructed with \texttt{fitensemble}, or a compact classification ensemble constructed with \texttt{compact}.

- **tbl**

 Sample data, specified as a table. Each row of \(\text{tbl}\) corresponds to one observation, and each column corresponds to one predictor variable. \(\text{tbl}\) must contain all of the predictors.
used to train the model. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable Y is stored as `tbl.Y`, then specify it as 'Y'. Otherwise, the software treats all columns of `tbl`, including Y, as predictors when training the model.

X

A matrix where each row represents an observation, and each column represents a predictor. The number of columns in `X` must equal the number of predictors in `ens`.

If you trained `ens` using sample data contained in a matrix, then the input data for this method must also be in a matrix.

Y

Class labels of observations in `tbl` or `X`. Y should be of the same type as the classification used to train `ens`, and its number of elements should equal the number of rows of `tbl` or `X`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

learners

Indices of weak learners in the ensemble ranging from 1 to `ens.NumTrained`. edge uses only these learners for calculating loss.

Default: 1:NumTrained
mode

Meaning of the output E:

- 'ensemble' — E is a scalar value, the edge for the entire ensemble.
- 'individual' — E is a vector with one element per trained learner.
- 'cumulative' — E is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Default: 'ensemble'

UseObsForLearner

A logical matrix of size N-by-T, where:

- N is the number of rows of X.
- T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

weights

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge computes weighted classification edge.

Default: ones(size(X,1),1)

Output Arguments

E

The classification edge, a vector or scalar depending on the setting of the mode name-value pair. Classification edge is weighted average classification margin.
Examples

Find Classification Edge of Training Data

Find the classification edge for some of the data used to train a boosted ensemble classifier.

Load the ionosphere data set.
load ionosphere

Train an ensemble of 100 boosted classification trees using AdaBoostM1.

\[
t = \text{templateTree}('\text{MaxNumSplits}',1); \quad \% \text{Weak learner template tree object}
\]
\[
\text{ens} = \text{fitcensemble}(X,Y,'\text{Method}', '\text{AdaBoostM1}','\text{Learners}',t);
\]

Find the classification edge for the last few rows.

\[
E = \text{edge}(\text{ens},X(\text{end-10:end},:),Y(\text{end-10:end}))
\]

\[
E = 8.3310
\]

Definitions

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix \(X\).

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
• Bag scores range from 0 to 1.

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in `ens.Prior`. If you supply weights in the `weights` name-value pair, those weights are used instead of class probabilities.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

e|margin
edge

Classification edge for naive Bayes classifiers

Syntax

\[e = \text{edge}(Mdl, tbl, \text{ResponseVarName}) \]
\[e = \text{edge}(Mdl, tbl, Y) \]
\[e = \text{edge}(Mdl, X, Y) \]
\[e = \text{edge}(_, \text{Name}, \text{Value}) \]

Description

\[e = \text{edge}(Mdl, tbl, \text{ResponseVarName}) \] returns the classification edge on page 32-1431 (e) for the naive Bayes classifier \(Mdl \) using the predictor data in table \(tbl \) and the class labels in \(tbl.\text{ResponseVarName} \).

\[e = \text{edge}(Mdl, tbl, Y) \] returns the classification edge (e) for the naive Bayes classifier \(Mdl \) using predictor data in table \(tbl \) and the class labels in vector \(Y \).

\[e = \text{edge}(Mdl, X, Y) \] returns the classification edge on page 32-1431 (e) for the naive Bayes classifier \(Mdl \) using predictor data \(X \) and class labels \(Y \).

\[e = \text{edge}(_, \text{Name}, \text{Value}) \] computes the classification edge with additional options specified by one or more \(\text{Name}, \text{Value} \) pair arguments, using any of the previous syntaxes.

Input Arguments

\(Mdl \) — Naive Bayes classifier

ClassificationNaiveBayes model | CompactClassificationNaiveBayes model
Naive Bayes classifier, specified as a `ClassificationNaiveBayes` model or `CompactClassificationNaiveBayes` model returned by `fitcnb` or `compact`, respectively.

tbl — Sample data

`table`

Sample data, specified as a table. Each row of `tbl` corresponds to one observation, and each column corresponds to one predictor variable. Optionally, `tbl` can contain additional columns for the response variable and observation weights. `tbl` must contain all the predictors used to train `Mdl`. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained `Mdl` using sample data contained in a `table`, then the input data for this method must also be in a table.

Data Types: `table`

ResponseVarName — Response variable name

`name of a variable in tbl`

Response variable name, specified as the name of a variable in `tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `y` is stored as `tbl.y`, then specify it as `'y'`. Otherwise, the software treats all columns of `tbl`, including `y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: `char` | `string`

X — Predictor data

`numeric matrix`

Predictor data, specified as a numeric matrix.

Each row of `X` corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables making up the columns of `X` should be the same as the variables that trained `Mdl`.

The length of `Y` and the number of rows of `X` must be equal.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y and the number of rows of tbl or X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in tbl. The software weighs the observations in each row of X or tbl with the corresponding weight in Weights.

If you specify Weights as a vector, then the size of Weights must be equal to the number of rows of X or tbl.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'. Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If you do not specify your own loss function, then the software normalizes Weights to add up to 1.

Data Types: double | char | string
Output Arguments

e — Classification edge
scalar

Classification edge on page 32-1431, returned as a scalar. If you supply Weights, then e is the weighted classification edge.

Examples

Estimate the Test Sample Edge of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1); % For reproducibility

Train a naive Bayes classifier. Specify a 30% holdout sample for testing. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

CVMdl = fitcnb(X,Y,'Holdout',0.30,...
 'ClassNames',{'setosa','versicolor','virginica'});
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.

Estimate the test sample edge.

e = edge(CMdl,XTest,YTest)
e = 0.8244

The estimated test sample margin average is approximately 0.82. This indicates that, on average, the test sample difference between the estimated posterior probability for the
predicted class and the posterior probability for the class with the next lowest posterior probability is approximately 0.82. This indicates that the classifier labels with high confidence.

Estimate the Test Sample Weighted Margin Mean of Naive Bayes Classifiers

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;  % Predictors
Y = species;  % Response
rng(1);
```

Suppose that the setosa iris measurements are lower quality because they were measured with an older technology. One way to incorporate this is to weigh the setosa iris measurements less than the other observations.

Define a weight vector that weighs the better quality observations twice the other observations.

```matlab
n = size(X,1);
idx = strcmp(Y,'setosa');
weights = ones(size(X,1),1);
weights(idx) = 0.5;
```

Train a naive Bayes classifier. Specify the weighting scheme and a 30% holdout sample for testing. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
CVMdl = fitcnb(X,Y,'Weights',weights,'Holdout',0.30,...
    'ClassNames',{'setosa','versicolor','virginica'});
CMdl = CVMdl.Trained{1};  % Extract trained, compact classifier
testInds = test(CVMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds);
wTest = weights(testInds);
```

CVMdl is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.

Estimate the test sample weighted edge using the weighting scheme.
e = edge(CMdl, XTest, YTest, 'Weights', wTest)

\[e = 0.7893 \]

The test sample weighted average margin is approximately 0.79. This indicates that, on average, the test sample difference between the estimated posterior probability for the predicted class and the posterior probability for the class with the next lowest posterior probability is approximately 0.79. This indicates that the classifier labels with high confidence.

Select Naive Bayes Classifier Features by Comparing Test Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare test sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;    % Predictors
Y = species; % Response
rng(1);
```

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

```matlab
Partition = cvpartition(Y, 'Holdout', 0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

Partition defines the data set partition.

Define these two data sets:

- `fullX` contains all predictors.
- `partX` contains the last two predictors.

```matlab
fullX = X;
partX = X(:,3:4);
```

Train naive Bayes classifiers for each predictor set. Specify the partition definition.
FCVMdl = fitcnb(fullX,Y,'CVPartition',Partition);
PCVMdl = fitcnb(partX,Y,'CVPartition',Partition);
FCMdl = FCVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

FCVMdl and PCVMdl are ClassificationPartitionedModel classifiers. They contain the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.

Estimate the test sample edge for each classifier.

fullEdge = edge(FCMdl,XTest,YTest)
fullEdge = 0.8244

partEdge = edge(PCMdl,XTest(:,3:4),YTest)
partEdge = 0.8420

The test-sample edges of the classifiers are nearly the same. However, the model trained using two predictors (PCMdl) is less complex.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their respective class. The software uses the normalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score for the true class and maximal score for the false classes. Provided that they are on the same
scale, margins serve as a classification confidence measure, i.e., among multiple classifiers, those that yield larger margins are better.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x_1,\ldots,x_P) is

$$
\hat{P}(Y = k \mid x_1,\ldots,x_P) = \frac{P(X_1,\ldots,X_P \mid y = k) \pi(Y = k)}{P(X_1,\ldots,X_P)},
$$

where:

- $P(X_1,\ldots,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class k. Mdl.DistributionNames stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. Mdl.Prior stores the prior distribution.
- $P(X_1,\ldots,X_P)$ is the joint density of the predictors. The classes are discrete, so

$$
P(X_1,\ldots,X_P) = \sum_{k=1}^{K} P(X_1,\ldots,X_P \mid y = k) \pi(Y = k).
$$

Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

Score

The naive Bayes score is the class posterior probability given the observation.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | loss | margin | predict | resubEdge | resubLoss

Topics
“Naive Bayes Classification” on page 21-2
edge

Package: classreg.learning.classif

Find classification edge for support vector machine (SVM) classifier

Syntax

\[e = \text{edge}(\text{SVMModel}, \text{TBL}, \text{ResponseVarName}) \]
\[e = \text{edge}(\text{SVMModel}, \text{TBL}, \text{Y}) \]
\[e = \text{edge}(\text{SVMModel}, \text{X}, \text{Y}) \]
\[e = \text{edge}(_, _,'\text{Weights}', \text{weights}) \]

Description

\[e = \text{edge}(\text{SVMModel}, \text{TBL}, \text{ResponseVarName}) \] returns the classification edge on page 32-1440 (e) for the support vector machine (SVM) classifier \(\text{SVMModel} \) using the predictor data in table \(\text{TBL} \) and the class labels in \(\text{TBL.ResponseVarName} \).

The classification edge (e) is a scalar value that represents the weighted mean of the classification margins on page 32-1440.

\[e = \text{edge}(\text{SVMModel}, \text{TBL}, \text{Y}) \] returns the classification edge on page 32-1440 (e) for the SVM classifier \(\text{SVMModel} \) using the predictor data in table \(\text{TBL} \) and the class labels in \(\text{Y} \).

\[e = \text{edge}(\text{SVMModel}, \text{X}, \text{Y}) \] returns the classification edge for \(\text{SVMModel} \) using the predictor data in matrix \(\text{X} \) and the class labels in \(\text{Y} \).

\[e = \text{edge}(_, _, '\text{Weights}', \text{weights}) \] computes the classification edge for the observation weights supplied in \(\text{weights} \) using any of the input arguments in the previous syntaxes.
Examples

Estimate Test Sample Edge of SVM Classifiers

Load the ionosphere data set.

```matlab
load ionosphere
rng(1); % For reproducibility
```

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

```matlab
CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier
testInds = test(CVSVMModel.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample edge.

```matlab
e = edge(CompactSVMMModel,XTest,YTest)
e = 5.0765
```

The margin average of the test sample is approximately 5.

Estimate Test Sample Weighted Margin Mean of SVM Classifiers

Suppose that the observations in a data set are measured sequentially, and that the last 150 observations have better quality due to a technology upgrade. Incorporate this advancement by weighing the better quality observations more than the other observations.

Load the ionosphere data set.
Define a weight vector that weighs the better quality observations two times the other observations.

\[
\text{n} = \text{size}(ext{X},1);
\text{weights} = [\text{ones}(\text{n}-150,1);2*\text{ones}(150,1)];
\]

Train an SVM classifier. Specify the weighting scheme and a 15% holdout sample for testing. Also, standardize the data and specify that 'g' is the positive class.

\[
\text{CVSVMModel} = \text{fitcsvm}(ext{X},\text{Y},'\text{Weights}',\text{weights},'\text{Holdout}',0.15,...
\text{',ClassNames'},'\text{b}','\text{g}','\text{Standardize}',\text{true});
\]

\[
\text{CompactSVMModel} = \text{CVSVMModel}.\text{Trained}{1};
\text{testInds} = \text{test}(\text{CVSVMModel}.\text{Partition}); \quad \% \text{Extract the test indices}
\text{XTest} = \text{X}(\text{testInds},:);
\text{YTest} = \text{Y}(\text{testInds},:);
\text{wTest} = \text{weights}(\text{testInds},:);
\]

The weighted average margin of the test sample is approximately 5.

Select SVM Classifier Features by Comparing Test Sample Edges

Perform feature selection by comparing test sample edges from multiple models. Based solely on this comparison, the classifier with the highest edge is the best classifier.

Load the ionosphere data set.

```
load ionosphere
rng(1); % For reproducibility
```
Partition the data set into training and test sets. Specify a 15% holdout sample for testing.

```matlab
Partition = cvpartition(Y,'Holdout',0.15);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

`Partition` defines the data set partition.

Define these two data sets:

- `fullX` contains all predictors (except the removed column of 0s).
- `partX` contains the last 20 predictors.

```matlab
fullX = X;
partX = X(:,end-20:end);
```

Train SVM classifiers for each predictor set. Specify the partition definition.

```matlab
FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);
PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);
FCSVMModel = FullCVSVMModel.Trained{1};
PCSVMModel = PartCVSVMModel.Trained{1};
```

`FullCVSVMModel` and `PartCVSVMModel` are `ClassificationPartitionedModel` classifiers. They contain the property `Trained`, which is a 1-by-1 cell array holding a `CompactClassificationSVM` classifier that the software trained using the training set.

Estimate the test sample edge for each classifier.

```matlab
fullEdge = edge(FCSVMModel,XTest,YTest)
fullEdge = 2.8319
```

```matlab
partEdge = edge(PCSVMModel,XTest(:,end-20:end),YTest)
partEdge = 1.5540
```

The edge for the classifier trained on the complete data set is greater, suggesting that the classifier trained with all the predictors is better.
Input Arguments

SVMMModel — SVM classification model

ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

TBL — Sample data

table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional columns for the response variable and observation weights. TBL must contain all of the predictors used to train SVMMModel. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train SVMMModel, then you do not need to specify ResponseVarName or Y.

If you trained SVMMModel using sample data contained in a table, then the input data for edge must also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMMModel, then the software standardizes the columns of the predictor data using the corresponding means in SVMMModel.Mu and the standard deviations in SVMMModel.Sigma.

Data Types: table

X — Predictor data

numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables in the columns of X must be the same as the variables that trained the SVMMModel classifier.

The length of Y and the number of rows in X must be equal.
If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the columns of X using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: double | single

ResponseVarName — Response variable name

name of variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For example, if the response variable is stored as TBL.Response, then specify ResponseVarName as 'Response'. Otherwise, the software treats all columns of TBL, including TBL.Response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

Y — Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in TBL or the number of rows in X.

weights — Observation weights

ones(size(X,1),1) (default) | numeric vector | name of variable in TBL

Observation weights, specified as a numeric vector or the name of a variable in TBL.

If you specify weights as a numeric vector, then the size of weights must be equal to the number of rows in X or TBL.
If you specify `weights` as the name of a variable in `TBL`, you must do so as a character vector or string scalar. For example, if the weights are stored as `TBL.W`, then specify `weights` as 'W'. Otherwise, the software treats all columns of `TBL`, including `TBL.W`, as predictors.

If you supply weights, `edge` computes the weighted classification edge on page 32-1440. The software weights the observations in each row of `X` or `TBL` with the corresponding weight in `weights`.

Example: 'Weights','W'

Data Types: `single` | `double` | `char` | `string`

Definitions

Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[m = 2yf(x). \]

\(x \) is an observation. If the true label of \(x \) is the positive class, then \(y \) is 1, and -1 otherwise. \(f(x) \) is the positive-class classification score for the observation \(x \). The classification margin is commonly defined as \(m = yf(x) \).
If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

The SVM classification score for classifying observation \(x \) is the signed distance from \(x \) to the decision boundary ranging from \(-\infty\) to \(+\infty\). A positive score for a class indicates that \(x \) is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score \(f(x) \) is the trained SVM classification function. \(f(x) \) is also the numerical, predicted response for \(x \), or the score for predicting \(x \) into the positive class.

\[
f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b,
\]

where \((\alpha_1, ..., \alpha_n, b) \) are the estimated SVM parameters, \(G(x_j, x) \) is the dot product in the predictor space between \(x \) and the support vectors, and the sum includes the training set observations. The negative class classification score for \(x \), or the score for predicting \(x \) into the negative class, is \(-f(x)\).

If \(G(x_j, x) = x_j'x \) (the linear kernel), then the score function reduces to

\[
f(x) = (x/s)'\beta + b.
\]

\(s \) is the kernel scale and \(\beta \) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

Algorithms

For binary classification, the software defines the margin for observation \(j \), \(m_j \), as

\[
m_j = 2y_j f(x_j),
\]
where \(y_j \in \{-1,1\} \), and \(f(x_j) \) is the predicted score of observation \(j \) for the positive class. However, \(m_j = y_j f(x_j) \) is commonly used to define the margin.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationSVM | CompactClassificationSVM | fitcsvm | kfoldedge | loss | margin | predict | resubEdge

Introduced in R2014a
edge

Classification edge

Syntax

E = edge(tree,TBL,ResponseVarName)
E = edge(tree,X,Y)
E = edge(___,Name,Value)

Description

E = edge(tree,TBL,ResponseVarName) returns the classification edge for tree with data TBL and classification TBL.ResponseVarName.

E = edge(tree,X,Y) returns the classification edge for tree with data X and classification Y.

E = edge(___,Name,Value) computes the edge with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify observation weights.

Input Arguments

tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional
columns for the response variable and observation weights. TBL must contain all the predictors used to train tree. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train tree, then you do not need to specify ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this method must also be in a table.

Data Types: table

X — Data to classify
numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation, and each column represents one predictor. X must have the same number of columns as the data used to train tree. X must have the same number of rows as the number of elements in Y.

Data Types: single | double

ResponseVarName — Response variable name
name of a variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For example, if the response variable is stored as TBL.Response, then specify it as 'Response'. Otherwise, the software treats all columns of TBL, including TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors
Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Y must be of the same type as the classification used to train tree, and its number of elements must equal the number of rows of X.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Weights — Observation weights
ones(size(X,1),1) (default) | name of a variable in TBL | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in TBL.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of rows in X or TBL.

If you specify Weights as the name of a variable in TBL, you must do so as a character vector or string scalar. For example, if the weights are stored as TBL.W, then specify it as 'W'. Otherwise, the software treats all columns of TBL, including TBL.W, as predictors.

If you supply weights, edge computes the weighted classification edge on page 32-1440. The software weights the observations in each row of X or TBL with the corresponding weight in Weights.

Data Types: single | double | char | string

Output Arguments

E — Classification edge
scalar value

Classification edge, returned as a scalar representing the weighted average value of the margin.
Examples

Compute the classification margin and edge for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

```matlab
load fisheriris
X = meas(:,1:2);
tree = fitctree(X,species);
E = edge(tree,X,species)
E =
    0.6299

M = margin(tree,X,species);
M(end-10:end)
ans =
   0.1111
   0.1111
   0.1111
  -0.2857
   0.6364
   0.6364
   0.1111
   0.7500
   1.0000
   0.6364
   0.2000

The classification tree trained on all the data is better.

tree = fitctree(meas,species);
E = edge(tree,meas,species)
E =
    0.9384

M = margin(tree,meas,species);
M(end-10:end)
ans =
   0.9565
   0.9565
   0.9565
   0.9565
   0.9565
```
Definitions

Margin
The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as the matrix X.

Score (tree)
For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when \(X < \theta_{.15} \) or \(X > \theta_{.95} \), and X is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```
Prune the tree:

```matlab
treel = prune(tree,'Level',1);
view(treel,'Mode','Graph')
```
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
```
Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (0.95,1) instead of the expected 5 observations.

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in `tree.Prior`. If you supply weights in the `weights` name-value pair, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

`fitctree` | `loss` | `margin` | `predict`
end

Class: dataset

Last index in indexing expression for dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

end(A,k,n)

Description

end(A,k,n) is called for indexing expressions involving the dataset A when end is part of the k-th index out of n indices. For example, the expression A(end-1,:) calls A's end method with end(A,1,2).

See Also

size
end

Class: qrandset

Last index in indexing expression for point set

Syntax

end(p,k,n)

Description

dend(p,k,n) is called for indexing expressions involving the point set p when end is part of the k-th index out of n indices. For example, the expression p(end-1,:) calls p's end method with end(p,1,2).

See Also

qrandset
epsilon

Class: RepeatedMeasuresModel

Epsilon adjustment for repeated measures anova

Syntax

```matlab
tbl = epsilon(rm)
tbl = epsilon(rm,C)
```

Description

`tbl = epsilon(rm)` returns the epsilon adjustment factors for repeated measures model `rm`.

`tbl = epsilon(rm,C)` returns the epsilon adjustment factors for the test based on the contrast matrix `C`.

Input Arguments

- **`rm` — Repeated measures model**
 RepeatedMeasuresModel object

 Repeated measures model, returned as a `RepeatedMeasuresModel` object.

 For properties and methods of this object, see `RepeatedMeasuresModel`.

- **`C` — Contrasts**
 matrix

 Contrasts, specified as a matrix. The default value of `C` is the Q factor in a QR decomposition of the matrix M, where M is defined so that Y*M is the difference between all successive pairs of columns of the repeated measures matrix Y.

 Data Types: `single` | `double`
Output Arguments

tbl — Epsilon adjustment factors
table

epsilon adjustment factors for the repeated measures model rm, returned as a table. tbl
contains four different adjustments for epsilon.

<table>
<thead>
<tr>
<th>Correction</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected</td>
<td>No adjustments, epsilon = 1</td>
</tr>
<tr>
<td>Greenhouse-Geiser</td>
<td>Greenhouse-Geiser approximation</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>Huynh-Feldt approximation</td>
</tr>
<tr>
<td>Lower bound</td>
<td>Lower bound on the p-value</td>
</tr>
</tbody>
</table>

For details, see “Compound Symmetry Assumption and Epsilon Corrections” on page 9-80.

Data Types: table

Examples

Epsilon Corrections for Repeated Measures ANOVA

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...'
     'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4],'VarNames',{'Measurements'});
```

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.
rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl=3×8 table

<table>
<thead>
<tr>
<th>SumSq</th>
<th>DF</th>
<th>MeanSq</th>
<th>F</th>
<th>pValue</th>
<th>pValueGG</th>
<th>pValueHF</th>
<th>pValueLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept):Measurements</td>
<td>1656.3</td>
<td>3</td>
<td>552.09</td>
<td>6873.3</td>
<td>0</td>
<td>9.4491e-279</td>
<td>2.9213e-283</td>
</tr>
<tr>
<td>species:Measurements</td>
<td>282.47</td>
<td>6</td>
<td>47.078</td>
<td>586.1</td>
<td>1.4271e-206</td>
<td>4.9313e-156</td>
<td>1.5406e-158</td>
</tr>
<tr>
<td>Error(Measurements)</td>
<td>35.423</td>
<td>441</td>
<td>0.080324</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`ranova` computes the last three p-values using Greenhouse-Geisser, Huynh-Feldt, and lower bound corrections, respectively.

Display the epsilon correction values.

epsilon(rm)

ans=1×4 table

<table>
<thead>
<tr>
<th>Uncorrected</th>
<th>GreenhouseGeisser</th>
<th>HuynhFeldt</th>
<th>LowerBound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75179</td>
<td>0.76409</td>
<td>0.33333</td>
</tr>
</tbody>
</table>

You can check the compound symmetry (sphericity) assumption using the `mauchly` method.

Tips

- The `mauchly` method tests for sphericity.
- The `ranova` method contains p-values based on each epsilon value.
Algorithms

ranova computes the regular p-value (in the pValue column of the rmanova table) using the F-statistic cumulative distribution function:

$$p\text{-value} = 1 - \text{fcdf}(F, v_1, v_2).$$

When the compound symmetry assumption is not satisfied, ranova uses a correction factor epsilon, ε, to compute the corrected p-values as follows:

$$p\text{-value_corrected} = 1 - \text{fcdf}(F, \varepsilon v_1, \varepsilon v_2).$$

The epsilon method returns the epsilon adjustment values.

See Also
fitrm | mauchly | ranova

Topics
“Compound Symmetry Assumption and Epsilon Corrections” on page 9-80
“Mauchly’s Test of Sphericity” on page 9-82

evcdf

Extreme value cumulative distribution function

Syntax

```
p = evcdf(x,mu,sigma)
[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha)
[p,plo,pup] = evcdf(___,'upper')
```

Description

`p = evcdf(x,mu,sigma)` returns the cumulative distribution function (cdf) for the type 1 extreme value distribution, with location parameter `mu` and scale parameter `sigma`, at each of the values in `x`. `x`, `mu`, and `sigma` can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for `mu` and `sigma` are 0 and 1, respectively.

`[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha)` returns confidence bounds for `p` when the input parameters `mu` and `sigma` are estimates. `pcov` is a 2-by-2 covariance matrix of the estimated parameters. `alpha` has a default value of 0.05, and specifies $100(1 - \alpha)\%$ confidence bounds. `plo` and `pup` are arrays of the same size as `p`, containing the lower and upper confidence bounds.

`[p,plo,pup] = evcdf(___,'upper')` returns the complement of the type 1 extreme value distribution cdf at each value in `x`, using an algorithm that more accurately computes the extreme upper tail probabilities. You can use the 'upper' argument with any of the previous syntaxes.

The function `evcdf` computes confidence bounds for `P` using a normal approximation to the distribution of the estimate

$$
\frac{X - \hat{\mu}}{\hat{\sigma}}
$$
and then transforming those bounds to the scale of the output \(P \). The computed bounds give approximately the desired confidence level when you estimate \(\mu, \sigma, \) and \(\text{pcov} \) from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating \(X \) and subtracting the resulting distribution values from 1. See “Extreme Value Distribution” on page B-36 for more details. If \(x \) has a Weibull distribution, then \(X = \log(x) \) has the type 1 extreme value distribution.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | evfit | evinv | evlike | evpdf | evrnd | evstat

Topics
“Extreme Value Distribution” on page B-36

Introduced before R2006a
evfit
Extreme value parameter estimates

Syntax

parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)

Description

parmhat = evfit(data) returns maximum likelihood estimates of the parameters of
the type 1 extreme value distribution given the data in the vector data. parmhat(1) is
the location parameter, \(\mu \), and parmhat(2) is the scale parameter, \(\sigma \).

[parmhat,parmci] = evfit(data) returns 95% confidence intervals for the
parameter estimates on the \(\mu \) and \(\sigma \) parameters in the 2-by-2 matrix parmci. The first
column of the matrix of the extreme value fit contains the lower and upper confidence
bounds for the parameter \(\mu \), and the second column contains the confidence bounds for
the parameter \(\sigma \).

[parmhat,parmci] = evfit(data,alpha) returns 100(1 - alpha)% confidence
intervals for the parameter estimates, where alpha is a value in the range \([0 1]\)
specifying the width of the confidence intervals. By default, alpha is 0.05, which
corresponds to 95% confidence intervals.

[...] = evfit(data,alpha,censoring) accepts a Boolean vector, censoring, of
the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = evfit(data,alpha,censoring,freq) accepts a frequency vector, freq of
the same size as data. Typically, freq contains integer frequencies for the corresponding
elements in data, but can contain any nonnegative values. Pass in [] for alpha,
censoring, or freq to use their default values.

[...,] = evfit(data, alpha, censoring, freq, options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the function uses
to compute maximum likelihood estimates. You can create options using the function
statset. Enter statset('evfit') to see the names and default values of the
parameters that evfit accepts in the options structure. See the reference page for
statset for more information about these options.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X. See “Extreme Value Distribution” on page B-
36 for more details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also
evcdf | evinv | evlike | evpdf | evrnd | evstat | mle

Topics
“Extreme Value Distribution” on page B-36

Introduced before R2006a
evinv

Extreme value inverse cumulative distribution function

Syntax

X = evinv(P,mu,sigma)
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)

Description

X = evinv(P,mu,sigma) returns the inverse cumulative distribution function (cdf) for a type 1 extreme value distribution with location parameter mu and scale parameter sigma, evaluated at the values in P. P, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for mu and sigma are 0 and 1, respectively.

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence bounds for X when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha is a scalar that specifies 100(1 - alpha)% confidence bounds for the estimated parameters, and has a default value of 0.05. XLO and XUP are arrays of the same size as X containing the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal approximation to the distribution of the estimate

\[\hat{\mu} + \hat{\sigma} q \]

where q is the Pth quantile from an extreme value distribution with parameters \(\mu = 0 \) and \(\sigma = 1 \). The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X. See “Extreme Value Distribution” on page B-36 for more details. If x has a Weibull distribution, then $X = \log(x)$ has the type 1 extreme value distribution.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
evcdf | evfit | evlike | evpdf | evrnd | evstat | icdf

Introduced before R2006a
eq

Class: qrandstream

Test handle equality

Syntax

h1 == h2
tf = eq(h1, h2)

Description

h1 == h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise equality result. If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

tf = eq(h1, h2) stores the result in a logical array of the same dimensions.

See Also
ge | gt | le | lt | ne | qrandstream
error

Class: CompactTreeBagger

Error (misclassification probability or MSE)

Syntax

err = error(B,TBLnew,Ynew)
err = error(B,Xnew,Ynew)
err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
err = error(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description

err = error(B,TBLnew,Ynew) computes the misclassification probability for
classification trees or mean squared error (MSE) for regression trees for each tree, for
the predictors contained in the table TBLnew given true response Ynew. You can omit
Ynew if TBLnew contains the response variable. If you trained B using sample data
contained in a table, then the input data for this method must also be in a table.

err = error(B,Xnew,Ynew) computes the misclassification probability for
classification trees or mean squared error (MSE) for regression trees for each tree, the
for predictors contained in the matrix Xnew given true response Ynew. If you trained B
using sample data contained in a matrix, then the input data for this method must also be
in a matrix.

For classification, Ynew can be a numeric vector, character matrix, string array, cell array
of character vectors, categorical vector, or logical vector. For regression, Y must be a
numeric vector. err is a vector with one error measure for each of the NTrees trees in
the ensemble B.

err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or err =
error(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional
parameter name-value pairs:
'Mode'
Character vector or string scalar indicating how the method computes errors. If set to 'cumulative' (default), error computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees(1), second element gives error from trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.

'Weights'
Vector of observation weights to use for error averaging. By default the weight of every observation is 1. The length of this vector must be equal to the number of rows in X.

'Trees'
Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives error from trees(1), the second element gives error from trees(1:2) etc.

'TreeWeights'
Vector of tree weights. This vector must have the same length as the 'Trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForTree'
Logical matrix of size Nobs-by-NTrees indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

Algorithms

When estimating the ensemble error:

- Using the 'Mode' name-value pair argument, you can specify to return the error any of these three ways:
 - The error for individual trees in the ensemble
• The cumulative error over all trees
• The error for the entire ensemble
• Using the 'Trees' name-value pair argument, you can specify which trees to use in the ensemble error calculations.
• Using the 'UseInstanceForTree' name-value pair argument, you can specify which observations in the input data (X and Y) to use in the ensemble error calculation for each selected tree.
• Using the 'Weights' name-value pair argument, you can attribute each observation with a weight. For the formulae that follow, w_j is the weight of observation j.
• Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a weight.

For regression problems, error estimates the weighted MSE of the ensemble of bagged regression trees for predicting Y given X using selected trees and observations.

1 error predicts responses for selected observations in X using the selected regression trees in the ensemble.

2 The MSE estimate depends on the value of 'Mode'.

• If you specify 'Mode','Individual', then the weighted MSE for tree t is

\[
MSE_t = \frac{1}{n} \sum_{j=1}^{n} w_j (y_j - \hat{y}_{tj})^2.
\]

\(\hat{y}_{tj}\) is the predicted response of observation j from selected regression tree t. error sets any unselected observations within a selected tree to the weighted sample average of the observed, training data responses.

• If you specify 'Mode','Cumulative', then the weighted MSE is a vector of size \(T^*\) containing cumulative, weighted MSEs over the \(T^* \leq T\) selected trees. error follows these steps to estimate \(MSE_t^*\), the cumulative, weighted MSE using the first t selected trees.

a For selected observation \(j, j = 1,...,n\), error estimates \(\hat{y}_{bag,tj}\), the weighted average of the predictions among the first t selected trees (for details, see predict). For this computation, error uses the tree weights.
error estimates the cumulative, weighted MSE through tree \(t \).

\[
\text{MSE}_{t}^{*} = \frac{1}{n} \sum_{j=1}^{n} w_{j} \left(y_{j} - \hat{y}_{\text{bag},tj} \right)^{2}.
\]

error sets observations that are unselected for all selected trees to the weighted sample average of the observed, training data responses.

- If you specify 'Mode', 'Ensemble', then the weighted MSE is the last element of the cumulative, weighted MSE vector.

For classification problems, error estimates the weighted misclassification rate of the ensemble of bagged classification trees for predicting \(Y \) given \(X \) using selected trees and observations.

- If you specify 'Mode', 'Individual', then the weighted misclassification rate for tree \(t \) is

\[
e_{t} = \frac{1}{n} \sum_{j=1}^{n} w_{j} I(y_{j} \neq \hat{y}_{tj}).
\]

\(\hat{y}_{tj} \) is the predicted class for selected observation \(j \) using from selected classification tree \(t \). error sets any unselected observations within a selected tree to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular.

- If you specify 'Mode', 'Cumulative' then the weighted misclassification rate is a vector of size \(T \) containing cumulative, weighted misclassification rates over the \(T \leq T^{*} \) selected trees. error follows these steps to estimate \(e_{t}^{*} \), the cumulative, weighted misclassification rate using the first \(t \) selected trees.

1 For selected observation \(j, j = 1, \ldots, n \), error estimates \(\hat{y}_{\text{bag},tj} \), the weighted, most popular class among the first \(t \) selected trees (for details, see predict). For this computation, error uses the tree weights.
error estimates the cumulative, weighted misclassification rate through tree t.

$$e_t^* = \frac{1}{n} \sum_{j=1}^{n} w_j I(y_j \neq \hat{y}_{\text{bag},tj}).$$

error sets any observations that are unselected for all selected trees to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular.

- If you specify 'Mode','Ensemble', then the weighted misclassification rate is the last element of the cumulative, weighted misclassification rate vector.

See Also
CompactTreeBagger | predict

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
error

Class: TreeBagger

Error (misclassification probability or MSE)

Syntax

```matlab
err = error(B,TBLnew,Ynew)
err = error(B,Xnew,Ynew)
err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
err = error(B,Xnew,Ynew,'param1',val1,'param2',val2,...)
```

Description

`err = error(B,TBLnew,Ynew)` computes the misclassification probability for classification trees or mean squared error (MSE) for regression trees for each tree, for the predictors contained in the table `TBLnew` given true response `Ynew`. You can omit `Ynew` if `TBLnew` contains the response variable. If you trained `B` using sample data contained in a table, then the input data for this method must also be in a table.

`err = error(B,Xnew,Ynew)` computes the misclassification probability for classification trees or mean squared error (MSE) for regression trees for each tree, the for predictors contained in the matrix `Xnew` given true response `Ynew`. If you trained `B` using sample data contained in a matrix, then the input data for this method must also be in a matrix.

For classification, `Ynew` can be a numeric vector, character matrix, string array, cell array of character vectors, categorical vector or logical vector. For regression, `Y` must be a numeric vector. `err` is a vector with one error measure for each of the `NTrees` trees in the ensemble `B`.

`err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)` or `err = error(B,Xnew,Ynew,'param1',val1,'param2',val2,...)` specifies optional parameter name-value pairs:
'Mode' | Character vector or string scalar indicating how the method computes errors. If set to 'cumulative' (default), error computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees(1), second element gives error from trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.

'Weights' | Vector of observation weights to use for error averaging. By default the weight of every observation is 1. The length of this vector must be equal to the number of rows in X.

'Trees' | Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives error from trees(1), the second element gives error from trees(1:2) etc.

'TreeWeights' | Vector of tree weights. This vector must have the same length as the 'Trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForTree' | Logical matrix of size Nobs-by-NTrees indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

Algorithms

When estimating the ensemble error:

- Using the 'Mode' name-value pair argument, you can specify to return the error any of these three ways:
 - The error for individual trees in the ensemble
• The cumulative error over all trees
• The error for the entire ensemble
• Using the 'Trees' name-value pair argument, you can specify which trees to use in the ensemble error calculations.
• Using the 'UseInstanceForTree' name-value pair argument, you can specify which observations in the input data (X and Y) to use in the ensemble error calculation for each selected tree.
• Using the 'Weights' name-value pair argument, you can attribute each observation with a weight. For the formulae that follow, \(w_j \) is the weight of observation \(j \).
• Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a weight.

For regression problems, \(\text{error} \) estimates the weighted MSE of the ensemble of bagged regression trees for predicting \(Y \) given \(X \) using selected trees and observations.

1 \(\text{error} \) predicts responses for selected observations in \(X \) using the selected regression trees in the ensemble.
2 The MSE estimate depends on the value of 'Mode'.
 • If you specify 'Mode','Individual', then the weighted MSE for tree \(t \) is

\[
MSE_t = \frac{1}{n} \sum_{j=1}^{n} w_j (y_j - \hat{y}_{tj})^2.
\]

\(\hat{y}_{tj} \) is the predicted response of observation \(j \) from selected regression tree \(t \). \(\text{error} \) sets any unselected observations within a selected tree to the weighted sample average of the observed, training data responses.

• If you specify 'Mode','Cumulative', then the weighted MSE is a vector of size \(T^* \) containing cumulative, weighted MSEs over the \(T^* \leq T \) selected trees. \(\text{error} \) follows these steps to estimate \(MSE_t^* \), the cumulative, weighted MSE using the first \(t \) selected trees.

\[a \]
 For selected observation \(j, j = 1,...,n, \text{error} \) estimates \(\hat{y}_{\text{bag}, tj} \), the weighted average of the predictions among the first \(t \) selected trees (for details, see predict). For this computation, \(\text{error} \) uses the tree weights.
error estimates the cumulative, weighted MSE through tree t.

$$\text{MSE}_t^* = \frac{1}{n} \sum_{j=1}^{n} w_j \left(y_j - \hat{y}_{\text{bag},tj} \right)^2.$$

error sets observations that are unselected for all selected trees to the weighted sample average of the observed, training data responses.

- If you specify 'Mode','Ensemble', then the weighted MSE is the last element of the cumulative, weighted MSE vector.

For classification problems, error estimates the weighted misclassification rate of the ensemble of bagged classification trees for predicting Y given X using selected trees and observations.

- If you specify 'Mode','Individual', then the weighted misclassification rate for tree t is

$$e_t = \frac{1}{n} \sum_{j=1}^{n} w_j I(y_j \neq \hat{y}_{tj}).$$

\hat{y}_{tj} is the predicted class for selected observation j using from selected classification tree t. error sets any unselected observations within a selected tree to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular.

- If you specify 'Mode','Cumulative' then the weighted misclassification rate is a vector of size T^* containing cumulative, weighted misclassification rates over the $T^* \leq T$ selected trees. error follows these steps to estimate e_t^*, the cumulative, weighted misclassification rate using the first t selected trees.

For selected observation j, $j = 1,...,n$, error estimates $\hat{y}_{\text{bag},tj}$, the weighted, most popular class among the first t selected trees (for details, see predict). For this computation, error uses the tree weights.
error estimates the cumulative, weighted misclassification rate through tree \(t \).

\[
e_t^* = \frac{1}{n} \sum_{j=1}^{n} w_j I(y_j \neq \hat{y}_{\text{bag},tj}).
\]

error sets any observations that are unselected for all selected trees to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular.

- If you specify 'Mode', 'Ensemble', then the weighted misclassification rate is the last element of the cumulative, weighted misclassification rate vector.

See Also
TreeBagger | compact | error | oobError | oobPredict | predict | quantileError

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
eval

Class: classregtree

(Removed) Predicted responses

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

\[
yfit = \text{eval}(t,X)
\]

\[
yfit = \text{eval}(t,X,s)
\]

\[
[yfit,nodes] = \text{eval}(...)
\]

\[
[yfit,nodes,cnums] = \text{eval}(...)
\]

\[
[...] = t(X)
\]

\[
[...] = t(X,s)
\]

Description

\[
yfit = \text{eval}(t,X)\] takes a classification or regression tree \(t\) and a matrix \(X\) of predictors, and produces a vector \(yfit\) of predicted response values. For a regression tree, \(yfit(i)\) is the fitted response value for a point having the predictor values \(X(i,:)\). For a classification tree, \(yfit(i)\) is the class into which the tree assigns the point with data \(X(i,:}\).

\[
yfit = \text{eval}(t,X,s)\] takes an additional vector \(s\) of pruning levels, with 0 representing the full, unpruned tree. \(t\) must include a pruning sequence as created by classregtree or by prune. If \(s\) has \(k\) elements and \(X\) has \(n\) rows, the output \(yfit\) is an \(n\)-by-\(k\) matrix, with the \(j\)th column containing the fitted values produced by the \(s(j)\) subtree. \(s\) must be sorted in ascending order.

To compute fitted values for a tree that is not part of the optimal pruning sequence, first use prune to prune the tree.
[yfit, nodes] = eval(...) also returns a vector nodes the same size as yfit containing the node number assigned to each row of X. Use view to display the node numbers for any node you select.

[yfit, nodes, cnums] = eval(...) is valid only for classification trees. It returns a vector cnum containing the predicted class numbers.

NaN values in X are treated as missing. If eval encounters a missing value when it attempts to evaluate the split rule at a branch node, it cannot determine whether to proceed to the left or right child node. Instead, it sets the corresponding fitted value equal to the fitted value assigned to the branch node.

[...] = t(X) or [...] = t(X,s) also invoke eval.

References

See Also

classregtree | prune | test | view
evalclusters

Evaluate clustering solutions

Syntax

`eva = evalclusters(x,clust,criterion)`
`eva = evalclusters(x,clust,criterion,Name,Value)`

Description

`eva = evalclusters(x,clust,criterion)` creates a clustering evaluation object containing data used to evaluate the optimal number of data clusters.

`eva = evalclusters(x,clust,criterion,Name,Value)` creates a clustering evaluation object using additional options specified by one or more name-value pair arguments.

Examples

Evaluate the Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering evaluation criterion.

Load the sample data.

```matlab
load fisheriris;
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster the data using `kmeans`.
rng('default'); % For reproducibility
eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6])

eva =
 CalinskiHarabaszEvaluation with properties:
 NumObservations: 150
 InspectedK: [1 2 3 4 5 6]
 CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of clusters is three.

Evaluate a Matrix of Clustering Solutions

Use an input matrix of proposed clustering solutions to evaluate the optimal number of clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Use kmeans to create an input matrix of proposed clustering solutions for the sepal length measurements, using 1, 2, 3, 4, 5, and 6 clusters.

clust = zeros(size(meas,1),6);
for i=1:6
 clust(:,i) = kmeans(meas,i,'emptyaction','singleton',
 'replicate',5);
end

Each row of clust corresponds to one sepal length measurement. Each of the six columns corresponds to a clustering solution containing 1 to 6 clusters.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion.

eva = evalclusters(meas,clust,'CalinskiHarabasz')
eva =
 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150
 InspectedK: [1 2 3 4 5 6]
 CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of clusters is three.

Specify Clustering Algorithm with a Function Handle

Use a function handle to specify the clustering algorithm, then evaluate the optimal number of clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Use a function handle to specify the clustering algorithm.

myfunc = @(X,K)(kmeans(X, K, 'emptyaction','singleton','
 'replicate',5));

Evaluate the optimal number of clusters for the sepal length data using the Calinski-Harabasz criterion.

eva = evalclusters(meas,myfunc,'CalinskiHarabasz',...
 'klist',[1:6])

eva =
 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150
 InspectedK: [1 2 3 4 5 6]
 CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of clusters is three.

Input Arguments

x — Input data matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of variables.

Data Types: single | double

clust — Clustering algorithm

'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering algorithm, with 'EmptyAction' set to 'singleton' and 'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata agglomerative clustering algorithm, with 'Linkage' set to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution Gaussian mixture distribution algorithm, with 'SharedCov' set to true and 'Replicates' set to 5.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a clustering algorithm using a function handle (MATLAB). The function must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered, and K is the number of clusters. The output of clustfun must be one of the following:

- A vector of integers representing the cluster index for each observation in DATA. There must be K unique values in this vector.
A numeric n-by-K matrix of score for n observations and K classes. In this case, the cluster index for each observation is determined by taking the largest score value in each row.

If `criterion` is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also specify `clust` as a n-by-K matrix containing the proposed clustering solutions. n is the number of observations in the sample data, and K is the number of proposed clustering solutions. Column j contains the cluster indices for each of the N points in the jth clustering solution.

Data Types: `single` | `double` | `char` | `string` | `function_handle`

criterion — Clustering evaluation criterion

'CalinskiHarabasz' | 'DaviesBouldin' | 'gap' | 'silhouette'

Clustering evaluation criterion, specified as one of the following.

'CalinskiHarabasz' Create a `CalinskiHarabaszEvaluation` clustering evaluation object containing Calinski-Harabasz index values.

'DaviesBouldin' Create a `DaviesBouldinEvaluation` cluster evaluation object containing Davies-Bouldin index values.

gap Create a `GapEvaluation` cluster evaluation object containing gap criterion values.

'silhouette' Create a `SilhouetteEvaluation` cluster evaluation object containing silhouette values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'KList',[1:5],'Distance','cityblock'` specifies to test 1, 2, 3, 4, and 5 clusters using the city block distance metric.
For All Criteria

KList — List of number of clusters to evaluate

vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting of 'KList' and a vector of positive integer values. You must specify KList when clust is a clustering algorithm name or a function handle. When criterion is 'gap', clust must be a character vector, a string scalar, or a function handle, and you must specify KList.

Example: 'KList',[1:6]

Data Types: single | double

For Silhouette and Gap

Distance — Distance metric

'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | vector | function | ...

Distance metric used for computing the criterion values, specified as the comma-separated pair consisting of 'Distance' and one of the following.

- 'sqEuclidean' Squared Euclidean distance
- 'Euclidean' Euclidean distance. This option is not valid for the kmeans clustering algorithm.
- 'cityblock' Sum of absolute differences
- 'cosine' One minus the cosine of the included angle between points (treated as vectors)
- 'correlation' One minus the sample correlation between points (treated as sequences of values)
- 'Hamming' Percentage of coordinates that differ. This option is only valid for the Silhouette criterion.
- 'Jaccard' Percentage of nonzero coordinates that differ. This option is only valid for the Silhouette criterion.

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric using a function handle (MATLAB). The distance function must be of the form d2 = distfun(XI,XJ), where XI is a 1-by-n vector corresponding to a single row of the input matrix X, and XJ is an m_2-by-n matrix.
corresponding to multiple rows of \(X \). \(\text{distfun} \) must return an \(m_2 \)-by-1 vector of distances \(d_2 \), whose \(k \)th element is the distance between \(X_I \) and \(X_J(k,:) \).

\textbf{Distance} only accepts a function handle if the clustering algorithm \(\text{clust} \) accepts a function handle as the distance metric. For example, the \(\text{kmeans} \) clustering algorithm does not accept a function handle as the distance metric. Therefore, if you use the \(\text{kmeans} \) algorithm and then specify a function handle for \(\text{Distance} \), the software errors.

- If \(\text{criterion} \) is 'silhouette', you can also specify \(\text{Distance} \) as the output vector created by the function \(\text{pdist} \).
- When \(\text{clust} \) is 'kmeans' or 'gmdistribution', \(\text{evalclusters} \) uses the distance metric specified for \(\text{Distance} \) to cluster the data.
- If \(\text{clust} \) is 'linkage', and \(\text{Distance} \) is either 'sqEuclidean' or 'Euclidean', then the clustering algorithm uses the Euclidean distance and Ward linkage.
- If \(\text{clust} \) is 'linkage' and \(\text{Distance} \) is any other metric, then the clustering algorithm uses the specified distance metric and average linkage.
- In all other cases, the distance metric specified for \(\text{Distance} \) must match the distance metric used in the clustering algorithm to obtain meaningful results.

\textbf{Example}: 'Distance','Euclidean'

\textbf{Data Types:} single | double | char | string | function_handle

\textbf{For Silhouette Only}

\textbf{ClusterPriors — Prior probabilities for each cluster}

'\text{empirical}' (default) | 'equal'

Prior probabilities for each cluster, specified as the comma-separated pair consisting of 'ClusterPriors' and one of the following.

- 'empirical' Compute the overall silhouette value for the clustering solution by averaging the silhouette values for all points. Each cluster contributes to the overall silhouette value proportionally to its size.
- 'equal' Compute the overall silhouette value for the clustering solution by averaging the silhouette values for all points within each cluster, and then averaging those values across all clusters. Each cluster contributes equally to the overall silhouette value, regardless of its size.
Example: 'ClusterPriors','empirical'

For Gap Only

B — Number of reference data sets

100 (default) | positive integer value

Number of reference data sets generated from the reference distribution `ReferenceDistribution`, specified as the comma-separated pair consisting of 'B' and a positive integer value.

Example: 'B',150

Data Types: single | double

ReferenceDistribution — Reference data generation method

'PCA' (default) | 'uniform'

Reference data generation method, specified as the comma-separated pair consisting of 'ReferenceDistributions' and one of the following.

- 'PCA' Generate reference data from a uniform distribution over a box aligned with the principal components of the data matrix x.
- 'uniform' Generate reference data uniformly over the range of each feature in the data matrix x.

Example: 'ReferenceDistribution','uniform'

SearchMethod — Method for selecting optimal number of clusters

'globalMaxSE' (default) | 'firstMaxSE'

Method for selecting the optimal number of clusters, specified as the comma-separated pair consisting of 'SearchMethod' and one of the following.
Evaluate each proposed number of clusters in KList and select the smallest number of clusters satisfying

\[\text{Gap}(K) \geq \text{GAPMAX} - \text{SE}(\text{GAPMAX}), \]

where \(K \) is the number of clusters, \(\text{Gap}(K) \) is the gap value for the clustering solution with \(K \) clusters, \(\text{GAPMAX} \) is the largest gap value, and \(\text{SE}(\text{GAPMAX}) \) is the standard error corresponding to the largest gap value.

Evaluate each proposed number of clusters in KList and select the smallest number of clusters satisfying

\[\text{Gap}(K) \geq \text{Gap}(K + 1) - \text{SE}(K + 1), \]

where \(K \) is the number of clusters, \(\text{Gap}(K) \) is the gap value for the clustering solution with \(K \) clusters, and \(\text{SE}(K + 1) \) is the standard error of the clustering solution with \(K + 1 \) clusters.

Example: 'SearchMethod','globalMaxSE'

Output Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, returned as a clustering evaluation object.

See Also

CalinskiHarabaszEvaluation | DaviesBouldinEvaluation | GapEvaluation | SilhouetteEvaluation

Topics

“Cluster Using Gaussian Mixture Models” on page 16-29
“k-Means Clustering” on page 16-22
“Hierarchical Clustering” on page 16-4
“Gaussian Mixture Models” on page 5-145

Introduced in R2013b
evlike

Extreme value negative log-likelihood

Syntax

nlogL = evlike(params,data)
[nlogL,AVAR] = evlike(params,data)
[...] = evlike(params,data,censoring)
[...] = evlike(params,data,censoring,freq)

Description

nlogL = evlike(params,data) returns the negative of the log-likelihood for the type 1 extreme value distribution. params(1) is the tail location parameter, mu, and params(2) is the scale parameter, sigma. nlogL is a scalar.

[nlogL,AVAR] = evlike(params,data) returns the inverse of Fisher's information matrix, AVAR. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information, not the expected information.

[...] = evlike(params,data,censoring) accepts a Boolean vector of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = evlike(params,data,censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating data. See “Extreme Value Distribution” on page B-36 for more details. If x has a Weibull distribution, then X = log(x) has the type 1 extreme value distribution.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
evcdf | evfit | evinv | evpdf | evrnd | evstat

Topics
“Extreme Value Distribution” on page B-36

Introduced before R2006a
evpdf

Extreme value probability density function

Syntax

Y = evpdf(X,mu,sigma)

Description

Y = evpdf(X,mu,sigma) returns the pdf of the type 1 extreme value distribution with location parameter mu and scale parameter sigma, evaluated at the values in X. X, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating X. See “Extreme Value Distribution” on page B-36 for more details. If x has a Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
evcdf | evfit | evinv | evlike | evrnd | evstat | pdf

Topics
“Extreme Value Distribution” on page B-36

Introduced before R2006a
evrnd

Extreme value random numbers

Syntax

\[R = \text{evrnd}(\mu, \sigma) \]
\[R = \text{evrnd}(\mu, \sigma, m, n, \ldots) \]
\[R = \text{evrnd}(\mu, \sigma, [m, n, \ldots]) \]

Description

\[R = \text{evrnd}(\mu, \sigma) \] generates random numbers from the extreme value distribution with parameters specified by location parameter \(\mu \) and scale parameter \(\sigma \). \(\mu \) and \(\sigma \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(R \). A scalar input for \(\mu \) or \(\sigma \) is expanded to a constant array with the same dimensions as the other input.

\[R = \text{evrnd}(\mu, \sigma, m, n, \ldots) \] or \[R = \text{evrnd}(\mu, \sigma, [m, n, \ldots]) \] generates an \(m \)-by-\(n \)-by-\(\ldots \) array containing random numbers from the extreme value distribution with parameters \(\mu \) and \(\sigma \). \(\mu \) and \(\sigma \) can each be scalars or arrays of the same size as \(R \).

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating \(R \). See “Extreme Value Distribution” on page B-36 for more details. If \(x \) has a Weibull distribution, then \(X = \log(x) \) has the type 1 extreme value distribution.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

evcdf | evfit | evinv | evlike | evpdf | evstat | random

Topics

“Extreme Value Distribution” on page B-36

Introduced before R2006a
evstat

Extreme value mean and variance

Syntax

\[[M,V] = \text{evstat}(\mu,\sigma) \]

Description

\[[M,V] = \text{evstat}(\mu,\sigma) \]

returns the mean of and variance for the type 1 extreme value distribution with location parameter \(\mu \) and scale parameter \(\sigma \). \(\mu \) and \(\sigma \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other input. The default values for \(\mu \) and \(\sigma \) are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima. See “Extreme Value Distribution” on page B-36 for more details. If \(x \) has a Weibull distribution, then \(X = \log(x) \) has the type 1 extreme value distribution.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
evcdf | evfit | evinv | evlike | evpdf | evrnd

Topics
“Extreme Value Distribution” on page B-36

Introduced before R2006a
expcdf

Exponential cumulative distribution function

Syntax

\[p = \text{expcdf}(x, \mu) \]
\[[p, plo, pup] = \text{expcdf}(x, \mu, \text{pcov}, \alpha) \]
\[[p, plo, pup] = \text{expcdf}(_, \text{',} 'upper') \]

Description

\[p = \text{expcdf}(x, \mu) \] computes the exponential cdf at each of the values in \(x \) using the corresponding mean parameter \(\mu \). \(x \) and \(\mu \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in \(\mu \) must be positive.

\[[p, plo, pup] = \text{expcdf}(x, \mu, \text{pcov}, \alpha) \] produces confidence bounds for \(p \) when the input mean parameter \(\mu \) is an estimate. \(\text{pcov} \) is the variance of the estimated \(\mu \). \(\alpha \) specifies \(100(1 - \alpha)\% \) confidence bounds. The default value of \(\alpha \) is 0.05. \(plo \) and \(pup \) are arrays of the same size as \(p \) containing the lower and upper confidence bounds. The bounds are based on a normal approximation for the distribution of the log of the estimate of \(\mu \). If you estimate \(\mu \) from a set of data, you can get a more accurate set of bounds by applying \text{expfit} to the data to get a confidence interval for \(\mu \), and then evaluating \text{expinv} at the lower and upper endpoints of that interval.

\[[p, plo, pup] = \text{expcdf}(_, \text{',} 'upper') \] returns the complement of the exponential cdf at each value in \(x \), using an algorithm that more accurately computes the extreme upper tail probabilities. You can use the 'upper' argument with any of the prior syntaxes.

The exponential cdf is

\[p = F(x \mid \mu) = \int_0^x \frac{-t}{\mu} e^{-\mu} dt = 1 - e^{-\frac{x}{\mu}} \]
The result, \(p \), is the probability that a single observation from an exponential distribution will fall in the interval \([0 \ x] \).

Examples

Compute the Exponential CDF

The following code shows that the median of the exponential distribution is \(\mu \log(2) \).

```matlab
mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p = 1×6
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
```

What is the probability that an exponential random variable is less than or equal to the mean, \(\mu \)?

```matlab
mu = 1:6;
x = mu;
p = expcdf(x,mu)
p = 1×6
    0.6321    0.6321    0.6321    0.6321    0.6321    0.6321
```

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | expfit | expinv | explike | exppdf | exprnd | expstat

Topics
“Exponential Distribution” on page B-32

Introduced before R2006a
expfit

Exponential parameter estimates

Syntax

muhat = expfit(data)
[muhat,muci] = expfit(data)
[muhat,muci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)

Description

muhat = expfit(data) estimates the mean of an exponentially distributed sample data. Each entry of muhat corresponds to the data in a column of data.

[muhat,muci] = expfit(data) returns 95% confidence intervals for the mean parameter estimates in matrix muci. The first row of muci contains the lower bounds of the confidence intervals, and the second row contains the upper bounds.

[muhat,muci] = expfit(data,alpha) returns 100(1 - alpha)% confidence intervals for the parameter estimates, where alpha is a value in the range [0 1] specifying the width of the confidence intervals. By default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = expfit(data,alpha,censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly. data must be a vector in order to pass in the argument censoring.

[...] = expfit(data,alpha,censoring,freq) accepts a frequency vector, freq of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
Examples

The following estimates the mean \(\mu \) of exponentially distributed data, and returns a 95% confidence interval for the estimate:

\[
\mu = 3; \\
data = exprnd(\mu,100,1); \quad \text{% Simulated data}
\]

\[
[muhat,muci] = \text{expfit}(\text{data})
\]

\[
\begin{align*}
\text{muhat} &= \\
&= 2.7511 \\
\text{muci} &= \\
&= 2.2826 \\
&= 3.3813
\end{align*}
\]

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

expcdf | expinv | explike | exppdf | exprnd | expstat | mle

Introduced before R2006a
ExhaustiveSearcher

Create exhaustive nearest neighbor searcher

Description

ExhaustiveSearcher model objects store the training data, distance metric, and parameter values of the distance metric for an exhaustive nearest neighbor search. The exhaustive search algorithm finds the distance from each query observation to all \(n \) observations in the training data, which is an \(n \)-by-\(K \) numeric matrix.

Once you create an ExhaustiveSearcher model object, find neighboring points in the training data to the query data by performing a nearest neighbor search using knnsearch or a radius search using rangesearch. The exhaustive search algorithm is more efficient than the Kd-tree algorithm when \(K \) is large (that is, \(K > 10 \)), and it is more flexible than the Kd-tree algorithm with respect to distance metric choices. The ExhaustiveSearcher model object also supports sparse data.

Creation

Use either the createns function or the ExhaustiveSearcher function (described here) to create an ExhaustiveSearcher object. Both functions use the same syntax except that the createns function has the 'NSMethod' name-value pair argument, which you use to choose the nearest neighbor search method. The createns function also creates a KDTreeSearcher object. Specify 'NSMethod','exhaustive' to create an ExhaustiveSearcher object. The default is 'exhaustive' if \(K > 10 \), the training data is sparse, or the distance metric is not the Euclidean, city block, Chebychev, or Minkowski.

Syntax

Mdl = ExhaustiveSearcher(X)
Mdl = ExhaustiveSearcher(X,Name,Value)
Description

Mdl = ExhaustiveSearcher(X) creates an exhaustive nearest neighbor searcher object (Mdl) using the n-by-K numeric matrix of training data (X).

Mdl = ExhaustiveSearcher(X,Name,Value) specifies additional options using one or more name-value pair arguments. You can specify the distance metric and set the distance metric parameter (DistParameter) property. For example, ExhaustiveSearcher(X,'Distance','chebychev') creates an exhaustive nearest neighbor searcher object that uses the Chebychev distance. To specify DistParameter, use the Cov, P, or Scale name-value pair argument.

Input Arguments

X — Training data
numeric matrix

Training data that prepares the exhaustive searcher algorithm, specified as a numeric matrix. X has n rows, each corresponding to an observation (that is, an instance or example), and K columns, each corresponding to a predictor (that is, a feature).

Data Types: single | double

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Distance','mahalanobis','Cov',eye(3) specifies to use the Mahalanobis distance when searching for nearest neighbors and a 3-by-3 identity matrix for the covariance matrix in the Mahalanobis distance metric.

Distance — Distance metric
'euclidean' (default) | character vector | string scalar | custom distance function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future query points, specified as the comma-separated pair consisting of 'Distance' and a character vector, string scalar, or function handle.

This table describes the supported distance metrics specified as character vectors or string scalars.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as row vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between rows in Mdl.X and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from Mdl.X. To specify another scaling, use the 'Scale' name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>

For more details, see “Distance Metrics” on page 18-16.

You can specify a function handle for a custom distance metric by using @ (for example, @distfun). A custom distance function must:

- Have the form function D2 = distfun(ZI, ZJ).
- Take as arguments:
 - A 1-by-\(K \) vector ZI containing a single row from X or from the query points Y, where \(K \) is the number of columns in X.
• An \(m \)-by-\(K \) matrix \(ZJ \) containing multiple rows of \(X \) or \(Y \), where \(m \) is a positive integer.

• Return an \(m \)-by-1 vector of distance \(D2 \), where \(D2(j) \) is the distance between the observations \(ZI \) and \(ZJ(j,:) \).

The software does not use the distance metric for creating an ExhaustiveSearcher model object, so you can alter the distance metric by using dot notation after creating the object.

Example: 'Distance','mahalanobis'

\(\textbf{Cov} \) — Covariance matrix for Mahalanobis distance metric

\texttt{nan	ext{c}ov(X)} (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair consisting of 'Cov' and a \(K \)-by-\(K \) positive definite matrix, where \(K \) is the number of columns in \(X \). This argument is valid only if 'Distance' is 'mahalanobis'.

Example: 'Cov',\texttt{eye(3)}

Data Types: single | double

\(\textbf{P} \) — Exponent for Minkowski distance metric

2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',3

Data Types: single | double

\(\textbf{Scale} \) — Scale parameter value for standardized Euclidean distance metric

\texttt{nan	ext{std}(X)} (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-separated pair consisting of 'Scale' and a nonnegative numeric vector of length \(K \), where \(K \) is the number of columns in \(X \). The software scales each difference between the training and query data using the corresponding element of Scale. This argument is valid only if 'Distance' is 'seuclidean'.

Example: 'Scale',\texttt{quantile(X,0.75) - quantile(X,0.25)}

Data Types: single | double
Properties

X — Training data
numeric matrix

This property is read-only.

Training data that prepares the exhaustive searcher algorithm, specified as a numeric matrix. X has n rows, each corresponding to an observation (that is, an instance or example), and K columns, each corresponding to a predictor (that is, a feature).

The input argument X of createns or ExhaustiveSearcher sets this property.

Data Types: single | double

Distance — Distance metric

character vector | string scalar | custom distance function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future query points, specified as a character vector or string scalar ('chebychev', 'cityblock', 'correlation', 'cosine', 'euclidean', 'hamming', 'jaccard', 'minkowski', 'mahalanobis', 'seuclidean', or 'spearman'), or a function handle.

The 'Distance' name-value pair argument of createns or ExhaustiveSearcher sets this property.

The software does not use the distance metric for creating an ExhaustiveSearcher model object, so you can alter it by using dot notation.

DistParameter — Distance metric parameter values

[] | positive scalar

Distance metric parameter values, specified as empty ([]) or a positive scalar.

This table describes the distance parameters of the supported distance metrics.
<table>
<thead>
<tr>
<th>Distance Metric</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mahalanobis'</td>
<td>A positive definite matrix representing the covariance matrix used for computing the Mahalanobis distance. By default, the software sets the covariance using <code>nancov(Mdl.X)</code>. The 'Cov' name-value pair argument of <code>createns</code> or <code>ExhaustiveSearcher</code> sets this property. You can alter <code>DistParameter</code> by using dot notation, for example, <code>Mdl.DistParameter = CovNew</code>, where <code>CovNew</code> is a K-by-K positive definite numeric matrix.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>A positive scalar indicating the exponent of the Minkowski distance. By default, the exponent is 2. The 'P' name-value pair argument of <code>createns</code> or <code>ExhaustiveSearcher</code> sets this property. You can alter <code>DistParameter</code> by using dot notation, for example, <code>Mdl.DistParameter = PNew</code>, where <code>PNew</code> is a positive scalar.</td>
</tr>
</tbody>
</table>
| 'seuclidean' | A positive numeric vector indicating the values used by the software to scale the predictors when computing the standardized Euclidean distance. By default, the software:
1. Estimates the standard deviation of each predictor (column) of `X` using `scale = nanstd(Mdl.X)`
2. Scales each coordinate difference between the rows in `X` and the query matrix by dividing by the corresponding element of `scale`
The 'Scale' name-value pair argument of `createns` or `ExhaustiveSearcher` sets this property. You can alter `DistParameter` by using dot notation, for example, `Mdl.DistParameter = sNew`, where `sNew` is a K-dimensional positive numeric vector. |

If `Mdl.Distance` is not one of the parameters listed in this table, then `Mdl.DistParameter` is `[]`, which means that the specified distance metric formula has no parameters.
Data Types: single | double

Object Functions

knnsearch Find k-nearest neighbors using object
rangesearch Find all neighbors within specified distance using object

Examples

Train Default Exhaustive Nearest Neighbor Searcher

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)
n = 150
k = 4

X has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbor searcher using the entire data set as training data.

Mdl1 = ExhaustiveSearcher(X)

Mdl1 =
 ExhaustiveSearcher with properties:

 Distance: 'euclidean'
 DistParameter: []
 X: [150x4 double]

Mdl1 is an ExhaustiveSearcher model object, and its properties appear in the Command Window. The object contains information about the trained algorithm, such as the distance metric. You can alter property values using dot notation.
Alternatively, you can prepare an exhaustive nearest neighbor searcher by using `createns` and specifying 'exhaustive' as the search method.

```matlab
Mdl2 = createns(X,'NSMethod','exhaustive')
```

```
Mdl2 =  
  ExhaustiveSearcher with properties:  
    Distance: 'euclidean'  
    DistParameter: []  
    X: [150x4 double]
```

Mdl2 is also an `ExhaustiveSearcher` model object, and it is equivalent to `Mdl1`.

To search `X` for the nearest neighbors to a batch of query data, pass the `ExhaustiveSearcher` model object and the query data to `knnsearch` or `rangesearch`.

Specify the Mahalanobis Distance for Nearest Neighbor Search

Load Fisher's iris data set. Focus on the petal dimensions.

```matlab
load fisheriris
X = meas(:,[3 4]);  % Predictors
```

Prepare an exhaustive nearest neighbor searcher. Specify the Mahalanobis distance metric.

```matlab
Mdl = createns(X,'Distance','mahalanobis')
```

```
Mdl =  
  ExhaustiveSearcher with properties:  
    Distance: 'mahalanobis'  
    DistParameter: [2x2 double]  
    X: [150x2 double]
```

Because the distance metric is Mahalanobis, `createns` creates an `ExhaustiveSearcher` model object by default.

Access properties of `Mdl` by using dot notation. For example, use `Mdl.DistParameter` to access the Mahalanobis covariance parameter.
Mdl.DistParameter
ans = 2×2
 3.1163 1.2956
 1.2956 0.5810

You can pass query data and Mdl to:

- `knnsearch` to find indices and distances of nearest neighbors
- `rangesearch` to find indices of all nearest neighbors within a distance that you specify

Alter Properties of ExhaustiveSearcher Model

Create an `ExhaustiveSearcher` model object and alter the `Distance` property by using dot notation.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
```

Train a default exhaustive searcher algorithm using the entire data set as training data.

```matlab
Mdl = ExhaustiveSearcher(X)
```

```matlab
Mdl = ExhaustiveSearcher with properties:

    Distance: 'euclidean'
    DistParameter: []
    X: [150x4 double]
```

Specify that the neighbor searcher use the Mahalanobis metric to compute the distances between the training and query data.

```matlab
Mdl.Distance = 'mahalanobis'
```

```matlab
Mdl = ExhaustiveSearcher with properties:

    Distance: 'mahalanobis'
    DistParameter: []
    X: [150x4 double]
```
You can pass Mdl and the query data to either knnsearch or rangesearch to find the nearest neighbors to the points in the query data based on the Mahalanobis distance.

Search for Nearest Neighbors of Query Data Using Mahalanobis Distance

Create an exhaustive searcher object by using the createns function. Pass the object and query data to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

```
load fisheriris
```

Remove five irises randomly from the predictor data to use as a query set.

```
rng('default'); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);
```

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the Mahalanobis distance for finding nearest neighbors.

```
Mdl = createns(X,'Distance','mahalanobis')
```

```
Mdl = 
    ExhaustiveSearcher with properties:
        Distance: 'mahalanobis'
        DistParameter: [4x4 double]
        X: [145x4 double]
```

Because the distance metric is Mahalanobis, createns creates an ExhaustiveSearcher model object by default.
The software uses the covariance matrix of the predictors (columns) in the training data for computing the Mahalanobis distance. To display this value, use `Mdl.DistParameter`.

Mdl.DistParameter

```
ans = 4x4
     0.6547   -0.0368    1.2320    0.5026
-0.0368     0.1914   -0.3227   -0.1193
 1.2320   -0.3227    3.0671    1.2842
 0.5026   -0.1193    1.2842    0.5800
```

Find the indices of the training data (`Mdl.X`) that are the two nearest neighbors of each point in the query data (`Y`).

```
IdxNN = knnsearch(Mdl,Y,'K',2)
```

```
IdxNN = 5x2
     5     6
    98    95
   104   128
   135    65
   102   115
```

Each row of `IdxNN` corresponds to a query data observation. The column order corresponds to the order of the nearest neighbors with respect to ascending distance. For example, based on the Mahalanobis metric, the second nearest neighbor of `Y(3,:)` is `X(128,:)`.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The knnsearch and rangesearch functions support code generation.
• When you train an ExhaustiveSearcher model object, the value of the 'Distance' name-value pair argument cannot be a custom distance function.

For more information, see “Introduction to Code Generation” on page 31-2 and “Code Generation for Nearest Neighbor Searcher” on page 31-15.

See Also
KDTreeSearcher | createns

Topics
“k-Nearest Neighbor Search and Radius Search” on page 18-19
“Distance Metrics” on page 18-16

Introduced in R2010a
expinv

Exponential inverse cumulative distribution function

Syntax

```
X = expinv(P,mu)
[X,XLO,XUP] = expinv(P,mu,pcov,alpha)
```

Description

\(X = \text{expinv}(P,\mu) \) computes the inverse of the exponential cdf with parameters specified by mean parameter \(\mu \) for the corresponding probabilities in \(P \). \(P \) and \(\mu \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in \(\mu \) must be positive and the values in \(P \) must lie on the interval \([0, 1]\).

\([X,XLO,XUP] = \text{expinv}(P,\mu,pcov,alpha) \) produces confidence bounds for \(X \) when the input mean parameter \(\mu \) is an estimate. \(pcov \) is the variance of the estimated \(\mu \). \(alpha \) specifies \(100(1 - alpha)\% \) confidence bounds. The default value of \(alpha \) is 0.05. \(XLO \) and \(XUP \) are arrays of the same size as \(X \) containing the lower and upper confidence bounds. The bounds are based on a normal approximation for the distribution of the log of the estimate of \(\mu \). If you estimate \(\mu \) from a set of data, you can get a more accurate set of bounds by applying \(\text{expfit} \) to the data to get a confidence interval for \(\mu \), and then evaluating \(\text{expinv} \) at the lower and upper end points of that interval.

The inverse of the exponential cdf is

\[
x = F^{-1}(p \mid \mu) = -\mu \ln(1 - p)
\]

The result, \(x \), is the value such that an observation from an exponential distribution with parameter \(\mu \) will fall in the range \([0, x]\) with probability \(p \).
Examples

Let the lifetime of light bulbs be exponentially distributed with $\mu = 700$ hours. What is the median lifetime of a bulb?

```matlab
expinv(0.50, 700)
ans =
   485.2030
```

Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the mean life of the bulbs, half of them will burn out in less than 500 hours.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
expcdf | expfit | explike | exppdf | exprnd | expstat | icdf

Topics
“Exponential Distribution” on page B-32

Introduced before R2006a
explike

Exponential negative log-likelihood

Syntax

\[\text{nlogL} = \text{explike}(\text{param}, \text{data}) \]
\[[\text{nlogL}, \text{avar}] = \text{explike}(\text{param}, \text{data}) \]
\[[...] = \text{explike}(\text{param}, \text{data}, \text{censoring}) \]
\[[...] = \text{explike}(\text{param}, \text{data}, \text{censoring}, \text{freq}) \]

Description

\[\text{nlogL} = \text{explike}(\text{param}, \text{data}) \] returns the negative of the log-likelihood for the exponential distribution. \(\text{param} \) is the mean parameter, \(\mu \). \(\text{nlogL} \) is a scalar.

\[[\text{nlogL}, \text{avar}] = \text{explike}(\text{param}, \text{data}) \] returns the inverse of Fisher's information, \(\text{avar} \), a scalar. If the input parameter value in \(\text{param} \) is the maximum likelihood estimate, \(\text{avar} \) is its asymptotic variance. \(\text{avar} \) is based on the observed Fisher's information, not the expected information.

\[[...] = \text{explike}(\text{param}, \text{data}, \text{censoring}) \] accepts a Boolean vector, \(\text{censoring} \), of the same size as \(\text{data} \), which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

\[[...] = \text{explike}(\text{param}, \text{data}, \text{censoring}, \text{freq}) \] accepts a frequency vector, \(\text{freq} \), of the same size as \(\text{data} \). The vector \(\text{freq} \) typically contains integer frequencies for the corresponding elements in \(\text{data} \), but can contain any nonnegative values. Pass in \([\,]\) for \(\text{censoring} \) to use its default value.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
expcdf | expfit | expinv | exppdf | exprnd | expstat

Topics
“Exponential Distribution” on page B-32

Introduced before R2006a
export

Class: dataset

Write dataset array to file

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

export(DS,'file',filename)
export(DS)
export(DS,'file',filename,'Delimiter',delim)
export(DS,'XLSfile',filename)
export(DS,'XPTFile',filename)
export(DS,...,'WriteVarNames',false)
export(DS,...,'WriteObsNames',false)

Description

export(DS,'file',filename) writes the dataset array DS to a tab-delimited text file, including variable names and observation names, if present. If the observation names exist, the name in the first column of the first line of the file is the first dimension name for the dataset (by default, 'Observations'). export overwrites any existing file named filename.

export(DS) writes to a text file whose default name is the name of the dataset array DS appended by '.txt'. If export cannot construct the file name from the dataset array input, it writes to the file 'dataset.txt'. export overwrites any existing file.

export(DS,'file',filename,'Delimiter',delim) writes the dataset array DS to a text file using the delimiter delim. delim must be one of the following:
export(DS,'XLSfile',filename) writes the dataset array DS to a Microsoft® Excel spreadsheet file, including variable names and observation names (if present). You can specify the 'Sheet' and 'Range' parameter name/value pairs, with parameter values as accepted by the xlsread function. Since export uses the xlswrite function internally, this syntax is only compatible with Microsoft Excel for Windows, and does not work on a Mac. For more information, see xlswrite.

export(DS,'XPTFile',filename) writes the dataset array DS to a SAS XPORT format file. When writing to an XPORT format file, variables must be scalar valued. export saves observation names to a variable called obsnames, unless the WriteObsNames parameter described below is false. The XPORT format restricts the length of variable names to eight characters; longer variable names are truncated.

export(DS,...,'WriteVarNames',false) does not write the variable names to the text file. export(DS,...,'WriteVarNames',true) is the default, writing the names as column headings in the first line of the file.

export(DS,...,'WriteObsNames',false) does not write the observation names to the text file. export(DS,...,'WriteObsNames',true) is the default, writing the names as the first column of the file.

In some cases, export creates a text file that does not represent A exactly, as described below. If you use dataset to read the file back into MATLAB, the new dataset array may not have exactly the same contents as the original dataset array. Save A as a MAT-file if you need to import it again as a dataset array.

export writes out numeric variables using long g format, and categorical or character variables as unquoted text.

For non-character variables with more than one column, export writes out multiple delimiter-separated fields on each line, and constructs suitable column headings for the first line of the file.

export writes out variables that have more than two dimensions as a single empty field in each line of the file.
For cell-valued variables, `export` writes out the contents of each cell only when the cell contains a single row, and writes out a single empty field otherwise.

In some cases, `export` creates a file that cannot be read back into MATLAB using `dataset`. Writing a dataset array that contains a cell-valued variable whose cell contents are not scalars results in a mismatch in the file between the number of fields on each line and the number of column headings on the first line. Writing a dataset array that contains a cell-valued variable whose cell contents are not all the same length results in a different number of fields on each line in the file. Therefore, if you might need to import a dataset array again, save it as a `.mat` file.

Examples

Move data between external text files and dataset arrays in the MATLAB workspace:

```matlab
A = dataset('file','sat2.dat','delimiter','','
A =
    Test     Gender     Score
     'Verbal'     'Male'     470
     'Verbal'     'Female'    530
     'Quantitative'     'Male'     520
     'Quantitative'     'Female'    480

export(A(A.Score > 500,:),'file','HighScores.txt')

B = dataset('file','HighScores.txt','delimiter','	')
B =
    Test     Gender     Score
     'Verbal'     'Female'    530
     'Quantitative'     'Male'     520

See Also
dataset
exppdf

Exponential probability density function

Syntax

Y = exppdf(X,mu)

Description

Y = exppdf(X,mu) returns the pdf of the exponential distribution with mean parameter mu, evaluated at the values in X. X and mu can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in mu must be positive.

The exponential pdf is

\[ y = f(x | \mu) = \frac{1}{\mu} e^{-\frac{x}{\mu}} \]

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting times when the probability of waiting an additional period of time is independent of how long you have already waited. For example, the probability that a light bulb will burn out in its next minute of use is relatively independent of how many minutes it has already burned.

Examples

y = exppdf(5,1:5)
y =
0.0067  0.0410  0.0630  0.0716  0.0736

y = exppdf(1:5,1:5)
\[ y = 0.3679 \ 0.1839 \ 0.1226 \ 0.0920 \ 0.0736 \]

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
expcdf | expfit | expinv | explike | exprnd | expstat | pdf

**Topics**
“Exponential Distribution” on page B-32

**Introduced before R2006a**
exprnd

Exponential random numbers

Syntax

\[ R = \text{exprnd}(\mu) \]
\[ R = \text{exprnd}(\mu,m,n,\ldots) \]
\[ R = \text{exprnd}(\mu,[m,n,\ldots]) \]

Description

\( R = \text{exprnd}(\mu) \) generates random numbers from the exponential distribution with mean parameter \( \mu \). \( \mu \) can be a vector, a matrix, or a multidimensional array. The size of \( R \) is the size of \( \mu \).

\( R = \text{exprnd}(\mu,m,n,\ldots) \) or \( R = \text{exprnd}(\mu,[m,n,\ldots]) \) generates an \( m \)-by-\( n \)-by-\( \ldots \) array containing random numbers from the exponential distribution with mean parameter \( \mu \). \( \mu \) can be a scalar or an array of the same size as \( R \).

Examples

\[ n1 = \text{exprnd}(5:10) \]
\[
\begin{array}{cccccccc}
 7.5943 & 18.3400 & 2.7113 & 3.0936 & 0.6078 & 9.5841 \\
\end{array}
\]

\[ n2 = \text{exprnd}(5:10,[1 6]) \]
\[
\begin{array}{ccccccc}
 3.2752 & 1.1110 & 23.5530 & 23.4303 & 5.7190 & 3.9876 \\
\end{array}
\]

\[ n3 = \text{exprnd}(5,2,3) \]
\[
\begin{array}{cccc}
 24.3339 & 13.5271 & 1.8788 & 4.7932 \\
 4.3675 & 2.6468 \\
\end{array}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
expcdf | expfit | expinv | explike | exppdf | expstat | random

Topics
“Exponential Distribution” on page B-32

Introduced before R2006a
expstat

Exponential mean and variance

Syntax

[m,v] = expstat(mu)

Description

[m,v] = expstat(mu) returns the mean of and variance for the exponential
distribution with parameters mu. mu can be a vectors, matrix, or multidimensional array.
The mean of the exponential distribution is µ, and the variance is µ².

Examples

[m,v] = expstat([1 10 100 1000])
m = 
   1    10   100   1000
v = 
   1   100  10000 1000000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
expcdf | expfit | expinv | explike | exppdf | exprnd | expstat

**Topics**
“Exponential Distribution” on page B-32

**Introduced before R2006a**
factoran

Factor analysis

Syntax

lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,param1,val1,param2,val2,...)

Description

lambda = factoran(X,m) returns the maximum likelihood estimate, lambda, of the factor loadings matrix, in a common factor analysis model with m common factors. X is an n-by-d matrix where each row is an observation of d variables. The (i,j)th element of the d-by-m matrix lambda is the coefficient, or loading, of the jth factor for the ith variable. By default, factoran calls the function rotatefactors to rotate the estimated factor loadings using the 'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates of the specific variances as a column vector psi of length d.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor loadings rotation matrix T.

[lambda,psi,T,stats] = factoran(X,m) also returns a structure stats containing information relating to the null hypothesis, H_0, that the number of common factors is m. stats includes the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglike</td>
<td>Maximized log-likelihood value</td>
</tr>
<tr>
<td>dfe</td>
<td>Error degrees of freedom = ((d-m)^2 - (d+m))/2</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>chisq</td>
<td>Approximate chi-squared statistic for the null hypothesis</td>
</tr>
<tr>
<td>p</td>
<td>Right-tail significance level for the null hypothesis</td>
</tr>
</tbody>
</table>

`factoran` does not compute the chisq and p fields unless `dfe` is positive and all the specific variance estimates in `psi` are positive (see “Heywood Case” on page 32-1535 below). If `X` is a covariance matrix, then you must also specify the `'nobs'` parameter if you want `factoran` to compute the chisq and p fields.

```plaintext
[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F, predictions of the common factors, known as factor scores. F is an n-by-m matrix where each row is a prediction of m common factors. If X is a covariance matrix, `factoran` cannot compute F. `factoran` rotates F using the same criterion as for lambda.

[...] = factoran(...,param1,val1,param2,val2,...) enables you to specify optional parameter name/value pairs to control the model fit and the outputs. The following are the valid parameter/value pairs.
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'xtype'</td>
<td>Type of input in the matrix X. 'xtype' can be one of:</td>
</tr>
<tr>
<td></td>
<td>'data' Raw data (default)</td>
</tr>
<tr>
<td></td>
<td>'covariance' Positive definite covariance or correlation matrix</td>
</tr>
<tr>
<td>'scores'</td>
<td>Method for predicting factor scores. 'scores' is ignored if X is not raw data.</td>
</tr>
<tr>
<td></td>
<td>'wls' Synonyms for a weighted least-squares estimate that treats F as fixed (default)</td>
</tr>
<tr>
<td></td>
<td>'Bartlett'</td>
</tr>
<tr>
<td></td>
<td>'regression' Synonyms for a minimum mean squared error prediction that is equivalent to a ridge regression</td>
</tr>
<tr>
<td></td>
<td>'Thomson'</td>
</tr>
<tr>
<td>'start'</td>
<td>Starting point for the specific variances psi in the maximum likelihood optimization. Can be specified as:</td>
</tr>
<tr>
<td></td>
<td>'random' Chooses d uniformly distributed values on the interval [0,1].</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>Chooses the starting vector as a scale factor times ( \text{diag}(\text{inv(\text{corrcoef}(X)))} ) (default). For examples, see Jöreskog [2].</td>
</tr>
<tr>
<td>Positive integer</td>
<td>Performs the given number of maximum likelihood fits, each initialized as with 'random'. factoran returns the fit with the highest likelihood.</td>
</tr>
<tr>
<td>Matrix</td>
<td>Performs one maximum likelihood fit for each column of the specified matrix. The ( i )th optimization is initialized with the values from the ( i )th column. The matrix must have ( d ) rows.</td>
</tr>
<tr>
<td>'rotate'</td>
<td>Method used to rotate factor loadings and scores. 'rotate' can have the same values as the 'Method' parameter of rotatefactors. See the reference page for rotatefactors for a full description of the available methods.</td>
</tr>
<tr>
<td>'none'</td>
<td>Performs no rotation.</td>
</tr>
<tr>
<td>'equamax'</td>
<td>Special case of the orthomax rotation. Use the 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation.</td>
</tr>
<tr>
<td>'orthomax'</td>
<td>Orthogonal rotation that maximizes a criterion based on the variance of the loadings. Use the 'coeff', 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation.</td>
</tr>
<tr>
<td>'parsimax'</td>
<td>Special case of the orthomax rotation (default). Use the 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>'pattern'</td>
<td>Performs either an oblique rotation (the default) or an orthogonal rotation to best match a specified pattern matrix. Use the 'type' parameter to choose the type of rotation. Use the 'target' parameter to specify the pattern matrix.</td>
</tr>
<tr>
<td>'procrustes'</td>
<td>Performs either an oblique (the default) or an orthogonal rotation to best match a specified target matrix in the least squares sense. Use the 'type' parameter to choose the type of rotation. Use 'target' to specify the target matrix.</td>
</tr>
<tr>
<td>'promax'</td>
<td>Performs an oblique procrustes rotation to a target matrix determined by factoran as a function of an orthomax solution. Use the 'power' parameter to specify the exponent for creating the target matrix. Because 'promax' uses 'orthomax' internally, you can also specify the parameters that apply to 'orthomax'.</td>
</tr>
<tr>
<td>'quartimax'</td>
<td>Special case of the orthomax rotation (default). Use the 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation.</td>
</tr>
<tr>
<td>'varimax'</td>
<td>Special case of the orthomax rotation (default). Use the 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| **Function** | Function handle to rotation function of the form 
\[ B, T \] = 
myrotation(A,...) 
where \( A \) is a \( d \)-by-\( m \) matrix of unrotated factor loadings, \( B \) is a \( d \)-by-\( m \) matrix of rotated loadings, and \( T \) is the corresponding \( m \)-by-\( m \) rotation matrix. Use the factoran parameter 'userargs' to pass additional arguments to this rotation function. See “User-Defined Rotation Function” on page 32-1533. |
| **'coeff'** | Coefficient, often denoted as \( \gamma \), defining the specific 'orthomax' criterion. Must be from 0 to 1. The value 0 corresponds to quartimax, and 1 corresponds to varimax. Default is 1. |
| **'normalize'** | Flag indicating whether the loading matrix should be row-normalized (1) or left unnormalized (0) for 'orthomax' or 'varimax' rotation. Default is 1. |
| **'reltol'** | Relative convergence tolerance for 'orthomax' or 'varimax' rotation. Default is \( \text{sqrt(eps)} \). |
| **'maxit'** | Iteration limit for 'orthomax' or 'varimax' rotation. Default is 250. |
| **'target'** | Target factor loading matrix for 'procrustes' rotation. Required for 'procrustes' rotation. No default value. |
| **'type'** | Type of 'procrustes' rotation. Can be 'oblique' (default) or 'orthogonal'. |
| **'power'** | Exponent for creating the target matrix in the 'promax' rotation. Must be ≥ 1. Default is 4. |
| **'userargs'** | Denotes the beginning of additional input values for a user-defined rotation function. factoran appends all subsequent values, in order and without processing, to the rotation function argument list, following the unrotated factor loadings matrix \( A \). See “User-Defined Rotation Function” on page 32-1533. |
Estimate and Plot Factor Loadings

Load the sample data.

load carbig

Define the variable matrix.

X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);

Estimate the factor loadings using a minimum mean squared error prediction for a factor analysis with two common factors.

[Lambda,Psi,T,stats,F] = factoran(X,2,'scores','regression');
inv(T'*T); % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda' + diag(Psi); % Estimated correlation matrix
Lambda*inv(T); % Unrotate the loadings
F*T'; % Unrotate the factor scores

Create biplot of two factors.
Estimate the factor loadings using the covariance (or correlation) matrix.

\[
[\text{Lambda}, \text{Psi}, \text{T}] = \text{factoran}(\text{cov}(X), 2, 'xtype', 'cov')
\]

\[
\text{Lambda} = 5 \times 2
\]

\[
\begin{bmatrix}
-0.2432 & -0.8500 \\
0.8773 & 0.3871 \\
0.7618 & 0.5930 \\
-0.7978 & -0.2786 \\
0.9692 & 0.2129
\end{bmatrix}
\]
Psi = 5x1

0.2184
0.0804
0.0680
0.2859
0.0152

T = 2x2

0.9476  0.3195
0.3195 -0.9476

% [Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

Although the estimates are the same, the use of a covariance matrix rather than raw data doesn't let you request scores or significance level.

Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',
                                 'powerpm',4);

inv(T'*T)                            % Estimated correlation of F,
ans = 2x2

1.0000   -0.6391
-0.6391    1.0000

% no longer eye(2)

Lambda*inv(T'*T)*Lambda'+diag(Psi)   % Estimated correlation of X
ans = 5x5

1.0000  -0.5424  -0.6893   0.4309  -0.4167
-0.5424   1.0000   0.8979  -0.8078   0.9328
-0.6893   0.8979   1.0000  -0.7730   0.8647
 0.4309  -0.8078  -0.7730   1.0000  -0.8326
-0.4167   0.9328   0.8647  -0.8326   1.0000

Plot the unrotated variables with oblique axes superimposed.
invT = inv(T); 
Lambda0 = Lambda*invT; 
figure();
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
     [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ... 
     'Color','r','linewidth',2)
grid on
hold on
biplot(Lambda0,'LineWidth',2,'MarkerSize',20)
xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')

Plot the rotated variables against the oblique axes.
User-Defined Rotation Function

Syntax for passing additional arguments to a user-defined rotation function:
[Lambda,Psi,T] = ...
    factoran(X,2,'rotate',@myrotation,'userargs',1,'two');

Definitions

Factor Analysis Model

`factoran` computes the maximum likelihood estimate (MLE) of the factor loadings matrix `Lambda` in the factor analysis model

\[ x = \mu + \Lambda f + e \]

where \( x \) is a vector of observed variables, \( \mu \) is a constant vector of means, \( \Lambda \) is a constant \( d \)-by-\( m \) matrix of factor loadings, \( f \) is a vector of independent, standardized common factors, and \( e \) is a vector of independent specific factors. \( x, \mu, \) and \( e \) are of length \( d \). \( f \) is of length \( m \).

Alternatively, the factor analysis model can be specified as

\[ \text{cov}(x) = \Lambda \Lambda^T + \Psi \]

where \( \Psi = \text{cov}(e) \) is a \( d \)-by-\( d \) diagonal matrix of specific variances.

Tips

Observed Data Variables

The variables in the observed data matrix \( X \) must be linearly independent, i.e., \( \text{cov}(X) \) must have full rank, for maximum likelihood estimation to succeed. `factoran` reduces both raw data and a covariance matrix to a correlation matrix before performing the fit.

`factoran` standardizes the observed data \( X \) to zero mean and unit variance before estimating the loadings \( \text{lambda} \). This does not affect the model fit, because MLEs in this model are invariant to scale. However, \( \text{lambda} \) and \( \text{psi} \) are returned in terms of the standardized variables, i.e., \( \text{lambda}' \cdot \text{lambda} + \text{diag(psi)} \) is an estimate of the correlation matrix of the original data \( X \) (although not after an oblique rotation). See
Heywood Case

If elements of psi are equal to the value of the 'delta' parameter (i.e., they are essentially zero), the fit is known as a Heywood case, and interpretation of the resulting estimates is problematic. In particular, there can be multiple local maxima of the likelihood, each with different estimates of the loadings and the specific variances. Heywood cases can indicate overfitting (i.e., m is too large), but can also be the result of underfitting.

Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'rotate' parameter, factoran rotates the estimated factor loadings, lambda, and the factor scores, F. The output matrix T is used to rotate the loadings, i.e., lambda = lambda0*T, where lambda0 is the initial (unrotated) MLE of the loadings. T is an orthogonal matrix for orthogonal rotations, and the identity matrix for no rotation. The inverse of T is known as the primary axis rotation matrix, while T itself is related to the reference axis rotation matrix. For orthogonal rotations, the two are identical.

factoran computes factor scores that have been rotated by inv(T'), i.e., F = F0 * inv(T'), where F0 contains the unrotated predictions. The estimated covariance of F is inv(T'*T), which, for orthogonal or no rotation, is the identity matrix. Rotation of factor loadings and scores is an attempt to create a more easily interpretable structure in the loadings matrix after maximum likelihood estimation.

References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

`pcacov` and `factoran` do not work directly on tall arrays. Instead, use `C = gather(cov(X))` to compute the covariance matrix of a tall array. Then, you can use `pcacov` or `factoran` on the in-memory covariance matrix. Alternatively, you can use `pca` directly on a tall array.

For more information, see “Tall Arrays” (MATLAB).
See Also
biplot | pca | pcacov | procrustes | rotatefactors | statset

Introduced before R2006a
**fcdf**

*F* cumulative distribution function

**Syntax**

\[
p = \text{fcdf}(x,v1,v2)
\]

\[
p = \text{fcdf}(x,v1,v2,\text{'upper'})
\]

**Description**

\[p = \text{fcdf}(x,v1,v2)\] computes the *F* cdf at each of the values in \(x\) using the corresponding numerator degrees of freedom \(v1\) and denominator degrees of freedom \(v2\). \(x, v1,\) and \(v2\) can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. \(v1\) and \(v2\) parameters must contain real positive values, and the values in \(x\) must lie on the interval \([0 \ Inf]\).

\[p = \text{fcdf}(x,v1,v2,\text{'upper'})\] returns the complement of the *F* cdf at each value in \(x\), using an algorithm that more accurately computes the extreme upper tail probabilities.

The *F* cdf is

\[
p = F(x | v1,v2) = \int_0^x \frac{\Gamma \left( \frac{v1 + v2}{2} \right)}{\Gamma \left( \frac{v1}{2} \right) \Gamma \left( \frac{v2}{2} \right)} \left( \frac{v1}{v2} \right)^{v1/2} \left( \frac{v2}{t^2} \right)^{v2/2} \left[ 1 + \left( \frac{v1}{v2} \right) t \right]^{-v1-v2/2} \, dt
\]

The result, \(p\), is the probability that a single observation from an *F* distribution with parameters \(v1\) and \(v2\) will fall in the interval \([0 \ x]\).

**Examples**

32-1538
Compute F Distribution CDF

The following illustrates a useful mathematical identity for the F distribution.

\[
\begin{align*}
\text{nu1} &= 1:5; \\
\text{nu2} &= 6:10; \\
\text{x} &= 2:6; \\
\text{F1} &= \text{fcdf(x,nu1,nu2)} \\
F1 &= 1\times5 \\
&= \begin{bmatrix} 0.7930 & 0.8854 & 0.9481 & 0.9788 & 0.9919 \end{bmatrix} \\
\text{F2} &= 1 - \text{fcdf(1/x,nu2,nu1)} \\
F2 &= 1\times5 \\
&= \begin{bmatrix} 0.7930 & 0.8854 & 0.9481 & 0.9788 & 0.9919 \end{bmatrix}
\end{align*}
\]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | finv | fpdf | frnd | fstat
Topics
“F Distribution” on page B-42

Introduced before R2006a
feval

Evaluate generalized linear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the input [Xnew1,Xnew_2,...,Xnewn].

Input Arguments

mdl

Generalized linear model, specified as a full GeneralizedLinearModel object constructed using fitglm or stepwiseglm, or a compacted CompactGeneralizedLinearModel object constructed using compact.

Xnew1,Xnew2,...,Xnewn

Predictor components. Xnewi can be one of:

- Scalar
- Vector
- Array

Each nonscalar component must have the same size (number of elements in each dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of doubles, where each column of the array represents one predictor.
Output Arguments

ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

For binomial models, feval uses 1 as the BinomialSize parameter, so ypred is predicted probabilities.

For models with an offset, feval uses 0 as the offset value.

Examples

Predict Responses Using feval

Generate a generalized linear model, and plot its responses to a range of input data.

Generate artificial data for the model, Poisson random numbers with two underlying predictors X(1) and X(2).

rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');

Generate a range of values for X(1) and X(2), and plot the model predictions at those values.

[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Z = feval(mdl,Xtest1,Xtest2);
surf(Xtest1,Xtest2,Z)
Tips

- `feval` allows you to easily evaluate predictions of a model when the model was fitted using a table or dataset array. `predict` requires a table or dataset array with the same predictor names, but you can use simple arrays of scalars with `feval`.

Alternatives

`predict` gives the same predictions, but uses a single input array with one observation in each row, rather than one component in each input argument.
random predicts with added noise.

See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | predict | random

Topics
“feval” on page 12-35
“Generalized Linear Models” on page 12-12
feval

Class: CompactLinearModel

Evaluate linear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the new input predictors [Xnew1,Xnew2,...,Xnewn].

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

Xnew1,Xnew2,...,Xnewn — New predictor values
scalar value | numeric vector

New predictor values, specified as a scalar value, numeric vector, or numeric array. You can specify multiple components for this argument. Each vector component must have the same number of elements in each dimension (in other words, each vector must be same size).

If you pass just one Xnew array, then Xnew can be a table, dataset array, or an array of doubles, where each column of the array represents one predictor.
**Output Arguments**

**ypred — Predicted mean values**

scalar value | numeric vector

Predicted mean values at \(X_{new1}, X_{new2}, \ldots, X_{newn}\), returned as a scalar value or numeric vector. \(ypred\) is the same size as each component of \(X_{new1}, X_{new2}, \ldots, X_{newn}\).

For models with an offset, `feval` uses 0 as the offset value.

**Examples**

**Plot Different Categorical Levels for Linear Model**

Fit a mileage model to the `carsmall` data, including the `Year` categorical predictor. Superimpose fitted curves on a scatter plot of the data.

Load the data and fit a model.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```

Create a scatter plot of the mileage versus weight.

```matlab
gscatter(tbl.Weight,tbl.MPG,tbl.Year);
```
Use `feval` to plot curves of the model predictions for the various years and weights.

```matlab
w = linspace(min(tbl.Weight),max(tbl.Weight))';
line(w,feval(mdl,w,'70'),'Color','r')
line(w,feval(mdl,w,'76'),'Color','g')
line(w,feval(mdl,w,'82'),'Color','b')
```
Alternatives

`predict` gives the same predictions, but uses a single input array with one observation in each row, rather than one component in each input argument. `predict` also gives confidence intervals on its predictions.

`random` predicts with added noise.

See Also

`CompactLinearModel` | `LinearModel` | `predict` | `random`
Topics
“feval” on page 11-39
“Linear Regression Workflow” on page 11-43
“Linear Regression” on page 11-11
feval

Class: NonLinearModel

Evaluate nonlinear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the input [Xnew1,Xnew2,...,Xnewn].

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Xnew1,Xnew2,...,Xnewn

 Predictor components. Xnewi can be one of:

• Scalar
• Vector
• Array

Each nonscalar component must have the same size (number of elements in each dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of doubles, where each column of the array represents one predictor.
Output Arguments

ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

Examples

Predict a Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage of an average automobile.

Load the data and create a nonlinear model.

```
load carbig
tbl = table(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(tbl,modelfun,beta0);
```

Find the predicted mileage of an average auto. The data contain some observations with NaN, so compute the mean using nanmean.

```
Xnew = nanmean([Horsepower Weight]);
MPGnew = feval(mdl,Xnew)
```

```
MPGnew = 21.8073
```

Alternatives

predict gives the same predictions, but uses a single input array with one observation in each row, rather than one component in each input argument. predict also gives confidence intervals on its predictions.

random predicts with added noise.
See Also
NonLinearModel | predict | random

Topics
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression” on page 13-2
**ff2n**

Two-level full factorial design

**Syntax**

\[dFF2 = ff2n(n)\]

**Description**

dFF2 = ff2n(n) gives factor settings dFF2 for a two-level full factorial design with n factors. dFF2 is m-by-n, where m is the number of treatments in the full-factorial design. Each row of dFF2 corresponds to a single treatment. Each column contains the settings for a single factor, with values of 0 and 1 for the two levels.

**Examples**

\[
dFF2 = ff2n(3)
dFF2 =
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

**See Also**

fullfact

*Introduced before R2006a*
fillprox

Class: TreeBagger

Proximity matrix for training data

Syntax

B = fillprox(B)
B = fillprox(B,'param1',val1,'param2',val2,...)

Description

B = fillprox(B) computes a proximity matrix for the training data and stores it in the Properties field of B.

B = fillprox(B,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'Trees' Either 'all' or a vector of indices of the trees in the ensemble to be used in computing the proximity matrix. Default is 'all'.

'NumPrint' Number of training cycles (grown trees) after which TreeBagger displays a diagnostic message showing training progress. Default is no diagnostic messages.

See Also

CompactTreeBagger.outlierMeasure | CompactTreeBagger.proximity
findobj

**Class:** qrandstream

Find objects matching specified conditions

**Syntax**

hm = findobj(h, 'conditions')

**Description**

The `findobj` method of the handle class follows the same syntax as the MATLAB `findobj` command, except that the first argument must be an array of handles to objects.

hm = findobj(h, 'conditions') searches the handle object array h and returns an array of handle objects matching the specified conditions. Only the public members of the objects of h are considered when evaluating the conditions.

**See Also**

`findobj` | `qrandstream`
findprop

Class: qrandstream

Find property of MATLAB handle object

Syntax

\[ p = \text{findprop}(h,'\text{propname}') \]

Description

\[ p = \text{findprop}(h,'\text{propname}') \] finds and returns the meta.property object associated with property name propname of scalar handle object h. propname must be a character vector. It can be the name of a property defined by the class of h or a dynamic property added to scalar object h.

If no property named propname exists for object h, an empty meta.property array is returned.

See Also

dynamicprops | findobj | meta.property | qrandstream
**finv**

*F* inverse cumulative distribution function

**Syntax**

\[ X = \text{finv}(P, V1, V2) \]

**Description**

\( X = \text{finv}(P, V1, V2) \) computes the inverse of the *F* cdf with numerator degrees of freedom \( V1 \) and denominator degrees of freedom \( V2 \) for the corresponding probabilities in \( P \). \( P, V1, \) and \( V2 \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. \( V1 \) and \( V2 \) parameters must contain real positive values, and the values in \( P \) must lie on the interval \([0 1]\).

The *F* inverse function is defined in terms of the *F* cdf as

\[
x = F^{-1} (p \mid v_1,v_2) = \{ x : F(x \mid v_1,v_2) = p \}
\]

where

\[
p = F(x \mid v_1,v_2) = \int_0^x \Gamma \left( \frac{v_1 + v_2}{2} \right) \left( \frac{v_1}{v_2} \right)^{v_1/2} \frac{v_1 - 2}{t^{v_2/2}} \left[ 1 + \left( \frac{v_1}{v_2} \right) t \right]^{v_1+v_2/2} dt
\]

**Examples**

Find a value that should exceed 95% of the samples from an *F* distribution with 5 degrees of freedom in the numerator and 10 degrees of freedom in the denominator.
x = finv(0.95,5,10)
x =
    3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fcdf | fpdf | frnd | fstat | icdf

Topics
“F Distribution” on page B-42

Introduced before R2006a
**fishertest**

Fisher’s exact test

**Syntax**

```matlab
h = fishertest(x)
[h,p,stats] = fishertest(x)
[___] = fishertest(x,Name,Value)
```

**Description**

`h = fishertest(x)` returns a test decision for Fisher’s exact test of the null hypothesis that there are no nonrandom associations between the two categorical variables in `x`, against the alternative that there is a nonrandom association. The result `h` is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

`[h,p,stats] = fishertest(x)` also returns the significance level `p` of the test and a structure `stats` containing additional test results, including the odds ratio and its asymptotic confidence interval.

`[___] = fishertest(x,Name,Value)` returns a test decision using additional options specified by one or more name-value pair arguments. For example, you can change the significance level of the test or conduct a one-sided test.

**Examples**

**Conduct Fisher's Exact Test**

In a small survey, a researcher asked 17 individuals if they received a flu shot this year, and whether they caught the flu this winter. The results indicate that, of the nine people who did not receive a flu shot, three got the flu and six did not. Of the eight people who received a flu shot, one got the flu and seven did not.
Create a 2-by-2 contingency table containing the survey data. Row 1 contains data for the individuals who did not receive a flu shot, and row 2 contains data for the individuals who received a flu shot. Column 1 contains the number of individuals who got the flu, and column 2 contains the number of individuals who did not.

\[
x = \text{table}([3;1],[6;7],\text{'}VariableNames\text{'}\{\text{'Flu','NoFlu'}\},\text{'}RowNames\text{'}\{\text{'NoShot','Shot'}\})
\]

\[
x=2\times2 \text{ table}
\]

<table>
<thead>
<tr>
<th></th>
<th>Flu</th>
<th>NoFlu</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoShot</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Shot</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Use Fisher's exact test to determine if there is a nonrandom association between receiving a flu shot and getting the flu.

\[
h = \text{fishertest}(x)
\]

\[
h = \text{logical}
\]

\[
h = 0
\]

The returned test decision \(h = 0\) indicates that \text{fishertest} does not reject the null hypothesis of no nonrandom association between the categorical variables at the default 5% significance level. Therefore, based on the test results, individuals who do not get a flu shot do not have different odds of getting the flu than those who got the flu shot.

**Conduct a One-Sided Fisher's Exact Test**

In a small survey, a researcher asked 17 individuals if they received a flu shot this year, and whether they caught the flu. The results indicate that, of the nine people who did not receive a flu shot, three got the flu and six did not. Of the eight people who received a flu shot, one got the flu and seven did not.

\[
x = [3,6;1,7];
\]

Use a right-tailed Fisher's exact test to determine if the odds of getting the flu is higher for individuals who did not receive a flu shot than for individuals who did. Conduct the test at the 1% significance level.
[h,p,stats] = fishertest(x,'Tail','right','Alpha',0.01)

h = logical
0

p = 0.3353

stats = struct with fields:
    OddsRatio: 3.5000
    ConfidenceInterval: [0.1289 95.0408]

The returned test decision \( h = 0 \) indicates that \texttt{fishertest} does not reject the null hypothesis of no nonrandom association between the categorical variables at the 1% significance level. Since this is a right-tailed hypothesis test, the conclusion is that individuals who do not get a flu shot do not have greater odds of getting the flu than those who got the flu shot.

**Generate a Contingency Table Using crosstab**

Load the hospital data.

load hospital

The \texttt{hospital} dataset array contains data on 100 hospital patients, including last name, gender, age, weight, smoking status, and systolic and diastolic blood pressure measurements.

To determine if smoking status is independent of gender, use \texttt{crosstab} to create a 2-by-2 contingency table of smokers and nonsmokers, grouped by gender:

[tbl,chi2,p,labels] = crosstab(hospital.Sex,hospital.Smoker)

tbl = 2x2

\[
\begin{array}{cc}
40 & 13 \\
26 & 21
\end{array}
\]

chi2 = 4.5083

p = 0.0337
labels = 2x2 cell array
    {'Female'}    {'0'}
    {'Male'   }    {'1'}

The rows of the resulting contingency table tbl correspond to the patient's gender, with row 1 containing data for females and row 2 containing data for males. The columns correspond to the patient's smoking status, with column 1 containing data for nonsmokers and column 2 containing data for smokers. The returned result chi2 = 4.5083 is the value of the chi-squared test statistic for a chi-squared test of independence. The returned value p = 0.0337 is an approximate P-value based on the chi-squared distribution.

Use the contingency table generated by crosstab to perform Fisher's exact test on the data.

[h,p,stats] = fishertest(tbl)

h = logical
   1

p = 0.0375

stats = struct with fields:
    OddsRatio: 2.4852
    ConfidenceInterval: [1.0624 5.8135]

The result h = 1 indicates that fishertest rejects the null hypothesis of nonassociation between smoking status and gender at the 5% significance level. In other words, there is an association between gender and smoking status. The odds ratio indicates that the male patients have about 2.5 times greater odds of being smokers than the female patients.

The returned P-value of the test, p = 0.0375, is close to, but not exactly the same as, the result obtained by crosstab. This is because fishertest computes an exact P-value using the sample data, while crosstab uses a chi-squared approximation to compute the P-value.
Input Arguments

**x — Contingency table**  
2-by-2 matrix of nonnegative integer values | 2-by-2 table of nonnegative integer values

Contingency table, specified as a 2-by-2 matrix or table containing nonnegative integer values. A contingency table contains the frequency distribution of the variables in the sample data. You can use `crosstab` to generate a contingency table from sample data.

Example: `[4,0;0,4]`

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Alpha',0.01,'Tail','right'` specifies a right-tailed hypothesis test at the 1% significance level.

**Alpha — Significance level**  
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of `'Alpha'` and a scalar value in the range (0,1).

Example: `'Alpha',0.01`

Data Types: `single` | `double`

**Tail — Type of alternative hypothesis**  
'both' (default) | 'right' | 'left'

Type of alternative hypothesis, specified as the comma-separated pair consisting of `'Tail'` and one of the following.
'both'

Two-tailed test. The alternative hypothesis is that there is a nonrandom association between the two variables in x, and the odds ratio is not equal to 1.

'right'

Right-tailed test. The alternative hypothesis is that the odds ratio is greater than 1.

'left'

Left-tailed test. The alternative hypothesis is that the odds ratio is less than 1.

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.
- If h is 1, then fishertest rejects the null hypothesis at the Alpha significance level.
- If h is 0, then fishertest fails to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test data
structure

Test data, returned as a structure with the following fields:
- OddsRatio — A measure of association between the two variables.
- ConfidenceInterval — Asymptotic confidence interval for the odds ratio. If any of the cell frequencies in x are 0, then fishertest does not compute a confidence interval and instead displays [-Inf Inf].
Definitions

Fisher’s Exact Test

Fisher’s exact test is a nonparametric statistical test used to test the null hypothesis that no nonrandom associations exist between two categorical variables, against the alternative that there is a nonrandom association between the variables.

Fisher’s exact test provides an alternative to the chi-squared test for small samples, or samples with very uneven marginal distributions. Unlike the chi-squared test, Fisher’s exact test does not depend on large-sample distribution assumptions, and instead calculates an exact $p$-value based on the sample data. Although Fisher’s exact test is valid for samples of any size, it is not recommended for large samples because it is computationally intensive. If all of the frequency counts in the contingency table are greater than or equal to 1e7, then fishertest errors. For contingency tables that contain large count values or are well-balanced, use crosstab or chi2gof instead.

fishertest accepts a 2-by-2 contingency table as input, and computes the $p$-value of the test as follows:

1. Calculate the sums for each row, column, and total number of observations in the contingency table.
2. Using a multivariate generalization of the hypergeometric probability function, calculate the conditional probability of observing the exact result in the contingency table if the null hypothesis were true, given its row and column sums. The conditional probability is

$$P_{cutoff} = \frac{(R_1!R_2!)(C_1!C_2!)}{N! \prod_{i,j} n_{ij}!},$$

where $R_1$ and $R_2$ are the row sums, $C_1$ and $C_2$ are the column sums, $N$ is the total number of observations in the contingency table, and $n_{ij}$ is the value in the $i$th row and $j$th column of the table.
3. Find all possible matrices of nonnegative integers consistent with the row and column sums. For each matrix, calculate the associated conditional probability using the equation for $P_{cutoff}$.
4. Use these values to calculate the $p$-value of the test, based on the alternative hypothesis of interest.
• For a two-sided test, sum all of the conditional probabilities less than or equal to $P_{cutoff}$ for the observed contingency table. This represents the probability of observing a result as extreme as, or more extreme than, the actual outcome if the null hypothesis were true. Small $p$-values cast doubt on the validity of the null hypothesis, in favor of the alternative hypothesis of association between the variables.

• For a left-sided test, sum the conditional probabilities of all the matrices with a (1,1) cell frequency less than or equal to $n_{11}$.

• For a right-sided test, sum the conditional probabilities of all the matrices with a (1,1) cell frequency greater than or equal to $n_{11}$ in the observed contingency table.

The odds ratio is

$$OR = \frac{n_{11}n_{22}}{n_{21}n_{12}}.$$

The null hypothesis of conditional independence is equivalent to the hypothesis that the odds ratio equals 1. The left-sided alternative is equivalent to an odds ratio less than 1, and the right-sided alternative is equivalent to an odds ratio greater than 1.

The asymptotic 100(1 - $\alpha$)% confidence interval for the odds ratio is

$$CI = \left[ \exp \left( L - \Phi^{-1} \left( \frac{1 - \alpha}{2} \right) SE \right), \exp \left( L + \Phi^{-1} \left( \frac{1 - \alpha}{2} \right) SE \right) \right],$$

where $L$ is the log odds ratio, $\Phi^{-1}(\cdot)$ is the inverse of the normal inverse cumulative distribution function, and $SE$ is the standard error for the log odds ratio. If the 100(1 - $\alpha$) % confidence interval does not contain the value 1, then the association is significant at the $\alpha$ significance level. If any of the four cell frequencies are 0, then fishertest does not compute the confidence interval and instead displays [-Inf Inf].

fishertest only accepts 2-by-2 contingency tables as input. To test the independence of categorical variables with more than two levels, use the chi-squared test provided by crosstab.

See Also

chi2gof | crosstab
Introduced in R2014b
ClassificationDiscriminant.fit

Class: ClassificationDiscriminant

Fit discriminant analysis classifier (to be removed)

Note ClassificationDiscriminant.fit will be removed in a future release. Use fitcdiscr instead.

Syntax

obj = ClassificationDiscriminant.fit(x,y)
obj = ClassificationDiscriminant.fit(x,y,Name,Value)

Description

obj = ClassificationDiscriminant.fit(x,y) returns a discriminant analysis classifier based on the input variables (also known as predictors, features, or attributes) x and output (response) y.

obj = ClassificationDiscriminant.fit(x,y,Name,Value) fits a classifier with additional options specified by one or more Name,Value pair arguments. If you use one of the following five options, obj is of class ClassificationPartitionedModel: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, obj is of class ClassificationDiscriminant.

Input Arguments

x — Predictor values
matrix of numeric values

Predictor values, specified as a matrix of numeric values. Each column of x represents one variable, and each row represents one observation.
ClassificationDiscriminant.fit considers `NaN` values in `x` as missing values. ClassificationDiscriminant.fit does not use observations with missing values for `x` in the fit.

Data Types: `single` | `double`

**y — Classification values**

numeric vector | categorical vector | logical vector | character array | cell array of character vectors

Classification values, specified as a numeric vector, categorical vector (nominal or ordinal), logical vector, character array, or cell array of character vectors. Each row of `y` represents the classification of the corresponding row of `x`.

ClassificationDiscriminant.fit considers `NaN` values in `y` to be missing values. ClassificationDiscriminant.fit does not use observations with missing values for `y` in the fit.

Data Types: `single` | `double` | `logical` | `char` | `cell`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**ClassNames — Class names**

array

Class names, specified as the comma-separated pair consisting of `ClassNames` and an array. Use the data type that exists in `y`. The default is the class names that exist in `y`. Use `ClassNames` to order the classes or to select a subset of classes for training.

Data Types: `single` | `double` | `logical` | `char`

**Cost — Cost of misclassification**

square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of `Cost` and a square matrix, where `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. Alternatively, `Cost` can be a structure `S` having two fields: `S.ClassNames`
containing the group names as a variable of the same type as \( y \), and \( S.ClassificationCosts \) containing the cost matrix.

The default is \( \text{Cost}(i,j)=1 \) if \( i\neq j \), and \( \text{Cost}(i,j)=0 \) if \( i=j \).

Data Types: \text{single} | \text{double} | \text{struct}

**CrossVal — Cross-validation flag**

\( 'off' \) (default) | \( 'on' \)

Cross-validation flag, specified as the comma-separated pair consisting of \( 'Crossval' \) and \( 'on' \) or \( 'off' \).

If you specify \( 'on' \), then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: \( \text{CVPartition} \), \( \text{Holdout} \), \( \text{KFold} \), or \( \text{Leaveout} \). To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing \( \text{Mdl} \) to \( \text{crossval} \).

Example: \( 'CrossVal','on' \)

**CVPartition — Cross-validated model partition**

\( \text{cvpartition} \) object

Cross-validated model partition, specified as the comma-separated pair consisting of \( 'CVPartition' \) and an object created using \( \text{cvpartition} \).

To create a cross-validated model, you can use one of these four name-value pair arguments only: \( \text{CVPartition} \), \( \text{Holdout} \), \( \text{KFold} \), or \( \text{Leaveout} \).

**Delta — Linear coefficient threshold**

\( 0 \) (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of \( 'Delta' \) and a nonnegative scalar value. If a coefficient of \( \text{Mdl} \) has magnitude smaller than \( \text{Delta} \), \( \text{Mdl} \) sets this coefficient to \( 0 \), and you can eliminate the corresponding predictor from the model. Set \( \text{Delta} \) to a higher value to eliminate more predictors.

\( \text{Delta} \) must be \( 0 \) for quadratic discriminant models.

Data Types: \text{single} | \text{double}
**DiscrimType — Discriminant type**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Predictor Covariance Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>'linear'</td>
<td>Regularized linear discriminant analysis (LDA)</td>
<td>• All classes have the same covariance matrix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $\hat{\Sigma}_\gamma = (1-\gamma)\hat{\Sigma} + \gamma \text{diag}(\hat{\Sigma})$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\Sigma}$ is the empirical, pooled covariance matrix and $\gamma$ is the amount of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regularization.</td>
</tr>
<tr>
<td>'diaglinear'</td>
<td>LDA</td>
<td>All classes have the same, diagonal covariance matrix.</td>
</tr>
<tr>
<td>'pseudolinear'</td>
<td>LDA</td>
<td>All classes have the same covariance matrix. The software inverts the covariance matrix using the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pseudo inverse.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic discriminant analysis (QDA)</td>
<td>The covariance matrices can vary among classes.</td>
</tr>
<tr>
<td>'diagquadratic'</td>
<td>QDA</td>
<td>The covariance matrices are diagonal and can vary among classes.</td>
</tr>
<tr>
<td>'pseudoquadratic'</td>
<td>QDA</td>
<td>The covariance matrices can vary among classes. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
</tbody>
</table>
**Note** To use regularization, you must specify 'linear'. To specify the amount of regularization, use the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

**FillCoeffs — Coeffs property flag**
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs property in the classifier object. This can be computationally intensive, especially when cross-validating. The default is 'on', unless you specify a cross-validation name-value pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

**Gamma — Amount of regularization**
scalar value in the interval [0,1]

Amount of regularization to apply when estimating the covariance matrix of the predictors, specified as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma provides finer control over the covariance matrix structure than DiscrimType.

- If you specify 0, then the software does not use regularization to adjust the covariance matrix. That is, the software estimates and uses the unrestricted, empirical covariance matrix.

- For linear discriminant analysis, if the empirical covariance matrix is singular, then the software automatically applies the minimal regularization required to invert the covariance matrix. You can display the chosen regularization amount by entering Mdl.Gamma at the command line.

- For quadratic discriminant analysis, if at least one class has an empirical covariance matrix that is singular, then the software throws an error.

- If you specify a value in the interval (0,1), then you must implement linear discriminant analysis, otherwise the software throws an error. Consequently, the software sets DiscrimType to 'linear'.

- If you specify 1, then the software uses maximum regularization for covariance matrix estimation. That is, the software restricts the covariance matrix to be diagonal. Alternatively, you can set DiscrimType to 'diagLinear' or 'diagQuadratic' for diagonal covariance matrices.
Example: 'Gamma',1
Data Types: single | double

**Holdout — Fraction of data for holdout validation**
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1. Randomly select and reserve $p \times 100\%$ of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: 'Holdout', 0.1
Data Types: double | single

**KFold — Number of folds**
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold', $k$, then the software:

1. Randomly partitions the data into $k$ sets
2. For each set, reserves the set as validation data, and trains the model using the other $k - 1$ sets
3. Stores the $k$ compact, trained models in the cells of a $k$-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: 'KFold', 8
Data Types: single | double
Leaveout — Leave-one-out cross-validation flag
'B off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \( n \) observations, where \( n \) is size(Mdl.X,1), the software:

1. Reserves the observation as validation data, and trains the model using the other \( n - 1 \) observations.
2. Stores the \( n \) compact, trained models in the cells of a \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: 'Leaveout','on'

PredictorNames — Predictor variable names
{'X1','X2',...} (default) | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a cell array of character vectors containing the names for the predictor variables, in the order in which they appear in \( X \).

Data Types: cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and one of the following.

- 'empirical' determines class probabilities from class frequencies in \( y \). If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector containing one scalar value for each class.
- A structure \( S \) with two fields:
  - \( S.ClassNames \) containing the class names as a variable of the same type as \( y \)
  - \( S.ClassProbs \) containing a vector of corresponding probabilities

Example: 'Prior','uniform'
Data Types: single | double | char | struct

**ResponseName — Response variable name**

'S' (default) | character vector

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

**SaveMemory — Flag to save covariance matrix**

'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of 'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does not store the full covariance matrix, but instead stores enough information to compute the matrix. The predict method computes the full covariance matrix for prediction, and does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the full covariance matrix in Mdl.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

**ScoreTransform — Score transformation**

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector or function handle.

This table summarizes the available character vectors.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
</tbody>
</table>
For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values. The length of Weights is the number of rows in X. fitcdiscr normalizes the weights to sum to 1.

Data Types: single | double

### Output Arguments

obj — Discriminant analysis classifier

classifier object

Discriminant analysis classifier, returned as a classifier object.

Note that using the 'CrossVal', 'Kfold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.
Otherwise, obj is of class ClassificationDiscriminant, and you can use the predict method to predict the response of new data.

Examples

Construct a Discriminant Analysis Classifier

Load the sample data.

load fisheriris

Construct a discriminant analysis classifier using the sample data.

obj = ClassificationDiscriminant.fit(meas,species)

obj = ClassificationDiscriminant
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
    NumObservations: 150
    DiscrimType: 'linear'
    Mu: [3x4 double]
    Coefs: [3x3 struct]

Definitions

Discriminant Classification

The model for discriminant analysis is:

- Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model assumes X has a Gaussian mixture distribution (gmdistribution).
• For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
• For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

\[
\hat{y} = \arg \min_{y=1,\ldots,K} \sum_{k=1}^{K} \hat{P}(k \mid x)C(y \mid k),
\]

where

• \(\hat{y}\) is the predicted classification.
• \(K\) is the number of classes.
• \(\hat{P}(k \mid x)\) is the posterior probability on page 20-7 of class \(k\) for observation \(x\).
• \(C(y \mid k)\) is the cost on page 20-8 of classifying an observation as \(y\) when its true class is \(k\).

For details, see “Prediction Using Discriminant Analysis Models” on page 20-7.

**Alternatives**

The classify function also performs discriminant analysis. classify is usually more awkward to use:

• classify requires you to fit the classifier every time you make a new prediction.
• classify does not perform cross validation.
• classify requires you to fit the classifier when changing prior probabilities.

**See Also**
ClassificationDiscriminant
Topics
“Discriminant Analysis Classification” on page 20-2
ClassificationKNN.fit

Fit k-nearest neighbor classifier (to be removed)

**Note** ClassificationKNN.fit will be removed in a future release. Use fitcknn instead.

**Syntax**

mdl = ClassificationKNN.fit(X,y)
mdl = ClassificationKNN.fit(X,y,Name,Value)

**Description**

mdl = ClassificationKNN.fit(X,y) returns a classification model based on the input variables (also known as predictors, features, or attributes) X and output (response) y.

mdl = ClassificationKNN.fit(X,y,Name,Value) fits a model with additional options specified by one or more Name,Value pair arguments.

If you use one of these options, mdl is of class ClassificationPartitionedModel: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, mdl is of class ClassificationKNN.

**Input Arguments**

**X — Predictor data**
numeric matrix

Predictor data, specified as a numeric matrix. Each column of X represents one variable, and each row represents one observation.

The length of Y and the number of observations in X must be equal.
To specify the names of the predictors in the order of their appearance in \( X \), use the \texttt{PredictorNames} name-value pair argument.

Data Types: \texttt{single} | \texttt{double}

\textbf{Y — Classification values}

\begin{verbatim}
numeric vector | categorical vector | logical vector | character array | cell array of character vectors
\end{verbatim}

Classification values, specified as a numeric vector, categorical vector, logical vector, character array, or cell array of character vectors, with the same number of rows as \( X \). Each row of \( Y \) represents the classification of the corresponding row of \( X \).

Data Types: \texttt{single} | \texttt{double} | \texttt{cell} | \texttt{logical} | \texttt{char}

\textbf{Name-Value Pair Arguments}

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

\textbf{BreakTies — Tie-breaking algorithm}

\begin{verbatim}
'smallest' (default) | 'nearest' | 'random'
\end{verbatim}

Tie-breaking algorithm used by the \texttt{predict} method if multiple classes have the same smallest cost, specified as the comma-separated pair consisting of \texttt{'BreakTies'} and one of the following:

- \texttt{'smallest'} — Use the smallest index among tied groups.
- \texttt{'nearest'} — Use the class with the nearest neighbor among tied groups.
- \texttt{'random'} — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the \( K \) nearest neighbors.

Example: \texttt{('BreakTies','nearest')}

\textbf{BucketSize — Maximum data points in node}

\begin{verbatim}
50 (default) | positive integer value
\end{verbatim}
Maximum number of data points in the leaf node of the \( k \)-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only when \( \text{NSMethod} \) is 'kdtree'.

Example: 'BucketSize',40

Data Types: single | double

**CategoricalPredictors — Categorical predictor flag**

\[
\text{[]} \quad \text{(default)} \quad \text{'}\text{all}'
\]

Categorical predictor flag, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the following:

- 'all' — All predictors are categorical.
- \( \text{[]} \) — No predictors are categorical.

When you set CategoricalPredictors to 'all', the default Distance is 'hamming'.

Example: 'CategoricalPredictors','all'

**ClassNames — Class names**

numeric vector | categorical vector | logical vector | character array | cell array of character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an array representing the class names. Use the same data type as the values that exist in \( y \).

Use ClassNames to order the classes or to select a subset of classes for training. The default is the class names in \( y \).

Data Types: single | double | char | logical | cell

**Cost — Cost of misclassification**

square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and one of the following:

- Square matrix, where \( \text{Cost}(i,j) \) is the cost of classifying a point into class \( j \) if its true class is \( i \) (i.e., the rows correspond to the true class and the columns correspond to the predicted class). To specify the class order for the corresponding rows and columns of Cost, additionally specify the ClassNames name-value pair argument.
• Structure S having two fields: S.ClassNames containing the group names as a variable of the same type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

**Cov — Covariance matrix**

nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix of scalar values representing the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either 'on' or 'off'. If 'on', fitcknn creates a cross-validated model with 10 folds. Use the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' parameters to override this cross-validation setting. You can only use one cross-validation name-value pair argument at a time to create a cross-validated model.

Alternatively, cross validate mdl later using the crossval method.

Example: 'Crossval','on'

**CVPartition — Cross-validated model partition**

cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of 'CVPartition' and an object created using cvpartition. You can only use one of these four options at a time to create a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

**Distance — Distance metric**

'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | 'hamming' | function handle | ...
Distance metric, specified as the comma-separated pair consisting of 'Distance' and a valid distance metric name or function handle. The allowable distance metric names depend on your choice of a neighbor-searcher method (see NSMethod).

<table>
<thead>
<tr>
<th>NSMethod</th>
<th>Distance Metric Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>exhaustive</td>
<td>Any distance metric of ExhaustiveSearcher</td>
</tr>
<tr>
<td>kdtree</td>
<td>'cityblock', 'chebychev', 'euclidean', or 'minkowski'</td>
</tr>
</tbody>
</table>

This table includes valid distance metrics of ExhaustiveSearcher.

<table>
<thead>
<tr>
<th>Distance Metric Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is the sample covariance matrix of X, as computed by nancov(X). To specify a different value for C, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'Exponent' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between X and a query point is scaled, meaning divided by a scale value S. The default value of S is the standard deviation computed from X, S = nanstd(X). To specify another value for S, use the Scale name-value pair argument.</td>
</tr>
</tbody>
</table>
Distance Metric Names | Description
--- | ---
'spearman' | One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
@distfun | Distance function handle. distfun has the form

```matlab
function D2 = distfun(ZI,ZJ)
% calculation of distance
...
```

where

- ZI is a 1-by-N vector containing one row of X or Y.
- ZJ is an M2-by-N matrix containing multiple rows of X or Y.
- D2 is an M2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).

If you specify CategoricalPredictors as 'all', then the default distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

Data Types: char | function_handle

**DistanceWeight — Distance weighting function**

Value	Description
'equal' (default) | No weighting
'inverse' | Weight is 1/distance
'squaredinverse' | Weight is 1/distance$^2$

Distance weighting function, specified as the comma-separated pair consisting of 'DistanceWeight' and either a function handle or one of the values in this table.
@fcn

*fcn* is a function that accepts a matrix of nonnegative distances, and returns a matrix the same size containing nonnegative distance weights. For example, 'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight','inverse'

Data Types: char | function_handle

**Exponent — Minkowski distance exponent**

2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

**Holdout — Fraction of data for holdout validation**

0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of the data, and uses the remaining data for training.

If you use Holdout, you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

**IncludeTies — Tie inclusion flag**

false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical value indicating whether predict includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true
Data Types: logical

**KFold — Number of folds**

10 (default) | positive integer value

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or 'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and either 'on' or 'off'. Specify 'on' to use leave-one-out cross validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

**NSMethod — Nearest neighbor search method**

'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod' and 'kdtree' or 'exhaustive'.

- 'kdtree' — Creates and uses a kd-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
  - 'euclidean'
  - 'cityblock'
  - 'minkowski'
  - 'chebychev'

- 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point xnew, the software computes the distance values from all points in X to xnew to find nearest neighbors.
The default is 'kdtree' when \( X \) has 10 or fewer columns, \( X \) is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

**NumNeighbors — Number of nearest neighbors to find**

1 (default) | positive integer value

Number of nearest neighbors in \( X \) to find for classifying each point when predicting, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer value.

Example: 'NumNeighbors',3

Data Types: single | double

**PredictorNames — Predictor variable names**

\{'x1','x2',...\} (default) | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a cell array of character vectors containing the names for the predictor variables, in the order in which they appear in \( X \).

If you specify the predictors as a table (tbl), then PredictorNames must be a subset of the variable names in tbl. In this case, the software uses only the variables in PredictorNames to train the model. If you use formula to specify the model, then you cannot use the PredictorNames name-value pair.

Example: 'PredictorNames',{'PedalWidth','PedalLength'}

Data Types: cell

**Prior — Prior probabilities**

'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in ( Y ).</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to $1/K$, where $K$ is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to Mdl.ClassNames or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Example: 'Prior','uniform'

Data Types: char | single | double | struct

**ResponseName — Response variable name**

'Y' (default) | character vector

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector containing the name of the response variable Y.

This name-value pair is not valid when using the ResponseVarName or formula input arguments.

Example: 'ResponseName','Response'

Data Types: char

**Scale — Distance scale**
nanstd(X) (default) | vector of nonnegative scalar values
Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing nonnegative scalar values with length equal to the number of columns in X. Each coordinate difference between X and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values. The software weighs the observations in each row of X or tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of X or tbl.

If you specify the input data as a table tbl, then Weights can be the name of a variable in tbl that contains a numeric vector. In this case, you must specify Weights as a character vector containing the variable name. For example, if the weights vector w is stored as tbl.w, then specify it as 'w'. Otherwise, the software treats all columns of tbl, including w, as predictors when training the model.

The software normalizes the weights in each class to add up to the value of the prior probability of the class.

Data Types: single | double

Output Arguments

mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

Examples
**Train k-Nearest Neighbor Classifier**

Train a $k$-nearest neighbor classifier for Fisher's iris data, where $k$, the number of nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

```matlab
load fisheriris
X = meas;
Y = species;
```

$X$ is a numeric matrix that contains four petal measurements for 150 irises. $Y$ is a cell array of character vectors that contains the corresponding iris species.

Train a 5-nearest neighbor classifier. Standardize the noncategorical predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)
```

```matlab
Mdl = ClassificationKNN
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 150
 Distance: 'euclidean'
 NumNeighbors: 5
```

**Properties, Methods**

`Mdl` is a trained `ClassificationKNN` classifier, and some of its properties appear in the Command Window.

To access the properties of `Mdl`, use dot notation.

```matlab
Mdl.ClassNames
```

```matlab
ans = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }
```
Mdl.Prior
ans = 1x3
    0.3333    0.3333    0.3333

Mdl.Prior contains the class prior probabilities, which you can specify using the 'Prior' name-value pair argument in fitcknn. The order of the class prior probabilities corresponds to the order of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5, 0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to predict to label new measurements or crossval to cross-validate the classifier.

### Train a k-Nearest Neighbor Classifier Using the Minkowski Metric

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a 3-nearest neighbors classifier using the Minkowski metric. To use the Minkowski metric, you must use an exhaustive searcher. It is good practice to standardize noncategorical predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',3,...
 'NSMethod','exhaustive','Distance','minkowski',...
 'Standardize',1);
```

Mdl is a ClassificationKNN classifier.
You can examine the properties of \texttt{Mdl} by double-clicking \texttt{Mdl} in the Workspace window. This opens the Variable Editor.
Definitions

Prediction

ClassificationKNN predicts the classification of a point \( x_{\text{new}} \) using a procedure equivalent to this:

1. Find the \( \text{NumNeighbors} \) points in the training set \( X \) that are nearest to \( x_{\text{new}} \).
2. Find the \( \text{NumNeighbors} \) response values \( Y \) to those nearest points.
3. Assign the classification label \( y_{\text{new}} \) that has the largest posterior probability among the values in \( Y \).

For details, see “Posterior Probability” on page 32-4943 in the predict documentation.

See Also
ClassificationKNN | fitcknn | predict

Topics
“Construct KNN Classifier” on page 18-36
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16
ClassificationTree.fit

Class: ClassificationTree

Fit classification tree (to be removed)

Note ClassificationTree.fit will be removed in a future release. Use fitctree instead.

Syntax

tree = ClassificationTree.fit(x,y)
tree = ClassificationTree.fit(x,y,Name,Value)

Description

tree = ClassificationTree.fit(x,y) returns a classification tree based on the input variables (also known as predictors, features, or attributes) x and output (response) y. tree is a binary tree, where each branching node is split based on the values of a column of x.

tree = ClassificationTree.fit(x,y,Name,Value) fits a tree with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.

Otherwise, tree is of class ClassificationTree, and you can use the predict method to make predictions.
**Input Arguments**

**x** — Predictor values
matrix of floating point values

Predictor values, specified as a matrix of floating point values.

`ClassificationTree.fit` considers NaN values in x as missing values. `ClassificationTree.fit` does not use observations with all missing values for x in the fit. `ClassificationTree.fit` uses observations with some missing values for x to find splits on variables for which these observations have valid values.

Data Types: single | double

**y** — predictor values
numeric vector | categorical vector | logical vector | character array | cell array of character vectors

Predictor values, specified as a numeric vector, categorical vector, logical vector, character array, or cell array of character vectors.

Each row of y represents the classification of the corresponding row of x. For numeric y, consider using `fitrtree` instead. `ClassificationTree.fit` considers NaN values in y to be missing values.

`ClassificationTree.fit` does not use observations with missing values for y in the fit.

Data Types: single | double | char | logical | cell

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**AlgorithmForCategorical** — Algorithm for best split on categorical predictor

Valid values are:

- `'Exact'`
- `'PullLeft'`
- `'PCA'`
- `'OVAbyClass'`
Algorithm to find the best split on a categorical predictor with $L$ levels for data with $K \geq 3$ classes, specified as the comma-separated pair consisting of 'AlgorithmForCategorical' and one of the following.

- 'Exact' Consider all $2^{L-1} - 1$ combinations
- 'PullLeft' Pull left by purity
- 'PCA' Principal component-based partition
- 'OVAbyClass' One versus all by class

`ClassificationTree.fit` selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For $K = 2$ classes, `ClassificationTree.fit` always performs the exact search.

Example: 'AlgorithmForCategorical','PCA'

**CategoricalPredictors — Categorical predictors list**

numeric or logical vector | cell array of character vectors | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the following.

- A numeric vector with indices from 1 to $p$, where $p$ is the number of columns of $x$.
- A logical vector of length $p$, where a true entry means that the corresponding column of $x$ is a categorical variable.
- A cell array of character vectors, where each element in the array is the name of a predictor variable. The names must match entries in PredictorNames values.
- A character matrix, where each row of the matrix is a name of a predictor variable. The names must match entries in PredictorNames values. Pad the names with extra blanks so each row of the character matrix has the same length.
- 'all', meaning all predictors are categorical.

Example: 'CategoricalPredictors','all'

Data Types: single | double | char

**ClassNames — Class names**

numeric vector | categorical vector | logical vector | character array | cell array of character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an array representing the class names. Use the same data type as the values that exist in $y$. 

32-1597
Use `ClassNames` to order the classes or to select a subset of classes for training. The default is the class names that exist in `y`.

Data Types: `single` | `double` | `char` | `logical` | `cell`

**Cost — Cost of misclassification**

Square matrix | Structure

Cost of misclassification a point, specified as the comma-separated pair consisting of 'Cost' and one of the following.

- Square matrix, where `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`.
- Structure `S` having two fields: `S.ClassNames` containing the group names as a variable of the same type as `y`, and `S.ClassificationCosts` containing the cost matrix.

The default is `Cost(i,j)=1` if `i≠j`, and `Cost(i,j)=0` if `i=j`

Data Types: `single` | `double` | `struct`

**CrossVal — Flag to grow cross-validated tree**

'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair consisting of 'CrossVal' and either 'on' or 'off'.

If 'on', `ClassificationTree.fit` grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-value pair arguments. Note that you can only use one of these four options ('KFold', 'Holdout', 'Leaveout', or 'CVPartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the `crossval` method.

Example: 'CrossVal','on'

**CVPartition — Partition for cross-validation tree**

`cvpartition` object

Partition to use in a cross-validated tree, specified as the comma-separated pair consisting of 'CVPartition' and an object of the `cvpartition` class created using `cvpartition`. 
Note that if you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-value pair arguments.

**Holdout** — Fraction of data for holdout validation

1 (default) | scalar value in the range (0,1]  

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.

Note that if you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1  

Data Types: single | double

**KFold** — Number of folds  

10 (default) | positive integer value  

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of 'KFold' and a positive integer value.

Note that if you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or 'Leaveout' name-value pair arguments.

Example: 'KFold',8  

Data Types: single | double

**Leaveout** — Leave-one-out cross validation flag  

'off' (default) | 'on'  

Leave-one-out cross validation flag, specified as the comma-separated pair consisting of 'Leaveout' and either 'on' or 'off'. Use leave-one-out cross validation by setting to 'on'.

Note that if you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

**MaxCat** — Maximum category levels  

10 (default) | nonnegative scalar value
Maximum category levels, specified as the comma-separated pair consisting of 'MaxCat' and a nonnegative scalar value. ClassificationTree.fit splits a categorical predictor using the exact search algorithm if the predictor has at most MaxCat levels in the split node. Otherwise, ClassificationTree.fit finds the best categorical split using one of the inexact algorithms.

Note that passing a small value can lead to loss of accuracy and passing a large value can lead to long computation time and memory overload.

Example: 'MaxCat',8

MergeLeaves — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and either 'on' or 'off'. When 'on', ClassificationTree.fit merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', ClassificationTree.fit does not merge leaves.

Example: 'MergeLeaves','off'

MinLeaf — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair consisting of 'MinLeaf' and a positive integer value. Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Example: 'MinLeaf',3

Data Types: single | double

MinParent — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair consisting of 'MinParent' and a positive integer value. Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).
Example: 'MinParent', 8
Data Types: single | double

**NVarToSample — Number of predictors for split**
'all' | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair consisting of 'NVarToSample' and a positive integer value. You can also specify 'all' to use all available predictors.
Example: 'NVarToSample', 3
Data Types: single | double

**PredictorNames — Predictor variable names**
{'}x1', 'x2', ...'} (default) | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a cell array of character vectors containing the names for the predictor variables, in the order in which they appear in x.

**Prior — Prior probabilities**
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and one of the following.

- 'empirical' determines class probabilities from class frequencies in y. If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector (one scalar value for each class)
- A structure S with two fields:
  - S.ClassNames containing the class names as a variable of the same type as y
  - S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.
Example: 'Prior', 'uniform'
Prune — Pruning flag
'on' (default) | 'off'

Pruning flag, specified as the comma-separated pair consisting of 'Prune' and either 'on' or 'off'. When 'on', ClassificationTree.fit grows the classification tree, and computes the optimal sequence of pruned subtrees. When 'off' ClassificationTree.fit grows the classification tree without pruning.

Example: 'Prune','off'

PruneCriterion — Pruning criterion
'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and either 'error' or 'impurity'.

Example: 'PruneCriterion','impurity'

ResponseName — Response variable name
'Y' (default) | character vector

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector representing the name of the response variable y.

Example: 'ResponseName','Response'

ScoreTransform — Score transform function
'none' | 'symmetric' | 'invlogit' | 'ismax' | function handle | ...

Score transform function, specified as the comma-separated pair consisting of 'ScoreTransform' and a function handle for transforming scores. Your function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Alternatively, you can specify one of the following values representing a built-in transformation function.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign'             | -1 for $x < 0$  
                      | 0 for $x = 0$  
                      | 1 for $x > 0$                                      |
| 'symmetric'        | $2x - 1$                                                                   |
| 'symmetricismax'   | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to $-1$ |
| 'symmetriclogit'   | $2/(1 + e^{-x}) - 1$                                                        |

Example: 'ScoreTransform','logit'

**SplitCriterion — Split criterion**

'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Example: 'SplitCriterion','deviance'

**Surrogate — Surrogate decision splits flag**

'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and 'on', 'off', 'all', or a positive integer value.

- When set to 'on', ClassificationTree.fit finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, ClassificationTree.fit finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', ClassificationTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.
Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Example: 'Surrogate','on'

**Weights — Observation weights**

ones(size(x,1),1) (default) | vector of scalar values

Vector of observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values. The length of Weights is equal to the number of rows in x. ClassificationTree.fit normalizes the weights in each class to add up to the value of the prior probability of the class.

Data Types: single | double

**Output Arguments**

**tree — Classification tree**

classification tree object

Classification tree object, returned as a classification tree object.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method. Instead, use kfoldpredict to predict responses for observations not used for training.

Otherwise, tree is of class ClassificationTree, and you can use the predict method to make predictions.

**Examples**

**Construct a Classification Tree**

Construct a classification tree for the data in ionosphere.mat.
load ionosphere
tc = ClassificationTree.fit(X,Y)

tc =
    ClassificationTree
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b' 'g'}
    ScoreTransform: 'none'
    NumObservations: 351

Properties, Methods

Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair argument:

- Gini's Diversity Index (gdi) — The Gini index of a node is

\[ 1 - \sum_i p^2(i), \]

where the sum is over the classes \( i \) at the node, and \( p(i) \) is the observed fraction of classes with class \( i \) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') — With \( p(i) \) defined the same as for the Gini index, the deviance of a node is

\[ -\sum_i p(i) \log_2 p(i). \]
A pure node has deviance $\theta$; otherwise, the deviance is positive.

- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class $i$ in the left child node after a split, and $R(i)$ denote the fraction of members of class $i$ in the right child node after a split. Choose the split criterion to maximize

$$P(L) P(R) \left( \sum_i |L(i) - R(i)| \right)^2,$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

- Node error — The node error is the fraction of misclassified classes at a node. If $j$ is the class with the largest number of training samples at a node, the node error is

$$1 - \frac{1}{p(j)}.$$

References


See Also

ClassificationTree | fitctree | kfoldpredict | predict
GeneralizedLinearModel.fit

Class: GeneralizedLinearModel

Create generalized linear regression model

Note GeneralizedLinearModel.fit will be removed in a future release. Use fitglm instead.

Syntax

mdl = GeneralizedLinearModel.fit(tbl)
mdl = GeneralizedLinearModel.fit(X,y)
mdl = GeneralizedLinearModel.fit(...,modelspec)
mdl = GeneralizedLinearModel.fit(...,Name,Value)
mdl = GeneralizedLinearModel.fit(...,modelspec,Name,Value)

Description

mdl = GeneralizedLinearModel.fit(tbl) creates a generalized linear model of a table or dataset array tbl.

mdl = GeneralizedLinearModel.fit(X,y) creates a generalized linear model of the responses y to a data matrix X.

mdl = GeneralizedLinearModel.fit(...,modelspec) creates a generalized linear model as specified by modelspec.

mdl = GeneralizedLinearModel.fit(...,Name,Value) or mdl = GeneralizedLinearModel.fit(...,modelspec,Name,Value) creates a generalized linear model with additional options specified by one or more Name,Value pair arguments.
Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables and response variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57).

To set a different column as the response variable, use the ResponseVar name-value pair argument. To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables. Each column of X represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in y is the response for the corresponding row of X.

modelspec — Model specification
character vector or string scalar specifying the model | t-by-(p+1) terms matrix | character vector or string scalar of the form 'Y ~ terms'

Model specification, specified as one of the following:

- Character vector or string scalar specifying the type of model.
### Value-Model Type

<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree $i$ in the first predictor, degree $j$ in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

- $t$-by-$(p+1)$ matrix, namely terms matrix on page 32-1616, specifying terms to include in model, where $t$ is the number of terms and $p$ is the number of predictor variables, and plus one is for the response variable.
- Character vector or string scalar representing a formula on page 32-1619 in the form

  ```
 'Y ~ terms',
  ```

  where the terms are in “Wilkinson Notation” on page 32-1620.

**Example:** 'quadratic'

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

- **BinomialSize — Number of trials for binomial distribution**
  1 (default) | scalar value | vector
Number of trials for binomial distribution, that is the sample size, specified as the comma-separated pair consisting of a scalar value or a vector of the same length as the response. This is the parameter \( n \) for the fitted binomial distribution. **BinomialSize** applies only when the **Distribution** parameter is 'binomial'.

If **BinomialSize** is a scalar value, that means all observations have the same number of trials.

As an alternative to **BinomialSize**, you can specify the response as a two-column vector with counts in column 1 and **BinomialSize** in column 2.

Data Types: single | double

### CategoricalVars — Categorical variable list

*string array | cell array of character vectors | logical or numeric index vector*

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array tbl, then, by default, `GeneralizedLinearModel.fit` treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix \( X \), then the default value of 'CategoricalVars' is an empty matrix \([]\). That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

### DispersionFlag — Indicator to compute dispersion parameter

*false for 'binomial' and 'poisson' distributions (default) | true*

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified as the comma-separated pair consisting of 'DispersionFlag' and one of the following.
**true** Estimate a dispersion parameter when computing standard errors  
**false** Default. Use the theoretical value when computing standard errors

The fitting function always estimates the dispersion for other distributions.

Example: 'DispersionFlag',true

**Distribution — Distribution of the response variable**

<table>
<thead>
<tr>
<th>'normal' (default)</th>
<th>'binomial'</th>
<th>'poisson'</th>
<th>'gamma'</th>
<th>'inverse gaussian'</th>
</tr>
</thead>
</table>

Distribution of the response variable, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

Example: 'Distribution','gamma'

**Exclude — Observations to exclude**

logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]  
Example: 'Exclude',logical([0 1 1 0 0 0])  
Data Types: single | double | logical

**Intercept — Indicator for constant term**

true (default) | false

32-1611
Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**Link — Link function**

canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-separated pair consisting of 'Link' and one of the following.

<table>
<thead>
<tr>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'identity'</td>
<td>( f(\mu) = \mu )</td>
<td>( \mu = Xb )</td>
</tr>
<tr>
<td>'log'</td>
<td>( f(\mu) = \log(\mu) )</td>
<td>( \mu = \exp(Xb) )</td>
</tr>
<tr>
<td>'logit'</td>
<td>( f(\mu) = \log(\mu/(1-\mu)) )</td>
<td>( \mu = \exp(Xb) / (1 + \exp(Xb)) )</td>
</tr>
<tr>
<td>'probit'</td>
<td>( f(\mu) = \Phi^{-1}(\mu) )</td>
<td>( \mu = \Phi(Xb) )</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>( f(\mu) = \log(-\log(1 - \mu)) )</td>
<td>( \mu = 1 - \exp(-\exp(Xb)) )</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>( f(\mu) = 1/\mu )</td>
<td>( \mu = 1/(Xb) )</td>
</tr>
<tr>
<td>p (a number)</td>
<td>( f(\mu) = \mu^p )</td>
<td>( \mu = Xb^{1/p} )</td>
</tr>
<tr>
<td>S (a structure)</td>
<td>( f(\mu) = S.Link(\mu) )</td>
<td>( \mu = S.Inverse(Xb) )</td>
</tr>
</tbody>
</table>

with three fields. Each field holds a function handle that accepts a vector of inputs and returns a vector of the same size:

- **S.Link** — The link function
- **S.Inverse** — The inverse link function
- **S.Derivative** — The derivative of the link function
The link function defines the relationship $f(\mu) = X*b$ between the mean response $\mu$ and the linear combination of predictors $X*b$.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

Data Types: char | string | single | double | struct

**Offset — Offset variable**

[ ] (default) | vector | character vector | string scalar

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and a vector or name of a variable with the same length as the response.

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

$$\mu \sim \text{Offset} + (\text{terms involving real predictors})$$

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor $A$. By using the log link function and by specifying $\log(A)$ as an offset, you can force the model to satisfy this theoretical constraint.

Data Types: single | double | char | string

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.
Example: 'PredictorVars', [2,3]
Example: 'PredictorVars', logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

**ResponseVar — Response variable**
last column in tbl (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.
Example: 'ResponseVar', 'yield'
Example: 'ResponseVar', [4]
Example: 'ResponseVar', logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

**VarNames — Names of variables**
{'x1', 'x2', ..., 'xn', 'y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.
Example: 'VarNames', {'Horsepower', 'Acceleration', 'Model_Year', 'MPG'}
Data Types: string | cell
Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

Output Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the GeneralizedLinearModel class page.

Examples

Fit a Generalized Linear Model

Fit a logistic regression model of probability of smoking as a function of age, weight, and sex, using a two-way interactions model.

Load the hospital dataset array.

load hospital
ds = hospital; % just to use the ds name

Specify the model using a formula that allows up to two-way interactions.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Create the generalized linear model.

mdl = fitglm(ds,modelspec,'Distribution','binomial')

mdl =
Generalized linear regression model:
logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight  
Distribution = Binomial

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-6.0492</td>
<td>19.749</td>
<td>-0.3063</td>
<td>0.75938</td>
</tr>
<tr>
<td>Sex_Male</td>
<td>-2.2859</td>
<td>12.424</td>
<td>-0.18399</td>
<td>0.85402</td>
</tr>
<tr>
<td>Age</td>
<td>0.11691</td>
<td>0.50977</td>
<td>0.22934</td>
<td>0.81861</td>
</tr>
<tr>
<td>Weight</td>
<td>0.031109</td>
<td>0.15208</td>
<td>0.20455</td>
<td>0.83792</td>
</tr>
<tr>
<td>Sex_Male:Age</td>
<td>0.020734</td>
<td>0.20681</td>
<td>0.10025</td>
<td>0.92014</td>
</tr>
<tr>
<td>Sex_Male:Weight</td>
<td>0.01216</td>
<td>0.05316</td>
<td>0.22871</td>
<td>0.8191</td>
</tr>
<tr>
<td>Age:Weight</td>
<td>-0.00071959</td>
<td>0.0038964</td>
<td>-0.18468</td>
<td>0.85348</td>
</tr>
</tbody>
</table>

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

The large p-value indicates the model might not differ statistically from a constant.

**Definitions**

**Terms Matrix**

A terms matrix is a \( t \)-by-(\( p + 1 \)) matrix specifying terms in a model, where \( t \) is the number of terms, \( p \) is the number of predictor variables, and plus one is for the response variable.

The value of \( T(i, j) \) is the exponent of variable \( j \) in term \( i \). Suppose there are three predictor variables A, B, and C:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>0 0 0 0</th>
<th>% Constant term or intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0</td>
<td>% B; equivalently, ( A^0 ) * ( B^1 ) * ( C^0 )</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>% ( A^*C )</td>
</tr>
<tr>
<td>2 0 0 0</td>
<td>% ( A^2 )</td>
</tr>
<tr>
<td>0 1 2 0</td>
<td>% ( B^*(C^2) )</td>
</tr>
</tbody>
</table>

The 0 at the end of each term represents the response variable. In general,
• If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ...
 hospital.Age,hospital.Smoker,'VariableNames', ...
 {'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
T =
```

```matlab
0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
```

Redefine the table.

```matlab
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ...
 hospital.Age,hospital.Smoker,'VariableNames', ...
 {'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
T =
```

```matlab
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
```

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.
Load the sample data and define the matrix of predictors.

```matlab
load carsmall
X = [Acceleration,Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

```matlab
T = [0 0 0;1 0 0;1 0;1 1 0;0 2 0]
T =

0 0 0
1 0 0
0 1 0
1 1 0
0 2 0
```

Fit a linear model.

```matlab
mdl = fitlm(X,MPG,T)
mdl =
```

```
Linear regression model:
 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:
 Estimate SE tStat pValue
 (Intercept) 48.906 12.589 3.8847 0.00019665
 x1 0.54418 0.57125 0.95261 0.34337
 x2 -0.012781 0.0060312 -2.1192 0.036857
 x1:x2 -0.00010892 0.00017925 -0.6076 0.545
 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917
```

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.
Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[
T = \begin{bmatrix} 0 & 0 & 0; 1 & 0 & 0; 0 & 1 & 0; 1 & 1 & 0 \end{bmatrix};
\]

\[
mdl = \text{stepwiselm}(X, \text{MPG}, [0 \ 0 \ 0], 'upper', T);
\]

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:
\[
y ~ 1 + x2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of \text{fitlm} in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form 'Y ~ terms'

where

- \(Y\) is the response name.
- \(terms\) contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
• ( ) groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>
Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

### Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

#### Canonical Link Functions for Generalized Linear Models

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td>$f(\mu) = \mu$</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>$f(\mu) = \log(\mu/(1-\mu))$</td>
<td>$\mu = \exp(Xb) / (1 + \exp(Xb))$</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td>$f(\mu) = \log(\mu)$</td>
<td>$\mu = \exp(Xb)$</td>
</tr>
<tr>
<td>'gamma'</td>
<td>-1</td>
<td>$f(\mu) = 1/\mu$</td>
<td>$\mu = 1/(Xb)$</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>-2</td>
<td>$f(\mu) = 1/\mu^2$</td>
<td>$\mu = (Xb)^{-1/2}$</td>
</tr>
</tbody>
</table>

### Tips

- The generalized linear model mdl is a standard linear model unless you specify otherwise with the Distribution name-value pair.
- For other methods such as devianceTest, or properties of the GeneralizedLinearModel object, see GeneralizedLinearModel.

### Alternatives

You can also construct a generalized linear model using fitglm.

Use stepwiseglm to select a model specification automatically. Use step, addTerms, or removeTerms to adjust a fitted model.
References


See Also

GeneralizedLinearModel | stepwiseglm

Topics

“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12
gmdistribution.fit

Gaussian mixture parameter estimates

Note  fit will be removed in a future release. Use fitgmdist instead.

Syntax

obj = gmdistribution.fit(X,k)
obj = gmdistribution.fit(...,param1,val1,param2,val2,...)

Description

obj = gmdistribution.fit(X,k) uses an Expectation Maximization (EM) algorithm to construct an object obj of the gmdistribution class containing maximum likelihood estimates of the parameters in a Gaussian mixture model with k components for data in the n-by-m matrix X, where n is the number of observations and m is the dimension of the data.

gmdistribution treats NaN values as missing data. Rows of X with NaN values are excluded from the fit.

obj = gmdistribution.fit(...,param1,val1,param2,val2,...) provides control over the iterative EM algorithm. Parameters and values are listed below.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Start'</td>
<td>Method used to choose initial component parameters. One of the following:</td>
</tr>
<tr>
<td></td>
<td>• 'randSample' — To select k observations from X at random as initial component means. The mixing proportions are uniform. The initial covariance matrices for all components are diagonal, where the element j on the diagonal is the variance of X(:,j). This is the default.</td>
</tr>
<tr>
<td></td>
<td>• 'plus' — The software selects k observations from X using the kmeans++ algorithm. The initial mixing proportions are uniform. The initial covariance matrices for all components are diagonal, where the element j on the diagonal is the variance of X(:,j).</td>
</tr>
<tr>
<td></td>
<td>• S — A structure array with fields mu, Sigma, and PComponents. See gmdistribution for descriptions of values.</td>
</tr>
<tr>
<td></td>
<td>• s — A vector of length n containing an initial guess of the component index for each point.</td>
</tr>
<tr>
<td>'Replicates'</td>
<td>A positive integer giving the number of times to repeat the EM algorithm, each time with a new set of parameters. The solution with the largest likelihood is returned. A value larger than 1 requires the 'randSample' start method. The default is 1.</td>
</tr>
<tr>
<td>'CovType'</td>
<td>'diagonal' if the covariance matrices are restricted to be diagonal; 'full' otherwise. The default is 'full'.</td>
</tr>
<tr>
<td>'SharedCov'</td>
<td>Logical true if all the covariance matrices are restricted to be the same (pooled estimate); logical false otherwise.</td>
</tr>
<tr>
<td>'Regularize'</td>
<td>A nonnegative regularization number added to the diagonal of covariance matrices to make them positive-definite. The default is 0.</td>
</tr>
<tr>
<td>'Options'</td>
<td>Options structure for the iterative EM algorithm, as created by statset. gmdistribution.fit uses the parameters 'Display' with a default value of 'off', 'MaxIter' with a default value of 100, and 'TolFun' with a default value of 1e-6.</td>
</tr>
</tbody>
</table>

In some cases, gmdistribution may converge to a solution where one or more of the components has an ill-conditioned or singular covariance matrix.

The following issues may result in an ill-conditioned covariance matrix:
• The number of dimension of your data is relatively high and there are not enough observations.
• Some of the features (variables) of your data are highly correlated.
• Some or all the features are discrete.
• You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of the following precautions:

• Pre-process your data to remove correlated features.
• Set 'SharedCov' to true to use an equal covariance matrix for every component.
• Set 'CovType' to 'diagonal'.
• Use 'Regularize' to add a very small positive number to the diagonal of every covariance matrix.
• Try another set of initial values.

In other cases gmdistribution may pass through an intermediate step where one or more of the components has an ill-conditioned covariance matrix. Trying another set of initial values may avoid this issue without altering your data or model.

**Examples**

Generate data from a mixture of two bivariate Gaussian distributions using the `mvnrnd` function:

```matlab
MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on
```

Examples
Next, fit a two-component Gaussian mixture model:

```matlab
options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
10 iterations, log-likelihood = -7046.78

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
```
Among the properties of the fit are the parameter estimates:

ComponentMeans = obj.mu
ComponentMeans =
    0.9391    2.0322
   -2.9823   -4.9737

ComponentCovariances = obj.Sigma
ComponentCovariances(:,:,1) =
    1.7786   -0.0528
   -0.0528    0.5312
ComponentCovariances(:,:,2) =
    1.0491   -0.0150
   -0.0150    0.9816
MixtureProportions = obj.PComponents
MixtureProportions =
    0.5000    0.5000

The Akaike information is minimized by the two-component model:

AIC = zeros(1,4);
obj = cell(1,4);
for k = 1:4
    obj{k} = gmdistribution.fit(X,k);
    AIC(k) = obj{k}.AIC;
end

[minAIC,numComponents] = min(AIC);
numComponents
numComponents =
    2

model = obj{2}
model =
Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
    Mixing proportion: 0.500000
    Mean:      0.9391    2.0322
Component 2:
    Mixing proportion: 0.500000
    Mean:     -2.9823   -4.9737

Both the Akaike and Bayes information are negative log-likelihoods for the data with
penalty terms for the number of estimated parameters. They are often used to determine
an appropriate number of components for a model when the number of components is
unspecified.

References

See Also
cluster | fitgmdist | gmdistribution
LinearModel.fit

Class: LinearModel

Create linear regression model

Note LinearModel.fit will be removed in a future release. Use fitlm instead.

Syntax

mdl = LinearModel.fit(tbl)
mdl = LinearModel.fit(X,y)
mdl = LinearModel.fit(___,modelspec)
mdl = LinearModel.fit(___,Name,Value)
mdl = LinearModel.fit(___,modelspec,Name,Value)

Description

mdl = LinearModel.fit(tbl) creates a linear model of a table or dataset array tbl.

mdl = LinearModel.fit(X,y) creates a linear model of the responses y to a data matrix X.

mdl = LinearModel.fit(___,modelspec) creates a linear model of the type specified by modelspec, using any of the previous syntaxes.

mdl = LinearModel.fit(___,Name,Value) or mdl = LinearModel.fit(___, modelspec,Name,Value) creates a linear model with additional options specified by one or more Name,Value pair arguments. For example, you can specify which predictor variables to include in the fit or include observation weights.

Input Arguments

tbl — Input data
table | dataset array
Input data, specified as a table or dataset array. When `modelspec` is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

-X — Predictor variables

Predictor variables, specified as an \( n \)-by-\( p \) matrix, where \( n \) is the number of observations and \( p \) is the number of predictor variables. Each column of \( X \) represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in \( X \).

Data Types: `single` | `double` | `logical`

-y — Response variable

Response variable, specified as an \( n \)-by-1 vector, where \( n \) is the number of observations. Each entry in \( y \) is the response for the corresponding row of \( X \).

Data Types: `single` | `double` | `logical`

-`modelspec` — Model specification

character vector or string scalar naming the model | \( t \)-by-(\( p + 1 \)) terms matrix | character vector or string scalar of the form `'Y ~ terms'`

Model specification, specified as one of the following.

- A character vector or string scalar naming the model.
<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree $i$ in the first predictor, degree $j$ in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

- $t$-by-($p + 1$) matrix, namely terms matrix on page 32-1641, specifying terms to include in the model, where $t$ is the number of terms and $p$ is the number of predictor variables, and plus 1 is for the response variable.

- A character vector or string scalar representing a formula on page 32-1644 in the form

  \[
  'Y \sim \text{terms}',
  \]

  where the terms are specified using Wilkinson Notation on page 32-1645.

Example: 'quadratic'
Example: 'y ~ X1 + X2^2 + X1:X2'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array tbl, then, by default, LinearModel.fit treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix []. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.
Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Intercept — Indicator for constant term
true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.
Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**ResponseVar — Response variable**

last column in tbl (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

Robust0pts — Indicator of robust fitting type
'off' (default) | 'on' | character vector | string scalar | structure with character vector, string scalar, or function handle

Indicator of the robust fitting type to use, specified as the comma-separated pair consisting of 'Robust0pts' and one of the following.

- 'off' — No robust fitting. fitlm uses ordinary least squares.
- 'on' — Robust fitting. When you use robust fitting, 'bisquare' weight function is the default.
- Character vector or string scalar — Name of the robust fitting weight function from the following table. fitlm uses the corresponding default tuning constant in the table.
- Structure with the character vector or string scalar RobustWgtFun containing the name of the robust fitting weight function from the following table and optional scalar Tune fields — fitlm uses the RobustWgtFun weight function and Tune tuning constant from the structure. You can choose the name of the robust fitting weight function from this table. If you do not supply a Tune field, the fitting function uses the corresponding default tuning constant.

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td>[w = (\text{abs}(r) &lt; \pi) \cdot \sin(r) \cdot \frac{1}{r}]</td>
<td>1.339</td>
</tr>
<tr>
<td>'bisquare'</td>
<td>[w = (\text{abs}(r) &lt; 1) \cdot (1 - r^2)^2]</td>
<td>4.685</td>
</tr>
<tr>
<td>'cauchy'</td>
<td>[w = \frac{1}{1 + r^2}]</td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td>[w = \frac{1}{1 + \text{abs}(r)}]</td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td>[w = \frac{1}{\max(1, \text{abs}(r))}]</td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td>[w = \tanh(r) \cdot \frac{1}{r}]</td>
<td>1.205</td>
</tr>
<tr>
<td>'ols'</td>
<td>Ordinary least squares (no weighting function)</td>
<td>None</td>
</tr>
<tr>
<td>'talwar'</td>
<td>[w = 1 \cdot (\text{abs}(r) &lt; 1)]</td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td>[w = \exp(-(r^2))]</td>
<td>2.985</td>
</tr>
</tbody>
</table>

The value \( r \) in the weight functions is

32-1635
\[ r = \frac{\text{resid}}{(\text{tune} \times s \times \sqrt{1-h})}, \]

where resid is the vector of residuals from the previous iteration, h is the vector of leverage values from a least-squares fit, and s is an estimate of the standard deviation of the error term given by

\[ s = \frac{\text{MAD}}{0.6745}. \]

MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are \( p \) columns in \( X \), the smallest \( p \) absolute deviations are excluded when computing the median.

Default tuning constants give coefficient estimates that are approximately 95% as statistically efficient as the ordinary least-squares estimates, provided the response has a normal distribution with no outliers. Decreasing the tuning constant increases the downweight assigned to large residuals; increasing the tuning constant decreases the downweight assigned to large residuals.

- Structure with the function handle RobustWgtFun and optional scalar Tune fields —
  You can specify a custom weight function. fitlm uses the RobustWgtFun weight function and Tune tuning constant from the structure. Specify RobustWgtFun as a function handle that accepts a vector of residuals, and returns a vector of weights the same size. The fitting function scales the residuals, dividing by the tuning constant (default 1) and by an estimate of the error standard deviation before it calls the weight function.

Example: 'Robust0pts', 'andrews'

**VarNames — Names of variables**

\{'x1', 'x2', ..., 'xn', 'y'\} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of \( X \) first, and the name for the response variable \( y \) last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

32-1636
Example: 'VarNames', {'Horsepower', 'Acceleration', 'Model_Year', 'MPG'}

Data Types: string | cell

**Weights — Observation weights**

`ones(n,1)` (default) | `n`-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an `n`-by-1 vector of nonnegative scalar values, where `n` is the number of observations.

Data Types: single | double

**Output Arguments**

**mdl — Linear model**

`LinearModel` object

Linear model representing a least-squares fit of the response to the data, returned as a `LinearModel` object.

If the value of the 'RobustOpts' name-value pair is not `{}` or 'ols', the model is not a least-squares fit, but uses the robust fitting function.

For properties and methods of the linear model object, see the `LinearModel` class page.

**Examples**

**Linear Regression Model of Matrix Data**

Fit a linear model of the Hald data.

Load the data.

```matlab
load hald
X = ingredients; % Predictor variables
y = heat; % Response
```

Fit a default linear model to the data.

```matlab
mdl = fitlm(X,y)
```
mdl =
Linear regression model:
  y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
       Estimate      SE        tStat       pValue
________________    _______    ________    ________
(Intercept)      62.405     70.071      0.8906     0.39913
x1               1.5511    0.74477      2.0827    0.070822
x2              0.51017    0.72379     0.70486      0.5009
x3              0.10191    0.75471     0.13503     0.89592
x4             -0.14406    0.70905    -0.20317     0.84407

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982,  Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

Linear Regression with Categorical Predictor

Fit a model of a table that contains a categorical predictor.

Load the carsmall data.

load carsmall

Construct a table containing continuous predictor variable Weight, categorical predictor variable Year, and response variable MPG.

tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);

Create a fitted model of MPG as a function of Year, Weight, and Weight^2. You don't have to include Weight explicitly in your formula because it is a lower-order term of Weight^2. The fitlm function includes Weight automatically.

mdl = fitlm(tbl,'MPG ~ Year + Weight^2')

mdl =
Linear regression model:
\[
\text{MPG} \sim 1 + \text{Weight} + \text{Year} + \text{Weight}^2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>54.206</td>
<td>4.7117</td>
<td>11.505</td>
<td>2.6648e-19</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.016404</td>
<td>0.0031249</td>
<td>-5.2493</td>
<td>1.0283e-06</td>
</tr>
<tr>
<td>Year_76</td>
<td>2.0887</td>
<td>0.71491</td>
<td>2.9215</td>
<td>0.0044137</td>
</tr>
<tr>
<td>Year_82</td>
<td>8.1864</td>
<td>0.81531</td>
<td>10.041</td>
<td>2.6364e-16</td>
</tr>
<tr>
<td>Weight^2</td>
<td>1.5573e-06</td>
<td>4.9454e-07</td>
<td>3.149</td>
<td>0.0022303</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

\text{fitlm} \text{ creates two dummy (indicator) variables for the categorical variate, } \text{Year}. \text{ The dummy variable } \text{Year}_76 \text{ takes the value 1 if model year is 1976 and takes the value 0 if it is not. The dummy variable } \text{Year}_82 \text{ takes the value 1 if model year is 1982 and takes the value 0 if it is not. And the year 1970 is the reference year. The corresponding model is}

\[
\hat{\text{MPG}} = 54.206 - 0.016404\text{Weight} + 2.0887\text{Year}_76 + 8.1864\text{Year}_82 + 1.5573 \cdot 10^{-06}\text{Weight}^2.
\]

**Specify Response and Predictor Variables for Linear Model**

Fit a linear regression model to sample data. Specify the response and predictor variables, and include only pairwise interaction terms in the model.

Load sample data.

load hospital

Fit a linear model with interaction terms to the data. Specify weight as the response variable, and sex, age, and smoking status as the predictor variables. Also, specify that sex and smoking status are categorical variables.
The weight of the patients do not seem to differ significantly according to age, or the status of smoking, or interaction of these factors with patient sex at the 5% significance level.

**Fit a Robust Linear Regression Model**

Fit a linear regression model using a robust fitting method.

Load the sample data.

```
load hald
```

The hald data measures the effect of cement composition on its hardening heat. The matrix ingredients contains the percent composition of four chemicals present in the cement. The array heat contains the heat of hardening after 180 days for each cement sample.
Fit a robust linear model to the data.

```matlab
mdl = fitlm(ingredients,heat,'linear','RobustOpts','on')
```

```
mdl =
Linear regression model (robust fit):
 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
 Estimate SE tStat pValue
(Intercept) 60.09 75.818 0.79256 0.4509
x1 1.5753 0.80585 1.9548 0.086346
x2 0.5322 0.78315 0.67957 0.51596
x3 0.13346 0.8166 0.16343 0.87424
x4 -0.12052 0.7672 -0.15709 0.87906

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979, Adjusted R-Squared 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07
```

**Definitions**

**Terms Matrix**

A terms matrix is a $t$-by-$(p + 1)$ matrix specifying terms in a model, where $t$ is the number of terms, $p$ is the number of predictor variables, and plus one is for the response variable.

The value of $T(i,j)$ is the exponent of variable $j$ in term $i$. Suppose there are three predictor variables $A$, $B$, and $C$:

```
[0 0 0 0] % Constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[1 0 1 0] % A*C
[2 0 0 0] % A^2
[0 1 2 0] % B*(C^2)
```

The 0 at the end of each term represents the response variable. In general,
If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ... hospital.Age,hospital.Smoker,'VariableNames', ... {'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
T =

0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
```

Redefine the table.

```matlab
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
T =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
```

If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.
Load the sample data and define the matrix of predictors.

```matlab
load carsmall
X = [Acceleration,Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

```matlab
T = [0 0 0;1 0 0;1 0;1 1 0;0 2 0]
```

Fit a linear model.

```matlab
mdl = fitlm(X,MPG,T)
```

```matlab
mdl =
```

```
Linear regression model:
 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
</tr>
</tbody>
</table>
```

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.
Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[ T = \begin{bmatrix} 0 & 0 & 0; 1 & 0 & 0; 0 & 1 & 0; 1 & 1 & 0 \end{bmatrix}; \]

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:
\[ y \sim 1 + x2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form 'Y ~ terms'

where

- Y is the response name.
- terms contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
• ( ) groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A*B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>
Wilkinson Notation | Factors in Standard Notation
--- | ---

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

Tips
- Use robust fitting (`RobustOpts` name-value pair) to reduce the effect of outliers automatically.
- Do not use robust fitting when you want to subsequently adjust a model using `step`.
- For other methods or properties of the `LinearModel` object, see `LinearModel`.

Algorithms
The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is `robustfit`.

Alternatives
You can also construct a linear model using `fitlm`.

You can construct a model in a range of possible models using `stepwiselm`. However, you cannot use robust regression and stepwise regression together.

See Also
`LinearModel`, `predict`, `stepwiselm`

Topics
“Examine Quality and Adjust the Fitted Model” on page 11-20
“Predict or Simulate Responses to New Data” on page 11-38
“Linear Regression Workflow” on page 11-43
“Regression with Categorical Covariates” on page 2-63
“Linear Regression” on page 11-11
LinearMixedModel.fit

Class: LinearMixedModel

Fit linear mixed-effects model using tables

Note  LinearMixedModel.fit will be removed in a future release. Use fitlme instead.

Syntax

lme = LinearMixedModel.fit(tbl,formula)
lme = LinearMixedModel.fit(tbl,formula,Name,Value)

Description

lme = LinearMixedModel.fit(tbl,formula) returns a linear mixed-effects model, specified by formula, fitted to the variables in the table or dataset array tbl.

lme = LinearMixedModel.fit(tbl,formula,Name,Value) returns a linear mixed-effects model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the covariance pattern of the random-effects terms, the method to use in estimating the parameters, or options for the optimization algorithm.

Input Arguments

tbl — Input data

 table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables, specified as a table or dataset array. The predictor variables can be continuous or grouping variables (see “Grouping Variables” on page 2-57). You must specify the model for the variables using formula.
Data Types: `table`

**formula — Formula for model specification**
character vector or string scalar of the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`

Formula for model specification, specified as a character vector or string scalar of the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`. For full description, see “Formula” on page 32-1669.

Example: `'y ~ treatment +(1|block)'`
Data Types: `char` | `string`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**CovariancePattern — Pattern of covariance matrix**

Default: `'FullCholesky'`

Character vector or string scalar, a square symmetric logical matrix, a string array, or a cell array of character vectors or logical matrices.

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair consisting of `'CovariancePattern'` and a character vector, a string scalar, a square symmetric logical matrix, a string array, or a cell array of character vectors or logical matrices.

If there are `R` random-effects terms, then the value of `'CovariancePattern'` must be a string array or cell array of length `R`, where each element `r` of the array specifies the pattern of the covariance matrix of the random-effects vector associated with the `r`th random-effects term. The options for each element follow.

- `'FullCholesky'` Default. Full covariance matrix using the Cholesky parameterization. `fitlme` estimates all elements of the covariance matrix.
'Full'

Full covariance matrix, using the log-Cholesky parameterization. `fitlme` estimates all elements of the covariance matrix.

'Diagonal'

Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0.

\[
\begin{pmatrix}
\sigma_{b1}^2 & 0 & 0 \\
0 & \sigma_{b2}^2 & 0 \\
0 & 0 & \sigma_{b3}^2
\end{pmatrix}
\]

'Isotropic'

Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma_b^2 & 0 & 0 \\
0 & \sigma_b^2 & 0 \\
0 & 0 & \sigma_b^2
\end{pmatrix}
\]

where $\sigma_b^2$ is the common variance of the random-effects terms.
'CompSymm'

Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma_b^2 & \sigma_{b1,b2} & \sigma_{b1,b2} \\
\sigma_{b1,b2} & \sigma_b^2 & \sigma_{b1,b2} \\
\sigma_{b1,b2} & \sigma_{b1,b2} & \sigma_b^2
\end{pmatrix}
\]

where \( \sigma_b^2 \) is the common variance of the random-effects terms and \( \sigma_{b1,b2} \) is the common covariance between any two random-effects term.

PAT

Square symmetric logical matrix. If 'CovariancePattern' is defined by the matrix PAT, and if \( \text{PAT}(a,b) = \text{false} \), then the \( (a,b) \) element of the corresponding covariance matrix is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{"Full","Diagonal"}

Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'
Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length \( n \), where \( n \) is the number of observations.

Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.

Example: 'Exclude',[13,67]

Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'reference'</td>
<td>Default. Coefficient for first category set to 0.</td>
</tr>
<tr>
<td>'effects'</td>
<td>Coefficients sum to 0.</td>
</tr>
<tr>
<td>'full'</td>
<td>One dummy variable for each category.</td>
</tr>
</tbody>
</table>

Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and either of the following.
'quasinewton'  Default. Uses a trust region based quasi-Newton optimizer. Change the options of the algorithm using statset('LinearMixedModel'). If you don’t specify the options, then LinearMixedModel uses the default options of statset('LinearMixedModel').

'fminunc'  You must have Optimization Toolbox to specify this option. Change the options of the algorithm using optimoptions('fminunc'). If you don’t specify the options, then LinearMixedModel uses the default options of optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminunc'

**OptimizerOptions — Options for optimization algorithm**
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of 'OptimizerOptions' and a structure returned by statset('LinearMixedModel') or an object returned by optimoptions('fminunc').

- If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions', then the default for LinearMixedModel is the default options created by optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.
- If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel') to change the optimization parameters. If you don’t change the optimization parameters, then LinearMixedModel uses the default options created by statset('LinearMixedModel').

The 'quasinewton' optimizer uses the following fields in the structure created by statset('LinearMixedModel').
**TolFun — Relative tolerance on gradient of objective function**
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

**TolX — Absolute tolerance on step size**
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

**MaxIter — Maximum number of iterations allowed**
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

**Display — Level of display**
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

**StartMethod — Method to start iterative optimization**
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of 'StartMethod' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'default'</td>
<td>An internally defined default value</td>
</tr>
<tr>
<td>'random'</td>
<td>A random initial value</td>
</tr>
</tbody>
</table>

Example: 'StartMethod','random'

**Verbose — Indicator to display optimization process on screen**
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true
CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to unconstrained parameters at convergence, specified as the comma-separated pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is overparameterized in the number of covariance parameters.

Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

Examples

Random-Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses, combine the nine columns corresponding to the regions into an array. The new dataset array, flu2, must have the response variable FluRate, the nominal variable Region that shows which region each estimate is from, the nationwide estimate WtdILI, and the grouping variable Date.
flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...  
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with the nationwide a random intercept that varies by Date. The model corresponds to

\[ y_{im} = \beta_0 + \beta_1 WtdILI_{im} + b_{0m} + \epsilon_{im}, \quad i = 1, 2, \ldots, 468, \quad m = 1, 2, \ldots, 52, \]

where \( y_{im} \) is the observation \( i \) for level \( m \) of grouping variable Date, \( b_{0m} \) is the random effect for level \( m \) of the grouping variable Date, and \( \epsilon_{im} \) is the observation error for observation \( i \). The random effect has the prior distribution,

\[ b_{0m} \sim N(0, \sigma^2_b), \]

and the error term has the distribution,

\[ \epsilon_{im} \sim N(0, \sigma^2). \]

lme = LinearMixedModel.fit(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')
lme =
Linear mixed-effects model fit by ML

Model information:
  Number of observations        468
  Fixed effects coefficients    2
  Random effects coefficients   52
  Covariance parameters         2

Formula:
  FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:
  AIC       BIC       LogLikelihood    Deviance
  286.24    302.83    -139.12          278.24

  Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.16385</td>
<td>0.057525</td>
<td>2.8484</td>
<td>466</td>
<td>0.0045885</td>
</tr>
</tbody>
</table>
The confidence limits for the standard deviation of the random-effects term, $\sigma_b$, do not include 0 (0.13227, 0.22226), which indicates that the random-effects term is significant. You can also test the significance of the random-effects terms using the compare method.

The estimated value of an observation is the sum of the fixed effects and the random-effect value at the grouping variable level corresponding to that observation. For example, the estimated flu rate for observation 28 is

$$\hat{y}_{28} = \hat{\beta}_0 \hat{\beta}_1 \text{WtdILI}_{28} + \hat{b}_{10/30/2005}$$

$$= 0.1639 + 0.7236 \times (1.343) + 0.3318$$

$$= 1.46749,$$

where $\hat{b}$ is the BLUP of the random effects for the intercept. You can compute this value in the following way.

```matlab
beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')
```
You can display the fitted value using the `fitted` method.

```matlab
F = fitted(lme);
F(28)
ans = 1.4674
```

**Randomized-Block Design**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'));
```

The dataset array shows the absolute deviations from the target quality characteristic measured from the products each of five operators manufacture over three different shifts, morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the absolute deviations of the quality characteristics from the target value. This is simulated data.

Fit a linear mixed-effects model with a random intercept grouped by operator, to assess if there is significant difference in the performance according to the time of the shift. Use the restricted maximum likelihood method and 'effects' contrasts.

'effects' contrasts mean that the coefficients sum to 0, and `LinearMixedModel.fit` creates a matrix called a fixed effects design matrix to describe the effect of Shift. This matrix has two columns, `Shift_Evening` and `Shift_Morning`, where

- `Shift_Evening = \begin{cases} 0, & \text{if Morning} \\ 1, & \text{if Evening} \\ -1, & \text{if Night} \end{cases}`

- `Shift_Morning = \begin{cases} 1, & \text{if Morning} \\ 0, & \text{if Evening} \\ -1, & \text{if Night} \end{cases}`
The model corresponds to

\[
\begin{align*}
\text{Morning Shift:} & \quad \text{QCDev}_{im} = \beta_0 + \beta_2 \text{Shift\_Morning}_i + b_{0m} + e_{im}, \\
\text{Evening Shift:} & \quad \text{QCDev}_{im} = \beta_0 + \beta_1 \text{Shift\_Evening}_i + b_{0m} + e_{im}, \\
\text{Night Shift:} & \quad \text{QCDev}_{im} = \beta_0 - \beta_1 \text{Shift\_Evening}_i - \beta_2 \text{Shift\_Morning}_i + b_{0m} + e_{im},
\end{align*}
\]

where \( i \) represents the observations, and \( m \) represents the operators, \( i = 1, 2, \ldots, 15 \), and \( m = 1, 2, \ldots, 5 \). The random effects and the observation error have the following distributions:

\[ b_{0m} \sim N(0, \sigma^2_b) \]

and

\[ e_{im} \sim N(0, \sigma^2). \]

```matlab
lme = LinearMixedModel.fit(shift,'QCDev ~ Shift + (1|Operator)',...
 'FitMethod','REML','DummyVarCoding','effects')
```

```
lme =
Linear mixed-effects model fit by REML

Model information:
 Number of observations 15
 Fixed effects coefficients 3
 Random effects coefficients 5
 Covariance parameters 2

Formula:
 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
 AIC BIC LogLikelihood Deviance
 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):
 Name Estimate SE tStat DF pValue
 '(Intercept)' 3.6525 0.94109 3.8812 12 0.0021832
 'Shift_Evening' -0.53293 0.31206 -1.7078 12 0.11339
 'Shift_Morning' -0.91973 0.31206 -2.9473 12 0.012206
```

32-1659
Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>2.0457</td>
<td>0.98207</td>
<td>4.2612</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.85462</td>
<td>0.52357</td>
<td>1.395</td>
</tr>
</tbody>
</table>

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

\[
\mathbf{B} = \text{randomEffects}(\text{lme})
\]

\[
\mathbf{B} = 5\times1
\]

\[
\begin{align*}
0.5775 \\
1.1757 \\
-2.1715 \\
2.3655 \\
-1.9472
\end{align*}
\]

The estimated absolute deviation from the target quality characteristics for the third operator working in the evening shift is

\[
\hat{y}_{\text{Evening,Operator3}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Shift}_\text{Evening} + \hat{b}_{03}
\]

\[
= 3.6525 - 0.53293 - 2.1715
\]

\[
= 0.94807.
\]

You can also display this value as follows.
\[
\hat{y}_{\text{Morning,Operator3}} = \hat{\beta}_0 + \hat{\beta}_2 \text{Shift Morning} + \hat{b}_{03}
\]
\[
= 3.6525 - 0.91973 - 2.1715
\]
\[
= 0.56127.
\]

You can also display this value in the following way.

\[
\text{F(shift.Shift=='}\text{Morning}' \& \text{ shift.Operator=='}3'\text{'})
\]
\[
\text{ans} = 0.5613
\]

The operator tends to make a smaller magnitude of error in the morning shift.

**Split-Plot Experiment**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of tomato plants, (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. Then, the tomato plants in the plots are divided into subplots, where each subplot is treated by one of the four fertilizers. This is simulated data.

Store the data in a dataset array called `ds`, for practical purposes, and define `Tomato`, `Soil`, and `Fertilizer` as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```
Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil types) independently.

This model corresponds to

\[
y_{ijk} = \beta_0 + \sum_{m=2}^{4} \beta_{1m} I[F]_{im} + \sum_{j=2}^{5} \beta_{2j} I[T]_{ij} + \sum_{j=2}^{5} \sum_{m=2}^{4} \beta_{3mj} I[F]_{im} I[T]_{ij} + b_{0k} S_k + b_{0jk} (S \ast T)_{jk} + e_{imjk},
\]

where \( i = 1, 2, ..., 60 \), the index \( m \) corresponds to the fertilizer types, \( j \) corresponds to the tomato types, and \( k = 1, 2, 3 \) corresponds to the blocks (soil). \( S_k \) represents the kth soil type, and \( (S \ast T)_{jk} \) represents the jth tomato type nested in the kth soil type. \( I[F]_{im} \) is the dummy variable representing level \( m \) of the fertilizer. Similarly, \( I[T]_{ij} \) is the dummy variable representing the level \( j \) of the tomato type.

The random effects and observation error have the following prior distributions:

\[
\begin{align*}
b_{0k} & \sim N(0, \sigma_S^2) \\
b_{0jk} & \sim N(0, \sigma_{S*T}^2) \\
e_{imjk} & \sim N(0, \sigma^2)
\end{align*}
\]

\[
lme = \text{LinearMixedModel.fit}(ds, 'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)')
\]

\[
lme =
\]
Linear mixed-effects model fit by ML

Model information:

- Number of observations: 60
- Fixed effects coefficients: 20
- Random effects coefficients: 18
- Covariance parameters: 3

Formula:
Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)

Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>522.57</td>
<td>570.74</td>
<td>-238.29</td>
<td>476.57</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>77</td>
<td>8.5836</td>
<td>8.9706</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Grape</td>
<td>-16</td>
<td>11.966</td>
<td>-1.3371</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Heirloom</td>
<td>-6.6667</td>
<td>11.966</td>
<td>-0.5571</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Plum</td>
<td>32.333</td>
<td>11.966</td>
<td>2.7022</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Vine</td>
<td>-13</td>
<td>11.966</td>
<td>-1.0864</td>
<td>40</td>
</tr>
<tr>
<td>Fertilizer_2</td>
<td>34.667</td>
<td>8.572</td>
<td>4.0442</td>
<td>40</td>
</tr>
<tr>
<td>Fertilizer_3</td>
<td>33.667</td>
<td>8.572</td>
<td>3.9275</td>
<td>40</td>
</tr>
<tr>
<td>Fertilizer_4</td>
<td>47.667</td>
<td>8.572</td>
<td>5.5607</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Grape:Fertilizer_2</td>
<td>-2.6667</td>
<td>12.123</td>
<td>-0.2199</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Heirloom:Fertilizer_2</td>
<td>-8</td>
<td>12.123</td>
<td>-0.6599</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Plum:Fertilizer_2</td>
<td>-15</td>
<td>12.123</td>
<td>-1.2374</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Vine:Fertilizer_2</td>
<td>-16</td>
<td>12.123</td>
<td>-1.3198</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Heirloom:Fertilizer_3</td>
<td>3.3333</td>
<td>12.123</td>
<td>0.2749</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Plum:Fertilizer_3</td>
<td>3.6667</td>
<td>12.123</td>
<td>0.3024</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Vine:Fertilizer_3</td>
<td>3</td>
<td>12.123</td>
<td>0.2474</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Grape:Fertilizer_4</td>
<td>13.333</td>
<td>12.123</td>
<td>1.0999</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Heirloom:Fertilizer_4</td>
<td>-19</td>
<td>12.123</td>
<td>-1.5673</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Plum:Fertilizer_4</td>
<td>-2.6667</td>
<td>12.123</td>
<td>-0.2199</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Vine:Fertilizer_4</td>
<td>8.6667</td>
<td>12.123</td>
<td>0.7149</td>
<td>40</td>
</tr>
</tbody>
</table>

pValue    | Lower      | Upper
4.0206e-11 | 59.652     | 94.348
0.18873    | -40.184    | 8.1837
0.58053    | -30.85     | 17.517
0.010059   | 8.1496     | 56.517
0.28379    | -37.184    | 11.184
0.00023272 | 17.342     | 51.991
0.00033057 | 16.342     | 50.991
1.9567e-06 | 30.342     | 64.991
0.82701    | -27.167    | 21.834
0.51309    | -32.501    | 16.501
0.22317    | -39.501    | 9.5007
0.19439    | -40.501    | 8.5007
0.17683    | -7.8341    | 41.167

LinearMixedModel.fit
32-1663
0.78476  -21.167    27.834
0.76387  -20.834    28.167
0.80581  -21.501    27.501
0.27796  -11.167    37.834
0.12492  -43.501    5.5007
0.82701  -27.167    21.834
0.47881  -15.834    33.167

Random effects covariance parameters (95% CIs):

Group: Soil (3 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>2.5028</td>
<td>0.027711</td>
<td>226.05</td>
</tr>
</tbody>
</table>

Group: Soil:Tomato (15 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>10.225</td>
<td>6.1497</td>
<td>17.001</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>10.499</td>
<td>8.5389</td>
<td>12.908</td>
</tr>
</tbody>
</table>

The P-values corresponding to the last 12 rows in the fixed-effects coefficients display (0.82701 to 0.47881) indicate that interaction coefficients between the tomato and fertilizer types are not significant. To test for the overall interaction between tomato and fertilizer, use the anova method after refitting the model using 'effects' contrasts.

The confidence interval for the standard deviations of the random-effects terms ($\sigma_s^2$), where the intercept is grouped by soil is very large. This term does not appear significant.

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects term (1 | Soil).

```matlab
lme = LinearMixedModel.fit(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)')```
lme = Linear mixed-effects model fit by ML

Model information:
- Number of observations: 60
- Fixed effects coefficients: 8
- Random effects coefficients: 15
- Covariance parameters: 2

Formula:
Yield ~ 1 + Tomato + Fertilizer + (1 | Soil:Tomato)

Model fit statistics:
- AIC: 511.06
- BIC: 532
- LogLikelihood: -245.53
- Deviance: 491.06

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>77.733</td>
<td>7.3293</td>
<td>10.606</td>
<td>52</td>
<td>1.3108e-14</td>
</tr>
<tr>
<td>'Tomato_Grape'</td>
<td>-9.1667</td>
<td>9.6045</td>
<td>-0.95441</td>
<td>52</td>
<td>0.34429</td>
</tr>
<tr>
<td>'Tomato_Heirloom'</td>
<td>-12.583</td>
<td>9.6045</td>
<td>-1.3102</td>
<td>52</td>
<td>0.1959</td>
</tr>
<tr>
<td>'Tomato_Plum'</td>
<td>28.833</td>
<td>9.6045</td>
<td>3.0021</td>
<td>52</td>
<td>0.0041138</td>
</tr>
<tr>
<td>'Tomato_Vine'</td>
<td>-14.083</td>
<td>9.6045</td>
<td>-1.4663</td>
<td>52</td>
<td>0.14858</td>
</tr>
<tr>
<td>'Fertilizer_2'</td>
<td>26.333</td>
<td>4.5004</td>
<td>5.8514</td>
<td>52</td>
<td>3.3024e-07</td>
</tr>
<tr>
<td>'Fertilizer_3'</td>
<td>39.000</td>
<td>4.5004</td>
<td>8.6659</td>
<td>52</td>
<td>1.1459e-11</td>
</tr>
<tr>
<td>'Fertilizer_4'</td>
<td>47.733</td>
<td>4.5004</td>
<td>10.607</td>
<td>52</td>
<td>1.308e-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.026</td>
<td>92.441</td>
</tr>
<tr>
<td>-28.439</td>
<td>10.106</td>
</tr>
<tr>
<td>-31.856</td>
<td>6.6895</td>
</tr>
<tr>
<td>9.5605</td>
<td>48.106</td>
</tr>
<tr>
<td>-33.356</td>
<td>5.1895</td>
</tr>
<tr>
<td>17.303</td>
<td>35.364</td>
</tr>
<tr>
<td>29.969</td>
<td>48.031</td>
</tr>
<tr>
<td>38.703</td>
<td>56.764</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

<table>
<thead>
<tr>
<th>Group: Soil:Tomato (15 Levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name1</td>
</tr>
<tr>
<td>'(Intercept)'</td>
</tr>
</tbody>
</table>

32-1665
You can compare the two models using the `compare` method with the simulated likelihood ratio test since both a fixed-effect and a random-effect term will be tested.

Longitudinal Study with a Covariate

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'));
weight
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs (A, B, C, D), and their weight loss is recorded over six two-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.

```matlab
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

`LinearMixedModel.fit` uses Program A as a reference and creates the necessary dummy variables $I[.]$. Since the model already has an intercept, `LinearMixedModel.fit` only creates dummy variables for program types B, C, D. This is also known as the 'reference' method of coding dummy variables.

This model corresponds to

```
Upper 16.509
Group: Error
  Name    Estimate  Lower  Upper
'Res Std'    12.325  10.024  15.153
```
where $i = 1, 2, ..., 120$, and $m = 1, 2, ..., 20$. β_j are the fixed-effects coefficients, $j = 0, 1, ..., 8$, and b_{0m} and b_{1m} are random effects. IW stands for initial weight and $I[\cdot]$ is a dummy variable representing a type of program. For example, $I[\text{PB}]_i$ is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

$$b_{0m} \sim N(0, \sigma_0^2)$$

$$b_{1m} \sim N(0, \sigma_1^2)$$

$$\epsilon_{im} \sim N(0, \sigma^2).$$

```matlab
lme = LinearMixedModel.fit(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')
```

```
lme = Linear mixed-effects model fit by ML

Model information:
  Number of observations     120
  Fixed effects coefficients  9
  Random effects coefficients 40
  Covariance parameters      4

Formula:
  y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
  AIC    BIC    LogLikelihood    Deviance

Fixed effects coefficients (95% CIs):
  Name            Estimate    SE      tStat    DF
  '(Intercept)'   0.66105    0.25892  2.5531  111
  'InitialWeight' 0.0031879  0.0013814 2.3078  111
```

\[y_{im} = \beta_0 + \beta_1 \text{IW}_i + \beta_2 \text{Week}_i + \beta_3 I[\text{PB}]_i + \beta_4 I[\text{PC}]_i + \beta_5 I[\text{PD}]_i \\
+ \beta_6 (\text{Week}_i \ast I[\text{PB}]_i) + \beta_7 (\text{Week}_i \ast I[\text{PC}]_i) + \beta_8 (\text{Week}_i \ast I[\text{PD}]_i) \\
+ b_{0m} + b_{1m} \text{Week}_{im} + \epsilon_{im}. \]
The p-values 0.022863 and 0.011567 indicate significant effects of subject initial weights and time in the amount of weight lost. The weight loss of subjects who are in Program B is significantly different relative to the weight loss of subjects who are in Program A. The lower and upper limits of the covariance parameters for the random effects do not include
0, thus they are significant. You can also test the significance of the random effects using the `compare` method.

Definitions

Formula

In general, a formula for model specification is a character vector or string scalar of the form `'y ~ terms'`. For the linear mixed-effects models, this formula is in the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`, where `fixed` and `random` contain the fixed-effects and the random-effects terms.

Suppose a table `tbl` contains the following:

- A response variable, `y`
- Predictor variables, `X_j`, which can be continuous or grouping variables
- Grouping variables, `g_1, g_2, ..., g_R`

where the grouping variables in `X_j` and `g_r` can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form `'y ~ fixed + (random_1|g_1) + ... + (random_R|g_R)'`, the term `fixed` corresponds to a specification of the fixed-effects design matrix `X`, `random_1` is a specification of the random-effects design matrix `Z_1` corresponding to grouping variable `g_1`, and similarly `random_R` is a specification of the random-effects design matrix `Z_R` corresponding to grouping variable `g_R`. You can express the `fixed` and `random` terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td><code>X^k</code>, where <code>k</code> is a positive integer</td>
<td><code>X</code>, <code>X^2</code>, ..., <code>X^k</code></td>
</tr>
<tr>
<td><code>X1 + X2</code></td>
<td><code>X1</code>, <code>X2</code></td>
</tr>
</tbody>
</table>
Wilkinson Notation vs. Standard Notation

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1*X2</td>
<td>X1, X2, X1.*X2 (elementwise multiplication of X1 and X2)</td>
</tr>
<tr>
<td>X1:X2</td>
<td>X1.*X2 only</td>
</tr>
<tr>
<td>- X2</td>
<td>Do not include X2</td>
</tr>
<tr>
<td>X1*X2 + X3</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1 + X2 + X3 + X1:X2</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1X2X3 - X1:X2:X3</td>
<td>X1, X2, X3, X1X2, X1X3, X2*X3</td>
</tr>
<tr>
<td>X1*(X2 + X3)</td>
<td>X1, X2, X3, X1X2, X1X3</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1. Here are some examples for linear mixed-effects model specification.

Examples:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X1 + X2'</td>
<td>Fixed effects for the intercept, X1 and X2. This is equivalent to 'y ~ 1 + X1 + X2'.</td>
</tr>
<tr>
<td>'y ~ -1 + X1 + X2'</td>
<td>No intercept and fixed effects for X1 and X2. The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (X1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>(y \sim 1 + (1 \mid g_1) + (1 \mid g_2) + (1 \mid g_1:g_2))</td>
<td>Random intercept model with independent main effects for (g_1) and (g_2), plus an independent interaction effect.</td>
</tr>
</tbody>
</table>

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the following prior distribution.

\[
b \sim N\left(0, \sigma^2 D(\theta)\right),
\]

where \(D \) is a \(q \)-by-\(q \) symmetric and positive semidefinite matrix, parameterized by a variance component vector \(\theta \), \(q \) is the number of variables in the random-effects term, and \(\sigma^2 \) is the observation error variance. Since the covariance matrix of the random effects, \(D \), is symmetric, it has \(q(q+1)/2 \) free parameters. Suppose \(L \) is the lower triangular Cholesky factor of \(D(\theta) \) such that

\[
D(\theta) = L(\theta) L(\theta)^T,
\]

then the \(q(q+1)/2 \)-by-1 unconstrained parameter vector \(\theta \) is formed from elements in the lower triangular part of \(L \).

For example, if

\[
L = \begin{bmatrix}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{bmatrix},
\]

then
\[
\theta = \begin{bmatrix}
L_{11} \\
L_{21} \\
L_{31} \\
L_{22} \\
L_{32} \\
L_{33}
\end{bmatrix}.
\]

Log-Cholesky Parameterization

When the diagonal elements of \(L \) in Cholesky parameterization are constrained to be positive, then the solution for \(L \) is unique. Log-Cholesky parameterization is the same as Cholesky parameterization except that the logarithm of the diagonal elements of \(L \) are used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing \(L_{ii} \geq 0 \),

\[
\theta = \begin{bmatrix}
\log(L_{11}) \\
L_{21} \\
L_{31} \\
\log(L_{22}) \\
L_{32} \\
\log(L_{33})
\end{bmatrix}.
\]

Tips

- If your model is not easily described using a formula, you can create matrices to define the fixed and random effects, and fit the model using `fitlmatrix`.

Alternatives

You can also construct a linear mixed-effects model using `fitlme`. If your data is in matrix format, then use `fitlmatrix`.
See Also
LinearMixedModel | anova | compare | fitlme | fitlmematrix
NonLinearModel.fit

Class: NonLinearModel

Fit nonlinear regression model

Note NonLinearModel.fit will be removed in a future release. Use fitnlm instead.

Syntax

\[
\text{mdl} = \text{NonLinearModel.fit}(\text{tbl}, \text{modelfun}, \text{beta0}) \\
\text{mdl} = \text{NonLinearModel.fit}(\text{X}, \text{y}, \text{modelfun}, \text{beta0}) \\
\text{mdl} = \text{NonLinearModel.fit}(\ldots, \text{modelfun}, \text{beta0}, \text{Name, Value})
\]

Description

\[
\text{mdl} = \text{NonLinearModel.fit}(\text{tbl}, \text{modelfun}, \text{beta0}) \text{ fits the model specified by modelfun to variables in the table or dataset array tbl, and returns the nonlinear modelmdl. NonLinearModel.fit estimates model coefficients using an iterative procedure starting from the initial values in beta0.}
\]

\[
\text{mdl} = \text{NonLinearModel.fit}(\text{X}, \text{y}, \text{modelfun}, \text{beta0}) \text{ fits a nonlinear regression model using the column vector y as a response variable and the columns of the matrix X as predictor variables.}
\]

\[
\text{mdl} = \text{NonLinearModel.fit}(\ldots, \text{modelfun}, \text{beta0}, \text{Name, Value}) \text{ fits a nonlinear regression model with additional options specified by one or more Name, Value pair arguments.}
\]

Input Arguments

- **tbl** — Input data

 table | dataset array
Input data, specified as a table or dataset array. If you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables and response variable must be numeric.

To set a different column as the response variable, use the ResponseVar name-value pair argument. To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.

Data Types: single | double | logical

X — Predictor variables

matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables. Each column of X represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable

vector

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in y is the response for the corresponding row of X.

Data Types: single | double | logical

modelfun — Functional form of the model

function handle | character vector or string scalar of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

- Function handle @modelfun or @(b,x)modelfun, where
 - b is a coefficient vector with the same number of elements as beta0.
 - x is a matrix with the same number of columns as X or the number of predictor variable columns of tbl.
modelfun(b,x) returns a column vector that contains the same number of rows as x. Each row of the vector is the result of evaluating modelfun on the corresponding row of x. In other words, modelfun is a vectorized function, one that operates on all data rows and returns all evaluations in one function call. modelfun should return real numbers to obtain meaningful coefficients.

- Character vector or string scalar of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)', where f represents a scalar function of the scalar coefficient variables b1,...,bj and the scalar data variables x1,...,xk.

Data Types: function_handle | char | string

beta0 — Coefficients
numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. NonLinearModel starts its search for optimal coefficients from beta0.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoefficientNames — Names of the model coefficients
{'b1','b2',...,'bk'} (default) | character vector | string array | cell array of character vectors

Names of the model coefficients, specified as a character vector, string array, or cell array of character vectors.

Data Types: char | string | cell

ErrorModel — Form of the error variance model
'constant' (default) | 'proportional' | 'combined'

Form of the error variance model, specified as one of the following. Each model defines the error using a standard mean-zero and unit-variance variable e in combination with independent components: the function value f, and one or two parameters a and b.
The only allowed error model when using Weights is 'constant'.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

Example: 'ErrorModel', 'proportional'

ErrorParameters — Initial estimates of the error model parameters
numeric array

Initial estimates of the error model parameters for the chosen ErrorModel, specified as a numeric array.

<table>
<thead>
<tr>
<th>Error Model</th>
<th>Parameters</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>'proportional'</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>'combined'</td>
<td>a, b</td>
<td>[1, 1]</td>
</tr>
</tbody>
</table>

You can only use the 'constant' error model when using Weights.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for a and the starting value 2 for b as follows.

Example: 'ErrorParameters',[1, 2]

Exclude — Observations to exclude
logical or numeric index vector
Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

Options — Options for controlling the iterative fitting procedure

[] (default) | structure

Options for controlling the iterative fitting procedure, specified as a structure created by `statset`. The relevant fields are the nonempty fields in the structure returned by the call `statset('nlinfit')`.

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DerivStep</td>
<td>Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics and Machine Learning Toolbox function using the options structure.</td>
<td>eps^(1/3)</td>
</tr>
<tr>
<td>Display</td>
<td>Amount of information displayed by the fitting algorithm.</td>
<td>'off'</td>
</tr>
<tr>
<td>FunValCheck</td>
<td>Character vector or string scalar indicating to check for invalid values, such as NaN or Inf, from the model function.</td>
<td>'on'</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed. Positive integer.</td>
<td>200</td>
</tr>
<tr>
<td>Option</td>
<td>Meaning</td>
<td>Default</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RobustWgtFun</td>
<td>Weight function for robust fitting. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. If you use a function handle, give a Tune constant. See “Robust Options” on page 32-2408</td>
<td>[]</td>
</tr>
<tr>
<td>Tune</td>
<td>Tuning constant used in robust fitting to normalize the residuals before applying the weight function. A positive scalar. Required if the weight function is specified as a function handle.</td>
<td>See “Robust Options” on page 32-2408 for the default, which depends on RobustWgtFun.</td>
</tr>
<tr>
<td>TolFun</td>
<td>Termination tolerance for the objective function value. Positive scalar.</td>
<td>1e-8</td>
</tr>
<tr>
<td>TolX</td>
<td>Termination tolerance for the parameters. Positive scalar.</td>
<td>1e-8</td>
</tr>
</tbody>
</table>

Data Types: struct

PredictorVars — Predictor variables

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell
ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char | string

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: string | cell

Weights — Observation weights
ones(n,1) (default) | vector of nonnegative scalar values | function handle

Observation weights, specified as a vector of nonnegative scalar values or function handle.
• If you specify a vector, then it must have \(n \) elements, where \(n \) is the number of rows in \(\text{tbl} \) or \(y \).

• If you specify a function handle, then the function must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, \(W \), \texttt{NonLinearModel} estimates the error variance at observation \(i \) by \(\text{MSE} \times (1/W(i)) \), where MSE is the mean squared error.

Data Types: \texttt{single} | \texttt{double} | \texttt{function_handle}

Output Arguments

\(\texttt{mdl} \) — Nonlinear model
NonLinearModel object

Nonlinear model representing a least-squares fit of the response to the data, returned as a \texttt{NonLinearModel} object.

If the \texttt{Options} structure contains a nonempty \texttt{RobustWgtFun} field, the model is not a least-squares fit, but uses the \texttt{RobustWgtFun} robust fitting function.

For properties and methods of the nonlinear model object, \(\texttt{mdl} \), see the \texttt{NonLinearModel} class page.

Examples

Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the \texttt{carbig} data.

Load the data and create a nonlinear model.

```matlab
clear all
load \texttt{carbig}
tbl = \texttt{table(Horsepower,Weight,MPG)};
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ... 
    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = \texttt{NonLinearModel.fit(tbl,modelfun,beta0)}
```

32-1681
mdl =
Nonlinear regression model:
 MPG ~ b1 + b2*Horsepower^b3 + b4*Weight^b5

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>-49.383</td>
<td>119.97</td>
<td>-0.41164</td>
<td>0.68083</td>
</tr>
<tr>
<td>b2</td>
<td>376.43</td>
<td>567.05</td>
<td>0.66384</td>
<td>0.50719</td>
</tr>
<tr>
<td>b3</td>
<td>-0.78193</td>
<td>0.47168</td>
<td>-1.6578</td>
<td>0.098177</td>
</tr>
<tr>
<td>b4</td>
<td>422.37</td>
<td>776.02</td>
<td>0.54428</td>
<td>0.58656</td>
</tr>
<tr>
<td>b5</td>
<td>-0.24127</td>
<td>0.48325</td>
<td>-0.49926</td>
<td>0.61788</td>
</tr>
</tbody>
</table>

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Nonlinear Model from Matrix Data

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

```matlab
load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ... 
             b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = NonLinearModel.fit(X,y,modelfun,beta0)
```

mdl =
Nonlinear regression model:
 y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>-49.383</td>
<td>119.97</td>
<td>-0.41164</td>
<td>0.68083</td>
</tr>
<tr>
<td>b2</td>
<td>376.43</td>
<td>567.05</td>
<td>0.66384</td>
<td>0.50719</td>
</tr>
<tr>
<td>b3</td>
<td>-0.78193</td>
<td>0.47168</td>
<td>-1.6578</td>
<td>0.098177</td>
</tr>
<tr>
<td>b4</td>
<td>422.37</td>
<td>776.02</td>
<td>0.54428</td>
<td>0.58656</td>
</tr>
<tr>
<td>b5</td>
<td>-0.24127</td>
<td>0.48325</td>
<td>-0.49926</td>
<td>0.61788</td>
</tr>
</tbody>
</table>
Adjust Fitting Options in the Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Strive for more accuracy by lowering the TolFun option, and observe the iterations by setting the Display option.

Load the data and create a nonlinear model.

```matlab
load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...;
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
```

Create options to lower TolFun and to report iterative display, and create a model using the options.

```matlab
opts = statset('Display','iter','TolFun',1e-10);
mdl = NonLinearModel.fit(X,y,modelfun,beta0,'Options',opts);
```
<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11746.6</td>
<td>69670.5</td>
<td>169.079</td>
</tr>
<tr>
<td>7</td>
<td>7242.22</td>
<td>343738</td>
<td>394.822</td>
</tr>
<tr>
<td>8</td>
<td>6172.87</td>
<td>91622.9</td>
<td>268.674</td>
</tr>
<tr>
<td>9</td>
<td>6077</td>
<td>6957.44</td>
<td>452.941</td>
</tr>
<tr>
<td>10</td>
<td>6076.34</td>
<td>6370.39</td>
<td>100.208</td>
</tr>
<tr>
<td>11</td>
<td>6075.75</td>
<td>5199.08</td>
<td>77.9694</td>
</tr>
<tr>
<td>12</td>
<td>6075.3</td>
<td>4646.61</td>
<td>69.764</td>
</tr>
<tr>
<td>13</td>
<td>6074.91</td>
<td>4235.96</td>
<td>62.9114</td>
</tr>
<tr>
<td>14</td>
<td>6074.55</td>
<td>3885.28</td>
<td>57.0647</td>
</tr>
<tr>
<td>15</td>
<td>6074.23</td>
<td>3571.1</td>
<td>52.0036</td>
</tr>
<tr>
<td>16</td>
<td>6073.93</td>
<td>3286.48</td>
<td>47.5795</td>
</tr>
<tr>
<td>17</td>
<td>6073.66</td>
<td>3028.34</td>
<td>43.6844</td>
</tr>
<tr>
<td>18</td>
<td>6073.4</td>
<td>2794.31</td>
<td>40.2352</td>
</tr>
<tr>
<td>19</td>
<td>6073.17</td>
<td>2582.15</td>
<td>37.1663</td>
</tr>
<tr>
<td>20</td>
<td>6072.95</td>
<td>2389.68</td>
<td>34.4243</td>
</tr>
<tr>
<td>21</td>
<td>6072.74</td>
<td>2214.84</td>
<td>31.965</td>
</tr>
<tr>
<td>22</td>
<td>6072.55</td>
<td>2055.78</td>
<td>29.753</td>
</tr>
<tr>
<td>23</td>
<td>6072.37</td>
<td>1910.83</td>
<td>27.753</td>
</tr>
<tr>
<td>24</td>
<td>6072.21</td>
<td>1778.51</td>
<td>25.9428</td>
</tr>
<tr>
<td>25</td>
<td>6072.05</td>
<td>1657.5</td>
<td>24.2986</td>
</tr>
<tr>
<td>26</td>
<td>6071.9</td>
<td>1546.65</td>
<td>22.8011</td>
</tr>
<tr>
<td>27</td>
<td>6071.76</td>
<td>1444.93</td>
<td>21.4338</td>
</tr>
<tr>
<td>28</td>
<td>6071.63</td>
<td>1351.44</td>
<td>20.1822</td>
</tr>
<tr>
<td>29</td>
<td>6071.51</td>
<td>1265.39</td>
<td>19.0339</td>
</tr>
<tr>
<td>30</td>
<td>6071.39</td>
<td>1186.06</td>
<td>17.978</td>
</tr>
<tr>
<td>31</td>
<td>6071.28</td>
<td>1112.83</td>
<td>17.0052</td>
</tr>
<tr>
<td>32</td>
<td>6071.17</td>
<td>1045.13</td>
<td>16.107</td>
</tr>
<tr>
<td>33</td>
<td>6071.07</td>
<td>982.465</td>
<td>15.2762</td>
</tr>
<tr>
<td>34</td>
<td>6070.98</td>
<td>924.389</td>
<td>14.5063</td>
</tr>
<tr>
<td>35</td>
<td>6070.89</td>
<td>870.498</td>
<td>13.7916</td>
</tr>
<tr>
<td>36</td>
<td>6070.8</td>
<td>820.434</td>
<td>13.127</td>
</tr>
<tr>
<td>37</td>
<td>6070.72</td>
<td>773.872</td>
<td>12.5081</td>
</tr>
<tr>
<td>38</td>
<td>6070.64</td>
<td>730.521</td>
<td>11.9307</td>
</tr>
<tr>
<td>39</td>
<td>6070.57</td>
<td>690.117</td>
<td>11.3914</td>
</tr>
<tr>
<td>40</td>
<td>6070.5</td>
<td>652.422</td>
<td>10.887</td>
</tr>
<tr>
<td>41</td>
<td>6070.43</td>
<td>617.219</td>
<td>10.4144</td>
</tr>
<tr>
<td>42</td>
<td>6070.37</td>
<td>584.315</td>
<td>9.97115</td>
</tr>
<tr>
<td>43</td>
<td>6070.31</td>
<td>553.53</td>
<td>9.55489</td>
</tr>
<tr>
<td>44</td>
<td>6070.25</td>
<td>524.703</td>
<td>9.1635</td>
</tr>
<tr>
<td>45</td>
<td>6070.19</td>
<td>497.686</td>
<td>8.79506</td>
</tr>
<tr>
<td>46</td>
<td>6070.14</td>
<td>472.345</td>
<td>8.44785</td>
</tr>
<tr>
<td>47</td>
<td>6070.08</td>
<td>448.557</td>
<td>8.12028</td>
</tr>
<tr>
<td>48</td>
<td>6070.03</td>
<td>426.21</td>
<td>7.81091</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>49</td>
<td>6069.99</td>
<td>405.201</td>
<td>7.51845</td>
</tr>
<tr>
<td>50</td>
<td>6069.94</td>
<td>385.435</td>
<td>7.2417</td>
</tr>
<tr>
<td>51</td>
<td>6069.9</td>
<td>366.825</td>
<td>6.97956</td>
</tr>
<tr>
<td>52</td>
<td>6069.85</td>
<td>349.293</td>
<td>6.73104</td>
</tr>
<tr>
<td>53</td>
<td>6069.81</td>
<td>332.764</td>
<td>6.49523</td>
</tr>
<tr>
<td>54</td>
<td>6069.77</td>
<td>317.171</td>
<td>6.27127</td>
</tr>
<tr>
<td>55</td>
<td>6069.74</td>
<td>302.452</td>
<td>6.0584</td>
</tr>
<tr>
<td>56</td>
<td>6069.7</td>
<td>288.55</td>
<td>5.85591</td>
</tr>
<tr>
<td>57</td>
<td>6069.66</td>
<td>275.411</td>
<td>5.66315</td>
</tr>
<tr>
<td>58</td>
<td>6069.63</td>
<td>262.986</td>
<td>5.47949</td>
</tr>
<tr>
<td>59</td>
<td>6069.6</td>
<td>251.23</td>
<td>5.3044</td>
</tr>
<tr>
<td>60</td>
<td>6069.57</td>
<td>240.1</td>
<td>5.13734</td>
</tr>
<tr>
<td>61</td>
<td>6069.54</td>
<td>229.558</td>
<td>4.97784</td>
</tr>
<tr>
<td>62</td>
<td>6069.51</td>
<td>219.567</td>
<td>4.82545</td>
</tr>
<tr>
<td>63</td>
<td>6069.48</td>
<td>210.094</td>
<td>4.67977</td>
</tr>
<tr>
<td>64</td>
<td>6069.45</td>
<td>201.108</td>
<td>4.5404</td>
</tr>
<tr>
<td>65</td>
<td>6069.43</td>
<td>192.578</td>
<td>4.407</td>
</tr>
<tr>
<td>66</td>
<td>6069.4</td>
<td>184.479</td>
<td>4.27923</td>
</tr>
<tr>
<td>67</td>
<td>6069.38</td>
<td>176.785</td>
<td>4.15677</td>
</tr>
<tr>
<td>68</td>
<td>6069.35</td>
<td>169.472</td>
<td>4.03935</td>
</tr>
<tr>
<td>69</td>
<td>6069.33</td>
<td>162.518</td>
<td>3.9267</td>
</tr>
<tr>
<td>70</td>
<td>6069.31</td>
<td>155.903</td>
<td>3.81855</td>
</tr>
<tr>
<td>71</td>
<td>6069.29</td>
<td>149.608</td>
<td>3.71468</td>
</tr>
<tr>
<td>72</td>
<td>6069.26</td>
<td>143.615</td>
<td>3.61486</td>
</tr>
<tr>
<td>73</td>
<td>6069.24</td>
<td>137.907</td>
<td>3.5189</td>
</tr>
<tr>
<td>74</td>
<td>6069.22</td>
<td>132.468</td>
<td>3.42658</td>
</tr>
<tr>
<td>75</td>
<td>6069.21</td>
<td>127.283</td>
<td>3.33774</td>
</tr>
<tr>
<td>76</td>
<td>6069.19</td>
<td>122.339</td>
<td>3.25221</td>
</tr>
<tr>
<td>77</td>
<td>6069.17</td>
<td>117.623</td>
<td>3.16981</td>
</tr>
<tr>
<td>78</td>
<td>6069.15</td>
<td>113.123</td>
<td>3.09041</td>
</tr>
<tr>
<td>79</td>
<td>6069.14</td>
<td>108.827</td>
<td>3.01386</td>
</tr>
<tr>
<td>80</td>
<td>6069.12</td>
<td>104.725</td>
<td>2.94002</td>
</tr>
<tr>
<td>81</td>
<td>6069.1</td>
<td>100.806</td>
<td>2.86877</td>
</tr>
<tr>
<td>82</td>
<td>6069.09</td>
<td>97.0611</td>
<td>2.8</td>
</tr>
<tr>
<td>83</td>
<td>6069.07</td>
<td>93.4814</td>
<td>2.73358</td>
</tr>
<tr>
<td>84</td>
<td>6069.06</td>
<td>90.0584</td>
<td>2.66942</td>
</tr>
<tr>
<td>85</td>
<td>6069.05</td>
<td>86.7841</td>
<td>2.60741</td>
</tr>
<tr>
<td>86</td>
<td>6069.03</td>
<td>83.6513</td>
<td>2.54745</td>
</tr>
<tr>
<td>87</td>
<td>6069.02</td>
<td>80.6528</td>
<td>2.48947</td>
</tr>
<tr>
<td>88</td>
<td>6069.01</td>
<td>77.7821</td>
<td>2.43338</td>
</tr>
<tr>
<td>89</td>
<td>6068.99</td>
<td>75.0327</td>
<td>2.37908</td>
</tr>
<tr>
<td>90</td>
<td>6068.98</td>
<td>72.399</td>
<td>2.32652</td>
</tr>
<tr>
<td>91</td>
<td>6068.97</td>
<td>69.8752</td>
<td>2.27561</td>
</tr>
<tr>
<td>92</td>
<td>6068.96</td>
<td>67.4561</td>
<td>2.22629</td>
</tr>
</tbody>
</table>
Specify Nonlinear Regression Using Model Character Vector

Specify a nonlinear regression model for estimation using a function handle or character vector.

Load sample data.
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Use a function handle to specify the Hougen-Watson model for the rate data.

mdl = NonLinearModel.fit(X,y,@hougen,beta0)

mdl = Nonlinear regression model:
 y ~ hougen(b,X)

Estimated Coefficients:
 Estimate SE tStat pValue
 ______ ________ ______ _______
 b1 1.2526 0.86701 1.4447 0.18654
 b2 0.062776 0.043561 1.4411 0.18753
 b3 0.040048 0.030885 1.2967 0.23089
 b4 0.11242 0.075157 1.4957 0.17309
 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatively, you can use a character vector to specify the Hougen-Watson model for the rate data.

myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
mdl2 = NonLinearModel.fit(X,y,myfun,beta0)

mdl2 = Nonlinear regression model:
 y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:
 Estimate SE tStat pValue
 ______ ________ ______ _______
 b1 1.2526 0.86701 1.4447 0.18654
 b2 0.062776 0.043561 1.4411 0.18753
Estimate Nonlinear Regression Using Robust Fitting Options

Generate sample data from the nonlinear regression model

\[y = b_1 + b_2 \exp[-b_3 x] + \epsilon, \]

where \(b_1, b_2, \) and \(b_3 \) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

Set robust fitting options.

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options. Here, use a character vector to specify the model.

b0 = [2;2;2];
modelstr = 'y ~ b1 + b2*exp(-b3*x)';
mdl = NonLinearModel.fit(x,y,modelstr,b0,'Options',opts)
mdl =
Nonlinear regression model (robust fit):
Fit Nonlinear Regression Model Using Weights Function Handle

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Specify a function handle for observation weights. The function accepts the model fitted values as input, and returns a vector of weights.

```matlab
a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
```

Fit the Hougen-Watson model to the rate data using the specified observation weights function.

```matlab
mdl = NonLinearModel.fit(X,y,@hougen,beta0,'Weights',weights)
```

```matlab
mdl =
Nonlinear regression model:
  y ~ hougen(b,X)

Estimated Coefficients:
  Estimate      SE       tStat       pValue
  ______    _______    ______    __________
  b1    1.0218     0.07202    14.188    2.1344e-25
  b2    3.6619     0.25429    14.401     7.974e-26
  b3    2.9732     0.38496    7.7232    1.0346e-11
```

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 0.501
R-Squared: 0.807, Adjusted R-Squared 0.803
F-statistic vs. constant model: 203, p-value = 2.34e-35
Nonlinear Regression Model Using Nonconstant Error Model

Load sample data.

```
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the combined error variance model.

```
mdl = NonLinearModel.fit(X,y,@hougen,beta0,'ErrorModel','combined')
```

```
mdl =
Nonlinear regression model:
y ~ hougen(b,X)
```

```
Estimated Coefficients:
  Estimate     SE       tStat    pValue
  ______     ______    ______    ______
    b1      1.2526     0.86702    1.4447    0.18654
    b2    0.062776    0.043561    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075158    1.4957    0.17309
    b5      1.1914     0.83671    1.4239    0.1923
```
Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 1.27
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Definitions

Robust Options

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td>w = (abs(r)<pi) .* sin(r) ./ r</td>
<td>1.339</td>
</tr>
<tr>
<td>'bisquare'</td>
<td>w = (abs(r)<1) .* (1 - r.^2).^2</td>
<td>4.685</td>
</tr>
<tr>
<td></td>
<td>(default)</td>
<td></td>
</tr>
<tr>
<td>'cauchy'</td>
<td>w = 1 ./ (1 + r.^2)</td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td>w = 1 ./ (1 + abs(r))</td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td>w = 1 ./ max(1, abs(r))</td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td>w = tanh(r) ./ r</td>
<td>1.205</td>
</tr>
<tr>
<td>'talwar'</td>
<td>w = 1 * (abs(r)<1)</td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td>w = exp(-(r.^2))</td>
<td>2.985</td>
</tr>
<tr>
<td>[]</td>
<td>No robust fitting</td>
<td>—</td>
</tr>
</tbody>
</table>

Algorithms

NonLinearModel.fit uses the same fitting algorithm as nlinfit.

Alternatives

You can also construct a nonlinear model using fitnlm.
References

See Also

NonLinearModel | nlinfit

Topics

“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-7
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
RegressionTree.fit

Class: RegressionTree

Binary decision tree for regression (to be removed)

Note RegressionTree.fit will be removed in a future release. Use fitrtree instead.

Syntax

```
tree = RegressionTree.fit(x,y)
tree = RegressionTree.fit(x,y,Name,Value)
```

Description

```
tree = RegressionTree.fit(x,y) returns a regression tree based on the input
variables (also known as predictors, features, or attributes) x and output (response) y.
tree is a binary tree where each branching node is split based on the values of a column
of x.

```
tree = RegressionTree.fit(x,y,Name,Value) fits a tree with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class RegressionPartitionedModel. You
cannot use a partitioned tree for prediction, so this kind of tree does not have a predict
method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to
make predictions.
```
**Input Arguments**

**x — Predictor values**
matrix of scalar values

Predictor values, specified as a matrix of scalar values. Each column of x represents one variable, and each row represents one observation.

RegressionTree.fit considers NaN values in x as missing values. RegressionTree.fit does not use observations with all missing values for x the fit. RegressionTree.fit uses observations with some missing values for x to find splits on variables for which these observations have valid values.

Data Types: single | double

**y — Response values**
vector of scalar values

Response values, specified as a vector of scalar values with the same number of rows as x. Each entry in y is the response to the data in the corresponding row of x.

RegressionTree.fit considers NaN values in y to be missing values. RegressionTree.fit does not use observations with missing values for y in the fit.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**CategoricalPredictors — Categorical predictors list**
numeric or logical vector | cell array of character vectors | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the following.

- A numeric vector with indices from 1 to p, where p is the number of columns of x.
- A logical vector of length p, where a true entry means that the corresponding column of x is a categorical variable.
- A cell array of character vectors, where each element in the array is the name of a predictor variable. The names must match entries in the `PredictorNames` property.
- A character matrix, where each row of the matrix is a name of a predictor variable. Pad the names with extra blanks so each row of the character matrix has the same length.
- 'all', meaning all predictors are categorical.

Example: 'CategoricalPredictors','all'

Data Types: `single` | `double` | `logical` | `char` | `struct` | `cell`

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either 'on' or 'off'.

If 'on', `RegressionTree.fit` grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-value pair arguments. Note that you can only use one of these four options ('KFold', 'Holdout', 'Leaveout', or 'CVPartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the `crossval` method.

Example: 'CrossVal','on'

**CVPartition — Partition for cross-validation tree**

cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of 'CVPartition' and an object of the `cvpartition` class created using `cvpartition`.

Note that if you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-value pair arguments.

**Holdout — Fraction of data for holdout validation**

scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Note that if you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-value pair arguments.

Example: 'Holdout', 0.1

Data Types: single | double

**KFold — Number of folds**

10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of 'KFold' and a positive integer value.

Note that if you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or 'Leaveout' name-value pair arguments.

Example: 'KFold', 8

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and either 'on' or 'off'. Use leave-one-out cross validation by setting to 'on'.

Note that if you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout', 'on'

**MergeLeaves — Leaf merge flag**

'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and either 'on' or 'off'. When 'on', `RegressionTree.fit` merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', `RegressionTree.fit` does not merge leaves.

Example: 'MergeLeaves', 'off'

**MinLeaf — Minimum number of leaf node observations**

1 (default) | positive integer value
Minimum number of leaf node observations, specified as the comma-separated pair consisting of 'MinLeaf' and a positive integer value. Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, RegressionTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Example: 'MinLeaf',3

Data Types: single | double

MinParent — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair consisting of 'MinParent' and a positive integer value. Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, RegressionTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Example: 'MinParent',8

Data Types: single | double

NVarToSample — Number of predictors for split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair consisting of 'NVarToSample' and a positive integer value. You can also specify 'all' to use all available predictors.

Example: 'NVarToSample',3

Data Types: single | double

PredictorNames — Predictor variable names
{'x1','x2',...} (default) | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a cell array of character vectors containing the names for the predictor variables, in the order in which they appear in x.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PedalLength','PedalWidth'}

Data Types: cell
**Prune — Pruning flag**
'off' (default) | 'on'

Pruning flag, specified as the comma-separated pair consisting of 'Prune' and either 'on' or 'off'. When 'on', RegressionTree.fit computes the full tree and the optimal sequence of pruned subtrees. When 'off', RegressionTree.fit computes the full tree without pruning.

Example: 'Prune','off'

**PruneCriterion — Pruning criterion**
'mse' (default)

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and 'mse'.

Example: 'PruneCriterion','mse'

**QEToler — Quadratic error tolerance**
1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of 'QEToler' and a positive scalar value. Splitting nodes stops when quadratic error per node drops below QEToler*QED, where QED is the quadratic error for the entire data computed before the decision tree is grown.

Example: 'QEToler',1e4

**ResponseName — Response variable name**
'Y' (default) | character vector

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector containing the name of the response variable in y.

Example: 'ResponseName','Response'

Data Types: char

**ResponseTransform — Response transform function**
'none' (default) | function handle

Response transform function for transforming the raw response values, specified as the comma-separated pair consisting of 'ResponseTransform' and either a function handle...
or 'none'. The function handle should accept a matrix of response values and return a matrix of the same size. The default character vector 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

Example: 'ResponseTransform','none'
Data Types: function_handle

**SplitCriterion — Split criterion**

'MSE' (default)

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'MSE', meaning mean squared error.

Example: 'SplitCriterion','MSE'

**Surrogate — Surrogate decision splits flag**

'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When 'on', RegressionTree.fit finds at most 10 surrogate splits at each branch node.
• When set to a positive integer value, RegressionTree.fit finds at most the specified number of surrogate splits at each branch node.
• When set to 'all', RegressionTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Example: 'Surrogate','on'
Data Types: single | double

**Weights — Observation weights**

ones(size(X,1),1) (default) | vector of scalar values
Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values. The length of Weights is the number of rows in x.

Data Types: single | double

Output Arguments

tree — Regression tree
regression tree object

Regression tree, returned as a regression tree object. Note that using the 'Crossval', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to make predictions.

Examples

Predict Values Using a Regression Tree

Load the sample data.

load carsmall

Construct a regression tree to predict the mileage of cars based on their weights and numbers of cylinders.

```
tree = RegressionTree.fit([Weight, Cylinders],MPG,...
 'MinParent',20,...
 'PredictorNames',{"W","C"})
```

```
tree = RegressionTree
 PredictorNames: {'W' 'C'}
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 NumObservations: 94
```
Predict the mileage of a car that weighs 2200 lbs and has four cylinders.

```matlab
predict(tree,[2200,4])
```

ans = 29.6111

### References


### See Also

*fitrtree|predict|view*

### Topics

“Splitting Categorical Predictors” on page 19-31


**fitcdiscr**

Fit discriminant analysis classifier

**Syntax**

```
Mdl = fitcdiscr(Tbl,ResponseVarName)
Mdl = fitcdiscr(Tbl,formula)
Mdl = fitcdiscr(Tbl,Y)
Mdl = fitcdiscr(X,Y)
Mdl = fitcdiscr(___,Name,Value)
```

**Description**

`Mdl = fitcdiscr(Tbl,ResponseVarName)` returns a fitted discriminant analysis model based on the input variables (also known as predictors, features, or attributes) contained in the table `Tbl` and output (response or labels) contained in `ResponseVarName`.

`Mdl = fitcdiscr(Tbl,formula)` returns a fitted discriminant analysis model based on the input variables contained in the table `Tbl`. `formula` is an explanatory model of the response and a subset of predictor variables in `Tbl` used to fit `Mdl`.

`Mdl = fitcdiscr(Tbl,Y)` returns a fitted discriminant analysis model based on the input variables contained in the table `Tbl` and response `Y`.

`Mdl = fitcdiscr(X,Y)` returns a discriminant analysis classifier based on the input variables `X` and response `Y`.

`Mdl = fitcdiscr(___,Name,Value)` fits a classifier with additional options specified by one or more name-value pair arguments, using any of the previous syntaxes. For example, you can optimize hyperparameters to minimize the model's cross-validation loss, or specify the cost of misclassification, the prior probabilities for each class, or the observation weights.
Examples

Train Discriminant Analysis Model

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using the entire data set.

Mdl = fitcdiscr(meas,species)

Mdl = ClassificationDiscriminant
   ResponseName: 'Y'
   CategoricalPredictors: []
   ClassNames: {'setosa' 'versicolor' 'virginica'}
   ScoreTransform: 'none'
   NumObservations: 150
   DiscrimType: 'linear'
   Mu: [3x4 double]
   Coeffs: [3x3 struct]

Properties, Methods

Mdl is a ClassificationDiscriminant model. To access its properties, use dot notation. For example, display the group means for each predictor.

Mdl.Mu

ans = 3x4

5.0060  3.4280  1.4620  0.2460
5.9360  2.7700  4.2600  1.3260
6.5880  2.9740  5.5520  2.0260

To predict labels for new observations, pass Mdl and predictor data to predict.
Optimize Discriminant Analysis Model

This example shows how to optimize hyperparameters automatically using `fitcdiscr`. The example uses Fisher's iris data.

Load the data.

```matlab
load fisheriris
```

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng(1)
Mdl = fitcdiscr(meas,species,'OptimizeHyperparameters','auto',...
 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective

Function evaluations

Min objective
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.66667</td>
<td>1.6196</td>
<td>0.66667</td>
<td>0.66667</td>
<td>13.261</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.02</td>
<td>0.4372</td>
<td>0.02</td>
<td>0.064227</td>
<td>2.7404e-05</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.04</td>
<td>0.31476</td>
<td>0.02</td>
<td>0.020084</td>
<td>3.2455e-06</td>
</tr>
</tbody>
</table>

**Objective function model**

- Observed points
- Model mean
- Next point
- Model minimum feasible
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.02</td>
<td>0.13199</td>
<td>0.02</td>
<td>0.019043</td>
<td>0.0036004</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.02</td>
<td>0.17646</td>
<td>0.02</td>
<td>0.019755</td>
<td>2.5238e-05</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.02</td>
<td>0.30084</td>
<td>0.02</td>
<td>0.0191</td>
<td>1.5478e-05</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.02</td>
<td>0.20662</td>
<td>0.02</td>
<td>0.019081</td>
<td>0.0040557</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.02</td>
<td>0.17532</td>
<td>0.02</td>
<td>0.019333</td>
<td>2.959e-05</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.02</td>
<td>0.43656</td>
<td>0.02</td>
<td>0.019369</td>
<td>2.3111e-06</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.02</td>
<td>0.15129</td>
<td>0.02</td>
<td>0.019455</td>
<td>3.8898e-05</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.02</td>
<td>0.14518</td>
<td>0.02</td>
<td>0.019449</td>
<td>0.0035925</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.66667</td>
<td>0.15539</td>
<td>0.02</td>
<td>0.019479</td>
<td>998.93</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.02</td>
<td>0.15241</td>
<td>0.02</td>
<td>0.01947</td>
<td>8.1557e-06</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 73.5903 seconds.
Total objective function evaluation time: 8.9922

Best observed feasible point:

<table>
<thead>
<tr>
<th>Delta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7404e-05</td>
<td>0.073264</td>
</tr>
</tbody>
</table>
Observed objective function value = 0.02
Estimated objective function value = 0.01947
Function evaluation time = 0.4372

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Delta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5238e-05</td>
<td>0.0015542</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.01947
Estimated function evaluation time = 0.22246

Mdl = ClassificationDiscriminant
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
    NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
    DiscrimType: 'linear'
    Mu: [3x4 double]
    Coeffs: [3x3 struct]

Properties, Methods

The fit achieved about 2% loss for the default 5-fold cross validation.

**Optimize Discriminant Analysis Model on Tall Array**

This example shows how to optimize hyperparameters of a discriminant analysis model automatically using a tall array. The sample data set `airlinesmall.csv` is a large data set that contains a tabular file of airline flight data. This example creates a tall table containing the data and uses it to run the optimization procedure.

Create a datastore that references the folder location with the data. Select a subset of the variables to work with, and treat 'NA' values as missing data so that `datastore` replaces them with `NaN` values. Create a tall table that contains the data in the datastore.
ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',...
    'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table

tt =

M×7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________
    10       21            3          642          8         308          12
    10       26            1         1021          8         296           1
    10       23            5         2055         21         480          20
    10       23            5         1332         13         296          12
    10       22            4          629          4         373          -1
    10       28            3         1446         59         308          63
    10        8            4          928          3         447          -2
    10       10            6          859         11         954          -1
    :        :             :           :          :           :           :
    :        :             :           :          :           :           :

When you execute calculations on tall arrays, the default execution environment uses
either the local MATLAB session or a local parallel pool (if you have Parallel Computing
Toolbox™). You can use the mapreducer function to change the execution environment.

Determine the flights that are late by 10 minutes or more by defining a logical variable
that is true for a late flight. This variable contains the class labels. A preview of this
variable includes the first few rows.

Y = tt.DepDelay > 10 % Class labels

Y =

M×1 tall logical array

1
0
1
1
0
1
0
Create a tall array for the predictor data.

```matlab
X = tt{:,1:end-1} % Predictor data
X =
```

```
Mx6 tall double matrix
```

```
10 21 3 642 8 308
10 26 1 1021 8 296
10 23 5 2055 21 480
10 23 5 1332 13 296
10 22 4 629 4 373
10 28 3 1446 59 308
10 8 4 928 3 447
10 10 6 859 11 954
: : : : : :
: : : : : :
: : : : : :
```

Remove rows in X and Y that contain missing data.

```matlab
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:end-1);
Y = R(:,end);
```

Standardize the predictor variables.

```matlab
Z = zscore(X);
```

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair argument. Find the optimal 'DiscrimType' value that minimizes holdout cross-validation loss. (Specifying 'auto' uses 'DiscrimType'.) For reproducibility, set the random seed for tall arrays and use the 'expected-improvement-plus' acquisition function.

```matlab
rng('default') % For reproducibility
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(Z,Y,...
'OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',struct('Holdout',0.3,...
'AcquisitionFunctionName','expected-improvement-plus'))
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 3: Completed in 0.81 sec
- Pass 2 of 3: Completed in 0.92 sec
- Pass 3 of 3: Completed in 1.9 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>DiscrimType</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.11389</td>
<td>12.875</td>
<td>0.11389</td>
<td>0.11389</td>
<td>quadratic</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.11389</td>
<td>8.694</td>
<td>0.11389</td>
<td>0.11389</td>
<td>pseudoQuadra</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.12886</td>
<td>8.6973</td>
<td>0.11389</td>
<td>0.11888</td>
<td>pseudoLinear</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.12768</td>
<td>8.5794</td>
<td>0.11389</td>
<td>0.12108</td>
<td>diagLinear</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.12886</td>
<td>8.8975</td>
<td>0.11389</td>
<td>0.12263</td>
<td>linear</td>
</tr>
</tbody>
</table>

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   6 | Best    | 0.11348 | 8.4306       | 0.11348 | 0.12111 | diagQuadrati |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   7 | Accept  | 0.11348 | 8.4227       | 0.11348 | 0.11348 | diagQuadrati |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.8 sec
|   8 | Accept  | 0.11348 | 8.4649       | 0.11348 | 0.11348 | diagQuadrati |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   9 | Accept  | 0.11348 | 8.3351       | 0.11348 | 0.11348 | diagQuadrati |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|  10 | Accept  | 0.11348 | 8.3894       | 0.11348 | 0.11348 | diagQuadrati |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|  11 | Accept  | 0.11348 | 8.6772       | 0.11348 | 0.11348 | diagQuadrati |
Evaluation completed in 1.9 sec
| 12 | Accept | 0.11348 | 8.6703 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
| 13 | Accept | 0.11348 | 8.7461 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec
| 14 | Accept | 0.11348 | 8.7499 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
| 15 | Accept | 0.11348 | 8.4213 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
| 16 | Accept | 0.11348 | 8.4668 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
| 17 | Accept | 0.11348 | 8.5569 | 0.11348 | 0.11348 | diagQuadrati
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
| 18 | Accept | 0.11348 | 8.5857 | 0.11348 | 0.11348 | diagQuadrati

32-1715
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>DiscrimType</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.11348</td>
<td>8.4792</td>
<td>0.11348</td>
<td>0.11348</td>
<td>diagQuadrati</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.11348</td>
<td>8.4806</td>
<td>0.11348</td>
<td>0.11348</td>
<td>diagQuadrati</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.11348</td>
<td>8.5015</td>
<td>0.11348</td>
<td>0.11348</td>
<td>diagQuadrati</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.11389</td>
<td>8.3472</td>
<td>0.11348</td>
<td>0.11348</td>
<td>quadratic</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.11389</td>
<td>8.3919</td>
<td>0.11348</td>
<td>0.11348</td>
<td>pseudoQuadra</td>
</tr>
</tbody>
</table>
Evaluation completed in 1.9 sec
|   24 | Accept |     0.11348 |      7.7406 |     0.11348 |     0.11348 | diagQuadratic |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   25 | Accept |     0.11389 |        8.48 |     0.11348 |     0.11348 | pseudoQuadra |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   26 | Accept |     0.11348 |      8.4785 |     0.11348 |     0.11348 | diagQuadratic |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   27 | Accept |     0.11348 |      8.4486 |     0.11348 |     0.11348 | diagQuadratic |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   28 | Accept |     0.11389 |       8.545 |     0.11348 |     0.11348 | quadratic     |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   29 | Accept |     0.11348 |       8.243 |     0.11348 |     0.11348 | diagQuadratic |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
|   30 | Accept |     0.11348 |      8.3413 |     0.11348 |     0.11348 | diagQuadratic |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Optimization completed.  
MaxObjectiveEvaluations of 30 reached.  
Total function evaluations: 30  
Total elapsed time: 293.7336 seconds.  
Total objective function evaluation time: 259.1373

Best observed feasible point:  
DiscrimType  
__________________________

diagQuadratic

Observed objective function value = 0.11348  
Estimated objective function value = 0.11348  
Function evaluation time = 8.4306

Best estimated feasible point (according to models):  
DiscrimType  
__________________________

diagQuadratic

Estimated objective function value = 0.11348  
Estimated function evaluation time = 8.5034

Evaluating tall expression using the Parallel Pool 'local':  
- Pass 1 of 1: Completed in 1.1 sec  
Evaluation completed in 2 sec

Mdl =  
classreg.learning.classif.CompactClassificationDiscriminant  
   PredictorNames: {'x1' 'x2' 'x3' 'x4' 'x5' 'x6'}  
   ResponseName: 'Y'  
   CategoricalPredictors: []  
   ClassNames: [0 1]  
   ScoreTransform: 'none'  
   DiscrimType: 'diagQuadratic'  
   Mu: [2×6 double]  
   Coefs: [2×2 struct]
FitInfo = struct with no fields.

HyperparameterOptimizationResults =
    BayesianOptimization with properties:

    ObjectiveFcn: @createObjFcn/tallObjFcn
    VariableDescriptions: [1×1 optimizableVariable]
    Options: [1×1 struct]
    MinObjective: 0.1135
    XAtMinObjective: [1×1 table]
    MinEstimatedObjective: 0.1135
    XAtMinEstimatedObjective: [1×1 table]
    NumObjectiveEvaluations: 30
    TotalElapsedTime: 293.7336
    NextPoint: [1×1 table]
    XTrace: [30×1 table]
    ObjectiveTrace: [30×1 double]
    ConstraintsTrace: []
    UserDataTrace: {30×1 cell}
    ObjectiveEvaluationTimeTrace: [30×1 double]
    IterationTimeTrace: [30×1 double]
    ErrorTrace: [30×1 double]
    FeasibilityTrace: [30×1 logical]
    FeasibilityProbabilityTrace: [30×1 double]
    IndexOfMinimumTrace: [30×1 double]
    ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]

**Input Arguments**

**Tbl — Sample data**

table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
If Tbl contains the response variable, and you want to use all remaining variables in Tbl as predictors, then specify the response variable by using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in Tbl as predictors, then specify a formula by using formula.

If Tbl does not contain the response variable, then specify a response variable by using Y. The length of the response variable and the number of rows in Tbl must be equal.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If Y is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the ClassNames name-value pair argument.

Data Types: char | string

formula — Explanatory model of response and subset of predictor variables
character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of 'Y~X1+X2+X3'. In this form, Y represents the response variable, and X1, X2, and X3 represent the predictor variables. The variables must be variable names in Tbl (Tbl.Properties.VariableNames).

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in Tbl that do not appear in formula.

Data Types: char | string
**Y — Class labels**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Each row of Y represents the classification of the corresponding row of X.

The software considers NaN, '' (empty character vector), "" (empty string), <missing>, and <undefined> values in Y to be missing values. Consequently, the software does not train using observations with a missing response.

Data Types: categorical | char | string | logical | single | double | cell

**X — Predictor data**
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one variable, and each row represents one observation.

fitcdiscr considers NaN values in X as missing values. fitcdiscr does not use observations with missing values for X in the fit.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Note** You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: 'DiscrimType','quadratic','SaveMemory','on' specifies a quadratic discriminant classifier and does not store the covariance matrix in the output object.
Model Parameters

**ClassNames — Names of classes to use for training**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. `ClassNames` must have the same data type as `Y`.

If `ClassNames` is a character array, then each element must correspond to one row of the array.

Use `ClassNames` to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use `ClassNames` to specify the order of the dimensions of `Cost` or the column order of classification scores returned by `predict`.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in `Y` is {'a', 'b', 'c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames', {'a', 'c'}.

The default value for `ClassNames` is the set of all distinct class names in `Y`.

Example: 'ClassNames', {'b', 'g'}

Data Types: categorical | char | string | logical | single | double | cell

**Cost — Cost of misclassification**
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and one of the following:

- Square matrix, where `Cost(i, j)` is the cost of classifying a point into class `j` if its true class is `i` (i.e., the rows correspond to the true class and the columns correspond to the predicted class). To specify the class order for the corresponding rows and columns of `Cost`, additionally specify the `ClassNames` name-value pair argument.
- Structure `S` having two fields: `S.ClassNames` containing the group names as a variable of the same type as `Y`, and `S.ClassificationCosts` containing the cost matrix.
The default is $\text{Cost}(i,j) = 1$ if $i \neq j$, and $\text{Cost}(i,j) = 0$ if $i = j$.

Data Types: single | double | struct

**FillCoeffs — Coeffs property flag**

'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs property in the classifier object. This can be computationally intensive, especially when cross-validating. The default is 'on', unless you specify a cross-validation name-value pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

**PredictorNames — Predictor variable names**

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitcdiscr uses only the predictor variables in PredictorNames and the response variable in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.
Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

**Prior — Prior probabilities**

'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to Mdl.ClassNames or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Example: 'Prior','uniform'

Data Types: char | string | single | double | struct

**ResponseName — Response variable name**

'Y' (default) | character vector | string scalar
Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

SaveMemory — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of 'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does not store the full covariance matrix, but instead stores enough information to compute the matrix. The predict method computes the full covariance matrix for prediction, and does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the full covariance matrix in Mdl.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

ScoreTransform — Score transformation
'none' (default)| 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>1/(1 + e^{-2x})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>log(x / (1-x))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>1/(1 + e^{-x})</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>$x$ (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign'             | -1 for $x < 0$
|                    | 0 for $x = 0$
|                    | 1 for $x > 0$                                    |
| 'symmetric'        | $2x - 1$                                         |
| 'symmetricismax'   | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to $-1$ |
| 'symmetriclogit'   | $2/(1 + e^{-x}) - 1$                            |

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

**Weights — Observation weights**

numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of $X$ or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of $X$ or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if the weights vector $W$ is stored as Tbl.$W$, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including $W$, as predictors or the response when training the model.

The software normalizes Weights to sum up to the value of the prior probability in the respective class.

By default, Weights is ones($n$,1), where $n$ is the number of observations in $X$ or Tbl.

Data Types: double | single | char | string
Cross-Validation

**CrossVal — Cross-validation flag**

`'off'` (default) | `'on'`

Cross-validation flag, specified as the comma-separated pair consisting of `'Crossval'` and `'on'` or `'off'`.

If you specify `'on'`, then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing `Mdl` to `crossval`.

Example: `'CrossVal','on'`

**CVPartition — Cross-validation partition**

`[]` (default) | `cvpartition` partition object

Cross-validation partition, specified as the comma-separated pair consisting of `'CVPartition'` and a `cvpartition` partition object as created by `cvpartition`. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `'CVPartition', 'Holdout', 'KFold', or 'Leaveout'`.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using `cvp = cvpartition(500,'KFold',5)`. Then, you can specify the cross-validated model by using `'CVPartition',cvp.

**Holdout — Fraction of data for holdout validation**

Scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of `'Holdout'` and a scalar value in the range (0,1). If you specify `'Holdout',p`, then the software completes these steps:

1. Randomly select and reserve $p \times 100\%$ of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the **Trained** property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: **CVPartition**, **Holdout**, **KFold**, or **Leaveout**.

Example: 'Holdout',0.1

Data Types: double | single

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in the cells of a k-by-1 cell vector in the **Trained** property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: **CVPartition**, **Holdout**, **KFold**, or **Leaveout**.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations (where n is the number of observations excluding missing observations, specified in the **NumObservations** property of the model), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other n - 1 observations.
2 Store the n compact, trained models in the cells of an n-by-1 cell vector in the **Trained** property of the cross-validated model.
To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

Hyperparameter Optimization

**Delta — Linear coefficient threshold**

0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of 'Delta' and a nonnegative scalar value. If a coefficient of Mdl has magnitude smaller than Delta, Mdl sets this coefficient to 0, and you can eliminate the corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

**DiscrimType — Discriminant type**

'linear' (default) | 'quadratic' | 'diaglinear' | 'diagquadratic' | 'pseudolinear' | 'pseudoquadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType' and a character vector or string scalar in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Predictor Covariance Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>'linear'</td>
<td>Regularized linear discriminant analysis (LDA)</td>
<td>• All classes have the same covariance matrix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $\hat{\Sigma} = (1 - \gamma) \hat{\Sigma} + \gamma \text{diag}(\hat{\Sigma})$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\Sigma}$ is the empirical, pooled covariance matrix and $\gamma$ is the amount of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regularization.</td>
</tr>
<tr>
<td>'diaglinear'</td>
<td>LDA</td>
<td>All classes have the same, diagonal covariance matrix.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Predictor Covariance Treatment</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'pseudolinear'</td>
<td>LDA</td>
<td>All classes have the same covariance matrix. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic discriminant analysis (QDA)</td>
<td>The covariance matrices can vary among classes.</td>
</tr>
<tr>
<td>'diagquadratic'</td>
<td>QDA</td>
<td>The covariance matrices are diagonal and can vary among classes.</td>
</tr>
<tr>
<td>'pseudoquadratic'</td>
<td>QDA</td>
<td>The covariance matrices can vary among classes. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
</tbody>
</table>

**Note** To use regularization, you must specify 'linear'. To specify the amount of regularization, use the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

**Gamma — Amount of regularization**

scalar value in the interval [0,1]

Amount of regularization to apply when estimating the covariance matrix of the predictors, specified as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma provides finer control over the covariance matrix structure than DiscrimType.

- If you specify 0, then the software does not use regularization to adjust the covariance matrix. That is, the software estimates and uses the unrestricted, empirical covariance matrix.

- For linear discriminant analysis, if the empirical covariance matrix is singular, then the software automatically applies the minimal regularization required to invert the
covariance matrix. You can display the chosen regularization amount by entering 
`Mdl.Gamma` at the command line.

- For quadratic discriminant analysis, if at least one class has an empirical 
covariance matrix that is singular, then the software throws an error.
- If you specify a value in the interval (0,1), then you must implement linear 
discriminant analysis, otherwise the software throws an error. Consequently, the 
software sets `DiscrimType` to `'linear'`.
- If you specify 1, then the software uses maximum regularization for covariance matrix 
estimation. That is, the software restricts the covariance matrix to be diagonal. 
Alternatively, you can set `DiscrimType` to `'diagLinear'` or `'diagQuadratic'` for 
diagonal covariance matrices.

Example: `'Gamma',1`

Data Types: `single` | `double`

**Hyperparameter Optimization**

**OptimizeHyperparameters — Parameters to optimize**

`'none'` (default) | `'auto'` | `'all'` | string array or cell array of eligible parameter 

names | vector of `optimizableVariable` objects

Parameters to optimize, specified as the comma-separated pair consisting of 
`'OptimizeHyperparameters'` and one of the following:

- `'none'` — Do not optimize.
- `'auto'` — Use `{`'Delta',`'Gamma'`}`.
- `'all'` — Optimize all eligible parameters.
- String array or cell array of eligible parameter names.
- Vector of `optimizableVariable` objects, typically the output of `hyperparameters`.

The optimization attempts to minimize the cross-validation loss (error) for `fitcdiscr` by 
varying the parameters. For information about cross-validation loss (albeit in a different 
context), see “Classification Loss” on page 32-3215. To control the cross-validation type 
and other aspects of the optimization, use the `HyperparameterOptimizationOptions` 
name-value pair.

**Note** `'OptimizeHyperparameters'` values override any values you set using other 
name-value pair arguments. For example, setting `'OptimizeHyperparameters'` to 
`'auto'` causes the `'auto'` values to apply.
The eligible parameters for fitcdiscr are:

- **Delta** — fitcdiscr searches among positive values, by default log-scaled in the range \([1e-6, 1e3]\).

- **DiscrimType** — fitcdiscr searches among 'linear', 'quadratic', 'diagLinear', 'diagQuadratic', 'pseudoLinear', and 'pseudoQuadratic'.

- **Gamma** — fitcdiscr searches among real values in the range \([0, 1]\).

Set nondefault parameters by passing a vector of optimizableVariable objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitcdiscr', meas, species);
params(1).Range = [1e-4, 1e6];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \(\log(1 + \text{cross-validation loss})\) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize Discriminant Analysis Model” on page 32-1703.

Example: 'auto'

`HyperparameterOptimizationOptions — Options for optimization structure`
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>• 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.</td>
<td>'bayesopt'</td>
</tr>
<tr>
<td></td>
<td>• 'gridsearch' — Use grid search with NumGridDivisions values per dimension.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'randomsearch' — Search at random among MaxObjectiveEvaluations points.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults).</td>
<td></td>
</tr>
<tr>
<td>AcquisitionFunctionName</td>
<td>• 'expected-improvement-per-second-plus'</td>
<td>'expected-improvement-per-second-plus'</td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-plus'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-per-second'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'lower-confidence-bound'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'probability-of-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.</td>
<td></td>
</tr>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the bayesopt Verbose name-value pair argument.
Field Name	Values	Default
UseParallel | Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9. | false
Repartition | Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations. | false

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

### Output Arguments

**Mdl — Trained discriminant analysis classification model**

ClassificationDiscriminant model object | ClassificationPartitionedModel cross-validated model object

Trained discriminant analysis classification model, returned as a ClassificationDiscriminant model object or a ClassificationPartitionedModel cross-validated model object.
If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a ClassificationDiscriminant model object.

To reference properties of Mdl, use dot notation. For example, to display the estimated component means at the Command Window, enter Mdl.Mu.

**Definitions**

**Discriminant Classification**

The model for discriminant analysis is:

- Each class \( Y \) generates data \( X \) using a multivariate normal distribution. That is, the model assumes \( X \) has a Gaussian mixture distribution (gmdistribution).
  - For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
  - For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

\[
\hat{y} = \arg \min \sum_{y=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]

where

- \( \hat{y} \) is the predicted classification.
- \( K \) is the number of classes.
- \( \hat{P}(k \mid x) \) is the posterior probability on page 20-7 of class \( k \) for observation \( x \).
- \( C(y \mid k) \) is the cost on page 20-8 of classifying an observation as \( y \) when its true class is \( k \).

For details, see “Prediction Using Discriminant Analysis Models” on page 20-7.
**Tips**

After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

**Alternative Functionality**

**Functions**

The `classify` function also performs discriminant analysis. `classify` is usually more awkward to use.

- `classify` requires you to fit the classifier every time you make a new prediction.
- `classify` does not perform cross-validation or hyperparameter optimization.
- `classify` requires you to fit the classifier when changing prior probabilities.

**Extended Capabilities**

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

- Supported syntaxes for tall arrays return the additional output arguments `FitInfo` and `HyperparameterOptimizationResults`. The supported syntaxes are:
  - `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(Tbl,Y)
  - `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(X,Y)
  - `[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(___,Name,Value)`
The **FitInfo** output argument is an empty structure array currently reserved for possible future use.

The **HyperparameterOptimizationResults** output argument is a **BayesianOptimization** object or a table of hyperparameters with associated values that describe the cross-validation optimization of hyperparameters.

'**HyperparameterOptimizationResults**' is nonempty when the '**OptimizeHyperparameters**' name-value pair argument is nonempty at the time you create the model. The values in '**HyperparameterOptimizationResults**' depend on the value you specify for the '**HyperparameterOptimizationOptions**' name-value pair argument when you create the model.

- If you specify 'bayesopt' (default), then
  **HyperparameterOptimizationResults** is an object of class **BayesianOptimization**.
- If you specify 'gridsearch' or 'randomsearch', then
  **HyperparameterOptimizationResults** is a table of the hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst).

- Supported name-value pair arguments, and any differences, are:
  - '**ClassNames**'
  - '**Cost**'
  - '**DiscrimType**'
  - '**HyperparameterOptimizationOptions**' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify `fitcdiscr(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2))`.
  - '**OptimizeHyperparameters**' — The only eligible parameter to optimize is 'DiscrimType'. Specifying 'auto' uses 'DiscrimType'.
  - '**PredictorNames**'
  - '**Prior**'
  - '**ResponseName**'
  - '**ScoreTransform**'
  - '**Weights**'

For tall arrays and tall tables, `fitcdiscr` returns a **CompactClassificationDiscriminant** object, which contains most of the same
properties as a ClassificationDiscriminant object. The main difference is that the compact object is sensitive to memory requirements. The compact object does not include properties that include the data, or that include an array of the same size as the data. The compact object does not contain these ClassificationDiscriminant properties:

- ModelParameters
- NumObservations
- HyperparameterOptimizationResults
- RowsUsed
- XCentered
- W
- X
- Y

Additionally, the compact object does not support these ClassificationDiscriminant methods:

- compact
- crossval
- cvshrink
- resubEdge
- resubLoss
- resubMargin
- resubPredict

For more information, see “Tall Arrays” (MATLAB).

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.
For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
ClassificationDiscriminant | ClassificationPartitionedModel | classify | crossval | predict

Topics
“Discriminant Analysis Classification” on page 20-2

Introduced in R2014a
**fitcecoc**

Fit multiclass models for support vector machines or other classifiers

**Syntax**

```plaintext
Mdl = fitcecoc(Tbl,ResponseVarName)
Mdl = fitcecoc(Tbl,formula)
Mdl = fitcecoc(Tbl,Y)
Mdl = fitcecoc(X,Y)
Mdl = fitcecoc(___,Name,Value)
[Mdl,HyperparameterOptimizationResults] = fitcecoc(___,Name,Value)
```

**Description**

`Mdl = fitcecoc(Tbl,ResponseVarName)` returns a full, trained, multiclass, error-correcting output codes (ECOC) model on page 32-1791 using the predictors in table `Tbl` and the class labels in `Tbl.ResponseVarName`. `fitcecoc` uses $K(K - 1)/2$ binary support vector machine (SVM) models using the one-versus-one coding design on page 32-1788, where $K$ is the number of unique class labels (levels). `Mdl` is a `ClassificationECOC` model.

`Mdl = fitcecoc(Tbl,formula)` returns an ECOC model using the predictors in table `Tbl` and the class labels. `formula` is an explanatory model of the response and a subset of predictor variables in `Tbl` used for training.

`Mdl = fitcecoc(Tbl,Y)` returns an ECOC model using the predictors in table `Tbl` and the class labels in vector `Y`.

`Mdl = fitcecoc(X,Y)` returns a trained ECOC model using the predictors `X` and the class labels `Y`.

`Mdl = fitcecoc(___,Name,Value)` returns an ECOC model with additional options specified by one or more `Name,Value` pair arguments, using any of the previous syntaxes.
For example, specify different binary learners, a different coding design, or to cross-validate. It is good practice to cross-validate using the Kfold Name,Value pair argument. The cross-validation results determine how well the model generalizes.

\[
[Mdl,\text{HyperparameterOptimizationResults}] = \text{fitcecoc}(__,\text{Name,Value})
\]
also returns hyperparameter optimization details when you pass an OptimizeHyperparameters name-value pair with Learners = 'linear'. For other Learners, the HyperparameterOptimizationResults property of Mdl contains the results. Hyperparameter optimization is not available for kernel binary learners.

## Examples

### Train Multiclass Model Using SVM Learners

Train an error-correcting output codes (ECOC) multiclass model using support vector machine (SVM) binary learners.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Train an ECOC multiclass model using the default options.

```matlab
Mdl = fitcecoc(X,Y)
```

```matlab
Mdl =
 ClassificationECOC
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 BinaryLearners: {3x1 cell}
 CodingName: 'onevsone'
```

Properties, Methods
Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners, and uses a one-versus-one coding design. You can access Mdl properties using dot notation.

Display the coding design matrix.

Mdl.ClassNames
ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

CodingMat = Mdl.CodingMatrix

CodingMat = 3×3
    1     1     0
   -1    0     1
    0    -1    -1

A one-versus-one coding design on three classes yields three binary learners. Columns of CodingMat correspond to learners, and rows correspond to classes. The class order corresponds to the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1; -1; 0] and indicates that the software trains the first SVM binary learner using all observations classified as 'setosa' and 'versicolor'. Since 'setosa' corresponds to 1, it is the positive class, and since 'versicolor' corresponds to -1, it is the negative class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1} % The first binary learner

ans =
    classreg.learning.classif.CompactClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: [-1 1]
    ScoreTransform: 'none'
    Beta: [4x1 double]
    Bias: 1.4505
    KernelParameters: [1x1 struct]
Properties, Methods

Compute the in-sample classification error.

```matlab
isLoss = resubLoss(Mdl)
```

```matlab
isLoss = 0.0067
```

The classification error is small, but the classifier might have been overfit. You can cross-validate the classifier using `crossval`.

**Cross-Validate ECOC Classifier**

Load Fisher's iris data set. Specify the predictor data `X` and the response data `Y`.

```matlab
load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility
```

Create an SVM template, and standardize the predictors.

```matlab
t = templateSVM('Standardize',1)
t =
```

Fit template for classification SVM.

```matlab
 Alpha: [0x1 double]
 BoxConstraint: []
 CacheSize: []
 CachingMethod: ''
 ClipAlphas: []
 DeltaGradientTolerance: []
 Epsilon: []
 GapTolerance: []
 KKTTLerance: []
 IterationLimit: []
 KernelFunction: ''
 KernelScale: []
 KernelOffset: []
```
t is an SVM template. Most of the template object's properties are empty. When training the ECOC classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the classification error.

loss = kfoldLoss(CVMdl)

loss = 0.0400

The classification error is 4%, which indicates that the ECOC classifier generalizes fairly well.
Estimate Posterior Probabilities Using ECOC Classifiers

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility
```

Create an SVM template, and specify the Gaussian kernel. It is good practice to standardize the predictors.

```matlab
t = templateSVM('Standardize',1,'KernelFunction','gaussian');
```

`t` is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior probabilities (which are returned by `predict` or `resubPredict`) using the 'FitPosterior' name-value pair argument. Display diagnostic messages during the training using the 'Verbose' name-value pair argument. It is good practice to specify the class order.

```matlab
Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...
 'ClassNames',{'setosa','versicolor','virginica'},...
 'Verbose',2);
```

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).
Md1 is a ClassificationECOC model. The same SVM template applies to each binary learner, but you can adjust options for each binary learner by passing in a cell vector of templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic messages during the computation of labels and class posterior probabilities using the 'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);
Mdl.BinaryLoss

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

ans =

'quadratic'

The software assigns an observation to the class that yields the smallest average binary loss. Since all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...
     'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

3x1 cell array

    {'setosa'    }
    {'versicolor'}
    {'virginica' }

ans =

10x3 table
<table>
<thead>
<tr>
<th>TrueLabel</th>
<th>PredLabel</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.0039321</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.017067</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.014948</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>2.2197e-14</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'virginica'</td>
<td>2.2195e-14</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>2.2194e-14</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>0.0085646</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999</td>
</tr>
</tbody>
</table>

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

```matlab
xMax = max(X); xMin = min(X); x1Pts = linspace(xMin(1),xMax(1)); x2Pts = linspace(xMin(2),xMax(2)); [x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts); [~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);```

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

```matlab
figure; contourf(x1Grid,x2Grid,... reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2))); h = colorbar; h.YLabel.String = 'Maximum posterior'; h.YLabel.FontSize = 15; hold on gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8); gh(2).LineWidth = 2; gh(3).LineWidth = 2; title 'Iris Petal Measurements and Maximum Posterior';
```
Train Multiclass Linear Classification Model

Train an ECOC model composed of multiple binary, linear classification models.

Load the NLP data set.

load nlpdata
X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

Create a default linear-classification-model template.

```matlab
t = templateLinear();
```

To adjust the default values, see the “Name-Value Pair Arguments” on page 32-6478 on `templateLinear` page.

Train an ECOC model composed of multiple binary, linear classification models that can identify the product given the frequency distribution of words on a documentation web page. For faster training time, transpose the predictor data, and specify that observations correspond to columns.

```matlab
X = X';
rng(1); % For reproducibility
Mdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns')
```

```matlab
Mdl =
    classreg.learning.classif.CompactClassificationECOC
    ResponseName: 'Y'
    ClassNames: [1x13 categorical]
    ScoreTransform: 'none'
    BinaryLearners: {78x1 cell}
    CodingMatrix: [13x78 double]
```

Alternatively, you can train an ECOC model composed of default linear classification models using 'Learners','Linear'.

To conserve memory, `fitcecoc` returns trained ECOC models composed of linear classification learners in `CompactClassificationECOC` model objects.

Train ECOC Classifiers Using Ensembles and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees with surrogate splits. Estimate the classification error using 10-fold cross-validation.
Load and inspect the arrhythmia data set.

```matlab
load arrhythmia
[n,p] = size(X)

n = 452
p = 279

isLabels = unique(Y);
numLabels = numel(isLabels)

numLabels = 13

tabulate(categorical(Y))
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.99%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.06%</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0.88%</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.11%</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>4.87%</td>
</tr>
</tbody>
</table>

The data set contains 279 predictors, and the sample size of 452 is relatively small. Of the 16 distinct labels, only 13 are represented in the response (Y). Each label describes various degrees of arrhythmia, and 54.20% of the observations are in class 1.

Create an ensemble template. You must specify at least three arguments: a method, a number of learners, and the type of learner. For this example, specify 'GentleBoost' for the method, 100 for the number of learners, and a decision tree template that uses surrogate splits because there are missing observations.

```matlab
tTree = templateTree('surrogate','on');
tEnsemble = templateEnsemble('GentleBoost',100,tTree);
```

tEnsemble is a template object. Most of its properties are empty, but the software fills them with their default values during training.
Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary learners. With a Parallel Computing Toolbox license, you can speed up the computation by using parallel computing, which sends each binary learner to a worker in the pool. (The number of workers depends on your system configuration.) Additionally, specify that the prior probabilities are $1/K$, where $K = 13$ is the number of distinct classes.

```matlab
pool = parpool; % Invoke workers
Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...
    'Prior','uniform','Options',options);
```

Mdl is a ClassificationECOC model.

Cross-validate the ECOC classifier using 10-fold cross-validation.

```matlab
CVMdl = crossval(Mdl,'Options',options);
Warning: One or more folds do not contain points from all the groups.
```

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that some classes are not represented while the software trains at least one fold. Therefore, those folds cannot predict labels for the missing classes. You can inspect the results of a fold using cell indexing and dot notation. For example, access the results of the first fold by entering `CVMdl.Trained{1}`.

Use the cross-validated ECOC classifier to predict validation-fold labels. You can compute the confusion matrix by using `confusionchart`. Move and resize the chart by changing the inner position property to ensure that the percentages appear in the row summary.

```matlab
oofLabel = kfoldPredict(CVMdl,'Options',options);
ConfMat = confusionchart(Y,oofLabel,'RowSummary','total-normalized');
ConfMat.InnerPosition = [0.10 0.12 0.85 0.85];
```
Optimize ECOC Classifier

This example shows how to optimize hyperparameters automatically using `fitcecoc`. The example uses Fisher's iris data.

Load the data.

```matlab
load fisheriris
X = meas;
Y = species;
```
Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng default
Mdl = fitcecoc(X,Y,'OptimizeHyperparameters','auto',
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
```

<p>|==|</p>
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>Coding</th>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Min objective vs. Number of function evaluations](image)

32-1754
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.10667</td>
<td>0.10667</td>
<td>0.10667</td>
<td>0.10667</td>
<td>onevsone</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.08</td>
<td>0.08</td>
<td>0.081379</td>
<td>0.08003</td>
<td>onevsone</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08003</td>
<td>0.080001</td>
<td>onevsall</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08003</td>
<td>0.080001</td>
<td>onevsall</td>
</tr>
<tr>
<td>5</td>
<td>Best</td>
<td>0.073333</td>
<td>0.073333</td>
<td>0.073337</td>
<td>0.073337</td>
<td>onevsall</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.38</td>
<td>0.38</td>
<td>0.073337</td>
<td>0.073338</td>
<td>onevsall</td>
</tr>
<tr>
<td>7</td>
<td>Best</td>
<td>0.046667</td>
<td>0.046667</td>
<td>0.046688</td>
<td>0.046688</td>
<td>onevsone</td>
</tr>
<tr>
<td>8</td>
<td>Best</td>
<td>0.033333</td>
<td>0.033333</td>
<td>0.033333</td>
<td>0.033341</td>
<td>onevsone</td>
</tr>
<tr>
<td>9</td>
<td>Best</td>
<td>0.026667</td>
<td>0.026667</td>
<td>0.026678</td>
<td>0.026678</td>
<td>onevsone</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.33333</td>
<td>0.33333</td>
<td>0.026676</td>
<td>0.026676</td>
<td>onevsall</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.04</td>
<td>0.04</td>
<td>0.026676</td>
<td>0.026676</td>
<td>onevsone</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.046667</td>
<td>0.046694</td>
<td>0.046694</td>
<td>onevsone</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.10667</td>
<td>0.10667</td>
<td>0.029124</td>
<td>0.029124</td>
<td>onevsone</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>0.04</td>
<td>0.04</td>
<td>0.026667</td>
<td>0.026667</td>
<td>onevsone</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.046667</td>
<td>0.032336</td>
<td>0.032336</td>
<td>onevsone</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.04667</td>
<td>0.032045</td>
<td>0.032045</td>
<td>onevsone</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.04</td>
<td>0.04</td>
<td>0.026678</td>
<td>0.026678</td>
<td>onevsone</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.046667</td>
<td>0.033569</td>
<td>0.033569</td>
<td>onevsone</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.06</td>
<td>0.06</td>
<td>0.026667</td>
<td>0.026667</td>
<td>onevsall</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.04</td>
<td>0.04</td>
<td>0.026667</td>
<td>0.026667</td>
<td>onevsone</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 143.9895 seconds.
Total objective function evaluation time: 79.1266

Best observed feasible point:

32-1755
Observed objective function value = 0.013333
Estimated objective function value = 0.019544
Function evaluation time = 0.69972

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Coding</th>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>onevsone</td>
<td>1.5298</td>
<td>1.6373</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.019544
Estimated function evaluation time = 0.6871

Mdl = ClassificationECOC
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 BinaryLearners: {3x1 cell}
 CodingName: 'onevsone'
 HyperparameterOptimizationResults: [1x1 BayesianOptimization]

Train Multiclass ECOC Model with SVMs and Tall Arrays

Create two multiclass ECOC models trained on tall data. Use linear binary learners for one of the models and kernel binary learners for the other. Compare the resubstitution classification error of the two models.

In general, you can perform multiclass classification of tall data by using fitcecoc with linear or kernel binary learners. When you use fitcecoc to train a model on tall arrays, you cannot use SVM binary learners directly. However, you can use either linear or kernel binary classification models that use SVMs.
Create a datastore that references the folder containing Fisher's iris data set. Specify 'NA' values as missing data so that datastore replaces them with NaN values. Create tall versions of the predictor and response data.

```matlab
ds = datastore('fisheriris.csv','TreatAsMissing','NA');
tall(ds);
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

```matlab
X = [t.SepalLength t.SepalWidth t.PetalLength t.PetalWidth];
Y = t.Species;
```

Standardize the predictor data.

```matlab
Z = zscore(X);
```

Train a multiclass ECOC model that uses tall data and linear binary learners. By default, when you pass tall arrays to fitcecoc, the software trains linear binary learners that use SVMs. Because the response data contains only three unique classes, change the coding scheme from one-versus-all (which is the default when you use tall data) to one-versus-one (which is the default when you use in-memory data).

```matlab
rng('default') % For reproducibility
mdlLinear = fitcecoc(Z,Y,'Coding','onevsone')
```

Training binary learner 1 (Linear) out of 3.
Training binary learner 2 (Linear) out of 3.
Training binary learner 3 (Linear) out of 3.

```matlab
mdlLinear =
    classreg.learning.classif.CompactClassificationECOC
        ResponseName: 'Y'
            ClassNames: {'setosa'  'versicolor' 'virginica'}
        ScoreTransform: 'none'
        BinaryLearners: {3×1 cell}
            CodingMatrix: [3×3 double]
```

Properties, Methods

```
mdlLinear is a CompactClassificationECOC model composed of three binary learners.
```
Train a multiclass ECOC model that uses tall data and kernel binary learners. First, create a `templateKernel` object to specify the properties of the kernel binary learners; in particular, increase the number of expansion dimensions to \(2^{16}\).

```matlab
tKernel = templateKernel('NumExpansionDimensions',2^16)
tKernel =
Fit template for classification Kernel.

    BetaTolerance: []
    BlockSize: []
    BoxConstraint: []
    Epsilon: []
    NumExpansionDimensions: 65536
    GradientTolerance: []
    HessianHistorySize: []
    IterationLimit: []
    KernelScale: []
    Lambda: []
    Learner: 'svm'
    LossFunction: []
    Stream: []
    VerbosityLevel: []
    Version: 1
    Method: 'Kernel'
    Type: 'classification'
```

By default, the kernel binary learners use SVMs.

Pass the `templateKernel` object to `fitcecoc` and change the coding scheme to one-versus-one.

```matlab
mdlKernel = fitcecoc(Z,Y,'Learners',tKernel,'Coding','onevsone')

Training binary learner 1 (Kernel) out of 3.
Training binary learner 2 (Kernel) out of 3.
Training binary learner 3 (Kernel) out of 3.
```

```matlab
mdlKernel =
classreg.learning.classif.CompactClassificationECOC
    ResponseName: 'Y'
    ClassNames: {'setosa'  'versicolor'  'virginica'}
    ScoreTransform: 'none'
```
mdlKernel is also a CompactClassificationECOC model composed of three binary learners.

Compare the resubstitution classification error of the two models.

```matlab
errorLinear = gather(loss(mdlLinear,Z,Y))
```

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 2 sec

```matlab
errorLinear = 0.0333
```

```matlab
errorKernel = gather(loss(mdlKernel,Z,Y))
```

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 17 sec
Evaluation completed in 17 sec

```matlab
errorKernel = 0.0067
```

mdlKernel misclassifies a smaller percentage of the training data than mdlLinear.

Input Arguments

Tbl — Sample data

table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor. Optionally, Tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not accepted.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as predictors, then specify the response variable using `ResponseVarName`.
If `Tbl` contains the response variable, and you want to use only a subset of the remaining variables in `Tbl` as predictors, specify a formula using `formula`.

If `Tbl` does not contain the response variable, specify a response variable using `Y`. The length of response variable and the number of `Tbl` rows must be equal.

Note For training linear or kernel classification models, `fitcecoc` does not support tables. That is, if `Learners` is `'linear'` or `'kernel'`, contains a linear classification model learner template (see `templateLinear`), or contains a kernel classification learner template (see `templateKernel`), you cannot supply `Tbl`, `ResponseVarName`, or `formula`. Supply a matrix of predictor data (`X`) and an array of responses (`Y`) instead.

Data Types: `table`

ResponseVarName — Response variable name

name of variable in `Tbl`

Response variable name, specified as the name of a variable in `Tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `Y` is stored as `Tbl.Y`, then specify it as `'Y'`. Otherwise, the software treats all columns of `Tbl`, including `Y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If `Y` is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the `ClassNames` name-value pair argument.

Data Types: `char` | `string`

formula — Explanatory model of response and subset of predictor variables

character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).
To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in Tbl that do not appear in formula.

Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels to which the ECOC model is trained, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of Tbl or X must be equal.

It is good practice to specify the class order using the ClassNames name-value pair argument.

Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as a full or sparse matrix.

The length of Y and the number of observations in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the PredictorNames name-value pair argument.

Note

- For linear classification learners, if you orient X so that observations correspond to columns and specify 'ObservationsIn', 'columns', then you can experience a significant reduction in optimization-execution time.
- For all other learners, orient X so that observations correspond to rows.
- fitcecoc supports sparse matrices for training linear classification models only.

Data Types: double | single
Note The software treats NaN, empty character vector (''), empty string ('"'), <missing>, and <undefined> elements as missing data. The software removes rows of X corresponding to missing values in Y. However, the treatment of missing values in X varies among binary learners. For details, see the training functions for your binary learners: fitcdiscr, fitckernel, fitcknn, fitclinear, fitcnb, fitcsvm, fitctree, or fitcensemble. Removing observations decreases the effective training or cross-validation sample size.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: 'Learners','tree','Coding','onevsone','CrossVal','on' specifies to use decision trees for all binary learners, a one-versus-one coding design, and to implement 10-fold cross-validation.

ECOC Classifier Options

Coding — Coding design

'onevsone' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' | 'onevsall' | 'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and a numeric matrix or a value in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Number of Binary Learners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allpairs' and 'onevsone'</td>
<td>$K(K - 1)/2$</td>
<td>For each binary learner, one class is positive, another is negative, and the software ignores the rest. This design exhausts all combinations of class pair assignments.</td>
</tr>
<tr>
<td>'binarycomplete'</td>
<td>$2^{(K-1)} - 1$</td>
<td>This design partitions the classes into all binary combinations, and does not ignore any classes. For each binary learner, all class assignments are -1 and 1 with at least one positive and negative class in the assignment.</td>
</tr>
<tr>
<td>'denserandom'</td>
<td>Random, but approximately $10 \log_2 K$</td>
<td>For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one of each type. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
<tr>
<td>'onevsall'</td>
<td>K</td>
<td>For each binary learner, one class is positive and the rest are negative. This design exhausts all combinations of positive class assignments.</td>
</tr>
<tr>
<td>'ordinal'</td>
<td>$K - 1$</td>
<td>For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first two classes are negative, the rest positive, and so on.</td>
</tr>
<tr>
<td>Value</td>
<td>Number of Binary Learners</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>'sparserandom'</td>
<td>Random, but approximately 15 log₂(K)</td>
<td>For each binary learner, the software randomly assigns classes as positive or negative with probability 0.25 for each, and ignores classes with probability 0.5. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
<tr>
<td>'ternarycomplete'</td>
<td>(\frac{3^K - 2^{(K+1)} + 1}{2})</td>
<td>This design partitions the classes into all ternary combinations. All class assignments are 0, -1, and 1 with at least one positive and one negative class in the assignment.</td>
</tr>
</tbody>
</table>

You can also specify a coding design using a custom coding matrix. The custom coding matrix is a \(K\)-by-\(L\) matrix. Each row corresponds to a class and each column corresponds to a binary learner. The class order (rows) corresponds to the order in ClassNames. Compose the matrix by following these guidelines:

- Every element of the custom coding matrix must be -1, 0, or 1, and the value must correspond to a dichotomous class assignment. This table describes the meaning of Coding\((i,j)\), that is, the class that learner \(j\) assigns to observations in class \(i\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner (j) assigns observations in class (i) to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner (j) removes observations in class (i) from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner (j) assigns observations in class (i) to a positive class.</td>
</tr>
</tbody>
</table>

- Every column must contain at least one -1 or 1.
For all column indices i, j such that $i \neq j$, $\text{Coding}(:, i)$ cannot equal $\text{Coding}(:, j)$ and $\text{Coding}(:, i)$ cannot equal $-\text{Coding}(:, j)$.

- All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding Design Matrices” on page 32-1793.

Example: 'Coding', 'ternarycomplete'

Data Types: char | string | double | single | int16 | int32 | int64 | int8

FitPosterior — Flag indicating whether to transform scores to posterior probabilities

false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the comma-separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If **FitPosterior** is true, then the software transforms binary-learner classification scores to posterior probabilities. You can obtain posterior probabilities by using kfoldPredict, predict, or resubPredict.

fitcecoc does not support fitting posterior probabilities if:

- The ensemble method is AdaBoostM2, LPBoost, RUSBoost, RobustBoost, or TotalBoost.
- The binary learners (Learners) are linear or kernel classification models that implement SVM. To obtain posterior probabilities for linear or kernel classification models, implement logistic regression instead.

Example: 'FitPosterior', true

Data Types: logical

Learners — Binary learner templates

'svm' (default) | 'discriminant' | 'kernel' | 'knn' | 'linear' | 'naivebayes' | 'tree' | template object | cell vector of template objects

Binary learner templates, specified as the comma-separated pair consisting of 'Learners' and a character vector, string scalar, template object, or cell vector of template objects. Specifically, you can specify binary classifiers such as SVM, and the ensembles that use GentleBoost, LogitBoost, and RobustBoost, to solve multiclass problems. However, **fitcecoc** also supports multiclass models as binary classifiers.
• If **Learners** is a character vector or string scalar, then the software trains each binary learner using the default values of the specified algorithm. This table summarizes the available algorithms.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'discriminant'</td>
<td>Discriminant analysis. For default options, see <code>templateDiscriminant</code>.</td>
</tr>
<tr>
<td>'kernel'</td>
<td>Kernel classification model. For default options, see <code>templateKernel</code>.</td>
</tr>
<tr>
<td>'knn'</td>
<td>k-nearest neighbors. For default options, see <code>templateKNN</code>.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear classification model. For default options, see <code>templateLinear</code>.</td>
</tr>
<tr>
<td>'naivebayes'</td>
<td>Naive Bayes. For default options, see <code>templateNaiveBayes</code>.</td>
</tr>
<tr>
<td>'svm'</td>
<td>SVM. For default options, see <code>templateSVM</code>.</td>
</tr>
<tr>
<td>'tree'</td>
<td>Classification trees. For default options, see <code>templateTree</code>.</td>
</tr>
</tbody>
</table>

• If **Learners** is a template object, then each binary learner trains according to the stored options. You can create a template object using:

 • `templateDiscriminant`, for discriminant analysis.
 • `templateEnsemble`, for ensemble learning. You must at least specify the learning method (**Method**), the number of learners (**NLearn**), and the type of learner (**Learners**). You cannot use the **AdaBoostM2** ensemble method for binary learning.
 • `templateKernel`, for kernel classification.
 • `templateKNN`, for k-nearest neighbors.
 • `templateLinear`, for linear classification.
 • `templateNaiveBayes`, for naive Bayes.
 • `templateSVM`, for SVM.
 • `templateTree`, for classification trees.

• If **Learners** is a cell vector of template objects, then:
• Cell j corresponds to binary learner j (in other words, column j of the coding design matrix), and the cell vector must have length L. L is the number of columns in the coding design matrix. For details, see Coding.

• To use one of the built-in loss functions for prediction, then all binary learners must return a score in the same range. For example, you cannot include default SVM binary learners with default naive Bayes binary learners. The former returns a score in the range $(-\infty, \infty)$, and the latter returns a posterior probability as a score. Otherwise, you must provide a custom loss as a function handle to functions such as predict and loss.

• You cannot specify linear classification model learner templates with any other template.

• Similarly, you cannot specify kernel classification model learner templates with any other template.

By default, the software trains learners using default SVM templates.

Example: 'Learners','tree'

NumConcurrent — Number of binary learners concurrently trained

1 (default) | positive integer scalar

Number of binary learners concurrently trained, specified as the comma-separated pair consisting of 'NumConcurrent' and a positive integer scalar. The default value is 1, which means fitcecoc trains the binary learners sequentially.

Note This option applies only when you use fitcecoc on tall arrays. See “Tall Arrays” on page 32-1797 for more information.

Data Types: single | double

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

Note
• For linear classification learners, if you orient X so that observations correspond to columns and specify 'ObservationsIn', 'columns', then you can experience a significant reduction in optimization-execution time.

• For all other learners, orient X so that observations correspond to rows.

Example: 'ObservationsIn', 'columns'

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. Verbose controls the amount of diagnostic information per binary learner that the software displays in the Command Window.

This table summarizes the available verbosity level options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages every time it trains a new binary learner.</td>
</tr>
<tr>
<td>2</td>
<td>The software displays extra diagnostic messages every time it trains a new binary learner.</td>
</tr>
</tbody>
</table>

Each binary learner has its own verbosity level that is independent of this name-value pair argument. To change the verbosity level of a binary learner, create a template object and specify the 'Verbose' name-value pair argument. Then, pass the template object to fitcecoc by using the 'Learners' name-value pair argument.

Example: 'Verbose', 1

Data Types: double | single

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'
Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using one of the CVPartition, Holdout, KFold, or Leaveout name-value pair arguments. You can only use one cross-validation name-value pair argument at a time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.

Example: 'Crossval', 'on'

CVPartition — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve $p \times 100\%$ of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout', 0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', \(k \), then the software completes these steps.

1. Randomly partition the data into \(k \) sets.
2. For each set, reserve the set as validation data, and train the model using the other \(k - 1 \) sets.
3. Store the \(k \) compact, trained models in the cells of a \(k \)-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: 'KFold', 5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout', 'on', then, for each of the \(n \) observations, where \(n \) is `size(Mdl.X, 1)`,

1. Reserves the observation as validation data, and trains the model using the other \(n - 1 \) observations
2. Stores the \(n \) compact, trained models in the cells of a \(n \)-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Note Leave-one-out is not recommended for cross-validating ECOC models composed of linear or kernel classification model learners.
Example: 'Leaveout', 'on'

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

Specification of CategoricalPredictors is appropriate if:

- At least one predictor is categorical and all binary learners are classification trees, naive Bayes learners, SVM, or ensembles of classification trees.
- All predictors are categorical and at least one binary learner is kNN.

If you specify CategoricalPredictors for any other learner, then the software warns that it cannot train that binary learner. For example, the software cannot train linear or kernel classification model learners using categorical predictors.

By default, if the predictor data is in a table (Tbl), fitcecoc assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), fitcecoc assumes all predictors
are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Order the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order. For example, use ClassNames to specify the order of the dimensions of Cost or the column order of classification scores returned by predict.
• Select a subset of classes for training. For example, suppose that the set of all distinct class names in Y is {'a','b','c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.

Example: 'ClassNames',{'b','g'}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class j if its true class is i. That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding
rows and columns of Cost, additionally specify the ClassNames name-value pair argument.

- The structure S, then it must have two fields:
 - S.ClassNames, which contains the class names as a variable of the same data type as Y
 - S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as in S.ClassNames

The default is \texttt{ones}(K) - \texttt{eye}(K), where K is the number of distinct classes.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

Options — Parallel computing options

[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. These options require Parallel Computing Toolbox. fitcecoc uses 'Streams', 'UseParallel', and 'UseSubstreams' fields.

This table summarizes the available options.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'Streams' | A RandStream object or cell array of such objects. If you do not specify Streams, the software uses the default stream or streams. If you specify Streams, use a single object except when the following are true:
 • You have an open parallel pool.
 • UseParallel is true.
 • UseSubstreams is false.
 In that case, use a cell array of the same size as the parallel pool. If a parallel pool is not open, then the software tries to open one (depending on your preferences), and Streams must supply a single random number stream. |
| 'UseParallel' | If you have Parallel Computing Toolbox, then you can invoke a pool of workers by setting 'UseParallel', true. |
| 'UseSubstreams' | Set to true to compute in parallel using the stream specified by 'Streams'. Default is false. For example, set Streams to a type allowing substreams, such as 'mlfg6331_64' or 'mrg32k3a'. |

A best practice to ensure more predictable results is to use parpool and explicitly create a parallel pool before you invoke parallel computing using fitcecoc.

Example: 'Options', statset('UseParallel', true)

Data Types: struct

PredictorNames — Predictor variable names

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character
vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
 - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
 - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitcecoc uses only the predictor variables in PredictorNames and the response variable in training.
 - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
 - By default, PredictorNames contains the names of all predictor variables.
 - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{ 'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to <code>Mdl.ClassNames</code> or specify the order using the <code>ClassNames</code> name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure <code>S</code> with two fields:</td>
</tr>
<tr>
<td></td>
<td>- <code>S.ClassNames</code> contains the class names as a variable of the same type as <code>Y</code>.</td>
</tr>
<tr>
<td></td>
<td>- <code>S.ClassProbs</code> contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

For more details on how the software incorporates class prior probabilities, see “Prior Probabilities and Cost” on page 32-1794.

Example: `struct('ClassNames',{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)`

Data Types: `single` | `double` | `char` | `string` | `struct`

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply `Y`, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply `ResponseVarName` or `formula`, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: `char` | `string`

ScoreTransform — Score transformation

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...
Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for $x < 0$
| | 0 for $x = 0$
| | 1 for $x > 0$ |
| 'symmetric' | $2x - 1$ |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1 |
| 'symmetriclogit' | $2/(1 + e^{-x}) - 1$ |

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights

numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a
character vector or string scalar. For example, if the weights vector \(W \) is stored as \(Tbl.W \), then specify it as \('W' \). Otherwise, the software treats all columns of \(Tbl \), including \(W \), as predictors or the response when training the model.

The software normalizes \(Weights \) to sum up to the value of the prior probability in the respective class.

By default, \(Weights \) is \(\text{ones}(n,1) \), where \(n \) is the number of observations in \(X \) or \(Tbl \).

Data Types: double | single | char | string

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

- 'none' (default)
- 'auto'
- 'all'
- string array or cell array of eligible parameter names
- vector of \(\text{optimizableVariable} \) objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use \{ 'Coding' \} along with the default parameters for the specified Learners:
 - Learners = 'svm' (default) — \{ 'BoxConstraint', 'KernelScale' \}
 - Learners = 'discriminant' — \{ 'Delta', 'Gamma' \}
 - Learners = 'knn' — \{ 'Distance', 'NumNeighbors' \}
 - Learners = 'linear' — \{ 'Lambda', 'Learner' \}
 - Learners = 'naivebayes' — \{ 'DistributionNames', 'Width' \}
 - Learners = 'tree' — \{ 'MinLeafSize' \}
- 'all' — Optimize all eligible parameters.
- String array or cell array of eligible parameter names
- Vector of \(\text{optimizableVariable} \) objects, typically the output of \text{hyperparameters}

The optimization attempts to minimize the cross-validation loss (error) for \text{fitcecoc} by varying the parameters. For information about cross-validation loss in a different context, see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the \text{HyperparameterOptimizationOptions} name-value pair.
Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitcecoc are:

- **Coding** — fitcecoc searches among 'onevsall' and 'onevsone'.
- **The eligible hyperparameters for the chosen Learners:**

<table>
<thead>
<tr>
<th>Learners</th>
<th>Eligible Hyperparameters (Bold = Default)</th>
<th>Default Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>'discriminant'</td>
<td>Delta</td>
<td>Log-scaled in the range [1e-6,1e3]</td>
</tr>
<tr>
<td></td>
<td>DiscrimType</td>
<td>'linear', 'quadratic', 'diagLinear', 'diagQuadratic', 'pseudoLinear', and 'pseudoQuadratic'</td>
</tr>
<tr>
<td></td>
<td>Gamma</td>
<td>Real values in [0,1]</td>
</tr>
<tr>
<td>'knn'</td>
<td>Distance</td>
<td>'cityblock', 'chebychev', 'correlation', 'cosine', 'euclidean', 'hamming', 'jaccard', 'mahalanobis', 'minkowski', 'seuclidean', and 'spearman'</td>
</tr>
<tr>
<td></td>
<td>DistanceWeight</td>
<td>'equal', 'inverse', and 'squaredinverse'</td>
</tr>
<tr>
<td></td>
<td>Exponent</td>
<td>Positive values in [0.5,3]</td>
</tr>
<tr>
<td></td>
<td>NumNeighbors</td>
<td>Positive integer values log-scaled in the range [1, max(2,round(NumObservations /2))]</td>
</tr>
<tr>
<td></td>
<td>Standardize</td>
<td>'true' and 'false'</td>
</tr>
<tr>
<td>Learners</td>
<td>Eligible Hyperparameters (Bold = Default)</td>
<td>Default Range</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>'linear'</td>
<td>Lambda</td>
<td>Positive values log-scaled in the range $[1e-5/\text{NumObservations}, 1e5/\text{NumObservations}]$</td>
</tr>
<tr>
<td></td>
<td>Learner</td>
<td>'svm' and 'logistic'</td>
</tr>
<tr>
<td></td>
<td>Regularization</td>
<td>'ridge' and 'lasso'</td>
</tr>
<tr>
<td>'naivebayes'</td>
<td>DistributionNames</td>
<td>'normal' and 'kernel'</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>Positive values log-scaled in the range $[\text{MinPredictorDiff}/4, \max(\text{MaxPredictorRange}, \text{MinPredictorDiff})]$</td>
</tr>
<tr>
<td></td>
<td>Kernel</td>
<td>'normal', 'box', 'epanechnikov', and 'triangle'</td>
</tr>
<tr>
<td>'svm'</td>
<td>BoxConstraint</td>
<td>Positive values log-scaled in the range $[1e-3, 1e3]$</td>
</tr>
<tr>
<td></td>
<td>KernelScale</td>
<td>Positive values log-scaled in the range $[1e-3, 1e3]$</td>
</tr>
<tr>
<td></td>
<td>KernelFunction</td>
<td>'gaussian', 'linear', and 'polynomial'</td>
</tr>
<tr>
<td></td>
<td>PolynomialOrder</td>
<td>Integers in the range $[2,4]$</td>
</tr>
<tr>
<td></td>
<td>Standardize</td>
<td>'true' and 'false'</td>
</tr>
<tr>
<td>'tree'</td>
<td>MaxNumSplits</td>
<td>Integers log-scaled in the range $[1, \max(2, \text{NumObservations}-1)]$</td>
</tr>
<tr>
<td></td>
<td>MinLeafSize</td>
<td>Integers log-scaled in the range $[1, \max(2, \text{floor(NumObservations/2)})]$</td>
</tr>
<tr>
<td></td>
<td>NumVariablesToSample</td>
<td>Integers in the range $[1, \max(2, \text{NumPredictors})]$</td>
</tr>
<tr>
<td></td>
<td>SplitCriterion</td>
<td>'gdi', 'deviance', and 'twoing'</td>
</tr>
</tbody>
</table>
Alternatively, use hyperparameters with your chosen Learners, such as

```matlab
load fisheriris % hyperparameters requires data and learner
params = hyperparameters('fitcecoc',meas,species,'svm');
```

To see the eligible and default hyperparameters, examine `params`.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitcecoc',meas,species,'svm');
params(2).Range = [1e-4,1e6];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \(\log(1 + \text{cross-validation loss}) \) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize ECOC Classifier” on page 32-1753.

Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization structure

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>• 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.</td>
<td>'bayesopt'</td>
</tr>
<tr>
<td></td>
<td>• 'gridsearch' — Use grid search with NumGridDivisions values per dimension.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'randomsearch' — Search at random among MaxObjectiveEvaluations points.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults).</td>
<td></td>
</tr>
</tbody>
</table>
| **AcquisitionFunctionName** | • 'expected-improvement-per-second-plus'
 • 'expected-improvement'
 • 'expected-improvement-plus'
 • 'expected-improvement-per-second'
 • 'lower-confidence-bound'
 • 'probability-of-improvement' | 'expected-improvement-per-second-plus' |
<p>| | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | |
| MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
</tbody>
</table>

For details, see the bayesopt Verbose name-value pair argument.
UseParallel
Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.
false

Repartition
Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization.
true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.
false

Use no more than one of the following three field names.

CVPartition
A cvpartition object, as created by cvpartition.

Holdout
A scalar in the range (0,1) representing the holdout fraction.

Kfold
An integer greater than 1.

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

Md1 — Trained ECOC model
ClassificationECOC model object | CompactClassificationECOC model object | ClassificationPartitionedECOC cross-validated model object | ClassificationPartitionedLinearECOC cross-validated model object | ClassificationPartitionedKernelECOC cross-validated model object
Trained ECOC classifier, returned as a ClassificationECOC or CompactClassificationECOC model object, or a ClassificationPartitionedECOC, ClassificationPartitionedLinearECOC, or ClassificationPartitionedKernelECOC cross-validated model object.

This table shows how the types of model objects returned by fitcecoc depend on the type of binary learners you specify and whether you perform cross-validation.

<table>
<thead>
<tr>
<th>Linear Classification Model Learners</th>
<th>Kernel Classification Model Learners</th>
<th>Cross-Validation</th>
<th>Returned Model Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ClassificationECOC</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>ClassificationPartitionedECOC</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>CompactClassificationECOC</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>ClassificationPartitionedLinearECOC</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>CompactClassificationECOC</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>ClassificationPartitionedKernelECOC</td>
</tr>
</tbody>
</table>

HyperparameterOptimizationResults — Description of the cross-validation optimization of hyperparameters

BayesianOptimization object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or a table of hyperparameters and associated values. Nonempty when the OptimizeHyperparameters name-value pair was nonempty and Learners was 'linear'. Value depends on the setting of the HyperparameterOptimizationOptions name-value pair:

- 'bayesopt' (default) — Object of class BayesianOptimization.
'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observation from smallest (best) to highest (worst).

Data Types: table

Limitations

- For training linear or kernel classification models, fitcecoc does not support tables. That is, if Learners is 'linear' or 'kernel', contains a linear classification model learner template (see templateLinear), or contains a kernel classification model learner template (see templateKernel), then you cannot supply Tbl, ResponseVarName, or formula. Supply a matrix of predictor data (X) and an array of responses (Y) instead.
- fitcecoc supports sparse matrices for training linear classification models only. For all other models, supply a full matrix of predictor data instead.

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \(m_{kj} \) is element \((k,j)\) of the coding design matrix \(M \) (that is, the code corresponding to class \(k \) of binary learner \(j \)).
- \(s_j \) is the score of binary learner \(j \) for an observation.
- \(g \) is the binary loss function.
- \(\hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,
\[\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j). \]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}. \]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-2y_js_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>(\exp(-y_js_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_js_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>(\max(0,1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>((1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-y_js_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.
Coding Design

A coding design is a matrix where elements direct which classes are trained by each binary learner, that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a binary learner. In a ternary coding design (adopted by the software), for a particular column (or binary learner):

- Rows containing a 1 indicate to the binary learner to group all observations in the corresponding classes into a positive class.
- Rows containing a -1 indicate to the binary learner to group all observations in the corresponding classes into a negative class.
- Rows containing a 0 indicate to the binary learner to ignore all observations in the corresponding classes.

Coding matrices with large, minimal, pair-wise row distances based on the Hamming measure are desirable. For details on the pair-wise row distance, see “Random Coding Design Matrices” on page 32-1795 and [4].

This table describes popular coding designs. For the example, suppose K (the number of distinct classes) is 3.

<table>
<thead>
<tr>
<th>Coding Design</th>
<th>Description</th>
<th>Number of Learners</th>
<th>Minimal Pair-Wise Row Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>one-versus-all (OVA)</td>
<td>For each binary learner, one class is positive and the rest are negative. This design exhausts all combinations of positive class assignments.</td>
<td>K</td>
<td>2</td>
</tr>
<tr>
<td>Coding Design</td>
<td>Description</td>
<td>Number of Learners</td>
<td>Minimal Pair-Wise Row Distance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>one-versus-one (OVO)</td>
<td>For each binary learner, one class is positive, another is negative, and the rest are ignored. This design exhausts all combinations of class pair assignments.</td>
<td>$K(K - 1)/2$</td>
<td>1</td>
</tr>
<tr>
<td>binary complete</td>
<td>This design partitions the classes into all binary combinations, and does not ignore any classes. That is, all class assignments are -1 and 1 with at least one positive and negative class in the assignment for each binary learner.</td>
<td>$2^K - 1 - 1$</td>
<td>$2^K - 2$</td>
</tr>
<tr>
<td>ternary complete</td>
<td>This design partitions the classes into all ternary combinations. That is, all class assignments are 0, -1, and 1 with at least one positive and negative class in the assignment for each binary learner.</td>
<td>$(3^K - 2^{K+1} + 1)/2$</td>
<td>$3^K - 2$</td>
</tr>
<tr>
<td>Coding Design</td>
<td>Description</td>
<td>Number of Learners</td>
<td>Minimal Pair-Wise Row Distance</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ordinal</td>
<td>For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first two classes are negative, and the rest positive, and so on.</td>
<td>$K - 1$</td>
<td>1</td>
</tr>
<tr>
<td>dense random</td>
<td>For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one of each type. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
<td>Random, but approximately $10 \log_2 K$</td>
<td>Variable</td>
</tr>
<tr>
<td>sparse random</td>
<td>For each binary learner, the software randomly assigns classes as positive or negative with probability 0.25 for each, and ignores classes with probability 0.5. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
<td>Random, but approximately $15 \log_2 K$</td>
<td>Variable</td>
</tr>
</tbody>
</table>

This plot compares the number of binary learners for the coding designs with increasing K.

32-1790
Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or more classes to a set of binary classifiers.

ECOC classification requires a coding design, which determines the classes that the binary learners train on, and a decoding scheme, which determines how the results (predictions) of the binary classifiers are aggregated.

Suppose that:

• There are three classes.
- The coding design is one-versus-one.
- The decoding scheme uses loss g.
- The learners are SVMs.

To build this classification model, ECOC follows these steps.

1. A one-versus-one coding design is

 \[
 \begin{array}{ccc}
 \text{Learner 1} & \text{Learner 2} & \text{Learner 3} \\
 \text{Class 1} & 1 & 1 & 0 \\
 \text{Class 2} & -1 & 0 & 1 \\
 \text{Class 3} & 0 & -1 & -1 \\
 \end{array}
 \]

 Learner 1 trains on observations having Class 1 and Class 2, and treats Class 1 as the positive class and Class 2 as the negative class. The other learners are trained similarly. Let M be the coding design matrix with elements m_{kl}, and s_l be the predicted classification score for the positive class of learner l.

2. A new observation is assigned to the class (\hat{k}) that minimizes the aggregation of the losses for the L binary learners. That is,

 \[
 \hat{k} = \arg\min_k \sum_{l=1}^L |m_{kl}| g(m_{kl}, s_l) / \sum_{l=1}^L |m_{kl}|.
 \]

ECOC models can improve classification accuracy, even compared to other multiclass models [2].

Tips

- The number of binary learners grows with the number of classes. For a problem with many classes, the `binarycomplete` and `ternarycomplete` coding designs are not efficient. However:
 - If $K \leq 4$, then use `ternarycomplete` coding design rather than `sparsereandom`.

32-1792
• If $K \leq 5$, then use binarycomplete coding design rather than denserandom.

You can display the coding design matrix of a trained ECOC classifier by entering `Mdl.CodingMatrix` into the Command Window.

• You should form a coding matrix using intimate knowledge of the application, and taking into account computational constraints. If you have sufficient computational power and time, then try several coding matrices and choose the one with the best performance (e.g., check the confusion matrices for each model using `confusionmat`).

• Leave-one-out cross-validation (`Leaveout`) is inefficient for data sets with many observations. Instead, use k-fold cross-validation (`KFold`).

• After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates custom coding matrices by ensuring:

• Every element is -1, 0, or 1.
• Every column contains at least one -1 and one 1.
• For all distinct column vectors u and v, $u \neq v$ and $u \neq -v$.
• All rows vectors are unique.
• The matrix can separate any two classes. That is, you can travel from any row to any other row following these rules:
 • You can move vertically from 1 to -1 or -1 to 1.
 • You can move horizontally from a nonzero element to another nonzero element.
 • You can use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be separated by the design. For example, in the coding design
classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally from the -1 in row 2 to column 2 since there is a 0 in that position). Therefore, the software rejects this coding design.

Parallel Computing

If you use parallel computing (see Options), then fitcecoc trains binary learners in parallel.

Prior Probabilities and Cost

- Prior probabilities — The software normalizes the specified class prior probabilities (Prior) for each binary learner. Let M be the coding design matrix and $I(A,c)$ be an indicator matrix. The indicator matrix has the same dimensions as A. If the corresponding element of A is c, then the indicator matrix has elements equaling one, and zero otherwise. Let M_{+1} and M_{-1} be K-by-L matrices such that:

 - $M_{+1} = M \circ I(M,1)$, where \circ is element-wise multiplication (that is, $M_{+1} = M \ast (M == 1)$). Also, let $m_{l}^{(+1)}$ be column vector l of M_{+1}.

 - $M_{-1} = -M \circ I(M,-1)$ (that is, $M_{-1} = -M \ast (M == -1)$). Also, let $m_{l}^{(-1)}$ be column vector l of M_{-1}.

Let $\pi_{l}^{+1} = m_{l}^{(+1)} \circ \pi$ and $\pi_{l}^{-1} = m_{l}^{(-1)} \circ \pi$, where π is the vector of specified, class prior probabilities (Prior).

Then, the positive and negative, scalar class prior probabilities for binary learner l are

$$\hat{\pi}_{l}^{(j)} = \frac{\|\pi_{l}^{(j)}\|_1}{\|\pi_{l}^{(+1)}\|_1 + \|\pi_{l}^{(-1)}\|_1},$$
where \(j = \{-1, 1\} \) and \(\|a\|_1 \) is the one-norm of \(a \).

- **Cost** — The software normalizes the \(K \)-by-\(K \) cost matrix \(C(\text{Cost}) \) for each binary learner. For binary learner \(l \), the cost of classifying a negative-class observation into the positive class is

\[
c_l^{+-} = \left(\pi_l^{(-1)} \right) C \pi_l^{(+1)}.
\]

Similarly, the cost of classifying a positive-class observation into the negative class is

\[
c_l^{+-} = \left(\pi_l^{(+1)} \right) C \pi_l^{(-1)}.
\]

The cost matrix for binary learner \(l \) is

\[
C_l = \begin{bmatrix}
0 & c_l^{+-} \\
\overline{c_l}^{+-} & 0
\end{bmatrix}.
\]

ECOC models accommodate misclassification costs by incorporating them with class prior probabilities. If you specify \texttt{Prior} and \texttt{Cost}, then the software adjusts the class prior probabilities as follows:

\[
\overline{\pi}_l^{-1} = \frac{c_l^{+-} \pi_l^{-1}}{c_l^{+-} \pi_l^{-1} + c^{+-} \pi_l^{+1}}
\]

\[
\overline{\pi}_l^{+1} = \frac{c_l^{+-} \pi_l^{+1}}{c_l^{+-} \pi_l^{-1} + c^{+-} \pi_l^{+1}}.
\]

Random Coding Design Matrices

For a given number of classes, for example, \(K \), the software generates random coding design matrices as follows.

1. The software generates one of the following:
 a. **Dense random** — The software assigns a 1 or -1 with equal probability to each element of the \(K \)-by-\(L_d \) coding design matrix, where \(L_d \approx \lceil 10 \log_2 K \rceil \).
Sparse random — The software assigns a 1 to each element of the K-by-L_s coding design matrix with probability 0.25, a -1 with probability 0.25, and a 0 with probability 0.5, where $L_s = \lceil 15 \log_2 K \rceil$.

2. If a column does not contain at least one 1 and at least one -1, then the software removes that column.

3. For distinct columns u and v, if $u = v$ or $u = -v$, then the software removes v from the coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest, minimal pairwise row distance based on the Hamming measure ([4]) given by

$$
\Delta(k_1,k_2) = 0.5 \sum_{l=1}^{L} |m_{k_1,l}||m_{k_2,l}| |m_{k_1,l} - m_{k_2,l}|,
$$

where $m_{k,l}$ is an element of coding design matrix j.

Support Vector Storage

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties `Alpha`, `SupportVectorLabels`, and `SupportVectors`. fitcecoc lists `Beta`, rather than `Alpha`, in the model display.

To store `Alpha`, `SupportVectorLabels`, and `SupportVectors`, pass a linear, SVM template that specifies storing support vectors to fitcecoc. For example, enter:

```matlab
t = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',t);
```

You can remove the support vectors and related values by passing the resulting ClassificationECOC model to discardSupportVectors.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- Supported syntaxes are:
 - `Mdl = fitcecoc(X,Y)`
 - `Mdl = fitcecoc(___,Name,Value)`
- Options related to cross-validation and hyperparameter optimization are not supported. The supported name-value pair arguments are:
 - `'ClassNames'`
 - `'Cost'`
 - `'Coding'` — Default value is 'onevsall'.
 - `'Learners'` — Default value is 'linear'. Only linear and kernel binary classifiers are supported.
 - `'Prior'`
 - `'Verbose'` — Default value is 1.
 - `'Weights'`
- This additional name-value pair argument is specific to tall arrays:
 - `'NumConcurrent'` — A positive integer scalar specifying the number of binary learners that are trained concurrently by combining file I/O operations. The default value for 'NumConcurrent' is 1, which means fitcecoc trains the binary
learners sequentially. 'NumConcurrent' is most beneficial when the input arrays cannot fit into the distributed cluster memory. Otherwise, the input arrays can be cached and speedup is negligible.

If you run your code on Apache Spark, NumConcurrent is upper bounded by the memory available for communications. Check the 'spark.executor.memory' and 'spark.driver.memory' properties in your Apache Spark configuration. See parallel.cluster.Hadoop for more details. For more information on Apache Spark and other execution environments that control where your code runs, see “Extend Tall Arrays with Other Products” (MATLAB).

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true in one of these ways:

- Set the 'UseParallel',true name-value pair argument in the call to this function.
- To perform parallel hyperparameter optimization, use the 'HyperparameterOptions',struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also

ClassificationECOC | ClassificationPartitionedECOC |
ClassificationPartitionedKernelECOC |
ClassificationPartitionedLinearECOC | CompactClassificationECOC |
designecoc | loss | predict | statset

Topics

“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
Introduced in R2014b
fitcensemble

Fit ensemble of learners for classification

Syntax

Mdl = fitcensemble(Tbl,ResponseVarName)
Mdl = fitcensemble(Tbl,formula)
Mdl = fitcensemble(Tbl,Y)
Mdl = fitcensemble(X,Y)
Mdl = fitcensemble(___,Name,Value)

Description

Mdl = fitcensemble(Tbl,ResponseVarName) returns the trained classification ensemble model object (Mdl) that contains the results of boosting 100 classification trees and the predictor and response data in the table Tbl. ResponseVarName is the name of the response variable in Tbl. By default, fitcensemble uses LogitBoost for binary classification and AdaBoostM2 for multiclass classification.

Mdl = fitcensemble(Tbl,formula) applies formula to fit the model to the predictor and response data in the table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl used to fit Mdl. For example, 'Y~X1+X2+X3' fits the response variable Tbl.Y as a function of the predictor variables Tbl.X1, Tbl.X2, and Tbl.X3.

Mdl = fitcensemble(Tbl,Y) treats all variables in the table Tbl as predictor variables. Y is the array of class labels that is not in Tbl.

Mdl = fitcensemble(X,Y) uses the predictor data in the matrix X and the array of class labels in Y.

Mdl = fitcensemble(___,Name,Value) uses additional options specified by one or more Name,Value pair arguments and any of the input arguments in the previous
syntaxes. For example, you can specify the number of learning cycles, the ensemble-aggregation method, or to implement 10-fold cross-validation.

Examples

Train Classification Ensemble

Create a predictive classification ensemble using all available predictor variables in the data. Then, train another ensemble using fewer predictors. Compare the in-sample predictive accuracies of the ensembles.

Load the census1994 data set.

```matlab
load census1994
```

Train an ensemble of classification models using the entire data set and default options.

```matlab
Mdl1 = fitcensemble(adultdata,'salary')
Mdl1 =
    classreg.learning.classif.ClassificationEnsemble
        PredictorNames: {1x14 cell}
        ResponseName: 'salary'
        CategoricalPredictors: [2 4 6 7 8 9 10 14]
        ClassNames: [<=50K    >50K]
        ScoreTransform: 'none'
        NumObservations: 32561
        NumTrained: 100
        Method: 'LogitBoost'
        LearnerNames: {'Tree'}
        ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
        FitInfo: [100x1 double]
        FitInfoDescription: {2x1 cell}
```

Properties, Methods

Mdl is a `ClassificationEnsemble` model. Some notable characteristics of *Mdl* are:

- Because two classes are represented in the data, LogitBoost is the ensemble-aggregation algorithm.
Because the ensemble-aggregation method is a boosting algorithm, classification trees that allow a maximum of 10 splits compose the ensemble.

One hundred trees compose the ensemble.

Use the classification ensemble to predict the labels of a random set of five observations from the data. Compare the predicted labels with their true values.

```matlab
rng(1) % For reproducibility
[pX,pIdx] = datasample(adultdata,5);
label = predict(Mdl1,pX);
table(label,adultdata.salary(pIdx),'VariableNames',{'Predicted','Truth'})
```

```
ans=5×2 table
    Predicted    Truth
      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K
```

Train a new ensemble using age and education only.

```matlab
Mdl2 = fitcensemble(adultdata,'salary ~ age + education');
```

Compare the resubstitution losses between Mdl1 and Mdl2.

```matlab
rsLoss1 = resubLoss(Mdl1)
rsLoss1 = 0.1077
rsLoss2 = resubLoss(Mdl2)
rsLoss2 = 0.2037
```

The in-sample misclassification rate for the ensemble that uses all predictors is lower.

Estimate Generalization Error of Boosting Ensemble

Estimate the generalization error of ensemble of boosted classification trees.
Load the ionosphere data set.

load ionosphere

Cross-validate an ensemble of classification trees using AdaBoostM1 and 10-fold cross-validation. Specify that each tree should be split a maximum of five times using a decision tree template.

rng(5); % For reproducibility
t = templateTree('MaxNumSplits',5);
Mdl = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t,'CrossVal','on');

Mdl is a ClassificationPartitionedEnsemble model.

Plot the cumulative, 10-fold cross-validated, misclassification rate. Display the estimated generalization error of the ensemble.

kflc = kfoldLoss(Mdl,'Mode','cumulative');
figure;
plot(kflc);
ylabel('10-fold Misclassification rate');
xlabel('Learning cycle');
estGenError = kflc(end)
estGenError = 0.0684

kfoldLoss returns the generalization error by default. However, plotting the cumulative loss allows you to monitor how the loss changes as weak learners accumulate in the ensemble.

The ensemble achieves a misclassification rate of around 0.06 after accumulating about 50 weak learners. Then, the misclassification rate increase slightly as more weak learners enter the ensemble.
If you are satisfied with the generalization error of the ensemble, then, to create a predictive model, train the ensemble again using all of the settings except cross-validation. However, it is good practice to tune hyperparameters, such as the maximum number of decision splits per tree and the number of learning cycles.

Optimize Classification Ensemble

This example shows how to optimize hyperparameters automatically using `fitcensemble`. The example uses the ionosphere data.

Load the data.

```matlab
load ionosphere
```

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng default
Mdl = fitcensemble(X,Y,'OptimizeHyperparameters','auto',
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',
    'expected-improvement-plus'))
```

```
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.10256</td>
<td>6.9509</td>
<td>0.10256</td>
<td>0.10256</td>
<td>RUSBoost</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.062678</td>
<td>9.2751</td>
<td>0.062678</td>
<td>0.064264</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.099715</td>
<td>8.7593</td>
<td>0.062678</td>
<td>0.062688</td>
<td>AdaBoostM1</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.065527</td>
<td>1.5974</td>
<td>0.062678</td>
<td>0.062681</td>
<td>Bag</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.065527</td>
<td>7.4355</td>
<td>0.062678</td>
<td>0.062695</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.068376</td>
<td>6.2119</td>
<td>0.062678</td>
<td>0.062693</td>
<td>GentleBoost</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
<td>0.076923</td>
<td>18.49</td>
<td>0.062678</td>
<td>0.063613</td>
<td>GentleBoost</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>0.068376</td>
<td>19.9</td>
<td>0.062678</td>
<td>0.063878</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.068376</td>
<td>11.775</td>
<td>0.062678</td>
<td>0.065468</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.17379</td>
<td>0.58809</td>
<td>0.062678</td>
<td>0.064692</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.065527</td>
<td>4.8851</td>
<td>0.062678</td>
<td>0.064854</td>
<td>Bag</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.076923</td>
<td>0.97125</td>
<td>0.062678</td>
<td>0.062571</td>
<td>GentleBoost</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.076923</td>
<td>12.647</td>
<td>0.062678</td>
<td>0.062473</td>
<td>GentleBoost</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.065527</td>
<td>4.1482</td>
<td>0.062678</td>
<td>0.062473</td>
<td>AdaBoostM1</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.17379</td>
<td>6.6579</td>
<td>0.062678</td>
<td>0.062356</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.17379</td>
<td>0.87522</td>
<td>0.062678</td>
<td>0.062611</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.062678</td>
<td>5.0428</td>
<td>0.062678</td>
<td>0.062619</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.11681</td>
<td>0.68826</td>
<td>0.062678</td>
<td>0.062621</td>
<td>RUSBoost</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.082621</td>
<td>0.88836</td>
<td>0.062678</td>
<td>0.062716</td>
<td>GentleBoost</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.065527</td>
<td>5.3467</td>
<td>0.062678</td>
<td>0.064168</td>
<td>LogitBoost</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.068376</td>
<td>24.065</td>
<td>0.062678</td>
<td>0.064255</td>
<td>Bag</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.076923</td>
<td>18.562</td>
<td>0.062678</td>
<td>0.063851</td>
<td>GentleBoost</td>
</tr>
</tbody>
</table>

Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 301.149 seconds. Total objective function evaluation time: 261.6473

Best observed feasible point:

<table>
<thead>
<tr>
<th>Method</th>
<th>NumLearningCycles</th>
<th>LearnRate</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogitBoost</td>
<td>206</td>
<td>0.96537</td>
<td>33</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.062678
Estimated objective function value = 0.063851
Function evaluation time = 9.2751

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Method</th>
<th>NumLearningCycles</th>
<th>LearnRate</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LogitBoost 277 0.99964 42

Estimated objective function value = 0.063851
Estimated function evaluation time = 11.8227

Mdl =
classreg.learning.classif.ClassificationEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 HyperparameterOptimizationResults: [1×1 BayesianOptimization]
 NumTrained: 277
 Method: 'LogitBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: [277×1 double]
 FitInfoDescription: {2×1 cell}

Properties, Methods
The optimization searched over the methods for binary classification, over `NumLearningCycles`, over the `LearnRate` for applicable methods, and over the tree learner `MinLeafSize`. The output is the ensemble classifier with the minimum estimated cross-validation loss.

Create Predictive Ensemble Using Cross-Validation

One way to create an ensemble of boosted classification trees that has satisfactory predictive performance is by tuning the decision tree-complexity level using cross-validation. While searching for an optimal complexity level, tune the learning rate to minimize the number of learning cycles.
Load the `ionosphere` data set.

```matlab
load ionosphere
```

To search for the optimal tree-complexity level:

1. Cross-validate a set of ensembles. Exponentially increase the tree-complexity level for subsequent ensembles from decision stump (one split) to at most \(n - 1 \) splits. \(n \) is the sample size. Also, vary the learning rate for each ensemble between 0.1 to 1.

2. Estimate the cross-validated misclassification rate of each ensemble.

3. For tree-complexity level \(j, j = 1 \ldots J \), compare the cumulative, cross-validated misclassification rate of the ensembles by plotting them against number of learning cycles. Plot separate curves for each learning rate on the same figure.

4. Choose the curve that achieves the minimal misclassification rate, and note the corresponding learning cycle and learning rate.

Cross-validate a deep classification tree and a stump. These classification trees serve as benchmarks.

```matlab
rng(1); % For reproducibility
MdlDeep = fitctree(X,Y,'CrossVal','on','MergeLeaves','off',...
    'MinParentSize',1);
MdlStump = fitctree(X,Y,'MaxNumSplits',1,'CrossVal','on');
```

Cross-validate an ensemble of 150 boosted classification trees using 5-fold cross-validation. Using a tree template, vary the maximum number of splits using the values in the sequence \(\{3^0, 3^1, \ldots, 3^m\} \). \(m \) is such that \(2^m \) is no greater than \(n - 1 \). For each variant, adjust the learning rate using each value in the set \{0.1, 0.25, 0.5, 1\}.

```matlab
n = size(X,1);
m = floor(log(n - 1)/log(3));
learnRate = [0.1 0.25 0.5 1];
umLR = numel(learnRate);
maxNumSplits = 3.^(0:m);
umMNS = numel(maxNumSplits);
numTrees = 150;
Mdl = cell(numMNS,numLR);
for k = 1:numLR;
    for j = 1:numMNS;
        t = templateTree('MaxNumSplits',maxNumSplits(j));
        Mdl{j,k} = fitcensemble(X,Y,'NumLearningCycles',numTrees,...
```


' Learners',
'KFold', 5, 'LearnRate', learnRate(k));

end;
end;

Estimate the cumulative, cross-validated misclassification rate for each ensemble and the classification trees serving as benchmarks.

kflAll = @(x)kfoldLoss(x, 'Mode', 'cumulative');
errorCell = cellfun(kflAll, Mdl, 'Uniform', false);
error = reshape(cell2mat(errorCell), [numTrees numel(maxNumSplits) numel(learnRate)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated misclassification rate behaves as the number of trees in the ensemble increases. Plot the curves with respect to learning rate on the same plot, and plot separate plots for varying tree-complexity levels. Choose a subset of tree complexity levels to plot.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
for k = 1:3;
 subplot(2, 2, k);
 plot(squeeze(error(:, mnsPlot(k), :)), 'LineWidth', 2);
 axis tight;
 hold on;
 h = gca;
 plot(h.XLim, [errorDeep errorDeep], '--b', 'LineWidth', 2);
 plot(h.XLim, [errorStump errorStump], '--r', 'LineWidth', 2);
 plot(h.XLim, min(min(error(:, mnsPlot(k), :))).*[1 1], '--k');
 h.YLim = [0 0.2];
 xlabel 'Number of trees';
 ylabel 'Cross-validated misclass. rate';
 title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));
 hold off;
end;

hL = legend([cellstr(num2str(learnRate, 'Learning Rate = %0.2f')); ...
 'Deep Tree'; 'Stump'; 'Min. misclass. rate']);
hL.Position(1) = 0.6;
Each curve contains a minimum cross-validated misclassification rate occurring at the optimal number of trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest misclassification rate overall.

```matlab
[minErr, minErrIdxLin] = min(error(:));
[idxNumTrees, idxMNS, idxLR] = ind2sub(size(error), minErrIdxLin);
fprintf('
Min. misclass. rate = %0.5f', minErr);
fprintf('
Optimal Parameter Values:
Num. Trees = %d', idxNumTrees);
fprintf('
MaxNumSplits = %d
Learning Rate = %0.2f
', maxNumSplits(idxMNS), learnRate(idxLR))
```
Min. misclass. rate = 0.05413
Optimal Parameter Values:
Num. Trees = 47
MaxNumSplits = 3
Learning Rate = 0.25

Create a predictive ensemble based on the optimal hyperparameters and the entire training set.

tFinal = templateTree('MaxNumSplits',maxNumSplits(idxMNS));
MdlFinal = fitcensemble(X,Y,'NumLearningCycles',idxNumTrees,...
 'Learners',tFinal,'LearnRate',learnRate(idxFR))

MdlFinal =

 classreg.learning.classif.ClassificationEnsemble
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 NumTrained: 47
 Method: 'LogitBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
 FitInfo: [47×1 double]
 FitInfoDescription: {2×1 cell}

MdlFinal is a ClassificationEnsemble. To predict whether a radar return is good given predictor data, pass the predictor data and MdlFinal to predict.

Input Arguments

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Tbl can contain
one additional column for the response variable. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

- If \(Tbl \) contains the response variable and you want to use all remaining variables as predictors, then specify the response variable using \(\text{ResponseVarName} \).
- If \(Tbl \) contains the response variable, and you want to use a subset of the remaining variables only as predictors, then specify a formula using \(\text{formula} \).
- If \(Tbl \) does not contain the response variable, then specify the response data using \(Y \). The length of response variable and the number of rows of \(Tbl \) must be equal.

Note To save memory and execution time, supply \(X \) and \(Y \) instead of \(Tbl \).

Data Types: \text{table}

ResponseVarName — Response variable name

name of response variable in \(Tbl \)

Response variable name, specified as the name of the response variable in \(Tbl \).

You must specify \(\text{ResponseVarName} \) as a character vector or string scalar. For example, if \(Tbl.Y \) is the response variable, then specify \(\text{ResponseVarName} \) as ' \(Y \)'. Otherwise, \(\text{fitcensemble} \) treats all columns of \(Tbl \) as predictor variables.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

For classification, you can specify the order of the classes using the \(\text{ClassNames} \) name-value pair argument. Otherwise, \(\text{fitcensemble} \) determines the class order, and stores it in the \(\text{Mdl.ClassNames} \).

Data Types: \text{char} \mid \text{string}

formula — Explanatory model of response and subset of predictor variables

character vector \mid string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of ' \(Y \sim X1+X2+X3 \)'. In this form, \(Y \) represents the response variable, and \(X1, X2, \) and \(X3 \) represent the predictor variables. The variables must be variable names in \(Tbl \) (\(Tbl.Properties.VariableNames \)).
To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in Tbl that do not appear in formula.

Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the PredictorNames name-value pair argument.

Data Types: single | double

Y — Response data
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Response data, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Each entry in Y is the response to or label for the observation in the corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal. If the response variable is a character array, then each element must correspond to one row of the array.

You can specify the order of the classes using the ClassNames name-value pair argument. Otherwise, fitensemble determines the class order, and stores it in the Mdl.ClassNames.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: 'CrossVal','on','LearnRate',0.05 specifies to implement 10-fold cross-validation and to use 0.05 as the learning rate.

General Ensemble Options

Method — Ensemble-aggregation method

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Classification Problem Support</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>'AdaBoostM1'</td>
<td>Adaptive boosting</td>
<td>Binary only</td>
<td>-</td>
</tr>
<tr>
<td>'AdaBoostM2'</td>
<td>Adaptive boosting</td>
<td>Multiclass only</td>
<td>-</td>
</tr>
<tr>
<td>'Bag'</td>
<td>Bootstrap aggregating (e.g., random forest)</td>
<td>Binary and multiclass</td>
<td>-</td>
</tr>
<tr>
<td>'GentleBoost'</td>
<td>Gentle adaptive boosting</td>
<td>Binary only</td>
<td>-</td>
</tr>
<tr>
<td>'LogitBoost'</td>
<td>Adaptive logistic regression</td>
<td>Binary only</td>
<td>-</td>
</tr>
<tr>
<td>'LPBoost'</td>
<td>Linear programming boosting</td>
<td>Binary and multiclass</td>
<td>Optimization Toolbox license</td>
</tr>
<tr>
<td>'RobustBoost'</td>
<td>Robust boosting</td>
<td>Binary only</td>
<td>Optimization Toolbox license</td>
</tr>
<tr>
<td>'RUSBoost'</td>
<td>Random undersampling boosting</td>
<td>Binary and multiclass</td>
<td>-</td>
</tr>
<tr>
<td>'Subspace'</td>
<td>Random subspace</td>
<td>Binary and multiclass</td>
<td>-</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Classification Problem Support</td>
<td>Additional Requirements</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>'TotalBoost'</td>
<td>Totally corrective boosting</td>
<td>Binary and multiclass</td>
<td>Optimization Toolbox license</td>
</tr>
</tbody>
</table>

For binary classification problems, the default is 'LogitBoost'. Otherwise, the default is 'AdaBoostM2'.

Example: 'Method','Bag'

NumLearningCycles — Number of ensemble learning cycles

100 (default) | positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as a positive integer or 'AllPredictorCombinations'.

- If you specify a positive integer, then, at every learning cycle, the software trains one weak learner for every template object in Learners. Consequently, the software trains NumLearningCycles*numel(Learners) learners.
- If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one learner only for Learners. With these settings, the software trains learners for all possible combinations of predictors taken NPredToSample at a time. Consequently, the software trains nchoosek(size(X,2),NPredToSample) leaners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.

For more details, see “Tips” on page 32-1837.

Example: 'NumLearningCycles',500

Data Types: single | double | char | string

Learners — Weak learners to use in ensemble

weak-learner name | weak-learner template object | cell vector of weak-learner template objects

Weak learners to use in the ensemble, specified as a weak-learner name, weak-learner template object, or cell vector of weak-learner template objects.
Weak Learner

<table>
<thead>
<tr>
<th>Weak Learner</th>
<th>Weak-Learner Name</th>
<th>Template Object Creation Function</th>
<th>Method Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminant analysis</td>
<td>'discriminant'</td>
<td>templateDiscriminant</td>
<td>Recommended for 'Subspace'</td>
</tr>
<tr>
<td>k nearest neighbors</td>
<td>'knn'</td>
<td>templateKNN</td>
<td>For 'Subspace' only</td>
</tr>
<tr>
<td>Decision tree</td>
<td>'tree'</td>
<td>templateTree</td>
<td>All methods except 'Subspace'</td>
</tr>
</tbody>
</table>

The defaults are:

- 'knn' if 'Method' is 'Subspace'
- 'tree' if 'Method' is 'Bag'
- `templateTree('MaxNumSplits',10)` if 'Method' is any boosting method

`fitcensemble` sets the maximum number of splits for decision tree weak learners to 10 when both of these conditions occur:

- You do not set a value for the 'MaxNumSplits' property of the decision tree weak learners.
- You use a boosting algorithm as the ensemble-aggregation method for `fitcensemble`.

For example, if you specify 'Learners', `templateTree()` and 'Method','AdaBoostM1', then `fitcensemble` sets the maximum number of splits of the decision tree weak learners to 10.

Otherwise, `fitcensemble` defers to the corresponding template object to choose any required default values for the 'Learners' name-value pair argument.

For details on the number of learners to train, see `NumLearningCycles` and “Tips” on page 32-1837.

Example: For an ensemble composed of two types of classification trees, supply `{t1 t2}`, where t1 and t2 are classification tree templates.

NPrint — Printout frequency

'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive integer or 'off'.
To track the number of weak learners or folds that fitensemble trained so far, specify a positive integer. That is, if you specify the positive integer m:

- Without also specifying any cross-validation option (for example, CrossVal), then fitensemble displays a message to the command line every time it completes training m weak learners.
- And a cross-validation option, then fitensemble displays a message to the command line every time it finishes training m folds.

If you specify 'off', then fitensemble does not display a message when it completes training weak learners.

Tip When training an ensemble of many weak learners on a large data set, specify a positive integer for NPrint.

Example: 'NPrint',5

Data Types: single | double | char | string

CategoricalPredictors — Categorical predictors list

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>String array or cell array of character</td>
<td>Each element in the array is the name of a predictor variable. The names</td>
</tr>
<tr>
<td>vectors</td>
<td>must match the entries in <code>PredictorNames</code>.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

Specification of `CategoricalPredictors` is appropriate if:

- 'Learners' is 'tree'.
- 'Learners' is 'knn' when all predictors are categorical.

By default, if the predictor data is in a table (`Tbl`), `fitcensemble` assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (`X`), `fitcensemble` assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: `single` | `double` | `logical` | `char` | `string` | `cell`

PredictorNames — Predictor variable names

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply `X` and `Y`, then you can use 'PredictorNames' to give the predictor variables in `X` names.
 - The order of the names in `PredictorNames` must correspond to the column order of `X`. That is, `PredictorNames{1}` is the name of `X(:,1)`, `PredictorNames{2}` is the name of `X(:,2)`, and so on. Also, `size(X,2)` and `numel(PredictorNames)` must be equal.
 - By default, `PredictorNames` is {'x1','x2',...}.
- If you supply `Tbl`, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, `fitcensemble` uses only the predictor variables in `PredictorNames` and the response variable in training.
- **PredictorNames** must be a subset of `Tbl.Properties.VariableNames` and cannot include the name of the response variable.
- By default, **PredictorNames** contains the names of all predictor variables.
- It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply `Y`, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply `ResponseVarName` or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

Cross-Validation Options

CrossVal — Cross-validation flag

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing `Mdl` to `crossval` or `crossval`.

Example: 'Crossval','on'
CVPartition — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using
\[
\text{cvp} = \text{cvpartition(500,'KFold',5)}
\]
Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

Scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', P, then the software completes these steps:

1. Randomly select and reserve P*100% of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.

1. Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other \(k - 1 \) sets.

3 Store the \(k \) compact, trained models in the cells of a \(k \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

Leaveout — Leave-one-out cross-validation flag

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \(n \) observations (where \(n \) is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other \(n - 1 \) observations.

2 Store the \(n \) compact, trained models in the cells of an \(n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

Other Classification Options

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.
Use **ClassNames** to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use **ClassNames** to specify the order of the dimensions of **Cost** or the column order of classification scores returned by **predict**.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in **Y** is {'a','b','c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for **ClassNames** is the set of all distinct class names in **Y**.

Example: 'ClassNames',{'b','g'}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost

Square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of **Cost** and a square matrix or structure. If you specify:

- The square matrix **Cost**, then **Cost(i,j)** is the cost of classifying a point into class **j** if its true class is **i**. That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of **Cost**, also specify the **ClassNames** name-value pair argument.
- The structure **S**, then it must have two fields:
 - **S.ClassNames**, which contains the class names as a variable of the same data type as **Y**
 - **S.ClassificationCosts**, which contains the cost matrix with rows and columns ordered as in **S.ClassNames**

The default is ones**(K)** - eye**(K)**, where **K** is the number of distinct classes.

Note fitcensemble uses **Cost** to adjust the prior class probabilities specified in **Prior**. Then, fitcensemble uses the adjusted prior probabilities for training and resets the cost matrix to its default.

Example: 'Cost',[0 1 2; 1 0 2; 2 2 0]
Data Types: double | single | struct

Prior — Prior probabilities

'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to $1/K$, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to Mdl.ClassNames or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>
| structure array | A structure S with two fields:
 - S.ClassNames contains the class names as a variable of the same type as Y.
 - S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1. |

fitcensemble normalizes the prior probabilities in Prior to sum to 1.

Example: struct({'ClassNames',
{'setosa','versicolor','virginica'}},'ClassProbs',1:3)

Data Types: char | string | double | single | struct

ScoreTransform — Score transformation

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...
Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for \(x < 0 \)
| | 0 for \(x = 0 \)
| | 1 for \(x > 0 \) |
| 'symmetric' | \(2x - 1 \) |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to \(-1\) |
| 'symmetriclogit' | \(\frac{2}{1 + e^{-x}} - 1 \) |

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights

numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a
character vector or string scalar. For example, if the weights vector \(W \) is stored as \(Tbl.W \), then specify it as 'W'. Otherwise, the software treats all columns of \(Tbl \), including \(W \), as predictors or the response when training the model.

The software normalizes \(Weights \) to sum up to the value of the prior probability in the respective class.

By default, \(Weights \) is \(\text{ones}(n,1) \), where \(n \) is the number of observations in \(X \) or \(Tbl \).

Data Types: double | single | char | string

Sampling Options for Boosting Methods and Bagging

\(F\text{Resample} \) — Fraction of training set to resample

1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as the comma-separated pair consisting of 'FResample' and a positive scalar in (0,1].

To use 'FResample', specify 'bag' for Method or set Resample to 'on'.

Example: 'FResample', 0.75

Data Types: single | double

\(\text{Replace} \) — Flag indicating to sample with replacement

'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of 'Replace' and 'off' or 'on'.

- For 'on', the software samples the training observations with replacement.
- For 'off', the software samples the training observations without replacement. If you set Resample to 'on', then the software samples training observations assuming uniform weights. If you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.

Example: 'Replace', 'off'

\(\text{Resample} \) — Flag indicating to resample

'off' | 'on'
Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and 'off' or 'on'.

- If Method is any boosting method, then:
 - 'Resample','on' specifies to sample training observations using updated weights as the multinomial sampling probabilities.
 - 'Resample','off' specifies to reweight observations at every learning iteration. This setting is the default.
- If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the training observations (see FResample) with or without replacement (see Replace).

AdaBoostM1, AdaBoostM2, LogitBoost, and GentleBoost Method Options

LearnRate — Learning rate for shrinkage

1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1

Data Types: single | double

RUSBoost Method Options

LearnRate — Learning rate for shrinkage

1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1

Data Types: single | double
RatioToSmallest — Sampling proportion with respect to lowest-represented class

positive numeric scalar | numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values with length equal to the number of distinct classes in the training data.

Suppose that there are K classes in the training data and the lowest-represented class has m observations in the training data.

- If you specify the positive numeric scalar s, then fitcensemble samples $s \times m$ observations from each class, that is, it uses the same sampling proportion for each class. For more details, see “Algorithms” on page 32-2388.
- If you specify the numeric vector $[s_1, s_2, \ldots, s_K]$, then fitcensemble samples $s_i \times m$ observations from class i, $i = 1, \ldots, K$. The elements of RatioToSmallest correspond to the order of the class names specified using ClassNames (see “Tips” on page 32-2386).

The default value is $\text{ones}(K,1)$, which specifies to sample m observations from each class.

Example: 'RatioToSmallest',[2,1]

Data Types: single | double

LPBoost and TotalBoost Method Options

MarginPrecision — Margin precision to control convergence speed

0.1 (default) | numeric scalar in [0,1]

Margin precision to control convergence speed, specified as the comma-separated pair consisting of 'MarginPrecision' and a numeric scalar in the interval [0,1]. MarginPrecision affects the number of boosting iterations required for convergence.

Tip To train an ensemble using many learners, specify a small value for MarginPrecision. For training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5

Data Types: single | double
RobustBoost Method Options

RobustErrorGoal — Target classification error

0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal' and a nonnegative numeric scalar. The upper bound on possible values depends on the values of RobustMarginSigma and RobustMaxMargin. However, the upper bound cannot exceed 1.

Tip For a particular training set, usually there is an optimal range for RobustErrorGoal. If you set it too low or too high, then the software can produce a model with poor classification accuracy. Try cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05
Data Types: single | double

RobustMarginSigma — Classification margin distribution spread

0.1 (default) | positive numeric scalar

Classification margin distribution spread over the training data, specified as the comma-separated pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying RobustMarginSigma, consult the literature on RobustBoost, for example, [19].

Example: 'RobustMarginSigma',0.5
Data Types: single | double

RobustMaxMargin — Maximal classification margin

0 (default) | nonnegative numeric scalar

Maximal classification margin in the training data, specified as the comma-separated pair consisting of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of observations in the training data having classification margins below RobustMaxMargin.

Example: 'RobustMaxMargin',1
Data Types: single | double
Random Subspace Method Options

NPredToSample — Number of predictors to sample

1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the number of predictor variables (size(X,2) or size(Tbl, 2)).

Data Types: single | double

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'Method','NumLearningCycles','LearnRate'} along with the default parameters for the specified Learners:
 - Learners = 'tree' (default) — {'MinLeafSize'}
 - Learners = 'discriminant' — {'Delta','Gamma'}
 - Learners = 'knn' — {'Distance','NumNeighbors'}

Note For hyperparameter optimization, Learners must be a single argument, not a string array or cell array.

- 'all' — Optimize all eligible parameters.
- String array or cell array of eligible parameter names
- Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitcensemble by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.
Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitcensemble are:

- **Method** — Depends on the number of classes.
 - Two classes — Eligible methods are 'Bag', 'GentleBoost', 'LogitBoost', 'AdaBoostM1', and 'RUSBoost'.
 - Three or more classes — Eligible methods are 'Bag', 'AdaBoostM2', and 'RUSBoost'.
- **NumLearningCycles** — fitcensemble searches among positive integers, by default log-scaled with range [10,500].
- **LearnRate** — fitcensemble searches among positive reals, by default log-scaled with range [1e-3,1].
- The eligible hyperparameters for the chosen Learners:

<table>
<thead>
<tr>
<th>Learners</th>
<th>Eligible Hyperparameters</th>
<th>Default Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>'discriminant'</td>
<td>Delta</td>
<td>Log-scaled in the range [1e-6,1e3]</td>
</tr>
<tr>
<td></td>
<td>DiscrimType</td>
<td>'linear','quadratic','diagLinear', 'diagQuadratic', 'pseudoLinear', and 'pseudoQuadratic'</td>
</tr>
<tr>
<td></td>
<td>Gamma</td>
<td>Real values in [0,1]</td>
</tr>
<tr>
<td>'knn'</td>
<td>Distance</td>
<td>'cityblock','chebychev','correlation','cosine','euclidean','hamming','jaccard','mahalanobis','minkowski','seuclidean', and 'spearman'</td>
</tr>
<tr>
<td></td>
<td>DistanceWeight</td>
<td>'equal','inverse',and 'squaredInverse'</td>
</tr>
<tr>
<td>Learners</td>
<td>Eligible Hyperparameters</td>
<td>Default Range</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Exponent</td>
<td>Positive values in $[0.5, 3]$</td>
</tr>
<tr>
<td>'tree'</td>
<td>NumNeighbors</td>
<td>Positive integer values log-scaled in the range $[1, \max(2, \text{round}(/2))]$</td>
</tr>
<tr>
<td></td>
<td>Standardize</td>
<td>'true' and 'false'</td>
</tr>
<tr>
<td></td>
<td>MaxNumSplits</td>
<td>Integers log-scaled in the range $[1, \max(2, \text{NumObservations}-1)]$</td>
</tr>
<tr>
<td></td>
<td>MinLeafSize</td>
<td>Integers log-scaled in the range $[1, \max(2, \text{floor}(\text{NumObservations}/2))]$</td>
</tr>
<tr>
<td></td>
<td>NumVariablesToSample</td>
<td>Integers in the range $[1, \max(2, \text{NumPredictors})]$</td>
</tr>
<tr>
<td></td>
<td>SplitCriterion</td>
<td>'gdi', 'deviance', and 'twoing'</td>
</tr>
</tbody>
</table>

Alternatively, use `hyperparameters` with your chosen `Learners`.

```matlab
load fisheriris % hyperparameters requires data and learner
params = hyperparameters('fitcensemble', meas, species, 'Tree');
```

To see the eligible and default hyperparameters, examine `params`.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitcensemble', meas, species, 'Tree');
params(4).Range = [1,30];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is $\log(1 + \text{cross-validation loss})$ for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the
'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the ShowPlots field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize Classification Ensemble” on page 32-1805.

Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization structure

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the OptimizeHyperparameters name-value pair argument. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | 'bayesopt' |
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquisitionFunctionName</td>
<td>• 'expected-improvement-per-second-plus'</td>
<td>'expected-improvement-per-second-plus'</td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-plus'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-per-second'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'lower-confidence-bound'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'probability-of-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.</td>
<td></td>
</tr>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
</tbody>
</table>
Field Name | Values | Default
--- | --- | ---
Repartition | Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations. | false

Use no more than one of the following three field names.

Field Name	Values	Default
CVPartition | A cvpartition object, as created by cvpartition. | 'Kfold',5 if you do not specify any cross-validation field
Holdout | A scalar in the range (0,1) representing the holdout fraction. |
Kfold | An integer greater than 1. |

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

Md1 — Trained classification ensemble model

Model Object	Specify Any Cross-Validation Options?	Method Setting	Resample Setting
ClassificationBaggedEnsemble | No | 'Bag' | 'on'
ClassificationEnsemble |
ClassificationPartitionedEnsemble |

Trained ensemble model, returned as one of the model objects in this table.
The name-value pair arguments that control cross-validation are `CrossVal`, `Holdout`, `KFold`, `Leaveout`, and `CVPartition`.

To reference properties of `Mdl`, use dot notation. For example, to access or display the cell vector of weak learner model objects for an ensemble that has not been cross-validated, enter `Mdl.Trained` at the command line.

Tips

- **NumLearningCycles** can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive power requires from a few hundred to a few thousand weak learners. However, you do not have to train an ensemble for that many cycles at once. You can start by growing a few dozen learners, inspect the ensemble performance and then, if necessary, train more weak learners using `resume` for classification problems.

- Ensemble performance depends on the ensemble setting and the setting of the weak learners. That is, if you specify weak learners with default parameters, then the ensemble can perform poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak learners using templates, and to choose values that minimize generalization error.

- If you specify to resample using `Resample`, then it is good practice to resample to entire data set. That is, use the default setting of 1 for `FResample`.

- If the ensemble-aggregation method (Method) is 'bag' and:
 - The misclassification cost (`Cost`) is highly imbalanced, then, for in-bag samples, the software oversamples unique observations from the class that has a large penalty.
 - The class prior probabilities (`Prior`) are highly skewed, the software oversamples unique observations from the class that has a large prior probability.
For smaller sample sizes, these combinations can result in a low relative frequency of out-of-bag observations from the class that has a large penalty or prior probability. Consequently, the estimated out-of-bag error is highly variable and it can be difficult to interpret. To avoid large estimated out-of-bag error variances, particularly for small sample sizes, set a more balanced misclassification cost matrix using Cost or a less skewed prior probability vector using Prior.

- Because the order of some input and output arguments correspond to the distinct classes in the training data, it is good practice to specify the class order using the ClassNames name-value pair argument.

- To determine the class order quickly, remove all observations from the training data that are unclassified (that is, have a missing label), obtain and display an array of all the distinct classes, and then specify the array for ClassNames. For example, suppose the response variable (Y) is a cell array of labels. This code specifies the class order in the variable classNames.

  ```matlab
  Ycat = categorical(Y);
 classNames = categories(Ycat)
  ```

 categorical assigns <undefined> to unclassified observations and categories excludes <undefined> from its output. Therefore, if you use this code for cell arrays of labels or similar code for categorical arrays, then you do not have to remove observations with missing labels to obtain a list of the distinct classes.

- To specify that the class order from lowest-represented label to most-represented, then quickly determine the class order (as in the previous bullet), but arrange the classes in the list by frequency before passing the list to ClassNames. Following from the previous example, this code specifies the class order from lowest- to most-represented in classNamesLH.

  ```matlab
  Ycat = categorical(Y);
  classNames = categories(Ycat);
  freq = countcats(Ycat);
  [~,idx] = sort(freq);
  classNamesLH = classNames(idx);
  ```

- After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.
Algorithms

- For details of ensemble-aggregation algorithms, see “Ensemble Algorithms” on page 18-50.
- If you specify Method to be a boosting algorithm and Learners to be decision trees, then the software grows shallow decision trees by default. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and MinParentSize name-value pair arguments using templateTree.
- fitcensemble generates in-bag samples by oversampling classes with large misclassification costs and undersampling classes with small misclassification costs. Consequently, out-of-bag samples have fewer observations from classes with large misclassification costs and more observations from classes with small misclassification costs. If you train a classification ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag observations per class can be low. Therefore, the estimated out-of-bag error can have a large variance and can be difficult to interpret. The same phenomenon can occur for classes with large prior probabilities.
- For the RUSBoost ensemble-aggregation method (Method), the name-value pair argument RatioToSmallest specifies the sampling proportion for each class with respect to the lowest-represented class. For example, suppose that there are two classes in the training data: A and B. A have 100 observations and B have 10 observations. and that the lowest-represented class has m observations in the training data.
 - If you set 'RatioToSmallest',2, then s*m = 2*10 = 20. Consequently, fitcensemble trains every learner using 20 observations from class A and 20 observations from class B. If you set 'RatioToSmallest',[2 2], then you obtain the same result.
 - If you set 'RatioToSmallest',[2,1], then s1*m = 2*10 = 20 and s2*m = 1*10 = 10. Consequently, fitcensemble trains every learner using 20 observations from class A and 10 observations from class B.

References

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
ClassificationBaggedEnsemble | ClassificationEnsemble | ClassificationPartitionedEnsemble | predict | templateDiscriminant | templateKNN | templateTree

Topics
“Supervised Learning Workflow and Algorithms” on page 18-2
“Framework for Ensemble Learning” on page 18-40

Introduced in R2016b
fitcknn

Fit k-nearest neighbor classifier

Syntax

Mdl = fitcknn(Tbl,ResponseVarName)
Mdl = fitcknn(Tbl,formula)
Mdl = fitcknn(Tbl,Y)
Mdl = fitcknn(X,Y)
Mdl = fitcknn(___,Name,Value)

Description

Mdl = fitcknn(Tbl,ResponseVarName) returns a k-nearest neighbor classification model based on the input variables (also known as predictors, features, or attributes) in the table Tbl and output (response) Tbl.ResponseVarName.

Mdl = fitcknn(Tbl,formula) returns a k-nearest neighbor classification model based on the input variables in the table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl.

Mdl = fitcknn(Tbl,Y) returns a k-nearest neighbor classification model based on the predictor variables in the table Tbl and response array Y.

Mdl = fitcknn(X,Y) returns a k-nearest neighbor classification model based on the predictor data X and response Y.

Mdl = fitcknn(___,Name,Value) fits a model with additional options specified by one or more name-value pair arguments, using any of the previous syntaxes. For example, you can specify the tie-breaking algorithm, distance metric, or observation weights.

Examples
Train k-Nearest Neighbor Classifier

Train a k-nearest neighbor classifier for Fisher's iris data, where k, the number of nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

```matlab
load fisheriris
X = meas;
Y = species;
```

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a 5-nearest neighbor classifier. Standardize the noncategorical predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)
```

```matlab
Mdl = ClassificationKNN
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa'  'versicolor'  'virginica'}
    ScoreTransform: 'none'
    NumObservations: 150
    Distance: 'euclidean'
    NumNeighbors: 5
```

Properties, Methods

Mdl is a trained ClassificationKNN classifier, and some of its properties appear in the Command Window.

To access the properties of Mdl, use dot notation.

```matlab
Mdl.ClassNames
ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }
```
Mdl.Prior

ans = 1x3

0.3333 0.3333 0.3333

Mdl.Prior contains the class prior probabilities, which you can specify using the 'Prior' name-value pair argument in fitcknn. The order of the class prior probabilities corresponds to the order of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5, 0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to predict to label new measurements or crossval to cross-validate the classifier.

Train a k-Nearest Neighbor Classifier Using the Minkowski Metric

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a 3-nearest neighbors classifier using the Minkowski metric. To use the Minkowski metric, you must use an exhaustive searcher. It is good practice to standardize noncategorical predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',3,...
    'NSMethod','exhaustive','Distance','minkowski',...
    'Standardize',1);
```

Mdl is a ClassificationKNN classifier.
You can examine the properties of Mdl by double-clicking Mdl in the Workspace window. This opens the Variable Editor.
Train a k-Nearest Neighbor Classifier Using a Custom Distance Metric

Train a k-nearest neighbor classifier using the chi-square distance.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;    % Predictors
Y = species; % Response
```

The chi-square distance between j-dimensional points x and z is

$$
\chi(x, z) = \sqrt{\sum_{j=1}^{J} w_j (x_j - z_j)^2},
$$

where w_j is a weight associated with dimension j.

Specify the chi-square distance function. The distance function must:

- Take one row of X, e.g., x, and the matrix Z.
- Compare x to each row of Z.
- Return a vector D of length n_z, where n_z is the number of rows of Z. Each element of D is the distance between the observation corresponding to x and the observations corresponding to each row of Z.

```matlab
chiSqrDist = @(x,Z,wt)sqrt((bsxfun(@minus,x,Z).^2)*wt);
```

This example uses arbitrary weights for illustration.

Train a 3-nearest neighbor classifier. It is good practice to standardize noncategorical predictor data.

```matlab
k = 3;
w = [0.3; 0.3; 0.2; 0.2];
KNNMdl = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w),...
    'NumNeighbors',k,'Standardize',1);
```

$KNNMdl$ is a ClassificationKNN classifier.

Cross validate the KNN classifier using the default 10-fold cross validation. Examine the classification error.
rng(1); % For reproducibility
CVKNNMdl = crossval(KNNMdl);
classError = kfoldLoss(CVKNNMdl)

classError = 0.0600

CVKNNMdl is a ClassificationPartitionedModel classifier. The 10-fold classification error is 4%.

Compare the classifier with one that uses a different weighting scheme.

w2 = [0.2; 0.2; 0.3; 0.3];
CVKNNMdl2 = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w2),...
 'NumNeighbors',k,'KFold',10,'Standardize',1);
classError2 = kfoldLoss(CVKNNMdl2)

classError2 = 0.0400

The second weighting scheme yields a classifier that has better out-of-sample performance.

Optimize Fitted KNN Classifier

This example shows how to optimize hyperparameters automatically using fitcknn. The example uses the Fisher iris data.

Load the data.
load fisheriris
X = meas;
Y = species;

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

rng(1)
Md1 = fitcknn(X,Y,'OptimizeHyperparameters','auto',...
 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>NumNeighbors</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.026667</td>
<td>0.83903</td>
<td>0.026667</td>
<td>0.026667</td>
<td>30</td>
<td>cosine</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.04</td>
<td>0.6005</td>
<td>0.026667</td>
<td>0.027197</td>
<td>2</td>
<td>chebychev</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.19333</td>
<td>0.35055</td>
<td>0.026667</td>
<td>0.030324</td>
<td>1</td>
<td>hamming</td>
</tr>
</tbody>
</table>

Objective function model

- Observed points
- Model mean
- Next point
- Model minimum feasible

Distance
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>NumNeighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td></td>
<td>runtime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.33333</td>
<td>0.19503</td>
<td>0.02</td>
<td>0.020046</td>
<td>75</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.33333</td>
<td>0.17266</td>
<td>0.02</td>
<td>0.02656</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.33333</td>
<td>0.15643</td>
<td>0.02</td>
<td>0.02854</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.02</td>
<td>0.20536</td>
<td>0.02</td>
<td>0.028607</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.02</td>
<td>0.1717</td>
<td>0.02</td>
<td>0.022264</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.02</td>
<td>0.14157</td>
<td>0.02</td>
<td>0.021439</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.02</td>
<td>0.15741</td>
<td>0.02</td>
<td>0.020999</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.66667</td>
<td>0.2378</td>
<td>0.02</td>
<td>0.020008</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.04</td>
<td>0.16191</td>
<td>0.02</td>
<td>0.020008</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>Best</td>
<td>0.013333</td>
<td>0.25168</td>
<td>0.013333</td>
<td>0.013351</td>
<td>6</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 86.1011 seconds.
Total objective function evaluation time: 7.5408

Best observed feasible point:

<table>
<thead>
<tr>
<th>NumNeighbors</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>euclidean</td>
</tr>
</tbody>
</table>
Observed objective function value = 0.013333
Estimated objective function value = 0.013351
Function evaluation time = 0.25168

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>NumNeighbors</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>euclidean</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.013351
Estimated function evaluation time = 0.22929

Md1 =
ClassificationKNN
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 150
 HyperparameterOptimizationResults: [1x1 BayesianOptimization]
 Distance: 'euclidean'
 NumNeighbors: 6

Properties, Methods

Input Arguments

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as predictors, then specify the response variable by using ResponseVarName.
If `Tbl` contains the response variable, and you want to use only a subset of the remaining variables in `Tbl` as predictors, then specify a formula by using `formula`.

If `Tbl` does not contain the response variable, then specify a response variable by using `Y`. The length of the response variable and the number of rows in `Tbl` must be equal.

Data Types: `table`

ResponseVarName — Response variable name

Name of variable in `Tbl`

Response variable name, specified as the name of a variable in `Tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `Y` is stored as `Tbl.Y`, then specify it as `'Y'`. Otherwise, the software treats all columns of `Tbl`, including `Y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If `Y` is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the `ClassNames` name-value pair argument.

Data Types: `char` | `string`

formula — Explanatory model of response and subset of predictor variables

Character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.

Data Types: `char` | `string`

Y — Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Data Types: `categorical` | `char` | `string`
Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Each row of \(Y\) represents the classification of the corresponding row of \(X\).

The software considers NaN, '' (empty character vector), '"' (empty string), <missing>, and <undefined> values in \(Y\) to be missing values. Consequently, the software does not train using observations with a missing response.

Data Types: categorical | char | string | logical | single | double | cell

\(X\) — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation (also known as an instance or example), and each column corresponds to one predictor variable (also known as a feature).

The length of \(Y\) and the number of rows of \(X\) must be equal.

To specify the names of the predictors in the order of their appearance in \(X\), use the \texttt{PredictorNames} name-value pair argument.

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

\textbf{Note} You cannot use any cross-validation name-value pair argument along with the \texttt{'OptimizeHyperparameters'} name-value pair argument. You can modify the cross-validation for \texttt{'OptimizeHyperparameters'} only by using the \texttt{'HyperparameterOptimizationOptions'} name-value pair argument.

Example: 'NumNeighbors', 3,'NSMethod','exhaustive','Distance','minkowski' specifies a classifier for three-nearest neighbors using the nearest neighbor search method and the Minkowski metric.
Model Parameters

BreakTies — Tie-breaking algorithm

'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the `predict` method if multiple classes have the same smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one of the following:

- 'smallest' — Use the smallest index among tied groups.
- 'nearest' — Use the class with the nearest neighbor among tied groups.
- 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the K nearest neighbors.

Example: 'BreakTies','nearest'

BucketSize — Maximum data points in node

50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only when `NSMethod` is 'kdtree'.

Example: 'BucketSize',40

Data Types: `single` | `double`

CategoricalPredictors — Categorical predictor flag

[] (default) | 'all'

Categorical predictor flag, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the following:

- 'all' — All predictors are categorical.
- [] — No predictors are categorical.

When you set `CategoricalPredictors` to 'all', the default `Distance` is 'hamming'.

Example: 'CategoricalPredictors','all'
ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. *ClassNames* must have the same data type as *Y*.

If *ClassNames* is a character array, then each element must correspond to one row of the array.

Use *ClassNames* to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use *ClassNames* to specify the order of the dimensions of *Cost* or the column order of classification scores returned by *predict*.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in *Y* is {'a','b','c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for *ClassNames* is the set of all distinct class names in *Y*.

Example: 'ClassNames',{'b','g'}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and one of the following:

- Square matrix, where *Cost(i,j)* is the cost of classifying a point into class *j* if its true class is *i* (i.e., the rows correspond to the true class and the columns correspond to the predicted class). To specify the class order for the corresponding rows and columns of *Cost*, additionally specify the *ClassNames* name-value pair argument.
- Structure *S* having two fields: *S.ClassNames* containing the group names as a variable of the same type as *Y*, and *S.ClassificationCosts* containing the cost matrix.

The default is *Cost(i,j)=1* if *i~=j*, and *Cost(i,j)=0* if *i=j*.
Data Types: single | double | struct

Cov — Covariance matrix
nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix of scalar values representing the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

IncludeTies — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical value indicating whether predict includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true

Data Types: logical

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod' and 'kdtree' or 'exhaustive'.

- 'kdtree' — Creates and uses a kd-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
 - 'euclidean'
 - 'cityblock'
 - 'minkowski'
 - 'chebychev'
- 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point xnew, the software computes the distance values from all points in X to xnew to find nearest neighbors.
The default is 'kdtree' when \(X\) has 10 or fewer columns, \(X\) is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

PredictorNames — Predictor variable names

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply \(X\) and \(Y\), then you can use 'PredictorNames' to give the predictor variables in \(X\) names.
 - The order of the names in PredictorNames must correspond to the column order of \(X\). That is, PredictorNames{1} is the name of \(X(:,1)\), PredictorNames{2} is the name of \(X(:,2)\), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
 - By default, PredictorNames is {'x1','x2',...}.
- If you supply \(Tbl\), then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitcknn uses only the predictor variables in PredictorNames and the response variable in training.
 - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
 - By default, PredictorNames contains the names of all predictor variables.
 - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

Prior — Prior probabilities

'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to $1/K$, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to $Mdl.ClassNames$ or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• $S.ClassNames$ contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• $S.ClassProbs$ contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Example: 'Prior','uniform'

Data Types: char | string | single | double | struct

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string
Scale — Distance scale
nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing nonnegative scalar values with length equal to the number of columns in X. Each coordinate difference between X and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

ScoreTransform — Score transformation
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>-1 for $x < 0$</td>
</tr>
<tr>
<td></td>
<td>0 for $x = 0$</td>
</tr>
<tr>
<td></td>
<td>1 for $x > 0$</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>$2x - 1$</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>$2/(1 + e^{-x}) - 1$</td>
</tr>
</tbody>
</table>
For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including W, as predictors or the response when training the model.

The software normalizes Weights to sum up to the value of the prior probability in the respective class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

Data Types: double | single | char | string

Cross Validation

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'CrossVal','on'

CVPartition — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve $p*100\%$ of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.
1 Randomly partition the data into \(k \) sets.

2 For each set, reserve the set as validation data, and train the model using the other \(k - 1 \) sets.

3 Store the \(k \) compact, trained models in the cells of a \(k \)-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'KFold',5`

Data Types: `single` | `double`

Leaveout — Leave-one-out cross-validation flag

`'off'` (default) | `'on'`

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of `'Leaveout'` and `'on'` or `'off'`. If you specify `'Leaveout','on'`, then, for each of the \(n \) observations (where \(n \) is the number of observations excluding missing observations, specified in the `NumObservations` property of the model), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other \(n - 1 \) observations.

2 Store the \(n \) compact, trained models in the cells of an \(n \)-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'Leaveout','on'`

Hyperparameter Optimization

Distance — Distance metric

`'cityblock'` | `'chebychev'` | `'correlation'` | `'cosine'` | `'euclidean'` | `'hamming'` | function handle | ...

Distance metric, specified as the comma-separated pair consisting of `'Distance'` and a valid distance metric name or function handle. The allowable distance metric names depend on your choice of a neighbor-searcher method (see `NSMethod`).
NSMethod and Distance Metric Names

<table>
<thead>
<tr>
<th>NSMethod</th>
<th>Distance Metric Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>exhaustive</td>
<td>Any distance metric of ExhaustiveSearcher</td>
</tr>
<tr>
<td>kdtree</td>
<td>'cityblock', 'chebychev', 'euclidean', or 'minkowski'</td>
</tr>
</tbody>
</table>

This table includes valid distance metrics of ExhaustiveSearcher.

<table>
<thead>
<tr>
<th>Distance Metric Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is the sample covariance matrix of X, as computed by nancov(X). To specify a different value for C, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'Exponent' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between X and a query point is scaled, meaning divided by a scale value S. The default value of S is the standard deviation computed from X, $S = \text{nansd}(X)$. To specify another value for S, use the Scale name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>
Distance Metric Names | Description
--- | ---
@distfun | Distance function handle. distfun has the form

```matlab
function D2 = distfun(ZI,ZJ)
% calculation of distance
...
```
where

- ZI is a 1-by-N vector containing one row of X or Y.
- ZJ is an M2-by-N matrix containing multiple rows of X or Y.
- D2 is an M2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).

If you specify CategoricalPredictors as 'all', then the default distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

Data Types: char | string | function_handle

DistanceWeight — Distance weighting function

'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of 'DistanceWeight' and either a function handle or one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'equal'</td>
<td>No weighting</td>
</tr>
<tr>
<td>'inverse'</td>
<td>Weight is 1/distance</td>
</tr>
<tr>
<td>'squaredinverse'</td>
<td>Weight is 1/distance(^2)</td>
</tr>
<tr>
<td>@fcn</td>
<td>fcn is a function that accepts a matrix of nonnegative distances, and returns a matrix the same size containing nonnegative distance weights. For example, 'squaredinverse' is equivalent to @(d)d.^(-2).</td>
</tr>
</tbody>
</table>

Example: 'DistanceWeight','inverse'
Data Types: char | string | function_handle

Exponent — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

NumNeighbors — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer value.

Example: 'NumNeighbors',3

Data Types: single | double

Standardize — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of the predictor data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all predictors are categorical.

You cannot simultaneously specify 'Standardize',1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.

Example: 'Standardize',true

Data Types: logical
Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'Distance','NumNeighbors'}.
- 'all' — Optimize all eligible parameters.
- String array or cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcknn by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitcknn are:

- **Distance** — fitcknn searches among 'cityblock', 'chebychev', 'correlation', 'cosine', 'euclidean', 'hamming', 'jaccard', 'mahalanobis', 'minkowski', 'seuclidean', and 'spearman'.
- **DistanceWeight** — fitcknn searches among 'equal', 'inverse', and 'squaredinverse'.
- **Exponent** — fitcknn searches among positive real values, by default in the range [0.5,3].
- **NumNeighbors** — fitcknn searches among positive integer values, by default log-scaled in the range [1, max(2, round(NumObservations/2))].
- **Standardize** — fitcknn searches among the values 'true' and 'false'.

32-1866
Set nondefault parameters by passing a vector of optimizableVariable objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitcknn',meas,species);
params(1).Range = [1,20];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is log(1 + cross-validation loss) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize Fitted KNN Classifier” on page 32-1847.

Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization

structure

Options for optimization, specified as the comma-separated pair consisting of `'HyperparameterOptimizationOptions'` and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
| | 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
| | 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
| | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults).
| AcquisitionFunctionName | 'expected-improvement-per-second-plus'
| | 'expected-improvement'
| | 'expected-improvement-plus'
| | 'expected-improvement-per-second'
| | 'lower-confidence-bound'
| | 'probability-of-improvement'
| | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.
| MaxObjectiveEvaluations | Maximum number of objective function evaluations.
| | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>'bayesopt'</td>
</tr>
<tr>
<td></td>
<td>'expected-improvement-per-second-plus'</td>
<td>'expected-improvement-per-second-plus'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

32-1868
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

Md1 — Trained k-nearest neighbor classification model
ClassificationKNN model object | ClassificationPartitionedModel cross-validated model object

Trained k-nearest neighbor classification model, returned as a ClassificationKNN model object or a ClassificationPartitionedModel cross-validated model object.
If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a ClassificationKNN model object.

To reference properties of Mdl, use dot notation. For example, to display the distance metric at the Command Window, enter Mdl.Distance.

Definitions

Prediction

ClassificationKNN predicts the classification of a point \(x_{\text{new}} \) using a procedure equivalent to this:

1. Find the NumNeighbors points in the training set \(X \) that are nearest to \(x_{\text{new}} \).
2. Find the NumNeighbors response values \(Y \) to those nearest points.
3. Assign the classification label \(y_{\text{new}} \) that has the largest posterior probability among the values in \(Y \).

For details, see “Posterior Probability” on page 32-4943 in the predict documentation.

Tips

After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

- NaNs or <undefined>s indicate missing observations. The following describes the behavior of fitcknn when the data set or weights contain missing observations.

 - If any value of \(Y \) or any weight is missing, then fitcknn removes those values from \(Y \), the weights, and the corresponding rows of \(X \) from the data. The software renormalizes the weights to sum to 1.
• If you specify to standardize predictors ('Standardize', 1) or the standardized Euclidean distance ('Distance', 'seuclidean') without a scale, then fitcknn removes missing observations from individual predictors before computing the mean and standard deviation. In other words, the software implements nanmean and nanstd on each predictor.

• If you specify the Mahalanobis distance ('Distance', 'mahalanobis') without its covariance matrix, then fitcknn removes rows of X that contain at least one missing value. In other words, the software implements nancov on the predictor matrix X.

• Suppose that you set 'Standardize', 1.

• If you also specify Prior or Weights, then the software takes the observation weights into account. Specifically, the weighted mean of predictor \(j \) is

\[
\bar{x}_j = \sum_{B_j} w_k x_{jk}
\]

and the weighted standard deviation is

\[
s_j = \sum_{B_j} w_k (x_{jk} - \bar{x}_j),
\]

where \(B_j \) is the set of indices \(k \) for which \(x_{jk} \) and \(w_k \) are not missing.

• If you also set 'Distance', 'mahalanobis' or 'Distance', 'seuclidean', then you cannot specify Scale or Cov. Instead, the software:

1. Computes the means and standard deviations of each predictor
2. Standardizes the data using the results of step 1
3. Computes the distance parameter values using their respective default.

• If you specify Scale and either of Prior or Weights, then the software scales observed distances by the weighted standard deviations.

• If you specify Cov and either of Prior or Weights, then the software applies the weighted covariance matrix to the distances. In other words,
\[
\text{Cov} = \frac{\sum_{B} w_j}{\left(\sum_{B} w_j\right)^2} \sum_{B} w_j (x_j - \bar{x}) (x_j - \bar{x}),
\]

where \(B\) is the set of indices \(j\) for which the observation \(x_j\) does not have any missing values and \(w_j\) is not missing.

Alternatives

Although \texttt{fitcknn} can train a multiclass KNN classifier, you can reduce a multiclass learning problem to a series of KNN binary learners using \texttt{fitcecoc}.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also

\texttt{ClassificationKNN} | \texttt{ClassificationPartitionedModel} | \texttt{fitcecoc} | \texttt{fitcensemble} | \texttt{predict} | \texttt{templateKNN}

Topics

“Construct KNN Classifier” on page 18-36
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2014a
fitclinear

Fit linear classification model to high-dimensional data

fitclinear trains linear classification models for two-class (binary) learning with high-dimensional, full or sparse predictor data. Available linear classification models include regularized support vector machines (SVM) and logistic regression models. **fitclinear** minimizes the objective function using techniques that reduce computing time (e.g., stochastic gradient descent).

A high-dimensional data set includes many predictor variables. Although such a data set can consume a significant fraction of memory, it must fit in the MATLAB Workspace. For low- through medium-dimensional predictor data sets, see “Alternatives for Lower-Dimensional Data” on page 32-1916.

To train a linear classification model for multiclass learning by combining SVM or logistic regression binary classifiers using error-correcting output codes, see **fitcecoc**.

Syntax

```matlab
Mdl = fitclinear(X,Y)
Mdl = fitclinear(X,Y,Name,Value)
[Mdl,FitInfo] = fitclinear(__)
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitclinear(__)
```

Description

Mdl = fitclinear(X,Y) returns a trained linear classification model object that contains the results of fitting a binary support vector machine to the predictors X and class labels Y.

Mdl = fitclinear(X,Y,Name,Value) returns a trained linear classification model with additional options specified by one or more `Name,Value` pair arguments. For example, you can specify that the columns of the predictor matrix correspond to observations, implement logistic regression, or specify to cross-validate. It is good practice to cross-validate using the `Kfold Name,Value` pair argument. The cross-validation results determine how well the model generalizes.
[Mdl,FitInfo] = fitclinear(___) also returns optimization details using any of the previous syntaxes. You cannot request FitInfo for cross-validated models.

[Mdl,FitInfo,HyperparameterOptimizationResults] = fitclinear(___) also returns hyperparameter optimization details when you pass an OptimizeHyperparameters name-value pair.

Examples

Train Linear Classification Model

Train a binary, linear classification model using support vector machines, dual SGD, and ridge regularization.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Train the model using the entire data set. Determine how well the optimization algorithm fit the model to the data by extracting a fit summary.

rng(1); % For reproducibility
[Mdl,FitInfo] = fitclinear(X,Ystats)

Mdl =
ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'none'
 Beta: [34023x1 double]
 Bias: -1.0059
Properties, Methods

FitInfo = struct with fields:
 - Lambda: 3.1674e-05
 - Objective: 5.3783e-04
 - PassLimit: 10
 - NumPasses: 10
 - BatchLimit: []
 - NumIterations: 238561
 - GradientNorm: NaN
 - GradientTolerance: 0
 - RelativeChangeInBeta: 0.0562
 - BetaTolerance: 1.0000e-04
 - DeltaGradient: 1.4582
 - DeltaGradientTolerance: 1
 - TerminationCode: 0
 - TerminationStatus: {'Iteration limit exceeded.'}
 - Alpha: [31572x1 double]
 - History: []
 - FitTime: 0.1901
 - Solver: {'dual'}

Mdl is a ClassificationLinear model. You can pass Mdl and the training or new data to loss to inspect the in-sample classification error. Or, you can pass Mdl and new predictor data to predict to predict class labels for new observations.

FitInfo is a structure array containing, among other things, the termination status (TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is good practice to use FitInfo to determine whether optimization-termination measurements are satisfactory. Because training time is small, you can try to retrain the model, but increase the number of passes through the data. This can improve measures like DeltaGradient.
Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, implement 5-fold cross-validation.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{-0.5}$.

Lambda = logspace(-6,-0.5,11);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Estimate the coefficients using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

X = X';
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
 'Learner','logistic','Solver','sparsa','Regularization','lasso',...
 'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl =
 classreg.learning.partition.ClassificationPartitionedLinear
 CrossValidatedModel: 'Linear'
 ResponseName: 'Y'
 NumObservations: 31572
 KFold: 5
 Partition: [1x1 cvpartition]
 ClassNames: [0 1]
 ScoreTransform: 'none'
Properties, Methods

numCLModels = numel(CVMdl.Trained)
numCLModels = 5

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each fold.

Display the first trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023×11 double]
 Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 1.5849e-04 5.6234e-04 0.0020 0.0071 0.0251 0.0891 0.3162]
 Learner: 'logistic'

Properties, Methods

Mdl1 is a ClassificationLinear model object. fitclinear constructed Mdl1 by training on the first four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

ce = kfoldLoss(CVMdl);

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the
entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

```matlab
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...'
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...'
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);
```

In the same figure, plot the cross-validated, classification error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

```matlab
figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
```
Choose the index of the regularization strength that balances predictor variable sparsity and low classification error. In this case, a value between 10^{-4} to 10^{-1} should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate labels for new observations, pass MdlFinal and the new data to predict.
Optimize Linear Classifier

This example shows how to minimize the cross-validation error in a linear classifier using \texttt{fitclinear}. The example uses the NLP data set.

Load the NLP data set.

\begin{verbatim}
load nlpdata
\end{verbatim}

\(X\) is a sparse matrix of predictor data, and \(Y\) is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. Identify the relevant labels.

\begin{verbatim}
X = X';
Ystats = Y == 'stats';
\end{verbatim}

Optimize the classification using the 'auto' parameters.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

\begin{verbatim}
rng default
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns','Solver','sparsa',...
 'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
 struct('AcquisitionFunctionName','expected-improvement-plus'))
\end{verbatim}

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>Lambda</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.041619</td>
<td>3.7102</td>
<td>0.041619</td>
<td>0.041619</td>
<td>0.077903</td>
<td>logistic</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.00072849</td>
<td>3.6146</td>
<td>0.00072849</td>
<td>0.0028767</td>
<td>2.1405e-09</td>
<td>logistic</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.049221</td>
<td>4.383</td>
<td>0.00072849</td>
<td>0.00075737</td>
<td>0.72101</td>
<td>svm</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.00079184</td>
<td>4.0362</td>
<td>0.00072849</td>
<td>0.00074989</td>
<td>3.4734e-07</td>
<td>logistic</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.00082351</td>
<td>3.6567</td>
<td>0.00072849</td>
<td>0.00072924</td>
<td>1.1738e-08</td>
<td>svm</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.00085519</td>
<td>3.8855</td>
<td>0.00072849</td>
<td>0.00072746</td>
<td>3.4529e-09</td>
<td>svm</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
<td>0.00079184</td>
<td>3.8795</td>
<td>0.00072849</td>
<td>0.00072518</td>
<td>3.1854e-08</td>
<td>logistic</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>0.00079184</td>
<td>4.1503</td>
<td>0.00072849</td>
<td>0.00072236</td>
<td>3.1717e-08</td>
<td>logistic</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.00081686</td>
<td>3.5691</td>
<td>0.00072849</td>
<td>0.00068304</td>
<td>3.1837e-08</td>
<td>logistic</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.00079184</td>
<td>4.203</td>
<td>0.00072849</td>
<td>0.00072853</td>
<td>1.1258e-07</td>
<td>svm</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.00076017</td>
<td>3.8095</td>
<td>0.00072849</td>
<td>0.00072144</td>
<td>2.1214e-09</td>
<td>svm</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.00079184</td>
<td>6.3278</td>
<td>0.00072849</td>
<td>0.00075984</td>
<td>2.2819e-07</td>
<td>logistic</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.00072849</td>
<td>3.9257</td>
<td>0.00072849</td>
<td>0.00075648</td>
<td>6.6161e-08</td>
<td>logistic</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>Lambda</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Best</td>
<td>0.00069682</td>
<td>4.1709</td>
<td>0.00069682</td>
<td>0.00069781</td>
<td>7.4324e-08</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Best</td>
<td>0.00066515</td>
<td>4.1086</td>
<td>0.00066515</td>
<td>0.00068861</td>
<td>7.6994e-08</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>0.00076017</td>
<td>3.685</td>
<td>0.00066515</td>
<td>0.00068881</td>
<td>7.0687e-10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.00066515</td>
<td>4.1488</td>
<td>0.00066515</td>
<td>0.0006838</td>
<td>7.7159e-08</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.00076017</td>
<td>4.0808</td>
<td>0.00066515</td>
<td>0.00068508</td>
<td>5.0781e-05</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.0012353</td>
<td>5.2072</td>
<td>0.00066515</td>
<td>0.00069625</td>
<td>1.6481e-05</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.00085519</td>
<td>3.1398</td>
<td>0.00066515</td>
<td>0.00069643</td>
<td>1.157e-06</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.00082351</td>
<td>6.2676</td>
<td>0.00066515</td>
<td>0.00068569</td>
<td>4.5396e-06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.0010769</td>
<td>14.789</td>
<td>0.00066515</td>
<td>0.00070107</td>
<td>5.1931e-06</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.00095021</td>
<td>16.747</td>
<td>0.00066515</td>
<td>0.00069594</td>
<td>1.3051e-06</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.00085519</td>
<td>5.2072</td>
<td>0.00066515</td>
<td>0.00069625</td>
<td>1.6481e-05</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.00085519</td>
<td>4.265</td>
<td>0.00066515</td>
<td>0.00069643</td>
<td>1.157e-06</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.00079184</td>
<td>3.4761</td>
<td>0.00066515</td>
<td>0.00069667</td>
<td>1.0016e-08</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.00072849</td>
<td>3.7038</td>
<td>0.00066515</td>
<td>0.00069848</td>
<td>4.2234e-08</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.049221</td>
<td>0.48067</td>
<td>0.00066515</td>
<td>0.00069842</td>
<td>3.1608</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.00085519</td>
<td>4.0213</td>
<td>0.00066515</td>
<td>0.00069855</td>
<td>8.5626e-10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.00076017</td>
<td>3.6389</td>
<td>0.00066515</td>
<td>0.00069837</td>
<td>3.1946e-10</td>
<td></td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 162.4664 seconds.
Total objective function evaluation time: 143.6227

Best observed feasible point:

<table>
<thead>
<tr>
<th>Lambda</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6994e-08</td>
<td>logistic</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.00066515
Estimated objective function value = 0.00069837
Function evaluation time = 4.1086

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Lambda</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4324e-08</td>
<td>logistic</td>
</tr>
</tbody>
</table>
Estimated objective function value = 0.00069837
Estimated function evaluation time = 4.0948

Mdl =
 ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023×1 double]
 Bias: -10.1723
 Lambda: 7.4324e-08
 Learner: 'logistic'

Properties, Methods
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
Input Arguments

X — Predictor data
defull matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix.

The length of Y and the number of observations in X must be equal.

Note If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in optimization-execution time.

Data Types: `single` | `double`

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels to which the classification model is trained, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- **fitclinear** only supports binary classification. Either Y must contain exactly two distinct classes, or you must specify two classes for training using the `'ClassNames'` name-value pair argument. For multiclass learning, see **fitcecoc**.
- If Y is a character array, then each element must correspond to one row of the array.
- The length of Y and the number of observations in X must be equal.
- It is good practice to specify the class order using the `ClassNames` name-value pair argument.

Data Types: `char` | `string` | `cell` | `categorical` | `logical` | `single` | `double`

Note **fitclinear** removes missing observations, that is, observations with any of these characteristics:

- NaN, empty character vector (``), empty string (""), `<missing>`, and `<undefined>` elements in the response (Y or `ValidationData{2}`)
• At least one NaN value in a predictor observation (row in X or ValidationData{1})
• NaN value or 0 weight (Weights or ValidationData{3})

For memory-usage economy, it is best practice to remove observations containing missing values from your training data manually before training.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example:
'ObservationsIn','columns','Learner','logistic','CrossVal','on'
specifies that the columns of the predictor matrix corresponds to observations, to implement logistic regression, to implement 10-fold cross-validation.

Linear Classification Options

Lambda — Regularization term strength

'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto', a nonnegative scalar, or a vector of nonnegative values.

• For 'auto', Lambda = 1/n.
 • If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the number of in-fold observations.
 • Otherwise, n is the training sample size.
 • For a vector of nonnegative values, the software sequentially optimizes the objective function for each distinct value in Lambda in ascending order.
If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', then the software does not use the previous coefficient estimates as a warm start on page 32-1916 for the next optimization iteration. Otherwise, the software uses warm starts.

If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when the software optimizes using subsequent values in Lambda.

Returns coefficient estimates for all optimization iterations.

Example: 'Lambda',10.^(-(10:-2:2))

Data Types: char | string | double | single

Learner — Linear classification model type

'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'logistic'.

In this table, \(f(x) = x\beta + b \).

- \(\beta \) is a vector of \(p \) coefficients.
- \(x \) is an observation from \(p \) predictor variables.
- \(b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response Range</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>(y \in {-1,1}; 1) for the positive class and -1 otherwise</td>
<td>Hinge: (\ell[y, f(x)] = \max[0,1 - yf(x)])</td>
</tr>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Same as 'svm'</td>
<td>Deviance (logistic): (\ell[y, f(x)] = \log[1 + \exp[-yf(x)]])</td>
</tr>
</tbody>
</table>

Example: 'Learner', 'logistic'

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

32-1889
Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in optimization-execution time.

Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization' and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss function (see Learner) and the regularization term in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso'</td>
<td>Lasso (L1) penalty: (\lambda \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'ridge'</td>
<td>Ridge (L2) penalty: (\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2)</td>
</tr>
</tbody>
</table>

To specify the regularization term strength, which is \(\lambda \) in the expressions, use Lambda.

The software excludes the bias term (\(\beta_0 \)) from the regularization penalty.

If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the default is 'ridge'.

Tip
- For predictor variable selection, specify 'lasso'.
- For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'
Solver — Objective function minimization technique

'Sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character vectors

Objective function minimization technique, specified as the comma-separated pair consisting of 'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors with values from this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sgd'</td>
<td>Stochastic gradient descent (SGD) [5][3]</td>
<td></td>
</tr>
<tr>
<td>'asgd'</td>
<td>Average stochastic gradient descent (ASGD) [8]</td>
<td></td>
</tr>
<tr>
<td>'dual'</td>
<td>Dual SGD for SVM [2][7]</td>
<td>Regularization must be 'ridge' and Learner must be 'svm'.</td>
</tr>
<tr>
<td>'bfgs'</td>
<td>Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (BFGS) [4]</td>
<td>Inefficient if X is very high-dimensional.</td>
</tr>
<tr>
<td>'lbfgs'</td>
<td>Limited-memory BFGS (LBFGS) [4]</td>
<td>Regularization must be 'ridge'.</td>
</tr>
<tr>
<td>'sparsa'</td>
<td>Sparse Reconstruction by Separable Approximation (SpaRSA) [6]</td>
<td>Regularization must be 'lasso'.</td>
</tr>
</tbody>
</table>

If you specify:

- A ridge penalty (see Regularization) and X contains 100 or fewer predictor variables, then the default solver is 'bfgs'.
- An SVM model (see Learner), a ridge penalty, and X contains more than 100 predictor variables, then the default solver is 'dual'.
- A lasso penalty and X contains 100 or fewer predictor variables, then the default solver is 'sparsa'.

Otherwise, the default solver is 'sgd'.

If you specify a string array or cell array of solver names, then the software uses all solvers in the specified order for each Lambda.
For more details on which solver to choose, see “Tips” on page 32-1917.

Example: 'Solver', {'sgd', 'lbfgs'}

Beta — Initial linear coefficient estimates

Zeroes matrix ($p, 1$) (default) | numeric vector | numeric matrix

Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta' and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor variables in X and L is the number of regularization-strength values (for more details, see Lambda).

- **Beta**

 - If you specify a p-dimensional vector, then the software optimizes the objective function L times using this process.

 1. The software optimizes using Beta as the initial value and the minimum value of Lambda as the regularization strength.

 2. The software optimizes again using the resulting estimate from the previous optimization as a warm start on page 32-1916, and the next smallest value in Lambda as the regularization strength.

 3. The software implements step 2 until it exhausts all values in Lambda.

- If you specify a p-by-L matrix, then the software optimizes the objective function L times. At iteration j, the software uses Beta(:, j) as the initial value and, after it sorts Lambda in ascending order, uses Lambda(j) as the regularization strength.

If you set 'Solver', 'dual', then the software ignores Beta.

Data Types: `single` | `double`

Bias — Initial intercept estimate

Numeric scalar | numeric matrix

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values (for more details, see Lambda).

- **Bias**

 - If you specify a scalar, then the software optimizes the objective function L times using this process.

 1. The software optimizes using Bias as the initial value and the minimum value of Lambda as the regularization strength.
2. The software implements step 2 until it exhausts all values in \(\text{Lambda} \).
 - If you specify an \(L \)-dimensional vector, then the software optimizes the objective function \(L \) times. At iteration \(j \), the software uses \(\text{Bias}(j) \) as the initial value and, after it sorts \(\text{Lambda} \) in ascending order, uses \(\text{Lambda}(j) \) as the regularization strength.
 - By default:
 - If \(\text{Learner} \) is 'logistic', then let \(g_j \) be 1 if \(Y(j) \) is the positive class, and -1 otherwise. \(\text{Bias} \) is the weighted average of the \(g \) for training or, for cross-validation, in-fold observations.
 - If \(\text{Learner} \) is 'svm', then \(\text{Bias} \) is 0.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of 'FitBias' and true or false.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>The software includes the bias term (b) in the linear model, and then estimates it.</td>
</tr>
<tr>
<td>false</td>
<td>The software sets (b = 0) during estimation.</td>
</tr>
</tbody>
</table>

Example: 'FitBias',false
Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization
false (default) | true

Flag to fit the linear model intercept after optimization, specified as the comma-separated pair consisting of 'PostFitBias' and true or false.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>The software estimates the bias term (b) and the coefficients (\beta) during optimization.</td>
</tr>
<tr>
<td>true</td>
<td>To estimate (b), the software:</td>
</tr>
<tr>
<td></td>
<td>1 Estimates (\beta) and (b) using the model</td>
</tr>
<tr>
<td></td>
<td>2 Estimates classification scores</td>
</tr>
<tr>
<td></td>
<td>3 Refits (b) by placing the threshold on the classification scores that attains maximum accuracy</td>
</tr>
</tbody>
</table>

If you specify true, then `FitBias` must be true.

Example: `'PostFitBias',true`

Data Types: logical

Verbose — Verbosity level

\(0 \) (default) | nonnegative integer

Verbosity level, specified as the comma-separated pair consisting of `'Verbose'` and a nonnegative integer. `Verbose` controls the amount of diagnostic information `fitclinear` displays at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>fitclinear</code> does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td><code>fitclinear</code> periodically displays and stores the value of the objective function, gradient magnitude, and other diagnostic information. <code>FitInfo.History</code> contains the diagnostic information.</td>
</tr>
<tr>
<td>Any other positive integer</td>
<td><code>fitclinear</code> displays and stores diagnostic information at each optimization iteration. <code>FitInfo.History</code> contains the diagnostic information.</td>
</tr>
</tbody>
</table>

Example: `'Verbose',1`

Data Types: `double` | `single`
SGD and ASGD Solver Options

BatchSize — Mini-batch size

Positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive integer. At each iteration, the software estimates the subgradient using BatchSize observations from the training data.

- If X is a numeric matrix, then the default value is 10.
- If X is a sparse matrix, then the default value is max([10, ceil(sqrt(ff))]), where $ff = \text{numel}(X)/\text{nnz}(X)$ (the fullness factor of X).

Example: 'BatchSize', 100

Data Types: `single` | `double`

LearnRate — Learning rate

Positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive scalar. LearnRate specifies how many steps to take per iteration. At each iteration, the gradient specifies the direction and magnitude of each step.

- If Regularization is 'ridge', then LearnRate specifies the initial learning rate γ_0. The software determines the learning rate for iteration t, γ_t, using

$$
\gamma_t = \frac{\gamma_0}{(1 + \lambda \gamma_0 t)^c}.
$$

- λ is the value of Lambda.
- If Solver is 'sgd', then $c = 1$.
- If Solver is 'asgd', then c is 0.75 [7].
- If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is $1/sqrt(1+\max((\text{sum}(X.^2,\text{obsDim}))))$, where obsDim is 1 if the observations compose the columns of the predictor data X, and 2 otherwise.

Example: 'LearnRate', 0.01

Data Types: `single` | `double`
OptimizeLearnRate — Flag to decrease learning rate

true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, over-stepping the minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or false.

If OptimizeLearnRate is 'true', then:

1. For the few optimization iterations, the software starts optimization using LearnRate as the learning rate.
2. If the value of the objective function increases, then the software restarts and uses half of the current value of the learning rate.
3. The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate',true

Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs

10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair consisting of 'TruncationPeriod' and a positive integer.

After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after processing \(k = \text{TruncationPeriod} \) mini-batches, the software truncates the estimated coefficient \(j \) using

\[
\hat{\beta}_j^* = \begin{cases}
\hat{\beta}_j - u_t & \text{if } \hat{\beta}_j > u_t, \\
0 & \text{if } |\hat{\beta}_j| \leq u_t, \\
\hat{\beta}_j + u_t & \text{if } \hat{\beta}_j < -u_t.
\end{cases}
\]

- For SGD, \(\hat{\beta}_j \) is the estimate of coefficient \(j \) after processing \(k \) mini-batches. \(u_t = k \gamma_t \lambda \). \(\gamma_t \) is the learning rate at iteration \(t \). \(\lambda \) is the value of Lambda.
- For ASGD, \(\hat{\beta}_j \) is the averaged estimate coefficient \(j \) after processing \(k \) mini-batches, \(u_t = k \lambda \).
If Regularization is 'ridge', then the software ignores TruncationPeriod.
Example: 'TruncationPeriod',100
Data Types: single | double

Other Classification Options

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use ClassNames to specify the order of the dimensions of Cost or the column order of classification scores returned by predict.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in Y is {'a','b','c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure.

- If you specify the square matrix cost ('Cost',cost), then cost(i,j) is the cost of classifying a point into class j if its true class is i. That is, the rows correspond to the true class, and the columns correspond to the predicted class. To specify the class
order for the corresponding rows and columns of \texttt{cost}, use the \texttt{ClassNames} name-value pair argument.

- If you specify the structure \(S ('Cost',S) \), then it must have two fields:
 - \(S.\text{ClassNames} \), which contains the class names as a variable of the same data type as \(Y \)
 - \(S.\text{ClassificationCosts} \), which contains the cost matrix with rows and columns ordered as in \(S.\text{ClassNames} \)

The default value for \texttt{Cost} is \(\text{ones}(K) \) – \(\text{eye}(K) \), where \(K \) is the number of distinct classes.

\texttt{fitclinear} uses \texttt{Cost} to adjust the prior class probabilities specified in \texttt{Prior}. Then, \texttt{fitclinear} uses the adjusted prior probabilities for training and resets the cost matrix to its default.

Example: 'Cost',[0 2; 1 0]

Data Types: single | double | struct

\textbf{Prior — Prior probabilities}

'\textit{empirical}' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and '\textit{empirical}', 'uniform', a numeric vector, or a structure array.

This table summarizes the available options for setting prior probabilities.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'\textit{empirical}'</td>
<td>The class prior probabilities are the class relative frequencies in (Y).</td>
</tr>
<tr>
<td>'\textit{uniform}'</td>
<td>All class prior probabilities are equal to (1/K), where (K) is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to their order in (Y). If you specify the order using the 'ClassNames' name-value pair argument, then order the elements accordingly.</td>
</tr>
</tbody>
</table>
Value | Description
---|---
structure array | A structure S with two fields:
 - S.ClassNames contains the class names as a variable of the same type as Y.
 - S.ClassProbs contains a vector of corresponding prior probabilities.

`fitclinear` normalizes the prior probabilities in `Prior` to sum to 1.

Example: `'Prior', struct('ClassNames', {{'setosa', 'versicolor'}}, 'ClassProbs', 1:2)

Data Types: char | string | double | single | struct

ScoreTransform — Score transformation

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for $x < 0$
 | 0 for $x = 0$
<pre><code> | 1 for $x > 0$ |
</code></pre>
<p>| 'symmetric' | $2x - 1$ |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to –1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(\frac{2}{1 + e^{-x}} - 1)</td>
</tr>
</tbody>
</table>

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. fitclinear weighs the observations in \(X \) with the corresponding value in Weights. The size of Weights must equal the number of observations in \(X \).

fitclinear normalizes Weights to sum up to the value of the prior probability in the respective class.

By default, Weights is ones(\(n,1 \)), where \(n \) is the number of observations in \(X \).

Data Types: double | single

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, or KFold. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.
Example: 'Crossval','on'

CVPartition — Cross-validation partition

[](default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation, and also the indexing for training and validation sets.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software:

1. Randomly reserves p*100% of the data as validation data, and trains the model using the rest of the data
2. Stores the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold', k, then the software:

1. Randomly partitions the data into k sets
2. For each set, reserves the set as validation data, and trains the model using the other k – 1 sets
3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

Example: 'KFold', 8

Data Types: single | double

SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches

positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of 'BatchLimit' and a positive integer. When the software processes BatchLimit batches, it terminates optimization.

- By default:
 - The software passes through the data PassLimit times.
 - If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the 'BatchSize' name-value pair argument.
 - If you specify 'BatchLimit' and 'PassLimit', then the software chooses the argument that results in processing the fewest observations.
 - If you specify 'BatchLimit' but not 'PassLimit', then the software processes enough batches to complete up to one entire pass through the data.

Example: 'BatchLimit', 100

Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.
Let \(B_t = \left[\beta_t \ b_t \right] \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\left\| B_t - B_{t-1} \right\|_2 < \text{BetaTolerance} \), then optimization terminates.

If the software converges for the last solver specified in \texttt{Solver}, then optimization terminates. Otherwise, the software uses the next solver specified in \texttt{Solver}.

Example: \texttt{'}BetaTolerance', 1e-6

\textbf{Data Types:} single | double

\textbf{NumCheckConvergence} — Number of batches to process before next convergence check
positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair consisting of \texttt{'}NumCheckConvergence'} and a positive integer.

To specify the batch size, see \texttt{BatchSize}.

The software checks for convergence about 10 times per pass through the entire data set by default.

Example: \texttt{'}NumCheckConvergence', 100

\textbf{Data Types:} single | double

\textbf{PassLimit} — Maximal number of passes
1 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of \texttt{'}PassLimit'} and a positive integer.

\texttt{fitclinear} processes all observations when it completes one pass through the data.

When \texttt{fitclinear} passes through the data \texttt{PassLimit} times, it terminates optimization.

If you specify \texttt{'}BatchLimit'} and \texttt{'}PassLimit'}, then \texttt{fitclinear} chooses the argument that results in processing the fewest observations.

Example: \texttt{'}PassLimit', 5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.

During optimization, the software periodically estimates the loss of ValidationData. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-1918. To optimize hyperparameters using cross-validation, see cross-validation options such as CrossVal.

- **ValidationData(1)** must contain an m-by-p or p-by-m full or sparse matrix of predictor data that has the same orientation as X. The predictor variables in the training data X and ValidationData{1} must correspond. The number of observations in both sets can vary.
- **ValidationData{2}** and Y must be the same data type. The set of all distinct labels of ValidationData{2} must be a subset of all distinct labels of Y.
- Optionally, **ValidationData(3)** can contain an m-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Dual SGD Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.
Let \(B_t = \begin{bmatrix} \beta_t' & b_t \end{bmatrix} \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If
\[
\left\| B_t - B_{t-1} \right\|_2 < \text{BetaTolerance}
\]
then optimization terminates.

If you also specify \(\text{DeltaGradientTolerance} \), then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in \(\text{Solver} \), then optimization terminates. Otherwise, the software uses the next solver specified in \(\text{Solver} \).

Example: 'BetaTolerance',1e-6
Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance

1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001 violators, specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

- If the magnitude of the KKT violators is less than \(\text{DeltaGradientTolerance} \), then the software terminates optimization.
- If the software converges for the last solver specified in \(\text{Solver} \), then optimization terminates. Otherwise, the software uses the next solver specified in \(\text{Solver} \).

Example: 'DeltaGapTolerance',1e-2
Data Types: double | single

NumCheckConvergence — Number of passes through entire data set to process before next convergence check

5 (default) | positive integer

Number of passes through entire data set to process before next convergence check, specified as the comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.

Example: 'NumCheckConvergence',100
Data Types: single | double
PassLimit — Maximal number of passes
10 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of 'PassLimit' and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data PassLimit times, it terminates optimization.

Example: 'PassLimit',5

Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.

During optimization, the software periodically estimates the loss of ValidationData. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-1918. To optimize hyperparameters using cross-validation, see cross-validation options such as CrossVal.

- ValidationData(1) must contain an \(m \)-by-\(p \) or \(p \)-by-\(m \) full or sparse matrix of predictor data that has the same orientation as \(X \). The predictor variables in the training data \(X \) and ValidationData{1} must correspond. The number of observations in both sets can vary.
- ValidationData{2} and \(Y \) must be the same data type. The set of all distinct labels of ValidationData{2} must be a subset of all distinct labels of \(Y \).
- Optionally, ValidationData(3) can contain an \(m \)-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.
BFGS, LBFGS, and SpaRSA Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = \begin{bmatrix} \beta_t & b_t \end{bmatrix} \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\frac{\| B_t - B_{t-1} \|_2}{B_t} < \text{BetaTolerance} \), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6

Data Types: single | double

GradientTolerance — Absolute gradient tolerance

1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.

Let \(\nabla L_t \) be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration \(t \). If \(\| \nabla L_t \|_\infty = \max |\nabla L_t| < \text{GradientTolerance} \), then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation

15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. That is, at each iteration, the software composes the Hessian using statistics from the latest HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.

Example: 'HessianHistorySize',10

Data Types: single | double

IterationLimit — Maximal number of optimization iterations

1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver: 'bfgs', 'lbfgs', and 'sparsa'.

Example: 'IterationLimit',500

Data Types: single | double

ValidationData — Validation data for optimization convergence detection

cell array

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.

During optimization, the software periodically estimates the loss of ValidationData. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-1918. To optimize hyperparameters using cross-validation, see cross-validation options such as CrossVal.

- ValidationData{(1)} must contain an m-by-p or p-by-m full or sparse matrix of predictor data that has the same orientation as X. The predictor variables in the training data X and ValidationData{(1)} must correspond. The number of observations in both sets can vary.
- ValidationData{(2)} and Y must be the same data type. The set of all distinct labels of ValidationData{(2)} must be a subset of all distinct labels of Y.
• Optionally, ValidationData(3) can contain an \(m \)-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none' (default)</td>
<td>Do not optimize.</td>
</tr>
<tr>
<td>'auto'</td>
<td>Use {'Lambda','Learner'}.</td>
</tr>
<tr>
<td>'all'</td>
<td>Optimize all eligible parameters.</td>
</tr>
<tr>
<td>Array of string</td>
<td>Array of eligible parameter names.</td>
</tr>
<tr>
<td>Vector of object</td>
<td>Vector of optimizableVariable objects.</td>
</tr>
</tbody>
</table>

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'Lambda','Learner'}.
- 'all' — Optimize all eligible parameters.
- Array of string names of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitclinear by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitclinear are:
• **Lambda** — `fitclinear` searches among positive values, by default log-scaled in the range $[1e^{-5}/\text{NumObservations}, 1e5/\text{NumObservations}]$.

• **Learner** — `fitclinear` searches among 'svm' and 'logistic'.

• **Regularization** — `fitclinear` searches among 'ridge' and 'lasso'.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitclinear', meas, species);
params(1).Range = [1e-4, 1e6];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is log(1 + cross-validation loss) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize Linear Classifier” on page 32-1881.

Example: 'OptimizeHyperparameters', 'auto'

HyperparameterOptimizationOptions — Options for optimization

structure

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| **Optimizer** | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
| | • 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
| | • 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
| | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | **bayesopt** |
| **AcquisitionFunctionName** | • 'expected-improvement-per-second-plus'
| | • 'expected-improvement'
| | • 'expected-improvement-plus'
| | • 'expected-improvement-per-second'
| | • 'lower-confidence-bound'
| | • 'probability-of-improvement'
<p>| | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | expected-improvement-per-second-plus |
| MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the `bayesopt` `Verbose` name-value pair argument.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

Mdl — Trained linear classification model

ClassificationLinear model object | ClassificationPartitionedLinear cross-validated model object

Trained linear classification model, returned as a ClassificationLinear model object or ClassificationPartitionedLinear cross-validated model object.
If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then Mdl is a ClassificationPartitionedLinear cross-validated model object. Otherwise, Mdl is a ClassificationLinear model object.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Beta in the Command Window to display the vector or matrix of estimated coefficients.

Note Unlike other classification models, and for economical memory usage, ClassificationLinear and ClassificationPartitionedLinear model objects do not store the training data or training process details (for example, convergence history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array.

Fields specify final values or name-value pair argument specifications, for example, **Objective** is the value of the objective function when optimization terminates. Rows of multidimensional fields correspond to values of **Lambda** and columns correspond to values of **Solver**.

This table describes some notable fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TerminationStatus</td>
<td>• Reason for optimization termination</td>
</tr>
<tr>
<td></td>
<td>• Corresponds to a value in TerminationCode</td>
</tr>
<tr>
<td>FitTime</td>
<td>Elapsed, wall-clock time in seconds</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>History</td>
<td>A structure array of optimization information for each iteration. The field</td>
</tr>
<tr>
<td></td>
<td>Solver stores solver types using integer coding.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer</td>
<td>Solver</td>
</tr>
<tr>
<td>1</td>
<td>SGD</td>
</tr>
<tr>
<td>2</td>
<td>ASGD</td>
</tr>
<tr>
<td>3</td>
<td>Dual SGD for SVM</td>
</tr>
<tr>
<td>4</td>
<td>LBFGS</td>
</tr>
<tr>
<td>5</td>
<td>BFGS</td>
</tr>
<tr>
<td>6</td>
<td>SpaRSA</td>
</tr>
</tbody>
</table>

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.History.Objective`.

It is good practice to examine `FitInfo` to assess whether convergence is satisfactory.

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters

BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or a table of hyperparameters and associated values. The output is nonempty when the value of 'OptimizeHyperparameters' is not 'none'. The output value depends on the `Optimizer` field value of the 'HyperparameterOptimizationOptions' name-value pair argument:

<table>
<thead>
<tr>
<th>Value of Optimizer Field</th>
<th>Value of HyperparameterOptimizationResults</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bayesopt' (default)</td>
<td>Object of class BayesianOptimization</td>
</tr>
<tr>
<td>'gridsearch' or 'randomsearch'</td>
<td>Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)</td>
</tr>
</tbody>
</table>
Definitions

Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an optimization routine for quicker convergence.

Alternatives for Lower-Dimensional Data

High-dimensional linear classification and regression models minimize objective functions relatively quickly, but at the cost of some accuracy, the numeric-only predictor variables restriction, and the model must be linear with respect to the parameters. If your predictor data set is low- through medium-dimensional, or contains heterogeneous variables, then you should use the appropriate classification or regression fitting function. To help you decide which fitting function is appropriate for your low-dimensional data set, use this table.

<table>
<thead>
<tr>
<th>Model to Fit</th>
<th>Function</th>
<th>Notable Algorithmic Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Binary classification: fitcsvm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiclass classification: fitcecoc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regression: fitrsvm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Computes the Gram matrix of the predictor variables, which is convenient for nonlinear kernel transformations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Solves dual problem using SMO, ISDA, or L1 minimization via quadratic programming using quadprog.</td>
<td></td>
</tr>
<tr>
<td>Linear regression</td>
<td>Least-squares without regularization: fitlm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Regularized least-squares using a lasso penalty: lasso</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ridge regression: ridge or lasso</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• lasso implements cyclic coordinate descent.</td>
<td></td>
</tr>
</tbody>
</table>
Model to Fit

<table>
<thead>
<tr>
<th>Function</th>
<th>Notable Algorithmic Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>• fitglm implements iteratively reweighted least squares.</td>
</tr>
<tr>
<td></td>
<td>• lassoglm implements cyclic coordinate descent.</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>• Logistic regression without regularization: fitglm.</td>
</tr>
<tr>
<td></td>
<td>• Regularized logistic regression using a lasso penalty: lassoglm</td>
</tr>
</tbody>
</table>

Tips

- It is a best practice to orient your predictor matrix so that observations correspond to columns and to specify 'ObservationsIn', 'columns'. As a result, you can experience a significant reduction in optimization-execution time.

- For better optimization accuracy if \(X\) is high-dimensional and Regularization is 'ridge', set any of these combinations for Solver:
 - 'sgd'
 - 'asgd'
 - 'dual' if Learner is 'svm'
 - {'sgd','lbfgs'}
 - {'asgd','lbfgs'}
 - {'dual','lbfgs'} if Learner is 'svm'

 Other combinations can result in poor optimization accuracy.

- For better optimization accuracy if \(X\) is moderate- through low-dimensional and Regularization is 'ridge', set Solver to 'bfgs'.

- If Regularization is 'lasso', set any of these combinations for Solver:
 - 'sgd'
 - 'asgd'
 - 'sparsa'
 - {'sgd','sparsa'}
• {'asgd','sparsa'}
• When choosing between SGD and ASGD, consider that:
 • SGD takes less time per iteration, but requires more iterations to converge.
 • ASGD requires fewer iterations to converge, but takes more time per iteration.
• If X has few observations, but many predictor variables, then:
 • Specify 'PostFitBias',true.
 • For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for example, 5 or 10. This setting often results in better accuracy.
• For SGD and ASGD solvers, BatchSize affects the rate of convergence.
 • If BatchSize is too small, then fitclinear achieves the minimum in many iterations, but computes the gradient per iteration quickly.
 • If BatchSize is too large, then fitclinear achieves the minimum in fewer iterations, but computes the gradient per iteration slowly.
• Large learning rates (see LearnRate) speed up convergence to the minimum, but can lead to divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the minimum, but can lead to slow termination.
• When using lasso penalties, experiment with various values of TruncationPeriod. For example, set TruncationPeriod to 1, 10, and then 100.
• For efficiency, fitclinear does not standardize predictor data. To standardize X, enter

\[X = \text{bsxfun}@rdivide, \text{bsxfun}@minus(X, \text{mean}(X,2)), \text{std}(X,0,2)); \]

The code requires that you orient the predictors and observations as the rows and columns of X, respectively. Also, for memory-usage economy, the code replaces the original predictor data the standardized data.
• After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

• If you specify ValidationData, then, during objective-function optimization:
• *fitclinear* estimates the validation loss of *ValidationData* periodically using the current model, and tracks the minimal estimate.

• When *fitclinear* estimates a validation loss, it compares the estimate to the minimal estimate.

• When subsequent, validation loss estimates exceed the minimal estimate five times, *fitclinear* terminates optimization.

• If you specify *ValidationData* and to implement a cross-validation routine (*CrossVal*, *CVPartition*, *Holdout*, or *KFold*), then:

1. *fitclinear* randomly partitions *X* and *Y* according to the cross-validation routine that you choose.

2. *fitclinear* trains the model using the training-data partition. During objective-function optimization, *fitclinear* uses *ValidationData* as another possible way to terminate optimization (for details, see the previous bullet).

3. Once *fitclinear* satisfies a stopping criterion, it constructs a trained model based on the optimized linear coefficients and intercept.

 a. If you implement *k*-fold cross-validation, and *fitclinear* has not exhausted all training-set folds, then *fitclinear* returns to Step 2 to train using the next training-set fold.

 b. Otherwise, *fitclinear* terminates training, and then returns the cross-validated model.

4. You can determine the quality of the cross-validated model. For example:

 • To determine the validation loss using the holdout or out-of-fold data from step 1, pass the cross-validated model to *kfoldLoss*.

 • To predict observations on the holdout or out-of-fold data from step 1, pass the cross-validated model to *kfoldPredict*.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with the limitations:

- Some name-value pair arguments have different defaults compared to the in-memory `fitclinear` function. Supported name-value pair arguments, and any differences, are:
 - 'ObservationsIn' — Supports only 'rows'.
 - 'Lambda' — Can be 'auto' (default) or a scalar.
 - 'Learner'
 - 'Regularization' — Supports only 'ridge'.
 - 'Solver' — Supports only 'lbfgs'.
 - 'FitBias' — Supports only true.
 - 'Verbose' — Default value is 1.
 - 'Beta'
• 'Bias'
• 'ClassNames'
• 'Cost'
• 'Prior'
• 'Weights' — Value must be a tall array.
• 'HessianHistorySize'
• 'BetaTolerance' — Default value is relaxed to 1e-3.
• 'GradientTolerance' — Default value is relaxed to 1e-3.
• 'IterationLimit' — Default value is relaxed to 20.
• 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be 'ridge'.
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify fitclinear(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).

For tall arrays, fitclinear implements LBFGS by distributing the calculation of the loss and gradient among different parts of the tall array at each iteration. Other solvers are not available for tall arrays.

When initial values for Beta and Bias are not given, fitclinear refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.

For more information, see “Tall Arrays” (MATLAB).

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.
See Also
ClassificationLinear | ClassificationPartitionedLinear | fitcecoc | fitckernel | fitcsvm | fitglm | fitrlinear | kfoldLoss | kfoldPredict | lassoglm | predict | templateLinear | testcholdout

Introduced in R2016a
fitcnb

Train multiclass naive Bayes model

Syntax

Mdl = fitcnb(Tbl,ResponseVarName)
Mdl = fitcnb(Tbl,formula)
Mdl = fitcnb(Tbl,Y)
Mdl = fitcnb(X,Y)
Mdl = fitcnb(___,Name,Value)

Description

Mdl = fitcnb(Tbl,ResponseVarName) returns a multiclass naive Bayes model (Mdl), trained by the predictors in table Tbl and class labels in the variable Tbl.ResponseVarName.

Mdl = fitcnb(Tbl,formula) returns a multiclass naive Bayes model (Mdl), trained by the predictors in table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl used to fit Mdl.

Mdl = fitcnb(Tbl,Y) returns a multiclass naive Bayes model (Mdl), trained by the predictors in the table Tbl and class labels in the array Y.

Mdl = fitcnb(X,Y) returns a multiclass naive Bayes model (Mdl), trained by predictors X and class labels Y.

Mdl = fitcnb(___,Name,Value) returns a naive Bayes classifier with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify a distribution to model the data, prior probabilities for the classes, or the kernel smoothing window bandwidth.
Examples

Train a Naive Bayes Classifier

Load Fisher's iris data set.

 load fisheriris
 X = meas(:,3:4);
 Y = species;
 tabulate(Y)

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
<td>33.33%</td>
</tr>
<tr>
<td>versicolor</td>
<td>50</td>
<td>33.33%</td>
</tr>
<tr>
<td>virginica</td>
<td>50</td>
<td>33.33%</td>
</tr>
</tbody>
</table>

The software can classify data with more than two classes using naive Bayes methods.

Train a naive Bayes classifier. It is good practice to specify the class order.

 Mdl = fitcnb(X,Y,...
 'ClassNames',
 {'setosa','versicolor','virginica'})

Mdl = ClassificationNaiveBayes
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 150
 DistributionNames: {'normal' 'normal'}
 DistributionParameters: {3x2 cell}

Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

By default, the software models the predictor distribution within each class using a Gaussian distribution having some mean and standard deviation. Use dot notation to display the parameters of a particular Gaussian fit, e.g., display the fit for the first feature within setosa.
setosaIndex = strcmp(Mdl.ClassNames,'setosa');
estimates = Mdl.DistributionParameters{setosaIndex,1}
estimates = 2×1
1.4620
0.1737

The mean is 1.4620 and the standard deviation is 0.1737.

Plot the Gaussian contours.

figure
gscatter(X(:,1),X(:,2),Y);
h = gca;
cxlim = h.XLim;
cylim = h.YLim;
hold on
Params = cell2mat(Mdl.DistributionParameters);
Mu = Params(2*(1:3)-1,1:2); % Extract the means
Sigma = zeros(2,2,3);
for j = 1:3
 Sigma(:,:,j) = diag(Params(2*j,:)).^2; % Create diagonal covariance matrix
 xlim = Mu(j,1) + 4*[1 -1]*sqrt(Sigma(1,1,j));
 ylim = Mu(j,2) + 4*[1 -1]*sqrt(Sigma(2,2,j));
 ezcontour(@(x1,x2)mvnpdf([x1,x2],Mu(j,:),Sigma(:,:,j)),[xlim ylim])
 % Draw contours for the multivariate normal distributions
end
h.XLim = cxlim;
h.YLim = cylim;
title('Naive Bayes Classifier -- Fisher''s Iris Data')
xlabel('Petal Length (cm)')
ylabel('Petal Width (cm)')
hold off
You can change the default distribution using the name-value pair argument 'DistributionNames'. For example, if some predictors are categorical, then you can specify that they are multivariate, multinomial random variables using 'DistributionNames','mvmn'.

Specify Prior Probabilities When Training Naive Bayes Classifiers

Construct a naive Bayes classifier for Fisher's iris data set. Also, specify prior probabilities during training.

Load Fisher's iris data set.
load fisheriris
X = meas;
Y = species;
classNames = {'setosa','versicolor','virginica'}; % Class order

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

By default, the prior class probability distribution is the relative frequency distribution of the classes in the data set, which in this case is 33% for each species. However, suppose you know that in the population 50% of the irises are setosa, 20% are versicolor, and 30% are virginica. You can incorporate this information by specifying this distribution as a prior probability during training.

Train a naive Bayes classifier. Specify the class order and prior class probability distribution.

prior = [0.5 0.2 0.3];
Mdl = fitcnb(X,Y,'ClassNames',classNames,'Prior',prior)

Mdl = ClassificationNaiveBayes
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 150
 DistributionNames: {'normal' 'normal' 'normal' 'normal'}
 DistributionParameters: {3x4 cell}

Mdl is a trained ClassificationNaiveBayes classifier, and some of its properties appear in the Command Window. The software treats the predictors as independent given a class, and, by default, fits them using normal distributions.

The naive Bayes algorithm does not use the prior class probabilities during training. Therefore, you can specify prior class probabilities after training using dot notation. For example, suppose that you want to see the difference in performance between a model that uses the default prior class probabilities and a model that uses prior.
Create a new naive Bayes model based on Mdl, and specify that the prior class probability distribution is an empirical class distribution.

```matlab
defaultPriorMdl = Mdl;
FreqDist = cell2table(tabulate(Y));
defaultPriorMdl.Prior = FreqDist{:,3};
```

The software normalizes the prior class probabilities to sum to 1.

Estimate the cross-validation error for both models using 10-fold cross-validation.

```matlab
rng(1); % For reproducibility
defaultCVMdl = crossval(defaultPriorMdl);
defaultLoss = kfoldLoss(defaultCVMdl)
defaultLoss = 0.0533
CVMdl = crossval(Mdl);
Loss = kfoldLoss(CVMdl)
Loss = 0.0340
```

Mdl performs better than defaultPriorMdl.

Specify Predictor Distributions for Naive Bayes Classifiers

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Train a naive Bayes classifier using every predictor. It is good practice to specify the class order.

```matlab
Mdl1 = fitcnb(X,Y,...
    'ClassNames',{setosa',versicolor',virginica'})
```

```matlab
Mdl1 =
    ClassificationNaiveBayes
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
```
ScoreTransform: 'none'
NumObservations: 150
DistributionNames: {'normal' 'normal' 'normal' 'normal'}
DistributionParameters: {3x4 cell}

Properties, Methods

Mdl1.DistributionParameters
ans = 3x4 cell array
{2x1 double} {2x1 double} {2x1 double} {2x1 double}

Mdl1.DistributionParameters{1,2}
ans = 2x1

3.4280
0.3791

By default, the software models the predictor distribution within each class as a Gaussian with some mean and standard deviation. There are four predictors and three class levels. Each cell in Mdl1.DistributionParameters corresponds to a numeric vector containing the mean and standard deviation of each distribution, e.g., the mean and standard deviation for setosa iris sepal widths are 3.4280 and 0.3791, respectively.

Estimate the confusion matrix for Mdl1.

isLabels1 = resubPredict(Mdl1);
ConfusionMat1 = confusionmat(Y,isLabels1)
ConfusionMat1 = 3x3

50 0 0
0 47 3
0 3 47

Element (j, k) of ConfusionMat1 represents the number of observations that the software classifies as k, but are truly in class j according to the data.
Retrain the classifier using the Gaussian distribution for predictors 1 and 2 (the sepal lengths and widths), and the default normal kernel density for predictors 3 and 4 (the petal lengths and widths).

```matlab
Mdl2 = fitcnb(X,Y,...
    'DistributionNames',{'normal','normal','kernel','kernel'},...
    'ClassNames',{'setosa','versicolor','virginica'});
Mdl2.DistributionParameters{1,2}
an = 2x1
    3.4280
    0.3791
```

The software does not train parameters to the kernel density. Rather, the software chooses an optimal width. However, you can specify a width using the 'Width' name-value pair argument.

Estimate the confusion matrix for Mdl2.

```matlab
isLabels2 = resubPredict(Mdl2);
ConfusionMat2 = confusionmat(Y,isLabels2)
```

```
ConfusionMat2 = 3x3

50     0     0
0    47     3
0     3    47
```

Based on the confusion matrices, the two classifiers perform similarly in the training sample.

Compare Classifiers Using Cross-Validation

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility
```
Train and cross-validate a naive Bayes classifier using the default options and k-fold cross-validation. It is good practice to specify the class order.

CVMdl1 = fitcnb(X,Y,...
 'ClassNames',{'setosa','versicolor','virginica'},...
 'CrossVal','on');

By default, the software models the predictor distribution within each class as a Gaussian with some mean and standard deviation. CVMdl1 is a ClassificationPartitionedModel model.

Create a default naive Bayes binary classifier template, and train an error-correcting, output codes multiclass model.

t = templateNaiveBayes();
CVMdl2 = fitcecoc(X,Y,'CrossVal','on','Learners',t);

CVMdl2 is a ClassificationPartitionedECOC model. You can specify options for the naive Bayes binary learners using the same name-value pair arguments as for fitcnb.

Compare the out-of-sample k-fold classification error (proportion of misclassified observations).

classErr1 = kfoldLoss(CVMdl1,'LossFun','ClassifErr')
classErr1 = 0.0533

classErr2 = kfoldLoss(CVMdl2,'LossFun','ClassifErr')
classErr2 = 0.0467

Mdl2 has a lower generalization error.

Train Naive Bayes Classifiers Using Multinomial Predictors

Some spam filters classify an incoming email as spam based on how many times a word or punctuation (called tokens) occurs in an email. The predictors are the frequencies of particular words or punctuations in an email. Therefore, the predictors compose multinomial random variables.

This example illustrates classification using naive Bayes and multinomial predictors.
Create Training Data

Suppose you observed 1000 emails and classified them as spam or not spam. Do this by randomly assigning -1 or 1 to y for each email.

```matlab
n = 1000;                       % Sample size
rng(1);                         % For reproducibility
Y = randsample([-1 1],n,true);  % Random labels
```

To build the predictor data, suppose that there are five tokens in the vocabulary, and 20 observed tokens per email. Generate predictor data from the five tokens by drawing random, multinomial deviates. The relative frequencies for tokens corresponding to spam emails should differ from emails that are not spam.

```matlab
tokenProbs = [0.2 0.3 0.1 0.15 0.25;...
0.4 0.1 0.3 0.05 0.15];             % Token relative frequencies
tokensPerEmail = 20;                    % Fixed for convenience
X = zeros(n,5);
X(Y == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),sum(Y == 1));
X(Y == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),sum(Y == -1));
```

Train the Classifier

Train a naive Bayes classifier. Specify that the predictors are multinomial.

```matlab
Mdl = fitcnb(X,Y,'DistributionNames','mn');
```

Mdl is a trained $\text{ClassificationNaiveBayes}$ classifier.

Assess the in-sample performance of Mdl by estimating the misclassification error.

```matlab
isGenRate = resubLoss(Mdl,'LossFun','ClassifErr')
isGenRate = 0.0200
```

The in-sample misclassification rate is 2%.

Create New Data

Randomly generate deviates that represent a new batch of emails.

```matlab
newN = 500;
newY = randsample([-1 1],newN,true);
newX = zeros(newN,5);
newX(newY == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),...
Assess Classifier Performance

Classify the new emails using the trained naive Bayes classifier Mdl, and determine whether the algorithm generalizes.

```matlab
oosGenRate = loss(Mdl,newX,newY)
oosGenRate = 0.0261
```

The out-of-sample misclassification rate is 2.6% indicating that the classifier generalizes fairly well.

Optimize Naive Bayes Classifier

This example shows how to use the OptimizeHyperparameters name-value pair to minimize cross-validation loss in a naive Bayes classifier using fitcnb. The example uses Fisher's iris data.

Load Fisher's iris data.

```matlab
load fisheriris
X = meas;
Y = species;
classNames = {'setosa','versicolor','virginica'};
```

Optimize the classification using the 'auto' parameters.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng default
Mdl = fitcnb(X,Y,'ClassNames',classNames,'OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...'expected-improvement-plus'))
```

Warning: It is recommended that you first standardize all numeric predictors when optimizing.
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Distribution Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.053333</td>
<td>0.50897</td>
<td>0.053333</td>
<td>0.053333</td>
<td>normal</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.046667</td>
<td>0.80576</td>
<td>0.046667</td>
<td>0.049998</td>
<td>kernel</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.053333</td>
<td>0.18597</td>
<td>0.046667</td>
<td>0.046667</td>
<td>normal</td>
</tr>
</tbody>
</table>

fncb

32-1935
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Distribution Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.72335</td>
<td>0.046667</td>
<td>0.046627</td>
<td>kernel</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.093333</td>
<td>0.53499</td>
<td>0.046667</td>
<td>0.046618</td>
<td>kernel</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.58512</td>
<td>0.046667</td>
<td>0.046619</td>
<td>kernel</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.64597</td>
<td>0.046667</td>
<td>0.04663</td>
<td>kernel</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.91067</td>
<td>0.046667</td>
<td>0.04663</td>
<td>kernel</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.59995</td>
<td>0.046667</td>
<td>0.046631</td>
<td>kernel</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.62698</td>
<td>0.046667</td>
<td>0.046631</td>
<td>kernel</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.51017</td>
<td>0.046667</td>
<td>0.046631</td>
<td>kernel</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.046667</td>
<td>0.56332</td>
<td>0.046667</td>
<td>0.046631</td>
<td>kernel</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.08</td>
<td>0.47184</td>
<td>0.046667</td>
<td>0.046628</td>
<td>kernel</td>
</tr>
</tbody>
</table>

Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 69.9893 seconds. Total objective function evaluation time: 16.0794

Best observed feasible point:

- DistributionNames: Width
  - kernel: 0.11903
Observed objective function value = 0.046667
Estimated objective function value = 0.046628
Function evaluation time = 0.80576

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>DistributionNames</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>0.25613</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.046628
Estimated function evaluation time = 0.53307

Md1 =
ClassificationNaiveBayes
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
    NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
    DistributionNames: {1x4 cell}
    DistributionParameters: {3x4 cell}
    Kernel: {1x4 cell}
    Support: {1x4 cell}
    Width: [3x4 double]

Properties, Methods

**Input Arguments**

**Tbl — Sample data**

Table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
If `Tbl` contains the response variable, and you want to use all remaining variables in `Tbl` as predictors, then specify the response variable by using `ResponseVarName`.

If `Tbl` contains the response variable, and you want to use only a subset of the remaining variables in `Tbl` as predictors, then specify a formula by using `formula`.

If `Tbl` does not contain the response variable, then specify a response variable by using `Y`. The length of the response variable and the number of rows in `Tbl` must be equal.

Data Types: `table`

`ResponseVarName — Response variable name`  
name of variable in `Tbl`

Response variable name, specified as the name of a variable in `Tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `Y` is stored as `Tbl.Y`, then specify it as `'Y'`. Otherwise, the software treats all columns of `Tbl`, including `Y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If `Y` is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the `ClassNames` name-value pair argument.

Data Types: `char` | `string`

`formula — Explanatory model of response and subset of predictor variables`  
character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.

Data Types: `char` | `string`
**Y — Class labels**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels to which the naive Bayes classifier is trained, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Each element of Y defines the class membership of the corresponding row of X. Y supports K class levels.

If Y is a character array, then each row must correspond to one class label.

The length of Y and the number of rows of X must be equivalent.

Data Types: categorical | char | string | logical | single | double | cell

**X — Predictor data**
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equivalent.

Data Types: double

---

**Note:** The software treats NaN, empty character vector (' '), empty string ('""'), <missing>, and <undefined> elements as missing data values.

- If Y contains missing values, then the software removes them and the corresponding rows of X.
- If X contains any rows composed entirely of missing values, then the software removes those rows and the corresponding elements of Y.
- If X contains missing values and you set 'DistributionNames','mn', then the software removes those rows of X and the corresponding elements of Y.
- If a predictor is not represented in a class, that is, if all of its values are NaN within a class, then the software returns an error.

Removing rows of X and corresponding elements of Y decreases the effective training or cross-validation sample size.
**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Note** You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: 'DistributionNames','mn','Prior','uniform','KSWidth',0.5 specifies that the data distribution is multinomial, the prior probabilities for all classes are equal, and the kernel smoothing window bandwidth for all classes is 0.5 units.

**Naive Bayes Options**

**DistributionNames — Data distributions**

`'kernel'` | `'mn'` | `'mvmn'` | `'normal'` | string array | cell array of character vectors

Data distributions `fitcnb` uses to model the data, specified as the comma-separated pair consisting of `DistributionNames` and a character vector or string scalar, a string array, or a cell array of character vectors with values from this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'kernel'</code></td>
<td>Kernel smoothing density estimate.</td>
</tr>
<tr>
<td><code>'mn'</code></td>
<td>Multinomial distribution. If you specify mn, then all features are components of a multinomial distribution. Therefore, you cannot include 'mn' as an element of a string array or a cell array of character vectors. For details, see “Algorithms” on page 32-1957.</td>
</tr>
<tr>
<td><code>'mvmn'</code></td>
<td>Multivariate multinomial distribution. For details, see “Algorithms” on page 32-1957.</td>
</tr>
<tr>
<td><code>'normal'</code></td>
<td>Normal (Gaussian) distribution.</td>
</tr>
</tbody>
</table>
If you specify a character vector or string scalar, then the software models all the features using that distribution. If you specify a 1-by-\(P\) string array or cell array of character vectors, then the software models feature \(j\) using the distribution in element \(j\) of the array.

By default, the software sets all predictors specified as categorical predictors (using the `CategoricalPredictors` name-value pair argument) to 'mvnm'. Otherwise, the default distribution is 'normal'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify `Kernel`, `Support`, or `Width`.

Example: 'DistributionNames','mn'
Example: 'DistributionNames',{'kernel','normal','kernel'}

**Kernel — Kernel smoother type**

'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | string array | cell array of character vectors

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and a character vector or string scalar, a string array, or a cell array of character vectors.

This table summarizes the available options for setting the kernel smoothing density region. Let \(I\{u\}\) denote the indicator function.

<table>
<thead>
<tr>
<th>Value</th>
<th>Kernel</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'box'</td>
<td>Box (uniform)</td>
<td>(f(x) = 0.5I{</td>
</tr>
<tr>
<td>'epanechnikov'</td>
<td>Epanechnikov</td>
<td>(f(x) = 0.75(1 - x^2)I{</td>
</tr>
<tr>
<td>'normal'</td>
<td>Gaussian</td>
<td>(f(x) = \frac{1}{\sqrt{2\pi}} \exp(-0.5x^2))</td>
</tr>
<tr>
<td>'triangle'</td>
<td>Triangular</td>
<td>(f(x) = (1 -</td>
</tr>
</tbody>
</table>

If you specify a 1-by-\(P\) string array or cell array, with each element of the array containing any value in the table, then the software trains the classifier using the kernel smoother type in element \(j\) for feature \(j\) in \(X\). The software ignores elements of `Kernel` not corresponding to a predictor whose distribution is 'kernel'.

32-1941
You must specify that at least one predictor has distribution 'kernel' to additionally specify Kernel, Support, or Width.

Example: 'Kernel',{ 'epanechnikov', 'normal' }

**Support — Kernel smoothing density support**

' unbounded' (default) | 'positive' | string array | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of 'Support' and 'positive', 'unbounded', a string array, a cell array, or a numeric row vector. The software applies the kernel smoothing density to the specified region.

This table summarizes the available options for setting the kernel smoothing density region.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-by-2 numeric row vector</td>
<td>For example, [L,U], where L and U are the finite lower and upper bounds, respectively, for the density support.</td>
</tr>
<tr>
<td>'positive'</td>
<td>The density support is all positive real values.</td>
</tr>
<tr>
<td>'unbounded'</td>
<td>The density support is all real values.</td>
</tr>
</tbody>
</table>

If you specify a 1-by-\( P \) string array or cell array, with each element in the string array containing any text value in the table and each element in the cell array containing any value in the table, then the software trains the classifier using the kernel support in element \( j \) for feature \( j \) in \( X \). The software ignores elements of Kernel not corresponding to a predictor whose distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify Kernel, Support, or Width.

Example: 'KSSupport',{ [-10,20], 'unbounded' }

Data Types: char | string | cell | double

**Width — Kernel smoothing window width**

matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of 'Width' and a matrix of numeric values, numeric column vector, numeric row vector, or scalar.
Suppose there are $K$ class levels and $P$ predictors. This table summarizes the available options for setting the kernel smoothing window width.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K$-by-$P$ matrix of numeric values</td>
<td>Element $(k,j)$ specifies the width for predictor $j$ in class $k$.</td>
</tr>
<tr>
<td>$K$-by-1 numeric column vector</td>
<td>Element $k$ specifies the width for all predictors in class $k$.</td>
</tr>
<tr>
<td>1-by-$P$ numeric row vector</td>
<td>Element $j$ specifies the width in all class levels for predictor $j$.</td>
</tr>
<tr>
<td>scalar</td>
<td>Specifies the bandwidth for all features in all classes.</td>
</tr>
</tbody>
</table>

By default, the software selects a default width automatically for each combination of predictor and class by using a value that is optimal for a Gaussian distribution. If you specify $\text{Width}$ and it contains NaNs, then the software selects widths for the elements containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally specify $\text{Kernel}$, $\text{Support}$, or $\text{Width}$.

Example: 'Width',[NaN NaN]

Data Types: double | struct

**Cross-Validation Options**

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval.

Example: 'CrossVal','on'
CVPartition — Cross-validation partition

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps:

1 Randomly partition the data into k sets.
For each set, reserve the set as validation data, and train the model using the other \( k - 1 \) sets.

Store the \( k \) compact, trained models in the cells of a \( k \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \( n \) observations (where \( n \) is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other \( n - 1 \) observations.
2. Store the \( n \) compact, trained models in the cells of an \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

**Other Classification Options**

**CategoricalPredictors — Categorical predictors list**

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

32-1945
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (Tbl), fitcnb assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), fitcnb assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: single | double | logical | char | string | cell

**ClassNames — Names of classes to use for training**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

- Order the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order. For example, use `ClassNames` to specify the order of the dimensions of `Cost` or the column order of classification scores returned by `predict`.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names in `Y` is `{ 'a', 'b', 'c' }`. To train the model using observations from classes 'a' and 'c' only, specify `ClassNames`, { 'a', 'c' }.

The default value for `ClassNames` is the set of all distinct class names in `Y`.

Example: 'ClassNames', {'b', 'g'}

Data Types: categorical | char | string | logical | single | double | cell

**Cost — Cost of misclassification**
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and one of the following:

• Square matrix, where `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i` (i.e., the rows correspond to the true class and the columns correspond to the predicted class). To specify the class order for the corresponding rows and columns of `Cost`, additionally specify the `ClassNames` name-value pair argument.

• Structure `S` having two fields: `S.ClassNames` containing the group names as a variable of the same type as `Y`, and `S.ClassificationCosts` containing the cost matrix.

The default is `Cost(i,j)=1` if `i!=j`, and `Cost(i,j)=0` if `i=j`.

Example: 'Cost', struct('ClassNames', {'b', 'g'}, 'ClassificationCosts', [0 0.5; 1 0])

Data Types: single | double | struct

**PredictorNames — Predictor variable names**
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

• If you supply `X` and `Y`, then you can use 'PredictorNames' to give the predictor variables in `X` names.
• The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.

• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitcnb uses only the predictor variables in PredictorNames and the response variable in training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.

• It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to Mdl.ClassNames or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Example: 'Prior','uniform'

Data Types: char | string | single | double | struct

**ResponseName — Response variable name**

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

**ScoreTransform — Score transformation**

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>1/(1 + e(^{-2x}))</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>log(x / (1-x))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>1/(1 + e(^{-x}))</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>-1 for x &lt; 0&lt;br&gt;0 for x = 0&lt;br&gt;1 for x &gt; 0</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>2x - 1</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>2/(1 + e(^{-x})) - 1</td>
</tr>
</tbody>
</table>

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

**Weights — Observation weights**

numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including W, as predictors or the response when training the model.
The software normalizes **Weights** to sum up to the value of the prior probability in the respective class.

By default, **Weights** is `ones(n,1)`, where `n` is the number of observations in `X` or `Tbl`.  

**Data Types:** double | single | char | string

### Hyperparameter Optimization

**OptimizeHyperparameters — Parameters to optimize**  
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of `optimizableVariable` objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.  
- 'auto' — Use {'DistributionNames','Width'}.  
- 'all' — Optimize all eligible parameters.  
- String array or cell array of eligible parameter names.  
- Vector of `optimizableVariable` objects, typically the output of `hyperparameters`.

The optimization attempts to minimize the cross-validation loss (error) for `fitcnb` by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the `HyperparameterOptimizationOptions` name-value pair.

**Note** `OptimizeHyperparameters` values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for `fitcnb` are:

- **DistributionNames** — `fitcnb` searches among 'normal' and 'kernel'.  
- **Width** — `fitcnb` searches among real values, by default log-scaled in the range `[MinPredictorDiff/4,max(MaxPredictorRange,MinPredictorDiff)]`.  
- **Kernel** — `fitcnb` searches among 'normal', 'box', 'epanechnikov', and 'triangle'.

32-1951
Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitcnb',meas,species);
params(2).Range = [1e-2,1e2];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \( \log(1 + \text{cross-validation loss}) \) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize Naive Bayes Classifier” on page 32-1933.

Example: 'auto'

**HyperparameterOptimizationOptions — Options for optimization**

*structure*

Options for optimization, specified as the comma-separated pair consisting of `'HyperparameterOptimizationOptions'` and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer            | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.  
                      | • 'gridsearch' — Use grid search with NumGridDivisions values per dimension.  
                      | • 'randomsearch' — Search at random among MaxObjectiveEvaluations points.  
                      | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | 'bayesopt'               |
| AcquisitionFunctionName | • 'expected-improvement-per-second-plus'  
                      | • 'expected-improvement'  
                      | • 'expected-improvement-plus'  
                      | • 'expected-improvement-per-second'  
                      | • 'lower-confidence-bound'  
                      | • 'probability-of-improvement'  
<pre><code>                  | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
</code></pre>
<p>| MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the `bayesopt Verbose` name-value pair argument.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

CVPartition	A cvpartition object, as created by cvpartition.	'Kfold',5 if you do not specify any cross-validation field
Holdout	A scalar in the range (0,1) representing the holdout fraction.	
Kfold	An integer greater than 1.	

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

**Mdl — Trained naive Bayes classification model**

ClassificationNaiveBayes model object | ClassificationPartitionedModel

Trained naive Bayes classification model, returned as a ClassificationNaiveBayes model object or a ClassificationPartitionedModel cross-validated model object.
If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a ClassificationNaiveBayes model object.

To reference properties of Mdl, use dot notation. For example, to access the estimated distribution parameters, enter Mdl.DistributionParameters.

Definitions

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor \( j \) is the nonnegative number of occurrences of token \( j \) in this observation. The number of categories (bins) in this multinomial model is the number of distinct tokens, that is, the number of predictors.

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally independent, given the class. Though the assumption is usually violated in practice, naive Bayes classifiers tend to yield posterior distributions that are robust to biased class density estimates, particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum a posteriori decision rule). Explicitly, the algorithm:

1. Estimates the densities of the predictors within each class.
2. Models posterior probabilities according to Bayes rule. That is, for all \( k = 1,\ldots,K, \)

\[
\hat{P}(Y = k | X_1,\ldots,X_P) = \frac{\pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)}{\sum_{k=1}^{K} \pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)},
\]

where:
• Y is the random variable corresponding to the class index of an observation.
• X₁,...,Xₚ are the random predictors of an observation.
• \( \pi(Y = k) \) is the prior probability that a class index is \( k \).

3 Classifies an observation by estimating the posterior probability for each class, and then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability

\[
\hat{P}(Y = k | X_1,...,X_p) \propto \pi(Y = k)P_{mn}(X_1,...,X_p | Y = k), \quad \text{where} \quad P_{mn}(X_1,...,X_p | Y = k) \quad \text{is the probability mass function of a multinomial distribution.}
\]

**Tips**

For classifying count-based data, such as the bag-of-tokens model on page 32-1956, use the multinomial distribution (e.g., set 'DistributionNames','mn').

**Algorithms**

• If you specify 'DistributionNames','mn' when training Mdl using fitcnb, then the software fits a multinomial distribution using the bag-of-tokens model on page 32-1956. The software stores the probability that token \( j \) appears in class \( k \) in the property DistributionParameters\{k,j\}. Using additive smoothing [2], the estimated probability is

\[
P(\text{token } j \mid \text{class } k) = \frac{1 + c_{jk}}{P + c_k},
\]

where:

\[
c_{jk} = n_k \sum_{i: y_i \in \text{class } k} x_{ij}w_i; \quad \text{which is the weighted number of occurrences of token } j \text{ in class } k.
\]

\[
\sum_{i: y_i \in \text{class } k} w_i
\]
• $n_k$ is the number of observations in class $k$.

• $w_i$ is the weight for observation $i$. The software normalizes weights within a class such that they sum to the prior probability for that class.

\[ c_k = \sum_{i=1}^{P} c_{j|k}; \] which is the total weighted number of occurrences of all tokens in class $k$.

• If you specify 'DistributionNames', 'mvmn' when training Mdl using fitcnb, then:

1. For each predictor, the software collects a list of the unique levels, stores the sorted list in CategoricalLevels, and considers each level a bin. Each predictor/class combination is a separate, independent multinomial random variable.

2. For predictor $j$ in class $k$, the software counts instances of each categorical level using the list stored in CategoricalLevels{$j$}.

3. The software stores the probability that predictor $j$, in class $k$, has level $L$ in the property DistributionParameters{$k, j$}, for all levels in CategoricalLevels{$j$}. Using additive smoothing [2], the estimated probability is

\[ P(\text{predictor } j = L \mid \text{class } k) = \frac{1 + m_{j|k}(L)}{m_j + m_k}, \]

where:

•

\[ m_{j|k}(L) = \sum_{i: y_i \in \text{class } k} I(x_{ij} = L)w_i \]

which is the weighted number of observations for which predictor $j$ equals $L$ in class $k$.

• $n_k$ is the number of observations in class $k$.

• $I\{x_{ij} = L\} = 1$ if $x_{ij} = L$, 0 otherwise.
• \( w_i \) is the weight for observation \( i \). The software normalizes weights within a class such that they sum to the prior probability for that class.
• \( m_j \) is the number of distinct levels in predictor \( j \).
• \( m_k \) is the weighted number of observations in class \( k \).

References


Extended Capabilities

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• Supported syntaxes are:
  • \( \text{Mdl} = \text{fitcnb}(\text{Tbl},Y) \)
  • \( \text{Mdl} = \text{fitcnb}(X,Y) \)
  • \( \text{Mdl} = \text{fitcnb}([],[],\text{Name},\text{Value}) \)
• Options related to kernel densities, cross-validation, and hyperparameter optimization are not supported. The supported name-value pair arguments are:
  • 'DistributionNames' — 'kernel' value is not supported.
  • 'CategoricalPredictors'
  • 'Cost'
  • 'PredictorNames'
  • 'Prior'
• 'ResponseName'
• 'ScoreTransform'
• 'Weights' — Value must be a tall array.

For more information, see “Tall Arrays” (MATLAB).

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

**See Also**

ClassificationNaiveBayes | ClassificationPartitionedModel | predict | templateNaiveBayes

**Topics**

“Naive Bayes Classification” on page 21-2
“Grouping Variables” on page 2-57

**Introduced in R2014b**
fitcsvm

Train binary support vector machine (SVM) classifier

fitcsvm trains or cross-validates a support vector machine (SVM) model for two-class (binary) classification on a low-dimensional or moderate-dimensional predictor data set. fitcsvm supports mapping the predictor data using kernel functions, and supports sequential minimal optimization (SMO), iterative single data algorithm (ISDA), or \( L_1 \) soft-margin minimization via quadratic programming for objective-function minimization.

To train a linear SVM model for binary classification on a high-dimensional data set, that is, a data set that includes many predictor variables, use fitclinear instead.

For multiclass learning with combined binary SVM models, use error-correcting output codes (ECOC). For more details, see fitcecoc.

To train an SVM regression model, see fitrsvm for low-dimensional and moderate-dimensional predictor data sets, or fitrlinear for high-dimensional data sets.

**Syntax**

```matlab
Mdl = fitcsvm(Tbl,ResponseVarName)
Mdl = fitcsvm(Tbl,formula)
Mdl = fitcsvm(Tbl,Y)
Mdl = fitcsvm(X,Y)
Mdl = fitcsvm(___,'Name',Value)
```

**Description**

```matlab
Mdl = fitcsvm(Tbl,ResponseVarName) returns a support vector machine (SVM) classifier on page 32-2002 Mdl trained using the sample data contained in the table Tbl. ResponseVarName is the name of the variable in Tbl that contains the class labels for one-class or two-class classification.
```
Mdl = fitcsvm(Tbl,formula) returns an SVM classifier trained using the sample data contained in the table Tbl. formula is an explanatory model of the response and a subset of the predictor variables in Tbl used to fit Mdl.

Mdl = fitcsvm(Tbl,Y) returns an SVM classifier trained using the predictor variables in the table Tbl and the class labels in vector Y.

Mdl = fitcsvm(X,Y) returns an SVM classifier trained using the predictors in the matrix X and the class labels in vector Y for one-class or two-class classification.

Mdl = fitcsvm(___,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, you can specify the type of cross-validation, the cost for misclassification, and the type of score transformation function.

Examples

Train SVM Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths and all observed setosa irises.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
y = species(inds);

Train an SVM classifier using the processed data set.

SVMMModel = fitcsvm(X,y)

SVMMModel =
    ClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'versicolor' 'virginica'}
    ScoreTransform: 'none'
    NumObservations: 100
    Alpha: [24x1 double]
    Bias: -14.4149
    KernelParameters: [1x1 struct]
BoxConstraints: [100x1 double]
ConvergenceInfo: [1x1 struct]
IsSupportVector: [100x1 logical]
Solver: 'SMO'

Properties, Methods

**SVMModel** is a trained `ClassificationSVM` classifier. Display the properties of SVMModel. For example, to determine the class order, use dot notation.

```matlab
classOrder = SVMModel.ClassNames
```

```
classOrder = 2x1 cell array
 {'versicolor'}
 {'virginica' }
```

The first class ('versicolor') is the negative class, and the second ('virginica') is the positive class. You can change the class order during training by using the 'ClassNames' name-value pair argument.

Plot a scatter diagram of the data and circle the support vectors.

```matlab
sv = SVMModel.SupportVectors;
figure
gscatter(X(:,1),X(:,2),y)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('versicolor','virginica','Support Vector')
hold off
```
The support vectors are observations that occur on or beyond their estimated class boundaries.

You can adjust the boundaries (and, therefore, the number of support vectors) by setting a box constraint during training using the 'BoxConstraint' name-value pair argument.

**Train and Cross-Validate SVM Classifier**

Load the ionosphere data set.

```matlab
load ionosphere
rng(1); % For reproducibility
```
Train an SVM classifier using the radial basis kernel. Let the software find a scale value for the kernel function. Standardize the predictors.

```matlab
SVMMModel = fitcsvm(X,Y,'Standardize',true,'KernelFunction','RBF',... 'KernelScale','auto');
```

`SVMMModel` is a trained `ClassificationSVM` classifier.

Cross-validate the SVM classifier. By default, the software uses 10-fold cross-validation.

```matlab
CVSVMModel = crossval(SVMModel);
```

`CVSVMModel` is a `ClassificationPartitionedModel` cross-validated classifier.

Estimate the out-of-sample misclassification rate.

```matlab
classLoss = kfoldLoss(CVSVMModel)
classLoss = 0.0484
```

The generalization rate is approximately 5%.

---

**Detect Outliers Using SVM and One-Class Learning**

Modify Fisher's iris data set by assigning all the irises to the same class. Detect outliers in the modified data set, and confirm the expected proportion of the observations that are outliers.

Load Fisher's iris data set. Remove the petal lengths and widths. Treat all irises as coming from the same class.

```matlab
load fisheriris
X = meas(:,1:2);
y = ones(size(X,1),1);
```

Train an SVM classifier using the modified data set. Assume that 5% of the observations are outliers. Standardize the predictors.

```matlab
rng(1);
SVMMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,... 'OutlierFraction',0.05);
```
SVMModel is a trained ClassificationSVM classifier. By default, the software uses the Gaussian kernel for one-class learning.

Plot the observations and the decision boundary. Flag the support vectors and potential outliers.

```matlab
svInd = SVMModel.IsSupportVector;
h = 0.02; % Mesh grid step size
[X1,X2] = meshgrid(min(X(:,1)):h:max(X(:,1)),...
 min(X(:,2)):h:max(X(:,2)));
[~,score] = predict(SVMModel,[X1(:),X2(:)]);
scoreGrid = reshape(score,size(X1,1),size(X2,2));

figure
plot(X(:,1),X(:,2),'k. ')
hold on
plot(X(svInd,1),X(svInd,2),'ro','MarkerSize',10)
contour(X1,X2,scoreGrid)
colorbar;
title('{\bf Iris Outlier Detection via One-Class SVM}')
xlabel('Sepal Length (cm)')
ylabel('Sepal Width (cm)')
legend('Observation','Support Vector')
hold off
```
The boundary separating the outliers from the rest of the data occurs where the contour value is 0.

Verify that the fraction of observations with negative scores in the cross-validated data is close to 5%.

```matlab
CVSVMModel = crossval(SVMModel);
[~,scorePred] = kfoldPredict(CVSVMModel);
outlierRate = mean(scorePred<0)
```

```
outlierRate = 0.0467
```
Find Multiple Class Boundaries Using Binary SVM

Create a scatter plot of the *fisheriris* data set. Treat coordinates of a grid within the plot as new observations from the distribution of the data set, and find class boundaries by assigning the coordinates to one of the three classes in the data set.

Load Fisher's iris data set. Use the petal lengths and widths as the predictors.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
```

Examine a scatter plot of the data.

```matlab
figure
gscatter(X(:,1),X(:,2),Y);
h = gca;
lims = [h.XLim h.YLim]; % Extract the x and y axis limits
title('{\bf Scatter Diagram of Iris Measurements}');
xlabel('Petal Length (cm)');
ylabel('Petal Width (cm)');
legend('Location','Northwest');
```
The data contains three classes, one of which is linearly separable from the others.

For each class:

1. Create a logical vector (indx) indicating whether an observation is a member of the class.
2. Train an SVM classifier using the predictor data and indx.
3. Store the classifier in a cell of a cell array.

Define the class order:

```matlab
SVMMModels = cell(3,1);
classes = unique(Y);
```
rng(1); % For reproducibility

for j = 1:numel(classes)
    indx = strcmp(Y,classes(j)); % Create binary classes for each classifier
    SVMModels{j} = fitcsvm(X,indx,'ClassNames', [false true], 'Standardize', true,...
        'KernelFunction','rbf','BoxConstraint',1);
end

SVMModels is a 3-by-1 cell array, with each cell containing a ClassificationSVM classifier. For each cell, the positive class is setosa, versicolor, and virginica, respectively.

Define a fine grid within the plot, and treat the coordinates as new observations from the distribution of the training data. Estimate the score of the new observations using each classifier.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
    min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);
Scores = zeros(N,numel(classes));

for j = 1:numel(classes)
    [~,score] = predict(SVMModels{j},xGrid);
    Scores(:,j) = score(:,2); % Second column contains positive-class scores
end

Each row of Scores contains three scores. The index of the element with the largest score is the index of the class to which the new class observation most likely belongs.

Associate each new observation with the classifier that gives it the maximum score.

[~,maxScore] = max(Scores,[],2);

Color in the regions of the plot based on the class to which the corresponding new observation belongs.

figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...
    [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);
hold on
h(4:6) = gscatter(X(:,1),X(:,2),Y);
title('{\bf Iris Classification Regions}');
xlabel('Petal Length (cm)');
Optimize SVM Classifier

Optimize hyperparameters automatically using `fitcsvm`.

Load the `ionosphere` data set.
load ionosphere

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

rng default
Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))

Min objective vs. Number of function evaluations

Min observed objective
Estimated min objective
Objective function model

- Observed points
- Model mean
- Next point
- Model minimum feasible

Estimated objective function value

KernelScale

BoxConstraint

32-1973
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>BoxConstraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.21652</td>
<td>18.493</td>
<td>0.21652</td>
<td>0.21652</td>
<td>64.836</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.16509</td>
<td>0.21652</td>
<td>0.22539</td>
<td>0.036335</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>0.13105</td>
<td>7.131</td>
<td>0.13105</td>
<td>0.14152</td>
<td>0.0022147</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.10991</td>
<td>0.13105</td>
<td>0.13108</td>
<td>5.1259</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.13105</td>
<td>3.3991</td>
<td>0.13105</td>
<td>0.13106</td>
<td>0.0010151</td>
</tr>
<tr>
<td>6</td>
<td>Best</td>
<td>0.12821</td>
<td>9.0972</td>
<td>0.12821</td>
<td>0.12819</td>
<td>0.0010563</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
<td>0.1339</td>
<td>11.601</td>
<td>0.12821</td>
<td>0.13013</td>
<td>0.0010113</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>0.12821</td>
<td>6.4781</td>
<td>0.12821</td>
<td>0.12976</td>
<td>0.0010934</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.12821</td>
<td>3.8203</td>
<td>0.12821</td>
<td>0.12933</td>
<td>0.0010315</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.12821</td>
<td>17.31</td>
<td>0.12821</td>
<td>0.12954</td>
<td>994.04</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.13105</td>
<td>16.182</td>
<td>0.12821</td>
<td>0.12945</td>
<td>20.145</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.21368</td>
<td>18.317</td>
<td>0.12821</td>
<td>0.12787</td>
<td>903.79</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.1339</td>
<td>0.26202</td>
<td>0.12821</td>
<td>0.12939</td>
<td>0.018688</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>0.1396</td>
<td>17.31</td>
<td>0.12821</td>
<td>0.12954</td>
<td>994.04</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
<td>0.13105</td>
<td>9.0972</td>
<td>0.12821</td>
<td>0.12819</td>
<td>0.0010563</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>0.13675</td>
<td>9.4282</td>
<td>0.12821</td>
<td>0.12798</td>
<td>5.6464</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.12821</td>
<td>6.5178</td>
<td>0.12821</td>
<td>0.12955</td>
<td>1.2899</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.1339</td>
<td>9.3664</td>
<td>0.12821</td>
<td>0.12957</td>
<td>869.51</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.13675</td>
<td>9.368</td>
<td>0.12821</td>
<td>0.12957</td>
<td>112.89</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.13105</td>
<td>0.12209</td>
<td>0.12821</td>
<td>0.12958</td>
<td>0.0010803</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 249.4758 seconds.
Total objective function evaluation time: 225.3244

Best observed feasible point:

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0010233</td>
<td>0.017839</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.12536
Estimated objective function value = 0.12579
Function evaluation time = 0.13208

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0010233</td>
<td>0.017839</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.12579
Estimated function evaluation time = 0.1535

Mdl = ClassificationSVM

    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'    'g'}
    ScoreTransform: 'none'
    NumObservations: 351
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
        Alpha: [91×1 double]
        Bias: -5.6976
    KernelParameters: [1×1 struct]
        BoxConstraints: [351×1 double]
        ConvergenceInfo: [1×1 struct]
        IsSupportVector: [351×1 logical]
        Solver: 'SMO'

Properties, Methods
Input Arguments

`Tbl` — Sample data
    table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as predictors, then specify the response variable by using `ResponseVarName`.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in Tbl as predictors, then specify a formula by using `formula`.

If Tbl does not contain the response variable, then specify a response variable by using `Y`. The length of the response variable and the number of rows in Tbl must be equal.

Data Types: `table`

`ResponseVarName` — Response variable name
    name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If Y is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the `ClassNames` name-value pair argument.

Data Types: `char` | `string`

`formula` — Explanatory model of response and subset of predictor variables
    character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of 'Y~X1+X2+X3'. In this form, Y represents
the response variable, and $X_1$, $X_2$, and $X_3$ represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.

Data Types: `char` | `string`
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: fitcsvm(X,Y,'KFold',10,'Cost',[0 2;1 0],'ScoreTransform','sign') performs 10-fold cross-validation, applies double the penalty to false positives compared to false negatives, and transforms scores using the sign function.

SVM Options

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint on page 32-2000, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

For more details on the relationships and algorithmic behavior of BoxConstraint, Cost, Prior, Standardize, and Weights, see “Algorithms” on page 32-2005.

Example: 'BoxConstraint',100

Data Types: double | single

KernelFunction — Kernel function
'linear' (default)| 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the elements of the Gram matrix on page 32-2000, specified as the comma-separated pair consisting of 'KernelFunction' and a kernel function name. Suppose \( G(x_j, x_k) \) is element \((j,k)\) of the Gram matrix, where \( x_j \) and \( x_k \) are \( p\)-dimensional vectors representing observations \( j \) and \( k \) in \( X \). This table describes supported kernel function names and their functional forms.
<table>
<thead>
<tr>
<th>Kernel Function Name</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'gaussian' or 'rbf'</td>
<td>Gaussian or Radial Basis Function (RBF) kernel, default for one-class learning</td>
<td>( G(x_j, x_k) = \exp \left( -|x_j - x_k|^2 \right) )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear kernel, default for two-class learning</td>
<td>( G(x_j, x_k) = x_j^T x_k )</td>
</tr>
<tr>
<td>'polynomial'</td>
<td>Polynomial kernel. Use 'PolynomialOrder', ( q ) to specify a polynomial kernel of order ( q ).</td>
<td>( G(x_j, x_k) = (1 + x_j^T x_k)^q )</td>
</tr>
</tbody>
</table>

You can set your own kernel function, for example, `kernel`, by setting 'KernelFunction', 'kernel'. The value `kernel` must have this form.

```matlab
function G = kernel(U,V)

where:
- \(U \) is an \(m \)-by-\(p \) matrix. Columns correspond to predictor variables, and rows correspond to observations.
- \(V \) is an \(n \)-by-\(p \) matrix. Columns correspond to predictor variables, and rows correspond to observations.
- \(G \) is an \(m \)-by-\(n \) Gram matrix on page 32-2000 of the rows of \(U \) and \(V \).

`kernel.m` must be on the MATLAB path.

It is a good practice to avoid using generic names for kernel functions. For example, call a sigmoid kernel function 'mysigmoid' rather than 'sigmoid'.

Example: 'KernelFunction', 'gaussian'

Data Types: char | string

KernelScale — Kernel scale parameter

1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. The software divides all elements of the predictor matrix \(X \) by the value of `KernelScale`. Then, the software applies the appropriate kernel norm to compute the Gram matrix.
• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed using rng before training.

• If you specify KernelScale and your own kernel function, for example, 'KernelFunction','kernel', then the software throws an error. You must apply scaling within kernel.

Example: 'KernelScale','auto'
Data Types: double | single | char | string

PolynomialOrder — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of 'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software throws an error.

Example: 'PolynomialOrder',2
Data Types: double | single

KernelOffset — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:
• 0 if the solver is SMO (that is, you set 'Solver','SMO')
• 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0
Data Types: double | single

Standardize — Flag to standardize predictor data
false (default) | true
Flag to standardize the predictor data, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If you set 'Standardize',true:

- The software centers and scales each predictor variable (X or Tbl) by the corresponding weighted column mean and standard deviation. For details on weighted standardizing, see “Algorithms” on page 32-2005. MATLAB does not standardize the data contained in the dummy variable columns generated for categorical predictors.
- The software trains the classifier using the standardized predictors, but stores the unstandardized predictors as a matrix or table in the classifier property X.

Example: 'Standardize',true
Data Types: logical

Solver — Optimization routine
'SISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ISDA'</td>
<td>Iterative Single Data Algorithm (see [30])</td>
</tr>
<tr>
<td>'L1QP'</td>
<td>Uses quadprog to implement L1 soft-margin minimization by quadratic programming. This option requires an Optimization Toolbox license. For more details, see “Quadratic Programming Definition” (Optimization Toolbox).</td>
</tr>
<tr>
<td>'SMO'</td>
<td>Sequential Minimal Optimization (see [17])</td>
</tr>
</tbody>
</table>

The default value is 'ISDA' for two-class learning or if you set 'OutlierFraction' to a positive value, and 'SMO' otherwise.

Example: 'Solver','ISDA'

Alpha — Initial estimates of alpha coefficients
numeric vector of nonnegative values

Initial estimates of alpha coefficients, specified as the comma-separated pair consisting of 'Alpha' and a numeric vector of nonnegative values. The length of Alpha must be equal to the number of rows in X.
• Each element of 'Alpha' corresponds to an observation in X.
• 'Alpha' cannot contain any NaNs.
• If you specify 'Alpha' and any one of the cross-validation name-value pair arguments ('CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'), then the software returns an error.

If Y contains any missing values, then remove all rows of Y, X, and 'Alpha' that correspond to the missing values. That is, enter:

\[
\text{idx} = \neg \text{isundefined(categorical(Y))}; \\
Y = Y(idx,:); \\
X = X(idx,:); \\
alpha = alpha(idx);
\]

Then pass Y, X, and alpha as the response, predictors, and initial alpha estimates, respectively.

The default values are:
• 0.5*ones(size(X,1),1) for one-class learning
• zeros(size(X,1),1) for two-class learning

Example: 'Alpha',0.1*ones(size(X,1),1)

Data Types: double

CacheSize — Cache size

1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n Gram matrix on page 32-2000.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of memory for training the model.

Example: 'CacheSize','maximal'

Data Types: double | single | char | string

ClipAlphas — Flag to clip alpha coefficients

true (default) | false
Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas' and either true or false.

Suppose that the alpha coefficient for observation j is α_j and the box constraint of observation j is C_j, $j = 1,\ldots,n$, where n is the training sample size.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>At each iteration, if α_j is near 0 or near C_j, then MATLAB sets α_j to 0 or to C_j, respectively.</td>
</tr>
<tr>
<td>false</td>
<td>MATLAB does not change the alpha coefficients during optimization.</td>
</tr>
</tbody>
</table>

MATLAB stores the final values of α in the Alpha property of the trained SVM model object.

ClipAlphas can affect SMO and ISDA convergence.

Example: 'ClipAlphas',false

Data Types: logical

Nu — ν parameter for one-class learning

0.5 (default) | positive scalar

ν parameter for “One-Class Learning” on page 32-2001, specified as the comma-separated pair consisting of 'Nu' and a positive scalar. Nu must be greater than 0 and at most 1.

Set Nu to control the tradeoff between ensuring that most training examples are in the positive class and minimizing the weights in the score function.

Example: 'Nu',0.25

Data Types: double | single

NumPrint — Number of iterations between optimization diagnostic message output

1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-separated pair consisting of 'NumPrint' and a nonnegative integer.
If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization diagnostic messages from SMO and ISDA every numprint iterations in the Command Window.

Example: 'NumPrint',500

Data Types: double | single

OutlierFraction — Expected proportion of outliers in training data

0 (default) | numeric scalar in the interval [0,1)

Expected proportion of outliers in the training data, specified as the comma-separated pair consisting of 'OutlierFraction' and a numeric scalar in the interval [0,1).

Suppose that you set 'OutlierFraction',outlierfraction, where outlierfraction is a value greater than 0.

• For two-class learning, the software implements robust learning. In other words, the software attempts to remove 100*outlierfraction% of the observations when the optimization algorithm converges. The removed observations correspond to gradients that are large in magnitude.

• For one-class learning, the software finds an appropriate bias term such that outlierfraction of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01

Data Types: double | single

RemoveDuplicates — Flag to replace duplicate observations with single observations

false (default) | true

Flag to replace duplicate observations with single observations in the training data, specified as the comma-separated pair consisting of 'RemoveDuplicates' and true or false.

If RemoveDuplicates is true, then fitcsvm replaces duplicate observations in the training data with a single observation of the same value. The weight of the single observation is equal to the sum of the weights of the corresponding removed duplicates (see Weights).

Tip If your data set contains many duplicate observations, then specifying 'RemoveDuplicates',true can decrease convergence time considerably.
Data Types: logical

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The value of Verbose controls the amount of optimization information that the software displays in the Command Window and saves the information as a structure to Mdl.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display or save convergence information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages and saves convergence criteria every numprint iterations, where numprint is the value of the name-value pair argument 'NumPrint'.</td>
</tr>
<tr>
<td>2</td>
<td>The software displays diagnostic messages and saves convergence criteria at every iteration.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: double | single

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in <code>PredictorNames</code>. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in <code>PredictorNames</code>.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (`Tbl`), `fitcsvm` assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (`X`), `fitcsvm` assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the `'CategoricalPredictors'` name-value pair argument.

Example: `{'CategoricalPredictors','all'}`

Data Types: `single` | `double` | `logical` | `char` | `string` | `cell`

ClassNames — Names of classes to use for training

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of `'ClassNames'` and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. `ClassNames` must have the same data type as `Y`.

If `ClassNames` is a character array, then each element must correspond to one row of the array.

Use `ClassNames` to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use `ClassNames` to specify the order of the dimensions of `Cost` or the column order of classification scores returned by `predict`.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in `Y` is `{'a','b','c'}`. To train the model using observations from classes `'a'` and `'c'` only, specify `ClassNames`,{'a','c'}.
The default value for **ClassNames** is the set of all distinct class names in \(Y \).

Example: `ClassNames`,{
'\(b \)', '\(g \)'}

Data Types: `categorical` | `char` | `string` | `logical` | `single` | `double` | `cell`

Cost — Misclassification cost

Square matrix | structure array

Misclassification cost specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure array.

- If you specify the square matrix \(\text{Cost} \) and the true class of an observation is \(i \), then \(\text{Cost}(i,j) \) is the cost of classifying a point into class \(j \). That is, rows correspond to the true classes and columns correspond to predicted classes. To specify the class order for the corresponding rows and columns of \(\text{Cost} \), also specify the **ClassNames** name-value pair argument.

- If you specify the structure \(S \), then it must have two fields:
 - \(S.\text{ClassNames} \), which contains the class names as a variable of the same data type as \(Y \)
 - \(S.\text{ClassificationCosts} \), which contains the cost matrix with rows and columns ordered as in \(S.\text{ClassNames} \)

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities by incorporating the penalties described in the cost matrix. Consequently, the cost matrix resets to the default. For more details on the relationships and algorithmic behavior of **BoxConstraint**, **Cost**, **Prior**, **Standardize**, and **Weights**, see “Algorithms” on page 32-2005.

The default values are:

- \(\text{Cost} = 0 \) for one-class learning
- \(\text{Cost}(i,j) = 1 \) if \(i \neq j \) and \(\text{Cost}(i,j) = 0 \) if \(i = j \) for two-class learning

Example: 'Cost',[0,1;2,0]

Data Types: `double` | `single` | `struct`

PredictorNames — Predictor variable names

String array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character
vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
 - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
 - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitcsvm uses only the predictor variables in PredictorNames and the response variable in training.
 - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
 - By default, PredictorNames contains the names of all predictor variables.
 - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
</tbody>
</table>
Value | Description
--- | ---
numeric vector | Each element in the vector is a class prior probability. Order the elements according to `Mdl.ClassNames` or specify the order using the `ClassNames` name-value pair argument. The software normalizes the elements to sum to 1.

structure | A structure `S` with two fields:
- `S.ClassNames` contains the class names as a variable of the same type as `Y`.
- `S.ClassProbs` contains a vector of corresponding prior probabilities. The software normalizes the elements of the vector to sum to 1.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities by incorporating the penalties described in the cost matrix. For more details on the relationships and algorithmic behavior of `BoxConstraint`, `Cost`, `Prior`, `Standardize`, and `Weights`, see “Algorithms” on page 32-2005.

Example: `struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)`

Data Types: `char` | `string` | `double` | `single` | `struct`

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of `'ResponseName'` and a character vector or string scalar.

- If you supply `Y`, then you can use `'ResponseName'` to specify a name for the response variable.
- If you supply `ResponseVarName` or `formula`, then you cannot use `'ResponseName'`.

Example: `'ResponseName','response'`

Data Types: `char` | `string`

ScoreTransform — Score transformation

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...
Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign' | -1 for \(x < 0 \)
 0 for \(x = 0 \)
 1 for \(x > 0 \) |
| 'symmetric' | \(2x - 1 \) |
| 'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1 |
| 'symmetriclogit' | \(\frac{2}{1 + e^{-x}} - 1 \) |

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights

numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or the name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a
character vector or string scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including W, as predictors or the response variable when training the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum up to the value of the prior probability in the respective class. For more details on the relationships and algorithmic behavior of BoxConstraint, Cost, Prior, Standardize, and Weights, see “Algorithms” on page 32-2005.

Data Types: double | single | char | string

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of 'CrossVal' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or Leaveout name-value pair argument. You can use only one cross-validation name-value pair argument at a time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.

Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using `cvp = cvpartition(500,'KFold',5)`. Then, you can specify the cross-validated model by using 'CVPartition', `cvp`.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1. Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the `Trained` property of the cross-validated model.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps:

1. Randomly partition the data into k sets.
2. For each set, reserve the set as validation data, and train the model using the other k - 1 sets.
3. Store the k compact, trained models in the cells of a k-by-1 cell vector in the `Trained` property of the cross-validated model.
To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

Leaveout — Leave-one-out cross-validation flag

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations (where n is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other $n - 1$ observations.
2. Store the n compact, trained models in the cells of an n-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

Convergence Control Options

DeltaGradientTolerance — Tolerance for gradient difference

nonnegative scalar

Tolerance for the gradient difference between upper and lower violators obtained by Sequential Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA), specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the gradient difference to check for optimization convergence.

The default values are:

- 1×10^{-3} if the solver is SMO (for example, you set 'Solver','SMO')
- 0 if the solver is ISDA (for example, you set 'Solver','ISDA')
Example: 'DeltaGradientTolerance',1e-2
Data Types: double | single

GapTolerance — Feasibility gap tolerance

0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to check for optimization convergence.

Example: 'GapTolerance',1e-2
Data Types: double | single

IterationLimit — Maximal number of numerical optimization iterations

1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully converges. Mdl.ConvergenceInfo contains convergence information.

Example: 'IterationLimit',1e8
Data Types: double | single

KKTTolerance — Karush-Kuhn-Tucker complementarity conditions violation tolerance

nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001 violation tolerance, specified as the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar.

If KKTTolerance is 0, then the software does not use the KKT complementarity conditions violation tolerance to check for optimization convergence.

The default values are:

- 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver', 'ISDA')

Example: 'KKT Tolerance', 1e-2
Data Types: double | single

ShrinkagePeriod — Number of iterations between reductions of active set

0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod', 0, then the software does not shrink the active set.

Example: 'ShrinkagePeriod', 1000
Data Types: double | single

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of these values:

• 'none' — Do not optimize.
• 'auto' — Use {'BoxConstraint', 'KernelScale'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcsvm by varying the parameters. For information about cross-validation loss see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair argument.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.
The eligible parameters for \texttt{fitcsvm} are:

- **BoxConstraint** — \texttt{fitcsvm} searches among positive values, by default log-scaled in the range $[1e^{-3}, 1e3]$.
- **KernelScale** — \texttt{fitcsvm} searches among positive values, by default log-scaled in the range $[1e^{-3}, 1e3]$.
- **KernelFunction** — \texttt{fitcsvm} searches among 'gaussian', 'linear', and 'polynomial'.
- **PolynomialOrder** — \texttt{fitcsvm} searches among integers in the range $[2, 4]$.
- **Standardize** — \texttt{fitcsvm} searches among 'true' and 'false'.

Set nondefault parameters by passing a vector of \texttt{optimizableVariable} objects that have nondefault values. For example:

```matlab
load fisheriris
params = hyperparameters('fitcsvm', meas, species);
params(1).Range = [1e-4, 1e6];
```

Pass \texttt{params} as the value of \texttt{OptimizeHyperparameters}.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is log$(1 + \text{cross-validation loss})$ for regression and the misclassification rate for classification. To control the iterative display, set the \texttt{Verbose} field of the \texttt{'HyperparameterOptimizationOptions'} name-value pair argument. To control the plots, set the \texttt{ShowPlots} field of the \texttt{'HyperparameterOptimizationOptions'} name-value pair argument.

For an example, see “Optimize SVM Classifier” on page 32-1971.

**Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization structure

Options for optimization, specified as the comma-separated pair consisting of \texttt{'HyperparameterOptimizationOptions'} and a structure. This argument modifies the effect of the \texttt{OptimizeHyperparameters} name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | - 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
| | - 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
| | - 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
| | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults).
| AcquisitionFunctionName | - 'expected-improvement-per-second-plus'
| | - 'expected-improvement'
| | - 'expected-improvement-plus'
| | - 'expected-improvement-per-second'
| | - 'lower-confidence-bound'
| | - 'probability-of-improvement'
| | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.
| MaxObjectiveEvaluations | Maximum number of objective function evaluations.
| | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'
| | 'bayesopt'
| | 'expected-improvement-per-second-plus'
<p>| | 30-1997 |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the bayesopt Verbose name-value pair argument.
Field Name

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

'HyperparameterOptimizationOptions', struct('MaxObjectiveEvaluations', 60)

Data Types: struct

Output Arguments

Md1 — Trained SVM classification model

ClassificationSVM model object | ClassificationPartitionedModel cross-validated model object

Trained SVM classification model, returned as a ClassificationSVM model object or ClassificationPartitionedModel cross-validated model object.
If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or CVPartition, then Mdl is a ClassificationPartitionedModel cross-validated classifier. Otherwise, Mdl is a ClassificationSVM classifier.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Alpha in the Command Window to display the trained Lagrange multipliers.

Limitations

- fitcsvm trains SVM classifiers for one-class or two-class learning applications. To train SVM classifiers using data with more than two classes, use fitcecoc.
- fitcsvm supports low-dimensional and moderate-dimensional data sets. For high-dimensional data sets, use fitclinear instead.

Definitions

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating observations, which helps to prevent overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors. However, increasing the box constraint can lead to longer training times.

Gram Matrix

The Gram matrix of a set of n vectors \{x_1,..,x_n; x_j \in \mathbb{R}^p\} is an n-by-n matrix with element (j,k) defined as \(G(x_j,x_k) = \langle \phi(x_j), \phi(x_k) \rangle\), an inner product of the transformed predictors using the kernel function \(\phi\).

For nonlinear SVM, the algorithm forms a Gram matrix using the rows of the predictor data X. The dual formalization replaces the inner product of the observations in X with corresponding elements of the resulting Gram matrix (called the “kernel trick”). Consequently, nonlinear SVM operates in the transformed predictor space to find a separating hyperplane.
Karush-Kuhn-Tucker (KKT) Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal nonlinear programming solutions.

In SVM, the KKT complementarity conditions are

\[
\begin{align*}
\alpha_j \left[y_j f(x_j) - 1 + \xi_j \right] &= 0 \\
\xi_j (C - \alpha_j) &= 0
\end{align*}
\]

for all \(j = 1,\ldots,n \), where \(f(x_j) = \phi(x_j)^T \beta + b \), \(\phi \) is a kernel function (see Gram matrix on page 32-2000), and \(\xi_j \) is a slack variable. If the classes are perfectly separable, then \(\xi_j = 0 \) for all \(j = 1,\ldots,n \).

One-Class Learning

One-class learning, or unsupervised SVM, aims to separate data from the origin in the high-dimensional predictor space (not the original predictor space), and is an algorithm used for outlier detection.

The algorithm resembles that of SVM for binary classification on page 32-2002. The objective is to minimize the dual expression

\[
0.5 \sum_{jk} \alpha_j \alpha_k G(x_j, x_k)
\]

with respect to \(\alpha_1,\ldots,\alpha_n \), subject to

\[
\sum \alpha_j = n\nu
\]

and \(0 \leq \alpha_j \leq 1 \) for all \(j = 1,\ldots,n \). The value of \(G(x_j,x_k) \) is in element \((j,k)\) of the Gram matrix on page 32-2000.

A small value of \(\nu \) leads to fewer support vectors and, therefore, a smooth, crude decision boundary. A large value of \(\nu \) leads to more support vectors and, therefore, a curvy, flexible
decision boundary. The optimal value of ν should be large enough to capture the data complexity and small enough to avoid overtraining. Also, $0 < \nu \leq 1$.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of $\alpha_1, \ldots, \alpha_n$.

SVM classifiers that yield fewer support vectors for a given training set are preferred.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that separates the data into two classes. For separable classes, the optimal hyperplane maximizes a margin (space that does not contain any observations) surrounding itself, which creates boundaries for the positive and negative classes. For inseparable classes, the objective is the same, but the algorithm imposes a penalty on the length of the margin for every observation that is on the wrong side of its class boundary.

The linear SVM score function is

$$f(x) = x'\beta + b,$$

where:

- x is an observation (corresponding to a row of X).
- The vector β contains the coefficients that define an orthogonal vector to the hyperplane (corresponding to `Mdl.Beta`). For separable data, the optimal margin length is $2 / \|\beta\|$.
- b is the bias term (corresponding to `Mdl.Bias`).

The root of $f(x)$ for particular coefficients defines a hyperplane. For a particular hyperplane, $f(z)$ is the distance from point z to the hyperplane.

The algorithm searches for the maximum margin length, while keeping observations in the positive ($y = 1$) and negative ($y = -1$) classes separate.
For separable classes, the objective is to minimize $\|\beta\|$ with respect to the β and b subject to $y_j f(x_j) \geq 1$, for all $j = 1,...,n$. This is the primal formalization for separable classes.

For inseparable classes, the algorithm uses slack variables (ξ_j) to penalize the objective function for observations that cross the margin boundary for their class. $\xi_j = 0$ for observations that do not cross the margin boundary for their class, otherwise $\xi_j \geq 0$.

The objective is to minimize $0.5\|\beta\|^2 + C\sum \xi_j$ with respect to the β, b, and ξ_j subject to $y_j f(x_j) \geq 1 - \xi_j$ and $\xi_j \geq 0$ for all $j = 1,...,n$, and for a positive scalar box constraint on page 32-2000 C. This is the primal formalization for inseparable classes.

The algorithm uses the Lagrange multipliers method to optimize the objective, which introduces n coefficients $\alpha_1,...,\alpha_n$ (corresponding to `Mdl.Alpha`). The dual formalizations for linear SVM are as follows:

For separable classes, minimize

$$0.5\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k x_j^\prime x_k - \sum_{j=1}^{n} \alpha_j$$

with respect to $\alpha_1,...,\alpha_n$, subject to $\sum \alpha_j y_j = 0$, $\alpha_j \geq 0$ for all $j = 1,...,n$, and Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001.

For inseparable classes, the objective is the same as for separable classes, except for the additional condition $0 \leq \alpha_j \leq C$ for all $j = 1,...,n$.

The resulting score function is

$$\hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j x^\prime x_j + \hat{b}.$$

\hat{b} is the estimate of the bias and $\hat{\alpha}_j$ is the jth estimate of the vector $\hat{\alpha}$, $j = 1,...,n$. Written this way, the score function is free of the estimate of β as a result of the primal formalization.
The SVM algorithm classifies a new observation \(z \) using \(\text{sign}(\hat{f}(z)) \).

In some cases, a nonlinear boundary separates the classes. Nonlinear SVM works in a transformed predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

\[
0.5 \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k G(x_j, x_k) - \sum_{j=1}^{n} \alpha_j
\]

with respect to \(\alpha_1, \ldots, \alpha_n \), subject to \(\sum \alpha_j y_j = 0 \), \(0 \leq \alpha_j \leq C \) for all \(j = 1, \ldots, n \), and the KKT complementarity conditions. \(G(x_k, x_j) \) are elements of the Gram matrix on page 32-2000.

The resulting score function is

\[
\hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j G(x, x_j) + \hat{b}.
\]

For more details, see Understanding Support Vector Machines on page 18-183, [1], and [3].

Tips

- Unless your data set is large, always try to standardize the predictors (see Standardize). Standardization makes predictors insensitive to the scales on which they are measured.

- It is a good practice to cross-validate using the KFold name-value pair argument. The cross-validation results determine how well the SVM classifier generalizes.

- For one-class learning:
 - The default setting for the name-value pair argument Alpha can lead to long training times. To speed up training, set Alpha to a vector mostly composed of 0s.
 - Set the name-value pair argument Nu to a value closer to 0 to yield fewer support vectors and, therefore, a smoother but crude decision boundary.
• Sparsity in support vectors is a desirable property of an SVM classifier. To decrease the number of support vectors, set BoxConstraint to a large value. This action increases the training time.

• For optimal training time, set CacheSize as high as the memory limit your computer allows.

• If you expect many fewer support vectors than observations in the training set, then you can significantly speed up convergence by shrinking the active set using the name-value pair argument 'ShrinkagePeriod'. It is a good practice to specify 'ShrinkagePeriod',1000.

• Duplicate observations that are far from the decision boundary do not affect convergence. However, just a few duplicate observations that occur near the decision boundary can slow down convergence considerably. To speed up convergence, specify 'RemoveDuplicates',true if:

 • Your data set contains many duplicate observations.
 • You suspect that a few duplicate observations fall near the decision boundary.

To maintain the original data set during training, fitcsvm must temporarily store separate data sets: the original and one without the duplicate observations. Therefore, if you specify true for data sets containing few duplicates, then fitcsvm consumes close to double the memory of the original data.

• After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

• For the mathematical formulation of the SVM binary classification algorithm, see “Support Vector Machines for Binary Classification” on page 32-2002 and “Understanding Support Vector Machines” on page 18-183.

• NaN, <undefined>, empty character vector (''), empty string ('"'), and <missing> values indicate missing values. fitcsvm removes entire rows of data corresponding to a missing response. When computing total weights (see the next bullets), fitcsvm ignores any weight corresponding to an observation with at least one missing predictor. This action can lead to unbalanced prior probabilities in balanced-class problems. Consequently, observation box constraints might not equal BoxConstraint.
• `fitcsvm` removes observations that have zero weight or prior probability.
• For two-class learning, if you specify the cost matrix \(C \) (see `Cost`), then the software updates the class prior probabilities \(p \) (see `Prior`) to \(p_c \) by incorporating the penalties described in \(C \).

Specifically, `fitcsvm` completes these steps:

1. Compute \(p^*_c = p'C \).
2. Normalize \(p^*_c \) so that the updated prior probabilities sum to 1.

\[
p_c = \frac{1}{K} \sum_{j=1}^{K} p^*_{c,j}.
\]

\(K \) is the number of classes.
3. Reset the cost matrix to the default

\[
C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]
4. Remove observations from the training data corresponding to classes with zero prior probability.

• For two-class learning, `fitcsvm` normalizes all observation weights (see `Weights`) to sum to 1. The function then renormalizes the normalized weights to sum up to the updated prior probability of the class to which the observation belongs. That is, the total weight for observation \(j \) in class \(k \) is

\[
w^*_j = \frac{w_j}{\sum_{\forall j \in \text{Class } k} w_j} p_{c,k}.
\]

\(w_j \) is the normalized weight for observation \(j \); \(p_{c,k} \) is the updated prior probability of class \(k \) (see previous bullet).

• For two-class learning, `fitcsvm` assigns a box constraint to each observation in the training data. The formula for the box constraint of observation \(j \) is
\[C_j = nC_0w_j^*. \]

\(n \) is the training sample size, \(C_0 \) is the initial box constraint (see the 'BoxConstraint' name-value pair argument), and \(w_j^* \) is the total weight of observation \(j \) (see previous bullet).

- If you set 'Standardize', true and the 'Cost', 'Prior', or 'Weights' name-value pair argument, then fitcsvm standardizes the predictors using their corresponding weighted means and weighted standard deviations. That is, fitcsvm standardizes predictor \(j \) (\(x_j \)) using

\[x_j^* = \frac{x_j - \mu_j^*}{\sigma_j^*}. \]

\[\mu_j^* = \frac{1}{\sum_j w_j^*} \sum_k w_k^* x_{jk}. \]

\(x_{jk} \) is observation \(k \) (row) of predictor \(j \) (column).

\[(\sigma_j^*)^2 = \frac{v_1}{v_1^2 - v_2} \sum_k w_k^* (x_{jk} - \mu_j^*)^2. \]

\[v_1 = \sum_j w_j^*. \]

\[v_2 = \sum (w_j^*)^2. \]

- Assume that \(p \) is the proportion of outliers that you expect in the training data, and that you set 'OutlierFraction', \(p \).

- For one-class learning, the software trains the bias term such that 100\(p \)% of the observations in the training data have negative scores.

- The software implements robust learning for two-class learning. In other words, the software attempts to remove 100\(p \)% of the observations when the optimization
algorithm converges. The removed observations correspond to gradients that are large in magnitude.

- If your predictor data contains categorical variables, then the software generally uses full dummy encoding for these variables. The software creates one dummy variable for each level of each categorical variable.

- The `PredictorNames` property stores one element for each of the original predictor variable names. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then `PredictorNames` is a 1-by-3 cell array of character vectors containing the original names of the predictor variables.

- The `ExpandedPredictorNames` property stores one element for each of the predictor variables, including the dummy variables. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then `ExpandedPredictorNames` is a 1-by-5 cell array of character vectors containing the names of the predictor variables and the new dummy variables.

- Similarly, the `Beta` property stores one beta coefficient for each predictor, including the dummy variables.

- The `SupportVectors` property stores the predictor values for the support vectors, including the dummy variables. For example, assume that there are \(m \) support vectors and three predictors, one of which is a categorical variable with three levels. Then `SupportVectors` is an \(n \)-by-5 matrix.

- The `X` property stores the training data as originally input and does not include the dummy variables. When the input is a table, `X` contains only the columns used as predictors.

- For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the software uses ordinal encoding for these variables.

 - For a variable with \(k \) ordered levels, the software creates \(k - 1 \) dummy variables. The \(j \)th dummy variable is -1 for levels up to \(j \), and +1 for levels \(j + 1 \) through \(k \).

 - The names of the dummy variables stored in the `ExpandedPredictorNames` property indicate the first level with the value +1. The software stores \(k - 1 \) additional predictor names for the dummy variables, including the names of levels 2, 3, ..., \(k \).

- All solvers implement \(L1 \) soft-margin minimization.

- For one-class learning, the software estimates the Lagrange multipliers, \(\alpha_1, ..., \alpha_n \), such that
\[\sum_{j=1}^{n} \alpha_j = nv. \]

References

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.
To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- The 'KernelFunction' option must not specify a custom kernel.
- The 'Solver' option can be set to only 'SMO'.
- The 'OutlierFraction' option is not supported.
- The 'Alpha' option must specify a feasible starting point.
- The 'OptimizeHyperparameters' option is not supported.
- One-class classification is not supported. The labels must contain two different classes.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedModel | ClassificationSVM |
CompactClassificationSVM | fitSVMPosterior | fitcecoc | fitclinear |
predict | quadprog | rng

Topics
“Train SVM Classifiers Using a Gaussian Kernel” on page 18-192
“Train SVM Classifier Using Custom Kernel” on page 18-196
“Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55
“Optimize an SVM Classifier Fit Using Bayesian Optimization” on page 10-68
“Understanding Support Vector Machines” on page 18-183

Introduced in R2014a
fitctree

Fit binary classification decision tree for multiclass classification

Syntax

tree = fitctree(Tbl,ResponseVarName)
tree = fitctree(Tbl,formula)
tree = fitctree(Tbl,Y)
tree = fitctree(X,Y)
tree = fitctree(___,Name,Value)

Description

tree = fitctree(Tbl,ResponseVarName) returns a fitted binary classification decision tree based on the input variables (also known as predictors, features, or attributes) contained in the table Tbl and output (response or labels) contained in ResponseVarName. The returned binary tree splits branching nodes based on the values of a column of Tbl.

tree = fitctree(Tbl,formula) returns a fitted binary classification decision tree based on the input variables contained in the table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl used to fit tree.

tree = fitctree(Tbl,Y) returns a fitted binary classification decision tree based on the input variables contained in the table Tbl and output in vector Y.

tree = fitctree(X,Y) returns a fitted binary classification decision tree based on the input variables contained in matrix X and output Y. The returned binary tree splits branching nodes based on the values of a column of X.

tree = fitctree(___,Name,Value) fits a tree with additional options specified by one or more name-value pair arguments, using any of the previous syntaxes. For example, you can specify the algorithm used to find the best split on a categorical predictor, grow a cross-validated tree, or hold out a fraction of the input data for validation.
Examples

Grow a Classification Tree

Grow a classification tree using the ionosphere data set.

```matlab
load ionosphere
tc = fitctree(X,Y)
```

```matlab
tc =
    ClassificationTree
        ResponseName: 'Y'
        CategoricalPredictors: []
        ClassNames: {'b'  'g'}
        ScoreTransform: 'none'
        NumObservations: 351
```

Properties, Methods

Control Tree Depth

You can control the depth of the trees using the `MaxNumSplits`, `MinLeafSize`, or `MinParentSize` name-value pair parameters. `fitctree` grows deep decision trees by default. You can grow shallower trees to reduce model complexity or computation time.

Load the ionosphere data set.

```matlab
load ionosphere
```

The default values of the tree depth controllers for growing classification trees are:

- `n - 1` for `MaxNumSplits`. `n` is the training sample size.
- `1` for `MinLeafSize`.
- `10` for `MinParentSize`.

These default values tend to grow deep trees for large training sample sizes.
Train a classification tree using the default values for tree depth control. Cross-validate the model using 10-fold cross-validation.

```matlab
rng(1); % For reproducibility
MdlDefault = fitctree(X,Y,'CrossVal','on');
```

Draw a histogram of the number of imposed splits on the trees. Also, view one of the trees.

```matlab
numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;
histogram(mdlDefaultNumSplits)
```
view(MdlDefault.Trained{1},'Mode','graph')

The average number of splits is around 15.

Suppose that you want a classification tree that is not as complex (deep) as the ones trained using the default number of splits. Train another classification tree, but set the maximum number of splits at 7, which is about half the mean number of splits from the default classification tree. Cross-validate the model using 10-fold cross-validation.

Mdl7 = fitctree(X,Y,'MaxNumSplits',7,'CrossVal','on');
view(Mdl7.Trained{1},'Mode','graph')
Compare the cross-validation classification errors of the models.

classErrorDefault = kfoldLoss(MdlDefault)
classErrorDefault = 0.1140

classError7 = kfoldLoss(Mdl7)
classError7 = 0.1254

Mdl7 is much less complex and performs only slightly worse than MdlDefault.
Optimize Classification Tree

This example shows how to optimize hyperparameters automatically using `fitctree`. The example uses Fisher's iris data.

Load Fisher's iris data.

```matlab
load fisheriris
```

Optimize the cross-validation loss of the classifier, using the data in `meas` to predict the response in `species`.

```matlab
X = meas;
Y = species;
Mdl = fitctree(X,Y,'OptimizeHyperparameters','auto')
```
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective (observed)</th>
<th>Objective (estim.)</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.066667</td>
<td>1.5572</td>
<td>0.066667</td>
<td>0.066667</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.62589</td>
<td>0.066667</td>
<td>0.066667</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>0.04</td>
<td>0.26032</td>
<td>0.04</td>
<td>0.040003</td>
<td>2</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval</td>
<td>Objective</td>
<td>Objective</td>
<td>BestSoFar</td>
<td>BestSoFar</td>
<td>MinLeafSize</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.19007</td>
<td>0.033333</td>
<td>0.033336</td>
<td>17</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.19052</td>
<td>0.033333</td>
<td>0.033336</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.14391</td>
<td>0.033333</td>
<td>0.033336</td>
<td>36</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.33333</td>
<td>0.13309</td>
<td>0.033333</td>
<td>0.034142</td>
<td>55</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.04</td>
<td>0.15099</td>
<td>0.033333</td>
<td>0.034121</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.04</td>
<td>0.14196</td>
<td>0.033333</td>
<td>0.034087</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.04</td>
<td>0.13987</td>
<td>0.033333</td>
<td>0.034062</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.13901</td>
<td>0.033333</td>
<td>0.034035</td>
<td>23</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.14539</td>
<td>0.033333</td>
<td>0.034005</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.066667</td>
<td>0.15807</td>
<td>0.033333</td>
<td>0.03398</td>
<td>13</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 64.9912 seconds.
Total objective function evaluation time: 7.2967

Best observed feasible point:
MinLeafSize

1
Observed objective function value = 0.033333
Estimated objective function value = 0.03398
Function evaluation time = 0.18778

Best estimated feasible point (according to models):
 MinLeafSize

 1

Estimated objective function value = 0.03398
Estimated function evaluation time = 0.19509

Md1 =
 ClassificationTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NumObservations: 150
 HyperparameterOptimizationResults: [1x1 BayesianOptimization]

Properties, Methods

Unbiased Predictor Importance Estimates

Load the census1994 data set. Consider a model that predicts a person's salary category given their age, working class, education level, martial status, race, sex, capital gain and loss, and number of working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race','...' sex','capital_gain','capital_loss','hours_per_week','salary'});

Display the number of categories represented in the categorical variables using summary.
summary(X)

Variables:
age: 32561x1 double
Values:

<table>
<thead>
<tr>
<th>Min</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>37</td>
</tr>
<tr>
<td>Max</td>
<td>90</td>
</tr>
</tbody>
</table>

workClass: 32561x1 categorical
Values:

Federal-gov	960
Local-gov	2093
Never-worked	7
Private	22696
Self-emp-inc	1116
Self-emp-not-inc	2541
State-gov	1298
Without-pay	14
NumMissing	1836

education_num: 32561x1 double
Values:

<table>
<thead>
<tr>
<th>Min</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>10</td>
</tr>
<tr>
<td>Max</td>
<td>16</td>
</tr>
</tbody>
</table>

marital_status: 32561x1 categorical
Values:

Divorced	4443
Married-AF-spouse	23
Married-civ-spouse	14976
Married-spouse-absent	418
Never-married	10683
Separated	1025
Widowed	993

race: 32561x1 categorical
Values:

- Amer-Indian-Eskimo: 311
- Asian-Pac-Islander: 1039
- Black: 3124
- Other: 271
- White: 27816

sex: 32561x1 categorical

Values:

- Female: 10771
- Male: 21790

capital_gain: 32561x1 double

Values:

- Min: 0
- Median: 0
- Max: 99999

capital_loss: 32561x1 double

Values:

- Min: 0
- Median: 0
- Max: 4356

hours_per_week: 32561x1 double

Values:

- Min: 1
- Median: 40
- Max: 99

salary: 32561x1 categorical

Values:
Because there are few categories represented in the categorical variables compared to levels in the continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over the categorical variables.

Train a classification tree using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing observations in the data, specify usage of surrogate splits.

```matlab
Mdl = fitctree(X,'salary','PredictorSelection','curvature',... 'Surrogate','on');
```

Estimate predictor importance values by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

```matlab
imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
In this case, `capital_gain` is the most important predictor, followed by `education_num`.

Optimize Classification Tree on Tall Array

This example shows how to optimize hyperparameters of a classification tree automatically using a tall array. The sample data set `airlinesmall.csv` is a large data set that contains a tabular file of airline flight data. This example creates a tall table containing the data and uses it to run the optimization procedure.
Create a datastore that references the folder location with the data. Select a subset of the variables to work with, and treat 'NA' values as missing data so that datastore replaces them with NaN values. Create a tall table that contains the data in the datastore.

```matlab
ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',... 'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table
```

```
M×7 tall table
    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________
    10          21            3          642          8         308          12
    10          26            1         1021          8         296           1
    10          23            5         2055         21         480          20
    10          23            5         1332         13         296          12
    10          22            4          629          4         373          -1
    10          28            3         1446         59         308          63
    10           8            4          928          3         447          -2
    10          10            6          859         11         954          -1
    :          :             :           :          :           :           :
    :          :             :           :          :           :           :
```

When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB session or a local parallel pool (if you have Parallel Computing Toolbox™). You can use the `mapreducer` function to change the execution environment.

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for a late flight. This variable contains the class labels. A preview of this variable includes the first few rows.

```matlab
Y = tt.DepDelay > 10 % Class labels
```

```
M×1 tall logical array

1
0
```
Create a tall array for the predictor data.

\[X = tt\{:,1:end-1\} \quad \% \text{Predictor data} \]

\[X = \]

\[
\begin{array}{cccccc}
10 & 21 & 3 & 642 & 8 & 308 \\
10 & 26 & 1 & 1021 & 8 & 296 \\
10 & 23 & 5 & 2055 & 21 & 480 \\
10 & 23 & 5 & 1332 & 13 & 296 \\
10 & 22 & 4 & 629 & 4 & 373 \\
10 & 28 & 3 & 1446 & 59 & 308 \\
10 & 8 & 4 & 928 & 3 & 447 \\
10 & 10 & 6 & 859 & 11 & 954 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Remove rows in \(X \) and \(Y \) that contain missing data.

\[R = rmmissing([X \ Y]); \quad \% \text{Data with missing entries removed} \]

\[X = R(:,1:end-1); \]

\[Y = R(:,end); \]

Standardize the predictor variables.

\[Z = zscore(X); \]

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair argument. Find the optimal 'MinLeafSize' value that minimizes holdout cross-validation loss. (Specifying 'auto' uses 'MinLeafSize'.) For reproducibility, set the random seed for tall arrays and use the 'expected-improvement-plus' acquisition function.

\[\text{rng('default') } \% \text{For reproducibility} \]

\[[Mdl,FitInfo,HyperparameterOptimizationResults] = fitctree(Z,Y,...] \]
'OptimizeHyperparameters', 'auto', ...
'HyperparameterOptimizationOptions', struct('Holdout', 0.3, ...
'AcquisitionFunctionName', 'expected-improvement-plus'))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.86 sec
- Pass 3 of 4: Completed in 1.2 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 4.8 sec

Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective

Function evaluations

Min objective
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.98 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.2 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.4 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.99 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 6.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 7.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 8.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 8.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.8 sec
- Pass 2 of 4: Completed in 2 sec
- Pass 3 of 4: Completed in 1.6 sec

32-2030
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 9.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.8 sec
- Pass 2 of 4: Completed in 2.1 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 8.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.9 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 9.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.3 sec
- Pass 2 of 4: Completed in 2.1 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 8.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 2.6 sec
Evaluation completed in 8.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 2.5 sec
Evaluation completed in 8.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.2 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 8.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.3 sec
Evaluation completed in 8.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 8.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2 sec
- Pass 2 of 4: Completed in 2.3 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 9.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.2 sec

<p>|==|</p>
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
</tr>
<tr>
<td>==</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.11755</td>
<td>252.16</td>
<td>0.11755</td>
<td>0.11755</td>
<td>10</td>
</tr>
</tbody>
</table>

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.6 sec
Evaluation completed in 0.75 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
<table>
<thead>
<tr>
<th>3</th>
<th>Best</th>
<th>0.10411</th>
<th>92.721</th>
<th>0.10411</th>
<th>0.11109</th>
<th>3166</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Best</td>
<td>0.10411</td>
<td>92.721</td>
<td>0.10411</td>
<td>0.11109</td>
<td>3166</td>
</tr>
</tbody>
</table>
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.4 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.99 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec
| 4 | Best | 0.10005 | 154.39 | 0.10005 | 0.10428 | 180 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.4 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.98 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.8 sec
Evaluation completed in 1.9 sec
| 5 | Accept | 0.10047 | 156.46 | 0.10005 | 0.10003 | 146 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec
| 6 | Accept | 0.10113 | 119.54 | 0.10005 | 0.10008 | 991 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
32-2041
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.1 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 7.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 8.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 2 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 8.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 2 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.9 sec
- Pass 2 of 4: Completed in 2.1 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 2.9 sec
Evaluation completed in 9.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.9 sec
- Pass 2 of 4: Completed in 2.2 sec
- Pass 3 of 4: Completed in 1.3 sec
- Pass 4 of 4: Completed in 3 sec
Evaluation completed in 9.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.1 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.5 sec
- Pass 2 of 4: Completed in 2.7 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.4 sec
- Pass 2 of 4: Completed in 2.8 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.5 sec
- Pass 2 of 4: Completed in 2.7 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.5 sec
- Pass 2 of 4: Completed in 2.7 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.5 sec
- Pass 2 of 4: Completed in 2.8 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.9 sec
Evaluation completed in 11 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2.4 sec
- Pass 2 of 4: Completed in 2.7 sec
- Pass 3 of 4: Completed in 1.7 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 10 sec

32-2045
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 1.9 sec
| 7 | Accept | 0.13372 | 329.49 | 0.10005 | 0.10007 | 1 |

Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 1: Completed in 0.56 sec
Evaluation completed in 0.7 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 1.6 sec
 - Pass 3 of 4: Completed in 1.5 sec
 - Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 1.7 sec
 - Pass 3 of 4: Completed in 1.5 sec
 - Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 1.7 sec
 - Pass 3 of 4: Completed in 1.5 sec
 - Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 1.8 sec
 - Pass 3 of 4: Completed in 1.5 sec
 - Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 2 sec
 - Pass 3 of 4: Completed in 1.5 sec
 - Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.5 sec
Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 4: Completed in 1.4 sec
 - Pass 2 of 4: Completed in 1.7 sec
 - Pass 3 of 4: Completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.92 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.92 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.4 sec
32-2049
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
| 9 | Accept | 0.10212 | 101.69 | 0.10005 | 0.10018 | 1688 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.58 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.4 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.97 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.1 sec
Evaluation completed in 7.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 2 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.7 sec
Evaluation completed in 1.9 sec
| 10 | Accept | 0.10215 | 168.67 | 0.10005 | 0.10029 | 60 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.2 sec

32-2053
| 11 | Accept | 0.10095 | 166.59 | 0.10005 | 0.10022 | 132 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.97 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2.1 sec
Evaluation completed in 7.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.6 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.2 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.4 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.5 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec
| 13 | Accept | 0.10063 | 158.96 | 0.10005 | 0.10063 | 121 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.7 sec
Evaluation completed in 1.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.91 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.5 sec

32-2061
Mdl =
 classreg.learning.classif.CompactClassificationTree
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: [0 1]
 ScoreTransform: 'none'
Properties, Methods

FitInfo = struct with no fields.

HyperparameterOptimizationResults =
BayesianOptimization with properties:

 ObjectiveFcn: @createObjFcn/tallObjFcn
 VariableDescriptions: [4×1 optimizableVariable]
 Options: [1×1 struct]
 MinObjective: 0.1001
 XAtMinObjective: [1×1 table]
 MinEstimatedObjective: 0.1006
 XAtMinEstimatedObjective: [1×1 table]
 NumObjectiveEvaluations: 30
 TotalElapsedTime: 4.8903e+03
 NextPoint: [1×1 table]
 XTrace: [30×1 table]
 ObjectiveTrace: [30×1 double]
 ConstraintsTrace: []
 UserDataTrace: {30×1 cell}
 ObjectiveEvaluationTimeTrace: [30×1 double]
 IterationTimeTrace: [30×1 double]
 ErrorTrace: [30×1 double]
 FeasibilityTrace: [30×1 logical]
 FeasibilityProbabilityTrace: [30×1 double]
 IndexOfMinimumTrace: [30×1 double]
 ObjectiveMinimumTrace: [30×1 double]
 EstimatedObjectiveMinimumTrace: [30×1 double]

Input Arguments

Tbl — Sample data
 table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to
one observation, and each column corresponds to one predictor variable. Optionally, Tbl
can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If `Tbl` contains the response variable, and you want to use all remaining variables in `Tbl` as predictors, then specify the response variable by using `ResponseVarName`.

If `Tbl` contains the response variable, and you want to use only a subset of the remaining variables in `Tbl` as predictors, then specify a formula by using `formula`.

If `Tbl` does not contain the response variable, then specify a response variable by using `Y`. The length of the response variable and the number of rows in `Tbl` must be equal.

Data Types: `table`

ResponseVarName — Response variable name

`name of variable in Tbl`

Response variable name, specified as the name of a variable in `Tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `Y` is stored as `Tbl.Y`, then specify it as `'Y'`. Otherwise, the software treats all columns of `Tbl`, including `Y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If `Y` is a character array, then each element of the response variable must correspond to one row of the array.

It is a good practice to specify the order of the classes by using the `ClassNames` name-value pair argument.

Data Types: `char` | `string`

formula — Explanatory model of response and subset of predictor variables

`character vector | string scalar`

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.
Data Types: char | string

Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of character vectors

Class labels, specified as a numeric vector, categorical vector, logical vector, character array, string array, or cell array of character vectors. Each row of Y represents the classification of the corresponding row of X.

When fitting the tree, fitctree considers NaN, '' (empty character vector), "" (empty string), <missing>, and <undefined> values in Y to be missing values. fitctree does not use observations with missing values for Y in the fit.

For numeric Y, consider fitting a regression tree using fitrtree instead.

Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and each column corresponds to one predictor variable.

fitctree considers NaN values in X as missing values. fitctree does not use observations with all missing values for X in the fit. fitctree uses observations with some missing values for X to find splits on variables for which these observations have valid values.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.
Example: 'CrossVal','on','MinLeafSize',40 specifies a cross-validated classification tree with a minimum of 40 observations per leaf.

Model Parameters

AlgorithmForCategorical — Algorithm for best categorical predictor split

Value for best categorical predictor split: 'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor with C categories for data and K ≥ 3 classes, specified as the comma-separated pair consisting of 'AlgorithmForCategorical' and one of the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Exact'</td>
<td>Consider all $2^{C-1} - 1$ combinations.</td>
</tr>
<tr>
<td>'PullLeft'</td>
<td>Start with all C categories on the right branch. Consider moving each category to the left branch as it achieves the minimum impurity for the K classes among the remaining categories. From this sequence, choose the split that has the lowest impurity.</td>
</tr>
<tr>
<td>'PCA'</td>
<td>Compute a score for each category using the inner product between the first principal component of a weighted covariance matrix (of the centered class probability matrix) and the vector of class probabilities for that category. Sort the scores in ascending order, and consider all C - 1 splits.</td>
</tr>
<tr>
<td>'OVAbyClass'</td>
<td>Start with all C categories on the right branch. For each class, order the categories based on their probability for that class. For the first class, consider moving each category to the left branch in order, recording the impurity criterion at each move. Repeat for the remaining classes. From this sequence, choose the split that has the minimum impurity.</td>
</tr>
</tbody>
</table>
fitctree automatically selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For $K = 2$ classes, **fitctree** always performs the exact search. To specify a particular algorithm, use the 'AlgorithmForCategorical' name-value pair argument.

Example: 'AlgorithmForCategorical','PCA'

CategoricalPredictors — Categorical predictors list

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (Tbl), **fitctree** assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), **fitctree** assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: single | double | logical | char | string | cell
ClassNames — Names of classes to use for training

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use ClassNames to specify the order of the dimensions of Cost or the column order of classification scores returned by predict.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in Y is {'a', 'b', 'c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.

Example: 'ClassNames',{'b','g'}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification

square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and one of the following:

- Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i (i.e., the rows correspond to the true class and the columns correspond to the predicted class). To specify the class order for the corresponding rows and columns of Cost, also specify the ClassNames name-value pair argument.
- Structure S having two fields: S.ClassNames containing the group names as a variable of the same data type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Data Types: single | double | struct

MaxDepth — Maximum tree depth
positive integer

Maximum tree depth, specified as a positive integer. Specify a value for this parameter to return a tree with fewer levels that requires fewer passes through the tall array to compute. Generally the algorithm of fitctree takes one pass through the data and an additional pass for each tree level. There is no maximum tree depth by default.

Note This option only applies when using fitctree on tall arrays. See Extended Capabilities on page 32-2092 for more information.

MaxNumCategories — Maximum category levels
10 (default) | nonnegative scalar value

Maximum category levels, specified as the comma-separated pair consisting of 'MaxNumCategories' and a nonnegative scalar value. fitctree splits a categorical predictor using the exact search algorithm if the predictor has at most MaxNumCategories levels in the split node. Otherwise, fitctree finds the best categorical split using one of the inexact algorithms.

Passing a small value can lead to loss of accuracy and passing a large value can increase computation time and memory overload.

Example: 'MaxNumCategories',8

MergeLeaves — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and 'on' or 'off'.

If MergeLeaves is 'on', then fitctree:

- Merges leaves that originate from the same parent node, and that yields a sum of risk values greater or equal to the risk associated with the parent node
- Estimates the optimal sequence of pruned subtrees, but does not prune the classification tree

Otherwise, fitctree does not merge leaves.
Example: 'MergeLeaves','off'

MinParentSize — Minimum number of branch node observations

10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair consisting of 'MinParentSize' and a positive integer value. Each branch node in the tree has at least MinParentSize observations. If you supply both MinParentSize and MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).

Example: 'MinParentSize',8

Data Types: single | double

PredictorNames — Predictor variable names

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
 - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
 - By default, PredictorNames is {'x1','x2','...'}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitctree uses only the predictor variables in PredictorNames and the response variable in training.
 - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
 - By default, PredictorNames contains the names of all predictor variables.
 - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.
Example: 'PredictorNames',
{ 'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth' }
Data Types: string | cell

PredictorSelection — Algorithm used to select the best split predictor
'
'allsplit'
's'(default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-
separated pair consisting of 'PredictorSelection' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allsplit'</td>
<td>Standard CART — Selects the split predictor that maximizes the split-criterion gain over all possible splits of all predictors [1].</td>
</tr>
<tr>
<td>'curvature'</td>
<td>Curvature test on page 32-2083 — Selects the split predictor that minimizes the (p)-value of chi-square tests of independence between each predictor and the response [4]. Training speed is similar to standard CART.</td>
</tr>
</tbody>
</table>
| 'interaction-
 curvature' | Interaction test on page 32-2085 — Chooses the split predictor that minimizes the \(p \)-value of chi-square tests of independence between each predictor and the response, and that minimizes the \(p \)-value of a chi-square test of independence between each pair of predictors and response [3]. Training speed can be slower than standard CART. |

For 'curvature' and 'interaction-curvature', if all tests yield \(p \)-values greater than 0.05, then fitctree stops splitting nodes.

Tip

- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [4]. Consider specifying the curvature or interaction test if any of the following are true:
 - If there are predictors that have relatively fewer distinct values than other predictors, for example, if the predictor data set is heterogeneous.
 - If an analysis of predictor importance is your goal. For more on predictor importance estimation, see predictorImportance.
• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such trees are less likely to identify important variables in the presence of many irrelevant predictors than the application of the interaction test. Therefore, to account for predictor interactions and identify importance variables in the presence of many irrelevant variables, specify the interaction test [3].

• Prediction speed is unaffected by the value of 'PredictorSelection'.

For details on how fitctree selects split predictors, see “Node Splitting Rules” on page 32-2087.

Example: 'PredictorSelection', 'curvature'

Prior — Prior probabilities

'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and one of the following.

• A character vector or string scalar:
 • 'empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, fitctree uses the weights to compute the class probabilities.
 • 'uniform' sets all class probabilities equal.

• A vector (one scalar value for each class). To specify the class order for the corresponding elements of Prior, also specify the ClassNames name-value pair argument.

• A structure S with two fields:
 • S.ClassNames containing the class names as a variable of the same type as Y
 • S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Example: 'Prior', 'uniform'

Data Types: char | string | single | double | struct
Prune — Flag to estimate optimal sequence of pruned subtrees

'off' (default) | 'on'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then fitctree grows the classification tree without pruning it, but estimates the optimal sequence of pruned subtrees. Otherwise, fitctree grows the classification tree without estimating the optimal sequence of pruned subtrees.

To prune a trained ClassificationTree model, pass it to prune.

Example: 'Prune','off'

PruneCriterion — Pruning criterion

'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and 'error' or 'impurity'.

Example: 'PruneCriterion','impurity'

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar representing the name of the response variable.

This name-value pair is not valid when using the ResponseVarName or formula input arguments.

Example: 'ResponseName','IrisType'

Data Types: char | string

ScoreTransform — Score transformation

'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(\frac{1}{1 + e^{-2x}})</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(\frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>(-1) for (x < 0) \n(0) for (x = 0) \n(1) for (x > 0)</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>(2x - 1)</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to (-1)</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(\frac{2}{1 + e^{-x}} - 1)</td>
</tr>
</tbody>
</table>

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Surrogate — Surrogate decision splits flag

'off' (default) | 'on' | 'all' | positive integer value

Surrogate decision splits on page 32-2087 flag, specified as the comma-separated pair consisting of 'Surrogate' and 'on', 'off', 'all', or a positive integer value.

- When set to 'on', fitctree finds at most 10 surrogate splits at each branch node.
- When set to 'all', fitctree finds all surrogate splits at each branch node. The 'all' setting can use considerable time and memory.
- When set to a positive integer value, fitctree finds at most the specified number of surrogate splits at each branch node.
Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also lets you compute measures of predictive association between predictors. For more details, see “Node Splitting Rules” on page 32-2087.

Example: 'Surrogate','on'

Data Types: single | double | char | string

Weights — Observation weights

`ones(size(x,1),1)` (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values or the name of a variable in Tbl. The software weights the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including W, as predictors when training the model.

fitctree normalizes the weights in each class to add up to the value of the prior probability of the class.

Data Types: single | double | char | string

Cross-Validation

CrossVal — Flag to grow cross-validated decision tree

'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair consisting of 'CrossVal' and 'on' or 'off'.

If 'on', **fitctree** grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-value pair arguments. You can only use one of these four arguments at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the `crossval` method.

Example: 'CrossVal','on'
CVPartition — Partition for cross-validated tree
cvpartition object

Partition to use in a cross-validated tree, specified as the comma-separated pair consisting of 'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-value pair arguments.

Holdout — Fraction of data for holdout validation
\[0 \text{ (default)} | \text{scalar value in the range } [0,1] \]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range \([0,1]\). Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-value pair arguments.

Example: 'Holdout', 0.1

Data Types: single | double

KFold — Number of folds
\[10 \text{ (default)} | \text{positive integer value greater than 1} \]

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold', \(k\), then the software:

1. Randomly partitions the data into \(k\) sets
2. For each set, reserves the set as validation data, and trains the model using the other \(k-1\) sets
3. Stores the \(k\) compact, trained models in the cells of a \(k\)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold', 8

Data Types: single | double
Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. Specify 'on' to use leave-one-out cross-validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

Hyperparameter Optimization

MaxNumSplits — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-separated pair consisting of 'MaxNumSplits' and a positive integer. fitctree splits MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see Algorithms on page 32-2087.

Example: 'MaxNumSplits',5

Data Types: single | double

MinLeafSize — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least MinLeafSize observations per tree leaf. If you supply both MinParentSize and MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).

Example: 'MinLeafSize',3

Data Types: single | double

NumVariablesToSample — Number of predictors to select at random for each split
'all' | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair consisting of 'NumVariablesToSample' and a positive integer value. You can also specify 'all' to use all available predictors.
Example: 'NumVariablesToSample',3
Data Types: char | string | single | double

SplitCriterion — Split criterion

'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Example: 'SplitCriterion','deviance'

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'MinLeafSize'}
- 'all' — Optimize all eligible parameters.
- String array or cell array of eligible parameter names
- Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitctree by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitctree are:
• **MaxNumSplits** — `fitctree` searches among integers, by default log-scaled in the range \([1, \max(2, \text{NumObservations}-1)]\).

• **MinLeafSize** — `fitctree` searches among integers, by default log-scaled in the range \([1, \max(2, \text{floor(NumObservations/2)})]\).

• **SplitCriterion** — For two classes, `fitctree` searches among 'gdi' and 'deviance'. For three or more classes, `fitctree` also searches among 'twoing'.

• **NumVariablesToSample** — `fitctree` does not optimize over this hyperparameter. If you pass `NumVariablesToSample` as a parameter name, `fitctree` simply uses the full number of predictors. However, `fitcensemble` does optimize over this hyperparameter.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitctree',meas,species);
params(1).Range = [1,30];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \(\log(1 + \text{cross-validation loss})\) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the `ShowPlots` field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize Classification Tree” on page 32-2016.

Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
| | • 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
| | • 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
| | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | 'bayesopt' |
| AcquisitionFunctionName | • 'expected-improvement-per-second-plus'
| | • 'expected-improvement'
| | • 'expected-improvement-plus'
| | • 'expected-improvement-per-second'
| | • 'lower-confidence-bound'
| | • 'probability-of-improvement'
<p>| | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
| MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the bayesopt Verbose name-value pair argument.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

tree — Classification tree
classification tree object

Classification tree, returned as a classification tree object.

Using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a
partitioned tree for prediction, so this kind of tree does not have a predict method. Instead, use kfoldpredict to predict responses for observations not used for training.

Otherwise, tree is of class ClassificationTree, and you can use the predict method to make predictions.

Definitions

Curvature Test

The curvature test is a statistical test assessing the null hypothesis that two variables are unassociated.

The curvature test between predictor variable \(x \) and \(y \) is conducted using this process.

1. If \(x \) is continuous, then partition it into its quartiles. Create a nominal variable that bins observations according to which section of the partition they occupy. If there are missing values, then create an extra bin for them.

2. For each level in the partitioned predictor \(j = 1...J \) and class in the response \(k = 1,...,K \), compute the weighted proportion of observations in class \(k \)

\[
\hat{p}_{jk} = \frac{1}{n} \sum_{i=1}^{n} I(y_i = k)w_i.
\]

\(w_i \) is the weight of observation \(i \), \(\sum w_i = 1 \), \(I \) is the indicator function, and \(n \) is the sample size. If all observations have the same weight, then \(\hat{p}_{jk} = \frac{n_{jk}}{n} \), where \(n_{jk} \) is the number of observations in level \(j \) of the predictor that are in class \(k \).

3. Compute the test statistic

\[
t = n \sum_{k=1}^{K} \sum_{j=1}^{J} \left(\frac{\hat{p}_{jk} - \hat{p}_{j+k} + \hat{p}_{j+k}}{\hat{p}_{j+k} + \hat{p}_{j+k}} \right)^2
\]
\[\hat{\pi}_{j+} = \sum_k \hat{\pi}_{jk}, \] that is, the marginal probability of observing the predictor at level \(j \).

\[\hat{\pi}_{+k} = \sum_j \hat{\pi}_{jk}, \] that is the marginal probability of observing class \(k \). If \(n \) is large enough, then \(t \) is distributed as a \(\chi^2 \) with \((K - 1)(J - 1)\) degrees of freedom.

4 If the \(p \)-value for the test is less than 0.05, then reject the null hypothesis that there is no association between \(x \) and \(y \).

When determining the best split predictor at each node, the standard CART algorithm prefers to select continuous predictors that have many levels. Sometimes, such a selection can be spurious and can also mask more important predictors that have fewer levels, such as categorical predictors.

The curvature test can be applied instead of standard CART to determine the best split predictor at each node. In that case, the best split predictor variable is the one that minimizes the significant \(p \)-values (those less than 0.05) of curvature tests between each predictor and the response variable. Such a selection is robust to the number of levels in individual predictors.

Note If levels of a predictor are pure for a particular class, then \texttt{fitctree} merges those levels. Therefore, in step 3 of the algorithm, \(J \) can be less than the actual number of levels in the predictor. For example, if \(x \) has 4 levels, and all observations in bins 1 and 2 belong to class 1, then those levels are pure for class 1. Consequently, \texttt{fitctree} merges the observations in bins 1 and 2, and \(J \) reduces to 3.

For more details on how the curvature test applies to growing classification trees, see “Node Splitting Rules” on page 32-2087 and [4].

Impurity and Node Error

\texttt{ClassificationTree} splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the \texttt{SplitCriterion} name-value pair argument:

- Gini's Diversity Index (\texttt{gdi}) — The Gini index of a node is
where the sum is over the classes i at the node, and $p(i)$ is the observed fraction of classes with class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') — With $p(i)$ defined the same as for the Gini index, the deviance of a node is

$$1 - \sum_i p^2(i),$$

A pure node has deviance 0; otherwise, the deviance is positive.

- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class i in the left child node after a split, and $R(i)$ denote the fraction of members of class i in the right child node after a split. Choose the split criterion to maximize

$$P(L)P(R)\left(\sum_i |L(i) - R(i)|\right)^2,$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

- Node error — The node error is the fraction of misclassified classes at a node. If j is the class with the largest number of training samples at a node, the node error is

$$1 - p(j).$$

Interaction Test

The interaction test is a statistical test that assesses the null hypothesis that there is no interaction between a pair of predictor variables and the response variable.

The interaction test assessing the association between predictor variables x_1 and x_2 with respect to y is conducted using this process.
1 If \(x_1 \) or \(x_2 \) is continuous, then partition that variable into its quartiles. Create a nominal variable that bins observations according to which section of the partition they occupy. If there are missing values, then create an extra bin for them.

2 Create the nominal variable \(z \) with \(J = J_1J_2 \) levels that assigns an index to observation \(i \) according to which levels of \(x_1 \) and \(x_2 \) it belongs. Remove any levels of \(z \) that do not correspond to any observations.

3 Conduct a curvature test on page 32-2083 between \(z \) and \(y \).

When growing decision trees, if there are important interactions between pairs of predictors, but there are also many other less important predictors in the data, then standard CART tends to miss the important interactions. However, conducting curvature and interaction tests for predictor selection instead can improve detection of important interactions, which can yield more accurate decision trees.

For more details on how the interaction test applies to growing decision trees, see “Curvature Test” on page 32-2083, “Node Splitting Rules” on page 32-2087 and [3].

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose \(x_j \) and \(x_k \) are predictor variables \(j \) and \(k \), respectively, and \(j \neq k \). At node \(t \), the predictive measure of association between the optimal split \(x_j < u \) and a surrogate split \(x_k < v \) is

\[
\lambda_{jk} = \frac{\min(P_L, P_R) - (1 - P_{L_j}L_{k} - P_{R_j}R_{k})}{\min(P_L, P_R)}.
\]

- \(P_L \) is the proportion of observations in node \(t \), such that \(x_j < u \). The subscript \(L \) stands for the left child of node \(t \).
- \(P_R \) is the proportion of observations in node \(t \), such that \(x_j \geq u \). The subscript \(R \) stands for the right child of node \(t \).
- \(P_{L_j}L_{k} \) is the proportion of observations at node \(t \), such that \(x_j < u \) and \(x_k < v \).
$P_{R_j R_k}$ is the proportion of observations at node t, such that $x_j \geq u$ and $x_k \geq v$.

• Observations with missing values for x_j or x_k do not contribute to the proportion calculations.

λ_{jk} is a value in $(-\infty, 1]$. If $\lambda_{jk} > 0$, then $x_k < v$ is a worthwhile surrogate split for $x_j < u$.

Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to the left or right child node using the best surrogate predictor. When the value of the best surrogate split predictor for the observation is also missing, the observation is sent to the left or right child node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending order by their predictive measure of association on page 32-2562.

Tip

• By default, Prune is 'on'. However, this specification does not prune the classification tree. To prune a trained classification tree, pass the classification tree to prune.

• After training a model, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see "Introduction to Code Generation" on page 31-2.

Algorithms

Node Splitting Rules

`fitctree` uses these processes to determine how to split node t.

• For standard CART (that is, if `PredictorSelection` is 'allpairs') and for all predictors $x_i, i = 1, \ldots, p$:
1. `fitctree` computes the weighted impurity of node t, i_t. For supported impurity measures, see `SplitCriterion`.

2. `fitctree` estimates the probability that an observation is in node t using

$$ P(T) = \sum_{j \in T} w_j. $$

w_j is the weight of observation j, and T is the set of all observation indices in node t. If you do not specify `Prior` or `Weights`, then $w_j = 1/n$, where n is the sample size.

3. `fitctree` sorts x_i in ascending order. Each element of the sorted predictor is a splitting candidate or cut point. `fitctree` stores any indices corresponding to missing values in the set T_U, which is the unsplit set.

4. `fitctree` determines the best way to split node t using x_i by maximizing the impurity gain (ΔI) over all splitting candidates. That is, for all splitting candidates in x_i:

a. `fitctree` splits the observations in node t into left and right child nodes (t_L and t_R, respectively).

b. `fitctree` computes ΔI. Suppose that for a particular splitting candidate, t_L and t_R contain observation indices in the sets T_L and T_R, respectively.

 - If x_i does not contain any missing values, then the impurity gain for the current splitting candidate is

 $$ \Delta I = P(T)i_t - P(T_L)i_{t_L} - P(T_R)i_{t_R}. $$

 - If x_i contains missing values then, assuming that the observations are missing at random, the impurity gain is

 $$ \Delta I_U = P(T - T_U)i_t - P(T_L)i_{t_L} - P(T_R)i_{t_R}. $$

 $T - T_U$ is the set of all observation indices in node t that are not missing.

 - If you use surrogate decision splits on page 32-2087, then:

 i. `fitctree` computes the predictive measures of association on page 32-2086 between the decision split $x_j < u$ and all possible decision splits $x_k < v$, $j \neq k$.

 32-2088
ii \texttt{fitctree} sorts the possible alternative decision splits in descending order by their predictive measure of association with the optimal split. The surrogate split is the decision split yielding the largest measure.

iii \texttt{fitctree} decides the child node assignments for observations with a missing value for x_i using the surrogate split. If the surrogate predictor also contains a missing value, then \texttt{fitctree} uses the decision split with the second largest measure, and so on, until there are no other surrogates. It is possible for \texttt{fitctree} to split two different observations at node t using two different surrogate splits. For example, suppose the predictors x_1 and x_2 are the best and second best surrogates, respectively, for the predictor x_i, $i \notin \{1,2\}$, at node t. If observation m of predictor x_i is missing (i.e., x_{mi} is missing), but x_{m1} is not missing, then x_1 is the surrogate predictor for observation x_{mi}. If observations $x_{(m+1)2}$ and $x(m+1)1$ are missing, but $x_{(m+1)2}$ is not missing, then x_2 is the surrogate predictor for observation $m+1$.

iv \texttt{fitctree} uses the appropriate impurity gain formula. That is, if \texttt{fitctree} fails to assign all missing observations in node t to children nodes using surrogate splits, then the impurity gain is ΔI_U. Otherwise, \texttt{fitctree} uses ΔI for the impurity gain.

c \texttt{fitctree} chooses the candidate that yields the largest impurity gain.

\texttt{fitctree} splits the predictor variable at the cut point that maximizes the impurity gain.

- For the curvature test (that is, if \texttt{PredictorSelection} is 'curvature'):

1 \texttt{fitctree} conducts curvature tests on page 32-2083 between each predictor and the response for observations in node t.

- If all p-values are at least 0.05, then \texttt{fitctree} does not split node t.
- If there is a minimal p-value, then \texttt{fitctree} chooses the corresponding predictor to split node t.
- If more than one p-value is zero due to underflow, then \texttt{fitctree} applies standard CART to the corresponding predictors to choose the split predictor.

2 If \texttt{fitctree} chooses a split predictor, then it uses standard CART to choose the cut point (see step 4 in the standard CART process).

- For the interaction test (that is, if \texttt{PredictorSelection} is 'interaction-curvature'):
For observations in node t, `fitctree` conducts curvature tests on page 32-2083 between each predictor and the response and interaction tests on page 32-2085 between each pair of predictors and the response.

- If all p-values are at least 0.05, then `fitctree` does not split node t.
- If there is a minimal p-value and it is the result of a curvature test, then `fitctree` chooses the corresponding predictor to split node t.
- If there is a minimal p-value and it is the result of an interaction test, then `fitctree` chooses the split predictor using standard CART on the corresponding pair of predictors.
- If more than one p-value is zero due to underflow, then `fitctree` applies standard CART to the corresponding predictors to choose the split predictor.

If `fitctree` chooses a split predictor, then it uses standard CART to choose the cut point (see step 4 in the standard CART process).

Tree Depth Control

- If `MergeLeaves` is 'on' and `PruneCriterion` is 'error' (which are the default values for these name-value pair arguments), then the software applies pruning only to the leaves and by using classification error. This specification amounts to merging leaves that share the most popular class per leaf.
- To accommodate `MaxNumSplits`, `fitctree` splits all nodes in the current layer, and then counts the number of branch nodes. A layer is the set of nodes that are equidistant from the root node. If the number of branch nodes exceeds `MaxNumSplits`, `fitctree` follows this procedure:

 1. Determine how many branch nodes in the current layer must be unsplit so that there are at most `MaxNumSplits` branch nodes.
 2. Sort the branch nodes by their impurity gains.
 3. Unsplit the number of least successful branches.
 4. Return the decision tree grown so far.

This procedure produces maximally balanced trees.

- The software splits branch nodes layer by layer until at least one of these events occurs:
 - There are `MaxNumSplits` branch nodes.
• A proposed split causes the number of observations in at least one branch node to be fewer than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be fewer than MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see PruneCriterion), does not improve for all proposed splits in a layer). A special case is when all nodes are pure (i.e., all observations in the node have the same class).
• For values 'curvature' or 'interaction-curvature' of PredictorSelection, all tests yield p-values greater than 0.05.

MaxNumSplits and MinLeafSize do not affect splitting at their default values. Therefore, if you set 'MaxNumSplits', splitting might stop due to the value of MinParentSize, before MaxNumSplits splits occur.

Parallelization

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- Supported syntaxes for tall arrays return the additional output arguments FitInfo and HyperparameterOptimizationResults. The supported syntaxes are:
 - \([\text{tree}, \text{FitInfo}, \text{HyperparameterOptimizationResults}] = \text{fitctree}(\text{Tbl}, Y)\)
 - \([\text{tree}, \text{FitInfo}, \text{HyperparameterOptimizationResults}] = \text{fitctree}(X, Y)\)
 - \([\text{tree}, \text{FitInfo}, \text{HyperparameterOptimizationResults}] = \text{fitctree}(..., \text{Name}, \text{Value})\)
- The FitInfo output argument is an empty structure array currently reserved for possible future use.
- The HyperparameterOptimizationResults output argument is a BayesianOptimization object or a table of hyperparameters with associated values that describe the cross-validation optimization of hyperparameters.

- 'HyperparameterOptimizationResults' is nonempty when the 'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create the model. The values in 'HyperparameterOptimizationResults' depend on the value you specify for the 'HyperparameterOptimizationOptions' name-value pair argument when you create the model.
 - If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an object of class BayesianOptimization.
 - If you specify 'gridsearch' or 'randomsearch', then HyperparameterOptimizationResults is a table of the hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst).
- Supported name-value pair arguments, and any differences, are:
• 'AlgorithmForCategorical'
• 'CategoricalPredictors'
• 'ClassNames'
• 'Cost'
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify fitctree(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).
• 'MaxNumCategories'
• 'MaxNumSplits'— for tall optimization, fitctree searches among integers, by default log-scaled in the range $[1, \max(2, \min(10000, \text{NumObservations}-1))]$.
• 'MergeLeaves'
• 'MinLeafSize'
• 'MinParentSize'
• 'NumVariablesToSample'
• 'OptimizeHyperparameters'
• 'PredictorNames'
• 'Prior'
• 'ResponseName'
• 'ScoreTransform'
• 'SplitCriterion'
• 'Weights'
• There is an additional name-value pair argument specific to tall arrays:

 • 'MaxDepth' — A positive integer specifying the maximum depth of the output tree. Specify a value for this parameter to return a tree that has fewer levels and requires fewer passes through the tall array to compute. Generally the algorithm of fitctree takes one pass through the data and an additional pass for each tree level. There is no maximum tree depth by default.

For more information, see “Tall Arrays” (MATLAB).
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
ClassificationPartitionedModel | ClassificationTree | kfoldpredict | predict | prune

Topics
“Splitting Categorical Predictors” on page 19-31

Introduced in R2014a
fitglm

Create generalized linear regression model

Syntax

mdl = fitglm(tbl)
mdl = fitglm(X,y)
mdl = fitglm(___,modelspec)
mdl = fitglm(___,Name,Value)

Description

mdl = fitglm(tbl) returns a generalized linear model fit to variables in the table or dataset array tbl. By default, fitglm takes the last variable as the response variable.

mdl = fitglm(X,y) returns a generalized linear model of the responses y, fit to the data matrix X.

mdl = fitglm(___modelspec) returns a generalized linear model of the type you specify in modelspec.

mdl = fitglm(___Name,Value) returns a generalized linear model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify which variables are categorical, the distribution of the response variable, and the link function to use.

Examples

Fit a Logistic Regression Model

Make a logistic binomial model of the probability of smoking as a function of age, weight, and sex, using a two-way interactions model.
Load the hospital dataset array.

```matlab
load hospital
dsa = hospital;
```

Specify the model using a formula that allows up to two-way interactions between the variables age, weight, and sex. Smoker is the response variable.

```matlab
modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';
```

Fit a logistic binomial model.

```matlab
mdl = fitglm(dsa,modelspec,'Distribution','binomial')
```

```matlab
mdl =
Generalized linear regression model:
    logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
    Distribution = Binomial

Estimated Coefficients:
                          Estimate    SE         tStat     pValue
    __________             _________    ________    _______
    (Intercept)            -6.0492      19.749     -0.3063    0.75938
    Sex_Male               -2.2859      12.424    -0.18399    0.85402
    Age                    0.11691      0.50977     0.22934    0.81861
    Weight                 0.031109     0.15208     0.20455    0.83792
    Sex_Male:Age           0.020734      0.20681     0.10025    0.92014
    Sex_Male:Weight        0.012160      0.053168    0.22871     0.8191
    Age:Weight             -0.00071959   0.0038964    -0.18468    0.85348
```

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

All of the p-values (under pValue) are large. This means none of the coefficients are significant. The large P-value for the test of the model, 0.535, indicates that this model might not differ statistically from a constant model.
GLM for Poisson Response

Create sample data with 20 predictors, and Poisson response using just three of the predictors, plus a constant.

```matlab
rng('default') % for reproducibility
X = randn(100,7);
mu = exp(X(:,[1 3 6])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = fitglm(X,y,'linear','Distribution','poisson')
```

```
mdl = 
Generalized linear regression model: 
    log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7
    Distribution = Poisson

Estimated Coefficients:
            Estimate    SE         tStat    pValue
    ____________________    ________    ________    __________
    (Intercept)      0.88723    0.070969      12.502    7.3149e-36
    x1               0.44413    0.052337      8.4858    2.1416e-17
    x2             0.0083388    0.056527     0.14752       0.88272
    x3               0.21518    0.063416      3.3932    0.00069087
    x4             -0.058386    0.065503    -0.89135       0.37274
    x5             -0.060824    0.073441     -0.8282       0.40756
    x6               0.34267    0.06146     0.70225       0.48252
    x7               0.04316    0.06146     0.70225       0.48252

100 observations, 92 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 119, p-value = 1.55e-22
```

The p-values of 2.14e-17, 0.00069, and 1.58e-09 indicate that the coefficients of the variables x1, x3, and |x6| are statistically significant.
Input Arguments

tbl — Input data
`table | dataset array`

Input data, specified as a table or dataset array. When `modelspec` is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables and response variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57).

To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

X — Predictor variables
`matrix`

Predictor variables, specified as an `n`-by-`p` matrix, where `n` is the number of observations and `p` is the number of predictor variables. Each column of `X` represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in `X`.

Data Types: `single` | `double` | `logical`

y — Response variable
`vector`

Response variable, specified as an `n`-by-1 vector, where `n` is the number of observations. Each entry in `y` is the response for the corresponding row of `X`.

modelspec — Model specification
`character vector or string scalar specifying the model | t-by-(p+1) terms matrix |
character vector or string scalar of the form 'Y ~ terms'`

Model specification, which is the starting model for `stepwiseglm`, specified as one of the following:
- Character vector or string scalar specifying the type of model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree i in the first predictor, degree j in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

- t-by-$(p+1)$ matrix, namely “Terms Matrix” on page 32-2106, specifying terms to include in model, where t is the number of terms and p is the number of predictor variables, and plus one is for the response variable.

- Character vector or string scalar representing a “Formula” on page 32-2109 in the form

 `'Y ~ terms'`,

 where the terms are in “Wilkinson Notation” on page 32-2110.

Example: 'quadratic'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Distribution','normal','link','probit','Exclude',[23,59] specifies that the distribution of the response is normal, and instructs \texttt{fitglm} to use the probit link function and exclude the 23rd and 59th observations from the fit.

BinomialSize — Number of trials for binomial distribution

1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated pair consisting of a scalar value or a vector of the same length as the response. This is the parameter \(n \) for the fitted binomial distribution. \texttt{BinomialSize} applies only when the \texttt{Distribution} parameter is 'binomial'.

If \texttt{BinomialSize} is a scalar value, that means all observations have the same number of trials.

As an alternative to \texttt{BinomialSize}, you can specify the response as a two-column vector with counts in column 1 and \texttt{BinomialSize} in column 2.

Data Types: single | double

CategoricalVars — Categorical variable list

string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array \(\texttt{tbl} \), or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array \(\texttt{tbl} \), then, by default, \texttt{fitglm} treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix \(\texttt{X} \), then the default value of 'CategoricalVars' is an empty matrix \([\text{}]\). That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell
DispersionFlag — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified as the comma-separated pair consisting of 'DispersionFlag' and one of the following.

<table>
<thead>
<tr>
<th>true</th>
<th>Estimate a dispersion parameter when computing standard errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>Default. Use the theoretical value when computing standard errors</td>
</tr>
</tbody>
</table>

The fitting function always estimates the dispersion for other distributions.

Example: 'DispersionFlag',true

Distribution — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

'normal'	Normal distribution
'binomial'	Binomial distribution
'poisson'	Poisson distribution
'gamma'	Gamma distribution
'inverse gaussian'	Inverse Gaussian distribution

Example: 'Distribution','gamma'

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

Intercept — Indicator for constant term

true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

Link — Link function

canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-separated pair consisting of 'Link' and one of the following.

<table>
<thead>
<tr>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'identity'</td>
<td>(f(\mu) = \mu)</td>
<td>(\mu = Xb)</td>
</tr>
<tr>
<td>'log'</td>
<td>(f(\mu) = \log(\mu))</td>
<td>(\mu = \exp(Xb))</td>
</tr>
<tr>
<td>'logit'</td>
<td>(f(\mu) = \log(\mu/(1-\mu)))</td>
<td>(\mu = \exp(Xb) / (1 + \exp(Xb)))</td>
</tr>
<tr>
<td>'probit'</td>
<td>(f(\mu) = \Phi^{-1}(\mu))</td>
<td>(\mu = \Phi(Xb))</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>(f(\mu) = \log(-\log(1 - \mu)))</td>
<td>(\mu = 1 - \exp(-\exp(Xb)))</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>(f(\mu) = 1/\mu)</td>
<td>(\mu = 1/(Xb))</td>
</tr>
<tr>
<td>p (a number)</td>
<td>(f(\mu) = \mu^p)</td>
<td>(\mu = Xb^{1/p})</td>
</tr>
</tbody>
</table>
The link function defines the relationship \(f(\mu) = X*b \) between the mean response \(\mu \) and the linear combination of predictors \(X*b \).

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

Data Types: char | string | single | double | struct

Offset — Offset variable

[] (default) | vector | character vector | string scalar

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and a vector or name of a variable with the same length as the response.

`fitglm` and `stepwiseglm` use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

\[
\mu \sim \text{Offset} + (\text{terms involving real predictors})
\]

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor \(A \). By using the log link function and by specifying \(\log(A) \) as an offset, you can force the model to satisfy this theoretical constraint.
Data Types: single | double | char | string

PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 1 0 0])
Data Types: single | double | logical | char | string
VarNames — Names of variables

```{'x1', 'x2', ..., 'xn', 'y'} (default) | string array | cell array of character vectors```

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames', {'Horsepower', 'Acceleration', 'Model_Year', 'MPG'}

Data Types: string | cell

**Weights — Observation weights**

```ones(n,1) (default) | n-by-1 vector of nonnegative scalar values```

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

Output Arguments

mdl — Generalized linear model

```GeneralizedLinearModel object```

Generalized linear model representing a least-squares fit of the link of the response to the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the GeneralizedLinearModel class page.
Definitions

Terms Matrix

A terms matrix is a $t$-by-$(p + 1)$ matrix specifying terms in a model, where $t$ is the number of terms, $p$ is the number of predictor variables, and plus one is for the response variable. The value of $T(i,j)$ is the exponent of variable $j$ in term $i$. Suppose there are three predictor variables $A$, $B$, and $C$:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 1 & 2 & 0
\end{bmatrix}
\]

% Constant term or intercept
% $B$; equivalently, $A^0 * B^1 * C^0$
% $A*C$
% $A^2$
% $B*(C^2)$

The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex, hospital.BloodPressure(:,1), ...
hospital.Age, hospital.Smoker, 'VariableNames', ...
{'Sex', 'BloodPressure', 'Age', 'Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

\[
T = [0 \ 0 \ 0 \ 0; 1 \ 0 \ 0 \ 0; 0 \ 0 \ 1 \ 0; 0 \ 0 \ 0 \ 1]
\]

Redefine the table.
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

\[
T = \begin{bmatrix} 0 & 0 & 0 & 0; 1 & 0 & 0; 0 & 1 & 0; 0 & 0 & 1 \end{bmatrix}
\]

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

\[
T = \begin{bmatrix} 0 & 0 & 0; 1 & 0 & 0; 1 & 0; 0 & 0 \end{bmatrix}
\]

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =
Linear regression model:
\[ y \sim 1 + x_1 \times x_2 + x_2^2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[ T = [0 \ 0 \ 0;1 \ 0 \ 0;0 \ 1 \ 0;1 \ 1 \ 0]; \]
\[ mdl = \text{stepwiselm}(X, 
\text{MPG},[0 \ 0 \ 0],'\text{upper}',T) \]

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

\[ mdl = \]

Linear regression model:
\[ y \sim 1 + x_2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of \text{fitlm} in the previous step.
**Formula**

A formula for model specification is a character vector or string scalar of the form \( Y \sim \text{terms} \)

where

- \( Y \) is the response name.
- \( \text{terms} \) contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
  - ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
  - () groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

\[ Y \sim A + B + C \] means a three-variable linear model with intercept.
\[ Y \sim A + B + C - 1 \] is a three-variable linear model without intercept.
\[ Y \sim A + B + C + B^2 \] is a three-variable model with intercept and a \( B^2 \) term.
\[ Y \sim A + B^2 + C \] is the same as the previous example because \( B^2 \) includes a \( B \) term.
\[ Y \sim A + B + C + A:B \] includes an \( A*B \) term.
\[ Y \sim A*B + C \] is the same as the previous example because \( A*B = A + B + A:B \).
\[ Y \sim A*B*C - A:B:C \] has all interactions among \( A, B, \) and \( C \), except the three-way interaction.
\[ Y \sim A*(B + C + D) \] has all linear terms, plus products of \( A \) with each of the other variables.
Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td>( f(\mu) = \mu )</td>
<td>( \mu = Xb )</td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>( f(\mu) = \log(\mu/(1-\mu)) )</td>
<td>( \mu = \exp(Xb) / (1 + \exp(Xb)) )</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td>( f(\mu) = \log(\mu) )</td>
<td>( \mu = \exp(Xb) )</td>
</tr>
<tr>
<td>'gamma'</td>
<td>-1</td>
<td>( f(\mu) = 1/\mu )</td>
<td>( \mu = 1/(Xb) )</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>-2</td>
<td>( f(\mu) = 1/\mu^2 )</td>
<td>( \mu = (Xb)^{-1/2} )</td>
</tr>
</tbody>
</table>
Tips

• The generalized linear model `mdl` is a standard linear model unless you specify otherwise with the `Distribution` name-value pair.
• For methods such as `plotResiduals` or `devianceTest`, or properties of the `GeneralizedLinearModel` object, see `GeneralizedLinearModel`.
• After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Alternative Functionality

Use `stepwiseglm` to select a model specification automatically. Use `step`, `addTerms`, or `removeTerms` to adjust a fitted model.

References


Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• If any input argument to `fitglm` is a tall array, then all of the other inputs must be tall arrays as well. This includes nonempty variables supplied with the 'Weights', 'Exclude', 'Offset', and 'BinomialSize' name-value pairs.
• The default number of iterations is 5. You can change the number of iterations using
the 'Options' name-value pair to pass in an options structure. Create an options
structure using statset to specify a different value for MaxIter.

• For tall data, fitglm returns a CompactGeneralizedLinearModel object that
contains most of the same properties as a GeneralizedLinearModel object. The
main difference is that the compact object is sensitive to memory requirements. The
compact object does not include properties that include the data, or that include an
array of the same size as the data. The compact object does not contain these
GeneralizedLinearModel properties:

  • Diagnostics
  • Fitted
  • Offset
  • ObservationInfo
  • ObservationNames
  • Residuals
  • Steps
  • Variables

You can compute the residuals directly from the compact object returned by

GLM = fitglm(X,Y) using

\[
RES = Y - \text{predict(GLM,X)};
S = \sqrt{\text{GLM.SSE/GLM.DFE)}};
\text{histogram(RES,linspace(-3*S,3*S,51))}
\]

For more information, see “Tall Arrays” (MATLAB).

**See Also**

GeneralizedLinearModel | predict | stepwiseglm

**Topics**

“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12

**Introduced in R2013b**
fitglme

Fit generalized linear mixed-effects model

Syntax

```matlab
glme = fitglme(tbl,formula)
glme = fitglme(tbl,formula,Name,Value)
```

Description

glme = fitglme(tbl,formula) returns a generalized linear mixed-effects model, glme. The model is specified by formula and fitted to the predictor variables in the table or dataset array, tbl.

glme = fitglme(tbl,formula,Name,Value) returns a generalized linear mixed-effects model using additional options specified by one or more Name,Value pair arguments. For example, you can specify the distribution of the response, the link function, or the covariance pattern of the random-effects terms.

Examples

**Fit a Generalized Linear Mixed-Effects Model**

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In
each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[
defects_{ij} \sim \text{Poisson}(\mu_{ij}).
\]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_C_{ij} + \beta_5 \text{supplier}_B_{ij} + b_i,
\]

where

- defects_{ij} is the number of defects observed in the batch produced by factory i during batch j.
- \(\mu_{ij}\) is the mean number of defects corresponding to factory i (where \(i = 1, 2, ..., 20\)) during batch j (where \(j = 1, 2, ..., 5\)).
• `newprocess_{ij}`, `time_dev_{ij}`, and `temp_dev_{ij}` are the measurements for each variable that correspond to factory $i$ during batch $j$. For example, `newprocess_{ij}` indicates whether the batch produced by factory $i$ during batch $j$ used the new process.

• `supplier_C_{ij}` and `supplier_B_{ij}` are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory $i$ during batch $j$.

• $b_i \sim N(0, \sigma^2_b)$ is a random-effects intercept for each factory $i$ that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',
 'Distribution','Poisson','Link','log','FitMethod','Laplace',
 'DummyVarCoding','effects');
```

Display the model.

```matlab
disp(glme)
```

Generalized linear mixed-effects model fit by ML

Model information:
- Number of observations: 100
- Fixed effects coefficients: 6
- Random effects coefficients: 20
- Covariance parameters: 1
- Distribution: Poisson
- Link: Log
- FitMethod: Laplace

Formula:
- `defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)`

Model fit statistics:
- AIC: 416.35
- BIC: 434.58
- LogLikelihood: -201.17
- Deviance: 402.35

Fixed effects coefficients (95% CIs):
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.4689</td>
<td>0.15988</td>
<td>9.1875</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.36766</td>
<td>0.17755</td>
<td>-2.0708</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.094521</td>
<td>0.82849</td>
<td>-0.11409</td>
<td>94</td>
<td>0.90941</td>
</tr>
</tbody>
</table>
'temp_dev'            -0.28317      0.9617    -0.29444    94       0.76907
'supplier_C'         -0.071868    0.078024     -0.9211    94       0.35936
'supplier_B'          0.071072     0.07739     0.91836    94       0.36078

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1515</td>
<td>1.7864</td>
</tr>
<tr>
<td>-0.72019</td>
<td>-0.015134</td>
</tr>
<tr>
<td>-1.7395</td>
<td>1.5505</td>
</tr>
<tr>
<td>-2.1926</td>
<td>1.6263</td>
</tr>
<tr>
<td>-0.22679</td>
<td>0.083051</td>
</tr>
<tr>
<td>-0.082588</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

Random effects covariance parameters:
Group: factory (20 Levels)
Name1                Name2                Type         Estimate
'(Intercept)'        '(Intercept)'        'std'        0.31381

Group: Error
Name                      Estimate
'sqrt(Dispersion)'        1

The Model information table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.
Random effects covariance parameters displays a table for each grouping variable (here, only factory), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, std indicates that fitglme returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-effects parameters. To compute and display these values, use covarianceParameters.

### Input Arguments

**tbl** — Input data  
`table | dataset array`

Input data, which includes the response variable, predictor variables, and grouping variables, specified as a table or dataset array. The predictor variables can be continuous or grouping variables (see “Grouping Variables” on page 2-57). You must specify the model for the variables using `formula`.

**formula** — Formula for model specification  
character vector or string scalar of the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`

Formula for model specification, specified as a character vector or string scalar of the form `'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'`. The formula is case sensitive. For a full description, see “Formula” on page 32-2131.

Example: `'y ~ treatment + (1|block)'`

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:

'`Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVa'
Coding', 'effects' specifies the response variable distribution as Poisson, the link function as log, the fit method as Laplace, and dummy variable coding where the coefficients sum to 0.

**BinomialSize — Number of trials for binomial distribution**

1 (default) | scalar value | vector | variable name

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated pair consisting of a scalar value, a vector of the same length as the response, or the name of a variable in the input table. If you specify the name of a variable, then the variable must be of the same length as the response. BinomialSize applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of trials.

Data Types: single | double

**CheckHessian — Indicator to check positive definiteness of Hessian**

false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to unconstrained parameters at convergence, specified as the comma-separated pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is overparameterized in the number of covariance parameters.

If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed effects and the covariance parameters is based on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

Example: 'CheckHessian', true

**CovarianceMethod — Method to compute covariance of estimated parameters**

'conditional' (default) | 'JointHessian'

Method to compute covariance of estimated parameters, specified as the comma-separated pair consisting of 'CovarianceMethod' and either 'conditional' or 'JointHessian'. If you specify 'conditional', then fitglme computes a fast approximation to the covariance of fixed effects given the estimated covariance parameters. It does not compute the covariance of covariance parameters. If you specify 'JointHessian', then fitglme computes the joint covariance of fixed effects and
covariance parameters via the observed information matrix using the Laplacian loglikelihood.

If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed effects and the covariance parameters is based on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

Example: 'CovarianceMethod','JointHessian'

**CovariancePattern — Pattern of covariance matrix**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'FullCholesky'</td>
<td>Full covariance matrix using the Cholesky parameterization. fitglme estimates all elements of the covariance matrix.</td>
</tr>
</tbody>
</table>

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair consisting of 'CovariancePattern' and 'FullCholesky', 'Isotropic', 'Full', 'Diagonal', 'CompSymm', a square symmetric logical matrix, a string array, or a cell array containing character vectors or logical matrices.

If there are \( R \) random-effects terms, then the value of 'CovariancePattern' must be a string array or cell array of length \( R \), where each element \( r \) of the array specifies the pattern of the covariance matrix of the random-effects vector associated with the \( r \)th random-effects term. The options for each element follow.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'Isotropic' | Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like  
\[
\begin{pmatrix}
\sigma^2_b & 0 & 0 \\
0 & \sigma^2_b & 0 \\
0 & 0 & \sigma^2_b \\
\end{pmatrix}
\]
where \(\sigma^2_1\) is the common variance of the random-effects terms. |
| 'Full'     | Full covariance matrix, using the log-Cholesky parameterization. \texttt{fitlme} estimates all elements of the covariance matrix.             |
| 'Diagonal' | Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0.                             |
\[
\begin{pmatrix}
\sigma^2_{b1} & 0 & 0 \\
0 & \sigma^2_{b2} & 0 \\
0 & 0 & \sigma^2_{b3} \\
\end{pmatrix}
\]
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'CompSymm'</td>
<td>Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like $\begin{pmatrix} \sigma^2_{b_1} &amp; \sigma_{b_1,b_2} &amp; \sigma_{b_1,b_2} \ \sigma_{b_1,b_2} &amp; \sigma^2_{b_1} &amp; \sigma_{b_1,b_2} \ \sigma_{b_1,b_2} &amp; \sigma_{b_1,b_2} &amp; \sigma^2_{b_1} \end{pmatrix}$, where $\sigma^2_{b_1}$ is the common variance of the random-effects terms and $\sigma_{b_1,b_2}$ is the common covariance between any two random-effects term.</td>
</tr>
<tr>
<td>PAT</td>
<td>Square symmetric logical matrix. If 'CovariancePattern' is defined by the matrix PAT, and if PAT(a,b) = false, then the (a,b) element of the corresponding covariance matrix is constrained to be 0.</td>
</tr>
</tbody>
</table>

For scalar random-effects terms, the default is 'Isotropic'. Otherwise, the default is 'FullCholesky'.

Example: 'CovariancePattern', 'Diagonal'
Example: 'CovariancePattern', {'Full', 'Diagonal'}

Data Types: char | string | logical | cell

**DispersionFlag — Indicator to compute dispersion parameter**

false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified as the comma-separated pair consisting of 'DispersionFlag' and one of the following.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Estimate a dispersion parameter when computing standard errors</td>
</tr>
<tr>
<td>false</td>
<td>Use the theoretical value of 1.0 when computing standard errors</td>
</tr>
</tbody>
</table>

'DispersionFlag' only applies if 'FitMethod' is 'MPL' or 'REML'.

The fitting function always estimates the dispersion for other distributions.

Example: 'DispersionFlag',true

**Distribution — Distribution of the response variable**

'Normal' (default) | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Normal'</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>Inverse Gaussian distribution</td>
</tr>
</tbody>
</table>

Example: 'Distribution','Binomial'

**DummyVarCoding — Coding to use for dummy variables**

'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'reference'</td>
<td>Default. Coefficient for first category set to 0.</td>
</tr>
<tr>
<td>'effects'</td>
<td>Coefficients sum to 0.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>'full'</td>
<td>One dummy variable for each category.</td>
</tr>
</tbody>
</table>

Example: 'DummyVarCoding','effects'

**EBMethod — Method used to approximate empirical Bayes estimates of random effects**

'Auto' (default) | 'LineSearchNewton' | 'TrustRegion2D' | 'fsolve'

Method used to approximate empirical Bayes estimates of random effects, specified as the comma-separated pair consisting of 'EBMethod' and one of the following.

- 'Auto'
- 'LineSearchNewton'
- 'TrustRegion2D'
- 'fsolve'

'Auto' is similar to 'LineSearchNewton' but uses a different convergence criterion and does not display iterative progress. 'Auto' and 'LineSearchNewton' may fail for non-canonical link functions. For non-canonical link functions, 'TrustRegion2D' or 'fsolve' are recommended. You must have Optimization Toolbox to use 'fsolve'.

Example: 'EBMethod','LineSearchNewton'

**EBOptions — Options for empirical Bayes optimization structure**

Options for empirical Bayes optimization, specified as the comma-separated pair consisting of 'EBOptions' and a structure containing the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'TolFun'</td>
<td>Relative tolerance on the gradient norm. Default is 1e-6.</td>
</tr>
<tr>
<td>'TolX'</td>
<td>Absolute tolerance on the step size. Default is 1e-8.</td>
</tr>
<tr>
<td>'MaxIter'</td>
<td>Maximum number of iterations. Default is 100.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'Display'</td>
<td>'off', 'iter', or 'final'. Default is 'off'.</td>
</tr>
</tbody>
</table>

If `EBMethod` is 'Auto' and `FitMethod` is 'Laplace', `TolFun` is the relative tolerance on the linear predictor of the model, and the 'Display' option does not apply.

If 'EBMethod' is 'fsolve', then 'EBOptions' must be specified as an object created by `optimoptions('fsolve')`.

Data Types: struct

**Exclude — Indices for rows to exclude**

use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the generalized linear mixed-effects model in the data, specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.

Example: 'Exclude', [13, 67]

Data Types: single | double | logical

**FitMethod — Method for estimating model parameters**

'MPL' (default) | 'REML' | 'Laplace' | 'ApproximateLaplace'

Method for estimating model parameters, specified as the comma-separated pair consisting of 'FitMethod' and one of the following.

- 'MPL' — Maximum pseudo likelihood
- 'REML' — Restricted maximum pseudo likelihood
- 'Laplace' — Maximum likelihood using Laplace approximation
- 'ApproximateLaplace' — Maximum likelihood using approximate Laplace approximation with fixed effects profiled out

Example: 'FitMethod', 'REML'

**InitPLIterations — Initial number of pseudo likelihood iterations**

10 (default) | integer value in the range [1, ∞)
Initial number of pseudo likelihood iterations used to initialize parameters for ApproximateLaplace and Laplace fit methods, specified as the comma-separated pair consisting of 'InitPLIterations' and an integer value greater than or equal to 1.

Data Types: single | double

**Link — Link function**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'identity'</td>
<td>( g(mu) = mu )</td>
</tr>
<tr>
<td></td>
<td>This is the default for the normal distribution.</td>
</tr>
<tr>
<td>'log'</td>
<td>( g(mu) = \log(mu) )</td>
</tr>
<tr>
<td></td>
<td>This is the default for the Poisson distribution.</td>
</tr>
<tr>
<td>'logit'</td>
<td>( g(mu) = \log(mu/(1-mu)) )</td>
</tr>
<tr>
<td></td>
<td>This is the default for the binomial distribution.</td>
</tr>
<tr>
<td>'loglog'</td>
<td>( g(mu) = \log(-\log(mu)) )</td>
</tr>
<tr>
<td>'probit'</td>
<td>( g(mu) = \text{norminv}(mu) )</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>( g(mu) = \log(-\log(1-mu)) )</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>( g(mu) = mu.^(1) )</td>
</tr>
<tr>
<td>Scalar value P</td>
<td>( g(mu) = mu.^(P) )</td>
</tr>
</tbody>
</table>
A structure containing four fields whose values are function handles with the following names:

- S.Link — Link function
- S.Derivative — Derivative
- S.SecondDerivative — Second derivative
- S.Inverse — Inverse of link

Specification of S.SecondDerivative can be omitted if FitMethod is MPL or REMPL, or if S is the canonical link for the specified distribution.

The default link function used by fitglme is the canonical link that depends on the distribution of the response.

<table>
<thead>
<tr>
<th>Response Distribution</th>
<th>Canonical Link Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Normal'</td>
<td>'identity'</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>'logit'</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>'log'</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>-1</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>-2</td>
</tr>
</tbody>
</table>

Example: 'Link', 'log'

Data Types: char | string | single | double | struct

**MuStart — Starting value for conditional mean**

scalar value

Starting value for conditional mean, specified as the comma-separated pair consisting of 'MuStart' and a scalar value. Valid values are as follows.
Response Distribution	Valid Values
'Normal' | (-Inf, Inf)
'Binomial' | (0, 1)
'Poisson' | (0, Inf)
'Gamma' | (0, Inf)
'InverseGaussian' | (0, Inf)

Data Types: single | double

**Offset — Offset**

zeros(n, 1) (default) | n-by-1 vector of scalar values

Offset, specified as the comma-separated pair consisting of 'Offset' and an n-by-1 vector of scalar values, where n is the length of the response vector. You can also specify the variable name of an n-by-1 vector of scalar values. 'Offset' is used as an additional predictor that has a coefficient value fixed at 1.0.

Data Types: single | double

**Optimizer — Optimization algorithm**

'quasinewton' (default) | 'fminsearch' | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'quasinewton'</td>
<td>Uses a trust region based quasi-Newton optimizer. You can change the options of the algorithm using statset('fitglme'). If you do not specify the options, then fitglme uses the default options of statset('fitglme').</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'fminsearch'</td>
<td>Uses a derivative-free Nelder-Mead method. You can change the options of the algorithm using optimset('fminsearch'). If you do not specify the options, then fitglme uses the default options of optimset('fminsearch').</td>
</tr>
<tr>
<td>'fminunc'</td>
<td>Uses a line search-based quasi-Newton method. You must have Optimization Toolbox to specify this option. You can change the options of the algorithm using optimoptions('fminunc'). If you do not specify the options, then fitglme uses the default options of optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.</td>
</tr>
</tbody>
</table>

Example: 'Optimizer','fminsearch'

**OptimizerOptions — Options for optimization algorithm**
structure returned by statset | structure returned by optimset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of 'OptimizerOptions' and a structure returned by statset('fitglme'), a structure created by optimset('fminsearch'), or an object returned by optimoptions('fminunc').

- If 'Optimizer' is 'fminsearch', then use optimset('fminsearch') to change the options of the algorithm. If 'Optimizer' is 'fminsearch' and you do not supply 'OptimizerOptions', then the defaults used in fitglme are the default options created by optimset('fminsearch').
- If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions', then the defaults used in fitglme are the default options created by optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

32 Functions — Alphabetic List
• If 'Optimizer' is 'quasinewton', then use `statset('fitglme')` to change the optimization parameters. If 'Optimizer' is 'quasinewton' and you do not change the optimization parameters using `statset`, then `fitglme` uses the default options created by `statset('fitglme')`.

The 'quasinewton' optimizer uses the following fields in the structure created by `statset('fitglme')`.

**TolFun — Relative tolerance on gradient of objective function**

1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

**TolX — Absolute tolerance on step size**

1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

**MaxIter — Maximum number of iterations allowed**

10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

**Display — Level of display**

'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

**PLIterations — Maximum number of pseudo likelihood iterations**

100 (default) | positive integer value

Maximum number of pseudo likelihood (PL) iterations, specified as the comma-separated pair consisting of 'PLIterations' and a positive integer value. PL is used for fitting the model if 'FitMethod' is 'MPL' or 'REMPL'. For other 'FitMethod' values, PL iterations are used to initialize parameters for subsequent optimization.

Example: 'PLIterations', 200

Data Types: `single` | `double`

**PLTolerance — Relative tolerance factor for pseudo likelihood iterations**

1e-08 (default) | positive scalar value
Relative tolerance factor for pseudo likelihood iterations, specified as the comma-separated pair consisting of 'PLTolerance' and a positive scalar value.

Example: 'PLTolerance',1e-06

Data Types: single | double

**StartMethod — Method to start iterative optimization**

'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of 'StartMethod' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'default'</td>
<td>An internally defined default value</td>
</tr>
<tr>
<td>'random'</td>
<td>A random initial value</td>
</tr>
</tbody>
</table>

Example: 'StartMethod','random'

**UseSequentialFitting — Initial fitting type**

false (default) | true

, specified as the comma-separated pair consisting of 'UseSequentialFitting' and either false or true. If 'UseSequentialFitting' is false, all maximum likelihood methods are initialized using one or more pseudo likelihood iterations. If 'UseSequentialFitting' is true, the initial values from pseudo likelihood iterations are refined using 'ApproximateLaplace' for 'Laplace' fitting.

Example: 'UseSequentialFitting',true

**Verbose — Indicator to display optimization process on screen**

0 (default) | 1 | 2

Indicator to display the optimization process on screen, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. If 'Verbose' is specified as 1 or 2, then fitglme displays the progress of the iterative model-fitting process. Specifying 'Verbose' as 2 displays iterative optimization information from the individual pseudo likelihood iterations. Specifying 'Verbose' as 1 omits this display.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',1

32-2130
Weights — Observation weights
vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations. If the response distribution is binomial or Poisson, then 'Weights' must be a vector of positive integers.

Data Types: single | double

Output Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Definitions

Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~ terms'. For the generalized linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

- A response variable, y
- Predictor variables, X_j, which can be continuous or grouping variables
- Grouping variables, g_1, g_2, ..., g_R,

where the grouping variables in X_j and g_r can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random_1|g_1) + ... + (random_R|g_R)', the term fixed corresponds to a specification of the fixed-effects design matrix X,
random_i is a specification of the random-effects design matrix \( Z_i \) corresponding to grouping variable \( g_i \), and similarly random_R is a specification of the random-effects design matrix \( Z_R \) corresponding to grouping variable \( g_R \). You can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>( X^k ), where ( k ) is a positive integer</td>
<td>( X, X^2, \ldots, X^k )</td>
</tr>
<tr>
<td>( X_1 + X_2 )</td>
<td>( X_1, X_2 )</td>
</tr>
<tr>
<td>( X_1\times X_2 )</td>
<td>( X_1, X_2, X_1\times X_2 ) (elementwise multiplication of ( X_1 ) and ( X_2 ))</td>
</tr>
<tr>
<td>( X_1: X_2 )</td>
<td>( X_1\times X_2 ) only</td>
</tr>
<tr>
<td>- ( X_2 )</td>
<td>Do not include ( X_2 )</td>
</tr>
<tr>
<td>( X_1\times X_2 + X_3 )</td>
<td>( X_1, X_2, X_3, X_1\times X_2 )</td>
</tr>
<tr>
<td>( X_1 + X_2 + X_3 + X_1\times X_2 )</td>
<td>( X_1, X_2, X_3, X_1\times X_2 )</td>
</tr>
<tr>
<td>( X_1\times X_2\times X_3 - X_1\times X_2 : X_3 )</td>
<td>( X_1, X_2, X_3, X_1\times X_2, X_1\times X_3, X_2\times X_3 )</td>
</tr>
<tr>
<td>( X_1\times(X_2 + X_3) )</td>
<td>( X_1, X_2, X_3, X_1\times X_2, X_1\times X_3 )</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using \(-1\). Here are some examples for generalized linear mixed-effects model specification.

**Examples:**

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ ( X_1 + X_2 )'</td>
<td>Fixed effects for the intercept, ( X_1 ) and ( X_2 ). This is equivalent to 'y ~ 1 + ( X_1 + X_2 )' .</td>
</tr>
<tr>
<td>'y ~ -1 + ( X_1 + X_2 )'</td>
<td>No intercept and fixed effects for ( X_1 ) and ( X_2 ). The implicit intercept term is suppressed by including (-1) .</td>
</tr>
<tr>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>`'y ~ 1 + (1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (X1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>`'y ~ 1 + (1</td>
<td>g1) + (1</td>
</tr>
</tbody>
</table>

See Also

GeneralizedLinearMixedModel

Topics

“Fit a Generalized Linear Mixed-Effects Model” on page 12-77
“Generalized Linear Mixed-Effects Models” on page 12-65

Introduced in R2014b
fitgmdist

Fit Gaussian mixture model to data

Syntax

GMMModel = fitgmdist(X,k)
GMMModel = fitgmdist(X,k,Name,Value)

Description

GMMModel = fitgmdist(X,k) returns a Gaussian mixture distribution model (GMMModel) with k components fitted to data (X).

GMMModel = fitgmdist(X,k,Name,Value) returns a Gaussian mixture distribution model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify a regularization value or the covariance type.

Examples

Cluster Data Using a Gaussian Mixture Model

Generate data from a mixture of two bivariate Gaussian distributions.

mu1 = [1 2];
Sigma1 = [2 0; 0 0.5];
mu2 = [-3 -5];
Sigma2 = [1 0; 0 1];
rng(1); % For reproducibility
X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)];

Fit a Gaussian mixture model. Specify that there are two components.

GMMModel = fitgmdist(X,2);
Plot the data over the fitted Gaussian mixture model contours.

```matlab
figure
y = [zeros(1000,1);ones(1000,1)];
h = gscatter(X(:,1),X(:,2),y);
hold on
ezcontour(@(x1,x2)pdf(GMModel,[x1 x2]),get(gca,{'XLim','YLim'}))
title({'\bf Scatter Plot and Fitted Gaussian Mixture Contours'})
legend(h,'Model 0','Model1')
hold off
```
**Regularize Gaussian Mixture Model Estimation**

Generate data from a mixture of two bivariate Gaussian distributions. Create a third predictor that is the sum of the first and second predictors.

\[
\begin{align*}
\mu_1 &= [1 \ 2]; \\
\Sigma_1 &= [1 \ 0; \ 0 \ 1]; \\
\mu_2 &= [3 \ 4]; \\
\Sigma_2 &= [0.5 \ 0; \ 0 \ 0.5]; \\
\text{rng}(3); & \quad \% \text{For reproducibility} \\
X_1 &= \text{mvnrnd}(\mu_1, \Sigma_1, 100); \text{mvnrnd}(\mu_2, \Sigma_2, 100)]; \\
X &= [X_1, X_1(:,1)+X_1(:,2)];
\end{align*}
\]

The columns of \(X\) are linearly dependent. This can cause ill-conditioned covariance estimates.

Fit a Gaussian mixture model to the data. You can use `try / catch` statements to help manage error messages.

\[
\text{rng}(1); \quad \% \text{Reset seed for common start values} \\
\text{try} \\
\quad \text{GMMModel} = \text{fitgmdist}(X,2) \\
\text{catch \ exception} \\
\quad \text{disp('There was an error fitting the Gaussian mixture model')} \\
\quad \text{error} = \text{exception.message} \\
\text{end}
\]

There was an error fitting the Gaussian mixture model

\[
\text{error} = '\text{Ill-conditioned covariance created at iteration 2}.'
\]

The covariance estimates are ill-conditioned. Consequently, optimization stops and an error appears.

Fit a Gaussian mixture model again, but use regularization.

\[
\text{rng}(3); \quad \% \text{Reset seed for common start values} \\
\text{GMMModel} = \text{fitgmdist}(X,2,'\text{RegularizationValue}',0.1)
\]

\[
\text{GMMModel} =
\]

Gaussian mixture distribution with 2 components in 3 dimensions
Component 1:
Mixing proportion: 0.536725
In this case, the algorithm converges to a solution due to regularization.

Select the Number of Gaussian Mixture Model Components Using PCA

Gaussian mixture models require that you specify a number of components before being fit to data. For many applications, it might be difficult to know the appropriate number of components. This example shows how to explore the data, and try to get an initial guess at the number of components using principal component analysis.

Load Fisher's iris data set.

```
load fisheriris
classes = unique(species)
```

The data set contains three classes of iris species. The analysis proceeds as if this is unknown.

Use principal component analysis to reduce the dimension of the data to two dimensions for visualization.

```
[~,score] = pca(meas,'NumComponents',2);
```

Fit three Gaussian mixture models to the data by specifying 1, 2, and 3 components. Increase the number of optimization iterations to 1000. Use dot notation to store the final parameter estimates. By default, the software fits full and different covariances for each component.

```
GMMModels = cell(3,1); % Preallocation
options = statset('MaxIter',1000);
```
rng(1); % For reproducibility

for j = 1:3
    GMMModels{j} = fitgmdist(score,j,'Options',options);
    fprintf('
 GM Mean for %i Component(s)
',j)
    Mu = GMMModels{j}.mu
end

GM Mean for 1 Component(s)

Mu = 1×2
10^{-14} ×

-0.2743   -0.0870

GM Mean for 2 Component(s)

Mu = 2×2
1.3212   -0.0954
-2.6424    0.1909

GM Mean for 3 Component(s)

Mu = 3×2
0.4856   -0.1287
1.4484   -0.0904
-2.6424    0.1909

GMMModels is a cell array containing three, fitted gmdistribution models. The means in the three component models are different, suggesting that the model distinguishes among the three iris species.

Plot the scores over the fitted Gaussian mixture model contours. Since the data set includes labels, use gscatter to distinguish between the true number of components.

figure
for j = 1:3
    subplot(2,2,j)
    h1 = gscatter(score(:,1),score(:,2),species);
    h = gca;
end
hold on
ezcontour(@(x1,x2)pdf(GMModels{j},[x1 x2]),...
    [h.XLim h.YLim],100)
title(sprintf('GM Model - %i Component(s)',j));
xlabel('1st principal component');
ylabel('2nd principal component');
if(j ~= 3)
    legend off;
end
end
hold off
g = legend(h1);
g.Position = [0.7 0.25 0.1 0.1];
The three-component Gaussian mixture model, in conjunction with PCA, looks like it distinguishes between the three iris species.

There are other options you can use to help select the appropriate number of components for a Gaussian mixture model. For example,

- Compare multiple models with varying numbers of components using information criteria, e.g., AIC or BIC.
- Estimate the number of clusters using `evalclusters`, which supports, the Calinski-Harabasz criterion and the gap statistic, or other criteria.

**Determine the Best Gaussian Mixture Fit Using AIC**

Gaussian mixture models require that you specify a number of components before being fit to data. For many applications, it might be difficult to know the appropriate number of components. This example uses the AIC fit statistic to help you choose the best fitting Gaussian mixture model over varying numbers of components.

Generate data from a mixture of two bivariate Gaussian distributions.

```plaintext
mu1 = [1 1];
Sigma1 = [0.5 0; 0 0.5];
mu2 = [2 4];
Sigma2 = [0.2 0; 0 0.2];
rng(1);
X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)];
```

```plaintext
plot(X(:,1),X(:,2),'ko')
title('Scatter Plot')
xlim([min(X(:)) max(X(:))]) % Make axes have the same scale
ylim([min(X(:)) max(X(:))])
```
Supposing that you do not know the underlying parameter values, the scatter plots suggests:

- There are two components.
- The variances between the clusters are different.
- The variance within the clusters is the same.
- There is no covariance within the clusters.

Fit a two-component Gaussian mixture model. Based on the scatter plot inspection, specify that the covariance matrices are diagonal. Print the final iteration and loglikelihood statistic to the Command Window by passing a **statset** structure as the value of the **Options** name-value pair argument.
options = statset('Display','final');
GMMModel = fitgmdist(X,2,'CovarianceType','diagonal','Options',options);

11 iterations, log-likelihood = -4787.38

GMMModel is a fitted gmdistribution model.

Examine the AIC over varying numbers of components.

AIC = zeros(1,4);
GMMModels = cell(1,4);
options = statset('MaxIter',500);
for k = 1:4
    GMMModels{k} = fitgmdist(X,k,'Options',options,'CovarianceType','diagonal');
    AIC(k) = GMMModels{k}.AIC;
end

[minAIC,numComponents] = min(AIC);
numComponents = 2

BestModel = GMMModels{numComponents}

BestModel =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.501719
Mean: 1.9824 4.0013

Component 2:
Mixing proportion: 0.498281
Mean: 0.9880 1.0511

The smallest AIC occurs when the software fits the two-component Gaussian mixture model.
Set Initial Values When Fitting Gaussian Mixture Models

Gaussian mixture model parameter estimates might vary with different initial values. This example shows how to control initial values when you fit Gaussian mixture models using fitgmdist.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

```matlab
load fisheriris
X = meas(:,3:4);
```

Fit a Gaussian mixture model to the data using default initial values. There are three iris species, so specify \( k = 3 \) components.

```matlab
rng(10); % For reproducibility
GMModel1 = fitgmdist(X,3);
```

By default, the software:

1. Implements the “k-means++ Algorithm for Initialization” on page 32-2152 to choose \( k = 3 \) initial cluster centers.
2. Sets the initial covariance matrices as diagonal, where element \((j, j)\) is the variance of \( X(:,j) \).
3. Treats the initial mixing proportions as uniform.

Fit a Gaussian mixture model by connecting each observation to its label.

```matlab
y = ones(size(X,1),1);
y(strcmp(species,'setosa')) = 2;
y(strcmp(species,'virginica')) = 3;
GMModel2 = fitgmdist(X,3,'Start',y);
```

Fit a Gaussian mixture model by explicitly specifying the initial means, covariance matrices, and mixing proportions.

```matlab
Mu = [1 1; 2 2; 3 3];
Sigma(:,:,1) = [1 1; 1 2];
Sigma(:,:,2) = 2*[1 1; 1 2];
Sigma(:,:,3) = 3*[1 1; 1 2];
PComponents = [1/2,1/4,1/4];
S = struct('mu',Mu,'Sigma',Sigma,'ComponentProportion',PComponents);
GMModel3 = fitgmdist(X,3,'Start',S);
```
Use `gscatter` to plot a scatter diagram that distinguishes between the iris species. For each model, plot the fitted Gaussian mixture model contours.

```matlab
figure
subplot(2,2,1)
 h = gscatter(X(:,1),X(:,2),species,[],'o',4);
 haxis = gca;
 xlim = haxis.XLim;
 ylim = haxis.YLim;
 d = (max([xlim ylim])-min([xlim ylim]))/1000;
 hold on
 contour(X1Grid,X2Grid,reshape(pdf(GMModel1,[X1Grid(:) X2Grid(:)]),
 size(X1Grid,1),size(X1Grid,2)),20)
 uistack(h,'top')
 title('{\bf Random Initial Values}');
 xlabel('Sepal length');
 ylabel('Sepal width');
 legend off;
 hold off
subplot(2,2,2)
 h = gscatter(X(:,1),X(:,2),species,[],'o',4);
 hold on
 contour(X1Grid,X2Grid,reshape(pdf(GMModel2,[X1Grid(:) X2Grid(:)]),
 size(X1Grid,1),size(X1Grid,2)),20)
 uistack(h,'top')
 title('{\bf Initial Values from Labels}');
 xlabel('Sepal length');
 ylabel('Sepal width');
 legend off
 hold off
subplot(2,2,3)
 h = gscatter(X(:,1),X(:,2),species,[],'o',4);
 hold on
 contour(X1Grid,X2Grid,reshape(pdf(GMModel3,[X1Grid(:) X2Grid(:)]),
 size(X1Grid,1),size(X1Grid,2)),20)
 uistack(h,'top')
 title('{\bf Initial Values from the Structure}');
 xlabel('Sepal length');
 ylabel('Sepal width');
 legend('Location',[0.7,0.25,0.1,0.1]);
 hold off
```
According to the contours, GMModel2 seems to suggest a slight trimodality, while the others suggest bimodal distributions.

Display the estimated component means.

```matlab
table(GMModel1.mu,GMModel2.mu,GMModel3.mu,'VariableNames',{'Model1','Model2','Model3'})
```

```
ans=3×3 table
 Model1 Model2 Model3
 ______ ______ ______
 5.2115 4.2857 1.4604
 1.4610 1.3339 0.2429
 0.2442 1.4629 4.7509
```

32-2145
GMMmodel2 seems to distinguish between the iris species the best.

**Input Arguments**

- **X — Data**
  
  numeric matrix

  Data to which the Gaussian mixture model is fit, specified as a numeric matrix.

  The rows of X correspond to observations, and the columns of X correspond to variables. The number of observations must be larger than each of the following: the number of variables and the number of components.

  NaNs indicate missing values. The software removes rows of X containing at least one NaN before fitting, which decreases the effective sample size.

  Data Types: `single` | `double`

- **k — Number of components**
  
  positive integer

  Number of components to use when fitting Gaussian mixture model, specified as a positive integer. For example, if you specify k = 3, then the software fits a Gaussian mixture model with three distinct means, covariances matrices, and component proportions to the data (X).

  Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'RegularizationValue',0.1,'CovarianceType','diagonal'` specifies a regularization parameter value of 0.1 and to fit diagonal covariance matrices.
CovarianceType — Type of covariance matrix

Type of covariance matrix to fit to the data, specified as the comma-separated pair consisting of 'CovarianceType' and either 'diagonal' or 'full'.

If you set 'diagonal', then the software fits diagonal covariance matrices. In this case, the software estimates k*d covariance parameters, where d is the number of columns in X (i.e., d = size(X,2)).

Otherwise, the software fits full covariance matrices. In this case, the software estimates k*d*(d+1)/2 covariance parameters.

Example: 'CovarianceType','diagonal'

Options — Iterative EM algorithm optimization options

Iterative EM algorithm optimization options, specified as the comma-separated pair consisting of 'Options' and a statset options structure.

This table describes the available name-value pair arguments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Display'</td>
<td>'final': Display the final output.</td>
</tr>
<tr>
<td></td>
<td>'iter': Display iterative output to the Command Window for some functions; otherwise display the final output.</td>
</tr>
<tr>
<td></td>
<td>'off': Do not display optimization information.</td>
</tr>
<tr>
<td>'MaxIter'</td>
<td>Positive integer indicating the maximum number of iterations allowed. The default is 100</td>
</tr>
<tr>
<td>'TolFun'</td>
<td>Positive scalar indicating the termination tolerance for the loglikelihood function value. The default is 1e-6.</td>
</tr>
</tbody>
</table>

Example: 'Options',statset('Display','final','MaxIter',1500,'TolFun',1e-5)
**ProbabilityTolerance — Tolerance for posterior probabilities**

1e-8 (default) | nonnegative scalar value in range [0,1e-6]

Tolerance for posterior probabilities, specified as the comma-separated pair consisting of `ProbabilityTolerance` and a nonnegative scalar value in the range [0,1e-6].

In each iteration, after the estimation of posterior probabilities, `fitgmdist` sets any posterior probability that is not larger than the tolerance value to zero. Using a nonzero tolerance might speed up `fitgmdist`.

Example: 'ProbabilityTolerance',0.0000025

Data Types: `single` | `double`

**RegularizationValue — Regularization parameter value**

0 (default) | nonnegative scalar

Regularization parameter value, specified as the comma-separated pair consisting of 'RegularizationValue' and a nonnegative scalar.

Set `RegularizationValue` to a small positive scalar to ensure that the estimated covariance matrices are positive definite.

Example: 'RegularizationValue',0.01

Data Types: `single` | `double`

**Replicates — Number of times to repeat EM algorithm**

1 (default) | positive integer

Number of times to repeat the EM algorithm using a new set of initial values, specified as the comma-separated pair consisting of 'Replicates' and a positive integer.

If `Replicates` is greater than 1, then:

- The name-value pair argument `Start` must be `plus` (the default) or `randSample`.
- `GMModel` is the fit with the largest loglikelihood.

Example: 'Replicates',10

Data Types: `single` | `double`

**SharedCovariance — Flag indicating whether all covariance matrices are identical**

`logical false` (default) | `logical true`
Flag indicating whether all covariance matrices are identical (i.e., fit a pooled estimate), specified as the comma-separated pair consisting of 'SharedCovariance' and either logical value false or true.

If SharedCovariance is true, then all k covariance matrices are equal, and the number of covariance parameters is scaled down by a factor of k.

**Start — Initial value setting method**

'plus' (default) | 'randSample' | vector of integers | structure array

Initial value setting method, specified as the comma-separated pair consisting of 'Start' and 'randSample', 'plus', a vector of integers, or a structure array.

The value of Start determines the initial values required by the optimization routine for each Gaussian component parameter — mean, covariance, and mixing proportion. This table summarizes the available options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'randSample'</td>
<td>The software selects k observations from X at random as initial component means. The mixing proportions are uniform. The initial covariance matrices for all components are diagonal, where the element j on the diagonal is the variance of X(:,j).</td>
</tr>
<tr>
<td>'plus'</td>
<td>The software selects k observations from X using the kmeans++ algorithm on page 32-2152. The initial mixing proportions are uniform. The initial covariance matrices for all components are diagonal, where the element j on the diagonal is the variance of X(:,j).</td>
</tr>
<tr>
<td>Vector of integers</td>
<td>A vector of length n (the number of observations) containing an initial guess of the component index for each point. That is, each element is an integer from 1 to k, which corresponds to a component. The software collects all observations corresponding to the same component, computes means, covariances, and mixing proportions for each, and sets the initial values to these statistics.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Structure array</td>
<td>Suppose that there are ( d ) variables (i.e., ( d = \text{size}(X,2) )). The structure array, e.g., ( S ), must have three fields:</td>
</tr>
<tr>
<td></td>
<td>- ( S\mu ): A ( k )-by-( d ) matrix specifying the initial mean of each component</td>
</tr>
<tr>
<td></td>
<td>- ( S\Sigma ): A numeric array specifying the covariance matrix of each component. ( \Sigma ) is one of the following:</td>
</tr>
<tr>
<td></td>
<td>- A ( d )-by-( d )-by-( k ) array. ( \Sigma(:,:,j) ) is the initial covariance matrix of component ( j ).</td>
</tr>
<tr>
<td></td>
<td>- A ( 1 )-by-( d )-by-( k ) array. ( \text{diag}(\Sigma(:,:,j)) ) is the initial covariance matrix of component ( j ).</td>
</tr>
<tr>
<td></td>
<td>- A ( d )-by-( d ) matrix. ( \Sigma ) is the initial covariance matrix for all components.</td>
</tr>
<tr>
<td></td>
<td>- A ( 1 )-by-( d ) vector. ( \text{diag}(\Sigma) ) is the initial covariance matrix for all components.</td>
</tr>
<tr>
<td></td>
<td>- ( S\text{ComponentProportion} ): A ( 1 )-by-( k ) vector of scalars specifying the initial mixing proportions of each component. The default is uniform.</td>
</tr>
</tbody>
</table>

Example: 'Start', ones(n,1)

Data Types: single | double | char | string | struct

### Output Arguments

**GMMModel** — Fitted Gaussian mixture model
gmdistribution model

Fitted Gaussian mixture model, returned as a gmdistribution model.

Access properties of GMMModel using dot notation. For example, display the AIC by entering GMMModel.AIC.

### Tips

fitgmdist might:
• Converge to a solution where one or more of the components has an ill-conditioned or singular covariance matrix.

The following issues might result in an ill-conditioned covariance matrix:

• The number of dimensions of your data is relatively high and there are not enough observations.
• Some of the predictors (variables) of your data are highly correlated.
• Some or all the features are discrete.
• You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of the following precautions:

• Preprocess your data to remove correlated features.
• Set 'SharedCovariance' to true to use an equal covariance matrix for every component.
• Set 'CovarianceType' to 'diagonal'.
• Use 'RegularizationValue' to add a very small positive number to the diagonal of every covariance matrix.
• Try another set of initial values.
• Pass through an intermediate step where one or more of the components has an ill-conditioned covariance matrix. Try another set of initial values to avoid this issue without altering your data or model.

Algorithms

Gaussian Mixture Model Likelihood Optimization

The software optimizes the Gaussian mixture model likelihood using the iterative Expectation-Maximization (EM) algorithm.

fitgmdist fits GMMs to data using the iterative Expectation-Maximization (EM) algorithm. Using initial values for component means, covariance matrices, and mixing proportions, the EM algorithm proceeds using these steps.

1 For each observation, the algorithm computes posterior probabilities of component memberships. You can think of the result as an n-by-k matrix, where element $(i,j)$
contains the posterior probability that observation \( i \) is from component \( j \). This is the E-step of the EM algorithm.

2 Using the component-membership posterior probabilities as weights, the algorithm estimates the component means, covariance matrices, and mixing proportions by applying maximum likelihood. This is the M-step of the EM algorithm.

The algorithm iterates over these steps until convergence. The likelihood surface is complex, and the algorithm might converge to a local optimum. Also, the resulting local optimum might depend on the initial conditions. \texttt{fitgmdist} has several options for choosing initial conditions, including random component assignments for the observations and the \( k \)-means ++ algorithm.

**\( k \)-means++ Algorithm for Initialization**

The \( k \)-means++ algorithm uses an heuristic to find centroid seeds for \( k \)-means clustering. \texttt{fitgmdist} can apply the same principle to initialize the EM algorithm by using the \( k \)-means++ algorithm to select the initial parameter values for a fitted Gaussian mixture model.

The \( k \)-means++ algorithm assumes the number of clusters is \( k \) and chooses the initial parameter values as follows.

1 Select the component mixture probability to be the uniform probability \( p_i = \frac{1}{k} \), where \( i = 1, \ldots, k \).

2 Select the covariance matrices to be diagonal and identical, where

\[
\sigma_i = \text{diag}(a_1, a_2, \ldots, a_k) \quad \text{and} \quad a_j = \text{var}(X_j).
\]

3 Select the first initial component center \( \mu_1 \) uniformly from all data points in \( X \).

4 To choose center \( j \):
   
   a Compute the Mahalanobis distances from each observation to each centroid, and assign each observation to its closest centroid.

   b For \( m = 1, \ldots, n \) and \( p = 1, \ldots, j - 1 \), select centroid \( j \) at random from \( X \) with probability
where \( d(x_m, \mu_p) \) is the distance between observation \( m \) and \( \mu_p \), and \( M_p \) is the set of all observations closest to centroid \( \mu_p \) and \( x_m \) belongs to \( M_p \).

That is, select each subsequent center with a probability proportional to the distance from itself to the closest center that you already chose.

5 Repeat step 4 until \( k \) centroids are chosen.

References


See Also

cluster | gmdistribution

Topics

“Gaussian Mixture Models” on page 5-145
“Tune Gaussian Mixture Models” on page 16-55
“Cluster Using Gaussian Mixture Models” on page 16-29

Introduced in R2014a
fitlm

Create linear regression model

fitlm creates a LinearModel object. Once you create the object, you can see it in the workspace. You can see all the properties on page 32-3593 the object contains by clicking on it. You can create plots and do further diagnostic analysis by using methods such as plot, plotResiduals, and plotDiagnostics. For a full list of methods for LinearModel, see methods on page 32-3604.

Syntax

mdl = fitlm(tbl)
mdl = fitlm(tbl,modelspec)
mdl = fitlm(X,y)
mdl = fitlm(X,y,modelspec)
mdl = fitlm(___,Name,Value)

Description

mdl = fitlm(tbl) returns a linear model fit to variables in the table or dataset array tbl. By default, fitlm takes the last variable as the response variable.

mdl = fitlm(tbl,modelspec) returns a linear model of the type you specify in modelspec fit to variables in the table or dataset array tbl.

mdl = fitlm(X,y) returns a linear model of the responses y, fit to the data matrix X.

mdl = fitlm(X,y,modelspec) returns a linear model of the type you specify in modelspec for the responses y, fit to the data matrix X.

mdl = fitlm(___,Name,Value) returns a linear model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify which variables are categorical, perform robust regression, or use observation weights.
Examples

Fit Linear Regression Using Data in Table

Load the sample data.

```matlab
load carsmall
```

Store the variables in a table.

```matlab
tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration','MPG'});
```

Display the first five rows of the table.

```matlab
tbl(1:5,:)
```

```
ans=5×3 table
 Weight Acceleration MPG
 ___ ____________ ___
 3504 12 18
 3693 11.5 15
 3436 11 18
 3433 12 16
 3449 10.5 17
```

Fit a linear regression model for miles per gallon (MPG).

```matlab
lm = fitlm(tbl,'MPG~Weight+Acceleration')
```

```
 Linear regression model:
 MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________
 (Intercept) 45.155 3.4659 13.028 1.6266e-22
 Weight -0.0082475 0.00059836 -13.783 5.3165e-24
 Acceleration 0.19694 0.14743 1.3359 0.18493
```
Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743, Adjusted R-Squared 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

This syntax uses Wilkinson notation to specify the \textit{modelspec}.

The model 'MPG~Weight+Acceleration' in this example is equivalent to fitting the model using 'linear' as \textit{modelspec}. For example,

\begin{verbatim}
lm2 = fitlm(tbl,'linear');
\end{verbatim}

When you use a character vector as \textit{modelspec} and do not specify the response variable, \texttt{fitlm} by default accepts the last variable in tbl as the response variable and the other variables as the predictor variables.

\section*{Fit Linear Regression Using Specified Model Formula}

Fit a linear regression model using a model formula specified by Wilkinson notation.

Load the sample data.

\texttt{load carsmall}

Store the variables in a table.

\texttt{tbl = table(Weight,Acceleration,Model_Year,MPG,'VariableNames',{'Weight','Acceleration','Model_Year','MPG'})}

Fit a linear regression model for miles per gallon (MPG) with weight and acceleration as the predictor variables.

\begin{verbatim}
lm = fitlm(tbl,'MPG~Weight+Acceleration')
\end{verbatim}

\begin{verbatim}
lm =

Linear regression model:
    MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
    Estimate       SE       tStat       pValue
    ________________    ______    _______    __________
     (Intercept)    32.688     0.52417    62.402    6.905e-29
    Weight        0.0094088   0.00031292  30.214     3.1635e-27
    Acceleration -0.068914    0.0012909 -53.188    1.8923e-53
\end{verbatim}
The $p$-value of 0.18493 indicates that **Acceleration** does not have a significant impact on **MPG**.

Remove **Acceleration** from the model, and try improving the model by adding the predictor variable **Model_Year**. First define **Model_Year** as a categorical variable.

```matlab
tbl.Model_Year = categorical(tbl.Model_Year);
lm = fitlm(tbl,'MPG~Weight+Model_Year')
```

```matlab
lm =

Linear regression model:
 MPG ~ 1 + Weight + Model_Year

Estimated Coefficients:
 Estimate SE tStat pValue
 ____________________ __________ _______ __________
 (Intercept) 40.11 1.5418 26.016 1.2024e-43
 Weight -0.0066475 0.00042802 -15.531 3.3639e-27
 Model_Year_76 1.9291 0.74761 2.5804 0.011488
 Model_Year_82 7.9093 0.84975 9.3078 7.8681e-15

Number of observations: 94, Error degrees of freedom: 90
Root Mean Squared Error: 2.92
R-squared: 0.873, Adjusted R-Squared 0.868
F-statistic vs. constant model: 206, p-value = 3.83e-40
```

Specifying `modelspec` using Wilkinson notation enables you to update the model without having to change the design matrix. `fitlm` uses only the variables that are specified in
the formula. It also creates the necessary two dummy indicator variables for the categorical variable Model_Year.

**Linear Regression with Categorical Predictor**

Fit a model of a table that contains a categorical predictor.

Load the carsmall data.

```matlab
load carsmall
```

Construct a table containing continuous predictor variable Weight, categorical predictor variable Year, and response variable MPG.

```matlab
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
```

Create a fitted model of MPG as a function of Year, Weight, and Weight^2. You don't have to include Weight explicitly in your formula because it is a lower-order term of Weight^2. The fitlm function includes Weight automatically.

```matlab
mdl = fitlm(tbl,'MPG ~ Year + Weight^2')
```

```
mdl =
Linear regression model:
 MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _______ _______ __________
 (Intercept) 54.206 4.7117 11.505 2.6648e-19
 Weight -0.016404 0.0031249 -5.2493 1.0283e-06
 Year_76 2.0887 0.71491 2.9215 0.0044137
 Year_82 8.1864 0.81531 10.041 2.6364e-16
 Weight^2 1.5573e-06 4.9454e-07 3.149 0.0022303

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41
```
fitlm creates two dummy (indicator) variables for the categorical variate, Year. The dummy variable Year_76 takes the value 1 if model year is 1976 and takes the value 0 if it is not. The dummy variable Year_82 takes the value 1 if model year is 1982 and takes the value 0 if it is not. And the year 1970 is the reference year. The corresponding model is

\[ \text{MPG} = 54.206 - 0.016404 \text{Weight} + 2.0887 \text{Year}_76 + 8.1864 \text{Year}_82 + 1.5573 \times 10^{-06} \text{Weight}^2. \]

**Specify Response and Predictor Variables for Linear Model**

Fit a linear regression model to sample data. Specify the response and predictor variables, and include only pairwise interaction terms in the model.

Load sample data.

```matlab
load hospital
```

Fit a linear model with interaction terms to the data. Specify weight as the response variable, and sex, age, and smoking status as the predictor variables. Also, specify that sex and smoking status are categorical variables.

```matlab
mdl = fitlm(hospital,'interactions','ResponseVar','Weight',... 'PredictorVars',{'Sex','Age','Smoker'},... 'CategoricalVar',{'Sex','Smoker'})
```

```matlab
mdl =
Linear regression model:
 Weight ~ 1 + Sex*Age + Sex*Smoker + Age*Smoker

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>118.7</td>
<td>7.0718</td>
<td>16.785</td>
<td>6.821e-30</td>
</tr>
<tr>
<td>Sex_Male</td>
<td>68.336</td>
<td>9.7153</td>
<td>7.0339</td>
<td>3.3386e-10</td>
</tr>
<tr>
<td>Age</td>
<td>0.31068</td>
<td>0.18531</td>
<td>1.6765</td>
<td>0.096991</td>
</tr>
<tr>
<td>Smoker_1</td>
<td>3.0425</td>
<td>10.446</td>
<td>0.2913</td>
<td>0.77149</td>
</tr>
<tr>
<td>Sex_Male:Age</td>
<td>-0.49094</td>
<td>0.24764</td>
<td>-1.9825</td>
<td>0.050377</td>
</tr>
<tr>
<td>Sex_Male:Smoker_1</td>
<td>0.9509</td>
<td>3.8031</td>
<td>0.25003</td>
<td>0.80312</td>
</tr>
<tr>
<td>Age:Smoker_1</td>
<td>-0.07288</td>
<td>0.26275</td>
<td>-0.27737</td>
<td>0.78211</td>
</tr>
</tbody>
</table>
```
Number of observations: 100, Error degrees of freedom: 93
Root Mean Squared Error: 8.75
R-squared: 0.898, Adjusted R-Squared 0.892
F-statistic vs. constant model: 137, p-value = 6.91e-44

The weight of the patients do not seem to differ significantly according to age, or the status of smoking, or interaction of these factors with patient sex at the 5% significance level.

**Fit a Robust Linear Regression Model**

Fit a linear regression model using a robust fitting method.

Load the sample data.

```matlab
load hald
```

The `hald` data measures the effect of cement composition on its hardening heat. The matrix `ingredients` contains the percent composition of four chemicals present in the cement. The array `heat` contains the heat of hardening after 180 days for each cement sample.

Fit a robust linear model to the data.

```matlab
mdl = fitlm(ingredients,heat,'linear','RobustOpts','on')
```

```matlab
mdl = Linear regression model (robust fit):
 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _______ ________ ________
(Intercept) 60.09 75.818 0.79256 0.4509
 x1 1.5753 0.80585 1.9548 0.086346
 x2 0.5322 0.78315 0.67957 0.51596
 x3 -0.12052 0.7672 -0.15709 0.87906
 x4 0.13346 0.8166 0.16343 0.87424
```
Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979, Adjusted R-Squared 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07

**Input Arguments**

**tbl — Input data**

`table | dataset array`

Input data, specified as a table or dataset array. When `modelspec` is a `formula`, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

**X — Predictor variables**

`matrix`

Predictor variables, specified as an `n`-by-`p` matrix, where `n` is the number of observations and `p` is the number of predictor variables. Each column of `X` represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in `X`.

Data Types: `single` | `double` | `logical`

**y — Response variable**

`vector`

Response variable, specified as an `n`-by-1 vector, where `n` is the number of observations. Each entry in `y` is the response for the corresponding row of `X`. 

32-2161
Data Types: single | double | logical

**modelspec — Model specification**

'linear' (default) | character vector or string scalar naming the model | \( t \)-by-(\( p + 1 \)) terms matrix | character vector or string scalar of the form '\( Y \sim \) terms'

Model specification, specified as one of the following.

- A character vector or string scalar naming the model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree ( i ) in the first predictor, degree ( j ) in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

- \( t \)-by-(\( p + 1 \)) matrix, namely terms matrix on page 32-2168, specifying terms to include in the model, where \( t \) is the number of terms and \( p \) is the number of predictor variables, and plus 1 is for the response variable.

- A character vector or string scalar representing a formula on page 32-2171 in the form

  '\( Y \sim \) terms',

  where the terms are in Wilkinson Notation on page 32-2172.

Example: 'quadratic'
Example: 'y ~ X1 + X2^2 + X1:X2'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Intercept',false,'PredictorVars',[1,3],'ResponseVar',5,'RobustOpts','logistic'` specifies a robust regression model with no constant term, where the algorithm uses the logistic weighting function with the default tuning constant, first and third variables are the predictor variables, and fifth variable is the response variable.

**CategoricalVars — Categorical variable list**

`string array | cell array of character vectors | logical or numeric index vector`

Categorical variable list, specified as the comma-separated pair consisting of `'CategoricalVars'` and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array `tbl`, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array `tbl`, then, by default, `fitlm` treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix `X`, then the default value of `'CategoricalVars'` is an empty matrix `[]`. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: `'CategoricalVars',[2,3]`

Example: `'CategoricalVars',logical([0 1 1 0 0 0])`

Data Types: `single` | `double` | `logical` | `string` | `cell`

**Exclude — Observations to exclude**

`logical or numeric index vector`
Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

**Intercept — Indicator for constant term**

true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: `single` | `double` | `logical` | `string` | `cell`

**ResponseVar — Response variable**

- last column in `tbl` (default) | character vector or string scalar containing variable name |
- logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array `tbl`, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array `tbl`.

For example, you can specify the fourth variable, say `yield`, as the response out of six variables, in one of the following ways.

- Example: 'ResponseVar','yield'
- Example: 'ResponseVar',[4]
- Example: 'ResponseVar',logical([0 0 1 0 0])

Data Types: `single` | `double` | `logical` | `char` | `string`

**RobustOpts — Indicator of robust fitting type**

- 'off' (default) | 'on' | character vector | string scalar | structure with character vector, string scalar, or function handle

Indicator of the robust fitting type to use, specified as the comma-separated pair consisting of 'RobustOpts' and one of the following.

- 'off' — No robust fitting. `fitlm` uses ordinary least squares.
- 'on' — Robust fitting. When you use robust fitting, 'bisquare' weight function is the default.

- Character vector or string scalar — Name of the robust fitting weight function from the following table. `fitlm` uses the corresponding default tuning constant in the table.

- Structure with the character vector or string scalar `RobustWgtFun` containing the name of the robust fitting weight function from the following table and optional scalar `Tune` fields — `fitlm` uses the `RobustWgtFun` weight function and `Tune` tuning constant from the structure. You can choose the name of the robust fitting weight function from this table. If you do not supply a `Tune` field, the fitting function uses the corresponding default tuning constant.
### Weight Functions

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td>( w = (\text{abs}(r)&lt;\pi) \times \sin(r) / r )</td>
<td>1.339</td>
</tr>
<tr>
<td>'bisquare'</td>
<td>( w = (\text{abs}(r)&lt;1) \times (1 - r.^2).^2 )</td>
<td>4.685</td>
</tr>
<tr>
<td>'cauchy'</td>
<td>( w = 1 / (1 + r.^2) )</td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td>( w = 1 / (1 + \text{abs}(r)) )</td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td>( w = 1 / \max(1, \text{abs}(r)) )</td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td>( w = \tanh(r) / r )</td>
<td>1.205</td>
</tr>
<tr>
<td>'ols'</td>
<td>Ordinary least squares (no weighting function)</td>
<td>None</td>
</tr>
<tr>
<td>'talwar'</td>
<td>( w = 1 \times (\text{abs}(r)&lt;1) )</td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td>( w = \exp(-(r.^2)) )</td>
<td>2.985</td>
</tr>
</tbody>
</table>

The value \( r \) in the weight functions is

\[
r = \frac{\text{resid}}{(\text{tune} \times s \times \sqrt{1-h})},
\]

where \( \text{resid} \) is the vector of residuals from the previous iteration, \( h \) is the vector of leverage values from a least-squares fit, and \( s \) is an estimate of the standard deviation of the error term given by

\[
s = \frac{\text{MAD}}{0.6745}.
\]

MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are \( p \) columns in \( X \), the smallest \( p \) absolute deviations are excluded when computing the median.

Default tuning constants give coefficient estimates that are approximately 95% as statistically efficient as the ordinary least-squares estimates, provided the response has a normal distribution with no outliers. Decreasing the tuning constant increases the downweight assigned to large residuals; increasing the tuning constant decreases the downweight assigned to large residuals.

- Structure with the function handle RobustWgtFun and optional scalar Tune fields — You can specify a custom weight function. `fitlm` uses the RobustWgtFun weight function and Tune tuning constant from the structure. Specify RobustWgtFun as a
function handle that accepts a vector of residuals, and returns a vector of weights the same size. The fitting function scales the residuals, dividing by the tuning constant (default 1) and by an estimate of the error standard deviation before it calls the weight function.

Example: 'RobustOpts','andrews'

**VarNames — Names of variables**

`{'x1','x2',..., 'xn', 'y'}` (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: string | cell

**Weights — Observation weights**

`ones(n,1)` (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

**Output Arguments**

mdl — Linear model

`LinearModel` object

Linear model representing a least-squares fit of the response to the data, returned as a `LinearModel` object.
If the value of the 'RobustOpts' name-value pair is not [] or 'ols', the model is not a least-squares fit, but uses the robust fitting function.

For more information on the properties and methods of the linear model object, mdl, see the LinearModel class page.

**Definitions**

**Terms Matrix**

A terms matrix is a $t$-by-($p + 1$) matrix specifying terms in a model, where $t$ is the number of terms, $p$ is the number of predictor variables, and plus one is for the response variable.

The value of $T(i, j)$ is the exponent of variable $j$ in term $i$. Suppose there are three predictor variables $A$, $B$, and $C$:

\[
\begin{align*}
[0 & 0 & 0 & 0] & \text{ % Constant term or intercept} \\
[0 & 1 & 0 & 0] & \text{ % B; equivalently, A^0 * B^1 * C^0} \\
[1 & 0 & 1 & 0] & \text{ % A*C} \\
[2 & 0 & 0 & 0] & \text{ % A^2} \\
[0 & 1 & 2 & 0] & \text{ % B*(C^2)}
\end{align*}
\]

The $0$ at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then $0$ must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of $0$s for the response variable.

\[
T = [0 \ 0 \ 0 \ 0;1 \ 0 \ 0 ;0 \ 0 \ 1 ;0 \ 0 \ 0 \ 1]
\]
Redefine the table.

dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

\[
T = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

\[
T = \begin{bmatrix}
0 & 0 & 0; 0 & 1 & 0; 0 & 0 & 1 \\
0 & 0 & 0; 1 & 0 & 0; 1 & 1 & 0; 0 & 2 & 0 \\
\end{bmatrix}
\]
Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:
  y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:
  y ~ 1 + x2

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
</tbody>
</table>

32-2170
The results of the stepwise regression are consistent with the results of `fitlm` in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form `'Y ~ terms'` where

- `Y` is the response name.
- `terms` contains
  - Variable names
  - `+` means include the next variable
  - `-` means do not include the next variable
  - `:` defines an interaction, a product of terms
  - `*` defines an interaction **and all lower-order terms**
  - `^` raises the predictor to a power, exactly as in `*` repeated, so `^` includes lower order terms as well
  - `()` groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include `-1` in the formula.

For example,

- `'Y ~ A + B + C'` means a three-variable linear model with intercept.
- `'Y ~ A + B + C - 1'` is a three-variable linear model without intercept.
- `'Y ~ A + B + C + B^2'` is a three-variable model with intercept and a `B^2` term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

Tips

- To access the model properties of the LinearModel object mdl, you can use dot notation. For example, mdl.Residuals returns a table of the raw, Pearson, Studentized, and standardized residual values for the model.
After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

- If any input argument to \texttt{fitlm} is a tall array, then all of the other inputs must be tall arrays as well. This includes nonempty variables supplied with the 'Weights' and 'Exclude' name-value pairs.
- The 'RobustOpts' name-value pair is not supported with tall arrays.
- For tall data, \texttt{fitlm} returns a CompactLinearModel object that contains most of the same properties as a LinearModel object. The main difference is that the compact object is sensitive to memory requirements. The compact object does not include properties that include the data, or that include an array of the same size as the data. The compact object does not contain these LinearModel properties:
  - Diagnostics
  - Fitted
  - ObservationInfo
  - ObservationNames
  - Residuals
  - Steps
  - Variables

You can compute the residuals directly from the compact object returned by \texttt{LM} = \texttt{fitlm}(	exttt{X},	exttt{Y}) using

\begin{verbatim}
RES = Y - predict(LM,X);
S = LM.RMSE;
histogram(RES,linspace(-3*S,3*S,51))
\end{verbatim}
• If the CompactLinearModel object is missing lower order terms that include categorical factors:
  • The plotEffects and plotInteraction methods are not supported.
  • The anova method with the 'components' option is not supported.

For more information, see “Tall Arrays” (MATLAB).

See Also
LinearModel | predict | stepwiselm

Topics
“Examine Quality and Adjust the Fitted Model” on page 11-20
“Predict or Simulate Responses to New Data” on page 11-38
“Linear Regression Workflow” on page 11-43
“Regression with Categorical Covariates” on page 2-63
“Linear Regression” on page 11-11

Introduced in R2013b
**fitlme**

Fit linear mixed-effects model

**Syntax**

```plaintext
lme = fitlme(tbl,formula)
lme = fitlme(tbl,formula,Name,Value)
```

**Description**

`lme = fitlme(tbl,formula)` returns a linear mixed-effects model, specified by `formula`, fitted to the variables in the table or dataset array `tbl`.

`lme = fitlme(tbl,formula,Name,Value)` returns a linear mixed-effects model with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the covariance pattern of the random-effects terms, the method to use in estimating the parameters, or options for the optimization algorithm.

**Examples**

**Fit Linear Mixed-Effects Model**

Load the sample data.

```plaintext
load imports-85
```

Store the variables in a table.

```plaintext
tbl = table(X(:,12),X(:,14),X(:,24),'VariableNames',{'Horsepower','CityMPG','EngineType'});
```

Display the first five rows of the table.

```plaintext
tbl(1:5,:)
```
Fit a linear mixed-effects model for miles per gallon in the city, with fixed effects for horsepower, and uncorrelated random effect for intercept and horsepower grouped by the engine type.

```matlab
lme = fitlme(tbl,'CityMPG~Horsepower+(1|EngineType)+(Horsepower-1|EngineType)');
```

In this model, CityMPG is the response variable, horsepower is the predictor variable, and engine type is the grouping variable. The fixed-effects portion of the model corresponds to 1 + Horsepower, because the intercept is included by default.

Since the random-effect terms for intercept and horsepower are uncorrelated, these terms are specified separately. Because the second random-effect term is only for horsepower, you must include a –1 to eliminate the intercept from the second random-effect term.

Display the model.

```matlab
lme
```

```
lme =
Linear mixed-effects model fit by ML

Model information:
 Number of observations 203
 Fixed effects coefficients 2
 Random effects coefficients 14
 Covariance parameters 3

Formula:
 CityMPG ~ 1 + Horsepower + (1 | EngineType) + (Horsepower | EngineType)

Model fit statistics:
 AIC BIC LogLikelihood Deviance
```

32-2176
### Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>37.276</td>
<td>2.8556</td>
<td>13.054</td>
<td>201</td>
<td>1.3147e-28</td>
</tr>
<tr>
<td>'Horsepower'</td>
<td>-0.12631</td>
<td>0.02284</td>
<td>-5.53</td>
<td>201</td>
<td>9.8848e-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.645</td>
<td>42.906</td>
</tr>
<tr>
<td>-0.17134</td>
<td>-0.081269</td>
</tr>
</tbody>
</table>

### Random effects covariance parameters (95% CIs):

**Group: EngineType (7 Levels)**

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>5.7338</td>
<td>2.3773</td>
</tr>
</tbody>
</table>

| Upper ||
|-------||
| 13.829|

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Horsepower'</td>
<td>'Horsepower'</td>
<td>'std'</td>
<td>0.050357</td>
<td>0.02307</td>
</tr>
</tbody>
</table>

| Upper ||
|-------||
| 0.10992|

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>3.226</td>
<td>2.9078</td>
<td>3.5789</td>
</tr>
</tbody>
</table>

Note that the random-effects covariance parameters for intercept and horsepower are separate in the display.

Now, fit a linear mixed-effects model for miles per gallon in the city, with the same fixed-effects term and potentially correlated random effect for intercept and horsepower grouped by the engine type.

```matlab
lme2 = fitlme(tbl,'CityMPG~Horsepower+(Horsepower|EngineType)');
```

Because the random-effect term includes the intercept by default, you do not have to add 1, the random effect term is equivalent to (1 + Horsepower|EngineType).
Display the model.

\texttt{lme2}

\texttt{lme2 =}
Linear mixed-effects model fit by ML

Model information:
  Number of observations             203
  Fixed effects coefficients           2
  Random effects coefficients         14
  Covariance parameters                4

Formula:
  CityMPG ~ 1 + Horsepower + (1 + Horsepower | EngineType)

Model fit statistics:
  AIC     BIC       LogLikelihood    Deviance
  1089    1108.9    -538.52          1077

Fixed effects coefficients (95% CIs):
  Name                 Estimate    SE          tStat      DF     pValue
  '(Intercept)'         33.824       4.0181     8.4178    201    7.1678e-15
  'Horsepower'         -0.1087     0.032912    -3.3029    201     0.0011328

  Lower      Upper
  25.901       41.747
  -0.1736    -0.043806

Random effects covariance parameters (95% CIs):
  Group: EngineType (7 Levels)
  Name1                Name2                Type          Estimate    Lower     Upper
  '(Intercept)'        '(Intercept)'        'std'           9.4952      4.7022
  'Horsepower'         '(Intercept)'        'corr'        -0.96843    -0.99568
  'Horsepower'         'Horsepower'         'std'         0.078874    0.039917

  Upper
  19.174
  -0.78738
  0.15585

Group: Error
  Name      Estimate    Lower     Upper
  32
Note that the random effects covariance parameters for intercept and horsepower are together in the display, and it includes the correlation ('corr') between the intercept and horsepower.

**Fit Random Intercept LME Model**

Load the sample data.
```matlab
load flu
```

The `flu` dataset array has a `Date` variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the Centers for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses, combine the nine columns corresponding to the regions into an array. The new dataset array, `flu2`, must have the new response variable `FluRate`, the nominal variable `Region` that shows which region each estimate is from, the nationwide estimate `WtdILI`, and the grouping variable `Date`.

```matlab
flu2 = stack(flu,2:10,'NewDataVarName','FluRate',... 'IndVarName','Region');
flu2.Date = nominal(flu2.Date);
```

Display the first six rows of `flu2`.
```matlab
flu2(1:6,:)
```

```
ans =
 Date WtdILI Region FluRate
 10/9/2005 1.182 NE 0.97
 10/9/2005 1.182 MidAtl 1.025
 10/9/2005 1.182 ENCcentral 1.232
 10/9/2005 1.182 WNCentral 1.286
 10/9/2005 1.182 SAtl 1.082
 10/9/2005 1.182 ESCentral 1.457
```
Fit a linear mixed-effects model with a fixed-effects term for the nationwide estimate, WtdILI, and a random intercept that varies by Date. The model corresponds to

\[ y_{im} = \beta_0 + \beta_1 WtdILI_{im} + b_{0m} + e_{im}, \quad i = 1, 2, ..., 468, \quad m = 1, 2, ..., 52, \]

where \( y_{im} \) is the observation \( i \) for level \( m \) of grouping variable Date, \( b_{0m} \) is the random effect for level \( m \) of the grouping variable Date, and \( e_{im} \) is the observation error for observation \( i \). The random effect has the prior distribution,

\[ b_{0m} \sim N(0, \sigma_b^2), \]

and the error term has the distribution,

\[ e_{im} \sim N(0, \sigma^2). \]

\[
\text{lme} = \text{fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')}
\]

\[
\text{lme} =
\text{Linear mixed-effects model fit by ML}
\]

Model information:
- Number of observations: 468
- Fixed effects coefficients: 2
- Random effects coefficients: 52
- Covariance parameters: 2

Formula:
- FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:
- AIC: 286.24
- BIC: 302.83
- LogLikelihood: -139.12
- Deviance: 278.24

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.16385</td>
<td>0.057525</td>
<td>2.8484</td>
<td>466</td>
<td>0.0045885</td>
</tr>
<tr>
<td>'WtdILI'</td>
<td>0.7236</td>
<td>0.032219</td>
<td>22.459</td>
<td>466</td>
<td>3.0502e-76</td>
</tr>
</tbody>
</table>

Lower       Upper
Estimated covariance parameters are displayed in the section titled "Random effects covariance parameters". The estimated value of $\sigma_b$ is 0.17146 and its 95% confidence interval is [0.13227, 0.22226]. Since this interval does not include 0, the random-effects term is significant. You can formally test the significance of any random-effects term using a likelihood ratio test via the `compare` method.

The estimated response at an observation is the sum of the fixed effects and the random-effect value at the grouping variable level corresponding to that observation. For example, the estimated flu rate for observation 28 is

$$\hat{y}_{28} = \hat{\beta}_0 + \hat{\beta}_1 \text{WtdILI}_{28} + \hat{b}_{10/30/2005}$$
$$= 0.1639 + 0.7236 \times (1.343) + 0.3318$$
$$= 1.46749,$$

where $\hat{b}$ is the estimated best linear unbiased predictor (BLUP) of the random effects for the intercept. You can compute this value as follows.

```matlab
beta = fixedEffects(lme);
[-~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')
y_hat = 1.4674
```
You can display the fitted value using the `fitted` method.

```matlab
F = fitted(lme);
F(28)
```

```matlab
ans = 1.4674
```

**LME Model for Randomized Block Design**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The data shows the absolute deviations from the target quality characteristic measured from the products each of five operators manufacture during three shifts: morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the absolute deviations of the quality characteristics from the target value. This is simulated data.

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if performance significantly differs according to the time of the shift. Use the restricted maximum likelihood method and 'effects' contrasts.

'effects' contrasts mean that the coefficients sum to 0, and `fitlme` creates a matrix called a fixed effects design matrix to describe the effect of shift. This matrix has two columns, `Shift_Evening` and `Shift_Morning`, where

\[
\text{Shift}_\text{Evening} = \begin{cases} 
0, & \text{if Morning} \\
1, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]

\[
\text{Shift}_\text{Morning} = \begin{cases} 
1, & \text{if Morning} \\
0, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]

The model corresponds to
Morning Shift: \[ QCD_{im} = \beta_0 + \beta_2 \text{Shift\_Morning}_i + b_{0m} + e_{im}, \]
Evening Shift: \[ QCD_{im} = \beta_0 + \beta_1 \text{Shift\_Evening}_i + b_{0m} + e_{im}, \]
Night Shift: \[ QCD_{im} = \beta_0 - \beta_1 \text{Shift\_Evening}_i - \beta_2 \text{Shift\_Morning}_i + b_{0m} + e_{im}, \]

where \( i \) represents the observations, and \( m \) represents the operators, \( i = 1, 2, \ldots, 15 \), and \( m = 1, 2, \ldots, 5 \). The random effects and the observation error have the following distributions:

\[ b_{0m} \sim N(0, \sigma^2_b) \]

and

\[ e_{im} \sim N(0, \sigma^2). \]

\[ \text{lme} = \text{fitlme}(\text{shift},'QCD_{im} \sim \text{Shift} + (1|\text{Operator})',\ldots \]
\[ '\text{FitMethod}','\text{REML}','\text{DummyVarCoding}','\text{effects}') \]

\[ \text{lme} = \]
Linear mixed-effects model fit by REML

Model information:
- Number of observations: 15
- Fixed effects coefficients: 3
- Random effects coefficients: 5
- Covariance parameters: 2

Formula:
\[ QCD_{im} \sim 1 + \text{Shift} + (1 | \text{Operator}) \]

Model fit statistics:
- AIC: 58.913
- BIC: 61.337
- LogLikelihood: -24.456
- Deviance: 48.913

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>3.6525</td>
<td>0.94109</td>
<td>3.8812</td>
<td>12</td>
<td>0.0021832</td>
</tr>
<tr>
<td>'Shift_Evening'</td>
<td>-0.53293</td>
<td>0.31206</td>
<td>-1.7078</td>
<td>12</td>
<td>0.11339</td>
</tr>
<tr>
<td>'Shift_Morning'</td>
<td>-0.91973</td>
<td>0.31206</td>
<td>-2.9473</td>
<td>12</td>
<td>0.012206</td>
</tr>
</tbody>
</table>
Lower      Upper
1.6021       5.703
-1.2129      0.14699
-1.5997     -0.23981

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
   Name1                Name2                Type         Estimate    Lower    Upper
   '(Intercept)'        '(Intercept)'        'std'        2.0457      0.98207  4.2612

Group: Error
   Name             Estimate    Lower      Upper
   'Res Std'        0.85462     0.52357    1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

\[ B = \text{randomEffects}(lme) \]

\[ B = 5 \times 1 \]

\[
\begin{align*}
0.5775 \\
1.1757 \\
-2.1715 \\
2.3655 \\
-1.9472 \\
\end{align*}
\]

The estimated absolute deviation from the target quality characteristics for the third operator working the evening shift is

\[
\hat{y}_{\text{Evening,Operator3}} = \hat{\beta}_0 + \hat{\beta}_{1\text{Shift_Evening}} + \hat{b}_{03}
\]

\[
= 3.6525 - 0.53293 - 2.1715
\]

\[= 0.94807.\]

You can also display this value as follows.

\[ F = \text{fitted}(lme); \]
\[ F(\text{shift.Shift=='Evening' & shift.Operator=='3'}) \]
ans = 0.9481

Similarly, you can calculate the estimated absolute deviation from the target quality characteristics for the third operator working the morning shift as

\[ \hat{y}_{\text{Morning,Operator3}} = \hat{\beta}_0 + \hat{\beta}_2 \text{Shift}_\text{Morning} + \hat{b}_{03} \]
\[ = 3.6525 - 0.91973 - 2.1715 \]
\[ = 0.56127. \]

You can also display this value as follows.

\[ F(\text{shift.Shift}=='\text{Morning}' \& \text{shift.Operator}=='3') \]
\[ ans = 0.5613 \]

The operator tends to make a smaller magnitude of error during the morning shift.

**LME Model for Split-Plot Experiment**

Load the sample data.

\[ \text{load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))} \]

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, and define Tomato, Soil, and Fertilizer as categorical variables.

\[ \text{ds = fertilizer;} \]
\[ \text{ds.Tomato = nominal(ds.Tomato);} \]
\[ \text{ds.Soil = nominal(ds.Soil);} \]
\[ \text{ds.Fertilizer = nominal(ds.Fertilizer);} \]

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil types) independently.
This model corresponds to

\[
y_{imjk} = \beta_0 + \sum_{m=2}^{4} \beta_{im} I[F]_{im} + \sum_{j=2}^{5} \beta_{2j} I[T]_{ij} + \sum_{j=2}^{5} \sum_{m=2}^{4} \beta_{3mj} I[F]_{im} I[T]_{ij} + b_{0k} S_k + b_{0jk} (S \times T)_{jk} + \epsilon_{imjk},
\]

where \( i = 1, 2, ..., 60 \), index \( m \) corresponds to the fertilizer types, \( j \) corresponds to the tomato types, and \( k = 1, 2, 3 \) corresponds to the blocks (soil). \( S_k \) represents the \( k \)th soil type, and \( (S \times T)_{jk} \) represents the \( j \)th tomato type nested in the \( k \)th soil type. \( I[F]_{im} \) is the dummy variable representing level \( m \) of the fertilizer. Similarly, \( I[T]_{ij} \) is the dummy variable representing level \( j \) of the tomato type.

The random effects and observation error have these prior distributions: \( b_{0k} \sim N(0, \sigma_S^2) \), \( b_{0jk} \sim N(0, \sigma_{S \times T}^2) \), and \( \epsilon_{imjk} \sim N(0, \sigma^2) \).

\[
lme = \text{fitlme}(ds, 'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)')
\]

\[
lme =
\]
Linear mixed-effects model fit by ML

Model information:
- Number of observations: 60
- Fixed effects coefficients: 20
- Random effects coefficients: 18
- Covariance parameters: 3

Formula:
- \( Y ~ 1 + Tomato \times Fertilizer + (1 | Soil) + (1 | Soil:Tomato) \)

Model fit statistics:
- AIC: 522.57
- BIC: 570.74
- LogLikelihood: -238.29
- Deviance: 476.57

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>77</td>
<td>8.5836</td>
<td>8.9706</td>
<td>40</td>
</tr>
<tr>
<td>Tomato_Grape</td>
<td>-16</td>
<td>11.966</td>
<td>-1.3371</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>pValue</td>
<td>Lower</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>'Tomato_Heirloom'</td>
<td>-6.6667</td>
<td>11.966</td>
<td>4.0206e-11</td>
<td>59.652</td>
</tr>
<tr>
<td>'Tomato_Plum'</td>
<td>32.333</td>
<td>11.966</td>
<td>0.18873</td>
<td>-40.184</td>
</tr>
<tr>
<td>'Tomato_Vine'</td>
<td>-13</td>
<td>11.966</td>
<td>0.58053</td>
<td>-30.85</td>
</tr>
<tr>
<td>'Fertilizer_2'</td>
<td>34.667</td>
<td>8.572</td>
<td>0.010059</td>
<td>8.1496</td>
</tr>
<tr>
<td>'Fertilizer_3'</td>
<td>33.667</td>
<td>8.572</td>
<td>0.28379</td>
<td>-37.184</td>
</tr>
<tr>
<td>'Fertilizer_4'</td>
<td>47.667</td>
<td>8.572</td>
<td>0.00023272</td>
<td>17.342</td>
</tr>
<tr>
<td>'Tomato_Grape:Fertilizer_2'</td>
<td>-2.6667</td>
<td>12.123</td>
<td>0.00033057</td>
<td>16.342</td>
</tr>
<tr>
<td>'Tomato_Heirloom:Fertilizer_2'</td>
<td>-8</td>
<td>12.123</td>
<td>1.9567e-06</td>
<td>30.342</td>
</tr>
<tr>
<td>'Tomato_Vine:Fertilizer_2'</td>
<td>-16</td>
<td>12.123</td>
<td>0.51309</td>
<td>-32.501</td>
</tr>
<tr>
<td>'Tomato_Grape:Fertilizer_3'</td>
<td>16.667</td>
<td>12.123</td>
<td>0.00023272</td>
<td>17.342</td>
</tr>
<tr>
<td>'Tomato_Heirloom:Fertilizer_3'</td>
<td>3.3333</td>
<td>12.123</td>
<td>0.00033057</td>
<td>16.342</td>
</tr>
<tr>
<td>'Tomato_Plum:Fertilizer_3'</td>
<td>3</td>
<td>12.123</td>
<td>0.27796</td>
<td>-11.167</td>
</tr>
<tr>
<td>'Tomato_Vine:Fertilizer_3'</td>
<td>8.6667</td>
<td>12.123</td>
<td>0.12492</td>
<td>-43.501</td>
</tr>
<tr>
<td>'Tomato_Grape:Fertilizer_4'</td>
<td>13.333</td>
<td>12.123</td>
<td>0.00023272</td>
<td>17.342</td>
</tr>
<tr>
<td>'Tomato_Heirloom:Fertilizer_4'</td>
<td>-19</td>
<td>12.123</td>
<td>0.00033057</td>
<td>16.342</td>
</tr>
<tr>
<td>'Tomato_Plum:Fertilizer_4'</td>
<td>-2.6667</td>
<td>12.123</td>
<td>0.78476</td>
<td>-21.167</td>
</tr>
<tr>
<td>'Tomato_Vine:Fertilizer_4'</td>
<td>8.6667</td>
<td>12.123</td>
<td>0.76387</td>
<td>-20.834</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):
Group: Soil (3 Levels)
The \( P \)-values corresponding to the last 12 rows in the fixed-effects coefficients display (0.82701 to 0.47881) indicate that interaction coefficients between the tomato and fertilizer types are not significant. To test for the overall interaction between tomato and fertilizer, use the anova method after refitting the model using 'effects' contrasts.

The confidence interval for the standard deviations of the random-effects terms (\( \sigma^2_s \)), where the intercept is grouped by soil, is very large. This term does not appear significant.

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects term (1 | Soil).

```
lme = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)')
lme =
Linear mixed-effects model fit by ML

Model information:
 Number of observations 60
 Fixed effects coefficients 8
 Random effects coefficients 15
 Covariance parameters 2
```
Formula:
   Yield ~ 1 + Tomato + Fertilizer + (1 | Soil:Tomato)

Model fit statistics:
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIC</td>
<td>BIC</td>
<td>LogLikelihood</td>
<td>Deviance</td>
</tr>
<tr>
<td></td>
<td>511.06</td>
<td>532</td>
<td>-245.53</td>
<td>491.06</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>77.733</td>
<td>7.3293</td>
<td>10.606</td>
<td>52</td>
<td>1.3108e-14</td>
</tr>
<tr>
<td>'Tomato_Grape'</td>
<td>-9.1667</td>
<td>9.6045</td>
<td>-0.95441</td>
<td>52</td>
<td>0.34429</td>
</tr>
<tr>
<td>'Tomato_Heirloom'</td>
<td>-12.583</td>
<td>9.6045</td>
<td>-1.3102</td>
<td>52</td>
<td>0.1959</td>
</tr>
<tr>
<td>'Tomato_Plum'</td>
<td>28.833</td>
<td>9.6045</td>
<td>3.0021</td>
<td>52</td>
<td>0.0041138</td>
</tr>
<tr>
<td>'Tomato_Vine'</td>
<td>-14.083</td>
<td>9.6045</td>
<td>-1.4663</td>
<td>52</td>
<td>0.14858</td>
</tr>
<tr>
<td>'Fertilizer_2'</td>
<td>26.333</td>
<td>4.5004</td>
<td>5.8514</td>
<td>52</td>
<td>3.3024e-07</td>
</tr>
<tr>
<td>'Fertilizer_3'</td>
<td>39</td>
<td>4.5004</td>
<td>8.6659</td>
<td>52</td>
<td>1.1459e-11</td>
</tr>
<tr>
<td>'Fertilizer_4'</td>
<td>47.733</td>
<td>4.5004</td>
<td>10.607</td>
<td>52</td>
<td>1.308e-14</td>
</tr>
</tbody>
</table>

Lower      | Upper
63.026     | 92.441
-28.439    | 10.106
-31.856    | 6.6895
9.5605     | 48.106
-33.356    | 5.1895
17.303     | 35.364
29.969     | 48.031
38.703     | 56.764

Random effects covariance parameters (95% CIs):
Group: Soil:Tomato (15 Levels)
<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>10.02</td>
<td>6.0812</td>
</tr>
</tbody>
</table>

   | Upper |
   | 16.509|

Group: Error
<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>12.325</td>
<td>10.024</td>
<td>15.153</td>
</tr>
</tbody>
</table>
You can compare the two models using the `compare` method with the simulated likelihood ratio test since both a fixed-effect and a random-effect term are tested.

**Longitudinal Study with a Covariate**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'))
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs (A, B, C, D), and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.

```matlab
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

`fitlme` uses program A as a reference and creates the necessary dummy variables $I[.]$. Since the model already has an intercept, `fitlme` only creates dummy variables for programs B, C, and D. This is also known as the 'reference' method of coding dummy variables.

This model corresponds to

$$y_{im} = \beta_0 + \beta_1 I[W]_i + \beta_2 \text{Week}_i + \beta_3 I[PB]_i + \beta_4 I[PC]_i + \beta_5 I[PD]_i$$

$$+ \beta_6 (\text{Week}_i \times I[PB]_i) + \beta_7 (\text{Week}_i \times I[PC]_i) + \beta_8 (\text{Week}_i \times I[PD]_i)$$

$$+ b_{0m} + b_{1m} \text{Week}_{im} + \epsilon_{im}.$$ 

where $i = 1, 2, ..., 120$, and $m = 1, 2, ..., 20$. $\beta_j$ are the fixed-effects coefficients, $j = 0, 1, ..., 8$, and $b_{0m}$ and $b_{1m}$ are random effects. $I[W]$ stands for initial weight and $I[.\cdot]$ is a
dummy variable representing a type of program. For example, $I_{[PB]}_i$ is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

\[
b_{0m} \sim N(0, \sigma_0^2)
\]

\[
b_{1m} \sim N(0, \sigma_1^2)
\]

\[
\varepsilon_{im} \sim N(0, \sigma^2).
\]

\[
lme = \text{fitlme}(\text{tbl}, 'y \sim \text{InitialWeight} + \text{Program*Week} + (\text{Week}|\text{Subject})')
\]

\[
lme = \quad \text{Linear mixed-effects model fit by ML}
\]

Model information:

- Number of observations: 120
- Fixed effects coefficients: 9
- Random effects coefficients: 40
- Covariance parameters: 4

Formula:
\[
y \sim 1 + \text{InitialWeight} + \text{Program*Week} + (1 + \text{Week} | \text{Subject})
\]

Model fit statistics:

<table>
<thead>
<tr>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>0.66105</td>
<td>0.25892</td>
<td>2.5531</td>
<td>111</td>
</tr>
<tr>
<td>'InitialWeight'</td>
<td>0.0031879</td>
<td>0.0013814</td>
<td>2.3078</td>
<td>111</td>
</tr>
<tr>
<td>'Program B'</td>
<td>0.36079</td>
<td>0.13139</td>
<td>2.746</td>
<td>111</td>
</tr>
<tr>
<td>'Program C'</td>
<td>-0.033263</td>
<td>0.13117</td>
<td>-0.25358</td>
<td>111</td>
</tr>
<tr>
<td>'Program D'</td>
<td>0.11317</td>
<td>0.13132</td>
<td>0.86175</td>
<td>111</td>
</tr>
<tr>
<td>'Week'</td>
<td>0.1732</td>
<td>0.067454</td>
<td>2.5677</td>
<td>111</td>
</tr>
<tr>
<td>'Program B:Week'</td>
<td>0.038771</td>
<td>0.095394</td>
<td>0.40644</td>
<td>111</td>
</tr>
<tr>
<td>'Program C:Week'</td>
<td>0.030543</td>
<td>0.095394</td>
<td>0.32018</td>
<td>111</td>
</tr>
<tr>
<td>'Program D:Week'</td>
<td>0.033114</td>
<td>0.095394</td>
<td>0.34713</td>
<td>111</td>
</tr>
</tbody>
</table>

32-2191
The $p$-values 0.022863 and 0.011567 indicate significant effects of subject initial weights and time in the amount of weight lost. The weight loss of subjects who are in program B is significantly different relative to the weight loss of subjects who are in program A. The lower and upper limits of the covariance parameters for the random effects do not include 0, thus they are significant. You can also test the significance of the random effects using the `compare` method.

### Input Arguments

tbl — Input data

table | dataset array
Input data, which includes the response variable, predictor variables, and grouping variables, specified as a table or dataset array. The predictor variables can be continuous or grouping variables (see “Grouping Variables” on page 2-57). You must specify the model for the variables using formula.

Data Types: table

### formula — Formula for model specification

character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'  

Formula for model specification, specified as a character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'. The formula is case sensitive. For a full description, see “Formula” on page 32-2199.

Example: 'y ~ treatment + (1|block)'

### Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:  
'CovariancePattern','Diagonal','Optimizer','fminunc','OptimizerOptions',opt specifies a model, where the random-effects terms have a diagonal covariance matrix structure, and fitlme uses the fminunc optimization algorithm with the custom optimization parameters defined in variable opt.

### CovariancePattern — Pattern of covariance matrix

'FullCholesky' (default) | character vector | string scalar | square symmetric logical matrix | string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair consisting of 'CovariancePattern' and a character vector, a string scalar, a square symmetric logical matrix, a string array, or a cell array of character vectors or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be a string array or cell array of length R, where each element r of the array specifies the pattern of the covariance matrix of the random-effects vector associated with the rth random-effects term. The options for each element follow.
| 'FullCholesky'          | Default. Full covariance matrix using the Cholesky parameterization. `fitlme` estimates all elements of the covariance matrix. |
| 'Full'                 | Full covariance matrix, using the log-Cholesky parameterization. `fitlme` estimates all elements of the covariance matrix. |
| 'Diagonal'             | Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0.  
\[
\begin{pmatrix}
\sigma_{b1}^2 & 0 & 0 \\
0 & \sigma_{b2}^2 & 0 \\
0 & 0 & \sigma_{b3}^2 \\
\end{pmatrix}
\]
| 'Isotropic'            | Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like  
\[
\begin{pmatrix}
\sigma_b^2 & 0 & 0 \\
0 & \sigma_b^2 & 0 \\
0 & 0 & \sigma_b^2 \\
\end{pmatrix}
\]
where \(\sigma_b^2\) is the common variance of the random-effects terms.
'CompSymm'

Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma^2_{b1} & \sigma_{b1,b2} & \sigma_{b1,b2} \\
\sigma_{b1,b2} & \sigma^2_{b1} & \sigma_{b1,b2} \\
\sigma_{b1,b2} & \sigma_{b1,b2} & \sigma^2_{b1}
\end{pmatrix}
\]

where \( \sigma^2_{b1} \) is the common variance of the random-effects terms and \( \sigma_{b1,b2} \) is the common covariance between any two random-effects term.

PAT

Square symmetric logical matrix. If 'CovariancePattern' is defined by the matrix PAT, and if \( \text{PAT}(a,b) = \text{false} \), then the \((a,b)\) element of the corresponding covariance matrix is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern','{Full','Diagonal'}

Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters

'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-separated pair consisting of 'FitMethod' and either of the following.

'ML'

Default. Maximum likelihood estimation

'REML'

Restricted maximum likelihood estimation

Example: 'FitMethod','REML'
Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length \( n \), where \( n \) is the number of observations.

Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.

Example: 'Exclude',[13,67]

Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'reference'</td>
<td>Default. Coefficient for first category set to 0.</td>
</tr>
<tr>
<td>'effects'</td>
<td>Coefficients sum to 0.</td>
</tr>
<tr>
<td>'full'</td>
<td>One dummy variable for each category.</td>
</tr>
</tbody>
</table>

Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and either of the following.
'quasinewton' Default. Uses a trust region based quasi-
Newton optimizer. Change the options of
the algorithm using
statset('LinearMixedModel'). If you
don’t specify the options, then
LinearMixedModel uses the default
options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox to
specify this option. Change the options of
the algorithm using
optimoptions('fminunc'). If you don’t
specify the options, then
LinearMixedModel uses the default
options of optimoptions('fminunc')
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

OptimizerOptions — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of 'OptimizerOptions' and a structure returned by
statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

- If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the
  options of the optimization algorithm. See optimoptions for the options 'fminunc'
  uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
  then the default for LinearMixedModel is the default options created by
  optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.
- If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel') to
  change the optimization parameters. If you don’t change the optimization parameters,
  then LinearMixedModel uses the default options created by
  statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').
**TolFun — Relative tolerance on gradient of objective function**
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

**TolX — Absolute tolerance on step size**
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

**MaxIter — Maximum number of iterations allowed**
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

**Display — Level of display**
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

**StartMethod — Method to start iterative optimization**
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of 'StartMethod' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'default'</td>
<td>An internally defined default value</td>
</tr>
<tr>
<td>'random'</td>
<td>A random initial value</td>
</tr>
</tbody>
</table>

Example: 'StartMethod','random'

**Verbose — Indicator to display optimization process on screen**
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true
CheckHessian — Indicator to check positive definiteness of Hessian

false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to unconstrained parameters at convergence, specified as the comma-separated pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is overparameterized in the number of covariance parameters.

Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

Definitions

Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~ terms'. For the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

- A response variable, y
- Predictor variables, X_j, which can be continuous or grouping variables
- Grouping variables, g_1, g_2, ..., g_R,

where the grouping variables in X_j and g_r can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random_1|g_1) + ... + (random_R|g_R)', the term fixed corresponds to a specification of the fixed-effects design matrix X,
random\textsubscript{1} is a specification of the random-effects design matrix \(Z_1\) corresponding to grouping variable \(g_1\), and similarly random\textsubscript{R} is a specification of the random-effects design matrix \(Z_R\) corresponding to grouping variable \(g_R\). You can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>(X^k), where (k) is a positive integer</td>
<td>(X, X^2, ..., X^k)</td>
</tr>
<tr>
<td>(X_1 + X_2)</td>
<td>(X_1, X_2)</td>
</tr>
<tr>
<td>(X_1 \times X_2)</td>
<td>(X_1, X_2, X_1 \times X_2) (elementwise multiplication of (X_1) and (X_2))</td>
</tr>
<tr>
<td>(X_1 : X_2)</td>
<td>(X_1 \times X_2) only</td>
</tr>
<tr>
<td>(- X_2)</td>
<td>Do not include (X_2)</td>
</tr>
<tr>
<td>(X_1 \times X_2 + X_3)</td>
<td>(X_1, X_2, X_3, X_1 \times X_2)</td>
</tr>
<tr>
<td>(X_1 + X_2 + X_3 + X_1 : X_2)</td>
<td>(X_1, X_2, X_3, X_1 \times X_2)</td>
</tr>
<tr>
<td>(X_1 \times X_2 \times X_3 - X_1 : X_2 : X_3)</td>
<td>(X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3, X_2 \times X_3)</td>
</tr>
<tr>
<td>(X_1 \times (X_2 + X_3))</td>
<td>(X_1, X_2, X_3, X_1 \times X_2, X_1 \times X_3)</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1. Here are some examples for linear mixed-effects model specification.

**Examples:**

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y \sim X_1 + X_2'</td>
<td>Fixed effects for the intercept, (X_1) and (X_2). This is equivalent to 'y \sim 1 + X_1 + X_2'.</td>
</tr>
<tr>
<td>'y \sim -1 + X_1 + X_2'</td>
<td>No intercept and fixed effects for (X_1) and (X_2). The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (X1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1) + (1</td>
</tr>
</tbody>
</table>

**Cholesky Parameterization**

One of the assumptions of linear mixed-effects models is that the random effects have the following prior distribution.

\[
b \sim N\left(0, \sigma^2 D(\theta)\right),
\]

where \(D\) is a \(q\)-by-\(q\) symmetric and positive semidefinite matrix, parameterized by a variance component vector \(\theta\), \(q\) is the number of variables in the random-effects term, and \(\sigma^2\) is the observation error variance. Since the covariance matrix of the random effects, \(D\), is symmetric, it has \(q(q+1)/2\) free parameters. Suppose \(L\) is the lower triangular Cholesky factor of \(D(\theta)\) such that

\[
D(\theta) = L(\theta) L(\theta)^T,
\]

then the \(q^*(q+1)/2\)-by-1 unconstrained parameter vector \(\theta\) is formed from elements in the lower triangular part of \(L\).

For example, if
\[ L = \begin{bmatrix}
  L_{11} & 0 & 0 \\
  L_{21} & L_{22} & 0 \\
  L_{31} & L_{32} & L_{33}
\end{bmatrix}, \]

then

\[ \theta = \begin{bmatrix}
  L_{11} \\
  L_{21} \\
  L_{31} \\
  L_{22} \\
  L_{32} \\
  L_{33}
\end{bmatrix}. \]

**Log-Cholesky Parameterization**

When the diagonal elements of \( L \) in Cholesky parameterization are constrained to be positive, then the solution for \( L \) is unique. Log-Cholesky parameterization is the same as Cholesky parameterization except that the logarithm of the diagonal elements of \( L \) are used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing \( L_{ii} \geq 0 \),

\[ \theta = \begin{bmatrix}
  \log(L_{11}) \\
  L_{21} \\
  L_{31} \\
  \log(L_{22}) \\
  L_{32} \\
  \log(L_{33})
\end{bmatrix}. \]

**Alternatives**

If your model is not easily described using a formula, you can create matrices to define the fixed and random effects, and fit the model using `fitlmematrix(X,y,Z,G)`. 
References


See Also
LinearMixedModel | fitlmematrix

Introduced in R2013b
**fitlmematrix**

Fit linear mixed-effects model

**Syntax**

```matlab
lme = fitlmematrix(X,y,Z,[])
lme = fitlmematrix(X,y,Z,G)
lme = fitlmematrix(___,'Name',Value)
```

**Description**

`lme = fitlmematrix(X,y,Z,[])` creates a linear mixed-effects model of the responses `y` using the fixed-effects design matrix `X` and random-effects design matrix or matrices in `Z`.

`[]` implies that there is one group. That is, the grouping variable `G` is `ones(n,1)`, where `n` is the number of observations. Using `fitlmematrix(X,y,Z,[])` without a specified covariance pattern most likely results in a nonidentifiable model. This syntax is recommended only if you build the grouping information into the random effects design `Z` and specify a covariance pattern for the random effects using the 'CovariancePattern' name-value pair argument.

`lme = fitlmematrix(X,y,Z,G)` creates a linear mixed-effects model of the responses `y` using the fixed-effects design matrix `X` and random-effects design matrix `Z` or matrices in `Z`, and the grouping variable or variables in `G`.

`lme = fitlmematrix(___,'Name',Value)` also creates a linear mixed-effects model with additional options specified by one or more `Name`, `Value` pair arguments, using any of the previous input arguments.

For example, you can specify the names of the response, predictor, and grouping variables. You can also specify the covariance pattern, fitting method, or the optimization algorithm.
Examples

No Grouping Variable Specified

Load the sample data.

load carsmall

Fit a linear mixed-effects model, where miles per gallon (MPG) is the response, weight is the predictor variable, and the intercept varies by model year. First, define the design matrices. Then, fit the model using the specified design matrices.

y = MPG;
X = [ones(size(Weight)), Weight];
Z = ones(size(y));
lme = fitlmematrix(X,y,Z,Model_Year)

lme =
Linear mixed-effects model fit by ML

Model information:
  Number of observations              94
  Fixed effects coefficients           2
  Random effects coefficients          3
  Covariance parameters                2

Formula:
  y ~ x1 + x2 + (z11 | g1)

Model fit statistics:
  AIC       BIC       LogLikelihood    Deviance
  486.09    496.26    -239.04          478.09

Fixed effects coefficients (95% CIs):
  Name        Estimate      SE           tStat      DF    pValue
  'x1'            43.575       2.3038     18.915    92    1.8371e-33
  'x2'        -0.0067097    0.0004242    -15.817    92    5.5373e-28

  Lower         Upper
    39        48.151
  -0.0075522 -0.0058672
Now, fit the same model by building the grouping into the Z matrix.

\[
Z = \text{double}([\text{Model\_Year}\text{==70}, \text{Model\_Year}\text{==76}, \text{Model\_Year}\text{==82}]);
\]

\[
lme = \text{fitlmematrix}(X,y,Z,[])\text{,'Covariancepattern','Isotropic'}
\]

Random effects covariance parameters (95% CIs):

<table>
<thead>
<tr>
<th>Group: g1 (3 Levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name1</td>
</tr>
<tr>
<td>'z11'</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>2.8997</td>
<td>2.5075</td>
<td>3.3532</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'x1'</td>
<td>43.575</td>
<td>2.3038</td>
<td>18.915</td>
<td>92</td>
<td>1.8371e-33</td>
</tr>
<tr>
<td>'x2'</td>
<td>-0.0067097</td>
<td>0.0004242</td>
<td>-15.817</td>
<td>92</td>
<td>5.5373e-28</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

<table>
<thead>
<tr>
<th>Group: g1 (1 Levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name1</td>
</tr>
<tr>
<td>'z11'</td>
</tr>
</tbody>
</table>
Longitudinal Study with a Covariate

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'))
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise programs (A, B, C, D) and their weight loss is recorded over six 2-week time periods. This is simulated data.

Define `Subject` and `Program` as categorical variables. Create the design matrices for a linear mixed-effects model, with the initial weight, type of program, week, and the interaction between the week and type of program as the fixed effects. The intercept and coefficient of week vary by subject.

This model corresponds to

\[
y_{im} = \beta_0 + \beta_1 IW_i + \beta_2 \text{Week}_i + \beta_3 I[\text{PB}]_i + \beta_4 I[\text{PC}]_i + \beta_5 I[\text{PD}]_i \\
+ \beta_6 (\text{Week}_i * I[\text{PB}]_i) + \beta_7 (\text{Week}_i * I[\text{PC}]_i) + \beta_8 (\text{Week}_i * I[\text{PD}]_i) \\
+ b_{0m} + b_{1m} \text{Week}_{im} + \epsilon_{im},
\]

where \( i = 1, 2, ..., 120 \) and \( m = 1, 2, ..., 20 \). \( \beta_j \) are the fixed-effects coefficients, \( j = 0, 1, ..., 8 \), and \( b_{0m} \) and \( b_{1m} \) are random effects. \( IW \) stands for initial weight and \( I[\cdot] \) is a dummy variable representing a type of program. For example, \( I[\text{PB}]_i \) is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

\[
b_{0m} \sim N(0, \sigma_0^2) \\
b_{1m} \sim N(0, \sigma_1^2)
\]
\[ \epsilon_{im} \sim N(0, \sigma^2). \]

```matlab
Subject = nominal(Subject);
Program = nominal(Program);
D = dummyvar(Program); % Create dummy variables for Program
X = [ones(120,1), InitialWeight, D(:,2:4), Week,...
 D(:,2).*Week, D(:,3).*Week, D(:,4).*Week];
Z = [ones(120,1), Week];
G = Subject;

Since the model has an intercept, you only need the dummy variables for programs B, C,
and D. This is also known as the 'reference' method of coding dummy variables.

Fit the model using `fitlmematrix` with the defined design matrices and grouping
variables.

```matlab
lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',...%
{[Intercept','InitWeight','PrgB','PrgC','PrgD','Week','Week_PrgB','Week_PrgC','Week_PrgD'],...
'ReferenceGroup','Subject')
```
Examine the fixed effects coefficients table. The row labeled 'InitWeight' has a \(p \)-value of 0.0228, and the row labeled 'Week' has a \(p \)-value of 0.0115. These \(p \)-values indicate significant effects of the initial weights of the subjects and the time factor in the amount of weight lost. The weight loss of subjects who are in program B is significantly different relative to the weight loss of subjects who are in program A. The lower and upper limits of the covariance parameters for the random effects do not include zero, thus they seem significant. You can also test the significance of the random-effects using the compare method.
Random Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables for estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the Centers for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, where the influenza rates are the responses, combine the nine columns corresponding to the regions into an array that has a single response variable, FluRate, and a nominal variable, Region, the nationwide estimate WtdILI, that shows which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
 'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Define the design matrices for a random-intercept linear mixed-effects model, where the intercept varies by Date. The corresponding model is

\[
y_{im} = \beta_0 + \beta_1 WtdILI_{im} + b_{0m} + e_{im}, \quad i = 1, 2, ..., 468, \quad m = 1, 2, ..., 52,
\]

where \(y_{im} \) is the observation \(i \) for level \(m \) of grouping variable Date, \(b_{0m} \) is the random effect for level \(m \) of the grouping variable Date, and \(e_{im} \) is the observation error for observation \(i \). The random effect has the prior distribution,

\[
b_{0m} \sim N(0, \sigma_b^2),
\]

and the error term has the distribution,

\[
e_{im} \sim N(0, \sigma^2).
\]

y = flu2.FluRate;
X = [ones(468,1) flu2.WtdILI];
Z = [ones(468,1)];
G = flu2.Date;
Fit the linear mixed-effects model.

\[
lme = \text{fitlmematrix}(X,y,Z,G,'FixedEffectPredictors',\{'\text{Intercept}','\text{NationalRate}'\},...\text{\}'RandomEffectPredictors',\{\{'\text{Intercept}'\}\},'RandomEffectGroups',\{'\text{Date}'\})
\]

\[
lme =
\]
Linear mixed-effects model fit by ML

Model information:
- Number of observations: 468
- Fixed effects coefficients: 2
- Random effects coefficients: 52
- Covariance parameters: 2

Formula:
\[
y \sim \text{Intercept} + \text{NationalRate} + (\text{Intercept} | \text{Date})
\]

Model fit statistics:
\[
\begin{array}{cccc}
\text{AIC} & \text{BIC} & \text{LogLikelihood} & \text{Deviance} \\
286.24 & 302.83 & -139.12 & 278.24 \\
\end{array}
\]

Fixed effects coefficients (95% CIs):
\[
\begin{array}{llllll}
\text{Name} & \text{Estimate} & \text{SE} & \text{tStat} & \text{DF} & \text{pValue} \\
'\text{Intercept}' & 0.16385 & 0.057525 & 2.8484 & 466 & 0.0045885 \\
'\text{NationalRate}' & 0.7236 & 0.032219 & 22.459 & 466 & 3.0502\times10^{-76} \\
\end{array}
\]

Random effects covariance parameters (95% CIs):
- Group: Date (52 Levels)
 \[
 \begin{array}{llll}
 \text{Name1} & \text{Name2} & \text{Type} & \text{Estimate} \\
 '\text{Intercept}' & '\text{Intercept}' & '\text{std}' & 0.17146 \\
 \end{array}
 \]

 \[
 \begin{array}{ll}
 \text{Lower} & \text{Upper} \\
 0.050813 & 0.27689 \\
 0.66028 & 0.78691 \\
 \end{array}
 \]

- Group: Error
 \[
 \begin{array}{llll}
 \text{Name} & \text{Estimate} & \text{Lower} & \text{Upper} \\
 '\text{Res Std}' & 0.30201 & 0.28217 & 0.32324 \\
 \end{array}
 \]

32-2211
The confidence limits of the standard deviation of the random-effects term σ_b, do not include zero (0.13227, 0.22226), which indicates that the random-effects term is significant. You can also test the significance of the random-effects using the `compare` method.

The estimated value of an observation is the sum of the fixed-effects values and value of the random effect at the grouping variable level corresponding to that observation. For example, the estimated flu rate for observation 28

$$\hat{y}_{28} = \hat{\beta}_0 + \hat{\beta}_1 WtdILI_{28} + \hat{b}_{10/30/2005}$$

$$= 0.1639 + 0.7236 \times (1.343) + 0.3318$$

$$= 1.46749,$$

where \hat{b} is the best linear unbiased predictor (BLUP) of the random effects for the intercept. You can compute this value as follows.

```matlab
beta = fixedEffects(lme);
 [~,~,STATS] = randomEffects(lme); % compute the random effects statistics
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')
```

```matlab
y_hat = 1.4674
```

You can simply display the fitted value using the `fitted(lme)` method.

```matlab
F = fitted(lme);
F(28)
```

```matlab
ans = 1.4674
```

Randomized Block Design

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','shift.mat'))
```

The data shows the deviations from the target quality characteristic measured from the products that five operators manufacture during three shifts: morning, evening, and
night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviations of the quality characteristics from the target value. This is simulated data.

Define the design matrices for a linear mixed-effects model with a random intercept grouped by operator, and shift as the fixed effects. Use the 'effects' contrasts. 'effects' contrasts mean that the coefficients sum to 0. You need to create two contrast coded variables in the fixed-effects design matrix, X_1 and X_2, where

$$\text{Shift}_\text{Evening} = \begin{cases} 0, & \text{if Morning} \\ 1, & \text{if Evening} \\ -1, & \text{if Night} \end{cases}$$

$$\text{Shift}_\text{Morning} = \begin{cases} 1, & \text{if Morning} \\ 0, & \text{if Evening} \\ -1, & \text{if Night} \end{cases}$$

The model corresponds to

$$\begin{align*}
\text{Morning Shift:} & \quad \text{QCDev}_{im} = \beta_0 + \beta_2 \text{Shift}_\text{Morning}_i + b_{0m} + e_{im}, \\
\text{Evening Shift:} & \quad \text{QCDev}_{im} = \beta_0 + \beta_1 \text{Shift}_\text{Evening}_i + b_{0m} + e_{im}, \\
\text{Night Shift:} & \quad \text{QCDev}_{im} = \beta_0 - \beta_1 \text{Shift}_\text{Evening}_i - \beta_2 \text{Shift}_\text{Morning}_i + b_{0m} + e_{im},
\end{align*}$$

where i represents the observations, and m represents the operators, $i = 1, 2, \ldots, 15$, and $m = 1, 2, \ldots, 5$. The random effects and the observation error have the following distributions:

$$b_{0m} \sim N(0, \sigma_b^2)$$

and

$$e_{im} \sim N(0, \sigma^2).$$

```python
S = shift.Shift;
X1 = (S=='Morning') - (S=='Night');
```
```matlab
X2 = (S=='Evening') - (S=='Night');
X = [ones(15,1), X1, X2];
y = shift.QCDev;
Z = ones(15,1);
G = shift.Operator;

Fit a linear mixed-effects model using the specified design matrices and restricted maximum likelihood method.

lme = fitlmematrix(X,y,Z,G,'FitMethod','REML','FixedEffectPredictors',....
    {'Intercept','S_Morning','S_Evening'},'RandomEffectPredictors',{{'Intercept'}},...
    'RandomEffectGroups',{'Operator'},'DummyVarCoding','effects')

lme =
Linear mixed-effects model fit by REML

Model information:
 Number of observations              15
 Fixed effects coefficients           3
 Random effects coefficients          5
 Covariance parameters                2

Formula:
  y ~ Intercept + S_Morning + S_Evening + (Intercept | Operator)

Model fit statistics:
AIC      BIC    LogLikelihood  Deviance
58.913   61.337 -24.456         48.913

Fixed effects coefficients (95% CIs):
  Name         Estimate     SE      tStat     DF       pValue
  'Intercept'   3.6525    0.94109   3.8812   12    0.0021832
  'S_Morning'  -0.91973   0.31206  -2.9473   12     0.012206
  'S_Evening'  -0.53293   0.31206  -1.7078   12      0.11339

  Lower      Upper
  1.6021       5.703
 -1.5997    -0.23981
 -1.2129     0.14699

Random effects covariance parameters (95% CIs):
  Group: Operator (5 Levels)
  Name1      Name2      Type     Estimate     Lower
  'Intercept' 'Intercept'  'std'    2.0457    0.98207
```

32-2214
Compute the best linear unbiased predictor (BLUP) estimates of random effects.

\[
B = \text{randomEffects}(lme)
\]

\[
B = \begin{bmatrix}
0.5775 \\
1.1757 \\
-2.1715 \\
2.3655 \\
-1.9472
\end{bmatrix}
\]

The estimated deviation from the target quality characteristics for the third operator working the evening shift is

\[
\hat{y}_{\text{Evening,Operator3}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Shift_Evening} + \hat{b}_{03} \\
= 3.6525 - 0.53293 - 2.1715 \\
= 0.94807.
\]

You can also display this value as follows.

\[
F = \text{fitted}(lme);
F(\text{shift.Shift=='Evening' & shift.Operator=='3'})
\]

\[
\text{ans} = 0.9481
\]

Correlated and Uncorrelated Random-Effects Terms

Load the sample data.
load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and horsepower, and uncorrelated random effect for intercept and acceleration grouped by the model year. This model corresponds to

\[
MPG_{im} = \beta_0 + \beta_1 Acc_i + \beta_2 HP + b_{0m} + b_{1m} Acc_{im} + \epsilon_{im}, \quad m = 1, 2, 3,
\]

with the random-effects terms having the following prior distributions:

\[
b_{0m} \sim N(0, \sigma_0^2), \quad b_{1m} \sim N(0, \sigma_1^2),
\]

where \(m \) represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

\[
X = [\text{ones}(406,1) \text{ Acceleration} \text{ Horsepower}];
\]
\[
Z = \{\text{ones}(406,1), \text{Acceleration}\};
\]
\[
G = \{\text{Model Year}, \text{Model Year}\};
\]
\[
\text{Model Year} = \text{nominal}(\text{Model Year});
\]

Now, fit the model using `fitlmematrix` with the defined design matrices and grouping variables.

\[
lme = \text{fitlmematrix}(X, \text{MPG}, Z, G, 'FixedEffectPredictors',
\{\text{'Intercept'}, \text{'Acceleration'}, \text{'Horsepower'}\}, 'RandomEffectPredictors',
\{\{\text{'Intercept'}\}, \{\text{'Acceleration'}\}\}, 'RandomEffectGroups', \{\text{'Model Year'}, \text{'Model Year'}\})
\]

\[
lme =
\]
Linear mixed-effects model fit by ML

Model information:

- Number of observations 392
- Fixed effects coefficients 3
- Random effects coefficients 26
- Covariance parameters 3

Formula:

Linear Mixed Formula with 4 predictors.
Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2194.5</td>
<td>2218.3</td>
<td>-1091.3</td>
<td>2182.5</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>49.839</td>
<td>2.0518</td>
<td>24.291</td>
<td>389</td>
<td>5.6168e-80</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>-0.58565</td>
<td>0.10846</td>
<td>-5.3995</td>
<td>389</td>
<td>1.1652e-07</td>
</tr>
<tr>
<td>'Horsepower'</td>
<td>-0.16534</td>
<td>0.0071227</td>
<td>-23.213</td>
<td>389</td>
<td>1.9755e-75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interception</td>
<td>45.806</td>
<td>53.873</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.7989</td>
<td>-0.3724</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.17934</td>
<td>-0.15133</td>
<td></td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
<td>8.928e-07</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>'Acceleration'</td>
<td>'std'</td>
<td>0.18783</td>
<td>0.1253</td>
<td>0.28172</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>3.7258</td>
<td>3.4698</td>
<td>4.0007</td>
</tr>
</tbody>
</table>

Note that the random effects covariance parameters for intercept and acceleration are separate in the display. The standard deviation of the random effect for the intercept does not seem significant.
Refit the model with potentially correlated random effects for intercept and acceleration. In this case, the random-effects terms has this prior distribution

\[b_m = (b_{0m}, b_{1m}) \sim N \left(0, \begin{pmatrix} \sigma_0^2 & \sigma_{0,1} \\ \sigma_{0,1} & \sigma_1^2 \end{pmatrix} \right), \]

where \(m \) represents the model year.

First, prepare the random-effects design matrix and grouping variable.

\[
Z = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} \end{bmatrix};
\]

\[
G = \text{Model_Year};
\]

\[
lme = \text{fitlmematrix}(X, \text{MPG}, Z, G, 'FixedEffectPredictors', ...,
\{\text{'Intercept'}, \text{'Acceleration'}, \text{'Horsepower'}\},
\text{'RandomEffectPredictors', ...,
\{\{\text{'Intercept'}, \text{'Acceleration'}\}\},
\text{'RandomEffectGroups', \{'\text{Model_Year}'\}}
\]

\[
lme = \quad \text{Linear mixed-effects model fit by ML}
\]

Model information:
- Number of observations: 392
- Fixed effects coefficients: 3
- Random effects coefficients: 26
- Covariance parameters: 4

Formula:
Linear Mixed Formula with 4 predictors.

Model fit statistics:
- AIC: 2193.5
- BIC: 2221.3
- LogLikelihood: -1089.7
- Deviance: 2179.5

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>50.133</td>
<td>2.2652</td>
<td>22.132</td>
<td>389</td>
<td>7.7727e-71</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>-0.58327</td>
<td>0.13394</td>
<td>-4.3545</td>
<td>389</td>
<td>1.7075e-05</td>
</tr>
<tr>
<td>'Horsepower'</td>
<td>-0.16954</td>
<td>0.0072609</td>
<td>-23.35</td>
<td>389</td>
<td>5.188e-76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.679</td>
<td>54.586</td>
</tr>
</tbody>
</table>
Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
<td>3.3475</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>'Intercept'</td>
<td>'corr'</td>
<td>-0.87971</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>'Acceleration'</td>
<td>'std'</td>
<td>0.33789</td>
</tr>
</tbody>
</table>

Lower Upper
1.2862 8.7119
-0.98501 -0.29676
0.1825 0.62558

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>3.6874</td>
<td>3.4298</td>
<td>3.9644</td>
</tr>
</tbody>
</table>

Note that the random effects covariance parameters for intercept and acceleration are together in the display, with an addition of the correlation between the intercept and acceleration. The confidence intervals for the standard deviations and the correlation between the random effects for intercept and acceleration do not include 0s, hence they seem significant. You can compare these two models using the compare method.

Specify the Covariance Pattern

Load the sample data.

```matlab
code
load(fullfile(matlabroot,'examples','stats','weight.mat'));
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Define `Subject` and `Program` as categorical variables.

```matlab
code
Subject = nominal(Subject);
Program = nominal(Program);
```
Create the design matrices for a linear mixed-effects model, with the initial weight, type of program, and week as the fixed effects.

\[
D = \text{dummyvar}(\text{Program});
X = \begin{bmatrix} \text{ones}(120,1) & \text{InitialWeight} & D(:,2:4) & \text{Week}\end{bmatrix};
Z = \begin{bmatrix} \text{ones}(120,1) & \text{Week}\end{bmatrix};
G = \text{Subject};
\]

This model corresponds to

\[
y_{im} = \beta_0 + \beta_1 I[\text{IW}_i] + \beta_2 I[\text{Week}_i] + \beta_3 I[\text{PB}_i] + \beta_4 I[\text{PC}_i] + \beta_5 I[\text{PD}_i] + b_{0m} + b_{1m} I[\text{Week2}_i] + b_{2m} I[\text{Week4}_i] + b_{3m} I[\text{Week6}_i] + b_{4m} I[\text{Week8}_i] + b_{5m} I[\text{Week10}_i] + b_{6m} I[\text{Week12}_i] + \epsilon_{im},
\]

where \(i = 1, 2, \ldots, 120,\) and \(m = 1, 2, \ldots, 20.\)

\(\beta_j\) are the fixed-effects coefficients, \(j = 0, 1, \ldots, 8,\) and \(b_{0m}\) and \(b_{1m}\) are random effects. \(I[\cdot]\) stands for initial weight and \(I[\cdot]\) is a dummy variable representing a type of program. For example, \(I[\text{PB}_i]\) is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

\[
b_{0m} \sim N(0, \sigma_0^2)
\]
\[
b_{1m} \sim N(0, \sigma_1^2)
\]
\[
\epsilon_{im} \sim N(0, \sigma^2).
\]

Fit the model using \texttt{fitlmematrix} with the defined design matrices and grouping variables. Assume the repeated observations collected on a subject have common variance along diagonals.

\[
lme = \text{fitlmematrix}(X,y,Z,G,'\text{FixedEffectPredictors}',\ldots
\{\text{\'Intercept\}',\text{\'InitWeight\}',\text{\'PrgB\}',\text{\'PrgC\}',\text{\'PrgD\}',\text{\'Week\}'},\ldots
\text{\'RandomEffectPredictors\}',\{\{	ext{\'Intercept\}',\text{\'Week\}'\},\ldots
\text{\'RandomEffectGroups\}',\{\text{\'Subject\}'},\text{\'CovariancePattern\}',\text{\'Isotropic\}'
\]
\]
\[
lme = \text{Linear mixed-effects model fit by ML}
\]
Model information:
 Number of observations 120
 Fixed effects coefficients 6
 Random effects coefficients 40
 Covariance parameters 2

Formula:
 Linear Mixed Formula with 7 predictors.

Model fit statistics:
 AIC BIC LogLikelihood Deviance
 -24.783 -2.483 20.391 -40.783

Fixed effects coefficients (95% CIs):
 Name Estimate SE tStat DF pValue
 'Intercept' 0.4208 0.28169 1.4938 114 0.13799
 'InitWeight' 0.0045552 0.0015338 2.9699 114 0.0036324
 'PrgB' 0.36993 0.12119 3.0525 114 0.0028242
 'PrgC' -0.034009 0.1209 -0.28129 114 0.77899
 'PrgD' 0.121 0.12111 0.99911 114 0.31986
 'Week' 0.19881 0.037134 5.3538 114 4.5191e-07

 Lower Upper
 -0.13723 0.97883
 0.0015168 0.0075935
 0.12986 0.61
 -0.27351 0.2055
 -0.11891 0.36091
 0.12525 0.27237

Random effects covariance parameters (95% CIs):
 Group: Subject (20 Levels)
 Name1 Name2 Type Estimate Lower
 'Intercept' 'Intercept' 'std' 0.16561 0.12896

 Upper
 0.21269

Group: Error
 Name Estimate Lower Upper
Input Arguments

X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations, and p is the number of fixed-effects predictor variables. Each row of X corresponds to one observation, and each column of X corresponds to one variable.

Data Types: single | double

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.

Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

- If there is one random-effects term in the model, then Z must be an n-by-q matrix, where n is the number of observations and q is the number of variables in the random-effects term.
- If there are R random-effects terms, then Z must be a cell array of length R. Each cell of Z contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to each random-effects term. Here, q(r) is the number of random effects term in the rth random effects design matrix, Z{r}.

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables on page 2-57, specified as either of the following.
• If there is one random-effects term, then G must be an n-by-1 vector corresponding to a single grouping variable with M levels or groups.

G can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

• If there are multiple random-effects terms, then G must be a cell array of length R. Each cell of G contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

Data Types: categorical | logical | single | double | char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example:
'CovariancePattern','Diagonal','DummyVarCoding','full','Optimizer','fminunc' specifies a random-effects covariance pattern with zero off-diagonal elements, creates a dummy variable for each level of a categorical variable, and uses the fminunc optimization algorithm.

FixedEffectPredictors — Names of columns in fixed-effects design matrix

`{'x1','x2',...,'xP'}` (default) | string array or cell array of length p

Names of columns in the fixed-effects design matrix X, specified as the comma-separated pair consisting of 'FixedEffectPredictors' and a string array or cell array of length p.

For example, if you have a constant term and two predictors, say TimeSpent and Gender, where Female is the reference level for Gender, as the fixed effects, then you can specify the names of your fixed effects in the following way. Gender_Male represents the dummy variable you must create for category Male. You can choose different names for these variables.

Example: 'FixedEffectPredictors',
`{'Intercept','TimeSpent','Gender_Male'}`,
Data Types: string | cell

RandomEffectPredictors — Names of columns in random-effects design matrix or cell array

string array or cell array of length q | cell array of length R with elements of length q(r), r = 1, 2, ..., R

Names of columns in the random-effects design matrix or cell array Z, specified as the comma-separated pair consisting of 'RandomEffectPredictors' and either of the following:

- A string array or cell array of length q when Z is an n-by-q design matrix. In this case, the default is {'z1', 'z2', ..., 'zQ'}.
- A cell array of length R, when Z is a cell array of length R with each element Z{r} of length q(r), r = 1, 2, ..., R. In this case, the default is {'z11', 'z12', ..., 'z1Q(1)'}, ..., {'zr1', 'zr2', ..., 'zrQ(r)'}.

For example, suppose you have correlated random effects for intercept and a variable named Acceleration. Then, you can specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors', {'Intercept','Acceleration'}

If you have two random effects terms, one for the intercept and the variable Acceleration grouped by variable g1, and the second for the intercept, grouped by the variable g2, then you specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors',{{'Intercept','Acceleration'},
{'Intercept'}}

Data Types: string | cell

ResponseVarName — Name of response variable

'y' (default) | character vector | string scalar

Name of response variable, specified as the comma-separated pair consisting of 'ResponseVarName' and a character vector or string scalar.

For example, if your response variable name is score, then you can specify it as follows.

Example: 'ResponseVarName','score'

Data Types: char | string
RandomEffectGroups — Names of random effects grouping variables

'g' or {'g1','g2',...,'gR'} (default) | character vector | string scalar | string array | cell array of character vectors

Names of random effects grouping variables, specified as the comma-separated pair 'RandomEffectGroups' and either of the following:

- Character vector or string scalar — If there is only one random-effects term, that is, if \(G \) is a vector, then the value of 'RandomEffectGroups' is the name for the grouping variable \(G \). The default is 'g'.
- String array or cell array of character vectors — If there are multiple random-effects terms, that is, if \(G \) is a cell array of length \(R \), then the value of 'RandomEffectGroups' is a string array or cell array of length \(R \), where each element is the name for the grouping variable \(G[r] \). The default is {'g1','g2',...,'gR'}.

For example, if you have two random-effects terms, \(z_1 \) and \(z_2 \), grouped by the grouping variables \(\text{sex} \) and \(\text{subject} \), then you can specify the names of your grouping variables as follows.

Example: 'RandomEffectGroups',{'}sex','subject'}

Data Types: char | string | cell

CovariancePattern — Pattern of covariance matrix

'FullCholesky' (default) | character vector | string scalar | square symmetric logical matrix | string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair consisting of 'CovariancePattern' and a character vector, a string scalar, a square symmetric logical matrix, a string array, or a cell array of character vectors or logical matrices.

If there are \(R \) random-effects terms, then the value of 'CovariancePattern' must be a string array or cell array of length \(R \), where each element \(r \) of the array specifies the pattern of the covariance matrix of the random-effects vector associated with the \(r \)th random-effects term. The options for each element follow.
'FullCholesky'	Default. Full covariance matrix using the Cholesky parameterization. fitlme estimates all elements of the covariance matrix.
'Full'	Full covariance matrix, using the log-Cholesky parameterization. fitlme estimates all elements of the covariance matrix.
'Diagonal'	Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0.
	$\begin{pmatrix}
\sigma^2_{b1} & 0 & 0 \\	
0 & \sigma^2_{b2} & 0 \\	
0 & 0 & \sigma^2_{b3}	
\end{pmatrix}$	
'Isotropic'	Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like
	$\begin{pmatrix}
\sigma^2_{b} & 0 & 0 \\	
0 & \sigma^2_{b} & 0 \\	
0 & 0 & \sigma^2_{b}	
\end{pmatrix}$	
	where σ^2_{b} is the common variance of the random-effects terms.
'CompSymm'

Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma^2_{b_1} & \sigma_{b_1,b_2} & \sigma_{b_1,b_2} \\
\sigma_{b_1,b_2} & \sigma^2_{b_2} & \sigma_{b_1,b_2} \\
\sigma_{b_1,b_2} & \sigma_{b_1,b_2} & \sigma^2_{b_2}
\end{pmatrix}
\]

where $\sigma^2_{b_1}$ is the common variance of the random-effects terms and σ_{b_1,b_2} is the common covariance between any two random-effects terms.

PAT

Square symmetric logical matrix. If 'CovariancePattern' is defined by the matrix PAT, and if PAT(a,b) = false, then the (a,b) element of the corresponding covariance matrix is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{"Full","Diagonal"}

Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters

'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-separated pair consisting of 'FitMethod' and either of the following.

'ML'

Default. Maximum likelihood estimation

'REML'

Restricted maximum likelihood estimation

Example: 'FitMethod','REML'
Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length n, where n is the number of observations.

Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.

Example: 'Exclude',[13,67]

Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'reference'</td>
<td>Default. Coefficient for first category set to 0.</td>
</tr>
<tr>
<td>'effects'</td>
<td>Coefficients sum to 0.</td>
</tr>
<tr>
<td>'full'</td>
<td>One dummy variable for each category.</td>
</tr>
</tbody>
</table>

Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and either of the following.
'quasinewton'

Default. Uses a trust region based quasi-
Newton optimizer. Change the options of
the algorithm using
\texttt{statset('LinearMixedModel')}. If you
don't specify the options, then
\texttt{LinearMixedModel} uses the default
options of
\texttt{statset('LinearMixedModel')}.

'fminunc'

You must have Optimization Toolbox to
specify this option. Change the options of
the algorithm using
\texttt{optimoptions('fminunc')}. If you don't
specify the options, then
\texttt{LinearMixedModel} uses the default
options of \texttt{optimoptions('fminunc')}
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

\textbf{OptimizerOptions — Options for optimization algorithm}

\texttt{structure returned by \texttt{statset} \mid \texttt{object returned by \texttt{optimoptions}}}

Options for the optimization algorithm, specified as the comma-separated pair consisting of 'OptimizerOptions' and a structure returned by
\texttt{statset('LinearMixedModel')} or an object returned by
\texttt{optimoptions('fminunc')}.

- If 'Optimizer' is 'fminunc', then use \texttt{optimoptions('fminunc')} to change the
 options of the optimization algorithm. See \texttt{optimoptions} for the options 'fminunc'
 uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
 then the default for \texttt{LinearMixedModel} is the default options created by
 \texttt{optimoptions('fminunc')} with 'Algorithm' set to 'quasi-newton'.

- If 'Optimizer' is 'quasinewton', then use \texttt{statset('LinearMixedModel')} to
 change the optimization parameters. If you don't change the optimization parameters,
 then \texttt{LinearMixedModel} uses the default options created by
 \texttt{statset('LinearMixedModel')}.

The 'quasinewton' optimizer uses the following fields in the structure created by
\texttt{statset('LinearMixedModel')}.
TolFun — Relative tolerance on gradient of objective function

1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

TolX — Absolute tolerance on step size

1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

MaxIter — Maximum number of iterations allowed

10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

Display — Level of display

'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

StartMethod — Method to start iterative optimization

'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of 'StartMethod' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'default'</td>
<td>An internally defined default value</td>
</tr>
<tr>
<td>'random'</td>
<td>A random initial value</td>
</tr>
</tbody>
</table>

Example: 'StartMethod','random'

Verbose — Indicator to display optimization process on screen

false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true
CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to unconstrained parameters at convergence, specified as the comma-separated pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is overparameterized in the number of covariance parameters.

Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

Definitions

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the following prior distribution.

\[b \sim N(0, \sigma^2 D(\theta)) \]

where \(D \) is a \(q \)-by-\(q \) symmetric and positive semidefinite matrix, parameterized by a variance component vector \(\theta \), \(q \) is the number of variables in the random-effects term, and \(\sigma^2 \) is the observation error variance. Since the covariance matrix of the random effects, \(D \), is symmetric, it has \(q(q+1)/2 \) free parameters. Suppose \(L \) is the lower triangular Cholesky factor of \(D(\theta) \) such that

\[D(\theta) = L(\theta)L(\theta)^T, \]
then the $q^*(q+1)/2$-by-1 unconstrained parameter vector θ is formed from elements in the lower triangular part of L.

For example, if

$$L = \begin{bmatrix} L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33} \end{bmatrix},$$

then

$$\theta = \begin{bmatrix} L_{11} \\
L_{21} \\
L_{31} \\
L_{22} \\
L_{32} \\
L_{33} \end{bmatrix}.$$

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be positive, then the solution for L is unique. Log-Cholesky parameterization is the same as Cholesky parameterization except that the logarithm of the diagonal elements of L are used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing $L_{ii} \geq 0$,

$$\theta = \begin{bmatrix} \log(L_{11}) \\
L_{21} \\
L_{31} \\
\log(L_{22}) \\
L_{32} \\
\log(L_{33}) \end{bmatrix}.$$
Alternative Functionality

You can also fit a linear mixed-effects model using \texttt{fitlme(tbl,formula)}, where \texttt{tbl} is a table or dataset array containing the response \(y\), the predictor variables \(X\), and the grouping variables, and \texttt{formula} is of the form
\[y \sim \text{fixed} + (\text{random}_1|g_1) + \ldots + (\text{random}_R|g_R). \]

See Also

\texttt{LinearMixedModel} | \texttt{compare} | \texttt{fitlme}

Introduced in R2013b
fitrgp

Fit a Gaussian process regression (GPR) model

Syntax

```matlab
fitrgp(tbl,ResponseVarName)
gprMdl = fitrgp(tbl,formula)
gprMdl = fitrgp(tbl,y)
gprMdl = fitrgp(tbl,formula)
gprMdl = fitrgp(tbl,y)
gprMdl = fitrgp(X,y)
gprMdl = fitrgp(___,'Name',Value)
```

Description

- `gprMdl = fitrgp(tbl,ResponseVarName)`: returns a Gaussian process regression (GPR) model trained using the sample data in `tbl`, where `ResponseVarName` is the name of the response variable in `tbl`.

- `gprMdl = fitrgp(tbl,formula)`: returns a Gaussian process regression (GPR) model, trained using the sample data in `tbl`, for the predictor variables and response variables identified by `formula`.

- `gprMdl = fitrgp(tbl,y)`: returns a GPR model for the predictors in table `tbl` and continuous response vector `y`.

- `gprMdl = fitrgp(X,y)`: returns a GPR model for predictors `X` and continuous response vector `y`.

- `gprMdl = fitrgp(___,'Name',Value)` returns a GPR model for any of the input arguments in the previous syntaxes, with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the fitting method, the prediction method, the covariance function, or the active set selection method. You can also train a cross-validated model.
gprMdl is a RegressionGP object. For methods and properties of this class, see RegressionGP class page.

If you train a cross-validated model, then gprMdl is a RegressionPartitionedModel object. For further analysis on the cross-validated object, use the methods of RegressionPartitionedModel class. For the methods of this class, see the RegressionPartitionedModel class page.

Examples

Train GPR Model Using Data in Table

This example uses the abalone data [1], [2], from the UCI Machine Learning Repository [3]. Download the data and save it in your current folder with the name ‘abalone.data’.

Store the data into a table. Display the first seven rows.

```
tbl = readtable('abalone.data','Filetype','text',...  
    'ReadVariableNames',false);

tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height',...  
    'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};

ans =
    Sex    Length    Diameter    Height    WWeight    SWeight    VWeight    ShWeight    NoShellRings
    ___    ______    ________    ______    _______    _______    _______    ________    ____________
    'M'    0.455     0.365       0.095      0.514     0.2245      0.101      0.15       15
    'M'     0.35     0.265        0.09     0.2255     0.0995     0.0485      0.07        7
    'F'     0.53      0.42       0.135      0.677     0.2565     0.1415      0.21        9
    'M'     0.44     0.365       0.125      0.516     0.2155      0.114     0.155       10
    'I'     0.33     0.255        0.08      0.205     0.0895     0.0395     0.055        7
    'I'    0.425       0.3       0.095     0.3515      0.141     0.0775      0.12        8
    'F'     0.53     0.415        0.15     0.7775      0.237     0.1415      0.33       20
```

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical measurements. The last variable, number of shell rings shows the age of the abalone. The first predictor is a categorical variable. The last variable in the table is the response variable.
Fit a GPR model using the subset of regressors method for parameter estimation and fully independent conditional method for prediction. Standardize the predictors.

gprMdl = fitrgp(tbl,'NoShellRings','KernelFunction','ardsquaredexponential',... 'FitMethod','sr','PredictMethod','fic','Standardize',1)

grMdl =

RegressionGP
 PredictorNames: {1x8 cell}
 ResponseName: 'Var9'
 ResponseTransform: 'none'
 NumObservations: 4177
 KernelFunction: 'ARDsquaredExponential'
 KernelInformation: [1x1 struct]
 BasisFunction: 'Constant'
 Beta: 10.9148
 Sigma: 2.0243
 PredictorLocation: [10x1 double]
 PredictorScale: [10x1 double]
 Alpha: [1000x1 double]
 ActiveSetVectors: [1000x10 double]
 PredictMethod: 'FIC'
 ActiveSetSize: 1000
 FitMethod: 'SR'
 ActiveSetMethod: 'Random'
 IsActiveSetVector: [4177x1 logical]
 LogLikelihood: -9.0013e+03
 ActiveSetHistory: [1x1 struct]
 BCDInformation: []

Predict the responses using the trained model.

ypred = resubPredict(gprMdl);

Plot the true response and the predicted responses.

figure();
plot(tbl.NoShellRings,'r.');
hold on
plot(ypred,'b');
xlabel('x');
ylabel('y');
legend({'data','predictions'},'Location','Best');
Compute the regression loss on the training data (resubstitution loss) for the trained model.

L = resubLoss(gprMdl)

L =

4.0064

Train GPR Model and Plot Predictions

Generate sample data.

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*5e-2 + sin(x)./x + 0.2*randn(n,1);

Fit a GPR model using a linear basis function and the exact fitting method to estimate the parameters. Also use the exact prediction method.

```
gprMdl = fitrgp(x,y,'Basis','linear',...'
    'FitMethod','exact','PredictMethod','exact');
```

Predict the response corresponding to the rows of x (resubstitution predictions) using the trained model.

```
ypred = resubPredict(gprMdl);
```

Plot the true response with the predicted values.

```
plot(x,y,'b.');
hold on;
plot(x,ypred,'r','LineWidth',1.5);
xlabel('x');
ylabel('y');
legend('Data','GPR predictions');
hold off
```
Impact of Specifying Initial Kernel Parameter Values

Load the sample data.

load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))

The data has one predictor variable and continuous response. This is simulated data.

Fit a GPR model using the squared exponential kernel function with default kernel parameters.

gprMdl1 = fitrgp(x,y,'KernelFunction','squaredexponential');
Now, fit a second model, where you specify the initial values for the kernel parameters.

```matlab
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
    'KernelParameters',kparams0,'Sigma',sigma0);
```

Compute the resubstitution predictions from both models.

```matlab
ypred1 = resubPredict(gprMdl1);
ypred2 = resubPredict(gprMdl2);
```

Plot the response predictions from both models and the responses in training data.

```matlab
figure();
plot(x,y,'r.');
hold on
plot(x,ypred1,'b');
plot(x,ypred2,'g');
xlabel('x');
ylabel('y');
legend({'data','default kernel parameters',...
    'kparams0 = [3.5,6.2], sigma0 = 0.2','Location','Best'});
title('Impact of initial kernel parameter values');
hold off
```
The marginal log likelihood that `fitrgp` maximizes to estimate GPR parameters has multiple local solutions; the solution that it converges to depends on the initial point. Each local solution corresponds to a particular interpretation of the data. In this example, the solution with the default initial kernel parameters corresponds to a low frequency signal with high noise whereas the second solution with custom initial kernel parameters corresponds to a high frequency signal with low noise.

Use Separate Length Scales for Predictors

Load the sample data.
There are six continuous predictor variables. There are 500 observations in the training data set and 100 observations in the test data set. This is simulated data.

Fit a GPR model using the squared exponential kernel function with a separate length scale for each predictor. This covariance function is defined as:

\[k(x_i, x_j|\theta) = \sigma_f^2 \exp \left[-\frac{1}{2} \sum_{m=1}^{d} \frac{(x_{im} - x_{jm})^2}{\sigma_m^2} \right]. \]

where \(\sigma_m \) represents the length scale for predictor \(m, \) \(m = 1, 2, \ldots, d \) and \(\sigma_f \) is the signal standard deviation. The unconstrained parametrization \(\theta \) is

\[\theta_m = \log \sigma_m, \quad \text{for } m = 1, 2, \ldots, d \\
\theta_{d+1} = \log \sigma_f. \]

Initialize length scales of the kernel function at 10 and signal and noise standard deviations at the standard deviation of the response.

\[
\begin{align*}
\text{sigma0} &= \text{std(ytrain)}; \\
\text{sigmaF0} &= \text{sigma0}; \\
d &= \text{size(Xtrain,2)}; \\
\text{sigmaM0} &= 10 \times \text{ones}(d,1);
\end{align*}
\]

Fit the GPR model using the initial kernel parameter values. Standardize the predictors in the training data. Use the exact fitting and prediction methods.

\[
\text{gprMdl} = \text{fitrgp(Xtrain,ytrain,'Basis','constant','FitMethod','exact',...}
\text{'PredictMethod','exact','KernelFunction','ardsquaredexponential',...}
\text{'KernelParameters',[sigmaM0;sigmaF0],}'Sigma',\text{sigma0,'Standardize',1});
\]

Compute the regression loss on the test data.

\[
\begin{align*}
L &= \text{loss(gprMdl,Xtest,ytest)} \\
L &= 0.6919
\end{align*}
\]

Access the kernel information.

\[
\text{gprMdl.KernelInformation}
\]
ans = struct with fields:
 Name: 'ARDSquaredExponential'
 KernelParameters: [7x1 double]
 KernelParameterNames: {7x1 cell}

Display the kernel parameter names.

gprMdl.KernelInformation.KernelParameterNames

ans = 7x1 cell array
 {'LengthScale1'}
 {'LengthScale2'}
 {'LengthScale3'}
 {'LengthScale4'}
 {'LengthScale5'}
 {'LengthScale6'}
 {'SigmaF' }

Display the kernel parameters.

sigmaM = gprMdl.KernelInformation.KernelParameters(1:end-1,1)

sigmaM = 6x1
10^4 *
 0.0004
 0.0007
 0.0004
 4.1730
 0.1018
 0.0056

sigmaF = gprMdl.KernelInformation.KernelParameters(end)

sigmaF = 28.1718

sigma = gprMdl.Sigma

sigma = 0.8162

Plot the log of learned length scales.

figure()
plot((1:d)',log(sigmaM),'ro-');
The log of length scale for the 4th and 5th predictor variables are high relative to the others. These predictor variables do not seem to be as influential on the response as the other predictor variables.

Fit the GPR model without using the 4th and 5th variables as the predictor variables.

```matlab
X = [Xtrain(:,1:3) Xtrain(:,6)];
sigma0 = std(ytrain);
sigmaF0 = sigma0;
d = size(X,2);
sigmaM0 = 10*ones(d,1);
```
gprMdl = fitrgp(X,ytrain,'Basis','constant','FitMethod','exact',... 'PredictMethod','exact','KernelFunction','ard squared exponential',... 'KernelParameters',[sigmaM0;sigmaF0],'Sigma',sigma0,'Standardize',1);

Compute the regression error on the test data.

xtest = [Xtest(:,1:3) Xtest(:,6)];
L = loss(gprMdl,xtest,ytest)

L = 0.6928

The loss is similar to the one when all variables are used as predictor variables.

Compute the predicted response for the test data.

ypred = predict(gprMdl,xtest);

Plot the original response along with the fitted values.

figure;
plot(ytest,'r');
hold on;
plot(ypred,'b');
legend('True response','GPR predicted values','Location','Best');
hold off
Optimize GPR Regression

This example shows how to optimize hyperparameters automatically using `fitrgp`. The example uses the `gprdata2` data that ships with your software.

Load the data.

```matlab
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
```

The data has one predictor variable and continuous response. This is simulated data.
Fit a GPR model using the squared exponential kernel function with default kernel parameters.

```matlab
gprMdl1 = fitrgp(x,y,'KernelFunction','squaredexponential');
```

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng default

gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',
                 'OptimizeHyperparameters','auto',
                 'HyperparameterOptimizationOptions',
                 struct('AcquisitionFunctionName','expected-improvement-plus'));
```

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td></td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>0.29417</td>
<td>2.1518</td>
<td>0.29417</td>
<td>0.29417</td>
<td>0.0015045</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.037898</td>
<td>1.3153</td>
<td>0.037898</td>
<td>0.060792</td>
<td>0.14147</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>1.5693</td>
<td>0.76112</td>
<td>0.037898</td>
<td>0.040633</td>
<td>25.279</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.7549</td>
<td>0.037898</td>
<td>0.037984</td>
<td>0.0001091</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.29393</td>
<td>1.8182</td>
<td>0.037898</td>
<td>0.038029</td>
<td>0.029932</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.13152</td>
<td>1.2091</td>
<td>0.037898</td>
<td>0.038127</td>
<td>0.37127</td>
</tr>
<tr>
<td>7</td>
<td>Best</td>
<td>0.037785</td>
<td>1.4368</td>
<td>0.037785</td>
<td>0.037728</td>
<td>0.18116</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>0.03783</td>
<td>1.3877</td>
<td>0.037785</td>
<td>0.036524</td>
<td>0.16251</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.037833</td>
<td>1.5439</td>
<td>0.037785</td>
<td>0.036854</td>
<td>0.16159</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>0.037835</td>
<td>1.8267</td>
<td>0.037785</td>
<td>0.037052</td>
<td>0.16072</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.8249</td>
<td>0.037785</td>
<td>0.03705</td>
<td>0.00038214</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.42256</td>
<td>1.0248</td>
<td>0.037785</td>
<td>0.03696</td>
<td>3.2067</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.03786</td>
<td>1.3548</td>
<td>0.037785</td>
<td>0.037087</td>
<td>0.0003228</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.8118</td>
<td>0.037785</td>
<td>0.037043</td>
<td>0.0063584</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
<td>0.42302</td>
<td>1.027</td>
<td>0.037785</td>
<td>0.03725</td>
<td>1.2221</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>0.039486</td>
<td>1.2477</td>
<td>0.037785</td>
<td>0.037672</td>
<td>0.10069</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.038591</td>
<td>1.3022</td>
<td>0.037785</td>
<td>0.037687</td>
<td>0.12077</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.038513</td>
<td>1.334</td>
<td>0.037785</td>
<td>0.037696</td>
<td>0.1227</td>
</tr>
<tr>
<td>19</td>
<td>Best</td>
<td>0.037757</td>
<td>1.3904</td>
<td>0.037757</td>
<td>0.037572</td>
<td>0.19621</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.037787</td>
<td>1.452</td>
<td>0.037757</td>
<td>0.037601</td>
<td>0.18068</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.44917</td>
<td>0.90673</td>
<td>0.037757</td>
<td>0.03766</td>
<td>8.7818</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.040201</td>
<td>1.2108</td>
<td>0.037757</td>
<td>0.037601</td>
<td>0.075414</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>0.040142</td>
<td>1.1481</td>
<td>0.037757</td>
<td>0.037607</td>
<td>0.087198</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.8435</td>
<td>0.037757</td>
<td>0.03758</td>
<td>0.0031018</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.7875</td>
<td>0.037757</td>
<td>0.037555</td>
<td>0.00019545</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.7721</td>
<td>0.037757</td>
<td>0.037582</td>
<td>0.013608</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.29417</td>
<td>1.8143</td>
<td>0.037757</td>
<td>0.037566</td>
<td>0.00076147</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.42162</td>
<td>1.0185</td>
<td>0.037757</td>
<td>0.037854</td>
<td>0.6791</td>
</tr>
<tr>
<td>29</td>
<td>Best</td>
<td>0.037704</td>
<td>1.3398</td>
<td>0.037704</td>
<td>0.037908</td>
<td>0.2367</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.037725</td>
<td>1.4091</td>
<td>0.037704</td>
<td>0.037881</td>
<td>0.21743</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 59.3447 seconds.
Total objective function evaluation time: 43.2254

Best observed feasible point:
Sigma

0.2367

Observed objective function value = 0.037704
Estimated objective function value = 0.037881
Function evaluation time = 1.3398

Best estimated feasible point (according to models):
Sigma

0.16159

Estimated objective function value = 0.037881
Estimated function evaluation time = 1.3583
Compare the pre- and post-optimization fits.
ypred1 = resubPredict(gprMdl1);
ypred2 = resubPredict(gprMdl2);

figure();
plot(x,y,'r.');
hold on
plot(x,ypred1,'b');
plot(x,ypred2,'k','LineWidth',2);
xlabel('x');
ylabel('y');
legend({'data','Initial Fit','Optimized Fit'},'Location','Best');
title('Impact of Optimization');
hold off
Train GPR Model Using Cross-Validation

This example uses the abalone data [1], [2], from the UCI Machine Learning Repository [3]. Download the data and save it in your current folder with the name ‘abalone.data’.

Store the data into a table. Display the first seven rows.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height','WWeight','SWeight','VWeight','ShWeight','NoShellRings'};tbl(1:7,:)

ans =

 Sex Length Diameter Height WWeight SWeight VWeight ShWeight NoShellRings
 ___ ______ ________ ______ _______ _______ _______ ________ ____________
 'M' 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
 'M' 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
 'F' 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9
 'M' 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
 'I' 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7
 'I' 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8
 'F' 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical measurements. The last variable, number of shell rings shows the age of the abalone. The first predictor is a categorical variable. The last variable in the table is the response variable.

Train a cross-validated GPR model using the 25% of the data for validation.

rng('default') % For reproducibility
cvgprMdl = fitrgp(tbl,'NoShellRings','Standardize',1,'Holdout',0.25);

Compute the average loss on folds using models trained on out-of-fold observations.

kfoldLoss(cvgprMdl)

ans =

 4.6409

Predict the responses for out-of-fold data.
ypred = kfoldPredict(cvgprMdl);

Plot the true responses used for testing and the predictions.

figure();
plot(ypred(cvgprMdl.Partition.test));
hold on;
y = table2array(tbl(:,end));
plot(y(cvgprMdl.Partition.test),'r.');
axis([0 1050 0 30]);
xlabel('x')
ylabel('y')
hold off;
Fit GPR Model Using Custom Kernel Function

Generate the sample data.

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*5e-2 + sin(x)./x + 0.2*randn(n,1);

Define the squared exponential kernel function as a custom kernel function.

You can compute the squared exponential kernel function as
\[k(x_i, x_j | \theta) = \sigma_f^2 \exp \left(-\frac{1}{2} \frac{(x_i - x_j)^T(x_i - x_j)}{\sigma_l^2} \right), \]

where \(\sigma_f \) is the signal standard deviation, \(\sigma_l \) is the length scale. Both \(\sigma_f \) and \(\sigma_l \) must be greater than zero. This condition can be enforced by the unconstrained parametrization, \(\sigma_l = \exp(\theta(1)) \) and \(\sigma_f = \exp(\theta(2)) \), for some unconstrained parametrization vector \(\theta \).

Hence, you can define the squared exponential kernel function as a custom kernel function as follows:

\[
kfcn = @(XN,XM,theta) \left(\exp(\theta(2))^2 \right) \exp\left(-(\text{pdist2}(XN,XM).^2)/(2*\exp(\theta(1))^2) \right);
\]

Here \(\text{pdist2}(XN,XM).^2 \) computes the distance matrix.

Fit a GPR model using the custom kernel function, \(kfcn \). Specify the initial values of the kernel parameters (Because you use a custom kernel function, you must provide initial values for the unconstrained parametrization vector, \(\theta \)).

\[
\theta0 = [1.5,0.2];
gprMdl = \text{fitrgp}(x,y,'KernelFunction',kfcn,'KernelParameters',\theta0);
\]

\text{fitrgp} uses analytical derivatives to estimate parameters when using a built-in kernel function, whereas when using a custom kernel function it uses numerical derivatives.

Compute the resubstitution loss for this model.

\[
L = \text{resubLoss}(gprMdl)
\]

\[
L = 0.0391
\]

Fit the GPR model using the built-in squared exponential kernel function option. Specify the initial values of the kernel parameters (Because you use the built-in custom kernel function and specifying initial parameter values, you must provide the initial values for the signal standard deviation and length scale(s) directly).

\[
\sigmaL0 = \exp(1.5);
\sigmaF0 = \exp(0.2);
gprMdl2 = \text{fitrgp}(x,y,'KernelFunction','squaredexponential','KernelParameters',[\sigmaL0 \sigmaF0]);
\]

Compute the resubstitution loss for this model.

\[
L2 = \text{resubLoss}(gprMdl2)
\]

\[
L2 = 0.0391
\]
The two loss values are the same as expected.

Specify Initial Step Size for LBFGS Optimization

Train a GPR model on generated data with many predictors. Specify the initial step size for the LBFGS optimizer.

Set the seed and type of the random number generator for reproducibility of the results.

```matlab
rng(0,'twister'); % For reproducibility
```

Generate sample data with 300 observations and 3000 predictors, where the response variable depends on the 4th, 7th, and 13th predictors.

```matlab
N = 300;
P = 3000;
X = rand(N,P);
y = cos(X(:,7)) + sin(X(:,4).*X(:,13)) + 0.1*randn(N,1);
```

Set initial values for the kernel parameters.

```matlab
sigmaL0 = sqrt(P)*ones(P,1); % Length scale for predictors
sigmaF0 = 1; % Signal standard deviation
```

Set initial noise standard deviation to 1.

```matlab
sigmaN0 = 1;
```

Specify `1e-2` as the termination tolerance for the relative gradient norm.

```matlab
opts = statset('fitrgp');
opts.TolFun = 1e-2;
```

Fit a GPR model using the initial kernel parameter values, initial noise standard deviation, and an automatic relevance determination (ARD) squared exponential kernel function.

Specify the initial step size as 1 for determining the initial Hessian approximation for an LBFGS optimizer.

```matlab
gpr = fitrgp(X,y,'KernelFunction','ardsquaredexponential','Verbose',1, ... 'Optimizer','lbfgs','OptimizerOptions',opts, ... 'KernelParameters',[sigmaL0;sigmaF0],'Sigma',sigmaN0,'InitialStepSize',1);
```
Parameter estimation: FitMethod = Exact, Optimizer = lbfgs

Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.004966e+02</td>
<td>2.569e+02</td>
<td>0.000e+00</td>
<td>OK</td>
<td>3.893e-03</td>
<td>0.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>9.525779e+01</td>
<td>1.281e+02</td>
<td>1.003e+00</td>
<td>OK</td>
<td>6.913e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>3.972026e+01</td>
<td>1.647e+01</td>
<td>7.639e-01</td>
<td>OK</td>
<td>4.718e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>3.893873e+01</td>
<td>1.073e+01</td>
<td>1.057e-01</td>
<td>OK</td>
<td>3.243e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>3.859904e+01</td>
<td>5.659e+00</td>
<td>3.282e-02</td>
<td>OK</td>
<td>3.346e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>3.748912e+01</td>
<td>1.030e+01</td>
<td>1.395e-01</td>
<td>OK</td>
<td>1.460e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>2.028104e+01</td>
<td>1.380e+02</td>
<td>2.010e+00</td>
<td>OK</td>
<td>2.326e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>2.001849e+01</td>
<td>1.510e+01</td>
<td>9.685e-01</td>
<td>OK</td>
<td>2.344e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>-7.706109e+00</td>
<td>8.340e+01</td>
<td>1.125e+00</td>
<td>OK</td>
<td>5.771e-04</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>-1.786074e+01</td>
<td>2.323e+02</td>
<td>2.647e+00</td>
<td>OK</td>
<td>4.217e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>10</td>
<td>-4.058422e+01</td>
<td>1.972e+02</td>
<td>6.796e-01</td>
<td>OK</td>
<td>7.035e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>11</td>
<td>-7.850209e+01</td>
<td>4.432e+01</td>
<td>8.335e-01</td>
<td>OK</td>
<td>3.099e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>12</td>
<td>-1.312162e+02</td>
<td>8.340e+01</td>
<td>1.125e+00</td>
<td>OK</td>
<td>5.432e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>13</td>
<td>-2.005064e+02</td>
<td>3.334e+01</td>
<td>1.277e+00</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>14</td>
<td>-2.070150e+02</td>
<td>9.519e+01</td>
<td>2.828e+00</td>
<td>OK</td>
<td>5.292e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>15</td>
<td>-2.130162e+02</td>
<td>1.510e+01</td>
<td>9.685e-01</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>16</td>
<td>-2.122920e+02</td>
<td>3.334e+01</td>
<td>1.277e+00</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>17</td>
<td>-2.125610e+02</td>
<td>4.432e+01</td>
<td>8.335e-01</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>18</td>
<td>-2.130162e+02</td>
<td>1.178e+01</td>
<td>8.891e-02</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>19</td>
<td>-2.139378e+02</td>
<td>1.933e+01</td>
<td>2.371e-01</td>
<td>OK</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-2.151111e+02</td>
<td>1.550e+01</td>
<td>3.015e-01</td>
<td>OK</td>
<td>2.765e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>21</td>
<td>-2.173046e+02</td>
<td>5.856e+00</td>
<td>6.537e-01</td>
<td>OK</td>
<td>1.414e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>22</td>
<td>-2.201781e+02</td>
<td>8.918e+00</td>
<td>8.484e-01</td>
<td>OK</td>
<td>6.381e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>23</td>
<td>-2.288858e+02</td>
<td>4.846e+01</td>
<td>2.311e+00</td>
<td>OK</td>
<td>2.661e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>24</td>
<td>-2.392171e+02</td>
<td>1.190e+02</td>
<td>6.283e+00</td>
<td>OK</td>
<td>8.113e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>25</td>
<td>-2.511145e+02</td>
<td>1.008e+02</td>
<td>1.198e+00</td>
<td>OK</td>
<td>1.605e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>26</td>
<td>-2.742547e+02</td>
<td>2.207e+01</td>
<td>1.231e+00</td>
<td>OK</td>
<td>3.191e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>27</td>
<td>-2.849311e+02</td>
<td>5.067e+01</td>
<td>3.660e+00</td>
<td>OK</td>
<td>5.184e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>28</td>
<td>-2.899797e+02</td>
<td>2.068e+01</td>
<td>1.162e+00</td>
<td>OK</td>
<td>6.270e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>29</td>
<td>-2.916723e+02</td>
<td>1.816e+01</td>
<td>3.213e-01</td>
<td>OK</td>
<td>1.415e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>30</td>
<td>-2.947674e+02</td>
<td>6.965e+00</td>
<td>1.126e+00</td>
<td>OK</td>
<td>6.339e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>31</td>
<td>-2.962491e+02</td>
<td>1.349e+01</td>
<td>2.352e-01</td>
<td>OK</td>
<td>8.999e-03</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>32</td>
<td>-3.004921e+02</td>
<td>1.586e+01</td>
<td>9.880e-01</td>
<td>OK</td>
<td>3.940e-02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>
Because the GPR model uses an ARD kernel with many predictors, using an LBFGS approximation to the Hessian is more memory efficient than storing the full Hessian matrix. Also, using the initial step size to determine the initial Hessian approximation may help speed up optimization.

Find the predictor weights by taking the exponential of the negative learned length scales. Normalize the weights.

\[
\text{sigmaL} = \text{gpr.KernelInformation.KernelParameters}(1:\text{end-1}); \quad \% \text{Learned length scales}
\]

\[
\text{weights} = \exp(-\text{sigmaL}); \quad \% \text{Predictor weights}
\]

\[
\text{weights} = \text{weights} / \text{sum} (\text{weights}); \quad \% \text{Normalized predictor weights}
\]

Plot the normalized predictor weights.

\[
\text{figure;}
\text{semilogx} (\text{weights},'ro');
\text{xlabel('Predictor index')};
\text{ylabel('Predictor weight')};
\]
The trained GPR model assigns the largest weights to the 4th, 7th, and 13th predictors. The irrelevant predictors have weights close to zero.

Input Arguments

tbl — Sample data

table

Sample data used to train the model, specified as a *table*. Each row of *tbl* corresponds to one observation, and each column corresponds to one variable. *tbl* contains the predictor variables, and optionally it can also contain one column for the response.
variable. Multi-column variables and cell arrays other than cell arrays of character
vectors are not allowed.

- If \(tbl\) contains the response variable, and you want to use all the remaining variables
 as predictors, then specify the response variable using \(\text{ResponseVarName}\).
- If \(tbl\) contains the response variable, and you want to use only a subset of the
 predictors in training the model, then specify the response variable and the predictor
 variables using \(\text{formula}\).
- If \(tbl\) does not contain the response variable, then specify a response variable using
 \(y\). The length of the response variable and the number of rows in \(tbl\) must be equal.

For more information on the table data type, please see \(\text{table}\).

If your predictor data contains categorical variables, then the software uses full dummy
coding for these variables. The software creates one dummy variable for each level of the
categorical variable.

Data Types: \(\text{table}\)

\(\text{ResponseVarName} \rightarrow \text{Response variable name}\)

name of a variable in \(tbl\)

Response variable name, specified as the name of a variable in \(tbl\). You must specify
\(\text{ResponseVarName}\) as a character vector or string scalar. For example, if the response
variable \(y\) is stored in \(tbl\) (as \(tbl.y\)), then specify it as \(\text{''y''}\). Otherwise, the software
treats all the columns of \(tbl\), including \(y\), as predictors when training the model.

Data Types: \(\text{char} | \text{string}\)

\(\text{formula} \rightarrow \text{Response and predictor variables to use in model training}\)

character vector or string scalar in the form of \(\text{''y~x1+x2+x3''}\)

Response and predictor variables to use in model training, specified as a character vector
or string scalar in the form of \(\text{''y~x1+x2+x3''}\). In this form, \(y\) represents the response
variable; \(x1, x2, x3\) represent the predictor variables to use in training the model.

Use a formula if you want to specify a subset of variables in \(tbl\) as predictors to use
when training the model. If you specify a formula, then any variables that do not appear
in \(\text{formula}\) are not used to train the model.

The formula does not indicate the form of the \(\text{BasisFunction}\).
Example: 'PetalLength~PetalWidth+Species' identifies the variable PetalLength as the response variable, and PetalWidth and Species as the predictor variables.

Data Types: char | string

X — Predictor data for the GPR model

n-by-d matrix

Predictor data for the GPR model, specified as an n-by-d matrix. n is the number of observations (rows), and d is the number of predictors (columns).

The length of y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the `PredictorNames` name-value pair argument.

Data Types: double

y — Response data for the GPR model

n-by-1 vector

Response data for the GPR model, specified as an n-by-1 vector. You can omit y if you provide the tbl training data that also includes y. In that case, use `ResponseVarName` to identify the response variable or use `formula` to identify the response and predictor variables.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example:

'FitMethod','sr','BasisFunction','linear','ActiveSetMethod','sgma','
PredictMethod', 'fic' trains the GPR model using the subset of regressors approximation method for parameter estimation, uses a linear basis function, uses sparse greedy matrix approximation for active selection, and fully independent conditional approximation method for prediction.

Fitting

FitMethod — Method to estimate parameters of the GPR model

'done' | 'exact' | 'sd' | 'sr' | 'fic'

Method to estimate parameters of the GPR model, specified as the comma-separated pair consisting of 'FitMethod' and one of the following.

<table>
<thead>
<tr>
<th>Fit Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>No estimation, use the initial parameter values as the known parameter values.</td>
</tr>
<tr>
<td>'exact'</td>
<td>Exact Gaussian process regression. Default if (n \leq 2000), where (n) is the number of observations.</td>
</tr>
<tr>
<td>'sd'</td>
<td>Subset of data points approximation. Default if (n > 2000), where (n) is the number of observations.</td>
</tr>
<tr>
<td>'sr'</td>
<td>Subset of regressors approximation.</td>
</tr>
<tr>
<td>'fic'</td>
<td>Fully independent conditional approximation.</td>
</tr>
</tbody>
</table>

Example: 'FitMethod', 'fic'

BasisFunction — Explicit basis in the GPR model

'constant' (default) | 'none' | 'linear' | 'pureQuadratic' | function handle

Explicit basis in the GPR model, specified as the comma-separated pair consisting of 'BasisFunction' and one of the following. If \(n \) is the number of observations, the basis function adds the term \(H\beta \) to the model, where \(H \) is the basis matrix and \(\beta \) is a \(p \)-by-1 vector of basis coefficients.

<table>
<thead>
<tr>
<th>Explicit Basis</th>
<th>Basis Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>Empty matrix.</td>
</tr>
<tr>
<td>Explicit Basis</td>
<td>Basis Matrix</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>'constant'</td>
<td>$H = 1$</td>
</tr>
<tr>
<td></td>
<td>(n-by-1 vector of 1s, where n is the number of observations)</td>
</tr>
<tr>
<td>'linear'</td>
<td>$H = [1, X]$</td>
</tr>
<tr>
<td>'pureQuadratic'</td>
<td>$H = [1, X, X_2]$,</td>
</tr>
<tr>
<td></td>
<td>where $X_2 = \begin{bmatrix} x_{11}^2 & x_{12}^2 & \cdots & x_{1d}^2 \ x_{21}^2 & x_{22}^2 & \cdots & x_{2d}^2 \ \vdots & \vdots & \ddots & \vdots \ x_{n1}^2 & x_{n2}^2 & \cdots & x_{nd}^2 \end{bmatrix}$.</td>
</tr>
</tbody>
</table>

Function handle

Function handle, `hfcn`, that `fitrgp` calls as:

$$H = hfcn(X),$$

where X is an n-by-d matrix of predictors and H is an n-by-p matrix of basis functions.

Example: 'BasisFunction','pureQuadratic'

Data Types: char | string | function_handle

Beta — Initial value of the coefficients

p-by-1 vector

Initial value of the coefficients for the explicit basis, specified as the comma-separated pair consisting of 'Beta' and p-by-1 vector, where p is the number of columns in the basis matrix H.

The basis matrix depends on the choice of the explicit basis function as follows (also see `BasisFunction`).

32-2263
fitrgp uses the coefficient initial values as the known coefficient values, only when FitMethod is 'none'.

Data Types: double

Sigma — Initial value for the noise standard deviation of the Gaussian process model

std(y)/sqrt(2) (default) | positive scalar value

Initial value for the noise standard deviation of the Gaussian process model, specified as the comma-separated pair consisting of 'Sigma' and a positive scalar value.

Example: 'Sigma',2

Data Types: double

ConstantSigma — Constant value of Sigma for the noise standard deviation of the Gaussian process model

false (default) | true

Constant value of Sigma for the noise standard deviation of the Gaussian process model, specified as a logical scalar. When ConstantSigma is true, fitrgp does not optimize the value of Sigma, but instead takes the initial value as the value throughout its computations.

Example: 'ConstantSigma',true

Data Types: logical

SigmaLowerBound — Lower bound on the noise standard deviation

1e-2*std(y) (default) | positive scalar value

Lower bound on the noise standard deviation, specified as the comma-separated pair consisting of 'SigmaLowerBound' and a positive scalar value.

Example: 'SigmaLowerBound',0.02

Data Types: double

CategoricalPredictors — Categorical predictors list

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of these values:
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>array of character vectors</td>
<td></td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (tbl), fitrgp assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), fitrgp assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: single | double | logical | char | string | cell

Standardize — Indicator to standardize data

0 (false) (default) | logical value

Indicator to standardize data, specified as the comma-separated pair consisting of 'Standardize' and a logical value.

If you set 'Standardize',1, then the software centers and scales each column of the predictor data, by the column mean and standard deviation, respectively. The software does not standardize the data contained in the dummy variable columns that it generates for categorical predictors.

Example: 'Standardize',1
Example: 'Standardize',true

Data Types: logical
Regularization — Regularization standard deviation
1e-2*std(y) (default) | positive scalar value

Regularization standard deviation for sparse methods subset of regressors ('sr') and fully independent conditional ('fic'), specified as the comma-separated pair consisting of 'Regularization' and a positive scalar value.

Example: 'Regularization',0.2
Data Types: double

ComputationMethod — Method for computing log likelihood and gradient
'qr' (default) | 'v'

Method for computing the log likelihood and gradient for parameter estimation using subset of regressors ('sr') and fully independent conditional ('fic') approximation methods, specified as the comma-separated pair consisting of 'ComputationMethod' and one of the following.

- 'qr' — Use QR factorization based approach, this option provides better accuracy.
- 'v' — Use V-method-based approach. This option provides faster computation of log likelihood gradients.

Example: 'ComputationMethod','v'

Kernel (Covariance) Function

KernelFunction — Form of the covariance function
'squaredexponential' (default) | 'exponential' | 'matern32' | 'matern52' | 'rationalquadratic' | 'ardsquaredexponential' | 'ardexponential' | 'ardmatern32' | 'ardmatern52' | 'ardrationalquadratic' | function handle

Form of the covariance function, specified as the comma-separated pair consisting of 'KernelFunction' and one of the following.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'exponential'</td>
<td>Exponential kernel.</td>
</tr>
<tr>
<td>'squaredexponential'</td>
<td>Squared exponential kernel.</td>
</tr>
<tr>
<td>'matern32'</td>
<td>Matern kernel with parameter 3/2.</td>
</tr>
<tr>
<td>'matern52'</td>
<td>Matern kernel with parameter 5/2.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>'rationalquadratic'</td>
<td>Rational quadratic kernel.</td>
</tr>
<tr>
<td>'ardexponential'</td>
<td>Exponential kernel with a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardsquaredexponential'</td>
<td>Squared exponential kernel with a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern32'</td>
<td>Matern kernel with parameter 3/2 and a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern52'</td>
<td>Matern kernel with parameter 5/2 and a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardrationalquadratic'</td>
<td>Rational quadratic kernel with a separate length scale per predictor.</td>
</tr>
</tbody>
</table>

Function handle

A function handle that can be called like this:

\[
\text{Kmn} = kfcn(Xm,Xn,theta)
\]

where \(Xm\) is an \(m\)-by-\(d\) matrix, \(Xn\) is an \(n\)-by-\(d\) matrix and \(\text{Kmn}\) is an \(m\)-by-\(n\) matrix of kernel products such that \(\text{Kmn}(i,j)\) is the kernel product between \(Xm(i,:)\) and \(Xn(j,:)\). \(\text{theta}\) is the \(r\)-by-1 unconstrained parameter vector for \(kfcn\).

For more information on the kernel functions, see “Kernel (Covariance) Function Options” on page 6-7.

Example: 'KernelFunction','matern32'

Data Types: char | string | function_handle

KernelParameters — Initial values for the kernel parameters

vector

Initial values for the kernel parameters, specified as the comma-separated pair consisting of 'KernelParameters' and a vector. The size of the vector and the values depend on the form of the covariance function, specified by the KernelFunction name-value pair argument.
<table>
<thead>
<tr>
<th>'KernelFunction'</th>
<th>'KernelParameters'</th>
</tr>
</thead>
<tbody>
<tr>
<td>'exponential' or 'squaredexponential' or 'matern32' or 'matern52'</td>
<td>2-by-1 vector (\phi), where (\phi(1)) contains the length scale and (\phi(2)) contains the signal standard deviation. Default initial value of the length scale parameter is the mean of standard deviations of the predictors, and the signal standard deviation is the standard deviation of the responses divided by square root of 2. That is, (\phi = \left[\text{mean}(\text{std}(X)); \text{std}(y)/\sqrt{2} \right])</td>
</tr>
<tr>
<td>'rationalquadratic'</td>
<td>3-by-1 vector (\phi), where (\phi(1)) contains the length scale, (\phi(2)) contains the scale-mixture parameter, and (\phi(3)) contains the signal standard deviation. Default initial value of the length scale parameter is the mean of standard deviations of the predictors, and the signal standard deviation is the standard deviation of the responses divided by square root of 2. Default initial value for the scale-mixture parameter is 1. That is, (\phi = \left[\text{mean}(\text{std}(X)); 1; \text{std}(y)/\sqrt{2} \right])</td>
</tr>
<tr>
<td>'ardexponential' or 'ardsquaredexponential' or 'ardmatern32' or 'ardmatern52'</td>
<td>((d+1))-by-1 vector (\phi), where (\phi(i)) contains the length scale for predictor (i) and (\phi(d+1)) contains the signal standard deviation. (d) is the number of predictor variables. Default initial value of the length scale parameters are the standard deviations of the predictors and the signal standard deviation is the standard deviation of the responses divided by square root of 2. That is, (\phi = \left[\text{std}(X)'; \text{std}(y)/\sqrt{2} \right])</td>
</tr>
<tr>
<td>'KernelFunction'</td>
<td>'KernelParameters'</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>'ardrationalquadratic'</td>
<td>$(d+2)$-by-1 vector ϕ, where $\phi(i)$ contains the length scale for predictor i, $\phi(d+1)$ contains the scale-mixture parameter, and $\phi(d+2)$ contains signal standard deviation. Default initial value of the length scale parameters are the standard deviations of the predictors and the signal standard deviation is the standard deviation of the responses divided by square root of 2. Default initial value for the scale-mixture parameter is 1. That is, $\phi = [\text{std}(X)';1;\text{std}(y)/\sqrt{2}]$</td>
</tr>
</tbody>
</table>

Function handle r-by-1 vector as the initial value of the unconstrained parameter vector ϕ for the custom kernel function $kfcn$. When KernelFunction is a function handle, you must supply initial values for the kernel parameters.

For more information on the kernel functions, see “Kernel (Covariance) Function Options” on page 6-7.

Example: 'KernelParameters',theta

Data Types: double

DistanceMethod — Method for computing inter-point distances

'fast' (default) | 'accurate'

Method for computing inter-point distances to evaluate built-in kernel functions, specified as the comma-separated pair consisting of 'DistanceMethod' and either 'fast' or 'accurate'. fitrgp computes $(x - y)^2$ as $x^2 + y^2 - 2 * x * y$ when you choose the fast option and as $(x - y)^2$ when you choose the accurate option.

Example: 'DistanceMethod','accurate'
Active Set Selection

ActiveSet — Observations in the active set

[] (default) | \(m \)-by-1 vector of integers ranging from 1 to \(n \) (\(m \leq n \)) | logical vector of length \(n \)

Observations in the active set, specified as the comma-separated pair consisting of 'ActiveSet' and an \(m \)-by-1 vector of integers ranging from 1 to \(n \) (\(m \leq n \)) or a logical vector of length \(n \) with at least one true element. \(n \) is the total number of observations in the training data.

fitrgp uses the observations indicated by ActiveSet to train the GPR model. The active set cannot have duplicate elements.

If you supply ActiveSet, then:
- fitrgp does not use ActiveSetSize and ActiveSetMethod.
- You cannot perform cross-validation on this model.

Data Types: double | logical

ActiveSetSize — Size of the active set for sparse methods

an integer \(m \) (\(1 \leq m \leq n \))

Size of the active set for sparse methods ('sd', 'sr', 'fic'), specified as the comma-separated pair consisting of 'ActiveSetSize' and an integer \(m \), \(1 \leq m \leq n \), where \(n \) is the number of observations.

Default is min(1000,\(n \)) when FitMethod is 'sr' or 'fic', and min(2000,\(n \)), otherwise.

Example: 'ActiveSetSize',100

Data Types: double

ActiveSetMethod — Active set selection method

'random' (default) | 'sgma' | 'entropy' | 'likelihood'

Active set selection method, specified as the comma-separated pair consisting of 'ActiveSetMethod' and one of the following.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'random'</td>
<td>Random selection</td>
</tr>
</tbody>
</table>
All active set selection methods (except 'random') require the storage of an n-by-m matrix, where m is the size of the active set and n is the number of observations.

Example: 'ActiveSetMethod','entropy'

RandomSearchSetSize — Random search set size
59 (default) | integer value

Random search set size per greedy inclusion for active set selection, specified as the comma-separated pair consisting of 'RandomSearchSetSize' and an integer value.

Example: 'RandomSearchSetSize',30
Data Types: double

ToleranceActiveSet — Relative tolerance for terminating active set selection
1e-06 (default) | positive scalar

Relative tolerance for terminating active set selection, specified as the comma-separated pair consisting of 'ToleranceActiveSet' and a positive scalar value.

Example: 'ToleranceActiveSet',0.0002
Data Types: double

NumActiveSetRepeats — Number of repetitions
3 (default) | integer value

Number of repetitions for interleaved active set selection and parameter estimation on page 32-2284 when ActiveSetMethod is not 'random', specified as the comma-separated pair consisting of 'NumActiveSetRepeats' and an integer value.

Example: 'NumActiveSetRepeats',5
Data Types: double
Prediction

PredictMethod — Method used to make predictions

'exact' | 'bcd' | 'sd' | 'sr' | 'fic'

Method used to make predictions from a Gaussian process model given the parameters, specified as the comma-separated pair consisting of 'PredictMethod' and one of the following.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'exact'</td>
<td>Exact Gaussian process regression method. Default, if (n \leq 10000).</td>
</tr>
<tr>
<td>'bcd'</td>
<td>Block Coordinate Descent. Default, if (n > 10000).</td>
</tr>
<tr>
<td>'sd'</td>
<td>Subset of Datapoints approximation.</td>
</tr>
<tr>
<td>'sr'</td>
<td>Subset of Regressors approximation.</td>
</tr>
<tr>
<td>'fic'</td>
<td>Fully Independent Conditional approximation.</td>
</tr>
</tbody>
</table>

Example: 'PredictMethod','bcd'

BlockSizeBCD — Block size

minimum of 1000 or \(n \) (default) | integer in the range from 1 to \(n \)

Block size for block coordinate descent method ('bcd'), specified as the comma-separated pair consisting of 'BlockSizeBCD' and an integer in the range from 1 to \(n \), where \(n \) is the number of observations.

Example: 'BlockSizeBCD',1500

Data Types: double

NumGreedyBCD — Number of greedy selections

minimum of 100 and BlockSizeBCD (default) | integer value in the range from 1 to BlockSizeBCD

Number of greedy selections for block coordinate descent method ('bcd'), specified as the comma-separated pair consisting of 'NumGreedyBCD' and an integer in the range from 1 to BlockSizeBCD.

Example: 'NumGreedyBCD',150
Data Types: double

ToleranceBCD — Relative tolerance on gradient norm

1e-3 (default) | positive scalar

Relative tolerance on gradient norm for terminating block coordinate descent method ('bcd') iterations, specified as the comma-separated pair consisting of 'ToleranceBCD' and a positive scalar.

Example: 'ToleranceBCD', 0.002

Data Types: double

StepToleranceBCD — Absolute tolerance on step size

1e-3 (default) | positive scalar

Absolute tolerance on step size for terminating block coordinate descent method ('bcd') iterations, specified as the comma-separated pair consisting of 'StepToleranceBCD' and a positive scalar.

Example: 'StepToleranceBCD', 0.002

Data Types: double

IterationLimitBCD — Maximum number of BCD iterations

1000000 (default) | integer value

Maximum number of block coordinate descent method ('bcd') iterations, specified as the comma-separated pair consisting of 'IterationLimitBCD' and an integer value.

Example: 'IterationLimitBCD', 10000

Data Types: double

Optimization

Optimizer — Optimizer to use for parameter estimation

'quasinewton' (default) | 'lbfgs' | 'fminsearch' | 'fminunc' | 'fmincon'

Optimizer to use for parameter estimation, specified as the comma-separated pair consisting of 'Optimizer' and one of the values in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'quasinewton'</td>
<td>Dense, symmetric rank-1-based, quasi-Newton approximation to the Hessian</td>
</tr>
<tr>
<td>'lbfgs'</td>
<td>LBFGS-based quasi-Newton approximation to the Hessian</td>
</tr>
<tr>
<td>'fminsearch'</td>
<td>Unconstrained nonlinear optimization using the simplex search method of Lagarias et al. [5]</td>
</tr>
<tr>
<td>'fminunc'</td>
<td>Unconstrained nonlinear optimization (requires an Optimization Toolbox license)</td>
</tr>
<tr>
<td>'fmincon'</td>
<td>Constrained nonlinear optimization (requires an Optimization Toolbox license)</td>
</tr>
</tbody>
</table>

For more information on the optimizers, see Algorithms on page 32-2286.

Example: 'Optimizer','fmincon'

OptimizerOptions — Options for the optimizer

structure | object

Options for the optimizer you choose using the `Optimizer` name-value pair argument, specified as the comma-separated pair consisting of `'OptimizerOptions'` and a structure or object created by `optimset`, `statset('fitrgp')`, or `optimoptions`.

<table>
<thead>
<tr>
<th>Optimizer</th>
<th>Create Optimizer Options Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>'fminsearch'</td>
<td><code>optimset</code> (structure)</td>
</tr>
<tr>
<td>'quasinewton' or 'lbfgs'</td>
<td><code>statset('fitrgp')</code> (structure)</td>
</tr>
<tr>
<td>'fminunc' or 'fmincon'</td>
<td><code>optimoptions</code> (object)</td>
</tr>
</tbody>
</table>

The default options depend on the type of optimizer.

Example: 'OptimizerOptions',opt

InitialStepSize — Initial step size

[] (default) | real positive scalar | 'auto'

Initial step size, specified as the comma-separated pair consisting of `'InitialStepSize'` and a real positive scalar or 'auto'.

32-2274
'InitialStepSize' is the approximate maximum absolute value of the first optimization step when the optimizer is 'quasinewton' or 'lbfgs'. The initial step size can determine the initial Hessian approximation during optimization.

By default, fitrgp does not use the initial step size to determine the initial Hessian approximation. To use the initial step size, set a value for the 'InitialStepSize' name-value pair argument, or specify 'InitialStepSize','auto' to have fitrgp determine a value automatically. For more information on 'auto', see Algorithms on page 32-2286.

Example: 'InitialStepSize','auto'

Cross-Validation

CrossVal — Indicator for cross-validation

'off' (default) | 'on'

Indicator for cross-validation, specified as the comma-separated pair consisting of 'CrossVal' and either 'off' or 'on'. If it is 'on', then fitrgp returns a GPR model cross-validated with 10 folds.

You can use one of the KFold, Holdout, Leaveout or CVPartition name-value pair arguments to change the default cross-validation settings. You can use only one of these name-value pairs at a time.

As an alternative, you can use the crossval method for your model.

Example: 'CrossVal','on'

CVPartition — Random partition for a stratified k-fold cross-validation

cvpagination object

Random partition for a stratified k-fold cross-validation, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition object.

Example: 'CVPartition',cvp uses the random partition defined by cvp.

If you specify CVPartition, then you cannot specify Holdout, KFold, or Leaveout.

Holdout — Fraction of data to use for testing

scalar value in the range from 0 to 1
Fraction of the data to use for testing in holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range from 0 to 1. If you specify 'Holdout', p, then the software:
1. Randomly reserves around $p \times 100\%$ of the data as validation data, and trains the model using the rest of the data
2. Stores the compact, trained model in cvgprMdl.Trained.

Example: 'Holdout', 0.3 uses 30% of the data for testing and 70% of the data for training.

If you specify Holdout, then you cannot specify CVPartition, KFold, or Leaveout.

Data Types: double

KFold — Number of folds

10 (default) | positive integer value

Number of folds to use in cross-validated GPR model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value. KFold must be greater than 1. If you specify 'KFold', k then the software:
1. Randomly partitions the data into k sets.
2. For each set, reserves the set as test data, and trains the model using the other $k - 1$ sets.
3. Stores the k compact, trained models in the cells of a k-by-1 cell array in cvgprMdl.Trained.

Example: 'KFold', 5 uses 5 folds in cross-validation. That is, for each fold, uses that fold as test data, and trains the model on the remaining 4 folds.

If you specify KFold, then you cannot specify CVPartition, Holdout, or Leaveout.

Data Types: double

Leaveout — Indicator for leave-one-out cross-validation

'off' (default) | 'on'

Indicator for leave-one-out cross-validation, specified as the comma-separated pair consisting of 'Leaveout' and either 'off' or 'on'.

If you specify 'Leaveout', 'on', then, for each of the n observations, the software:
1. Reserves the observation as test data, and trains the model using the other $n - 1$ observations.
2. Stores the compact, trained model in a cell in the n-by-1 cell array cvgprMdl.Trained.
Example: 'Leaveout','on'

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'Sigma'}.
- 'all' — Optimize all eligible parameters, equivalent to {'BasisFunction','KernelFunction','KernelScale','Sigma','Standardize'}.
- String array or cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrgp by varying the parameters. For information about cross-validation loss (albeit in a different context), see “Classification Loss” on page 32-3215. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitrgp are:

- **BasisFunction** — fitrgp searches among 'constant', 'none', 'linear', and 'pureQuadratic'.
- **KernelFunction** — fitrgp searches among 'ardexponential', 'ardmatern32', 'ardmatern52', 'ardrationalquadratic', 'ardsquaredexponential', 'exponential', 'matern32', 'matern52', 'rationalquadratic', and 'squaredexponential'.
- **KernelScale** — `fitrgp` uses the `KernelParameters` argument to specify the value of the kernel scale parameter, which is held constant during fitting. In this case, all input dimensions are constrained to have the same `KernelScale` value. `fitrgp` searches among real value in the range
\[1e-3 \times \text{MaxPredictorRange}, \text{MaxPredictorRange}\], where

\[
\text{MaxPredictorRange} = \max(\max(X) - \min(X)).
\]

`KernelScale` cannot be optimized for any of the ARD kernels.

- **Sigma** — `fitrgp` searches among real value in the range
\[1e-4, \max(1e-3, 10 \times \text{ResponseStd})\], where

\[
\text{ResponseStd} = \text{std}(y).
\]

Internally, `fitrgp` sets the `ConstantSigma` name-value pair to `true` so the value of `Sigma` is constant during the fitting.

- **Standardize** — `fitrgp` searches among `true` and `false`.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load fisheriris
params = hyperparameters('fitrgp', meas, species);
params(1).Range = [1e-4, 1e6];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \(\log(1 + \text{cross-validation loss})\) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `HyperparameterOptimizationOptions` name-value pair argument. To control the plots, set the `ShowPlots` field of the `HyperparameterOptimizationOptions` name-value pair argument.

For an example, see “Optimize GPR Regression” on page 32-2246.

Example: `'auto'`
Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
 | • 'gridsearch' — Use grid search with NumGridDivisions values per dimension.
 | • 'randomsearch' — Search at random among MaxObjectiveEvaluations points.
 | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command `sortrows(Mdl.HyperparameterOptimizationResults)`. | 'bayesopt' |
| AcquisitionFunctionName | • 'expected-improvement-per-second-plus'
 | • 'expected-improvement'
 | • 'expected-improvement-plus'
 | • 'expected-improvement-per-second'
 | • 'lower-confidence-bound'
 | • 'probability-of-improvement'
<pre><code> | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
</code></pre>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the <code>bayesopt</code> Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If <code>false</code>, the optimizer uses a single partition for the optimization.</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td><code>true</code> usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, <code>true</code> requires at least twice as many function evaluations.</td>
<td></td>
</tr>
<tr>
<td>CVPartition</td>
<td>A <code>cvpartition</code> object, as created by <code>cvpartition</code>.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example: 'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct
Other

PredictorNames — Predictor variable names

string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or a cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and y, then you can use 'PredictorNames' to give the predictor variables in X names.
 - The order of the names in `PredictorNames` must correspond to the column order of X. That is, `PredictorNames{1}` is the name of `X(:,1)`, `PredictorNames{2}` is the name of `X(:,2)`, and so on. Also, `size(X,2)` and `numel(PredictorNames)` must be equal.
 - By default, `PredictorNames` is `{’x1’,’x2’,…}`.
- If you supply tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, `fitrgp` uses the predictor variables in `PredictorNames` and the response only in training.
 - `PredictorNames` must be a subset of `tbl.Properties.VariableNames` and cannot include the name of the response variable.
 - By default, `PredictorNames` contains the names of all predictor variables.
 - It good practice to specify the predictors for training using one of 'PredictorNames' or formula only.

Example: 'PredictorNames',{’PedalLength’,’PedalWidth’}

Data Types: string | cell

ResponseName — Response variable name

‘Y’ (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.
Example: 'ResponseName','response'
Data Types: char | string

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the following.

- 0 — *fitrgp* suppresses diagnostic messages related to active set selection and block coordinate descent but displays the messages related to parameter estimation, depending on the value of 'Display' in OptimizerOptions.
- 1 — *fitrgp* displays the iterative diagnostic messages related to parameter estimation, active set selection, and block coordinate descent.

Example: 'Verbose',1

CacheSize — Cache size in megabytes
1000 MB (default) | positive scalar

Cache size in megabytes (MB), specified as the comma-separated pair consisting of 'CacheSize' and a positive scalar. Cache size is the extra memory that is available in addition to that required for fitting and active set selection. *fitrgp* uses CacheSize to:

- Decide whether interpoint distances should be cached when estimating parameters.
- Decide how matrix vector products should be computed for block coordinate descent method and for making predictions.

Example: 'CacheSize',2000
Data Types: double

Output Arguments

gprMdl — Gaussian process regression model
RegressionGP object | RegressionPartitionedModel object

Gaussian process regression model, returned as a RegressionGP or a RegressionPartitionedModel object.
• If you cross-validate, that is, if you use one of the 'Crossval', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-value pairs, then gprMdl is a RegressionPartitionedModel object. You cannot use a RegressionPartitionedModel object to make predictions using predict. For more information on the methods and properties of this object, see RegressionPartitionedModel.

• If you do not cross-validate, then gprMdl is a RegressionGP object. You can use this object for predictions using the predict method. For more information on the methods and properties of this object, see RegressionGP.

Definitions

Active Set Selection and Parameter Estimation

For subset of data, subset of regressors, or fully independent conditional approximation fitting methods (FitMethod equal to 'sd', 'sr', or 'fic'), if you do not provide the active set, fitrgp selects the active set and computes the parameter estimates in a series of iterations.

In the first iteration, the software uses the initial parameter values in vector \(\eta_0 = [\beta_0, \sigma_0, \theta_0] \) to select an active set \(A_1 \). It maximizes the GPR marginal log likelihood or its approximation using \(\eta_0 \) as the initial values and \(A_1 \) to compute the new parameter estimates \(\eta_1 \). Next, it computes the new log likelihood value \(L_1 \).

In the second iteration, the software selects the active set \(A_2 \) using the parameter values in \(\eta_1 \). Then, using \(\eta_1 \) as the initial values and \(A_2 \), it maximizes the GPR marginal log likelihood or its approximation and estimates the new parameter values \(\eta_2 \). Then using \(\eta_2 \) and \(A_2 \), computes the new log likelihood value \(L_2 \).

The following table summarizes the iterations and what is computed at each iteration.

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>Active Set</th>
<th>Parameter Vector</th>
<th>Log Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(A_1)</td>
<td>(\eta_1)</td>
<td>(L_1)</td>
</tr>
<tr>
<td>2</td>
<td>(A_2)</td>
<td>(\eta_2)</td>
<td>(L_2)</td>
</tr>
<tr>
<td>3</td>
<td>(A_3)</td>
<td>(\eta_3)</td>
<td>(L_3)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

32-2284
The software iterates similarly for a specified number of repetitions. You can specify the number of replications for active set selection using the NumActiveSetRepeats name-value pair argument.

Tips

- `fitrgp` accepts any combination of fitting, prediction, and active set selection methods. In some cases it might not be possible to compute the standard deviations of the predicted responses, hence the prediction intervals. See `predict`. And in some cases, using the exact method might be expensive due to the size of the training data.

- The `PredictorNames` property stores one element for each of the original predictor variable names. For example, if there are three predictors, one of which is a categorical variable with three levels, `PredictorNames` is a 1-by-3 cell array of character vectors.

- The `ExpandedPredictorNames` property stores one element for each of the predictor variables, including the dummy variables. For example, if there are three predictors, one of which is a categorical variable with three levels, then `ExpandedPredictorNames` is a 1-by-5 cell array of character vectors.

- Similarly, the `Beta` property stores one beta coefficient for each predictor, including the dummy variables.

- The `X` property stores the training data as originally input. It does not include the dummy variables.

- The default approach to initializing the Hessian approximation in `fitrgp` can be slow when you have a GPR model with many kernel parameters, such as when using an ARD kernel with many predictors. In this case, consider specifying `'auto'` or a value for the initial step size.

You can set `'Verbose', 1` for display of iterative diagnostic messages, and begin training a GPR model using an LBFGS or quasi-Newton optimizer with the default `fitrgp` optimization. If the iterative diagnostic messages are not displayed after a few seconds, it is possible that initialization of the Hessian approximation is taking too long. In this case, consider restarting training and using the initial step size to speed up optimization.

- After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.
Algorithms

- Fitting a GPR model involves estimating the following model parameters from the data:

 - Covariance function \(k(x_i, x_j | \theta) \) parameterized in terms of kernel parameters in vector \(\theta \) (see “Kernel (Covariance) Function Options” on page 6-7)

 - Noise variance, \(\sigma^2 \)

 - Coefficient vector of fixed basis functions, \(\beta \)

The value of the 'KernelParameters' name-value pair argument is a vector that consists of initial values for the signal standard deviation \(\sigma_f \) and the characteristic length scales \(\sigma_l \). The \texttt{fitrgp} function uses these values to determine the kernel parameters. Similarly, the 'Sigma' name-value pair argument contains the initial value for the noise standard deviation \(\sigma \).

- During optimization, \texttt{fitrgp} creates a vector of unconstrained initial parameter values \(\eta_0 \) by using the initial values for the noise standard deviation and the kernel parameters.

- \texttt{fitrgp} analytically determines the explicit basis coefficients \(\beta \), specified by the 'Beta' name-value pair argument, from estimated values of \(\theta \) and \(\sigma^2 \). Therefore, \(\beta \) does not appear in the \(\eta_0 \) vector when \texttt{fitrgp} initializes numerical optimization.

\textbf{Note} If you specify no estimation of parameters for the GPR model, \texttt{fitrgp} uses the value of the 'Beta' name-value pair argument and other initial parameter values as the known GPR parameter values (see \texttt{Beta}). In all other cases, the value of the 'Beta' argument is optimized analytically from the objective function.

- The quasi-Newton optimizer uses a trust-region method with a dense, symmetric rank-1-based (SR1), quasi-Newton approximation to the Hessian, while the LBFGS optimizer uses a standard line-search method with a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton approximation to the Hessian. See Nocedal and Wright [6].

- If you set the 'InitialStepSize' name-value pair argument to 'auto', fitrgp determines the initial step size, $\|s_0\|_\infty$, by using $\|s_0\|_\infty = 0.5\|\eta_0\|_\infty + 0.1$.

s_0 is the initial step vector, and η_0 is the vector of unconstrained initial parameter values.

- During optimization, fitrgp uses the initial step size, $\|s_0\|_\infty$, as follows:

 If you use 'Optimizer','quasinewton' with the initial step size, then the initial Hessian approximation is $\frac{\|g_0\|_\infty I}{\|s_0\|_\infty}$.

 If you use 'Optimizer','lbfgs' with the initial step size, then the initial inverse-Hessian approximation is $\frac{\|s_0\|_\infty I}{\|g_0\|_\infty}$.

g_0 is the initial gradient vector, and I is the identity matrix.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
RegressionGP | compact | predict

Topics
“Gaussian Process Regression Models” on page 6-2
“Kernel (Covariance) Function Options” on page 6-7

Introduced in R2015b
fitrlinear

Fit linear regression model to high-dimensional data

fitrlinear efficiently trains linear regression models with high-dimensional, full or sparse predictor data. Available linear regression models include regularized support vector machines (SVM) and least-squares regression methods. *fitrlinear* minimizes the objective function using techniques that reduce computing time (e.g., stochastic gradient descent).

A high-dimensional data set includes many predictor variables. Although such a data set can consume a significant fraction of memory, it must fit in the MATLAB Workspace. For low- through medium-dimensional predictor data sets, see “Alternatives for Lower-Dimensional Data” on page 32-2328.

Syntax

```matlab
Mdl = fitrlinear(X,Y)
Mdl = fitrlinear(X,Y,Name,Value)
[ Mdl,FitInfo] = fitrlinear(___) 
[ Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear(___) 
```

Description

Mdl = fitrlinear(X,Y) returns a trained regression model object that contains the results of fitting a support vector machine regression model to the predictors *X* and response *Y*.

Mdl = fitrlinear(X,Y,Name,Value) returns a trained linear regression model with additional options specified by one or more Name,Value pair arguments. For example, you can specify implement least-squares regression, specify to cross-validate, or specify the type of regularization. It is good practice to cross-validate using the Kfold Name,Value pair argument. The cross-validation results determine how well the model generalizes.

[Mdl,FitInfo] = fitrlinear(__) also returns optimization details using any of the previous syntaxes. You cannot request FitInfo for cross-validated models.
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear(__)
also returns hyperparameter optimization details when you pass an
OptimizeHyperparameters name-value pair.

Examples

Train Linear Regression Model

Train a linear regression model using SVM, dual SGD, and ridge regularization.

Simulate 10000 observations from this model

\[y = x_{100} + 2x_{200} + e.\]

- \(X = x_1, \ldots, x_{1000} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \(e \) is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model. By default, fitrlinear uses support vector machines with a ridge penalty, and optimizes using dual SGD for SVM. Determine how well the optimization algorithm fit the model to the data by extracting a fit summary.

[Mdl,FitInfo] = fitrlinear(X,Y)

Mdl =
RegressionLinear
 ResponseName: 'Y'
 ResponseTransform: 'none'
 Beta: [1000x1 double]
 Bias: -0.0056
 Lambda: 1.0000e-04
 Learner: 'svm'
Properties, Methods

FitInfo = struct with fields:
 Lambda: 1.0000e-04
 Objective: 0.2725
 PassLimit: 10
 NumPasses: 10
 BatchLimit: []
 NumIterations: 100000
 GradientNorm: NaN
 GradientTolerance: 0
 RelativeChangeInBeta: 0.4907
 BetaTolerance: 1.0000e-04
 DeltaGradient: 1.5816
 DeltaGradientTolerance: 0.1000
 TerminationCode: 0
 TerminationStatus: {'Iteration limit exceeded.'}
 Alpha: [10000x1 double]
 History: []
 FitTime: 0.1190
 Solver: {'dual'}

Mdl is a RegressionLinear model. You can pass Mdl and the training or new data to loss to inspect the in-sample mean-squared error. Or, you can pass Mdl and new predictor data to predict to predict responses for new observations.

FitInfo is a structure array containing, among other things, the termination status (TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is good practice to use FitInfo to determine whether optimization-termination measurements are satisfactory. In this case, fitrlinear reached the maximum number of iterations. Because training time is fast, you can retrain the model, but increase the number of passes through the data. Or, try another solver, such as LBFGS.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares, implement 5-fold cross-validation.
Simulate 10000 observations from this model

\[y = x_{100} + 2x_{200} + e. \]

- \(X = \{x_1, \ldots, x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \(e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Create a set of 15 logarithmically-spaced regularization strengths from \(10^{-5} \) through \(10^{-1} \).

```matlab
Lambda = logspace(-5,-1,15);
```

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Optimize the objective function using SpaRSA.

```matlab
X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,... 'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
```

```matlab
numCLModels = numel(CVMdl.Trained)
```

```matlab
numCLModels = 5
```

\(CVMdl \) is a `RegressionPartitionedLinear` model. Because `fitrlinear` implements 5-fold cross-validation, \(CVMdl \) contains 5 `RegressionLinear` models that the software trains on each fold.

Display the first trained linear regression model.

```matlab
Mdl1 = CVMdl.Trained{1}
```

```matlab
Mdl1 =
    RegressionLinear
```
Mdl1 is a RegressionLinear model object. fitrlinear constructed Mdl1 by training on the first four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 15 models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

\[
\text{mse} = \text{kfoldLoss}(\text{CVMdl});
\]

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression model. For each regularization strength, train a linear regression model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

\[
\text{Mdl} = \text{fitrlinear}(X,Y,\text{ObservationsIn},'columns',\text{Lambda},...\text{Learner},'leastsquares',\text{Solver},'sparsa',\text{Regularization},'lasso');
\]

\[
\text{numNZCoeff} = \text{sum}(\text{Mdl}.\text{Beta}==0);
\]

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

\[
\text{figure}
\]

\[
[\text{h,hl1,hl2}] = \text{plotyy}(\text{log10(Lambda)},\text{log10(mse)},...\text{log10(Lambda)},\text{log10(numNZCoeff)});
\]

\[
\text{hl1.Marker} = 'o';
\]

\[
\text{hl2.Marker} = 'o';
\]

\[
\text{ylabel(h(1),'log}_{10}\text{ MSE')}
\]

\[
\text{ylabel(h(2),'log}_{10}\text{ nonzero-coefficient frequency')}
\]

\[
\text{xlabel('log}_{10}\text{ Lambda')}
\]

\[
\text{hold off}
\]
Choose the index of the regularization strength that balances predictor variable sparsity and low MSE (for example, \(\text{Lambda}(10) \)).

\[
\text{idxFinal} = 10;
\]

Extract the model with corresponding to the minimal MSE.

\[
\text{MdlFinal} = \text{selectModels}(\text{Mdl}, \text{idxFinal})
\]

\[
\text{MdlFinal} = \text{RegressionLinear}
\]
\[
\begin{align*}
\text{ResponseName: 'Y'} \\
\text{ResponseTransform: 'none'} \\
\text{Beta: [1000x1 double]}
\end{align*}
\]
Bias: -0.0050
Lambda: 0.0037
Learner: 'leastsquares'

Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)
idxNZCoeff = 2×1
 100
 200

EstCoeff = Mdl.Beta(idxNZCoeff)
EstCoeff = 2×1
 1.0051
 1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients EstCoeff are close to the coefficients that simulated the data.

Optimize a Linear Regression

This example shows how to optimize hyperparameters automatically using fitrlinear. The example uses artificial (simulated) data for the model

\[y = x_{100} + 2x_{200} + e. \]

- \(X = \{x_1, \ldots, x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \(e \) is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Find hyperparameters that minimize five-fold cross validation loss by using automatic hyperparameter optimization.

For reproducibility, use the 'expected-improvement-plus' acquisition function.

hyperopts = struct('AcquisitionFunctionName','expected-improvement-plus');
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear(X,Y,...
 'OptimizeHyperparameters','auto',...
 'HyperparameterOptimizationOptions',hyperopts)
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.16029</td>
<td>1.9707</td>
<td>0.16029</td>
<td>0.16029</td>
<td>2.4206e-09</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>0.14496</td>
<td>1.0757</td>
<td>0.14496</td>
<td>0.14601</td>
<td>0.001807</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>0.13879</td>
<td>0.99643</td>
<td>0.13879</td>
<td>0.14065</td>
<td>2.4681e-09</td>
</tr>
</tbody>
</table>

Learner

Objective function model

- Observed points
- Model mean
- Next point
- Model minimum feasible

```
fitrlinear
```
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Best</td>
<td>0.10737</td>
<td>0.74324</td>
<td>0.10737</td>
<td>0.10728</td>
<td>0.010171</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>0.13448</td>
<td>0.59243</td>
<td>0.10737</td>
<td>0.10727</td>
<td>1.5344e-05</td>
</tr>
<tr>
<td>23</td>
<td>Best</td>
<td>0.10954</td>
<td>0.58194</td>
<td>0.10954</td>
<td>0.11003</td>
<td>0.010393</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>0.13598</td>
<td>0.56895</td>
<td>0.10954</td>
<td>0.11019</td>
<td>1.3981e-08</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.15962</td>
<td>0.65889</td>
<td>0.10645</td>
<td>0.10566</td>
<td>9.9932</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.10689</td>
<td>0.78948</td>
<td>0.10645</td>
<td>0.10615</td>
<td>1.4302e-08</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.13748</td>
<td>0.51988</td>
<td>0.10645</td>
<td>0.10614</td>
<td>1.001e-09</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.10692</td>
<td>0.77752</td>
<td>0.10645</td>
<td>0.10639</td>
<td>0.015761</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.10681</td>
<td>0.79679</td>
<td>0.10645</td>
<td>0.10649</td>
<td>0.015777</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.34314</td>
<td>0.56427</td>
<td>0.10645</td>
<td>0.10651</td>
<td>0.39671</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 82.1611 seconds.
Total objective function evaluation time: 22.7412

Best observed feasible point:
Lambda Learner
0.015495 svm
Observed objective function value = 0.10645
Estimated objective function value = 0.10651
Function evaluation time = 0.77539

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Lambda</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015777</td>
<td>svm</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.10651
Estimated function evaluation time = 0.80305

Mdl =
RegressionLinear
 ResponseName: 'Y'
 ResponseTransform: 'none'
 Beta: [1000x1 double]
 Bias: -0.0018
 Lambda: 0.0158
 Learner: 'svm'

Properties, Methods

FitInfo = struct with fields:
 Lambda: 0.0158
 Objective: 0.2309
 PassLimit: 10
 NumPasses: 10
 BatchLimit: []
 NumIterations: 99989
 GradientNorm: NaN
 GradientTolerance: 0
 RelativeChangeInBeta: 0.0641
 BetaTolerance: 1.0000e-04
 DeltaGradient: 1.1697
 DeltaGradientTolerance: 0.1000
 TerminationCode: 0
 TerminationStatus: {'Iteration limit exceeded.'}
 Alpha: [10000x1 double]
 History: []
 FitTime: 0.0946
Solver: {'dual'}

HyperparameterOptimizationResults =
BayesianOptimization with properties:

ObjectiveFcn: @createObjFcn/inMemoryObjFcn
VariableDescriptions: [3x1 optimizableVariable]
Options: [1x1 struct]
MinObjective: 0.1065
XAtMinObjective: [1x2 table]
MinEstimatedObjective: 0.1065
XAtMinEstimatedObjective: [1x2 table]
NumObjectiveEvaluations: 30
TotalElapsedTime: 82.1611
NextPoint: [1x2 table]
XTrace: [30x2 table]
ObjectiveTrace: [30x1 double]
ConstraintsTrace: []
UserDataTrace: {30x1 cell}
ObjectiveEvaluationTimeTrace: [30x1 double]
IterationTimeTrace: [30x1 double]
ErrorTrace: [30x1 double]
FeasibilityTrace: [30x1 logical]
FeasibilityProbabilityTrace: [30x1 double]
IndexOfMinimumTrace: [30x1 double]
ObjectiveMinimumTrace: [30x1 double]
EstimatedObjectiveMinimumTrace: [30x1 double]

This optimization technique is simpler than that shown in “Find Good Lasso Penalty Using Cross-Validation” on page 32-2291, but does not allow you to trade off model complexity and cross-validation loss.

Input Arguments

X — Predictor data

full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix.

The length of Y and the number of observations in X must be equal.
Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in optimization-execution time.

Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y and the number of observations in X must be equal.

Data Types: single | double

Note `fitrlinear` removes missing observations, that is, observations with any of these characteristics:

- NaN elements in the response (Y or ValidationData{2})
- At least one NaN value in a predictor observation (row in X or ValidationData{1})
- NaN value or 0 weight (Weights or ValidationData{3})

For memory-usage economy, it is best practice to remove observations containing missing values from your training data manually before training.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.
Example: `Mdl = fitrlinear(X,Y,'Learner','leastsquares','CrossVal','on','Regularization','lasso')` specifies to implement least-squares regression, implement 10-fold cross-validation, and specifies to include a lasso regularization term.

Linear Regression Options

Epsilon — Half the width of epsilon-insensitive band

iqr(Y)/1.349 (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of 'Epsilon' and a nonnegative scalar value. 'Epsilon' applies to SVM learners only.

The default Epsilon value is `iqr(Y)/1.349`, which is an estimate of standard deviation using the interquartile range of the response variable Y. If `iqr(Y)` is equal to zero, then the default Epsilon value is 0.1.

Example: 'Epsilon',0.3

Data Types: single | double

Lambda — Regularization term strength

'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto', a nonnegative scalar, or a vector of nonnegative values.

- For 'auto', Lambda = 1/n.
 - If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the number of in-fold observations.
 - Otherwise, n is the training sample size.
- For a vector of nonnegative values, the software sequentially optimizes the objective function for each distinct value in Lambda in ascending order.
 - If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', then the software does not use the previous coefficient estimates as a warm start on page 32-1916 for the next optimization iteration. Otherwise, the software uses warm starts.
 - If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when the software optimizes using subsequent values in Lambda.
Returns coefficient estimates for all optimization iterations.

Example: 'Lambda',10.^(-(10:-2:2))

Data Types: char | string | double | single

Learner — Linear regression model type

'svm' (default) | 'leastsquares'

Linear regression model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'leastsquares'.

In this table, \(f(x) = x\beta + b \).

- \(\beta \) is a vector of \(p \) coefficients.
- \(x \) is an observation from \(p \) predictor variables.
- \(b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response range</th>
<th>Loss function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'leastsquares'</td>
<td>Linear regression via ordinary least squares</td>
<td>(y \in (-\infty, \infty))</td>
<td>Mean squared error (MSE): (\ell[y, f(x)] = \frac{1}{2} [y - f(x)]^2)</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine regression</td>
<td>Same as 'leastsquares'</td>
<td>Epsilon-insensitive: (\ell[y, f(x)] = \max[0,</td>
</tr>
</tbody>
</table>

Example: 'Learner','leastsquares'

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn', 'columns', then you might experience a significant reduction in optimization-execution time.
Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization' and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss function (see Learner) and the regularization term in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso'</td>
<td>Lasso (L1) penalty: $\lambda \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'ridge'</td>
<td>Ridge (L2) penalty: $\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2$</td>
</tr>
</tbody>
</table>

To specify the regularization term strength, which is λ in the expressions, use Lambda.

The software excludes the bias term (β_0) from the regularization penalty.

If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the default is 'ridge'.

Tip
- For predictor variable selection, specify 'lasso'.
- For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'

Solver — Objective function minimization technique
'sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character vectors

Objective function minimization technique, specified as the comma-separated pair consisting of 'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors with values from this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sgd'</td>
<td>Stochastic gradient descent (SGD) [5][3]</td>
<td></td>
</tr>
<tr>
<td>'asgd'</td>
<td>Average stochastic gradient descent (ASGD) [8]</td>
<td></td>
</tr>
<tr>
<td>'dual'</td>
<td>Dual SGD for SVM [2][7]</td>
<td>Regularization must be 'ridge' and Learner must be 'svm'.</td>
</tr>
<tr>
<td>'bfgs'</td>
<td>Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (BFGS) [4]</td>
<td>Inefficient if X is very high-dimensional.</td>
</tr>
<tr>
<td>'lbfgs'</td>
<td>Limited-memory BFGS (LBFGS) [4]</td>
<td>Regularization must be 'ridge'.</td>
</tr>
<tr>
<td>'sparsa'</td>
<td>Sparse Reconstruction by Separable Approximation (SpaRSA) [6]</td>
<td>Regularization must be 'lasso'.</td>
</tr>
</tbody>
</table>

If you specify:

- A ridge penalty (see Regularization) and size(X,1) <= 100 (100 or fewer predictor variables), then the default solver is 'bfgs'.
- An SVM regression model (see Learner), a ridge penalty, and size(X,1) > 100 (more than 100 predictor variables), then the default solver is 'dual'.
- A lasso penalty and X contains 100 or fewer predictor variables, then the default solver is 'sparsa'.

Otherwise, the default solver is 'sgd'.

If you specify a string array or cell array of solver names, then the software uses all solvers in the specified order for each Lambda.

For more details on which solver to choose, see “Tips” on page 32-2329.

Example: 'Solver', {'sgd','lbfgs'}

Beta — Initial linear coefficient estimates
zeros(p,1) (default) | numeric vector | numeric matrix
Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta' and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor variables in X and L is the number of regularization-strength values (for more details, see Lambda).

- If you specify a p-dimensional vector, then the software optimizes the objective function L times using this process.

 1 The software optimizes using Beta as the initial value and the minimum value of Lambda as the regularization strength.

 2 The software optimizes again using the resulting estimate from the previous optimization as a warm start on page 32-1916, and the next smallest value in Lambda as the regularization strength.

 3 The software implements step 2 until it exhausts all values in Lambda.

- If you specify a p-by-L matrix, then the software optimizes the objective function L times. At iteration j, the software uses $\text{Beta}(:,j)$ as the initial value and, after it sorts Lambda in ascending order, uses $\text{Lambda}(j)$ as the regularization strength.

If you set 'Solver','dual', then the software ignores Beta.

Data Types: single | double

Bias — Initial intercept estimate

numeric scalar | numeric vector

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values (for more details, see Lambda).

- If you specify a scalar, then the software optimizes the objective function L times using this process.

 1 The software optimizes using Bias as the initial value and the minimum value of Lambda as the regularization strength.

 2 The uses the resulting estimate as a warm start on page 32-2328 to the next optimization iteration, and uses the next smallest value in Lambda as the regularization strength.

 3 The software implements step 2 until it exhausts all values in Lambda.

- If you specify an L-dimensional vector, then the software optimizes the objective function L times. At iteration j, the software uses $\text{Bias}(j)$ as the initial value and,
after it sorts Lambda in ascending order, uses Lambda(j) as the regularization strength.

• By default:
 • If Learner is 'leastsquares', then Bias is the weighted average of Y for training or, for cross-validation, in-fold responses.
 • If Learner is 'svm', then Bias is the weighted median of Y for all training or, for cross-validation, in-fold observations that are greater than Epsilon.

Data Types: single | double

FitBias — Linear model intercept inclusion flag

true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of 'FitBias' and true or false.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>The software includes the bias term b in the linear model, and then estimates it.</td>
</tr>
<tr>
<td>false</td>
<td>The software sets b = 0 during estimation.</td>
</tr>
</tbody>
</table>

Example: 'FitBias',false

Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization

false (default) | true

Flag to fit the linear model intercept after optimization, specified as the comma-separated pair consisting of 'PostFitBias' and true or false.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>The software estimates the bias term b and the coefficients β during optimization.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| true | To estimate b, the software:
1. Estimates β and b using the model.
2. Computes residuals.
3. Refits b. For least squares, b is the weighted average of the residuals. For SVM regression, b is the weighted median between all residuals with magnitude greater than Epsilon. |

If you specify `true`, then `FitBias` must be `true`.

Example: `'PostFitBias',true`

Data Types: `logical`

Verbose — Verbosity level

0 (default) | nonnegative integer

Verbosity level, specified as the comma-separated pair consisting of `'Verbose'` and a nonnegative integer. `Verbose` controls the amount of diagnostic information `fitrlinear` displays at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>fitrlinear</code> does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td><code>fitrlinear</code> periodically displays and stores the value of the objective function, gradient magnitude, and other diagnostic information. <code>FitInfo.History</code> contains the diagnostic information.</td>
</tr>
<tr>
<td>Any other positive integer</td>
<td><code>fitrlinear</code> displays and stores diagnostic information at each optimization iteration. <code>FitInfo.History</code> contains the diagnostic information.</td>
</tr>
</tbody>
</table>

Example: `'Verbose',1`

Data Types: `double` | `single`
SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive integer. At each iteration, the software estimates the subgradient using BatchSize observations from the training data.

- If X is a numeric matrix, then the default value is 10.
- If X is a sparse matrix, then the default value is \(\text{max}([10, \text{ceil}(\sqrt{ff})]) \), where \(ff = \text{numel}(X)/\text{nnz}(X) \) (the fullness factor of X).

Example: 'BatchSize',100

Data Types: single | double

LearnRate — Learning rate
positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive scalar. LearnRate specifies how many steps to take per iteration. At each iteration, the gradient specifies the direction and magnitude of each step.

- If Regularization is 'ridge', then LearnRate specifies the initial learning rate \(\gamma_0 \). The software determines the learning rate for iteration \(t \), \(\gamma_t \), using

\[
\gamma_t = \frac{\gamma_0}{(1 + \lambda \gamma_0^c)^c}.
\]

- \(\lambda \) is the value of Lambda.
- If Solver is 'sgd', then \(c = 1 \).
- If Solver is 'asgd', then \(c \) is:
 - 2/3 if Learner is 'leastsquares'
 - 3/4 if Learner is 'svm' [8]
- If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is \(1/\sqrt{1+\text{max}((\text{sum}(X.^2,\text{obsDim})))} \), where obsDim is 1 if the observations compose the columns of X, and 2 otherwise.
Example: 'LearnRate', 0.01
Data Types: single | double

OptimizeLearnRate — Flag to decrease learning rate
true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, overstepping the minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or false.

If OptimizeLearnRate is 'true', then:

1. For the few optimization iterations, the software starts optimization using LearnRate as the learning rate.
2. If the value of the objective function increases, then the software restarts and uses half of the current value of the learning rate.
3. The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate', true
Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs
10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair consisting of 'TruncationPeriod' and a positive integer.

After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after processing $k = \text{TruncationPeriod}$ mini-batches, the software truncates the estimated coefficient j using

$$
\hat{\beta}_j^* = \begin{cases}
\hat{\beta}_j - u_t & \text{if } \hat{\beta}_j > u_t, \\
0 & \text{if } |\hat{\beta}_j| \leq u_t, \\
\hat{\beta}_j + u_t & \text{if } \hat{\beta}_j < -u_t.
\end{cases}
$$

For SGD, $\hat{\beta}_j$ is the estimate of coefficient j after processing k mini-batches. $u_t = k \gamma_t \lambda$. γ_t is the learning rate at iteration t. λ is the value of Lambda.
• For ASGD, $\hat{\beta}_j$ is the averaged estimate coefficient j after processing k mini-batches, $u_t = k\lambda$.

If Regularization is 'ridge', then the software ignores TruncationPeriod.
Example: 'TruncationPeriod',100
Data Types: single | double

Other Regression Options

Weights — Observation weights
ones($n,1$)/n (default) | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. fitrlinear weighs the observations in X with the corresponding value in Weights. The size of Weights must equal n, the number of observations in X.

fitrlinear normalizes Weights to sum to 1.
Data Types: double | single

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.
• If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as the comma-separated pair consisting of 'ResponseTransform' and either 'none' or a function handle. The default is 'none',
which means @\(y \) \textit{y}, or no transformation. For a MATLAB function or a function you define, use its function handle. The function handle must accept a vector (the original response values) and return a vector of the same size (the transformed response values).

Example: Suppose you create a function handle that applies an exponential transformation to an input vector by using \texttt{myfunction = @(y)exp(y)}. Then, you can specify the response transformation as 'ResponseTransform', myfunction.

Data Types: char | string | function_handle

Cross-Validation Options

\textbf{CrossVal — Cross-validation flag}

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, or KFold. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Example: 'Crossval','on'

\textbf{CVPartition — Cross-validation partition}

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation, and also the indexing for training and validation sets.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

\textbf{Holdout — Fraction of data for holdout validation}

scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', \(p \), then the software:
Randomly reserves $p\times100\%$ of the data as validation data, and trains the model using the rest of the data.

Stores the compact, trained model in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold', k, then the software:

1. Randomly partitions the data into k sets
2. For each set, reserves the set as validation data, and trains the model using the other $k-1$ sets
3. Stores the k compact, trained models in the cells of a k-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition', 'Holdout', or 'KFold'.

Example: 'KFold', 8

Data Types: single | double

SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches

positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of 'BatchLimit' and a positive integer. When the software processes `BatchLimit` batches, it terminates optimization.

- By default:
• The software passes through the data PassLimit times.
• If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the 'BatchSize' name-value pair argument.
• If you specify 'BatchLimit' and 'PassLimit', then the software chooses the argument that results in processing the fewest observations.
• If you specify 'BatchLimit' but not 'PassLimit', then the software processes enough batches to complete up to one entire pass through the data.

Example: 'BatchLimit',100
Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = [\beta_t \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\| B_t - B_{t-1} \|_2 < \text{BetaTolerance} \), then optimization terminates.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6
Data Types: single | double

NumCheckConvergence — Number of batches to process before next convergence check
positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.

To specify the batch size, see BatchSize.
The software checks for convergence about 10 times per pass through the entire data set by default.

Example: 'NumCheckConvergence',100

Data Types: single | double

PassLimit — Maximal number of passes

1 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of 'PassLimit' and a positive integer.

`fitrlinear` processes all observations when it completes one pass through the data.

When `fitrlinear` passes through the data `PassLimit` times, it terminates optimization.

If you specify 'BatchLimit' and `PassLimit`, then `fitrlinear` chooses the argument that results in processing the fewest observations. For more details, see “Algorithms” on page 32-2331.

Example: 'PassLimit',5

Data Types: single | double

ValidationData — Validation data for optimization convergence detection

cell array

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.

During optimization, the software periodically estimates the loss of `ValidationData`. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-2331. To optimize hyperparameters using cross-validation, see cross-validation options such as `CrossVal`.

- `ValidationData(1)` must contain an m-by-p or p-by-m full or sparse matrix of predictor data that has the same orientation as X. The predictor variables in the training data X and `ValidationData{1}` must correspond. The number of observations in both sets can vary.
- `ValidationData(2)` must contain an array of m responses with length corresponding to the number of observations in `ValidationData{1}`.
- Optionally, ValidationData(3) can contain an m-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

GradientTolerance — Absolute gradient tolerance

1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar. GradientTolerance applies to these values of Solver: 'bfgs', 'lbfgs', and 'sparsa'.

Let \(\nabla L_t \) be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration \(t \). If \(\| \nabla L_t \|_\infty = \max |\nabla L_t| < \text{GradientTolerance} \), then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when fitrlinear satisfies either stopping criterion.

If fitrlinear converges for the last solver specified in Solver, then optimization terminates. Otherwise, fitrlinear uses the next solver specified in Solver.

Example: 'GradientTolerance',eps

Data Types: single | double

IterationLimit — Maximal number of optimization iterations

1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver: 'bfgs', 'lbfgs', and 'sparsa'.

Example: 'IterationLimit',1e7

Data Types: single | double
Dual SGD Optimization Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = \begin{bmatrix} \beta_t' & b_t \end{bmatrix} \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\frac{\|B_t - B_{t-1}\|_2}{B_t} < \text{BetaTolerance} \), then optimization terminates.

If you also specify DeltaGradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6

Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance

0.1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001 violations, specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar. DeltaGradientTolerance applies to the 'dual' value of Solver only.

- If the magnitude of the KKT violators is less than DeltaGradientTolerance, then fitrlinear terminates optimization.
- If fitrlinear converges for the last solver specified in Solver, then optimization terminates. Otherwise, fitrlinear uses the next solver specified in Solver.

Example: 'DeltaGapTolerance',1e-2

Data Types: double | single
NumCheckConvergence — Number of passes through entire data set to process before next convergence check
5 (default) | positive integer

Number of passes through entire data set to process before next convergence check, specified as the comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.

Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
10 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of 'PassLimit' and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data PassLimit times, it terminates optimization.

Example: 'PassLimit',5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.

During optimization, the software periodically estimates the loss of ValidationData. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-2331. To optimize hyperparameters using cross-validation, see cross-validation options such as CrossVal.

- ValidationData(1) must contain an m-by-p or p-by-m full or sparse matrix of predictor data that has the same orientation as X. The predictor variables in the training data X and ValidationData{1} must correspond. The number of observations in both sets can vary.
- ValidationData(2) must contain an array of m responses with length corresponding to the number of observations in ValidationData{1}.
• Optionally, ValidationData(3) can contain an \(m \)-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

BFGS, LBFGS, and SpaRSA Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = [\beta_t' \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\frac{\|B_t - B_{t-1}\|_2}{B_t} < \text{BetaTolerance} \), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6

Data Types: single | double

GradientTolerance — Absolute gradient tolerance

1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.
Let ∇L_t be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If $\|\nabla L_t\|_\infty = \max |\nabla L_t| < \text{GradientTolerance}$, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation

15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. That is, at each iteration, the software composes the Hessian using statistics from the latest HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.

Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximal number of optimization iterations

1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver: 'bfgs', 'lbfgs', and 'sparsa'.

Example: 'IterationLimit',500
Data Types: single | double

ValidationData — Validation data for optimization convergence detection

Data for optimization convergence detection, specified as the comma-separated pair consisting of 'ValidationData' and a cell array.
During optimization, the software periodically estimates the loss of ValidationData. If the validation-data loss increases, then the software terminates optimization. For more details, see “Algorithms” on page 32-2331. To optimize hyperparameters using cross-validation, see cross-validation options such as CrossVal.

- ValidationData(1) must contain an \(m \)-by-\(p \) or \(p \)-by-\(m \) full or sparse matrix of predictor data that has the same orientation as \(X \). The predictor variables in the training data \(X \) and ValidationData{1} must correspond. The number of observations in both sets can vary.
- ValidationData(2) must contain an array of \(m \) responses with length corresponding to the number of observations in ValidationData{1}.
- Optionally, ValidationData(3) can contain an \(m \)-dimensional numeric vector of observation weights. The software normalizes the weights with the validation data so that they sum to 1.

If you specify ValidationData, then, to display validation loss at the command line, specify a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize

`'none'` (default) | `'auto'` | `'all'` | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- `'none'` — Do not optimize.
- `'auto'` — Use {'Lambda','Learner'}.
- `'all'` — Optimize all eligible parameters.
- String array or cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.
The optimization attempts to minimize the cross-validation loss (error) for \texttt{fitrlinear} by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the \texttt{HyperparameterOptimizationOptions} name-value pair.

\textbf{Note} 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for \texttt{fitrlinear} are:

- \texttt{Lambda} — \texttt{fitrlinear} searches among positive values, by default log-scaled in the range $[1e^{-5}/\text{NumObservations},1e^{5}/\text{NumObservations}]$.
- \texttt{Learner} — \texttt{fitrlinear} searches among 'svm' and 'leastsquares'.
- \texttt{Regularization} — \texttt{fitrlinear} searches among 'ridge' and 'lasso'.

Set nondefault parameters by passing a vector of \texttt{optimizableVariable} objects that have nondefault values. For example,

```matlab
load carsmall
params = hyperparameters('fitrlinear',[Horsepower,Weight],MPG);
params(1).Range = [1e-3,2e4];
```

Pass \texttt{params} as the value of \texttt{OptimizeHyperparameters}.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is $\log(1 + \text{cross-validation loss})$ for regression and the misclassification rate for classification. To control the iterative display, set the \texttt{Verbose} field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the \texttt{ShowPlots} field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize a Linear Regression” on page 32-2295.

Example: 'OptimizeHyperparameters','auto'

\textbf{HyperparameterOptimizationOptions — Options for optimization}

\texttt{structure}

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies
the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer | - 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.
 | - 'gridsearch' — Use grid search with `NumGridDivisions` values per dimension.
 | - 'randomsearch' — Search at random among `MaxObjectiveEvaluations` points.
 | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command `sortrows(Mdl.HyperparameterOptimizationResults)`. | 'bayesopt' |
| AcquisitionFunctionName | - 'expected-improvement-per-second-plus'
 | - 'expected-improvement'
 | - 'expected-improvement-plus'
 | - 'expected-improvement-per-second'
 | - 'lower-confidence-bound'
 | - 'probability-of-improvement' | 'expected-improvement-per-second-plus' |

For details, see the `bayesopt AcquisitionFunctionName` name-value pair argument, or “Acquisition Function Types” on page 10-4.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the <code>bayesopt</code> Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If <code>false</code>, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A <code>cvpartition</code> object, as created by <code>cvpartition</code>.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct
Output Arguments

Mdl — Trained linear regression model

RegressionLinear model object | *RegressionPartitionedLinear* cross-validated model object

Trained linear regression model, returned as a *RegressionLinear* model object or *RegressionPartitionedLinear* cross-validated model object.

If you set any of the name-value pair arguments `KFold`, `Holdout`, `CrossVal`, or `CVPartition`, then `Mdl` is a *RegressionPartitionedLinear* cross-validated model object. Otherwise, `Mdl` is a *RegressionLinear* model object.

To reference properties of `Mdl`, use dot notation. For example, enter `Mdl.Beta` in the Command Window to display the vector or matrix of estimated coefficients.

Note Unlike other regression models, and for economical memory usage, *RegressionLinear* and *RegressionPartitionedLinear* model objects do not store the training data or optimization details (for example, convergence history).

FitInfo — Optimization details

structure array

Optimization details, returned as a structure array.

Fields specify final values or name-value pair argument specifications, for example, `Objective` is the value of the objective function when optimization terminates. Rows of multidimensional fields correspond to values of `Lambda` and columns correspond to values of `Solver`.

This table describes some notable fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TerminationStatus</td>
<td>• Reason for optimization termination</td>
</tr>
<tr>
<td></td>
<td>• Corresponds to a value in <code>TerminationCode</code></td>
</tr>
<tr>
<td>FitTime</td>
<td>Elapsed, wall-clock time in seconds</td>
</tr>
</tbody>
</table>
Field Description

History

A structure array of optimization information for each iteration. The field **Solver** stores solver types using integer coding.

<table>
<thead>
<tr>
<th>Integer</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SGD</td>
</tr>
<tr>
<td>2</td>
<td>ASGD</td>
</tr>
<tr>
<td>3</td>
<td>Dual SGD for SVM</td>
</tr>
<tr>
<td>4</td>
<td>LBFGS</td>
</tr>
<tr>
<td>5</td>
<td>BFGS</td>
</tr>
<tr>
<td>6</td>
<td>SpaRSA</td>
</tr>
</tbody>
</table>

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.History.Objective`.

It is good practice to examine `FitInfo` to assess whether convergence is satisfactory.

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters

BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a `BayesianOptimization` object or a table of hyperparameters and associated values. The output is nonempty when the value of `'OptimizeHyperparameters'` is not `'none'`. The output value depends on the `Optimizer` field value of the `'HyperparameterOptimizationOptions'` name-value pair argument:

<table>
<thead>
<tr>
<th>Value of Optimizer Field</th>
<th>Value of HyperparameterOptimizationResults</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bayesopt' (default)</td>
<td>Object of class <code>BayesianOptimization</code></td>
</tr>
<tr>
<td>'gridsearch' or 'randomsearch'</td>
<td>Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)</td>
</tr>
</tbody>
</table>
Note If Learner is 'leastsquares', then the loss term in the objective function is half of the MSE. loss returns the MSE by default. Therefore, if you use loss to check the resubstitution, or training, error then there is a discrepancy between the MSE returned by loss and optimization results in FitInfo or returned to the command line by setting a positive verbosity level using Verbose.

Definitions

Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an optimization routine for quicker convergence.

Alternatives for Lower-Dimensional Data

High-dimensional linear classification and regression models minimize objective functions relatively quickly, but at the cost of some accuracy, the numeric-only predictor variables restriction, and the model must be linear with respect to the parameters. If your predictor data set is low- through medium-dimensional, or contains heterogeneous variables, then you should use the appropriate classification or regression fitting function. To help you decide which fitting function is appropriate for your low-dimensional data set, use this table.

<table>
<thead>
<tr>
<th>Model to Fit</th>
<th>Function</th>
<th>Notable Algorithmic Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>• Binary classification: fitcsvm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiclass classification: fitcecoc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Regression: fitrsvm</td>
<td>• Computes the Gram matrix of the predictor variables, which is convenient for nonlinear kernel transformations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solves dual problem using SMO, ISDA, or L1 minimization via quadratic programming using quadprog.</td>
</tr>
</tbody>
</table>
Model to Fit | Function | Notable Algorithmic Differences
---|---|---
Linear regression | • Least-squares without regularization: fitlm
• Regularized least-squares using a lasso penalty: lasso
• Ridge regression: ridge or lasso | • lasso implements cyclic coordinate descent.

Logistic regression | • Logistic regression without regularization: fitglm.
• Regularized logistic regression using a lasso penalty: lassoglm | • fitglm implements iteratively reweighted least squares.
• lassoglm implements cyclic coordinate descent.

Tips

- It is a best practice to orient your predictor matrix so that observations correspond to columns and to specify 'ObservationsIn','columns'. As a result, you can experience a significant reduction in optimization-execution time.

- For better optimization accuracy if X is high-dimensional and Regularization is 'ridge', set any of these combinations for Solver:
 - 'sgd'
 - 'asgd'
 - 'dual' if Learner is 'svm'
 - {'sgd','lbfgs'}
 - {'asgd','lbfgs'}
 - {'dual','lbfgs'} if Learner is 'svm'

Other combinations can result in poor optimization accuracy.

- For better optimization accuracy if X is moderate- through low-dimensional and Regularization is 'ridge', set Solver to 'bfgs'.

32-2329
• If Regularization is 'lasso', set any of these combinations for Solver:
 • 'sgd'
 • 'asgd'
 • 'sparsa'
 • {'sgd','sparsa'}
 • {'asgd','sparsa'}

• When choosing between SGD and ASGD, consider that:
 • SGD takes less time per iteration, but requires more iterations to converge.
 • ASGD requires fewer iterations to converge, but takes more time per iteration.

• If X has few observations, but many predictor variables, then:
 • Specify 'PostFitBias',true.
 • For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for example, 5 or 10. This setting often results in better accuracy.

• For SGD and ASGD solvers, BatchSize affects the rate of convergence.
 • If BatchSize is too small, then fitrlinear achieves the minimum in many iterations, but computes the gradient per iteration quickly.
 • If BatchSize is too large, then fitrlinear achieves the minimum in fewer iterations, but computes the gradient per iteration slowly.

• Large learning rates (see LearnRate) speed up convergence to the minimum, but can lead to divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the minimum, but can lead to slow termination.

• When using lasso penalties, experiment with various values of TruncationPeriod. For example, set TruncationPeriod to 1, 10, and then 100.

• For efficiency, fitrlinear does not standardize predictor data. To standardize X, enter

\[X = \text{bsxfun(@rdivide,bsxfun(@minus,X,mean(X,2)),std(X,0,2))}; \]

The code requires that you orient the predictors and observations as the rows and columns of X, respectively. Also, for memory-usage economy, the code replaces the original predictor data the standardized data.
• After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

• If you specify ValidationData, then, during objective-function optimization:

 • fitrlinear estimates the validation loss of ValidationData periodically using the current model, and tracks the minimal estimate.

 • When fitrlinear estimates a validation loss, it compares the estimate to the minimal estimate.

 • When subsequent, validation loss estimates exceed the minimal estimate five times, fitrlinear terminates optimization.

• If you specify ValidationData and to implement a cross-validation routine (CrossVal, CVPartition, Holdout, or KFold), then:

 1 fitrlinear randomly partitions X and Y according to the cross-validation routine that you choose.

 2 fitrlinear trains the model using the training-data partition. During objective-function optimization, fitrlinear uses ValidationData as another possible way to terminate optimization (for details, see the previous bullet).

 3 Once fitrlinear satisfies a stopping criterion, it constructs a trained model based on the optimized linear coefficients and intercept.

 a If you implement k-fold cross-validation, and fitrlinear has not exhausted all training-set folds, then fitrlinear returns to Step 2 to train using the next training-set fold.

 b Otherwise, fitrlinear terminates training, and then returns the cross-validated model.

 4 You can determine the quality of the cross-validated model. For example:

 • To determine the validation loss using the holdout or out-of-fold data from step 1, pass the cross-validated model to kfoldLoss.

 • To predict observations on the holdout or out-of-fold data from step 1, pass the cross-validated model to kfoldPredict.
References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:
• Some name-value pair arguments have different defaults and values compared to the in-memory fitrlinear function. Supported name-value pair arguments, and any differences, are:
 • 'Epsilon'
 • 'ObservationsIn' — Supports only 'rows'.
 • 'Lambda' — Can be 'auto' (default) or a scalar.
 • 'Learner'
 • 'Regularization' — Supports only 'ridge'.
 • 'Solver' — Supports only 'lbfgs'.
 • 'Verbose' — Default value is 1
 • 'Beta'
 • 'Bias'
 • 'FitBias' — Supports only true.
 • 'Weights' — Value must be a tall array.
 • 'HessianHistorySize'
 • 'BetaTolerance' — Default value is relaxed to 1e-3.
 • 'GradientTolerance' — Default value is relaxed to 1e-3.
 • 'IterationLimit' — Default value is relaxed to 20.
 • 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be 'ridge'.
 • 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization supports only 'Holdout' validation. For example, you can specify fitrlinear(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).
• For tall arrays fitrlinear implements LBFGS by distributing the calculation of the loss and the gradient among different parts of the tall array at each iteration. Other solvers are not available for tall arrays.

When initial values for Beta and Bias are not given, fitrlinear first refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.

For more information, see “Tall Arrays” (MATLAB).
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
RegressionLinear | RegressionPartitionedLinear | fitclinear | fitlm | fitrsvm | kfoldLoss | kfoldPredict | lasso | predict | ridge

Introduced in R2016a
fitrm

Fit repeated measures model

Syntax

```matlab
rm = fitrm(t,modelspec)
rm = fitrm(t,modelspec,Name,Value)
```

Description

`rm = fitrm(t,modelspec)` returns a repeated measures model, specified by `modelspec`, fitted to the variables in the table or dataset array `t`.

`rm = fitrm(t,modelspec,Name,Value)` returns a repeated measures model, with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the hypothesis for the within-subject factors.

Examples

Fit a Repeated Measures Model

Load the sample data.

```matlab
load fisheriris
```

The column vector `species` consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```matlab
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),... 'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4],'VariableNames',{'Measurements'});
```
Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

```matlab
rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)
```

```matlab
rm =
    RepeatedMeasuresModel with properties:
    Between Subjects:
        BetweenDesign: [150x5 table]
        ResponseNames: {'meas1'  'meas2'  'meas3'  'meas4'}
        BetweenFactorNames: {'species'}
        BetweenModel: '1 + species'
    Within Subjects:
        WithinDesign: [4x1 table]
        WithinFactorNames: {'Measurements'}
        WithinModel: 'separatemeans'
    Estimates:
        Coefficients: [3x4 table]
        Covariance: [4x4 table]
```

Display the coefficients.

```matlab
rm.Coefficients
ans=3×4 table
```

```
<table>
<thead>
<tr>
<th></th>
<th>meas1</th>
<th>meas2</th>
<th>meas3</th>
<th>meas4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>5.8433</td>
<td>3.0573</td>
<td>3.758</td>
<td>1.1993</td>
</tr>
<tr>
<td>species_setosa</td>
<td>-0.83733</td>
<td>0.37067</td>
<td>-2.296</td>
<td>-0.95333</td>
</tr>
<tr>
<td>species_versicolor</td>
<td>0.092667</td>
<td>-0.28733</td>
<td>0.502</td>
<td>0.12667</td>
</tr>
</tbody>
</table>
```

`fitrm` uses the 'effects' contrasts which means that the coefficients sum to 0. The `rm.DesignMatrix` has one column of 1s for the intercept, and two other columns `species_setosa` and `species_versicolor`, which are as follows:

```matlab
species_setosa = \(\begin{cases} 1 & \text{if setosa} \\ 0 & \text{if versicolor} \\ -1 & \text{if virginica} \end{cases}\)

species_versicolor = \(\begin{cases} 0 & \text{if setosa} \\ 1 & \text{if versicolor} \\ -1 & \text{if virginica} \end{cases}\)
Display the covariance matrix.

```matlab
rm.Covariance
```

```
ans=4x4 table

<table>
<thead>
<tr>
<th></th>
<th>meas1</th>
<th>meas2</th>
<th>meas3</th>
<th>meas4</th>
</tr>
</thead>
<tbody>
<tr>
<td>meas1</td>
<td>0.26501</td>
<td>0.092721</td>
<td>0.16751</td>
<td>0.038401</td>
</tr>
<tr>
<td>meas2</td>
<td>0.092721</td>
<td>0.11539</td>
<td>0.055244</td>
<td>0.03271</td>
</tr>
<tr>
<td>meas3</td>
<td>0.16751</td>
<td>0.055244</td>
<td>0.18519</td>
<td>0.042665</td>
</tr>
<tr>
<td>meas4</td>
<td>0.038401</td>
<td>0.03271</td>
<td>0.042665</td>
<td>0.041882</td>
</tr>
</tbody>
</table>
```

**Specify the Within-Subject Hypothesis**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','longitudinalData.mat'));
```

The matrix $Y$ contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of $Y$ corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

```matlab
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M'];
```

Store the data in a proper table array format to conduct repeated measures analysis.

```matlab
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...
'VariableNames',{'Gender','t0','t2','t4','t6','t8'});
```

Define the within-subjects variable.

```matlab
Time = [0 2 4 6 8];
```

Fit a repeated measures model, where blood levels are the responses and gender is the predictor variable. Also define the hypothesis for within-subject factors.

```matlab
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time,'WithinModel','orthogonalcontrasts');
```
Fit a Model with Covariates

Load the sample data.

load repeatedmeas

The table `between` includes the eight repeated measurements, `y1` through `y8`, as responses and the between-subject factors `Group`, `Gender`, `IQ`, and `Age`. `IQ` and `Age` as continuous variables. The table `within` includes the within-subject factors `w1` and `w2`.

Fit a repeated measures model, where age, IQ, and group, gender are the predictor variables, and the model includes the interaction effect of group and gender. Also define the within-subject factors.

```matlab
rm = fitrm(between,'y1-y8 ~ Group*Gender+Age+IQ','WithinDesign',within)
```

```matlab
rm =
 RepeatedMeasuresModel with properties:

 Between Subjects:
 BetweenDesign: [30x12 table]
 ResponseNames: {'y1' 'y2' 'y3' 'y4' 'y5' 'y6' 'y7' 'y8'}
 BetweenFactorNames: {'Age' 'IQ' 'Group' 'Gender'}

 Within Subjects:
 WithinDesign: [5x1 table]
 WithinFactorNames: {'Time'}
 WithinModel: 'orthogonalcontrasts'

 Estimates:
 Coefficients: [2x5 table]
 Covariance: [5x5 table]
```
BetweenModel: '1 + Age + IQ + Group*Gender'

Within Subjects:
  WithinDesign: [8x2 table]
  WithinFactorNames: {'w1' 'w2'}
  WithinModel: 'separatemeans'

Estimates:
  Coefficients: [8x8 table]
  Covariance: [8x8 table]

Display the coefficients.

```
rm.Coefficients
ans=8x8 table

 y1 y2 y3 y4 y5
(Intercept) 141.38 195.25 9.8663 -49.154 157.77
Age 0.32042 -4.7672 -1.2748 0.6216 -1.0621 0.89927 1.2569 -0.38328
IQ -1.2671 -1.1653 0.05862 0.4288 -1.4518 -0.25501 0.22867 -0.72548
Gender_Female 5.3957 -3.9719 8.5225 9.3403 6.0909 1.642 -2.1212 4.8063
Group_A:Gender_Female 4.1046 10.064 -7.3053 -3.3085 4.6751 2.4907 -4.325 -4.6057
Group_B:Gender_Female -0.48486 -2.9202 1.1222 0.69715 -0.065945
```

The display shows the coefficients for fitting the repeated measures as a function of the terms in the between-subjects model.

**Input Arguments**

- **t — Input data**
  - table

  Input data, which includes the values of the response variables and the between-subject factors to use as predictors in the repeated measures model, specified as a table.

  Data Types: table
modelspec — Formula for model specification
character vector or string scalar of the form 'y1-yk ~ terms'

Formula for model specification, specified as a character vector or string scalar of the form 'y1-yk ~ terms'. The responses and terms are specified using Wilkinson notation on page 32-2342. fitrm treats the variables used in model terms as categorical if they are categorical (nominal or ordinal), logical, character arrays, string arrays, or cell arrays of character vectors.

For example, if you have four repeated measures as responses and the factors x1, x2, and x3 as the predictor variables, then you can define a repeated measures model as follows.

Example: 'y1-y4 ~ x1 + x2 * x3'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

Example: 'WithinDesign','W','WithinModel','w1+w2' specifies the matrix w as the design matrix for within-subject factors, and the model for within-subject factors w1 and w2 is 'w1+w2'.

WithinDesign — Design for within-subject factors
numeric vector of length r (default) | r-by-k numeric matrix | r-by-k table

Design for within-subject factors, specified as the comma-separated pair consisting of 'WithinDesign' and one of the following:

- Numeric vector of length r, where r is the number of repeated measures. In this case, fitrm treats the values in the vector as continuous, and these are typically time values.
- r-by-k numeric matrix of the values of the k within-subject factors, w1, w2, ..., wk. In this case, fitrm treats all k variables as continuous.
- r-by-k table that contains the values of the k within-subject factors. In this case, fitrm treats all numeric variables as continuous, and all categorical variables as categorical.
For example, if the table `weeks` contains the values of the within-subject factors, then you can define the design table as follows.

Example: `'WithinDesign',weeks`

Data Types: `single` | `double` | `table`

**WithinModel — Model specifying within-subject hypothesis test**

'`separatemeans`' (default) | `'orthogonalcontrasts`' | character vector or string

scalar that defines a model

Model specifying the within-subject hypothesis test, specified as the comma-separated pair consisting of `'WithinModel'` and one of the following:

- `'separatemeans'` — Compute a separate mean for each group.
- `'orthogonalcontrasts'` — This is valid only when the within-subject model has a single numeric factor `T`. Responses are the average, the slope of centered `T`, and, in general, all orthogonal contrasts for a polynomial up to `T^(p - 1)`, where `p` is the number of rows in the within-subject model.
- A character vector or string scalar that defines a model specification in the within-subject factors. You can define the model based on the rules for the terms in `modelspec`.

For example, if there are three within-subject factors `w1`, `w2`, and `w3`, then you can specify a model for the within-subject factors as follows.

Example: `'WithinModel','w1+w2+w2*w3'`

Data Types: `char` | `string`

**Output Arguments**

`rm` — Repeated measures model

`RepeatedMeasuresModel` object

Repeated measures model, returned as a `RepeatedMeasuresModel` object.

For properties and methods of this object, see `RepeatedMeasuresModel`. 
Definitions

Model Specification Using Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the multipliers (coefficients) of those factors.

The following rules specify the responses in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1,Y2,Y3</td>
<td>Specific list of variables</td>
</tr>
<tr>
<td>Y1-Y5</td>
<td>All table variables from Y1 through Y5</td>
</tr>
</tbody>
</table>

The following rules specify terms in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>X^k, where k is a positive integer</td>
<td>X, X^2, ..., X^k</td>
</tr>
<tr>
<td>X1 + X2</td>
<td>X1, X2</td>
</tr>
<tr>
<td>X1*X2</td>
<td>X1, X2, X1*X2</td>
</tr>
<tr>
<td>X1:X2</td>
<td>X1*X2 only</td>
</tr>
<tr>
<td>-X2</td>
<td>Do not include X2</td>
</tr>
<tr>
<td>X1*X2 + X3</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1 + X2 + X3 + X1:X2</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1<em>X2</em>X3 - X1:X2:X3</td>
<td>X1, X2, X3, X1<em>X2, X1</em>X3, X2*X3</td>
</tr>
<tr>
<td>X1*(X2 + X3)</td>
<td>X1, X2, X3, X1<em>X2, X1</em>X3</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

See Also

RepeatedMeasuresModel
Introduced in R2014a
fitdist

Fit probability distribution object to data

Syntax

pd = fitdist(x,distname)
pd = fitdist(x,distname,Name,Value)

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar)
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value)

Description

pd = fitdist(x,distname) creates a probability distribution object by fitting the distribution specified by distname to the data in column vector x.

pd = fitdist(x,distname,Name,Value) creates the probability distribution object with additional options specified by one or more name-value pair arguments. For example, you can indicate censored data or specify control parameters for the iterative fitting algorithm.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar) creates probability distribution objects by fitting the distribution specified by distname to the data in x based on the grouping variable groupvar. It returns a cell array of fitted probability distribution objects, pdca, a cell array of group labels, gn, and a cell array of grouping variable levels, gl.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value) returns the above output arguments using additional options specified by one or more name-value pair arguments. For example, you can indicate censored data or specify control parameters for the iterative fitting algorithm.

Examples
Fit a Normal Distribution to Data

Load the sample data. Create a vector containing the patients' weight data.

```matlab
load hospital
x = hospital.Weight;
```

Create a normal distribution object by fitting it to the data.

```matlab
pd = fitdist(x,'Normal')
```

```matlab
dpd =
 NormalDistribution

 Normal distribution
 mu = 154 [148.728, 159.272]
 sigma = 26.5714 [23.3299, 30.8674]
```

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution parameters.

Plot the pdf of the distribution.

```matlab
x_values = 50:1:250;
y = pdf(pd,x_values);
plot(x_values,y,'LineWidth',2)
```
Fit a Kernel Distribution to Data

Load the sample data. Create a vector containing the patients' weight data.

```matlab
load hospital
x = hospital.Weight;
```

Create a kernel distribution object by fitting it to the data. Use the Epanechnikov kernel function.

```matlab
pd = fitdist(x,'Kernel','Kernel','epanechnikov')
```
pd = 
    KernelDistribution

    Kernel = epanechnikov
    Bandwidth = 14.3792
    Support = unbounded

Plot the pdf of the distribution.

x_values = 50:1:250;
y = pdf(pd,x_values);
plot(x_values,y)
Fit Normal Distributions to Grouped Data

Load the sample data. Create a vector containing the patients' weight data.

```matlab
code:
load hospital
x = hospital.Weight;
```

Create normal distribution objects by fitting them to the data, grouped by patient gender.

```matlab
code:
gender = hospital.Sex;
[pdca,gn,gl] = fitdist(x,'Normal','By',gender)
```

```
pdca = 1x2 cell array
{1x1 prob.NormalDistribution} {1x1 prob.NormalDistribution}

 gn = 2x1 cell array
{ 'Female' }
{ 'Male' }

gl = 2x1 cell array
{ 'Female' }
{ 'Male' }
```

The cell array `pdca` contains two probability distribution objects, one for each gender group. The cell array `gn` contains two group labels. The cell array `gl` contains two group levels.

View each distribution in the cell array `pdca` to compare the mean, `mu`, and the standard deviation, `sigma`, grouped by patient gender.

```matlab
code:
female = pdca{1} % Distribution for females
female =
 NormalDistribution
 Normal distribution
 mu = 130.472 [128.183, 132.76]
 sigma = 8.30339 [6.96947, 10.2736]

male = pdca{2} % Distribution for males
```

```matlab
```
male = 
    NormalDistribution

    Normal distribution
    mu = 180.532 [177.833, 183.231]
    sigma = 9.19322 [7.63933, 11.5466]

Compute the pdf of each distribution.

x_values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

figure
plot(x_values,femalepdf,'LineWidth',2)
hold on
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
legend(gca,'Location','NorthEast')
hold off
Fit Kernel Distributions to Grouped Data

Load the sample data. Create a vector containing the patients' weight data.

```matlab
load hospital
x = hospital.Weight;
```

Create kernel distribution objects by fitting them to the data, grouped by patient gender. Use a triangular kernel function.

```matlab
gender = hospital.Sex;
[pdca, gn, gl] = fitdist(x, 'Kernel', 'By', gender, 'Kernel', 'triangle');
```
View each distribution in the cell array pdca to see the kernel distributions for each gender.

```matlab
female = pdca{1} % Distribution for females
female =
 KernelDistribution
 Kernel = triangle
 Bandwidth = 4.25894
 Support = unbounded

male = pdca{2} % Distribution for males
male =
 KernelDistribution
 Kernel = triangle
 Bandwidth = 5.08961
 Support = unbounded
```

Compute the pdf of each distribution.

```matlab
x_values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

```matlab
figure
plot(x_values,femalepdf,'LineWidth',2)
hold on
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
legend(gn,'Location','NorthEast')
hold off
```
Input Arguments

x — Input data
column vector

Input data, specified as a column vector. fitdist ignores NaN values in x. Additionally, any NaN values in the censoring vector or frequency vector causes fitdist to ignore the corresponding values in x.

Data Types: double
distname — Distribution name
class	description
character vector | string scalar

Distribution name, specified as one of the following character vectors or string scalars. The distribution specified by distname determines the type of the returned probability distribution object.

<table>
<thead>
<tr>
<th>Distribution Name</th>
<th>Description</th>
<th>Distribution Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>Beta distribution</td>
<td>BetaDistribution</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>Binomial distribution</td>
<td>BinomialDistribution</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>Birnbaum-Saunders distribution</td>
<td>BirnbaumSaundersDistribution</td>
</tr>
<tr>
<td>'Burr'</td>
<td>Burr distribution</td>
<td>BurrDistribution</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>Exponential distribution</td>
<td>ExponentialDistribution</td>
</tr>
<tr>
<td>'ExtremeValue'</td>
<td>Extreme Value distribution</td>
<td>ExtremeValueDistribution</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>Gamma distribution</td>
<td>GammaDistribution</td>
</tr>
<tr>
<td>'GeneralizedExtremeValue'</td>
<td>Generalized Extreme Value distribution</td>
<td>GeneralizedExtremeValueDistribution</td>
</tr>
<tr>
<td>'GeneralizedPareto'</td>
<td>Generalized Pareto distribution</td>
<td>GeneralizedParetoDistribution</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>Half-normal distribution</td>
<td>HalfNormalDistribution</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>Inverse Gaussian distribution</td>
<td>InverseGaussianDistribution</td>
</tr>
<tr>
<td>'Kernel'</td>
<td>Kernel distribution</td>
<td>KernelDistribution</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>Logistic distribution</td>
<td>LogisticDistribution</td>
</tr>
<tr>
<td>'Loglogistic'</td>
<td>Loglogistic distribution</td>
<td>LoglogisticDistribution</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>Lognormal distribution</td>
<td>LognormalDistribution</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>Nakagami distribution</td>
<td>NakagamiDistribution</td>
</tr>
<tr>
<td>Distribution Name</td>
<td>Description</td>
<td>Distribution Object</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>'NegativeBinomial'</td>
<td>Negative Binomial</td>
<td>NegativeBinomialDistribution</td>
</tr>
<tr>
<td>'Normal'</td>
<td>Normal distribution</td>
<td>NormalDistribution</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>Poisson distribution</td>
<td>PoissonDistribution</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>Rayleigh distribution</td>
<td>RayleighDistribution</td>
</tr>
<tr>
<td>'Rician'</td>
<td>Rician distribution</td>
<td>RicianDistribution</td>
</tr>
<tr>
<td>'Stable'</td>
<td>Stable distribution</td>
<td>StableDistribution</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>t Location-Scale distribution</td>
<td>tLocationScaleDistribution</td>
</tr>
<tr>
<td>'Weibull'</td>
<td>Weibull distribution</td>
<td>WeibullDistribution</td>
</tr>
</tbody>
</table>

groupvar — Grouping variable

categorical array | logical or numeric vector | character array | string array | cell array of character vectors

Grouping variable, specified as a categorical array, logical or numeric vector, character array, string array, or cell array of character vectors. Each unique value in a grouping variable defines a group.

For example, if Gender is a cell array of character vectors with values 'Male' and 'Female', you can use Gender as a grouping variable to fit a distribution to your data by gender.

More than one grouping variable can be used by specifying a cell array of grouping variables. Observations are placed in the same group if they have common values of all specified grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for smokers, then specifying the cell array {Gender,Smoker} divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.

Example: {Gender,Smoker}

Data Types: categorical | logical | single | double | char | string | cell
Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: `fitdist(x,'Kernel','Kernel','triangle')` fits a kernel distribution object to the data in `x` using a triangular kernel function.

Censoring — Logical flag for censored data

0 (default) | vector of logical values

Logical flag for censored data, specified as the comma-separated pair consisting of **'Censoring'** and a vector of logical values that is the same size as input vector `x`. The value is 1 when the corresponding element in `x` is a right-censored observation and 0 when the corresponding element is an exact observation. The default is a vector of 0s, indicating that all observations are exact.

`fitdist` ignores any NaN values in this censoring vector. Additionally, any NaN values in `x` or the frequency vector causes `fitdist` to ignore the corresponding values in the censoring vector.

This argument is valid only if `distname` is 'BirnbaumSaunders', 'Burr', 'Exponential', 'ExtremeValue', 'Gamma', 'InverseGaussian', 'Kernel', 'Logistic', 'Loglogistic', 'Lognormal', 'Nakagami', 'Normal', 'Rician', 'tLocationScale', or 'Weibull'.

Data Types: logical

Frequency — Observation frequency

1 (default) | vector of nonnegative integer values

Observation frequency, specified as the comma-separated pair consisting of **'Frequency'** and a vector of nonnegative integer values that is the same size as input vector `x`. Each element of the frequency vector specifies the frequencies for the corresponding elements in `x`. The default is a vector of 1s, indicating that each value in `x` only appears once.

`fitdist` ignores any NaN values in this frequency vector are ignored by the fitting calculations. Additionally, any NaN values in `x` or the censoring vector causes `fitdist` to ignore the corresponding values in the frequency vector.
Data Types: `single` | `double`

Options — Control parameters
structure

Control parameters for the iterative fitting algorithm, specified as the comma-separated pair consisting of 'Options' and a structure you create using `statset`.

Data Types: `struct`

NTrials — Number of trials
positive integer value

Number of trials for the binomial distribution, specified as the comma-separated pair consisting of 'NTrials' and a positive integer value. You must specify `distname` as 'Binomial' to use this option.

Data Types: `single` | `double`

Theta — Threshold parameter
0 (default) | scalar value

Threshold parameter for the generalized Pareto distribution, specified as the comma-separated pair consisting of 'Theta' and a scalar value. You must specify `distname` as 'GeneralizedPareto' to use this option.

Data Types: `single` | `double`

mu — Location parameter
0 (default) | scalar value

Location parameter for the half-normal distribution, specified as the comma-separated pair consisting of 'mu' and a scalar value. You must specify `distname` as 'HalfNormal' to use this option.

Data Types: `single` | `double`

Kernel — Kernel smoother type
'normal' (default) | 'box' | 'triangle' | 'epanechnikov'

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and one of the following:

- 'normal'
• 'box'
• 'triangle'
• 'epanechnikov'

You must specify distname as 'Kernel' to use this option.

Support — Kernel density support

| 'unbounded' (default) | 'positive' | two-element vector |

Kernel density support, specified as the comma-separated pair consisting of 'Support' and 'unbounded', 'positive', or a two-element vector.

- 'unbounded'
 Density can extend over the whole real line.
- 'positive'
 Density is restricted to positive values.

Alternatively, you can specify a two-element vector giving finite lower and upper limits for the support of the density.

You must specify distname as 'Kernel' to use this option.

Data Types: single | double | char | string

Width — Bandwidth of kernel smoothing window

| scalar value |

Bandwidth of the kernel smoothing window, specified as the comma-separated pair consisting of 'Width' and a scalar value. The default value used by fitdist is optimal for estimating normal densities, but you might want to choose a smaller value to reveal features such as multiple modes. You must specify distname as 'Kernel' to use this option.

Data Types: single | double

Output Arguments

pd — Probability distribution

| probability distribution object |

Probability distribution, returned as a probability distribution object. The distribution specified by distname determines the class type of the returned probability distribution object.
pdca — Probability distribution objects
 cell array

Probability distribution objects of the type specified by distname, returned as a cell array.

gn — Group labels
 cell array of character vectors

Group labels, returned as a cell array of character vectors.

gl — Grouping variable levels
 cell array of character vectors

Grouping variable levels, returned as a cell array of character vectors containing one column for each grouping variable.

Algorithms

The fitdist function fits most distributions using maximum likelihood estimation. Two exceptions are the normal and lognormal distributions with uncensored data.

• For the uncensored normal distribution, the estimated value of the sigma parameter is the square root of the unbiased estimate of the variance.
• For the uncensored lognormal distribution, the estimated value of the sigma parameter is the square root of the unbiased estimate of the variance of the log of the data.

Alternative Functionality

App

The Distribution Fitter app opens a graphical user interface for you to import data from the workspace and interactively fit a probability distribution to that data. You can then save the distribution to the workspace as a probability distribution object. Open the Distribution Fitter app using distributionFitter, or click Distribution Fitter on the Apps tab.
References

See Also
distributionFitter | histfit | makedist | mle | paramci

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced in R2009a
fitensemble

Fit ensemble of learners for classification and regression

fitensemble can boost or bag decision tree learners or discriminant analysis classifiers. The function can also train random subspace ensembles of KNN or discriminant analysis classifiers.

For simpler interfaces that fit classification and regression ensembles, instead use fitcensemble and fitrensemble, respectively. Also, fitcensemble and fitrensemble provide options for Bayesian optimization.

Syntax

Mdl = fitensemble(Tbl,ResponseVarName,Method,NLearn,Learners)
Mdl = fitensemble(Tbl,formula,Method,NLearn,Learners)
Mdl = fitensemble(Tbl,Y,Method,NLearn,Learners)
Mdl = fitensemble(X,Y,Method,NLearn,Learners)
Mdl = fitensemble(___,Name,Value)

Description

Mdl = fitensemble(Tbl,ResponseVarName,Method,NLearn,Learners) returns a trained ensemble model object that contains the results of fitting an ensemble of NLearn classification or regression learners (Learners) to all variables in the table Tbl. ResponseVarName is the name of the response variable in Tbl. Method is the ensemble-aggregation method.

Mdl = fitensemble(Tbl,formula,Method,NLearn,Learners) fits the model specified by formula.

Mdl = fitensemble(Tbl,Y,Method,NLearn,Learners) treats all variables in Tbl as predictor variables. Y is the response variable that is not in Tbl.

Mdl = fitensemble(X,Y,Method,NLearn,Learners) trains an ensemble using the predictor data in X and response data in Y.
Mdl = fitensemble(___,Name,Value) trains an ensemble using additional options specified by one or more Name,Value pair arguments and any of the previous syntaxes. For example, you can specify the class order, to implement 10-fold cross-validation, or the learning rate.

Examples

Estimate the Resubstitution Loss of a Boosting Ensemble

Estimate the resubstitution loss of a trained, boosting classification ensemble of decision trees.

Load the ionosphere data set.

```matlab
load ionosphere;
```

Train a decision tree ensemble using AdaBoost, 100 learning cycles, and the entire data set.

```matlab
ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
```

ClassTreeEns is a trained ClassificationEnsemble ensemble classifier.

Determine the cumulative resubstitution losses (i.e., the cumulative misclassification error of the labels in the training data).

```matlab
rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');
```

rsLoss is a 100-by-1 vector, where element k contains the resubstitution loss after the first k learning cycles.

Plot the cumulative resubstitution loss over the number of learning cycles.

```matlab
plot(rsLoss);
xlabel('Number of Learning Cycles');
ylabel('Resubstitution Loss');
```
In general, as the number of decision trees in the trained classification ensemble increases, the resubstitution loss decreases.

A decrease in resubstitution loss might indicate that the software trained the ensemble sensibly. However, you cannot infer the predictive power of the ensemble by this decrease. To measure the predictive power of an ensemble, estimate the generalization error by:

1. Randomly partitioning the data into training and cross-validation sets. Do this by specifying 'holdout', holdoutProportion when you train the ensemble using fitensemble.
2. Passing the trained ensemble to kfoldLoss, which estimates the generalization error.
Train Regression Ensemble

Use a trained, boosted regression tree ensemble to predict the fuel economy of a car. Choose the number of cylinders, volume displaced by the cylinders, horsepower, and weight as predictors. Then, train an ensemble using fewer predictors and compare its in-sample predictive accuracy against the first ensemble.

Load the carsmall data set. Store the training data in a table.

```matlab
load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);
```

Specify a regression tree template that uses surrogate splits to improve predictive accuracy in the presence of NaN values.

```matlab
t = templateTree('Surrogate','On');
```

Train the regression tree ensemble using LSBoost and 100 learning cycles.

```matlab
Mdl1 = fitensemble(Tbl,'MPG','LSBoost',100,t);
Mdl1
```

Mdl1 is a trained RegressionEnsemble regression ensemble. Because MPG is a variable in the MATLAB® Workspace, you can obtain the same result by entering

```matlab
Mdl1 = fitensemble(Tbl,MPG,'LSBoost',100,t);
```

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car with a 200-cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

```matlab
predMPG = predict(Mdl1,[4 200 150 3000])
predMPG = 22.8462
```

The average fuel economy of a car with these specifications is 21.78 mpg.

Train a new ensemble using all predictors in Tbl except Displacement.

```matlab
formula = 'MPG ~ Cylinders + Horsepower + Weight';
Mdl2 = fitensemble(Tbl,formula,'LSBoost',100,t);
```

Compare the resubstitution MSEs between Mdl1 and Mdl2.
mse1 = resubLoss(Mdl1)
mse1 = 6.4721
mse2 = resubLoss(Mdl2)
mse2 = 7.8599

The in-sample MSE for the ensemble that trains on all predictors is lower.

Estimate the Generalization Error of a Boosting Ensemble

Estimate the generalization error of a trained, boosting classification ensemble of decision trees.

Load the `ionosphere` data set.

```matlab
load ionosphere;
```

Train a decision tree ensemble using AdaBoostM1, 100 learning cycles, and half of the data chosen randomly. The software validates the algorithm using the remaining half.

```matlab
rng(2); % For reproducibility
ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
    'Holdout',0.5);
```

`ClassTreeEns` is a trained `ClassificationEnsemble` ensemble classifier.

Determine the cumulative generalization error, i.e., the cumulative misclassification error of the labels in the validation data).

```matlab
genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');
genError` is a 100-by-1 vector, where element k contains the generalization error after the first k learning cycles.

Plot the generalization error over the number of learning cycles.

```matlab
plot(genError);
xlabel('Number of Learning Cycles');
ylabel('Generalization Error');
```
The cumulative generalization error decreases to approximately 7% when 25 weak learners compose the ensemble classifier.

**Find the Optimal Number of Splits and Trees for an Ensemble**

You can control the depth of the trees in an ensemble of decision trees. You can also control the tree depth in an ECOC model containing decision tree binary learners using the `MaxNumSplits`, `MinLeafSize`, or `MinParentSize` name-value pair parameters.

- When bagging decision trees, `fitensemble` grows deep decision trees by default. You can grow shallower trees to reduce model complexity or computation time.
• When boosting decision trees, `fitensemble` grows stumps (a tree with one split) by default. You can grow deeper trees for better accuracy.

Load the `carsmall` data set. Specify the variables `Acceleration`, `Displacement`, `Horsepower`, and `Weight` as predictors, and `MPG` as the response.

```matlab
load carsmall
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;
```

The default values of the tree depth controllers for boosting regression trees are:

• 1 for `MaxNumSplits`. This option grows stumps.
• 5 for `MinLeafSize`
• 10 for `MinParentSize`

To search for the optimal number of splits:

1. Train a set of ensembles. Exponentially increase the maximum number of splits for subsequent ensembles from stump to at most \( n - 1 \) splits, where \( n \) is the training sample size. Also, decrease the learning rate for each ensemble from 1 to 0.1.
2. Cross validate the ensembles.
3. Estimate the cross-validated mean-squared error (MSE) for each ensemble.
4. Compare the cross-validated MSEs. The ensemble with the lowest one performs the best, and indicates the optimal maximum number of splits, number of trees, and learning rate for the data set.

Grow and cross validate a deep regression tree and a stump. Specify to use surrogate splits because the data contains missing values. These serve as benchmarks.

```matlab
MdlDeep = fitrtree(X,Y,'CrossVal','on','MergeLeaves','off',
 'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(X,Y,'MaxNumSplits',1,'CrossVal','on','Surrogate','on');
```

Train the boosting ensembles using 150 regression trees. Cross validate the ensemble using 5-fold cross validation. Vary the maximum number of splits using the values in the sequence \( \{2^0, 2^1, \ldots, 2^m\} \), where \( m \) is such that \( 2^m \) is no greater than \( n - 1 \), where \( n \) is the training sample size. For each variant, adjust the learning rate to each value in the set \( \{0.1, 0.25, 0.5, 1\} \).

```matlab
n = size(X,1);
m = floor(log2(n - 1));
```
lr = [0.1 0.25 0.5 1];
maxNumSplits = 2.^(0:m);
numTrees = 150;
Mdl = cell(numel(maxNumSplits),numel(lr));
rng(1); % For reproducibility
for k = 1:numel(lr);
    for j = 1:numel(maxNumSplits);
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitensemble(X,Y,'LSBoost',numTrees,t,...
            'Type','regression','KFold',5,'LearnRate',lr(k));
    end;
end;

Compute the cross-validated MSE for each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(lr)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases for a few of the ensembles, the deep tree, and the stump. Plot the curves with respect to learning rate in the same plot, and plot separate plots for varying tree complexities. Choose a subset of tree complexity levels.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
for k = 1:3;
    subplot(2,2,k);
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);
    axis tight;
    hold on;
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2);
    plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2);
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'-k');
    h.YLim = [10 50];
    xlabel 'Number of trees';
    ylabel 'Cross-validated MSE';
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));
    hold off;
end;
hL = legend({cellstr(num2str(lr,'Learning Rate = %0.2f'))};

fitensemble
Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE overall.

```matlab
[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);
fprintf('
Min. MSE = %0.5f',minErr)
Min. MSE = 18.42979
```
fprintf('
Optimal Parameter Values:
Num. Trees = %d', idxNumTrees);

Optimal Parameter Values:
Num. Trees = 1

fprintf('
MaxNumSplits = %d
Learning Rate = %0.2f\n', ...
    maxNumSplits(idxMNS), lr(idxLR))

MaxNumSplits = 4
Learning Rate = 1.00

For a different approach to optimizing this ensemble, see “Optimize a Boosted Regression Ensemble” on page 10-78.

**Input Arguments**

**Tbl** — Sample data
table

Sample data used to train the model, specified as a table. Each row of `Tbl` corresponds to one observation, and each column corresponds to one predictor variable. `Tbl` can contain one additional column for the response variable. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

- If `Tbl` contains the response variable and you want to use all remaining variables as predictors, then specify the response variable using `ResponseVarName`.
- If `Tbl` contains the response variable, and you want to use a subset of the remaining variables only as predictors, then specify a formula using `formula`.
- If `Tbl` does not contain the response variable, then specify the response data using `Y`. The length of response variable and the number of rows of `Tbl` must be equal.

**Note** To save memory and execution time, supply `X` and `Y` instead of `Tbl`.

Data Types: `table`

**ResponseVarName** — Response variable name

name of response variable in `Tbl`

Response variable name, specified as the name of the response variable in `Tbl`.  

Data Types: `char`
You must specify `ResponseVarName` as a character vector or string scalar. For example, if `Tbl.Y` is the response variable, then specify `ResponseVarName` as `'Y'`. Otherwise, `fitensemble` treats all columns of `Tbl` as predictor variables.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

For classification, you can specify the order of the classes using the `ClassNames` name-value pair argument. Otherwise, `fitensemble` determines the class order, and stores it in the `Mdl.ClassNames`.

Data Types: `char` | `string`

**formula — Explanatory model of response and subset of predictor variables**

character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.

Data Types: `char` | `string`

**X — Predictor data**

numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of `Y` and the number of rows of `X` must be equal.

To specify the names of the predictors in the order of their appearance in `X`, use the `PredictorNames` name-value pair argument.

Data Types: `single` | `double`
**Y — Response data**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Response data, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Each entry in Y is the response to or label for the observation in the corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal. If the response variable is a character array, then each element must correspond to one row of the array.

- For classification, Y can be any of the supported data types. You can specify the order of the classes using the `ClassNames` name-value pair argument. Otherwise, `fitensemble` determines the class order, and stores it in the `Mdl.ClassNames`.
- For regression, Y must be a numeric column vector.

Data Types: categorical | char | string | logical | single | double | cell

**Method — Ensemble-aggregation method**
'AdaBoostM1' | 'LogitBoost' | 'GentleBoost' | 'RUSBoost' | 'Subspace' | 'Bag' | 'AdaBoostM2' | 'LSBoost' | ...

Ensemble-aggregation method, specified as one of the method names in this list.

- For classification with two classes:
  - 'AdaBoostM1'
  - 'LogitBoost'
  - 'GentleBoost'
  - 'RobustBoost' (requires Optimization Toolbox)
  - 'LPBoost' (requires Optimization Toolbox)
  - 'TotalBoost' (requires Optimization Toolbox)
  - 'RUSBoost'
  - 'Subspace'
  - 'Bag'
- For classification with three or more classes:
  - 'AdaBoostM2'
  - 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

  For regression:
  • 'LSBoost'
  • 'Bag'

Because you can specify 'Bag' for classification and regression problems, specify the problem type using the Type name-value pair argument.

**NLearn — Number of ensemble learning cycles**

positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as a positive integer or 'AllPredictorCombinations'.

  • If you specify a positive integer, then, at every learning cycle, the software trains one weak learner for every template object in Learners. Consequently, the software trains NLearn*numel(Learners) learners.
  • If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one learner only in Learners. With these settings, the software trains learners for all possible combinations of predictors taken NPredToSample at a time. Consequently, the software trains nchoosek(size(X,2),NPredToSample) leaners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.

For more details, see “Tips” on page 32-2386.

Data Types: single | double | char | string

**Learners — Weak learners to use in ensemble**

weak-learner name | weak-learner template object | cell vector of weak-learner template objects

Weak learners to use in the ensemble, specified as a weak-learner name, weak-learner template object, or cell array of weak-learner template objects.
<table>
<thead>
<tr>
<th>Weak Learner</th>
<th>Weak-Learner Name</th>
<th>Template Object Creation Function</th>
<th>Method Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminant analysis</td>
<td>'Discriminant'</td>
<td>templateDiscriminant</td>
<td>Recommended for 'Subspace'</td>
</tr>
<tr>
<td>k nearest neighbors</td>
<td>'KNN'</td>
<td>templateKNN</td>
<td>For 'Subspace' only</td>
</tr>
<tr>
<td>Decision tree</td>
<td>'Tree'</td>
<td>templateTree</td>
<td>All methods except 'Subspace'</td>
</tr>
</tbody>
</table>

For more details, see NLear and “Tips” on page 32-2386.

Example: For an ensemble composed of two types of classification trees, supply \{t1 t2\}, where t1 and t2 are classification tree templates.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: 'CrossVal','on','LearnRate',0.05 specifies to implement 10-fold cross-validation and to use 0.05 as the learning rate.

**General Ensemble Options**

**CategoricalPredictors — Categorical predictors list**

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
</tbody>
</table>
### Value

<table>
<thead>
<tr>
<th><strong>Value</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in <code>PredictorNames</code>. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in <code>PredictorNames</code>.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

Specification of `CategoricalPredictors` is appropriate if:

- 'Learners' is 'tree'.
- 'Learners' is 'knn' when all predictors are categorical.

By default, if the predictor data is in a table (`Tbl`), `fitensemble` assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (`X`), `fitensemble` assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the `'CategoricalPredictors'` name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: `single` | `double` | `logical` | `char` | `string` | `cell`

### NPrint — Printout frequency

'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of `'NPrint'` and a positive integer or 'off'.

To track the number of weak learners or folds that `fitensemble` trained so far, specify a positive integer. That is, if you specify the positive integer `m`:

- Without also specifying any cross-validation option (for example, `CrossVal`), then `fitensemble` displays a message to the command line every time it completes training `m` weak learners.
- And a cross-validation option, then `fitensemble` displays a message to the command line every time it finishes training `m` folds.
If you specify 'off', then fitensemble does not display a message when it completes training weak learners.

**Tip** When training an ensemble of many weak learners on a large data set, specify a positive integer for NPrint.

Example: 'NPrint', 5

Data Types: single | double | char | string

**PredictorNames — Predictor variable names**
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitensemble uses only the predictor variables in PredictorNames and the response variable in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell


**ResponseName — Response variable name**

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

**Type — Supervised learning type**

'classification' | 'regression'

Supervised learning type, specified as the comma-separated pair consisting of 'Type' and 'classification' or 'regression'.

- If Method is 'bag', then the supervised learning type is ambiguous. Therefore, specify Type when bagging.
- Otherwise, the value of Method determines the supervised learning type.

Example: 'Type','classification'

**Cross-Validation Options**

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval or crossval.

Example: 'Crossval','on'
CVPartition — Cross-validation partition

CVPartition = [] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

Holdout — Fraction of data for holdout validation

Holdout = scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

KFold — Number of folds

KFold = 10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps:

1 Randomly partition the data into k sets.
For each set, reserve the set as validation data, and train the model using the other $k-1$ sets.

Store the $k$ compact, trained models in the cells of a $k$-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'KFold',5`

Data Types: `single` | `double`

**Leaveout — Leave-one-out cross-validation flag**

`'off'` (default) | `'on'`

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of `'Leaveout'` and `'on'` or `'off'`. If you specify `'Leaveout','on'`, then, for each of the $n$ observations (where $n$ is the number of observations excluding missing observations, specified in the `NumObservations` property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other $n-1$ observations.
2. Store the $n$ compact, trained models in the cells of an $n$-by-1 cell vector in the `Trained` property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: `CVPartition`, `Holdout`, `KFold`, or `Leaveout`.

Example: `'Leaveout','on'`

**Other Classification or Regression Options**

**ClassNames — Names of classes to use for training**

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of `'ClassNames'` and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. `ClassNames` must have the same data type as `Y`.

If `ClassNames` is a character array, then each element must correspond to one row of the array.
Use `ClassNames` to:

- Order the classes during training.
- Specify the order of any input or output argument dimension that corresponds to the class order. For example, use `ClassNames` to specify the order of the dimensions of `Cost` or the column order of classification scores returned by `predict`.
- Select a subset of classes for training. For example, suppose that the set of all distinct class names in `Y` is `{'a','b','c'}`. To train the model using observations from classes 'a' and 'c' only, specify `'ClassNames',{'a','c'}`.

The default value for `ClassNames` is the set of all distinct class names in `Y`.

Example: `'ClassNames',{'b','g'}`

Data Types: categorical | char | string | logical | single | double | cell

**Cost — Misclassification cost**

Square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of `'Cost'` and a square matrix or structure. If you specify:

- The square matrix `Cost`, then `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of `Cost`, also specify the `ClassNames` name-value pair argument.
- The structure `S`, then it must have two fields:
  - `S.ClassNames`, which contains the class names as a variable of the same data type as `Y`
  - `S.ClassificationCosts`, which contains the cost matrix with rows and columns ordered as in `S.ClassNames`

The default is `ones(K) - eye(K)`, where `K` is the number of distinct classes.

**Note** `fitensemble` uses `Cost` to adjust the prior class probabilities specified in `Prior`. Then, `fitensemble` uses the adjusted prior probabilities for training and resets the cost matrix to its default.

Example: `'Cost',[0 1 2; 1 0 2; 2 2 0]`
Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to Mdl.ClassNames or specify the order using the ClassNames name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure array</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>- S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>- S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

fitensemble normalizes the prior probabilities in Prior to sum to 1.

Example: struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)

Data Types: char | string | double | single | struct

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the
observations in each row of \( X \) or \( Tbl \) with the corresponding value in \( Weights \). The size of \( Weights \) must equal the number of rows of \( X \) or \( Tbl \).

If you specify the input data as a table \( Tbl \), then \( Weights \) can be the name of a variable in \( Tbl \) that contains a numeric vector. In this case, you must specify \( Weights \) as a character vector or string scalar. For example, if the weights vector \( W \) is stored as \( Tbl.W \), then specify it as \('W'\). Otherwise, the software treats all columns of \( Tbl \), including \( W \), as predictors or the response when training the model.

The software normalizes \( Weights \) to sum up to the value of the prior probability in the respective class.

By default, \( Weights \) is \( \text{ones}(n,1) \), where \( n \) is the number of observations in \( X \) or \( Tbl \).

Data Types: \text{double} \mid \text{single} \mid \text{char} \mid \text{string}

**Sampling Options for Boosting Methods and Bagging**

\( FResample \) — Fraction of training set to resample

1 (default) \mid \text{positive scalar in (0,1]}

Fraction of the training set to resample for every weak learner, specified as the comma-separated pair consisting of \( FResample \) and a positive scalar in \((0,1]\).

To use \('FResample'\), specify \('bag'\) for \( Method \) or set \( Resample \) to \('on'\).

Example: \('FResample',0.75\)

Data Types: \text{single} \mid \text{double}

\( Replace \) — Flag indicating to sample with replacement

\('on' \) (default) \mid \('off'\)

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of \( Replace \) and \('off' \) or \('on'\).

- For \('on'\), the software samples the training observations with replacement.
- For \('off'\), the software samples the training observations without replacement. If you set \( Resample \) to \('on'\), then the software samples training observations assuming uniform weights. If you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set \( Method \) to \('bag' \) or set \( Resample \) to \('on'\), \( Replace \) has no effect.
Example: 'Replace','off'

**Resample — Flag indicating to resample**

'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and 'off' or 'on'.

- If Method is any boosting method, then:
  - 'Resample','on' specifies to sample training observations using updated weights as the multinomial sampling probabilities.
  - 'Resample','off' specifies to reweight observations at every learning iteration. This setting is the default.

- If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the training observations (see FResample) with or without replacement (see Replace).

**AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost, and LSBoost Method Options**

**LearnRate — Learning rate for shrinkage**

1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1

Data Types: single | double

**RUSBoost Method Options**

**LearnRate — Learning rate for shrinkage**

1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].
To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1

Data Types: single | double

**RatioToSmallest — Sampling proportion with respect to lowest-represented class**

Positive numeric scalar | Numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values with length equal to the number of distinct classes in the training data.

Suppose that there are \( K \) classes in the training data and the lowest-represented class has \( m \) observations in the training data.

- If you specify the positive numeric scalar \( s \), then fitensemble samples \( s \times m \) observations from each class, that is, it uses the same sampling proportion for each class. For more details, see “Algorithms” on page 32-2388.
- If you specify the numeric vector \([s_1, s_2, \ldots, s_K]\), then fitensemble samples \( s_i \times m \) observations from class \( i, i = 1, \ldots, K \). The elements of RatioToSmallest correspond to the order of the class names specified using ClassNames (see “Tips” on page 32-2386).

The default value is \( \text{ones}(K,1) \), which specifies to sample \( m \) observations from each class.

Example: 'RatioToSmallest',[2,1]

Data Types: single | double

**LPBoost and TotalBoost Method Options**

**MarginPrecision — Margin precision to control convergence speed**

0.1 (default) | Numeric scalar in [0,1]

Margin precision to control convergence speed, specified as the comma-separated pair consisting of 'MarginPrecision' and a numeric scalar in the interval [0,1]. MarginPrecision affects the number of boosting iterations required for convergence.
**Tip** To train an ensemble using many learners, specify a small value for `MarginPrecision`. For training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5

Data Types: `single` | `double`

**RobustBoost Method Options**

**RobustErrorGoal — Target classification error**

0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal' and a nonnegative numeric scalar. The upper bound on possible values depends on the values of `RobustMarginSigma` and `RobustMaxMargin`. However, the upper bound cannot exceed 1.

**Tip** For a particular training set, usually there is an optimal range for `RobustErrorGoal`. If you set it too low or too high, then the software can produce a model with poor classification accuracy. Try cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05

Data Types: `single` | `double`

**RobustMarginSigma — Classification margin distribution spread**

0.1 (default) | positive numeric scalar

Classification margin distribution spread over the training data, specified as the comma-separated pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying `RobustMarginSigma`, consult the literature on RobustBoost, for example, [19].

Example: 'RobustMarginSigma',0.5

Data Types: `single` | `double`

**RobustMaxMargin — Maximal classification margin**

0 (default) | nonnegative numeric scalar
Maximal classification margin in the training data, specified as the comma-separated pair consisting of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of observations in the training data having classification margins below RobustMaxMargin.

Example: 'RobustMaxMargin',1

Data Types: single | double

### Random Subspace Method Options

**NPredToSample — Number of predictors to sample**

1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the number of predictor variables (size(X,2) or size(Tbl, 2)).

Data Types: single | double

### Output Arguments

**Md1 — Trained ensemble model**

ClassificationBaggedEnsemble model object | ClassificationEnsemble model object | ClassificationPartitionedEnsemble cross-validated model object | RegressionBaggedEnsemble model object | RegressionEnsemble model object | RegressionPartitionedEnsemble cross-validated model object

Trained ensemble model, returned as one of the model objects in this table.

<table>
<thead>
<tr>
<th>Model Object</th>
<th>Type Setting</th>
<th>Specify Any Cross-Validation Options?</th>
<th>Method Setting</th>
<th>Resample Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification BaggedEnsemble</td>
<td>'classification'</td>
<td>No</td>
<td>'Bag'</td>
<td>'on'</td>
</tr>
<tr>
<td>Classification Ensemble</td>
<td>'classification'</td>
<td>No</td>
<td>Any ensemble-aggregation method for classification</td>
<td>'off'</td>
</tr>
</tbody>
</table>

32-2385
The name-value pair arguments that control cross-validation are `CrossVal`, `Holdout`, `KFold`, `Leaveout`, and `CVPartition`.

To reference properties of `Mdl`, use dot notation. For example, to access or display the cell vector of weak learner model objects for an ensemble that has not been cross-validated, enter `Mdl.Trained` at the command line.

**Tips**

- `NLearn` can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive power requires from a few hundred to a few thousand weak learners. However, you do not have to train an ensemble for that many cycles at once. You can start by growing a few dozen learners, inspect the ensemble performance and then, if necessary, train more weak learners using `resume` for classification problems, or `resume` for regression problems.

- Ensemble performance depends on the ensemble setting and the setting of the weak learners. That is, if you specify weak learners with default parameters, then the ensemble can perform poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak learners using templates, and to choose values that minimize generalization error.

- If you specify to resample using `Resample`, then it is good practice to resample to entire data set. That is, use the default setting of `1` for `FResample`.

<table>
<thead>
<tr>
<th>Model Object</th>
<th>Type Setting</th>
<th>Specify Any Cross-Validation Options?</th>
<th>Method Setting</th>
<th>Resample Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification PartitionedEnsemble</td>
<td>'classification'</td>
<td>Yes</td>
<td>Any classification ensemble-aggregation method</td>
<td>'off' or 'on'</td>
</tr>
<tr>
<td>RegressionBaggedEnsemble</td>
<td>'regression'</td>
<td>No</td>
<td>'Bag'</td>
<td>'on'</td>
</tr>
<tr>
<td>RegressionEnsemble</td>
<td>'regression'</td>
<td>No</td>
<td>'LSBoost'</td>
<td>'off'</td>
</tr>
<tr>
<td>RegressionPartitionedEnsemble</td>
<td>'regression'</td>
<td>Yes</td>
<td>'LSBoost' or 'Bag'</td>
<td>'off' or 'on'</td>
</tr>
</tbody>
</table>
In classification problems (that is, Type is 'classification'):

- If the ensemble-aggregation method (Method) is 'bag' and:
  
  - The misclassification cost (Cost) is highly imbalanced, then, for in-bag samples, the software oversamples unique observations from the class that has a large penalty.
  
  - The class prior probabilities (Prior) are highly skewed, the software oversamples unique observations from the class that has a large prior probability.

For smaller sample sizes, these combinations can result in a low relative frequency of out-of-bag observations from the class that has a large penalty or prior probability. Consequently, the estimated out-of-bag error is highly variable and it can be difficult to interpret. To avoid large estimated out-of-bag error variances, particularly for small sample sizes, set a more balanced misclassification cost matrix using Cost or a less skewed prior probability vector using Prior.

- Because the order of some input and output arguments correspond to the distinct classes in the training data, it is good practice to specify the class order using the ClassNames name-value pair argument.

  - To determine the class order quickly, remove all observations from the training data that are unclassified (that is, have a missing label), obtain and display an array of all the distinct classes, and then specify the array for ClassNames. For example, suppose the response variable (Y) is a cell array of labels. This code specifies the class order in the variable classNames.

    \[
    \begin{align*}
    Ycat &= \text{categorical}(Y) \\
    \text{classNames} &= \text{categories}(Ycat)
    \end{align*}
    \]

    categorical assigns <undefined> to unclassified observations and categories excludes <undefined> from its output. Therefore, if you use this code for cell arrays of labels or similar code for categorical arrays, then you do not have to remove observations with missing labels to obtain a list of the distinct classes.

  - To specify that the class order from lowest-represented label to most-represented, then quickly determine the class order (as in the previous bullet), but arrange the classes in the list by frequency before passing the list to ClassNames. Following from the previous example, this code specifies the class order from lowest- to most-represented in classNamesLH.
Ycat = categorical(Y);
classNames = categories(Ycat);
freq = countcats(Ycat);
[~,idx] = sort(freq);
classNamesLH = classNames(idx);

Algorithms

• For details of ensemble-aggregation algorithms, see “Ensemble Algorithms” on page 18-50.

• If you specify Method to be a boosting algorithm and Learners to be decision trees, then the software grows stumps by default. A decision stump is one root node connected to two terminal, leaf nodes. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and MinParentSize name-value pair arguments using templateTree.

• fitensemble generates in-bag samples by oversampling classes with large misclassification costs and undersampling classes with small misclassification costs. Consequently, out-of-bag samples have fewer observations from classes with large misclassification costs and more observations from classes with small misclassification costs. If you train a classification ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag observations per class can be low. Therefore, the estimated out-of-bag error can have a large variance and can be difficult to interpret. The same phenomenon can occur for classes with large prior probabilities.

• For the RUSBoost ensemble-aggregation method (Method), the name-value pair argument RatioToSmallest specifies the sampling proportion for each class with respect to the lowest-represented class. For example, suppose that there are two classes in the training data: A and B. A have 100 observations and B have 10 observations. and that the lowest-represented class has m observations in the training data.

  • If you set 'RatioToSmallest',2, then $s \times m = 2 \times 10 = 20$. Consequently, fitensemble trains every learner using 20 observations from class A and 20 observations from class B. If you set 'RatioToSmallest',[2 2], then you obtain the same result.

  • If you set 'RatioToSmallest',[2,1], then $s_1 \times m = 2 \times 10 = 20$ and $s_2 \times m = 1 \times 10 = 10$. Consequently, fitensemble trains every learner using 20 observations from class A and 10 observations from class B.
For ensembles of decision trees, and for dual-core systems and above, `fitensemble` parallelizes training using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://software.intel.com/en-us/intel-tbb.

References


See Also
ClassificationBaggedEnsemble | ClassificationEnsemble | ClassificationPartitionedEnsemble | RegressionBaggedEnsemble | RegressionEnsemble | RegressionPartitionedEnsemble | templateDiscriminant | templateKNN | templateTree

Topics
“Supervised Learning Workflow and Algorithms” on page 18-2
“Framework for Ensemble Learning” on page 18-40

Introduced in R2011a
fitnlm

Fit nonlinear regression model

Syntax

mdl = fitnlm(tbl,modelfun,beta0)
mdl = fitnlm(X,y,modelfun,beta0)
mdl = fitnlm(___,modelfun,beta0,Name,Value)

Description

mdl = fitnlm(tbl,modelfun,beta0) fits the model specified by modelfun to variables in the table or dataset array tbl, and returns the nonlinear model mdl.

fitnlm estimates model coefficients using an iterative procedure starting from the initial values in beta0.

mdl = fitnlm(X,y,modelfun,beta0) fits a nonlinear regression model using the column vector y as a response variable and the columns of the matrix X as predictor variables.

mdl = fitnlm(___,modelfun,beta0,Name,Value) fits a nonlinear regression model with additional options specified by one or more Name,Value pair arguments.

Examples

Nonlinear Model from Table

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig
tbl = table(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ... 
   b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(tbl,modelfun,beta0)

mdl = 
Nonlinear regression model:
    MPG ~ b1 + b2*Horsepower^b3 + b4*Weight^b5

Estimated Coefficients:
    Estimate    SE         tStat    pValue
    ______   _____    ________    ________
    b1     -49.383   119.97     -0.41164     0.68083
    b2     376.43    567.05     0.66384     0.50719
    b3    -0.78193   0.47168    -1.6578    0.098177
    b4     422.37   776.02     0.54428     0.58656
    b5    -0.24127   0.48325    -0.49926     0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745,  Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

**Nonlinear Model from Matrix Data**

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ... 
   b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0)

mdl = 
Nonlinear regression model:
    y ~ b1 + b2*x1^b3 + b4*x2^b5

32-2392
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>-49.383</td>
<td>119.97</td>
<td>-0.41164</td>
<td>0.68083</td>
</tr>
<tr>
<td>b2</td>
<td>376.43</td>
<td>567.05</td>
<td>0.66384</td>
<td>0.50719</td>
</tr>
<tr>
<td>b3</td>
<td>-0.78193</td>
<td>0.47168</td>
<td>-1.6578</td>
<td>0.098177</td>
</tr>
<tr>
<td>b4</td>
<td>422.37</td>
<td>776.02</td>
<td>0.54428</td>
<td>0.58656</td>
</tr>
<tr>
<td>b5</td>
<td>-0.24127</td>
<td>0.48325</td>
<td>-0.49926</td>
<td>0.61788</td>
</tr>
</tbody>
</table>

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Adjust Fitting Options in Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Strive for more accuracy by lowering the TolFun option, and observe the iterations by setting the Display option.

Load the data and create a nonlinear model.

```plaintext
load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) +...
 b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0,'Options',opts);
```

Details:

```
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>-49.383</td>
<td>119.97</td>
<td>-0.41164</td>
<td>0.68083</td>
</tr>
<tr>
<td>b2</td>
<td>376.43</td>
<td>567.05</td>
<td>0.66384</td>
<td>0.50719</td>
</tr>
<tr>
<td>b3</td>
<td>-0.78193</td>
<td>0.47168</td>
<td>-1.6578</td>
<td>0.098177</td>
</tr>
<tr>
<td>b4</td>
<td>422.37</td>
<td>776.02</td>
<td>0.54428</td>
<td>0.58656</td>
</tr>
<tr>
<td>b5</td>
<td>-0.24127</td>
<td>0.48325</td>
<td>-0.49926</td>
<td>0.61788</td>
</tr>
</tbody>
</table>
Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113
```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.82248e+06</td>
<td>788810</td>
<td>1691.07</td>
</tr>
<tr>
<td>1</td>
<td>678600</td>
<td>6.12739e+06</td>
<td>45.4738</td>
</tr>
<tr>
<td>2</td>
<td>249831</td>
<td>3.9532e+06</td>
<td>293.557</td>
</tr>
<tr>
<td>3</td>
<td>17675</td>
<td>361544</td>
<td>369.284</td>
</tr>
<tr>
<td>4</td>
<td>11746.6</td>
<td>69670.5</td>
<td>169.079</td>
</tr>
<tr>
<td>5</td>
<td>7242.22</td>
<td>343738</td>
<td>394.822</td>
</tr>
<tr>
<td>6</td>
<td>6250.32</td>
<td>159719</td>
<td>452.941</td>
</tr>
<tr>
<td>7</td>
<td>6172.87</td>
<td>91622.9</td>
<td>268.674</td>
</tr>
<tr>
<td>8</td>
<td>6077</td>
<td>6957.44</td>
<td>100.208</td>
</tr>
<tr>
<td>9</td>
<td>6076.34</td>
<td>6370.39</td>
<td>88.1905</td>
</tr>
<tr>
<td>10</td>
<td>6075.75</td>
<td>5199.08</td>
<td>77.9694</td>
</tr>
<tr>
<td>11</td>
<td>6075.3</td>
<td>4646.61</td>
<td>69.764</td>
</tr>
<tr>
<td>12</td>
<td>6074.91</td>
<td>4235.96</td>
<td>62.9114</td>
</tr>
<tr>
<td>13</td>
<td>6074.55</td>
<td>3885.28</td>
<td>57.0647</td>
</tr>
<tr>
<td>14</td>
<td>6074.23</td>
<td>3571.1</td>
<td>52.0036</td>
</tr>
<tr>
<td>15</td>
<td>6073.93</td>
<td>3286.48</td>
<td>47.5795</td>
</tr>
<tr>
<td>16</td>
<td>6073.66</td>
<td>3028.34</td>
<td>43.6844</td>
</tr>
<tr>
<td>17</td>
<td>6073.4</td>
<td>2794.31</td>
<td>40.2352</td>
</tr>
<tr>
<td>18</td>
<td>6073.17</td>
<td>2582.15</td>
<td>37.1663</td>
</tr>
<tr>
<td>19</td>
<td>6072.95</td>
<td>2389.68</td>
<td>34.4243</td>
</tr>
<tr>
<td>20</td>
<td>6072.74</td>
<td>2214.84</td>
<td>31.965</td>
</tr>
<tr>
<td>21</td>
<td>6072.55</td>
<td>2055.78</td>
<td>29.7516</td>
</tr>
<tr>
<td>22</td>
<td>6072.37</td>
<td>1910.83</td>
<td>27.753</td>
</tr>
<tr>
<td>23</td>
<td>6072.21</td>
<td>1778.51</td>
<td>25.9428</td>
</tr>
<tr>
<td>24</td>
<td>6072.05</td>
<td>1657.5</td>
<td>24.2986</td>
</tr>
<tr>
<td>25</td>
<td>6071.9</td>
<td>1546.65</td>
<td>22.8011</td>
</tr>
<tr>
<td>26</td>
<td>6071.76</td>
<td>1444.93</td>
<td>21.4338</td>
</tr>
<tr>
<td>27</td>
<td>6071.63</td>
<td>1351.44</td>
<td>20.1822</td>
</tr>
<tr>
<td>28</td>
<td>6071.51</td>
<td>1265.39</td>
<td>19.0339</td>
</tr>
<tr>
<td>29</td>
<td>6071.39</td>
<td>1186.06</td>
<td>17.978</td>
</tr>
<tr>
<td>30</td>
<td>6071.28</td>
<td>1112.83</td>
<td>17.0052</td>
</tr>
<tr>
<td>31</td>
<td>6071.17</td>
<td>1045.13</td>
<td>16.107</td>
</tr>
<tr>
<td>32</td>
<td>6071.07</td>
<td>982.465</td>
<td>15.2762</td>
</tr>
<tr>
<td>33</td>
<td>6070.98</td>
<td>924.389</td>
<td>14.5063</td>
</tr>
<tr>
<td>34</td>
<td>6070.89</td>
<td>870.498</td>
<td>13.7916</td>
</tr>
<tr>
<td>35</td>
<td>6070.8</td>
<td>820.434</td>
<td>13.127</td>
</tr>
<tr>
<td>36</td>
<td>6070.72</td>
<td>773.872</td>
<td>12.5081</td>
</tr>
<tr>
<td>37</td>
<td>6070.64</td>
<td>730.521</td>
<td>11.9307</td>
</tr>
<tr>
<td>38</td>
<td>6070.57</td>
<td>690.117</td>
<td>11.3914</td>
</tr>
<tr>
<td>39</td>
<td>6070.5</td>
<td>652.422</td>
<td>10.887</td>
</tr>
<tr>
<td>40</td>
<td>6070.43</td>
<td>617.219</td>
<td>10.4144</td>
</tr>
<tr>
<td>41</td>
<td>6070.37</td>
<td>584.315</td>
<td>9.97115</td>
</tr>
<tr>
<td>42</td>
<td>6070.31</td>
<td>553.53</td>
<td>9.55489</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>44</td>
<td>6070.25</td>
<td>524.703</td>
<td>9.1635</td>
</tr>
<tr>
<td>45</td>
<td>6070.19</td>
<td>497.686</td>
<td>8.79506</td>
</tr>
<tr>
<td>46</td>
<td>6070.14</td>
<td>472.345</td>
<td>8.44785</td>
</tr>
<tr>
<td>47</td>
<td>6070.08</td>
<td>448.557</td>
<td>8.12028</td>
</tr>
<tr>
<td>48</td>
<td>6070.03</td>
<td>426.21</td>
<td>7.81091</td>
</tr>
<tr>
<td>49</td>
<td>6069.99</td>
<td>405.201</td>
<td>7.51845</td>
</tr>
<tr>
<td>50</td>
<td>6069.94</td>
<td>385.435</td>
<td>7.2417</td>
</tr>
<tr>
<td>51</td>
<td>6069.9</td>
<td>366.825</td>
<td>6.97956</td>
</tr>
<tr>
<td>52</td>
<td>6069.85</td>
<td>349.293</td>
<td>6.73104</td>
</tr>
<tr>
<td>53</td>
<td>6069.81</td>
<td>332.764</td>
<td>6.49523</td>
</tr>
<tr>
<td>54</td>
<td>6069.77</td>
<td>317.171</td>
<td>6.27127</td>
</tr>
<tr>
<td>55</td>
<td>6069.74</td>
<td>302.452</td>
<td>6.0584</td>
</tr>
<tr>
<td>56</td>
<td>6069.7</td>
<td>288.55</td>
<td>5.85591</td>
</tr>
<tr>
<td>57</td>
<td>6069.66</td>
<td>275.411</td>
<td>5.66315</td>
</tr>
<tr>
<td>58</td>
<td>6069.63</td>
<td>262.986</td>
<td>5.47949</td>
</tr>
<tr>
<td>59</td>
<td>6069.6</td>
<td>251.23</td>
<td>5.3044</td>
</tr>
<tr>
<td>60</td>
<td>6069.57</td>
<td>240.1</td>
<td>5.13734</td>
</tr>
<tr>
<td>61</td>
<td>6069.54</td>
<td>229.558</td>
<td>4.97784</td>
</tr>
<tr>
<td>62</td>
<td>6069.51</td>
<td>219.567</td>
<td>4.82545</td>
</tr>
<tr>
<td>63</td>
<td>6069.48</td>
<td>210.094</td>
<td>4.67977</td>
</tr>
<tr>
<td>64</td>
<td>6069.45</td>
<td>201.108</td>
<td>4.5404</td>
</tr>
<tr>
<td>65</td>
<td>6069.43</td>
<td>192.578</td>
<td>4.407</td>
</tr>
<tr>
<td>66</td>
<td>6069.4</td>
<td>184.479</td>
<td>4.27923</td>
</tr>
<tr>
<td>67</td>
<td>6069.38</td>
<td>176.785</td>
<td>4.15677</td>
</tr>
<tr>
<td>68</td>
<td>6069.35</td>
<td>169.472</td>
<td>4.03935</td>
</tr>
<tr>
<td>69</td>
<td>6069.33</td>
<td>162.518</td>
<td>3.9267</td>
</tr>
<tr>
<td>70</td>
<td>6069.31</td>
<td>155.903</td>
<td>3.81855</td>
</tr>
<tr>
<td>71</td>
<td>6069.29</td>
<td>149.608</td>
<td>3.71468</td>
</tr>
<tr>
<td>72</td>
<td>6069.26</td>
<td>143.615</td>
<td>3.61486</td>
</tr>
<tr>
<td>73</td>
<td>6069.24</td>
<td>137.907</td>
<td>3.5189</td>
</tr>
<tr>
<td>74</td>
<td>6069.22</td>
<td>132.468</td>
<td>3.42658</td>
</tr>
<tr>
<td>75</td>
<td>6069.21</td>
<td>127.283</td>
<td>3.33774</td>
</tr>
<tr>
<td>76</td>
<td>6069.19</td>
<td>122.339</td>
<td>3.25221</td>
</tr>
<tr>
<td>77</td>
<td>6069.17</td>
<td>117.623</td>
<td>3.16981</td>
</tr>
<tr>
<td>78</td>
<td>6069.15</td>
<td>113.123</td>
<td>3.09041</td>
</tr>
<tr>
<td>79</td>
<td>6069.14</td>
<td>108.827</td>
<td>3.01386</td>
</tr>
<tr>
<td>80</td>
<td>6069.12</td>
<td>104.725</td>
<td>2.94002</td>
</tr>
<tr>
<td>81</td>
<td>6069.1</td>
<td>100.806</td>
<td>2.86877</td>
</tr>
<tr>
<td>82</td>
<td>6069.09</td>
<td>97.0611</td>
<td>2.8</td>
</tr>
<tr>
<td>83</td>
<td>6069.07</td>
<td>93.4814</td>
<td>2.73358</td>
</tr>
<tr>
<td>84</td>
<td>6069.06</td>
<td>90.0584</td>
<td>2.66942</td>
</tr>
<tr>
<td>85</td>
<td>6069.05</td>
<td>86.7841</td>
<td>2.60741</td>
</tr>
<tr>
<td>86</td>
<td>6069.03</td>
<td>83.6513</td>
<td>2.54745</td>
</tr>
<tr>
<td>87</td>
<td>6069.02</td>
<td>80.6528</td>
<td>2.48947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>88</td>
<td>6069.01</td>
<td>77.7821</td>
<td>2.43338</td>
</tr>
<tr>
<td>89</td>
<td>6068.99</td>
<td>75.0327</td>
<td>2.37908</td>
</tr>
<tr>
<td>90</td>
<td>6068.98</td>
<td>72.399</td>
<td>2.32652</td>
</tr>
<tr>
<td>91</td>
<td>6068.97</td>
<td>69.8752</td>
<td>2.27561</td>
</tr>
<tr>
<td>92</td>
<td>6068.96</td>
<td>67.4561</td>
<td>2.22629</td>
</tr>
<tr>
<td>93</td>
<td>6068.95</td>
<td>65.1366</td>
<td>2.17849</td>
</tr>
<tr>
<td>94</td>
<td>6068.94</td>
<td>62.9123</td>
<td>2.13216</td>
</tr>
<tr>
<td>95</td>
<td>6068.93</td>
<td>60.7784</td>
<td>2.08723</td>
</tr>
<tr>
<td>96</td>
<td>6068.92</td>
<td>58.7308</td>
<td>2.04364</td>
</tr>
<tr>
<td>97</td>
<td>6068.91</td>
<td>56.7655</td>
<td>2.00135</td>
</tr>
<tr>
<td>98</td>
<td>6068.9</td>
<td>54.8787</td>
<td>1.9603</td>
</tr>
<tr>
<td>99</td>
<td>6068.89</td>
<td>4349.28</td>
<td>18.1917</td>
</tr>
<tr>
<td>100</td>
<td>6068.77</td>
<td>2416.27</td>
<td>14.4439</td>
</tr>
<tr>
<td>101</td>
<td>6068.71</td>
<td>1721.26</td>
<td>12.1305</td>
</tr>
<tr>
<td>102</td>
<td>6068.66</td>
<td>1228.78</td>
<td>10.289</td>
</tr>
<tr>
<td>103</td>
<td>6068.63</td>
<td>884.002</td>
<td>8.82019</td>
</tr>
<tr>
<td>104</td>
<td>6068.6</td>
<td>639.615</td>
<td>7.62744</td>
</tr>
<tr>
<td>105</td>
<td>6068.58</td>
<td>464.84</td>
<td>6.64627</td>
</tr>
<tr>
<td>106</td>
<td>6068.56</td>
<td>338.878</td>
<td>5.82964</td>
</tr>
<tr>
<td>107</td>
<td>6068.55</td>
<td>247.508</td>
<td>5.14296</td>
</tr>
<tr>
<td>108</td>
<td>6068.54</td>
<td>180.878</td>
<td>4.56032</td>
</tr>
<tr>
<td>109</td>
<td>6068.53</td>
<td>132.084</td>
<td>4.06194</td>
</tr>
<tr>
<td>110</td>
<td>6068.52</td>
<td>96.2341</td>
<td>3.63255</td>
</tr>
<tr>
<td>111</td>
<td>6068.51</td>
<td>69.8362</td>
<td>3.26019</td>
</tr>
<tr>
<td>112</td>
<td>6068.51</td>
<td>50.3735</td>
<td>2.93541</td>
</tr>
<tr>
<td>113</td>
<td>6068.5</td>
<td>36.0205</td>
<td>2.65062</td>
</tr>
<tr>
<td>114</td>
<td>6068.5</td>
<td>25.4452</td>
<td>2.39969</td>
</tr>
<tr>
<td>115</td>
<td>6068.49</td>
<td>17.6693</td>
<td>2.17764</td>
</tr>
<tr>
<td>116</td>
<td>6068.49</td>
<td>102.39</td>
<td>14.0164</td>
</tr>
<tr>
<td>117</td>
<td>6068.48</td>
<td>544.039</td>
<td>5.3137</td>
</tr>
<tr>
<td>118</td>
<td>6068.48</td>
<td>94.0576</td>
<td>2.86664</td>
</tr>
<tr>
<td>119</td>
<td>6068.48</td>
<td>113.636</td>
<td>3.73502</td>
</tr>
<tr>
<td>120</td>
<td>6068.48</td>
<td>0.518567</td>
<td>1.3705</td>
</tr>
<tr>
<td>121</td>
<td>6068.48</td>
<td>4.5944</td>
<td>0.91284</td>
</tr>
<tr>
<td>122</td>
<td>6068.48</td>
<td>1.56389</td>
<td>0.629322</td>
</tr>
<tr>
<td>123</td>
<td>6068.48</td>
<td>1.13809</td>
<td>0.432547</td>
</tr>
<tr>
<td>124</td>
<td>6068.48</td>
<td>0.295936</td>
<td>0.297509</td>
</tr>
</tbody>
</table>

Iterations terminated: relative change in SSE less than OPTIONS.TolFun
Specify Nonlinear Regression Using Model Name Syntax

Specify a nonlinear regression model for estimation using a function handle or model syntax.

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Use a function handle to specify the Hougen-Watson model for the rate data.

```matlab
mdl = fitnlm(X,y,@hougen,beta0)
```

```matlab
mdl =
Nonlinear regression model:
y ~ hougen(b,X)
```

```matlab
Estimated Coefficients:
 Estimate SE tStat pValue
 ______ ________ ______ _______
 b1 1.2526 0.86701 1.4447 0.18654
 b2 0.062776 0.043561 1.4411 0.18753
 b3 0.040048 0.030885 1.2967 0.23089
 b4 0.11242 0.075157 1.4957 0.17309
 b5 1.1914 0.83671 1.4239 0.1923
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatively, you can use an expression to specify the Hougen-Watson model for the rate data.

```matlab
myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
mdl2 = fitnlm(X,y,myfun,beta0)
```

```matlab
mdl2 =
Nonlinear regression model:
y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)
```
Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2526</td>
<td>0.86701</td>
<td>1.4447</td>
<td>0.18654</td>
</tr>
<tr>
<td>0.062776</td>
<td>0.043561</td>
<td>1.4411</td>
<td>0.18753</td>
</tr>
<tr>
<td>0.040048</td>
<td>0.030885</td>
<td>1.2967</td>
<td>0.23089</td>
</tr>
<tr>
<td>0.11242</td>
<td>0.075157</td>
<td>1.4957</td>
<td>0.17309</td>
</tr>
<tr>
<td>1.1914</td>
<td>0.83671</td>
<td>1.4239</td>
<td>0.1923</td>
</tr>
</tbody>
</table>

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

**Estimate Nonlinear Regression Using Robust Fitting Options**

Generate sample data from the nonlinear regression model

\[ y = b_1 + b_2 \exp(-b_3 x) + \varepsilon, \]

where \( b_1, b_2, \text{ and } b_3 \) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5.

```matlab
modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
```

```matlab
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);
```

Set robust fitting options.

```matlab
opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
```

Fit the nonlinear model using the robust fitting options. Here, use an expression to specify the model.
b0 = [2;2;2];
modelstr = 'y ~ b1 + b2*exp(-b3*x)';

mdl = fitnlm(x,y,modelstr,b0,'Options',opts)

mdl =
Nonlinear regression model (robust fit):
y ~ b1 + b2*exp(-b3*x)

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>1.0218</td>
<td>0.07202</td>
<td>14.188</td>
<td>2.1344e-25</td>
</tr>
<tr>
<td>b2</td>
<td>3.6619</td>
<td>0.25429</td>
<td>14.401</td>
<td>7.974e-26</td>
</tr>
<tr>
<td>b3</td>
<td>2.9732</td>
<td>0.38496</td>
<td>7.7232</td>
<td>1.0346e-11</td>
</tr>
</tbody>
</table>

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 0.501
R-Squared: 0.807, Adjusted R-Squared 0.803
F-statistic vs. constant model: 203, p-value = 2.34e-35

**Fit Nonlinear Regression Model Using Weights Function Handle**

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Specify a function handle for observation weights. The function accepts the model fitted values as input, and returns a vector of weights.

```matlab
a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
```

Fit the Hougen-Watson model to the rate data using the specified observation weights function.

```matlab
mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights)
```
mdl =
Nonlinear regression model:
y ~ hougen(b,X)

Estimated Coefficients:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>0.83085</td>
<td>0.58224</td>
<td>1.427</td>
<td>0.19142</td>
</tr>
<tr>
<td>b2</td>
<td>0.04095</td>
<td>0.029663</td>
<td>1.3805</td>
<td>0.20477</td>
</tr>
<tr>
<td>b3</td>
<td>0.025063</td>
<td>0.019673</td>
<td>1.274</td>
<td>0.23842</td>
</tr>
<tr>
<td>b4</td>
<td>0.080053</td>
<td>0.057812</td>
<td>1.3847</td>
<td>0.20353</td>
</tr>
<tr>
<td>b5</td>
<td>1.8261</td>
<td>1.281</td>
<td>1.4256</td>
<td>0.19183</td>
</tr>
</tbody>
</table>

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.037
R-Squared: 0.998, Adjusted R-Squared 0.998
F-statistic vs. zero model: 1.14e+03, p-value = 3.49e-11

Nonlinear Regression Model Using Nonconstant Error Model

Load sample data.
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.
mdl = fitnlm(X,y,@hougen,beta0,'ErrorModel','combined')

mdl =
Nonlinear regression model:
y ~ hougen(b,X)

Estimated Coefficients:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>1.2526</td>
<td>0.86702</td>
<td>1.4447</td>
<td>0.18654</td>
</tr>
</tbody>
</table>
Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 1.27
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. If you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables and response variable must be numeric.

You specify the response and predictor names in your model specification. If you do not specify a model, you can set a different column as the response variable by using the ResponseVar name-value pair argument. You can select a subset of the columns as predictors by using the PredictorVars name-value pair argument.

Data Types: table

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables. Each column of X represents one variable, and each row represents one observation.

Data Types: single | double

y — Response variable
vector
Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in y is the response for the corresponding row of X.

Data Types: single | double

**modelfun — Functional form of the model**

function handle | character vector or string scalar of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

- Function handle `@modelfun` or `@(b,x)modelfun`, where
  - `b` is a coefficient vector with the same number of elements as `beta0`.
  - `x` is a matrix with the same number of columns as `X` or the number of predictor variable columns of `tbl`.

  \[ modelfun(b,x) \]
  Returns a column vector that contains the same number of rows as `x`. Each row of the vector is the result of evaluating `modelfun` on the corresponding row of `x`. In other words, `modelfun` is a vectorized function, one that operates on all data rows and returns all evaluations in one function call. `modelfun` should return real numbers to obtain meaningful coefficients.

- Character vector or string scalar of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)', where `f` represents a scalar function of the scalar coefficient variables `b1,...,bj` and the scalar data variables `x1,...,xk`.

Data Types: function_handle | char | string

**beta0 — Coefficients**

numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. `NonLinearModel` starts its search for optimal coefficients from `beta0`.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`. 32-2402
Example: 'ErrorModel','combined','Exclude',2,'Options',opt specifies the error model as the combined model, excludes the second observation from the fit, and uses the options defined in the structure opt to control the iterative fitting procedure.

**CoefficientNames — Names of the model coefficients**

{'b1','b2',...,bk} (default) | string array | cell array of character vectors

Names of the model coefficients, specified as a string array or cell array of character vectors.

Data Types: string | cell

**ErrorModel — Form of the error variance model**

'constant' (default) | 'proportional' | 'combined'

Form of the error variance model, specified as one of the following. Each model defines the error using a standard mean-zero and unit-variance variable e in combination with independent components: the function value f, and one or two parameters a and b

<table>
<thead>
<tr>
<th>ErrorModel</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>( y = f + ae )</td>
</tr>
<tr>
<td>'proportional'</td>
<td>( y = f + bfe )</td>
</tr>
<tr>
<td>'combined'</td>
<td>( y = f + (a + b</td>
</tr>
</tbody>
</table>

The only allowed error model when using Weights is 'constant'.

**Note** options.RobustWgtFun must have value [] when using an error model other than 'constant'.

Example: 'ErrorModel','proportional'

**ErrorParameters — Initial estimates of the error model parameters**

numeric array

Initial estimates of the error model parameters for the chosen ErrorModel, specified as a numeric array.
### Error Model

<table>
<thead>
<tr>
<th>Error Model</th>
<th>Parameters</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>(a)</td>
<td>1</td>
</tr>
<tr>
<td>'proportional'</td>
<td>(b)</td>
<td>1</td>
</tr>
<tr>
<td>'combined'</td>
<td>(a, b)</td>
<td>[1,1]</td>
</tr>
</tbody>
</table>

You can only use the 'constant' error model when using Weights.

**Note** options.RobustWgtFun must have value [] when using an error model other than 'constant'.

For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for \(a\) and the starting value 2 for \(b\) as follows.

Example: 'ErrorParameters',[1,2]

Data Types: single | double

**Exclude — Observations to exclude**

Logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

**Options — Options for controlling the iterative fitting procedure**

[] (default) | structure

Options for controlling the iterative fitting procedure, specified as a structure created by statset. The relevant fields are the nonempty fields in the structure returned by the call statset('fitnlm').
<table>
<thead>
<tr>
<th><strong>Option</strong></th>
<th><strong>Meaning</strong></th>
<th><strong>Default</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>DerivStep</td>
<td>Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics and Machine Learning Toolbox function using the options structure.</td>
<td>eps^(1/3)</td>
</tr>
<tr>
<td>Display</td>
<td>Amount of information displayed by the fitting algorithm.</td>
<td>'off'</td>
</tr>
<tr>
<td>FunValCheck</td>
<td>Character vector or string scalar indicating to check for invalid values, such as NaN or Inf, from the model function.</td>
<td>'on'</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed. Positive integer.</td>
<td>200</td>
</tr>
<tr>
<td>RobustWgtFun</td>
<td>Weight function for robust fitting. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. If you use a function handle, give a Tune constant. See “Robust Options” on page 32-2408</td>
<td>[]</td>
</tr>
<tr>
<td>Tune</td>
<td>Tuning constant used in robust fitting to normalize the residuals before applying the weight function. A positive scalar. Required if the weight function is specified as a function handle.</td>
<td>See “Robust Options” on page 32-2408 for the default, which depends on RobustWgtFun.</td>
</tr>
<tr>
<td>TolFun</td>
<td>Termination tolerance for the objective function value. Positive scalar.</td>
<td>1e-8</td>
</tr>
<tr>
<td>TolX</td>
<td>Termination tolerance for the parameters. Positive scalar.</td>
<td>1e-8</td>
</tr>
</tbody>
</table>

Data Types: struct
**PredictorVars — Predictor variables**
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 0 0 0])
Data Types: single | double | logical | string | cell

**ResponseVar — Response variable**
last column of tbl (default) | variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable.

If you specify a model, it specifies the response variable. Otherwise, when fitting a table or dataset array, 'ResponseVar' indicates which variable fitnlm should use as the response.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 1 0 0])
Data Types: single | double | logical | char | string

**VarNames — Names of variables**
{'x1','x2',..., 'xn', 'y'} (default) | string array | cell array of character vectors
Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: string | cell

Weights — Observation weights
ones(n,1) (default) | vector of nonnegative scalar values | function handle

Observation weights, specified as a vector of nonnegative scalar values or function handle.

- If you specify a vector, then it must have n elements, where n is the number of rows in tbl or y.
- If you specify a function handle, then the function must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, W, NonLinearModel estimates the error variance at observation i by MSE*(1/W(i)), where MSE is the mean squared error.

Data Types: single | double | function_handle

Output Arguments

mdl — Nonlinear model
NonLinearModel object

Nonlinear model representing a least-squares fit of the response to the data, returned as a NonLinearModel object.

If the Options structure contains a nonempty RobustWgtFun field, the model is not a least-squares fit, but uses the RobustWgtFun robust fitting function.
For properties and methods of the nonlinear model object, `mdl`, see the `NonLinearModel` class page.

## Definitions

### Robust Options

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td><code>w = (abs(r)&lt;pi) .* sin(r) ./ r</code></td>
<td>1.339</td>
</tr>
<tr>
<td>'bisquare'</td>
<td><code>w = (abs(r)&lt;1) .* (1 - r.^2).^2</code></td>
<td>4.685</td>
</tr>
<tr>
<td>(default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'cauchy'</td>
<td><code>w = 1 ./ (1 + r.^2)</code></td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td><code>w = 1 ./ (1 + abs(r))</code></td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td><code>w = 1 ./ max(1, abs(r))</code></td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td><code>w = tanh(r) ./ r</code></td>
<td>1.205</td>
</tr>
<tr>
<td>'talwar'</td>
<td><code>w = 1 * (abs(r)&lt;1)</code></td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td><code>w = exp(-(r.^2))</code></td>
<td>2.985</td>
</tr>
<tr>
<td>[]</td>
<td>No robust fitting</td>
<td></td>
</tr>
</tbody>
</table>

### Algorithms

`fitnlm` uses the same fitting algorithm as `nlinfit`.

### References


**See Also**
NonLinearModel | nlinfit

**Topics**
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-7
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2

**Introduced in R2013b**
**LinearMixedModel.fitmatrix**

**Class:** LinearMixedModel

Fit linear mixed-effects model using design matrices

**Note** LinearMixedModel.fitmatrix will be removed in a future release. Use fitlmematrix instead.

**Syntax**

```matlab
lme = LinearMixedModel.fitmatrix(X,y,Z,[])
lme = LinearMixedModel.fitmatrix(X,y,Z,G)
lme = LinearMixedModel.fitmatrix(___,Name,Value)
```

**Description**

`lme = LinearMixedModel.fitmatrix(X,y,Z,[])` creates a linear mixed-effects model of the responses `y` using the fixed-effects design matrix `X` and random-effects design matrix or matrices in `Z`.

`[]` implies that there is one group. That is, the grouping variable `G` is `ones(n,1)`, where `n` is the number of observations. Using `LinearMixedModel.fitmatrix(X,Y,Z,[])` without a specified covariance pattern most likely will result in a non-identifiable model. This syntax is recommended only if you build the grouping information into the random effects design `Z` and specify a covariance pattern for the random effects using `’CovariancePattern’` name-value pair argument.

`lme = LinearMixedModel.fitmatrix(X,y,Z,G)` creates a linear mixed-effects model of the responses `y` using the fixed-effects design matrix `X` and random-effects design matrix `Z` or matrices in `Z`, and the grouping variable or variables in `G`.

`lme = LinearMixedModel.fitmatrix(___,Name,Value)` also creates a linear mixed-effects model with additional options specified by one or more `Name,Value` pair arguments, using any of the previous input arguments.
For example, you can specify the names of the response, predictor, and grouping variables. You can also specify the covariance pattern, fitting method, or the optimization algorithm.

### Input Arguments

**X — Fixed-effects design matrix**

*n-by-\( p \)* matrix

Fixed-effects design matrix, specified as an \( n \)-by-\( p \) matrix, where \( n \) is the number of observations, and \( p \) is the number of fixed-effects predictor variables. Each row of \( X \) corresponds to one observation, and each column of \( X \) corresponds to one variable.

Data Types: `single` | `double`

**y — Response values**

*n*-by-1 vector

Response values, specified as an \( n \)-by-1 vector, where \( n \) is the number of observations.

Data Types: `single` | `double`

**Z — Random-effects design**

\( n \)-by-\( q \) matrix | cell array of \( R \) \( n \)-by-\( q(r) \) matrices, \( r = 1, 2, \ldots, R \)

Random-effects design, specified as either of the following.

- If there is one random-effects term in the model, then \( Z \) must be an \( n \)-by-\( q \) matrix, where \( n \) is the number of observations and \( q \) is the number of variables in the random-effects term.
- If there are \( R \) random-effects terms, then \( Z \) must be a cell array of length \( R \). Each cell of \( Z \) contains an \( n \)-by-\( q(r) \) design matrix \( Z\{r\}, \ r = 1, 2, \ldots, R \), corresponding to each random-effects term. Here, \( q(r) \) is the number of random effects term in the \( r \)th random effects design matrix, \( Z\{r\} \).

Data Types: `single` | `double` | `cell`

**G — Grouping variable or variables**

\( n \)-by-1 vector | cell array of \( R \) \( n \)-by-1 vectors

Grouping variable or variables on page 2-57, specified as either of the following.
• If there is one random-effects term, then \( G \) must be an \( n \)-by-1 vector corresponding to a single grouping variable with \( M \) levels or groups.

\( G \) can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

• If there are multiple random-effects terms, then \( G \) must be a cell array of length \( R \). Each cell of \( G \) contains a grouping variable \( G\{r\}, r = 1, 2, \ldots, R \), with \( M(r) \) levels.

\( G\{r\} \) can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

Data Types: categorical | logical | single | double | char | string | cell

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name, Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1, Value1, ... , NameN, ValueN**.

**FixedEffectPredictors — Names of columns in fixed-effects design matrix**

`{'x1','x2',...,'xP'}` (default) | string array or cell array of length \( p \)

Names of columns in the fixed-effects design matrix \( X \), specified as the comma-separated pair consisting of `'FixedEffectPredictors'` and a string array or cell array of length \( p \).

For example, if you have a constant term and two predictors, say TimeSpent and Gender, where Female is the reference level for Gender, as the fixed effects, then you can specify the names of your fixed effects in the following way. Gender_Male represents the dummy variable you must create for category Male. You can choose different names for these variables.

Example: `'FixedEffectPredictors'`,

`{'Intercept','TimeSpent','Gender_Male'}`,

Data Types: string | cell

**RandomEffectPredictors — Names of columns in random-effects design matrix or cell array**

string array or cell array of length \( q \) | cell array of length \( R \) with elements of length \( q(r), r = 1, 2, \ldots, R \)
Names of columns in the random-effects design matrix or cell array $Z$, specified as the comma-separated pair consisting of 'RandomEffectPredictors' and either of the following:

- A string array or cell array of length $q$ when $Z$ is an $n$-by-$q$ design matrix. In this case, the default is {'$z1$','$z2$',...,'$zQ$'}.
- A cell array of length $R$, when $Z$ is a cell array of length $R$ with each element $Z\{r\}$ of length $q(r)$, $r = 1, 2, ..., R$. In this case, the default is {'$z11$','$z12$',...,'$z1Q(1)$'},...,'$zr1$','$zr2$',...,'$zrQ(r)$'}.

For example, suppose you have correlated random effects for intercept and a variable named Acceleration. Then, you can specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors',{"Intercept','Acceleration'}

If you have two random effects terms, one for the intercept and the variable Acceleration grouped by variable $g_1$, and the second for the intercept, grouped by the variable $g_2$, then you specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors',{{'Intercept','Acceleration'},
{"Intercept'}}

Data Types: string | cell

**ResponseVarName — Name of response variable**

'y' (default) | character vector | string scalar

Name of response variable, specified as the comma-separated pair consisting of 'ResponseVarName' and a character vector or string scalar.

For example, if your response variable name is score, then you can specify it as follows.

Example: 'ResponseVarName','score'

Data Types: char | string

**RandomEffectGroups — Names of random effects grouping variables**

'g' or {'$g1$','$g2$',...,'$gR$'} (default) | character vector | string scalar | string array | cell array of character vectors

Names of random effects grouping variables, specified as the comma-separated pair 'RandomEffectGroups' and either of the following:
• Character vector or string scalar — If there is only one random-effects term, that is, if \( G \) is a vector, then the value of \('RandomEffectGroups'\) is the name for the grouping variable \( G \). The default is \('g'\).

• String array or cell array of character vectors — If there are multiple random-effects terms, that is, if \( G \) is a cell array of length \( R \), then the value of \('RandomEffectGroups'\) is a string array or cell array of length \( R \), where each element is the name for the grouping variable \( G\{r\} \). The default is \{'g1','g2',...,'gR'\}.

For example, if you have two random-effects terms, \( z1 \) and \( z2 \), grouped by the grouping variables \( \text{sex} \) and \( \text{subject} \), then you can specify the names of your grouping variables as follows.

Example: \('RandomEffectGroups',{\'sex','subject\}')

Data Types: char | string | cell

\textbf{CovariancePattern — Pattern of covariance matrix}

\texttt{'FullCholesky'} (default) | character vector | string scalar | square symmetric logical matrix | string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair consisting of \('CovariancePattern'\) and a character vector, a string scalar, a square symmetric logical matrix, a string array, or a cell array of character vectors or logical matrices.

If there are \( R \) random-effects terms, then the value of \('CovariancePattern'\) must be a string array or cell array of length \( R \), where each element \( r \) of the array specifies the pattern of the covariance matrix of the random-effects vector associated with the \( r \)th random-effects term. The options for each element follow.

\texttt{'FullCholesky'}

Default. Full covariance matrix using the Cholesky parameterization. \texttt{fitlme} estimates all elements of the covariance matrix.

\texttt{'Full'}

Full covariance matrix, using the log-Cholesky parameterization. \texttt{fitlme} estimates all elements of the covariance matrix.
'Diagonal' Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0.

\[
\begin{pmatrix}
\sigma^2_{b1} & 0 & 0 \\
0 & \sigma^2_{b2} & 0 \\
0 & 0 & \sigma^2_{b3}
\end{pmatrix}
\]

'Isotropic' Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma^2_b & 0 & 0 \\
0 & \sigma^2_b & 0 \\
0 & 0 & \sigma^2_b
\end{pmatrix}
\]

where \(\sigma^2_b\) is the common variance of the random-effects terms.
'CompSymm'

Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like

\[
\begin{pmatrix}
\sigma^2_{b_1} & \sigma_{b_1,b_2} & \sigma_{b_1,b_2} \\
\sigma_{b_1,b_2} & \sigma^2_{b_2} & \sigma_{b_1,b_2} \\
\sigma_{b_1,b_2} & \sigma_{b_1,b_2} & \sigma^2_{b_2}
\end{pmatrix}
\]

where \(\sigma^2_{b_1}\) is the common variance of the random-effects terms and \(\sigma_{b_1,b_2}\) is the common covariance between any two random-effects terms.

PAT

Square symmetric logical matrix. If 'CovariancePattern' is defined by the matrix PAT, and if \(\text{PAT}(a,b) = \text{false}\), then the \((a,b)\) element of the corresponding covariance matrix is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{'Full','Diagonal'}

Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters

'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'
Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length \( n \), where \( n \) is the number of observations.

Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.

Example: 'Exclude',[13,67]

Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'reference'</td>
<td>Default. Coefficient for first category set to 0.</td>
</tr>
<tr>
<td>'effects'</td>
<td>Coefficients sum to 0.</td>
</tr>
<tr>
<td>'full'</td>
<td>One dummy variable for each category.</td>
</tr>
</tbody>
</table>

Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and either of the following.
'quasinewton'  
Default. Uses a trust region based quasi-Newton optimizer. Change the options of the algorithm using 
statset('LinearMixedModel'). If you don’t specify the options, then 
LinearMixedModel uses the default options of 
statset('LinearMixedModel').

'fminunc'  
You must have Optimization Toolbox to specify this option. Change the options of the algorithm using 
optimoptions('fminunc'). If you don’t specify the options, then 
LinearMixedModel uses the default options of optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminunc'

**OptimizerOptions — Options for optimization algorithm**
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of 'OptimizerOptions' and a structure returned by
statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

- If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions', then the default for LinearMixedModel is the default options created by
  optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

- If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel') to change the optimization parameters. If you don’t change the optimization parameters, then LinearMixedModel uses the default options created by
  statset('LinearMixedModel'):

  The 'quasinewton' optimizer uses the following fields in the structure created by
  statset('LinearMixedModel').
**TolFun** — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

**TolX** — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

**MaxIter** — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

**Display** — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

**StartMethod** — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of 'StartMethod' and either of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'default'</td>
<td>An internally defined default value</td>
</tr>
<tr>
<td>'random'</td>
<td>A random initial value</td>
</tr>
</tbody>
</table>

Example: 'StartMethod', 'random'

**Verbose** — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true
CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to unconstrained parameters at convergence, specified as the comma-separated pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is overparameterized in the number of covariance parameters.

Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

Examples

No Grouping Variable Specified

Load the sample data.

load carsmall

Fit a linear mixed-effects model, where MPG is the response, weight is the predictor variable, and the intercept varies by model year. First, define the design matrices. Then, fit the model using the specified design matrices.

y = MPG;
X = [ones(size(Weight)), Weight];
Z = ones(size(y));
lme = LinearMixedModel.fitmatrix(X,y,Z,Model_Year)

lme = Linear mixed-effects model fit by ML

Model information:
Number of observations               94
Fixed effects coefficients           2
Random effects coefficients          3
Covariance parameters                2

Formula:
  y ~ x1 + x2 + (z11 | g1)

Model fit statistics:
  AIC       BIC       LogLikelihood    Deviance
  486.09    496.26    -239.04          478.09

Fixed effects coefficients (95% CIs):
  Name        Estimate      SE           tStat      DF    pValue
  'x1'            43.575       2.3038     18.915    92    1.8371e-33
  'x2'        -0.0067097    0.0004242    -15.817    92    5.5373e-28

  Lower         Upper
  39        48.151
  -0.0075522    -0.0058672

Random effects covariance parameters (95% CIs):
  Group: g1 (3 Levels)
  Name1        Name2        Type         Estimate    Lower     Upper
  'z11'        'z11'        'std'        3.301       1.4448    7.5421

  Group: Error
  Name             Estimate    Lower     Upper
  'Res Std'        2.8997      2.5075    3.3532

Now fit the same model by building the grouping into the Z matrix.

Z = double([Model_Year==70, Model_Year==76, Model_Year==82]);
lme = LinearMixedModel.fitmatrix(X,y,Z,[],...
  'Covariancepattern','Isotropic')

lme =
Linear mixed-effects model fit by ML

Model information:
  Number of observations               94
  Fixed effects coefficients           2
  Random effects coefficients          3
Covariance parameters                2

Formula:
   y ~ x1 + x2 + (z11 + z12 + z13 | g1)

Model fit statistics:
   AIC       BIC       LogLikelihood    Deviance
   486.09    496.26    -239.04          478.09

Fixed effects coefficients (95% CIs):

   Name        Estimate      SE           tStat      DF    pValue
   'x1'            43.575       2.3038     18.915    92    1.8371e-33
   'x2'        -0.0067097    0.0004242    -15.817    92    5.5373e-28

   Lower         Upper
   39        48.151
   -0.0075522    -0.0058672

Random effects covariance parameters (95% CIs):

   Group: g1 (1 Levels)
   Name1        Name2        Type         Estimate    Lower     Upper
   'z11'        'z11'        'std'        3.301       1.4448    7.5421

   Group: Error
   Name             Estimate    Lower     Upper
   'Res Std'        2.8997      2.5075    3.3532

Longitudinal Study with Covariate

Load the sample data.

load(fullfile(matlabroot,'examples','stats','weight.mat'));

weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise programs (A, B, C, D) and their weight loss is recorded over six two-week time periods. This is simulated data.

Define Subject and Program as categorical variables. Create the design matrices for a linear mixed-effects model, with the initial weight, type of program, week, and the
interaction between the week and type of program as the fixed effects. The intercept and coefficient of week vary by subject.

This model corresponds to

\[ y_{im} = \beta_0 + \beta_1 IW_i + \beta_2 Week_i + \beta_3 I[PB]_i + \beta_4 I[PC]_i + \beta_5 I[PD]_i + \beta_6(Week_i \times I[PB]_i) + \beta_7(Week_i \times I[PC]_i) + \beta_8(Week_i \times I[PD]_i) + b_{0m} + b_{1m} Week_{im} + \epsilon_{im}, \]

where \( i = 1, 2, \ldots, 120 \), and \( m = 1, 2, \ldots, 20 \). \( \beta_j \) are the fixed-effects coefficients, \( j = 0, 1, \ldots, 8 \), and \( b_{0m} \) and \( b_{1m} \) are random effects. \( IW \) stands for initial weight and \( I[\cdot] \) is a dummy variable representing a type of program. For example, \( I[PB]_i \) is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

\[ b_{0m} \sim N(0, \sigma_0^2) \]
\[ b_{1m} \sim N(0, \sigma_1^2) \]
\[ \epsilon_{im} \sim N(0, \sigma^2). \]

Subject = nominal(Subject);
Program = nominal(Program);
D = dummyvar(Program);  % Create dummy variables for Program
X = [ones(120,1), InitialWeight, D(:,2:4), Week,...
    D(:,2).*Week, D(:,3).*Week, D(:,4).*Week];
Z = [ones(120,1), Week];
G = Subject;

Since the model has an intercept, you only need the dummy variables for programs B, C, and D. This is also known as the 'reference' method of coding dummy variables.

Fit the model using LinearMixedModel.fitmatrix with the defined design matrices and grouping variables.

lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FixedEffectPredictors',...'
    'Intercept','InitWeight','PrgB','PrgC','PrgD','Week','Week_PrgB','Week_PrgC','Week_PrgD',
    'RandomEffectPredictors',{{'Intercept','Week'}},'RandomEffectGroups',{{'Subject'}})
lme =
Linear mixed-effects model fit by ML

Model information:
  Number of observations             120
  Fixed effects coefficients           9
  Random effects coefficients         40
  Covariance parameters                4

Formula:
  Linear Mixed Formula with 10 predictors.

Model fit statistics:
  AIC        BIC       LogLikelihood    Deviance

Fixed effects coefficients (95% CIs):
Name                Estimate     SE           tStat       DF     pValue
  'Intercept'           0.66105      0.25892      2.5531    111     0.012034
  'InitWeight'        0.0031879    0.0013814      2.3078    111     0.022863
  'PrgB'                0.36079      0.13139       2.746    111    0.0070394
  'PrgC'              -0.033263      0.13117    -0.25358    111      0.80029
  'PrgD'                0.11317      0.13132     0.86175    111      0.39068
  'Week'                 0.1732     0.067454      2.5677    111     0.011567
  'Week_PrgB'          0.038771     0.095394     0.40644    111      0.68521
  'Week_PrgC'          0.030543     0.095394     0.32018    111      0.74944
  'Week_PrgD'          0.033114     0.095394     0.34713    111      0.72915

  Lower         Upper
  0.14798       1.1741
  0.00045067    0.0059252
  0.10044      0.32113
  -0.29319      0.22666
  -0.14706       0.3734
  0.039536      0.30686
  -0.15026      0.2278
  -0.15849      0.21957
  -0.15592      0.22214

Random effects covariance parameters (95% CIs):
  Group: Subject (20 Levels)
Name1         Name2         Type     Estimate     Lower
  'Intercept'    'Intercept'   'std'     0.18407     0.12281
The $P$-values 0.0228 and 0.0115 indicate significant effects of the initial weights of the subjects and the time factor in the amount of weight lost. The weight loss of subjects that are in program B is significantly different relative to the weight loss of subjects that are in program A. The lower and upper limits of the covariance parameters for the random effects do not include zero, thus they seem significant. You can also test the significance of the random-effects using the `compare` method.

**Random-Intercept Model**

Load the sample data.

```matlab
load flu
```

`flu` dataset array has a `Date` variable, and 10 variables for estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear-mixed effects model, where the influenza rates are the responses, combine the nine columns corresponding to the regions into an array that has a single response variable, `FluRate`, and a nominal variable, `Region`, the nationwide estimate `WtdILI`, that shows which region each estimate is from, and the grouping variable `Date`.

```matlab
flu2 = stack(flu,2:10,'NewDataVarName','FluRate',... 'IndVarName','Region');
flu2.Date = nominal(flu2.Date);
```
Define the design matrices for a random-intercept linear mixed-effects model, where the intercept varies by Date. The corresponding model is

\[ y_{im} = \beta_0 + \beta_1 \text{WtdILI}_{im} + b_{0m} + \epsilon_{im}, \quad i = 1, 2, ..., 468, \quad m = 1, 2, ..., 52, \]

where \( y_{im} \) is the observation \( i \) for level \( m \) of grouping variable Date, \( b_{0m} \) is the random effect for level \( m \) of the grouping variable Date, and \( \epsilon_{im} \) is the observation error for observation \( i \). The random effect has the prior distribution,

\[ b_{0m} \sim N(0, \sigma_b^2), \]

and the error term has the distribution,

\[ \epsilon_{im} \sim N(0, \sigma^2). \]

\[ y = \text{flu2.FluRate}; \]
\[ X = [\text{ones}(468,1) \text{flu2.WtdILI}]; \]
\[ Z = [\text{ones}(468,1)]; \]
\[ G = \text{flu2.Date}; \]

Fit the linear mixed-effects model.

\[ \text{lme} = \text{LinearMixedModel.fitmatrix}(X,y,Z,G,'FixedEffectPredictors',\{'\text{Intercept}','\text{NationalRate}'\},'
\text{RandomEffectPredictors}',\{\{'\text{Intercept}'\}\},'
\text{RandomEffectGroups}',\{'\text{Date}'\}) \]

\[ \text{lme} = \]
Linear mixed-effects model fit by ML

Model information:
- Number of observations: 468
- Fixed effects coefficients: 2
- Random effects coefficients: 52
- Covariance parameters: 2

Formula:
\[ y \sim \text{Intercept} + \text{NationalRate} + (\text{Intercept} \mid \text{Date}) \]

Model fit statistics:
\[ \begin{array}{cccc}
\text{AIC} & \text{BIC} & \text{LogLikelihood} & \text{Deviance} \\
286.24 & 302.83 & -139.12 & 278.24 \\
\end{array} \]
Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>0.16385</td>
<td>0.057525</td>
<td>2.8484</td>
<td>466</td>
<td>0.0045885</td>
</tr>
<tr>
<td>'NationalRate'</td>
<td>0.7236</td>
<td>0.032219</td>
<td>22.459</td>
<td>466</td>
<td>3.0502e-76</td>
</tr>
</tbody>
</table>

Lower Upper
0.050813 0.27689
0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
<td>0.17146</td>
<td>0.13227</td>
</tr>
</tbody>
</table>

Upper
0.22226

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.30201</td>
<td>0.28217</td>
<td>0.32324</td>
</tr>
</tbody>
</table>

The confidence limits of the standard deviation of the random-effects term $\sigma_b$ do not include zero (0.13227, 0.22226), which indicates that the random-effects term is significant. You can also test the significance of the random-effects using compare method.

The estimated value of an observation is the sum of the fixed-effects values and value of the random effect at the grouping variable level corresponding to that observation. For example, the estimated flu rate for observation 28

$$\hat{y}_{28} = \hat{b}_0 + \hat{\beta}_1 WtdILL_28 + \hat{b}_{10/30/2005}$$

$$= 0.1639 + 0.7236 \times (1.343) + 0.3318$$

$$= 1.46749,$$

where $\hat{b}$ is the BLUP of the random effects for the intercept. You can compute this value in the following way.
beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % compute the random effects statistics STATS
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat = 1.4674

You can simply display the fitted value using the fitted(lme) method.

F = fitted(lme);
F(28)

ans = 1.4674

Randomized-Block Design

Load the sample data.

load(fullfile(matlabroot,'examples','stats','shift.mat'));

The data set shows the deviations from the target quality characteristic measured from the products each of five operators manufacture over three different shifts, morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviations of the quality characteristics from the target value. This is simulated data.

Define the design matrices for a linear mixed-effects model with a random intercept grouped by operator, and shift as the fixed effects. Use the 'effects' contrasts. 'effects' contrasts mean that the coefficients sum to zero. You need to create two contrast coded variables in the fixed-effects design matrix, X1 and X2, where

\[
\text{Shift}_\text{Morning} = \begin{cases} 
0, & \text{if Morning} \\
1, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]

\[
\text{Shift}_\text{Evening} = \begin{cases} 
1, & \text{if Morning} \\
0, & \text{if Evening} \\
-1, & \text{if Night}
\end{cases}
\]
The model corresponds to

\[
\begin{align*}
\text{Morning Shift:} & \quad QCD_{im}^\text{Morning} = \beta_0 + \beta_2 \text{Shift}_\text{Morning}_i + b_{0m} + \epsilon_{im}, \\
\text{Evening Shift:} & \quad QCD_{im}^\text{Evening} = \beta_0 + \beta_1 \text{Shift}_\text{Evening}_i + b_{0m} + \epsilon_{im}, \\
\text{Night Shift:} & \quad QCD_{im}^\text{Night} = \beta_0 - \beta_1 \text{Shift}_\text{Evening}_i - \beta_2 \text{Shift}_\text{Morning}_i + b_{0m} + \epsilon_{im},
\end{align*}
\]

where \( i \) represents the observations, and \( m \) represents the operators, \( i = 1, 2, \ldots, 15 \), and \( m = 1, 2, \ldots, 5 \). The random effects and the observation error have the following distributions:

\[
b_{0m} \sim N(0, \sigma_b^2)
\]

and

\[
\epsilon_{im} \sim N(0, \sigma^2).
\]

\[
S = \text{shift.Shift};
X1 = (S == 'Morning') - (S == 'Night');
X2 = (S == 'Evening') - (S == 'Night');
X = [ones(15,1), X1, X2];
y = \text{shift.QCDDev};
Z = ones(15,1);
G = \text{shift.Operator};

Fit a linear mixed-effects model using the specified design matrices and restricted maximum likelihood method.

\[
lme = \text{LinearMixedModel.fitmatrix}(X, y, Z, G, 'FitMethod', 'REML', 'FixedEffectPredictors',...\{'Intercept', 'S_Morning', 'S_Evening'\}, 'RandomEffectPredictors', {{'Intercept'}},...\{'RandomEffectGroups', {'Operator'}, 'DummyVarCoding', 'effects')
\]

\[
lme = \text{Linear mixed-effects model fit by REML}
\]

Model information:
- Number of observations: 15
- Fixed effects coefficients: 3
- Random effects coefficients: 5
- Covariance parameters: 2
Formula:
\[ y \sim \text{Intercept} + S_{\text{Morning}} + S_{\text{Evening}} + (\text{Intercept} \mid \text{Operator}) \]

Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58.913</td>
<td>61.337</td>
<td>-24.456</td>
<td>48.913</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>3.6525</td>
<td>0.94109</td>
<td>3.8812</td>
<td>12</td>
<td>0.0021832</td>
</tr>
<tr>
<td>'S_Morning'</td>
<td>-0.91973</td>
<td>0.31206</td>
<td>-2.9473</td>
<td>12</td>
<td>0.012206</td>
</tr>
<tr>
<td>'S_Evening'</td>
<td>-0.53293</td>
<td>0.31206</td>
<td>-1.7078</td>
<td>12</td>
<td>0.11339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6021</td>
<td>5.703</td>
</tr>
<tr>
<td>-1.5997</td>
<td>-0.23981</td>
</tr>
<tr>
<td>-1.2129</td>
<td>0.14699</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
<td>2.0457</td>
<td>0.98207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2612</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>0.85462</td>
<td>0.52357</td>
<td>1.395</td>
</tr>
</tbody>
</table>

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

\[ B = \text{randomEffects(lme)} \]

\[ B = 5 \times 1 \]

\[ \begin{pmatrix} 0.5775 \\ 1.1757 \\ -2.1715 \\ 2.3655 \\ -1.9472 \end{pmatrix} \]
The estimated deviation from the target quality characteristics for the third operator working in the evening shift is

\[
\widehat{y}_{\text{Evening,Operator3}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Shift}_{\text{Evening}} + \hat{b}_{03}
\]

\[
= 3.6525 - 0.53293 - 2.1715
\]

\[
= 0.94807.
\]

You can also display this value in the following way.

```matlab
F = fitted(lme);
F(shift.Shift=='Evening' & shift.Operator=='3')
ans = 0.9481
```

### Correlated and Uncorrelated Random-Effects Terms

Load the sample data.

```matlab
load carbig
```

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower and the cylinders, and uncorrelated random-effect for intercept and acceleration grouped by the model year. This model corresponds to

\[
\text{MPG}_{im} = \beta_0 + \beta_1 \text{Acc}_i + \beta_2 \text{HP} + b_{0m} + b_{1m} \text{Acc}_i + e_{im}, \quad m = 1, 2, 3,
\]

with the random-effects terms having the following prior distributions:

\[
b_{0m} \sim N(0, \sigma_0^2),
\]

\[
b_{1m} \sim N(0, \sigma_1^2),
\]

where \( m \) represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

```matlab
X = [ones(406,1) Acceleration Horsepower];
Z = {ones(406,1),Acceleration};
```
G = {Model_Year,Model_Year};
Model_Year = nominal(Model_Year);

Now, fit the model using LinearMixedModel.fitmatrix with the defined design
matrices and grouping variables.

lme = LinearMixedModel.fitmatrix(X,MPG,Z,G,'FixedEffectPredictors',....
{"Intercept","Acceleration","Horsepower"},'RandomEffectPredictors',....
{"Intercept"},{"Acceleration"},'RandomEffectGroups',{"Model_Year","Model_Year"})

lme =
Linear mixed-effects model fit by ML

Model information:
  Number of observations       392
  Fixed effects coefficients    3
  Random effects coefficients   26
  Covariance parameters         3

Formula:
  Linear Mixed Formula with 4 predictors.

Model fit statistics:
  AIC    BIC    LogLikelihood   Deviance
  2194.5 2218.3   -1091.3       2182.5

Fixed effects coefficients (95% CIs):
  Name                  Estimate    SE       tStat    DF  pValue
  'Intercept'           49.839       2.0518   24.291   389 5.6168e-80
  'Acceleration'        -0.58565    0.10846  -5.3995  389 1.1652e-07
  'Horsepower'          -0.16534    0.0071227 -23.213  389 1.9755e-75

      Lower       Upper
  45.806       53.873
 -0.7989       -0.3724
-0.17934       -0.15133

Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)
  Name1    Name2        Type        Estimate   Lower
  'Intercept'    'Intercept'  'std'      8.928e-07  NaN

  Upper

32-2432
The standard deviation of the random effect for the intercept does not seem significant.

Refit the model with potentially correlated random effects for intercept and acceleration. In this case the random-effects terms have the following prior distribution

\[ b_m = (b_{0m}, b_{1m}) \sim N \left( 0, \begin{pmatrix} \sigma_0^2 & \sigma_{0,1} \\ \sigma_{0,1} & \sigma_1^2 \end{pmatrix} \right), \]

where \( m \) represents the model year.

First prepare the random-effects design matrix and grouping variable.

\[
Z = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} \end{bmatrix};
\]

\[
G = \text{Model\_Year};
\]

\[
lme = \text{LinearMixedModel.fitmatrix}(X, \text{MPG}, Z, G, \{'FixedEffectPredictors', \}, \{'RandomEffectPredictors', \}, \{'RandomEffectGroups', \})
\]

\[
lme = \text{Linear mixed-effects model fit by ML}
\]

Model information:
- Number of observations: 392
- Fixed effects coefficients: 3
- Random effects coefficients: 26
- Covariance parameters: 4
Formula:
Linear Mixed Formula with 4 predictors.

Model fit statistics:
<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2193.5</td>
<td>2221.3</td>
<td>-1089.7</td>
<td>2179.5</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>50.133</td>
<td>2.2652</td>
<td>22.132</td>
<td>389</td>
<td>7.7727e-71</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>-0.58327</td>
<td>0.13394</td>
<td>-4.3545</td>
<td>389</td>
<td>1.7075e-05</td>
</tr>
<tr>
<td>'Horsepower'</td>
<td>-0.16954</td>
<td>0.0072609</td>
<td>-23.35</td>
<td>389</td>
<td>5.188e-76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.679</td>
<td>54.586</td>
</tr>
<tr>
<td>-0.84661</td>
<td>-0.31992</td>
</tr>
<tr>
<td>-0.18382</td>
<td>-0.15527</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>'Intercept'</td>
<td>'std'</td>
<td>3.3475</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>'Intercept'</td>
<td>'corr'</td>
<td>-0.87971</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>'Acceleration'</td>
<td>'std'</td>
<td>0.33789</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2862</td>
<td>8.7119</td>
</tr>
<tr>
<td>-0.98501</td>
<td>-0.29676</td>
</tr>
<tr>
<td>0.1825</td>
<td>0.62558</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Res Std'</td>
<td>3.6874</td>
<td>3.4298</td>
<td>3.9644</td>
</tr>
</tbody>
</table>

The confidence intervals for the standard deviations and the correlation between the random effects for intercept and acceleration do not include zeros, hence they seem significant. You can compare these two models using the compare method.
Specify the Covariance Pattern

Load the sample data.

load(fullfile(matlabroot,'examples','stats','weight.mat'));

weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise programs, and their weight loss is recorded over six two-week time periods. This is simulated data.

Define Subject and Program as categorical variables.

Subject = nominal(Subject);
Program = nominal(Program);

Create the design matrices for a linear mixed-effects model, with the initial weight, type of program, and week are the fixed effects.

D = dummyvar(Program);
X = [ones(120,1), InitialWeight, D(:,2:4), Week];
Z = [ones(120,1) Week];
G = Subject;

This model corresponds to

\[ y_{im} = \beta_0 + \beta_1 IW_i + \beta_2 Week_i + \beta_3 I[PB]_i + \beta_4 I[PC]_i + \beta_5 I[PD]_i + b_{0m} + b_{1m} Week2_{im} + b_{2m} Week4_{im} + b_{3m} Week6_{im} + b_{4m} Week8_{im} + b_{5m} Week10_{im} + b_{6m} Week12_{im} + \epsilon_{im}, \]

where \( i = 1, 2, \ldots, 120 \), and \( m = 1, 2, \ldots, 20 \).

\( \beta_j \) are the fixed-effects coefficients, \( j = 0, 1, \ldots, 8 \), and \( b_{0m} \) and \( b_{1m} \) are random effects. \( IW \) stands for initial weight and \( I[.] \) is a dummy variable representing a type of program. For example, \( I[PB] \) is the dummy variable representing program type B. The random effects and observation error have the following prior distributions:

\[ b_{0m} \sim N(0, \sigma_0^2) \]
\[ b_{1m} \sim N(0, \sigma_1^2) \]
\[ \varepsilon_{im} \sim N(0, \sigma^2). \]

Fit the model using `LinearMixedModel.fitmatrix` with the defined design matrices and grouping variables. Assume the repeated observations collected on a subject have common variance along diagonals.

```matlab
lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FixedEffectPredictors',...
{ 'Intercept','InitWeight','PrgB','PrgC','PrgD','Week'},...
'RandomEffectPredictors',{{'Intercept','Week'}},...
'RandomEffectGroups', {'Subject'}, 'CovariancePattern', 'Isotropic')
```

```
lme = Linear mixed-effects model fit by ML

Model information:
 Number of observations 120
 Fixed effects coefficients 6
 Random effects coefficients 40
 Covariance parameters 2

Formula:
 Linear Mixed Formula with 7 predictors.

Model fit statistics:
 AIC BIC LogLikelihood Deviance
 -24.783 -2.483 20.391 -40.783

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>0.4208</td>
<td>0.28169</td>
<td>1.4938</td>
<td>114</td>
<td>0.13799</td>
</tr>
<tr>
<td>'InitWeight'</td>
<td>0.0045552</td>
<td>0.0015338</td>
<td>2.9699</td>
<td>114</td>
<td>0.0036324</td>
</tr>
<tr>
<td>'PrgB'</td>
<td>0.36993</td>
<td>0.12119</td>
<td>3.0525</td>
<td>114</td>
<td>0.0028242</td>
</tr>
<tr>
<td>'PrgC'</td>
<td>-0.034009</td>
<td>0.1209</td>
<td>-0.28129</td>
<td>114</td>
<td>0.77899</td>
</tr>
<tr>
<td>'PrgD'</td>
<td>0.121</td>
<td>0.12111</td>
<td>0.99911</td>
<td>114</td>
<td>0.31986</td>
</tr>
<tr>
<td>'Week'</td>
<td>0.19881</td>
<td>0.037134</td>
<td>5.3538</td>
<td>114</td>
<td>4.5191e-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.13723</td>
<td>0.97883</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0015168</td>
<td>0.0075935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12986</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.27351</td>
<td>0.2055</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.11891</td>
<td>0.36091</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12525</td>
<td>0.27237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Definitions

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the following prior distribution.

\[ b \sim N\left(0, \sigma^2 D(\theta)\right), \]

where \( D \) is a \( q \)-by-\( q \) symmetric and positive semidefinite matrix, parameterized by a variance component vector \( \theta \), \( q \) is the number of variables in the random-effects term, and \( \sigma^2 \) is the observation error variance. Since the covariance matrix of the random effects, \( D \), is symmetric, it has \( q(q+1)/2 \) free parameters. Suppose \( L \) is the lower triangular Cholesky factor of \( D(\theta) \) such that

\[ D(\theta) = L(\theta)L(\theta)^T, \]

then the \( q^*(q+1)/2 \)-by-1 unconstrained parameter vector \( \theta \) is formed from elements in the lower triangular part of \( L \).

For example, if
\[
L = \begin{bmatrix}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{bmatrix},
\]

then

\[
\theta = \begin{bmatrix}
L_{11} \\
L_{21} \\
L_{31} \\
L_{22} \\
L_{32} \\
L_{33}
\end{bmatrix}.
\]

**Log-Cholesky Parameterization**

When the diagonal elements of \( L \) in Cholesky parameterization are constrained to be positive, then the solution for \( L \) is unique. Log-Cholesky parameterization is the same as Cholesky parameterization except that the logarithm of the diagonal elements of \( L \) are used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing \( L_{ii} \geq 0 \),

\[
\theta = \begin{bmatrix}
\log(L_{11}) \\
L_{21} \\
L_{31} \\
\log(L_{22}) \\
L_{32} \\
\log(L_{33})
\end{bmatrix}.
\]

**Tips**

- If your model is not easily described using a formula, you can create matrices to define the fixed and random effects, and fit the model using fitlmematrix.
Alternatives

You can also fit a linear mixed-effects model using `fitlme(tbl,formula)`, where `tbl` is a table or dataset array containing the response `y`, the predictor variables `X`, and the grouping variables, and `formula` is of the form `'y ~ fixed + (random_1|g_1) + ... + (random_R|g_R)'`.

If your model is not easily described using a formula, you can create matrices to define the fixed and random effects, and fit the model using `fitlmematrix(X,y,Z,G).

See Also

LinearMixedModel | fitlme
**fitPosterior**

Fit posterior probabilities for support vector machine (SVM) classifier

**Syntax**

```
ScoreSVMModel = fitPosterior(SVMModel)
[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel)
[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value)
```

**Description**

`ScoreSVMModel = fitPosterior(SVMModel)` returns a trained support vector machine (SVM) classifier `ScoreSVMModel` containing the optimal score-to-posterior-probability transformation function for two-class learning. For more details, see “Algorithms” on page 32-2451.

`[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel)` additionally returns the optimal score-to-posterior-probability transformation function parameters.

`[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value)` uses additional options specified by one or more name-value pair arguments. For example, you can specify the number of folds or the holdout sample proportion.

**Examples**

**Estimate In-Sample Posterior Probabilities of SVM Classifiers**

Load the ionosphere data set.

```
load ionosphere
```

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

```
SVMMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);
```
SVMModel is a ClassificationSVM classifier.

Fit the optimal score-to-posterior-probability transformation function.

```matlab
rng(1); % For reproducibility
ScoreSVMModel = fitPosterior(SVMModel)
```

```matlab
ScoreSVMModel =
 ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: '@(S)sigmoid(S,-9.481802e-01,-1.218745e-01)'
 NumObservations: 351
 Alpha: [90×1 double]
 Bias: -0.1343
 KernelParameters: [1×1 struct]
 Mu: [1×34 double]
 Sigma: [1×34 double]
 BoxConstraints: [351×1 double]
 ConvergenceInfo: [1×1 struct]
 IsSupportVector: [351×1 logical]
 Solver: 'SMO'
```

Because the classes are inseparable, the score transformation function (`ScoreSVMModel.ScoreTransform`) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display the results for the first 10 observations.

```matlab
[label, scores] = resubPredict(SVMModel);
[~, postProbs] = resubPredict(ScoreSVMModel);
table(Y(1:10), label(1:10), scores(1:10,2), postProbs(1:10,2), 'VariableNames',...
 {'TrueLabel', 'PredictedLabel', 'Score', 'PosteriorProbability'})
```

```matlab
table=10×4 table
 TrueLabel PredictedLabel Score PosteriorProbability
 {'g' } {'g' } 1.4861 0.82215
 {'b' } {'b' } -1.0004 0.30436
```

32-2441
Plot Posterior Probability Contours for Multiple Classes

Train a multiclass SVM classifier through the process of one-versus-all (OVA) classification, and then plot probability contours for each class. To implement OVA directly, see fitcecoc.

Load Fisher's iris data set. Use the petal lengths and widths as the predictor data.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
```

Examine a scatter plot of the data.

```matlab
figure
gscatter(X(:,1),X(:,2),Y);
title('{\bf Scatter Diagram of Iris Measurements}');
xlabel('Petal length');
ylabel('Petal width');
legend('Location','Northwest');
axis tight
```
Train three binary SVM classifiers that separate each type of iris from the others. Assume that a radial basis function is an appropriate kernel for each, and allow the algorithm to choose a kernel scale. Define the class order.

```matlab
classNames = {'setosa'; 'virginica'; 'versicolor'};
umClasses = size(classNames,1);
inds = cell(3,1); % Preallocation
SVMMModel = cell(3,1);

rng(1); % For reproducibility
for j = 1:numClasses
 inds{j} = strcmp(Y,classNames{j}); % OVA classification
 SVMMModel{j} = fitcsvm(X,inds{j},'ClassNames', [false true],...
fitcsvm uses a heuristic procedure that involves subsampling to compute the value of the kernel scale.

Fit the optimal score-to-posterior-probability transformation function for each classifier.

```matlab
for j = 1:numClasses
    SVMModel{j} = fitPosterior(SVMModel{j});
end
```

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

Define a grid to plot the posterior probability contours. Estimate the posterior probabilities over the grid for each classifier.

```matlab
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
    min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];

posterior = cell(3,1);
for j = 1:numClasses
    [~,posterior{j}] = predict(SVMModel{j},xGrid);
end
```

For each SVM classifier, plot the posterior probability contour under the scatter plot of the data.

```matlab
figure
h = zeros(numClasses + 1,1); % Preallocation for graphics handles
for j = 1:numClasses
    subplot(2,2,j)
    contourf(x1Grid,x2Grid,reshape(posterior{j}(:,2),size(x1Grid,1),size(x1Grid,2)));
    hold on
    h(1:numClasses) = gscatter(X(:,1),X(:,2),Y);
    title(sprintf('Posteriors for %s Class',classNames{j}));
    xlabel('Petal length');
    ylabel('Petal width');
    legend off
    axis tight
    hold off
end
h(numClasses + 1) = colorbar('Location','EastOutside',...
Fit Optimal Posterior Probability Function Using Holdout Cross-Validation

Estimate the score-to-posterior-probability transformation function after training an SVM classifier. Use cross-validation during the estimation to reduce bias, and compare the run times for 10-fold cross-validation and holdout cross-validation.

Load the ionosphere data set.
load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMMModel is a ClassificationSVM classifier.

Fit the optimal score-to-posterior-probability transformation function. Compare the run times from using 10-fold cross-validation (the default) and a 10% holdout test sample.

rng(1); % For reproducibility
tic;   % Start the stopwatch
SVMMModel_10FCV = fitPosterior(SVMMModel);
toc    % Stop the stopwatch and display the run time

Elapsed time is 1.617765 seconds.

tic;
SVMMModel_HO = fitPosterior(SVMMModel,'Holdout',0.10);
toc

Elapsed time is 0.367623 seconds.

Although both run times are short because the data set is relatively small, SVMMModel_HO fits the score transformation function much faster than SVMMModel_10FCV. You can specify holdout cross-validation (instead of the default 10-fold cross validation) to reduce run time for larger data sets.

Input Arguments

SVMMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: fitPosterior(SVMModel,'KFold',5) uses five folds in a cross-validated model.

**CVPartition — Cross-validation partition**

[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

The crossval name-value pair argument of fitcsvm splits the data into subsets using cvpartition.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition',cvp.

**Holdout — Fraction of data for holdout validation**

scalar value in the range (0,1)

Fraction of the data for holdout validation used to compute the transformation function, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). Holdout validation tests the specified fraction of the data and uses the remaining data for training.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Holdout',0.1

Data Types: double | single

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use when computing the transformation function, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1.
You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold', 8

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross-validation to compute the transformation function, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. Use leave-one-out cross-validation by specifying 'Leaveout', 'on'.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Leaveout', 'on'

## Output Arguments

**ScoreSVMModel — Trained SVM classifier**

*ClassificationSVM classifier*

Trained SVM classifier, returned as a *ClassificationSVM* classifier. The trained classifier contains the estimated score-to-posterior-probability transformation function.

To estimate posterior probabilities for the training set observations, pass `ScoreSVMModel` to `resubPredict`.

To estimate posterior probabilities for new observations, pass the new observations and `ScoreSVMModel` to `predict`.

**ScoreTransform — Optimal score-to-posterior-probability transformation function parameters**

*structure array*

Optimal score-to-posterior-probability transformation function parameters, returned as a structure array.
• If the value of the `Type` field of `ScoreTransform` is `sigmoid`, then `ScoreTransform` also has these fields:
  - **Slope**: The value of $A$ in the sigmoid function on page 32-2461
  - **Intercept**: The value of $B$ in the sigmoid function

• If the value of the `Type` field of `ScoreTransform` is `step`, then `ScoreTransform` also has these fields:
  - **PositiveClassProbability**: The value of $\pi$ in the step function on page 32-2461. This value represents the probability that an observation is in the positive class or the posterior probability that an observation is in the positive class given that its score is in the interval $(\text{LowerBound}, \text{UpperBound})$.
  - **LowerBound**: The value $\max_{n} s_{n}$ in the step function. This value represents the lower bound of the score interval that assigns observations with scores in the interval the posterior probability of being in the positive class $\text{PositiveClassProbability}$. Any observation with a score less than $\text{LowerBound}$ has the posterior probability of being in the positive class equal to 0.
  - **UpperBound**: The value $\min_{n} s_{n}$ in the step function. This value represents the upper bound of the score interval that assigns observations with scores in the interval the posterior probability of being in the positive class $\text{PositiveClassProbability}$. Any observation with a score greater than $\text{UpperBound}$ has the posterior probability of being in the positive class equal to 1.

• If the value of the `Type` field of `ScoreTransform` is `constant`, then `ScoreTransform.PredictedClass` contains the name of the class prediction.

  This result is the same as `SVMModel.ClassNames`. The posterior probability of an observation being in `ScoreTransform.PredictedClass` is always 1.

---

**Definitions**

**Sigmoid Function**

The sigmoid function that maps score $s_{j}$ corresponding to observation $j$ to the positive class posterior probability is
\[
P(s_j) = \frac{1}{1 + \exp(As_j + B)}.
\]

If the value of the Type field of ScoreTransform is sigmoid, then parameters \(A\) and \(B\) correspond to the fields Scale and Intercept of ScoreTransform, respectively.

**Step Function**

The step function that maps score \(s_j\) corresponding to observation \(j\) to the positive class posterior probability is

\[
P(s_j) = \begin{cases} 
0; & s < \max_{y_k=-1} s_k \\
\pi; & \max_{y_k=-1} s_k \leq s_j \leq \min_{y_k=+1} s_k, \\
1; & s_j > \min_{y_k=+1} s_k 
\end{cases}
\]

where:

- \(s_j\) is the score of observation \(j\).
- +1 and -1 denote the positive and negative classes, respectively.
- \(\pi\) is the prior probability that an observation is in the positive class.

If the value of the Type field of ScoreTransform is step, then the quantities \(\max_{y_k=-1} s_k\) and \(\min_{y_k=+1} s_k\) correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

**Constant Function**

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the positive class.
If all observations have posterior probability 0, then they are not expected to come from the positive class.

**Tips**

- This process describes one way to predict positive class posterior probabilities.

1. Train an SVM classifier by passing the data to `fitcsvm`. The result is a trained SVM classifier, such as `SVMModel`, that stores the data. The software sets the score transformation function property (`SVMModel.ScoreTransformation`) to `none`.

2. Pass the trained SVM classifier `SVMModel` to `fitSVMPosterior` or `fitPosterior`. The result, such as, `ScoreSVMModel`, is the same trained SVM classifier as `SVMModel`, except the software sets `ScoreSVMModel.ScoreTransformation` to the optimal score transformation function.

3. Pass the predictor data matrix and the trained SVM classifier containing the optimal score transformation function (`ScoreSVMModel`) to `predict`. The second column in the second output argument of `predict` stores the positive class posterior probabilities corresponding to each row of the predictor data matrix.

   If you skip step 2, then `predict` returns the positive class score rather than the positive class posterior probability.

- After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

**Algorithms**

The software fits the appropriate score-to-posterior-probability transformation function by using the SVM classifier `SVMModel` and by conducting 10-fold cross-validation using the stored predictor data (`SVMModel.X`) and the class labels (`SVMModel.Y`), as outlined in [1]. The transformation function computes the posterior probability that an observation is classified into the positive class (`SVMModel.Classnames(2)`).

- If the classes are inseparable, then the transformation function is the sigmoid function on page 32-2461.
• If the classes are perfectly separable, then the transformation function is the step function on page 32-2461.
• In two-class learning, if one of the two classes has a relative frequency of 0, then the transformation function is the constant function on page 32-2581. The fitPosterior function is not appropriate for one-class learning.
• The software stores the optimal score-to-posterior-probability transformation function in ScoreSVMModel.ScoreTransform.

If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an SVM classifier to fitPosterior or fitSVMPosterior and its ScoreTransform property is not none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

**Alternative Functionality**

You can also fit the posterior probability function by using fitSVMPosterior. This function is similar to fitPosterior, except it is more broad because it accepts a wider range of SVM classifier types.

**References**


**See Also**
ClassificationSVM | fitSVMPosterior | fitcsvm | predict

*Introduced in R2014a*


**fitPosterior**

**Package:** classreg.learning.classif

Fit posterior probabilities for compact support vector machine (SVM) classifier

**Syntax**

ScoreSVMModel = fitPosterior(SVMModel,TBL,Y)
ScoreSVMModel = fitPosterior(SVMModel,X,Y)
[ScoreSVMModel,ScoreTransform] = fitPosterior(__)

**Description**

ScoreSVMModel = fitPosterior(SVMModel,TBL,Y) returns a trained support vector machine (SVM) classifier ScoreSVMModel containing the optimal score-to-posterior-probability transformation function for two-class learning. For more details, see “Algorithms“ on page 32-2463. If you train SVMModel using a table, then you must use a table as input for fitPosterior.

ScoreSVMModel = fitPosterior(SVMModel,X,Y) returns a trained SVM classifier ScoreSVMModel containing the optimal score-to-posterior-probability transformation function for two-class learning. If you train SVMModel using a matrix, then you must use a matrix as input for fitPosterior.

[ScoreSVMModel,ScoreTransform] = fitPosterior(__) additionally returns the optimal score-to-posterior-probability transformation function parameters (ScoreTransform) for any of the input argument combinations in the previous syntaxes.

**Examples**

**Estimate Posterior Probabilities for Data with Inseparable Classes**

Load the ionosphere data set. Reserve 20 random observations of the data, and consider this set new data.
load ionosphere
n = size(X,1);
 rng(1); % For reproducibility

indx = ~ismember([1:n],randsample(n,20)); % Indices for the training data

The classes of this data set are inseparable.

Train an SVM classifier using the training data. Standardize the data and specify that 'g' is the positive class.

SVMMModel = fitcsvm(X(indx,:),Y(indx),'ClassNames',{'b','g'},...
                      'Standardize',true);

SVMMModel is a ClassificationSVM classifier.

Use the new data set to estimate the optimal score-to-posterior-probability transformation function for mapping scores to the posterior probability of an observation being classified as g. For efficiency, make a compact version of SVMMModel, and pass it and the new data to fitPosterior.

CompactSVMMModel = compact(SVMMModel);
[ScoreCSVMMModel,ScoreParameters] = fitPosterior(CompactSVMMModel,...
                  X(~indx,:),Y(~indx));

ScoreTransform = ScoreCSVMMModel.ScoreTransform

ScoreTransform = @(S)sigmoid(S,-1.098922e+00,4.519963e-01)

ScoreParameters

ScoreParameters = struct with fields:
    Type: 'sigmoid'
    Slope: -1.0989
    Intercept: 0.4520

ScoreTransform is the optimal score transformation function. ScoreParameters is a structure array with three fields: the score transformation function name (Type), the sigmoid slope (Slope), and the sigmoid intercept estimates (Intercept).

Alternatively, you can pass SVMMModel and the new data to fitSVMPosterior, but this process is not as efficient.
Estimate the posterior probabilities that the observations in the new data are in class g.

```
[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));
table(Y(~indx),labels,postProbs(:,2),...
 'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})
```

```
ans=20×3 table
 TrueLabel PredictedLabel PosteriorProbability
 ___________ ______________ ____________________
 'g' 'g' 0.78437
 'b' 'b' 0.024588
 'g' 'g' 0.82399
 'b' 'b' 0.0061637
 'b' 'b' 3.6118e-06
 'b' 'b' 0.15688
 'b' 'g' 0.9622
 'b' 'b' 6.1348e-09
 'b' 'b' 0.0019646
 'g' 'g' 0.7251
 'g' 'g' 0.70263
 'b' 'b' 0.075298
 'g' 'g' 0.90691
 'g' 'g' 0.82849
 'b' 'b' 0.051193
 'g' 'g' 0.95331
 ⋮
```

**Estimate Posterior Probabilities for Data with Separable Classes**

Load Fisher's iris data set. Use the petal lengths and widths as the predictor data, and remove the virginica species from the data. Reserve 10 random observations of the data, and consider this set new data.

```
load fisheriris
classKeep = ~strcmp(species,'virginica');
X = meas(classKeep,3:4);
Y = species(classKeep);

rng(1); % For reproducibility
indx1 = 1:numel(species);
```
indx2 = indx1(classKeep);
indx = ~ismember(indx2, randsample(indx2, 10));  % Indices for the training data

gscatter(X(indx,1), X(indx,2), Y(indx));
title('Scatter Diagram of Iris Measurements')
xlabel('Petal length')
ylabel('Petal width')
legend('Setosa', 'Versicolor')

The classes are perfectly separable. Therefore, the score-to-posterior-probability transformation function is a step function.

Train an SVM classifier. Standardize the data and specify that versicolor is the positive class.
SVMModel = fitcsvm(X(indx,:),Y(indx),...
    'ClassNames',{'setosa','versicolor'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Use the new data set to estimate the optimal score-to-posterior-probability transformation function for mapping scores to the posterior probability of an observation being classified as versicolor. For efficiency, make a compact version SVMModel, and pass it and the new data to fitPosterior.

CompactSVMModel = compact(SVMModel);
[ScoreCSVMModel,ScoreParameters] = fitPosterior(CompactSVMModel,...
    X(~indx,:),Y(~indx));

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

ScoreTransform = ScoreCSVMModel.ScoreTransform

ScoreTransform =
    @(S)step(S,-1.338450e+00,2.012495e+00,5.333333e-01)'

fitPosterior displays a warning whenever the classes are separable, and stores the step function in ScoreCSVMModel.ScoreTransform.

Display the score function type and its estimated values.

ScoreParameters

ScoreParameters = struct with fields:
    Type:  'step'
    LowerBound: -1.3385
    UpperBound:  2.0125
    PositiveClassProbability: 0.5333

ScoreParameters is a structure array with four fields:

• Score transformation function type (Type)
• Score corresponding to the negative class boundary (LowerBound)
• Score corresponding to the positive class boundary (UpperBound)
• Positive class probability (PositiveClassProbability)
Alternatively, you can pass SVMModel and the new data to fitSVMPosterior, but this process is not as efficient.

Estimate the posterior probabilities that the observations in the new data are versicolor irisises.

```
[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));
table(Y(~indx),labels,postProbs(:,2),...
 'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})
```

```
ans=10×3 table
 TrueLabel PredictedLabel PosteriorProbability
 ______________ ______________ ____________________
 'setosa' 'setosa' 0
 'versicolor' 'versicolor' 1
 'versicolor' 'versicolor' 1
```

Because the classes are separable, the step function transforms the positive-class score to:

- 0 if the score is less than ScoreParameters.LowerBound
- 1 if the score is greater than ScoreParameters.UpperBound
- ScoreParameters.PositiveClassProbability if the score is in the interval
  
```
[ScoreParameters.LowerBound,ScoreParameters.LowerBound]
```

### Input Arguments

**SVMModel — Trained, compact SVM classifier**

`CompactClassificationSVM` classifier

Trained, compact SVM classifier, specified as a `CompactClassificationSVM` model returned by `compact`. 
**TBL — Sample data**

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. TBL must contain all of the predictors used to train SVMModel. Optionally, TBL can contain an additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train SVMModel, then you do not need to specify Y. If TBL does not include the response variable, then the length of Y must be equal to the number of rows in TBL.

If the sample data used to train SVMModel is a table, then you must specify the input data for fitPosterior as a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the transformation function parameter estimates using standardized data.

Data Types: table

**X — Predictor data**

Predictor data used to estimate the score-to-posterior-probability transformation function, specified as a matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the transformation function parameter estimates using standardized data.

Data Types: double | single

**Y — Class labels**

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels used to estimate the score-to-posterior-probability transformation function, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors.
If \( Y \) is a character array, then each element must correspond to one class label.

The length of \( Y \) and the number of rows in \( X \) must be equal.

Data Types: \texttt{categorical} | \texttt{char} | \texttt{string} | \texttt{logical} | \texttt{single} | \texttt{double} | \texttt{cell}

### Output Arguments

#### ScoreSVMModel — Trained, compact SVM classifier

\texttt{CompactClassificationSVM} classifier

Trained, compact SVM classifier containing the estimated score-to-posterior-probability transformation function, returned as a \texttt{CompactClassificationSVM} classifier.

To estimate posterior probabilities for new observations, pass \texttt{ScoreSVMModel} and the new observations to \texttt{predict}.

#### ScoreTransform — Optimal score-to-posterior-probability transformation function parameters

\texttt{structure array}

Optimal score-to-posterior-probability transformation function parameters, returned as a structure array.

- If the value of the Type field of \texttt{ScoreTransform} is sigmoid, then \texttt{ScoreTransform} also has these fields:
  - \texttt{Slope}: The value of \( A \) in the sigmoid function on page 32-2461
  - \texttt{Intercept}: The value of \( B \) in the sigmoid function
- If the value of the Type field of \texttt{ScoreTransform} is step, then \texttt{ScoreTransform} also has these fields:
  - \texttt{PositiveClassProbability}: The value of \( \pi \) in the step function on page 32-2461. This value represents the probability that an observation is in the positive class or the posterior probability that an observation is in the positive class given that its score is in the interval \((\text{LowerBound},\text{UpperBound})\).
  - \texttt{LowerBound}: The value \( \max \left\{ s_n \right\} \) in the step function. This value represents the lower bound of the score interval that assigns observations with scores in the interval the posterior probability of being in the positive class.
PositiveClassProbability. Any observation with a score less than LowerBound has the posterior probability of being in the positive class equal to 0.

- UpperBound: The value $\min_{n} s_n$ in the step function. This value represents the upper bound of the score interval that assigns observations with scores in the interval the posterior probability of being in the positive class PositiveClassProbability. Any observation with a score greater than UpperBound has the posterior probability of being in the positive class equal to 1.

- If the value of the Type field of ScoreTransform is constant, then ScoreTransform.PredictedClass contains the name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an observation being in ScoreTransform.PredictedClass is always 1.

**Definitions**

**Sigmoid Function**

The sigmoid function that maps score $s_j$ corresponding to observation $j$ to the positive class posterior probability is

$$P(s_j) = \frac{1}{1 + \exp(As_j + B)}.$$  

If the value of the Type field of ScoreTransform is sigmoid, then parameters $A$ and $B$ correspond to the fields Scale and Intercept of ScoreTransform, respectively.

**Step Function**

The step function that maps score $s_j$ corresponding to observation $j$ to the positive class posterior probability is
\[
P(s_j) = \begin{cases} 
0; & s < \max_{y_k = -1} s_k \\
\pi; & \max_{y_k = -1} s_k \leq s_j \leq \min_{y_k = +1} s_k, \\
1; & s_j > \min_{y_k = +1} s_k 
\end{cases}
\]

where:

• \( s_j \) is the score of observation \( j \).
• +1 and -1 denote the positive and negative classes, respectively.
• \( \pi \) is the prior probability that an observation is in the positive class.

If the value of the Type field of ScoreTransform is step, then the quantities \( \max_{y_k = -1} s_k \) and \( \min_{y_k = +1} s_k \) correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

**Constant Function**

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the positive class.

If all observations have posterior probability 0, then they are not expected to come from the positive class.

**Tips**

• This process describes one way to predict positive class posterior probabilities.

1. Train an SVM classifier by passing the data to `fitcsvm`. The result is a trained SVM classifier, such as `SVMModel`, that stores the data. The software sets the score transformation function property (`SVMModel.ScoreTransformation`) to `none`. 

32-2462
2 Pass the trained SVM classifier \texttt{SVMModel} to \texttt{fitSVMPosterior} or \texttt{fitPosterior}. The result, such as, \texttt{ScoreSVMModel}, is the same trained SVM classifier as \texttt{SVMModel}, except the software sets \texttt{ScoreSVMModel.ScoreTransformation} to the optimal score transformation function.

3 Pass the predictor data matrix and the trained SVM classifier containing the optimal score transformation function (\texttt{ScoreSVMModel}) to \texttt{predict}. The second column in the second output argument of \texttt{predict} stores the positive class posterior probabilities corresponding to each row of the predictor data matrix.

If you skip step 2, then \texttt{predict} returns the positive class score rather than the positive class posterior probability.

- After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

\section*{Algorithms}

The software fits the appropriate score-to-posterior-probability transformation function by using the SVM classifier \texttt{SVMModel} and by conducting 10-fold cross-validation using the stored predictor data (\texttt{SVMModel}.\texttt{X}) and the class labels (\texttt{SVMModel}.\texttt{Y}), as outlined in [1]. The transformation function computes the posterior probability that an observation is classified into the positive class (\texttt{SVMModel}.\texttt{Classnames}(2)).

- If the classes are inseparable, then the transformation function is the sigmoid function on page 32-2461.
- If the classes are perfectly separable, then the transformation function is the step function on page 32-2461.
- In two-class learning, if one of the two classes has a relative frequency of 0, then the transformation function is the constant function on page 32-2581. The \texttt{fitPosterior} function is not appropriate for one-class learning.
- The software stores the optimal score-to-posterior-probability transformation function in \texttt{ScoreSVMModel.ScoreTransform}.

If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an SVM classifier to \texttt{fitPosterior} or \texttt{fitSVMPosterior} and its \texttt{ScoreTransform} property is not \texttt{none}, then the software:
• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

**Alternative Functionality**

You can also fit the optimal score-to-posterior-probability function by using `fitSVMPosterior`. This function is similar to `fitPosterior`, except it is more broad because it accepts a wider range of SVM classifier types.

**References**


**See Also**

`CompactClassificationSVM` | `fitSVMPosterior` | `fitcsvm` | `predict`

**Introduced in R2014a**
**fitrensemble**

Fit ensemble of learners for regression

**Syntax**

Mdl = fitrensemble(Tbl,ResponseVarName)
Mdl = fitrensemble(Tbl,formula)
Mdl = fitrensemble(Tbl,Y)
Mdl = fitrensemble(X,Y)
Mdl = fitrensemble(___,'Name',Value)

**Description**

Mdl = fitrensemble(Tbl,ResponseVarName) returns the trained regression ensemble model object (Mdl) that contains the results of boosting 100 regression trees using LSBoost and the predictor and response data in the table Tbl. ResponseVarName is the name of the response variable in Tbl.

Mdl = fitrensemble(Tbl,formula) applies formula to fit the model to the predictor and response data in the table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl used to fit Mdl. For example, 'Y~X1+X2+X3' fits the response variable Tbl.Y as a function of the predictor variables Tbl.X1, Tbl.X2, and Tbl.X3.

Mdl = fitrensemble(Tbl,Y) treats all variables in the table Tbl as predictor variables. Y is the vector of responses that is not in Tbl.

Mdl = fitrensemble(X,Y) uses the predictor data in the matrix X and response data in the vector Y.

Mdl = fitrensemble(__,Name,Value) uses additional options specified by one or more Name,Value pair arguments and any of the input arguments in the previous syntaxes. For example, you can specify the number of learning cycles, the ensemble-aggregation method, or to implement 10-fold cross-validation.
Examples

Train Regression Ensemble

Create a regression ensemble that predicts the fuel economy of a car given the number of cylinders, volume displaced by the cylinders, horsepower, and weight. Then, train another ensemble using fewer predictors. Compare the in-sample predictive accuracies of the ensembles.

Load the carsmall data set. Store the variables to be used in training in a table.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

Train a regression ensemble.

Mdl1 = fitrensemble(Tbl,'MPG');

Mdl1 is a RegressionEnsemble model. Some notable characteristics of Mdl1 are:

• The ensemble-aggregation algorithm is 'LSBoost'.
• Because the ensemble-aggregation method is a boosting algorithm, regression trees that allow a maximum of 10 splits compose the ensemble.
• One hundred trees compose the ensemble.

Because MPG is a variable in the MATLAB® Workspace, you can obtain the same result by entering

Mdl1 = fitrensemble(Tbl,MPG);

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car with a 200-cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

pMPG = predict(Mdl1,[4 200 150 3000])

pMPG = 25.6467

Train a new ensemble using all predictors in Tbl except Displacement.

formula = 'MPG ~ Cylinders + Horsepower + Weight';
Mdl2 = fitrensemble(Tbl,formula);
Compare the resubstitution MSEs between Mdl1 and Mdl2.

```matlab
mse1 = resubLoss(Mdl1)
mse1 = 0.3096
mse2 = resubLoss(Mdl2)
mse2 = 0.5861
```

The in-sample MSE for the ensemble that trains on all predictors is lower.

**Estimate Generalization Error of Boosting Ensemble**

Estimate the generalization error of an ensemble of boosted regression trees.

Load the `carsmall` data set. Choose the number of cylinders, volume displaced by the cylinders, horsepower, and weight as predictors of fuel economy.

```matlab
load carsmall
X = [Cylinders Displacement Horsepower Weight];
```

Cross-validate an ensemble of regression trees using 10-fold cross-validation. Using a decision tree template, specify that each tree should be a split once only.

```matlab
rng(1); % For reproducibility
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
```

Mdl is a `RegressionPartitionedEnsemble` model.

Plot the cumulative, 10-fold cross-validated, mean-squared error (MSE). Display the estimated generalization error of the ensemble.

```matlab
kflc = kfoldLoss(Mdl,'Mode','cumulative');
figure;
plot(kflc);
ylabel('10-fold cross-validated MSE');
xlabel('Learning cycle');
```
estGenError = kflc(end)
estGenError = 25.5184

kfoldLoss returns the generalization error by default. However, plotting the cumulative loss allows you to monitor how the loss changes as weak learners accumulate in the ensemble.

The ensemble achieves an MSE of around 23.5 after accumulating about 30 weak learners.

If you are satisfied with the generalization error of the ensemble, then, to create a predictive model, train the ensemble again using all of the settings except cross-
validation. However, it is good practice to tune hyperparameters such as the maximum number of decision splits per tree and the number of learning cycles.

**Optimize Regression Ensemble**

This example shows how to optimize hyperparameters automatically using `fitrensemble`. The example uses the `carsmall` data.

Load the data.

```
load carsmall
```

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```
rng(1)
Mdl = fitrensemble([Horsepower,Weight],MPG,'OptimizeHyperparameters','auto',
 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
```

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>3.0003</td>
<td>1.039</td>
<td>3.0003</td>
<td>3.0003</td>
<td>LSBoost</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>3.1411</td>
<td>0.5451</td>
<td>3.0003</td>
<td>3.0109</td>
<td>Bag</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>4.8671</td>
<td>0.29049</td>
<td>3.0003</td>
<td>3.0049</td>
<td>LSBoost</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>4.1814</td>
<td>5.9125</td>
<td>3.0003</td>
<td>3.0826</td>
<td>Bag</td>
</tr>
<tr>
<td>5</td>
<td>Best</td>
<td>2.9281</td>
<td>0.66414</td>
<td>2.9281</td>
<td>2.9342</td>
<td>LSBoost</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>6.3689</td>
<td>0.2674</td>
<td>2.9281</td>
<td>2.9328</td>
<td>LSBoost</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
<td>2.931</td>
<td>0.25223</td>
<td>2.9281</td>
<td>2.9286</td>
<td>LSBoost</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>4.1823</td>
<td>3.1803</td>
<td>2.9281</td>
<td>2.9283</td>
<td>LSBoost</td>
</tr>
<tr>
<td>9</td>
<td>Best</td>
<td>2.9093</td>
<td>0.24291</td>
<td>2.9093</td>
<td>2.9094</td>
<td>Bag</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>3.0763</td>
<td>0.26593</td>
<td>2.9093</td>
<td>2.9096</td>
<td>LSBoost</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>2.9689</td>
<td>1.1113</td>
<td>2.9093</td>
<td>2.9328</td>
<td>LSBoost</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>4.1823</td>
<td>0.31728</td>
<td>2.9093</td>
<td>2.9279</td>
<td>LSBoost</td>
</tr>
<tr>
<td>13</td>
<td>Best</td>
<td>2.8562</td>
<td>10.015</td>
<td>2.8562</td>
<td>2.8368</td>
<td>Bag</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>3.0078</td>
<td>0.25195</td>
<td>2.8562</td>
<td>2.8459</td>
<td>Bag</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
<td>2.9582</td>
<td>10.375</td>
<td>2.8562</td>
<td>2.8483</td>
<td>Bag</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>Method</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>3.2591</td>
<td>0.6166</td>
<td>2.8562</td>
<td>2.8559</td>
<td>LSBoost</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>3.0629</td>
<td>1.0847</td>
<td>2.8562</td>
<td>2.8559</td>
<td>Bag</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>3.6183</td>
<td>0.80539</td>
<td>2.8562</td>
<td>2.8559</td>
<td>LSBoost</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>3.6616</td>
<td>5.0798</td>
<td>2.8562</td>
<td>2.856</td>
<td>LSBoost</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>6.0321</td>
<td>4.7379</td>
<td>2.8562</td>
<td>2.8558</td>
<td>LSBoost</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 164.3211 seconds.
Total objective function evaluation time: 116.075

Best observed feasible point:

<table>
<thead>
<tr>
<th>Method</th>
<th>NumLearningCycles</th>
<th>LearnRate</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>487</td>
<td>NaN</td>
<td>13</td>
</tr>
</tbody>
</table>

Observed objective function value = 2.8421
Estimated objective function value = 2.8468
Function evaluation time = 9.8712

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>Method</th>
<th>NumLearningCycles</th>
<th>LearnRate</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>490</td>
<td>NaN</td>
<td>13</td>
</tr>
</tbody>
</table>
Estimated objective function value = 2.8468
Estimated function evaluation time = 9.8819

Mdl =
    classreg.learning.regr.RegressionBaggedEnsemble
        ResponseName: 'Y'
        CategoricalPredictors: []
        ResponseTransform: 'none'
        NumObservations: 94
        HyperparameterOptimizationResults: [1×1 BayesianOptimization]
            NumTrained: 490
            Method: 'Bag'
            LearnerNames: {'Tree'}
            ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
            FitInfo: []
            FitInfoDescription: 'None'
            Regularization: []
            FResample: 1
            Replace: 1
            UseObsForLearner: [94×490 logical]

Properties, Methods
The optimization searched over the methods for regression (Bag and LSBoost), over NumLearningCycles, over the LearnRate for LSBoost, and over the tree learner MinLeafSize. The output is the ensemble regression with the minimum estimated cross-validation loss.

Create Predictive Ensemble Using Cross-Validation

One way to create an ensemble of boosted regression trees that has satisfactory predictive performance is to tune the decision tree-complexity level using cross-validation. While searching for an optimal complexity level, tune the learning rate to minimize the number of learning cycles.
Load the `carsmall` data set. Choose the number of cylinders, volume displaced by the cylinders, horsepower, and weight as predictors of fuel economy.

```matlab
load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);
```

To search for the optimal tree-complexity level:

1. Cross-validate a set of ensembles. Exponentially increase the tree-complexity level for subsequent ensembles from decision stump (one split) to at most \( n - 1 \) splits. \( n \) is the sample size. Also, vary the learning rate for each ensemble between 0.1 to 1.

2. Estimate the cross-validated mean-squared error (MSE) for each ensemble.

3. For tree-complexity level \( j, j = 1\ldots J \), compare the cumulative, cross-validated MSE of the ensembles by plotting them against number of learning cycles. Plot separate curves for each learning rate on the same figure.

4. Choose the curve that achieves the minimal MSE, and note the corresponding learning cycle and learning rate.

Cross-validate a deep regression tree and a stump. Because the data contain missing values, use surrogate splits. These regression trees serve as benchmarks.

```matlab
rng(1); % For reproducibility
MdlDeep = fitrtree(Tbl,'MPG','CrossVal','on','MergeLeaves','off',... 'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(Tbl,'MPG','MaxNumSplits',1,'CrossVal','on',... 'Surrogate','on');
```

Cross-validate an ensemble of 150 boosted regression trees using 5-fold cross-validation. Using a tree template:

- Vary the maximum number of splits using the values in the sequence \( \{2^0, 2^1, \ldots, 2^m\} \). \( m \) is such that \( 2^m \) is no greater than \( n - 1 \).
- Turn on surrogate splits.

For each variant, adjust the learning rate using each value in the set \( \{0.1, 0.25, 0.5, 1\} \):

```matlab
n = size(Tbl,1);
m = floor(log2(n - 1));
learnRate = [0.1 0.25 0.5 1];
umeLR = numel(learnRate);
maxNumSplits = 2.^((0:m));
```
numMNS = numel(maxNumSplits);
numTrees = 150;
Mdl = cell(numMNS,numLR);
for k = 1:numLR;
    for j = 1:numMNS;
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitrensemble(Tbl,'MPG','NumLearningCycles',numTrees,...
            'Learners',t,'KFold',5,'LearnRate',learnRate(k));
    end;
end;

Estimate the cumulative, cross-validated MSE of each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(learnRate)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases. Plot the curves with respect to learning rate on the same plot, and plot separate plots for varying tree-complexity levels. Choose a subset of tree complexity levels to plot.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
for k = 1:3;
    subplot(2,2,k);
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);
    axis tight;
    hold on;
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-b','LineWidth',2);
    plot(h.XLim,[errorStump errorStump],'-r','LineWidth',2);
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'-k');
    h.YLim = [10 50];
    xlabel 'Number of trees';
    ylabel 'Cross-validated MSE';
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));
    hold off;
end;

hL = legend([cellstr(num2str(learnRate,'Learning Rate = %0.2f'));...
    'Deep Tree';'Stump';'Min. MSE']);
hL.Position(1) = 0.6;
Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE overall.

```matlab
[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);

fprintf('Min. MSE = %0.5f',minErr)
fprintf('Optimal Parameter Values:
Num. Trees = %d',idxNumTrees);
fprintf('
MaxNumSplits = %d
Learning Rate = %0.2f
',maxNumSplits(idxMNS),learnRate(idxLR))
```
Min. MSE = 17.01148
Optimal Parameter Values:
Num. Trees = 38
MaxNumSplits = 4
Learning Rate = 0.10

Create a predictive ensemble based on the optimal hyperparameters and the entire training set.

tFinal = templateTree('MaxNumSplits',maxNumSplits(idxMNS),'Surrogate','on');
MdlFinal = fitrensemble(Tbl,'MPG','NumLearningCycles',idxNumTrees,...
    'Learners',tFinal,'LearnRate',learnRate(idxLR))

MdlFinal =
classreg.learning.regr.RegressionEnsemble
    PredictorNames: {1×4 cell}
    ResponseName: 'MPG'
    CategoricalPredictors: []
    ResponseTransform: 'none'
    NumObservations: 94
    NumTrained: 38
    Method: 'LSBoost'
    LearnerNames: {'Tree'}
    ReasonForTermination: 'Terminated normally after completing the requested number of learning cycles.'
    FitInfo: [38×1 double]
    FitInfoDescription: {2×1 cell}
    Regularization: []

MdlFinal is a RegressionEnsemble. To predict the fuel economy of a car given its number of cylinders, volume displaced by the cylinders, horsepower, and weight, pass the predictor data and MdlFinal to predict.

Input Arguments

Tbl — Sample data
table
Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Tbl can contain one additional column for the response variable. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

- If Tbl contains the response variable and you want to use all remaining variables as predictors, then specify the response variable using ResponseVarName.
- If Tbl contains the response variable, and you want to use a subset of the remaining variables only as predictors, then specify a formula using formula.
- If Tbl does not contain the response variable, then specify the response data using Y. The length of response variable and the number of rows of Tbl must be equal.

**Note** To save memory and execution time, supply X and Y instead of Tbl.

Data Types: table

**ResponseVarName — Response variable name**

name of response variable in Tbl

Response variable name, specified as the name of the response variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl.Y is the response variable, then specify ResponseVarName as 'Y'. Otherwise, fitrensemble treats all columns of Tbl as predictor variables.

Data Types: char | string

**formula — Explanatory model of response and subset of predictor variables**

character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of 'Y~X1+X2+X3'. In this form, Y represents the response variable, and X1, X2, and X3 represent the predictor variables. The variables must be variable names in Tbl (Tbl.Properties.VariableNames).

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in Tbl that do not appear in formula.

Data Types: char | string
X — **Predictor data**  
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the `PredictorNames` name-value pair argument.

Data Types: `single` | `double`

Y — **Response**  
numeric vector

Response, specified as a numeric vector. Each element in Y is the response to the observation in the corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.  

**Note** You cannot use any cross-validation name-value pair argument along with the `'OptimizeHyperparameters'` name-value pair argument. You can modify the cross-validation for `'OptimizeHyperparameters'` only by using the `'HyperparameterOptimizationOptions'` name-value pair argument.

Example: `'NumLearningCycles', 500,'Method','Bag','Learners',templateTree(),'CrossVal','on'` cross-validates an ensemble of 500 bagged regression trees using 10-fold cross-validation.
General Ensemble Options

**Method — Ensemble-aggregation method**

'LSBoost' (default) | 'Bag'

Ensemble-aggregation method, specified as the comma separated pair consisting of 'Method' and 'Bag' or 'LSBoost'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Bag'</td>
<td>Bootstrap aggregating or bagging (for example, random forest)</td>
</tr>
<tr>
<td>'LSBoost'</td>
<td>Least-squares boosting or LSBoost</td>
</tr>
</tbody>
</table>

Example: 'Method','Bag'

**NumLearningCycles — Number of ensemble learning cycles**

100 (default) | positive integer

Number of ensemble learning cycles, specified as a positive integer. At every learning cycle, the software trains one weak learner for every template object in Learners. Consequently, the software trains NumLearningCycles*numel(Learners) learners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.

For more details, see “Tips” on page 32-2493.

Example: 'NumLearningCycles',500

Data Types: single | double

**Learners — Weak learners to use in ensemble**

'tree' (default) | regression tree template object | cell vector of regression tree template objects

Weak learners to use in the ensemble, specified as 'tree', a regression tree template object, or a cell vector of regression tree template objects.

- 'tree' specifies to train an ensemble of regression trees using default regression tree options.
  - For bagging, fitrensemble grows deep trees by default. For a complete list of defaults, see templateTree.
For LSBoost, `fitrensemble` grows shallow trees by default. That is, 'Learners' is `templateTree('MaxNumSplits',10)`.

- A regression tree template object specifies how to grow all trees in the ensemble. You can create a regression tree template using `templateTree`.
- A cell vector of \( m \) regression tree templates specifies to grow \( m \) regression trees per learning cycle (see `NumLearningCycles`). For example, for an ensemble composed of two types of regression trees, supply \( \{t1 \ t2\} \), where \( t1 \) and \( t2 \) are regression tree templates returned by `templateTree`.

`fitrensemble` sets the maximum number of splits for regression tree weak learners to 10 when both of these conditions occur:

- You do not set a value for the 'MaxNumSplits' property of the weak learners.
- You use a boosting algorithm as the ensemble-aggregation method for `fitrensemble`.

For example, if you specify 'Learners', `templateTree()` and 'Method', 'LSBoost', then `fitrensemble` sets the maximum number of splits of the tree weak learners to 10.

Otherwise, `fitrensemble` defers to the regression tree template object to choose any required default values for the 'Learners' name-value pair argument.

For details on the number of learners to train, see `NumLearningCycles` and “Tips” on page 32-2493.

Example: 'Learners', `templateTree('MaxNumSplits',5)`

**NPrint — Printout frequency**

'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive integer or 'off'.

To track the number of weak learners or folds that `fitrensemble` trained so far, specify a positive integer. That is, if you specify the positive integer \( m \):

- Without also specifying any cross-validation option (for example, `CrossVal`), then `fitrensemble` displays a message to the command line every time it completes training \( m \) weak learners.
- And a cross-validation option, then `fitrensemble` displays a message to the command line every time it finishes training \( m \) folds.
If you specify 'off', then fitrensemble does not display a message when it completes training weak learners.

**Tip** When training an ensemble of many weak learners on a large data set, specify a positive integer for NPrint.

Example: 'NPrint',5

Data Types: single | double | char | string

### CategoricalPredictors — Categorical predictors list

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (Tbl), fitrensemble assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), fitrensemble assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

**PredictorNames — Predictor variable names**
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitrensemble uses only the predictor variables in PredictorNames and the response variable in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}
Data Types: string | cell

**ResponseName — Response variable name**
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.
• If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

ResponseTransform — Response transformation

Response transformation, specified as the comma-separated pair consisting of 'ResponseTransform' and either 'none' or a function handle. The default is 'none', which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its function handle. The function handle must accept a vector (the original response values) and return a vector of the same size (the transformed response values).

Example: Suppose you create a function handle that applies an exponential transformation to an input vector by using myfunction = @(y)exp(y). Then, you can specify the response transformation as 'ResponseTransform',myfunction.

Data Types: char | string | function_handle

Cross-Validation Options

CrossVal — Cross-validation flag

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition, Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval or crossval.

Example: 'Crossval','on'

CVPartition — Cross-validation partition

[] (default) | cvpartition partition object
Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

**Holdout — Fraction of data for holdout validation**

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | 0.1

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k - 1 sets.
3 Store the k compact, trained models in the cells of a k-by-1 cell vector in the Trained property of the cross-validated model.
To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \( n \) observations (where \( n \) is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other \( n-1 \) observations.
2. Store the \( n \) compact, trained models in the cells of an \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

**Other Regression Options**

**Weights — Observation weights**

numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or name of a variable in Tbl. The software weighs the observations in each row of \( X \) or \( Tbl \) with the corresponding value in Weights. The size of Weights must equal the number of rows of \( X \) or \( Tbl \).

If you specify the input data as a table \( Tbl \), then Weights can be the name of a variable in \( Tbl \) that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if the weights vector \( W \) is stored as \( Tbl.W \), then specify it as 'W'. Otherwise, the software treats all columns of \( Tbl \), including \( W \), as predictors or the response when training the model.

The software normalizes Weights to sum up to the value of the prior probability in the respective class.
By default, `Weights` is `ones(n,1)`, where `n` is the number of observations in `X` or `Tbl`.

Data Types: `double` | `single` | `char` | `string`

**Sampling Options**

**FResample — Fraction of training set to resample**

1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as the comma-separated pair consisting of `'FResample'` and a positive scalar in (0,1].

To use `'FResample'`, specify `'bag'` for `Method` or set `Resample` to `'on'`.

Example: `'FResample',0.75`

Data Types: `single` | `double`

**Replace — Flag indicating to sample with replacement**

'off' (default) | 'on'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of `'Replace'` and 'off' or 'on'.

- For 'on', the software samples the training observations with replacement.
- For 'off', the software samples the training observations without replacement. If you set `Resample` to 'on', then the software samples training observations assuming uniform weights. If you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set `Method` to 'bag' or set `Resample` to 'on', `Replace` has no effect.

Example: `'Replace','off'`

**Resample — Flag indicating to resample**

'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and 'off' or 'on'.

- If `Method` is any boosting method, then:
  - 'Resample','on' specifies to sample training observations using updated weights as the multinomial sampling probabilities.
• 'Resample','off' specifies to reweight observations at every learning iteration. This setting is the default.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the training observations (see FResample) with or without replacement (see Replace).

**LSBoost Method Options**

**LearnRate — Learning rate for shrinkage**

1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1

Data Types: single | double

**Hyperparameter Optimization**

**OptimizeHyperparameters — Parameters to optimize**

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Method','NumLearningCycles','LearnRate'} along with the default parameters for the specified Learners:
  • Learners = 'tree' (default) — {'MinLeafSize'}

**Note** For hyperparameter optimization, Learners must be a single argument, not a string array or cell array.

• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names
- Vector of `optimizableVariable` objects, typically the output of `hyperparameters`

The optimization attempts to minimize the cross-validation loss (error) for `fitrensemble` by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the `HyperparameterOptimizationOptions` name-value pair.

**Note** 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for `fitrensemble` are:

- **Method** — Eligible methods are 'Bag' or 'LSBoost'.
- **NumLearningCycles** — `fitrensemble` searches among positive integers, by default log-scaled with range [10,500].
- **LearnRate** — `fitrensemble` searches among positive reals, by default log-scaled with range [1e-3,1].
- **MinLeafSize** — `fitrensemble` searches among integers log-scaled in the range [1,max(2,floor(NumObservations/2))].
- **MaxNumSplits** — `fitrensemble` searches among integers log-scaled in the range [1,max(2,NumObservations-1)].
- **NumVariablesToSample** — `fitrensemble` searches among integers in the range [1,max(2,NumPredictors)].

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
load carsmall
params = hyperparameters('fitrensemble',[Horsepower,Weight],MPG,'Tree');
params(4).Range = [1,20];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is log(1 + cross-validation loss) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the
plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize Regression Ensemble” on page 32-2469.

Example: `'auto'`

**HyperparameterOptimizationOptions — Options for optimization**
structure

Options for optimization, specified as the comma-separated pair consisting of `'HyperparameterOptimizationOptions'` and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| `Optimizer`   | • `'bayesopt'` — Use Bayesian optimization. Internally, this setting calls `bayesopt`.  
• `'gridsearch'` — Use grid search with `NumGridDivisions` values per dimension.  
• `'randomsearch'` — Search at random among `MaxObjectiveEvaluations` points.  
'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command `sortrows(Mdl.HyperparameterOptimizationResults)` | `'bayesopt'` |
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquisitionFunctionName</td>
<td>• 'expected-improvement-per-second-plus'</td>
<td>'expected-improvement-per-second-plus'</td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-plus'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'expected-improvement-per-second'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'lower-confidence-bound'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'probability-of-improvement'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.</td>
<td></td>
</tr>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

**Output Arguments**

Mdl — Trained regression ensemble model
RegressionBaggedEnsemble model object | RegressionEnsemble model object | RegressionPartitionedEnsemble cross-validated model object

Trained ensemble model, returned as one of the model objects in this table.

<table>
<thead>
<tr>
<th>Model Object</th>
<th>Specify Any Cross-Validation Options?</th>
<th>Method Setting</th>
<th>Resample Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegressionBaggedEnsemble</td>
<td>No</td>
<td>'Bag'</td>
<td>'on'</td>
</tr>
</tbody>
</table>
The name-value pair arguments that control cross-validation are `CrossVal`, `Holdout`, `KFold`, `Leaveout`, and `CVPartition`.

To reference properties of `Mdl`, use dot notation. For example, to access or display the cell vector of weak learner model objects for an ensemble that has not been cross-validated, enter `Mdl.Trained` at the command line.

### Tips

- `NumLearningCycles` can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive power requires from a few hundred to a few thousand weak learners. However, you do not have to train an ensemble for that many cycles at once. You can start by growing a few dozen learners, inspect the ensemble performance and then, if necessary, train more weak learners using `resume`.

- Ensemble performance depends on the ensemble setting and the setting of the weak learners. That is, if you specify weak learners with default parameters, then the ensemble can perform poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak learners using templates, and to choose values that minimize generalization error.

- If you specify to resample using `Resample`, then it is good practice to resample to entire data set. That is, use the default setting of 1 for `FResample`.

- After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

### Algorithms

- For details of ensemble-aggregation algorithms, see “Ensemble Algorithms” on page 18-50.
• If you specify 'Method','LSBoost', then the software grows shallow decision trees by default. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and MinParentSize name-value pair arguments using templateTree.

• For dual-core systems and above, fitrensemble parallelizes training using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://software.intel.com/en-us/intel-tbb.

References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.
See Also
RegressionBaggedEnsemble | RegressionEnsemble | RegressionPartitionedEnsemble | predict | templateTree

Topics
“Supervised Learning Workflow and Algorithms” on page 18-2
“Framework for Ensemble Learning” on page 18-40

Introduced in R2016b
Fit a support vector machine regression model

`fitrsvm` trains or cross-validates a support vector machine (SVM) regression model on a low-through moderate-dimensional predictor data set. `fitrsvm` supports mapping the predictor data using kernel functions, and supports SMO, ISDA, or $L_1$ soft-margin minimization via quadratic programming for objective-function minimization.

To train a linear SVM regression model on a high-dimensional data set, that is, data sets that include many predictor variables, use `fitrlinear` instead.

To train an SVM model for binary classification, see `fitcsvm` for low-through moderate-dimensional predictor data sets, or `fitclinear` for high-dimensional data sets.

### Syntax

```plaintext
Mdl = fitrsvm(Tbl,ResponseVarName)
Mdl = fitrsvm(Tbl,formula)
Mdl = fitrsvm(Tbl,Y)
Mdl = fitrsvm(X,Y)
Mdl = fitrsvm(___,Name,Value)
```

### Description

`Mdl = fitrsvm(Tbl,ResponseVarName)` returns a full, trained support vector machine (SVM) regression model `Mdl` trained using the predictors values in the table `Tbl` and the response values in `Tbl.ResponseVarName`.

`Mdl = fitrsvm(Tbl,formula)` returns a full SVM regression model trained using the predictors values in the table `Tbl`. `formula` is an explanatory model of the response and a subset of predictor variables in `Tbl` used to fit `Mdl`.

`Mdl = fitrsvm(Tbl,Y)` returns a full, trained SVM regression model trained using the predictors values in the table `Tbl` and the response values in the vector `Y`. 
Mdl = fitrsvm(X,Y) returns a full, trained SVM regression model trained using the predictors values in the matrix X and the response values in the vector Y.

Mdl = fitrsvm(___,Name,Value) returns an SVM regression model with additional options specified by one or more name-value pair arguments, using any of the previous syntaxes. For example, you can specify the kernel function or train a cross-validated model.

**Examples**

**Train Linear Support Vector Machine Regression Model**

Train a support vector machine (SVM) regression model using sample data stored in matrices.

Load the carsmall data set.

```matlab
load carsmall
rng 'default' % For reproducibility
```

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

```matlab
X = [Horsepower,Weight];
Y = MPG;
```

Train a default SVM regression model.

```matlab
Mdl = fitrsvm(X,Y)
```

```
Mdl = RegressionSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 Alpha: [76x1 double]
 Bias: 43.1920
 KernelParameters: [1x1 struct]
 NumObservations: 93
 BoxConstraints: [93x1 double]
 ConvergenceInfo: [1x1 struct]
```
IsSupportVector: [93x1 logical]
Solver: 'SMO'

Properties, Methods

Mdl is a trained RegressionSVM model.

Check the model for convergence.
Mdl.ConvergenceInfo.Converged
ans = logical
0

0 indicates that the model did not converge.

Retrain the model using standardized data.
MdlStd = fitrsvm(X,Y,'Standardize',true)
MdlStd =
    RegressionSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ResponseTransform: 'none'
    Alpha: [77x1 double]
    Bias: 22.9131
    KernelParameters: [1x1 struct]
    Mu: [109.3441 2.9625e+03]
    Sigma: [45.3545 805.9668]
    NumObservations: 93
    BoxConstraints: [93x1 double]
    ConvergenceInfo: [1x1 struct]
    IsSupportVector: [93x1 logical]
    Solver: 'SMO'

Properties, Methods

Check the model for convergence.
MdlStd.ConvergenceInfo.Converged
ans = logical
  1

1 indicates that the model did converge.

Compute the resubstitution (in-sample) mean-squared error for the new model.

\[ l_{\text{Std}} = \text{resubLoss}(Mdl_{\text{Std}}) \]

\[ l_{\text{Std}} = 17.0256 \]

---

**Train Support Vector Machine Regression Model**

Train a support vector machine regression model using the abalone data from the UCI Machine Learning Repository.

Download the data and save it in your current folder with the name 'abalone.csv'.

```
websave('abalone.csv',url);
```

Read the data into a table. Specify the variable names.

```
varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';...
 'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'};
Tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
Tbl.Properties.VariableNames = varnames;
```

The sample data contains 4177 observations. All the predictor variables are continuous except for Sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings (stored in Rings) on the abalone and determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale. Standardize the data.

```
rng default % For reproducibility
Mdl = fitrsvm(Tbl,'Rings','KernelFunction','gaussian','KernelScale','auto',...
 'Standardize',true)
```

\[ Mdl = \]
The Command Window shows that Mdl is a trained RegressionSVM model and displays a property list.

Display the properties of Mdl using dot notation. For example, check to confirm whether the model converged and how many iterations it completed.

```matlab
conv = Mdl.ConvergenceInfo.Converged
iter = Mdl.NumIterations
```

```matlab
conv =
 logical
 1

iter =
 2759
```

The returned results indicate that the model converged after 2759 iterations.
Cross-Validate SVM Regression Model

Load the carsmall data set.

```matlab
load carsmall
rng 'default' % For reproducibility
```

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

```matlab
X = [Horsepower Weight];
Y = MPG;
```

Cross-validate two SVM regression models using 5-fold cross-validation. For both models, specify to standardize the predictors. For one of the models, specify to train using the default linear kernel, and the Gaussian kernel for the other model.

```matlab
MdlLin = fitrsvm(X,Y,'Standardize',true,'KFold',5)
```

```matlab
MdlLin =
 classreg.learning.partition.RegressionPartitionedSVM
 CrossValidatedModel: 'SVM'
 PredictorNames: {'x1' 'x2'}
 ResponseName: 'Y'
 NumObservations: 94
 KFold: 5
 Partition: [1x1 cvpartition]
 ResponseTransform: 'none'
```

Properties, Methods

```matlab
MdlGau = fitrsvm(X,Y,'Standardize',true,'KFold',5,'KernelFunction','gaussian')
```

```matlab
MdlGau =
 classreg.learning.partition.RegressionPartitionedSVM
 CrossValidatedModel: 'SVM'
 PredictorNames: {'x1' 'x2'}
 ResponseName: 'Y'
 NumObservations: 94
 KFold: 5
 Partition: [1x1 cvpartition]
 ResponseTransform: 'none'
```
Properties, Methods

MdlLin.Trained
ans = 5x1 cell array
   {1x1 classreg.learning.regr.CompactRegressionSVM}
   {1x1 classreg.learning.regr.CompactRegressionSVM}
   {1x1 classreg.learning.regr.CompactRegressionSVM}
   {1x1 classreg.learning.regr.CompactRegressionSVM}
   {1x1 classreg.learning.regr.CompactRegressionSVM}

MdlLin and MdlGau are RegressionPartitionedSVM cross-validated models. The Trained property of each model is a 5-by-1 cell array of CompactRegressionSVM models. The models in the cell store the results of training on 4 folds of observations, and leaving one fold of observations out.

Compare the generalization error of the models. In this case, the generalization error is the out-of-sample mean-squared error.

mseLin = kfoldLoss(MdlLin)

mseLin = 17.4417

mseGau = kfoldLoss(MdlGau)

mseGau = 16.7333

The SVM regression model using the Gaussian kernel performs better than the one using the linear kernel.

Create a model suitable for making predictions by passing the entire data set to fitrsvm, and specify all name-value pair arguments that yielded the better-performing model. However, do not specify any cross-validation options.

MdlGau = fitrsvm(X,Y,'Standardize',true,'KernelFunction','gaussian');

To predict the MPG of a set of cars, pass Mdl and a table containing the horsepower and weight measurements of the cars to predict.
Optimize SVM Regression

This example shows how to optimize hyperparameters automatically using \texttt{fitrsvm}. The example uses the \texttt{carsmall} data.

Load the \texttt{carsmall} data set.

\begin{verbatim}
load carsmall
\end{verbatim}

Specify \texttt{Horsepower} and \texttt{Weight} as the predictor variables (X) and \texttt{MPG} as the response variable (Y).

\begin{verbatim}
X = [Horsepower Weight];
Y = MPG;
\end{verbatim}

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the \texttt{'expected-improvement-plus'} acquisition function.

\begin{verbatim}
rng default
Md1 = fitrsvm(X,Y,'OptimizeHyperparameters','auto',...
  'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','...
  'expected-improvement-plus'))
\end{verbatim}

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
</tr>
<tr>
<td>6.1124</td>
<td>10.779</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
</tr>
<tr>
<td>5</td>
<td>Best</td>
</tr>
<tr>
<td>6</td>
<td>Best</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
</tr>
<tr>
<td>15</td>
<td>Accept</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 70.2663 seconds.
Total objective function evaluation time: 39.8961

Best observed feasible point:

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
<th>Epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>997.3</td>
<td>317.41</td>
<td>3.7696</td>
</tr>
</tbody>
</table>

Observed objective function value = 2.8666
Estimated objective function value = 2.8683
Function evaluation time = 0.50618

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>BoxConstraint</th>
<th>KernelScale</th>
<th>Epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>997.3</td>
<td>317.41</td>
<td>3.7696</td>
</tr>
</tbody>
</table>
Estimated objective function value = 2.8683
Estimated function evaluation time = 0.4589

Mdl = RegressionSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ResponseTransform: 'none'
    Alpha: [35×1 double]
    Bias: 48.8155
    KernelParameters: [1×1 struct]
    NumObservations: 93
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
    BoxConstraints: [93×1 double]
    ConvergenceInfo: [1×1 struct]
    IsSupportVector: [93×1 logical]
    Solver: 'SMO'

Properties, Methods
The optimization searched over BoxConstraint, KernelScale, and Epsilon. The output is the regression with the minimum estimated cross-validation loss.

**Input Arguments**

**Tbl** — Predictor data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl
can contain one additional column for the response variable. Multi-column variables and

cell arrays other than cell arrays of character vectors are not allowed.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl

as predictors, then specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining

variables in Tbl as predictors, then specify a formula using formula.

If Tbl does not contain the response variable, then specify a response variable using Y.
The length of response variable and the number of rows of Tbl must be equal.

If a row of Tbl or an element of Y contains at least one NaN, then fitrsvm removes those

rows and elements from both arguments when training the model.

To specify the names of the predictors in the order of their appearance in Tbl, use the

PredictorNames name-value pair argument.

Data Types: table

ResponseVarName — Response variable name

name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response

variable must be a numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example,

if Tbl stores the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the

software treats all columns of Tbl, including Y, as predictors when training the model.

Data Types: char | string

formula — Explanatory model of response and subset of predictor variables

character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a

classifier in the form of 'Y~X1+X2+X3'. In this form, Y represents

the response variable, and X1, X2, and X3 represent the predictor variables. The variables

must be variable names in Tbl (Tbl.Properties.VariableNames).

To specify a subset of variables in Tbl as predictors for training the model, use a formula.
If you specify a formula, then the software does not use any variables in Tbl that do not
appear in formula.
Data Types: char | string

**Y — Response data**
numeric vector

Response data, specified as an n-by-1 numeric vector. The length of Y and the number of rows of Tbl or X must be equal.

If a row of Tbl or X, or an element of Y, contains at least one NaN, then fitrsvm removes those rows and elements from both arguments when training the model.

To specify the response variable name, use the ResponseName name-value pair argument.

Data Types: single | double

**X — Predictor data**
numeric matrix

Predictor data to which the SVM regression model is fit, specified as an n-by-p numeric matrix. n is the number of observations and p is the number of predictor variables.

The length of Y and the number of rows of X must be equal.

If a row of X or an element of Y contains at least one NaN, then fitrsvm removes those rows and elements from both arguments.

To specify the names of the predictors in the order of their appearance in X, use the PredictorNames name-value pair argument.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Note** You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-
validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example:
'KernelFunction','gaussian','Standardize',true,'CrossVal','on' trains a 10-fold cross-validated SVM regression model using a Gaussian kernel and standardized training data.

**Support Vector Machine Options**

**BoxConstraint — Box constraint**

positive scalar value

Box constraint for the alpha coefficients, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar value.

The absolute value of the Alpha coefficients cannot exceed the value of BoxConstraint.

The default BoxConstraint value for the 'gaussian' or 'rbf' kernel function is \( \text{iqr}(Y)/1.349 \), where \( \text{iqr}(Y) \) is the interquartile range of response variable \( Y \). For all other kernels, the default BoxConstraint value is 1.

Example: BoxConstraint,10

Data Types: single | double

**KernelFunction — Kernel function**

'linear' (default) | 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the Gram matrix on page 32-2000, specified as the comma-separated pair consisting of 'KernelFunction' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'gaussian' or 'rbf'</td>
<td>Gaussian or Radial Basis Function (RBF) kernel</td>
<td>( G(x_j,x_k) = \exp\left(-|x_j-x_k|^2\right) )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear kernel</td>
<td>( G(x_j,x_k) = x_j'x_k )</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Formula</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>'polynomial'</td>
<td>Polynomial kernel. Use 'PolynomialOrder', p to specify a polynomial kernel of order p.</td>
<td>$G(x_j,x_k) = (1 + x_j'x_k)^q$</td>
</tr>
</tbody>
</table>

You can set your own kernel function, for example, kernel, by setting 'KernelFunction', 'kernel'. kernel must have the following form:

```matlab
function G = kernel(U,V)
```

where:

- U is an $m$-by-$p$ matrix.
- V is an $n$-by-$p$ matrix.
- G is an $m$-by-$n$ Gram matrix of the rows of U and V.

And kernel.m must be on the MATLAB path.

It is good practice to avoid using generic names for kernel functions. For example, call a sigmoid kernel function 'mysigmoid' rather than 'sigmoid'.

Example: 'KernelFunction', 'gaussian'

Data Types: char | string

**KernelScale — Kernel scale parameter**

1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. The software divides all elements of the predictor matrix X by the value of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram matrix.

- If you specify 'auto', then the software selects an appropriate scale factor using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed using rng before training.
- If you specify KernelScale and your own kernel function, for example, 'KernelFunction', 'kernel', then the software throws an error. You must apply scaling within kernel.
Example: 'KernelScale','auto'
Data Types: double | single | char | string

**PolynomialOrder — Polynomial kernel function order**
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of 'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software throws an error.

Example: 'PolynomialOrder',2
Data Types: double | single

**KernelOffset — Kernel offset parameter**
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

- 0 if the solver is SMO (that is, you set 'Solver','SMO')
- 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0
Data Types: double | single

**Epsilon — Half the width of epsilon-insensitive band**
iqr(Y)/13.49 (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of 'Epsilon' and a nonnegative scalar value.

The default Epsilon value is iqr(Y)/13.49, which is an estimate of a tenth of the standard deviation using the interquartile range of the response variable Y. If iqr(Y) is equal to zero, then the default Epsilon value is 0.1.

Example: 'Epsilon',0.3
Data Types: single | double

**Standardize** — Flag to standardize predictor data  
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If you set 'Standardize',true:

- The software centers and scales each column of the predictor data ($X$) by the weighted column mean and standard deviation, respectively (for details on weighted standardizing, see “Algorithms” on page 32-2005). MATLAB does not standardize the data contained in the dummy variable columns generated for categorical predictors.
- The software trains the model using the standardized predictor matrix, but stores the unstandardized data in the model property $X$.

Example: 'Standardize',true

Data Types: logical

**Solver** — Optimization routine

'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ISDA'</td>
<td>Iterative Single Data Algorithm (see [30])</td>
</tr>
<tr>
<td>'L1QP'</td>
<td>Uses quadprog to implement $L1$ soft-margin minimization by quadratic</td>
</tr>
<tr>
<td></td>
<td>programming. This option requires an Optimization Toolbox license. For more</td>
</tr>
<tr>
<td></td>
<td>details, see “Quadratic Programming Definition” (Optimization Toolbox).</td>
</tr>
<tr>
<td>'SMO'</td>
<td>Sequential Minimal Optimization (see [17])</td>
</tr>
</tbody>
</table>

The defaults are:

- 'ISDA' if you set 'OutlierFraction' to a positive value
• 'SMO' otherwise

Example: 'Solver','ISDA'

**Alpha — Initial estimates of alpha coefficients**

numeric vector

Initial estimates of alpha coefficients, specified as the comma-separated pair consisting of 'Alpha' and a numeric vector. The length of Alpha must be equal to the number of rows of X.

- Each element of Alpha corresponds to an observation in X.
- Alpha cannot contain any NaNs.
- If you specify Alpha and any one of the cross-validation name-value pair arguments ('CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'), then the software returns an error.

If Y contains any missing values, then remove all rows of Y, X, and Alpha that correspond to the missing values. That is, enter:

```matlab
idx = ~isnan(Y);
Y = Y(idx);
X = X(idx,:);
alpha = alpha(idx);
```

Then, pass Y, X, and alpha as the response, predictors, and initial alpha estimates, respectively.

The default is `zeros(size(Y,1))`.

Example: 'Alpha', 0.1*ones(size(X,1),1)

Data Types: `single` | `double`

**CacheSize — Cache size**

1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n Gram matrix on page 32-2000.
If `CacheSize` is a positive scalar, then the software reserves `CacheSize` megabytes of memory for training the model.

Example: 'CacheSize','maximal'

Data Types: double | single | char | string

**ClipAlphas — Flag to clip alpha coefficients**

true (default) | false

Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas' and either true or false.

Suppose that the alpha coefficient for observation \( j \) is \( \alpha_j \) and the box constraint of observation \( j \) is \( C_j, j = 1,...,n \), where \( n \) is the training sample size.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>At each iteration, if ( \alpha_j ) is near 0 or near ( C_j ), then MATLAB sets ( \alpha_j ) to 0 or to ( C_j ), respectively.</td>
</tr>
<tr>
<td>false</td>
<td>MATLAB does not change the alpha coefficients during optimization.</td>
</tr>
</tbody>
</table>

MATLAB stores the final values of \( \alpha \) in the `Alpha` property of the trained SVM model object.

`ClipAlphas` can affect SMO and ISDA convergence.

Example: 'ClipAlphas',false

Data Types: logical

**NumPrint — Number of iterations between optimization diagnostic message output**

1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-separated pair consisting of 'NumPrint' and a nonnegative integer.

If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization diagnostic messages from SMO and ISDA every `numprint` iterations in the Command Window.

Example: 'NumPrint',500
**OutlierFraction** — Expected proportion of outliers in training data  
0 (default) | numeric scalar in the interval [0,1)

Expected proportion of outliers in training data, specified as the comma-separated pair consisting of 'OutlierFraction' and a numeric scalar in the interval [0,1). `fitrsvm` removes observations with large gradients, ensuring that `fitrsvm` removes the fraction of observations specified by `OutlierFraction` by the time convergence is reached. This name-value pair is only valid when 'Solver' is 'ISDA'.

Example: 'OutlierFraction',0.1

Data Types: single | double

**RemoveDuplicates** — Flag to replace duplicate observations with single observations  
false (default) | true

Flag to replace duplicate observations with single observations in the training data, specified as the comma-separated pair consisting of 'RemoveDuplicates' and true or false.

If `RemoveDuplicates` is true, then `fitrsvm` replaces duplicate observations in the training data with a single observation of the same value. The weight of the single observation is equal to the sum of the weights of the corresponding removed duplicates (see `Weights`).

**Tip** If your data set contains many duplicate observations, then specifying 'RemoveDuplicates',true can decrease convergence time considerably.

Data Types: logical

**Verbose** — Verbosity level  
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The value of `Verbose` controls the amount of optimization information that the software displays in the Command Window and saves the information as a structure to `Mdl.ConvergenceInfo.History`.

This table summarizes the available verbosity level options.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display or save convergence information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages and saves convergence criteria every <code>numprint</code> iterations, where <code>numprint</code> is the value of the name-value pair argument 'NumPrint'.</td>
</tr>
<tr>
<td>2</td>
<td>The software displays diagnostic messages and saves convergence criteria at every iteration.</td>
</tr>
</tbody>
</table>

Example: 'Verbose', 1

Data Types: double | single

**Other Regression Options**

**CategoricalPredictors — Categorical predictors list**

vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (Tbl), fitrsvm assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of
character vectors. If the predictor data is a matrix (X), fitrsvm assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the 'CategoricalPredictors' name-value pair argument.

Example: 'CategoricalPredictors','all'

Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitrsvm uses only the predictor variables in PredictorNames and the response variable in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

fitrsvm
Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'

Data Types: char | string

**ResponseTransform — Response transformation**

'default' | function handle

Response transformation, specified as the comma-separated pair consisting of 'ResponseTransform' and either 'default' or a function handle. The default is 'none', which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its function handle. The function handle must accept a vector (the original response values) and return a vector of the same size (the transformed response values).

Example: Suppose you create a function handle that applies an exponential transformation to an input vector by using myfunction = @(y)exp(y). Then, you can specify the response transformation as 'ResponseTransform',myfunction.

Data Types: char | string | function_handle

**Weights — Observation weights**

one(size(X,1),1) (default) | vector of numeric values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of numeric values. The size of Weights must equal the number of rows in X. fitrsvm normalizes the values of Weights to sum to 1.

Data Types: single | double

**Cross-Validation Options**

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.
To override this cross-validation setting, use one of these name-value pair arguments: \texttt{CVPartition}, \texttt{Holdout}, \texttt{KFold}, or \texttt{Leaveout}. To create a cross-validated model, you can use one cross-validation name-value pair argument at a time only.

Alternatively, you can cross-validate the model later using the \texttt{crossval} method.

Example: \texttt{'CrossVal','on'}

\textbf{CVPartition — Cross-validation partition}

\[[\text{default}] | \texttt{cvpartition} \text{ partition object}\]

Cross-validation partition, specified as the comma-separated pair consisting of \texttt{CVPartition} and a \texttt{cvpartition} partition object as created by \texttt{cvpartition}. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: \texttt{CVPartition}, \texttt{Holdout}, \texttt{KFold}, or \texttt{Leaveout}.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using \texttt{cvp = cvpartition(500,'KFold',5)}. Then, you can specify the cross-validated model by using \texttt{'CVPartition',cvp}.

\textbf{Holdout — Fraction of data for holdout validation}

\texttt{scalar value in the range (0,1)}

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of \texttt{Holdout} and a scalar value in the range (0,1). If you specify \texttt{Holdout}, \texttt{p}, then the software completes these steps:

1. Randomly select and reserve \texttt{p*100\%} of the data as validation data, and train the model using the rest of the data.

2. Store the compact, trained model in the \texttt{Trained} property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: \texttt{CVPartition}, \texttt{Holdout}, \texttt{KFold}, or \texttt{Leaveout}.

Example: \texttt{'Holdout',0.1}

Data Types: \texttt{double} | \texttt{single}

\textbf{KFold — Number of folds}

\texttt{10 (default) | positive integer value greater than 1}
Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.

1. Randomly partition the data into k sets.
2. For each set, reserve the set as validation data, and train the model using the other \( k - 1 \) sets.
3. Store the k compact, trained models in the cells of a \( k \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout', 'on', then, for each of the \( n \) observations (where \( n \) is the number of observations excluding missing observations, specified in the NumObservations property of the model), the software completes these steps:

1. Reserve the observation as validation data, and train the model using the other \( n - 1 \) observations.
2. Store the \( n \) compact, trained models in the cells of an \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout','on'

**Convergence Controls**

**DeltaGradientTolerance — Tolerance for gradient difference**

0 (default) | nonnegative scalar
Tolerance for gradient difference between upper and lower violators obtained by SMO or ISDA, specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

Example: 'DeltaGradientTolerance',1e-4
Data Types: single | double

**GapTolerance — Feasibility gap tolerance**

1e-3 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then fitrsvm does not use this parameter to check convergence.

Example: 'GapTolerance',1e-4
Data Types: single | double

**IterationLimit — Maximal number of numerical optimization iterations**

1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully converges. Mdl.ConvergenceInfo contains convergence information.

Example: 'IterationLimit',1e8
Data Types: double | single

**KKTTolerance — Tolerance for KKT violation**

0 | nonnegative scalar value

Tolerance for Karush-Kuhn-Tucker (KKT) violation, specified as the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar value.

This name-value pair applies only if 'Solver' is 'SMO' or 'ISDA'.

If KKTTolerance is 0, then fitrsvm does not use this parameter to check convergence.

Example: 'KKTTolerance',1e-4
Data Types: single | double
**ShrinkagePeriod** — Number of iterations between reductions of active set

0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.

Example: 'ShrinkagePeriod',1000

Data Types: double | single

**Hyperparameter Optimization**

**OptimizeHyperparameters** — Parameters to optimize

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

- 'none' — Do not optimize.
- 'auto' — Use {'BoxConstraint','KernelScale','Epsilon'}.
- 'all' — Optimize all eligible parameters.
- String array or cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrsvm by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

**Note** 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitrsvm are:

- **BoxConstraint** — fitrsvm searches among positive values, by default log-scaled in the range [1e-3,1e3].
• **KernelScale** — `fitrsvm` searches among positive values, by default log-scaled in the range $[1e^{-3}, 1e3]$.

• **Epsilon** — `fitrsvm` searches among positive values, by default log-scaled in the range $[1e^{-3}, 1e2] \times \text{iqr}(Y)/1.349$.

• **KernelFunction** — `fitrsvm` searches among 'gaussian', 'linear', and 'polynomial'.

• **PolynomialOrder** — `fitrsvm` searches among integers in the range $[2, 4]$.

• **Standardize** — `fitrsvm` searches among 'true' and 'false'.

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example,

```matlab
classf
classify = load carsmall
classif = hyperparameters('fitrsvm',[Horsepower,Weight],MPG);
classif(1).Range = [1e-4,1e6];
classif(2).Range = [1e-3,1e3];
classif(3).Range = [1e-2,1e2];
classif(4).Range = [2,4];
classif(5).Range = [true,false];
```

Pass `params` as the value of `OptimizeHyperparameters`.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is $\log(1 + \text{cross-validation loss})$ for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the `'HyperparameterOptimizationOptions'` name-value pair argument. To control the plots, set the `ShowPlots` field of the `'HyperparameterOptimizationOptions'` name-value pair argument.

For an example, see “Optimize SVM Regression” on page 32-2502.

Example: 'OptimizeHyperparameters','auto'

**HyperparameterOptimizationOptions — Options for optimization**

structure

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| **Optimizer**    | - 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.  
- 'gridsearch' — Use grid search with NumGridDivisions values per dimension.  
- 'randomsearch' — Search at random among MaxObjectiveEvaluations points.  
  
'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | 'bayesopt'            |
| **AcquisitionFunctionName** | - 'expected-improvement-per-second-plus'  
- 'expected-improvement'  
- 'expected-improvement-plus'  
- 'expected-improvement-per-second'  
- 'lower-confidence-bound'  
- 'probability-of-improvement'  
  
For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
| **MaxObjectiveEvaluations** | Maximum number of objective function evaluations.                                                                                                                                                    | 30                    |

32-2524
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
</tbody>
</table>

For details, see the bayesopt Verbose name-value pair argument.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. True usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example: 'HyperparameterOptimizationOptions', struct('MaxObjectiveEvaluations', 60)

Data Types: struct

Output Arguments

**Mdl — Trained SVM regression model**

RegressionSVM model | RegressionPartitionedSVM cross-validated model

Trained SVM regression model, returned as a RegressionSVM model or RegressionPartitionedSVM cross-validated model.
If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or CVPartition, then Mdl is a RegressionPartitionedSVM cross-validated model. Otherwise, Mdl is a RegressionSVM model.

Limitations

fitrsvm supports low- through moderate-dimensional data sets. For high-dimensional data set, use fitrlinear instead.

Tips

- Unless your data set is large, always try to standardize the predictors (see Standardize). Standardization makes predictors insensitive to the scales on which they are measured.
- It is good practice to cross-validate using the KFold name-value pair argument. The cross-validation results determine how well the SVM model generalizes.
- Sparsity in support vectors is a desirable property of an SVM model. To decrease the number of support vectors, set the BoxConstraint name-value pair argument to a large value. This action also increases the training time.
- For optimal training time, set CacheSize as high as the memory limit on your computer allows.
- If you expect many fewer support vectors than observations in the training set, then you can significantly speed up convergence by shrinking the active-set using the name-value pair argument 'ShrinkagePeriod'. It is good practice to use 'ShrinkagePeriod',1000.
- Duplicate observations that are far from the regression line do not affect convergence. However, just a few duplicate observations that occur near the regression line can slow down convergence considerably. To speed up convergence, specify 'RemoveDuplicates',true if:
  - Your data set contains many duplicate observations.
  - You suspect that a few duplicate observations can fall near the regression line.

However, to maintain the original data set during training, fitrsvm must temporarily store separate data sets: the original and one without the duplicate observations. Therefore, if you specify true for data sets containing few duplicates, then fitrsvm consumes close to double the memory of the original data.
- After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

## Algorithms

- For the mathematical formulation of linear and nonlinear SVM regression problems and the solver algorithms, see “Understanding Support Vector Machine Regression” on page 25-2.

- NaN, `<undefined>`, empty character vector (''), empty string (""), and `<missing>` values indicate missing data values. `fitrsvm` removes entire rows of data corresponding to a missing response. When normalizing weights, `fitrsvm` ignores any weight corresponding to an observation with at least one missing predictor. Consequently, observation box constraints might not equal `BoxConstraint`.

- `fitrsvm` removes observations that have zero weight.

- If you set 'Standardize',true and 'Weights', then `fitrsvm` standardizes the predictors using their corresponding weighted means and weighted standard deviations. That is, `fitrsvm` standardizes predictor $j$ ($x_j$) using

$$x_j^* = \frac{x_j - \mu_j^*}{\sigma_j^*},$$

- $$\mu_j^* = \frac{1}{\sum_k w_k} \sum_k w_k x_{jk}.$$  

- $x_{jk}$ is observation $k$ (row) of predictor $j$ (column).

- $$(\sigma_j^*)^2 = \frac{v_1}{v_1^2 - v_2} \sum_k w_k \left(x_{jk} - \mu_j^*\right)^2.$$  

- $v_1 = \sum_j w_j.$

- $v_2 = \sum_j (w_j)^2.$
• If your predictor data contains categorical variables, then the software generally uses full dummy encoding for these variables. The software creates one dummy variable for each level of each categorical variable.

• The PredictorNames property stores one element for each of the original predictor variable names. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then PredictorNames is a 1-by-3 cell array of character vectors containing the original names of the predictor variables.

• The ExpandedPredictorNames property stores one element for each of the predictor variables, including the dummy variables. For example, assume that there are three predictors, one of which is a categorical variable with three levels. Then ExpandedPredictorNames is a 1-by-5 cell array of character vectors containing the names of the predictor variables and the new dummy variables.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the dummy variables.

• The SupportVectors property stores the predictor values for the support vectors, including the dummy variables. For example, assume that there are m support vectors and three predictors, one of which is a categorical variable with three levels. Then SupportVectors is an m-by-5 matrix.

• The X property stores the training data as originally input. It does not include the dummy variables. When the input is a table, X contains only the columns used as predictors.

• For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the software uses ordinal encoding for these variables.

• For a variable having k ordered levels, the software creates k – 1 dummy variables. The jth dummy variable is -1 for levels up to j, and +1 for levels j + 1 through k.

• The names of the dummy variables stored in the ExpandedPredictorNames property indicate the first level with the value +1. The software stores k – 1 additional predictor names for the dummy variables, including the names of levels 2, 3, ..., k.

• All solvers implement $L1$ soft-margin minimization.

• Let $p$ be the proportion of outliers that you expect in the training data. If you set 'OutlierFraction', $p$, then the software implements robust learning. In other words, the software attempts to remove 100$p$% of the observations when the optimization algorithm converges. The removed observations correspond to gradients that are large in magnitude.
References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.
For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

**See Also**
- CompactRegressionSVM
- RegressionPartitionedSVM
- RegressionSVM
- predict

**Topics**
- “Understanding Support Vector Machine Regression” on page 25-2

**Introduced in R2015b**
**fitrtree**

Fit binary regression decision tree

**Syntax**

```matlab
tree = fitrtree(Tbl,ResponseVarName)
```

```matlab
tree = fitrtree(Tbl,formula)
```

```matlab
tree = fitrtree(Tbl,Y)
```

```matlab
tree = fitrtree(X,Y)
```

```matlab
tree = fitrtree(___ , Name, Value)
```

**Description**

`tree = fitrtree(Tbl,ResponseVarName)` returns a regression tree based on the input variables (also known as predictors, features, or attributes) in the table `Tbl` and output (response) contained in `Tbl.ResponseVarName`. `tree` is a binary tree where each branching node is split based on the values of a column of `Tbl`.

`tree = fitrtree(Tbl,formula)` returns a regression tree based on the input variables contained in the table `Tbl`. `formula` is an explanatory model of the response and a subset of predictor variables in `Tbl` used to fit `tree`.

`tree = fitrtree(Tbl,Y)` returns a regression tree based on the input variables contained in the table `Tbl` and output in vector `Y`.

`tree = fitrtree(X,Y)` returns a regression tree based on the input variables `X` and output `Y`. `tree` is a binary tree where each branching node is split based on the values of a column of `X`.

`tree = fitrtree(___ , Name, Value)` fits a tree with additional options specified by one or more `Name,Value` pair arguments. For example, you can specify observation weights or train a cross-validated model.
Examples

Construct a Regression Tree

Load the sample data.

load carsmall;

Construct a regression tree using the sample data.

```
tree = fitrtree([Weight, Cylinders],MPG,...
 'categoricalpredictors',2,'MinParentSize',20,...
 'PredictorNames',{'W','C'});
```

```
tree =
 RegressionTree
 PredictorNames: {'W' 'C'}
 ResponseName: 'Y'
 CategoricalPredictors: 2
 ResponseTransform: 'none'
 NumObservations: 94

Properties, Methods
```

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

```
mileage4K = predict(tree,[4000 4; 4000 6; 4000 8])
mileage4K = 3×1
```

```
 19.2778
 19.2778
 14.3889
```
Control Regression Tree Depth

You can control the depth of trees using the `MaxNumSplits`, `MinLeafSize`, or `MinParentSize` name-value pair parameters. `fitrtree` grows deep decision trees by default. You can grow shallower trees to reduce model complexity or computation time.

Load the `carsmall` data set. Consider `Displacement`, `Horsepower`, and `Weight` as predictors of the response `MPG`.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

The default values of the tree-depth controllers for growing regression trees are:

- `n - 1` for `MaxNumSplits`. `n` is the training sample size.
- `1` for `MinLeafSize`.
- `10` for `MinParentSize`.

These default values tend to grow deep trees for large training sample sizes.

Train a regression tree using the default values for tree-depth control. Cross validate the model using 10-fold cross validation.

```matlab
rng(1); % For reproducibility
MdlDefault = fitrtree(X,MPG,'CrossVal','on');
```

Draw a histogram of the number of imposed splits on the trees. The number of imposed splits is one less than the number of leaves. Also, view one of the trees.

```matlab
numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);
figure;
histogram(mdlDefaultNumSplits)
```
view(MdlDefault.Trained{1},'Mode','graph')
The average number of splits is between 14 and 15.

Suppose that you want a regression tree that is not as complex (deep) as the ones trained using the default number of splits. Train another regression tree, but set the maximum number of splits at 7, which is about half the mean number of splits from the default regression tree. Cross validate the model using 10-fold cross validation.

```matlab
Mdl7 = fitrtree(X,MPG,'MaxNumSplits',7,'CrossVal','on'); view(Mdl7.Trained{1},'Mode','graph')
```
Compare the cross validation MSEs of the models.

\[
\text{mseDefault} = \text{kfoldLoss(MdlDefault)}
\]

mseDefault = 27.7277

\[
\text{mse7} = \text{kfoldLoss(Mdl7)}
\]

mse7 = 28.3833

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

32-2537
Optimize Regression Tree

This example shows how to optimize hyperparameters automatically using `fitrtree`. The example uses the `carsmall` data.

Load the `carsmall` data.

```matlab
load carsmall
```

Use `Weight` and `Horsepower` as predictors for `MPG`. Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the `'expected-improvement-plus'` acquisition function.

```matlab
X = [Weight,Horsepower];
Y = MPG;
rng default
Mdl = fitrtree(X,Y,'OptimizeHyperparameters','auto',
 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',
 'expected-improvement-plus'))
```
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>MinLeafSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>3.2818</td>
<td>0.34021</td>
<td>3.2818</td>
<td>3.2818</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>3.4183</td>
<td>0.13804</td>
<td>3.2818</td>
<td>3.2888</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>3.1491</td>
<td>0.11291</td>
<td>3.1491</td>
<td>3.166</td>
<td>4</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval</td>
<td>Objective</td>
<td>Objective</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>MinLeafSize</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>result</td>
<td>runtime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>3.0398</td>
<td>0.077279</td>
<td>2.9589</td>
<td>2.9589</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>3.3226</td>
<td>0.098659</td>
<td>2.9589</td>
<td>2.9589</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>3.1883</td>
<td>0.094459</td>
<td>2.9589</td>
<td>2.9589</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>Accept</td>
<td>4.1881</td>
<td>0.097287</td>
<td>2.9589</td>
<td>2.9589</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>3.0123</td>
<td>0.107711</td>
<td>2.9589</td>
<td>2.9589</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>3.0932</td>
<td>0.082235</td>
<td>2.9589</td>
<td>2.9589</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>3.078</td>
<td>0.076625</td>
<td>2.9589</td>
<td>2.9589</td>
<td>13</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>3.2818</td>
<td>0.084375</td>
<td>2.9589</td>
<td>2.9589</td>
<td>25</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>3.0992</td>
<td>0.10138</td>
<td>2.9589</td>
<td>2.9589</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>3.4361</td>
<td>0.097611</td>
<td>2.9589</td>
<td>2.9589</td>
<td>34</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 64.533 seconds.
Total objective function evaluation time: 3.1222

Best observed feasible point:
    MinLeafSize

10

32-2541
Observed objective function value = 2.9589
Estimated objective function value = 2.9589
Function evaluation time = 0.08294

Best estimated feasible point (according to models):
    MinLeafSize
    __________
    10

Estimated objective function value = 2.9589
Estimated function evaluation time = 0.098167

Md1 =
    RegressionTree
        ResponseName: 'Y'
        CategoricalPredictors: []
        ResponseTransform: 'none'
        NumObservations: 94
        HyperparameterOptimizationResults: [1x1 BayesianOptimization]

Properties, Methods

Unbiased Predictor Importance Estimates

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.
numCylinders = numel(categories(Cylinders))
numCylinders = 3
numMfg = numel(categories(Mfg))
numMfg = 28
numModelYear = numel(categories(Model_Year))
numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a regression tree using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits.

Mdl = fitrtree(X,'MPG','PredictorSelection','curvature','Surrogate','on');

Estimate predictor importance values by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
In this case, Displacement is the most important predictor, followed by Horsepower.

**Input Arguments**

Tbl — Sample data

`table`

Sample data used to train the model, specified as a table. Each row of `Tbl` corresponds to one observation, and each column corresponds to one predictor variable. Optionally, `Tbl` can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
If `Tbl` contains the response variable, and you want to use all remaining variables in `Tbl` as predictors, then specify the response variable by using `ResponseVarName`.

If `Tbl` contains the response variable, and you want to use only a subset of the remaining variables in `Tbl` as predictors, then specify a formula by using `formula`.

If `Tbl` does not contain the response variable, then specify a response variable by using `Y`. The length of the response variable and the number of rows in `Tbl` must be equal.

Data Types: `table`

**ResponseVarName — Response variable name**
name of variable in `Tbl`

Response variable name, specified as the name of a variable in `Tbl`. The response variable must be a numeric vector.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if `Tbl` stores the response variable `Y` as `Tbl.Y`, then specify it as `'Y'`. Otherwise, the software treats all columns of `Tbl`, including `Y`, as predictors when training the model.

Data Types: `char` | `string`

**formula — Explanatory model of response and subset of predictor variables**
character vector | string scalar

Explanatory model of the response and a subset of the predictor variables, specified as a character vector or string scalar in the form of `'Y~X1+X2+X3'`. In this form, `Y` represents the response variable, and `X1`, `X2`, and `X3` represent the predictor variables. The variables must be variable names in `Tbl` (`Tbl.Properties.VariableNames`).

To specify a subset of variables in `Tbl` as predictors for training the model, use a formula. If you specify a formula, then the software does not use any variables in `Tbl` that do not appear in `formula`.

Data Types: `char` | `string`

**Y — Response data**
numeric column vector

Response data, specified as a numeric column vector with the same number of rows as `X`. Each entry in `Y` is the response to the data in the corresponding row of `X`.  

32-2545
The software considers NaN values in Y to be missing values. fitrtree does not use observations with missing values for Y in the fit.

Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix. Each column of X represents one variable, and each row represents one observation.

fitrtree considers NaN values in X as missing values. fitrtree does not use observations with all missing values for X the fit. fitrtree uses observations with some missing values for X to find splits on variables for which these observations have valid values.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Note You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: 'CrossVal','on','MinParentSize',30 specifies a cross-validated regression tree with a minimum of 30 observations per branch node.

Model Parameters

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the values in this table.
### Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector of positive integers</td>
<td>An entry in the vector is the index value corresponding to the column of the predictor data (X or Tbl) that contains a categorical variable.</td>
</tr>
<tr>
<td>Logical vector</td>
<td>A true entry means that the corresponding column of predictor data (X or Tbl) is a categorical variable.</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Each row of the matrix is the name of a predictor variable. The names must match the entries in PredictorNames. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
</tr>
<tr>
<td>String array or cell array of character vectors</td>
<td>Each element in the array is the name of a predictor variable. The names must match the entries in PredictorNames.</td>
</tr>
<tr>
<td>'all'</td>
<td>All predictors are categorical.</td>
</tr>
</tbody>
</table>

By default, if the predictor data is in a table (Tbl), `fitrtree` assumes that a variable is categorical if it contains logical values, categorical values, a string array, or a cell array of character vectors. If the predictor data is a matrix (X), `fitrtree` assumes all predictors are continuous. To identify any categorical predictors when the data is a matrix, use the `'CategoricalPredictors'` name-value pair argument.

Example: `'CategoricalPredictors','all'`

Data Types: single | double | logical | char | string | cell

#### MergeLeaves — Leaf merge flag

'off' (default) | 'on'

Leaf merge flag, specified as the comma-separated pair consisting of `'MergeLeaves'` and 'on' or 'off'.

If `MergeLeaves` is 'on', then `fitrtree`:

- Merges leaves that originate from the same parent node, and that yields a sum of risk values greater or equal to the risk associated with the parent node
- Estimates the optimal sequence of pruned subtrees, but does not prune the regression tree

Otherwise, `fitrtree` does not merge leaves.

Example: `'MergeLeaves','off'"
**MinParentSize — Minimum number of branch node observations**
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair consisting of 'MinParentSize' and a positive integer value. Each branch node in the tree has at least MinParentSize observations. If you supply both MinParentSize and MinLeafSize, fitrtree uses the setting that gives larger leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).

Example: 'MinParentSize',8

Data Types: single | double

**PredictorNames — Predictor variable names**
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array of unique names or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames contains the names of all predictor variables.

- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, fitrtree uses only the predictor variables in PredictorNames and the response variable in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It is a good practice to specify the predictors for training using either 'PredictorNames' or formula only.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}
Data Types: string | cell

PredictorSelection — Algorithm used to select the best split predictor
'splits' (default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-separated pair consisting of 'PredictorSelection' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allsplits'</td>
<td>Standard CART — Selects the split predictor that maximizes the split-criterion gain over all possible splits of all predictors [1].</td>
</tr>
<tr>
<td>'curvature'</td>
<td>Curvature test on page 32-2560 — Selects the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response [2]. Training speed is similar to standard CART.</td>
</tr>
<tr>
<td>'interaction-curvature'</td>
<td>Interaction test on page 32-2561 — Chooses the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response (that is, conducts curvature tests), and that minimizes the p-value of a chi-square test of independence between each pair of predictors and response [2]. Training speed can be slower than standard CART.</td>
</tr>
</tbody>
</table>

For 'curvature' and 'interaction-curvature', if all tests yield p-values greater than 0.05, then fitrtree stops splitting nodes.

**Tip**

- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [3]. Consider specifying the curvature or interaction test if any of the following are true:
  - If there are predictors that have relatively fewer distinct values than other predictors, for example, if the predictor data set is heterogeneous.
  - If an analysis of predictor importance is your goal. For more on predictor importance estimation, see predictorImportance.
• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such trees are less likely to identify important variables in the presence of many irrelevant predictors than the application of the interaction test. Therefore, to account for predictor interactions and identify importance variables in the presence of many irrelevant variables, specify the interaction test.

• Prediction speed is unaffected by the value of 'PredictorSelection'.

For details on how fitrtree selects split predictors, see “Node Splitting Rules” on page 32-2563.

Example: 'PredictorSelection','curvature'

**Prune — Flag to estimate optimal sequence of pruned subtrees**

'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then fitrtree grows the regression tree and estimates the optimal sequence of pruned subtrees, but does not prune the regression tree. Otherwise, fitrtree grows the regression tree without estimating the optimal sequence of pruned subtrees.

To prune a trained regression tree, pass the regression tree to prune.

Example: 'Prune','off'

**PruneCriterion — Pruning criterion**

'mse' (default)

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and 'mse'.

**QuadraticErrorTolerance — Quadratic error tolerance**

1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of 'QuadraticErrorTolerance' and a positive scalar value. Splitting nodes stops when quadratic error per node drops below QuadraticErrorTolerance*QED, where QED is the quadratic error for the entire data computed before the decision tree is grown.
Example: 'QuadraticErrorTolerance', 1e-4

**ResponseName — Response variable name**

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar.

- If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
- If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName', 'response'

Data Types: char | string

**ResponseTransform — Response transformation**

'none' (default) | function handle

Response transformation, specified as the comma-separated pair consisting of 'ResponseTransform' and either 'none' or a function handle. The default is 'none', which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its function handle. The function handle must accept a vector (the original response values) and return a vector of the same size (the transformed response values).

Example: Suppose you create a function handle that applies an exponential transformation to an input vector by using myfunction = @(y)exp(y). Then, you can specify the response transformation as 'ResponseTransform', myfunction.

Data Types: char | string | function_handle

**SplitCriterion — Split criterion**

'MSE' (default)

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'MSE', meaning mean squared error.

Example: 'SplitCriterion', 'MSE'

**Surrogate — Surrogate decision splits flag**

'off' (default) | 'on' | 'all' | positive integer

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and 'on', 'off', 'all', or a positive integer.
• When 'on', fitrtree finds at most 10 surrogate splits at each branch node.
• When set to a positive integer, fitrtree finds at most the specified number of surrogate splits at each branch node.
• When set to 'all', fitrtree finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Example: 'Surrogate','on'

Data Types: single | double | char | string

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values or the name of a variable in Tbl. The software weights the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the software treats all columns of Tbl, including W, as predictors when training the model.

fitrtree normalizes the weights in each class to add up to 1.

Data Types: single | double | char | string

Cross Validation

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either 'on' or 'off'.

If 'on', fitrtree grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-value pair arguments. You can only use one of these four options
('KFold', 'Holdout', 'Leaveout', or 'CVPartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

Example: 'CrossVal','on'

**CVPartition — Partition for cross-validation tree**
cvp = cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of 'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-value pair arguments.

**Holdout — Fraction of data for holdout validation**

holdout = 0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

**KFold — Number of folds**

kfold = 10 (default) | positive integer greater than 1

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or 'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

leaveout = 'off' (default) | 'on'

"leaveout" — Leave-one-out cross-validation flag

'off' (default) | 'on'

"leaveout" is a flag to specify whether to use one row of training data, and use the rest of the data for testing. The default is 'off', which means cross-validation is not performed. Use the 'Leaveout' name-value pair argument to specify the leave-one-out cross-validation flag.
Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and either 'on' or 'off'. Use leave-one-out cross validation by setting to 'on'.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

Hyperparameters

**MaxNumSplits — Maximal number of decision splits**

`size(X,1) - 1` (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-separated pair consisting of 'MaxNumSplits' and a positive integer. `fitrtree` splits `MaxNumSplits` or fewer branch nodes. For more details on splitting behavior, see “Tree Depth Control” on page 32-2566.

Example: 'MaxNumSplits',5

Data Types: `single` | `double`

**MinLeafSize — Minimum number of leaf node observations**

1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least `MinLeafSize` observations per tree leaf. If you supply both `MinParentSize` and `MinLeafSize`, `fitrtree` uses the setting that gives larger leaves: `MinParentSize = max(MinParentSize,2*MinLeafSize)`.

Example: 'MinLeafSize',3

Data Types: `single` | `double`

**NumVariablesToSample — Number of predictors for split**

'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair consisting of 'NumVariablesToSample' and a positive integer value. You can also specify 'all' to use all available predictors.

Example: 'NumVariablesToSample',3
Data Types: single | double

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'structured' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'MinLeafSize'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrtree by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair.

Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitrtree are:

• MaxNumSplits — fitrtree searches among integers, by default log-scaled in the range [1,max(2,NumObservations-1)].
• MinLeafSize — fitrtree searches among integers, by default log-scaled in the range [1,max(2,floor(NumObservations/2))].
• NumVariablesToSample — fitrtree does not optimize over this hyperparameter. If you pass NumVariablesToSample as a parameter name, fitrtree simply uses the full number of predictors. However, fitrensemble does optimize over this hyperparameter.

Set nondefault parameters by passing a vector of optimizableVariable objects that have nondefault values. For example,
load carsmall
params = hyperparameters('fitrtree', [Horsepower, Weight], MPG);
params(1).Range = [1, 30];

Pass params as the value of OptimizeHyperparameters.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is log(1 + cross-validation loss) for regression and the misclassification rate for classification. To control the iterative display, set the Verbose field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the ShowPlots field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize Regression Tree” on page 32-2538.

Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the OptimizeHyperparameters name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer           | • `'bayesopt'` — Use Bayesian optimization. Internally, this setting calls `bayesopt`.  
|                     | • `'gridsearch'` — Use grid search with `NumGridDivisions` values per dimension.  
|                     | • `'randomsearch'` — Search at random among `MaxObjectiveEvaluations` points.  
|                     | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command `sortrows(Mdl.HyperparameterOptimizationResults)`. | 'bayesopt'       |
| AcquisitionFunctionName | • `'expected-improvement-per-second-plus'`  
|                     | • `'expected-improvement'`  
|                     | • `'expected-improvement-plus'`  
|                     | • `'expected-improvement-per-second'`  
|                     | • `'lower-confidence-bound'`  
|                     | • `'probability-of-improvement'`  
<p>|                     | For details, see the <code>bayesopt AcquisitionFunctionName</code> name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
| MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch' |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value-pair argument.</td>
<td></td>
</tr>
</tbody>
</table>
Field Name | Values | Default
---|---|---
**UseParallel** | Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9. | false

**Repartition** | Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. | false

true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.

Use no more than one of the following three field names.

**CVPartition** | A cvpartition object, as created by cvpartition. | 'Kfold',5 if you do not specify any cross-validation field

**Holdout** | A scalar in the range (0,1) representing the holdout fraction. | 

**Kfold** | An integer greater than 1. | 

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

**Output Arguments**

tree — Regression tree
regression tree object

Regression tree, returned as a regression tree object. Using the 'Crossval', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.
Otherwise, `tree` is of class `RegressionTree`, and you can use the `predict` method to make predictions.

**Definitions**

**Curvature Test**

The curvature test is a statistical test assessing the null hypothesis that two variables are unassociated.

The curvature test between predictor variable $x$ and $y$ is conducted using this process.

1. If $x$ is continuous, then partition it into its quartiles. Create a nominal variable that bins observations according to which section of the partition they occupy. If there are missing values, then create an extra bin for them.
2. For each level in the partitioned predictor $j = 1...J$ and class in the response $k = 1,...,K$, compute the weighted proportion of observations in class $k$

$$
\hat{p}_{jk} = \sum_{i=1}^{n} I(y_i = k)w_i.
$$

where $w_i$ is the weight of observation $i$, $\sum w_i = 1$, $I$ is the indicator function, and $n$ is the sample size. If all observations have the same weight, then $\hat{p}_{jk} = \frac{n_{jk}}{n}$, where $n_{jk}$ is the number of observations in level $j$ of the predictor that are in class $k$.
3. Compute the test statistic

$$
t = n \sum_{k=1}^{K} \sum_{j=1}^{J} \frac{(\hat{p}_{jk} - \hat{p}_{j+k})^2}{\hat{p}_{j+k} \hat{p}_{j+k}}
$$
\begin{align*}
    \hat{\pi}_{j+} &= \sum_k \hat{\pi}_{jk} , \text{ that is, the marginal probability of observing the predictor at level } j. \\
    \hat{\pi}_{+k} &= \sum_j \hat{\pi}_{jk} , \text{ that is the marginal probability of observing class } k. \text{ If } n \text{ is large enough, then } t \text{ is distributed as a } \chi^2 \text{ with } (K - 1)(J - 1) \text{ degrees of freedom.}
\end{align*}

4 If the \( p \)-value for the test is less than 0.05, then reject the null hypothesis that there is no association between \( x \) and \( y \).

When determining the best split predictor at each node, the standard CART algorithm prefers to select continuous predictors that have many levels. Sometimes, such a selection can be spurious and can also mask more important predictors that have fewer levels, such as categorical predictors.

The curvature test can be applied instead of standard CART to determine the best split predictor at each node. In that case, the best split predictor variable is the one that minimizes the significant \( p \)-values (those less than 0.05) of curvature tests between each predictor and the response variable. Such a selection is robust to the number of levels in individual predictors.

For more details on how the curvature test applies to growing regression trees, see “Node Splitting Rules” on page 32-2563 and [3].

**Interaction Test**

The interaction test is a statistical test that assesses the null hypothesis that there is no interaction between a pair of predictor variables and the response variable.

The interaction test assessing the association between predictor variables \( x_1 \) and \( x_2 \) with respect to \( y \) is conducted using this process.

1 If \( x_1 \) or \( x_2 \) is continuous, then partition that variable into its quartiles. Create a nominal variable that bins observations according to which section of the partition they occupy. If there are missing values, then create an extra bin for them.

2 Create the nominal variable \( z \) with \( J = J_1 J_2 \) levels that assigns an index to observation \( i \) according to which levels of \( x_1 \) and \( x_2 \) it belongs. Remove any levels of \( z \) that do not correspond to any observations.

3 Conduct a curvature test on page 32-2560 between \( z \) and \( y \).

When growing decision trees, if there are important interactions between pairs of predictors, but there are also many other less important predictors in the data, then
standard CART tends to miss the important interactions. However, conducting curvature and interaction tests for predictor selection instead can improve detection of important interactions, which can yield more accurate decision trees.

For more details on how the interaction test applies to growing decision trees, see “Curvature Test” on page 32-2560, “Node Splitting Rules” on page 32-2563 and [2].

**Predictive Measure of Association**

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose \( x_j \) and \( x_k \) are predictor variables \( j \) and \( k \), respectively, and \( j \neq k \). At node \( t \), the predictive measure of association between the optimal split \( x_j < u \) and a surrogate split \( x_k < v \) is

\[
\lambda_{jk} = \frac{\min(P_L, P_R) - (1 - P_{L,L_k} - P_{R,R_k})}{\min(P_L, P_R)}.
\]

- \( P_L \) is the proportion of observations in node \( t \), such that \( x_j < u \). The subscript \( L \) stands for the left child of node \( t \).
- \( P_R \) is the proportion of observations in node \( t \), such that \( x_j \geq u \). The subscript \( R \) stands for the right child of node \( t \).
- \( P_{L,L_k} \) is the proportion of observations at node \( t \), such that \( x_j < u \) and \( x_k < v \).
- \( P_{R,R_k} \) is the proportion of observations at node \( t \), such that \( x_j \geq u \) and \( x_k \geq v \).
- Observations with missing values for \( x_j \) or \( x_k \) do not contribute to the proportion calculations.

\( \lambda_{jk} \) is a value in \((-\infty,1]\). If \( \lambda_{jk} > 0 \), then \( x_k < v \) is a worthwhile surrogate split for \( x_j < u \).
Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to the left or right child node using the best surrogate predictor. When the value of the best surrogate split predictor for the observation is also missing, the observation is sent to the left or right child node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending order by their predictive measure of association on page 32-2562.

Tip

• By default, Prune is 'on'. However, this specification does not prune the regression tree. To prune a trained regression tree, pass the regression tree to prune.
• After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

Node Splitting Rules

fitrtree uses these processes to determine how to split node $t$.

• For standard CART (that is, if PredictorSelection is 'allpairs') and for all predictors $x_i$, $i = 1,...,p$:

1. fitrtree computes the weighted, mean-square error (MSE) of the responses in node $t$ using

$$
\varepsilon_t = \sum_{j \in T} w_j (y_j - \bar{y}_t)^2.
$$
$w_j$ is the weight of observation $j$, and $T$ is the set of all observation indices in node $t$. If you do not specify Weights, then $w_j = 1/n$, where $n$ is the sample size.

2. `fitrtree` estimates the probability that an observation is in node $t$ using

$$P(T) = \sum_{j \in T} w_j.$$ 

3. `fitrtree` sorts $x_i$ in ascending order. Each element of the sorted predictor is a splitting candidate or cut point. `fitrtree` records any indices corresponding to missing values in the set $T_U$, which is the unsplit set.

4. `fitrtree` determines the best way to split node $t$ using $x_i$ by maximizing the reduction in MSE ($\Delta I$) over all splitting candidates. That is, for all splitting candidates in $x_i$:

   a. `fitrtree` splits the observations in node $t$ into left and right child nodes ($t_L$ and $t_R$, respectively).

   b. `fitrtree` computes $\Delta I$. Suppose that for a particular splitting candidate, $t_L$ and $t_R$ contain observation indices in the sets $T_L$ and $T_R$, respectively.

      - If $x_i$ does not contain any missing values, then the reduction in MSE for the current splitting candidate is

      $$\Delta I = P(T)\epsilon_t - P(T_L)\epsilon_{t_L} - P(T_R)\epsilon_{t_R}.$$ 

      - If $x_i$ contains missing values, then, assuming that the observations are missing at random, the reduction in MSE is

      $$\Delta I_U = P(T - T_U)\epsilon_t - P(T_L)\epsilon_{t_L} - P(T_R)\epsilon_{t_R}.$$ 

      $T - T_U$ is the set of all observation indices in node $t$ that are not missing.

   • If you use surrogate decision splits on page 32-2563, then:

      i. `fitrtree` computes the predictive measures of association on page 32-2562 between the decision split $x_j < u$ and all possible decision splits $x_k < v, j \neq k$.

      ii. `fitrtree` sorts the possible alternative decision splits in descending order by their predictive measure of association with the optimal split. The surrogate split is the decision split yielding the largest measure.
iii  *fitrtree* decides the child node assignments for observations with a missing value for $x_i$ using the surrogate split. If the surrogate predictor also contains a missing value, then *fitrtree* uses the decision split with the second largest measure, and so on, until there are no other surrogates. It is possible for *fitrtree* to split two different observations at node $t$ using two different surrogate splits. For example, suppose the predictors $x_1$ and $x_2$ are the best and second best surrogates, respectively, for the predictor $x_i$, $i \notin \{1,2\}$, at node $t$. If observation $m$ of predictor $x_i$ is missing (i.e., $x_{mi}$ is missing), but $x_{m1}$ is not missing, then $x_1$ is the surrogate predictor for observation $x_{mi}$. If observations $x_{(m+1),1}$ and $x_{(m+1),2}$ are missing, but $x_{(m+1),2}$ is not missing, then $x_2$ is the surrogate predictor for observation $m+1$.

iv  *fitrtree* uses the appropriate MSE reduction formula. That is, if *fitrtree* fails to assign all missing observations in node $t$ to children nodes using surrogate splits, then the MSE reduction is $\Delta I_U$. Otherwise, *fitrtree* uses $\Delta I$ for the MSE reduction.

c  *fitrtree* chooses the candidate that yields the largest MSE reduction.

*fitrtree* splits the predictor variable at the cut point that maximizes the MSE reduction.

- For the curvature test (that is, if `PredictorSelection` is `'curvature'`):
  1  *fitrtree* computes the residuals $r_{ti} = y_{ti} - \bar{y}_t$ for all observations in node $t$.

  $$
  \bar{y}_t = \frac{1}{\text{weight}} \sum_{i} w_{i} y_{ti},
  $$
  which is the weighted average of the responses in node $t$. The weights are the observation weights in `Weights`.

  2  *fitrtree* assigns observations to one of two bins according to the sign of the corresponding residuals. Let $z_t$ be a nominal variable that contains the bin assignments for the observations in node $t$.

  3  *fitrtree* conducts curvature tests on page 32-2560 between each predictor and $z_t$. For regression trees, $K = 2$.

- If all $p$-values are at least 0.05, then *fitrtree* does not split node $t$.
- If there is a minimal $p$-value, then *fitrtree* chooses the corresponding predictor to split node $t$.
- If more than one $p$-value is zero due to underflow, then *fitrtree* applies standard CART to the corresponding predictors to choose the split predictor.
If `fitrtree` chooses a split predictor, then it uses standard CART to choose the cut point (see step 4 in the standard CART process).

For the interaction test (that is, if `PredictorSelection` is 'interaction-curvature'):  

1. For observations in node \( t \), `fitrtree` conducts curvature tests between each predictor and the response and interaction tests between each pair of predictors and the response.
   
   - If all \( p \)-values are at least 0.05, then `fitrtree` does not split node \( t \).
   - If there is a minimal \( p \)-value and it is the result of a curvature test, then `fitrtree` chooses the corresponding predictor to split node \( t \).
   - If there is a minimal \( p \)-value and it is the result of an interaction test, then `fitrtree` chooses the split predictor using standard CART on the corresponding pair of predictors.
   - If more than one \( p \)-value is zero due to underflow, then `fitrtree` applies standard CART to the corresponding predictors to choose the split predictor.

2. If `fitrtree` chooses a split predictor, then it uses standard CART to choose the cut point (see step 4 in the standard CART process).

**Tree Depth Control**

- If `MergeLeaves` is 'on' and `PruneCriterion` is 'mse' (which are the default values for these name-value pair arguments), then the software applies pruning only to the leaves and by using MSE. This specification amounts to merging leaves coming from the same parent node whose MSE is at most the sum of the MSE of its two leaves.

- To accommodate `MaxNumSplits`, `fitrtree` splits all nodes in the current layer, and then counts the number of branch nodes. A layer is the set of nodes that are equidistant from the root node. If the number of branch nodes exceeds `MaxNumSplits`, `fitrtree` follows this procedure:

1. Determine how many branch nodes in the current layer must be unsplit so that there are at most `MaxNumSplits` branch nodes.
2. Sort the branch nodes by their impurity gains.
3. Unsplit the number of least successful branches.
4. Return the decision tree grown so far.
This procedure produces maximally balanced trees.

• The software splits branch nodes layer by layer until at least one of these events occurs:
  • There are MaxNumSplits branch nodes.
  • A proposed split causes the number of observations in at least one branch node to be fewer than MinParentSize.
  • A proposed split causes the number of observations in at least one leaf node to be fewer than MinLeafSize.
  • The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see PruneCriterion), does not improve for all proposed splits in a layer). A special case is when all nodes are pure (i.e., all observations in the node have the same class).
  • For values 'curvature' or 'interaction-curvature' of PredictorSelection, all tests yield p-values greater than 0.05.

MaxNumSplits and MinLeafSize do not affect splitting at their default values. Therefore, if you set 'MaxNumSplits', splitting might stop due to the value of MinParentSize, before MaxNumSplits splits occur.

Parallelization


References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

See Also
RegressionPartitionedModel | RegressionTree | predict | prune | surrogateAssociation

Topics
“Splitting Categorical Predictors” on page 19-31

Introduced in R2014a
fitSVMPosterior

Fit posterior probabilities

Syntax

ScoreSVMModel = fitSVMPosterior(SVMModel)

ScoreSVMModel = fitSVMPosterior(SVMModel,TBL,ResponseVarName)
ScoreSVMModel = fitSVMPosterior(SVMModel,TBL,Y)

ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y)

ScoreSVMModel = fitSVMPosterior(___ ,Name,Value)

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior(___)  

Description

ScoreSVMModel = fitSVMPosterior(SVMModel) returns ScoreSVMModel, which is a trained, support vector machine (SVM) classifier containing the optimal score-to-posterior-probability transformation function for two-class learning.

The software fits the appropriate score-to-posterior-probability transformation function using the SVM classifier SVMModel, and by cross validation using the stored predictor data (SVMModel.X) and the class labels (SVMModel.Y). The transformation function computes the posterior probability that an observation is classified into the positive class (SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid function on page 32-2580.
• If the classes are perfectly separable, the transformation function is the step function on page 32-2580.
• In two-class learning, if one of the two classes has a relative frequency of 0, then the transformation function is the constant function on page 32-2581. fitSVMPosterior is not appropriate for one-class learning.
• If SVMModel is a ClassificationSVM classifier, then the software estimates the optimal transformation function by 10-fold cross validation as outlined in [1]. Otherwise, SVMModel must be a ClassificationPartitionedModel classifier. SVMModel specifies the cross-validation method.

• The software stores the optimal transformation function in ScoreSVMModel.ScoreTransform.

ScoreSVMModel = fitSVMPosterior(SVMModel,TBL,ResponseVarName) returns a trained support vector classifier containing the transformation function from the trained, compact SVM classifier SVMModel. The software estimates the score transformation function using predictor data in the table TBL and class labels TBL.ResponseVarName.

ScoreSVMModel = fitSVMPosterior(SVMModel,TBL,Y) returns a trained support vector classifier containing the transformation function from the trained, compact SVM classifier SVMModel. The software estimates the score transformation function using predictor data in the table TBL and class labels Y.

ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y) returns a trained support vector classifier containing the transformation function from the trained, compact SVM classifier SVMModel. The software estimates the score transformation function using predictor data X and class labels Y.

ScoreSVMModel = fitSVMPosterior(___,Name,Value) uses additional options specified by one or more Name,Value pair arguments provided SVMModel is a ClassificationSVM classifier. For example, you can specify the number of folds to use in k-fold cross validation.

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior(___) additionally returns the transformation function parameters (ScoreTransform) using any of the input arguments in the previous syntaxes.

Examples

Fit the Score-to-Posterior Probability Function for Separable Classes

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and remove the virginica species from the data.

load fisheriris
classKeep = ~strcmp(species,'virginica');
The classes are perfectly separable. Therefore, the score transformation function is a step function.

Train an SVM classifier using the data. Cross validate the classifier using 10-fold cross validation (the default).
rng(1);
CVSVMModel = fitcsvm(X,y,'CrossVal','on');

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier.

Estimate the step function that transforms scores to posterior probabilities.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

fitSVMPosterior does the following:

• Uses the data that the software stored in CVSVMModel to fit the transformation function
• Warns whenever the classes are separable
• Stores the step function in ScoreCVSVMModel.ScoreTransform

Display the score function type and its parameter values.

ScoreParameters

ScoreParameters = struct with fields:
    Type: 'step'
    LowerBound: -0.8431
    UpperBound: 0.6897
    PositiveClassProbability: 0.5000

ScoreParameters is a structure array with four fields:

• The score transformation function type (Type)
• The score corresponding to the negative class boundary (LowerBound)
• The score corresponding to the positive class boundary (UpperBound)
• The positive class probability (PositiveClassProbability)

Since the classes are separable, the step function transforms the score to either 0 or 1, which is the posterior probability that an observation is a versicolor iris.
Fit the Score-to-Posterior Probability Function for Inseparable Classes

Load the ionosphere data set.

load ionosphere

The classes of this data set are not separable.

Train an SVM classifier. Cross validate using 10-fold cross validation (the default). It is good practice to standardize the predictors and specify the class order.

rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true,...    'CrossVal','on');
ScoreTransform = CVSVMModel.ScoreTransform

ScoreTransform = 'none'

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier. The positive class is 'g'. The ScoreTransform property is none.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an observation being classified as 'g'.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);
ScoreTransform = ScoreCVSVMModel.ScoreTransform

ScoreTransform = @(S)sigmoid(S,-9.481576e-01,-1.218300e-01)

ScoreParameters

ScoreParameters = struct with fields:
    Type: 'sigmoid'
    Slope: -0.9482
    Intercept: -0.1218

ScoreTransform is the optimal score transform function. ScoreParameters contains the score transformation function, slope estimate, and the intercept estimate.

You can estimate test-sample, posterior probabilities by passing ScoreCVSVMModel to kfoldPredict.
Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

Load the ionosphere data set.

```matlab
load ionosphere
```

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize the predictors and specify the class order.

```matlab
rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...
 'ClassNames',{'b','g'});
```

`CVSVMModel` is a trained `ClassificationPartitionedModel` cross-validated classifier.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an observation being classified as 'g'.

```matlab
ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);
```

`ScoreCVSVMModel` is a trained `ClassificationPartitionedModel` cross-validated classifier containing the optimal score transformation function estimated from the training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for the first 10 out-of-sample observations.

```matlab
[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);
indx = ~isnan(OOSPostProbs(:,2));
hoObs = find(indx); % Holdout observation numbers
OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];
table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...
 'VariableNames',{'ObservationIndex','PosteriorProbability'})
```

```
ans=10×2 table
 ObservationIndex PosteriorProbability
 6 0.17378
```

32-2574
Input Arguments

**SVMMModel** — Trained SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier | ClassificationPartitionedModel classifier

Trained SVM classifier, specified as a ClassificationSVM, CompactClassificationSVM, or ClassificationPartitionedModel classifier.

If SVMMModel is a ClassificationSVM classifier, then you can set optional name-value pair arguments.

If SVMMModel is a CompactClassificationSVM classifier, then you must input predictor data X and class labels Y.

**TBL** — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional columns for the response variable and observation weights. TBL must contain all of the predictors used to train SVMMModel. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train SVMMModel, then you do not need to specify ResponseVarName or Y.

If you trained SVMMModel using sample data contained in a table, then the input data for fitSVMPosterior must also be in a table.
If you set 'Standardize',true in fitcsvm when training SVMModel, then the software standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: table

**X — Predictor data**

matrix

Predictor data used to estimate the score-to-posterior-probability transformation function, specified as a matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the transformation function parameter estimates using standardized data.

Data Types: double | single

**ResponseVarName — Response variable name**

name of variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For example, if the response variable is stored as TBL.Response, then specify ResponseVarName as 'Response'. Otherwise, the software treats all columns of TBL, including TBL.Response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

**Y — Class labels**

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors
Class labels used to estimate the score-to-posterior-probability transformation function, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors.

If Y is a character array, then each element must correspond to one class label.

The length of Y and the number of rows in X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Example: 'KFold', 8 performs 8-fold cross validation when SVMModel is a ClassificationSVM classifier.

CVPARTITION — Cross-validation partition

[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified as the comma-separated pair consisting of 'CVPARTITION' and a cvpartition partition object as created by cvpartition. You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPARTITION'.

The crossval name-value pair argument of fitcsvm splits the data into subsets using cvpartition.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPARTITION', cvp.

Holdout — Fraction of data for holdout validation

scalar value in the range (0,1)

Fraction of the data for holdout validation used to compute the transformation function, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). Holdout validation tests the specified fraction of the data and uses the remaining data for training.
You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Holdout', 0.1
Data Types: double | single

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use when computing the transformation function, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold', 8
Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross-validation to compute the transformation function, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. Use leave-one-out cross-validation by specifying 'Leaveout', 'on'.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Leaveout', 'on'

**Output Arguments**

**ScoreSVMModel — Trained SVM classifier**

ClassificationSVM classifier | CompactClassificationSVM classifier |
ClassificationPartitionedModel classifier

Trained SVM classifier containing the estimated score transformation function, returned as a ClassificationSVM, CompactClassificationSVM, or ClassificationPartitionedModel classifier.
The ScoreSVMModel classifier type is the same as the SVMModel classifier type.

To estimate posterior probabilities, pass ScoreSVMModel and predictor data to predict. If you set 'Standardize',true in fitcsvm to train SVMModel, then predict standardizes the columns of X using the corresponding means in SVMModel.Mu and standard deviations in SVMModel.Sigma.

**ScoreTransform — Optimal score-to-posterior-probability transformation function parameters**

structure array

Optimal score-to-posterior-probability transformation function parameters, specified as a structure array. If field Type is:

- sigmoid, then ScoreTransform has these fields:
  - Slope — The value of $A$ in the sigmoid function on page 32-2580
  - Intercept — The value of $B$ in the sigmoid function

- step, then ScoreTransform has these fields:
  - PositiveClassProbability: the value of $\pi$ in the step function on page 32-2580. $\pi$ represents:
    - The probability that an observation is in the positive class.
    - The posterior probability that a score is in the interval $(LowerBound,UpperBound)$.

- LowerBound: the value $\max s_n$ in the step function. It represents the lower bound of the interval that assigns the posterior probability of being in the positive class PositiveClassProbability to scores. Any observation with a score less than LowerBound has posterior probability of being the positive class 0.

- UpperBound: the value $\min s_n$ in the step function. It represents the upper bound of the interval that assigns the posterior probability of being in the positive class PositiveClassProbability. Any observation with a score greater than UpperBound has posterior probability of being the positive class 1.

- constant, then ScoreTransform.PredictedClass contains the name of the class prediction.
This result is the same as `SVMMModel.ClassNames`. The posterior probability of an observation being in `ScoreTransform.PredictedClass` is always 1.

**Definitions**

**Sigmoid Function**

The sigmoid function that maps score $s_j$ corresponding to observation $j$ to the positive class posterior probability is

$$P(s_j) = \frac{1}{1 + \exp(As_j + B)}.$$  

If the value of the Type field of `ScoreTransform` is sigmoid, then parameters $A$ and $B$ correspond to the fields `Scale` and `Intercept` of `ScoreTransform`, respectively.

**Step Function**

The step function that maps score $s_j$ corresponding to observation $j$ to the positive class posterior probability is

$$P(s_j) = \begin{cases} 
0; & s < \max_{y_k=-1} s_k \\
\pi; & \max_{y_k=-1} s_k \leq s_j \leq \min_{y_k=-1} s_k \\
1; & s_j > \min_{y_k=+1} s_k 
\end{cases}$$

where:

- $s_j$ is the score of observation $j$.
- $+1$ and $-1$ denote the positive and negative classes, respectively.
- $\pi$ is the prior probability that an observation is in the positive class.
If the value of the Type field of ScoreTransform is step, then the quantities $\max_{y_k=-1} s_k$ and $\min s_k$ correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

**Constant Function**

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the positive class.

If all observations have posterior probability 0, then they are not expected to come from the positive class.

**Tips**

- This process describes one way to predict positive class posterior probabilities.

1. Train an SVM classifier by passing the data to fitcsvm. The result is a trained SVM classifier, such as SVMModel, that stores the data. The software sets the score transformation function property (SVMModel.ScoreTransformation) to none.

2. Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior. The result, such as, ScoreSVMModel, is the same trained SVM classifier as SVMModel, except the software sets ScoreSVMModel.ScoreTransformation to the optimal score transformation function.

3. Pass the predictor data matrix and the trained SVM classifier containing the optimal score transformation function (ScoreSVMModel) to predict. The second column in the second output argument of predict stores the positive class posterior probabilities corresponding to each row of the predictor data matrix.

If you skip step 2, then predict returns the positive class score rather than the positive class posterior probability.
• After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an SVM classifier to fitPosterior or fitSVMPosterior and its ScoreTransform property is not none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

References


See Also

ClassificationPartitionedModel | ClassificationSVM |
CompactClassificationSVM | fitPosterior | fitPosterior | fitcsvm |
kfoldPredict | predict

Introduced in R2014a
**fitted**

**Class:** GeneralizedLinearMixedModel

Fitted responses from generalized linear mixed-effects model

**Syntax**

mufit = fitted(glme)
mufit = fitted(glme,Name,Value)

**Description**

mufit = fitted(glme) returns the fitted conditional response of the generalized linear mixed-effects model glme.

mufit = fitted(glme,Name,Value) returns the fitted response with additional options specified by one or more name-value pair arguments. For example, you can specify to compute the marginal fitted response.

**Input Arguments**

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name, Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Conditional — Indicator for conditional response

true (default) | false

Indicator for conditional response, specified as the comma-separated pair consisting of 'Conditional' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Contributions from both fixed effects and random effects (conditional)</td>
</tr>
<tr>
<td>false</td>
<td>Contribution from only fixed effects (marginal)</td>
</tr>
</tbody>
</table>

To obtain fitted marginal response values, fitted computes the conditional mean of the response with the empirical Bayes predictor vector of random effects $b$ set equal to 0. For more information, see “Conditional and Marginal Response” on page 32-2587

Example: 'Conditional',false

Output Arguments

mufit — Fitted response values

$n$-by-1 vector

Fitted response values, returned as an $n$-by-1 vector, where $n$ is the number of observations.

Examples

Plot Observed Versus Fitted Values

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

$$ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) $$

This corresponds to the generalized linear mixed-effects model

$$ \log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_C_{ij} + \beta_5 \text{supplier}_B_{ij} + b_i, $$

where

- $$ \text{defects}_{ij} $$ is the number of defects observed in the batch produced by factory $$ i $$ during batch $$ j $$.
• $\mu_{ij}$ is the mean number of defects corresponding to factory $i$ (where $i = 1, 2, ..., 20$) during batch $j$ (where $j = 1, 2, ..., 5$).

• newprocess$_{ij}$, time_dev$_{ij}$, and temp_dev$_{ij}$ are the measurements for each variable that correspond to factory $i$ during batch $j$. For example, newprocess$_{ij}$ indicates whether the batch produced by factory $i$ during batch $j$ used the new process.

• supplier_C$_{ij}$ and supplier_B$_{ij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory $i$ during batch $j$.

• $b_i \sim N(0, \sigma^2_b)$ is a random-effects intercept for each factory $i$ that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Generate the fitted conditional mean values for the model.

mufit = fitted(glme);

Create a scatterplot of the observed values versus fitted values.

figure
scatter(mfr.defects,mufit)
title('Residuals versus Fitted Values')
xlabel('Fitted Values')
ylabel('Residuals')
```
Definitions

Conditional and Marginal Response

A *conditional response* includes contributions from both fixed- and random-effects predictors. A *marginal response* includes contribution from only fixed effects.

Suppose the generalized linear mixed-effects model `glme` has an `n-by-p` fixed-effects design matrix `X` and an `n-by-q` random-effects design matrix `Z`. Also, suppose the
estimated \( p \)-by-1 fixed-effects vector is \( \hat{\beta} \), and the \( q \)-by-1 empirical Bayes predictor vector of random effects is \( \hat{b} \).

The fitted conditional response corresponds to the 'Conditional',true name-value pair argument, and is defined as

\[
\hat{\mu}_{\text{cond}} = g^{-1}(\hat{\eta}_{\text{ME}}),
\]

where \( \hat{\eta}_{\text{ME}} \) is the linear predictor including the fixed- and random-effects of the generalized linear mixed-effects model

\[
\hat{\eta}_{\text{ME}} = X\hat{\beta} + Z\hat{b} + \delta.
\]

The fitted marginal response corresponds to the 'Conditional',false name-value pair argument, and is defined as

\[
\hat{\mu}_{\text{mar}} = g^{-1}(\hat{\eta}_{\text{FE}}),
\]

where \( \hat{\eta}_{\text{FE}} \) is the linear predictor including only the fixed-effects portion of the generalized linear mixed-effects model

\[
\hat{\eta}_{\text{FE}} = X\hat{\beta} + \delta.
\]

**See Also**

GeneralizedLinearMixedModel | designMatrix | fitglme | residuals | response
fitted

**Class:** LinearMixedModel

Fitted responses from a linear mixed-effects model

**Syntax**

```matlab
yfit = fitted(lme)
yfit = fitted(lme,Name,Value)
```

**Description**

`yfit = fitted(lme)` returns the fitted conditional response from the linear mixed-effects model `lme`.

`yfit = fitted(lme,Name,Value)` returns the fitted response from the linear mixed-effects model `lme` with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify if you want to compute the fitted marginal response from the linear mixed-effects model `lme`.

**Input Arguments**

- `lme` — Linear mixed-effects model
  LinearMixedModel object
  Linear mixed-effects model, specified as a LinearMixedModel object constructed using `fitlme` or `fitlmmatrix`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.

32-2589
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Conditional — Indicator for conditional response**

*true* (default) | *false*

Indicator for conditional response, specified as the comma-separated pair consisting of 'Conditional' and either of the following.

- **true**
  - Contribution from both fixed effects and random effects (conditional)

- **false**
  - Contribution from only fixed effects (marginal)

Example: 'Conditional',false

Data Types: logical

**Output Arguments**

*`yfit` — Fitted response values*

*n*-by-1 vector

Fitted response values, returned as an *n*-by-1 vector, where *n* is the number of observations.

**Examples**

**Compute Fitted Conditional and Marginal Responses**

Load the sample data.

```
load flu
```

The *flu* dataset array has a *Date* variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the Center for Disease Control and Prevention, CDC).
To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses and region as the predictor variable, combine the nine columns corresponding to the regions into an array. The new dataset array, `flu2`, must have the response variable, FluRate, the nominal variable, Region, that shows which region each estimate is from, and the grouping variable Date.

```matlab
flu2 = stack(flu,2:10,'NewDataVarName','FluRate','IndVarName','Region');
flu2.Date = nominal(flu2.Date);
```

Fit a linear mixed-effects model with fixed effects for region and a random intercept that varies by Date.

Region is a categorical variable. You can specify the contrasts for categorical variables using the `DummyVarCoding` name-value pair argument when fitting the model. When you do not specify the contrasts, `fitlme` uses the 'reference' contrast by default. Because the model has an intercept, `fitlme` takes the first region, NE, as the reference and creates eight dummy variables representing the other eight regions. For example, `I[MidAtl]` is the dummy variable representing the region MidAtl. For details, see “Dummy Indicator Variables” on page 2-60.

The corresponding model is

\[
y_{im} = \beta_0 + \beta_1 I[\text{MidAt}]_i + \beta_2 I[\text{ENCentral}]_i + \beta_3 I[\text{WNCentral}]_i + \beta_4 I[\text{SA}]_i
+ \beta_5 I[\text{ESCentral}]_i + \beta_6 I[\text{WSCentral}]_i + \beta_7 I[\text{Mtn}]_i + \beta_8 I[\text{Pac}]_i + b_{0m} + \epsilon_{im}, \quad m = 1, 2, ..., 52,
\]

where \(y_{im}\) is the observation \(i\) for level \(m\) of grouping variable Date, \(\beta_j, j = 0, 1, ..., 8\), are the fixed-effects coefficients, with \(\beta_0\) being the coefficient for region NE. \(b_{0m}\) is the random effect for level \(m\) of the grouping variable Date, and \(\epsilon_{im}\) is the observation error for observation \(i\). The random effect has the prior distribution, \(b_{0m} \sim N(0, \sigma^2)\) and the error term has the distribution, \(\epsilon_{im} \sim N(0, \sigma^2)\).

```matlab
lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)');
lme =
Linear mixed-effects model fit by ML
```
Model information:

- Number of observations: 468
- Fixed effects coefficients: 9
- Random effects coefficients: 52
- Covariance parameters: 2

Formula:
FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>318.71</td>
<td>364.35</td>
<td>-148.36</td>
<td>296.71</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.2233</td>
<td>0.096678</td>
<td>12.654</td>
<td>459</td>
</tr>
<tr>
<td>'Region_MidAtl'</td>
<td>0.010192</td>
<td>0.052221</td>
<td>0.19518</td>
<td>459</td>
</tr>
<tr>
<td>'Region_ENCentral'</td>
<td>0.051923</td>
<td>0.052221</td>
<td>0.9943</td>
<td>459</td>
</tr>
<tr>
<td>'Region_WNCentral'</td>
<td>0.23687</td>
<td>0.052221</td>
<td>4.5359</td>
<td>459</td>
</tr>
<tr>
<td>'Region_SAtl'</td>
<td>0.075481</td>
<td>0.052221</td>
<td>1.4454</td>
<td>459</td>
</tr>
<tr>
<td>'Region_ESCentral'</td>
<td>0.33917</td>
<td>0.052221</td>
<td>6.495</td>
<td>459</td>
</tr>
<tr>
<td>'Region_WSCentral'</td>
<td>0.069</td>
<td>0.052221</td>
<td>1.3213</td>
<td>459</td>
</tr>
<tr>
<td>'Region_Mtn'</td>
<td>0.046673</td>
<td>0.052221</td>
<td>0.89377</td>
<td>459</td>
</tr>
<tr>
<td>'Region_Pac'</td>
<td>-0.16013</td>
<td>0.052221</td>
<td>-3.0665</td>
<td>459</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.085e-31</td>
<td>1.0334</td>
<td>1.4133</td>
</tr>
<tr>
<td>0.84534</td>
<td>-0.092429</td>
<td>0.11281</td>
</tr>
<tr>
<td>0.3206</td>
<td>-0.050698</td>
<td>0.15454</td>
</tr>
<tr>
<td>7.3324e-06</td>
<td>0.13424</td>
<td>0.33949</td>
</tr>
<tr>
<td>0.14902</td>
<td>-0.02714</td>
<td>0.1781</td>
</tr>
<tr>
<td>2.1623e-10</td>
<td>0.23655</td>
<td>0.44179</td>
</tr>
<tr>
<td>0.18705</td>
<td>-0.033621</td>
<td>0.17162</td>
</tr>
<tr>
<td>0.37191</td>
<td>-0.055948</td>
<td>0.14929</td>
</tr>
<tr>
<td>0.0022936</td>
<td>-0.26276</td>
<td>-0.057514</td>
</tr>
</tbody>
</table>

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.6443</td>
<td>0.5297</td>
</tr>
</tbody>
</table>

Upper
The $P$-values 7.3324e-06 and 2.1623e-10 respectively show that the fixed effects of the flu rates in regions WNCentral and ESCentral are significantly different relative to the flu rates in region NE.

The confidence limits for the standard deviation of the random-effects term, $\sigma_b$, do not include 0 (0.5297, 0.78368), which indicates that the random-effects term is significant. You can also test the significance of the random-effects terms using the compare method.

The conditional fitted response from the model at a given observation includes contributions from fixed and random effects. For example, the estimated best linear unbiased predictor (BLUP) of the flu rate for region WNCentral in week 10/9/2005 is

$$\hat{y}_{\text{WNCentral},10/9/2005} = \hat{\beta}_0 + \hat{\beta}_3 I[\text{WNCentral}] + \hat{b}_{10/9/2005}$$

$$= 1.2233 + 0.23687 - 0.1718$$

$$= 1.28837.$$

This is the fitted conditional response, since it includes contributions to the estimate from both the fixed and random effects. You can compute this value as follows.

```matlab
beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')
```

```matlab
y_hat = 1.2884
```

In the previous calculation, `beta(1)` corresponds to the estimate for $\beta_0$ and `beta(4)` corresponds to the estimate for $\beta_3$. You can simply display the fitted value using the fitted method.

```matlab
F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
```

32-2593
The estimated marginal response for region WNCentral in week 10/9/2005 is

\[\hat{y}_{\text{WNCentral}, 10/9/2005} = \beta_0 + \beta_3 I[\text{WNCentral}]\]
\[= 1.2233 + 0.23687\]
\[= 1.46017.\]

Compute the fitted marginal response.

```matlab
F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
```

ans = 1.4602

---

**Plot Residuals vs. Fitted Values**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'));
weight
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.

```matlab
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

```matlab
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');
```

Compute the fitted values and raw residuals.

```matlab
F = fitted(lme);
R = residuals(lme);
```
Plot the residuals versus the fitted values.

```matlab
plot(F,R,'bx')
xlabel('Fitted Values')
ylabel('Residuals')
```

Now, plot the residuals versus the fitted values, grouped by program.

```matlab
figure()
gscatter(F,R,Program)
```
Definitions

Fitted Conditional and Marginal Response

A conditional response includes contributions from both fixed and random effects, whereas a marginal response includes contribution from only fixed effects.

Suppose the linear mixed-effects model, lme, has an $n$-by-$p$ fixed-effects design matrix $X$ and an $n$-by-$q$ random-effects design matrix $Z$. Also, suppose the $p$-by-1 estimated fixed-
effects vector is $\hat{\beta}$, and the $q$-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is $\hat{b}$.

The fitted conditional response is

$$\hat{y}_{Cond} = X\hat{\beta} + Z\hat{b},$$

and the fitted marginal response is

$$\hat{y}_{Mar} = X\hat{\beta},$$

### See Also

LinearMixedModel | residuals | response
fixedEffects

Class: GeneralizedLinearMixedModel

Estimates of fixed effects and related statistics

Syntax

beta = fixedEffects(glme)
[beta,betanames] = fixedEffects(glme)
[beta,betanames,stats] = fixedEffects(glme)
[___] = fixedEffects(glme,Name,Value)

Description

beta = fixedEffects(glme) returns the estimated fixed-effects coefficients, beta, of the generalized linear mixed-effects model glme.

[beta,betanames] = fixedEffects(glme) also returns the names of estimated fixed-effects coefficients in betanames. Each name corresponds to a fixed-effects coefficient in beta.

[beta,betanames,stats] = fixedEffects(glme) also returns a table of statistics, stats, related to the estimated fixed-effects coefficients of glme.

[___] = fixedEffects(glme,Name,Value) returns any of the output arguments in previous syntaxes using additional options specified by one or more Name,Value pair arguments. For example, you can specify the confidence level, or the method for computing the approximate degrees of freedom for the t-statistic.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object
Generalized linear mixed-effects model, specified as a `GeneralizedLinearMixedModel` object. For properties and methods of this object, see `GeneralizedLinearMixedModel`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of `'Alpha'` and a scalar value in the range [0,1]. For a value $\alpha$, the confidence level is $100 \times (1 - \alpha)\%$.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: `'Alpha',0.01`

Data Types: `single` | `double`

**DFMethod — Method for computing approximate degrees of freedom**

`'residual'` (default) | `'none'`

Method for computing approximate degrees of freedom, specified as the comma-separated pair consisting of `'DFMethod'` and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'residual'</code></td>
<td>The degrees of freedom value is assumed to be constant and equal to $n - p$, where $n$ is the number of observations and $p$ is the number of fixed effects.</td>
</tr>
<tr>
<td><code>'none'</code></td>
<td>The degrees of freedom is set to infinity.</td>
</tr>
</tbody>
</table>

Example: `'DFMethod','none'`
Output Arguments

**beta — Estimated fixed-effects coefficients**
vector

Estimated fixed-effects coefficients of the fitted generalized linear mixed-effects model `glme`, returned as a vector.

**betanames — Names of fixed-effects coefficients**
table

Names of fixed-effects coefficients in `beta`, returned as a table.

**stats — Fixed-effects estimates and related statistics**
dataset array

Fixed-effects estimates and related statistics, returned as a dataset array that has one row for each of the fixed effects and one column for each of the following statistics.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the fixed-effects coefficient</td>
</tr>
<tr>
<td>Estimate</td>
<td>Estimated coefficient value</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error of the estimate</td>
</tr>
<tr>
<td>tStat</td>
<td>$t$-statistic for a test that the coefficient is 0</td>
</tr>
<tr>
<td>DF</td>
<td>Estimated degrees of freedom for the $t$-statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>$p$-value for the $t$-statistic</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of a 95% confidence interval for the fixed-effects coefficient</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of a 95% confidence interval for the fixed-effects coefficient</td>
</tr>
</tbody>
</table>

When fitting a model using `fitglme` and one of the maximum likelihood fit methods (‘Laplace’ or ‘ApproximateLaplace’), if you specify the ‘CovarianceMethod’ name-value pair argument as ‘conditional’, then `SE` does not account for the uncertainty in estimating the covariance parameters. To account for this uncertainty, specify ‘CovarianceMethod’ as ‘JointHessian’.
When fitting a GLME model using `fitglme` and one of the pseudo likelihood fit methods ('MPL' or 'REML'), `fixedEffects` bases the fixed effects estimates and related statistics on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

**Examples**

**Estimate Fixed-Effects Coefficients**

Load the sample data.

```
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (`newprocess`)
- Processing time for each batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (`supplier`)
- Number of defects in the batch (`defects`)

The data also includes `time_dev` and `temp_dev`, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using `newprocess`, `time_dev`, `temp_dev`, and `supplier` as fixed-effects predictors. Include a random-effects term for intercept grouped by `factory`, to account for quality differences that might exist due to factory-specific variations. The response variable `defects` has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[ \log(\mu_{ij}) = \beta_0 + \beta_1\text{newprocess}_{ij} + \beta_2\text{time_dev}_{ij} + \beta_3\text{temp_dev}_{ij} + \beta_4\text{supplier}_C_{ij} + \beta_5\text{supplier}_B_{ij} + b_i, \]

where

- \( \text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
- \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, \ldots, 20 \)) during batch \( j \) (where \( j = 1, 2, \ldots, 5 \)).
- \( \text{newprocess}_{ij}, \text{time_dev}_{ij}, \text{and temp_dev}_{ij} \) are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, \( \text{newprocess}_{ij} \) indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.
- \( \text{supplier}_C_{ij} \) and \( \text{supplier}_B_{ij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).
- \( b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Compute and display the estimated fixed-effects coefficient values and related statistics.

```matlab
[beta,betanames,stats] = fixedEffects(glme);
stats
```
stats =

Fixed effect coefficients: DFMethod = 'residual', Alpha = 0.05

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.4689</td>
<td>0.15988</td>
<td>9.1875</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.36766</td>
<td>0.17755</td>
<td>-2.0708</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.094521</td>
<td>0.82849</td>
<td>-0.11409</td>
<td>94</td>
<td>0.90941</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>-0.28317</td>
<td>0.9617</td>
<td>-0.29444</td>
<td>94</td>
<td>0.76907</td>
</tr>
<tr>
<td>'supplier_C'</td>
<td>-0.071868</td>
<td>0.078024</td>
<td>-0.9211</td>
<td>94</td>
<td>0.35936</td>
</tr>
<tr>
<td>'supplier_B'</td>
<td>0.071072</td>
<td>0.07739</td>
<td>0.91836</td>
<td>94</td>
<td>0.36078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1515</td>
<td>1.7864</td>
</tr>
<tr>
<td>-0.72019</td>
<td>-0.015134</td>
</tr>
<tr>
<td>-1.7395</td>
<td>1.5505</td>
</tr>
<tr>
<td>-2.1926</td>
<td>1.6263</td>
</tr>
<tr>
<td>-0.22679</td>
<td>0.083051</td>
</tr>
<tr>
<td>-0.082588</td>
<td>0.22473</td>
</tr>
</tbody>
</table>

The returned results indicate, for example, that the estimated coefficient for temp_dev is \(-0.28317\). Its large \(P\)-value, 0.76907, indicates that it is not a statistically significant predictor at the 5% significance level. Additionally, the confidence interval boundaries Lower and Upper indicate that the 95% confidence interval for the coefficient for temp_dev is \([-2.1926, 1.6263]\). This interval contains 0, which supports the conclusion that temp_dev is not statistically significant at the 5% significance level.

See Also
GeneralizedLinearMixedModel | coefCI | coefTest | fitglme | randomEffects
fixedEffects

Class: LinearMixedModel

Estimates of fixed effects and related statistics

Syntax

beta = fixedEffects(lme)
[beta,betanames] = fixedEffects(lme)
[beta,betanames,stats] = fixedEffects(lme)
[beta,betanames,stats] = fixedEffects(lme,Name,Value)

Description

beta = fixedEffects(lme) returns the estimated fixed-effects coefficients, beta, of the linear mixed-effects model lme.

[beta,betanames] = fixedEffects(lme) also returns the names of estimated fixed-effects coefficients in betanames. Each name corresponds to a fixed-effects coefficient in beta.

[beta,betanames,stats] = fixedEffects(lme) also returns the estimated fixed-effects coefficients of the linear mixed-effects model lme and related statistics in stats.

[beta,betanames,stats] = fixedEffects(lme,Name,Value) also returns the estimated fixed-effects coefficients of the linear mixed-effects model lme and related statistics with additional options specified by one or more Name,Value pair arguments.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmmatrix.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Alpha — Confidence level**
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double

**DFMethod — Method for computing approximate degrees of freedom**

'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for the t-statistic that tests the fixed-effects coefficients against 0, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

- **'residual'**
  
  Default. The degrees of freedom are assumed to be constant and equal to n – p, where n is the number of observations and p is the number of fixed effects.

- **'satterthwaite'**
  
  Satterthwaite approximation.

- **'none'**
  
  All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.

Example: 'DFMethod','satterthwaite'
Output Arguments

**beta — Fixed-effects coefficients estimates**

*vector*

Fixed-effects coefficients estimates of the fitted linear mixed-effects model `lme`, returned as a vector.

**betanames — Names of fixed-effects coefficients**

*table*

Names of fixed-effects coefficients in `beta`, returned as a table.

**stats — Fixed-effects estimates and related statistics**

*dataset array*

Fixed-effects estimates and related statistics, returned as a dataset array that has one row for each of the fixed effects and one column for each of the following statistics.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the fixed effect coefficient</td>
</tr>
<tr>
<td>Estimate</td>
<td>Estimated coefficient value</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error of the estimate</td>
</tr>
<tr>
<td>tStat</td>
<td>t-statistic for a test that the coefficient is zero</td>
</tr>
<tr>
<td>DF</td>
<td>Estimated degrees of freedom for the t-statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for the t-statistic</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of a 95% confidence interval for the fixed-effect coefficient</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of a 95% confidence interval for the fixed-effect coefficient</td>
</tr>
</tbody>
</table>

Examples

**Display Fixed-Effects Coefficient Estimates and Names**

Load the sample data.
load(fullfile(matlabroot,'examples','stats','weight.mat'));

The data set weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between week and program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Display the fixed-effects coefficient estimates and corresponding fixed-effects names.

[beta,betanames] = fixedEffects(lme)

beta = 9×1

0.6610
0.0032
0.3608
-0.0333
0.1132
0.1732
0.0388
0.0305
0.0331

betanames=9×1 table

Name

'(Intercept)'
'InitialWeight'
'Program_B'
'Program_C'
'Program_D'
'Week'
Compute Coefficient Estimates and Related Statistics

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and horsepower, and potentially correlated random effects for intercept and acceleration grouped by model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficients estimates and related statistics.

[~,~,stats] = fixedEffects(lme)

stats =
  Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.05
    Name                  Estimate    SE          tStat    DF   pValue
     '(Intercept)'           50.133       2.2652     22.132  389 7.7727e-71
    'Acceleration'        -0.58327      0.13394    -4.3545 389 1.7075e-05
    'Horsepower'          -0.16954    0.0072609     -23.35 389 5.188e-76

    Lower       Upper
 -0.84661    -0.31992
-0.18382    -0.15527

The small \( p \)-values (under \( p \)Value) indicate that all fixed-effects coefficients are significant.
Load the sample data.

load(fullfile(matlabroot,'examples','stats','shift.mat'));

The data shows the deviations from the target quality characteristic measured from the products that five operators manufacture during three shifts: morning, evening, and night. This is a randomized block design, where the operators are the blocks. The experiment is designed to study the impact of the time of shift on the performance. The performance measure is the deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the 99% confidence intervals for fixed-effects coefficients, using the residual method to compute the degrees of freedom. This is the default method.

[~,~,stats] = fixedEffects(lme,'alpha',0.01)

stats =

Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.01

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.1196</td>
<td>0.88681</td>
<td>3.5178</td>
<td>12</td>
<td>0.0042407</td>
</tr>
<tr>
<td>Shift_Morning</td>
<td>-0.3868</td>
<td>0.48344</td>
<td>-0.80009</td>
<td>12</td>
<td>0.43921</td>
</tr>
<tr>
<td>Shift_Night</td>
<td>1.9856</td>
<td>0.48344</td>
<td>4.1072</td>
<td>12</td>
<td>0.0014535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41081</td>
<td>5.8284</td>
</tr>
<tr>
<td>-1.8635</td>
<td>1.0899</td>
</tr>
<tr>
<td>0.5089</td>
<td>3.4623</td>
</tr>
</tbody>
</table>
Compute the 99% confidence intervals for fixed-effects coefficients, using the Satterthwaite approximation to compute the degrees of freedom.

\[
[\sim,\sim,\text{stats}] = \text{fixedEffects(lme,'DFMethod','satterthwaite','alpha',0.01)}
\]

**stats** =

Fixed effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>3.1196</td>
<td>0.88681</td>
<td>3.5178</td>
<td>6.123</td>
<td>0.01214</td>
</tr>
<tr>
<td>'Shift_Morning'</td>
<td>-0.3868</td>
<td>0.48344</td>
<td>-0.80009</td>
<td>10</td>
<td>0.44225</td>
</tr>
<tr>
<td>'Shift_Night'</td>
<td>1.9856</td>
<td>0.48344</td>
<td>4.1072</td>
<td>10</td>
<td>0.00212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.14122</td>
<td>6.3804</td>
</tr>
<tr>
<td>-1.919</td>
<td>1.1454</td>
</tr>
<tr>
<td>0.45343</td>
<td>3.5178</td>
</tr>
</tbody>
</table>

The Satterthwaite approximation usually produces smaller DF values than the residual method. That is why it produces larger \( p \)-values (pValue) and larger confidence intervals (see Lower and Upper).

**See Also**
LinearMixedModel | coefCI | coefTest | fitlme | randomEffects
**fpdf**

*F* probability density function

**Syntax**

\[ Y = \text{fpdf}(X, V1, V2) \]

**Description**

\[ Y = \text{fpdf}(X, V1, V2) \] computes the *F* pdf at each of the values in *X* using the corresponding numerator degrees of freedom *V1* and denominator degrees of freedom *V2*. *X*, *V1*, and *V2* can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. *V1* and *V2* parameters must contain real positive values, and the values in *X* must lie on the interval [0, Inf].

The probability density function for the *F* distribution is

\[
y = f(x | v_1, v_2) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{v_1/2} x^{-v_2/2} \left[1 + \left(\frac{v_1}{v_2}\right)x\right]^{-\frac{v_1+v_2}{2}}
\]

**Examples**

\[
y = \text{fpdf}(1:6, 2, 2)
\]
\[
y =
\begin{array}{cccccccc}
0.2500 & 0.1111 & 0.0625 & 0.0400 & 0.0278 & 0.0204
\end{array}
\]

\[
z = \text{fpdf}(3, 5:10, 5:10)
\]
\[
z =
\begin{array}{cccccccc}
0.0689 & 0.0659 & 0.0620 & 0.0577 & 0.0532 & 0.0487
\end{array}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fcdf | finv | frnd | fstat | pdf

Topics
“F Distribution” on page B-42

Introduced before R2006a
fracfact

Fractional factorial design

Syntax

X = fracfact(gen)
[X,conf] = fracfact(gen)
[X,conf] = fracfact(gen,Name,Value)

Description

X = fracfact(gen) creates the two-level fractional factorial design defined by the generator gen.

[X,conf] = fracfact(gen) returns a cell array of character vectors containing the confounding pattern for the design.

[X,conf] = fracfact(gen,Name,Value) creates a fractional factorial designs with additional options specified by one or more Name,Value pair arguments.

Input Arguments

gen

Either a string array or cell array of character vectors where each element contains one “word,” or a character array or string scalar consisting of “words” separated by spaces. “Words” consist of case-sensitive letters or groups of letters, where 'a' represents value 1, 'b' represents value 2, ..., 'A' represents value 27, ..., 'Z' represents value 52.

Each word defines how the corresponding factor’s levels are defined as products of generators from a 2^K full-factorial design. K is the number of letters of the alphabet in gen.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

FactorNames

String array or cell array specifying the name for each factor.

Default: {'X1','X2',...}

MaxInt

Positive integer setting the maximum level of interaction to include in the confounding output.

Default: 2

Output Arguments

X

The two-level fractional factorial design. X is a matrix of size N-by-P, where

- N = 2^K, where K is the number of letters of the alphabet in gen.
- P is the number of words in gen.

Because X is a two-level design, the components of X are ±1. For the meaning of X, see “Fractional Factorial Designs” on page 27-5.

conf

Cell array of character vectors containing the confounding pattern for the design.

Examples

Generate a fractional factorial design for four variables, where the fourth variable is the product of the first three:
\[ x = \text{fracfact('a b c abc')} \]

\[
x =
\begin{bmatrix}
-1 & -1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Find generators for a six-factor design that uses four factors and achieves resolution IV using \text{fracfactgen}. Use the result to specify the design:

\[
generators = \text{fracfactgen('a b c d e f',4,4)} \]

\[
generators =
\begin{bmatrix}
'a' \\
'b' \\
'c' \\
'd' \\
'bcd' \\
'acd'
\end{bmatrix}
\]

\[
x = \text{fracfact(generators)}
\]

\[
x =
\begin{bmatrix}
-1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 & -1 & -1 \\
-1 & 1 & -1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 & -1 & 1 \\
-1 & 1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 & -1 & -1 \\
1 & 1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
References


See Also

| ff2n | fracfactgen | fullfact | hadamard |

Topics

“Fractional Factorial Designs” on page 27-5

Introduced before R2006a
fracfactgen

Fractional factorial design generators

Syntax

generators = fracfactgen(terms)
generators = fracfactgen(terms,k)
generators = fracfactgen(terms,k,R)
generators = fracfactgen(terms,k,R,basic)

Description

generators = fracfactgen(terms) uses the Franklin-Bailey algorithm to find
generators for the smallest two-level fractional-factorial design for estimating linear
model terms specified by terms. terms is a character vector or string scalar consisting of
words formed from the 52 case-sensitive letters a-Z, separated by spaces. Use 'a'-'z'
for the first 26 factors, and, if necessary, 'A'-'Z' for the remaining factors. For example,
terms = 'a b c ab ac'. Single-letter words indicate main effects to be estimated;
multiple-letter words indicate interactions. Alternatively, terms is an m-by-n matrix of 0s
and 1s where m is the number of model terms to be estimated and n is the number of
factors. For example, if terms contains rows [0 1 0 0] and [1 0 0 1], then the factor
b and the interaction between factors a and d are included in the model. generators is
a cell array of character vectors with one generator per cell. Pass generators to
fracfact to produce the fractional-factorial design and corresponding confounding
pattern.

generators = fracfactgen(terms,k) returns generators for a two-level fractional-
factorial design with 2^k-runs, if possible. If k is [], fracfactgen finds the smallest
design.

generators = fracfactgen(terms,k,R) finds a design with resolution R, if possible.
The default resolution is 3.

A design of resolution R is one in which no n-factor interaction is confounded with any
other effect containing less than R - n factors. Thus a resolution III design does not
confound main effects with one another but may confound them with two-way interactions, while a resolution IV design does not confound either main effects or two-way interactions but may confound two-way interactions with each other.

If `fracfactgen` is unable to find a design at the requested resolution, it tries to find a lower-resolution design sufficient to calibrate the model. If it is successful, it returns the generators for the lower-resolution design along with a warning. If it fails, it returns an error.

generators = fracfactgen(terms,k,R,basic) also accepts a vector basic specifying the indices of factors that are to be treated as basic. These factors receive full-factorial treatments in the design. The default includes factors that are part of the highest-order interaction in terms.

**Examples**

Suppose you wish to determine the effects of four two-level factors, for which there may be two-way interactions. A full-factorial design would require $2^4 = 16$ runs. The `fracfactgen` function finds generators for a resolution IV (separating main effects) fractional-factorial design that requires only $2^3 = 8$ runs:

generators = fracfactgen('a b c d',3,4)

```
generators =
'a'
'b'
'c'
'abc'
```

The more economical design and the corresponding confounding pattern are returned by `fracfact`:

```
[dfF,confounding] = fracfact(generators)
dF =
-1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
 1 -1 -1 1
 1 -1 1 -1
 1 1 -1 -1
 1 1 1 1
confounding =
```

32-2618
The confounding pattern shows, for example, that the two-way interaction between X1 and X2 is confounded by the two-way interaction between X3 and X4.

References


See Also

fracfact | hadamard

Topics

“Fractional Factorial Designs” on page 27-5

Introduced in R2006a
friedman

Friedman’s test

Syntax

p = friedman(x,reps)
p = friedman(x,reps,displayopt)
[p,tbl] = friedman(__)
[p,tbl,stats] = friedman(__)

Description

p = friedman(x,reps) returns the p-value for the nonparametric Friedman's test to compare column effects in a two-way layout. friedman tests the null hypothesis that the column effects are all the same against the alternative that they are not all the same.

p = friedman(x,reps,displayopt) enables the ANOVA table display when displayopt is 'on' (default) and suppresses the display when displayopt is 'off'.

[p,tbl] = friedman(__) returns the ANOVA table (including column and row labels) in cell array tbl.

[p,tbl,stats] = friedman(__) also returns a structure stats that you can use to perform a follow-up multiple comparison test.

Examples

Test For Column Effects Using Friedman's Test

This example shows how to test for column effects in a two-way layout using Friedman's test.

Load the sample data.
load popcorn
popcorn

popcorn = 6×3

5.5000  4.5000  3.5000
5.5000  4.5000  4.0000
6.0000  4.0000  3.0000
6.5000  5.0000  4.0000
7.0000  5.5000  5.0000
7.0000  5.0000  4.5000

This data comes from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air). The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.

Use Friedman's test to determine whether the popcorn brand affects the yield of popcorn.

p = friedman(popcorn,3)
The small value of $p = 0.001$ indicates the popcorn brand affects the yield of popcorn.

### Input Arguments

$x$ — Sample data matrix

Sample data for the hypothesis test, specified as a matrix. The columns of $x$ represent changes in a factor A. The rows represent changes in a blocking factor B. If there is more
than one observation for each combination of factors, input reps indicates the number of replicates in each “cell,” which must be constant.

Data Types: single | double

**reps — Number of replicates per cell**

1 (default) | positive integer value

Number of replicates per cell, specified as a positive integer value.

Data Types: single | double

**displayopt — ANOVA table display option**

'off' (default) | 'on'

ANOVA table display option, specified as 'off' or 'on'.

If displayopt is 'on', then `friedman` displays a figure showing an ANOVA table, which divides the variability of the ranks into two or three parts:

- The variability due to the differences among the column effects
- The variability due to the interaction between rows and columns (if reps is greater than its default value of 1)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows Friedman's chi-square statistic.
- The sixth shows the p value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the Edit menu.
Output Arguments

p — \( p \)-value
scalar value in the range \([0, 1]\)

\( p \)-value of the test, returned as a scalar value in the range \([0, 1]\). \( p \) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \( p \) cast doubt on the validity of the null hypothesis.

tbl — ANOVA table
cell array

ANOVA table, including column and row labels, returned as a cell array. The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows Friedman's chi-square statistic.
- The sixth shows the \( p \) value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the Edit menu.

stats — Test data
structure

Test data, returned as a structure. friedman evaluates the hypothesis that the column effects are all the same against the alternative that they are not all the same. However, sometimes it is preferable to perform a test to determine which pairs of column effects are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying stats as the input value.
Definitions

Friedman’s Test

Friedman’s test is similar to classical balanced two-way ANOVA, but it tests only for column effects after adjusting for possible row effects. It does not test for row effects or interaction effects. Friedman’s test is appropriate when columns represent treatments that are under study, and rows represent nuisance effects (blocks) that need to be taken into account but are not of any interest.

The different columns of X represent changes in a factor A. The different rows represent changes in a blocking factor B. If there is more than one observation for each combination of factors, input reps indicates the number of replicates in each “cell,” which must be constant.

The matrix below illustrates the format for a set-up where column factor A has three levels, row factor B has two levels, and there are two replicates (reps=2). The subscripts indicate row, column, and replicate, respectively.

\[
\begin{bmatrix}
  x_{111} & x_{121} & x_{131} \\
  x_{112} & x_{122} & x_{132} \\
  x_{211} & x_{221} & x_{231} \\
  x_{212} & x_{222} & x_{232} \\
\end{bmatrix}
\]

Friedman’s test assumes a model of the form

\[x_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}\]

where \(\mu\) is an overall location parameter, \(\alpha_i\) represents the column effect, \(\beta_j\) represents the row effect, and \(\varepsilon_{ijk}\) represents the error. This test ranks the data within each level of B, and tests for a difference across levels of A. The \(p\) that \texttt{friedman} returns is the \(p\) value for the null hypothesis that \(\alpha_i = 0\). If the \(p\) value is near zero, this casts doubt on the null hypothesis. A sufficiently small \(p\) value suggests that at least one column-sample median is significantly different than the others; i.e., there is a main effect due to factor A. The choice of a critical \(p\) value to determine whether a result is “statistically significant” is left
to the researcher. It is common to declare a result significant if the $p$ value is less than 0.05 or 0.01.

Friedman's test makes the following assumptions about the data in $X$:

- All data come from populations having the same continuous distribution, apart from possibly different locations due to column and row effects.
- All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger assumption that data come from normal distributions.

**References**


**See Also**

anova2 | kruskalwallis | multcompare

**Introduced before R2006a**
**frnd**

$F$ random numbers

**Syntax**

\[
R = \text{frnd}(V1,V2) \\
R = \text{frnd}(V1,V2,m,n,...) \\
R = \text{frnd}(V1,V2,[m,n,...])
\]

**Description**

\( R = \text{frnd}(V1,V2) \) generates random numbers from the $F$ distribution with numerator degrees of freedom $V1$ and denominator degrees of freedom $V2$. $V1$ and $V2$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for $V1$ or $V2$ is expanded to a constant array with the same dimensions as the other input. $V1$ and $V2$ parameters must contain real positive values.

\( R = \text{frnd}(V1,V2,m,n,...) \) or \( R = \text{frnd}(V1,V2,[m,n,...]) \) generates an $m$-by-$n$-by-... array containing random numbers from the $F$ distribution with parameters $V1$ and $V2$. $V1$ and $V2$ can each be scalars or arrays of the same size as $R$.

**Examples**

\[
n1 = \text{frnd}(1:6,1:6) \\
n1 =
  \begin{bmatrix}
  0.0022 & 0.3121 & 3.0528 & 0.3189 & 0.2715 & 0.9539 \\
  \end{bmatrix}
\]

\[
n2 = \text{frnd}(2,2,[2,3]) \\
n2 =
  \begin{bmatrix}
  0.3186 & 0.9727 & 3.0268 \\
  0.2052 & 148.5816 & 0.2191 \\
  \end{bmatrix}
\]

\[
n3 = \text{frnd}([1 2 3; 4 5 6],1,2,3) \\
n3 =
  \begin{bmatrix}
  0.6233 & 0.2322 & 31.5458 \\
  2.5848 & 0.2121 & 4.4955 \\
  \end{bmatrix}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
fcdf | finv | fpdf | fstat | random

Topics
“F Distribution” on page B-42

Introduced before R2006a
**fscnca**

Feature selection using neighborhood component analysis for classification

**Syntax**

```matlab
mdl = fscnca(X,Y)
mdl = fscnca(X,Y,Name,Value)
```

**Description**

`mdl = fscnca(X,Y)` performs feature selection for classification using the predictors in `X` and responses in `Y`.

`fscnca` learns the feature weights by using a diagonal adaptation of neighborhood component analysis (NCA) with regularization.

`mdl = fscnca(X,Y,Name,Value)` performs feature selection for classification with additional options specified by one or more name-value pair arguments.

**Examples**

**Detect Relevant Features in Data Using NCA for Classification**

Generate toy data where the response variable depends on the 3rd, 9th, and 15th predictors.

```matlab
rng(0,'twister'); \% For reproducibility
N = 100;
X = rand(N,20);
y = -ones(N,1);
y(X(:,3).*X(:,9)./X(:,15) < 0.4) = 1;
```

Fit the neighborhood component analysis model for classification.

```matlab
mdl = fscnca(X,y,'Solver','sgd','Verbose',1);
```
### Tuning initial learning rate

- **NumTuningIterations** = 20, **TuningSubsetSize** = 100

<table>
<thead>
<tr>
<th>TUNING ITER</th>
<th>TUNING SUBSET</th>
<th>LEARNING RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.755936e-01</td>
<td>2.000000e-01</td>
</tr>
<tr>
<td>2</td>
<td>-3.950971e-01</td>
<td>4.000000e-01</td>
</tr>
<tr>
<td>3</td>
<td>-4.311848e-01</td>
<td>8.000000e-01</td>
</tr>
<tr>
<td>4</td>
<td>-4.903195e-01</td>
<td>1.600000e+00</td>
</tr>
<tr>
<td>5</td>
<td>-5.630190e-01</td>
<td>3.200000e+00</td>
</tr>
<tr>
<td>6</td>
<td>-6.166993e-01</td>
<td>6.400000e+00</td>
</tr>
<tr>
<td>7</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>8</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>9</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>10</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>11</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>12</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>13</td>
<td>-6.255669e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>14</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>15</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>16</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>17</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>18</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>19</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>20</td>
<td>-6.279210e-01</td>
<td>2.560000e+01</td>
</tr>
</tbody>
</table>

### Solver
- **Solver** = SGD, **MiniBatchSize** = 10, **PassLimit** = 5

<table>
<thead>
<tr>
<th>PASS</th>
<th>ITER</th>
<th>AVG MINIBATCH FUN VALUE</th>
<th>AVG MINIBATCH NORM GRAD</th>
<th>NORM STEP</th>
<th>LEARNING RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>-5.658450e-01</td>
<td>4.492407e-02</td>
<td>9.290605e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>-6.131382e-01</td>
<td>4.923625e-02</td>
<td>7.421541e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>-6.225056e-01</td>
<td>3.738784e-02</td>
<td>3.277588e-01</td>
<td>8.533333e+00</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>-6.233366e-01</td>
<td>4.947901e-02</td>
<td>5.431133e-01</td>
<td>6.400000e+00</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>-6.238576e-01</td>
<td>3.445763e-02</td>
<td>2.946188e-01</td>
<td>5.120000e+00</td>
</tr>
</tbody>
</table>

Two norm of the final step = 2.946e-01
Relative two norm of the final step = 6.588e-02, TolX = 1.000e-06
EXIT: Iteration or pass limit reached.

Plot the selected features. The weights of the irrelevant features should be close to zero.
```matlab
figure()
plot(mdl.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')
```

The code above plots the feature weights against their indices. The `fscnca` function correctly detects the relevant features.
Identify Relevant Features for Classification

Load sample data

```matlab
load ovariancancer;
whos
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp</td>
<td>216x1</td>
<td>26784</td>
<td>cell</td>
<td></td>
</tr>
<tr>
<td>obs</td>
<td>216x4000</td>
<td>3456000</td>
<td>single</td>
<td></td>
</tr>
</tbody>
</table>

This example uses the high-resolution ovarian cancer data set that was generated using the WCX2 protein array. The data is from the FDA-NCI Clinical Proteomics Program Databank. After some preprocessing steps, the data set has two variables: `obs` and `grp`. The `obs` variable consists 216 observations with 4000 features. Each element in `grp` defines the group to which the corresponding row of `obs` belongs.

Divide data into training and test sets

Use `cvpartition` to divide data into a training set of size 160 and a test set of size 56. Both the training set and the test set have roughly the same group proportions as in `grp`.

```matlab
rng(1); % For reproducibility
cvp = cvpartition(grp,'holdout',56)
Xtrain = obs(cvp.training,:);
ytrain = grp(cvp.training,:);
Xtest = obs(cvp.test,:);
ytest = grp(cvp.test,:);
```

```matlab
cvp =

Hold-out cross validation partition
NumObservations: 216
NumTestSets: 1
TrainSize: 160
TestSize: 56
```

Determine if feature selection is necessary

Compute generalization error without fitting.
nca = fscnca(Xtrain,ytrain,'FitMethod','none');
L = loss(nca,Xtest,ytest)

L =

0.0893

This option computes the generalization error of the neighborhood component analysis (NCA) feature selection model using the initial feature weights (in this case the default feature weights) provided in fscnca.

Fit NCA without regularization parameter (Lambda = 0)

nca = fscnca(Xtrain,ytrain,'FitMethod','exact','Lambda',0,...
          'Solver','sgd','Standardize',true);
L = loss(nca,Xtest,ytest)

L =

0.0714

The improvement on the loss value suggests that feature selection is a good idea. Tuning the \( \lambda \) value usually improves the results.

**Tune the regularization parameter for NCA using five-fold cross-validation**

Tuning \( \lambda \) means finding the \( \lambda \) value that produces the minimum classification loss. To tune \( \lambda \) using cross-validation:

1. Partition the training data into five folds and extract the number of validation (test) sets. For each fold, cvpartition assigns four-fifths of the data as a training set, and one-fifth of the data as a test set.

   cvp = cvpartition(ytrain,'kfold',5);
   numvalidsets = cvp.NumTestSets;

Assign \( \lambda \) values and create an array to store the loss function values.

   n = length(ytrain);
   lambdavals = linspace(0,20,20)/n;
   lossvals = zeros(length(lambdavals),numvalidsets);
2. Train the NCA model for each \( \lambda \) value, using the training set in each fold.

3. Compute the classification loss for the corresponding test set in the fold using the NCA model. Record the loss value.

4. Repeat this process for all folds and all \( \lambda \) values.

```matlab
for i = 1:length(lambdavals)
 for k = 1:numvalidsets
 X = Xtrain(cvp.training(k),:);
 y = ytrain(cvp.training(k),:);
 Xvalid = Xtrain(cvp.test(k),:);
 yvalid = ytrain(cvp.test(k),:);

 nca = fscnca(X,y,'FitMethod','exact', ...
 'Solver','sgd','Lambda',lambdavals(i), ...
 'IterationLimit',30,'GradientTolerance',1e-4, ...
 'Standardize',true);

 lossvals(i,k) = loss(nca,Xvalid,yvalid,'LossFunction','classiferror');
 end
end
```

Compute the average loss obtained from the folds for each \( \lambda \) value.

```matlab
meanloss = mean(lossvals,2);
```

Plot the average loss values versus the \( \lambda \) values.

```matlab
figure()
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
```
Find the best lambda value that corresponds to the minimum average loss.

\[
[~, idx] = \min(\text{meanloss}) \quad \text{Find the index}
\]
\[
\text{bestlambda} = \text{lambdavals}(idx) \quad \text{Find the best lambda value}
\]
\[
\text{bestloss} = \text{meanloss}(idx)
\]

\[
idx = 2
\]

\[
\text{bestlambda} = fscnca
\]
bestloss = 0.0250

**Fit the nca model on all data using best $\lambda$ and plot the feature weights**

Use the solver lbfgs and standardize the predictor values.

```matlab
c = fscnca(Xtrain,ytrain,'FitMethod','exact','Solver','sgd',...
 'Lambda',bestlambda,'Standardize',true,'Verbose',1);
```

```
<table>
<thead>
<tr>
<th>TUNING ITER</th>
<th>TUNING SUBSET</th>
<th>LEARNING RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.403497e+01</td>
<td>2.000000e-01</td>
</tr>
<tr>
<td>2</td>
<td>2.275050e+01</td>
<td>4.000000e-01</td>
</tr>
<tr>
<td>3</td>
<td>2.036845e+01</td>
<td>8.000000e-01</td>
</tr>
<tr>
<td>4</td>
<td>1.627647e+01</td>
<td>1.600000e+00</td>
</tr>
<tr>
<td>5</td>
<td>1.023512e+01</td>
<td>3.200000e+00</td>
</tr>
<tr>
<td>6</td>
<td>3.864283e+00</td>
<td>6.400000e+00</td>
</tr>
<tr>
<td>7</td>
<td>4.743816e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>8</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>9</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>10</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>11</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>12</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>13</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>14</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>15</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>16</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>17</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>18</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>19</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>20</td>
<td>-7.260138e-01</td>
<td>2.560000e+01</td>
</tr>
</tbody>
</table>
```

Solver = SGD, MiniBatchSize = 10, PassLimit = 5
<table>
<thead>
<tr>
<th>PASS</th>
<th>ITER</th>
<th>AVG MINIBATCH</th>
<th>AVG MINIBATCH</th>
<th>NORM STEP</th>
<th>LEARNING RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FUN VALUE</td>
<td>NORM GRAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>4.016078e+00</td>
<td>2.835465e-02</td>
<td>5.395984e+00</td>
<td>2.560000e+01</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>-6.726156e-01</td>
<td>6.111354e-02</td>
<td>5.021138e-01</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>-8.316555e-01</td>
<td>4.024185e-02</td>
<td>1.196030e+00</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>-8.838656e-01</td>
<td>2.333418e-02</td>
<td>1.196030e+00</td>
<td>1.280000e+01</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>-8.669035e-01</td>
<td>3.413150e-02</td>
<td>3.421881e-01</td>
<td>6.400000e+00</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>-8.906935e-01</td>
<td>1.946293e-02</td>
<td>3.421881e-01</td>
<td>6.400000e+00</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>-8.778630e-01</td>
<td>3.561283e-02</td>
<td>3.290643e-01</td>
<td>5.120000e+00</td>
</tr>
<tr>
<td>7</td>
<td>79</td>
<td>-8.857136e-01</td>
<td>2.516633e-02</td>
<td>3.902977e-01</td>
<td>5.120000e+00</td>
</tr>
</tbody>
</table>

Two norm of the final step = 3.903e-01
Relative two norm of the final step = 6.171e-03, TolX = 1.000e-06
EXIT: Iteration or pass limit reached.

Plot the feature weights.

```python
figure()
plot(nca.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
```
Select features using the feature weights and a relative threshold.

tol = 0.02;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))

selidx =

565
611
654
681
737
743
Compute the classification loss using the test set.

\[ L = \text{loss(nca,Xtest,ytest)} \]

\[ L = 0.0179 \]

**Classify observations using the selected features**

Extract the features with feature weights greater than 0 from the training data.

\[ \text{features} = \text{Xtrain(:,selidx)}; \]

Apply a support vector machine classifier using the selected features to the reduced training set.

\[ \text{svmMdl} = \text{fitcsvm(features,ytrain);} \]
Evaluate the accuracy of the trained classifier on the test data which has not been used for selecting features.

\[ L = \text{loss}(\text{svmMdl}, X_{test}(:, \text{selidx}), y_{test}) \]

\[ L = \]

single

0

### Input Arguments

**X** — Predictor variable values

\( n \)-by-\( p \) matrix

Predictor variable values, specified as an \( n \)-by-\( p \) matrix, where \( n \) is the number of observations and \( p \) is the number of predictor variables.

Data Types: single | double

**Y** — Class labels

categorical vector | logical vector | numeric vector | string array | cell array of character vectors of length \( n \) | character matrix with \( n \) rows

Class labels, specified as a categorical vector, logical vector, numeric vector, string array, cell array of character vectors of length \( n \), or character matrix with \( n \) rows, where \( n \) is the number of observations. Element \( i \) or row \( i \) of \( Y \) is the class label corresponding to row \( i \) of \( X \) (observation \( i \)).

Data Types: single | double | logical | char | string | cell | categorical

### Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**,** Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name**1,** Value**1,** ...,** Name**N,** Value**N.
Example: 'Solver','sgd','Weights',W,'Lambda',0.0003 specifies the solver as the stochastic gradient descent, the observation weights as the values in the vector W, and sets the regularization parameter at 0.0003.

Fitting Options

FitMethod — Method for fitting the model
'exact' (default) | 'none' | 'average'

Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and one of the following:

• 'exact' — Performs fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to fscnca.
• 'average' — Divides the data into partitions (subsets), fits each partition using the exact method, and returns the average of the feature weights. You can specify the number of partitions using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

NumPartitions — Number of partitions
max(2,min(10,n)) (default) | integer between 2 and n

Number of partitions to split the data for using with 'FitMethod','average' option, specified as the comma-separated pair consisting of 'NumPartitions' and an integer value between 2 and n, where n is the number of observations.

Example: 'NumPartitions',15

Data Types: double | single

Lambda — Regularization parameter
1/n (default) | nonnegative scalar

Regularization parameter to prevent overfitting, specified as the comma-separated pair consisting of 'Lambda' and a nonnegative scalar.

As the number of observations n increases, the chance of overfitting decreases and the required amount of regularization also decreases. See “Identify Relevant Features for Classification” on page 32-2631 and “Tune Regularization Parameter to Detect Features Using NCA for Classification” to learn how to tune the regularization parameter.
Example: 'Lambda', 0.002
Data Types: double | single

**LengthScale — Width of the kernel**

1 (default) | positive real scalar

Width of the kernel, specified as the comma-separated pair consisting of 'LengthScale' and a positive real scalar.

A length scale value of 1 is sensible when all predictors are on the same scale. If the predictors in X are of very different magnitudes, then consider standardizing the predictor values using 'Standardize', true and setting 'LengthScale', 1.

Example: 'LengthScale', 1.5
Data Types: double | single

**InitialFeatureWeights — Initial feature weights**

ones(p, 1) (default) | p-by-1 vector of real positive scalars

Initial feature weights, specified as the comma-separated pair consisting of 'InitialFeatureWeights' and a p-by-1 vector of real positive scalars, where p is the number of predictors in the training data.

The regularized objective function for optimizing feature weights is nonconvex. As a result, using different initial feature weights can give different results. Setting all initial feature weights to 1 generally works well, but in some cases, random initialization using rand(p, 1) can give better quality solutions.

Data Types: double | single

**Weights — Observation weights**

n-by-1 vector of 1s (default) | n-by-1 vector of real positive scalars

Observation weights, specified as the comma-separated pair consisting of 'ObservationWeights' and an n-by-1 vector of real positive scalars. Use observation weights to specify higher importance of some observations compared to others. The default weights assign equal importance to all observations.

Data Types: double | single

**Prior — Prior probabilities for each class**

'empirical' (default) | 'uniform' | structure
Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and one of the following:

- 'empirical' — fscnca obtains the prior class probabilities from class frequencies.
- 'uniform' — fscnca sets all class probabilities equal.
- Structure with two fields:
  - ClassProbs — Vector of class probabilities. If these are numeric values with a total greater than 1, fscnca normalizes them to add up to 1.
  - ClassNames — Class names corresponding to the class probabilities in ClassProbs.

Example: 'Prior','uniform'

**Standardize — Indicator for standardizing predictor data**

false (default) | true

Indicator for standardizing the predictor data, specified as the comma-separated pair consisting of 'Standardize' and either false or true. For more information, see “Impact of Standardization” on page 15-127.

Example: 'Standardize',true

Data Types: logical

**Verbose — Verbosity level indicator**

0 (default) | 1 | >1

Verbosity level indicator for the convergence summary display, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

- 0 — No convergence summary
- 1 — Convergence summary, including norm of gradient and objective function values
- > 1 — More convergence information, depending on the fitting algorithm

When using 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes iteration the log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',1

Data Types: double | single
**Solver — Solver type**
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of 'Solver' and one of the following:

- 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
- 'sgd' — Stochastic gradient descent (SGD) algorithm
- 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-batches

Default is 'lbfgs' for \( n \leq 1000 \), and 'sgd' for \( n > 1000 \).
Example: 'solver','minibatch-lbfgs'

**LossFunction — Loss function**
'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and one of the following.

- 'classiferror' — Misclassification error

\[
l(y_i, y_j) = \begin{cases} 
1 & \text{if } y_i \neq y_j, \\
0 & \text{otherwise.} 
\end{cases}
\]

- @lossfun — Custom loss function handle. A loss function has this form.

```matlab
function L = lossfun(Yu,Yv)
% calculation of loss
...
```

Yu is a \( u \)-by-1 vector and Yv is a \( v \)-by-1 vector. L is a \( u \)-by-\( v \) matrix of loss values such that \( L(i,j) \) is the loss value for \( Yu(i) \) and \( Yv(j) \).

The objective function for minimization includes the loss function \( l(y_i, y_j) \) as follows:

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} p_{ij} l(y_i, y_j) + \lambda \sum_{r=1}^{p} w_r^2,
\]
where \( w \) is the feature weight vector, \( n \) is the number of observations, and \( p \) is the number of predictor variables. \( p_{ij} \) is the probability that \( x_j \) is the reference point for \( x_i \). For details, see “NCA Feature Selection for Classification” on page 15-121.

Example: 'LossFunction',@lossfun

**CacheSize — Memory size**

1000MB (default) | integer

Memory size, in MB, to use for objective function and gradient computation, specified as the comma-separated pair consisting of 'CacheSize' and an integer.

Example: 'CacheSize',1500MB

Data Types: double | single

**LBFGS Options**

**HessianHistorySize — Size of history buffer for Hessian approximation**

15 (default) | positive integer

Size of history buffer for Hessian approximation for the 'lbfgs' solver, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration the function uses the most recent HessianHistorySize iterations to build an approximation to the inverse Hessian.

Example: 'HessianHistorySize',20

Data Types: double | single

**InitialStepSize — Initial step size**

'auto' (default) | positive real scalar

Initial step size for the 'lbfgs' solver, specified as the comma-separated pair consisting of 'InitialStepSize' and a positive real scalar. By default, the function determines the initial step size automatically.

Data Types: double | single

**LineSearchMethod — Line search method**

'weakwolfe' (default) | 'strongwolfe' | 'backtracking'

Line search method, specified as the comma-separated pair consisting of 'LineSearchMethod' and one of the following:
• 'weakwolfe' — Weak Wolfe line search
• 'strongwolfe' — Strong Wolfe line search
• 'backtracking' — Backtracking line search

Example: 'LineSearchMethod','backtracking'

MaxLineSearchIterations — Maximum number of line search iterations
20 (default) | positive integer

Maximum number of line search iterations, specified as the comma-separated pair consisting of 'MaxLineSearchIterations' and a positive integer.

Example: 'MaxLineSearchIterations',25

Data Types: double | single

GradientTolerance — Relative convergence tolerance
1e-6 (default) | positive real scalar

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive real scalar.

Example: 'GradientTolerance',0.000002

Data Types: double | single

SGD Options

InitialLearningRate — Initial learning rate for 'sgd' solver
'auto' (default) | positive real scalar

Initial learning rate for the 'sgd' solver, specified as the comma-separated pair consisting of 'InitialLearningRate' and a positive real scalar.

When using solver type 'sgd', the learning rate decays over iterations starting with the value specified for 'InitialLearningRate'.

The default 'auto' means that the initial learning rate is determined using experiments on small subsets of data. Use the NumTuningIterations name-value pair argument to specify the number of iterations for automatically tuning the initial learning rate. Use the TuningSubsetSize name-value pair argument to specify the number of observations to use for automatically tuning the initial learning rate.
For solver type 'minibatch-lbfgs', you can set 'InitialLearningRate' to a very high value. In this case, the function applies LBFGS to each mini-batch separately with initial feature weights from the previous mini-batch.

To make sure the chosen initial learning rate decreases the objective value with each iteration, plot the Iteration versus the Objective values saved in the mdl.FitInfo property.

You can use the refit method with 'InitialFeatureWeights' equal to mdl.FeatureWeights to start from the current solution and run additional iterations.

Example: 'InitialLearningRate', 0.9
Data Types: double | single

**MiniBatchSize — Number of observations to use in each batch for the 'sgd' solver**

*min(10,n) (default) | positive integer value from 1 to n*

Number of observations to use in each batch for the 'sgd' solver, specified as the comma-separated pair consisting of 'MiniBatchSize' and a positive integer from 1 to n.

Example: 'MiniBatchSize', 25
Data Types: double | single

**PassLimit — Maximum number of passes for solver 'sgd'**

*5 (default) | positive integer*

Maximum number of passes through all n observations for solver 'sgd', specified as the comma-separated pair consisting of 'PassLimit' and a positive integer. Each pass through all of the data is called an epoch.

Example: 'PassLimit', 10
Data Types: double | single

**NumPrint — Frequency of batches for displaying convergence summary**

*10 (default) | positive integer value*

Frequency of batches for displaying convergence summary for the 'sgd' solver, specified as the comma-separated pair consisting of 'NumPrint' and a positive integer. This argument applies when the 'Verbose' value is greater than 0. NumPrint mini-
batches are processed for each line of the convergence summary that is displayed on the command line.

Example: 'NumPrint',5
Data Types: double | single

**NumTuningIterations — Number of tuning iterations**

20 (default) | positive integer

Number of tuning iterations for the 'sgd' solver, specified as the comma-separated pair consisting of 'NumTuningIterations' and a positive integer. This option is valid only for 'InitialLearningRate','auto'.

Example: 'NumTuningIterations',15
Data Types: double | single

**TuningSubsetSize — Number of observations to use for tuning initial learning rate**

min(100,n) (default) | positive integer value from 1 to n

Number of observations to use for tuning the initial learning rate, specified as the comma-separated pair consisting of 'TuningSubsetSize' and a positive integer value from 1 to n. This option is valid only for 'InitialLearningRate','auto'.

Example: 'TuningSubsetSize',25
Data Types: double | single

**SGD or LBFGS Options**

**IterationLimit — Maximum number of iterations**

positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer. The default is 10000 for SGD and 1000 for LBFGS and mini-batch LBFGS.

Each pass through a batch is an iteration. Each pass through all of the data is an epoch. If the data is divided into k mini-batches, then every epoch is equivalent to k iterations.

Example: 'IterationLimit',250
Data Types: double | single
StepTolerance — Convergence tolerance on the step size
1e-6 (default) | positive real scalar

Convergence tolerance on the step size, specified as the comma-separated pair consisting of 'StepTolerance' and a positive real scalar. The 'lbfgs' solver uses an absolute step tolerance, and the 'sgd' solver uses a relative step tolerance.

Example: 'StepTolerance',0.000005

Data Types: double | single

Mini-Batch LBFGS Options

MiniBatchLBFGSIterations — Maximum number of iterations per mini-batch LBFGS step
10 (default) | positive integer

Maximum number of iterations per mini-batch LBFGS step, specified as the comma-separated pair consisting of 'MiniBatchLBFGSIterations' and a positive integer.

Example: 'MiniBatchLBFGSIterations',15

Mini-batch LBFGS algorithm is a combination of SGD and LBFGS methods. Therefore, all of the name-value pair arguments that apply to SGD and LBFGS solvers also apply to the mini-batch LBFGS algorithm.

Data Types: double | single

Output Arguments

mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a FeatureSelectionNCAClassification object.

See Also

FeatureSelectionNCAClassification | loss | predict | refit

Topics

“Tune Regularization Parameter to Detect Features Using NCA for Classification”
“Neighborhood Component Analysis (NCA) Feature Selection” on page 15-121

Introduced in R2016b
fsrnca

Feature selection using neighborhood component analysis for regression

Syntax

mdl = fsrnca(X,Y)
mdl = fsrnca(X,Y,Name,Value)

Description

mdl = fsrnca(X,Y) performs feature selection for regression using the predictors in X and responses in Y.

fsrnca learns the feature weights by a diagonal adaptation of neighborhood component analysis (NCA) with regularization.

mdl = fsrnca(X,Y,Name,Value) performs feature selection for regression with additional options specified by one or more name-value pair arguments.

Examples

Detect Relevant Features in Data Using NCA for Regression

Generate toy data where the response variable depends on the 3rd, 9th, and 15th predictors.

rng(0,'twister'); % For reproducibility
N = 100;
X = rand(N,20);
y = 1 + X(:,3)*5 + sin(X(:,9)./X(:,15)) + 0.25*randn(N,1));

Fit the neighborhood component analysis model for regression.

mdl = fsrnca(X,y,'Verbose',1,'Lambda',0.5/N);
Plot the selected features. The weights of the irrelevant features should be close to zero.

```matlab
figure()
plot(mdl.FeatureWeights,'ro')
```
grid on
xlabel('Feature index')
ylabel('Feature weight')

fsrnca correctly detects the relevant predictors for this response.

Tune Regularization Parameter in NCA for Regression

Load the sample data.

load robotarm.mat
The robotarm (pumadyn32nm) dataset is created using a robot arm simulator with 7168 training observations and 1024 test observations with 32 features [1][2]. This is a preprocessed version of the original data set. The data are preprocessed by subtracting off a linear regression fit, followed by normalization of all features to unit variance.

Perform neighborhood component analysis (NCA) feature selection for regression with the default $\lambda$ (regularization parameter) value.

```matlab
nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
 'Solver','lbfgs');
```

Plot the selected values.

```matlab
figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
```
More than half of the feature weights are nonzero. Compute the loss using the test set as a measure of the performance by using the selected features.

\[ L = \text{loss(nca,Xtest,ytest)} \]

\[ L = 0.0837 \]

Try improving the performance. Tune the regularization parameter \( \lambda \) for feature selection using five-fold cross-validation. Tuning \( \lambda \) means finding the \( \lambda \) value that produces the minimum regression loss. To tune \( \lambda \) using cross-validation:
1. Partition the data into five folds. For each fold, \texttt{cvpartition} assigns 4/5th of the data as a training set, and 1/5th of the data as a test set.

```matlab
rng(1) % For reproducibility
n = length(ytrain);
cvp = cvpartition(length(ytrain),'kfold',5);
numvalidsets = cvp.NumTestSets;
```

Assign the \( \lambda \) values for the search. Multiplying response values by a constant increases the loss function term by a factor of the constant. Therefore, including the \( \text{std}(ytrain) \) factor in the \( \lambda \) values balances the default loss function ('mad', mean absolute deviation) term and the regularization term in the objective function. In this example, the \( \text{std}(ytrain) \) factor is one because the loaded sample data is a preprocessed version of the original data set.

```matlab
lambdavals = linspace(0,50,20)*std(ytrain)/n;
```

Create an array to store the loss values.

```matlab
lossvals = zeros(length(lambdavals),numvalidsets);
```

2. Train the NCA model for each \( \lambda \) value, using the training set in each fold.

3. Compute the regression loss for the corresponding test set in the fold using the NCA model. Record the loss value.

4. Repeat this for each \( \lambda \) value and each fold.

```matlab
for i = 1:length(lambdavals)
 for k = 1:numvalidsets
 X = Xtrain(cvp.training(k),:);
 y = ytrain(cvp.training(k),:);
 Xvalid = Xtrain(cvp.test(k),:);
 yvalid = ytrain(cvp.test(k),:);

 nca = fsrnca(X,y,'FitMethod','exact', ...
 'Solver','minibatch-lbfgs','Lambda',lambdavals(i), ...
 'GradientTolerance',1e-4,'IterationLimit',30);
 lossvals(i,k) = loss(nca,Xvalid,yvalid,'LossFunction','mse');
 end
end
```
Compute the average loss obtained from the folds for each $\lambda$ value.

$$\text{meanloss} = \text{mean(lossvals,2)};$$

Plot the mean loss versus the $\lambda$ values.

```matlab
figure
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
```
Find the $\lambda$ value that gives the minimum loss value.

$$[~,\text{idx}] = \min(\text{meanloss})$$

bestlambda = lambdavals(idx)
bestloss = meanloss(idx)

idx =

17

bestlambda =
Fit the NCA feature selection model for regression using the best λ value.

```matlab
nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
 'Solver','lbfgs','Lambda',bestlambda);
```

Plot the selected features.

```matlab
figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
```
Most of the feature weights are zero. \texttt{fsrnca} identifies the four most relevant features.

Compute the loss for the test set.

\[
\text{L} = \text{loss}(\text{nca}, \text{Xtest}, \text{ytest})
\]

\[
\text{L} = 0.0571
\]
Tuning the regularization parameter, \( \lambda \), eliminated more of the irrelevant features and improved the performance.

**Compare NCA and ARD Feature Selection**

This example uses the Abalone data [3] [4] from the UCI Machine Learning Repository [5]. Download the data and save it in your current folder with the name 'abalone.data'.

Store the data into a table. Display the first seven rows.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height', ... 'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};
tbl(1:7,:)
```

```
ans =
7×9 table
 Sex Length Diameter Height WWeight SWeight VWeight ShWeight NoShellRings
 ___ ______ ________ ______ _______ _______ _______ ________ __________
 'M' 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
 'M' 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
 'F' 0.53 0.42 0.135 0.677 0.2565 0.1415 0.33 20
 'M' 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
 'I' 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7
 'I' 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8
 'F' 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33
```

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical measurements. The last variable, the number of shell rings, shows the age of the abalone. The first predictor is a categorical variable. The last variable in the table is the response variable.

Prepare the predictor and response variables for `fsrnca`. The last column of `tbl` contains the number of shell rings, which is the response variable. The first predictor variable, sex, is categorical. You must create dummy variables.
y = table2array(tbl(:,end));
X(:,1:3) = dummyvar(categorical(tbl.Sex));
X = [X,table2array(tbl(:,2:end-1))];

Use four-fold cross-validation to tune the regularization parameter in the NCA model. First partition the data into four folds.

rng('default') % For reproducibility
n = length(y);
cvp = cvpartition(n,'kfold',4);
numtestsets = cvp.NumTestSets;

cvpartition divides the data into four partitions (folds). In each fold, about three-fourths of the data is assigned as a training set and one-fourth is assigned as a test set.

Generate a variety of λ (regularization parameter) values for fitting the model to determine the best λ value. Create a vector to collect the loss values from each fit.

lambdavals = linspace(0,25,20)*std(y)/n;
lossvals = zeros(length(lambdavals),numtestsets);

The rows of lossvals corresponds to the λ values and the columns correspond to the folds.

Fit the NCA model for regression using fsrnca to the data from each fold using each λ value. Compute the loss for each model using the test data from each fold.

for i = 1:length(lambdavals)
    for k = 1:numtestsets
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);

        nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
                     'Solver','lbfgs','Lambda',lambdavals(i),'Standardize',true);

        lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

Compute the average loss for the folds, that is, compute the mean in the second dimension of lossvals.

meanloss = mean(lossvals,2);
Plot the $\lambda$ values versus the mean loss from the four folds.

```matlab
figure
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
```

Find the $\lambda$ value that minimizes the mean loss.

```matlab
[~,idx] = min(meanloss);
bestlambda = lambdavals(idx)
```

```
bestlambda = 32
```

32-2664
0.0071

Compute the best loss value.

bestloss = meanloss(idx)

bestloss =

4.7799

Fit the NCA model on all of the data using the best $\lambda$ value.

nca = fsrnca(X,y,'FitMethod','exact','Solver','lbfgs', ...  
    'Verbose',1,'Lambda',bestlambda,'Standardize',true);

Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe
<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.27401e+00</td>
<td>6.710e-07</td>
<td>2.325e-04</td>
<td>OK</td>
<td>2.721e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 6.710e-07
Two norm of the final step     = 2.325e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 6.710e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the selected features.

figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
The irrelevant features have zero weights. According to this figure, the features 1, 3, and 9 are not selected.

Fit a Gaussian process regression (GPR) model using the subset of regressors method for parameter estimation and the fully independent conditional method for prediction. Use the ARD squared exponential kernel function, which assigns an individual weight to each predictor. Standardize the predictors.

```matlab
gprMdl = fitrgp(tbl,'NoShellRings','KernelFunction','ardsquaredexponential', ... 'FitMethod','sr','PredictMethod','fic','Standardize',true)
gprMdl =
```
RegressionGP
    PredictorNames: [1×8 cell]
    ResponseName: 'NoShellRings'
    CategoricalPredictors: 1
    ResponseTransform: 'none'
    NumObservations: 4177
    KernelFunction: 'ARDSquaredExponential'
    KernelInformation: [1×1 struct]
    BasisFunction: 'Constant'
        Beta: 11.4959
        Sigma: 2.0282
    PredictorLocation: [10×1 double]
    PredictorScale: [10×1 double]
    Alpha: [1000×1 double]
    ActiveSetVectors: [1000×10 double]
    PredictMethod: 'FIC'
    ActiveSetSize: 1000
    FitMethod: 'SR'
    IsActiveSetVector: [4177×1 logical]
    LogLikelihood: -9.0019e+03
    ActiveSetHistory: [1×1 struct]
    BCDInformation: []

Compute the regression loss on the training data (resubstitution loss) for the trained model.

L = resubLoss(gprMdl)

L =

    4.0306
The smallest cross-validated loss using `fsrnca` is comparable to the loss obtained using a GPR model with an ARD kernel.

**Input Arguments**

\( X \) — **Predictor variable values**

\( n \)-by-\( p \) matrix

Predictor variable values, specified as an \( n \)-by-\( p \) matrix, where \( n \) is the number of observations and \( p \) is the number of predictor variables.

Data Types: `single` | `double`

\( Y \) — **Response values**

numeric real vector of length \( n \)

Response values, specified as a numeric real vector of length \( n \), where \( n \) is the number of observations.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Solver','sgd','Weights',W,'Lambda',0.0003` specifies the solver as the stochastic gradient descent, the observation weights as the values in the vector \( W \), and sets the regularization parameter at 0.0003.

**Fitting Options**

**FitMethod** — Method for fitting the model

`'exact'` (default) | `'none'` | `'average'`

Method for fitting the model, specified as the comma-separated pair consisting of `'FitMethod'` and one of the following:

- `'exact'` — Performs fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to fsrnca.
• 'average' — Divides the data into partitions (subsets), fits each partition using the exact method, and returns the average of the feature weights. You can specify the number of partitions using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

NumPartitions — Number of partitions
max(2,min(10,n)) (default) | integer between 2 and n

Number of partitions to split the data for using with 'FitMethod','average' option, specified as the comma-separated pair consisting of 'NumPartitions' and an integer value between 2 and n, where n is the number of observations.

Example: 'NumPartitions',15
Data Types: double | single

Lambda — Regularization parameter
1/n (default) | nonnegative scalar

Regularization parameter to prevent overfitting, specified as the comma-separated pair consisting of 'Lambda' and a nonnegative scalar.

As the number of observations n increases, the chance of overfitting decreases and the required amount of regularization also decreases. See “Tune Regularization Parameter in NCA for Regression” on page 32-2654 to learn how to tune the regularization parameter.

Example: 'Lambda',0.002
Data Types: double | single

LengthScale — Width of the kernel
1 (default) | positive real scalar

Width of the kernel, specified as the comma-separated pair consisting of 'LengthScale' and a positive real scalar.

A length scale value of 1 is sensible when all predictors are on the same scale. If the predictors in X are of very different magnitudes, then consider standardizing the predictor values using 'Standardize',true and setting 'LengthScale',1.

Example: 'LengthScale',1.5
Data Types: double | single

**InitialFeatureWeights — Initial feature weights**

*ones(p,1)* (default) | p-by-1 vector of real positive scalars

Initial feature weights, specified as the comma-separated pair consisting of 'InitialFeatureWeights' and a p-by-1 vector of real positive scalars, where p is the number of predictors in the training data.

The regularized objective function for optimizing feature weights is nonconvex. As a result, using different initial feature weights can give different results. Setting all initial feature weights to 1 generally works well, but in some cases, random initialization using *rand(p,1)* can give better quality solutions.

Data Types: double | single

**Weights — Observation weights**

n-by-1 vector of 1s (default) | n-by-1 vector of real positive scalars

Observation weights, specified as the comma-separated pair consisting of 'ObservationWeights' and an n-by-1 vector of real positive scalars. Use observation weights to specify higher importance of some observations compared to others. The default weights assign equal importance to all observations.

Data Types: double | single

**Standardize — Indicator for standardizing predictor data**

false (default) | true

Indicator for standardizing the predictor data, specified as the comma-separated pair consisting of 'Standardize' and either false or true. For more information, see “Impact of Standardization” on page 15-127.

Example: 'Standardize',true

Data Types: logical

**Verbose — Verbosity level indicator**

0 (default) | 1 | >1

Verbosity level indicator for the convergence summary display, specified as the comma-separated pair consisting of 'Verbose' and one of the following:
- 0 — No convergence summary
- 1 — Convergence summary, including norm of gradient and objective function values
- > 1 — More convergence information, depending on the fitting algorithm

When using 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes iteration the log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',1

Data Types: double | single

Solver — Solver type
'slbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of 'Solver' and one of the following:

- 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
- 'sgd' — Stochastic gradient descent (SGD) algorithm
- 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-batches

Default is 'lbfgs' for n ≤ 1000, and 'sgd' for n > 1000.

Example: 'solver','minibatch-lbfgs'

LossFunction — Loss function
'mad' (default) | 'mse' | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and one of the following:

- 'mad' — Mean absolute deviation
  \[ l(y_i, y_j) = |y_i - y_j|. \]
- 'mse' — Mean squared error
  \[ l(y_i, y_j) = (y_i - y_j)^2. \]
• 'epsiloninsensitive' — \(\varepsilon\)-insensitive loss function

\[
l(y_i, y_j) = \max(0, |y_i - y_j| - \varepsilon).
\]

This loss function is more robust to outliers than mean squared error or mean absolute deviation.

• \@lossfun — Custom loss function handle. A loss function has this form.

```matlab
function L = lossfun(Yu,Yv)
% calculation of loss
...
```

\(Y_u\) is a \(u\)-by-1 vector and \(Y_v\) is a \(v\)-by-1 vector. \(L\) is a \(u\)-by-\(v\) matrix of loss values such that \(L(i,j)\) is the loss value for \(Y_u(i)\) and \(Y_v(j)\).

The objective function for minimization includes the loss function \(l(y_i, y_j)\) as follows:

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} p_{ij} l(y_i, y_j) + \lambda \sum_{r=1}^{P} w_r^2,
\]

where \(w\) is the feature weight vector, \(n\) is the number of observations, and \(p\) is the number of predictor variables. \(p_{ij}\) is the probability that \(x_j\) is the reference point for \(x_i\). For details, see “NCA Feature Selection for Regression” on page 15-125.

Example: 'LossFunction',@lossfun

**Epsilon — Epsilon value**

\(\text{iqr}(Y)/13.49\) (default) | nonnegative real scalar

Epsilon value for the 'LossFunction', 'epsiloninsensitive' option, specified as the comma-separated pair consisting of 'LossFunction' and a nonnegative real scalar. The default value is an estimate of the sample standard deviation using the interquartile range of the response variable.

Example: 'Epsilon', 0.1

Data Types: double | single

**CacheSize — Memory size**

1000MB (default) | integer
Memory size, in MB, to use for objective function and gradient computation, specified as the comma-separated pair consisting of 'CacheSize' and an integer.

Example: 'CacheSize',1500MB

Data Types: double | single

**LBFGS Options**

**HessianHistorySize — Size of history buffer for Hessian approximation**

15 (default) | positive integer

Size of history buffer for Hessian approximation for the 'lbfgs' solver, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration the function uses the most recent HessianHistorySize iterations to build an approximation to the inverse Hessian.

Example: 'HessianHistorySize',20

Data Types: double | single

**InitialStepSize — Initial step size**

'auto' (default) | positive real scalar

Initial step size for the 'lbfgs' solver, specified as the comma-separated pair consisting of 'InitialStepSize' and a positive real scalar. By default, the function determines the initial step size automatically.

Data Types: double | single

**LineSearchMethod — Line search method**

'weakwolfe' (default) | 'strongwolfe' | 'backtracking'

Line search method, specified as the comma-separated pair consisting of 'LineSearchMethod' and one of the following:

- 'weakwolfe' — Weak Wolfe line search
- 'strongwolfe' — Strong Wolfe line search
- 'backtracking' — Backtracking line search

Example: 'LineSearchMethod','backtracking'

**MaxLineSearchIterations — Maximum number of line search iterations**

20 (default) | positive integer
Maximum number of line search iterations, specified as the comma-separated pair consisting of 'MaxLineSearchIterations' and a positive integer.

Example: 'MaxLineSearchIterations',25

Data Types: double | single

**GradientTolerance — Relative convergence tolerance**

1e-6 (default) | positive real scalar

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive real scalar.

Example: 'GradientTolerance',0.000002

Data Types: double | single

**SGD Options**

**InitialLearningRate — Initial learning rate for 'sgd' solver**

'auto' (default) | positive real scalar

Initial learning rate for the 'sgd' solver, specified as the comma-separated pair consisting of 'InitialLearningRate' and a positive real scalar.

When using solver type 'sgd', the learning rate decays over iterations starting with the value specified for 'InitialLearningRate'.

The default 'auto' means that the initial learning rate is determined using experiments on small subsets of data. Use the NumTuningIterations name-value pair argument to specify the number of iterations for automatically tuning the initial learning rate. Use the TuningSubsetSize name-value pair argument to specify the number of observations to use for automatically tuning the initial learning rate.

For solver type 'minibatch-lbfgs', you can set 'InitialLearningRate' to a very high value. In this case, the function applies LBFGS to each mini-batch separately with initial feature weights from the previous mini-batch.

To make sure the chosen initial learning rate decreases the objective value with each iteration, plot the Iteration versus the Objective values saved in the mdl.FitInfo property.

You can use the refit method with 'InitialFeatureWeights' equal to mdl.FeatureWeights to start from the current solution and run additional iterations.
Example: 'InitialLearningRate', 0.9
Data Types: double | single

**MiniBatchSize** — Number of observations to use in each batch for the 'sgd' solver

min(10, n) (default) | positive integer value from 1 to n

Number of observations to use in each batch for the 'sgd' solver, specified as the comma-separated pair consisting of 'MiniBatchSize' and a positive integer from 1 to n.

Example: 'MiniBatchSize', 25
Data Types: double | single

**PassLimit** — Maximum number of passes for solver 'sgd'

5 (default) | positive integer

Maximum number of passes through all n observations for solver 'sgd', specified as the comma-separated pair consisting of 'PassLimit' and a positive integer. Each pass through all of the data is called an epoch.

Example: 'PassLimit', 10
Data Types: double | single

**NumPrint** — Frequency of batches for displaying convergence summary

10 (default) | positive integer value

Frequency of batches for displaying convergence summary for the 'sgd' solver, specified as the comma-separated pair consisting of 'NumPrint' and a positive integer. This argument applies when the 'Verbose' value is greater than 0. NumPrint mini-batches are processed for each line of the convergence summary that is displayed on the command line.

Example: 'NumPrint', 5
Data Types: double | single

**NumTuningIterations** — Number of tuning iterations

20 (default) | positive integer

Number of tuning iterations for the 'sgd' solver, specified as the comma-separated pair consisting of 'NumTuningIterations' and a positive integer. This option is valid only for 'InitialLearningRate', 'auto'.

32-2676
Example: 'NumTuningIterations', 15
Data Types: double | single

**TuningSubsetSize — Number of observations to use for tuning initial learning rate**

\[
\min(100, n) \text{ (default)} \mid \text{positive integer value from 1 to } n
\]

Number of observations to use for tuning the initial learning rate, specified as the comma-separated pair consisting of 'TuningSubsetSize' and a positive integer value from 1 to \( n \). This option is valid only for 'InitialLearningRate', 'auto'.

Example: 'TuningSubsetSize', 25
Data Types: double | single

**SGD or LBFGS Options**

**IterationLimit — Maximum number of iterations**

positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer. The default is 10000 for SGD and 1000 for LBFGS and mini-batch LBFGS.

Each pass through a batch is an iteration. Each pass through all of the data is an epoch. If the data is divided into \( k \) mini-batches, then every epoch is equivalent to \( k \) iterations.

Example: 'IterationLimit', 250
Data Types: double | single

**StepTolerance — Convergence tolerance on the step size**

\[ \text{1e-6 (default)} \mid \text{positive real scalar} \]

Convergence tolerance on the step size, specified as the comma-separated pair consisting of 'StepTolerance' and a positive real scalar. The 'lbfgs' solver uses an absolute step tolerance, and the 'sgd' solver uses a relative step tolerance.

Example: 'StepTolerance', 0.000005
Data Types: double | single
Mini-batch LBFGS Options

MiniBatchLBFGSIterations — Maximum number of iterations per mini-batch LBFGS step

10 (default) | positive integer

Maximum number of iterations per mini-batch LBFGS step, specified as the comma-separated pair consisting of 'MiniBatchLBFGSIterations' and a positive integer.

Example: 'MiniBatchLBFGSIterations',15

Mini-batch LBFGS algorithm is a combination of SGD and LBFGS methods. Therefore, all of the name-value pair arguments that apply to SGD and LBFGS solvers also apply to the mini-batch LBFGS algorithm.

Data Types: double | single

Output Arguments

mdl — Neighborhood component analysis model for regression

FeatureSelectionNCARegression object

Neighborhood component analysis model for regression, returned as a FeatureSelectionNCARegression object.

References


See Also
FeatureSelectionNCARegression | loss | predict | refit

Topics
“Robust Feature Selection Using NCA for Regression” on page 15-102
“Neighborhood Component Analysis (NCA) Feature Selection” on page 15-121

Introduced in R2016b
\textbf{fstat}

\textit{F} mean and variance

\textbf{Syntax}

\[ [M,V] = \text{fstat}(V1,V2) \]

\textbf{Description}

\[ [M,V] = \text{fstat}(V1,V2) \] returns the mean of and variance for the \textit{F} distribution with numerator degrees of freedom \( V1 \) and denominator degrees of freedom \( V2 \). \( V1 \) and \( V2 \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( M \) and \( V \). A scalar input for \( V1 \) or \( V2 \) is expanded to a constant arrays with the same dimensions as the other input. \( V1 \) and \( V2 \) parameters must contain real positive values.

The mean of the \textit{F} distribution for values of \( \nu_2 \) greater than 2 is

\[
\frac{\nu_2}{\nu_2 - 2}
\]

The variance of the \textit{F} distribution for values of \( \nu_2 \) greater than 4 is

\[
\frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}
\]

The mean of the \textit{F} distribution is undefined if \( \nu_2 \) is less than 3. The variance is undefined for \( \nu_2 \) less than 5.

\textbf{Examples}

\texttt{fstat} returns \texttt{NaN} when the mean and variance are undefined.
[m,v] = fstat(1:5,1:5)

m = 
    NaN  NaN  3.0000  2.0000  1.6667
v = 
    NaN  NaN  NaN  NaN  8.8889

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fcdf | finv | fpdf | frnd

Topics
“F Distribution” on page B-42

Introduced before R2006a
**fsurfht**

Interactive contour plot

**Syntax**

```matlab
fsurfht(fun,xlims,ylims)
fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)
```

**Description**

`fsurfht(fun,xlims,ylims)` is an interactive contour plot of the function specified by the text variable `fun`. The x-axis limits are specified by `xlims` in the form `[xmin xmax]`, and the y-axis limits are specified by `ylims` in the form `[ymin ymax]`.

`fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)` allows for five optional parameters that you can supply to the function `fun`.

The intersection of the vertical and horizontal reference lines on the plot defines the current x value and y value. You can drag these reference lines and watch the calculated z-values (at the top of the plot) update simultaneously. Alternatively, you can type the x value and y value into editable text fields on the x-axis and y-axis.

**Examples**

Plot the Gaussian likelihood function for the `gas.mat` data.

```matlab
load gas
```

Create a function containing the following commands, and name it `gauslike.m`.

```matlab
function z = gauslike(mu,sigma,p1)
 n = length(p1);
 z = ones(size(mu));
 for i = 1:n
 z = z .* (normpdf(p1(i),mu,sigma));
 end
```
The `gauslike` function calls `normpdf`, treating the data sample as fixed and the parameters $\mu$ and $\sigma$ as variables. Assume that the gas prices are normally distributed, and plot the likelihood surface of the sample.

\[ \text{fsurfht('gauslike',}[112 \ 118], [3 \ 5], \text{price1}) \]

The sample mean is the $x$ value at the maximum, but the sample standard deviation is not the $y$ value at the maximum.

\[
\text{mumax} = \text{mean(price1)} \\
\text{mumax} = 115.1500 \\
\text{sigmamax} = \text{std(price1)}*\text{sqrt(19/20)}
\]
sigmamax =
    3.7719

Introduced before R2006a
fullfact

Full factorial design

Syntax

dFF = fullfact(levels)

Description

dFF = fullfact(levels) gives factor settings dFF for a full factorial design with \( n \) factors, where the number of levels for each factor is given by the vector levels of length \( n \). dFF is \( m \)-by-\( n \), where \( m \) is the number of treatments in the full-factorial design. Each row of dFF corresponds to a single treatment. Each column contains the settings for a single factor, with integer values from one to the number of levels.

Examples

The following generates an eight-run full-factorial design with two levels in the first factor and four levels in the second factor:

dFF = fullfact([2 4])
dFF =
   1 1
   2 1
   1 2
   2 2
   1 3
   2 3
   1 4
   2 4

See Also

ff2n
Introduced before R2006a
**gagerr**

Gage repeatability and reproducibility study

**Syntax**

```matlab
gagerr(y,{part,operator})
gagerr(y,GROUP)
gagerr(y,part)
gagerr(...,param1,val1,param2,val2,...)
[TABLE, stats] = gagerr(...)
```

**Description**

`gagerr(y,{part,operator})` performs a gage repeatability and reproducibility study on measurements in `y` collected by `operator` on `part`. `y` is a column vector containing the measurements on different parts. `part` and `operator` are categorical variables, numeric vectors, character matrices, string arrays, or cell arrays of character vectors. The number of elements in `part` and `operator` should be the same as in `y`.

`gagerr` prints a table in the command window in which the decomposition of variance, standard deviation, study var (5.15 \times \text{standard deviation}) are listed with respective percentages for different sources. Summary statistics are printed below the table giving the number of distinct categories (NDC) and the percentage of Gage R&R of total variations (PRR).

`gagerr` also plots a bar graph showing the percentage of different components of variations. Gage R&R, repeatability, reproducibility, and part-to-part variations are plotted as four vertical bars. Variance and study var are plotted as two groups.

To determine the capability of a measurement system using NDC, use the following guidelines:

- If NDC > 5, the measurement system is capable.
- If NDC < 2, the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.
To determine the capability of a measurement system using PRR, use the following guidelines:

- If PRR < 10%, the measurement system is capable.
- If PRR > 30%, the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.

\( \text{gagerr}(y, \text{GROUP}) \) performs a gage R&R study on measurements in \( y \) with \( \text{part} \) and \( \text{operator} \) represented in \( \text{GROUP} \). \( \text{GROUP} \) is a numeric matrix whose first and second columns specify different parts and operators, respectively. The number of rows in \( \text{GROUP} \) should be the same as the number of elements in \( y \).

\( \text{gagerr}(y, \text{part}) \) performs a gage R&R study on measurements in \( y \) without operator information. The assumption is that all variability is contributed by \( \text{part} \).

\( \text{gagerr}(\ldots, \text{param1}, \text{val1}, \text{param2}, \text{val2}, \ldots) \) performs a gage R&R study using one or more of the following parameter name/value pairs:

- 'spec' — A two-element vector that defines the lower and upper limit of the process, respectively. In this case, summary statistics printed in the command window include Precision-to-Tolerance Ratio (PTR). Also, the bar graph includes an additional group, the percentage of tolerance.

To determine the capability of a measurement system using PTR, use the following guidelines:

- If PTR < 0.1, the measurement system is capable.
- If PTR > 0.3, the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.

- 'printtable' — A value 'on' or 'off' that indicates whether the tabular output should be printed in the command window or not. The default value is 'on'.
- 'printgraph' — A value 'on' or 'off' that indicates whether the bar graph should be plotted or not. The default value is 'on'.
- 'randomoperator' — A logical value, true or false, that indicates whether the effect of \( \text{operator} \) is random or not. The default value is true.
- 'model' — The model to use, specified by one of:
  - 'linear' — Main effects only (default)
• 'interaction' — Main effects plus two-factor interactions
• 'nested' — Nest operator in part

The default value is 'linear'.

[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and a structure stats. The columns of TABLE, from left to right, represent variance, percentage of variance, standard deviations, study var, and percentage of study var. The rows of TABLE, from top to bottom, represent different sources of variations: gage R&R, repeatability, reproducibility, operator, operator and part interactions, and part. stats is a structure containing summary statistics for the performance of the measurement system. The fields of stats are:

• ndc — Number of distinct categories
• prr — Percentage of gage R&R of total variations
• ptr — Precision-to-tolerance ratio. The value is NaN if the parameter 'spec' is not given.

Examples

Gage R&R Study

Simulate a measurement system by randomly generating the operators, parts, and the measurements, y, operators do on the parts.

rng(1234,'twister')               % for reproducibility
y = randn(100,1);                 % measurements
part = ceil(3*rand(100,1));       % parts
operator = ceil(4*rand(100,1));   % operators

Conduct a gage R&R study for this system using a mixed ANOVA model without interactions.

gagerr(y,{part, operator},'randomoperator',true)

Columns 1 through 4

<table>
<thead>
<tr>
<th>Source</th>
<th>Variance</th>
<th>% Variance</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Gage R&amp;R'</td>
<td>[ 0.9715]</td>
<td>[ 99.2653]</td>
<td>[0.9857]</td>
</tr>
<tr>
<td>'Repeatability'</td>
<td>[ 0.9535]</td>
<td>[ 97.4201]</td>
<td>[0.9765]</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>Operator</td>
<td>Part</td>
<td>Total</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>[0.0181]</td>
<td>[1.8452]</td>
<td>[0.1344]</td>
<td></td>
</tr>
<tr>
<td>[0.0181]</td>
<td>[1.8452]</td>
<td>[0.1344]</td>
<td></td>
</tr>
<tr>
<td>[0.0072]</td>
<td>[0.7347]</td>
<td>[0.0848]</td>
<td></td>
</tr>
<tr>
<td>[0.9787]</td>
<td>[100]</td>
<td>[0.9893]</td>
<td></td>
</tr>
</tbody>
</table>

Columns 5 through 6

<table>
<thead>
<tr>
<th>5.15*sigma</th>
<th>% 5.15*sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5.0762]</td>
<td>[99.6320]</td>
</tr>
<tr>
<td>[5.0288]</td>
<td>[98.7016]</td>
</tr>
<tr>
<td>[0.6921]</td>
<td>[13.5838]</td>
</tr>
<tr>
<td>[0.6921]</td>
<td>[13.5838]</td>
</tr>
<tr>
<td>[0.4367]</td>
<td>[8.5716]</td>
</tr>
<tr>
<td>[5.0949]</td>
<td>''</td>
</tr>
</tbody>
</table>

Number of distinct categories (NDC): 0
% of Gage R&R of total variations (PRR): 99.63
Note: The last column of the above table does not have to sum to 100%
See Also

Topics
“Grouping Variables” on page 2-57

Introduced in R2006b
**gamcdf**

Gamma cumulative distribution function

**Syntax**

```
gamcdf(x,a,b)
[p,plo,pup] = gamcdf(x,a,b,pcov,alpha)
[p,plo,pup] = gamcdf(__,'upper')
```

**Description**

gamcdf(x,a,b) returns the gamma cdf at each of the values in x using the corresponding shape parameters in a and scale parameters in b. x, a, and b can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in a and b must be positive, and the values in x must lie on the interval [0 Inf].

[p,plo,pup] = gamcdf(x,a,b,pcov,alpha) produces confidence bounds for p when the input parameters a and b are estimates. pcov is a 2-by-2 matrix containing the covariance matrix of the estimated parameters. alpha has a default value of 0.05, and specifies 100*(1-alpha)% confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[p,plo,pup] = gamcdf(__,'upper') returns the complement of the gamma cdf at each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities. You can use the 'upper' argument with any of the previous syntaxes.

The gamma cdf is

\[
p = F(x | a,b) = \frac{1}{b^a \Gamma(a)} \int_0^x t^{a-1} e^{-t/b} dt
\]

The result, p, is the probability that a single observation from a gamma distribution with parameters a and b will fall in the interval [0 x].
gammainc is the gamma distribution with \( b \) fixed at 1.

**Examples**

**Compute Gamma Distribution CDF**

The mean of the gamma distribution is the product of the parameters, \( ab \). In this example, the mean approaches the median as it increases (i.e., the distribution becomes more symmetric).

```matlab
a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
```

```
prob = 1x6
 0.6321 0.5940 0.5768 0.5665 0.5595 0.5543
```

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
cdf | gamfit | gaminv | gamlike | gamma | gampdf | gamrnd | gamstat

32-2693
Topics
“Gamma Distribution” on page B-45

Introduced before R2006a
gamfit

Gamma parameter estimates

Syntax

phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,censoring,freq,options)

Description

phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for the parameters of the gamma distribution given the data in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent confidence intervals. The first row of pci is the lower bound of the confidence intervals; the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)% confidence intervals. For example, alpha = 0.01 yields 99% confidence intervals.

[...] = gamfit(data,alpha,censoring) accepts a Boolean vector of the same size as data that is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but may contain any nonnegative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The gamma fit function accepts an options structure which can be created using the function statset. Enter statset('gamfit') to see the names and default values of the parameters that gamfit accepts in the options structure.
Examples

Fit a gamma distribution to random data generated from a specified gamma distribution:

```matlab
a = 2; b = 4;
data = gamrnd(a,b,100,1);

[p,ci] = gamfit(data)
p =
 2.1990 3.7426
ci =
 1.6840 2.8298
 2.7141 4.6554
```

References


See Also
gamcdf | gaminv | gamlike | gampdf | gamrnd | gamstat | mle

Topics
“Gamma Distribution” on page B-45

Introduced before R2006a
gaminv

Gamma inverse cumulative distribution function

Syntax

$X = \text{gaminv}(P, A, B)$

$[X, XL0, XUP] = \text{gaminv}(P, A, B, \text{pcov}, \text{alpha})$

Description

$X = \text{gaminv}(P, A, B)$ computes the inverse of the gamma cdf with shape parameters in $A$ and scale parameters in $B$ for the corresponding probabilities in $P$. $P$, $A$, and $B$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in $A$ and $B$ must all be positive, and the values in $P$ must lie on the interval $[0, 1]$.

The gamma inverse function in terms of the gamma cdf is

$$x = F^{-1}(p | a, b) = \{x : F(x | a, b) = p\}$$

where

$$p = F(x | a, b) = \frac{1}{b^a \Gamma(a)} \int_0^x t^{a-1} e^{-\frac{t}{b}} \, dt$$

$[X, XL0, XUP] = \text{gaminv}(P, A, B, \text{pcov}, \text{alpha})$ produces confidence bounds for $X$ when the input parameters $A$ and $B$ are estimates. $\text{pcov}$ is a 2-by-2 matrix containing the covariance matrix of the estimated parameters. $\text{alpha}$ has a default value of 0.05, and specifies $100(1-\alpha)\%$ confidence bounds. $XL0$ and $XUP$ are arrays of the same size as $X$ containing the lower and upper confidence bounds.
Examples

This example shows the relationship between the gamma cdf and its inverse function.

```matlab
a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)
x =
 1.0000 2.0000 3.0000 4.0000 5.0000
```

Algorithms

There is no known analytical solution to the integral equation above. `gaminv` uses an iterative approach (Newton's method) to converge on the solution.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

`gamcdf` | `gamfit` | `gamlike` | `gampdf` | `gamrnd` | `gamstat` | `icdf`

Topics

“Gamma Distribution” on page B-45
Introduced before R2006a
gamlike

Gamma negative log-likelihood

Syntax

\[
n\log L = \text{gamlike}(\text{params}, \text{data})
\]

\[
[n\log L, \text{AVAR}] = \text{gamlike}(\text{params}, \text{data})
\]

Description

\(n\log L = \text{gamlike}(\text{params}, \text{data})\) returns the negative of the gamma log-likelihood of the parameters, \(\text{params}\), given \(\text{data}\). \(\text{params}(1)=A\), shape parameters, and \(\text{params}(2)=B\), scale parameters. The parameters in \(\text{params}\) must all be positive.

\([n\log L, \text{AVAR}] = \text{gamlike}(\text{params}, \text{data})\) also returns \(\text{AVAR}\), which is the asymptotic variance-covariance matrix of the parameter estimates when the values in \(\text{params}\) are the maximum likelihood estimates. \(\text{AVAR}\) is the inverse of Fisher's information matrix. The diagonal elements of \(\text{AVAR}\) are the asymptotic variances of their respective parameters.

\([...\] = \text{gamlike}(\text{params}, \text{data}, \text{censoring})\) accepts a Boolean vector of the same size as \(\text{data}\) that is 1 for observations that are right-censored and 0 for observations that are observed exactly.

\([...\] = \text{gamfit}(\text{params}, \text{data}, \text{censoring}, \text{freq})\) accepts a frequency vector of the same size as \(\text{data}\). \(\text{freq}\) typically contains integer frequencies for the corresponding elements in \(\text{data}\), but may contain any non-negative values.

\(\text{gamlike}\) is a utility function for maximum likelihood estimation of the gamma distribution. Since \(\text{gamlike}\) returns the negative gamma log-likelihood function, minimizing \(\text{gamlike}\) using \text{fminsearch} is the same as maximizing the likelihood.

Examples

Compute the negative log-likelihood of parameter estimates computed by the \text{gamfit} function:
a = 2; b = 3;
r = gamrnd(a,b,100,1);

[nlogL,AVAR] = gamlike(gamfit(r),r)
nlogL =
    267.5648
AVAR =
   0.0788    -0.1104
  -0.1104    0.1955

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
gamcdf | gamfit | gaminv | gampdf | gamrnd | gamstat

Topics
“Gamma Distribution” on page B-45

Introduced before R2006a
gampdf
Gamma probability density function

Syntax

Y = gampdf(X,A,B)

Description

Y = gampdf(X,A,B) computes the gamma pdf at each of the values in X using the corresponding shape parameters in A and scale parameters in B. X, A, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in X must lie on the interval [0 Inf].

The gamma pdf is

\[ y = f(x | a, b) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-\frac{x}{b}} \]

The gamma probability density function is useful in reliability models of lifetimes. The gamma distribution is more flexible than the exponential distribution in that the probability of a product surviving an additional period may depend on its current age. The exponential and \( \chi^2 \) functions are special cases of the gamma function.

Examples

The exponential distribution is a special case of the gamma distribution.

\[ \text{mu} = 1:5; \]
\[ y = \text{gampdf}(1,1,\text{mu}) \]
$y = 
0.3679\ 0.3033\ 0.2388\ 0.1947\ 0.1637$

y1 = expdf(1,\mu)
y1 = 
0.3679\ 0.3033\ 0.2388\ 0.1947\ 0.1637$

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
gamcdf | gamfit | gaminv | gamlike | gamrnd | gamstat | pdf

**Topics**
“Gamma Distribution” on page B-45

**Introduced before R2006a**
gamrnd

Gamma random numbers

Syntax

\[ R = \text{gamrnd}(A,B) \]
\[ R = \text{gamrnd}(A,B,m,n,...) \]
\[ R = \text{gamrnd}(A,B,[m,n,...]) \]

Description

\( R = \text{gamrnd}(A,B) \) generates random numbers from the gamma distribution with shape parameters in \( A \) and scale parameters in \( B \). \( A \) and \( B \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \( A \) or \( B \) is expanded to a constant array with the same dimensions as the other input. The parameters in \( A \) and \( B \) must be positive.

\( R = \text{gamrnd}(A,B,m,n,...) \) or \( R = \text{gamrnd}(A,B,[m,n,...]) \) generates an \( m \)-by-\( n \)-by-... array containing random numbers from the gamma distribution with parameters \( A \) and \( B \). \( A \) and \( B \) can each be scalars or arrays of the same size as \( R \).

Examples

\[ n1 = \text{gamrnd}(1:5,6:10) \]
\[ n1 = \]
\[ 9.1132 \quad 12.8431 \quad 24.8025 \quad 38.5960 \quad 106.4164 \]

\[ n2 = \text{gamrnd}(5,10,[1 5]) \]
\[ n2 = \]
\[ 30.9486 \quad 33.5667 \quad 33.6837 \quad 55.2014 \quad 46.8265 \]

\[ n3 = \text{gamrnd}(2:6,3,1,5) \]
\[ n3 = \]
\[ 12.8715 \quad 11.3068 \quad 3.0982 \quad 15.6012 \quad 21.6739 \]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

gamcdf | gamfit | gaminv | gamlike | gampdf | gamstat | randg | random

Topics

“Gamma Distribution” on page B-45

Introduced before R2006a
gamstat

Gamma mean and variance

Syntax

[M,V] = gamstat(A,B)

Description

[M,V] = gamstat(A,B) returns the mean of and variance for the gamma distribution with shape parameters in A and scale parameters in B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of M and V. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input. The parameters in A and B must be positive.

The mean of the gamma distribution with parameters A and B is AB. The variance is AB^2.

Examples

[m,v] = gamstat(1:5,1:5)
m =
1 4 9 16 25
v =
1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))
m =
1 1 1 1 1
v =
1.0000 0.5000 0.3333 0.2500 0.2000
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
gamcdf | gamfit | gaminv | gamlike | gampdf | gamrnd

Topics
“Gamma Distribution” on page B-45

Introduced before R2006a
ge

Class: qrandstream

Greater than or equal relation for handles

Syntax

h1 >= h2

Description

h1 >= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise >= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

tf = ge(h1, h2) stores the result in a logical array of the same dimensions.

See Also

eq | gt | le | lt | ne | qrandstream
GeneralizedLinearMixedModel class

Generalized linear mixed-effects model class

Description

A GeneralizedLinearMixedModel object represents a regression model of a response variable that contains both fixed and random effects. The object comprises data, a model description, fitted coefficients, covariance parameters, design matrices, residuals, residual plots, and other diagnostic information for a generalized linear mixed-effects (GLME) model. You can predict model responses with the predict function and generate random data at new design points using the random function.

Construction

You can fit a generalized linear mixed-effects (GLME) model to sample data using fitglme(tbl,formula). For more information, see fitglme.

Input Arguments

tbl — Input data

table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables, specified as a table or dataset array. The predictor variables can be continuous or grouping variables (see “Grouping Variables” on page 2-57). You must specify the model for the variables using formula.

Data Types: table

formula — Formula for model specification

character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'

32-2709
Formula for model specification, specified as a character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'. For a full description, see Formula on page 32-2725.

Example: 'y ~ treatment +(1|block)'

Properties

**Coefficients — Estimates of fixed-effects coefficients**

dataset array

Estimates of fixed-effects coefficients and related statistics, stored as a dataset array that has one row for each coefficient and the following columns:

- **Name** — Name of the coefficient
- **Estimate** — Estimated coefficient value
- **SE** — Standard error of the estimate
- **tStat** — t-statistic for a test that the coefficient is equal to 0
- **DF** — Degrees of freedom associated with the t statistic
- **pValue** — p-value for the t-statistic
- **Lower** — Lower confidence limit
- **Upper** — Upper confidence limit

To obtain any of these columns as a vector, index into the property using dot notation.

Use the `coefTest` method to perform other tests on the coefficients.

**CoefficientCovariance — Covariance of estimated fixed-effects vector**

matrix

Covariance of estimated fixed-effects vector, stored as a matrix.

Data Types: `single` | `double`

**CoefficientNames — Names of fixed-effects coefficients**

cell array of character vectors

Names of fixed-effects coefficients, stored as a cell array of character vectors. The label for the coefficient of the constant term is (Intercept). The labels for other coefficients
indicate the terms that they multiply. When the term includes a categorical predictor, the label also indicates the level of that predictor.

Data Types: cell

**DFE — Degrees of freedom for error**

Positive integer value

Degrees of freedom for error, stored as a positive integer value. DFE is the number of observations minus the number of estimated coefficients.

DFE contains the degrees of freedom corresponding to the 'Residual' method of calculating denominator degrees of freedom for hypothesis tests on fixed-effects coefficients. If \( n \) is the number of observations and \( p \) is the number of fixed-effects coefficients, then DFE is equal to \( n - p \).

Data Types: double

**Dispersion — Model dispersion parameter**

Scalar value

Model dispersion parameter, stored as a scalar value. The dispersion parameter defines the conditional variance of the response.

For observation \( i \), the conditional variance of the response \( y_i \) given the conditional mean \( \mu_i \) and the dispersion parameter \( \sigma^2 \), in a generalized linear mixed-effects model is

\[
\text{var}\left( y_i \mid \mu_i, \sigma^2 \right) = \frac{\sigma^2}{w_i} v(\mu_i),
\]

where \( w_i \) is the \( i \)th observation weight and \( v \) is the variance function for the specified conditional distribution of the response. The Dispersion property contains an estimate of \( \sigma^2 \) for the specified GLME model. The value of Dispersion depends on the specified conditional distribution of the response. For binomial and Poisson distributions, the theoretical value of Dispersion is equal to \( \sigma^2 = 1.0 \).

- If FitMethod is MPL or REMPL and the 'DispersionFlag' name-value pair argument in fitglme is true, then a dispersion parameter is estimated from data for all distributions, including binomial and Poisson distributions.
- If FitMethod is ApproximateLaplace or Laplace, then the 'DispersionFlag' name-value pair argument in fitglme does not apply, and the dispersion parameter is
fixed at 1.0 for binomial and Poisson distributions. For all other distributions, 
Dispersion is estimated from data.

Data Types: double

**DispersionEstimated** — Flag indicating if dispersion parameter was estimated

true | false

Flag indicating estimated dispersion parameter, stored as a logical value.

- If `FitMethod` is `ApproximateLaplace` or `Laplace`, then the dispersion parameter is 
  fixed at its theoretical value of 1.0 for binomial and Poisson distributions, and 
  DispersionEstimated is false. For other distributions, the dispersion parameter is 
  estimated from the data, and DispersionEstimated is true.

- If `FitMethod` is `MPL` or `REML`, and the 'DispersionFlag' name-value pair 
  argument in `fitglme` is specified as true, then the dispersion parameter is estimated 
  for all distributions, including binomial and Poisson distributions, and 
  DispersionEstimated is true.

- If `FitMethod` is `MPL` or `REML`, and the 'DispersionFlag' name-value pair 
  argument in `fitglme` is specified as false, then the dispersion parameter is fixed at 
  its theoretical value for binomial and Poisson distributions, and 
  DispersionEstimated is false. For distributions other than binomial and Poisson, 
  the dispersion parameter is estimated from the data, and DispersionEstimated is 
  true.

Data Types: logical

**Distribution** — Response distribution name

'Normal' | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Response distribution name, stored as one of the following:

- 'Normal' — Normal distribution
- 'Binomial' — Binomial distribution
- 'Poisson' — Poisson distribution
- 'Gamma' — Gamma distribution
- 'InverseGaussian' — Inverse Gaussian distribution

**FitMethod** — Method used to fit the model

'MPL' | 'REML' | 'ApproximateLaplace' | 'Laplace'
Method used to fit the model, stored as one of the following.

- 'MPL' — Maximum pseudo likelihood
- 'REML' — Restricted maximum pseudo likelihood
- 'ApproximateLaplace' — Maximum likelihood using the approximate Laplace method, with fixed effects profiled out
- 'Laplace' — Maximum likelihood using the Laplace method

**Formula — Model specification formula**

Object

Model specification formula, stored as an object. The model specification formula uses Wilkinson’s notation to describe the relationship between the fixed-effects terms, random-effects terms, and grouping variables in the GLME model. For more information see Formula on page 32-2725.

**Link — Link function characteristics**

Structure

Link function characteristics, stored as a structure containing the following fields. The link is a function $G$ that links the distribution parameter $\mu$ to the linear predictor $\eta$ as follows: $G(\mu) = \eta$.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the link function</td>
</tr>
<tr>
<td>Link</td>
<td>Function that defines $G$</td>
</tr>
<tr>
<td>Derivative</td>
<td>Derivative of $G$</td>
</tr>
<tr>
<td>SecondDerivative</td>
<td>Second derivative of $G$</td>
</tr>
<tr>
<td>Inverse</td>
<td>Inverse of $G$</td>
</tr>
</tbody>
</table>

Data Types: struct

**LogLikelihood — Log of likelihood function**

Scalar value

Log of likelihood function evaluated at the estimated coefficient values, stored as a scalar value. LogLikelihood depends on the method used to fit the model.
• If you use 'Laplace' or 'ApproximateLaplace', then LogLikelihood is the maximized log likelihood.
• If you use 'MPL', then LogLikelihood is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.
• If you use 'REML', then LogLikelihood is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.

Data Types: double

ModelCriterion — Model criterion
table

Model criterion to compare fitted generalized linear mixed-effects models, stored as a table with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike information criterion</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion</td>
</tr>
</tbody>
</table>
| LogLikelihood | • For a model fit using 'Laplace' or 'ApproximateLaplace', LogLikelihood is the maximized log likelihood.  
                   • For a model fit using 'MPL', LogLikelihood is the maximized log likelihood of the pseudo data from the final pseudo likelihood iteration.  
                   • For a model fit using 'REML', LogLikelihood is the maximized restricted log likelihood of the pseudo data from the final pseudo likelihood iteration.  |
| Deviance   | -2 times LogLikelihood                                                       |

NumCoefficients — Number of fixed-effects coefficients

positive integer value

Number of fixed-effects coefficients in the fitted generalized linear mixed-effects model, stored as a positive integer value.
Data Types: double

**NumEstimatedCoefficients — Number of estimated fixed-effects coefficients**

Number of estimated fixed-effects coefficients in the fitted generalized linear mixed-effects model, stored as a positive integer value.

Data Types: double

**NumObservations — Number of observations**

Number of observations used in the fit, stored as a positive integer value. **NumObservations** is the number of rows in the table or dataset array tbl, minus rows excluded using the 'Exclude' name-value pair of fitglme or rows containing NaN values.

Data Types: double

**NumPredictors — Number of predictors**

Number of variables used as predictors in the generalized linear mixed-effects model, stored as a positive integer value.

Data Types: double

**NumVariables — Total number of variables**

Total number of variables, including the response and predictors, stored as a positive integer value. If the sample data is in a table or dataset array tbl, then **NumVariables** is the total number of variables in tbl, including the response variable. **NumVariables** includes variables, if any, that are not used as predictors or as the response.

Data Types: double

**ObservationInfo — Information about the observations**

Information about the observations used in the fit, stored as a table. **ObservationInfo** has one row for each observation and the following columns.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>The weight value for the observation. The default value is 1.</td>
</tr>
<tr>
<td>Excluded</td>
<td>If the observation was excluded from the fit using the 'Exclude' name-value pair argument in fitglme, then Excluded is true, or 1. Otherwise, Excluded is false, or 0.</td>
</tr>
<tr>
<td>Missing</td>
<td>If the observation was excluded from the fit because any response or predictor value is missing, then Missing is true. Otherwise, Missing is false. Missing values include NaN for numeric variables, empty cells for cell arrays, blank rows for character arrays, and the &lt;undefined&gt; value for categorical arrays.</td>
</tr>
<tr>
<td>Subset</td>
<td>If the observation was used in the fit, then Subset is true. If the observation was not used in the fit because it is missing or excluded, then Subset is false.</td>
</tr>
<tr>
<td>BinomSize</td>
<td>Binomial size for each observation. This column only applies when fitting a binomial distribution.</td>
</tr>
</tbody>
</table>

**Data Types:** `table`

**ObservationNames — Names of observations**

cell array of character vectors

Names of observations used in the fit, stored as a cell array of character vectors.

- If the data is in a table or dataset array `tbl` that contains observation names, then `ObservationNames` uses those names.
- If the data is provided in matrices, or in a table or dataset array without observation names, then `ObservationNames` is an empty cell array.

**Data Types:** `cell`
**PredictorNames — Names of predictors**  
cell array of character vectors

Names of the variables used as predictors in the fit, stored as a cell array of character vectors that has the same length as NumPredictors.

Data Types: cell

**ResponseName — Name of response variable**  
character vector

Name of the variable used as the response variable in the fit, stored as a character vector.

Data Types: char

**Rsquared — Proportion of variability in the response explained by the fitted model**  
structure

Proportion of variability in the response explained by the fitted model, stored as a structure. Rsquared contains the $R^2$-squared value of the fitted model, also known as the multiple correlation coefficient. Rsquared contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary</td>
<td>R-squared value, stored as a scalar value in a structure.</td>
</tr>
<tr>
<td></td>
<td>Rsquared.Ordinary = $1 - \frac{SSE}{SST}$</td>
</tr>
<tr>
<td>Adjusted</td>
<td>R-squared value adjusted for the number of fixed-effects coefficients, stored as a scalar value in a structure.</td>
</tr>
<tr>
<td></td>
<td>Rsquared.Adjusted = $1 - \left(\frac{SSE}{SST}\right) \left(\frac{DFT}{DFE}\right)$,</td>
</tr>
<tr>
<td></td>
<td>where DFE = $n - p$, DFT = $n - 1$, $n$ is the total number of observations, and $p$ is the number of fixed-effects coefficients.</td>
</tr>
</tbody>
</table>

Data Types: struct

**SSE — Error sum of squares**  
positive scalar value
Error sum of squares, stored as a positive scalar value. SSE is the weighted sum of the squared conditional residuals, and is calculated as

\[ SSE = \sum_{i=1}^{n} w_i^{\text{eff}} (y_i - f_i)^2, \]

where \( n \) is the number of observations, \( w_i^{\text{eff}} \) is the \( i \)th effective weight, \( y_i \) is the \( i \)th response, and \( f_i \) is the \( i \)th fitted value.

The \( i \)th effective weight is calculated as

\[ w_i^{\text{eff}} = \frac{w_i}{v_i(\mu_i(\hat{\beta}, \hat{\theta}))}, \]

where \( v_i \) is the variance term for the \( i \)th observation, \( \hat{\beta} \) and \( \hat{\theta} \) are estimated values of \( \beta \) and \( b \), respectively.

The \( i \)th fitted value is calculated as

\[ f_i = g^{-1}(x_i^T \hat{\beta} + z_i^T \hat{\theta} + \delta_i), \]

where \( x_i^T \) is the \( i \)th row of the fixed-effects design matrix \( X \), and \( z_i^T \) is the \( i \)th row of the random-effects design matrix \( Z \). \( \delta_i \) is the \( i \)th offset value.

Data Types: double

**SSR — Regression sum of squares**

positive scalar value

Regression sum of squares, stored as a positive scalar value. SSR is the sum of squares explained by the generalized linear mixed-effects regression, or equivalently the weighted sum of the squared deviations of the conditional fitted values from their weighted mean. SSR is calculated as

\[ SSR = \sum_{i=1}^{N} w_i^{\text{eff}} (f_i - \bar{f})^2, \]
where \( n \) is the number of observations, \( w_{i}^{\text{eff}} \) is the \( i \)th effective weight, \( f_{i} \) is the \( i \)th fitted value, and \( \bar{f} \) is a weighted average of the fitted values.

The \( i \)th effective weight is calculated as

\[
w_{i}^{\text{eff}} = \left\{ \frac{w_{i}}{v_{i}\left(\mu_{i}\left(\hat{\beta}, \hat{b}\right)\right)} \right\},
\]

where \( \hat{\beta} \) and \( \hat{b} \) are estimated values of \( \beta \) and \( b \), respectively.

The \( i \)th fitted value is calculated as

\[
f_{i} = g^{-1}\left(x_{i}^{T}\hat{\beta} + z_{i}^{T}\hat{b} + \delta_{i}\right),
\]

where \( x_{i}^{T} \) is the \( i \)th row of the fixed-effects design matrix \( X \), and \( z_{i}^{T} \) is the \( i \)th row of the random-effects design matrix \( Z \). \( \delta_{i} \) is the \( i \)th offset value.

The weighted average of fitted values is calculated as

\[
\bar{f} = \left[ \frac{\sum_{i=1}^{n} w_{i}^{\text{eff}} f_{i}}{\sum_{i=1}^{n} w_{i}^{\text{eff}}} \right].
\]

Data Types: double

**SST — Total sum of squares**

positive scalar value

Total sum of squares, stored as a positive scalar value. For a GLME model, SST is defined as \( \text{SST} = \text{SSE} + \text{SSR} \).

Data Types: double

**VariableInfo — Information about the variables**
table
Information about the variables used in the fit, stored as a table. `VariableInfo` has one row for each variable and contains the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Class</strong></td>
<td>Class of the variable ('double', 'cell', 'nominal', and so on).</td>
</tr>
</tbody>
</table>
| **Range**   | Value range of the variable.  
  - For a numerical variable, `Range` is a two-element vector of the form `[min, max]`.  
  - For a cell or categorical variable, `Range` is a cell or categorical array containing all unique values of the variable. |
| **InModel** | If the variable is a predictor in the fitted model, `InModel` is true.  
  If the variable is not in the fitted model, `InModel` is false. |
| **IsCategorical** | If the variable type is treated as a categorical predictor (such as cell, logical, or categorical), then `IsCategorical` is true.  
  If the variable is a continuous predictor, then `IsCategorical` is false. |

Data Types: `table`

**VariableNames — Names of the variables**

`cell` array of character vectors

Names of all the variables contained in the table or dataset array `tbl`, stored as a cell array of character vectors.

Data Types: `cell`

**Variables — Variables**

`table`
Variables, stored as a table. If the fit is based on a table or dataset array tbl, then Variables is identical to tbl.

Data Types: table

Methods

- **anova**: Analysis of variance for generalized linear mixed-effects model
- **coefCI**: Confidence intervals for coefficients of generalized linear mixed-effects model
- **coefTest**: Hypothesis test on fixed and random effects of generalized linear mixed-effects model
- **compare**: Compare generalized linear mixed-effects models
- **covarianceParameters**: Extract covariance parameters of generalized linear mixed-effects model
- **designMatrix**: Fixed- and random-effects design matrices
- **fitted**: Fitted responses from generalized linear mixed-effects model
- **fixedEffects**: Estimates of fixed effects and related statistics
- **plotResiduals**: Plot residuals of generalized linear mixed-effects model
- **predict**: Predict response of generalized linear mixed-effects model
- **random**: Generate random responses from fitted generalized linear mixed-effects model
- **randomEffects**: Estimates of random effects and related statistics
- **refit**: Refit generalized linear mixed-effects model
- **residuals**: Residuals of fitted generalized linear mixed-effects model
- **response**: Response vector of generalized linear mixed-effects model

Examples

**Fit a Generalized Linear Mixed-Effects Model**

Load the sample data.
load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_C_{ij} + \beta_5 \text{supplier}_B_{ij} + b_i,
\]

where
• $\text{defects}_{ij}$ is the number of defects observed in the batch produced by factory $i$ during batch $j$.

• $\mu_{ij}$ is the mean number of defects corresponding to factory $i$ (where $i = 1, 2, ..., 20$) during batch $j$ (where $j = 1, 2, ..., 5$).

• $\text{newprocess}_{ij}$, $\text{time\_dev}_{ij}$, and $\text{temp\_dev}_{ij}$ are the measurements for each variable that correspond to factory $i$ during batch $j$. For example, $\text{newprocess}_{ij}$ indicates whether the batch produced by factory $i$ during batch $j$ used the new process.

• $\text{supplier\_C}_{ij}$ and $\text{supplier\_B}_{ij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory $i$ during batch $j$.

• $b_i \sim N(0, \sigma_b^2)$ is a random-effects intercept for each factory $i$ that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Display the model.

```matlab
disp(glme)
```

Generalized linear mixed-effects model fit by ML

Model information:

- Number of observations 100
- Fixed effects coefficients 6
- Random effects coefficients 20
- Covariance parameters 1
- Distribution Poisson
- Link Log
- FitMethod Laplace

Formula:

```
defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)
```

Model fit statistics:

<table>
<thead>
<tr>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-2723</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
416.35  434.58  -201.17  402.35

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.4689</td>
<td>0.15988</td>
<td>9.1875</td>
<td>94</td>
<td>9.8194e-15</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.36766</td>
<td>0.17755</td>
<td>-2.0708</td>
<td>94</td>
<td>0.041122</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.094521</td>
<td>0.82849</td>
<td>-0.11409</td>
<td>94</td>
<td>0.90941</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>-0.28317</td>
<td>0.9617</td>
<td>-0.29444</td>
<td>94</td>
<td>0.76907</td>
</tr>
<tr>
<td>'supplier_C'</td>
<td>-0.071868</td>
<td>0.078024</td>
<td>-0.9211</td>
<td>94</td>
<td>0.35936</td>
</tr>
<tr>
<td>'supplier_B'</td>
<td>0.071072</td>
<td>0.07739</td>
<td>0.91836</td>
<td>94</td>
<td>0.36078</td>
</tr>
</tbody>
</table>

Lower        Upper
1.1515       1.7864
-0.72019    -0.015134
-1.7395       1.5505
-2.1926       1.6263
-0.22679     0.083051
-0.082588    0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.31381</td>
</tr>
</tbody>
</table>

Group: Error

Name                  Estimate
'sqrt(Dispersion)'    1

The **Model information** table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a **Poisson** distribution, the link function is **Log**, and the fit method is **Laplace**.

**Formula** indicates the model specification using Wilkinson’s notation.

The **Model fit statistics** table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The **Fixed effects coefficients** table indicates that **fitglme** returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains the \( t \)-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and \( p \)-value that correspond to the \( t \)-statistic, respectively. The last two columns (Lower and Upper) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only factory), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, \texttt{std} indicates that \texttt{fitglme} returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by \texttt{fitglme} does not provide confidence intervals for the random-effects parameters. To compute and display these values, use \texttt{covarianceParameters}.

Definitions

Formula

In general, a formula for model specification is a character vector or string scalar of the form \( 'y \sim \text{terms}' \). For generalized linear mixed-effects models, this formula is in the form \( 'y \sim \text{fixed} + (\text{random1}|\text{grouping1}) + \ldots + (\text{randomR}|\text{groupingR})' \), where \text{fixed} and \text{random} contain the fixed-effects and the random-effects terms, respectively, and \( R \) is the number of grouping variables in the model.

Suppose a table \texttt{tbl} contains the following:

- A response variable, \( y \)
- Predictor variables, \( X_j \), which can be continuous or grouping variables
- Grouping variables, \( g_1, g_2, \ldots, g_R \)

where the grouping variables in \( X_j \) and \( g_r \) can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form \( 'y \sim \text{fixed} + (\text{random}_1|g_1) + \ldots + (\text{random}_R|g_R)' \), the term \text{fixed} corresponds to a specification of the fixed-effects design matrix \( X \),
random_1 is a specification of the random-effects design matrix Z_1 corresponding to grouping variable g_1, and similarly random_1 is a specification of the random-effects design matrix Z_R corresponding to grouping variable g_R. You can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>X^k, where k is a positive integer</td>
<td>X, X^2, ..., X^k</td>
</tr>
<tr>
<td>X1 + X2</td>
<td>X1, X2</td>
</tr>
<tr>
<td>X1*X2</td>
<td>X1, X2, X1.*X2 (elementwise multiplication of X1 and X2)</td>
</tr>
<tr>
<td>X1:X2</td>
<td>X1.*X2 only</td>
</tr>
<tr>
<td>- X2</td>
<td>Do not include X2</td>
</tr>
<tr>
<td>X1*X2 + X3</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1 + X2 + X3 + X1:X2</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1<em>X2</em>X3 - X1:X2:X3</td>
<td>X1, X2, X3, X1<em>X2, X1</em>X3, X2*X3</td>
</tr>
<tr>
<td>X1*(X2 + X3)</td>
<td>X1, X2, X3, X1<em>X2, X1</em>X3</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1. Here are some examples for linear mixed-effects model specification.

**Examples:**

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X1 + X2'</td>
<td>Fixed effects for the intercept, X1 and X2. This is equivalent to 'y ~ 1 + X1 + X2'.</td>
</tr>
<tr>
<td>'y ~ -1 + X1 + X2'</td>
<td>No intercept and fixed effects for X1 and X2. The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>Formula</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>`'y ~ 1 + (1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (X1</td>
<td>g1)'`</td>
</tr>
<tr>
<td>`'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>`'y ~ 1 + (1</td>
<td>g1) + (1</td>
</tr>
</tbody>
</table>

**See Also**

`fitglme` | `plotPartialDependence`

**Topics**

“Fit a Generalized Linear Mixed-Effects Model” on page 12-77
“Generalized Linear Mixed-Effects Models” on page 12-65
GeneralizedLinearModel class

Superclasses:

Generalized linear regression model class

Description

An object comprising training data, model description, diagnostic information, and fitted coefficients for a generalized linear regression. Predict model responses with the predict or feval methods.

Construction

mdl = fitglm(tbl) or mdl = fitglm(X,y) creates a generalized linear model of a table or dataset array tbl, or of the responses y to a data matrix X. For details, see fitglm.

mdl = stepwiseglm(tbl) or mdl = stepwiseglm(X,y) creates a generalized linear model of a table or dataset array tbl, or of the responses y to a data matrix X, with unimportant predictors excluded. For details, see stepwiseglm.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables“ on page 2-57). The response must be numeric or logical.
To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

**X — Predictor variables**

matrix

Predictor variables, specified as an \( n \)-by-\( p \) matrix, where \( n \) is the number of observations and \( p \) is the number of predictor variables. Each column of \( X \) represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in \( X \).

Data Types: `single` | `double` | `logical`

**y — Response variable**

vector

Response variable, specified as an \( n \)-by-1 vector, where \( n \) is the number of observations. Each entry in \( y \) is the response for the corresponding row of \( X \).

Data Types: `single` | `double` | `logical`

**Properties**

**CoefficientCovariance — Covariance matrix of coefficient estimates**

numeric matrix

Covariance matrix of coefficient estimates, specified as a \( p \)-by-\( p \) matrix of numeric values. \( p \) is the number of coefficients in the fitted model.

**CoefficientNames — Coefficient names**

cell array of character vectors

Coefficient names, specified as a cell array of character vectors containing a label for each coefficient.

**Coefficients — Coefficient values**

table
Coefficient values, specified as a table. **Coefficients** has one row for each coefficient and the following columns:

- **Estimate** — Estimated coefficient value
- **SE** — Standard error of the estimate
- **tStat** — t statistic for a test that the coefficient is zero
- **pValue** — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in mdl the estimated coefficient vector is

```matlab
beta = mdl.Coefficients.Estimate
```

Use `coefTest` to perform other tests on the coefficients.

**Deviance — Deviance of the fit**

numeric value

Deviance of the fit, specified as a numeric value. Deviance is useful for comparing two models when one is a special case of the other. The difference between the deviance of the two models has a chi-square distribution with degrees of freedom equal to the difference in the number of estimated parameters between the two models. For more information on deviance, see “Deviance” on page 32-2746.

**DFE — Degrees of freedom for error**

positive integer value

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer value.

**Diagnostics — Diagnostic information**

table

Diagnostic information for the model, specified as a table. Diagnostics can help identify outliers and influential observations. **Diagnostics** contains the following fields:
<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage</td>
<td>Diagonal elements of HatMatrix</td>
<td>Leverage indicates to what extent the predicted value for an observation is determined by the observed value for that observation. A value close to 1 indicates that the prediction is largely determined by that observation, with little contribution from the other observations. A value close to 0 indicates the fit is largely determined by the other observations. For a model with $p$ coefficients and $n$ observations, the average value of Leverage is $p/n$. An observation with Leverage larger than $2*p/n$ can be an outlier.</td>
</tr>
<tr>
<td>CooksDistance</td>
<td>Cook's measure of scaled change in fitted values</td>
<td>CooksDistance is a measure of scaled change in fitted values. An observation with CooksDistance larger than three times the mean Cook's distance can be an outlier.</td>
</tr>
<tr>
<td>HatMatrix</td>
<td>Projection matrix to compute fitted from observed responses</td>
<td>HatMatrix is an $n$-by-$n$ matrix such that $\text{Fitted} = \text{HatMatrix} \times \text{Y}$, where Y is the response vector and Fitted is the vector of fitted response values.</td>
</tr>
</tbody>
</table>

All of these quantities are computed on the scale of the linear predictor. So, for example, in the equation that defines the hat matrix,

\[
\text{Yfit} = \text{glm.Fitted.LinearPredictor} \\
\text{Y} = \text{glm.Fitted.LinearPredictor} + \text{glm.Residuals.LinearPredictor}
\]

**Dispersion — Scale factor of the variance of the response structure**

Scale factor of the variance of the response, specified as a structure. Dispersion multiplies the variance function for the distribution.

For example, the variance function for the binomial distribution is $p(1-p)/n$, where $p$ is the probability parameter and $n$ is the sample size parameter. If Dispersion is near 1, the variance of the data appears to agree with the theoretical variance of the binomial distribution. If Dispersion is larger than 1, the data are “overdispersed” relative to the binomial distribution.

**DispersionEstimated — Flag to indicate use of dispersion scale factor**

Logical value

32-2731
Flag to indicate whether `fitglm` used the `Dispersion` scale factor to compute standard errors for the coefficients in `Coefficients.SE`, specified as a logical value. If `DispersionEstimated` is false, `fitglm` used the theoretical value of the variance.

- `DispersionEstimated` can be false only for 'binomial' or 'poisson' distributions.
- Set `DispersionEstimated` by setting the `DispersionFlag` name-value pair in `fitglm`.

**Distribution — Generalized distribution information**
structure

Generalized distribution information, specified as a structure with the following fields relating to the generalized distribution:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the distribution, one of 'normal', 'binomial', 'poisson', 'gamma', or 'inverse gaussian'.</td>
</tr>
<tr>
<td>DevianceFunction</td>
<td>Function that computes the components of the deviance as a function of the fitted parameter values and the response values.</td>
</tr>
<tr>
<td>VarianceFunction</td>
<td>Function that computes the theoretical variance for the distribution as a function of the fitted parameter values. When <code>DispersionEstimated</code> is true, <code>Dispersion</code> multiplies the variance function in the computation of the coefficient standard errors.</td>
</tr>
</tbody>
</table>

**Fitted — Fitted response values based on input data**
table

Fitted (predicted) values based on the input data, specified as a table with one row for each observation and the following columns:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>Predicted values on the scale of the response.</td>
</tr>
<tr>
<td>LinearPredictor</td>
<td>Predicted values on the scale of the linear predictor. These are the same as the link function applied to the <code>Response</code> fitted values.</td>
</tr>
<tr>
<td>Probability</td>
<td>Fitted probabilities (this column is included only with the binomial distribution).</td>
</tr>
</tbody>
</table>
To obtain any of the columns as a vector, index into the property using dot notation. For example, in the model `mdl`, the vector $f$ of fitted values on the response scale is

$$f = mdl.Fitted.Response$$

Use `predict` to compute predictions for other predictor values, or to compute confidence bounds on `Fitted`.

**Formula — Model information**

LinearFormula object | NonLinearFormula object

Model information, specified as a LinearFormula object or NonLinearFormula object. If you fit a linear or generalized linear regression model, then `Formula` is a LinearFormula object. If you fit a nonlinear regression model, then `Formula` is a NonLinearFormula object.

**Link — Link function**

structure

Link function, specified as a structure with the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the link function, or '' if you specified the link as a function handle rather than a character vector.</td>
</tr>
<tr>
<td>LinkFunction</td>
<td>The function that defines $f$, a function handle.</td>
</tr>
<tr>
<td>DevianceFunction</td>
<td>Derivative of $f$, a function handle.</td>
</tr>
<tr>
<td>VarianceFunction</td>
<td>Inverse of $f$, a function handle.</td>
</tr>
</tbody>
</table>

The link is a function $f$ that links the distribution parameter $\mu$ to the fitted linear combination $Xb$ of the predictors:

$$f(\mu) = Xb.$$  

**LogLikelihood — Log likelihood**

numeric value

Log likelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.
ModelCriterion — Criterion for model comparison

Structure

Criterion for model comparison, specified as a structure with the following fields:

- **AIC** — Akaike information criterion. $AIC = -2\log L + 2m$, where $\log L$ is the loglikelihood and $m$ is the number of estimated parameters.

- **AICc** — Akaike information criterion corrected for the sample size. $AICc = AIC + \frac{2m(m+1)}{n-m-1}$, where $n$ is the number of observations.

- **BIC** — Bayesian information criterion. $BIC = -2\log L + m\log(n)$.

- **CAIC** — Consistent Akaike information criterion. $CAIC = -2\log L + m(\log(n) + 1)$.

Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property by using dot notation. For example, in the model `mdl`, the AIC value `aic` is:

```
aic = mdl.ModelCriterion.AIC
```

**NumCoefficients** — Number of model coefficients

Positive integer

Number of model coefficients, specified as a positive integer. `NumCoefficients` includes coefficients that are set to zero when the model terms are rank deficient.

**NumEstimatedCoefficients** — Number of estimated coefficients

Positive integer

Number of estimated coefficients in the model, specified as a positive integer. `NumEstimatedCoefficients` does not include coefficients that are set to zero when the model terms are rank deficient. `NumEstimatedCoefficients` is the degrees of freedom for regression.
NumObservations — Number of observations
positive integer

Number of observations the fitting function used in fitting, specified as a positive integer. This is the number of observations supplied in the original table, dataset, or matrix, minus any excluded rows (set with the Exclude name-value pair) or rows with missing values.

NumPredictors — Number of predictor variables
positive integer

Number of predictor variables used to fit the model, specified as a positive integer.

NumVariables — Number of variables
positive integer

Number of variables in the input data, specified as a positive integer. NumVariables is the number of variables in the original table or dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

ObservationInfo — Observation information
table

Observation information, specified as a n-by-4 table, where n is equal to the number of rows of input data. The four columns of ObservationInfo contain the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>Observation weights. Default is all 1.</td>
</tr>
<tr>
<td>Excluded</td>
<td>Logical value, 1 indicates an observation that you excluded from the fit with the Exclude name-value pair.</td>
</tr>
<tr>
<td>Missing</td>
<td>Logical value, 1 indicates a missing value in the input. Missing values are not used in the fit.</td>
</tr>
<tr>
<td>Subset</td>
<td>Logical value, 1 indicates the observation is not excluded or missing, so is used in the fit.</td>
</tr>
</tbody>
</table>

ObservationNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors containing the names of the observations used in the fit.
- If the fit is based on a table or dataset containing observation names, `ObservationNames` uses those names.
- Otherwise, `ObservationNames` is an empty cell array

**Offset — Offset variable**

numeric vector

Offset variable, specified as a numeric vector with the same length as the number of rows in the data. `Offset` is passed from `fitglm` or `stepwiseglm` in the `Offset` name-value pair. The fitting function used `Offset` as a predictor variable, but with the coefficient set to exactly 1. In other words, the formula for fitting was

\[ \mu \sim \text{Offset} + (\text{terms involving real predictors}) \]

with the `Offset` predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor \( A \). By using the log link function and by specifying \( \log(A) \) as an offset, you can force the model to satisfy this theoretical constraint.

**PredictorNames — Names of predictors used to fit the model**

cell array of character vectors

Names of predictors used to fit the model, specified as a cell array of character vectors.

**Residuals — Residuals for fitted model**

Table

Residuals for the fitted model, specified as a table with one row for each observation and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Observed minus fitted values.</td>
</tr>
<tr>
<td>LinearPredictor</td>
<td>Residuals on the linear predictor scale, equal to the adjusted response value minus the fitted linear combination of the predictors.</td>
</tr>
<tr>
<td>Pearson</td>
<td>Raw residuals divided by the estimated standard deviation of the response.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Anscombe</td>
<td>Residuals defined on transformed data with the transformation chosen to remove skewness.</td>
</tr>
<tr>
<td>Deviance</td>
<td>Residuals based on the contribution of each observation to the deviance.</td>
</tr>
</tbody>
</table>

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model `mdl`, the ordinary raw residual vector `r` is:

```matlab
r = mdl.Residuals.Raw
```

Rows not used in the fit because of missing values (in `ObservationInfo.Missing`) contain `NaN` values.

Rows not used in the fit because of excluded values (in `ObservationInfo.Excluded`) contain `NaN` values, with the following exceptions:

- `raw` contains the difference between the observed and predicted values.
- `standardized` is the residual, standardized in the usual way.
- `studentized` matches the standardized values because this residual is not used in the estimate of the residual standard deviation.

**ResponseName — Response variable name**

character vector

Response variable name, specified as a character vector.

**Rsquared — R-squared value for the model**

structure

R-squared value for the model, specified as a structure.

For a linear or nonlinear model, `Rsquared` is a structure with two fields:

- `Ordinary` — Ordinary (unadjusted) R-squared
- `Adjusted` — R-squared adjusted for the number of coefficients

For a generalized linear model, `Rsquared` is a structure with five fields:

- `Ordinary` — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients
• LLR — Log-likelihood ratio
• Deviance — Deviance
• AdjGeneralized — Adjusted generalized R-squared

The R-squared value is the proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:

\[
R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}.
\]

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in \( \text{mdl} \) is

\[
r_2 = \text{mdl.Rsquared.Adjusted}
\]

**SSE — Sum of squared errors**

numeric value

Sum of squared errors (residuals), specified as a numeric value.

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]

**SSR — Regression sum of squares**

numeric value

Regression sum of squares, specified as a numeric value. The regression sum of squares is equal to the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]

**SST — Total sum of squares**

numeric value

Total sum of squares, specified as a numeric value. The total sum of squares is equal to the sum of squared deviations of response vector \( y \) from \( \text{mean}(y) \).

The Pythagorean theorem implies

\[
SST = SSE + SSR.
\]
\[ \text{SST} = \text{SSE} + \text{SSR}. \]

**Steps — Stepwise fitting information**

Structure

Stepwise fitting information, specified as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Formula representing the starting model</td>
</tr>
<tr>
<td>Lower</td>
<td>Formula representing the lower bound model, these terms that must remain in the model</td>
</tr>
<tr>
<td>Upper</td>
<td>Formula representing the upper bound model, model cannot contain more terms than Upper</td>
</tr>
<tr>
<td>Criterion</td>
<td>Criterion used for the stepwise algorithm, such as 'sse'</td>
</tr>
<tr>
<td>PEnter</td>
<td>Value of the parameter, such as 0.05</td>
</tr>
<tr>
<td>PRemove</td>
<td>Value of the parameter, such as 0.10</td>
</tr>
<tr>
<td>History</td>
<td>Table representing the steps taken in the fit</td>
</tr>
</tbody>
</table>

The History table has one row for each step including the initial fit, and the following variables (columns).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Action taken during this step, one of:</td>
</tr>
<tr>
<td></td>
<td>• 'Start' — First step</td>
</tr>
<tr>
<td></td>
<td>• 'Add' — A term is added</td>
</tr>
<tr>
<td></td>
<td>• 'Remove' — A term is removed</td>
</tr>
<tr>
<td>TermName</td>
<td>• 'Start' step: The starting model specification</td>
</tr>
<tr>
<td></td>
<td>• 'Add' or 'Remove' steps: The term moved in that step</td>
</tr>
<tr>
<td>Terms</td>
<td>Terms matrix (see modelspec of fitlm)</td>
</tr>
<tr>
<td>DF</td>
<td>Regression degrees of freedom after this step</td>
</tr>
<tr>
<td>delDF</td>
<td>Change in regression degrees of freedom from previous step</td>
</tr>
<tr>
<td></td>
<td>(negative for steps that remove a term)</td>
</tr>
<tr>
<td>Deviance</td>
<td>Deviance (residual sum of squares) at that step</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FStat</td>
<td>$F$ statistic that led to this step</td>
</tr>
<tr>
<td>PValue</td>
<td>$p$-value of the $F$ statistic</td>
</tr>
</tbody>
</table>

The structure is empty unless you use `stepwiselm` or `stepwiseglm` to fit the model.

**VariableInfo — Information about input variables**

table

Information about input variables contained in `Variables`, specified as a table with one row for each model term and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Character vector giving variable class, such as <code>'double'</code></td>
</tr>
<tr>
<td>Range</td>
<td>Cell array giving variable range:</td>
</tr>
<tr>
<td></td>
<td>• Continuous variable — Two-element vector $[\min, \max]$, the minimum and maximum values</td>
</tr>
<tr>
<td></td>
<td>• Categorical variable — Cell array of distinct variable values</td>
</tr>
<tr>
<td>InModel</td>
<td>Logical vector, where <code>true</code> indicates the variable is in the model</td>
</tr>
<tr>
<td>IsCategorical</td>
<td>Logical vector, where <code>true</code> indicates a categorical variable</td>
</tr>
</tbody>
</table>

**VariableNames — Names of variables used in fit**

cell array of character vectors

Names of variables used in fit, specified as a cell array of character vectors.

- If the fit is based on a table or dataset, this property provides the names of the variables in that table or dataset.
- If the fit is based on a predictor matrix and response vector, `VariableNames` is the values in the `VarNames` name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

**Variables — Data used to fit the model**

table

Data used to fit the model, specified as a table. `Variables` contains both observation and response values. If the fit is based on a table or dataset array, `Variables` contains all of
the data from that table or dataset array. Otherwise, Variables is a table created from
the input data matrix \( X \) and response vector \( y \).

**Methods**

- `addTerms`: Add terms to generalized linear model
- `compact`: Compact generalized linear regression model
- `fit`: Create generalized linear regression model
- `plotDiagnostics`: Plot diagnostics of generalized linear regression model
- `plotResiduals`: Plot residuals of generalized linear regression model
- `removeTerms`: Remove terms from generalized linear model
- `step`: Improve generalized linear regression model by adding or removing terms
- `stepwise`: Create generalized linear regression model by stepwise regression

**Inherited Methods**

- `coefCI`: Confidence intervals of coefficient estimates of generalized linear model
- `coefTest`: Linear hypothesis test on generalized linear regression model coefficients
- `devianceTest`: Analysis of deviance
- `disp`: Display generalized linear regression model
- `feval`: Evaluate generalized linear regression model prediction
- `plotSlice`: Plot of slices through fitted generalized linear regression surface
- `predict`: Predict response of generalized linear regression model
- `random`: Simulate responses for generalized linear regression model

**Copy Semantics**

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

**Fit a Generalized Linear Model**

Fit a logistic regression model of probability of smoking as a function of age, weight, and sex, using a two-way interactions model.

Load the hospital dataset array.

```matlab
load hospital
ds = hospital; % just to use the ds name
```

Specify the model using a formula that allows up to two-way interactions.

```matlab
modelSpec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';
```

Create the generalized linear model.

```matlab
mdl = fitglm(ds,modelSpec,'Distribution','binomial')
```

```
mdl =
Generalized linear regression model:
 logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
(Intercept) -6.0492 19.749 -0.3063 0.75938
Sex_Male -2.2859 12.424 -0.18399 0.85402
Age 0.11691 0.50977 0.22934 0.81861
Weight 0.031109 0.15208 0.20455 0.83792
Sex_Male:Age 0.020734 0.20681 0.10025 0.92014
Sex_Male:Weight 0.01216 0.053168 0.22871 0.8191
Age:Weight -0.00071959 0.0038964 -0.18468 0.85348
```

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

The large \( p \)-value indicates the model might not differ statistically from a constant.
Create a Generalized Linear Model Stepwise

Create response data using just three of 20 predictors, and create a generalized linear model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors, plus a constant.

rng default % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl =
Generalized linear regression model:
    log(y) ~ 1 + x5 + x10 + x15
    Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0115</td>
<td>0.064275</td>
<td>15.737</td>
<td>8.4217e-56</td>
</tr>
<tr>
<td>x5</td>
<td>0.39508</td>
<td>0.066665</td>
<td>5.9263</td>
<td>3.0977e-09</td>
</tr>
<tr>
<td>x10</td>
<td>0.18863</td>
<td>0.05534</td>
<td>3.4085</td>
<td>0.0006532</td>
</tr>
<tr>
<td>x15</td>
<td>0.29295</td>
<td>0.053269</td>
<td>5.4995</td>
<td>3.8089e-08</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20
Definitions

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td>$f(\mu) = \mu$</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>$f(\mu) = \log(\mu/(1-\mu))$</td>
<td>$\mu = \exp(Xb) / (1 + \exp(Xb))$</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td>$f(\mu) = \log(\mu)$</td>
<td>$\mu = \exp(Xb)$</td>
</tr>
<tr>
<td>'gamma'</td>
<td>-1</td>
<td>$f(\mu) = 1/\mu$</td>
<td>$\mu = 1/(Xb)$</td>
</tr>
</tbody>
</table>
| 'inverse
  gaussian' | -2                 | $f(\mu) = 1/\mu^2$| $\mu = (Xb)^{-1/2}$    |

Hat Matrix

The hat matrix $H$ is defined in terms of the data matrix $X$ and a diagonal weight matrix $W$:

$$
H = X(X^TWX)^{-1}X^TW^T.
$$

$W$ has diagonal elements $w_i$:

$$
w_i = \frac{g'(\mu_i)}{\sqrt{V(\mu_i)}},
$$

where

- $g$ is the link function mapping $y_i$ to $x_i b$.
- $g'$ is the derivative of the link function $g$.
- $V$ is the variance function.
- $\mu_i$ is the $i$th mean.

The diagonal elements $H_{ii}$ satisfy
\[ 0 \leq h_{ii} \leq 1 \]
\[ \sum_{i=1}^{n} h_{ii} = p, \]

where \( n \) is the number of observations (rows of \( X \)), and \( p \) is the number of coefficients in the regression model.

**Leverage**

The leverage of observation \( i \) is the value of the \( i \)th diagonal term, \( h_{ii} \), of the hat matrix \( H \). Because the sum of the leverage values is \( p \) (the number of coefficients in the regression model), an observation \( i \) can be considered to be an outlier if its leverage substantially exceeds \( p/n \), where \( n \) is the number of observations.

**Cook’s Distance**

The Cook’s distance \( D_i \) of observation \( i \) is

\[ D_i = w_i \frac{e_i^2}{p\hat{\phi}^2} \frac{1}{(1-h_{ii})^2}, \]

where

- \( \hat{\phi} \) is the dispersion parameter (estimated or theoretical).
- \( e_i \) is the linear predictor residual, \( g(y_i) - x_i\hat{\beta} \), where
  - \( g \) is the link function.
  - \( y_i \) is the observed response.
  - \( x_i \) is the observation.
  - \( \hat{\beta} \) is the estimated coefficient vector.
- \( p \) is the number of coefficients in the regression model.
- \( h_{ii} \) is the \( i \)th diagonal element of the Hat Matrix on page 32-2744 \( H \).
Deviance

Deviance of a model $M_1$ is twice the difference between the loglikelihood of that model and the saturated model, $M_S$. The saturated model is the model with the maximum number of parameters that can be estimated. For example, if there are $n$ observations $y_i$, $i = 1, 2, \ldots, n$, with potentially different values for $X_i^T \beta$, then you can define a saturated model with $n$ parameters. Let $L(b, y)$ denote the maximum value of the likelihood function for a model. Then the deviance of model $M_1$ is

$$-2\left(\log L(b_1, y) - \log L(b_S, y)\right),$$

where $b_1$ are the estimated parameters for model $M_1$ and $b_S$ are the estimated parameters for the saturated model. The deviance has a chi-square distribution with $n - p$ degrees of freedom, where $n$ is the number of parameters in the saturated model and $p$ is the number of parameters in model $M_1$.

If $M_1$ and $M_2$ are two different generalized linear models, then the fit of the models can be assessed by comparing the deviances $D_1$ and $D_2$ of these models. The difference of the deviances is

$$D = D_2 - D_1 = -2\left(\log L(b_2, y) - \log L(b_S, y)\right) + 2\left(\log L(b_1, y) - \log L(b_S, y)\right)$$

$$= -2\left(\log L(b_2, y) - \log L(b_1, y)\right).$$

Asymptotically, this difference has a chi-square distribution with degrees of freedom $v$ equal to the number of parameters that are estimated in one model but fixed (typically at 0) in the other. That is, it is equal to the difference in the number of parameters estimated in $M_1$ and $M_2$. You can get the $p$-value for this test using $1 - \text{chi2cdf}(D, V)$, where $D = D_2 - D_1$.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
The predict and random functions support code generation.
When you fit a model by using fitglm or stepwiseglm, the following restrictions apply.

- Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalVars' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
- The Link, Derivative, and Inverse fields of the 'Link' name-value pair argument cannot be anonymous functions. That is, you cannot generate code using a generalized linear model that was created using anonymous functions for links. Instead, define functions for link components.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
LinearModel | NonLinearModel | fitglm | plotPartialDependence | stepwiseglm

Topics
“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12

Introduced in R2012a
**generateCode**

**Package:** classreg.learning.coder.config.svm

Generate C/C++ code using coder configurer

After training a machine learning model, create a coder configurer for the model by using `learnerCoderConfigurer`. Modify the properties of the configurer to specify code generation options. Then use `generateCode` to generate C/C++ code for the `predict` and `update` functions of the machine learning model. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow using a coder configurer. Use `generateCode` for the highlighted step.

![Code Generation Workflow](image)

**Syntax**

```matlab
generateCode(configurer)
generateCode(configurer,cfg)
generateCode(__,'OutputPath',outputPath)
```

**Description**

`generateCode(configurer)` generates a MEX function for the `predict` and `update` functions of a machine learning model by using `configurer`. The generated MEX function is named `outputFileName`, which is the file name stored in the `OutputFileName` property of `configurer`. 
To generate a MEX function, `generateCode` first generates the following MATLAB files required to generate code and stores them in the current folder:

- `predict.m`, `update.m`, and `initialize.m` — `predict.m` and `update.m` are the entry-point functions for the `predict` and `update` functions of the machine learning model, respectively, and these two functions call `initialize.m`.
- A MAT-file that includes machine learning model information — `generateCode` uses the `saveCompactModel` function to save machine learning model information in a MAT-file whose file name is stored in the `OutputFileName` property of a coder configurer. `initialize.m` loads the saved MAT-file by using the `loadCompactModel` function.

After generating the necessary MATLAB files, `generateCode` creates the MEX function and the code for the MEX function in the `codegen\mex\outputFileName` folder and copies the MEX function to the current folder.

`generateCode(configurer, cfg)` generates C/C++ code using the build type specified by `cfg`.

`generateCode(____,'OutputPath', outputPath)` specifies the folder path for the output files in addition to any of the input arguments in previous syntaxes.
`generateCode` generates the MATLAB files in the folder specified by `outputPath` and generates C/C++ code in the folder `outputPath\codegen\type\outputFileName` where `type` is the build type specified by `cfg`.

## Examples

### Generate Code Using Coder Configurer

Train a machine learning model and then generate code for the `predict` and `update` functions of the model by using a coder configurer.

Load the `carsmall` data set and train a support vector machine (SVM) regression model.

```matlab
load carsmall
X = [Horsepower, Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);
```

`Mdl` is a `RegressionSVM` object.
Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input.

```matlab
configurer = learnerCoderConfigurer(Mdl,X)
```

```matlab
configurer = RegressionSVMCoderConfigurer with properties:

Update Inputs:
 Alpha: [1×1 LearnerCoderInput]
 SupportVectors: [1×1 LearnerCoderInput]
 Scale: [1×1 LearnerCoderInput]
 Bias: [1×1 LearnerCoderInput]

Predict Inputs:
 X: [1×1 LearnerCoderInput]

Code Generation Parameters:
 NumOutputs: 1
 OutputFileName: 'RegressionSVMMModel'
```

(configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a RegressionSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use generateCode to generate code for the predict and update functions of the RegressionSVM model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMMModel.mat'

generateCode generates these files for code generation.
generateCode generates the MATLAB files required to generate code, including the two entry-point functions predict.m and update.m for the predict and update functions of the RegressionSVM model (Mdl), respectively. Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point functions and the code for the MEX function in the codegen\mex\RegressionSVMModel folder and copies the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files.

```matlab
type predict.m % Display contents of predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
initialize('update',varargin{:});
end

type initialize.m % Display contents of initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
coder.inline('always');
persistent model;
if isempty(model)
 model = loadCompactModel('RegressionSVMModel.mat');
end
switch(command)
 case 'update'
 % Update struct fields: Alpha
 % SupportVectors
 % Scale
 % Bias

 model = update(model,varargin{:});
 case 'predict'
 % Predict Inputs: X

 X = varargin{1};
 if nargin == 2
```
Specify Build Type

Train a machine learning model and generate code by using the coder configurer of the trained model. When generating code, specify the build type and other configuration options using a code generation configuration object.

Load the ionosphere data set and train a binary support vector machine (SVM) classification model.

```matlab
load ionosphere
Mdl = fitcsvm(X,Y);```

`Mdl` is a `ClassificationSVM` object.

Create a coder configurer for the `ClassificationSVM` model by using `learnerCoderConfigurer`. Specify the predictor data `X`. The `learnerCoderConfigurer` function uses the input `X` to configure the coder attributes of the `predict` function input.

```matlab
configurer = learnerCoderConfigurer(Mdl,X);
```

`configurer` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.

Create a code generation configuration object by using `coder.config`. Specify 'dll' to generate a dynamic library and specify the `GenerateReport` property as `true` to enable the code generation report.

```matlab
cfg = coder.config('dll');
cfg.GenerateReport = true;
```
To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` and the configuration object `cfg` to generate code. Also, specify the output folder path.

```matlab
generateCode(configurer, cfg, 'OutputPath', 'testPath')
```

Specified folder does not exist. Folder has been created.
These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
generateCode generates these files for code generation.
Code generation successful: View report

generateCode creates the specified folder. The function also generates the MATLAB files required to generate code and stores them in the folder. Then `generateCode` generates C code in the `testPath\codegen\dll\ClassificationSVMModel` folder.

Update Model Parameters in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.

Train Model

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

`Mdl` is a `ClassificationSVM` object.
Create CoderConfigurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector attribute specifies the upper bound of the predictor data size, and the VariableDimensions attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support vectors in the generated code.
configurer.SupportVectors.SizeVector = [250 34];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `ClassificationSVM` model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'

generateCode generates these files for code generation.

```matlab
generateCode generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions of the `ClassificationSVM` model (Mdl), respectively. Then `generateCode` creates a MEX function named `ClassificationSVMModel` for the two entry-point functions in the `codegen\mex\ClassificationSVMModel` folder and copies the MEX function to the current folder.

**Verify Generated Code**

Pass some predictor data to verify whether the `predict` function of Mdl and the `predict` function in the MEX function return the same labels. To call an entry-point
function in a MEX function that has more than one entry point, specify the function name as the first input argument.

[label, score] = predict(Mdl, X);
[label_mex, score_mex] = ClassificationSVMModel('predict', X);

Compare label and label_mex by using isequal.

isequal(label, label_mex)
ans = logical
  1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.

find(abs(score - score_mex) > 1e-8)
ans =
   0×1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X, Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.

params = validatedUpdateInputs(configurer, retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update', params)
Verify Generated Code

Compare the outputs from the predict function of `retrainedMdl` and the predict function in the updated MEX function.

```matlab
labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)

ans = logical
 1

find(abs(score-score_mex) > 1e-8)
ans =

 0×1 empty double column vector
```

The comparison confirms that `labels` and `labels_mex` are equal, and the score values are equal within the tolerance.

Input Arguments

`configurer` — Coder configurer
coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using `learnerCoderConfigurer`.

This table shows coder configurer objects corresponding to the supported machine learning models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Coder Configurer Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine (SVM) classification</td>
<td>ClassificationSVMCoderConfigurer</td>
</tr>
<tr>
<td>SVM regression</td>
<td>RegressionSVMCoderConfigurer</td>
</tr>
</tbody>
</table>

`cfg` — Build type
'mex' (default) | 'dll' | 'lib' | code generation configuration object

32-2757
Build type, specified as 'mex', 'dll', 'lib', or a code generation configuration object created by coder.config.

generateCode generates C/C++ code using one of the following build types.

- 'mex' — Generates a MEX function that has a platform-dependent extension. A MEX function is a C/C++ program that is executable from the Command Window. Before generating a C/C++ library for deployment, generate a MEX function to verify that the generated code provides the correct functionality.
- 'dll' — Generate a dynamic C/C++ library.
- 'lib' — Generate a static C/C++ library.
- Code generation configuration object created by coder.config — Generate C/C++ code using the code generation configuration object to customize code generation options. You can specify the build type and other configuration options using the object. For example, modify the GenerateReport parameter to enable the code generation report, and modify the TargetLang parameter to generate C++ code. The default value of the TargetLang parameter is 'C', generating C code.

```matlab
cfg = coder.config('mex');
cfg.GenerateReport = true;
cfg.TargetLang = 'C++';
```

For details, see the -config option of codegen, coder.config, and “Configure Build Settings” (MATLAB Coder).

generateCode generates C/C++ code in the folder `outputPath\codegen\type \outputFileName`, where `type` is the build type specified by the `cfg` argument and `outputFileName` is the file name stored in the `OutputFileName` property of `configurer`.

**outputPath — Folder path for output files**
current folder (default) | character vector | string scalar

Folder path for the output files of generateCode, specified as a character vector or string array.

The specified folder path can be an absolute path or a relative path to the current folder path.

- The path must not contain spaces because they can lead to code generation failures in certain operating system configurations.
• The path also cannot contain non-7-bit ASCII characters, such as Japanese characters. If the specified folder does not exist, then `generateCode` creates the folder.

`generateCode` searches the specified folder for the four MATLAB files: `predict.m`, `update.m`, `initialize.m`, and a MAT-file that includes machine learning model information. If the four files do not exist in the folder, then `generateCode` generates the files. Otherwise, `generateCode` does not generate any MATLAB files.

`generateCode` generates C/C++ code in the folder `outputPath\codegen\type\outputFileName`, where `type` is the build type specified by the `cfg` argument and `outputFileName` is the file name stored in the `OutputFileName` property of `configurer`.

Example: 'C:\myfiles'

Data Types: char | string

**Limitations**

• The `generateCode` function uses the `saveCompactModel`, `loadCompactModel`, and `codegen` functions, so the code generation limitations of these functions also apply to the `generateCode` function. For details, see the function reference pages `saveCompactModel`, `loadCompactModel`, and `codegen`.

• For the code generation usage notes and limitations of a machine learning model and its object functions, see the Code Generation sections of the corresponding reference pages.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Object</th>
<th>Object Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td>CompactClassificationSVM</td>
<td>predict, update</td>
</tr>
<tr>
<td>SVM regression</td>
<td>CompactRegressionSVM</td>
<td>predict, update</td>
</tr>
</tbody>
</table>

**Alternative Functionality**

• If you want to modify the MATLAB files (`predict.m`, `update.m`, and `initialize.m`) according to your code generation workflow, then use `generateFiles` to generate these files and use `codegen` to generate code.
See Also
generateFiles | learnerCoderConfigurer | update | validatedUpdateInputs

Topics
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

Introduced in R2018b
**generateFiles**

**Package:** classreg.learning.coder.config.svm

Generate MATLAB files for code generation using coder configurer

**Syntax**

```matlab
generateFiles(configurer)
generateFiles(configurer,'OutputPath',outputPath)
```

**Description**

`generateFiles(configurer)` generates the MATLAB files required to generate C/C++ code by using the coder configurer `configurer`, and saves the generated files in the current folder.

To customize the code generation workflow, use `generateFiles` and `codegen`. If you do not need to customize your workflow, use `generateCode`.

`generateFiles` generates the following MATLAB files:

- **`predict.m`, `update.m`, and `initialize.m`** — `predict.m` and `update.m` are the entry-point functions for the `predict` and `update` functions of the machine learning model, respectively, and these two functions call `initialize.m`. You can modify these files according to your code generation workflow. For example, you can modify the `predict.m` file to include data preprocessing, or you can add these entry-point functions to another code generation project.

- A MAT-file that includes machine learning model information — `generateFiles` uses the `saveCompactModel` function to save machine learning model information in a MAT-file whose file name is stored in the `OutputFileName` property of a coder configurer. `initialize.m` loads the saved MAT-file by using the `loadCompactModel` function.

After you generate these files, generate C/C++ code by using `codegen` and the prepared `codegen` argument stored in the `CodeGenerationArguments` property of a coder configurer.
If the folder already includes all four MATLAB files, then generateFiles does not generate any files.

generateFiles(configurer,'OutputPath',outputPath) generates the MATLAB files in the folder specified by outputPath.

**Examples**

**Generate MATLAB® Files for Code Generation**

Train a machine learning model and then generate the MATLAB files required to generate C/C++ code for the predict and update functions of the model by using a coder configurer.

Load the ionosphere data set and train a binary support vector machine (SVM) classification model.

```matlab
load ionosphere
Mdl = fitcsvm(X,Y);
```

Mdl is a `ClassificationSVM` object.

Create a coder configurer for the `ClassificationSVM` object.

```matlab
configurer = learnerCoderConfigurer(Mdl,X);
```

`configurer` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.

Use `generateFiles` to generate the MATLAB files required to generate C/C++ code for the predict and update functions of the model.

```matlab
generateFiles(configurer)
```

generateFiles generates `predict.m`, `update.m`, `initialize.m`, and `ClassificationSVMModel.mat` (a MAT-file that includes machine learning model information).

Display the contents of the `predict.m`, `update.m`, and `initialize.m` files.

```matlab
type predict.m % Display contents of predict.m
```
function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 27-Aug-2018 19:46:31
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 27-Aug-2018 19:46:31
initialize('update',varargin{:});
end

type initialize.m % Display contents of initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 27-Aug-2018 19:46:31
coder.inline('always');
persistent model;
if isempty(model)
    model = loadCompactModel('ClassificationSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       SupportVectorLabels
        %                       Scale
        %                       Bias
        %                       Prior
        %                       Cost

        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X

        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
Generate C/C++ code by using codegen and the prepared codegen argument stored in the CodeGenerationArguments property of configurer.

```matlab
cfArgs = configurer.CodeGenerationArguments;
codegen(cfArgs{:})
```

### Input Arguments

**configurer — Coder configurer**

coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using `learnerCoderConfigurer`.

This table shows coder configurer objects corresponding to the supported machine learning models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Coder Configurer Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine (SVM) classification</td>
<td>ClassificationSVMCoderConfigurer</td>
</tr>
<tr>
<td>SVM regression</td>
<td>RegressionSVMCoderConfigurer</td>
</tr>
</tbody>
</table>

**outputPath — Folder path for output files**

current folder (default) | character vector | string scalar

Folder path for the output files of `generateFiles`, specified as a character vector or string array.

The specified folder path can be an absolute path or a relative path to the current folder path.

- The path must not contain spaces because they can lead to code generation failures in certain operating system configurations.
- The path also cannot contain non-7-bit ASCII characters, such as Japanese characters.

If the specified folder does not exist, then `generateFiles` creates the folder.
generateFiles searches the specified folder for the four MATLAB files: predict.m, update.m, initialize.m, and a MAT-file that includes machine learning model information. If the four files do not exist in the folder, then generateFiles generates the files. Otherwise, generateFiles does not generate any MATLAB files.

Example: 'C:\myfiles'

Data Types: char | string

Alternative Functionality

• To customize the code generation workflow, use generateFiles and codegen. If you do not need to customize your workflow, use generateCode. In addition to generating the four MATLAB files generated by generateFiles, the generateCode function also generates the C/C++ code.

See Also
generateCode | learnerCoderConfigurer | update | validatedUpdateInputs

Topics
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

Introduced in R2018b
geocdf

Geometric cumulative distribution function

Syntax

\[ y = \text{geocdf}(x,p) \]
\[ y = \text{geocdf}(x,p,'\text{upper}') \]

Description

\[ y = \text{geocdf}(x,p) \] returns the cumulative distribution function (cdf) of the geometric distribution at each value in \( x \) using the corresponding probabilities in \( p \). \( x \) and \( p \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in \( p \) must lie on the interval \([0, 1]\).

\[ y = \text{geocdf}(x,p,'\text{upper}') \] returns the complement of the geometric distribution cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

Examples

Compute Geometric Distribution cdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with heads facing up. What is the probability of observing three or fewer tails ("failures") before tossing a heads?

To solve, determine the value of the cumulative distribution function (cdf) for the geometric distribution at \( x \) equal to 3. The probability of success (tossing a heads) \( p \) in any given trial is 0.5.
x = 3;
p = 0.5;
y = geocdf(x,p)
y = 0.9375

The returned value of $y$ indicates that the probability of observing three or fewer tails before tossing a heads is 0.9375.

Definitions

Geometric Distribution cdf

The cumulative distribution function (cdf) of the geometric distribution is

$$y = F(x | p) = 1 - (1 - p)^{x+1} ; x = 0, 1, 2, \ldots,$$

where $p$ is the probability of success, and $x$ is the number of failures before the first success. The result $y$ is the probability of observing up to $x$ trials before a success, when the probability of success in any given trial is $p$.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also

cdf | geoinv | geopdf | geornd | geostat | mle

Topics

“Geometric Distribution” on page B-61

Introduced before R2006a
geoinv

Geometric inverse cumulative distribution function

Syntax

\[ x = \text{geoinv}(y,p) \]

Description

\[ x = \text{geoinv}(y,p) \] returns the inverse cumulative distribution function (icdf) of the geometric distribution at each value in \( y \) using the corresponding probabilities in \( p \).

geoinv returns the smallest positive integer \( x \) such that the geometric cdf evaluated at \( x \) is equal to or exceeds \( y \). You can think of \( y \) as the probability of observing \( x \) successes in a row in independent trials, where \( p \) is the probability of success in each trial.

\( y \) and \( p \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \( p \) or \( y \) is expanded to a constant array with the same dimensions as the other input. The values in \( p \) and \( y \) must lie on the interval \([0, 1]\).

Examples

Compute Geometric Distribution icdf

Suppose the probability of a five-year-old car battery not starting in cold weather is 0.03. If we want no more than a ten percent chance that the car does not start, what is the maximum number of days in a row that we should try to start the car?

To solve, compute the inverse cdf of the geometric distribution. In this example, a "success" means the car does not start, while a "failure" means the car does start. The probability of success for each trial \( p \) equals 0.03, while the probability of observing \( x \) failures in a row before observing a success \( y \) equals 0.1.
\[ y = 0.1; \]
\[ p = 0.03; \]
\[ x = \text{geoinv}(y,p) \]

\[ x = 3 \]

The returned result indicates that if we start the car three times, there is at least a ten percent chance that it will not start on one of those tries. Therefore, if we want no greater than a ten percent chance that the car will not start, we should only attempt to start it for a maximum of two days in a row.

We can confirm this result by evaluating the cdf at values of \( x \) equal to 2 and 3, given the probability of success for each trial \( p \) equal to 0.03.

\[ y_2 = \text{geocdf}(2,p) \quad \% \text{cdf for } x = 2 \]

\[ y_2 = 0.0873 \]

\[ y_3 = \text{geocdf}(3,p) \quad \% \text{cdf for } x = 3 \]

\[ y_3 = 0.1147 \]

The returned results indicate an 8.7% chance of the car not starting if we try two days in a row, and an 11.5% chance of not starting if we try three days in a row.

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
geocdf | geopdf | geornd | geostat | icdf

Topics
“Geometric Distribution” on page B-61

Introduced before R2006a
geomean

Geometric mean

Syntax

m = geomean(X)
m = geomean(X,'all')
m = geomean(X,dim)
m = geomean(X,vecdim)

Description

m = geomean(X) calculates the geometric mean on page 32-2774 of a sample. For vectors, geomean(X) is the geometric mean of the elements in X. For matrices, geomean(X) is a row vector containing the geometric means of each column. For N-dimensional arrays, geomean operates along the first nonsingleton dimension of X.

m = geomean(X,'all') returns the geometric mean of all elements of X.

m = geomean(X,dim) takes the geometric mean along the operating dimension dim of X.

m = geomean(X,vecdim) returns the geometric mean over the dimensions specified in the vector vecdim. Each element of vecdim represents a dimension of the input array X. The output m has length 1 in the specified operating dimensions. The other dimension lengths are the same for X and m. For example, if X is a 2-by-3-by-4 array, then geomean(X,[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the geometric mean of the elements on the corresponding page of X.

Examples

Compare Geometric and Arithmetic Mean

Set the random seed for reproducibility of the results.
rng('default')

Create a matrix of exponential random numbers with 5 rows and 4 columns.

```matlab
X = exprnd(1,5,4)
```

```
X = 5×4
 0.2049 2.3275 1.8476 1.9527
 0.0989 1.2783 0.0298 0.8633
 2.0637 0.6035 0.0438 0.0880
 0.0906 0.0434 0.7228 0.2329
 0.4583 0.0357 0.2228 0.0414
```

Compute the geometric and arithmetic means of the columns of `X`.

```matlab
geometric = geomean(X)
```

```
geometric = 1×4
 0.2805 0.3083 0.2079 0.2698
```

```matlab
arithmetic = mean(X)
```

```
arithmetic = 1×4
 0.5833 0.8577 0.5734 0.6357
```

The arithmetic mean is greater than or equal to the geometric mean.

**Geometric Mean of All Values**

Find the geometric mean of all the values in an array.

Create a 3-by-5-by-2 array `X`.

```matlab
X = reshape(1:30,[3 5 2])
```

```
X(:,:,1) =
 0.2805 0.3083 0.2079 0.2698
```

```matlab
X(:,:,1) =
 0.5833 0.8577 0.5734 0.6357
```
Find the geometric mean of the elements of \( X \).

\[ m = \text{geomean}(X, 'all') \]

\[ m = 12.0445 \]

### Definitions

#### Geometric Mean

The geometric mean of a sample \( X \) is

\[
m = \left[ \prod_{i=1}^{n} x_i \right]^{1/n}
\]

where \( n \) is the number of values in \( X \).

### Extended Capabilities

#### Tall Arrays

Calculate with arrays that have more rows than fit in memory.
This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
  - \( m = \text{geomean}(X,'all') \)
  - \( m = \text{geomean}(X,\text{vecdim}) \)

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
  - \( m = \text{geomean}(X,'all') \)
  - \( m = \text{geomean}(X,\text{vecdim}) \)

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- The following syntaxes do not support GPU arrays as input arguments.
  - \( m = \text{geomean}(X,'all') \)
  - \( m = \text{geomean}(X,\text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

harmmean | mean | median | trimmean

**Topics**

“Geometric Distribution” on page B-61
Introduced before R2006a
geopdf

Geometric probability density function

Syntax

\( y = \text{geopdf}(x,p) \)

Description

\( y = \text{geopdf}(x,p) \) returns the probability density function (pdf) of the geometric distribution at each value in \( x \) using the corresponding probabilities in \( p \). \( x \) and \( p \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in \( p \) must lie on the interval \([0,1]\).

Examples

Compute Geometric Distribution pdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with heads facing up. What is the probability of observing exactly three tails ("failures") before tossing a heads?

To solve, determine the value of the probability density function (pdf) for the geometric distribution at \( x \) equal to 3. The probability of success (tossing a heads) \( p \) in any given trial is 0.5.

\[
\begin{align*}
x &= 3; \\
p &= 0.5; \\
y &= \text{geopdf}(x,p)
\end{align*}
\]

\( y = 0.0625 \)

The returned value of \( y \) indicates that the probability of observing exactly three tails before tossing a heads is 0.0625.
Definitions

Geometric Distribution pdf

The probability distribution function (pdf) of the geometric distribution is

\[ y = f(x | p) = p(1 - p)^x \quad ; \quad x = 0, 1, 2, \ldots \]

where \( p \) is the probability of success, and \( x \) is the number of failures before the first success. The result \( y \) is the probability of observing exactly \( x \) trials before a success, when the probability of success in any given trial is \( p \). For discrete distributions, the probability distribution function is also known as the probability mass function (pmf).

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

goecdf | geoinv | geornd | geostat | mle | pdf

Topics

“Geometric Distribution” on page B-61
Introduced before R2006a
geornd

Geometric random numbers

Syntax

\[ r = \text{geornd}(p) \]
\[ r = \text{geornd}(p,m,n,...) \]
\[ r = \text{geornd}(p,[m,n,...]) \]

Description

\( r = \text{geornd}(p) \) generates random numbers from a geometric distribution with probability parameter \( p \). \( p \) can be a vector, a matrix, or a multidimensional array. The size of \( r \) is equal to the size of \( p \). The parameters in \( p \) must lie in the interval \([0,1]\).

\( r = \text{geornd}(p,m,n,...) \) or \( r = \text{geornd}(p,[m,n,...]) \) generates a multidimensional \( m \)-by-\( n \)-by-\( ... \) array containing random numbers from the geometric distribution with probability parameter \( p \). \( p \) can be a scalar or an array of the same size as \( r \).

The geometric distribution is useful to model the number of failures before one success in a series of independent trials, where each trial results in either success or failure, and the probability of success in any individual trial is the constant \( p \).

Examples

Generate Random Numbers from Geometric Distribution

Generate a single random number from a geometric distribution with probability parameter \( p \) equal to 0.01.

\[
\begin{align*}
\text{rng default} & \quad \% \text{ For reproducibility} \\
p &= 0.01; \\
r1 &= \text{geornd}(0.01)
\end{align*}
\]
r1 = 20

The returned random number represents a single experiment in which 20 failures were observed before a success, where each independent trial has a probability of success $p$ equal to 0.01.

Generate a 1-by-5 array of random numbers from a geometric distribution with probability parameter $p$ equal to 0.01.

$r2 = \text{geornd}(p,1,5)$

$r2 = \begin{bmatrix} 9 & 205 & 9 & 45 & 231 \end{bmatrix}$

Each random number in the returned array represents the result of an experiment to determine the number of failures observed before a success, where each independent trial has a probability of success $p$ equal to 0.01.

Generate a 1-by-3 array containing one random number from each of the three geometric distributions corresponding to the parameters in the 1-by-3 array of probabilities $p$.

$p = [0.01 \ 0.1 \ 0.5]$;

$r3 = \text{geornd}(p,[1 \ 3])$

$r3 = \begin{bmatrix} 127 & 5 & 0 \end{bmatrix}$

Each element of the returned 1-by-3 array $r3$ contains one random number generated from the geometric distribution described by the corresponding parameter in $P$. For example, the first element in $r3$ represents an experiment in which 127 failures were observed before a success, where each independent trial has a probability of success $p$ equal to 0.01. The second element in $r3$ represents an experiment in which 5 failures were observed before a success, where each independent trial has a probability of success $p$ equal to 0.1. The third element in $r3$ represents an experiment in which zero failures were observed before a success - in other words, the first attempt was a success - where each independent trial has a probability of success $p$ equal to 0.5.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
geocdf | geoinv | geopdf | geostat | random

Topics
“Geometric Distribution” on page B-61

Introduced before R2006a
geostat

Geometric mean and variance

Syntax

\[ [m,v] = \text{geostat}(p) \]

Description

\[ [m,v] = \text{geostat}(p) \] returns the mean \( m \) and variance \( v \) of a geometric distribution with corresponding probability parameters in \( p \). \( p \) can be a vector, a matrix, or a multidimensional array. The parameters in \( p \) must lie in the interval \([0, 1]\).

Examples

Compute Mean and Variance of Geometric Distribution

Define a probability vector that contains six different parameter values.

\[ p = 1./(1:6) \]

\[ p = 1\times6 \]

\[
\begin{array}{ccccccc}
1.0000 & 0.5000 & 0.3333 & 0.2500 & 0.2000 & 0.1667 \\
\end{array}
\]

Compute the mean and variance of the geometric distribution that corresponds to each value contained in probability vector.

\[ [m,v] = \text{geostat}(1./(1:6)) \]

\[ m = 1\times6 \]

\[
\begin{array}{ccccccc}
0 & 1.0000 & 2.0000 & 3.0000 & 4.0000 & 5.0000 \\
\end{array}
\]
The returned values indicate that, for example, the mean of a geometric distribution with probability parameter $p$ equal to 1/3 is 2, and its variance is 6.

**Definitions**

**Geometric Distribution Mean and Variance**

The mean of the geometric distribution is

$$\text{mean} = \frac{1 - p}{p},$$

and the variance of the geometric distribution is

$$\text{var} = \frac{1 - p}{p^2},$$

where $p$ is the probability of success.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
geocdf | geoinv | geopdf | geornd

**Topics**
“Geometric Distribution” on page B-61

**Introduced before R2006a**
GapEvaluation

Package: clustering.evaluation
Superclasses:
Gap criterion clustering evaluation object

Description

GapEvaluation is an object consisting of sample data, clustering data, and gap criterion values used to evaluate the optimal number of clusters. Create a gap criterion clustering evaluation object using evalclusters.

Construction

eva = evalclusters(x,clust,'Gap') creates a gap criterion clustering evaluation object.

eva = evalclusters(x,clust,'Gap',Name,Value) creates a gap criterion clustering evaluation object using additional options specified by one or more name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of variables.

Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

Clustering algorithm, specified as one of the following.
'kmeans' Cluster the data in x using the \textit{kmeans} clustering algorithm, with 'EmptyAction' set to 'singleton' and 'Replicates' set to 5.

'linkage' Cluster the data in x using the \textit{clusterdata} agglomerative clustering algorithm, with 'Linkage' set to 'ward'.

'gmdistribution' Cluster the data in x using the \textit{gmdistribution} Gaussian mixture distribution algorithm, with 'SharedCov' set to true and 'Replicates' set to 5.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a clustering algorithm using a function handle (MATLAB). The function must be of the form \texttt{C = clustfun(DATA,K)}, where \texttt{DATA} is the data to be clustered, and \texttt{K} is the number of clusters. The output of \texttt{clustfun} must be one of the following:

- A vector of integers representing the cluster index for each observation in \texttt{DATA}. There must be \texttt{K} unique values in this vector.
- A numeric \texttt{n}\texttimes\texttt{K} matrix of score for \texttt{n} observations and \texttt{K} classes. In this case, the cluster index for each observation is determined by taking the largest score value in each row.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also specify \texttt{clust} as a \texttt{n}\texttimes\texttt{K} matrix containing the proposed clustering solutions. \texttt{n} is the number of observations in the sample data, and \texttt{K} is the number of proposed clustering solutions. Column \texttt{j} contains the cluster indices for each of the \texttt{N} points in the \texttt{j}\textsuperscript{th} clustering solution.

Data Types: \texttt{single | double | char | string | function_handle}

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name\textsubscript{1},Value\textsubscript{1},...,Name\textsubscript{N},Value\textsubscript{N}}.

Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5 clusters using the city block distance metric.

\textbf{B — Number of reference data sets}
\texttt{100 (default) | positive integer value}
Number of reference data sets generated from the reference distribution `ReferenceDistribution`, specified as the comma-separated pair consisting of `'B'` and a positive integer value.

Example: `'B',150`

Data Types: `single` | `double`

**Distance — Distance metric**
`'sqEuclidean'` (default) | `'Euclidean'` | `'cityblock'` | `function` | ...

Distance metric used for computing the criterion values, specified as the comma-separated pair consisting of `'Distance'` and one of the following.

- `'sqEuclidean'` : Squared Euclidean distance
- `'Euclidean'` : Euclidean distance
- `'cityblock'` : Sum of absolute differences
- `'cosine'` : One minus the cosine of the included angle between points (treated as vectors)
- `'correlation'` : One minus the sample correlation between points (treated as sequences of values)

For detailed information about each distance metric, see `pdist`.

You can also specify a function for the distance metric by using a function handle (MATLAB). The distance function must be of the form

\[
d2 = \text{distfun}(XI,XJ),
\]

where `XI` is a 1-by-`n` vector corresponding to a single row of the input matrix `X`, and `XJ` is an `m_2`-by-`n` matrix corresponding to multiple rows of `X`. `distfun` must return an `m_2`-by-1 vector of distances `d2`, whose `k`th element is the distance between `XI` and `XJ(k,:)`.

Distance only accepts a function handle if the clustering algorithm `clust` accepts a function handle as the distance metric. For example, the `kmeans` clustering algorithm does not accept a function handle as the distance metric. Therefore, if you use the `kmeans` algorithm and then specify a function handle for `Distance`, the software errors.

- When `clust` is `'kmeans'` or `'gmdistribution'`, `evalclusters` uses the distance metric specified for `Distance` to cluster the data.
- If `clust` is `'linkage'`, and `Distance` is either `'sqEuclidean'` or `'Euclidean'`, then the clustering algorithm uses Euclidean distance and Ward linkage.
• If `clust` is 'linkage' and `Distance` is any other metric, then the clustering algorithm uses the specified distance metric and average linkage.
• In all other cases, the distance metric specified for `Distance` must match the distance metric used in the clustering algorithm to obtain meaningful results.

Example: 'Distance','Euclidean'

Data Types: single | double | char | string | function_handle

**KList — List of number of clusters to evaluate**

vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting of 'KList' and a vector of positive integer values. You must specify KList when `clust` is a clustering algorithm name or a function handle. When criterion is 'gap', `clust` must be a character vector, a string scalar, or a function handle, and you must specify KList.

Example: 'KList',[1:6]

Data Types: single | double

**ReferenceDistribution — Reference data generation method**

'PCA' (default) | 'uniform'

Reference data generation method, specified as the comma-separated pair consisting of 'ReferenceDistributions' and one of the following.

'PCA' Generate reference data from a uniform distribution over a box aligned with the principal components of the data matrix x.

'uniform' Generate reference data uniformly over the range of each feature in the data matrix x.

Example: 'ReferenceDistribution','uniform'

**SearchMethod — Method for selecting optimal number of clusters**

'globalMaxSE' (default) | 'firstMaxSE'

Method for selecting the optimal number of clusters, specified as the comma-separated pair consisting of 'SearchMethod' and one of the following.
Evaluate each proposed number of clusters in \( K \text{List} \) and select the smallest number of clusters satisfying

\[
\text{Gap}(K) \geq \text{GAPMAX} - \text{SE}(\text{GAPMAX}),
\]

where \( K \) is the number of clusters, \( \text{Gap}(K) \) is the gap value for the clustering solution with \( K \) clusters, \( \text{GAPMAX} \) is the largest gap value, and \( \text{SE}(\text{GAPMAX}) \) is the standard error corresponding to the largest gap value.

Evaluate each proposed number of clusters in \( K \text{List} \) and select the smallest number of clusters satisfying

\[
\text{Gap}(K) \geq \text{Gap}(K + 1) - \text{SE}(K + 1),
\]

where \( K \) is the number of clusters, \( \text{Gap}(K) \) is the gap value for the clustering solution with \( K \) clusters, and \( \text{SE}(K + 1) \) is the standard error of the clustering solution with \( K + 1 \) clusters.

Example: 'SearchMethod','globalMaxSE'

**Properties**

**B**

Number of data sets generated from the reference distribution, stored as a positive integer value.

**ClusteringFunction**

Clustering algorithm used to cluster the input data, stored as a valid clustering algorithm name or function handle. If the clustering solutions are provided in the input, `ClusteringFunction` is empty.

**CriterionName**

Name of the criterion used for clustering evaluation, stored as a valid criterion name.
**CriterionValues**

Criterion values corresponding to each proposed number of clusters in `InspectedK`, stored as a vector of numerical values.

**Distance**

Distance metric used for clustering data, stored as a valid distance metric name.

**ExpectedLogW**

Expectation of the natural logarithm of $W$ based on the generated reference data, stored as a vector of scalar values. $W$ is the within-cluster dispersion computed using the distance metric `Distance`.

**InspectedK**

List of the number of proposed clusters for which to compute criterion values, stored as a vector of positive integer values.

**LogW**

Natural logarithm of $W$ based on the input data, stored as a vector of scalar values. $W$ is the within-cluster dispersion computed using the distance metric `Distance`.

**Missing**

Logical flag for excluded data, stored as a column vector of logical values. If `Missing` equals `true`, then the corresponding value in the data matrix $x$ is not used in the clustering solution.

**NumObservations**

Number of observations in the data matrix $X$, minus the number of missing (NaN) values in $X$, stored as a positive integer value.

**OptimalK**

Optimal number of clusters, stored as a positive integer value.
**OptimalY**

Optimal clustering solution corresponding to OptimalK, stored as a column vector of positive integer values. If the clustering solutions are provided in the input, OptimalY is empty.

**ReferenceDistribution**

Reference data generation method, stored as a valid reference distribution name.

**SE**

Standard error of the natural logarithm of W with respect to the reference data for each number of clusters in InspectedK, stored as a vector of scalar values. W is the within-cluster dispersion computed using the distance metric Distance.

**SearchMethod**

Method for determining the optimal number of clusters, stored as a valid search method name.

**StdLogW**

Standard deviation of the natural logarithm of W with respect to the reference data for each number of clusters in InspectedK. W is the within-cluster dispersion computed using the distance metric Distance.

**X**

Data used for clustering, stored as a matrix of numerical values.

**Methods**

- increaseB 
  Increase reference data sets
Inherited Methods

addK  Evaluate additional numbers of clusters
plot  Plot clustering evaluation object criterion values
compact  Compact clustering evaluation object

Examples

Evaluate Clustering Solution Using Gap Criterion

Evaluate the optimal number of clusters using the gap clustering evaluation criterion.

Load the sample data.

load fisheriris

The data contains sepal and petal measurements from three species of iris flowers.

Evaluate the number of clusters based on the gap criterion values. Cluster the data using kmeans.

rng('default');  % For reproducibility
ev = evalclusters(meas,'kmeans','gap','KList',[1:6])
ev =
    GapEvaluation with properties:
        NumObservations: 150
        InspectedK: [1 2 3 4 5 6]
        CriterionValues: [0.0720 0.5928 0.8762 1.0114 1.0534 1.0720]
        OptimalK: 5

The OptimalK value indicates that, based on the gap criterion, the optimal number of clusters is five.

Plot the gap criterion values for each number of clusters tested.

plot(eva)
Based on the plot, the maximum value of the gap criterion occurs at six clusters. However, the value at five clusters is within one standard error of the maximum, so the suggested optimal number of clusters is five.

Create a grouped scatter plot to examine the relationship between petal length and width. Group the data by suggested clusters.

```matlab
figure
PetalLength = meas(:,3);
PetalWidth = meas(:,4);
ClusterGroup = eva.OptimalY;
gscatter(PetalLength,PetalWidth,ClusterGroup,'rbgkc','xod^*');
```
The plot shows cluster 4 in the lower-left corner, completely separated from the other four clusters. Cluster 4 contains flowers with the smallest petal widths and lengths. Cluster 2 is in the upper-right corner and contains flowers with the largest petal widths and lengths. Cluster 5 is next to cluster 2 and contains flowers with similar petal widths as the flowers in cluster 2, but smaller petal lengths than the flowers in cluster 2. Clusters 1 and 3 are near the center of the plot and contain flowers with measurements between the extremes.
Definitions

Gap Value

A common graphical approach to cluster evaluation involves plotting an error measurement versus several proposed numbers of clusters, and locating the “elbow” of this plot. The “elbow” occurs at the most dramatic decrease in error measurement. The gap criterion formalizes this approach by estimating the “elbow” location as the number of clusters with the largest gap value. Therefore, under the gap criterion, the optimal number of clusters occurs at the solution with the largest local or global gap value within a tolerance range.

The gap value is defined as

\[
Gap_n (k) = E_n^* \{ \log (W_k) \} - \log (W_k),
\]

where \( n \) is the sample size, \( k \) is the number of clusters being evaluated, and \( W_k \) is the pooled within-cluster dispersion measurement

\[
W_k = \sum_{r=1}^{k} \frac{1}{2n_r} D_r,
\]

where \( n_r \) is the number of data points in cluster \( r \), and \( D_r \) is the sum of the pairwise distances for all points in cluster \( r \).

The expected value \( E_n^* \{ \log (W_k) \} \) is determined by Monte Carlo sampling from a reference distribution, and \( \log (W_k) \) is computed from the sample data.

The gap value is defined even for clustering solutions that contain only one cluster, and can be used with any distance metric. However, the gap criterion is more computationally expensive than other cluster evaluation criteria, because the clustering algorithm must be applied to the reference data for each proposed clustering solution.
References


See Also

CalinskiHarabaszEvaluation | DaviesBouldinEvaluation | SilhouetteEvaluation | evalclusters

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)
get

Class: dataset

Access dataset array properties

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

get(A)
s = get(A)
p = get(A,PropertyName)
p = get(A,{PropertyName1,PropertyName2,...})

Description

get(A) displays a list of property/value pairs for the dataset array A.

s = get(A) returns the values in a scalar structure s with field names given by the properties.

p = get(A,PropertyName) returns the value of the property specified by PropertyName.

p = get(A,{PropertyName1,PropertyName2,...}) allows multiple property names to be specified and returns their values in a cell array.

Examples

Create a dataset array from Fisher's iris data and access the information.

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs),'%-d'));
iris = dataset({nominal(species),'species'},...
    {meas,'SL','SW','PL','PW'},...
    'ObsNames',NameObs);

get(iris)
    Description: ''
    Units: {}
    DimNames: {'Observations' 'Variables'}
    UserData: []
    ObsNames: {150x1 cell}
    VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

ON = get(iris,'ObsNames');
ON(1:3)
ans =
    'Obs1'
    'Obs2'
    'Obs3'

See Also
    set | summary
getlabels

Access nominal or ordinal array labels

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Syntax**

\[ \text{labels} = \text{getlabels}(A) \]

**Description**

\( \text{labels} = \text{getlabels}(A) \) returns the labels of the levels in the nominal or ordinal array \( A \) as a cell array of character vectors, labels. If \( A \) is an ordinal array, \text{getlabels} returns the labels in the order of the levels.

**Input Arguments**

- \( A \) — **Nominal or ordinal array**
  - nominal array | ordinal array

  Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

**See Also**

- getlevels  
- nominal  
- ordinal

**Topics**

- “Change Category Labels” on page 2-9
Introduced in R2007a
getlevels

Access nominal or ordinal array levels

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Syntax**

\[ L = \text{getlevels}(A) \]

**Description**

\[ L = \text{getlevels}(A) \] returns the levels in the nominal or ordinal array \( A \). \( L \) is a vector of the same type as \( A \).

**Input Arguments**

\( A \) — Nominal or ordinal array

nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

**See Also**

getlabels | nominal | ordinal

**Topics**

“Add and Drop Category Levels” on page 2-24
“Merge Category Levels” on page 2-21
“Reorder Category Levels” on page 2-11
Introduced in R2009a
gevcdf

Generalized extreme value cumulative distribution function

Syntax

p = gevcdf(x,k,sigma,mu)
p = gevcdf(x,k,sigma,mu,'upper')

Description

p = gevcdf(x,k,sigma,mu) returns the cdf of the generalized extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu, evaluated at the values in x. The size of p is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

p = gevcdf(x,k,sigma,mu,'upper') returns the complement of the cdf of the GEV distribution, using an algorithm that more accurately computes the extreme upper tail probabilities.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the wblcdf function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma > -1.
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | gevfit | geinv | gevlike | gevpdf | gevrnd | gevstat

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced before R2006a
gevfit

Generalized extreme value parameter estimates

Syntax

parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)

Description

parmhat = gevfit(X) returns maximum likelihood estimates of the parameters for the generalized extreme value (GEV) distribution given the data in X. parmhat(1) is the shape parameter, k, parmhat(2) is the scale parameter, sigma, and parmhat(3) is the location parameter, mu.

[parmhat,parmci] = gevfit(X) returns 95% confidence intervals for the parameter estimates.

[parmhat,parmci] = gevfit(X,alpha) returns 100(1-alpha)% confidence intervals for the parameter estimates.

[...] = gevfit(X,alpha,options) specifies control parameters for the iterative algorithm used to compute ML estimates. This argument can be created by a call to statset. See statset('gevfit') for parameter names and default values. Pass in [] for alpha to use the default values.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the wb1fit function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evfit function.
The mean of the GEV distribution is not finite when \( k \geq 1 \), and the variance is not finite when \( k \geq 1/2 \). The GEV distribution is defined for \( k^*(X-mu)/sigma > -1 \).

**References**


**See Also**

gvcdf | geinv | gevlike | gevpdf | gevnd | gevstat | mle

**Topics**

“Generalized Extreme Value Distribution” on page B-50

**Introduced before R2006a**
geinv

Generalized extreme value inverse cumulative distribution function

Syntax

\[ X = \text{geinv}(P,k,sigma,mu) \]

Description

\[ X = \text{geinv}(P,k,sigma,mu) \] returns the inverse cdf of the generalized extreme value (GEV) distribution with shape parameter \( k \), scale parameter \( sigma \), and location parameter \( mu \), evaluated at the values in \( P \). The size of \( X \) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for \( k \), \( sigma \), and \( mu \) are 0, 1, and 0, respectively.

When \( k < 0 \), the GEV is the type III extreme value distribution. When \( k > 0 \), the GEV distribution is the type II, or Frechet, extreme value distribution. If \( w \) has a Weibull distribution as computed by the \text{wblinv} function, then \(-w\) has a type III extreme value distribution and \(1/w\) has a type II extreme value distribution. In the limit as \( k \) approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the \text{evinv} function.

The mean of the GEV distribution is not finite when \( k \geq 1 \), and the variance is not finite when \( k \geq 1/2 \). The GEV distribution has positive density only for values of \( X \) such that \( k*(X-mu)/sigma > -1 \).

References


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**See Also**
gevcdf | gevfit | gevlike | gevpdf | gevrand | gevstat | icdf

**Topics**
“Generalized Extreme Value Distribution” on page B-50

**Introduced before R2006a**
gevlike

Generalized extreme value negative log-likelihood

**Syntax**

\[
\text{nlogL} = \text{gevlike}(\text{params},\text{data})
\]

\[
[\text{nlogL,ACOV}] = \text{gevlike}(\text{params},\text{data})
\]

**Description**

\[
\text{nlogL} = \text{gevlike}(\text{params},\text{data})
\] returns the negative of the log-likelihood \(\text{nlogL}\) for the generalized extreme value (GEV) distribution, evaluated at parameters \(\text{params}\). \(\text{params}(1)\) is the shape parameter, \(k\), \(\text{params}(2)\) is the scale parameter, \(\sigma\), and \(\text{params}(3)\) is the location parameter, \(\mu\).

\[
[\text{nlogL,ACOV}] = \text{gevlike}(\text{params},\text{data})
\] returns the inverse of Fisher's information matrix, \(\text{ACOV}\). If the input parameter values in \(\text{params}\) are the maximum likelihood estimates, the diagonal elements of \(\text{ACOV}\) are their asymptotic variances. \(\text{ACOV}\) is based on the observed Fisher's information, not the expected information.

When \(k < 0\), the GEV is the type III extreme value distribution. When \(k > 0\), the GEV distribution is the type II, or Frechet, extreme value distribution. If \(w\) has a Weibull distribution as computed by the \(\text{wbllike}\) function, then \(-w\) has a type III extreme value distribution and \(1/w\) has a type II extreme value distribution. In the limit as \(k\) approaches \(0\), the GEV is the mirror image of the type I extreme value distribution as computed by the \(\text{evlike}\) function.

The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1/2\). The GEV distribution has positive density only for values of \(X\) such that \(k*(X-\mu)/\sigma > -1\).
References


See Also
gevcdf | gevfit | gevinv | gevpdf | gevrnd | gevstat

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced before R2006a
gevpdf

Generalized extreme value probability density function

Syntax

Y = gevpdf(X,k,sigma,mu)

Description

Y = gevpdf(X,k,sigma,mu) returns the pdf of the generalized extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu, evaluated at the values in X. The size of Y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the wblpdf function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma > -1.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gevcdf | gevfit | geinv | gevlike | gevrnd | gevstat | pdf

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced before R2006a
gevrnd

Generalized extreme value random numbers

Syntax

R = gevrnd(k,sigma,mu)
R = gevrnd(k,sigma,mu,m,n,...)
R = gevrnd(k,sigma,mu,[m,n,...])

Description

R = gevrnd(k,sigma,mu) returns an array of random numbers chosen from the
generalized extreme value (GEV) distribution with shape parameter k, scale parameter
sigma, and location parameter, mu. The size of R is the common size of the input
arguments if all are arrays. If any parameter is a scalar, the size of R is the size of the
other parameters.

R = gevrnd(k,sigma,mu,m,n,...) or R = gevrnd(k,sigma,mu,[m,n,...])
generates an m-by-n-by-... array containing random numbers from the GEV distribution
with parameters k, sigma, and mu. The k, sigma, mu parameters can each be scalars or
arrays of the same size as R.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblrnd function, then -w has a type III extreme value
distribution and 1/w has a type II extreme value distribution. In the limit as k approaches
0, the GEV is the mirror image of the type I extreme value distribution as computed by
the evrnd function.

The mean of the GEV distribution is not finite when k \geq 1, and the variance is not finite
when k \geq 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

See Also
gevcdf | gevfit | gevinv | gevlike | gevpdf | gevstat | random

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced before R2006a
gevstat

Generalized extreme value mean and variance

Syntax

[M,V] = gevstat(k,sigma,mu)

Description

[M,V] = gevstat(k,sigma,mu) returns the mean of and variance for the generalized extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu. The sizes of M and V are the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the wblstat function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evstat function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma > -1.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gevcdf | gevfit | geinv | gevlike | gevpdf | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced before R2006a
gline

Interactively add line to plot

Syntax

gline(h)
gline
hline = gline(...)  

Description

gline(h) allows you to draw a line segment in the figure with handle h by clicking the pointer at the two endpoints. A rubber-band line tracks the pointer movement.

gline with no input arguments defaults to h = gcf and draws in the current figure.

hline = gline(...) returns the handle hline to the line.

Examples

Use gline to connect two points in a plot:

```matlab
x = 1:10;

y = x + randn(1,10);
scatter(x,y,25,'b','*')

lsline

mu = mean(y);
hold on
plot([1 10],[mu mu],'ro')

hline = gline; % Connect circles
set(hline,'Color','r')
```
See Also
lsline | refcurve | reframe

Introduced before R2006a
glmfit

Generalized linear model regression

Syntax

\[ b = \text{glmfit}(X,y,distr) \]
\[ b = \text{glmfit}(X,y,distr,param1,val1,param2,val2,...) \]
\[ [b,dev] = \text{glmfit}(...) \]
\[ [b,dev,stats] = \text{glmfit}(...) \]

Description

\[ b = \text{glmfit}(X,y,distr) \] returns a \((p + 1)\)-by-1 vector \(b\) of coefficient estimates for a generalized linear regression of the responses in \(y\) on the predictors in \(X\), using the distribution \(distr\). \(X\) is an \(n\)-by-\(p\) matrix of \(p\) predictors at each of \(n\) observations. \(distr\) can be any of the following: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the default), and 'poisson'.

In most cases, \(y\) is an \(n\)-by-1 vector of observed responses. For the binomial distribution, \(y\) can be a binary vector indicating success or failure at each observation, or a two column matrix with the first column indicating the number of successes for each observation and the second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution to the predictors.

**Note** By default, glmfit adds a first column of 1s to \(X\), corresponding to a constant term in the model. Do not enter a column of 1s directly into \(X\). You can change the default behavior of glmfit using the 'constant' parameter, below.

glmfit treats NaNs in either \(X\) or \(y\) as missing values, and ignores them.

\[ b = \text{glmfit}(X,y,distr,param1,val1,param2,val2,...) \] additionally allows you to specify optional parameter name/value pairs to control the model fit. Acceptable parameters are as follows.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'link'</td>
<td>'identity', default for the distribution 'normal'</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td></td>
<td>'log', default for the distribution 'poisson'</td>
<td>$\log(\mu) = Xb$</td>
</tr>
<tr>
<td></td>
<td>'logit', default for the distribution 'binomial'</td>
<td>$\log(\mu/(1 - \mu)) = Xb$</td>
</tr>
<tr>
<td></td>
<td>'probit'</td>
<td>$\text{norminv}(\mu) = Xb$</td>
</tr>
<tr>
<td></td>
<td>'comploglog'</td>
<td>$\log(-\log(1 - \mu)) = Xb$</td>
</tr>
<tr>
<td></td>
<td>'reciprocal', default for the distribution 'gamma'</td>
<td>$1/\mu = Xb$</td>
</tr>
<tr>
<td></td>
<td>'loglog'</td>
<td>$\log(-\log(\mu)) = Xb$</td>
</tr>
<tr>
<td></td>
<td>$p$ (a number), default for the distribution 'inverse gaussian' (with $p = -2$)</td>
<td>$\mu^p = Xb$</td>
</tr>
</tbody>
</table>
|           | cell array of the form \{FL FD FI\}, containing three function handles, created using @, that define the link (FL), the derivative of the link (FD), and the inverse link (FI). | Custom-defined link function. You must provide \[
\begin{align*}
&\text{FL}(\mu) \\
&\text{FD} = \frac{d\text{FL}(\mu)}{d\mu} \\
&\text{FI} = \text{FL}^{-1}(-1)
\end{align*}
\]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| structure array having these fields: | - 'Link' — Link function  
- 'Derivative' — Derivative of the link function  
- 'Inverse' — Inverse of the link function  
The value of each field is a character vector corresponding to a function that is on the path or a function handle (created using @). | Custom-defined link function, its derivative, and its inverse. |
| 'estdisp'   | 'on'                   | Estimates a dispersion parameter for the binomial or Poisson distribution.    |
|             | 'off' (Default for binomial or Poisson distribution) | Uses the theoretical value of 1.0 for those distributions. |
| 'offset'    | Vector                 | Used as an additional predictor variable, but with a coefficient value fixed at 1.0. |
| 'weights'   | Vector of prior weights, such as the inverses of the relative variance of each observation | |
| 'constant'  | 'on' (default)        | Includes a constant term in the model. The coefficient of the constant term is the first element of b. |
|             | 'off'                  | Omit the constant term.                                                     |

\[b, dev\] = glmfit(...) returns dev, the deviance of the fit at the solution vector. The deviance is a generalization of the residual sum of squares. It is possible to perform an analysis of deviance to compare several models, each a subset of the other, and to test
whether the model with more terms is significantly better than the model with fewer terms.

\[ [b, \text{dev}, \text{stats}] = \text{glmfit}(...) \] returns \text{dev} and \text{stats}.

\text{stats} is a structure with the following fields:

- \text{beta} — Coefficient estimates \( b \)
- \text{dfe} — Degrees of freedom for error
- \text{sfit} — Estimated dispersion parameter
- \text{s} — Theoretical or estimated dispersion parameter
- \text{estdisp} — 0 when the 'estdisp' name-value pair argument value is 'off' and 1 when the 'estdisp' name-value pair argument value is 'on'.
- \text{covb} — Estimated covariance matrix for \( B \)
- \text{se} — Vector of standard errors of the coefficient estimates \( b \)
- \text{coeffcorr} — Correlation matrix for \( b \)
- \text{t} — \( t \) statistics for \( b \)
- \text{p} — \( p \)-values for \( b \)
- \text{resid} — Vector of residuals
- \text{residp} — Vector of Pearson residuals
- \text{residd} — Vector of deviance residuals
- \text{resida} — Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then \text{stats.s} is set equal to \text{stats.sfit}. Also, the elements of \text{stats.se} differ by the factor \text{stats.s} from their theoretical values.

**Examples**

**Fit Generalized Linear Model with Probit Link**

Enter the sample data.

\[
x = [2100 2300 2500 2700 2900 3100 ... 3300 3500 3700 3900 4100 4300]';
\]
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Each y value is the number of successes in the corresponding number of trials in n, and x contains the predictor variable values.

Fit a probit regression model for y on x.

b = glmfit(x,[y n], 'binomial', 'link', 'probit');

Compute the estimated number of successes and plot the percent observed and estimated percent success versus the x values.

yfit = glmval(b,x, 'probit', 'size', n);
plot(x, y./n, 'o', x, yfit./n, '-','LineWidth', 2)
Use Custom-Defined Link Function

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the response and predictor variables.

\[
X = \text{meas}(51:\text{end},:);
\]
\[
y = \text{strcmp}('\text{versicolor}', \text{species}(51:\text{end}));
\]

Define three function handles, created using @, that define the link, the derivative of the link, and the inverse link for a logit link function, and store them in a cell array.

\[
\text{link} = @(\mu) \log(\mu ./ (1-\mu));
\]
\[
\text{derlink} = @(\mu) 1 ./ (\mu .* (1-\mu));
\]
\[
\text{invlink} = @(\text{resp}) 1 ./ (1 + \exp(-\text{resp}));
\]
\[
F = \{\text{link}, \text{derlink}, \text{invlink}\};
\]

Fit a logistic regression using glmfit with the link function you defined.

\[
b = \text{glmfit}(X,y, '\text{binomial}', '\text{link}', F)
\]

\[
b = 5\times1
\]
\[
\begin{array}{c}
42.6378 \\
3.8152 \\
6.6809 \\
-9.4294 \\
-18.2861 \\
\end{array}
\]

Now, fit a generalized linear model using the logit link function and compare the results.

\[
b = \text{glmfit}(X,y, '\text{binomial}', '\text{link}', '\text{logit}')
\]

\[
b = 5\times1
\]
References


See Also
GeneralizedLinearModel | fitglm | glmval | regress | regstats | stepwiseglm

Introduced before R2006a
glmval

Generalized linear model values

Syntax

yhat = glmval(b,X,link)
[yhat,dylo,dyhi] = glmval(b,X,link,stats)
[...] = glmval(...,param1,val1,param2,val2,...)

Description

yhat = glmval(b,X,link) computes predicted values for the generalized linear model with link function link and predictors X. Distinct predictor variables should appear in different columns of X. b is a vector of coefficient estimates as returned by the glmfit function. link can be any of the character vectors, string scalars, or custom-defined link functions used as values for the 'link' name-value pair argument in the glmfit function.

Note By default, glmval adds a first column of 1s to X, corresponding to a constant term in the model. Do not enter a column of 1s directly into X. You can change the default behavior of glmval using the 'constant' parameter, below.

[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95% confidence bounds for the predicted values. When the stats structure output of the glmfit function is specified, dylo and dyhi are also returned. dylo and dyhi define a lower confidence bound of yhat-dylo, and an upper confidence bound of yhat+dyhi. Confidence bounds are nonsimultaneous, and apply to the fitted curve, not to a new observation.

[...] = glmval(...,param1,val1,param2,val2,...) specifies optional parameter name/value pairs to control the predicted values. Acceptable parameters are:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'confidence' — the confidence level for the confidence bounds</td>
<td>A scalar between 0 and 1</td>
</tr>
<tr>
<td>'size' — the size parameter (N) for a binomial model</td>
<td>A scalar, or a vector with one value for each row of X</td>
</tr>
<tr>
<td>'offset' — used as an additional predictor variable, but with a coefficient value fixed at 1.0</td>
<td>A vector</td>
</tr>
</tbody>
</table>
| 'constant'                | • 'on' — Includes a constant term in the model. The coefficient of the constant term is the first element of b.  
|                           | • 'off' — Omit the constant term                                       |
| 'simultaneous' — Compute simultaneous confidence intervals (true), or compute non-simultaneous confidence intervals (default false) | true or false                                                         |

**Examples**

**Fit Generalized Linear Model with Probit Link**

Enter the sample data.

```matlab
x = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';
```

Each y value is the number of successes in the corresponding number of trials in n, and x contains the predictor variable values.

Fit a probit regression model for y on x.

```matlab
b = glmfit(x,[y n],'binomial','link','probit');
```

Compute the estimated number of successes and plot the percent observed and estimated percent success versus the x values.
Use Custom-Defined Link Function

Enter sample data.

```matlab
x = [2100 2300 2500 2700 2900 3100 ...
 3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';
```
Each y value is the number of successes in corresponding number of trials in n, and x contains the predictor variable values.

Now define three function handles, created using @, that define the link, the derivative of the link, and the inverse link for a probit link function, and store them in a cell array.

\[
\text{link} = @(\mu) \text{norminv}(\mu);
\]
\[
\text{derlink} = @(\mu) 1 ./ \text{normpdf}(\text{norminv}(\mu));
\]
\[
\text{invlink} = @(\text{resp}) \text{normcdf}(\text{resp});
\]
\[
F = \{\text{link}, \text{derlink}, \text{invlink}\};
\]

Fit a generalized linear model for y on x using the link function you defined.

\[
b = \text{glmfit}(x, [y \ n], 'binomial', 'link', F);
\]

Compute the estimated number of successes and plot the observed and estimated percent success versus the x values.

\[
yfit = \text{glmval}(b, x, F, 'size', n);
\]
\[
\text{plot}(x, y ./ n, 'o', x, yfit ./ n, '-', 'LineWidth', 2)
\]
Generate Code from Function That Predicts Responses Given New Data

Train a generalized linear model, and then generate code from a function that classifies new observations based on the model. This example is based on the “Use Custom-Defined Link Function” on page 32-2829 example.

Enter the sample data.

```matlab
x = [2100 2300 2500 2700 2900 3100 ...
 3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';
```
Suppose that the inverse normal pdf is an appropriate link function for the problem.

Define a function named `myInvNorm.m` that accepts values of $X\beta$ and returns corresponding values of the inverse of the standard normal cdf.

```matlab
function in = myInvNorm(mu) %#codegen
%myInvNorm Inverse of standard normal cdf for code generation
% myInvNorm is a GLM link function that accepts a numeric vector mu, and
% returns in, which is a numeric vector of corresponding values of the
% inverse of the standard normal cdf.
% in = norminv(mu);
end
```

Define another function named `myDInvNorm.m` that accepts values of $X\beta$ and returns corresponding values of the derivative of the link function.

```matlab
function din = myDInvNorm(mu) %#codegen
%myDInvNorm Derivative of inverse of standard normal cdf for code generation
% myDInvNorm corresponds to the derivative of the GLM link function
% myInvNorm. myDInvNorm accepts a numeric vector mu, and returns din,
% which is a numeric vector of corresponding derivatives of the inverse
% of the standard normal cdf.
% din = 1./normpdf(norminv(mu));
end
```

Define another function named `myInvInvNorm.m` that accepts values of $X\beta$ and returns corresponding values of the inverse of the link function.

```matlab
function iin = myInvInvNorm(mu) %#codegen
%myInvInvNorm Standard normal cdf for code generation
% myInvInvNorm is the inverse of the GLM link function myInvNorm.
% myInvInvNorm accepts a numeric vector mu, and returns iin, which is a
% numeric vector of corresponding values of the standard normal cdf.
% iin = normcdf(norminv(mu));
end
```
iin = normcdf(mu);
end

Create a structure array that specifies each of the link functions. Specifically, the structure array contains fields named 'Link', 'Derivative', and 'Inverse'. The corresponding values are the names of the functions.

link = struct('Link','myInvNorm','Derivative','myDInvNorm',...
    'Inverse','myInvInvNorm')

link =
    struct with fields:
        Link: 'myInvNorm'
        Derivative: 'myDInvNorm'
        Inverse: 'myInvInvNorm'

Fit a GLM for y on x using the link function link. Additionally, return the structure array of statistics.

[b,~,stats] = glmfit(x,[y n],'binomial','link',link);

b is a 2-by-1 vector of regression coefficients.

In your current working folder, define a function called classifyGLM.m that:

• Accepts measurements with columns corresponding to those in x, regression coefficients whose dimensions correspond to b, a link function, the structure of GLM statistics, and any valid glmval name-value pair argument

• Returns predictions and confidence interval margins of error

function [yhat,lo,hi] = classifyGLM(b,x,link,varargin) %#codegen
%CLASSIFYGLM Classify measurements using GLM model
%CLASSIFYGLM classifies the n observations in the n-by-1 vector x using
%the GLM model with regression coefficients b and link function link,
%and then returns the n-by-1 vector of predicted values in yhat.
%CLASSIFYGLM also returns margins of error for the predictions using
%additional information in the GLM statistics structure stats.
narginchk(3,Inf);
if(isstruct(varargin{1}))
    stats = varargin{1};
    [yhat,lo,hi] = glmval(b,x,link,stats,varargin{2:end});
else
    yhat = glmval(b,x,link,varargin{:});
end
end

Generate a MEX function from classifyGLM.m. Because C uses static typing, codegen must determine the properties of all variables in MATLAB® files at compile time. To ensure that the MEX function can use the same inputs, use the -args argument to specify the following in the order given:

- Regression coefficients b as a compile-time constant
- In-sample observations x
- Link function as a compile-time constant
- Resulting GLM statistics as a compile-time constant
- Name 'Confidence' as a compile-time constant
- Confidence level 0.9

To designate arguments as compile-time constants, use coder.Constant.

codegen -config:mex classifyGLM -args {coder.Constant(b),x,coder.Constant(link),coder.Constant(stats),coder.Constant('Confidence'),0.9}
codegen generates the MEX file classifyGLM_mex.mexw64 in your current folder. The file extension depends on your platform.

Compare predictions using glmval and classifyGLM_mex. Specify name-value pair arguments in the same order as in the -args argument in the call to codegen.

[yhat1,melo1,mehi1] = glmval(b,x,link,stats,'Confidence',0.9);
[yhat2,melo2,mehi2] = classifyGLM_mex(b,x,link,stats,'Confidence',0.9);

comp1 = (yhat1 - yhat2)'*(yhat1 - yhat2);
agree1 = comp1 < eps
comp2 = (melo1 - melo2)'*(melo1 - melo2);
agree2 = comp2 < eps
comp3 = (mehi1 - mehi2)'*(mehi1 - mehi2);
agree3 = comp3 < eps
agree1 =
    logical 1

agree2 =
    logical 1

agree3 =
    logical 1

The generated MEX function produces the same results as `predict`.

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b must be a compile-time constant. That is, its value cannot change while codegen generates the C/C++ code. You can designate variables as compile-time constants using coder.Constant.</td>
</tr>
<tr>
<td>X</td>
<td>Must be a double- or single-precision numeric matrix</td>
</tr>
</tbody>
</table>
| link     | • Does not support function handles, that is, functions created using @.  
           • Must be a compile-time constant. |
| stats    | Must be a compile-time constant |
| 'Constant' name-value pair argument | Must be a compile-time constant |
| Name-value pair arguments | Names in name-value pair arguments must be compile-time constants. For example, to specify a confidence level of 0.9, include \{coder.Constant('Confidence'),coder.Constant(0.9)\} in the -args value of codegen. |

See Also
GeneralizedLinearModel | fitglm | glmfit | stepwiseglm

Topics
“Introduction to Code Generation” on page 31-2

Introduced before R2006a
**glyphplot**

Glyph plot

**Syntax**

```matlab
glyphplot(X)
glyphplot(X,'glyph','face')
glyphplot(X,'glyph','face','features',f)
glyphplot(X,...,'grid',[rows,cols])
glyphplot(X,...,'grid',[rows,cols],'page',p)
glyphplot(X,...,'centers',C)
glyphplot(X,...,'centers',C,'radius',r)
glyphplot(X,...,'obslabels',labels)
glyphplot(X,...,'standardize',method)
glyphplot(X,...,'prop1',val1,...)
h = glyphplot(X,...)
```

**Description**

`glyphplot(X)` creates a star plot from the multivariate data in the n-by-p matrix `X`. Rows of `X` correspond to observations, columns to variables. A star plot represents each observation as a “star” whose `i`th spoke is proportional in length to the `i`th coordinate of that observation. `glyphplot` standardizes `X` by shifting and scaling each column separately onto the interval \([0,1]\) before making the plot, and centers the glyphs on a rectangular grid that is as close to square as possible. `glyphplot` treats NaNs in `X` as missing values, and does not plot the corresponding rows of `X`.

`glyphplot(X,'glyph','star')` is a synonym for `glyphplot(X)`.

`glyphplot(X,'glyph','face')` creates a face plot from `X`. A face plot represents each observation as a “face,” whose `i`th facial feature is drawn with a characteristic proportional to the `i`th coordinate of that observation. The features are described in “Face Features” on page 32-2839.

`glyphplot(X,'glyph','face','features',f)` creates a face plot where the `i`th element of the index vector `f` defines which facial feature will represent the `i`th column of `X`.
X. f must contain integers from 0 to 17, where 0 indicate that the corresponding column
of X should not be plotted. See “Face Features” on page 32-2839 for more information.

glyphplot(X,...,'grid',[rows,cols]) organizes the glyphs into a rows-by-cols
grid.

glyphplot(X,...,'grid',[rows,cols],'page',p) organizes the glyph into one or
more pages of a rows-by-cols grid, and displays the page p. If p is a vector, glyphplot
displays multiple pages in succession. If p is 'all', glyphplot displays all pages. If p is
'scroll', glyphplot displays a single plot with a scrollbar.

glyphplot(X,...,'centers',C) creates a plot with each glyph centered at the
locations in the n-by-2 matrix C.

glyphplot(X,...,'centers',C,'radius',r) creates a plot with glyphs positioned
using C, and scale the glyphs so the largest has radius r.

glyphplot(X,...,'obslabels',labels) labels each glyph with the text in labels.
By default, the glyphs are labelled 1:N. Use '' for blank labels.

glyphplot(X,...,'standardize',method) standardizes X before making the plot.
Choices for method are

• 'column' — Maps each column of X separately onto the interval [0,1]. This is the
default.
• 'matrix' — Maps the entire matrix X onto the interval [0,1].
• 'PCA' — Transforms X to its principal component scores, in order of decreasing
eigenvalue, and maps each one onto the interval [0,1].
• 'off' — No standardization. Negative values in X may make a star plot
uninterpretable.

glyphplot(X,...,prop1,val1,...) sets properties to the specified property values
for all line graphics objects created by glyphplot.

h = glyphplot(X,...) returns a matrix of handles to the graphics objects created by
glyphplot. For a star plot, h(:,1) and h(:,2) contain handles to the line objects for
each star's perimeter and spokes, respectively. For a face plot, h(:,1) and h(:,2)
contain object handles to the lines making up each face and to the pupils, respectively.
h(:,3) contains handles to the text objects for the labels, if present.
**Face Features**

The following table describes the correspondence between the columns of the vector $f$, the value of the 'Features' input parameter, and the facial features of the glyph plot. If $X$ has fewer than 17 columns, unused features are displayed at their default value.

<table>
<thead>
<tr>
<th>Column</th>
<th>Facial Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Size of face</td>
</tr>
<tr>
<td>2</td>
<td>Forehead/jaw relative arc length</td>
</tr>
<tr>
<td>3</td>
<td>Shape of forehead</td>
</tr>
<tr>
<td>4</td>
<td>Shape of jaw</td>
</tr>
<tr>
<td>5</td>
<td>Width between eyes</td>
</tr>
<tr>
<td>6</td>
<td>Vertical position of eyes</td>
</tr>
<tr>
<td>7</td>
<td>Height of eyes</td>
</tr>
<tr>
<td>8</td>
<td>Width of eyes (this also affects eyebrow width)</td>
</tr>
<tr>
<td>9</td>
<td>Angle of eyes (this also affects eyebrow angle)</td>
</tr>
<tr>
<td>10</td>
<td>Vertical position of eyebrows</td>
</tr>
<tr>
<td>11</td>
<td>Width of eyebrows (relative to eyes)</td>
</tr>
<tr>
<td>12</td>
<td>Angle of eyebrows (relative to eyes)</td>
</tr>
<tr>
<td>13</td>
<td>Direction of pupils</td>
</tr>
<tr>
<td>14</td>
<td>Length of nose</td>
</tr>
<tr>
<td>15</td>
<td>Vertical position of mouth</td>
</tr>
<tr>
<td>16</td>
<td>Shape of mouth</td>
</tr>
<tr>
<td>17</td>
<td>Mouth arc length</td>
</tr>
</tbody>
</table>

**Examples**

**Star and Face Plots of Multivariate Data**

Load the sample data.
load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];

Create a star plot of the data in X. Standardize the data before plotting.

glyphplot(X,'standardize','column','obslabels',Model,'grid',[2 2],...'page','scroll');
Create a faceplot of the data in \( X \).

\[
glyphplot(X,'glyph','face','obslabels',Model,'grid',[2 3],'page',9);
\]

**See Also**
- andrewsplot
- parallelcoords

**Introduced before R2006a**
gmdistribution

Create Gaussian mixture model

Description

A gmdistribution object stores a Gaussian mixture distribution, also called a Gaussian mixture model (GMM), which is a multivariate distribution that consists of multivariate Gaussian distribution components. Each component is defined by its mean and covariance, and the mixture is defined by a vector of mixing proportions.

Creation

You can create a gmdistribution model object in two ways.

- Use the gmdistribution function (described here) to create a gmdistribution model object by specifying the distribution parameters.
- Use the fitgmdist function to fit a gmdistribution model object to data given a fixed number of components.

Syntax

```matlab
gm = gmdistribution(mu,sigma)
gm = gmdistribution(mu,sigma,p)
```

Description

`gm = gmdistribution(mu,sigma)` creates a gmdistribution model object using the specified means `mu` and covariances `sigma` with equal mixing proportions.

`gm = gmdistribution(mu,sigma,p)` specifies the mixing proportions of multivariate Gaussian distribution components.
**Input Arguments**

**mu — Means**  
*k*-by-`m` numeric matrix

Means of multivariate Gaussian distribution components, specified as a *k*-by-*m* numeric matrix, where *k* is the number of components and *m* is the number of variables in each component. `mu(i,:)` is the mean of component `i`.

Data Types: `single` | `double`

**sigma — Covariances**  
numeric vector | numeric matrix | numeric array

Covariances of multivariate Gaussian distribution components, specified as a numeric vector, matrix, or array.

Given that *k* is the number of components and *m* is the number of variables in each component, `sigma` is one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>m</em>-by-<em>m</em>-by-<em>k</em> array</td>
<td><code>sigma(:,:,i)</code> is the covariance matrix of component <code>i</code>.</td>
</tr>
<tr>
<td>1-by-<em>m</em>-by-<em>k</em> array</td>
<td>Covariance matrices are diagonal. <code>sigma(1,:,i)</code> contains the diagonal elements of the covariance matrix of component <code>i</code>.</td>
</tr>
<tr>
<td><em>m</em>-by-<em>m</em> matrix</td>
<td>Covariance matrices are the same across components.</td>
</tr>
<tr>
<td>1-by-<em>m</em> vector</td>
<td>Covariance matrices are diagonal and the same across components.</td>
</tr>
</tbody>
</table>

Data Types: `single` | `double`

**p — Mixing proportions of mixture components**  
numeric vector of length *k*

Mixing proportions of mixture components, specified as a numeric vector of length *k*, where *k* is the number of components. The default is a row vector of (1/*k*)s, which sets equal proportions. If `p` does not sum to 1, `gmdistribution` normalizes it.

Data Types: `single` | `double`
Properties

Distribution Parameters

**mu — Means**

*k*-by-*m* numeric matrix

This property is read-only.

Means of multivariate Gaussian distribution components, specified as a *k*-by-*m* numeric matrix, where *k* is the number of components and *m* is the number of variables in each component. *mu*(i,:) is the mean of component *i*.

- If you create a `gmdistribution` object by using the `gmdistribution` function, then the `mu` input argument of `gmdistribution` sets this property.
- If you fit a `gmdistribution` object to data by using the `fitgmdist` function, then `fitgmdist` estimates this property.

Data Types: `single` | `double`

**Sigma — Covariances**

numeric vector | numeric matrix | numeric array

This property is read-only.

Covariances of multivariate Gaussian distribution components, specified as a numeric vector, matrix, or array.

Given that *k* is the number of components and *m* is the number of variables in each component, Sigma is one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>m</em>-by-<em>m</em>-by-<em>k</em> array</td>
<td><em>Sigma( :, :, i)</em> is the covariance matrix of component <em>i</em>.</td>
</tr>
<tr>
<td>1-by-<em>m</em>-by-<em>k</em> array</td>
<td>Covariance matrices are diagonal. <em>Sigma(1, :, i)</em> contains the diagonal elements of the covariance matrix of component <em>i</em>.</td>
</tr>
<tr>
<td><em>m</em>-by-<em>m</em> matrix</td>
<td>Covariance matrices are the same across components.</td>
</tr>
<tr>
<td>1-by-<em>m</em> vector</td>
<td>Covariance matrices are diagonal and the same across components.</td>
</tr>
</tbody>
</table>
• If you create a gmdistribution object by using the gmdistribution function, then the sigma input argument of gmdistribution sets this property.
• If you fit a gmdistribution object to data by using the fitgmdist function, then fitgmdist estimates this property.

Data Types: single | double

ComponentProportion — Mixing proportions of mixture components
1-by-k numeric vector

This property is read-only.

Mixing proportions of mixture components, specified as a 1-by-k numeric vector.

• If you create a gmdistribution object by using the gmdistribution function, then the p input argument of gmdistribution sets this property.
• If you fit a gmdistribution object to data by using the fitgmdist function, then fitgmdist estimates this property.

Data Types: single | double

Distribution Characteristics

CovarianceType — Type of covariance matrices
'diagonal' | 'full'

This property is read-only.

Type of covariance matrices, specified as either 'diagonal' or 'full'.

• If you create a gmdistribution object by using the gmdistribution function, then the type of covariance matrices in the sigma input argument of gmdistribution sets this property.
• If you fit a gmdistribution object to data by using the fitgmdist function, then the 'CovarianceType' name-value pair argument of fitgmdist sets this property.

DistributionName — Distribution name
'gaussian mixture distribution' (default)

This property is read-only.
Distribution name, specified as 'gaussian mixture distribution'.

**NumComponents — Number of mixture components**

positive integer

This property is read-only.

Number of mixture components, $k$, specified as a positive integer.

- If you create a `gmdistribution` object by using the `gmdistribution` function, then the input arguments `mu`, `sigma`, and `p` of `gmdistribution` set this property.
- If you fit a `gmdistribution` object to data by using the `fitgmdist` function, then the $k$ input argument of `fitgmdist` sets this property.

Data Types: `single` | `double`

**NumVariables — Number of variables**

positive integer

This property is read-only.

Number of variables in the multivariate Gaussian distribution components, $m$, specified as a positive integer.

- If you create a `gmdistribution` object by using the `gmdistribution` function, then the input arguments `mu`, `sigma`, and `p` of `gmdistribution` set this property.
- If you fit a `gmdistribution` object to data by using the `fitgmdist` function, then the input data $X$ of `fitgmdist` sets this property.

Data Types: `double`

**SharedCovariance — Flag indicating shared covariance**

`true` | `false`

This property is read-only.

Flag indicating whether a covariance matrix is shared across mixture components, specified as `true` or `false`.

- If you create a `gmdistribution` object by using the `gmdistribution` function, then the type of covariance matrices in the `sigma` input argument of `gmdistribution` sets this property.
• If you fit a gmdistribution object to data by using the fitgmdist function, then the 'SharedCovariance' name-value pair argument of fitgmdist sets this property.

Data Types: logical

Properties for Fitted Object

The following properties apply only to a fitted object you create by using fitgmdist. The values of these properties are empty if you create a gmdistribution object by using the gmdistribution function.

**AIC — Akaike Information Criterion**

`scalar`

This property is read-only.

Akaike information criterion (AIC), specified as a scalar: $AIC = 2*N\log L + 2*p$, where $N\log L$ is the negative loglikelihood (the NegativeLogLikelihood property) and $p$ is the number of estimated parameters.

AIC is a model selection tool you can use to compare multiple models fit to the same data. AIC is a likelihood-based measure of model fit that includes a penalty for complexity, specifically, the number of parameters. When you compare multiple models, a model with a smaller value of AIC is better.

This property is empty if you create a gmdistribution object by using the gmdistribution function.

Data Types: `single` | `double`

**BIC — Bayes Information Criterion**

`scalar`

This property is read-only.

Bayes information criterion (BIC), specified as a scalar: $BIC = 2*N\log L + p*\log(n)$, where $N\log L$ is the negative loglikelihood (the NegativeLogLikelihood property), $n$ is the number of observations, and $p$ is the number of estimated parameters.

BIC is a model selection tool you can use to compare multiple models fit to the same data. BIC is a likelihood-based measure of model fit that includes a penalty for complexity,
specifically, the number of parameters. When you compare multiple models, a model with the lowest BIC value is the best fitting model.

This property is empty if you create a `gmdistribution` object by using the `gmdistribution` function.

Data Types: `single` | `double`

**Converged — Flag indicating convergence**

`true` | `false`

This property is read-only.

Flag indicating whether the Expectation-Maximization (EM) algorithm is converged when fitting a Gaussian mixture model, specified as `true` or `false`.

You can change the optimization options by using the `'Options'` name-value pair argument of `fitgmdist`.

This property is empty if you create a `gmdistribution` object by using the `gmdistribution` function.

Data Types: `logical`

**NegativeLogLikelihood — Negative loglikelihood**

`scalar`

This property is read-only.

Negative loglikelihood of the fitted Gaussian mixture model given the input data `X` of `fitgmdist`, specified as a scalar.

This property is empty if you create a `gmdistribution` object by using the `gmdistribution` function.

Data Types: `single` | `double`

**NumIterations — Number of iterations**

`positive integer`

This property is read-only.

Number of iterations in the Expectation-Maximization (EM) algorithm, specified as a positive integer.
You can change the optimization options, including the maximum number of iterations allowed, by using the 'Options' name-value pair argument of fitgmdist.

This property is empty if you create a gmdistribution object by using the gmdistribution function.

Data Types: double

**ProbabilityTolerance — Tolerance for posterior probabilities**

nonnegative scalar value in range $[0, 1e-6]$.

This property is read-only.

Tolerance for posterior probabilities, specified as a nonnegative scalar value in the range $[0, 1e-6]$.

The 'ProbabilityTolerance' name-value pair argument of fitgmdist sets this property.

This property is empty if you create a gmdistribution object by using the gmdistribution function.

Data Types: single | double

**RegularizationValue — Regularization parameter value**

nonnegative scalar

This property is read-only.

Regularization parameter value, specified as a nonnegative scalar.

The 'RegularizationValue' name-value pair argument of fitgmdist sets this property.

This property is empty if you create a gmdistribution object by using the gmdistribution function.

Data Types: single | double

**Object Functions**

cdf Cumulative distribution function for Gaussian mixture distribution
cluster Construct clusters from Gaussian mixture distribution
Examples

Create Gaussian Mixture Distribution Using `gmdistribution`

Create a two-component bivariate Gaussian mixture distribution by using the `gmdistribution` function.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture components.

\[
\mu = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix};
\]

\[
sigma = \text{cat}(3,\begin{bmatrix} 2 & 0.5 \\ 1 & 1 \end{bmatrix}) \% \text{1-by-2-by-2 array}
\]

The `cat` function concatenates the covariances along the third array dimension. The defined covariance matrices are diagonal matrices. `sigma(1,:,:)` contains the diagonal elements of the covariance matrix of component `i`.

Create a `gmdistribution` object. By default, the `gmdistribution` function creates an equal proportion mixture.

\[
\text{gm} = \text{gmdistribution}([\mu \sigma])
\]

`gm` =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 1  2

Component 2:
Mixing proportion: 0.500000
Mean: -3 -5

List the properties of the gm object.

properties(gm)

Properties for class gmdistribution:

NumVariables
DistributionName
NumComponents
ComponentProportion
SharedCovariance
NumIterations
RegularizationValue
NegativeLogLikelihood
CovarianceType
mu
Sigma
AIC
BIC
Converged
ProbabilityTolerance

You can access these properties by using dot notation. For example, access the ComponentProportion property, which represents the mixing proportions of mixture components.

gm.ComponentProportion

ans = 1x2

0.5000    0.5000

A gmdistribution object has properties that apply only to a fitted object. The fitted object properties are AIC, BIC, Converged, NegativeLogLikelihood, NumIterations, ProbabilityTolerance, and RegularizationValue. The values of the fitted object properties are empty if you create an object by using the
gmdistribution function and specifying distribution parameters. For example, access the NegativeLogLikelihood property by using dot notation.

```matlab
gm.NegativeLogLikelihood
ans =
```

After you create a `gmdistribution` object, you can use the object functions. Use `cdf` and `pdf` to compute the values of the cumulative distribution function (cdf) and the probability density function (pdf). Use `random` to generate random vectors. Use `cluster`, `mahal`, and `posterior` for cluster analysis.

Visualize the object by using `pdf` and `ezsurf`.

```matlab
ezsurf(@(x,y)pdf(gm,[x y]),[-10 10],[-10 10])```
Fit Gaussian Mixture Model to Data Using `fitgmdist`

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the `mvnrnd` function. Fit a Gaussian mixture model (GMM) to the generated data by using the `fitgmdist` function.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture components.

\[
\text{mu1} = [1 \ 2]; \quad \% \text{Mean of the 1st component}
\]
\sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}; \quad \text{% Covariance of the 1st component}
\mu_2 = [-3 -5]; \quad \text{% Mean of the 2nd component}
\sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \text{% Covariance of the 2nd component}

Generate an equal number of random variates from each component, and combine the two sets of random variates.

rng('default') \quad \text{% For reproducibility}
\text{r1} = \text{mvnrnd}(\mu_1, \sigma_1, 1000);
\text{r2} = \text{mvnrnd}(\mu_2, \sigma_2, 1000);
\text{X} = [\text{r1}; \text{r2}];

The combined data set \text{X} contains random variates following a mixture of two bivariate Gaussian distributions.

Fit a two-component GMM to \text{X}.

\text{gm} = \text{fitgmdist}(\text{X}, 2)

\text{gm} =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: \begin{bmatrix} -2.9617 \\ -4.9727 \end{bmatrix}

Component 2:
Mixing proportion: 0.500000
Mean: \begin{bmatrix} 0.9539 \\ 2.0261 \end{bmatrix}

List the properties of the \text{gm} object.

\text{properties(gm)}

Properties for class \text{gmdistribution}:

- NumVariables
- DistributionName
- NumComponents
- ComponentProportion
- SharedCovariance
- NumIterations
- RegularizationValue
- NegativeLogLikelihood
- CovarianceType
mu
Sigma
AIC
BIC
Converged
ProbabilityTolerance

You can access these properties by using dot notation. For example, access the NegativeLogLikelihood property, which represents the negative loglikelihood of the data X given the fitted model.

gm.NegativeLogLikelihood

ans = 7.0584e+03

After you create a gmdistribution object, you can use the object functions. Use cdf and pdf to compute the values of the cumulative distribution function (cdf) and the probability density function (pdf). Use random to generate random variates. Use cluster, mahal, and posterior for cluster analysis.

Plot X by using scatter. Visualize the fitted model gm by using pdf and ezcontour.

scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6])
References

See Also

fitgmdist

Topics

“Gaussian Mixture Models” on page 5-145
Introduced in R2007b
gname

Add case names to plot

Syntax

```
gname(cases)
gname
h = gname(cases,line_handle)
```

Description

`gname(cases)` displays a figure window and waits for you to press a mouse button or a keyboard key. The input argument `cases` is a character array, string array, or cell array of character vectors, in which each row of the character array or each element of the string array or cell array contains the case name of a point. Moving the mouse over the graph displays a pair of cross-hairs. If you position the cross-hairs near a point with the mouse and click once, the graph displays the label corresponding to that point. Alternatively, you can click and drag the mouse to create a rectangle around several points. When you release the mouse button, the graph displays the labels for all points in the rectangle. Right-click a point to remove its label. When you are done labelling points, press the **Enter** or **Escape** key to stop labeling.

`gname` with no arguments labels each case with its case number.

`cases` typically contains unique case names for each point, and is a string array, cell array of character vectors, or character matrix with each row representing a name. `cases` can also be any grouping variable, which `gname` converts to labels.

`h = gname(cases,line_handle)` returns a vector of handles to the text objects on the plot. Use the scalar `line_handle` to identify the correct line if there is more than one line object on the plot.

You can use `gname` to label plots created by the `plot`, `scatter`, `gscatter`, `plotmatrix`, and `gplotmatrix` functions.
Examples

This example uses the city ratings data sets to find out which cities are the best and worst for education and the arts.

```matlab
load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)
```

Click the point at the top of the graph to display its label, “New York.”
See Also

gplotmatrix | gscatter | gtext

Introduced before R2006a
gpcdf

Generalized Pareto cumulative distribution function

Syntax

\[p = \text{gpcdf}(x,k,sigma,theta) \]
\[p = \text{gpcdf}(x,k,sigma,theta,'upper') \]

Description

\[p = \text{gpcdf}(x,k,sigma,theta) \] returns the cdf of the generalized Pareto (GP) distribution with the tail index (shape) parameter \(k \), scale parameter \(sigma \), and threshold (location) parameter, \(theta \), evaluated at the values in \(x \). The size of \(p \) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

\[p = \text{gpcdf}(x,k,sigma,theta,'upper') \] returns the complement of the cdf of the generalized Pareto (GP) distribution, using an algorithm that more accurately computes the extreme upper tail probabilities.

Default values for \(k \), \(sigma \), and \(theta \) are 0, 1, and 0, respectively.

When \(k = 0 \) and \(theta = 0 \), the GP is equivalent to the exponential distribution. When \(k > 0 \) and \(theta = sigma/k \), the GP is equivalent to a Pareto distribution with a scale parameter equal to \(sigma/k \) and a shape parameter equal to \(1/k \). The mean of the GP is not finite when \(k \geq 1 \), and the variance is not finite when \(k \geq 1/2 \). When \(k \geq 0 \), the GP has positive density for

\[x > theta, \text{ or, when} \]

\[k < 0, \quad 0 \leq \frac{x - theta}{sigma} \leq -\frac{1}{k}. \]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | gpfit | gpinv | gplike | gpdf | gprnd | gstat

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
gpfit

Generalized Pareto parameter estimates

Syntax

parmhat = gpfit(x)
[parmhat,parmci] = gpfit(x)
[parmhat,parmci] = gpfit(x,alpha)
[...] = gpfit(x,alpha,options)

Description

parmhat = gpfit(x) returns maximum likelihood estimates of the parameters for the two-parameter generalized Pareto (GP) distribution given the data in x. parmhat(1) is the tail index (shape) parameter, k and parmhat(2) is the scale parameter, sigma. gpfit does not fit a threshold (location) parameter.

[parmhat,parmci] = gpfit(x) returns 95% confidence intervals for the parameter estimates.

[parmhat,parmci] = gpfit(x,alpha) returns 100(1-alpha)% confidence intervals for the parameter estimates.

[...] = gpfit(x,alpha,options) specifies control parameters for the iterative algorithm used to compute ML estimates. This argument can be created by a call to statset. See statset('gpfit') for parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a threshold parameter, theta. However, gpfit does not estimate theta. It is assumed to be known, and subtracted from x before calling gpfit.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for
k > \theta, or, when k < 0, for

\[0 \leq \frac{x - \theta}{\sigma} \leq -\frac{1}{k} \]

References

See Also
gpcdf | gpinv | gplike | gppdf | gprnd | gpstat | mle

Topics

“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
gpinv

Generalized Pareto inverse cumulative distribution function

Syntax

\[x = \text{gpinv}(p,k,sigma,theta) \]

Description

\[x = \text{gpinv}(p,k,sigma,theta) \] returns the inverse cdf for a generalized Pareto (GP) distribution with tail index (shape) parameter \(k \), scale parameter \(sigma \), and threshold (location) parameter \(theta \), evaluated at the values in \(p \). The size of \(x \) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for \(k \), \(sigma \), and \(theta \) are 0, 1, and 0, respectively.

When \(k = 0 \) and \(theta = 0 \), the GP is equivalent to the exponential distribution. When \(k > 0 \) and \(theta = sigma/k \), the GP is equivalent to a Pareto distribution with a scale parameter equal to \(sigma/k \) and a shape parameter equal to \(1/k \). The mean of the GP is not finite when \(k \geq 1 \), and the variance is not finite when \(k \geq 1/2 \). When \(k \geq 0 \), the GP has positive density for

\[x > theta, \text{ or, when} \]

\[k < 0, \quad 0 \leq \frac{x-\theta}{\sigma} \leq \frac{1}{k}. \]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gpcdf | gpfit | gplike | gppdf | gprnd | gpstat | icdf

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a

gplike

Generalized Pareto negative loglikelihood

Syntax

```matlab
nlogL = gplike(params,data)
[nlogL,acov] = gplike(params,data)
```

Description

`nlogL = gplike(params,data)` returns the negative of the loglikelihood `nlogL` for the two-parameter generalized Pareto (GP) distribution, evaluated at parameters `params`. `params(1)` is the tail index (shape) parameter, `k`, and `params(2)` is the scale parameter. `gplike` does not allow a threshold (location) parameter.

`[nlogL,acov] = gplike(params,data)` returns the inverse of Fisher's information matrix, `acov`. If the input parameter values in `params` are the maximum likelihood estimates, the diagonal elements of `acov` are their asymptotic variances. `acov` is based on the observed Fisher's information, not the expected information.

When `k = 0` and `theta = 0`, the GP is equivalent to the exponential distribution. When `k > 0` and `theta = sigma/k`, the GP is equivalent to a Pareto distribution with a scale parameter equal to `sigma/k` and a shape parameter equal to `1/k`. The mean of the GP is not finite when `k ≥ 1`, and the variance is not finite when `k ≥ 1/2`. When `k ≥ 0`, the GP has positive density for

\[x > \theta, \text{ or, when} \]

\[k < 0, \quad 0 \leq \frac{x - \theta}{\sigma} \leq -\frac{1}{k}. \]
References

See Also
gpcdf | gpfit | gpinv | gppdf | gprnd | gpstat

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
gppdf

Generalized Pareto probability density function

Syntax

\[p = \text{gppdf}(x,k,\sigma,\theta) \]

Description

\[p = \text{gppdf}(x,k,\sigma,\theta) \]

returns the pdf of the generalized Pareto (GP) distribution with the tail index (shape) parameter \(k \), scale parameter \(\sigma \), and threshold (location) parameter, \(\theta \), evaluated at the values in \(x \). The size of \(p \) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for \(k \), \(\sigma \), and \(\theta \) are 0, 1, and 0, respectively.

When \(k = 0 \) and \(\theta = 0 \), the GP is equivalent to the exponential distribution. When \(k > 0 \) and \(\theta = \sigma/k \), the GP is equivalent to a Pareto distribution with a scale parameter equal to \(\sigma/k \) and a shape parameter equal to \(1/k \). The mean of the GP is not finite when \(k \geq 1 \), and the variance is not finite when \(k \geq 1/2 \). When \(k \geq 0 \), the GP has positive density for

\[x > \theta, \text{ or, when} \]

\[k < 0, \quad 0 \leq \frac{x-\theta}{\sigma} \leq -\frac{1}{k}. \]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gpcdf | gpfit | gpinv | gplike | gprnd | gpstat | pdf

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
gplotmatrix
Matrix of scatter plots by group

Syntax

\[
gplotmatrix(x, [], group) \\
gplotmatrix(x, y, group) \\
gplotmatrix(x, y, group, clr, sym, siz) \\
gplotmatrix(x, y, group, clr, sym, siz, doleg) \\
gplotmatrix(x, [], group, clr, sym, siz, doleg, dispopt) \\
gplotmatrix(x, [], group, clr, sym, siz, doleg, 'variable', xnam) \\
gplotmatrix(x, y, group, clr, sym, siz, doleg, [], xnam, ynam) \\
\]

[\text{h,ax,bigax}]= \text{gplotmatrix}(___)

Description

gplotmatrix(x, [], group) creates a matrix of scatter plots of the data in \(x\), grouped by the grouping variable in \(group\). Each individual set of axes in the resulting figure contains a scatter plot of a column of \(x\) against another column of \(x\). It also plots the outlines of the grouped histograms in the diagonals.

gplotmatrix(x, y, group) creates a matrix of scatter plots. Each individual set of axes in the resulting figure contains a scatter plot of a column of \(x\) against a column of \(y\). All plots are grouped by the grouping variable \(group\).

\(x\) and \(y\) are matrices with the same number of rows. If \(x\) has \(p\) columns and \(y\) has \(q\) columns, the figure contains a \(p\)-by-\(q\) matrix of scatter plots. If you omit \(y\) or specify it as the empty matrix, [], \text{gplotmatrix} creates a square matrix of scatter plots of columns of \(x\) against each other.

\(group\) is a grouping variable that can be a categorical variable, vector, character array, string array, or cell array of character vectors. \(group\) must have the same number of rows as \(x\) and \(y\). Points with the same value of \(group\) are placed in the same group, and appear on the graph with the same marker and color. Alternatively, \(group\) can be a cell array containing several grouping variables (such as \{\text{g1 g2 g3}\}); in that case, observations are in the same group if they have common values of all grouping variables.
gplotmatrix(x,y,group,clr,sym,siz) specifies the color, marker type, and size for each group. clr is a character array or string array of colors recognized by the plot function. sym is a character array or string array of symbols recognized by the plot command, with the default value '. '. siz is a vector of sizes, with the default value determined based on the number of observations. If you do not specify enough values for all groups, gplotmatrix cycles through the specified values as needed.

gplotmatrix(x,y,group,clr,sym,siz,doleg) controls whether a legend is displayed on the graph (doleg is 'on', the default) or not (doleg is 'off').

gplotmatrix(x,[],group,clr,sym,siz,doleg,dispopt) controls what appears along the diagonals of a plot matrix of x. Allowable values are 'none', to leave the diagonals blank, 'hist', to plot histograms, 'stairs' to display the outlines of grouped histograms (default if there is more than one group), 'grpbars' to plot grouped histogram bars.

gplotmatrix(x,[],group,clr,sym,siz,doleg,'variable',xnam) displays the variable names along the diagonal of the plot matrix of x. It also uses these column names to label the x- and y-axes.

gplotmatrix(x,y,group,clr,sym,siz,doleg,[],xnam,ynam) labels the x- and y-axes using the column names specified in xnam and ynam.

xnam and ynam must be character arrays, string arrays, or cell arrays of character vectors, with one name for each column of x and y, respectively.

[h,ax,bigax] = gplotmatrix(__) returns three arrays of handles for any of the previous input arguments. h is an array of handles to the lines on the graphs. The array's third dimension corresponds to groups in the input argument group. ax is a matrix of handles to the axes of the individual plots. If dispopt is 'hist', 'stairs', or 'grpbars', ax contains one extra row of handles to invisible axes in which the histograms are plotted. bigax is a handle to big (invisible) axes framing the entire plot matrix. bigax is fixed to point to the current axes, so a subsequent title, xlabel, or ylabel command will produce labels that are centered with respect to the entire plot matrix.

Examples
Create Grouped Data Scatter Plot Matrix

Load the sample data.

load discrim;

The ratings array contains rating values for 329 U.S. cities in the nine different categories listed in the categories array. The group array contains a city size code that is equal to 2 for the 26 largest cities, and 1 otherwise.

Create a matrix of scatter plots to compare the first two categories, climate and housing, with categories 4 (crime) and 7 (arts). Specify group as the grouping variable to visually distinguish the data for large and small cities.

figure;
gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group);
The figure displays a matrix of scatter plots for the specified comparisons, with each city size group represented by a different color.

For better clarity, you can adjust the appearance of the graphs by specifying colors and plotting symbols, and labeling the axes with the rating categories.

```matlab
figure;
gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group,...
    'br', '.o', [], 'on', '', categories(1:2,:),...
categories([4 7],:));
```
See Also
grpstats | gscatter | plotmatrix

Topics
“Create Scatter Plots Using Grouped Data” on page 4-2
“MANOVA” on page 9-71
“Grouping Variables” on page 2-57

Introduced before R2006a
gprnd

Generalized Pareto random numbers

Syntax

\[r = \text{gprnd}(k, \sigma, \theta) \]
\[r = \text{gprnd}(k, \sigma, \theta, m, n, \ldots) \]
\[R = \text{gprnd}(K, \sigma, \theta, [m, n, \ldots]) \]

Description

The function `gprnd(k, sigma, theta)` returns an array of random numbers chosen from the generalized Pareto (GP) distribution with tail index (shape) parameter \(k \), scale parameter \(\sigma \), and threshold (location) parameter, \(\theta \). The size of \(r \) is the common size of the input arguments if all are arrays. If any parameter is a scalar, the size of \(r \) is the size of the other parameters.

\[r = \text{gprnd}(k, \sigma, \theta, m, n, \ldots) \text{ or } R = \text{gprnd}(K, \sigma, \theta, [m, n, \ldots]) \]

generates an \(m \)-by-\(n \)-by-... array. The \(k \), \(\sigma \), \(\theta \) parameters can each be scalars or arrays of the same size as \(r \).

When \(k = 0 \) and \(\theta = 0 \), the GP is equivalent to the exponential distribution. When \(k > 0 \) and \(\theta = \sigma/k \), the GP is equivalent to a Pareto distribution with a scale parameter equal to \(\sigma/k \) and a shape parameter equal to \(1/k \). The mean of the GP is not finite when \(k \geq 1 \), and the variance is not finite when \(k \geq 1/2 \). When \(k \geq 0 \), the GP has positive density for

\[x > \theta, \text{ or, when} \]
\[0 \leq \frac{x-\theta}{\sigma} \leq -\frac{1}{k} \]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
gpcdf | gpfit | gpinv | gplike | gppdf | gpstat | random

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
gpstat

Generalized Pareto mean and variance

Syntax

\[[m,v] = \text{gpstat}(k,\sigma,\theta) \]

Description

\[[m,v] = \text{gpstat}(k,\sigma,\theta) \]

returns the mean of and variance for the generalized Pareto (GP) distribution with the tail index (shape) parameter \(k \), scale parameter \(\sigma \), and threshold (location) parameter, \(\theta \).

The default value for \(\theta \) is 0.

When \(k = 0 \) and \(\theta = 0 \), the GP is equivalent to the exponential distribution. When \(k > 0 \) and \(\theta = \sigma/k \), the GP is equivalent to a Pareto distribution with a scale parameter equal to \(\sigma/k \) and a shape parameter equal to \(1/k \). The mean of the GP is not finite when \(k \geq 1 \), and the variance is not finite when \(k \geq 1/2 \). When \(k \geq 0 \), the GP has positive density for \(x > \theta \), or when

\[
k < 0, \quad 0 \leq \frac{x-\theta}{\sigma} \leq -\frac{1}{k}.
\]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gpcdf | gpfit | gpinv | gplike | gppdf | gprnd

Topics
“Generalized Pareto Distribution” on page B-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Supported Distributions” on page 5-16

Introduced before R2006a
growTrees

Class: TreeBagger

Train additional trees and add to ensemble

Syntax

B = growTrees(B,ntrees)
B = growTrees(B,ntrees,'param1',val1,'param2',val2,...)

Description

B = growTrees(B,ntrees) grows ntrees new trees and appends them to those trees already stored in the ensemble B.

B = growTrees(B,ntrees,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'NumPrint' Specifies that a diagnostic message showing training progress should display after every value training cycles (grown trees). Default is no diagnostic messages.
'Options'

A struct that specifies options that govern computation when growing the ensemble of decision trees. One option requests that the computation of decision trees on multiple bootstrap replicates uses multiple processors, if the Parallel Computing Toolbox is available. Two options specify the random number streams to use in selecting bootstrap replicates. You can create this argument with a call to `statset`. You can retrieve values of the individual fields with a call to `statget`. Applicable `statset` parameters are:

- **'UseParallel'** — If true and if a parpool of the Parallel Computing Toolbox is open, compute decision trees drawn on separate bootstrap replicates in parallel. If the Parallel Computing Toolbox is not installed, or a `parpool` is not open, computation occurs in serial mode. Default is false, or serial computation.

- **UseSubstreams** — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set `Streams` to a type allowing substreams: `'mlfg6331_64'` or `'mrg32k3a'`.

- **Streams** — A `RandStream` object or cell array of such objects. If you do not specify `Streams`, `growTrees` uses the default stream or streams. If you choose to specify `Streams`, use a single object except in the case

 - You have an open Parallel pool
 - **UseParallel** is true
 - **UseSubstreams** is false

In that case, use a cell array the same size as the Parallel pool.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
TreeBagger | TreeBagger | fitctree | fitrtree | statget | statset
grp2idx

Create index vector from grouping variable

Syntax

\[
\begin{align*}
[g, gN] &= \text{grp2idx}(s) \\
[g, gN, gL] &= \text{grp2idx}(s)
\end{align*}
\]

Description

\[
\begin{align*}
[g, gN] &= \text{grp2idx}(s) \text{ creates an index vector } g \text{ from the grouping variable } s. \text{ The output } g \text{ is a vector of integer values from 1 up to the number } K \text{ of distinct groups. } gN \text{ is a cell array of character vectors representing the list of group names.} \\
[g, gN, gL] &= \text{grp2idx}(s) \text{ also returns a column vector } gL \text{ representing the list of the group levels with the same data type as } s.
\end{align*}
\]

Examples

Create Index Vector from Categorical Vector

Create a categorical vector by using `discretize` and convert it to an index vector by using `grp2idx`.

Load the `hospital` data set and convert the ages in `hospital.Age` to categorical values representing the ages by decade.

```matlab
load hospital 
edges = 0:10:100; % Bin edges 
labels = strcat(num2str((0:10:90),'%d'),{'s'}); % Labels for the bins 
s = discretize(hospital.Age,edges,'Categorical',labels);
```

Display the ages and the groups of ages for the first five samples.

```matlab
ages = hospital.Age(1:5)
```
ages = 5×1
38
43
38
40
49

groups = s(1:5)
groups = 5x1 categorical array
30s
40s
30s
40s
40s

Create an index vector from the categorical vector s.
[g,gN,gL] = grp2idx(s);

Display the index values corresponding to the first five samples.
g(1:5)
ans = 5×1
4
5
4
5
5

Reproduce the input argument s using the output gL.
gL(g(1:5))
ans = 5x1 categorical array
30s
40s
30s
40s
40s

Use `gN(g)` to reproduce the input argument `s` as a cell array of character vectors.

```matlab
gN(g(1:5))
```

```matlab
ans = 5x1 cell array
    {'30s' }    
    {'40s' }    
    {'30s' }    
    {'40s' }    
    {'40s' }
```

Input Arguments

`s — Grouping variable

categorical vector | numeric vector | logical vector | datetime vector | duration vector | string array | cell array of character vectors | character array

Grouping variable, specified as a categorical, numeric, logical, datetime, or duration vector, a string array, a cell array of character vectors, or a character array with each row representing a group label.

grp2idx treats NaNs (numeric, duration, or logical), '' (empty character arrays or cell arrays of character vectors), "" (empty strings), <missing> values (string), <undefined> values (categorical), and NaTs (datetime) in `s` as missing values and returns NaNs in the corresponding rows of `g`. The outputs `gN` and `gL` do not include entries for missing values.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | char | string | cell | categorical | datetime | duration

Output Arguments

`g — Group index

positive integer vector`
Group index, returned as a positive integer vector with values from 1 up to the number \(K \) of distinct groups in \(s \).

\[gN \] — List of group names

cell array of character vectors

List of group names, returned as a cell array of character vectors.

The order of \(gN \) depends on the data type of the grouping variable \(s \).

- For numeric and logical vectors, the order is the sorted order of \(s \).
- For categorical vectors, the order is the order of categories\((s) \).
- For other data types, the order is the order of first appearance in \(s \).

\(gN(g) \) reproduces the contents of \(s \) in a cell array.

\[gL \] — List of group levels

categorical vector | numeric vector | logical vector | datetime vector | duration vector | cell array of character vectors | character array

List of group levels, returned as the same data type as \(s \): a categorical, numeric, logical, datetime, or duration vector, a cell array of character vectors, or a character array with each row representing a group label. (The software treats string arrays as cell arrays of character vectors.)

The set of groups and their order in \(gL \) are the same as those in \(gN \), but \(gL \) has the same data type as \(s \).

If \(s \) is a character matrix, then \(gL(g, :) \) reproduces \(s \); otherwise, \(gL(g) \) reproduces \(s \).

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The input argument `s` can be a numeric, logical, or character vector or a cell array of character vectors. Code generation does not support a categorical, datetime, or duration vector or a string array for the input argument.

• In the generated code, the second and third outputs, `gN` and `gL`, are identical. `gN` and `gL` have the same data type as the input argument `s`.

See Also
categories | crosstab | findgroups | grpstats | gscatter

Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
grpstats

Summary statistics organized by group

Syntax

`statarray = grpstats(tbl,groupvar)`
`statarray = grpstats(tbl,groupvar,whichstats)`
`statarray = grpstats(tbl,groupvar,whichstats,Name,Value)`

`means = grpstats(X,group)`
`[stats1,...,statsN] = grpstats(X,group,whichstats)`
`[stats1,...,statsN] = grpstats(X,group,whichstats,'Alpha',alpha)`

`grpstats(X,group,alpha)`

Description

`statarray = grpstats(tbl,groupvar)` returns a table or dataset array with the means for the data groups specified in `tbl` determined by the values of the grouping variable or variables specified in `groupvar`.

- If there is a single grouping variable, then there is a row in `statarray` for each value of the grouping variable. `grpstats` sorts the groups by order of appearance (if the grouping variable is a character vector or string scalar), in ascending numeric order (if the grouping variable is numeric), or in order of the levels (if the grouping variable is categorical).
- If `groupvar` is a string array or cell array of character vectors containing multiple grouping variable names, or a vector of column numbers, then there is a row in `statarray` for each observed unique combination of values of the grouping variables. `grpstats` sorts the groups by the values of the first grouping variable, then the second grouping variable, and so on.
- If any variables in `tbl` (other than those specified in `groupvar`) are not numeric or logical arrays, then you must specify the names or column numbers of the numeric and logical variables for which you want to calculate means using the name-value pair argument, `DataVars`.
\texttt{statarray = grpstats(tbl,groupvar,\textit{whichstats})} returns the group values for the summary statistics types specified in \textit{whichstats}.

\texttt{statarray = grpstats(tbl,groupvar,\textit{whichstats},Name,Value)} uses additional options specified by one or more Name,Value pair arguments.

\texttt{means = grpstats(X,\textit{group})} returns a column vector or matrix with the means of the groups of the data in the matrix or vector \textit{X} determined by the values of the grouping variable or variables, \textit{group}. The rows of \textit{means} correspond to the grouping variable values.

- If there is a single grouping variable, then there is a row in \textit{means} for each value of the grouping variable. \textit{grpstats} sorts the groups by order of appearance (if the grouping variable is a character vector or string scalar), in ascending numeric order (if the grouping variable is numeric), or in order of the levels (if the grouping variable is categorical).
- If \textit{group} is a string array or cell array of grouping variables, then there is a row in \textit{means} for each observed unique combination of values of the grouping variables. \textit{grpstats} sorts the groups by the values of the first grouping variable, then the second grouping variable, and so on.
- If \textit{X} is a matrix, then \textit{means} is a matrix with the same number of columns as \textit{X}. Each column of \textit{means} has the group means for the corresponding column of \textit{X}.

\texttt{[\textit{stats1,...,statsN}] = grpstats(X,\textit{group},\textit{whichstats})} returns column vectors or arrays with group values for the summary statistic types specified in \textit{whichstats}.

\texttt{[\textit{stats1,...,statsN}] = grpstats(X,\textit{group},\textit{whichstats},'Alpha',\textit{alpha})} specifies the significance level for confidence and prediction intervals.

\textit{grpstats(X,\textit{group},\textit{alpha})} plots the means of the groups of data in the vector or matrix \textit{X} determined by the values of the grouping variable, \textit{group}. The grouping variable values are on the horizontal plot axis. Each group mean has $100 \times (1 - \alpha)$% confidence intervals.

- If \textit{X} is a matrix, then \textit{grpstats} plots the means and confidence intervals for each column of \textit{X}.
- If \textit{group} is a cell array of grouping variables, then \textit{grpstats} plots the means and confidence intervals for the groups of data in \textit{X} determined by the unique combinations of values of the grouping variables. For example, if there are two grouping variables, each with two values, there are four possible combinations of
grouping variable values. The plot includes only the combinations of values that exist in the input grouping variables (not all possible combinations).

Examples

Dataset Array Summary Statistics Organized by Group

Load the sample data.

```matlab
toolbox('hospital')
```

The dataset array `hospital` has 100 observations and 7 variables.

Create a dataset array with only the variables `Sex`, `Age`, `Weight`, and `Smoker`.

```matlab
dsa = hospital(:,{'Sex','Age','Weight','Smoker'});
```

Sex is a nominal array, with levels Male and Female. The variables Age and Weight have numeric values, and Smoker has logical values.

Compute the mean for the numeric and logical arrays, Age, Weight, and Smoker, grouped by the levels in Sex.

```matlab
statarray = grpstats(dsa,'Sex')
```

```
statarray =
    Sex     GroupCount    mean_Age    mean_Weight    mean_Smoker
Female    Female       53         37.717        130.47         0.24528
Male      Male         47         38.915        180.53         0.44681
```

`statarray` is a dataset array with two rows, corresponding to the levels in Sex. GroupCount is the number of observations in each group. The means of Age, Weight, and Smoker, grouped by Sex, are given in mean_Age, mean_Weight, and mean_Smoker.

Compute the mean for Age and Weight, grouped by the values in Smoker.

```matlab
statarray = grpstats(dsa,'Smoker','mean','DataVars',{'Age','Weight'})
```

```
statarray =
         Smoker    GroupCount    mean_Age    mean_Weight
false         66         37.97        149.91
true          32
```

32-2890
In this case, not all variables in `dsa` (excluding the grouping variable, `Smoker`) are numeric or logical arrays; the variable `Sex` is a nominal array. When not all variables in the input dataset array are numeric or logical arrays, you must specify the variables for which you want to calculate summary statistics using `DataVars`.

Compute the minimum and maximum weight, grouped by the combinations of values in `Sex` and `Smoker`.

```matlab
statarray = grpstats(dsa,{'Sex','Smoker'},{'min','max'},...
    'DataVars','Weight')
```

```matlab
statarray =
    Sex    Smoker    GroupCount    min_Weight    max_Weight
Female_0    Female    false     40            111           147
Female_1    Female    true      13            115           146
Male_0      Male      false     26            158           194
Male_1      Male      true      21            164           202
```

There are two unique values in `Smoker` and two levels in `Sex`, for a total of four possible combinations of values: Female Nonsmoker (`Female_0`), Female Smoker (`Female_1`), Male Nonsmoker (`Male_0`), and Male Smoker (`Male_1`).

Specify the names for the columns in the output.

```matlab
statarray = grpstats(dsa,{'Sex','Smoker'},{'min','max'},...
    'DataVars','Weight','VarNames',{'Gender','Smoker',...
    'GroupCount','LowestWeight','HighestWeight'})
```

```matlab
statarray =
    Gender    Smoker    GroupCount    LowestWeight    HighestWeight
Female_0    Female    false     40            111             147
Female_1    Female    true      13            115             146
Male_0      Male      false     26            158             194
Male_1      Male      true      21            164             202
```
Summary Statistics for a Dataset Array Without Grouping

Load the sample data.

load('hospital')

The dataset array hospital has 100 observations and 7 variables.

Create a dataset array with only the variables Age, Weight, and Smoker.

dsa = hospital(:,{'Age','Weight','Smoker'});

The variables Age and Weight have numeric values, and Smoker has logical values.

Compute the mean, minimum, and maximum for the numeric and logical arrays, Age, Weight, and Smoker, with no grouping.

statarray = grpstats(dsa,[],{'mean','min','max'})

statarray =

<table>
<thead>
<tr>
<th>GroupCount</th>
<th>mean_Age</th>
<th>min_Age</th>
<th>max_Age</th>
<th>mean_Weight</th>
<th>min_Weight</th>
<th>max_Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>100</td>
<td>38.28</td>
<td>25</td>
<td>50</td>
<td>154</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202</td>
<td>0.34</td>
<td>false</td>
<td></td>
<td>true</td>
</tr>
</tbody>
</table>

The observation name All indicates that all observations in dsa were used to compute the summary statistics.

Group Means for a Matrix Using One or More Grouping Variables

Load the sample data.

load('carsmall')

All variables are measured for 100 cars. Origin is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA). Cylinders has three unique values, 4, 6, and 8, indicating the number of cylinders in each car.

Calculate the mean acceleration, grouped by country of origin.
means = grpstats(Acceleration,Origin)
means = 6×1
 14.4377
 18.0500
 15.8867
 16.3778
 16.6000
 15.5000

means is a 6-by-1 vector of mean accelerations, where each value corresponds to a country of origin.

Calculate the mean acceleration, grouped by both country of origin and number of cylinders.
means = grpstats(Acceleration,{Origin,Cylinders})
means = 10×1
 17.0818
 16.5267
 11.6406
 18.0500
 15.9143
 15.5000
 16.3375
 16.7000
 16.6000
 15.5000

There are 18 possible combinations of grouping variable values because Origin has 6 unique values and Cylinders has 3 unique values. Only 10 of the possible combinations appear in the data, so means is a 10-by-1 vector of group means corresponding to the observed combinations of values.

Return the group names along with the mean acceleration for each group.
[means,grps] = grpstats(Acceleration,{Origin,Cylinders},{'mean','gname'})
means = 10×1
The output `grps` shows the 10 observed combinations of grouping variable values. For example, the mean acceleration of 4-cylinder cars made in France is 18.05.

Multiple Summary Statistics for a Matrix Organized by Group

Load the sample data.

```matlab
load carsmall
```

The variable `Acceleration` was measured for 100 cars. The variable `Origin` is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA).

Return the minimum and maximum acceleration grouped by country of origin.

```matlab
[grpMin,grpMax,grp] = grpstats(Acceleration,Origin,{'min','max','gname'})
```

`grpMin` = 6×1
The sample car with the lowest acceleration is made in the USA, and the sample car with the highest acceleration is made in Germany.

Plot Prediction Intervals for a New Observation in Each Group

Load the sample data.

```matlab
load('carsmall')
```

The variable Weight was measured for 100 cars. The variable Model_Year has three unique values, 70, 76, and 82, which correspond to model years 1970, 1976, and 1982.

Calculate the mean weight and 90% prediction intervals for each model year.

```matlab
[means,pred,grp] = grpstats(Weight,Model_Year,...
    {'mean','predci','gname'},'Alpha',0.1);
```
Plot error bars showing the mean weight and 90% prediction intervals, grouped by model year. Label the horizontal axis with the group names.

\[\text{ngrps} = \text{length(grp)}; \quad \% \text{Number of groups} \]
\[\text{errorbar}((1: \text{ngrps})', \text{means}, \text{pred(:,2)} - \text{means}) \]
\[\text{xlim}([0.5 \ 3.5]) \]
\[\text{set(gca,'xtick',1:ngrps,'xticklabel',grp)} \]
\[\text{title('90\% Prediction Intervals for Weight by Year')} \]

Plot Group Means and Confidence Intervals

Load the sample data.
load('carsmall')

The variables

Acceleration and **Weight** are the acceleration and weight values measured for 100 cars. The variable

Cylinders is the number of cylinders in each car. The variable **Model_Year** has three unique values, 70, 76, and 82, which correspond to model years 1970, 1976, and 1982.

Plot mean acceleration, grouped by **Cylinders**, with 95% confidence intervals.

```
grpstats(Acceleration,Cylinders,0.05)
```
The mean acceleration for cars with 8 cylinders is significantly lower than for cars with 4 or 6 cylinders.

Plot mean acceleration and weight, grouped by Cylinders, and 95% confidence intervals. Scale the Weight values by 1000 so the means of Weight and Acceleration are the same order of magnitude.

\[\text{grpstats([Acceleration, Weight/1000], Cylinders, 0.05)} \]
The average weight of cars increases with the number of cylinders, and the average acceleration decreases with the number of cylinders.

Plot mean acceleration, grouped by both Cylinders and Model_Year. Specify 95% confidence intervals.

\[
grpstats(Acceleration,\{\text{Cylinders, Model_Year}\}, 0.05)\]
ans = 8×1

16.1875
16.8667
16.7036
15.5000
17.0000
16.0333
11.0217
13.2222

There are nine possible combinations of grouping variable values because there are three unique values in Cylinders and three unique values in Model_Year. The plot does not show 8-cylinder cars with model year 1982 because the data did not include this combination.

The mean acceleration of 8-cylinder cars made in 1976 is significantly larger than the mean acceleration of 8-cylinder cars made in 1970.

Input Arguments

tbl — Input data

table | dataset array

Input data, specified as a table or dataset array. `tbl` must include at least one variable that is a grouping variable.

Summary statistics can only be calculated for variables that have a numeric or logical data type. If any variables in `tbl` (other than the grouping variables) are not numeric or logical arrays, then use the name-value pair argument `DataVars` to specify the names or column numbers of the numeric and logical variables for which to calculate summary statistics.

groupvar — Identifiers for the grouping variables

ccharactervector | stringarray | cellarrayofcharactervectors | vectoreffpositiveintegers
| logicalvector | []

Identifiers for the grouping variables in the input data, `tbl`, specified as one of the following:
Character vector, string array, or cell array of character vectors
Names of the grouping variables
Positive integer or vector of positive integers
Variable numbers of the grouping variables
Vector of logical values with number of elements equal to the number of variables in tbl
Logical indicator with value true for grouping variables and false otherwise
[]
No groups (returns summary statistics for all data)

Any variable that is identified by groupvar as a grouping variable must have a valid grouping variable data type: categorical array, logical or numeric vector, datetime or duration vector, string array, or cell array of character vectors.

For example, consider an input table, tbl, with six variables. The fourth variable is named Gender. To be a valid grouping variable, the data type of Gender might be a string array, a cell array of character vectors, or a nominal array, with the unique values Male and Female. To specify the variable Gender as the grouping variable, you can use any of these syntaxes:

- `statarray = grpstats(tbl,'Gender')`
- `statarray = grpstats(tbl,4)`
- `statarray = grpstats(tbl,logical([0 0 0 1 0 0]))`

Data Types: double | logical | char | string | cell

whichstats — Types of summary statistics

character vector | string scalar | function handle | string array | cell array of character vectors and function handles

Types of summary statistics to compute, specified as a character vector, a string scalar, a function handle, a string array, or a cell array of character vectors and function handles. Use a cell array to specify multiple types of summary statistics.

Values include:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mean'</td>
<td>Mean</td>
</tr>
<tr>
<td>'sem'</td>
<td>Standard error of the mean</td>
</tr>
</tbody>
</table>
'numel' Count, or number, of non-NaN elements
'gname' Group name
'std' Standard deviation
'var' Variance
'min' Minimum
'max' Maximum
'range' Range
'meanci' 95% confidence interval for the mean
'predci' 95% prediction interval for a new observation

Example: [stat1,stat2] = grpstats(X,group,{'mean','sem'})

You can specify different significance levels for the 'meanci' and 'predci' options using the name-value pair argument, Alpha.

To specify other types of summary statistics, you can use function handles. You can use the handle to any function that accepts a column or matrix of data, and returns the same size output each time grpstats calls it (even if the output for some groups is empty).

If the function accepts a column of data, then the function can return either a scalar value, or an nvals-by-1 column vector for descriptive statistics of length nvals (for example, confidence intervals have length two). If the function accepts a matrix, it must either return a 1-by-ncols row vector, or an nvals-by-ncols matrix, where ncols is the number of columns in the input data matrix.

Example: [stat1,stat2,stat3] = grpstats(X,group,{'mean','std',@skewness})

For functions that do not compute column-wise statistics, specify the computation direction while specifying the function.

Example: stat1 = grpstats(X,group,@(x)sum(x,1))

alpha — Significance level

scalar value in the range (0,1)

Significance level, specified as a scalar value in the range (0,1).

- When you specify 'meanci' or 'predci' in whichstats, you can use alpha to specify the significance level for the confidence or prediction intervals. If you specify
alpha, then `grpstats` returns $100 \times (1 - \alpha)\%$ confidence or prediction intervals. If you do not specify `alpha`, then `grpstats` returns 95% intervals ($\alpha = 0.05$).

- Use `alpha` with the syntax on page 32-2888 to plot group means and corresponding $100 \times (1 - \alpha)\%$ confidence intervals.

Data Types: double

X — Input data

vector | matrix

Input data, specified as a vector or a matrix. If `X` is a matrix, then `grpstats` returns summary statistics for each column of `X`.

Data Types: double | single

group — Grouping variable

categorical array | logical or numeric vector | datetime or duration vector | string array | cell array of character vectors | []

Grouping variable, specified as a categorical array, logical or numeric vector, datetime or duration vector, string array, or cell array of character vectors. Each unique value in a grouping variable defines a group. `grpstats` groups data for summary statistics using the grouping variable values.

There must be a grouping variable value for each row of the input data `X`. Observations (rows) with the same value of the grouping variable are in the same group. Use `[]` to compute summary statistics for all data, without using groups.

For example, if `Gender` is a string array or cell array of character vectors with values 'Male' and 'Female', you can use `Gender` as a grouping variable to summarize your data by gender.

You can also use more than one grouping variable to group data for summary statistics. In this case, specify a cell array of grouping variables.

For example, if `Smoker` is a logical vector with values 0 for nonsmokers and 1 for smokers, then specifying the cell array `{Gender,Smoker}` divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker. `grpstats` returns summary statistics only for the combinations of values that exist in the input grouping variables (not all possible combinations).

Data Types: single | double | logical | char | string | cell | categorical | datetime | duration
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'DataVars', [1, 3, 4], 'Alpha', 0.01 specifies that summary statistics be calculated for the 1st, 3rd, and 4th variables in a dataset array, with 99% confidence intervals.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for confidence and prediction intervals, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

When you include 'meanci' or 'predci' in whichstats, you can use Alpha to specify the significance level for confidence or prediction intervals. If you specify the value \(\alpha \), then grpstats returns \(100 \times (1 - \alpha) \) % confidence or prediction intervals.

If you do not specify a value for Alpha, then grpstats returns 95% intervals (\(\alpha = 0.05 \)).
Example: 'Alpha', 0.1
Data Types: double

DataVars — Variable names or columns
string array | cell array of character vectors | vector of positive integers | logical vector

Variable names or columns indicating which variables in the input data tbl you want to compute summary statistics for, specified as the comma-separated pair consisting of 'DataVars' and a string array, cell array of character vectors, vector of positive integers, or logical vector. Use a character vector or string scalar to specify a variable name, a positive integer to specify a variable column number, or logical values to indicate which variables to include (true if you want to compute summary statistics, false otherwise).

You must specify DataVars if there are any variables in tbl (other than the grouping variables specified in groupvar) that are not numeric or logical arrays. Summary statistics can only be calculated for variables that have a numeric or logical data type.
Example: 'DataVars', {'Height', 'Weight'}
Data Types: double | string | cell | char

VarNames — Variable names for output
string array | cell array of character vectors

Variable names for the output `statarray`, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors. By default, `grpstats` constructs output variable names by appending a prefix to the variable names from the input data `tbl`. This prefix corresponds to the summary statistic name.

Example: 'VarNames', {'Gender','GroupCount','MaleMean','FemaleMean'}
Data Types: string | cell

Output Arguments

statarray — Group summary statistics
table | dataset array

Group summary statistics, returned as a table or a dataset array. If `tbl` is a table, `grpstats` returns `statarray` as a table. If `tbl` is a dataset array, `grpstats` returns `statarray` as a dataset array.

`statarray` contains summary statistic values for the groups of data in `tbl` determined by the levels of the grouping variables specified by `groupvar`. There is a row in `statarray` for each observed value or combination of values in the variables specified by `groupvar`. The output `statarray` contains:

- All grouping variables specified by `groupvar`.
- The variable `GroupCount`, containing the number of observations in each group.
- Group summary statistic values for all variables in `tbl` (other than those specified by `groupvar`), or for only the variables specified using `DataVars`.

The total number of variables in `statarray` is `ngrpvars + 1 + ndatavars×nstats`, where `ngrpvars` is the number of variables in `groupvar`, `ndatavars` is the number of variables for which summary statistics are computed, and `nstats` is the number of summary statistic types specified in `whichstats`.

`grpstats` assigns default names to the variables in `statarray`, unless you specify variable names using the name-value pair argument `VarNames`.

32-2905
means — Group means
column vector | array

Group means for the groups of data in the vector or matrix X determined by the levels of group, returned as an ngroups-by-ncols array. Here, ngroups is the number of unique values in the grouping variable, and ncols is the number of columns in X. If X is a vector, then means is a column vector.

stats1,...,statsN — Group summary statistics
column vectors | arrays

Group summary statistics for the groups of data in the vector or matrix X determined by the levels of group, returned as ngroups-by-ncols arrays. Here, ngroups is the number of unique values in the grouping variable, and ncols is the number of columns in X. You must specify an output argument for each type of summary statistic specified in whichstats.

If a summary statistic type in whichstats returns a value of length nvals (for example, a confidence interval is a descriptive statistic of length two), then the corresponding output argument is an ngroups-by-ncols-by-nvals array.

Algorithms

- grpstats treats NaNs as missing values, and removes them from the input data before calculating summary statistics.
- grpstats ignores empty group names.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

- If the input data is a tall array, then all grouping variables must also be tall and have the same number of rows as the data.
• The `whichstats` option cannot be specified as a function handle. In addition to the current built-in options, `whichstats` can also be:
 • 'Count' — Number of non-NaNs.
 • 'NNZ' — Number of nonzeros and non-NaNs.
 • 'Kurtosis' — Compute kurtosis.
 • 'Skewness' — Compute skewness.
 • 'all-stats' — Compute all summary statistics.

• Group order is not guaranteed to be the same as the in-memory `grpstats` computation. Specify 'gname' as the `whichstats` option to return the order of rows of the summary statistics. For example `[means,grpname] = grpstats(x,bins, {'mean','gname'})` returns the means of groups in `x` in the same order that the groups appear in `grpname`.

• Summary statistics for nonnumeric variables return NaNs.
• `grpstats` always operates on the first dimension.
• If the input is a tall table, then the output is also a tall table. However, rather than including row names, the output tall table contains an extra variable `GroupLabel` that contains the same information.

For more information, see “Tall Arrays” (MATLAB).

See Also
dataset | table

Topics
“Summary Statistics Grouped by Category” on page 2-43
“Test Differences Between Category Means” on page 2-33
“Plot Data Grouped by Category” on page 2-28
“Calculations on Dataset Arrays” on page 2-113
“Dataset Arrays” on page 2-137
“Grouping Variables” on page 2-57
“Nominal and Ordinal Arrays” on page 2-47

Introduced before R2006a
grpstats

Class: RepeatedMeasuresModel

Compute descriptive statistics of repeated measures data by group

Syntax

```
statstbl = grpstats(rm,g)
statstbl = grpstats(rm,g,stats)
```

Description

`statstbl = grpstats(rm,g)` returns the count, mean, and variance for the data used to fit the repeated measures model `rm`, grouped by the factors, `g`.

`statstbl = grpstats(rm,g,stats)` returns the statistics specified by `stats` for the data used to fit the repeated measures model `rm`, grouped by the factors, `g`.

Input Arguments

- **rm** — Repeated measures model
 RepeatedMeasuresModel object

 Repeated measures model, returned as a `RepeatedMeasuresModel` object.

 For properties and methods of this object, see `RepeatedMeasuresModel`.

- **g** — Name of grouping factor or factors
 character vector | string array | cell array of character vectors

 Name of grouping factor or factors, specified as a character vector, string array, or cell array of character vectors.

 Example: 'Drug'

 Example: {'Drug','Sex'}
Data Types: char | string | cell

stats — Statistics to compute

character vector | string scalar | function handle | string array | cell array of multiple character vectors and function handles

Statistics to compute, specified as one of the following:

- Character vector or string scalar specifying the name of the statistics to compute. Names can be one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mean'</td>
<td>Mean</td>
</tr>
<tr>
<td>'sem'</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>'numel'</td>
<td>Count or number of elements</td>
</tr>
<tr>
<td>'gname'</td>
<td>Group name</td>
</tr>
<tr>
<td>'std'</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>'var'</td>
<td>Variance</td>
</tr>
<tr>
<td>'min'</td>
<td>Minimum</td>
</tr>
<tr>
<td>'max'</td>
<td>Maximum</td>
</tr>
<tr>
<td>'range'</td>
<td>Maximum minus minimum</td>
</tr>
<tr>
<td>'meanci'</td>
<td>95% confidence interval for the mean</td>
</tr>
<tr>
<td>'predci'</td>
<td>95% prediction interval for a new observation</td>
</tr>
</tbody>
</table>

- Function handle — The function you specify must accept a vector of response values for a single group, and compute descriptive statistics for it. A function should typically return a value that has one row. A function must return the same size output each time `grpstats` calls it, even if the input for some groups is empty.

- A string array or cell array of character vectors and function handles.

Example: `@median`
Example: `@skewness`
Example: `'gname'`
Example: `{'gname','range','predci'}`
Output Arguments

\texttt{statstbl} — Statistics values for each group\newline\texttt{table}

Statistics values for each group, returned as a table.

Examples

Compute Group Statistics

Load the sample data.

\begin{verbatim}
load fisheriris
\end{verbatim}

The column vector, \texttt{species} consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix \texttt{meas} consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

\begin{verbatim}
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4],{'VarNames',{'Measurements'}});
\end{verbatim}

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

\begin{verbatim}
rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);
\end{verbatim}

Compute group counts, mean, and standard deviation with respect to species.

\begin{verbatim}
grpstats(rm,'species')
\end{verbatim}

\begin{verbatim}
ans=3×4 table
 species GroupCount mean std
 _________ _________ ______ ______
 'setosa' 200 2.5355 1.8483
 'versicolor' 200 3.573 1.7624
 'virginica' 200 4.285 1.9154
\end{verbatim}
Now, compute the range of data and 95% confidence intervals for the group means for the factor species. Also display the group name.

\[
grpstats(rm,'species',{\text{'gname','range','predci'}})
\]

\[
\text{ans=3x5 table}
\]

<table>
<thead>
<tr>
<th>species</th>
<th>gname</th>
<th>GroupCount</th>
<th>range</th>
<th>predci</th>
</tr>
</thead>
<tbody>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>200</td>
<td>5.7</td>
<td>-1.1185</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>200</td>
<td>6</td>
<td>0.088976</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>200</td>
<td>6.5</td>
<td>0.4985</td>
</tr>
</tbody>
</table>

Statistics for Data Grouped by Two Factors

Load the sample data.

\[
\text{load repeatedmeas}
\]

The table \textit{between} includes the between-subject variables age, IQ, group, gender, and eight repeated measures \(y_1\) through \(y_8\) as responses. The table \textit{within} includes the within-subject variables \(w_1\) and \(w_2\). This is simulated data.

Fit a repeated measures model, where the repeated measures \(y_1\) through \(y_8\) are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

\[
\text{rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within)};
\]

Compute group counts, mean, standard deviation, skewness, and kurtosis of data grouped by the factors Group and Gender.

\[
\text{GS = grpstats(rm,{'Group','Gender'},{'mean','std',@skewness,@kurtosis}})
\]

\[
\text{GS=6x7 table}
\]

<table>
<thead>
<tr>
<th>Group</th>
<th>Gender</th>
<th>GroupCount</th>
<th>mean</th>
<th>std</th>
<th>skewness</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Female</td>
<td>40</td>
<td>16.554</td>
<td>21.498</td>
<td>0.35324</td>
<td>3.7807</td>
</tr>
<tr>
<td>A</td>
<td>Male</td>
<td>40</td>
<td>9.8335</td>
<td>20.602</td>
<td>-0.38722</td>
<td>2.7834</td>
</tr>
<tr>
<td>B</td>
<td>Female</td>
<td>40</td>
<td>11.261</td>
<td>25.779</td>
<td>-0.49177</td>
<td>4.1484</td>
</tr>
</tbody>
</table>
B Male 40 3.6078 24.646 0.55447 2.7966
C Female 40 -11.335 27.186 1.7499 6.1429
C Male 40 -14.028 31.984 1.7362 5.141

Tips

- `grpstats` computes results separately for each group. The results do not depend on
 the fitted repeated measures model. It computes the results on all available data,
 without omitting entire rows that contain NaNs.

See Also

`fitrm` | `plot`
gscatter

Scatter plot by group

Syntax

gscatter(x,y,g)
gscatter(x,y,g,clr,sym,siz)
gscatter(x,y,g,clr,sym,siz,doleg)
gscatter(x,y,g,clr,sym,siz,doleg,xnam,ynam)

h = gscatter(____)

Description

gscatter(x,y,g) creates a scatter plot of x and y, grouped by g. The inputs x and y are vectors of the same size.

gscatter(x,y,g,clr,sym,siz) specifies the marker color clr, symbol sym, and size siz for each group.

gscatter(x,y,g,clr,sym,siz,doleg) controls whether a legend is displayed on the graph. gscatter creates a legend by default.

gscatter(x,y,g,clr,sym,siz,doleg,xnam,ynam) specifies the names to use for the x-axis and y-axis labels. If you do not provide xnam and ynam, and the x and y inputs are variables with names, then gscatter labels the axes with the variable names.

h = gscatter(____) returns graphics handles corresponding to the groups in g, using any of the input arguments in the previous syntaxes.

Examples
Scatter Plot with Default Settings

Load the carsmall data set.

```matlab
load carsmall
```

Plot the Displacement values on the x-axis and the Horsepower values on the y-axis. `gscatter` uses the variable names as the default labels for the axes. Group the data points by Model Year.

```matlab
gscatter(Displacement,Horsepower,Model_Year)
```
Scatter Plot with One Grouping Variable

Load the `discrim` data set.

```matlab
load discrim
```

The data set contains ratings of cities according to nine factors such as climate, housing, education, and health. The matrix `ratings` contains the ratings information.

Plot the relationship between the ratings for climate (first column) and housing (second column) grouped by city size in the matrix `group`. Choose different colors and plotting symbols for each group.

```matlab
gscatter(ratings(:,1),ratings(:,2),group,'br','xo')
xlabel('climate')
ylabel('housing')
```
Scatter Plot with Multiple Grouping Variables

Load the hospital data set.

```matlab
load hospital
```

Plot the ages and weights of the hospital patients. Group the patients according to their gender and smoker status. Use the o symbol to represent nonsmokers and the * symbol to represent smokers.

```matlab
x = hospital.Age;
y = hospital.Weight;
```
g = {hospital.Sex,hospital.Smoker};
gscatter(x,y,g,'rkgb','o*','on',['Age','Weight'])
legend('Location','northeastoutside')

Create and Modify Scatter Plot

Load the carbig data set.
load carbig

Create a scatter plot comparing Acceleration to MPG. Group data points based on Origin.
h = gscatter(Acceleration,MPG,Origin)

h =
 7x1 Line array:

 Line (USA)
 Line (France)
 Line (Japan)
 Line (Germany)
 Line (Sweden)
 Line (Italy)
 Line (England)

Display the Line object corresponding to the group labeled (Japan).

jgroup = h(3)

jgroup =
 Line (Japan) with properties:

 Color: [0.2857 1 0]
 LineStyle: 'none'
 LineWidth: 0.5000
 Marker: '.'
 MarkerSize: 15
 MarkerFaceColor: 'none'
 XData: [1x79 double]
 YData: [1x79 double]
 ZData: [1x0 double]

Show all properties

Change the marker color for the Japan group to black.

jgroup.Color = 'k';
Input Arguments

x — x-axis values
numeric vector

x-axis values, specified as a numeric vector. x must have the same size as y.
Data Types: single | double

y — y-axis values
numeric vector
y-axis values, specified as a numeric vector. \(y \) must have the same size as \(x \).

Data Types: single | double

g — Grouping variable

categorical vector | logical vector | numeric vector | character array | string array | cell array of character vectors | cell array

Grouping variable, specified as a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors. Alternatively, \(g \) can be a cell array containing several grouping variables (such as \{g1 g2 g3\}), in which case observations are in the same group if they have common values of all grouping variables. Points in the same group appear on the scatter plot with the same marker color, symbol, and size.

Example: `species`

Example: `{Cylinders,Origin}`

Data Types: categorical | logical | single | double | char | string | cell

clr — Marker colors

character vector or string scalar of colors | matrix of RGB triplet values

Marker colors, specified as either a character vector or string scalar of colors recognized by the `plot` function or a matrix of RGB triplet values. Each RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color, respectively. Each intensity must be in the range \([0,1]\).

This table lists the available color characters and their equivalent RGB triplet values.

<table>
<thead>
<tr>
<th>Long Name</th>
<th>Short Name</th>
<th>RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>'y'</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>Magenta</td>
<td>'m'</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>Cyan</td>
<td>'c'</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>Red</td>
<td>'r'</td>
<td>[1 0 0]</td>
</tr>
<tr>
<td>Green</td>
<td>'g'</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>Blue</td>
<td>'b'</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>White</td>
<td>'w'</td>
<td>[1 1 1]</td>
</tr>
</tbody>
</table>

32-2920
<table>
<thead>
<tr>
<th>Long Name</th>
<th>Short Name</th>
<th>RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>'k'</td>
<td>[0 0 0]</td>
</tr>
</tbody>
</table>

If you do not specify enough values for all groups, then `gscatter` cycles through the specified values as needed.

Example: 'rgb'
Example: [0 0 1; 0 0 0]

Data Types: char | string | single | double

`sym` — Marker symbols

'. ' (default) | character vector or string scalar of symbols

Marker symbols, specified as a character vector or string scalar of symbols recognized by the `plot` function. This table lists the available marker symbols.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'o'</td>
<td>Circle</td>
</tr>
<tr>
<td>'+'</td>
<td>Plus sign</td>
</tr>
<tr>
<td>'*'</td>
<td>Asterisk</td>
</tr>
<tr>
<td>'. '</td>
<td>Point</td>
</tr>
<tr>
<td>'x'</td>
<td>Cross</td>
</tr>
<tr>
<td>'s'</td>
<td>Square</td>
</tr>
<tr>
<td>'d'</td>
<td>Diamond</td>
</tr>
<tr>
<td>'^'</td>
<td>Upward-pointing triangle</td>
</tr>
<tr>
<td>'v'</td>
<td>Downward-pointing triangle</td>
</tr>
<tr>
<td>'>'</td>
<td>Right-pointing triangle</td>
</tr>
<tr>
<td>'<'</td>
<td>Left-pointing triangle</td>
</tr>
<tr>
<td>'p'</td>
<td>Five-pointed star (pentagram)</td>
</tr>
<tr>
<td>'h'</td>
<td>Six-pointed star (hexagram)</td>
</tr>
<tr>
<td>'none'</td>
<td>No markers</td>
</tr>
</tbody>
</table>

If you do not specify enough values for all groups, then `gscatter` cycles through the specified values as needed.
Example: 'o+*v'
Data Types: char | string

siz — Marker sizes
positive numeric vector

Marker sizes, specified as a positive numeric vector in points. The default value is determined by the number of observations. If you do not specify enough values for all groups, then `gscatter` cycles through the specified values as needed.
Example: [6 12]
Data Types: single | double

doleg — Option to include legend
'on' (default) | 'off'

Option to include a legend, specified as either 'on' or 'off'. By default, the legend is displayed on the graph.

xnam — x-axis label

x variable name (default) | character vector | string scalar

x-axis label, specified as a character vector or string scalar.
Data Types: char | string

ynam — y-axis label

y variable name (default) | character vector | string scalar

y-axis label, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments

h — Graphics handles
array of Line objects

Graphics handles, returned as an array of Line objects. Each Line object corresponds to one of the groups in `g`. You can use dot notation to query and set properties of the line objects. For a list of Line object properties, see Chart Line.
See Also

gplotmatrix | grpstats | scatter

Topics

“Create Scatter Plots Using Grouped Data” on page 4-2
“MANOVA” on page 9-71
“Grouping Variables” on page 2-57

Introduced before R2006a
gt

Class: qrandstream

Greater than relation for handles

Syntax

\[h1 > h2 \]

Description

\[h1 > h2 \] performs element-wise comparisons between handle arrays \(h1 \) and \(h2 \). \(h1 \) and \(h2 \) must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise > result.

If one of \(h1 \) or \(h2 \) is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

\[tf = gt(h1, h2) \] stores the result in a logical array of the same dimensions.

See Also

eq | ge | le | lt | ne | qrandstream
haltonset class

Superclasses:

Halton quasi-random point sets

Description

haltonset is a quasi-random point set class that produces points from the Halton sequence.

Construction

haltonset Construct Halton quasi-random point set

Methods

Inherited Methods

Methods in the following table are inherited from qrandset on page 32-5254.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disp</td>
<td>Display qrandset object</td>
</tr>
<tr>
<td>end</td>
<td>Last index in indexing expression for point set</td>
</tr>
<tr>
<td>length</td>
<td>Length of point set</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in matrix</td>
</tr>
<tr>
<td>net</td>
<td>Generate quasi-random point set</td>
</tr>
<tr>
<td>scramble</td>
<td>Scramble quasi-random point set</td>
</tr>
<tr>
<td>size</td>
<td>Number of dimensions in matrix</td>
</tr>
<tr>
<td>subsref</td>
<td>Subscripted reference for qrandset</td>
</tr>
</tbody>
</table>
Properties

Inherited Properties

Properties in the following table are inherited from qrandset on page 32-5254.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Number of dimensions</td>
</tr>
<tr>
<td>Leap</td>
<td>Interval between points</td>
</tr>
<tr>
<td>ScrambleMethod</td>
<td>Settings that control scrambling</td>
</tr>
<tr>
<td>Skip</td>
<td>Number of initial points to omit from sequence</td>
</tr>
<tr>
<td>Type</td>
<td>Name of sequence on which point set P is based</td>
</tr>
</tbody>
</table>

Copy Semantics

Handle. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

References

See Also
sobolset

Topics
“Quasi-Random Point Sets” on page 7-17
haltonset

Class: haltonset

Construct Halton quasi-random point set

Syntax

```plaintext
p = haltonset(d)
p = haltonset(d, prop1, val1, prop2, val2, ...)
```

Description

```plaintext
p = haltonset(d) constructs a d-dimensional point set p of the haltonset on page 32-2925 class, with default property settings.

p = haltonset(d, prop1, val1, prop2, val2, ...) specifies property name/value pairs used to construct p.

The object p returned by haltonset encapsulates properties of a specified quasi-random sequence. The point set is finite, with a length determined by the Skip and Leap properties and by limits on the size of point set indices (maximum value of $2^{53}$). Values of the point set are not generated and stored in memory until you access p using `net` or parenthesis indexing.
```

Examples

Generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```plaintext
p = haltonset(3, 'Skip', 1e3, 'Leap', 1e2)
p = Halton point set in 3 dimensions (8.918019e+013 points)
Properties:
    Skip : 1000
    Leap : 100
    ScrambleMethod : none
```
Use **scramble** to apply reverse-radix scrambling:

```matlab
p = scramble(p,'RR2')
p =
    Halton point set in 3 dimensions (8.918019e+13 points)
    Properties:
      Skip : 1000
      Leap : 100
      ScrambleMethod : RR2
```

Use **net** to generate the first four points:

```matlab
X0 = net(p,4)
X0 =
    0.0928  0.6950  0.0029
    0.6958  0.2958  0.8269
    0.3013  0.6497  0.4141
    0.9087  0.7883  0.2166
```

Use parenthesis indexing to generate every third point, up to the 11th point:

```matlab
X = p(1:3:11,:)
X =
    0.0928  0.6950  0.0029
    0.9087  0.7883  0.2166
    0.3843  0.9840  0.9878
    0.6831  0.7357  0.7923
```

References

See Also

net | scramble | sobolset

Introduced in R2008a
harmmean

Harmonic mean

Syntax

\[
\begin{align*}
m &= \text{harmmean}(X) \\
m &= \text{harmmean}(X, 'all') \\
m &= \text{harmmean}(X, \text{dim}) \\
m &= \text{harmmean}(X, \text{vecdim})
\end{align*}
\]

Description

\(m = \text{harmmean}(X)\) calculates the harmonic mean on page 32-2931 of a sample. For vectors, \(\text{harmmean}(X)\) is the harmonic mean of the elements in \(X\). For matrices, \(\text{harmmean}(X)\) is a row vector containing the harmonic means of each column. For \(N\)-dimensional arrays, \(\text{harmmean}\) operates along the first nonsingleton dimension of \(X\).

\(m = \text{harmmean}(X, 'all')\) returns the harmonic mean of all elements of \(X\).

\(m = \text{harmmean}(X, \text{dim})\) takes the harmonic mean along the operating dimension \(\text{dim}\) of \(X\).

\(m = \text{harmmean}(X, \text{vecdim})\) returns the harmonic mean over the dimensions specified in the vector \(\text{vecdim}\). Each element of \(\text{vecdim}\) represents a dimension of the input array \(X\). The output \(m\) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \(X\) and \(m\). For example, if \(X\) is a 2-by-3-by-4 array, then \(\text{harmmean}(X, [1 \ 2])\) returns a 1-by-1-by-4 array. Each element of the output array is the harmonic mean of the elements on the corresponding page of \(X\).

Examples

Compare Harmonic and Arithmetic Mean

Set the random seed for reproducibility of the results.
rng('default')

Create a matrix of exponential random numbers with 5 rows and 4 columns.

\[
X = \text{exprnd}(1,5,4)
\]

\[
X = \begin{bmatrix}
0.2049 & 2.3275 & 1.8476 & 1.9527 \\
0.0989 & 1.2783 & 0.0298 & 0.8633 \\
2.0637 & 0.6035 & 0.0438 & 0.0880 \\
0.0906 & 0.0434 & 0.7228 & 0.2329 \\
0.4583 & 0.0357 & 0.2228 & 0.0414
\end{bmatrix}
\]

Compute the harmonic and arithmetic means of the columns of \(X\).

\[
\text{harmonic} = \text{harmmean}(X)
\]

\[
\text{harmonic} = \begin{bmatrix}
0.1743 \\
0.0928 \\
0.0797 \\
0.1205
\end{bmatrix}
\]

\[
\text{arithmetic} = \text{mean}(X)
\]

\[
\text{arithmetic} = \begin{bmatrix}
0.5833 \\
0.8577 \\
0.5734 \\
0.6357
\end{bmatrix}
\]

The arithmetic mean is greater than or equal to the harmonic mean.

Harmonic Mean of All Values

Find the harmonic mean of all the values in an array.

Create a 3-by-5-by-2 array \(X\).

\[
X = \text{reshape}(1:30,[3 \ 5 \ 2])
\]

\[
X =
X(:,:,1) =
\]

32-2930
Find the harmonic mean of the elements of X.

\[m = \text{harmmean}(X, 'all') \]

\[m = 7.5094 \]

Definitions

Harmonic Mean

The harmonic mean of a sample X is

\[m = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \]

where \(n \) is the number of values in X.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.
This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
 - \(m = \text{harmmean}(X, \text{'all'}) \)
 - \(m = \text{harmmean}(X, \text{vecdim}) \)

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
 - \(m = \text{harmmean}(X, \text{'all'}) \)
 - \(m = \text{harmmean}(X, \text{vecdim}) \)

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- The following syntaxes do not support GPU arrays as input arguments.
 - \(m = \text{harmmean}(X, \text{'all'}) \)
 - \(m = \text{harmmean}(X, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

geomean | mean | median | trimmean

Introduced before R2006a
hist3

Bivariate histogram plot

Syntax

hist3(X)
hist3(X,'Nbins',nbins)
hist3(X,'Ctrs',ctrs)
hist3(X,'Edges',edges)
hist3(___,Name,Value)
hist3(ax,___)

N = hist3(__)
[N,c] = hist3(__)

Description

hist3(X) creates a bivariate histogram plot of X(:,1) and X(:,2) using 10-by-10 equally spaced bins. The hist3 function displays the bins as 3-D rectangular bars, and the height of each bar indicates the number of elements in the bin.

hist3(X,'Nbins',nbins) specifies the number of bins in each dimension of the histogram. This syntax is equivalent to hist3(X,nbins).

hist3(X,'Ctrs',ctrs) specifies the centers of the bins in each dimension of the histogram. This syntax is equivalent to hist3(X,ctrs).

hist3(X,'Edges',edges) specifies the edges of the bins in each dimension.

hist3(___,Name,Value) specifies graphical properties using one or more name-value pair arguments in addition to the input arguments in the previous syntaxes. For example, 'FaceAlpha',0.5 creates a semitransparent histogram. For a list of properties, see Surface Properties.
hist3(ax,___) plots into the axes specified by ax instead of the current axes (gca). The option ax can precede any of the input argument combinations in the previous syntaxes.

N = hist3(___) returns the number of elements in X that fall in each bin. This syntax does not create a histogram.

[N,c] = hist3(___) also returns the bin centers. This syntax does not create a histogram.

Examples

Histogram of Vectors

Load the sample data.

load carbig

Create a bivariate histogram with the default settings.

X = [MPG,Weight];
hist3(X)
xlabel('MPG')
ylabel('Weight')
Specify Centers of Histogram Bins

Create a bivariate histogram on the bins specified by the bin centers, and count the number of elements in each bin.

Load the sample data.

load carbig

Create a bivariate histogram. Specify the centers of the histogram bins using a two-element cell array.
$$X = [\text{MPG}, \text{Weight}];$$
$$\text{hist3}(X, \text{'Ctrs'}, \{0:10:50 \ 2000:500:5000\})$$
$$\text{xlabel('MPG')}$$
$$\text{ylabel('Weight')}$$

Count the number of elements in each bin.

$$N = \text{hist3}(X, \text{'Ctrs'}, \{0:10:50 \ 2000:500:5000\})$$

$$N = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 3 & 16 & 26 & 6 \\
6 & 34 & 50 & 49 & 27 & 10 & 0 \\
70 & 49 & 11 & 3 & 0 & 0 & 0
\end{bmatrix}$$
Color Histogram Bars by Height

Load the sample data.

load carbig

Create a bivariate histogram. Specify graphical properties to color the histogram bars by height representing the frequency of the observations.

X = [MPG,Weight];
hist3(X,'CDataMode','auto','FaceColor','interp')
xlabel('MPG')
ylabel('Weight')
Tiled Histogram View

Load the sample data.

load carbig

Create a bivariate tiled histogram. Specify graphical properties to color the top surface of the histogram bars by the frequency of the observations. Change the view to two-dimensional.

X = [MPG,Weight];
hist3(X,'CdataMode','auto')
xlabel('MPG')
ylabel('Weight')
colorbar
view(2)

Adjust Graphical Properties

Create a bivariate histogram and adjust its graphical properties by using the handle of the histogram surface object.

Load the sample data.

load carbig
Create a bivariate histogram with 7 bins in each dimension.

\[
X = [\text{MPG}, \text{Weight}];
\]
\[
\text{hist3}(X, \text{''Nbins'',}[7 \ 7])
\]
\[
\text{xlabel(',\text{MPG}')}
\]
\[
\text{ylabel(',\text{Weight}')}
\]

The \text{hist3} function creates a bivariate histogram, which is a type of surface plot. Find the handle of the surface object and adjust the face transparency.

\[
s = \text{findobj(gca, } \text{''Type'',} \text{''Surface'');}
\]
\[
s.\text{FaceAlpha} = 0.65;
\]
Plot Histogram with Intensity Map

Create a bivariate histogram and add the 2-D projected view of intensities to the histogram.

Load the seamount data set (a seamount is an underwater mountain). The data set consists of a set of longitude (x) and latitude (y) locations, and the corresponding seamount elevations (z) measured at those coordinates. This example uses x and y to draw a bivariate histogram.

load seamount
Draw a bivariate histogram.

\[
\text{hist3([x,y])}
\]
\[
\text{xlabel('Longitude')}
\]
\[
\text{ylabel('Latitude')}
\]
\[
\text{hold on}
\]

Count the number of elements in each bin.

\[
N = \text{hist3([x,y])};
\]

Generate a grid to draw the 2-D projected view of intensities by using \texttt{pcolor}.

\[
N_{\text{pcolor}} = N';
\]
\[
N_{\text{pcolor}}(\text{size}(N_{\text{pcolor}},1)+1,\text{size}(N_{\text{pcolor}},2)+1) = 0;
\]
xl = linspace(min(x), max(x), size(N_pcolor, 2)); % Columns of N_pcolor
yl = linspace(min(y), max(y), size(N_pcolor, 1)); % Rows of N_pcolor

Draw the intensity map by using pcolor. Set the z-level of the intensity map to view the histogram and the intensity map together.

h = pcolor(xl, yl, N_pcolor);
colormap('hot') % Change color scheme
colorbar % Display colorbar
h.ZData = -max(N_pcolor(:))*ones(size(N_pcolor));
ax = gca;
ax.ZTick(ax.ZTick < 0) = [];
title('Seamount Location Histogram and Intensity Map');
Input Arguments

\(X \) — Data to distribute among bins

\(m\text{-by-2 numeric matrix} \)

Data to distribute among the bins, specified as an \(m\text{-by-2 numeric matrix} \), where \(m \) is the number of data points. Corresponding elements in \(X(:,1) \) and \(X(:,2) \) specify the \(x \) and \(y \) coordinates of 2-D data points.

\texttt{hist3} ignores all \texttt{NaN} values. Similarly, \texttt{hist3} ignores \texttt{Inf} and \texttt{–Inf} values unless you explicitly specify \texttt{Inf} or \texttt{–Inf} as a bin edge by using the \texttt{edges} input argument.

Data Types: \texttt{single} | \texttt{double}

\(\texttt{nbins} \) — Number of bins

[10 10] (default) | \texttt{two-element vector of positive integers}

Number of bins in each dimension, specified as a two-element vector of positive integers. \(\texttt{nbins}(1) \) specifies the number of bins in the first dimension, and \(\texttt{nbins}(2) \) specifies the number of bins in the second dimension.

Example: [10 20]

Data Types: \texttt{single} | \texttt{double}

\(\texttt{ctrs} \) — Bin centers

\texttt{two-element cell array of numeric vectors}

Bin centers in each dimension, specified as a two-element cell array of numeric vectors with monotonically nondecreasing values. \(\texttt{ctrs}(1) \) and \(\texttt{ctrs}(2) \) are the positions of the bin centers in the first and second dimensions, respectively.

\texttt{hist3} assigns rows of \(X \) falling outside the range of the grid to the bins along the outer edges of the grid.

Example: \{0:10:100 0:50:500\}

Data Types: \texttt{cell}

\(\texttt{edges} \) — Bin edges

\texttt{two-element cell array of numeric vectors}
Bin edges in each dimension, specified as a two-element cell array of numeric vectors with monotonically nondecreasing values. `edges{1}` and `edges{2}` are the positions of the bin edges in the first and second dimensions, respectively.

The value `X(k,:)` is in the `(i,j)`th bin if `edges{1}(i) ≤ X(k,1) < edges{1}(i+1)` and `edges{2}(j) ≤ X(k,2) < edges{2}(j+1)`.

The last bins in each dimension also include the last (outer) edge. For example, `X(k,:)` falls into the `(I,j)`th bin if `edges{1}(I–1) ≤ X(k,1) ≤ edges{1}(I)` and `edges{2}(j) ≤ X(k,2) < edges{2}(j+1)`, where `I` is the length of `edges{1}`. Also, `X(k,:)` falls into the `(i,J)`th bin if `edges{1}(i) ≤ X(k,1) < edges{1}(i+1)` and `edges{2}(J–1) ≤ X(k,2) ≤ edges{2}(J)`, where `J` is the length of `edges{2}`.

`hist3` does not count rows of `X` falling outside the range of the grid. Use `–Inf` and `Inf` in `edges` to include all non-`NaN` values.

Example: `{0:10:100 0:50:500}

Data Types: cell

ax — Target axes
current axes (gca) (default) | Axes object

Target axes, specified as an axes object. If you do not specify an `Axes` object, then the `hist3` function uses the current axes (`gca`). For details, see `Axes Properties`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `hist3(X,'FaceColor','interp','CDataMode','auto')` colors the histogram bars according to the height of the bars.

The graphical properties listed here are only a subset. For a full list, see `Surface Properties`.

CDataMode — Selection mode for vertex colors

'`manual`' (default) | 'auto'
Selection mode for CData (vertex colors), specified as the comma-separated pair consisting of 'CDataMode' and one of these values:

- 'manual' — Use manually specified values in the CData property. The default color in CData is light steel blue corresponding to an RGB triple value of [0.75 0.85 0.95].
- 'auto' — Use the ZData values to set the colors. ZData contains the z-coordinate data for the eight corners of each bar.

Example: 'CDataMode','auto'

EdgeColor — Edge line color
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | 'r' | 'g' | 'b' |...

Edge line color, specified as the comma-separated pair consisting of 'EdgeColor' and one of these values:

- 'none' — Do not draw the edges.
- 'flat' — Use a different color for each edge based on the values in the CData property.
- 'interp' — Use interpolated coloring for each edge based on the values in the CData property.
- RGB triplet or color name — Use the specified color for all the edges. This option does not use the color values in the CData property.

The default color of [0 0 0] corresponds to black edges.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Equivalent RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red' or 'r'</td>
<td>Red</td>
<td>[1 0 0]</td>
</tr>
<tr>
<td>'green' or 'g'</td>
<td>Green</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>'blue' or 'b'</td>
<td>Blue</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>'yellow' or 'y'</td>
<td>Yellow</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>'magenta' or 'm'</td>
<td>Magenta</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Equivalent RGB Triplet</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>'cyan'</td>
<td>Cyan</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>'white'</td>
<td>White</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>'black'</td>
<td>Black</td>
<td>[0 0 0]</td>
</tr>
</tbody>
</table>

Example: 'EdgeColor', 'blue'

FaceAlpha — Face transparency

1 (default) | scalar in the range [0,1] | 'flat' | 'interp' | 'texturemap'

Face transparency, specified as the comma-separated pair consisting of 'FaceAlpha' and one of these values:

- Scalar in the range [0,1] — Use uniform transparency across all the faces. A value of 1 is fully opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent. This option does not use the transparency values in the AlphaData property.
- 'flat' — Use a different transparency for each face based on the values in the AlphaData property. The transparency value at the first vertex determines the transparency for the entire face. This value applies only when you specify the AlphaData property and set the FaceColor property to 'flat'.
- 'interp' — Use interpolated transparency for each face based on the values in the AlphaData property. The transparency varies across each face by interpolating the values at the vertices. This value applies only when you specify the AlphaData property and set the FaceColor property to 'interp'.
- 'texturemap' — Transform the data in AlphaData so that it conforms to the surface.

Example: 'FaceAlpha', 0.5

FaceColor — Face color

'flat' (default) | 'interp' | 'none' | 'texturemap' | RGB triplet | 'r' | 'g' | 'b' | ...

Face color, specified as the comma-separated pair consisting of 'FaceColor' and one of these values:

- 'flat' — Use a different color for each face based on the values in the CData property.
- 'interp' — Use interpolated coloring for each face based on the values in the CData property.
- 'none' — Do not draw the faces.
- 'texturemap' — Transform the color data in CData so that it conforms to the surface.
- RGB triplet or color name — Use the specified color for all the faces. This option does not use the color values in the CData property.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range $[0, 1]$; for example, $[0.4 \ 0.6 \ 0.7]$. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Equivalent RGB Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red' or 'r'</td>
<td>Red</td>
<td>[1 0 0]</td>
</tr>
<tr>
<td>'green' or 'g'</td>
<td>Green</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>'blue' or 'b'</td>
<td>Blue</td>
<td>[0 0 1]</td>
</tr>
<tr>
<td>'yellow' or 'y'</td>
<td>Yellow</td>
<td>[1 1 0]</td>
</tr>
<tr>
<td>'magenta' or 'm'</td>
<td>Magenta</td>
<td>[1 0 1]</td>
</tr>
<tr>
<td>'cyan' or 'c'</td>
<td>Cyan</td>
<td>[0 1 1]</td>
</tr>
<tr>
<td>'white' or 'w'</td>
<td>White</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>'black' or 'k'</td>
<td>Black</td>
<td>[0 0 0]</td>
</tr>
</tbody>
</table>

Example: 'FaceColor','interp'

LineStyle — Line style

'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of 'LineStyle' and one of the options in this table.

<table>
<thead>
<tr>
<th>Line Style</th>
<th>Description</th>
<th>Resulting Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>'-'</td>
<td>Solid line</td>
<td></td>
</tr>
<tr>
<td>Line Style</td>
<td>Description</td>
<td>Resulting Line</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>'--'</td>
<td>Dashed line</td>
<td>- _ _ _ _</td>
</tr>
<tr>
<td>':'</td>
<td>Dotted line</td>
<td>...............</td>
</tr>
<tr>
<td>'-.'</td>
<td>Dash-dotted line</td>
<td>_</td>
</tr>
<tr>
<td>'none'</td>
<td>No line</td>
<td>No line</td>
</tr>
</tbody>
</table>

Example: 'LineStyle',':'

LineWidth — Line width

0.5 (default) | positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in points.

Example: 'LineWidth',0.75

Data Types: single | double

Output Arguments

N — Number of elements in each bin
numeric matrix

Number of elements in X that fall in each bin, returned as a numeric matrix.

c — Bin centers
two-element cell array of numeric vectors

Bin centers in each dimension, returned as a two-element cell array of numeric vectors. c{1} and c{2} are the positions of the bin centers in the first and second dimensions, respectively.

Tips

The hist3 function creates a bivariate histogram, which is a type of surface plot. You can specify surface properties using one or more name-value pair arguments. Also, you can
change the appearance of the histogram by changing the surface property values after you create a histogram. Get the handle of the surface object by using `s = findobj(gca,'Type','Surface')`, and then use `s` to modify the surface properties. For an example, see “Adjust Graphical Properties” on page 32-2939. For a list of properties, see Surface Properties.

Alternative Functionality

The `histogram2` function enables you to create a bivariate histogram using a `Histogram2` object. You can use the name-value pair arguments of `histogram2` to use normalization ('Normalization'), adjust the width of the bins in each dimension ('BinWidth'), and display the histogram as a rectangular array of tiles instead of 3-D bars ('DisplayStyle').

See Also

`accumarray` | `bar3` | `binScatterPlot` | `histcounts2` | `histogram2`

Introduced before R2006a
histfit

Histogram with a distribution fit

Syntax

- `histfit(data)`
- `histfit(data,nbins)`
- `histfit(data,nbins,dist)`
- `h = histfit(___)`

Description

`histfit(data)` plots a histogram of values in `data` using the number of bins equal to the square root of the number of elements in `data` and fits a normal density function.

`histfit(data,nbins)` plots a histogram using `nbins` bins and fits a normal density function.

`histfit(data,nbins,dist)` plots a histogram with `nbins` bins and fits a density function from the distribution specified by `dist`.

`h = histfit(___)` returns a vector of handles `h`, where `h(1)` is the handle to the histogram and `h(2)` is the handle to the density curve. It can include any of the input arguments in previous syntaxes.

Examples

Histogram with a Normal Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

```matlab
rng default; % For reproducibility
r = normrnd(10,1,100,1);
```
Construct a histogram with a normal distribution fit.

\texttt{histfit(r)}

\texttt{histfit} uses \texttt{fitdist} to fit a distribution to data. Use \texttt{fitdist} to obtain parameters used in fitting.

\texttt{pd = fitdist(r,'Normal')}

\texttt{pd =}
\begin{verbatim}
NormalDistribution

Normal distribution
mu = 10.1231 [9.89244, 10.3537]
\end{verbatim}
The intervals next to the parameter estimates are the 95% confidence intervals for the distribution parameters.

Histogram for a Given Number of Bins

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

```matlab
rng default; % For reproducibility
r = normrnd(10,1,100,1);
```

Construct a histogram using six bins with a normal distribution fit.

```matlab
histfit(r,6)
```
Histogram with a Specified Distribution Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

```matlab
rng default; % For reproducibility
b = betarnd(3,10,100,1);
```

Construct a histogram using 10 bins with a beta distribution fit.

```matlab
histfit(b,10,'beta')
```
Histogram with a Kernel Smoothing Function Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

```matlab
rng default; % For reproducibility
b = betarnd(3,10,[100,1]);

Construct a histogram using 10 bins with a smoothing function fit.

histfit(b,10,'kernel')
```
Handle for a Histogram with a Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

```matlab
rng default % for reproducibility
r = normrnd(10,1,100,1);

Construct a histogram with a normal distribution fit.

h = histfit(r,10,'normal')
```
h =
 2x1 graphics array:
 Bar
 Line

Change the bar colors of the histogram.

h(1).FaceColor = [.8 .8 1];
Change the color of the density curve.

\[h(2).\text{Color} = [.2 \ .2 \ .2]; \]
Input Arguments

data — Input data

vector

Input data, specified as a vector.

Example: `data = [1.5 2.5 4.6 1.2 3.4]`
Example: `data = [1.5 2.5 4.6 1.2 3.4]'`

Data Types: `double` | `single`
nbins — Number of bins

positive integer | []

Number of bins for the histogram, specified as a positive integer. Default value is the square root of the number of elements in `data`, rounded up. Use [] for the default number of bins when fitting a distribution.

Example: `y = histfit(x,8)`
Example: `y = histfit(x,10,'gamma')`
Example: `y = histfit(x,[],'weibull')`

Data Types: `double` | `single`

dist — Distribution to fit

'normal' (default) | character vector | string scalar

Distribution to fit to the histogram, specified as a character vector or string scalar. The following table shows the supported distributions.

<table>
<thead>
<tr>
<th>dist</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'beta'</td>
<td>Beta</td>
</tr>
<tr>
<td>'birnbaum-saunders'</td>
<td>Birnbaum-Saunders</td>
</tr>
<tr>
<td>'burr'</td>
<td>Burr Type XII</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'extreme value' or 'ev'</td>
<td>Extreme value</td>
</tr>
<tr>
<td>'gamma'</td>
<td>Gamma</td>
</tr>
<tr>
<td>'generalized extreme value' or 'gev'</td>
<td>Generalized extreme value</td>
</tr>
<tr>
<td>'generalized pareto' or 'gp'</td>
<td>Generalized Pareto (threshold 0)</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>Inverse Gaussian</td>
</tr>
<tr>
<td>'logistic'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'loglogistic'</td>
<td>Loglogistic</td>
</tr>
<tr>
<td>'lognormal'</td>
<td>Lognormal</td>
</tr>
<tr>
<td>'nakagami'</td>
<td>Nakagami</td>
</tr>
<tr>
<td>'negative binomial' or 'nbin'</td>
<td>Negative binomial</td>
</tr>
<tr>
<td>dist</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>'normal'</td>
<td>Normal</td>
</tr>
<tr>
<td>'poisson'</td>
<td>Poisson</td>
</tr>
<tr>
<td>'rayleigh'</td>
<td>Rayleigh</td>
</tr>
<tr>
<td>'rician'</td>
<td>Rician</td>
</tr>
<tr>
<td>'tlocationscale'</td>
<td>t location-scale</td>
</tr>
<tr>
<td>'weibull' or 'wbl'</td>
<td>Weibull</td>
</tr>
<tr>
<td>'kernel'</td>
<td>Nonparametric kernel-smoothing distribution. The density is evaluated at 100 equally spaced points that cover the range of the data in data. It works best with continuously distributed samples.</td>
</tr>
</tbody>
</table>

Output Arguments

h — Handles for the plot

plot handle

Handles for the plot, returned as a vector, where h(1) is the handle to the histogram, and h(2) is the handle to the density curve. `histfit` normalizes the density to match the total area under the curve with that of the histogram.

Algorithms

`histfit` uses `fitdist` to fit a distribution to data. Use `fitdist` to obtain parameters used in fitting.

See Also

distributionFitter | fitdist | histogram | normfit | paramci

Introduced before R2006a
hmmdecode

Hidden Markov model posterior state probabilities

Syntax

PSTATES = hmmdecode(seq,TRANS,EMIS)
[PSTATES,logpseq] = hmmdecode(...)
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)
hmmdecode(...,'Symbols',SYMBOLS)

Description

PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state probabilities, PSTATES, of the sequence seq, from a hidden Markov model. The posterior state probabilities are the conditional probabilities of being at state k at step i, given the observed sequence of symbols, sym. You specify the model by a transition probability matrix, TRANS, and an emissions probability matrix, EMIS. TRANS(i,j) is the probability of transition from state i to state j. EMIS(k,seq) is the probability that symbol seq is emitted from state k.

PSTATES is an array with the same length as seq and one row for each state in the model. The (i,j)th element of PSTATES gives the probability that the model is in state i at the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0, prior to the first emission. hmmdecode computes the probabilities in PSTATES based on the fact that the model begins in state 1.

[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the logarithm of the probability of sequence seq, given transition matrix TRANS and emission matrix EMIS.

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns the forward and backward probabilities of the sequence scaled by S.
hmmdecode(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array, a string array, or a cell array of the names of the symbols. The default symbols are integers 1 through N, where N is the number of possible emissions.

Examples

```matlab
trans = [0.95,0.05;
         0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
        1/10 1/10 1/10 1/10 1/10 1/2];
[seq,states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,trans,emis);
[seq,states] = hmmgenerate(100,trans,emis,...
   'Symbols',{'one','two','three','four','five','six'})
pStates = hmmdecode(seq,trans,emis,...
   'Symbols',{'one','two','three','four','five','six'});
```

References

See Also
hmmestimate | hmmgenerate | hmmtrain | hmmviterbi

Introduced before R2006a
hmmestimate

Hidden Markov model parameter estimates from emissions and states

Syntax

[TRANS,EMIS] = hmmestimate(seq,states)
hmmestimate(...,'Symbols',SYMBOLS)
hmmestimate(...,'Statenames',STATENAMES)
hmmestimate(...,'Pseudoemissions',PSEUDOE)
hmmestimate(...,'Pseudotransitions',PSEUDOTR)

Description

[TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum likelihood estimate of the transition, TRANS, and emission, EMIS, probabilities of a hidden Markov model for sequence, seq, with known states, states.

hmmestimate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array, a string array or a cell array of the names of the symbols. The default symbols are integers 1 through N, where N is the number of possible emissions.

hmmestimate(...,'Statenames',STATENAMES) specifies the names of the states. STATENAMES can be a numeric array, a string array, or a cell array of the names of the states. The default state names are 1 through M, where M is the number of states.

hmmestimate(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission values in the matrix PSEUDOE. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of size m-by-n, where m is the number of states in the hidden Markov model and n is the number of possible emissions. If the \(i \rightarrow k \) emission does not occur in seq, you can set PSEUDOE(i,k) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.

hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition values. You can use this argument to avoid zero probability estimates for
transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size \(m \times m \), where \(m \) is the number of states in the hidden Markov model. If the \(i \rightarrow j \) transition does not occur in states, you can set \(\text{PSEUDOTR}(i,j) \) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

Pseudotransitions and Pseudoemissions

If the probability of a specific transition or emission is very low, the transition might never occur in the sequence states, or the emission might never occur in the sequence seq. In either case, the algorithm returns a probability of 0 for the given transition or emission in TRANS or EMIS. You can compensate for the absence of transition with the 'Pseudotransitions' and 'Pseudoemissions' arguments. The simplest way to do this is to set the corresponding entry of PSEUDO\(E \) or \(\text{PSEUDOTR} \) to 1. For example, if the transition \(i \rightarrow j \) does not occur in states, set \(\text{PSEUDOTR}(i,j) = 1 \). This forces \(\text{TRANS}(i,j) \) to be positive. If you have an estimate for the expected number of transitions \(i \rightarrow j \) in a sequence of the same length as states, and the actual number of transitions \(i \rightarrow j \) that occur in seq is substantially less than what you expect, you can set \(\text{PSEUDOTR}(i,j) \) to the expected number. This increases the value of \(\text{TRANS}(i,j) \). For transitions that do occur in states with the frequency you expect, set the corresponding entry of \(\text{PSEUDOTR} \) to 0, which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the model parameters.

Examples

```plaintext
trans = [0.95,0.05; 0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
        1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(1000,trans,emis);
[estimateTR,estimateE] = hmmestimate(seq,states);
```

32-2965
References

See Also

hmmdecode | hmmgenerate | hmmtrain | hmmviterbi

Introduced before R2006a
hmmgenerate

Hidden Markov model states and emissions

Syntax

```
[seq,states] = hmmgenerate(len,TRANS,EMIS)
hmmgenerate(...,'Symbols',SYMBOLS)
hmmgenerate(...,'Statenames',STATENAMES)
```

Description

```
[seq,states] = hmmgenerate(len,TRANS,EMIS) takes a known Markov model, specified by transition probability matrix TRANS and emission probability matrix EMIS, and uses it to generate

- A random sequence seq of emission symbols
- A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability of transition from state i to state j. EMIS(k,l) is the probability that symbol l is emitted from state k.

Note The function hmmgenerate begins with the model in state 1 at step 0, prior to the first emission. The model then makes a transition to state i_1, with probability T_{i1}, and generates an emission a_{k1} with probability E_{i1k1}. hmmgenerate returns i_1 as the first entry of states, and a_{k1} as the first entry of seq.
```

hmmgenerate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be specified as a numeric array, a string array, or a cell array of character vectors. The default symbols are integers 1 through N, where N is the number of possible emissions.

hmmgenerate(...,'Statenames',STATENAMES) specifies the names of the states. STATENAMES can be specified as a numeric array, a string array, or a cell array of
character vectors. The default state names are 1 through M, where M is the number of states.

Since the model always begins at state 1, whose transition probabilities are in the first row of TRANS, in the following example, the first entry of the output states is be 1 with probability 0.95 and 2 with probability 0.05.

Examples

```matlab
trans = [0.95, 0.05; 0.10, 0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6; 1/10 1/10 1/10 1/10 1/10 1/2];

[seq, states] = hmmgenerate(100, trans, emis)
[seq, states] = hmmgenerate(100, trans, emis,...
    'Symbols', {'one', 'two', 'three', 'four', 'five', 'six'},...
    'Statenames', {'fair'; 'loaded'})
```

See Also

hmmdecode | hmmestimate | hmmtrain | hmmviterbi

Introduced before R2006a
hmmtrain

Hidden Markov model parameter estimates from emissions

Syntax

[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)
hmmtrain(...,'Algorithm',algorithm)
hmmtrain(...,'Symbols',SYMBOLS)
hmmtrain(...,'Tolerance',tol)
hmmtrain(...,'Maxiterations',maxiter)
hmmtrain(...,'Verbose',true)
hmmtrain(...,'Pseudoemissions',PSEUDOE)
hmmtrain(...,'Pseudotransitions',PSEUDOTR)

Description

[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the transition and emission probabilities for a hidden Markov model using the Baum-Welch algorithm. seq can be a row vector containing a single sequence, a matrix with one row per sequence, or a cell array with each cell containing a sequence. TRGUESS and EMITGUESS are initial estimates of the transition and emission probability matrices. TRGUESS(i,j) is the estimated probability of transition from state i to state j. EMITGUESS(i,k) is the estimated probability that symbol k is emitted from state i.

hmmtrain(...,'Algorithm',algorithm) specifies the training algorithm. algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is 'BaumWelch'.

hmmtrain(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array, a string array, or a cell array of the names of the symbols. The default symbols are integers 1 through N, where N is the number of possible emissions.

hmmtrain(...,'Tolerance',tol) specifies the tolerance used for testing convergence of the iterative estimation process. The default tolerance is 1e-4.
hmmtrain(...,'Maxiterations',maxiter) specifies the maximum number of iterations for the estimation process. The default maximum is 100.

hmmtrain(...,'Verbose',true) returns the status of the algorithm at each iteration.

hmmtrain(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of size m-by-n, where m is the number of states in the hidden Markov model and n is the number of possible emissions. If the $i \rightarrow k$ emission does not occur in seq, you can set PSEUDOE(i,k) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size m-by-m, where m is the number of states in the hidden Markov model. If the $i \rightarrow j$ transition does not occur in states, you can set PSEUDOTR(i,j) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

If you know the states corresponding to the sequences, use hmmestimate to estimate the model parameters.

Tolerance

The input argument 'tolerance' controls how many steps the hmmtrain algorithm executes before the function returns an answer. The algorithm terminates when all of the following three quantities are less than the value that you specify for tolerance:

- The log likelihood that the input sequence seq is generated by the currently estimated values of the transition and emission matrices
- The change in the norm of the transition matrix, normalized by the size of the matrix
- The change in the norm of the emission matrix, normalized by the size of the matrix

The default value of 'tolerance' is 1e-6. Increasing the tolerance decreases the number of steps the hmmtrain algorithm executes before it terminates.
maxiterations

The maximum number of iterations, 'maxiterations', controls the maximum number of steps the algorithm executes before it terminates. If the algorithm executes maxiter iterations before reaching the specified tolerance, the algorithm terminates and the function returns a warning. If this occurs, you can increase the value of 'maxiterations' to make the algorithm reach the desired tolerance before terminating.

Examples

trans = [0.95,0.05;
 0.10,0.90];
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2];

seq1 = hmmgenerate(100,trans,emis);
seq2 = hmmgenerate(200,trans,emis);
seqs = {seq1,seq2};
[estTR,estE] = hmmtrain(seqs,trans,emis);

References

See Also

hmmdecode | hmmestimate | hmmgenerate | hmmviterbi

Introduced before R2006a
hmmviterbi

Hidden Markov model most probable state path

Syntax

```matlab
STATES = hmmviterbi(seq,TRANS,EMIS)
hmmviterbi(...,'Symbols',SYMBOLS)
hmmviterbi(...,'Statenames',STATENAMES)
```

Description

`STATES = hmmviterbi(seq,TRANS,EMIS)` given a sequence, `seq`, calculates the most likely path through the hidden Markov model specified by transition probability matrix, `TRANS`, and emission probability matrix `EMIS`. `TRANS(i,j)` is the probability of transition from state `i` to state `j`. `EMIS(i,k)` is the probability that symbol `k` is emitted from state `i`.

Note The function `hmmviterbi` begins with the model in state 1 at step 0, prior to the first emission. `hmmviterbi` computes the most likely path based on the fact that the model begins in state 1.

`hmmviterbi(...,'Symbols',SYMBOLS)` specifies the symbols that are emitted. `SYMBOLS` can be a numeric array, a string array, or a cell array of the names of the symbols. The default symbols are integers 1 through `N`, where `N` is the number of possible emissions.

`hmmviterbi(...,'Statenames',STATENAMES)` specifies the names of the states. `STATENAMES` can be a numeric array, a string array, or a cell array of the names of the states. The default state names are 1 through `M`, where `M` is the number of states.

Examples

```matlab
trans = [0.95,0.05;
         0.10,0.90];
```
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
 1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);

[seq,states] = ...
 hmmgenerate(100,trans,emis,...
 'Statenames',{'fair';'loaded'});
estimatesStates = ...
 hmmviterbi(seq,trans,emis,...
 'Statenames',{'fair';'loaded'});

References

See Also

hmmdecode|hmmestimate|hmmgenerate|hmmtrain

Introduced before R2006a
horzcat

Class: dataset

Horizontal concatenation for dataset arrays

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

ds = horzcat(ds1, ds2, ...)

Description

ds = horzcat(ds1, ds2, ...) horizontally concatenates the dataset arrays ds1, ds2, You may concatenate dataset arrays that have duplicate variable names, however, the variables must contain identical data, and horzcat includes only one copy of the variable in the output dataset.

Observation names for all dataset arrays that have them must be identical except for order. horzcat concatenates by matching observation names when present, or by position for datasets that do not have observation names.

See Also
cat | vertcat
hougen

Hougen-Watson model

Syntax

yhat = hougen(beta,x)

Description

yhat = hougen(beta,x) returns the predicted values of the reaction rate, yhat, as a function of the vector of parameters, beta, and the matrix of data, X. beta must have 5 elements and X must have three columns.

hougen is a utility function for rsmdemo.

The model form is:

\[\hat{y} = \frac{\beta_1 x_2 - x_3 / \beta_5}{1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_3} \]

References

See Also

rsmdemo

Introduced before R2006a
hygecdf

Hypergeometric cumulative distribution function

Syntax

\[
\text{hygecdf}(x,M,K,N) \\
\text{hygecdf}(x,M,K,N, 'upper')
\]

Description

\text{hygecdf}(x,M,K,N) \text{ computes the hypergeometric cdf at each of the values in } x \text{ using the corresponding size of the population, } M, \text{ number of items with the desired characteristic in the population, } K, \text{ and number of samples drawn, } N. \text{ Vector or matrix inputs for } x, M, K, \text{ and } N \text{ must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.}

\text{hygecdf}(x,M,K,N, 'upper') \text{ returns the complement of the hypergeometric cdf at each value in } x, \text{ using an algorithm that more accurately computes the extreme upper tail probabilities.}

The hypergeometric cdf is

\[
p = F(x | M, K, N) = \sum_{i=0}^{x} \binom{K}{i} \binom{M-K}{N-i} \binom{M}{N}
\]

The result, \(p \), is the probability of drawing up to \(x \) of a possible \(K \) items in \(N \) drawings without replacement from a group of \(M \) objects.

Examples
Compute Hypergeometric Distribution CDF

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing zero to two defective floppies if you select 10 at random?

\[p = \text{hygecdf}(2, 100, 20, 10) \]

\[p = 0.6812 \]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

cdf | hygeinv | hygepdf | hygernd | hygestat

Introduced before R2006a
hygeinv

Hypergeometric inverse cumulative distribution function

Syntax

hygeinv(P,M,K,N)

Description

hygeinv(P,M,K,N) returns the smallest integer X such that the hypergeometric cdf evaluated at X equals or exceeds P. You can think of P as the probability of observing X defective items in N drawings without replacement from a group of M items where K are defective.

Examples

Suppose you are the Quality Assurance manager for a floppy disk manufacturer. The production line turns out floppy disks in batches of 1,000. You want to sample 50 disks from each batch to see if they have defects. You want to accept 99% of the batches if there are no more than 10 defective disks in the batch. What is the maximum number of defective disks should you allow in your sample of 50?

```matlab
x = hygeinv(0.99,1000,10,50)
x =
   3
```

What is the median number of defective floppy disks in samples of 50 disks from batches with 10 defective disks?

```matlab
x = hygeinv(0.50,1000,10,50)
x =
   0
```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hygecdf | hygepdf | hygernd | hygestat | icdf

Introduced before R2006a
hygepdf

Hypergeometric probability density function

Syntax

Y = hygepdf(X,M,K,N)

Description

Y = hygepdf(X,M,K,N) computes the hypergeometric pdf at each of the values in X using the corresponding size of the population, M, number of items with the desired characteristic in the population, K, and number of samples drawn, N. X, M, K, and N can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M. The values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is

\[y = f(x \mid M, K, N) = \binom{K}{x} \frac{\binom{M - K}{N - x} \binom{M}{x}}{\binom{M}{N}} \]

The result, y, is the probability of drawing exactly x of a possible K items in n drawings without replacement from a group of M objects.

Examples

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing 0 through 5 defective floppy disks if you select 10 at random?
\[p = \text{hygepdf}(0:5, 100, 20, 10) \]
\[p = 0.0951 \ 0.2679 \ 0.3182 \ 0.2092 \ 0.0841 \ 0.0215 \]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hygecdf | hygeinv | hygernd | hygestat | pdf

Introduced before R2006a
hygernd

Hypergeometric random numbers

Syntax

R = hygernd(M,K,N)
R = hygernd(M,K,N,m,n,...)
R = hygernd(M,K,N,[m,n,...])

Description

R = hygernd(M,K,N) generates random numbers from the hypergeometric distribution with corresponding size of the population, M, number of items with the desired characteristic in the population, K, and number of samples drawn, N. M, K, and N can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of R. A scalar input for M, K, or N is expanded to a constant array with the same dimensions as the other inputs.

R = hygernd(M,K,N,m,n,...) or R = hygernd(M,K,N,[m,n,...]) generates an m-by-n-by-... array. The M, K, N parameters can each be scalars or arrays of the same size as R.

Examples

numbers = hygernd(1000,40,50)
numbers =
 1
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
hygecdf | hygeinv | hygepdf | hygestat | random

Introduced before R2006a
hygestat

Hypergeometric mean and variance

Syntax

\[[M,N,V] = \text{hygestat}(M,K,N)\]

Description

\[[M,N,V] = \text{hygestat}(M,K,N)\] returns the mean of and variance for the hypergeometric distribution with corresponding size of the population, \(M\), number of items with the desired characteristic in the population, \(K\), and number of samples drawn, \(N\). Vector or matrix inputs for \(M\), \(K\), and \(N\) must have the same size, which is also the size of \(MN\) and \(V\). A scalar input for \(M\), \(K\), or \(N\) is expanded to a constant matrix with the same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters \(M\), \(K\), and \(N\) is \(NK/M\), and the variance is \(NK(M-K)(M-N)/[M^2(M-1)]\).

Examples

The hypergeometric distribution approaches the binomial distribution, where \(p = K/M\), as \(M\) goes to infinity.

\[[m,v] = \text{hygestat}(10.^(1:4),10.^(0:3),9)\]

\(m = \)

\(0.9000 \ 0.9000 \ 0.9000 \ 0.9000\
\(v = \)

\(0.0900 \ 0.7445 \ 0.8035 \ 0.8094\)

\[[m,v] = \text{binostat}(9,0.1)\]

\(m = \)

\(0.9000\)

\(v = \)

\(0.8100\)
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hygecdf | hygeinv | hygepdf | hygernd

Introduced before R2006a
hyperparameters

Variable descriptions for optimizing a fit function

Syntax

```matlab
VariableDescriptions = hyperparameters(FitFcnName,predictors, response)
VariableDescriptions = hyperparameters(FitFcnName,predictors, response,LearnerType)
```

Description

`VariableDescriptions = hyperparameters(FitFcnName,predictors, response)` returns the default variables for the given fit function. These are the variables that apply when you set the `OptimizeHyperparameters` name-value pair to 'auto'.

`VariableDescriptions = hyperparameters(FitFcnName,predictors, response,LearnerType)` returns the variables for an ensemble fit with specified learner type. This syntax applies when `FitFcnName` is 'fitcecoc', 'fitcensemble', or 'fitrensemble'.

Examples

Obtain Default Hyperparameters

Obtain the default hyperparameters for the `fitcsvm` classifier.

Load the `ionosphere` data.

```matlab
load ionosphere
```

Obtain the hyperparameters.
VariableDescriptions = hyperparameters('fitcsvm',X,Y);

Examine all the hyperparameters.

for ii = 1:length(VariableDescriptions)
 disp(ii),disp(VariableDescriptions(ii))
end

1

optimizableVariable with properties:

 Name: 'BoxConstraint'
 Range: [1.0000e-03 1000]
 Type: 'real'
 Transform: 'log'
 Optimize: 1

2

optimizableVariable with properties:

 Name: 'KernelScale'
 Range: [1.0000e-03 1000]
 Type: 'real'
 Transform: 'log'
 Optimize: 1

3

optimizableVariable with properties:

 Name: 'KernelFunction'
 Range: {'gaussian' 'linear' 'polynomial'}
 Type: 'categorical'
 Transform: 'none'
 Optimize: 0

4

optimizableVariable with properties:

 Name: 'PolynomialOrder'
 Range: [2 4]
 Type: 'integer'
Transform: 'none'
Optimize: 0

5

optimizableVariable with properties:

 Name: 'Standardize'
 Range: {'true' 'false'}
 Type: 'categorical'
 Transform: 'none'
 Optimize: 0

Change the PolynomialOrder hyperparameter to have a wider range and to be used in an optimization.

VariableDescriptions(4).Range = [2,5];
VariableDescriptions(4).Optimize = true;
disp(VariableDescriptions(4))

 optimizableVariable with properties:

 Name: 'PolynomialOrder'
 Range: [2 5]
 Type: 'integer'
 Transform: 'none'
 Optimize: 1

Obtain Ensemble Hyperparameters

Obtain the default hyperparameters for the fitrensemble ensemble regression function.

Load the carsmall data.
load carsmall

Use Horsepower and Weight as predictor variables, and MPG as the response variable.

X = [Horsepower Weight];
Y = MPG;

Obtain the default hyperparameters for a Tree learner.
VariableDescriptions = hyperparameters('fitensemble',X,Y,'Tree');

Examine all the hyperparameters.

for ii = 1:length(VariableDescriptions)
 disp(ii), disp(VariableDescriptions(ii))
end

1

optimizableVariable with properties:
 Name: 'Method'
 Range: {'Bag' 'LSBoost'}
 Type: 'categorical'
 Transform: 'none'
 Optimize: 1

2

optimizableVariable with properties:
 Name: 'NumLearningCycles'
 Range: [10 500]
 Type: 'integer'
 Transform: 'log'
 Optimize: 1

3

optimizableVariable with properties:
 Name: 'LearnRate'
 Range: [1.0000e-03 1]
 Type: 'real'
 Transform: 'log'
 Optimize: 1

4

optimizableVariable with properties:
 Name: 'MinLeafSize'
 Range: [1 50]
 Type: 'integer'
Change the `MaxNumSplits` hyperparameter to have a wider range and to be used in an optimization.

```matlab
VariableDescriptions(5).Range = [1,200];
VariableDescriptions(5).Optimize = true;
disp(VariableDescriptions(5))
```

```matlab
optimizableVariable with properties:
    Name: 'MaxNumSplits'
    Range: [1 200]
    Type: 'integer'
    Transform: 'log'
    Optimize: 1
```
Input Arguments

FitFcnName — Name of fitting function

<table>
<thead>
<tr>
<th>FitFcnName</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'fitcdiscr'</td>
<td>Discriminant classifier fit function.</td>
</tr>
<tr>
<td>'fitcecoc'</td>
<td>Error-correcting output code (ECOC) classifier fit function.</td>
</tr>
<tr>
<td>'fitcensemble'</td>
<td>Ensemble classifier fit function.</td>
</tr>
<tr>
<td>'fitckernel'</td>
<td>Kernel regression fit function.</td>
</tr>
<tr>
<td>'fitcknn'</td>
<td>k-nearest neighbors (k-NN) classifier fit function.</td>
</tr>
<tr>
<td>'fitclinear'</td>
<td>Linear regression fit function.</td>
</tr>
<tr>
<td>'fitcnb'</td>
<td>Naive Bayes classifier fit function.</td>
</tr>
<tr>
<td>'fitcsvm'</td>
<td>Support vector machine (SVM) classifier fit function.</td>
</tr>
<tr>
<td>'fitctree'</td>
<td>Classification tree fit function.</td>
</tr>
<tr>
<td>'fitrensemble'</td>
<td>Ensemble regression fit function.</td>
</tr>
<tr>
<td>'fitrgp'</td>
<td>Gaussian process regression fit function.</td>
</tr>
<tr>
<td>'fitrkernel'</td>
<td>Kernel regression fit function.</td>
</tr>
<tr>
<td>'fitrlinear'</td>
<td>Linear regression fit function.</td>
</tr>
<tr>
<td>'fitrsvm'</td>
<td>Support vector machine (SVM) regression fit function.</td>
</tr>
<tr>
<td>'fitrtree'</td>
<td>Regression tree fit function.</td>
</tr>
</tbody>
</table>

Name of fitting function, specified as one of the listed classification or regression fit function names.

If `FitFcnName` is 'fitcecoc', 'fitcensemble', or 'fitrensemble', then also specify the learner type in the **LearnerType** argument.

Example: 'fitctree'

predictors — Predictor data

matrix with D predictor columns | table with D predictor columns

Predictor data, specified as a matrix with D predictor columns or as a table with D predictor columns, where D is the number of predictors.

Example: X

Data Types: double | logical | char | string | table | cell | categorical | datetime

response — Class labels or numeric response

grouping variable | scalar

Class labels or numeric response, specified as a grouping variable (see “Grouping Variables” on page 2-57) or as a scalar.

Example: Y

Data Types: single | double | logical | char | string | cell

LearnerType — Learner type for ensemble fit

'Discriminant' | 'KNN' | 'Linear' | 'SVM' | 'Tree' | template of a listed learner

Learner type for ensemble fit, specified as 'Discriminant', 'KNN', 'Linear', 'SVM', 'Tree', or a template of a listed learner. Use this argument when **FitFcnName** is 'fitcecoc', 'fitcensemble', or 'fitrensemble'.
For 'fitcensemble' you can use only 'Discriminant', 'KNN', 'Tree', or an associated template.

For 'fitrensemble', you can use only 'Tree' or templateTree.

Example: 'Tree'

Output Arguments

VariableDescriptions — Variable descriptions
vector of optimizableVariable objects

Variable descriptions, returned as a vector of optimizableVariable objects. The variables have their default parameters set, such as range and variable type. All eligible variables exist in the descriptions, but the variables unused in the 'auto' setting have their Optimize property set to false. You can update the variables by using dot notation, as shown in “Examples” on page 32-0.

See Also
fitcdiscr | fitcecoc | fitcensemble | fitckernel | fitcknn | fitclinear | fitcnb | fitcsvm | fitctree | fitrensemble | fitrgp | fitrkernel | fitrlinear | fitrsvm | fitrtree

Introduced in R2016b
icdf

Package: prob

Inverse cumulative distribution function

Syntax

\[
x = \text{icdf('name','p,A)}
\]

\[
x = \text{icdf('name','p,A,B)}
\]

\[
x = \text{icdf('name','p,A,B,C)}
\]

\[
x = \text{icdf('name','p,A,B,C,D)}
\]

\[
x = \text{icdf(pd,'p)}
\]

Description

\[
x = \text{icdf('name','p,A)}\] returns the inverse cumulative distribution function (icdf) for the one-parameter distribution family specified by 'name' and the distribution parameter A, evaluated at the probability values in p.

\[
x = \text{icdf('name','p,A,B)}\] returns the icdf for the two-parameter distribution family specified by 'name' and the distribution parameters A and B, evaluated at the probability values in p.

\[
x = \text{icdf('name','p,A,B,C)}\] returns the icdf for the three-parameter distribution family specified by 'name' and the distribution parameters A, B, and C, evaluated at the probability values in p.

\[
x = \text{icdf('name','p,A,B,C,D)}\] returns the icdf for the four-parameter distribution family specified by 'name' and the distribution parameters A, B, C, and D, evaluated at the probability values in p.

\[
x = \text{icdf(pd,'p)}\] returns the icdf function of the probability distribution object pd, evaluated at the probability values in p.
Examples

Compute the Normal Distribution icdf

Create a standard normal distribution object with the mean, μ, equal to 0 and the standard deviation, σ, equal to 1.

```matlab
mu = 0;
sigma = 1;
pd = makedist('Normal','mu',mu,'sigma',sigma);
```

Define the input vector p to contain the probability values at which to calculate the icdf.

```matlab
p = [0.1,0.25,0.5,0.75,0.9];
```

Compute the icdf values for the standard normal distribution at the values in p.

```matlab
x = icdf(pd,p)
x = 1x5
    -1.2816   -0.6745         0    0.6745    1.2816
```

Each value in x corresponds to a value in the input vector p. For example, at the value p equal to 0.9, the corresponding icdf value x is equal to 1.2816.

Alternatively, you can compute the same icdf values without creating a probability distribution object. Use the `icdf` function and specify a standard normal distribution using the same parameter values for μ and σ.

```matlab
x2 = icdf('Normal',p,mu,sigma)
x2 = 1x5
    -1.2816   -0.6745         0    0.6745    1.2816
```

The icdf values are the same as those computed using the probability distribution object.
Compute the Poisson Distribution icdf

Create a Poisson distribution object with the rate parameter, λ, equal to 2.

```matlab
lambda = 2;
pd = makedist('Poisson','lambda',lambda);
```

Define the input vector p to contain the probability values at which to calculate the icdf.

```matlab
p = [0.1,0.25,0.5,0.75,0.9];
```

Compute the icdf values for the Poisson distribution at the values in p.

```matlab
x = icdf(pd,p)
```

```
x = 1x5
     0     1     2     3     4
```

Each value in x corresponds to a value in the input vector p. For example, at the value p equal to 0.9, the corresponding icdf value x is equal to 4.

Alternatively, you can compute the same icdf values without creating a probability distribution object. Use the `icdf` function and specify a Poisson distribution using the same value for the rate parameter λ.

```matlab
x2 = icdf('Poisson',p,lambda)
```

```
x2 = 1x5
     0     1     2     3     4
```

The icdf values are the same as those computed using the probability distribution object.

Compute Standard Normal Critical Values

Create a standard normal distribution object.

```matlab
pd = makedist('Normal')
```
pd = NormalDistribution
 Normal distribution
 mu = 0
 sigma = 1

Determine the critical values at the 5% significance level for a test statistic with a
standard normal distribution, by computing the upper and lower 2.5% values.

x = icdf(pd, [.025, .975])
x = 1x2
 -1.9600 1.9600

Plot the cdf and shade the critical regions.

p = normspec(x, 0, 1, 'outside')
Input Arguments

'name' — Probability distribution name
classic vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.
<table>
<thead>
<tr>
<th>name</th>
<th>Distribution</th>
<th>Input Parameter A</th>
<th>Input Parameter B</th>
<th>Input Parameter C</th>
<th>Input Parameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>"Beta Distribution" on page B-4</td>
<td>a: first shape parameter</td>
<td>b: second shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>"Binomial Distribution" on page B-9</td>
<td>n: number of trials</td>
<td>p: probability of success for each trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>"Birnbaum-Saunders Distribution" on page B-13</td>
<td>β: scale parameter</td>
<td>y: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Burr'</td>
<td>"Burr Type XII Distribution" on page B-15</td>
<td>α: scale parameter</td>
<td>c: first shape parameter</td>
<td>k: second shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Chisquare'</td>
<td>"Chi-Square Distribution" on page B-28</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>"Exponential Distribution" on page B-32</td>
<td>μ: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Extreme Value'</td>
<td>"Extreme Value Distribution" on page B-36</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'F'</td>
<td>"F Distribution" on page B-42</td>
<td>ν₁: numerator degrees of freedom</td>
<td>ν₂: denominator degrees of freedom</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>"Gamma Distribution" on page B-45</td>
<td>α: shape parameter</td>
<td>b: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Extreme Value'</td>
<td>"Generalized Extreme Value Distribution" on page B-50</td>
<td>k: shape parameter</td>
<td>σ: scale parameter</td>
<td>μ: location parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Pareto'</td>
<td>"Generalized Pareto Distribution" on page B-55</td>
<td>k: tail index (shape) parameter</td>
<td>σ: scale parameter</td>
<td>μ: threshold (location) parameter</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Geometric'</td>
<td>“Geometric Distribution” on page B-61</td>
<td>p: probability parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>“Half-Normal Distribution” on page B-69</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Hypergeometric'</td>
<td>“Hypergeometric Distribution” on page B-75</td>
<td>m: size of the population</td>
<td>k: number of items with the desired characteristic in the population</td>
<td>n: number of samples drawn</td>
<td>—</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>“Inverse Gaussian Distribution” on page B-78</td>
<td>μ: scale parameter</td>
<td>λ: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>“Logistic Distribution” on page B-91</td>
<td>μ: mean</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'LogLogistic'</td>
<td>“Loglogistic Distribution” on page B-93</td>
<td>μ: mean of logarithmic values</td>
<td>σ: scale parameter of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>“Lognormal Distribution” on page B-95</td>
<td>μ: mean of logarithmic values</td>
<td>σ: standard deviation of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>“Nakagami Distribution” on page B-114</td>
<td>μ: shape parameter</td>
<td>ω: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Negative Binomial'</td>
<td>“Negative Binomial Distribution” on page B-116</td>
<td>r: number of successes</td>
<td>p: probability of success in a single trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Noncentral F'</td>
<td>“Noncentral F Distribution” on page B-124</td>
<td>ν₁: numerator degrees of freedom</td>
<td>ν₂: denominator degrees of freedom</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral t'</td>
<td>“Noncentral t Distribution” on page B-127</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral Chi-square'</td>
<td>“Noncentral Chi-Square Distribution” on page B-121</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Normal'</td>
<td>“Normal Distribution” on page B-130</td>
<td>μ: mean</td>
<td>σ: standard deviation</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>“Poisson Distribution” on page B-137</td>
<td>λ: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>“Rayleigh Distribution” on page B-140</td>
<td>b: scale parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rician'</td>
<td>“Rician Distribution” on page B-143</td>
<td>s: noncentrality parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Stable'</td>
<td>“Stable Distribution” on page B-145</td>
<td>α: first shape parameter</td>
<td>β: second shape parameter</td>
<td>γ: scale parameter</td>
<td>δ: location parameter</td>
</tr>
<tr>
<td>'T'</td>
<td>“Student’s t Distribution” on page B-158</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>“t Location-Scale Distribution” on page B-166</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>ν: shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Uniform'</td>
<td>“Uniform Distribution (Continuous)” on page B-175</td>
<td>a: lower endpoint (minimum)</td>
<td>b: upper endpoint (maximum)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>'Discrete Uniform'</td>
<td>“Uniform Distribution (Discrete)” on page B-181</td>
<td>n: maximum observable value</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Weibull'</td>
<td>“Weibull Distribution” on page B-184</td>
<td>a: scale parameter</td>
<td>b: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Example: 'Normal'

p — Probability values at which to evaluate icdf

scalar value | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value, or an array of scalar values in the range [0,1].

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the same. In this case, icdf expands each scalar input into a constant array of the same size as the array inputs.

Example: [0.1, 0.25, 0.5, 0.75, 0.9]

Data Types: single | double

A — First probability distribution parameter

scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the same. In this case, icdf expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

B — Second probability distribution parameter

scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.
If one or more of the input arguments `p`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `icdf` expands each scalar input into a constant array of the same size as the array inputs.

Data Types: `single` | `double`

C — Third probability distribution parameter

`scalar value` | `array of scalar values`

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments `p`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `icdf` expands each scalar input into a constant array of the same size as the array inputs.

Data Types: `single` | `double`

D — Fourth probability distribution parameter

`scalar value` | `array of scalar values`

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments `p`, `A`, `B`, `C`, and `D` are arrays, then the array sizes must be the same. In this case, `icdf` expands each scalar input into a constant array of the same size as the array inputs.

Data Types: `single` | `double`

pd — Probability distribution

`probability distribution object`

Probability distribution, specified as a probability distribution object created with a function or app in this table.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>makedist</code></td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td><code>fitdist</code></td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
</tbody>
</table>
Function or App | Description
---|---
Distribution Fitter | Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.

paretotails | Create a piecewise distribution object that has generalized Pareto distributions in the tails.

Output Arguments

x — icdf values

scalar value | array of scalar values

icdf values, returned as a scalar value or an array of scalar values. x is the same size as p after any necessary scalar expansion. Each element in x is the icdf value of the distribution, specified by the corresponding elements in the distribution parameters (A, B, C, and D) or specified by the probability distribution object (pd), evaluated at the corresponding element in p.

Alternative Functionality

icdf is a generic function that accepts either a distribution by its name 'name' or a probability distribution object pd. It is faster to use a distribution-specific function, such as norminv for the normal distribution and binoinv for the binomial distribution. For a list of distribution-specific functions, see “Supported Distributions” on page 5-16.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The input argument 'name' must be a compile-time constant. For example, to use the normal distribution, include coder.Constant('Normal') in the -args value of codegen.

• Code generation does not support the probability distribution object (pd) input argument.

See Also
Distribution Fitter | cdf | fitdist | makedist | mle | paretotails | pdf | random

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
inconsistent

Inconsistency coefficient

Syntax

\[
Y = \text{inconsistent}(Z) \\
Y = \text{inconsistent}(Z,d)
\]

Description

\(Y = \text{inconsistent}(Z)\) returns the inconsistency coefficient for each link of the hierarchical cluster tree \(Z\) generated by the \text{linkage} function. \text{inconsistent} calculates the inconsistency coefficient for each link by comparing its height with the average height of other links at the same level of the hierarchy. The larger the coefficient, the greater the difference between the objects connected by the link. For more information, see “Algorithms” on page 32-3009.

\(Y = \text{inconsistent}(Z,d)\) returns the inconsistency coefficient for each link in the tree \(Z\) by searching to a depth \(d\) below each link.

Examples

Inconsistency Coefficient Calculation

Examine an inconsistency coefficient calculation for a hierarchical cluster tree.

Load the \text{examgrades} data set.

```
load examgrades
```

Create a hierarchical cluster tree.

```
Z = \text{linkage}(\text{grades});
```
Create a matrix of inconsistency coefficient information using `inconsistent`. Examine the information for the 84th link.

```matlab
Y = inconsistent(Z);
Y(84,:)
```

```plaintext
ans = 1x4
    7.2741 0.3624 3.0000 0.5774
```

The fourth column of Y contains the inconsistency coefficient, which is computed using the mean in the first column of Y and the standard deviation in the second column of Y.

Because the rows of Y correspond to the rows of Z, examine the 84th link in Z.

```matlab
Z(84,:)
```

```plaintext
ans = 1x3
   190.0000 203.0000  7.4833
```

The 84th link connects the 190th and 203rd clusters in the tree and has a height of 7.4833. The 190th cluster corresponds to the link of index \(190 - 120 = 70\), where 120 is the number of observations. The 203rd cluster corresponds to the 83rd link.

By default, `inconsistent` uses two levels of the tree to compute Y. Therefore, it uses only the 70th, 83rd, and 84th links to compute the inconsistency coefficient for the 84th link. Compare the values in `Y(84,:)` with the corresponding computations by using the link heights in Z.

```matlab
mean84 = mean([Z(70,3) Z(83,3) Z(84,3)])
std84 = std([Z(70,3) Z(83,3) Z(84,3)])
inconsistent84 = (Z(84,3) - mean84) / std84
```

```plaintext
mean84 = 7.2741
std84 = 0.3624
inconsistent84 = 0.5774
```
Compute Inconsistency Coefficient

Create the sample data.

\[X = \text{gallery('uniformdata',}[10 \ 2],12); \]
\[Y = \text{pdist}(X); \]

Generate the hierarchical cluster tree.

\[Z = \text{linkage}(Y,'\text{single}'); \]

Generate a dendrogram plot of the hierarchical cluster tree.

\[\text{dendrogram}(Z) \]
Compute the inconsistency coefficient for each link in the cluster tree Z to depth 3.

\[W = \text{inconsistent}(Z, 3) \]

\[
W = \begin{bmatrix}
0.1313 & 0 & 1.0000 & 0 \\
0.1386 & 0 & 1.0000 & 0 \\
0.1463 & 0.0109 & 2.0000 & 0.7071 \\
0.2391 & 0 & 1.0000 & 0 \\
0.1951 & 0.0568 & 4.0000 & 0.9425 \\
0.2308 & 0.0543 & 4.0000 & 0.9320 \\
0.2395 & 0.0748 & 4.0000 & 0.7636 \\
0.2654 & 0.0945 & 4.0000 & 0.9203 \\
0.3769 & 0.0950 & 3.0000 & 1.1040 \\
\end{bmatrix}
\]

Input Arguments

Z — Agglomerative hierarchical cluster tree

numeric matrix

Agglomerative hierarchical cluster tree, specified as a numeric matrix returned by `linkage`. Z is an \((m - 1)\)-by-3 matrix, where \(m\) is the number of observations. Columns 1 and 2 of Z contain cluster indices linked in pairs to form a binary tree. \(Z(I, 3)\) contains the linkage distances between the two clusters merged in row \(Z(I, :)\).

Data Types: single | double

d — Depth

2 (default) | positive integer scalar

Depth, specified as a positive integer scalar. For each link \(k\), `inconsistent` calculates the corresponding inconsistency coefficient using all the links in the tree within \(d\) levels below \(k\).

Data Types: single | double
Output Arguments

Y — Inconsistency coefficient information

numeric matrix

Inconsistency coefficient information, returned as an \((m - 1)\)-by-4 matrix, where the \((m - 1)\) rows correspond to the rows of \(Z\). This table describes the columns of \(Y\).

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean of the heights of all the links included in the calculation</td>
</tr>
<tr>
<td>2</td>
<td>Standard deviation of the heights of all the links included in the calculation</td>
</tr>
<tr>
<td>3</td>
<td>Number of links included in the calculation</td>
</tr>
<tr>
<td>4</td>
<td>Inconsistency coefficient</td>
</tr>
</tbody>
</table>

Data Types: double

Algorithms

For each link \(k\), the inconsistency coefficient is calculated as

\[
Y(k, 4) = (Z(k, 3) - Y(k, 1)) / Y(k, 2),
\]

where \(Y\) is the inconsistency coefficient information for links in the hierarchical cluster tree \(Z\).

For links that have no further links below them, the inconsistency coefficient is set to 0.

References

See Also
cluster | clusterdata | cophenet | dendrogram | linkage | pdist | squareform

Topics
“Hierarchical Clustering” on page 16-4

Introduced before R2006a
increaseB

Class: clustering.evaluation.GapEvaluation
Package: clustering.evaluation

Increase reference data sets

Syntax

eva_out = increaseB(eva,nref)

Description

eva_out = increaseB(eva,nref) returns a gap criterion clustering evaluation object eva_out that uses the same evaluation criteria as the input object eva and an additional number of reference data sets as specified by nref.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a clustering evaluation object using evalclusters.

nref — Number of additional reference data sets
positive integer value

Number of additional reference data sets, specified as a positive integer value.

Output Arguments

eva_out — Updated clustering evaluation data
clustering evaluation object
Updated clustering evaluation data, returned as a gap criterion clustering evaluation object. `eva_out` contains evaluation data obtained using the reference data sets from the input object `eva` plus a number of additional reference data sets as specified in `nref`.

`increaseB` updates the `B` property of the input object `eva` to reflect the increase in the number of reference data sets used to compute the gap criterion values. `increaseB` also updates the `CriterionValues` property with gap criterion values computed using the total number of reference data sets. `increaseB` might also update the `OptimalK` and `OptimalY` properties to reflect the optimal number of clusters and optimal clustering solution as determined using the total number of reference data sets. Additionally, `increaseB` might also update the `LogW`, `ExpectedLogW`, `StdLogW`, and `SE` properties.

Examples

Evaluate Clustering Solutions Using Additional Reference Data

Create a gap clustering evaluation object using `evalclusters`, then use `increaseB` to increase the number of reference data sets used to compute the gap criterion values.

Load the sample data.

```matlab
load fisheriris
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Cluster the flower measurement data using `kmeans`, and use the gap criterion to evaluate proposed solutions of one through five clusters. Use 50 reference data sets.

```matlab
rng('default') % For reproducibility
ev = evalclusters(meas,'kmeans','gap','klist',1:5,'B',50)
ev =
```

```matlab
GapEvaluation with properties:

  NumObservations: 150
  InspectedK: [1 2 3 4 5]
  CriterionValues: [0.0870 0.5822 0.8766 1.0007 1.0465]
  OptimalK: 4
```
The clustering evaluation object `eva` contains data on each proposed clustering solution. The returned results indicate that the optimal number of clusters is four.

The value of the B property of `eva` shows 50 reference data sets.

```matlab
eva.B
ans = 50
```

Increase the number of reference data sets by 100, for a total of 150 sets.

```matlab
eva = increaseB(eva,100)
eva =
    GapEvaluation with properties:
      NumObservations: 150
      InspectedK: [1 2 3 4 5]
      CriterionValues: [0.0794 0.5850 0.8738 1.0034 1.0508]
        OptimalK: 5
```

The returned results now indicate that the optimal number of clusters is five.

The value of the B property of `eva` now shows 150 reference data sets.

```matlab
eva.B
ans = 150
```

See Also

`evalclusters`
interactionplot

Interaction plot for grouped data

Syntax

interactionplot(Y,GROUP)
interactionplot(Y,GROUP,'varnames',VARNAMES)
[h,AX,bigax] = interactionplot(...)

Description

interactionplot(Y,GROUP) displays the two-factor interaction plot for the group means of matrix Y with groups defined by entries in GROUP, which can be a cell array or a matrix. Y is a numeric matrix or vector. If Y is a matrix, the rows represent different observations and the columns represent replications of each observation. If Y is a vector, the rows give the means of each entry in GROUP. If GROUP is a cell array, then each cell of GROUP must contain a grouping variable that is a categorical variable, numeric vector, character matrix, string array, or single-column cell array of character vectors. If GROUP is a matrix, then its columns represent different grouping variables. Each grouping variable must have the same number of rows as Y. The number of grouping variables must be greater than 1.

The interaction plot is a matrix plot, with the number of rows and columns both equal to the number of grouping variables. The grouping variable names are printed on the diagonal of the plot matrix. The plot at off-diagonal position \((i,j)\) is the interaction of the two variables whose names are given at row diagonal \((i,i)\) and column diagonal \((j,j)\), respectively.

interactionplot(Y,GROUP,'varnames',VARNAMES) displays the interaction plot with user-specified grouping variable names VARNAMES. VARNAMES is a character matrix, a string array, or a cell array of character vectors, one per grouping variable. Default names are 'X1', 'X2',

[h,AX,bigax] = interactionplot(...) returns a handle h to the figure window, a matrix AX of handles to the subplot axes, and a handle bigax to the big (invisible) axes framing the subplots.
Examples

Display Interaction Plots

Randomly generate data for a response variable \(y \).

```matlab
rng default; % For reproducibility
y = randn(1000,1);
```

Randomly generate data for four three-level factors.

```matlab
group = ceil(3*rand(1000,4));
```

Display the interaction plots for the factors and name the factors 'A', 'B', 'C', 'D'.

```matlab
interactionplot(y,group,'varnames',{'A','B','C','D'})
```
See Also
maineffectsplot | multivarichart

Introduced in R2006b
intersect

Class: dataset

Set intersection for dataset array observations

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

- `C = intersect(A,B)`
- `C = intersect(A,B,vars)`
- `C = intersect(A,B,vars,setOrder)`
- `[C,iA,iB] = intersect(___)`

Description

- `C = intersect(A,B)` for dataset arrays A and B returns the common set of observations from the two arrays, with repetitions removed. The observations in the dataset array C are in sorted order.

- `C = intersect(A,B,vars)` returns the set of common observations from the two arrays, considering only the variables specified in `vars`, with repetitions removed. The observations in the dataset array C are sorted by those variables.

The values for variables not specified in `vars` for each observation in C are taken from the corresponding observations in A. If there are multiple observations in A that correspond to an observation in C, then those values are taken from the first occurrence.

- `C = intersect(A,B,vars,setOrder)` returns the observations in C in the order specified by `setOrder`.

- `[C,iA,iB] = intersect(___)` also returns index vectors `iA` and `iB` such that `C = A(iA,:)` and `C = B(iB,:)`. If there are repeated observations in A or B, then
intersect returns the index of the first occurrence. You can use any of the previous input arguments.

Input Arguments

A, B
Input dataset arrays.

vars
String array or cell array of character vectors containing variable names, or a vector of integers containing variable column numbers. vars indicates the variables in A and B that intersect considers.

Specify vars as [] to use its default value of all variables.

setOrder
Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A.

Output Arguments

C
Dataset array with the common set of observations in A and B, with repetitions removed. C is in sorted order (by default), or the order specified by setOrder.

iA
Index vector, indicating the observations in A that are common to B. The vector iA contains the index to the first occurrence of any repeated observations in A.
iB

Index vector, indicating the observations in B that are common to A. The vector iB contains the index to the first occurrence of any repeated observations in B.

Examples

Intersection of Two Dataset Arrays

Load sample data.

A = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
B = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);

Return the intersection and index vectors.

[C,iA,iB] = intersect(A,B);

C =

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>wgt</th>
<th>smoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>'TRW-072'</td>
<td>'WHITE'</td>
<td>'m'</td>
<td>39</td>
<td>202</td>
<td>1</td>
</tr>
</tbody>
</table>

There is one observation in common between A and B.

Find the observation in the original dataset arrays.

A(iA,:)

ans =

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>wgt</th>
<th>smoke</th>
</tr>
</thead>
<tbody>
<tr>
<td>'TRW-072'</td>
<td>'WHITE'</td>
<td>'m'</td>
<td>39</td>
<td>202</td>
<td>1</td>
</tr>
</tbody>
</table>

B(iB,:)

ans =
See Also

dataset | ismember | setdiff | setxor | sortrows | union | unique

Topics

“Merge Dataset Arrays” on page 2-104
“Dataset Arrays” on page 2-137
invpred

Inverse prediction

Syntax

\[X_0 = \text{invpred}(X,Y,Y_0) \]
\[[X_0,DXLO,DXUP] = \text{invpred}(X,Y,Y_0) \]
\[[X_0,DXLO,DXUP] = \text{invpred}(X,Y,Y_0,\text{name1},\text{val1},\text{name2},\text{val2},...) \]

Description

\[X_0 = \text{invpred}(X,Y,Y_0) \] accepts vectors \(X \) and \(Y \) of the same length, fits a simple regression, and returns the estimated value \(X_0 \) for which the height of the line is equal to \(Y_0 \). The output, \(X_0 \), has the same size as \(Y_0 \), and \(Y_0 \) can be an array of any size.

\[[X_0,DXLO,DXUP] = \text{invpred}(X,Y,Y_0) \] also computes 95% inverse prediction intervals. \(DXLO \) and \(DXUP \) define intervals with lower bound \(X_0-DXLO \) and upper bound \(X_0+DXUP \). Both \(DXLO \) and \(DXUP \) have the same size as \(Y_0 \).

The intervals are not simultaneous and are not necessarily finite. Some intervals may extend from a finite value to \(-\infty\) or \(+\infty\), and some may extend over the entire real line.

\[[X_0,DXLO,DXUP] = \text{invpred}(X,Y,Y_0,\text{name1},\text{val1},\text{name2},\text{val2},...) \] specifies optional argument name/value pairs chosen from the following list. Argument names are case insensitive and partial matches are allowed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'alpha'</td>
<td>A value between 0 and 1 specifying a confidence level of (100%(1-\alpha)). Default is (\alpha=0.05) for 95% confidence.</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>'predopt'</td>
<td>Either 'observation', the default value to compute the intervals for X_0 at which a new observation could equal Y_0, or 'curve' to compute intervals for the X_0 value at which the curve is equal to Y_0.</td>
</tr>
</tbody>
</table>

Examples

Inverse Prediction

Generate sample data.

```matlab
x = 4*rand(25,1);
y = 10 + 5*x + randn(size(x));
```

Make a scatterplot of the data.

```matlab
scatter(x,y)
```
Predict the x value for a given y value of 20.

\[x_0 = \text{invpred}(x, y, 20) \]

\[x_0 = 1.9967 \]

See Also
polyconf | polyfit | polytool | polyval

Introduced before R2006a
iqr

Package: prob

Interquartile range

Syntax

- `r = iqr(x)`
- `r = iqr(x,'all')`
- `r = iqr(x,dim)`
- `r = iqr(x,vecdim)`
- `r = iqr(pd)`

Description

- `r = iqr(x)` returns the interquartile range of the values in `x`.
 - If `x` is a vector, then `r` is the difference between the 75th and the 25th percentiles of the data contained in `x`.
 - If `x` is a matrix, then `r` is a row vector containing the difference between the 75th and the 25th percentiles of the sample data in each column of `x`.
 - If `x` is a multidimensional array, then `iqr` operates along the first nonsingleton dimension of `x`. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same.

- `r = iqr(x,'all')` returns the interquartile range of all the values in `x`.

- `r = iqr(x,dim)` returns the interquartile range along the dimension of `x` specified by `dim`.

- `r = iqr(x,vecdim)` returns the interquartile range over the dimensions specified by `vecdim`. For example, if `x` is a matrix, then `iqr(x,[1 2])` is the interquartile range of all the elements of `x` because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.
\[r = \text{iqr}(pd) \] returns the interquartile range of the probability distribution \(pd \).

Examples

Compute the Interquartile Range

Generate a 4-by-4 matrix of random data from a normal distribution with parameter values \(\mu \) equal to 10 and \(\sigma \) equal to 1.

```matlab
rng default  % For reproducibility
x = normrnd(10,1,4)
```

\[
\begin{align*}
4 \times 4 \\
11.8339 & 8.6923 & 12.7694 & 9.9369 \\
7.7412 & 9.5664 & 8.6501 & 10.7147 \\
\end{align*}
\]

Compute the interquartile range for each column of data.

```matlab
r = iqr(x)
```

\[
1 \times 4 \\
2.2086 & 1.2013 & 2.5969 & 0.8541
\]

Compute the interquartile range for each row of data.

```matlab
r2 = iqr(x,2)
```

\[
4 \times 1 \\
1.7237 \\
2.9870 \\
1.9449 \\
1.8797
\]
Compute Interquartile Range of Multidimensional Array

Compute the interquartile range of a multidimensional array over multiple dimensions by specifying the 'all' and `vecdim` input arguments.

Create a 3-by-4-by-2 array `X`.

```matlab
X = reshape(1:24,[3 4 2])
```

```plaintext
X(:,:,1) =
1     4     7    10
2     5     8    11
3     6     9    12

X(:,:,2) =
13    16    19    22
14    17    20    23
15    18    21    24
```

Compute the interquartile range of all the values in `X`.

```matlab
rall = iqr(X,'all')
```

```plaintext
rall = 12
```

Compute the interquartile range of each page of `X`. Specify the first and second dimensions as the operating dimensions along which the interquartile range is calculated.

```matlab
rpage = iqr(X,[1 2])
```

```plaintext
rpage =
rpage(:,:,1) =
6

rpage(:,:,2) =
6
```
For example, \(\text{rpage}(1,1,1) \) is the interquartile range of all the elements in \(X(:,:,1) \).

Compute the interquartile range of the elements in each \(X(i,:, :) \) slice by specifying the second and third dimensions as the operating dimensions.

\[
rrow = \text{iqr}(X,[2 3])
\]

\[
rrow = 3\times1
\]

\[
12
12
12
\]

For example, \(rrow(3) \) is the interquartile range of all the elements in \(X(3,:, :) \).

Compute the Normal Distribution Interquartile Range

Create a standard normal distribution object with the mean, \(\mu \), equal to 0 and the standard deviation, \(\sigma \), equal to 1.

\[
pd = \text{makedist}('Normal','mu',0,'sigma',1);
\]

Compute the interquartile range of the standard normal distribution.

\[
r = \text{iqr}(pd)
\]

\[
r = 1.3490
\]

The returned value is the difference between the 75th and the 25th percentile values for the distribution. This is equivalent to computing the difference between the inverse cumulative distribution function (icdf) values at the probabilities \(y \) equal to 0.75 and 0.25.

\[
r2 = \text{icdf}(pd,0.75) - \text{icdf}(pd,0.25)
\]

\[
r2 = 1.3490
\]

Interquartile Range of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.
load examgrades;
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =
 NormalDistribution

 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]

Compute the interquartile range of the fitted distribution.

r = iqr(pd)

r = 11.7634

The returned result indicates that the difference between the 75th and 25th percentile of the students' grades is 11.7634.

Use icdf to determine the 75th and 25th percentiles of the students' grades.

y = icdf(pd,[0.25,0.75])

y = 1×2
 69.1266 80.8900

Calculate the difference between the 75th and 25th percentiles. This yields the same result as iqr.

y(2)-y(1)

ans = 11.7634

Use boxplot to visualize the interquartile range.

boxplot(x)
The top line of the box shows the 75th percentile, and the bottom line shows the 25th percentile. The center line shows the median, which is the 50th percentile.

Input Arguments

x — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

Data Types: single | double
dim — Dimension
positive integer value

Dimension along which the interquartile range is calculated, specified as a positive integer. For example, for a matrix `x`, when `dim` is equal to 1, `iqr` returns the interquartile range for the columns of `x`. When `dim` is equal to 2, `iqr` returns the interquartile range for the rows of `x`. For `n`-dimensional arrays, `iqr` operates along the first nonsingleton dimension of `x`.

Data Types: `single` | `double`

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of `vecdim` represents a dimension of the input array `x`. The output `r` has length 1 in the specified operating dimensions. The other dimension lengths are the same for `x` and `r`.

For example, if `x` is a 2-by-3-by-3 array, then `iqr(x,[1 2])` returns a 1-by-1-by-3 array. Each element of the output array is the interquartile range of the elements on the corresponding page of `x`.

![Diagram of 3D array](image)

Data Types: `single` | `double`

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.
<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>

Output Arguments

\[r \rightarrow \text{Interquartile range values} \]

scalar | vector | matrix | multidimensional array

Interquartile range values, returned as a scalar, vector, matrix, or multidimensional array.

- If you input an array \(x \), then the dimensions of \(r \) depend on whether the 'all', dim, or vecdim input arguments are specified. Each interquartile range value in \(r \) is the difference between the 75th and the 25th percentiles of the specified data contained in \(x \).
- If you input a probability distribution \(pd \), then the scalar value of \(r \) is the difference between the values of the 75th and 25th percentiles of the probability distribution.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
 - \(r = \text{iqr}(x,'all') \)
 - \(r = \text{iqr}(x,\text{vecdim}) \)

32-3031
• \(r = \text{iqr}(pd) \)

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
 • \(r = \text{iqr}(x, 'all') \)
 • \(r = \text{iqr}(x, \text{vecdim}) \)
 • \(r = \text{iqr}(pd) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
| Distribution Fitter | boxplot | fitdist | icdf | mad | makedist | range | std |

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
isbranch

Class: classregtree

(Removed) Test node for branch

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

ib = isbranch(t)
ib = isbranch(t,nodes)

Description

ib = isbranch(t) returns an n-element logical vector ib that is true for each branch node and false for each leaf node.

ib = isbranch(t,nodes) takes a vector nodes of node numbers and returns a vector of logical values for the specified nodes.

References

See Also

classregtree | cutvar | numnodes
isempty

Class: dataset

True for empty dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

tf = isempty(A)

Description

tf = isempty(A) returns true (1) if A is an empty dataset and false (0) otherwise. An empty array has no elements, that is prod(size(A))==0.

See Also

size
islevel

Determine if levels are in nominal or ordinal array

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Syntax

```matlab
tf = islevel(levels,A)
```

Description

`tf = islevel(levels,A)` returns a logical array indicating which of the levels in `levels` correspond to a level in the nominal or ordinal array `A`.

Input Arguments

- **A** — Nominal or ordinal array

 Nominal array | Ordinal array

 Nominal or ordinal array, specified as a nominal or ordinal array object created with `nominal` or `ordinal`.

- **levels** — Levels to test

 Character vector | String array | Cell array of character vectors | 2-D character matrix

 Levels to test, specified as a character vector, string array, cell array of character vectors, or 2-D character matrix.

 Data Types: `char` | `string` | `cell`
Output Arguments

tf — Level indicator

logical array

Level indicator, returned as a logical array of the same size as `levels`. `tf` has the value 1 (true) when the corresponding element of `levels` is the label of a level in the nominal or ordinal array `A`, even if the level contains no elements. Otherwise, `tf` has the value 0 (false).

See Also

`isequal` | `ismember` | `nominal` | `ordinal`

Introduced in R2007a
ismember

Class: dataset

Dataset array elements that are members of set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

LiA = ismember(A,B)
LiA = ismember(A,B,vars)
[LiA,LocB] = ismember(___)

Description

LiA = ismember(A,B) for dataset arrays A and B returns a vector of logical values the same length as A. The output vector, LiA, has value 1 (true) in the elements that correspond to observations in A that are also present in B, and 0 (false) otherwise.

LiA = ismember(A,B,vars) returns a vector of logical values the same length as A. The output vector, LiA, has value 1 (true) in the elements that correspond to observations in A that are also present in B for the variables specified in vars only, and 0 (false) otherwise.

[LiA,LocB] = ismember(___) also returns a vector the same length as A containing the index to the first observation in B that corresponds to each observation in A, or 0 if there is no such observation. You can use any of the previous input arguments.
Input Arguments

A
Query dataset array, containing the observations to be found in B.

B
Set dataset array. When an observation in A is found in B, for all variables or only those variables specified in vars, the corresponding element of LiA is 1.

vars
String array or cell array of character vectors containing variable names, or a vector of integers containing variable column numbers. vars indicates which variables to match observations on in A and B.

Output Arguments

LiA
Vector of logical values the same length as A. LiA has value 1 (true) when the corresponding observation in A is present in B. Otherwise, LiA has value 0 (false).

If you specify vars, LiA has value 1 when the corresponding observation in A is present in B for the variables in vars only.

LocB
Vector the same length as A containing the index to the first observation in B that corresponds to each observation in A, for all variables or only those variables specified in vars.

Examples

Find Observations That Are Members of a Dataset Array
Load sample data.
```matlab
load('hospital')
B = hospital(1:50,1:5);

This set dataset array, B, has 50 observations on 5 variables.

Specify a query dataset array.

rng('default')
rIx = randsample(100,10);
A = hospital(rIx,1:5)

A =
    LastName       Sex    Age  Weight  Smoker
    YLN-495      'COLEMAN'  Male   39    188     false
    LQW-768      'TAYLOR'    Female  31    132     false
    DGC-290      'BUTLER'    Male   38    184      true
    DAU-529      'REED'      Male   50    186      true
    REV-997     'ALEXANDER'  Male   25    171      true
    QEQ-082       'COX'    Female   28    111     false
    AGR-528     'SIMMONS'    Male   45    181     false
    PUE-347      'YOUNG'    Female   25    114     false
    HVR-372     'RUSSELL'    Male   44    188      true
    XUE-826     'JACKSON'    Male   25    174     false

Check which observations in A are present in B.

LiA = ismember(A,B)

LiA = 10x1 logical array

0
1
0
0
0
0
0
0
0
1
0
0
1
0
1

Display the observations in A that are present in B.

A(LiA,:)
Find the location of the observations in \( B \).

\[
[~,\text{LocB}] = \text{ismember}(A,B)
\]

\[
\text{LocB} = 10\times1
\]

\[
\begin{bmatrix}
0 \\
10 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
28 \\
0 \\
13
\end{bmatrix}
\]

Display the observations in \( B \) that match observations in \( A \).

\[
B(\text{LocB}(\text{LocB}>0),:)
\]

\[
\text{ans} =
\begin{array}{cccccc}
\text{LastName} & \text{Sex} & \text{Age} & \text{Weight} & \text{Smoker} \\
LQW-768 & 'TAYLOR' & Female & 31 & 132 & false \\
PUE-347 & 'YOUNG' & Female & 25 & 114 & false \\
XUE-826 & 'JACKSON' & Male & 25 & 174 & false \\
\end{array}
\]

**See Also**

`dataset` | `intersect` | `setdiff` | `setxor` | `sortrows` | `union` | `unique`

**Topics**

“Dataset Arrays” on page 2-137
ismissing

Class: dataset

Find dataset array elements with missing values

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

I = ismissing(ds)
I = ismissing(ds,Name,Value)

**Description**

I = ismissing(ds) returns a logical array that indicates which elements in the dataset array, ds, contain a missing value. By default, ismissing recognizes NaN as a missing value in numeric variables, '' as a missing value in character variables, and <undefined> as a missing value in categorical arrays.

- ds2 = ds(~any(I,2),:) creates a new dataset array containing only the complete observations in ds.
- ds2 = ds(:,~any(I,1)) creates a new dataset array containing only the variables from ds with no missing values.

I = ismissing(ds,Name,Value) returns missing value indices with additional options specified by one or more Name,Value pair arguments.

**Input Arguments**

ds
dataset array
**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**NumericTreatAsMissing**

Vector of numeric values to treat as missing value indicators in floating point `ds` variables. `ismissing` always treats a `NaN` value as a missing value.

**Default:**

**StringTreatAsMissing**

Character vector, string array, or cell array of character vectors to treat as missing value indicators in character `ds` variables. `ismissing` always treats `' ' as a missing value.

**Output Arguments**

**I**

Logical array indicating which elements in `ds` contain a missing value. `I` is the same size as `ds`, with value 1 for elements that contain a missing value.

**See Also**

dataset | isempty | isnan | isundefined | replaceWithMissing

**Topics**

“Clean Messy and Missing Data” on page 2-118

“Dataset Arrays” on page 2-137
isvalid

Class: qrandstream

Test handle validity

Syntax

tf = isvalid(h)

Description

tf = isvalid(h) performs an element-wise check for validity on the handle elements of h. The result is a logical array of the same dimensions as h, where each element is the element-wise validity result.

A handle is invalid if it has been deleted or if it is an element of a handle array and has not yet been initialized.

See Also
delete|qrandstream
**iwishrnd**

Inverse Wishart random numbers

**Syntax**

\[
W = \text{iwishrnd}(\text{Tau}, df)
W = \text{iwishrnd}(\text{Tau}, df, \text{DI})
\begin{bmatrix} W, \text{DI} \end{bmatrix} = \text{iwishrnd}(\text{Tau}, df)
\]

**Description**

\(W = \text{iwishrnd}(\text{Tau}, df)\) generates a random matrix \(W\) from the inverse Wishart distribution with parameters \(\text{Tau}\) and \(df\). The inverse of \(W\) has the Wishart distribution with covariance matrix \(\Sigma = \text{inv}(\text{Tau})\) and with \(df\) degrees of freedom. \(\text{Tau}\) is a symmetric and positive definite matrix.

\(W = \text{iwishrnd}(\text{Tau}, df, \text{DI})\) expects \(\text{DI}\) to be the transpose of the inverse of the Cholesky factor of \(\text{Tau}\), so that \(\text{DI}'\times\text{DI} = \text{inv}(\text{Tau})\), where \(\text{inv}\) is the MATLAB inverse function. \(\text{DI}\) is lower-triangular and the same size as \(\text{Tau}\). If you call \(\text{iwishrnd}\) multiple times using the same value of \(\text{Tau}\), it is more efficient to supply \(\text{DI}\) instead of computing it each time.

\(\begin{bmatrix} W, \text{DI} \end{bmatrix} = \text{iwishrnd}(\text{Tau}, df)\) returns \(\text{DI}\) so you can use it as an input in future calls to \(\text{iwishrnd}\).

Note that different sources use different parametrizations for the inverse Wishart distribution. This function defines the parameter \(\tau\) so that the mean of the output matrix is \(\text{Tau}/(df-d-1)\) where \(d\) is the dimension of \(\text{Tau}\).

**See Also**

\text{wishrnd}

**Topics**

“Inverse Wishart Distribution” on page B-79
Introduced before R2006a
jackknife

Jackknife sampling

Syntax

jackstat = jackknife(jackfun,X)
jackstat = jackknife(jackfun,X,Y,...)
jackstat = jackknife(jackfun,...,'Options',option)

Description

jackstat = jackknife(jackfun,X) draws jackknife data samples from the n-by-p data array X, computes statistics on each sample using the function jackfun, and returns the results in the matrix jackstat. jackknife regards each row of X as one data sample, so there are n data samples. Each of the n rows of jackstat contains the results of applying jackfun to one jackknife sample. jackfun is a function handle specified with @. Row i of jackstat contains the results for the sample consisting of X with the ith row omitted:

s = x;
s(i,:) = [];
jackstat(i,:) = jackfun(s);

If jackfun returns a matrix or array, then this output is converted to a row vector for storage in jackstat. If X is a row vector, it is converted to a column vector.

jackstat = jackknife(jackfun,X,Y,...) accepts additional arguments to be supplied as inputs to jackfun. They may be scalars, column vectors, or matrices. jackknife creates each jackknife sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). Scalar data are passed to jackfun unchanged. Non-scalar arguments must have the same number of rows, and each jackknife sample omits the same row from these arguments.

jackstat = jackknife(jackfun,...,'Options',option) provides an option to perform jackknife iterations in parallel, if the Parallel Computing Toolbox is available. Set 'Options' as a structure you create with statset. jackknife uses the following field in the structure:
'UseParallel'  If true, use multiple processors to compute jackknife iterations. If the Parallel Computing Toolbox is not installed, then computation occurs in serial mode. Default is false, meaning serial computation.

**Examples**

Estimate the bias of the MLE variance estimator of random samples taken from the vector y using jackknife. The bias has a known formula in this problem, so you can compare the jackknife value to this formula.

```matlab
sigma = 5;
y = normrnd(0,sigma,100,1);
m = jackknife(@var,y,1);
n = length(y);
bias = -sigma^2/n % known bias formula
jbias = (n-1)*(mean(m)-var(y,1)) % jackknife bias estimate
```

```matlab
bias =
 -0.2500

jbias =
 -0.3378
```

**Extended Capabilities**

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)
For more information, see the 'Options' name-value pair argument.

See Also
bootstrap | histogram | ksdensity | random | randsample

Topics
“Jackknife Resampling” on page 3-18

Introduced in R2006a
**jbtest**

Jarque-Bera test

**Syntax**

\[
h = \text{jbtest}(x) \\
h = \text{jbtest}(x,\alpha) \\
h = \text{jbtest}(x,\alpha,\text{mctol}) \\
[h,p] = \text{jbtest}(___) \\
[h,p,jbstat,critval] = \text{jbtest}(___)
\]

**Description**

\( h = \text{jbtest}(x) \) returns a test decision for the null hypothesis that the data in vector \( x \) comes from a normal distribution with an unknown mean and variance, using the Jarque-Bera test on page 32-3053. The alternative hypothesis is that it does not come from such a distribution. The result \( h \) is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

\( h = \text{jbtest}(x,\alpha) \) returns a test decision for the null hypothesis at the significance level specified by \( \alpha \).

\( h = \text{jbtest}(x,\alpha,\text{mctol}) \) returns a test decision based on a \( p \)-value computed using a Monte Carlo simulation with a maximum Monte Carlo standard error on page 32-3053 less than or equal to \( \text{mctol} \).

\([h,p] = \text{jbtest}(___)\) also returns the \( p \)-value \( p \) of the hypothesis test, using any of the input arguments from the previous syntaxes.

\([h,p,jbstat,critval] = \text{jbtest}(___)\) also returns the test statistic \( jbstat \) and the critical value \( \text{critval} \) for the test.

**Examples**
**Test for a Normal Distribution**

Load the data set.

```matlab
load carbig
```

Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars.

```matlab
h = jbttest(MPG)
```

```matlab
h = 1
```

The returned value of \( h = 1 \) indicates that \texttt{jbttest} rejects the null hypothesis at the default 5% significance level.

**Test the Hypothesis at a Different Significance Level**

Load the data set.

```matlab
load carbig
```

Test the null hypothesis that car mileage in miles per gallon (MPG) follows a normal distribution across different makes of cars at the 1% significance level.

```matlab
[h,p] = jbttest(MPG,0.01)
```

```matlab
h = 1
```

```matlab
p = 0.0022
```

The returned value of \( h = 1 \), and the returned \( p \)-value less than \( \alpha = 0.01 \) indicate that \texttt{jbttest} rejects the null hypothesis.

**Test for a Normal Distribution Using Monte Carlo Simulation**

Load the data set.

```matlab
load carbig
```
Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars. Use a Monte Carlo simulation to obtain an exact $P$-value.

$$[h,p,jbstat,critval] = jbtest(MPG,[],0.0001)$$

$h = 1$

$p = 0.0022$

$ jbstat = 18.2275$

$critval = 5.8461$

The returned value of $h = 1$ indicates that $jbtest$ rejects the null hypothesis at the default 5% significance level. Additionally, the test statistic, $jbstat$, is larger than the critical value, $critval$, which indicates rejection of the null hypothesis.

**Input Arguments**

**$x$ — Sample data**  
vector

Sample data for the hypothesis test, specified as a vector. $jbtest$ treats NaN values in $x$ as missing values and ignores them.

Data Types: single | double

**$alpha$ — Significance level**  
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as a scalar value in the range (0,1). If $alpha$ is in the range [0.001,0.50], and if the sample size is less than or equal to 2000, $jbtest$ looks up the critical value for the test in a table of precomputed values. To conduct the test at a significance level outside of these specifications, use $mctol$.

Example: 0.01

Data Types: single | double

**$mctol$ — Maximum Monte Carlo standard error**  
nonnegative scalar value
Maximum Monte Carlo standard error on page 32-3053 for the \( p \)-value, \( p \), specified as a nonnegative scalar value. If you specify a value for \( \text{mctol} \), \( \text{jbtest} \) computes a Monte Carlo approximation for \( p \) directly, rather than interpolating into a table of precomputed values. \( \text{jbtest} \) chooses the number of Monte Carlo replications large enough to make the Monte Carlo standard error for \( p \) less than \( \text{mctol} \).

If you specify a value for \( \text{mctol} \), you must also specify a value for \( \text{alpha} \). You can specify \( \text{alpha} \) as [ ] to use the default value of 0.05.

Example: \( 0.0001 \)

Data Types: \( \text{single} \) | \( \text{double} \)

**Output Arguments**

\( \text{h} \) — Hypothesis test result

1 | 0

Hypothesis test result, returned as 1 or 0.

- If \( h = 1 \), this indicates the rejection of the null hypothesis at the \( \text{alpha} \) significance level.
- If \( h = 0 \), this indicates a failure to reject the null hypothesis at the \( \text{alpha} \) significance level.

\( p \) — \( p \)-value

scalar value in the range (0,1)

\( p \)-value of the test, returned as a scalar value in the range (0,1). \( p \) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \( p \) cast doubt on the validity of the null hypothesis.

\( \text{jbtest} \) warns when \( p \) is not found within the tabulated range of \([0.001,0.50]\), and returns either the smallest or largest tabulated value. In this case, you can use \( \text{mctol} \) to compute a more accurate \( p \)-value.

\( \text{jbstat} \) — Test statistic

nonnegative scalar value

Test statistic for the Jarque-Bera test, returned as a nonnegative scalar value.
critval — Critical value
nonnegative scalar value

Critical value for the Jarque-Bera test at the alpha significance level, returned as a nonnegative scalar value. If alpha is in the range [0.001,0.50], and if the sample size is less than or equal to 2000, jbtest looks up the critical value for the test in a table of precomputed values. If you use mctol, jbtest determines the critical value of the test using a Monte Carlo simulation. The null hypothesis is rejected when jbstat > critval.

Definitions

Jarque-Bera Test

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a fully specified null distribution is unknown and its parameters must be estimated.

The test is specifically designed for alternatives in the Pearson system of distributions. The test statistic is

\[ JB = \frac{n}{6} \left( s^2 + \frac{(k-3)^2}{4} \right), \]

where \( n \) is the sample size, \( s \) is the sample skewness, and \( k \) is the sample kurtosis. For large sample sizes, the test statistic has a chi-square distribution with two degrees of freedom.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as

\[ SE = \sqrt{\frac{(\hat{p})(1-\hat{p})}{mcreps}}, \]
where \( \hat{p} \) is the estimated \( p \)-value of the hypothesis test, and \( mcreps \) is the number of Monte Carlo replications performed. \( jbtest \) chooses the number of Monte Carlo replications, \( mcreps \), large enough to make the Monte Carlo standard error for \( \hat{p} \) less than the value specified for \( mctol \).

**Algorithms**

Jarque-Bera tests often use the chi-square distribution to estimate critical values for large samples, deferring to the Lilliefors test (see \texttt{lillietest}) for small samples. \( jbtest \), by contrast, uses a table of critical values computed using Monte Carlo simulation for sample sizes less than 2000 and significance levels from 0.001 to 0.50. Critical values for a test are computed by interpolating into the table, using the analytic chi-square approximation only when extrapolating for larger sample sizes.

**References**


**See Also**

\texttt{adtest} | \texttt{ktest} | \texttt{lillietest}

**Introduced before R2006a**
johnsrnd

Johnson system random numbers

Syntax

\[ r = \text{johnsrnd}(\text{quantiles}, m, n) \]
\[ r = \text{johnsrnd}(\text{quantiles}) \]
\[ [r, \text{type}] = \text{johnsrnd}(...) \]
\[ [r, \text{type}, \text{coefs}] = \text{johnsrnd}(...) \]

Description

\[ r = \text{johnsrnd}(\text{quantiles}, m, n) \] returns an \( m \)-by-\( n \) matrix of random numbers drawn from the distribution in the Johnson system that satisfies the quantile specification given by \( \text{quantiles} \). \( \text{quantiles} \) is a four-element vector of quantiles for the desired distribution that correspond to the standard normal quantiles \([-1.5 -0.5 0.5 1.5]\). In other words, you specify a distribution from which to draw random values by designating quantiles that correspond to the cumulative probabilities \([0.067 0.309 0.691 0.933]\). \( \text{quantiles} \) may also be a 2-by-4 matrix whose first row contains four standard normal quantiles, and whose second row contains the corresponding quantiles of the desired distribution. The standard normal quantiles must be spaced evenly.

**Note** Because \( r \) is a random sample, its sample quantiles typically differ somewhat from the specified distribution quantiles.

\[ r = \text{johnsrnd}(\text{quantiles}) \] returns a scalar value.

\[ r = \text{johnsrnd}(\text{quantiles}, m, n, ...) \text{ or } r = \text{johnsrnd}(\text{quantiles}, [m, n, ...]) \] returns an \( m \)-by-\( n \)-by-... array.

\[ [r, \text{type}] = \text{johnsrnd}(...) \] returns the type of the specified distribution within the Johnson system. \( \text{type} \) is 'SN', 'SL', 'SB', or 'SU'. Set \( m \) and \( n \) to zero to identify the distribution type without generating any random values.
The four distribution types in the Johnson system correspond to the following transformations of a normal random variate:

- 'SN' — Identity transformation (normal distribution on page B-130)
- 'SL' — Exponential transformation (lognormal distribution on page B-95)
- 'SB' — Logistic transformation (bounded)
- 'SU' — Hyperbolic sine transformation (unbounded)

\[ [r, \text{type}, \text{coefs}] = \text{johnsrnd}(...) \] returns coefficients coefs of the transformation that defines the distribution. coefs is \([\gamma, \eta, \epsilon, \lambda]\). If \(z\) is a standard normal random variable and \(h\) is one of the transformations defined above, \(r = \lambda h((z-\gamma)/\eta) + \epsilon\) is a random variate from the distribution type corresponding to \(h\).

### Examples

#### Generate Random Samples Using the Johnson System

This example shows several different approaches to using the Johnson system of flexible distribution families to generate random numbers and fit a distribution to sample data.

Generate random values with longer tails than a standard normal.

```matlab
rng default; % For reproducibility
r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);
figure;
qqplot(r);
```
Generate random values skewed to the right.

```matlab
r = johnsrnd([-1.3 -.5 .5 1.7],1000,1);
figure;
qqplot(r);
```
Generate random values that match some sample data well in the right-hand tail.

load carbig;
qnorm = [.5 1 1.5 2];
q = quantile(Acceleration, normcdf(qnorm));
r = johnsrnd([qnorm;q],1000,1);
[q;quantile(r,normcdf(qnorm))]

ans = 2x4

16.7000  18.2086  19.5376  21.7263
16.6986  18.2220  19.9078  22.0918

Determine the distribution type and the coefficients.
[r, type, coefs] = johnsrnd([qnorm; q], 0)
r = 

    []
type = 'SU'
coefs = 1×4
    1.0920   0.5829  18.4382   1.4494

See Also
pearsrnd | random

Topics
“Generating Data Using Flexible Families of Distributions” on page 7-26

Introduced in R2006a
join

Class: dataset

Merge observations

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

C = join(A,B)
C = join(A,B,keys)
C = join(A,B,param1,val1,param2,val2,...)
[C,IB] = join(...)
C = join(A,B,'Type',TYPE,...)
C = join(A,B,'Type',TYPE,'MergeKeys',true,...)
[C,IA,IB] = join(A,B,'Type',TYPE,...)

Description

C = join(A,B) creates a dataset array C by merging observations from the two dataset arrays A and B. join performs the merge by first finding key variables, that is, pairs of dataset variables, one in A and one in B, that share the same name. Each observation in B must contain a unique combination of values in the key variables, and must contain all combinations of values that are present in the keys from A. join then uses these key variables to define a many-to-one correspondence between observations in A and those in B. join uses this correspondence to replicate the observations in B and combine them with the observations in A to create C.

C = join(A,B,keys) performs the merge using the variables specified by keys as the key variables in both A and B. keys is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

C contains one observation for each observation in A. Variables in C include all of the variables from A, as well as one variable corresponding to each variable in B (except for
the keys from B). If A and B contain variables with identical names, join adds the suffix '_left' and '_right' to the corresponding variables in C.

C = join(A,B,param1,val1,param2,val2,...) specifies optional parameter name/value pairs to control how the dataset variables in A and B are used in the merge. Parameters are:

- 'Keys' — Specifies the variables to use as keys in both A and B.
- 'LeftKeys' — Specifies the variables to use as keys in A.
- 'RightKeys' — Specifies the variables to use as keys in B.

You may provide either the 'Keys' parameter, or both the 'LeftKeys' and 'RightKeys' parameters. The value for these parameters is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. 'LeftKeys' or 'RightKeys' must both specify the same number of key variables, and join pairs the left and right keys in the order specified.

- 'LeftVars' — Specifies which variables from A to include in C. By default, join includes all variables from A.
- 'RightVars' — Specifies which variables from B to include in C. By default, join includes all variables from B except the key variables.

You can use 'LeftVars' or 'RightVars' to include or exclude key variables as well as data variables. The value for these parameters is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

[C,IB] = join(...) returns an index vector IB, where join constructs C by horizontally concatenating A(:,LeftVars) and B(IB,RightVars). join can also perform more complicated inner and outer join operations that allow a many-to-many correspondence between A and B, and allow unmatched observations in either A or B.

C = join(A,B,'Type',TYPE,...) performs the join operation specified by TYPE. TYPE is one of 'inner', 'leftouter', 'rightouter', 'fullouter', or 'outer' (which is a synonym for 'fullouter'). For an inner join, C only contains observations corresponding to a combination of key values that occurred in both A and B. For a left (or right) outer join, C also contains observations corresponding to keys in A (or B) that did not match any in B (or A). Variables in C taken from A (or B) contain null values in those observations. A full outer join is equivalent to a left and right outer join. C contains variables corresponding to the key variables from both A and B, and join sorts the observations in C by the key values.
For inner and outer joins, C contains variables corresponding to the key variables from both A and B by default, as well as all the remaining variables. join sorts the observations in the result C by the key values.

\[
C = \text{join}(A, B, \text{'Type'}, \text{'TYPE'}, \text{'MergeKeys'}, \text{true}, \ldots) \]

includes a single variable in C for each key variable pair from A and B, rather than including two separate variables. For outer joins, join creates the single variable by merging the key values from A and B, taking values from A where a corresponding observation exists in A, and from B otherwise. Setting the 'MergeKeys' parameter to true overrides inclusion or exclusion of any key variables specified via the 'LeftVars' or 'RightVars' parameter. Setting the 'MergeKeys' parameter to false is equivalent to not passing in the 'MergeKeys' parameter.

\[
[C, IA, IB] = \text{join}(A, B, \text{'Type'}, \text{'TYPE'}, \ldots) \]

returns index vectors IA and IB indicating the correspondence between observations in C and those in A and B. For an inner join, join constructs C by horizontally concatenating A(IA,LeftVars) and B(IB,RightVars). For an outer join, IA or IB may also contain zeros, indicating the observations in C that do not correspond to observations in A or B, respectively.

**Examples**

Create a dataset array from Fisher's iris data:

```matlab
load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs),'%-d'));
iris = dataset({nominal(species),'species'},...
 {meas,'SL','SW','PL','PW'},...
 'ObsNames',NameObs);
```

Create a separate dataset array with the diploid chromosome counts for each species of iris:

```matlab
snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =
 species cc
 setosa 38
 versicolor 108
 virginica 70
```
Broadcast the data in CC to the rows of iris using the key variable species in each dataset:

```matlab
iris2 = join(iris, CC);
iris2([1 2 51 52 101 102], :)
ans =
 species SL SW PL PW cc
 Obs1 setosa 5.1 3.5 1.4 0.2 38
 Obs2 setosa 4.9 3 1.4 0.2 38
 Obs51 versicolor 7 3.2 4.7 1.4 108
 Obs52 versicolor 6.4 3.2 4.5 1.5 108
 Obs101 virginica 6.3 3.3 6.0 2.5 70
 Obs102 virginica 5.8 2.7 5.1 1.9 70
```

Create two datasets and join them using the 'MergeKeys' flag:

```matlab
% Create two data sets that both contain the key variable
% 'Key1'. The two arrays contain observations with common
% values of Key1, but each array also contains observations
% with values of Key1 not present in the other.
a = dataset({'a' 'b' 'c' 'e' 'h'},[1 2 3 11 17],...
 'VarNames',{'Key1' 'Var1'})
b = dataset({'a' 'b' 'd' 'e'},[4 5 6 7],...
 'VarNames',{'Key1' 'Var2'})

% Combine a and b with an outer join, which matches up
% observations with common key values, but also retains
% observations whose key values don't have a match.
% Keep the key values as separate variables in the result.
couter = join(a,b,'key','Key1','Type','outer')

% Join a and b, merging the key values as a single variable
% in the result.
coutermerge = join(a,b,'key','Key1','Type','outer',...
 'MergeKeys',true)

% Join a and b, retaining only observations whose key
% values match.
cinner = join(a,b,'key','Key1','Type','inner',...
 'MergeKeys',true)
```

```matlab
a =

 Key1 Var1
 'a' 1
```
'b'	2
'c'	3
'e'	11
'h'	17

\[ b = \]

<table>
<thead>
<tr>
<th>Key1</th>
<th>Var2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>4</td>
</tr>
<tr>
<td>'b'</td>
<td>5</td>
</tr>
<tr>
<td>'d'</td>
<td>6</td>
</tr>
<tr>
<td>'e'</td>
<td>7</td>
</tr>
</tbody>
</table>

\[ couter = \]

<table>
<thead>
<tr>
<th>Key1_left</th>
<th>Var1</th>
<th>Key1_right</th>
<th>Var2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>1</td>
<td>'a'</td>
<td>4</td>
</tr>
<tr>
<td>'b'</td>
<td>2</td>
<td>'b'</td>
<td>5</td>
</tr>
<tr>
<td>'c'</td>
<td>3</td>
<td>''</td>
<td>NaN</td>
</tr>
<tr>
<td>''</td>
<td>NaN</td>
<td>'d'</td>
<td>6</td>
</tr>
<tr>
<td>'e'</td>
<td>11</td>
<td>'e'</td>
<td>7</td>
</tr>
<tr>
<td>'h'</td>
<td>17</td>
<td>''</td>
<td>NaN</td>
</tr>
</tbody>
</table>

\[ coutermerge = \]

<table>
<thead>
<tr>
<th>Key1</th>
<th>Var1</th>
<th>Var2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>'b'</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>'c'</td>
<td>3</td>
<td>NaN</td>
</tr>
<tr>
<td>'d'</td>
<td>NaN</td>
<td>6</td>
</tr>
<tr>
<td>'e'</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>'h'</td>
<td>17</td>
<td>NaN</td>
</tr>
</tbody>
</table>

\[ cinner = \]

<table>
<thead>
<tr>
<th>Key1</th>
<th>Var1</th>
<th>Var2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>'b'</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>'e'</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>
See Also

sortrows
**KDDtreeSearcher**

Create Kd-tree nearest neighbor searcher

**Description**

KDDtreeSearcher model objects store the results of a nearest neighbor search that uses the Kd-tree algorithm. Results include the training data, distance metric and its parameters, and maximum number of data points in each leaf node (that is, the bucket size). The Kd-tree algorithm partitions an n-by-K data set by recursively splitting n points in K-dimensional space into a binary tree.

Once you create a KDDtreeSearcher model object, you can search the stored tree to find all neighboring points to the query data by performing a nearest neighbor search using knnsearch or a radius search using rangesearch. The Kd-tree algorithm is more efficient than the exhaustive search algorithm when K is small (that is, K ≤ 10), the training and query sets are not sparse, and the training and query sets have many observations.

**Creation**

Use either the createns function or the KDDtreeSearcher function (described here) to create a KDDtreeSearcher model object. Both functions use the same syntax except that the createns function has the 'NSMethod' name-value pair argument, which you use to choose the nearest neighbor search method. The createns function also creates an ExhaustiveSearcher object. Specify 'NSMethod','kdtree' to create a KDDtreeSearcher object. The default is 'kdtree' if K ≤ 10, the training data is not sparse, and the distance metric is Euclidean, city block, Chebychev, or Minkowski.

**Syntax**

Mdl = KDDtreeSearcher(X)
Mdl = KDDtreeSearcher(X,Name,Value)
**Description**

Mdl = KDTreeSearcher(X) grows a default Kd-tree (Mdl) using the n-by-K numeric matrix of training data (X).

Mdl = KDTreeSearcher(X,Name,Value) specifies additional options using one or more name-value pair arguments. You can specify the maximum number of data points in each leaf node (that is, the bucket size) and the distance metric, and set the distance metric parameter (DistParameter) property. For example, KDTreeSearcher(X,'Distance','minkowski','BucketSize',10) specifies to use the Minkowski distance when searching for nearest neighbors and to use 10 for the bucket size. To specify DistParameter, use the P name-value pair argument.

**Input Arguments**

**X — Training data**

numeric matrix

Training data that grows the Kd-tree, specified as a numeric matrix. X has n rows, each corresponding to an observation (that is, an instance or example), and K columns, each corresponding to a predictor (that is, a feature).

Data Types: single | double

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Distance','minkowski','P',3,'BucketSize',10 specifies to use the following when searching for nearest neighbors: the Minkowski distance, 3 for the Minkowski distance metric exponent, and 10 for the bucket size.

**Distance — Distance metric**

'euclidean' (default) | 'chebychev' | 'cityblock' | 'minkowski'

Distance metric used when you call knnsearch orrangesearch to find nearest neighbors for future query points, specified as the comma-separated pair consisting of 'Distance' and one of these values.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
</tbody>
</table>

For more details, see “Distance Metrics” on page 18-16.

The software does not use the distance metric for creating a KDTreeSearcher model object, so you can alter the distance metric by using dot notation after creating the object.

Example: 'Distance','minkowski'

**P — Exponent for Minkowski distance metric**

2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',3

Data Types: single | double

**BucketSize — Maximum number of data points in each leaf node**

50 (default) | positive integer

Maximum number of data points in each leaf node of the Kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer.

Example: 'BucketSize',10

Data Types: single | double

**Properties**

**X — Training data**

numeric matrix
This property is read-only.

Training data that grows the Kd-tree, specified as a numeric matrix. \( X \) has \( n \) rows, each corresponding to an observation (that is, an instance or example), and \( K \) columns, each corresponding to a predictor (that is, a feature).

The input argument \( X \) of \texttt{createns} or \texttt{KDTreeSearcher} sets this property.

Data Types: \texttt{single} | \texttt{double}

**Distance — Distance metric**

\texttt{'chebychev'} | \texttt{'cityblock'} | \texttt{'minkowski'}

Distance metric used when you call \texttt{knnsearch} or \texttt{rangesearch} to find nearest neighbors for future query points, specified as \texttt{'chebychev'}, \texttt{'cityblock'}, \texttt{'euclidean'}, or \texttt{'minkowski'}.

The \texttt{'Distance'} name-value pair argument of \texttt{createns} or \texttt{KDTreeSearcher} sets this property.

The software does not use the distance metric for creating a \texttt{KDTreeSearcher} model object, so you can alter it by using dot notation.

**DistParameter — Distance metric parameter values**

\([]\) | positive scalar

Distance metric parameter values, specified as empty (\texttt{[]}) or a positive scalar.

If \texttt{Distance} is \texttt{'minkowski'}, then \texttt{DistParameter} is the exponent in the Minkowski distance formula. Otherwise, \texttt{DistParameter} is \texttt{[]}, indicating that the specified distance metric formula has no parameters.

The \texttt{'P'} name-value pair argument of \texttt{createns} or \texttt{KDTreeSearcher} sets this property.

You can alter \texttt{DistParameter} by using dot notation, for example, \texttt{Mdl.DistParameter = PNew}, where \texttt{PNew} is a positive scalar.

Data Types: \texttt{single} | \texttt{double}

**BucketSize — Maximum number of data points in each leaf node**

positive integer

This property is read-only.
Maximum number of data points in each leaf node of the Kd-tree, specified as a positive integer.

The 'BucketSize' name-value pair argument of createns or KDTreeSearcher sets this property.

Data Types: single | double

Object Functions

- knnsearch: Find k-nearest neighbors using object
- rangesearch: Find all neighbors within specified distance using object

Examples

Grow Default Kd-Tree

Grow a four-dimensional Kd-tree that uses the Euclidean distance.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
[n,k] = size(X)
```

```
n = 150
k = 4
```

X has 150 observations and 4 predictors.

Grow a four-dimensional Kd-tree using the entire data set as training data.

```matlab
Mdl1 = KDTreeSearcher(X)
```

```
Mdl1 =
KDTreeSearcher with properties:

 BucketSize: 50
 Distance: 'euclidean'
 DistParameter: []
```
Mdl1 is a KDTreeSearcher model object, and its properties appear in the Command Window. The object contains information about the grown four-dimensional Kd-tree, such as the distance metric. You can alter property values using dot notation.

Alternatively, you can grow a Kd-tree by using createns.

Mdl2 = createns(X)

Mdl2 =
KDTreeSearcher with properties:

    BucketSize: 50
    Distance: 'euclidean'
    DistParameter: []
    X: [150x4 double]

Mdl2 is also a KDTreeSearcher model object, and it is equivalent to Mdl1. Because X has four columns and the default distance metric is Euclidean, createns creates a KDTreeSearcher model by default.

To find the nearest neighbors in X to a batch of query data, pass the KDTreeSearcher model object and the query data to knnsearch or rangesearch.

Specify the Minkowski Distance for Nearest Neighbor Search

Load Fisher's iris data. Focus on the petal dimensions.

load fisheriris
X = meas(:,[3 4]); % Predictors

Grow a two-dimensional Kd-tree using createns and the training data. Specify the Minkowski distance metric.

Mdl = createns(X,'Distance','Minkowski')

Mdl =
KDTreeSearcher with properties:
Because \( X \) has two columns and the distance metric is Minkowski, \texttt{createns} creates a \texttt{KDTreeSearcher} model object by default.

Access properties of \texttt{Mdl} by using dot notation. For example, use \texttt{Mdl.DistParameter} to access the Minkowski distance exponent.

\texttt{Mdl.DistParameter}

\texttt{ans = 2}

You can pass query data and \texttt{Mdl} to:

- \texttt{knnsearch} to find indices and distances of nearest neighbors
- \texttt{rangesearch} to find indices of all nearest neighbors within a distance that you specify

**Alter Properties of \texttt{KDTreeSearcher} Model**

Create a \texttt{KDTreeSearcher} model object and alter the \texttt{Distance} property by using dot notation.

Load Fisher's iris data set.

\texttt{load fisheriris}

\texttt{X = meas;}

Grow a default four-dimensional \( Kd \)-tree using the entire data set as training data.

\texttt{Mdl = KDTreeSearcher(X)}

\texttt{Mdl =}

\texttt{KDTreeSearcher with properties:}

\begin{verbatim}
    BucketSize: 50
    Distance: 'euclidean'
    DistParameter: []
\end{verbatim}
Specify that the neighbor searcher use the Minkowski metric to compute the distances between the training and query data.

```matlab
Mdl.Distance = 'minkowski'
```

You can pass `Mdl` and the query data to either `knnsearch` or `rangesearch` to find the nearest neighbors to the points in the query data based on the Minkowski distance.

### Search for Nearest Neighbors of Query Data Using Minkowski Distance

Grow a Kd-tree nearest neighbor searcher object by using the `createns` function. Pass the object and query data to the `knnsearch` function to find $k$-nearest neighbors.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Remove five irises randomly from the predictor data to use as a query set.

```matlab
rng(1); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
tIdx = ~ismember(1:n,qIdx); % Indices of training data
Q = meas(qIdx,:);
X = meas(tIdx,:);
```

Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding nearest neighbors.

```matlab
Mdl = createns(X,'Distance','minkowski')
```
Md\(l = \)
\[\text{KDTreeSearcher with properties:}\]
  
  \[
  \begin{align*}
  \text{BucketSize} & : 50 \\
  \text{Distance} & : 'minkowski' \\
  \text{DistParameter} & : 2 \\
  \text{X: [145x4 double]}
  \end{align*}
\]

Because \(X\) has four columns and the distance metric is Minkowski, \texttt{createns} creates a \texttt{KDTreeSearcher} model object by default. The Minkowski distance exponent is 2 by default.

Find the indices of the training data (\(Mdl.X\)) that are the two nearest neighbors of each point in the query data (\(Q\)).

\[\text{IdxNN = knnsearch(Mdl,Q,'K',2)}\]

\[\text{IdxNN = 5x2}\]

\[
\begin{array}{rr}
  17 & 4 \\
  6 & 2 \\
  1 & 12 \\
  89 & 66 \\
  124 & 100 \\
\end{array}
\]

Each row of \(\text{IdxNN}\) corresponds to a query data observation, and the column order corresponds to the order of the nearest neighbors, with respect to ascending distance. For example, based on the Minkowski distance, the second nearest neighbor of \(Q(3,:)\) is \(X(12,:)\).

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations: The \texttt{knnsearch} and \texttt{rangesearch} functions support code generation.
For more information, see “Introduction to Code Generation” on page 31-2 and “Code Generation for Nearest Neighbor Searcher” on page 31-15.

See Also
ExhaustiveSearcher | createns

Topics
“k-Nearest Neighbor Search and Radius Search” on page 18-19
“Distance Metrics” on page 18-16

Introduced in R2010a
kfoldEdge

**Package:** classreg.learning.partition

Classification edge for cross-validated ECOC model

**Syntax**

```
edge = kfoldEdge(CVMdl)
dedge = kfoldEdge(CVMdl,Name,Value)
```

**Description**

`edge = kfoldEdge(CVMdl)` returns the classification edge on page 32-3083 obtained by the cross-validated ECOC model (`ClassificationPartitionedECOC`) `CVMdl`. For every fold, `kfoldEdge` computes the classification edge for validation-fold observations using an ECOC model trained on training-fold observations. `CVMdl.X` contains both sets of observations.

`edge = kfoldEdge(CVMdl,Name,Value)` returns the classification edge with additional options specified by one or more name-value pair arguments. For example, specify the number of folds, decoding scheme, or verbosity level.

**Examples**

**Estimate k-Fold Cross-Validation Edge**

Load Fisher's iris data set. Specify the predictor data `X`, the response data `Y`, and the order of the classes in `Y`.

```
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.

\[
t = \text{templateSVM}('\text{Standardize}',1);
\]

\[
\text{CVMdl} = \text{fitcecoc}(X,Y,'\text{CrossVal}','on','\text{Learners}',t,'\text{ClassNames}',\text{classOrder});
\]

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

Estimate the average of the edges.

\[
edge = \text{kfoldEdge}(\text{CVMdl})
\]

\[
edge = 0.4825
\]

Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual' in kfoldEdge.

### Display Individual Edges for Each Cross-Validation Fold

The classification edge is a relative measure of classifier quality. To determine which folds perform poorly, display the edges for each fold.

Load Fisher's iris data set. Specify the predictor data \(X\), the response data \(Y\), and the order of the classes in \(Y\).

\[
\text{load fisheriris}
\]

\[
X = \text{meas};
\]

\[
Y = \text{categorical}(	ext{species});
\]

\[
\text{classOrder} = \text{unique}(Y);
\]

\[
\text{rng}(1); \quad \% \text{For reproducibility}
\]

Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the predictors using an SVM template, and specify the class order.

\[
t = \text{templateSVM}('\text{Standardize}',1);
\]

\[
\text{CVMdl} = \text{fitcecoc}(X,Y,'\text{KFold}',8,'\text{Learners}',t,'\text{ClassNames}',\text{classOrder});
\]

Estimate the classification edge for each fold.
edges = kfoldEdge(CVMdl,'Mode','individual')
edges = 8×1
 0.4791
 0.4872
 0.4260
 0.5302
 0.5064
 0.4575
 0.4860
 0.4687

The edges have similar magnitudes across folds. Folds that perform poorly have small edges relative to the other folds.

To return the average classification edge across the folds that perform well, specify the 'Folds' name-value pair argument.

Select ECOC Model Features by Comparing Cross-Validation Edges

The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare cross-validation edges from multiple models. Based solely on this criterion, the classifier with the greatest edge is the best classifier.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Define the following two data sets.
- fullX contains all the predictors.
- partX contains the petal dimensions.

fullX = X;
partX = X(:,3:4);
For each predictor set, train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM template, and specify the class order.

\[
t = \text{templateSVM('Standardize',1)};
\]

\[
\text{CVMdl} = \text{fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...}
\]

\[
\quad '\text{ClassNames}',\text{classOrder});
\]

\[
\text{PCVMdl} = \text{fitcecoc(partX,Y,'CrossVal','on','Learners',t,...}
\]

\[
\quad '\text{ClassNames}',\text{classOrder});
\]

CVMdl and PCVMdl are \text{ClassificationPartitionedECOC} models. By default, the software implements 10-fold cross-validation.

Estimate the edge for each classifier.

\[
\text{fullEdge} = \text{kfoldEdge(CVMdl)}
\]

\[
\text{fullEdge} = 0.4825
\]

\[
\text{partEdge} = \text{kfoldEdge(PCVMdl)}
\]

\[
\text{partEdge} = 0.4951
\]

The two models have comparable edges.

**Input Arguments**

\text{CVMdl} — Cross-validated ECOC model

\text{ClassificationPartitionedECOC} model

Cross-validated ECOC model, specified as a \text{ClassificationPartitionedECOC} model. You can create a \text{ClassificationPartitionedECOC} model in two ways:

- Pass a trained ECOC model (\text{ClassificationECOC}) to \text{crossval}.
- Train an ECOC model using \text{fitcecoc} and specify any one of these cross-validation name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: kfoldEdge(CVMdl,'BinaryLoss','hinge') specifies 'hinge' as the binary learner loss function.

**BinaryLoss — Binary learner loss function**

'hamming'|'linear'|'logit'|'exponential'|'binodeviance'|'hinge'|'quadratic'|function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((\infty,\infty))</td>
<td>( \frac{\log[1 + \exp(-2y_j s_j)]}{2\log(2)} )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((\infty,\infty))</td>
<td>( \exp(-y_j s_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((\infty,\infty))</td>
<td>( \frac{1 - \text{sign}(y_j s_j)}{2} )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((\infty,\infty))</td>
<td>( \frac{\max(0,1 - y_j s_j)}{2} )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((\infty,\infty))</td>
<td>( 1 - y_j s_j/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((\infty,\infty))</td>
<td>( \frac{\log[1 + \exp(-y_j s_j)]}{2\log(2)} )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( \frac{1 - y_j (2s_j - 1)^2}{2} )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle 'BinaryLoss', @customFunction.

`customFunction` has this form:

\[
\text{bLoss} = \text{customFunction}(M,s)
\]

where:
• $\text{M}$ is the $K$-by-$L$ coding matrix stored in $\text{Mdl.CodingMatrix}$.
• $s$ is the 1-by-$L$ row vector of classification scores.
• $\text{bLoss}$ is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
• $K$ is the number of classes.
• $L$ is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

• SVMs or either linear or kernel classification models of SVM learners, then $\text{BinaryLoss}$ is 'hinge'
• Ensembles trained by $\text{AdaboostM1}$ or $\text{GentleBoost}$, then $\text{BinaryLoss}$ is 'exponential'
• Ensembles trained by $\text{LogitBoost}$, then $\text{BinaryLoss}$ is 'binodeviance'
• Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in $\text{fitcecoc}$), then $\text{BinaryLoss}$ is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the $\text{BinaryLoss}$ property of the trained model at the command line.

Example: 'BinaryLoss', 'binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding', 'lossbased'

Folds — Fold indices for prediction

1:CVMdl.KFold (default) | numeric vector of positive integers
Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

**Mode — Aggregation level for output**

'value' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length $k$ containing one value per fold, where $k$ is the number of folds.</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

**Options — Estimation options**

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options',statset('UseParallel',1).

**Verbose — Verbosity level**

0 (default) | 1
Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. `Verbose` controls the number of diagnostic messages that the software displays in the Command Window.

If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: `single` | `double`

### Output Arguments

**edge** — Classification edge

numeric scalar | numeric column vector

Classification edge on page 32-3083, returned as a numeric scalar or numeric column vector.

If `Mode` is 'average', then `edge` is the average classification edge over all folds. Otherwise, `edge` is a `k`-by-1 numeric column vector containing the classification edge for each fold, where `k` is the number of folds.

### Definitions

#### Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

#### Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.$$
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

## References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | ClassificationPartitionedECOC | edge | fitcecoc | kfoldMargin | kfoldPredict | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2014b
**kfoldEdge**

Classification edge for observations not used for training

**Syntax**

E = kfoldEdge(obj)
E = kfoldEdge(obj,Name,Value)

**Description**

E = kfoldEdge(obj) returns classification edge (average classification margin) obtained by cross-validated classification ensemble obj. For every fold, this method computes classification edge for in-fold observations using an ensemble trained on out-of-fold observations.

E = kfoldEdge(obj,Name,Value) calculates edge with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Input Arguments**

ens

Object of class ClassificationPartitionedEnsemble. Create ens with fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvsample'. Alternatively, create ens from a classification ensemble with crossval.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
folds
Indices of folds ranging from 1 to `ens.KFold`. Use only these folds for predictions.

Default: `1:ens.KFold`

mode
Character vector or string scalar representing the meaning of the output `edge`:

- 'average' — `edge` is a scalar value, the average over all folds.
- 'individual' — `edge` is a vector of length `ens.KFold` with one element per fold.
- 'cumulative' — `edge` is a vector of length `min(ens.NTrainedPerFold)` in which element J is obtained by averaging values across all folds for weak learners 1:J in each fold.

Default: 'average'

Output Arguments

E
The average classification margin. E is a scalar or vector, depending on the setting of the `mode` name-value pair.

Examples

Compute K-Fold Edge of Held-Out Observations

Compute the k-fold edge for an ensemble trained on the Fisher iris data.

Load the sample data set.

```matlab
load fisheriris
```

Train an ensemble of 100 boosted classification trees.

```matlab
t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Learners',t);
```
Create a cross-validated ensemble from `ens` and find the classification edge.

```matlab
rng(10,'twister') % For reproducibility
cvens = crossval(ens);
E = kfoldEdge(cvens)
E = 3.2066
```

**Definitions**

**Edge**

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in `obj.Prior`.

**Margin**

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix `obj.X`.

**Score (ensemble)**

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- `AdaBoostM1` scores range from $-\infty$ to $\infty$.
- `Bag` scores range from 0 to 1.

**See Also**

`crossval` | `kfoldLoss` | `kfoldMargin` | `kfoldPredict` | `kfoldfun`
kfoldEdge

Package: classreg.learning.partition

Classification edge for cross-validated kernel classification model

Syntax

edge = kfoldEdge(CVMdl)
edge = kfoldEdge(CVMdl,Name,Value)

Description

dedge = kfoldEdge(CVMdl) returns the classification edge on page 32-3094 obtained by the cross-validated, binary kernel model (ClassificationPartitionedKernel) CVMdl. For every fold, kfoldEdge computes the classification edge for validation-fold observations using a model trained on training-fold observations.

dedge = kfoldEdge(CVMdl,Name,Value) returns the classification edge with additional options specified by one or more name-value pair arguments. For example, specify the number of folds or the aggregation level.

Examples

Estimate k-Fold Cross-Validation Edge

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

CVMdl = fitckernel(X,Y,'Crossval','on')
CVMdl = classificationkernel
   ClassificationPartitionedKernel
   CrossValidatedModel: 'Kernel'
   ResponseName: 'Y'
   NumObservations: 351
   KFold: 10
   Partition: [1x1 cvpartition]
   ClassNames: {'b' 'g'}
   ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the cross-validated classification edge.

d = kfoldEdge(CVMdl)

d = 1.5585

Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual' in kfoldEdge.

Feature Selection Using k-Fold Edges

Perform feature selection by comparing k-fold edges from multiple models. Based solely on this criterion, the classifier with the greatest edge is the best classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Randomly choose half of the predictor variables.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));
Cross-validate two binary kernel classification models: one that uses all of the predictors, and one that uses half of the predictors.

\[
\text{CVMdl} = \text{fitckernel}(X,Y,\text{'}CrossVal\text{','on'}); \\
\text{PCVMdl} = \text{fitckernel}(X(:,\text{idxPart}),Y,\text{'}CrossVal\text{','on'});
\]

CVMdl and PCVMdl are ClassificationPartitionedKernel models. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the \( k \)-fold edge for each classifier.

\[
\text{fullEdge} = \text{kfoldEdge(CVMdl)} \\
\text{fullEdge} = 1.5142 \\
\text{partEdge} = \text{kfoldEdge(PCVMdl)} \\
\text{partEdge} = 1.8910
\]

Based on the \( k \)-fold edges, the classifier that uses half of the predictors is the better model.

### Input Arguments

- **CVMdl** — Cross-validated, binary kernel classification model
  
  ClassificationPartitionedKernel model object

  Cross-validated, binary kernel classification model, specified as a ClassificationPartitionedKernel model object. You can create a ClassificationPartitionedKernel model by using fitckernel and specifying any one of the cross-validation name-value pair arguments.

  To obtain estimates, kfoldEdge applies the same data used to cross-validate the kernel classification model (X and Y).

### Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: `kfoldEdge(CVMdl,'Mode','individual')` returns the classification edge for each fold.

**Folds — Fold indices for prediction**

1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

**Mode — Aggregation level for output**

'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length k containing one value per fold, where k is the number of folds.</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

**Output Arguments**

**edge — Classification edge**

numeric scalar | numeric column vector

32-3093
Classification edge on page 32-3094, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then edge is the average classification edge over all folds. Otherwise, edge is a \( k \)-by-1 numeric column vector containing the classification edge for each fold, where \( k \) is the number of folds.

**Definitions**

**Classification Edge**

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

**Classification Margin**

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[
m = 2yf(x).
\]

\( x \) is an observation. If the true label of \( x \) is the positive class, then \( y \) is 1, and -1 otherwise. \( f(x) \) is the positive-class classification score for the observation \( x \). The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

**Classification Score**

For kernel classification models, the raw classification score for classifying the observation \( x \), a row vector, into the positive class is defined by
\[ f(x) = T(x)\beta + b. \]

- \( T(\cdot) \) is a transformation of an observation for feature expansion.
- \( \beta \) is the estimated column vector of coefficients.
- \( b \) is the estimated scalar bias.

The raw classification score for classifying \( x \) into the negative class is \(-f(x)\). The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

**See Also**
ClassificationPartitionedKernel | fitckernel

**Introduced in R2018b**
kfoldEdge

**Package:** classreg.learning.partition

Classification edge for cross-validated kernel ECOC model

**Syntax**

\[
\text{edge} = \text{kfoldEdge}(\text{CVMdl})
\]

\[
\text{edge} = \text{kfoldEdge}(\text{CVMdl}, \text{Name}, \text{Value})
\]

**Description**

\[
\text{edge} = \text{kfoldEdge}(\text{CVMdl})\]

returns the classification edge on page 32-3102 obtained by the cross-validated kernel ECOC model (ClassificationPartitionedKernelECOC) \(\text{CVMdl}\). For every fold, \(\text{kfoldEdge}\) computes the classification edge for validation-fold observations using a model trained on training-fold observations.

\[
\text{edge} = \text{kfoldEdge}(\text{CVMdl}, \text{Name}, \text{Value})\]

returns the classification edge with additional options specified by one or more name-value pair arguments. For example, specify the number of folds, decoding scheme, or verbosity level.

**Examples**

**Estimate k-Fold Cross-Validation Edge**

Load Fisher's iris data set. \(X\) contains flower measurements, and \(Y\) contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```

Cross-validate an ECOC model composed of kernel binary learners.
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl =
    classreg.learning.partition.ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
    ResponseName: 'Y'
    NumObservations: 150
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the cross-validated classification edges.

edge = kfoldEdge(CVMdl)

edge = 0.4145

Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual' in kfoldEdge.

**Feature Selection Using k-Fold Edges**

Perform feature selection by comparing k-fold edges from multiple models. Based solely on this criterion, the classifier with the greatest edge is the best classifier.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.

load fisheriris
X = meas;
Y = species;

Randomly choose half of the predictor variables.
rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Cross-validate two ECOC models composed of kernel classification models: one that uses all of the predictors, and one that uses half of the predictors.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernelECOC models. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the k-fold edge for each classifier.

fullEdge = kfoldEdge(CVMdl)
fullEdge = 0.4092

partEdge = kfoldEdge(PCVMdl)
partEdge = 0.4161

Based on the k-fold edges, the two classifiers are comparable.

### Input Arguments

**CVMdl — Cross-validated kernel ECOC model**

ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC model using fitcecoc and specifying these name-value pair arguments:

- 'Learners'— Set the value to 'kernel', a template object returned by templateKernel, or a cell array of such template objects.
- One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

32-3098
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Example: kfoldEdge(CVMdl, 'BinaryLoss', 'hinge') specifies 'hinge' as the binary learner loss function.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1\}), \( s_j \) is the score for observation \( j \), and \( g(y_j, s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j, s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((\infty, \infty))</td>
<td>( \log[1 + \exp(-2y_j s_j)] / [2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((\infty, \infty))</td>
<td>( \exp(-y_j s_j) / 2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((\infty, \infty))</td>
<td>( [1 - \text{sign}(y_j s_j)] / 2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((\infty, \infty))</td>
<td>( \max(0, 1 - y_j s_j) / 2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((\infty, \infty))</td>
<td>( (1 - y_j s_j) / 2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((\infty, \infty))</td>
<td>( \log[1 + \exp(-y_j s_j)] / [2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( [1 - y_j (2s_j - 1)]^2 / 2 )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, customFunction, specify its function handle 'BinaryLoss', @customFunction.

customFunction has this form:
\( bLoss = \text{customFunction}(M,s) \)

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in \( \text{Mdl.CodingMatrix} \).
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then \( \text{BinaryLoss} \) is 'hinge'. If all binary learners are kernel classification models using logistic regression, then \( \text{BinaryLoss} \) is 'quadratic'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

**Decoding — Decoding scheme**

- 'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-3102.

Example: 'Decoding','lossbased'

**Folds — Fold indices for prediction**

- 1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

**Mode — Aggregation level for output**

- 'average' (default) | 'individual'

32-3100
Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length $k$ containing one value per fold, where $k$ is the number of folds.</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

**Options — Estimation options**

Options (default) | [structure array returned by statset]

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options',statset('UseParallel',1).

**Verbose — Verbosity level**

(0 (default) | 1)

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. 
Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: single | double

32-3101
Output Arguments

edge — Classification edge
numeric scalar | numeric column vector

Classification edge on page 32-3102, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then edge is the average classification edge over all folds. Otherwise, edge is a k-by-1 numeric column vector containing the classification edge for each fold, where k is the number of folds.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j, s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
</tbody>
</table>
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

References


See Also

ClassificationPartitionedKernelECOC | fitcecoc

Introduced in R2018b
kfoldEdge

Classification edge for observations not used for training

Syntax

e = kfoldEdge(CVMdl)
e = kfoldEdge(CVMdl,Name,Value)

Description

e = kfoldEdge(CVMdl) returns the cross-validated classification edges on page 32-3112 obtained by the cross-validated, binary, linear classification model CVMdl. That is, for every fold, kfoldEdge estimates the classification edge for observations that it holds out when it trains using all other observations.

e contains a classification edge for each regularization strength in the linear classification models that comprise CVMdl.

e = kfoldEdge(CVMdl,Name,Value) uses additional options specified by one or more Name,Value pair arguments. For example, indicate which folds to use for the edge calculation.

Input Arguments

CVMdl — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a ClassificationPartitionedLinear model object. You can create a ClassificationPartitionedLinear model using fitclinear and specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldEdge applies the same data used to cross-validate the linear classification model (X and Y).
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Folds — Fold indices to use for classification-score prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1 through CVMdl.KFold.

Example: 'Folds',[1 4 10]
Data Types: single | double

Mode — Edge aggregation level
'average' (default) | 'individual'

Edge aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Returns classification edges averaged over all folds</td>
</tr>
<tr>
<td>'individual'</td>
<td>Returns classification edges for each fold</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

Output Arguments

e — Cross-validated classification edges
numeric scalar | numeric vector | numeric matrix

Cross-validated classification edges on page 32-3112, returned as a numeric scalar, vector, or matrix.
Let \( L \) be the number of regularization strengths in the cross-validated models (that is, \( L \) is \text{numel}(CVMdl.Trained{1}.Lambda)) and \( F \) be the number of folds (stored in CVMdl.KFold).

- If Mode is 'average', then \( e \) is a 1-by-\( L \) vector. \( e(j) \) is the average classification edge over all folds of the cross-validated model that uses regularization strength \( j \).
- Otherwise, \( e \) is an \( F \)-by-\( L \) matrix. \( e(i,j) \) is the classification edge for fold \( i \) of the cross-validated model that uses regularization strength \( j \).

To estimate \( e \), \text{kfoldEdge} uses the data that created CVMdl (see \( X \) and \( Y \)).

### Examples

**Estimate k-Fold Cross-Validation Edge**

Load the NLP data set.

```matlab
load nlpdata
```

\( X \) is a sparse matrix of predictor data, and \( Y \) is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

```matlab
Ystats = Y == 'stats';
```

Cross-validate a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

```matlab
rng(1); % For reproducibility
cvmdl = fitclinear(X,Ystats,'CrossVal','on');
```

\( CVMdl \) is a \text{ClassificationPartitionedLinear} \ model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the out-of-fold edges.
e = kfoldEdge(CVMdl)
e = 8.1243

Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual' in kfoldEdge.

**Feature Selection Using k-fold Edges**

One way to perform feature selection is to compare k-fold edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Edge” on page 32-3107.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create these two data sets:
- **fullX** contains all predictors.
- **partX** contains 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Cross-validate two binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that observations correspond to columns.

CVMdl = fitclinear(fullX,Ystats,'CrossVal','on','Solver','sparsa',...
'ObservationsIn','columns');
PCVMdl = fitclinear(partX,Ystats,'CrossVal','on','Solver','sparsa',...
'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Estimate the k-fold edge for each classifier.
fullEdge = kfoldEdge(CVMdl)
fullEdge = 16.5629

partEdge = kfoldEdge(PCVMdl)
partEdge = 13.9030

Based on the \( k \)-fold edges, the classifier that uses all of the predictors is the better model.

**Find Good Lasso Penalty Using \( k \)-fold Edge**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare \( k \)-fold edges.

Load the NLP data set. Preprocess the data as in “Estimate \( k \)-Fold Cross-Validation Edge” on page 32-3107.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from \( 10^{-8} \) through \( 10^1 \).

Lambda = logspace(-8,1,11);

Cross-validate a binary, linear classification model using 5-fold cross-validation and that uses each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to \( 1 \times 10^{-8} \).

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl =
    classreg.learning.partition.ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
    ResponseName: 'Y'
    NumObservations: 31572
    KFold: 5
    Partition: [1x1 cvpartition]
ClassNames: [0 1]
ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each fold.

Estimate the edges for each fold and regularization strength.

eFolds = kfoldEdge(CVMdl,'Mode','individual')
eFolds = 5×11

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9958</td>
<td>0.9958</td>
<td>0.9958</td>
<td>0.9958</td>
<td>0.9958</td>
<td>0.9925</td>
<td>0.9766</td>
<td>0.9131</td>
<td>0.8127</td>
<td>0.8127</td>
</tr>
<tr>
<td>0.9991</td>
<td>0.9991</td>
<td>0.9991</td>
<td>0.9991</td>
<td>0.9991</td>
<td>0.9939</td>
<td>0.9780</td>
<td>0.9141</td>
<td>0.8128</td>
<td>0.8128</td>
</tr>
<tr>
<td>0.9992</td>
<td>0.9992</td>
<td>0.9992</td>
<td>0.9992</td>
<td>0.9992</td>
<td>0.9942</td>
<td>0.9782</td>
<td>0.9149</td>
<td>0.8128</td>
<td>0.8128</td>
</tr>
<tr>
<td>0.9974</td>
<td>0.9974</td>
<td>0.9974</td>
<td>0.9974</td>
<td>0.9974</td>
<td>0.9931</td>
<td>0.9773</td>
<td>0.9171</td>
<td>0.8128</td>
<td>0.8128</td>
</tr>
<tr>
<td>0.9977</td>
<td>0.9977</td>
<td>0.9977</td>
<td>0.9977</td>
<td>0.9977</td>
<td>0.9942</td>
<td>0.9782</td>
<td>0.9110</td>
<td>0.8127</td>
<td>0.8127</td>
</tr>
</tbody>
</table>

eFolds is a 5-by-11 matrix of edges. Rows correspond to folds and columns correspond to regularization strengths in Lambda. You can use eFolds to identify ill-performing folds, that is, unusually low edges.

Estimate the average edge over all folds for each regularization strength.

e = kfoldEdge(CVMdl)
e = 1×11

| 0.9978 | 0.9978 | 0.9978 | 0.9978 | 0.9978 | 0.9936 | 0.9777 | 0.9140 | 0.8128 |

Determine how well the models generalize by plotting the averages of the 5-fold edge for each regularization strength. Identify the regularization strength that maximizes the 5-fold edge over the grid.

```matlab
figure;
plot(log10(Lambda),log10(e),'-o')
[~, maxEIdx] = max(e);
maxLambda = Lambda(maxEIdx);
```
Several values of Lambda yield similarly high edges. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

LambdaFinal = Lambda(5);
Train a linear classification model using the entire data set and specify the regularization strength $\text{LambdaFinal}$.

$$\text{MdlFinal} = \text{fitclinear}(X,Y_{\text{stats}},'\text{ObservationsIn}','\text{columns}',...$$

'\text{Learner}','\text{logistic}','\text{Solver}','\text{sparsa}','\text{Regularization}','\text{lasso}',...$

'\text{Lambda}',\text{LambdaFinal});$

To estimate labels for new observations, pass $\text{MdlFinal}$ and the new data to $\text{predict}$.

**Definitions**

**Classification Edge**

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.

**Classification Margin**

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

$x$ is an observation. If the true label of $x$ is the positive class, then $y$ is 1, and -1 otherwise. $f(x)$ is the positive-class classification score for the observation $x$. The classification margin is commonly defined as $m = yf(x)$.

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
**Classification Score**

For linear classification models, the raw classification score for classifying the observation \(x\), a row vector, into the positive class is defined by

\[
f_j(x) = x\beta_j + b_j.
\]

For the model with regularization strength \(j\), \(\beta_j\) is the estimated column vector of coefficients (the model property \(\text{Beta}(\cdot,j)\)) and \(b_j\) is the estimated, scalar bias (the model property \(\text{Bias}(j)\)).

The raw classification score for classifying \(x\) into the negative class is \(-f(x)\). The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

**See Also**

ClassificationLinear | ClassificationPartitionedLinear | edge | kfoldMargin | kfoldPredict

**Introduced in R2016a**
**kfoldEdge**

Classification edge for observations not used for training

**Syntax**

```matlab
e = kfoldEdge(CVMdl)
e = kfoldEdge(CVMdl,Name,Value)
```

**Description**

`e = kfoldEdge(CVMdl)` returns the cross-validated classification edges obtained by the cross-validated, error-correcting output codes (ECOC) model composed of linear classification models `CVMdl`. That is, for every fold, `kfoldEdge` estimates the classification edge for observations that it holds out when it trains using all other observations.

`e` contains a classification edge for each regularization strength in the linear classification models that comprise `CVMdl`.

`e = kfoldEdge(CVMdl,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, specify a decoding scheme, which folds to use for the edge calculation, or verbosity level.

**Input Arguments**

- **CVMdl** — Cross-validated, ECOC model composed of linear classification models
  
  ClassificationPartitionedLinearECOC model object

  Cross-validated, ECOC model composed of linear classification models, specified as a `ClassificationPartitionedLinearECOC` model object. You can create a `ClassificationPartitionedLinearECOC` model object using `fitcecoc` and by:

  1. Specifying any one of the cross-validation, name-value pair arguments, for example, `CrossVal`
2 Setting the name-value pair argument `Learners` to 'linear' or a linear
classification model template returned by `templateLinear`

To obtain estimates, `kfoldEdge` applies the same data used to cross-validate the ECOC
model (X and Y).

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the
argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
You can specify several name and value pair arguments in any order as
`Name1,Value1,...,NameN,ValueN`.

**BinaryLoss — Binary learner loss function**

- 'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a built-in, loss-function name or function handle.

- This table contains names and descriptions of the built-in functions, where `y_j` is a class
  label for a particular binary learner (in the set {1,1,0}), `s_j` is the score for observation
  `j`, and `g(y_j,s_j)` is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th><code>g(y_j,s_j)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)]/\log(2)$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1] \text{ or } (-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y Js_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>max(0,1 - $y-js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y Js_j)]/\log(2)$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes the binary losses such that the loss is 0.5 when $y_j = 0$. Also,
the software calculates the mean binary loss for each class.
• For a custom binary loss function, e.g., `customFunction`, specify its function handle 
  `'BinaryLoss','@customFunction'`.

`customFunction` should have this form

```matlab
bLoss = customFunction(M,s)
```

where:

• `M` is the `K`-by-`L` coding matrix stored in `Mdl.CodingMatrix`.
• `s` is the 1-by-`L` row vector of classification scores.
• `bLoss` is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
• `K` is the number of classes.
• `L` is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are linear classification models using:

• SVM, then `BinaryLoss` is 'hinge'
• Logistic regression, then `BinaryLoss` is 'quadratic'

Example: 'BinaryLoss','binodeviance'

Data Types: `char` | `string` | `function_handle`

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of `'Decoding'` and `'lossweighted'` or `'lossbased'`. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

**Folds — Fold indices to use for classification-score prediction**

1:CVMdl.KFold (default) | numeric vector of positive integers
Fold indices to use for classification-score prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1 through CVMdl.KFold.

Example: 'Folds',[1 4 10]

Data Types: single | double

Mode — Edge aggregation level

'average' (default) | 'individual'

Edge aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Returns classification edges averaged over all folds</td>
</tr>
<tr>
<td>'individual'</td>
<td>Returns classification edges for each fold</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

Options — Estimation options

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options',statset('UseParallel',1).

Verbose — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbosity controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments

**e — Cross-validated classification edges**
numeric scalar | numeric vector | numeric matrix

Cross-validated classification edges on page 32-3124, returned as a numeric scalar, vector, or matrix.

Let \( L \) be the number of regularization strengths in the cross-validated models (that is, \( L \) is \( \text{numel}(\text{CVMdl.Trained{1}.BinaryLearners{1}.Lambda}) \)) and \( F \) be the number of folds (stored in \( \text{CVMdl.KFold} \)).

- If \( \text{Mode} \) is 'average', then \( e \) is a 1-by-\( L \) vector. \( e(j) \) is the average classification edge over all folds of the cross-validated model that uses regularization strength \( j \).
- Otherwise, \( e \) is a \( F \)-by-\( L \) matrix. \( e(i,j) \) is the classification edge for fold \( i \) of the cross-validated model that uses regularization strength \( j \).

Examples

**Estimate k-Fold Cross-Validation Edge**

Load the NLP data set.

```matlab
load nlpdata
```

\( X \) is a sparse matrix of predictor data, and \( Y \) is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in \( Y \) that are not 'simulink', 'dsp', or 'comm'.

```matlab
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
```

Cross-validate a multiclass, linear classification model.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');
```
CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the out-of-fold edges.

\[ e = \text{kfoldEdge(CVMdl)} \]

\[ e = 0.7232 \]

Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual' in kfoldEdge.

**Feature Selection Using k-fold Edges**

One way to perform feature selection is to compare k-fold edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Edge” on page 32-3118, and orient the predictor data so that observations correspond to columns.

\[ \text{load nlpdata} \]
\[ Y(~(\text{ismember}(Y,\{\text{simulink}',\text{dsp}',\text{comm}'\}))) = '\text{others}'; \]
\[ X = X'; \]

Create these two data sets:

- fullX contains all predictors.
- partX contains a 1/2 of the predictors chosen at random.

\[ \text{rng(1); % For reproducibility} \]
\[ p = \text{size}(X,1); % Number of predictors} \]
\[ \text{halfPredIdx = randsample}(p,\text{ceil}(0.5*p)); \]
\[ \text{fullX} = X; \]
\[ \text{partX} = X(\text{halfPredIdx},:); \]

Create a linear classification model template that specifies to optimize the objective function using SpaRSA.

\[ t = \text{templateLinear('Solver','sparsa');} \]
Cross-validate two ECOC models composed of binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Indicate that observations correspond to columns.

```matlab
CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',...
 'ObservationsIn','columns');
PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',...
 'ObservationsIn','columns');
```

CVMdl and PCVMdl are `ClassificationPartitionedLinearECOC` models.

Estimate the $k$-fold edge for each classifier.

```matlab
fullEdge = kfoldEdge(CVMdl)
fullEdge = 0.3090
partEdge = kfoldEdge(PCVMdl)
partEdge = 0.2617
```

Based on the $k$-fold edges, the classifier that uses all of the predictors is the better model.

**Find Good Lasso Penalty Using $k$-fold Edge**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare $k$-fold edges.

Load the NLP data set. Preprocess the data as in “Feature Selection Using $k$-fold Edges” on page 32-3119.

```matlab
load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';
```

Create a set of 8 logarithmically-spaced regularization strengths from $10^{-8}$ through $10^1$.

```matlab
Lambda = logspace(-8,1,8);
```

Create a linear classification model template that specifies to use logistic regression with a lasso penalty, use each of the regularization strengths, optimize the objective function using SpaRSA, and reduce the tolerance on the gradient of the objective function to $1e-8$. 

```matlab
Cross-validate an ECOC model composed of binary, linear classification models using 5-fold cross-validation and that

 rng(10); % For reproducibility
 CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5)

 CVMdl is a ClassificationPartitionedLinearECOC model.

 Estimate the edges for each fold and regularization strength.

eFolds = kfoldEdge(CVMdl,'Mode','individual')

 eFolds is a 5-by-8 matrix of edges. Rows correspond to folds and columns correspond to regularization strengths in Lambda. You can use eFolds to identify ill-performing folds, that is, unusually low edges.

 Estimate the average edge over all folds for each regularization strength.

e = kfoldEdge(CVMdl)

 Determine how well the models generalize by plotting the averages of the 5-fold edge for each regularization strength. Identify the regularization strength that maximizes the 5-fold edge over the grid.

 figure;
 plot(log10(Lambda),log10(e),'-o')
 [~, maxEIdx] = max(e);
 maxLambda = Lambda(maxEIdx);
Several values of \texttt{Lambda} yield similarly high edges. Greater regularization strength values lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

\texttt{LambdaFinal = Lambda(4);}
Train an ECOC model composed of linear classification model using the entire data set and specify the regularization strength LambdaFinal.

```matlab
    t = templateLinear('Learner','logistic','Solver','sparsa',...
                      'Regularization','lasso','Lambda',LambdaFinal,'GradientTolerance',1e-8);
    MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');
```

To estimate labels for new observations, pass `MdlFinal` and the new data to `predict`.

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- m_{kj} is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
- s_j is the score of binary learner j for an observation.
- g is the binary loss function.
- \hat{k} is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where y_j is a class label for a particular binary learner (in the set $\{-1,1,0\}$), s_j is the score for observation j, and $g(y_j, s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/\log(2)$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/\log(2)$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j (2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

References

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.
See Also
ClassificationECOC | ClassificationLinear |
ClassificationPartitionedLinearECOC | edge | fitcecoc | kfoldMargin |
kfoldPredict | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2016a
kfoldEdge

Classification edge for observations not used for training

Syntax

E = kfoldEdge(obj)
E = kfoldEdge(obj,Name,Value)

Description

E = kfoldEdge(obj) returns classification edge (average classification margin) obtained by cross-validated classification model obj. For every fold, this method computes classification edge for in-fold observations using an ensemble trained on out-of-fold observations.

E = kfoldEdge(obj,Name,Value) calculates edge with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

obj

Object of class ClassificationPartitionedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
folds
Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.

Default: 1:obj.KFold

mode
Character vector or string scalar representing the meaning of the output edge:

- 'average' — edge is a scalar value, the average over all folds.
- 'individual' — edge is a vector of length obj.KFold with one element per fold.

Default: 'average'

Output Arguments

E
The average classification margin. E is a scalar or vector, depending on the setting of the mode name-value pair.

Examples

Estimate the k-fold Edge of a Classifier

Compute the k-fold edge for a model trained on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train a classification tree classifier.

tree = fitctree(meas,species);

Cross validate the classifier using 10-fold cross validation.

cvtree = crossval(tree);
Compute the k-fold edge.

```matlab
e = kfoldEdge(cvtree)
e = 0.8578
```

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class prior probabilities. If you supply additional weights, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when $X < 0.15$ or $X > 0.95$, and X is false otherwise.

Generate 100 random points and classify them:
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')

Prune the tree:

treel = prune(tree,'Level',1);
view(treel,'Mode','Graph')
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85 = .06 for true, and about .8/.85 = .94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
 [~, score] = predict(tree1, X(1:10));
 [score X(1:10,:)]
```
Indeed, every value of \(X \) (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of \(X \) have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in \(X \) in the range \((.95,1)\) instead of the expected 5 observations.

See Also

ClassificationPartitionedEnsemble | ClassificationPartitionedModel | crossval | kfoldLoss | kfoldMargin | kfoldPredict | kfoldfun
kfoldfun

Package: classreg.learning.partition

Cross-validate function using cross-validated ECOC model

Syntax

vals = kfoldfun(CVMdl,fun)

Description

vals = kfoldfun(CVMdl,fun) cross-validates the function fun by applying fun to the data stored in the cross-validated ECOC model CVMdl. You must pass fun as a function handle.

Examples

Estimate Classification Error Using Custom Loss Function

Train a multiclass ECOC classifier, and then cross-validate the model using a custom k-fold loss function.

Load Fisher’s iris data set. Specify the predictor data X, the response data Y, and the order of the classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,...
 'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross-validation.

Compute the classification error (proportion of misclassified observations) for the
validation-fold observations.

L = kfoldLoss(CVMdl)

L = 0.0400

Examine the result when the cost of misclassifying a flower as versicolor is 10 and the
cost of any other error is 1. Write a function named noversicolor that assigns a cost of
1 for general misclassification and a cost of 10 for misclassifying a flower as
versicolor.

If you use the live script file for this example, the noversicolor function is already
included at the end of the file. Otherwise, you need to create this function at the end of
your .m file or add it as a file on the MATLAB path.

Compute the mean misclassification error with the noversicolor cost.

foldLoss = kfoldfun(CVMdl,@noversicolor);
mean(foldLoss)

ans = 0.0667

This code creates the function noversicolor.

```matlab
function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
% noversicolor: Example custom cross-validation function that assigns a cost of
% 10 for misclassifying versicolor irises and a cost of 1 for misclassifying
% the other irises. This example function requires the fisheriris data
% set.
Ypredict = predict(CMP,Xtest);
misclassified = not(strcmp(Ypredict,Ytest)); % Different result
classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions
cost = sum(misclassified) + ...
    9*sum(misclassified & classifiedAsVersicolor); % Total differences
averageCost = single(cost/numel(Ytest)); % Average error
end
```
Input Arguments

CVMdl — Cross-validated ECOC model

ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a `ClassificationPartitionedECOC` model.

fun — Cross-validated function

function handle

Cross-validated function, specified as a function handle. `fun` has this syntax:

```
vals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
```

- **CMP** is a compact model stored in one element of the `CVMdl.Trained` property.
- **Xtrain** is the training matrix of predictor values.
- **Ytrain** is the training array of response values.
- **Wtrain** is the set of training weights for observations.
- **Xtest** and **Ytest** are the validation data, with associated weights **Wtest**.
- The returned value **testvals** must have the same size across all folds.

Data Types: `function_handle`

Output Arguments

vals — Cross-validation results

numeric matrix

Cross-validation results, returned as a numeric matrix. `vals` corresponds to the arrays of the `testvals` output, concatenated vertically over all the folds. For example, if `testvals` from every fold is a numeric vector of length `n`, `kfoldfun` returns a KFold-by-`n` numeric matrix with one row per fold.

See Also

`ClassificationECOC` | `ClassificationPartitionedECOC` | `crossval` | `fitcecoc` | `kfoldEdge` | `kfoldLoss` | `kfoldMargin` | `kfoldPredict`
Introduced in R2014b
kfoldfun

Cross validate function

Syntax

vals = kfoldfun(CVMdl,fun)

Description

vals = kfoldfun(CVMdl,fun) cross validates the function fun by applying fun to the data stored in the cross-validated model CVMdl. You must pass fun as a function handle.

Input Arguments

CVMdl — Cross-validated model
ClassificationPartitionedECOC model | ClassificationPartitionedEnsemble model | ClassificationPartitionedModel model

Cross-validated model, specified as a ClassificationPartitionedECOC model, ClassificationPartitionedEnsemble model, or a ClassificationPartitionedModel model.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has the syntax
testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

- CMP is a compact model stored in one element of the CVMdl.Trained property.
- Xtrain is the training matrix of predictor values.
- Ytrain is the training array of response values.
- Wtrain are the training weights for observations.
• Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals needs the same size across all folds.

Data Types: function_handle

Output Arguments

crossval
vals — Cross-validation results
numeric matrix

Cross-validation results, returned as an numeric matrix. vals is the arrays of testvals output, concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector of length N, kfoldfun returns a KFold-by-N numeric matrix with one row per fold.

Data Types: double

Examples

Estimate Classification Error Using a Custom Loss Function

Train a classification tree classifier, and then cross validate it using a custom k-fold loss function.

Load Fisher’s iris data set.

load fisheriris

Train a classification tree classifier.

Mdl = fitctree(meas,species);

Mdl is a ClassificationTree model.

Cross validate Mdl using the default 10-fold cross validation. Compute the classification error (proportion of misclassified observations) for the out-of-fold observations.

rng(1); % For reproducibility
CVMdl = crossval(Mdl);
L = kfoldLoss(CVMdl)
Examine the result when the cost of misclassifying a flower as 'versicolor' is 10, and any other error is 1. Write a function called `noversicolor.m` that attributes a cost of 1 for misclassification, but 10 for misclassifying a flower as versicolor, and save it on your MATLAB path.

```matlab
function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
    %noversicolor Example custom cross-validation function
    % Attributes a cost of 10 for misclassifying versicolor irises, and 1 for the other irises. This example function requires the |fisheriris| data set.
    Ypredict = predict(CMP,Xtest);
    misclassified = not(strcmp(Ypredict,Ytest)); % Different result
    classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions
    cost = sum(misclassified) + ...
           9*sum(misclassified & classifiedAsVersicolor); % Total differences
    averageCost = cost/numel(Ytest); % Average error
end
```

Compute the mean misclassification error with the `noversicolor` cost.

```matlab
mean(kfoldfun(CVMdl,@noversicolor))
```

```matlab
ans =
```

```matlab
0.2267
```

See Also

- `ClassificationPartitionedECOC` | `ClassificationPartitionedModel` |
- `crossval` | `crossval` | `kfoldEdge` | `kfoldLoss` | `kfoldMargin` | `kfoldPredict`
kfoldfun

Cross validate function

Syntax

vals = kfoldfun(obj,fun)

Description

vals = kfoldfun(obj,fun) cross validates the function fun by applying fun to the
data stored in the cross-validated model obj. You must pass fun as a function handle.

Input Arguments

obj

Object of class RegressionPartitionedModel or
RegressionPartitionedEnsemble. Create obj with fitrtree or fitrensemble
along with one of the cross-validation options: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'. Alternatively, create obj from a regression tree or
regression ensemble with crossval.

fun

A function handle for a cross-validation function. fun has the syntax
testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

- CMP is a compact model stored in one element of the obj.Trained property.
- Xtrain is the training matrix of predictor values.
- Ytrain is the training array of response values.
- Wtrain is the training array of response values.
- Wtrain are the training weights for observations.
- Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals must have the same size across all folds.

Output Arguments

vals

The arrays of testvals output, concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector of length N, kfoldfun returns a KFold-by-N numeric matrix with one row per fold.

Examples

Cross validate a regression tree, and obtain the mean squared error (see kfoldLoss):

load imports-85
t = fitrtree(X(:,[4 5]),X(:,16),...
 'predictornames',{'length' 'width'},...
 'responsename','price');
cv = crossval(t);
L = kfoldLoss(cv)

L =
 1.5489e+007

Examine the result of simple averaging of responses instead of using predictions:

f = @(cmp,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)...
 mean((Ytest-mean(Ytrain)).^2)
 mean(kfoldfun(cv,f))

ans =
 6.3497e+007

See Also

RegressionPartitionedEnsemble | RegressionPartitionedModel | crossval | fitrtree | kfoldLoss | kfoldPredict
kfoldLoss

Package: classreg.learning.partition

Classification loss for cross-validated ECOC model

Syntax

```latex
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)
```

Description

```latex
loss = kfoldLoss(CVMdl) returns the classification loss obtained by the cross-validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold, kfoldLoss computes the classification loss for validation-fold observations using a model trained on training-fold observations. CVMdl.X contains both sets of observations.

loss = kfoldLoss(CVMdl,Name,Value) returns the classification loss with additional options specified by one or more name-value pair arguments. For example, specify the number of folds, decoding scheme, or verbosity level.
```

Examples

Determine k-Fold Cross-Validation Loss

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the classes in Y.

```latex
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility
```
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictors using an SVM template, and specify the class order.

```matlab
T = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
```

`CVMdl` is a ClassificationPartitionedECOC model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

Estimate the average classification error.

```matlab
L = kfoldLoss(CVMdl)
```

```matlab
L = 0.0400
```

The average classification error for the folds is 4%.

Alternatively, you can obtain the per-fold losses by specifying the name-value pair 'Mode','individual' in `kfoldLoss`.

Display Individual Losses for Each Cross-Validation Fold

The classification loss is a measure of classifier quality. To determine which folds perform poorly, display the losses for each fold.

Load Fisher's iris data set. Specify the predictor data `X`, the response data `Y`, and the order of the classes in `Y`.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```

Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the predictors using an SVM template, and specify the class order.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);
```

Estimate the average classification loss across all folds and the losses for each fold.
loss = kfoldLoss(CVMdl)
loss = 0.0333
losses = kfoldLoss(CVMdl,'Mode','individual')
losses = 8×1
 0.0556
 0.0526
 0.1579
 0
 0
 0
 0
 0
The third fold misclassifies a much higher percentage of observations than any other fold.

Return the average classification loss for the folds that perform well by specifying the 'Folds' name-value pair argument.
newloss = kfoldLoss(CVMdl,'Folds',[1:2 4:8])
newloss = 0.0153
The total classification loss decreases by approximately half its original size.
Consider adjusting parameters of the binary classifiers or the coding design to see if performance for all folds improves.

Determine ECOC Model Quality Using Custom Cross-Validation Loss

In addition to knowing whether a model generally classifies observations correctly, you can determine how well the model classifies an observation into its predicted class. One way to determine this type of model quality is to pass a custom loss function to kfoldLoss.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the classes in Y.
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y) % Class order

classOrder = 3x1 categorical array
 setosa
 versicolor
 virginica

rng(1) % For reproducibility

Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the
predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross-validation. You can specify a different number of folds using the
'KFold' name-value pair argument.

Create a custom function that takes the minimal loss for each observation, then averages
the minimal losses for all observations. S corresponds to the NegLoss output of
kfoldPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the cross-validated custom loss.

kfoldLoss(CVMdl,'LossFun',lossfun)
ans = 0.0101

The average minimal binary loss for the validation-fold observations is 0.0101.

Input Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model
Cross-validated ECOC model, specified as a `ClassificationPartitionedECOC` model. You can create a `ClassificationPartitionedECOC` model in two ways:

- Pass a trained ECOC model (`ClassificationECOC`) to `crossval`.
- Train an ECOC model using `fitcecoc` and specify any one of these cross-validation name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `kfoldLoss(CVMdl,'Folds',[1 3 5])` specifies to use only the first, third, and fifth folds to calculate the classification loss.

BinaryLoss — Binary learner loss function

This table contains names and descriptions of the built-in functions, where y_j is a class label for a particular binary learner (in the set $\{-1,1,0\}$), s_j is the score for observation j, and $g(y_j,s_j)$ is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_js_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\text{max}(0,1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_js_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Score Domain</td>
<td>(g(y_j, s_j))</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>([1 - y_j(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle `'BinaryLoss',@customFunction`.

`customFunction` has this form:

\[
\text{bLoss} = \text{customFunction}(\text{M}, \text{s})
\]

where:

- \(\text{M} \) is the \(K \)-by-\(L \) coding matrix stored in `Mdl.CodingMatrix`.
- \(\text{s} \) is the 1-by-\(L \) row vector of classification scores.
- \(\text{bLoss} \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \(K \) is the number of classes.
- \(L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then `BinaryLoss` is 'hinge'
- Ensembles trained by `AdaboostM1` or `GentleBoost`, then `BinaryLoss` is 'exponential'
- Ensembles trained by `LogitBoost`, then `BinaryLoss` is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set `'FitPosterior',1` in `fitcecoc`), then `BinaryLoss` is 'quadratic'

Otherwise, the default value for `BinaryLoss` is 'hamming'. To check the default value, use dot notation to display the `BinaryLoss` property of the trained model at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

Folds — Fold indices for prediction

1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]
Data Types: single | double

LossFun — Loss function

'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'classiferror' or a function handle.

- Specify the built-in function 'classiferror'. In this case, the loss function is the classification error on page 32-3150.
- Or, specify your own function using function handle notation.

Assume that n is the number of observations in the training data (CVMdl.NumObservations) and K is the number of classes (numel(CVMdl.ClassNames)). Your function needs the signature lossvalue = lossfun(C,S,W,Cost), where:

- The output argument lossvalue is a scalar.
- You specify the function name (lossfun).
• C is an \(n \times K \) logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set every element of row \(p \) to 0.

• \(S \) is an \(n \times K \) numeric matrix of negated loss values for the classes. Each row corresponds to an observation. The column order corresponds to the class order in CVMdl.ClassNames. The input \(S \) resembles the output argument NegLoss of kfoldPredict.

• \(W \) is an \(n \times 1 \) numeric vector of observation weights. If you pass \(W \), the software normalizes its elements to sum to 1.

• \(\text{Cost} \) is a \(K \times K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Aggregation level for output

'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length (k) containing one value per fold, where (k) is the number of folds.</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

Options — Estimation options

[] (default) | structure array returned by statset
Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:
- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel', 1).

Verbose — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

Output Arguments

loss — Classification loss

numeric scalar | numeric column vector

Classification loss, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then loss is the average classification loss over all folds. Otherwise, loss is a k-by-1 numeric column vector containing the classification loss for each fold, where k is the number of folds.

Definitions

Classification Error

The classification error is a binary classification error measure that has the form...
where:

- \(w_j \) is the weight for observation \(j \). The software renormalizes the weights to sum to 1.
- \(e_j = 1 \) if the predicted class of observation \(j \) differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \(m_{kj} \) is element \((k,j)\) of the coding design matrix \(M \) (that is, the code corresponding to class \(k \) of binary learner \(j \)).
- \(s_j \) is the score of binary learner \(j \) for an observation.
- \(g \) is the binary loss function.
- \(\hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_j, s_j)\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j, s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty, \infty))</td>
<td>(\frac{\log[1 + \exp(-2y_js_j)]}{2\log(2)})</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty, \infty))</td>
<td>(\exp(-y_js_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty, \infty))</td>
<td>(\frac{1 - \text{sign}(y_js_j)}{2})</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty, \infty))</td>
<td>(\max(0, 1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty, \infty))</td>
<td>(\frac{1 - y_js_j}{2})</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty, \infty))</td>
<td>(\frac{\log[1 + \exp(-y_js_j)]}{2\log(2)})</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>(\frac{1 - y_j(2s_j - 1)^2}{2})</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0\), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | ClassificationPartitionedECOC | fitcecoc | kfoldPredict | loss | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
Introduced in R2014b
kfoldLoss

Classification loss for observations not used for training

Syntax

\[
L = \text{kfoldLoss}(\text{ens})
\]

\[
L = \text{kfoldLoss}(\text{ens},\text{Name},\text{Value})
\]

Description

\[L = \text{kfoldLoss}(\text{ens})\] returns loss obtained by cross-validated classification model \(\text{ens}\). For every fold, this method computes classification loss for in-fold observations using a model trained on out-of-fold observations.

\[L = \text{kfoldLoss}(\text{ens},\text{Name},\text{Value})\] calculates loss with additional options specified by one or more \text{Name,Value} pair arguments. You can specify several name-value pair arguments in any order as \text{Name1,Value1,...,NameN,ValueN}.

Input Arguments

\text{ens}

Object of class \text{ClassificationPartitionedEnsemble}. Create \text{ens} with \text{fitcensemble} along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create \text{ens} from a classification ensemble with \text{crossval}.

Name-Value Pair Arguments

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \text{Name1,Value1,...,NameN,ValueN}.
folds

Indices of folds ranging from 1 to ens.KFold. Use only these folds for predictions.

Default: 1:ens.KFold

lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'Mincost' is appropriate for classification scores that are posterior probabilities.

- Bagged and subspace ensembles return posterior probabilities by default (ens.Method is 'Bag' or 'Subspace').
- If the ensemble method is 'AdaBoostM1', 'AdaBoostM2', GentleBoost, or 'LogitBoost', then, to use posterior probabilities as classification scores, you must specify the double-logit score transform by entering

  ```matlab
  ens.ScoreTransform = 'doublelogit';
  ```

- For all other ensemble methods, the software does not support posterior probabilities as classification scores.
- Specify your own function using function handle notation.
Suppose that \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel}(\text{ens}.\text{ClassNames}) \), \(\text{ens} \) is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument \(\text{lossvalue} \) is a scalar.
- You choose the function name (\(\text{lossfun} \)).
- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \(\text{ens}.\text{ClassNames} \).

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(\text{ens}.\text{ClassNames} \). \(S \) is a matrix of classification scores, similar to the output of \(\text{predict} \).
- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.
- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@\(\text{lossfun} \).

For more details on loss functions, see “Classification Loss” on page 32-3159.

Default: 'classiferror'

mode

A character vector or string scalar for determining the output of \(\text{kfoldLoss} \):

- 'average' — \(L \) is a scalar, the loss averaged over all folds.
- 'individual' — \(L \) is a vector of length \(\text{ens}.\text{KFold} \), where each entry is the loss for a fold.
- 'cumulative' — \(L \) is a vector in which element \(J \) is obtained by using learners \(1:J \) from the input list of learners.
Default: 'average'

Output Arguments

L

Loss, by default the fraction of misclassified data. L can be a vector, and can mean different things, depending on the name-value pair settings.

Examples

Estimate Cross-Validated Classification Error

Load the ionosphere data set.

load ionosphere

Train a classification ensemble of 100 decision trees using AdaBoostM1. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Cross-validate the ensemble using 10-fold cross-validation.

cvens = crossval(ens);

Estimate the cross-validated classification error.

L = kfoldLoss(cvens)

L = 0.0655
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- \(L \) is the weighted average classification loss.
- \(n \) is the sample size.
- For binary classification:
 - \(y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - \(f(X_j) \) is the raw classification score for observation (row) \(j \) of the predictor data \(X \).
 - \(m_j = y_j f(X_j) \) is the classification score for classifying observation \(j \) into the class corresponding to \(y_j \). Positive values of \(m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \(m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \(K \geq 3 \)):
 - \(y_j^* \) is a vector of \(K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \(y_j \). For example, if the true class of the second observation is the third class and \(K = 4 \), then \(y_2^* = [0 \ 0 \ 1 \ 0]' \). The order of the classes corresponds to the order in the ClassNames property of the input model.
 - \(f(X_j) \) is the length \(K \) vector of class scores for observation \(j \) of the predictor data \(X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 - \(m_j = y_j^* f(X_j) \). Therefore, \(m_j \) is the scalar classification score that the model predicts for the true, observed class.
 - The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,
Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[L = \sum_{j=1}^{n} w_j \log \left{ 1 + \exp \left[-2m_j \right] \right}.]</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[L = \sum_{j=1}^{n} w_j \exp (-m_j).]</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where (\hat{y}_j) is the class label corresponding to the class with the maximal posterior probability. (I{x}) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[L = \sum_{j=1}^{n} w_j \max {0,1 - m_j}.]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[L = \sum_{j=1}^{n} w_j \log \left(1 + \exp (-m_j) \right).]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Estimate the 1-by-K vector of expected classification costs for observation j:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j)'C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>input model stores in the Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 For observation j, predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}j = \min{j=1,\ldots,K} (\gamma_j)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Using C, identify the cost incurred (c_j) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>$L = \sum_{j=1}^{n} w_j (1-m_j)^2$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through $[0,1]$. 32-3161
See Also

crossval | kfoldEdge | kfoldMargin | kfoldPredict | kfoldfun
kfoldLoss

Package: classreg.learning.partition

Classification loss for cross-validated kernel classification model

Syntax

```
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)
```

Description

`loss = kfoldLoss(CVMdl)` returns the classification loss on page 32-3169 obtained by the cross-validated, binary kernel model (ClassificationPartitionedKernel) `CVMdl`. For every fold, `kfoldLoss` computes the classification loss for validation-fold observations using a model trained on training-fold observations.

By default, `kfoldLoss` returns the classification error.

`loss = kfoldLoss(CVMdl,Name,Value)` returns the classification loss with additional options specified by one or more name-value pair arguments. For example, specify the classification loss function, number of folds, or aggregation level.

Examples

Estimate k-Fold Cross-Validation Classification Error

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

```matlab
load ionosphere
```

Cross-validate a binary kernel classification model using the data.

```matlab
CVMdl = fitckernel(X,Y,'Crossval','on')
```
CVMdl =
classreg.learning.partition.ClassificationPartitionedKernel
 CrossValidatedModel: 'Kernel'
 ResponseName: 'Y'
 NumObservations: 351
 KFold: 10
 Partition: [1x1 cvpartition]
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the cross-validated classification loss. By default, the software computes the classification error.

 loss = kfoldLoss(CVMdl)

 loss = 0.0940

Alternatively, you can obtain the per-fold classification errors by specifying the name-value pair 'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

 load ionosphere

Cross-validate a binary kernel classification model using the data.

 CVMdl = fitckernel(X,Y,'Crossval','on')

 CVMdl =
 classreg.learning.partition.ClassificationPartitionedKernel
 CrossValidatedModel: 'Kernel'
CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Create an anonymous function that measures linear loss, that is,

$$ L = \frac{\sum_j -w_j y_j f_j}{\sum_j w_j}. $$

w_j is the weight for observation j, y_j is the response j (-1 for the negative class and 1 otherwise), and f_j is the raw classification score of observation j.

```matlab
linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);
```

Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

Estimate the cross-validated classification loss using the linear loss function.

```matlab
loss = kfoldLoss(CVMdl,'LossFun',linearloss)
```

loss = -0.7792

Input Arguments

- **CVMdl** — Cross-validated, binary kernel classification model
 ClassificationPartitionedKernel model object
Cross-validated, binary kernel classification model, specified as a ClassificationPartitionedKernel model object. You can create a ClassificationPartitionedKernel model by using fitckernel and specifying any one of the cross-validation name-value pair arguments.

To obtain estimates, kfoldLoss applies the same data used to cross-validate the kernel classification model (X and Y).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: kfoldLoss(CVMdl,'Folds',[1 3 5]) specifies to use only the first, third, and fifth folds to calculate the classification loss.

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss function name or a function handle.

- This table lists the available loss functions. Specify one using its corresponding value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binominal deviance</td>
</tr>
</tbody>
</table>

32-3166
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. For kernel classification models, logistic regression learners return posterior probabilities as classification scores by default, but SVM learners do not (see kfoldPredict).

- Specify your own function by using function handle notation.

Assume that n is the number of observations in X, and K is the number of distinct classes (numel(CVMdl.ClassNames), where CVMdl is the input model). Your function must have this signature:

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

- The output argument lossvalue is a scalar.
- You specify the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting \(C(p,q) = 1 \), if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- S is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in CVMdl.ClassNames. S is a matrix of classification scores, similar to the output of kfoldPredict.
- W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the weights to sum to 1.
- Cost is a K-by-K numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.
Example: 'LossFun', @lossfun

Data Types: char | string | function_handle

Mode — Aggregation level for output

'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length (k) containing one value per fold, where (k) is the number of folds.</td>
</tr>
</tbody>
</table>

Example: 'Mode', 'individual'

Output Arguments

loss — Classification loss

numeric scalar | numeric column vector

Classification loss on page 32-3169, returned as a numeric scalar or numeric column vector.

If `Mode` is 'average', then `loss` is the average classification loss over all folds. Otherwise, `loss` is a \(k \)-by-1 numeric column vector containing the classification loss for each fold, where \(k \) is the number of folds.
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Suppose the following:

- \(L \) is the weighted average classification loss.
- \(n \) is the sample size.
- \(y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
- \(f(X_j) \) is the raw classification score for the transformed observation (row) \(j \) of the predictor data \(X \) using feature expansion.
- \(m_j = y_j f(X_j) \) is the classification score for classifying observation \(j \) into the class corresponding to \(y_j \). Positive values of \(m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \(m_j \) indicate incorrect classification and contribute to the average loss.
- The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so that they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

This table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>(L = \sum_{j=1}^{n} w_j \log{1 + \exp[-2m_j]}).</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j)$.</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The classification error is the weighted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fraction of misclassified observations where</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\hat{y}_j is the class label corresponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the class with the maximal posterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>probability, $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}$.</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left(1 + \exp(-m_j)\right)$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Estimate the 1-by-K vector of expected classification costs for observation j:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j)C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class posterior probabilities. C is the cost matrix that the input model stores in the Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 For observation j, predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}j = \min{j=1,\ldots,K} (\gamma_j)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Using C, identify the cost incurred (c_j) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>$L = \sum_{j=1}^{n} w_j (1-m_j)^2$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except minimal cost) for one observation over m. Some functions are normalized to pass through $[0,1]$.

kfoldLoss
See Also
ClassificationPartitionedKernel | fitckernel

Introduced in R2018b
kfoldLoss

Package: classreg.learning.partition

Classification loss for cross-validated kernel ECOC model

Syntax

```matlab
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)
```

Description

`loss = kfoldLoss(CVMdl)` returns the classification loss obtained by the cross-validated kernel ECOC model (`ClassificationPartitionedKernelECOC`) `CVMdl`. For every fold, `kfoldLoss` computes the classification loss for validation-fold observations using a model trained on training-fold observations. `kfoldLoss` applies the same data used to create `CVMdl` (see `fitcecoc`).

By default, `kfoldLoss` returns the classification error on page 32-3180.

`loss = kfoldLoss(CVMdl,Name,Value)` returns the classification loss with additional options specified by one or more name-value pair arguments. For example, specify the classification loss function, number of folds, decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Classification Error

Load Fisher's iris data set. `X` contains flower measurements, and `Y` contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```
Cross-validate an ECOC model composed of kernel binary learners.

\[
\text{CVMdl} = \text{fitcecoc}(X, Y, '\text{Learners}', '\text{kernel}', '\text{CrossVal}', '\text{on}')
\]

\[
\text{CVMdl} =
\begin{align*}
\text{classreg.learning.partition.ClassificationPartitionedKernelECOC} \\
\text{CrossValidatedModel: 'KernelECOC'} \\
\text{ResponseName: 'Y'} \\
\text{NumObservations: 150} \\
\text{Kfold: 10} \\
\text{Partition: [1x1 cvpartition]} \\
\text{ClassNames: {'setosa' 'versicolor' 'virginica'}} \\
\text{ScoreTransform: 'none'}
\end{align*}
\]

\text{CVMdl} \text{ is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'Kfold' name-value pair argument instead of 'Crossval'.}

Estimate the cross-validated classification loss. By default, the software computes the classification error.

\[
\text{loss} = \text{kfoldLoss(CVMdl)}
\]

\[
\text{loss} = 0.0333
\]

Alternatively, you can obtain the per-fold classification errors by specifying the name-value pair 'Mode', 'individual' in kfoldLoss.

Determine Model Quality Using Custom Cross-Validation Loss

In addition to knowing whether a model generally classifies observations correctly, you can determine how well the model classifies an observation into its predicted class. One way to determine this type of model quality is to pass a custom loss function to kfoldLoss.

Load Fisher's iris data set. \(X\) contains flower measurements, and \(Y\) contains the names of flower species.
load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

rng(1) \% For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl =
 classreg.learning.partition.ClassificationPartitionedKernelECOC
 CrossValidatedModel: 'KernelECOC'
 ResponseName: 'Y'
 NumObservations: 150
 KFold: 10
 Partition: [1x1 cvpartition]
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Create a custom function that takes the minimal loss for each observation, then averages the minimal losses for all observations. S corresponds to the NegLoss output of kfoldPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the cross-validated custom loss.

kfoldLoss(CVMdl,'LossFun',lossfun)

ans = 0.0199

The average minimal binary loss for the validation-fold observations is about 0.02.
Input Arguments

CVMdl — Cross-validated kernel ECOC model

ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC model using fitcecoc and specifying these name-value pair arguments:

- 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a cell array of such template objects.
- One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `kfoldLoss(CVMdl,'Folds',1:3)` specifies to use only the first, second, and third folds to calculate the classification loss.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where y_j is a class label for a particular binary learner (in the set $\{-1,1,0\}$), s_j is the score for observation j, and $g(y_j,s_j)$ is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/\sqrt{2\log(2)}$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Score Domain</td>
<td>$g(y_j, s_j)$</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0, 1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0, 1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/2\log(2)$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0, 1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, customFunction, specify its function handle 'BinaryLoss',@customFunction.

customFunction has this form:

\[
bLoss = \text{customFunction}(M,s)\]

where:

- M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
- s is the 1-by-L row vector of classification scores.
- $bLoss$ is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- K is the number of classes.
- L is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is 'hinge'. If all binary learners are kernel classification models using logistic regression, then BinaryLoss is 'quadratic'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-3181.

Example: 'Decoding','lossbased'

Folds — Fold indices for prediction

1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must be within the range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

LossFun — Loss function

'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'classiferror' or a function handle.

- Specify the built-in function 'classiferror'. In this case, the loss function is the classification error on page 32-3180.
- Or, specify your own function using function handle notation.

Assume that n is the number of observations in the training data (CVMdl.NumObservations) and K is the number of classes (numel(CVMdl.ClassNames)). Your function needs the signature lossvalue = lossfun(C,S,W,Cost), where:

- The output argument lossvalue is a scalar.
- You specify the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting $C(p,q) = 1$ if observation p is in class q, for each row. Set every element of row p to 0.
• \(S \) is an \(n \)-by-\(K \) numeric matrix of negated loss values for the classes. Each row corresponds to an observation. The column order corresponds to the class order in \texttt{CVMdl.ClassNames}. The input \(S \) resembles the output argument \texttt{NegLoss} of \texttt{kfoldPredict}.

• \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes its elements to sum to 1.

• \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using \texttt{'LossFun'},@\texttt{lossfun}.

Data Types: \texttt{char} | \texttt{string} | \texttt{function_handle}

Mode — Aggregation level for output

\texttt{'average'} (default) | \texttt{'individual'}

Aggregation level for the output, specified as the comma-separated pair consisting of \texttt{'Mode'} and \texttt{'average'} or \texttt{'individual'}.

This table describes the values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>The output is a scalar average over all folds.</td>
</tr>
<tr>
<td>'individual'</td>
<td>The output is a vector of length (k) containing one value per fold, where (k) is the number of folds.</td>
</tr>
</tbody>
</table>

Example: \texttt{'Mode','individual'}

Options — Estimation options

\texttt{[]} (default) | \texttt{structure array returned by statset}

Estimation options, specified as the comma-separated pair consisting of \texttt{'Options'} and a structure array returned by \texttt{statset}.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options', statset('UseParallel',1).

Verbose — Verbosity level

θ (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and θ or 1. Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is θ, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

Output Arguments

loss — Classification loss

numeric scalar | numeric column vector

Classification loss, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then loss is the average classification loss over all folds. Otherwise, loss is a k-by-1 numeric column vector containing the classification loss for each fold, where k is the number of folds.

Definitions

Classification Error

The classification error is a binary classification error measure that has the form

\[
L = \frac{\sum_{j=1}^{n} w_j e_j}{\sum_{j=1}^{n} w_j}
\]
where:

- \(w_j \) is the weight for observation \(j \). The software renormalizes the weights to sum to 1.
- \(e_j = 1 \) if the predicted class of observation \(j \) differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \(m_{kj} \) is element \((k,j)\) of the coding design matrix \(M \) (that is, the code corresponding to class \(k \) of binary learner \(j \)).
- \(s_j \) is the score of binary learner \(j \) for an observation.
- \(g \) is the binary loss function.
- \(\hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.
\]
Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where y_j is a class label for a particular binary learner (in the set \{-1,1,0\}), s_j is the score for observation j, and $g(y_j,s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)]/2\log(2)$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_js_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0,1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_js_j)]/2\log(2)$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

References

See Also
ClassificationPartitionedKernelECOC | fitcecoc

Introduced in R2018b
kfoldLoss

Classification loss for observations not used in training

Syntax

L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description

$L = \text{kfoldLoss}($CVMdl$)$ returns the cross-validated classification losses on page 32-3193 obtained by the cross-validated, binary, linear classification model $CVMdl$. That is, for every fold, kfoldLoss estimates the classification loss for observations that it holds out when it trains using all other observations.

L contains a classification loss for each regularization strength in the linear classification models that compose $CVMdl$.

$L = \text{kfoldLoss}($CVMdl$,$Name$,$Value$)$ uses additional options specified by one or more $Name$, $Value$ pair arguments. For example, indicate which folds to use for the loss calculation or specify the classification-loss function.

Input Arguments

$CVMdl$ — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a ClassificationPartitionedLinear model object. You can create a ClassificationPartitionedLinear model object using fitclinear and specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldLoss applies the same data used to cross-validate the linear classification model (X and Y).
Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Folds — Fold indices to use for classification-score prediction

1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair consisting of `'Folds'` and a numeric vector of positive integers. The elements of `Folds` must range from 1 through `CVMdl.KFold`.

Example: `'Folds',[1 4 10]`

Data Types: `single` | `double`

LossFun — Loss function

'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of `'LossFun'` and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

32-3185
'mincost' is appropriate for classification scores that are posterior probabilities. For linear classification models, logistic regression learners return posterior probabilities as classification scores by default, but SVM learners do not (see predict).

- Specify your own function using function handle notation.

Let \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel}(Mdl.\text{ClassNames}) \), \(Mdl \) is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument \(\text{lossvalue} \) is a scalar.
- You choose the function name (\(\text{lossfun} \)).
- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \(Mdl.\text{ClassNames} \).

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(Mdl.\text{ClassNames} \). \(S \) is a matrix of classification scores, similar to the output of \(\text{predict} \).

- \(W \) is an \(n \)-by-\(1 \) numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.

- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@\(\text{lossfun} \).

Data Types: char | string | function_handle

Mode — Loss aggregation level

'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

32-3186
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Returns losses averaged over all folds</td>
</tr>
<tr>
<td>'individual'</td>
<td>Returns losses for each fold</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

Output Arguments

L — Cross-validated classification losses
numeric scalar | numeric vector | numeric matrix

Cross-validated classification losses on page 32-3193, returned as a numeric scalar, vector, or matrix. The interpretation of L depends on LossFun.

Let R be the number of regularizations strengths is the cross-validated models (stored in numel(CVMdl.Trained{1}.Lambda)) and F be the number of folds (stored in CVMdl.KFold).

- If Mode is 'average', then L is a 1-by-R vector. L(j) is the average classification loss over all folds of the cross-validated model that uses regularization strength j.
- Otherwise, L is an F-by-R matrix. L(i,j) is the classification loss for fold i of the cross-validated model that uses regularization strength j.

To estimate L, kfoldLoss uses the data that created CVMdl (see X and Y).

Examples

Estimate k-Fold Cross-Validation Classification Error

Load the NLP data set.

```matlab
load nlpdata
```

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.
The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

\[Y_{\text{stats}} = Y == '\text{stats}' \]

Cross-validate a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

\[
\text{rng}(1); \quad \% \text{For reproducibility} \\
\text{CVMdl} = \text{fitclinear}(X,Y_{\text{stats}},'\text{CrossVal}','on');
\]

CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the out-of-fold, classification error rates.

\[
\text{ce} = \text{kfoldLoss}(\text{CVMdl})
\]

\[
\text{ce} = 7.6017e^{-04}
\]

Alternatively, you can obtain the per-fold classification error rates by specifying the name-value pair 'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Classification Error” on page 32-3187, and transpose the predictor data.

\[
\text{load nldata} \\
\text{Y_{stats}} = Y == '\text{stats}'; \\
\text{X} = X';
\]

Cross-validate a binary, linear classification model using 5-fold cross-validation. Optimize the objective function using SpaRSA. Specify that the predictor observations correspond to columns.

\[
\text{rng}(1); \quad \% \text{For reproducibility} \\
\text{CVMdl} = \text{fitclinear}(X,Y_{\text{stats}},'\text{Solver}','\text{sparsa}','\text{KFold}',5,...
\]
'ObservationsIn', 'columns');
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property
Trained, which is a 5-by-1 cell array holding a ClassificationLinear models that the
software trained using the training set of each fold.

Create an anonymous function that measures linear loss, that is,

\[
L = \frac{\sum_{j} -w_{j}y_{j}f_{j}}{\sum_{j}w_{j}}.
\]

\(w_{j}\) is the weight for observation \(j\), \(y_{j}\) is response \(j\) (-1 for the negative class, and 1
otherwise), and \(f_{j}\) is the raw classification score of observation \(j\). Custom loss functions
must be written in a particular form. For rules on writing a custom loss function, see the
LossFun name-value pair argument. Because the function does not use classification
cost, use ~ to have kfoldLoss ignore its position.

\[
\text{linearloss} = @(C,S,W,~)\text{sum}(-W.*\text{sum}(S.*C,2))/\text{sum}(W);
\]

Estimate the average cross-validated classification loss using the linear loss function.
Also, obtain the loss for each fold.

\[
\text{ce} = \text{kfoldLoss(CVMdl, 'LossFun', linearloss)}
\]

\[
\text{ce} = -8.0982
\]

\[
\text{ceFold} = \text{kfoldLoss(CVMdl, 'LossFun', linearloss, 'Mode', 'individual')}
\]

\[
\text{ceFold} = 5\times1
\]

\[
\begin{array}{c}
-8.3165 \\
-8.7633 \\
-7.4342 \\
-8.0423 \\
-7.9347
\end{array}
\]
Find Good Lasso Penalty Using k-fold Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 32-3188.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{0.5}$.

```matlab
Lambda = logspace(-6,-0.5,11);
```

Cross-validate binary, linear classification models using 5-fold cross-validation, and that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

```matlab
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'KFold',5,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
```

Extract a trained linear classification model.

```matlab
Mdl1 = CVMdl.Trained{1}
```
Mdl1 = ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023×11 double]
 Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 1.5849e-04 5.6234e-04 0.0020 0.0071 0.0251 0.0891 0.3162]
 Learner: 'logistic'

Properties, Methods

Mdl1 is a ClassificationLinear model object. Because Lambda is a sequence of regularization strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

ce = kfoldLoss(CVMdl);

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
 'Learner','logistic','Solver','sparsa','Regularization','lasso',...
 'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta==0);

In the same figure, plot the cross-validated, classification error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
 log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'\text{log}_{10} \text{ classification error}')
Choose the indexes of the regularization strength that balances predictor variable sparsity and low classification error. In this case, a value between 10^{-4} to 10^{-1} should suffice.

```matlab
idxFinal = 7;
```

Select the model from `Mdl` with the chosen regularization strength.

```matlab
MdlFinal = selectModels(Mdl,idxFinal);
```
MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate labels for new observations, pass MdlFinal and the new data to predict.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- L is the weighted average classification loss.
- n is the sample size.
- For binary classification:
 - y_j is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - $f(X_j)$ is the raw classification score for observation (row) j of the predictor data X.
 - $m_j = y_j f(X_j)$ is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, $K \geq 3$):
 - y^*_j is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class y_j. For example, if the true class of the second observation is the third class and $K = 4$, then $y^*_2 = [0 \ 0 \ 1 \ 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
 - $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 - $m_j = y^*_j f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.
• The weight for observation j is w_j. The software Normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

$$\sum_{j=1}^{n} w_j = 1.$$

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left{1 + \exp\left[-2m_j\right]\right}.$</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j).$</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}. $ It is the weighted fraction of misclassified observations where \hat{y}_j is the class label corresponding to the class with the maximal posterior probability. $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}. $</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left(1 + \exp(-m_j)\right).$</td>
</tr>
</tbody>
</table>
Loss Function | Value of LossFun | Equation |
--- | --- | ---
Minimal cost | 'mincost' | Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.

1. Estimate the 1-by-K vector of expected classification costs for observation j:

$$\gamma_j = f(X_j)C.$$

$f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the input model stores in the Cost property.

2. For observation j, predict the class label corresponding to the minimum expected classification cost:

$$\hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j).$$

3. Using C, identify the cost incurred (c_j) for making the prediction.

The weighted, average, minimum cost loss is

$$L = \sum_{j=1}^{n} w_j c_j.$$

Quadratic loss | 'quadratic' | $L = \sum_{j=1}^{n} w_j \left(1-m_j\right)^2$.

This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through [0,1].
See Also
ClassificationLinear | ClassificationPartitionedLinear | kfoldPredict | loss

Introduced in R2016a
kfoldLoss

Classification loss for observations not used in training

Syntax

L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description

L = kfoldLoss(CVMdl) returns the cross-validated classification error on page 32-3197 rates estimated by the cross-validated, error-correcting output codes (ECOC) model composed of linear classification models CVMdl. That is, for every fold, kfoldLoss estimates the classification error rate for observations that it holds out when it trains using all other observations. kfoldLoss applies the same data used create CVMdl (see fitcecoc).

L contains a classification loss for each regularization strength in the linear classification models that compose CVMdl.

L = kfoldLoss(CVMdl,Name,Value) uses additional options specified by one or more Name,Value pair arguments. For example, specify a decoding scheme, which folds to use for the loss calculation, or verbosity level.

Input Arguments

CVMdl — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a ClassificationPartitionedLinearECOC model object. You can create a ClassificationPartitionedLinearECOC model object using fitcecoc and by:

1 Specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal
Setting the name-value pair argument `Learners` to `'linear'` or a linear classification model template returned by `templateLinear`.

To obtain estimates, `kfoldLoss` applies the same data used to cross-validate the ECOC model (`X` and `Y`).

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

BinaryLoss — Binary learner loss function

`'hamming'` | `'linear'` | `'logit'` | `'exponential'` | `'binodeviance'` | `'hinge'` | `'quadratic'` | function handle

Binary learner loss function, specified as the comma-separated pair consisting of `'BinaryLoss'` and a built-in, loss-function name or function handle.

- This table contains names and descriptions of the built-in functions, where `y_j` is a class label for a particular binary learner (in the set `-1,1,0`), `s_j` is the score for observation `j`, and `g(y_j,s_j)` is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th><code>g(y_j,s_j)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'binodeviance'</code></td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/\ [2\log(2)]$</td>
</tr>
<tr>
<td><code>'exponential'</code></td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td><code>'hamming'</code></td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td><code>'hinge'</code></td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td><code>'linear'</code></td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td><code>'logit'</code></td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/\ [2\log(2)]$</td>
</tr>
<tr>
<td><code>'quadratic'</code></td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j (2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes the binary losses such that the loss is 0.5 when `y_j = 0`. Also, the software calculates the mean binary loss for each class.
For a custom binary loss function, e.g., `customFunction`, specify its function handle `'BinaryLoss',@customFunction`.

`customFunction` should have this form

\[
\text{bLoss} = \text{customFunction}(M,s)
\]

where:

- \(M \) is the \(K \)-by-\(L \) coding matrix stored in `Mdl.CodingMatrix`.
- \(s \) is the 1-by-\(L \) row vector of classification scores.
- \(\text{bLoss} \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \(K \) is the number of classes.
- \(L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are linear classification models using:

- SVM, then `BinaryLoss` is 'hinge'
- Logistic regression, then `BinaryLoss` is 'quadratic'

Example: 'BinaryLoss','binodeviance'

Data Types: `char` | `string` | `function_handle`

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

Folds — Fold indices to use for classification-score prediction

1:CVMdl.KFold (default) | numeric vector of positive integers
Fold indices to use for classification-score prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1 through CVMdl.KFold.

Example: 'Folds',[1 4 10]

Data Types: single | double

LossFun — Loss function

'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a function handle or 'classiferror'.

You can:

- Specify the built-in function 'classiferror', then the loss function is the classification error on page 32-3209.
- Specify your own function using function handle notation.

For what follows, n is the number of observations in the training data (CVMdl.NumObservations) and K is the number of classes (numel(CVMdl.ClassNames)). Your function needs the signature lossvalue = lossfun(C,S,W,Cost), where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting $C(p,q) = 1$ if observation p is in class q, for each row. Set every element of row p to 0.

- S is an n-by-K numeric matrix of negated loss values for classes. Each row corresponds to an observation. The column order corresponds to the class order in CVMdl.ClassNames. S resembles the output argument NegLoss of kfoldPredict.
- W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its elements to sum to 1.
Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

Data Types: function_handle | char | string

Mode — Loss aggregation level
'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Returns losses averaged over all folds</td>
</tr>
<tr>
<td>'individual'</td>
<td>Returns losses for each fold</td>
</tr>
</tbody>
</table>

Example: 'Mode', 'individual'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel', 1).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbosity controls the number of diagnostic messages that the software displays in the Command Window.

If Verbosity is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1
Data Types: single | double

Output Arguments

L — Cross-validated classification losses
numeric scalar | numeric vector | numeric matrix

Cross-validated classification losses on page 32-3209, returned as a numeric scalar, vector, or matrix. The interpretation of **L** depends on **LossFun**.

Let **R** be the number of regularizations strengths is the cross-validated models (CVMdl.Trained{1}.BinaryLearners{1}.Lambda) and **F** be the number of folds (stored in CVMdl.KFold).

- If **Mode** is 'average', then **L** is a 1-by-**R** vector. **L(j)** is the average classification loss over all folds of the cross-validated model that uses regularization strength **j**.
- Otherwise, **L** is a **F**-by-**R** matrix. **L(i,j)** is the classification loss for fold **i** of the cross-validated model that uses regularization strength **j**.

Examples

Estimate k-Fold Cross-Validation Classification Error

Load the NLP data set.

```matlab
load nlpdata
```

X is a sparse matrix of predictor data, and **Y** is a categorical vector of class labels.

Cross-validate an ECOC model of linear classification models.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');
```

CVMdl is a *ClassificationPartitionedLinearECOC* model. By default, the software implements 10-fold cross validation.

Estimate the average of the out-of-fold classification error rates.
ce = kfoldLoss(CVMdl)

ce = 0.0958

Alternatively, you can obtain the per-fold classification error rates by specifying the name-value pair 'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the NLP data set. Transpose the predictor data.

load nlpdata
X = X';

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or 'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a linear classification model template that specifies optimizing the objective function using SpaRSA.

t = templateLinear('Solver','sparsa');

Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Optimize the objective function using SpaRSA. Specify that the predictor observations correspond to columns.

rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns');
CMdl1 = CVMdl.Trained{1}

CMdl1 =
 classreg.learning.classif.CompactClassificationECOC
 ResponseName: 'Y'
 ClassNames: [comm dsp simulink others]
 ScoreTransform: 'none'
 BinaryLearners: {6x1 cell}
 CodingMatrix: [4x6 double]
CVMdl is a ClassificationPartitionedLinearECOC model. It contains the property Trained, which is a 5-by-1 cell array holding a CompactClassificationECOC models that the software trained using the training set of each fold.

Create a function that takes the minimal loss for each observation, and then averages the minimal losses across all observations. Because the function does not use the class-identifier matrix (C), observation weights (W), and classification cost (Cost), use ~ to have kfoldLoss ignore its their positions.

\[
\text{lossfun} = @(~,S,~,~)\text{mean}(\text{min}(-S,[],2));
\]

Estimate the average cross-validated classification loss using the minimal loss per observation function. Also, obtain the loss for each fold.

\[
\text{ce} = \text{kfoldLoss}(\text{CVMdl},'\text{LossFun}',\text{lossfun})
\]

\[
\text{ce} = 0.0243
\]

\[
\text{ceFold} = \text{kfoldLoss}(\text{CVMdl},'\text{LossFun}',\text{lossfun},'\text{Mode}','\text{individual}')
\]

\[
\text{ceFold} = 5\times1
\]

\[
\begin{array}{c}
0.0244 \\
0.0255 \\
0.0248 \\
0.0240 \\
0.0226
\end{array}
\]

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for an ECOC model composed of linear classification models that use logistic regression learners, implement 5-fold cross-validation.

Load the NLP data set.

\[
\text{load nlpdata}
\]

\[
\text{X} \text{ is a sparse matrix of predictor data, and } \text{Y} \text{ is a categorical vector of class labels.}
\]
For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or 'comm'.

\[Y(~(\text{ismember}(Y,\{'simulink','dsp','comm'\}))) = \text{'others'}; \]

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-7} through 10^{-2}.

\[\text{Lambda} = \text{logspace}(-7,-2,11); \]

Create a linear classification model template that specifies to use logistic regression learners, use lasso penalties with strengths in \text{Lambda}, train using SpaRSA, and lower the tolerance on the gradient of the objective function to $1e-8$.

\[\text{t} = \text{templateLinear('Learner','logistic','Solver','sparsa',...\text{'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8});} \]

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

\[\text{X} = \text{X}'; \]
\[\text{rng}(10); \quad \% \text{For reproducibility} \]
\[\text{CVMdl} = \text{fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5);} \]

\text{CVMdl} is a \text{ClassificationPartitionedLinearECOC} model.

Dissect \text{CVMdl}, and each model within it.

\[\text{numECOCModels} = \text{numel(CVMdl.Trained)} \]
\[\text{numECOCModels} = 5 \]

\[\text{ECOCMdl1} = \text{CVMdl.Trained{1}} \]

\text{ECOCMdl1} =
\[
\text{classreg.learning.classif.CompactClassificationECOC}
\quad \text{ResponseName: 'Y'}
\quad \text{ClassNames: [comm dsp simulink others]}
\quad \text{ScoreTransform: 'none'}
\quad \text{BinaryLearners: {6x1 cell}}
\quad \text{CodingMatrix: [4x6 double]}
\]
Properties, Methods

numCLModels = numel(ECOCMdl1.BinaryLearners)
numCLModels = 6
CLMdl1 = ECOCMdl1.BinaryLearners{1}

CLMdl1 = ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [-1 1]
 ScoreTransform: 'logit'
 Beta: [34023×11 double]
 Bias: [-0.3125 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596 -0.3596]
 Lambda: [1.0000e-07 3.1623e-07 1.0000e-06 3.1623e-06 1.0000e-05 3.1623e-05 1.0000e-04 3.1623e-04 1.0000e-03 0.0032 0.0100]
 Learner: 'logistic'

Because fitcecoc implements 5-fold cross-validation, CVMdl contains a 5-by-1 cell array of CompactClassificationECOC models that the software trains on each fold. The BinaryLearners property of each CompactClassificationECOC model contains the ClassificationLinear models. The number of ClassificationLinear models within each compact ECOC model depends on the number of distinct labels and coding design. Because Lambda is a sequence of regularization strengths, you can think of CLMdl1 as 11 models, one for each regularization strength in Lambda.

Determine how well the models generalize by plotting the averages of the 5-fold classification error for each regularization strength. Identify the regularization strength that minimizes the generalization error over the grid.

ce = kfoldLoss(CVMdl);
figure;
plot(log10(Lambda),log10(ce))
 [~,minCEIdx] = min(ce);
minLambda = Lambda(minCEIdx);
hold on
plot(log10(minLambda),log10(ce(minCEIdx)),'ro');
ylabel('log_{10} 5-fold classification error')
xlabel('log_{10} Lambda')
Train an ECOC model composed of linear classification model using the entire data set, and specify the minimal regularization strength.

```matlab
t = templateLinear('Learner','logistic','Solver','sparsa',...    'Regularization','lasso','Lambda',minLambda,'GradientTolerance',1e-8);MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');```

To estimate labels for new observations, pass `MdlFinal` and the new data to `predict`. 
Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}.
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j, s_j)$.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j (2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**Classification Error**

The classification error is a binary classification error measure that has the form

$$L = \frac{\sum_{j=1}^{n} w_j e_j}{\sum_{j=1}^{n} w_j}$$

where:

- $w_j$ is the weight for observation $j$. The software renormalizes the weights to sum to 1.
- $e_j = 1$ if the predicted class of observation $j$ differs from its true class, and $0$ otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.
References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | ClassificationLinear |
ClassificationPartitionedLinearECOC | fitcecoc | kfoldPredict | loss | statset
Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2016a
kfoldLoss

Classification loss for observations not used for training

Syntax

L = kfoldLoss(obj)
L = kfoldLoss(obj,Name,Value)

Description

L = kfoldLoss(obj) returns loss obtained by cross-validated classification model obj. For every fold, this method computes classification loss for in-fold observations using a model trained on out-of-fold observations.

L = kfoldLoss(obj,Name,Value) calculates loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

obj

Object of class ClassificationPartitionedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

folds

Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.
**Default:** 1:obj.KFold

**lossfun**

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. All models use posterior probabilities as classification scores by default except SVM models. You can specify to use posterior probabilities as classification scores for SVM models by setting 'FitPosterior',true when you cross-validate the model using fitcsvm.

- Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes (numel(obj.ClassNames), obj is the input model). Your function must have this signature

```
lossvalue = lossfun(C,S,W,Cost)
```

where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
• C is an \( n \)-by-\( K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \texttt{obj.ClassNames}.

Construct \( C \) by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to 0.

• \( S \) is an \( n \)-by-\( K \) numeric matrix of classification scores. The column order corresponds to the class order in \texttt{obj.ClassNames}. \( S \) is a matrix of classification scores, similar to the output of \texttt{predict}.

• \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes them to sum to 1.

• \texttt{Cost} is a \( K \)-by-\( K \) numeric matrix of misclassification costs. For example, \( \texttt{Cost} = \texttt{ones}(K) - \texttt{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@\texttt{lossfun}.

For more details on loss functions, see “Classification Loss” on page 32-3215.

**Default:** 'classiferror'

**mode**

A character vector or string scalar for determining the output of \texttt{kfoldLoss}:

• 'average' — \( L \) is a scalar, the loss averaged over all folds.
• 'individual' — \( L \) is a vector of length \texttt{obj.KFold}, where each entry is the loss for a fold.

**Default:** 'average'

**Output Arguments**

\( L \)

Loss, by default the fraction of misclassified data. \( L \) can be a vector, and can mean different things, depending on the name-value pair settings.
Examples

Estimate Cross-Validated Classification Error

Load the ionosphere data set.
load ionosphere

Grow a classification tree.
tree = fitctree(X,Y);

Cross-validate the classification tree using 10-fold cross-validation.
cvtree = crossval(tree);

Estimate the cross-validated classification error.
L = kfoldLoss(cvtree)
L = 0.1111

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- $L$ is the weighted average classification loss.
- $n$ is the sample size.
- For binary classification:
  - $y_j$ is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
• \( f(X_j) \) is the raw classification score for observation (row) \( j \) of the predictor data \( X \).

• \( m_j = y_j f(X_j) \) is the classification score for classifying observation \( j \) into the class corresponding to \( y_j \). Positive values of \( m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute significantly to the average loss.

• For algorithms that support multiclass classification (that is, \( K \geq 3 \)):

• \( y_j^* \) is a vector of \( K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \( y_j \). For example, if the true class of the second observation is the third class and \( K = 4 \), then \( y_j^* = [0 0 1 0] \). The order of the classes corresponds to the order in the \texttt{ClassNames} property of the input model.

• \( f(X_j) \) is the length \( K \) vector of class scores for observation \( j \) of the predictor data \( X \). The order of the scores corresponds to the order of the classes in the \texttt{ClassNames} property of the input model.

• \( m_j = y_j^* f(X_j) \). Therefore, \( m_j \) is the scalar classification score that the model predicts for the true, observed class.

• The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log(1 + \exp(-2m_j)) ].</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[ L = \sum_{j=1}^{n} w_j \exp(-m_j) ].</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[ L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}. ]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where ( \hat{y}_j ) is the class label corresponding to the class with the maximal posterior probability. ( I{x} ) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[ L = \sum_{j=1}^{n} w_j \max{0, 1 - m_j}. ]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j)). ]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations ( j = 1, \ldots, n ).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimate the 1-by-( K ) vector of expected classification costs for observation ( j ):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ \gamma_j = f (X_j) C. ]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For observation ( j ), predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ \hat{y}<em>j = \min</em>{j=1,\ldots,K} (\gamma_j). ]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using ( C ), identify the cost incurred (( c_j )) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[ L = \sum_{j=1}^{n} w_j c_j. ]</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>[ L = \sum_{j=1}^{n} w_j (1 - m_j)^2. ]</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over \( m \). Some functions are normalized to pass through [0,1].
See Also
ClassificationPartitionedModel | crossval | kfoldEdge | kfoldMargin | kfoldPredict | kfoldfun

Topics
“Examine Quality of KNN Classifier” on page 18-37
**kfoldLoss**

Cross-validation loss of partitioned regression ensemble

**Syntax**

\[ L = \text{kfoldLoss}(\text{cvens}) \]

\[ L = \text{kfoldLoss}(\text{cvens}, \text{Name,Value}) \]

**Description**

\[ L = \text{kfoldLoss}(\text{cvens}) \] returns the cross-validation loss of \( \text{cvens} \).

\[ L = \text{kfoldLoss}(\text{cvens}, \text{Name,Value}) \] returns cross-validation loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Input Arguments**

\text{cvens}

Object of class RegressionPartitionedEnsemble. Create \text{obj} with \text{fitrensemble} along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvsample'. Alternatively, create \text{obj} from a regression ensemble with \text{crossval}.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
folds
Indices of folds ranging from 1 to cvens.KFold. Use only these folds for predictions.

**Default:** 1:cvens.KFold

lossfun
Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function handle fun, loss calls it as

\[ \text{fun}(Y,Yfit,W) \]

where \( Y, Yfit, \) and \( W \) are numeric vectors of the same length.

- \( Y \) is the observed response.
- \( Yfit \) is the predicted response.
- \( W \) is the observation weights.

The returned value \( \text{fun}(Y,Yfit,W) \) should be a scalar.

**Default:** 'mse'

mode
Method for computing cross-validation loss.

- 'average' — \( L \) is a scalar value, the average loss over all folds.
- 'individual' — \( L \) is a vector with one element per fold.
- 'cumulative' — \( L \) is a vector with a length of minimum number of observations used for training in each fold. Each element in the vector \( L \) is obtained by taking the average of loss across all folds.

**Default:** 'average'
Output Arguments

L

The loss (mean squared error) between the observations in a fold when compared against predictions made with an ensemble trained on the out-of-fold data. L can be a vector, and can mean different things, depending on the name-value pair settings.

Examples

Find Cross-Validation Loss for Regression Ensemble

Find the cross-validation loss for a regression ensemble of the carsmall data.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of regression trees.

rens = fitrensemble(X,MPG);

Create a cross-validated ensemble from rens and find the k-fold cross-validation loss.

rng(10,'twister') % For reproducibility
cvrens = crossval(rens);
L = kfoldLoss(cvrens)
L = 28.7077

See Also
RegressionPartitionedEnsemble | kfoldPredict | loss
**kfoldLoss**

Regression loss for observations not used in training

**Syntax**

\[ L = \text{kfoldLoss}(\text{CVMdl}) \]

\[ L = \text{kfoldLoss}(\text{CVMdl},\text{Name},\text{Value}) \]

**Description**

Description

\[ L = \text{kfoldLoss}(\text{CVMdl}) \] returns the cross-validated mean squared error (MSE) obtained by the cross-validated, linear regression model \( \text{CVMdl} \). That is, for every fold, \( \text{kfoldLoss} \) estimates the regression loss for observations that it holds out when it trains using all other observations.

\( L \) contains a regression loss for each regularization strength in the linear regression models that compose \( \text{CVMdl} \).

\[ L = \text{kfoldLoss}(\text{CVMdl},\text{Name},\text{Value}) \] uses additional options specified by one or more \( \text{Name},\text{Value} \) pair arguments. For example, indicate which folds to use for the loss calculation or specify the regression-loss function.

**Input Arguments**

**CVMdl — Cross-validated, linear regression model**

RegressionPartitionedLinear model object

Cross-validated, linear regression model, specified as a RegressionPartitionedLinear model object. You can create a RegressionPartitionedLinear model using \text{fitrlinear} and specifying any of the one of the cross-validation, name-value pair arguments, for example, CrossVal.
To obtain estimates, kfoldLoss applies the same data used to cross-validate the linear regression model \((X\ and\ Y)\).

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Folds — Fold indices to use for response prediction**

`1:CVMdl.KFold` (default) | numeric vector of positive integers

Fold indices to use for response prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of `Folds` must range from 1 through `CVMdl.KFold`.

Example: 'Folds',[1 4 10]

Data Types: `single` | `double`

**LossFun — Loss function**

'`mse`' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar. Also, in the table, \(f(x) = x\beta + b\).

  - \(\beta\) is a vector of \(p\) coefficients.
  - \(x\) is an observation from \(p\) predictor variables.
  - \(b\) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Epsilon-insensitive loss:</td>
</tr>
<tr>
<td></td>
<td>[\ell[y, f(x)] = \max[0,</td>
</tr>
</tbody>
</table>
**Value** | **Description**
--- | ---
'mse' | \[\ell[y, f(x)] = (y - f(x))^2\]

'epsiloninsensitive' is appropriate for SVM learners only.

- Specify your own function using function handle notation.

Let \( n \) be the number of observations in \( X \). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(Y, \text{Yhat}, W)
\]

where:
- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name (\( \text{lossfun} \)).
- \( Y \) is an \( n \)-dimensional vector of observed responses. \( \text{kfoldLoss} \) passes the input argument \( Y \) in for \( Y \).
- \( \text{Yhat} \) is an \( n \)-dimensional vector of predicted responses, which is similar to the output of \( \text{predict} \).
- \( W \) is an \( n \)-by-1 numeric vector of observation weights.

Specify your function using 'LossFun', @\( \text{lossfun} \).

Data Types: char | string | function_handle

**Mode — Loss aggregation level**

'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

**Value** | **Description**
--- | ---
'average' | Returns losses averaged over all folds
'individual' | Returns losses for each fold

Example: 'Mode','individual'
Output Arguments

**L — Cross-validated regression losses**
numeric scalar | numeric vector | numeric matrix

Cross-validated regression losses, returned as a numeric scalar, vector, or matrix. The interpretation of **L** depends on **LossFun**.

Let **R** be the number of regularizations strengths is the cross-validated models (stored in \texttt{numel(CVMdl.Trained{1}.Lambda)}) and **F** be the number of folds (stored in \texttt{CVMdl.KFold}).

- If **Mode** is 'average', then **L** is a 1-by-**R** vector. **L(j)** is the average regression loss over all folds of the cross-validated model that uses regularization strength **j**.
- Otherwise, **L** is an **F**-by-**R** matrix. **L(i,j)** is the regression loss for fold **i** of the cross-validated model that uses regularization strength **j**.

To estimate **L**, \texttt{kfoldLoss} uses the data that created \texttt{CVMdl} (see \texttt{X} and \texttt{Y}).

### Examples

**Estimate k-Fold Mean Squared Error**

Simulate 10000 observations from this model

\[
y = x_{100} + 2x_{200} + e.
\]

- **X** = \{\{x_{1},...,x_{100}\}\} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- **e** is random normal error with mean 0 and standard deviation 0.3.

\texttt{rng(1) \% For reproducibility}
\texttt{n = 1e4;}
\texttt{d = 1e3;}
\texttt{nz = 0.1;}
\texttt{X = sprandn(n,d,nz);}
\texttt{Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);}
Cross-validate a linear regression model using SVM learners.

```matlab
rng(1); % For reproducibility
CVMdl = fitrlinear(X,Y,'CrossVal','on');
```

*CVMdl* is a *RegressionPartitionedLinear* model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the test-sample MSEs.

```matlab
mse = kfoldLoss(CVMdl)
```

```
mse = 0.1735
```

Alternatively, you can obtain the per-fold MSEs by specifying the name-value pair 'Mode','individual' in *kfoldLoss*.

**Specify Custom Regression Loss**

Simulate data as in “Estimate k-Fold Mean Squared Error” on page 32-3226.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
X = X'; % Put observations in columns for faster training
```

Cross-validate a linear regression model using 10-fold cross-validation. Optimize the objective function using SpaRSA.

```matlab
CVMdl = fitrlinear(X,Y,'CrossVal','on','ObservationsIn','columns',...
 'Solver','sparsa');
```

*CVMdl* is a *RegressionPartitionedLinear* model. It contains the property *Trained*, which is a 10-by-1 cell array holding *RegressionLinear* models that the software trained using the training set.

Create an anonymous function that measures Huber loss ($\delta = 1$), that is,
where

\[
L = \frac{1}{\sum w_j} \sum_{j=1}^{n} w_j \ell_j,
\]

where

\[
\ell_j = \begin{cases} 
0.5\hat{e}_j^2; & |\hat{e}_j| \leq 1 \\
|\hat{e}_j| - 0.5; & |\hat{e}_j| > 1
\end{cases}
\]

\(\hat{e}_j\) is the residual for observation \(j\). Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

\[
\text{huberloss} = @(Y,Yhat,W)\text{sum}(W.*((0.5*(abs(Y-Yhat)<=1).*((Y-Yhat).^2) + ... 
((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/\text{sum}(W);
\]

Estimate the average Huber loss over the folds. Also, obtain the Huber loss for each fold.

\[
\text{mseAve} = \text{kfoldLoss}(CVMdl,'LossFun',\text{huberloss})
\]

\[
\text{mseAve} = -0.4447
\]

\[
\text{mseFold} = \text{kfoldLoss}(CVMdl,'LossFun',\text{huberloss},'\text{Mode}','\text{individual}')
\]

\[
\text{mseFold} = 10\times1
\]

-0.4454
-0.4473
-0.4452
-0.4469
-0.4434
-0.4427
-0.4471
-0.4430
-0.4438
-0.4426
Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares, implement 5-fold cross-validation.

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = \{x_1, \ldots, x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Create a set of 15 logarithmically-spaced regularization strengths from \( 10^{-5} \) through \( 10^{-1} \).

```matlab
Lambda = logspace(-5,-1,15);
```

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Optimize the objective function using SpaRSA.

```matlab
X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
 'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
```

```matlab
numCLModels = numel(CVMdl.Trained)
numCLModels = 5
```

`CVMdl` is a `RegressionPartitionedLinear` model. Because `fitrlinear` implements 5-fold cross-validation, `CVMdl` contains 5 `RegressionLinear` models that the software trains on each fold.

Display the first trained linear regression model.
Md11 = CVMdl.Trained{1}

Md11 =
    RegressionLinear
    ResponseName: 'Y'
    ResponseTransform: 'none'
        Beta: [1000x15 double]
        Bias: [1x15 double]
        Lambda: [1x15 double]
        Learner: 'leastsquares'

Properties, Methods

Md11 is a RegressionLinear model object. fitrlinear constructed Md11 by training on the first four folds. Because Lambda is a sequence of regularization strengths, you can think of Md11 as 15 models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

mse = kfoldLoss(CVMdl);

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression model. For each regularization strength, train a linear regression model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

Md1 = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
Choose the index of the regularization strength that balances predictor variable sparsity and low MSE (for example, \( \text{Lambda}(10) \)).

\[ \text{idxFinal} = 10; \]

Extract the model with corresponding to the minimal MSE.

\[ \text{MdlFinal} = \text{selectModels}(\text{Mdl}, \text{idxFinal}) \]

\[ \text{MdlFinal} = \text{RegressionLinear} \]
\[ \text{ResponseName}: 'Y' \]
\[ \text{ResponseTransform}: 'none' \]
\[ \text{Beta}: [1000x1 \text{ double}] \]
Bias: -0.0050
Lambda: 0.0037
Learner: 'leastsquares'

Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)
idxNZCoeff = 2x1
    100
    200

EstCoeff = Mdl.Beta(idxNZCoeff)
EstCoeff = 2x1
    1.0051
    1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients EstCoeff are close to the coefficients that simulated the data.

See Also
RegressionLinear | RegressionPartitionedLinear | kfoldPredict | loss

Introduced in R2016a
**kfoldLoss**

Cross-validation loss of partitioned regression model

**Syntax**

\[
L = \text{kfoldLoss}(\text{cvmodel})
\]

\[
L = \text{kfoldLoss}(\text{cvmodel},\text{Name},\text{Value})
\]

**Description**

\[
L = \text{kfoldLoss}(\text{cvmodel}) \text{ returns the cross-validation loss of } \text{cvmodel}.
\]

\[
L = \text{kfoldLoss}(\text{cvmodel},\text{Name},\text{Value}) \text{ returns cross-validation loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.}
\]

**Input Arguments**

**cvmodel**

Object of class RegressionPartitionedModel. Create obj with fitrtree along with one of the cross-validation options: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Alternatively, create obj from a regression tree with crossval.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**folds**

Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.
**Default**: `1:obj.KFold`

**lossfun**

Function handle for loss function or `'mse'`, meaning mean squared error. If you pass a function handle `fun`, `kfoldLoss` calls it as

`fun(Y,Yfit,W)`

where `Y`, `Yfit`, and `W` are numeric vectors of the same length.

- `Y` is the observed response.
- `Yfit` is the predicted response.
- `W` is the observation weights.

The returned value `fun(Y,Yfit,W)` should be a scalar.

**Default**: `'mse'`

**mode**

One of the following:

- `'average'` — `L` is the average loss over all folds.
- `'individual'` — `L` is a vector of the individual losses of in-fold observations trained on out-of-fold data.

**Default**: `'average'`

**Output Arguments**

**L**

The loss (mean squared error) between the observations in a fold when compared against predictions made with a tree trained on the out-of-fold data. If `mode` is `'individual'`, `L` is a vector of the losses. If `mode` is `'average'`, `L` is the average loss.
Examples

Construct a partitioned regression model, and examine the cross-validation losses for the folds:

load carsmall
XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;
cvmodel = fitrtree(XX,YY,'crossval','on');
L = kfoldLoss(cvmodel,'mode','individual')

L =
 44.9635
 11.8525
 18.2046
  9.2965
 29.4329
 54.8659
 24.6446
  8.2085
 19.7593
 16.7394

Alternatives

You can avoid constructing a cross-validated tree model by calling cvLoss instead of kfoldLoss. The cross-validated tree can save time if you are going to examine it more than once.

See Also
fitrtree | kfoldPredict | loss
kfoldMargin

**Package:** classreg.learning.partition

Classification margins for cross-validated ECOC model

**Syntax**

```matlab
margin = kfoldMargin(CVMdl)
margin = kfoldMargin(CVMdl,Name,Value)
```

**Description**

`margin = kfoldMargin(CVMdl)` returns classification margins obtained by the cross-validated ECOC model (`ClassificationPartitionedECOC`) `CVMdl`. For every fold, `kfoldMargin` computes classification margins for validation-fold observations using an ECOC model trained on training-fold observations. `CVMdl.X` contains both sets of observations.

`margin = kfoldMargin(CVMdl,Name,Value)` returns classification margins with additional options specified by one or more name-value pair arguments. For example, specify the binary learner loss function, decoding scheme, or verbosity level.

**Examples**

**Estimate k-Fold Cross-Validation Margins**

Load Fisher's iris data set. Specify the predictor data `X`, the response data `Y`, and the order of the classes in `Y`.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
```

CVMdl is a `ClassificationPartitionedECOC` model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

Estimate the margins for validation-fold observations. Display the distribution of the margins using a boxplot.

```matlab
margin = kfoldMargin(CVMdl);
boxplot(margin)
title('Distribution of Margins')
```
Select ECOC Model Features by Comparing Cross-Validation Margins

One way to perform feature selection is to compare cross-validation margins from multiple models. Based solely on this criterion, the classifier with the greatest margins is the best classifier.

Load Fisher's iris data set. Specify the predictor data \( X \), the response data \( Y \), and the order of the classes in \( Y \).

```matlab
load fisheriris
X = meas;
```
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Define the following two data sets.

- fullX contains all the predictors.
- partX contains the petal dimensions.

fullX = X;
partX = X(:,3:4);

For each predictor set, train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...
              'ClassNames',classOrder);
PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,...
                 'ClassNames',classOrder);

CVMdl and PCVMdl are ClassificationPartitionedECOC models. By default, the software implements 10-fold cross-validation.

Estimate the margins for each classifier. Use loss-based decoding for aggregating the binary learner results. For each model, display the distribution of the margins using a boxplot.

fullMargins = kfoldMargin(CVMdl,'Decoding','lossbased');
partMargins = kfoldMargin(PCVMdl,'Decoding','lossbased');

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'})
title('Distributions of Margins')
The margin distributions are approximately the same.

**Input Arguments**

**CVMdl** — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a `ClassificationPartitionedECOC` model. You can create a `ClassificationPartitionedECOC` model in two ways:

- Pass a trained ECOC model (`ClassificationECOC`) to `crossval`. 
• Train an ECOC model using `fitcecoc` and specify any one of these cross-validation name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `kfoldMargin(CVMdl,'Verbose',1)` specifies to display diagnostic messages in the Command Window.

**BinaryLoss — Binary learner loss function**

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where $y_j$ is a class label for a particular binary learner (in the set {-1,1,0}), $s_j$ is the score for observation $j$, and $g(y_j,s_j)$ is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>[\log[1 + \exp(-2y_j s_j)]/\ [2\log(2)]]</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>[\exp(-y_j s_j)/2]</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>[1 - \text{sign}(y_j s_j)/2]</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>[\max(0,1 - y_j s_j)/2]</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>[(1 - y_j s_j)/2]</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>[\log[1 + \exp(-y_j s_j)]/\ [2\log(2)]]</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>[1 - y_j(2s_j - 1)]^2/2]</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.
• For a custom binary loss function, for example, customFunction, specify its function handle 'BinaryLoss', @customFunction.

customFunction has this form:

\[ bLoss = customFunction(M,s) \]

where:

• \( M \) is the \( K \)-by-\( L \) coding matrix stored in Mdl.CodingMatrix.
• \( s \) is the 1-by-\( L \) row vector of classification scores.
• \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
• \( K \) is the number of classes.
• \( L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

• SVMs or either linear or kernel classification models of SVM learners, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is 'exponential'
• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior', 1 in fitcecoc), then BinaryLoss is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the BinaryLoss property of the trained model at the command line.

Example: 'BinaryLoss', 'binodeviance'

Data Types: char | string | function_handle

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding', 'lossbased'

**Options — Estimation options**

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options', statset('UseParallel', 1).

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. **Verbose** controls the number of diagnostic messages that the software displays in the Command Window.

If **Verbose** is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

**Output Arguments**

**margin — Classification margins**

numeric vector

Classification margins on page 32-3244, returned as a numeric vector. **margin** is an n-by-1 vector, where each row is the margin of the corresponding observation and n is the number of observations (size(CVMdl.X, 1)).
Definitions

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \( m_{kj} \) is element \((k,j)\) of the coding design matrix \( M \) (that is, the code corresponding to class \( k \) of binary learner \( j \)).
- \( s_j \) is the score of binary learner \( j \) for an observation.
- \( g \) is the binary loss function.
- \( \hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \text{argmin}_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
\[
\hat{k} = \arg\min_k \frac{1}{L} \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_j, s_j)\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j, s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty, \infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty, \infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty, \infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty, \infty))</td>
<td>(\max(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty, \infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty, \infty))</td>
<td>(\log[1 + \exp(-y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0\), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

References


**Extended Capabilities**

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

**See Also**
ClassificationECOC | ClassificationPartitionedECOC | fitcecoc | kfoldEdge | kfoldPredict | margin | statset

**Topics**
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
Introduced in R2014b
**kfoldMargin**

**Package:** classreg.learning.partition

Classification margins for cross-validated kernel classification model

**Syntax**

```
margin = kfoldMargin(CVMdl)
```

**Description**

```
margin = kfoldMargin(CVMdl) returns the classification margins on page 32-3253 obtained by the cross-validated, binary kernel model (ClassificationPartitionedKernel) CVMdl. For every fold, kfoldMargin computes the classification margins for validation-fold observations using a model trained on training-fold observations.
```

**Examples**

**Estimate k-Fold Cross-Validation Margins**

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled as either bad ('b') or good ('g').

```
load ionosphere
```

Cross-validate a binary kernel classification model using the data.

```
CVMdl = fitckernel(X,Y,'Crossval','on')
```

```
CVMdl =
 classreg.learning.partition.ClassificationPartitionedKernel
 CrossValidatedModel: 'Kernel'
 ResponseName: 'Y'
 NumObservations: 351
```
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: {'b'  'g'}
ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the classification margins for validation-fold observations.

m = kfoldMargin(CVMdl);
size(m)
ans = 1×2
    351     1

m is a 351-by-1 vector. m(j) is the classification margin for observation j.

Plot the k-fold margins using a boxplot.

boxplot(m,'Labels','All Observations')
title('Distribution of Margins')
Feature Selection Using \( k \)-Fold Margins

Perform feature selection by comparing \( k \)-fold margins from multiple models. Based solely on this criterion, the classifier with the greatest margins is the best classifier.

Load the \texttt{ionosphere} data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

\texttt{load ionosphere}

Randomly choose 10\% of the predictor variables.
rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Cross-validate two binary kernel classification models: one that uses all of the predictors, and one that uses 10% of the predictors.

CVMdl = fitckernel(X,Y,'CrossVal','on');
PCVMdl = fitckernel(X(:,idxPart),Y,'CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernel models. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the k-fold margins for each classifier.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

Plot the distribution of the margin sets using box plots.

boxplot([fullMargins partMargins], ...  
    'Labels',{'All Predictors','10% of the Predictors'});
title('Distribution of Margins')
The quartiles of the PCVMdl margin distribution are situated higher than the quartiles of the CVMdl margin distribution, indicating that the PCVMdl model is the better classifier.

**Input Arguments**

**CVMdl** — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a ClassificationPartitionedKernel model object. You can create a
ClassificationPartitionedKernel model by using fitckernel and specifying any one of the cross-validation name-value pair arguments.

To obtain estimates, kfoldMargin applies the same data used to cross-validate the kernel classification model (X and Y).

Output Arguments

margin — Classification margins
numeric vector

Classification margins on page 32-3253, returned as a numeric vector. margin is an n-by-1 vector, where each row is the margin of the corresponding observation and n is the number of observations (size(CVMdl.Y,1)).

Definitions

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

x is an observation. If the true label of x is the positive class, then y is 1, and -1 otherwise. f(x) is the positive-class classification score for the observation x. The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
**Classification Score**

For kernel classification models, the raw classification score for classifying the observation $x$, a row vector, into the positive class is defined by

$$f(x) = T(x)\beta + b.$$  

- $T(\cdot)$ is a transformation of an observation for feature expansion.
- $\beta$ is the estimated column vector of coefficients.
- $b$ is the estimated scalar bias.

The raw classification score for classifying $x$ into the negative class is $-f(x)$. The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

**See Also**

ClassificationPartitionedKernel | fitckernel

**Introduced in R2018b**
**kfoldMargin**

**Package:** classreg.learning.partition

Classification margins for cross-validated kernel ECOC model

**Syntax**

```matlab
margin = kfoldMargin(CVMdl)
margin = kfoldMargin(CVMdl,Name,Value)
```

**Description**

`margin = kfoldMargin(CVMdl)` returns the classification margins on page 32-3262 obtained by the cross-validated kernel ECOC model (`ClassificationPartitionedKernelECOC`) `CVMdl`. For every fold, `kfoldMargin` computes the classification margins for validation-fold observations using a model trained on training-fold observations.

`margin = kfoldMargin(CVMdl,Name,Value)` returns classification margins with additional options specified by one or more name-value pair arguments. For example, specify the binary learner loss function, decoding scheme, or verbosity level.

**Examples**

**Estimate k-Fold Cross-Validation Margins**

Load Fisher's iris data set. `X` contains flower measurements, and `Y` contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```

Cross-validate an ECOC model composed of kernel binary learners.
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl =
    classreg.learning.partition.ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
    ResponseName: 'Y'
    NumObservations: 150
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the classification margins for validation-fold observations.

m = kfoldMargin(CVMdl);
size(m)

ans = 1x2

150   1

m is a 150-by-1 vector. m(j) is the classification margin for observation j.

Plot the k-fold margins using a boxplot.

boxplot(m,'Labels','All Observations')
title('Distribution of Margins')
Feature Selection Using k-Fold Margins

Perform feature selection by comparing k-fold margins from multiple models. Based solely on this criterion, the classifier with the greatest margins is the best classifier.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```
Randomly choose half of the predictor variables.

```matlab
rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));
```

Cross-validate two ECOC models composed of kernel classification models: one that uses all of the predictors, and one that uses half of the predictors.

```matlab
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');
```

CVMdl and PCVMdl are ClassificationPartitionedKernelECOC models. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Estimate the k-fold margins for each classifier.

```matlab
fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);
```

Plot the distribution of the margin sets using box plots.

```matlab
boxplot([fullMargins partMargins], ... 'Labels',{'All Predictors','Half of the Predictors'});
title('Distribution of Margins')
```
The PCVMdl margin distribution is similar to the CVMdl margin distribution.

**Input Arguments**

**CVMdl** — Cross-validated kernel ECOC model
`ClassificationPartitionedKernelECOC` model

Cross-validated kernel ECOC model, specified as a `ClassificationPartitionedKernelECOC` model. You can create a `ClassificationPartitionedKernelECOC` model by training an ECOC model using `fitcecoc` and specifying these name-value pair arguments:
• 'Learners' – Set the value to 'kernel', a template object returned by 
templateKernel, or a cell array of such template objects.
• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 
'Leaveout'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the 
argument name and Value is the corresponding value. Name must appear inside quotes. 
You can specify several name and value pair arguments in any order as 
Name1, Value1, ..., NameN, ValueN.

Example: kfoldMargin(CVMdl,'Verbose',1) specifies 
to display diagnostic messages 
in the Command Window.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 
'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 
'BinaryLoss' and a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where \( y_j \) is a class 
label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation 
\( j \), and \( g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-2y_j s_j)]/ [2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>( \exp(-y_j s_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1] ) or ((-\infty,\infty))</td>
<td>( [1 - \text{sign}(y_j s_j)]/2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>( \max(0,1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>( 1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-y_j s_j)]/ [2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( [1 - y_j(2s_j - 1)]^2/2 )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the 
software calculates the mean binary loss for each class.
For a custom binary loss function, for example, `customFunction`, specify its function handle `'BinaryLoss',@customFunction.'

`customFunction` has this form:

\[ bLoss = customFunction(M,s) \]

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in `Mdl.CodingMatrix`.
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then `BinaryLoss` is `'hinge'`. If all binary learners are kernel classification models using logistic regression, then `BinaryLoss` is `'quadratic'`.

Example: `'BinaryLoss','binodeviance'`

Data Types: `char` | `string` | `function_handle`

**Decoding — Decoding scheme**

`'lossweighted'`(default) | `'lossbased'`

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of `'Decoding'` and `'lossweighted'` or `'lossbased'`. For more information, see “Binary Loss” on page 32-3263.

Example: `'Decoding','lossbased'`

**Options — Estimation options**

`[]` (default) | structure array returned by `statset`

Estimation options, specified as the comma-separated pair consisting of `'Options'` and a structure array returned by `statset`.

To invoke parallel computing:
• You need a Parallel Computing Toolbox license.
• Specify 'Options', statset('UseParallel', 1).

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. **Verbose** controls the number of diagnostic messages that the software displays in the Command Window.

If **Verbose** is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

**Output Arguments**

**margin — Classification margins**

numeric vector

Classification margins on page 32-3262, returned as a numeric vector. **margin** is an \( n \)-by-1 vector, where each row is the margin of the corresponding observation and \( n \) is the number of observations (\( \text{size(CVMdl.Y,1)} \)).

**Definitions**

**Classification Margin**

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg \min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj},s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg \min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj},s_j)}{\sum_{j=1}^{L} |m_{kj}|}.$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j,s_j)$.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-2y_j s_j)]/ [2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>( \exp(-y_j s_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>( [1 - \text{sign}(y_j s_j)]/2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>( \max(0,1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>( (1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-y_j s_j)]/ [2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( [1 - y_j^2(2s_j - 1)]^2/2 )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**References**


**See Also**

ClassificationPartitionedKernelECOC fitcecoc
Introduced in R2018b
kfoldMargin

Classification margins for observations not used in training

Syntax

\[ m = \text{kfoldMargin(CVMdl)} \]

Description

\[ m = \text{kfoldMargin(CVMdl)} \] returns the cross-validated classification margins on page 32-3274 obtained by the cross-validated, binary, linear classification model \( CVMdl \). That is, for every fold, \( \text{kfoldMargin} \) estimates the classification margins for observations that it holds out when it trains using all other observations.

\( m \) contains classification margins for each regularization strength in the linear classification models that comprise \( CVMdl \).

Input Arguments

\( CVMdl \) — Cross-validated, binary, linear classification model
\text{ClassificationPartitionedLinear} model object

Cross-validated, binary, linear classification model, specified as a \text{ClassificationPartitionedLinear} model object. You can create a \text{ClassificationPartitionedLinear} model using \text{fitclinear} and specifying any one of the cross-validation, name-value pair arguments, for example, \text{CrossVal}.

To obtain estimates, \( \text{kfoldMargin} \) applies the same data used to cross-validate the linear classification model (\( X \) and \( Y \)).
Output Arguments

m — Cross-validated classification margins
numeric vector | numeric matrix

Cross-validated classification margins on page 32-3274, returned as a numeric vector or matrix.

m is \( n\)-by-\( L \), where \( n \) is the number of observations in the data that created CVMdl (see \( X \) and \( Y \)) and \( L \) is the number of regularization strengths in CVMdl (that is, numel(CVMdl.Trained{1}.Lambda)).

\( m(i,j) \) is the cross-validated classification margin of observation \( i \) using the linear classification model that has regularization strength \( \text{CVMdl.Trained{1}.Lambda}(j) \).

Data Types: single | double

Examples

Estimate k-Fold Cross-Validation Margins

Load the NLP data set.

load nlpdata

\( X \) is a sparse matrix of predictor data, and \( Y \) is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

\[ Y_{\text{stats}} = Y == '\text{stats}' \; \]

Cross-validate a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

\[ \text{rng}(1); \% \text{For reproducibility} \]
\[ \text{CVMdl} = \text{fitclinear}(X,Y_{\text{stats}},'\text{CrossVal}','\text{on}'); \]
CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the cross-validated margins.

```matlab
m = kfoldMargin(CVMdl);
size(m)
```

ans = 1×2

31572 1

`m` is a 31572-by-1 vector. `m(j)` is the average of the out-of-fold margins for observation `j`.

Plot the `k`-fold margins using box plots.

```matlab
figure;
boxplot(m);
h = gca;
h.YLim = [-5 30];
title('Distribution of Cross-Validated Margins')
```
Feature Selection Using $k$-fold Margins

One way to perform feature selection is to compare $k$-fold margins from multiple models. Based solely on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate $k$-Fold Cross-Validation Margins” on page 32-3267.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```
Create these two data sets:

- **fullX** contains all predictors.
- **partX** contains 1/2 of the predictors chosen at random.

```matlab
rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);
```

Cross-validate two binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that observations correspond to columns.

```matlab
CVMdl = fitclinear(fullX,Ystats,'CrossVal','on','Solver','sparsa',...
 'ObservationsIn','columns');
PCVMdl = fitclinear(partX,Ystats,'CrossVal','on','Solver','sparsa',...
 'ObservationsIn','columns');
```

*CVMdl* and *PCVMdl* are `ClassificationPartitionedLinear` models.

Estimate the $k$-fold margins for each classifier. Plot the distribution of the $k$-fold margins sets using box plots.

```matlab
fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

figure;
boxplot([fullMargins partMargins],'Labels',...%
 {'All Predictors','Half of the Predictors'});
h = gca;
h.YLim = [-30 60];
title('Distribution of Cross-Validated Margins')
```
The distributions of the margins of the two classifiers are similar.

**Find Good Lasso Penalty Using k-fold Margins**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare distributions of k-fold margins.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Margins” on page 32-3267.
load nlpdata
Ystats = Y == 'stats';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from $10^{-8}$ through $10^1$.

Lambda = logspace(-8,1,11);

Cross-validate a binary, linear classification model using 5-fold cross-validation and that uses each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl =
    classreg.learning.partition.ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
    ResponseName: 'Y'
    NumObservations: 31572
    KFold: 5
    Partition: [1x1 cvpartition]
    ClassNames: [0 1]
    ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each fold.

Estimate the $k$-fold margins for each regularization strength.

m = kfoldMargin(CVMdl);
size(m)

ans =
    31572         11
$m$ is a 31572-by-11 matrix of cross-validated margins for each observation. The columns correspond to the regularization strengths.

Plot the $k$-fold margins for each regularization strength. Because logistic regression scores are in $[0,1]$, margins are in $[-1,1]$. Rescale the margins to help identify the regularization strength that maximizes the margins over the grid.

```matlab
figure;
boxplot(10000.^m)
ylabel('Exponentiated test-sample margins')
xlabel('Lambda indices')
```
Several values of Lambda yield k-fold margin distributions that are compacted near 10000^1. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the centers of the k-fold margin distributions start decreasing.

LambdaFinal = Lambda(5);

Train a linear classification model using the entire data set and specify the desired regularization strength.

MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass MdlFinal and the new data to predict.

**Definitions**

**Classification Margin**

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

x is an observation. If the true label of x is the positive class, then y is 1, and -1 otherwise. f(x) is the positive-class classification score for the observation x. The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
**Classification Score**

For linear classification models, the raw classification score for classifying the observation $x$, a row vector, into the positive class is defined by

$$f_j(x) = x\beta_j + b_j.$$  

For the model with regularization strength $j$, $\beta_j$ is the estimated column vector of coefficients (the model property `Beta(:,j)` and $b_j$ is the estimated, scalar bias (the model property `Bias(j)`).

The raw classification score for classifying $x$ into the negative class is $-f(x)$. The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see `ScoreTransform`).

**See Also**

`ClassificationLinear` | `ClassificationPartitionedLinear` | `kfoldEdge` | `kfoldPredict` | `margin`

**Introduced in R2016a**
**kfoldMargin**

Classification margins for observations not used in training

**Syntax**

```matlab
m = kfoldMargin(CVMdl)
```

```matlab
m = kfoldMargin(CVMdl,Name,Value)
```

**Description**

`m = kfoldMargin(CVMdl)` returns the cross-validated classification margins on page 32-3288 obtained by `CVMdl`, which is a cross-validated, error-correcting output codes (ECOC) model composed of linear classification models. That is, for every fold, `kfoldMargin` estimates the classification margins for observations that it holds out when it trains using all other observations.

`m` contains classification margins for each regularization strength in the linear classification models that comprise `CVMdl`.

`m = kfoldMargin(CVMdl,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, specify a decoding scheme or verbosity level.

**Input Arguments**

`CVMdl` — Cross-validated, ECOC model composed of linear classification models
`ClassificationPartitionedLinearECOC` model object

Cross-validated, ECOC model composed of linear classification models, specified as a `ClassificationPartitionedLinearECOC` model object. You can create a `ClassificationPartitionedLinearECOC` model object using `fitcecoc` and by:

1. Specifying any one of the cross-validation, name-value pair arguments, for example, `CrossVal`
2 Setting the name-value pair argument Learners to 'linear' or a linear classification model template returned by templateLinear

To obtain estimates, kfoldMargin applies the same data used to cross-validate the ECOC model (X and Y).

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**BinaryLoss — Binary learner loss function**

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in, loss-function name or function handle.

- This table contains names and descriptions of the built-in functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-2y_j s_j)]/[2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>( \exp(-y_j s_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or ((-\infty,\infty))</td>
<td>( [1 - \text{sign}(y_j s_j)]/2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>( \max(0,1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>( (1 - y_j s_j)/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>( \log[1 + \exp(-y_j s_j)]/[2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>( [1 - y_j (2s_j - 1)]^2/2 )</td>
</tr>
</tbody>
</table>

The software normalizes the binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.
For a custom binary loss function, e.g., customFunction, specify its function handle 'BinaryLoss',@customFunction.

customFunction should have this form

\[
bLoss = \text{customFunction}(M,s)
\]

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in \( Mdl.CodingMatrix \).
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are linear classification models using:

- SVM, then BinaryLoss is 'hinge'
- Logistic regression, then BinaryLoss is 'quadratic'

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

**Options — Estimation options**

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.
To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel', 1).

**Verbose** — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. **Verbose** controls the number of diagnostic messages that the software displays in the Command Window.

If **Verbose** is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

**Output Arguments**

**m** — Cross-validated classification margins

numeric vector | numeric matrix

Cross-validated classification margins on page 32-3288, returned as a numeric vector or matrix.

m is n-by-L, where n is the number of observations in X and L is the number of regularization strengths in Mdl (that is, numel(Mdl.Lambda)).

m(i, j) is the cross-validated classification margin of observation i using the ECOC model, composed of linear classification models, that has regularization strength Mdl.Lambda(j).

**Examples**

**Estimate k-Fold Cross-Validation Margins**

Load the NLP data set.
load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or 'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Cross-validate a multiclass, linear classification model.

rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the \( k \)-fold margins.

\[
m = \text{kfoldMargin}(\text{CVMdl});
\]

\[
\text{size}(m)
\]

ans = 1x2

31572     1

\( m \) is a 31572-by-1 vector. \( m(j) \) is the average of the out-of-fold margins for observation \( j \).

Plot the \( k \)-fold margins using box plots.

figure;
boxplot(m);
h = gca;
h.YLim = [-5 5];
title('Distribution of Cross-Validated Margins')
Feature Selection Using \( k \)-fold Margins

One way to perform feature selection is to compare \( k \)-fold margins from multiple models. Based solely on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate \( k \)-Fold Cross-Validation Margins” on page 32-3279, and orient the predictor data so that observations correspond to columns.
load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create these two data sets:

- **fullX** contains all predictors.
- **partX** contains 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Create a linear classification model template that specifies optimizing the objective function using SpaRSA.

t = templateLinear('Solver','sparsa');

Cross-validate two ECOC models composed of binary, linear classification models: one that uses the all of the predictors and one that uses half of the predictors. Indicate that observations correspond to columns.

CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',...
                 'ObservationsIn','columns');
PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',...
                 'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinearECOC models.

Estimate the k-fold margins for each classifier. Plot the distribution of the k-fold margins sets using box plots.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

figure;
boxplot([fullMargins partMargins],'Labels',... 
        {'All Predictors','Half of the Predictors'});
h = gca;
h.YLim = [-1 1];
title('Distribution of Cross-Validated Margins')
The distributions of the \( k \)-fold margins of the two classifiers are similar.

**Find Good Lasso Penalty Using \( k \)-fold Margins**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare distributions of \( k \)-fold margins.

Load the NLP data set. Preprocess the data as in “Feature Selection Using \( k \)-fold Margins” on page 32-3281.
load nlpdata
Y(~ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from \( 10^{-8} \) through \( 10^1 \).

\[ \text{Lambda} = \text{logspace}(-8,1,11); \]

Create a linear classification model template that specifies using logistic regression with a lasso penalty, using each of the regularization strengths, optimizing the objective function using SpaRSA, and reducing the tolerance on the gradient of the objective function to \( 1e-8 \).

\[ t = \text{templateLinear}('\text{Learner}','\text{logistic}', '\text{Solver}', '\text{sparsa}',... '\text{Regularization}','\text{lasso}', '\text{Lambda}', \text{Lambda}, '\text{GradientTolerance}', 1e-8); \]

Cross-validate an ECOC model composed of binary, linear classification models using 5-fold cross-validation and that

\[ \text{rng}(10); \% \text{For reproducibility} \]
\[ \text{CVMdl} = \text{fitcecoc}(X,Y,'\text{Learners}',t,'\text{ObservationsIn}','\text{columns}','\text{KFold}',5) \]

\[ \text{CVMdl} = \]
\[ \text{classreg.learning.partition.ClassificationPartitionedLinearECOC} \]
\[ \text{CrossValidatedModel: 'Linear'} \]
\[ \text{ResponseName: 'Y'} \]
\[ \text{NumObservations: 31572} \]
\[ \text{KFold: 5} \]
\[ \text{Partition: [1x1 cvpartition]} \]
\[ \text{ClassNames: [comm dsp simulink others]} \]
\[ \text{ScoreTransform: 'none'} \]

Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model.

Estimate the \( k \)-fold margins for each regularization strength. The scores for logistic regression are in \([0,1]\). Apply the quadratic binary loss.

\[ m = \text{kfoldMargin(CVMdl,'\text{BinaryLoss}','\text{quadratic}');} \]
\[ \text{size(m)} \]
m is a 31572-by-11 matrix of cross-validated margins for each observation. The columns correspond to the regularization strengths.

Plot the k-fold margins for each regularization strength.

```matlab
figure;
boxplot(m)
ylabel('Cross-validated margins')
xlabel('Lambda indices')
```

Several values of Lambda yield similarly high margin distribution centers with low spreads. Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier.
Choose the regularization strength that occurs just before the margin distribution center starts decreasing and spread starts increasing.

\[
\text{LambdaFinal} = \text{Lambda}(5);
\]

Train an ECOC model composed of linear classification model using the entire data set and specify the regularization strength LambdaFinal.

\[
t = \text{templateLinear('Learner','logistic','Solver','sparsa',...}
\quad \text{'Regularization','lasso',\text{Lambda},\text{Lambda}(5),\text{GradientTolerance},1e-8);}
MdlFinal = \text{fitcecoc}(X,Y,'Learners',t,'ObservationsIn','columns');
\]

To estimate labels for new observations, pass MdlFinal and the new data to predict.

**Definitions**

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \( m_{kj} \) is element \((k, j)\) of the coding design matrix \( M \) (that is, the code corresponding to class \( k \) of binary learner \( j \)).
- \( s_j \) is the score of binary learner \( j \) for an observation.
- \( g \) is the binary loss function.
- \( \hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).
\]
In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^{L} m_{kj} g(m_{kj}, s_j) / \sum_{j=1}^{L} m_{kj}.
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_j,s_j)\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/2\log(2))</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>(\max(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-y_j s_j)]/2\log(2))</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j (2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0\), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

References


Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.
See Also
ClassificationLinear | ClassificationPartitionedLinearECOC | kfoldEdge | kfoldPredict | margin

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2016a
kfoldMargin

Classification margins for observations not used for training

Syntax

M = kfoldMargin(obj)

Description

M = kfoldMargin(obj) returns classification margins obtained by cross-validated classification model obj. For every fold, this method computes classification margins for in-fold observations using a model trained on out-of-fold observations.

Input Arguments

obj

A partitioned classification model of type ClassificationPartitionedModel or ClassificationPartitionedEnsemble.

Output Arguments

M

The classification margin.

Examples

Estimate the k-fold Margins of a Classifier

Find the k-fold margins for an ensemble that classifies the ionosphere data.
Load the `ionosphere` data set.

```matlab
load ionosphere
```

Create a template tree stump.

```matlab
t = templateTree('MaxNumSplits',1);
```

Train a classification ensemble of decision trees. Specify `t` as the weak learner.

```matlab
Mdl = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);
```

Cross validate the classifier using 10-fold cross validation.

```matlab
cvens = crossval(Mdl);
```

Compute the k-fold margins. Display summary statistics for the margins.

```matlab
m = kfoldMargin(cvens);
marginStats = table(min(m),mean(m),max(m),...
 'VariableNames',{'Min','Mean','Max'});
```

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-11.312</td>
<td>7.3236</td>
<td>23.517</td>
</tr>
</tbody>
</table>

**Definitions**

**Margin**

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix `X`. A high value of margin indicates a more reliable prediction than a low value.
Score

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- **AdaBoostM1** scores range from $-\infty$ to $\infty$.
- **Bag** scores range from $0$ to $1$.

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor $X$ as true when $X < 0.15$ or $X > 0.95$, and $X$ is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```
Prune the tree:

treel = prune(tree,'Level',1);
view(treel,'Mode','Graph')
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
[~,score] = predict(tree1,X(1:10));
[(score X(1:10,:))]
```
Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (.95,1) instead of the expected 5 observations.

See Also
ClassificationPartitionedModel | crossval | kfoldEdge | kfoldLoss | kfoldPredict | kfoldfun
kfoldPredict

Package: classreg.learning.partition

Classify observations in cross-validated ECOC model

Syntax

label = kfoldPredict(CVMdl)
label = kfoldPredict(CVMdl,Name,Value)
[label,NegLoss,PBScore] = kfoldPredict(__)
[label,NegLoss,PBScore,Posterior] = kfoldPredict(__)

Description

label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold, kfoldPredict predicts class labels for observations that it holds out during training. CVMdl.X contains both sets of observations.

The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with additional options specified by one or more name-value pair arguments. For example, specify the posterior probability estimation method, decoding scheme, or verbosity level.

[label,NegLoss,PBScore] = kfoldPredict(__) additionally returns negated values of the average binary loss per class (NegLoss) for validation-fold observations and positive-class scores (PBScore) for validation-fold observations classified by each binary learner, using any of the input argument combinations in the previous syntaxes.

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or denserandom), then PBScore is empty ([]).
[label,NegLoss,PBScore,Posterior] = kfoldPredict(___) additionally returns posterior class probability estimates for validation-fold observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',1 when training the cross-validated ECOC model using fitcecoc. Otherwise, kfoldPredict throws an error.

### Examples

#### Predict k-Fold Cross-Validation Labels

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the classes in Y.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictor data using an SVM template, and specify the class order:

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
```

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

Predict the validation-fold labels. Print a random subset of true and predicted labels.

```matlab
labels = kfoldPredict(CVMdl);
idx = randsample(numel(labels),10);
table(Y(idx),labels(idx),...
'VariableNames',{'TrueLabels','PredictedLabels'})
```

ans=10×2 table
     TrueLabels    PredictedLabels
           {'setosa'     }    {'setosa'     }
         {'versicolor' }    {'versicolor'}
         {'virginica'  }    {'virginica' }
         {'setosa'     }    {'versicolor'}
         {'setosa'     }    {'versicolor'}
         {'setosa'     }    {'virginica' }
         {'setosa'     }    {'setosa'     }
         {'versicolor' }    {'versicolor'}
         {'versicolor' }    {'versicolor'}
         {'virginica'  }    {'virginica' }

32-3297
CVMdl correctly labels the validation-fold observations with indices idx.

**Predict Cross-Validation Labels Using Custom Binary Loss Function**

Load Fisher's iris data set. Specify the predictor data \( X \), the response data \( Y \), and the order of the classes in \( Y \).

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
K = numel(classOrder); % Number of classes
rng(1); % For reproducibility
```

Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
```

CVMdl is a `ClassificationPartitionedECOC` model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

SVM scores are signed distances from the observation to the decision boundary. Therefore, the domain is \((-\infty, \infty)\). Create a custom binary loss function that:
• Maps the coding design matrix \( (M) \) and positive-class classification scores \( (s) \) for each learner to the binary loss for each observation
• Uses linear loss
• Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Alternatively, you can specify an anonymous binary loss function. In this case, create a function handle \( (\text{customBL}) \) to an anonymous binary loss function.

\[
\text{customBL} = @(M,s)\frac{\text{nanmedian}(1 - \text{bsxfun}(@\times,M,s),2)}{2};
\]

Predict cross-validation labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 validation-fold observations.

\[
\text{[label,NegLoss]} = \text{kfoldPredict}(\text{CVMdl},\text{''BinaryLoss'',''}\text{customBL});
\]

\[
\text{idx} = \text{randsample}(\text{numel(label)},10);
\]

\[
\text{classOrder} = 3\times1 \text{ categorical array}
\]

\[
\begin{align*}
\text{setosa} \\
\text{versicolor} \\
\text{virginica}
\end{align*}
\]

\[
\text{table}(\text{Y(idx),label(idx),NegLoss(idx,:)},\text{''VariableNames'',''}\text{''TrueLabel'',''}\text{''PredictedLabel'',''}\text{''NegLoss''})
\]

\[
\begin{array}{ccc}
\text{TrueLabel} & \text{PredictedLabel} & \text{NegLoss} \\
\hline
\text{setosa} & \text{versicolor} & 0.37141 \\
\text{versicolor} & \text{versicolor} & -1.2167 \\
\text{setosa} & \text{versicolor} & 0.23927 \\
\text{virginica} & \text{virginica} & -1.9154 \\
\text{versicolor} & \text{versicolor} & -1.3746 \\
\text{setosa} & \text{versicolor} & 0.20061 \\
\text{virginica} & \text{versicolor} & -1.4928 \\
\text{virginica} & \text{virginica} & -1.7669 \\
\text{setosa} & \text{versicolor} & 0.19999 \\
\text{setosa} & \text{versicolor} & 0.16108 \\
\end{array}
\]

\[
\text{32-3299}
\]
The order of the columns corresponds to the elements of `classOrder`. The software predicts the label based on the maximum negated loss. The results indicate that the median of the linear losses might not perform as well as other losses.

**Estimate Cross-Validation Posterior Probabilities**

Load Fisher's iris data set. Use the petal dimensions as the predictor data X. Specify the response data Y and the order of the classes in Y.

```matlab
load fisheriris
X = meas(:,3:4);
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```

Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.

```matlab
t = templateSVM('Standardize',1,'KernelFunction','gaussian');
t
```

t is an SVM template. Most of its properties are empty. When training the ECOC classifier, the software sets the applicable properties to their default values.

Train and cross-validate an ECOC classifier using the SVM template. Transform classification scores to class posterior probabilities (returned by `kfoldPredict`) using the 'FitPosterior' name-value pair argument. Specify the class order.

```matlab
CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on','FitPosterior',true,... 'ClassNames',classOrder);
CVMdl
```

CVMdl is a `ClassificationPartitionedECOC` model. By default, the software uses 10-fold cross-validation.

Predict the validation-fold class posterior probabilities. Use 10 random initial values for the Kullback-Leibler algorithm.

```matlab
[label,~,~,Posterior] = kfoldPredict(CVMdl,'NumKLInitializations',10);
Posterior
```

The software assigns an observation to the class that yields the smallest average binary loss. Because all the binary learners compute posterior probabilities, the binary loss function is quadratic.

Display a random set of results.
idx = randsample(size(X,1),10);
CVMdl.ClassNames
ans = 3x1 categorical array
    setosa
    versicolor
    virginica

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})
ans=10×3 table
    TrueLabel     PredLabel                   Posterior
    __________    __________    ______________________________________
    versicolor    versicolor     0.0086394       0.98243     0.0089291
    versicolor    virginica     2.2197e-14       0.12447       0.87553
    setosa        setosa             0.999    0.00022837    0.00076884
    versicolor    versicolor    2.2194e-14       0.98916      0.010839
    virginica     virginica       0.012318      0.012925       0.97468
    virginica     virginica      0.0015571     0.0015638       0.99688
    virginica     virginica      0.0042895     0.0043556       0.99135
    setosa        setosa             0.999    0.00028329    0.00071382
    virginica     virginica      0.0094721     0.0098231        0.9807
    setosa        setosa             0.999    0.00013562    0.00086192

The columns of Posterior correspond to the class order of CVMdl.ClassNames.

Estimate Cross-Validation Posterior Probabilities Using Parallel Computing

Train a multiclass ECOC model and estimate the posterior probabilities using parallel computing.

Load the arrhythmia data set. Examine the response data Y.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

    Value    Count    Percent
        1       245    54.20%
Several classes are not represented in the data, and many of the other classes have low relative frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak classification tree learners.

\[
t = \text{templateEnsemble}('\text{GentleBoost}', 50, '\text{Tree}');
\]

\[t\] is a template object. Most of the options are empty ([]). The software uses default values for all empty options during training.

Because the response variable contains many classes, specify a sparse random coding design.

\[
\text{rng}(1); \quad \% \text{For reproducibility}
\]
\[
\text{Coding} = \text{designecoc}(K, '\text{sparserandom}');
\]

Train and cross-validate an ECOC model using parallel computing. Fit posterior probabilities (returned by \text{kfoldPredict}).

\[
\text{pool} = \text{parpool}; \quad \% \text{Invokes workers}
\]

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

\[
\text{options} = \text{statset}('\text{UseParallel}', 1);
\]
\[
\text{CVMdl} = \text{fitcecoc}(X, Y, '\text{Learner}', t, '\text{Options}', options, '\text{Coding}', Coding, ...
\quad '\text{FitPosterior}', 1, '\text{CrossVal}', 'on');
\]

Warning: One or more folds do not contain points from all the groups.
CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold' name-value pair argument.

The pool invokes six workers, although the number of workers might vary among systems. Because some classes have low relative frequency, one or more folds most likely do not contain observations from all classes.

Estimate posterior probabilities, and display the posterior probability of being classified as not having arrhythmia (class 1) given the data for a random set of validation-fold observations.

```matlab
[~,~,~,posterior] = kfoldPredict(CVMdl,'Options',options);
idx = randsample(n,10);
table(idx,Y(idx),posterior(idx,1),
 'VariableNames',{'OOFSampleIndex','TrueLabel','PosteriorNoArrhythmia'})
```

<table>
<thead>
<tr>
<th>OOFSampleIndex</th>
<th>TrueLabel</th>
<th>PosteriorNoArrhythmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>1</td>
<td>0.33654</td>
</tr>
<tr>
<td>221</td>
<td>1</td>
<td>0.85135</td>
</tr>
<tr>
<td>72</td>
<td>16</td>
<td>0.9174</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.025649</td>
</tr>
<tr>
<td>202</td>
<td>10</td>
<td>0.025649</td>
</tr>
<tr>
<td>243</td>
<td>1</td>
<td>0.8438</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.9435</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>0.090154</td>
</tr>
<tr>
<td>234</td>
<td>1</td>
<td>0.61625</td>
</tr>
<tr>
<td>315</td>
<td>1</td>
<td>0.97187</td>
</tr>
</tbody>
</table>

**Input Arguments**

**CVMdl — Cross-validated ECOC model**

ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model. You can create a ClassificationPartitionedECOC model in two ways:
• Pass a trained ECOC model (ClassificationECOC) to crossval.
• Train an ECOC model using fitcecoc and specify any one of these cross-validation name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: kfoldPredict(CVMdl,'PosteriorMethod','qp') specifies to estimate multiclass posterior probabilities by solving a least-squares problem using quadratic programming.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>g(yj,sj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>(–∞,∞)</td>
<td>[\log[1 + \exp(-2y_j s_j)]/2\log(2)]</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>(–∞,∞)</td>
<td>[\exp(-y_j s_j)/2]</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or (–∞,∞)</td>
<td>[(1 - \text{sign}(y_j s_j))/2]</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>(–∞,∞)</td>
<td>[\max(0,1 - y_j s_j)/2]</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>(–∞,∞)</td>
<td>[1 - y_j s_j]/2</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>(–∞,∞)</td>
<td>[\log[1 + \exp(-y_j s_j)]/2\log(2)]</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>[(1 - y_j (2s_j - 1))^2/2]</td>
</tr>
</tbody>
</table>
The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, customFunction, specify its function handle 'BinaryLoss',@customFunction.

customFunction has this form:

```
bLoss = customFunction(M,s)
```

where:

- $M$ is the $K$-by-$L$ coding matrix stored in Mdl.CodingMatrix.
- $s$ is the 1-by-$L$ row vector of classification scores.
- $bLoss$ is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- $K$ is the number of classes.
- $L$ is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then `BinaryLoss` is 'hinge'
- Ensembles trained by AdaboostM1 or GentleBoost, then `BinaryLoss` is 'exponential'
- Ensembles trained by LogitBoost, then `BinaryLoss` is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in fitcecoc), then `BinaryLoss` is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the `BinaryLoss` property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle
Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl' (the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.

Example: 'NumKLInitializations',5

Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options',statset('UseParallel',1).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of 'PosteriorMethod' and 'kl' or 'qp'.

32-3306
• If `PosteriorMethod` is 'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.
• If `PosteriorMethod` is 'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on page 32-4990.
• If you do not request the fourth output argument (`Posterior`), then the software ignores the value of `PosteriorMethod`.

Example: 'PosteriorMethod','qp'

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. `Verbose` controls the number of diagnostic messages that the software displays in the Command Window.

If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: `single` | `double`

**Output Arguments**

**label — Predicted class labels**

categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

`label` has the same data type and number of rows as `CVMdl.Y`.

The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
NegLoss — Negated average binary losses
numeric matrix

Negated average binary losses, returned as a numeric matrix. NegLoss is an \( n \)-by-\( K \) matrix, where \( n \) is the number of observations (\( \text{size(CVMdl.X,1)} \)) and \( K \) is the number of unique classes (\( \text{size(CVMdl.ClassNames,1)} \)).

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is an \( n \)-by-\( L \) matrix, where \( n \) is the number of observations (\( \text{size(CVMdl.X,1)} \)) and \( L \) is the number of binary learners (\( \text{size(CVMdl.CodingMatrix,2)} \)).

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or denserandom), then PBScore is empty (\([]\)).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an \( n \)-by-\( K \) matrix, where \( n \) is the number of observations (\( \text{size(CVMdl.X,1)} \)) and \( K \) is the number of unique classes (\( \text{size(CVMdl.ClassNames,1)} \)).

You must set 'FitPosterior', 1 when training the cross-validated ECOC model using fitcecoc in order to request Posterior. Otherwise, the software throws an error.

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \( m_{kj} \) is element \((k,j)\) of the coding design matrix \( M \) (that is, the code corresponding to class \( k \) of binary learner \( j \)).
- \( s_j \) is the score of binary learner \( j \) for an observation.
• $g$ is the binary loss function.
• $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-22, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^L \left| m_{kj} \right| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-22, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \frac{\sum_{j=1}^L \left| m_{kj} \right| g(m_{kj}, s_j)}{\sum_{j=1}^L \left| m_{kj} \right|}.$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j,s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)]/2\log(2)$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_2s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_js_j)]/2\log(2)$</td>
</tr>
</tbody>
</table>
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

### Algorithms

- The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
  - \( m_{kj} \) is the element \((k,j)\) of the coding design matrix \( M \).
  - \( I \) is the indicator function.
  - \( \hat{p}_k \) is the class posterior probability estimate for class \( k \) of an observation, \( k = 1,...,K \).
  - \( r_j \) is the positive-class posterior probability for binary learner \( j \). That is, \( r_j \) is the probability that binary learner \( j \) classifies an observation into the positive class, given the training data.

### Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is

\[
\Delta(r, \hat{r}) = \sum_{j=1}^{L} w_j \left[ r_j \log \frac{r_j}{\hat{r}_j} + (1-r_j) \log \frac{1-r_j}{1-\hat{r}_j} \right],
\]

where \( w_j = \sum_{S_j} w^*_i \) is the weight for binary learner \( j \).
• \( S_j \) is the set of observation indices on which binary learner \( j \) is trained.

• \( w^*_i \) is the weight of observation \( i \).

The software minimizes the divergence iteratively. The first step is to choose initial values \( \hat{p}^{(0)}_k; k = 1,...,K \) for the class posterior probabilities.

• If you do not specify 'NumKLIterations', then the software uses both sets of deterministic initial values described next, and uses the one that minimizes \( \Delta \).

• \( \hat{p}^{(0)}_k = 1 / K; k = 1,...,K \).

• \( \hat{p}^{(0)}_k; k = 1,...,K \) is the solution of the system

\[
M_{01} \hat{p}^{(0)} = r,
\]

where \( M_{01} \) is \( M \) with all \( m_{kj} = -1 \) replaced with 0, and \( r \) is a vector of positive-class posterior probabilities returned by the \( L \) binary learners [Dietterich et al.] on page 18-222. The software uses \texttt{lsqnonneg} to solve the system.

• If you specify 'NumKLIterations', \( c \), where \( c \) is a natural number, then the software does the following to choose \( \hat{p}^{(0)}_k; k = 1,...,K \), and uses the one that minimizes \( \Delta \).

• The software chooses both sets of deterministic initial values as described previously.

• The software randomly generates \( c \) vectors of length \( K \) using \texttt{rand}, and then normalizes each vector to sum to 1.

At iteration \( t \), the software completes these steps:

1. Compute

\[
\hat{p}^{(t)}_j = \frac{\sum_{k=1}^{K} \hat{p}^{(t)}_k I(m_{kj} = +1)}{\sum_{k=1}^{K} \hat{p}^{(t)}_k I(m_{kj} = +1 \cup m_{kj} = -1)}.
\]
2 Estimate the next class posterior probability using

\[
\hat{p}_k^{(t+1)} = \frac{\sum_{j=1}^{L} w_j \left[ r_j I(m_{kj} = +1) + (1 - r_j) I(m_{kj} = -1) \right]}{\sum_{j=1}^{L} w_j \left[ \hat{r}_j^{(t)} I(m_{kj} = +1) + (1 - \hat{r}_j^{(t)}) I(m_{kj} = -1) \right]}.
\]

3 Normalize \( \hat{p}_k^{(t+1)} \); \( k = 1, \ldots, K \) so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 18-222 and [Zadrozny] on page 18-224.

**Posterior Estimation Using Quadratic Programming**

Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:

1 Estimate the positive-class posterior probabilities, \( r_j \), for binary learners \( j = 1, \ldots, L \).

2 Using the relationship between \( r_j \) and \( \hat{p}_k \) [Wu et al.] on page 18-224, minimize

\[
\sum_{j=1}^{L} \left[ -r_j \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = -1) + (1 - r_j) \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = +1) \right]^2
\]

with respect to \( \hat{p}_k \) and the restrictions

\[
0 \leq \hat{p}_k \leq 1
\]

\[
\sum_k \hat{p}_k = 1.
\]

The software performs minimization using `quadprog`.
References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.
Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | ClassificationPartitionedECOC | edge | fitcecoc | predict | quadprog | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2014b
**kfoldPredict**

**Package:** classreg.learning.partition

Classify observations in cross-validated kernel classification model

**Syntax**

```matlab
label = kfoldPredict(CVMdl)
[label,score] = kfoldPredict(CVMdl)
```

**Description**

`label = kfoldPredict(CVMdl)` returns class labels predicted by the cross-validated, binary kernel model (`ClassificationPartitionedKernel`) `CVMdl`. For every fold, `kfoldPredict` predicts class labels for validation-fold observations using a model trained on training-fold observations.

`[label,score] = kfoldPredict(CVMdl)` also returns classification scores on page 32-3320 for both classes.

**Examples**

**Classify Observations Using Cross-Validation**

Classify observations using a cross-validated, binary kernel classifier, and display the confusion matrix for the resulting classification.

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad (`'b'`) or good (`'g'`).

```matlab
load ionosphere
```

Cross-validate a binary kernel classification model using the data.
rng(1); % For reproducibility
CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
    classreg.learning.partition.ClassificationPartitionedKernel 
    CrossValidatedModel: 'Kernel' 
    ResponseName: 'Y' 
    NumObservations: 351 
    KFold: 10 
    Partition: [1x1 cvpartition] 
    ClassNames: {'b' 'g'} 
    ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Classify the observations that fitckernel does not use in training the folds.

label = kfoldPredict(CVMdl);

Construct a confusion matrix to compare the true classes of the observations to their predicted labels.

C = confusionmat(Y,label,'Order',{'b','g'})

C = 2x2

    119     7
    32    193

The CVMdl model misclassifies 32 good ('g') radar returns as being bad ('b') and misclassifies 7 bad radar returns as being good.

Estimate k-Fold Cross-Validation Posterior Class Probabilities

Estimate posterior class probabilities using a cross-validated, binary kernel classifier, and determine the quality of the model by plotting a receiver operating characteristic (ROC)
curve. Cross-validated kernel classification models return posterior probabilities for logistic regression learners only.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data. Specify the class order, and fit logistic regression learners.

rng(1); % For reproducibility
CVMdl = fitckernel(X,Y,'Crossval','on', ... 'ClassNames',{'b','g'},'Learner','logistic')

CVMdl = 
    classreg.learning.partition.ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
    ResponseName: 'Y'
    NumObservations: 351
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'

Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Predict the posterior class probabilities for the observations that fitckernel does not use in training the folds.

 [~,posterior] = kfoldPredict(CVMdl);

The output posterior is a matrix with two columns and n rows, where n is the number of observations. Column i contains posterior probabilities of CVMdl.ClassNames(i) given a particular observation.

Obtain false and true positive rates, and estimate the area under the curve (AUC). Specify that the second class is the positive class.
[fpr,tpr,~,auc] = perfcurve(Y,posterior(:,2),CVMdl.ClassNames(2));

auc

auc = 0.9441

The AUC is close to 1, which indicates that the model predicts labels well.

Plot an ROC curve.

plot(fpr,tpr)
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve')
Input Arguments

CVMdl — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a
ClassificationPartitionedKernel model object. You can create a
ClassificationPartitionedKernel model by using fitckernel and specifying any
one of the cross-validation name-value pair arguments.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the
kernel classification model (X and Y).

Output Arguments

label — Predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of
class labels
character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric
matrix, or cell array of character vectors.

label has \( n \) rows, where \( n \) is the number of observations in \( X \), and has the same data
type as the observed class labels (\( Y \)) used to train \( CVMdl \). (The software treats string
arrays as cell arrays of character vectors.)

kfoldPredict classifies observations into the class yielding the highest score.

score — Classification scores
numeric array

Classification scores on page 32-3320, returned as an \( n \)-by-2 numeric array, where \( n \) is
the number of observations in \( X \). score\((i,j)\) is the score for classifying observation \( i \)
into class \( j \). The order of the classes is stored in \( CVMdl.ClassNames \).

If \( CVMdl.Trained{1}.Learner \) is 'logistic', then classification scores are posterior
probabilities.
Definitions

Classification Score

For kernel classification models, the raw classification score for classifying the observation \( x \), a row vector, into the positive class is defined by

\[
f(x) = T(x)\beta + b.
\]

- \( T(\cdot) \) is a transformation of an observation for feature expansion.
- \( \beta \) is the estimated column vector of coefficients.
- \( b \) is the estimated scalar bias.

The raw classification score for classifying \( x \) into the negative class is \(-f(x)\). The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

See Also
ClassificationPartitionedKernel | fitckernel

Introduced in R2018b
kfoldPredict

**Package:** classreg.learning.partition

Classify observations in cross-validated kernel ECOC model

**Syntax**

```matlab
label = kfoldPredict(CVMdl)
labeled = kfoldPredict(CVMdl,Name,Value)
[label,NegLoss,PBScore] = kfoldPredict(__)
[label,NegLoss,PBScore,Posterior] = kfoldPredict(__)
```

**Description**

`label = kfoldPredict(CVMdl)` returns class labels predicted by the cross-validated kernel ECOC model (`ClassificationPartitionedKernelECOC`) `CVMdl`. For every fold, `kfoldPredict` predicts class labels for validation-fold observations using a model trained on training-fold observations. `kfoldPredict` applies the same data used to create `CVMdl` (see `fitcecoc`).

The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

`label = kfoldPredict(CVMdl,Name,Value)` returns predicted class labels with additional options specified by one or more name-value pair arguments. For example, specify the posterior probability estimation method, decoding scheme, or verbosity level.

`[label,NegLoss,PBScore] = kfoldPredict(__)` additionally returns negated values of the average binary loss per class (`NegLoss`) for validation-fold observations and positive-class scores (`PBScore`) for validation-fold observations classified by each binary learner, using any of the input argument combinations in the previous syntaxes.

If the coding matrix varies across folds (that is, the coding scheme is `sparserandom` or `denserandom`), then `PBScore` is empty ([]).
[label,NegLoss,PBScore,Posterior] = kfoldPredict(___) additionally returns posterior class probability estimates for validation-fold observations (Posterior).

To obtain posterior class probabilities, the kernel classification binary learners must be logistic regression models. Otherwise, kfoldPredict throws an error.

Examples

Classify Observations Using Cross-Validation

Classify observations using a cross-validated, multiclass kernel ECOC classifier, and display the confusion matrix for the resulting classification.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
CVMdl = 
    classreg.learning.partition.ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
    ResponseName: 'Y'
    NumObservations: 150
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'

Properties, Methods
CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.

Classify the observations that fitcecoc does not use in training the folds.

```matlab
label = kfoldPredict(CVMdl);
```

Construct a confusion matrix to compare the true classes of the observations to their predicted labels.

```matlab
C = confusionmat(Y,label,'Order',{'setosa','versicolor','virginica'})
```

```
C = 3×3
50 0 0
0 46 4
0 1 49
```

The CVMdl model misclassifies four 'versicolor' irises as 'virginica' irises and misclassifies one 'virginica' iris as a 'versicolor' iris.

### Predict Cross-Validation Labels Using Custom Binary Loss

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.

```matlab
load fisheriris
X = meas;
Y = species;
```

Cross-validate an ECOC model of kernel classification models using 5-fold cross-validation.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','KFold',5)
```

```
CVMdl =
 classreg.learning.partition.ClassificationPartitionedKernelECOC
 CrossValidatedModel: 'KernelECOC'
 ResponseName: 'Y'
```

32-3323
NumObservations: 150
KFold: 5
Partition: [1x1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'

CVMdl is a ClassificationPartitionedKernelECOC model. It contains the property
Trained, which is a 5-by-1 cell array of CompactClassificationECOC models.

By default, the kernel classification models that compose the
CompactClassificationECOC models use SVMs. SVM scores are signed distances
from the observation to the decision boundary. Therefore, the domain is $(-\infty, \infty)$. Create
a custom binary loss function that:

- Maps the coding design matrix ($M$) and positive-class classification scores ($s$) for each
  learner to the binary loss for each observation
- Uses linear loss
- Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the
MATLAB® path. Or, you can specify an anonymous binary loss function. In this case,
create a function handle (customBL) to an anonymous binary loss function.

```
customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;
```

Predict cross-validation labels and estimate the median binary loss per class. Print the
median negative binary losses per class for a random set of 10 observations.

```
[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);
```

```matlab
table(Y(idx),label(idx),NegLoss(idx,1),NegLoss(idx,2),NegLoss(idx,3),...
 'VariableNames',{{'True'};'Predicted'};...
 unique(CVMdl.ClassNames))
```

```
ans=10×5 table
 True Predicted setosa versicolor virginica
 _______ ____________ ________ __________ _________
32 Predicted setosa versicolor virginica
```
The cross-validated model correctly predicts the labels for 9 of the 10 random observations.

**Estimate k-Fold Cross-Validation Posterior Class Probabilities**

Estimate posterior class probabilities using a cross-validated, multiclass kernel ECOC classification model. Kernel classification models return posterior probabilities for logistic regression learners only.

Load Fisher's iris data set. \(X\) contains flower measurements, and \(Y\) contains the names of flower species.

```plaintext
load fisheriris
X = meas;
Y = species;
```

Create a kernel template for the binary kernel classification models. Specify to fit logistic regression learners.

```plaintext
t = templateKernel('Learner','logistic')
t =
Fit template for classification Kernel.
```

```
BetaTolerance: []
BlockSize: []
BoxConstraint: []
Epsilon: []
NumExpansionDimensions: []
GradientTolerance: []
```
t is a kernel template. Most of its properties are empty. When training an ECOC classifier using the template, the software sets the applicable properties to their default values.

Cross-validate an ECOC model using the kernel template.

```matlab
rng('default'); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on')
```

CVMdl is a `ClassificationPartitionedECOC` model. By default, the software uses 10-fold cross-validation.

Predict the validation-fold class posterior probabilities.

```matlab
[label,~,~,Posterior] = kfoldPredict(CVMdl);
```

The software assigns an observation to the class that yields the smallest average binary loss. Because all binary learners are computing posterior probabilities, the binary loss function is quadratic.
Display the posterior probabilities for 10 randomly selected observations.

idx = randsample(size(X,1),10);
CVMdl.ClassNames

ans = 3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
    TrueLabel       PredLabel                 Posterior
    ____________    ____________    ________________________________
    'setosa'        'setosa'         0.68216     0.18546     0.13238
    'virginica'     'virginica'       0.1581     0.14405     0.69785
    'virginica'     'virginica'     0.071807    0.093291      0.8349
    'setosa'        'setosa'         0.74918     0.11434     0.13648
    'versicolor'    'versicolor'     0.09375     0.67149     0.23476
    'versicolor'    'versicolor'    0.036202     0.85544     0.10836
    'versicolor'    'versicolor'      0.2252     0.50473     0.27007
    'virginica'     'virginica'     0.061562     0.11086     0.82758
    'setosa'        'setosa'         0.42448     0.21181     0.36371
    'virginica'     'virginica'     0.082705      0.1428      0.7745

The columns of Posterior correspond to the class order of CVMdl.ClassNames.

Input Arguments

CVMdl — Cross-validated kernel ECOC model
ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC model using fitcecoc and specifying these name-value pair arguments:
• 'Learners' – Set the value to 'kernel', a template object returned by templateKernel, or a cell array of such template objects.
• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: kfoldPredict(CVMdl,'PosteriorMethod','qp') specifies to estimate multiclass posterior probabilities by solving a least-squares problem using quadratic programming.

**BinaryLoss — Binary learner loss function**

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>( \log [1 + \exp(-2y_js_j)] / [2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>( \exp(-y_js_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>( [1 - \text{sign}(y_js_j)]/2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>( \max(0,1 - y_js_j)/2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>( (1 - y_js_j)/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>( \log [1 + \exp(-y_js_j)] / [2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( [1 - y_j(2s_j - 1)]^2/2 )</td>
</tr>
</tbody>
</table>
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle `'BinaryLoss','@customFunction`.

  `customFunction` has this form:

  \[
  bLoss = customFunction(M,s)
  \]

  where:

  - \( M \) is the \( K \)-by-\( L \) coding matrix stored in `Mdl.CodingMatrix`.
  - \( s \) is the 1-by-\( L \) row vector of classification scores.
  - \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
  - \( K \) is the number of classes.
  - \( L \) is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then `BinaryLoss` is `'hinge'`. If all binary learners are kernel classification models using logistic regression, then `BinaryLoss` is `'quadratic'`.

Example: `'BinaryLoss','binodeviance'`

Data Types: `char` | `string` | `function_handle`

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of `'Decoding'` and `'lossweighted'` or `'lossbased'`. For more information, see “Binary Loss” on page 32-3332.

Example: `'Decoding','lossbased'`

**NumKLInitializations — Number of random initial values**

\( 0 \) (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence minimization, specified as the comma-separated pair consisting of `'NumKLInitializations'` and a nonnegative integer scalar.
If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl' (the default), then the software ignores the value of NumKLIInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-3334.

Example: 'NumKLIInitializations',5

Data Types: single | double

Options — Estimation options

| [] (default) | structure array returned by statset |

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel',1).

PosteriorMethod — Posterior probability estimation method

| 'kl' (default) | 'qp' |

Posterior probability estimation method, specified as the comma-separated pair consisting of 'PosteriorMethod' and 'kl' or 'qp'.

- If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-3334.
- If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on page 32-3336.
- If you do not request the fourth output argument (Posterior), then the software ignores the value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level

| 0 (default) | 1 |
Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. `Verbose` controls the number of diagnostic messages that the software displays in the Command Window.

If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: single | double

**Output Arguments**

`label — Predicted class labels`  
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

`label` has the same data type and number of rows as `CVMdl.Y`.

The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

`NegLoss — Negated average binary losses`  
numeric matrix

Negated average binary losses, returned as a numeric matrix. `NegLoss` is an n-by-K matrix, where n is the number of observations (size(CVMdl.Y,1)) and K is the number of unique classes (size(CVMdl.ClassNames,1)).

`PBScore — Positive-class scores`  
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. `PBScore` is an n-by-L matrix, where n is the number of observations (size(CVMdl.Y,1)) and L is the number of binary learners (size(CVMdl.CodingMatrix,2)).

If the coding matrix varies across folds (that is, the coding scheme is `sparserandom` or `denserandom`), then `PBScore` is empty ([]).
**Posterior — Posterior class probabilities**

numeric matrix

Posterior class probabilities, returned as a numeric matrix. **Posterior** is an \( n \)-by-\( K \) matrix, where \( n \) is the number of observations (\( \text{size}(\text{CVMdl}.Y,1) \)) and \( K \) is the number of unique classes (\( \text{size}(\text{CVMdl}.\text{ClassNames},1) \)).

To return posterior probabilities, each kernel classification binary learner must have its **Learner** property set to 'logistic'. Otherwise, the software throws an error.

**Definitions**

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \( m_{kj} \) is element \((k,j)\) of the coding design matrix \( M \) (that is, the code corresponding to class \( k \) of binary learner \( j \)).
- \( s_j \) is the score of binary learner \( j \) for an observation.
- \( g \) is the binary loss function.
- \( \hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^{L} m_{kj} g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
\[\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_j, s_j)\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j, s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((\infty, \infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((\infty, \infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((\infty, \infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((\infty, \infty))</td>
<td>(\max(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((\infty, \infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((\infty, \infty))</td>
<td>(\log[1 + \exp(-y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j (2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0\), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**Algorithms**

- The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
• \( m_{kj} \) is the element \((k,j)\) of the coding design matrix \( M \).
• \( I \) is the indicator function.
• \( \hat{\hat{p}}_k \) is the class posterior probability estimate for class \( k \) of an observation, \( k = 1,\ldots,K \).
• \( r_j \) is the positive-class posterior probability for binary learner \( j \). That is, \( r_j \) is the probability that binary learner \( j \) classifies an observation into the positive class, given the training data.

**Posterior Estimation Using Kullback-Leibler Divergence**

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is

\[
\Delta(r, r) = \sum_{j=1}^{L} w_j \left[ r_j \log \frac{r_j}{1-r_j} + (1-r_j) \log \frac{1-r_j}{r_j} \right],
\]

where \( w_j = \sum_{S_j} w_i^* \) is the weight for binary learner \( j \).
• \( S_j \) is the set of observation indices on which binary learner \( j \) is trained.
• \( w_i^* \) is the weight of observation \( i \).

The software minimizes the divergence iteratively. The first step is to choose initial values \( \hat{\hat{p}}_k^{(0)}; k = 1,\ldots,K \) for the class posterior probabilities.
• If you do not specify 'NumKLLIterations', then the software uses both sets of deterministic initial values described next, and uses the one that minimizes \( \Delta \).
  • \( \hat{\hat{p}}_k^{(0)} = 1/K; k = 1,\ldots,K \).
  • \( \hat{\hat{p}}_k^{(0)}; k = 1,\ldots,K \) is the solution of the system

\[ M_{01} \hat{\hat{p}}^{(0)} = r, \]
where $M_{01}$ is $M$ with all $m_{kj} = -1$ replaced with 0, and $r$ is a vector of positive-class posterior probabilities returned by the $L$ binary learners [Dietterich et al.] on page 18-222. The software uses lsqnonneg to solve the system.

- If you specify 'NumKLIterations', $c$, where $c$ is a natural number, then the software does the following to choose $\hat{p}_k^{(0)}$, $k = 1, \ldots, K$, and uses the one that minimizes $\Delta$.

  - The software chooses both sets of deterministic initial values as described previously.
  - The software randomly generates $c$ vectors of length $K$ using rand, and then normalizes each vector to sum to 1.

At iteration $t$, the software completes these steps:

1. Compute

   $$\hat{r}_j^{(t)} = \frac{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1)}{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = 1) + \sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = -1)}.$$

2. Estimate the next class posterior probability using

   $$\hat{p}_k^{(t+1)} = \hat{p}_k^{(t)} \frac{\sum_{j=1}^{L} w_j [r_j I(m_{kj} = 1) + (1 - r_j) I(m_{kj} = -1)]}{\sum_{j=1}^{L} \hat{r}_j^{(t)} I(m_{kj} = 1) + (1 - \hat{r}_j^{(t)}) I(m_{kj} = -1)}.$$

3. Normalize $\hat{p}_k^{(t+1)}$, $k = 1, \ldots, K$ so that they sum to 1.

4. Check for convergence.

For more details, see [Hastie et al.] on page 18-222 and [Zadrozny] on page 18-224.
Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:

1. Estimate the positive-class posterior probabilities, $r_j$, for binary learners $j = 1, \ldots, L$.

2. Using the relationship between $r_j$ and $\hat{p}_k$ [Wu et al.] on page 18-224, minimize

$$
\sum_{j=1}^{L} \left[ -r_j \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = -1) + (1 - r_j) \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = +1) \right]^2
$$

with respect to $\hat{p}_k$ and the restrictions

$$
0 \leq \hat{p}_k \leq 1
$$

$$
\sum_k \hat{p}_k = 1.
$$

The software performs minimization using quadprog.

References


**See Also**

ClassificationPartitionedKernelECOC | fitcecoc

**Introduced in R2018b**
**kfoldPredict**

Predict labels for observations not used for training

**Syntax**

Label = kfoldPredict(CVMdl)
[Label,Score] = kfoldPredict(CVMdl)

**Description**

Label = kfoldPredict(CVMdl) returns cross-validated class labels predicted by the cross-validated, binary, linear classification model CVMdl. That is, for every fold, kfoldPredict predicts class labels for observations that it holds out when it trains using all other observations.

Label contains predicted class labels for each regularization strength in the linear classification models that compose CVMdl.

[Label,Score] = kfoldPredict(CVMdl) also returns cross-validated classification scores on page 32-3348 for both classes. Score contains classification scores for each regularization strength in CVMdl.

**Input Arguments**

**CVMdl — Cross-validated, binary, linear classification model**
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a ClassificationPartitionedLinear model object. You can create a ClassificationPartitionedLinear model object using fitclinear and specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the linear classification model (X and Y).
Output Arguments

Label — Cross-validated, predicted class labels

categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Cross-validated, predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell array of character vectors.

In most cases, Label is an n-by-L array of the same data type as the observed class labels (see Y) used to create CVMdl. (The software treats string arrays as cell arrays of character vectors.) n is the number of observations in the predictor data (see X) and L is the number of regularization strengths in CVMdl.Trained{1}.Lambda. That is, Label(i,j) is the predicted class label for observation i using the linear classification model that has regularization strength CVMdl.Trained{1}.Lambda(j).

If Y is a character array and L > 1, then Label is a cell array of class labels.

Score — Cross-validated classification scores

numeric array

Cross-validated classification scores on page 32-3348, returned as an n-by-2-by-L numeric array. n is the number of observations in the predictor data that created CVMdl (see X) and L is the number of regularization strengths in CVMdl.Trained{1}.Lambda. Score(i,k,j) is the score for classifying observation i into class k using the linear classification model that has regularization strength CVMdl.Trained{1}.Lambda(j). CVMdl.ClassNames stores the order of the classes.

If CVMdl.Trained{1}.Learner is 'logistic', then classification scores are posterior probabilities.

Examples

Predict k-fold Cross-Validation Labels

Load the NLP data set.

load nlpdata
\( X \) is a sparse matrix of predictor data, and \( Y \) is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

\[ Y_{\text{stats}} = Y == '\text{stats}' \; \]

Cross-validate a binary, linear classification model using the entire data set, which can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

\[
\text{rng}(1); \; \% \text{For reproducibility}
\]
\[
\text{CVMdl} = \text{fitclinear}(X,Y_{\text{stats}},'\text{CrossVal}','on');
\]
\[
\text{Mdl1} = \text{CVMdl.Trained}{1}
\]

\[
\text{Mdl1} = \begin{array}{c}
\text{ClassificationLinear} \\
\text{ResponseName: 'Y'} \\
\text{ClassNames: [0 1]} \\
\text{ScoreTransform: 'none'} \\
\text{Beta: [34023x1 double]} \\
\text{Bias: -1.0008} \\
\text{Lambda: 3.5193e-05} \\
\text{Learner: 'svm'}
\end{array}
\]

\[
\text{CVMdl}\;\text{is a}\;\text{ClassificationPartitionedLinear}\;\text{model. By default, the software implements 10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.}
\]

Predict labels for the observations that \text{fitclinear} did not use in training the folds.

\[
\text{label} = \text{kfoldPredict(CVMdl)};
\]

Because there is one regularization strength in \text{Mdl1}, \text{label} is a column vector of predictions containing as many rows as observations in \( X \).

Construct a confusion matrix.

\[
\text{ConfusionTrain} = \text{confusionmat(Ystats,label)}
\]
ConfusionTrain = 2×2

<table>
<thead>
<tr>
<th></th>
<th>30009</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1539</td>
<td></td>
</tr>
</tbody>
</table>

The model misclassifies 15 'stats' documentation pages as being outside of the Statistics and Machine Learning Toolbox documentation, and misclassifies nine pages as 'stats' pages.

**Estimate k-fold Cross-Validation Posterior Class Probabilities**

Linear classification models return posterior probabilities for logistic regression learners only.

Load the NLP data set and preprocess it as in “Predict k-fold Cross-Validation Labels” on page 32-3339. Transpose the predictor data matrix.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```

Cross-validate binary, linear classification models using 5-fold cross-validation. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to 1e-8.

```matlab
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
 'KFold',5,'Learner','logistic','Solver','sparsa',...%
 'Regularization','lasso','GradientTolerance',1e-8);
```

Predict the posterior class probabilities for observations not used to train each fold.

```matlab
 [~,posterior] = kfoldPredict(CVMdl);
 CVMdl.ClassNames
```

```matlab
ans = 2x1 logical array

0
1
```
Because there is one regularization strength in `CVMdl`, `posterior` is a matrix with 2 columns and rows equal to the number of observations. Column `i` contains posterior probabilities of `Mdl.ClassNames(i)` given a particular observation.

Obtain false and true positive rates, and estimate the AUC. Specify that the second class is the positive class.

```
[fpr,tpr,~,auc] = perfcurve(Ystats,posterior(:,2),CVMdl.ClassNames(2));
auc
```

```
auc = 0.9990
```

The AUC is 0.9990, which indicates a model that predicts well.

Plot an ROC curve.

```
figure;
plot(fpr,tpr)
h = gca;
h.XLim(1) = -0.1;
h.YLim(2) = 1.1;
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve')
```
The ROC curve indicates that the model classifies almost perfectly.

**Find Good Lasso Penalty Using Cross-Validated AUC**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare cross-validated AUC values.

Load the NLP data set. Preprocess the data as in “Estimate k-fold Cross-Validation Posterior Class Probabilities” on page 32-3341.
load nlpdata
Ystats = Y == 'stats';
X = X';

There are 9471 observations in the test sample.

Create a set of 11 logarithmically-spaced regularization strengths from $10^{-6}$ through $10^{-0.5}$.

Lambda = logspace(-6,-0.5,11);

Cross-validate a binary, linear classification models that use each of the regularization strengths and 5-fold cross-validation. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...'
   KFold',5,'Learner','logistic','Solver','sparsa',...'
   'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
   classreg.learning.partition.ClassificationPartitionedLinear
   CrossValidatedModel: 'Linear'
   ResponseName: 'Y'
   NumObservations: 31572
   KFold: 5
   Partition: [1x1 cvpartition]
   ClassNames: [0 1]
   ScoreTransform: 'none'

Properties, Methods

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
   ClassificationLinear
   ResponseName: 'Y'
   ClassNames: [0 1]
   ScoreTransform: 'logit'
   Beta: [34023×11 double]
   Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 1.5849e-04 5.6234e-04 2.0316e-03 7.0642e-03 2.4744e-02 8.6048e-02 3.1220e-01]
Mdl1 is a ClassificationLinear model object. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 11 models, one for each regularization strength in Lambda.

Predict the cross-validated labels and posterior class probabilities.

[label,posterior] = kfoldPredict(CVMdl);
CVMdl.ClassNames;
[n,K,L] = size(posterior)

n = 31572
K = 2
L = 11

posterior(3,1,5)
ans = 1.0000

label is a 31572-by-11 matrix of predicted labels. Each column corresponds to the predicted labels of the model trained using the corresponding regularization strength. posterior is a 31572-by-2-by-11 matrix of posterior class probabilities. Columns correspond to classes and pages correspond to regularization strengths. For example, posterior(3,1,5) indicates that the posterior probability that the first class (label 0) is assigned to observation 3 by the model that uses Lambda(5) as a regularization strength is 1.0000.

For each model, compute the AUC. Designate the second class as the positive class.

auc = 1:numel(Lambda);   % Preallocation
for j = 1:numel(Lambda)
    [~,~,~,auc(j)] = perfcurve(Ystats,posterior(:,2,j),CVMdl.ClassNames(2));
end

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you trained the model. Determine the number of nonzero coefficients per model.
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',... 
    'Learner','logistic','Solver','sparsa','Regularization','lasso',... 
    'Lambda',Lambda,'GradientTolerance',1e-8); 
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure; 
[h,hL1,hL2] = plotyy(log10(Lambda),log10(auc),... 
    log10(Lambda),log10(numNZCoeff + 1));
hL1.Marker = 'o'; 
hL2.Marker = 'o'; 
ylabel(h(1),'
log_{10} AUC')
ylabel(h(2),'
log_{10} nonzero-coefficient frequency')
xlabel('
log_{10} Lambda')
title('Cross-Validated Statistics')
hold off
Choose the index of the regularization strength that balances predictor variable sparsity and high AUC. In this case, a value between $10^{-3}$ to $10^{-1}$ should suffice.

```matlab
idxFinal = 9;
```

Select the model from `Mdl` with the chosen regularization strength.

```matlab
MdlFinal = selectModels(Mdl,idxFinal);
```

`MdlFinal` is a `ClassificationLinear` model containing one regularization strength. To estimate labels for new observations, pass `MdlFinal` and the new data to `predict`. 
Definitions

Classification Score

For linear classification models, the raw classification score for classifying the observation \( x \), a row vector, into the positive class is defined by

\[
f_j(x) = x\beta_j + b_j.
\]

For the model with regularization strength \( j \), \( \beta_j \) is the estimated column vector of coefficients (the model property \( \text{Beta}(:,j) \)) and \( b_j \) is the estimated, scalar bias (the model property \( \text{Bias}(j) \)).

The raw classification score for classifying \( x \) into the negative class is \(-f(x)\). The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see \( \text{ScoreTransform} \)).

See Also

\( \text{ClassificationLinear} \mid \text{ClassificationPartitionedLinear} \mid \text{confusionmat} \mid \text{perfcurve} \mid \text{predict} \mid \text{testcholdout} \)

Introduced in R2016a
kfoldPredict

Predict labels for observations not used for training

Syntax

Label = kfoldPredict(CVMdl)
Label = kfoldPredict(CVMdl,Name,Value)
[Label,NegLoss,PBScore] = kfoldPredict(__)
[Label,NegLoss,PBScore,Posterior] = kfoldPredict(__)

Description

Label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated ECOC model composed of linear classification models CVMdl. That is, for every fold, kfoldPredict predicts class labels for observations that it holds out when it trains using all other observations. kfoldPredict applies the same data used create CVMdl (see fitcecoc).

Also, Label contains class labels for each regularization strength in the linear classification models that compose CVMdl.

Label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with additional options specified by one or more Name,Value pair arguments. For example, specify the posterior probability estimation method, decoding scheme, or verbosity level.

[Label,NegLoss,PBScore] = kfoldPredict(__) additionally returns, for held-out observations and each regularization strength:

- Negated values of the average binary loss per class (NegLoss).
- Positive-class scores (PBScore) for each binary learner.

[Label,NegLoss,PBScore,Posterior] = kfoldPredict(__) additionally returns posterior class probability estimates for held-out observations and for each regularization strength. To return posterior probabilities, the linear classification model learners must be logistic regression models.
**Input Arguments**

**CVMdl** — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a ClassificationPartitionedLinearECOC model object. You can create a ClassificationPartitionedLinearECOC model using fitcecoc and by:

1. Specifying any one of the cross-validation, name-value pair arguments, for example, `CrossVal`
2. Setting the name-value pair argument `Learners` to 'linear' or a linear classification model template returned by `templateLinear`

To obtain estimates, `kfoldPredict` applies the same data used to cross-validate the ECOC model (X and Y).

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**BinaryLoss** — Binary learner loss function

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>g(yj,sj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>(-∞,∞)</td>
<td>log[1 + exp(-2yjsj)]/[2log(2)]</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>(-∞,∞)</td>
<td>exp(-yjsj)/2</td>
</tr>
</tbody>
</table>

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in, loss-function name or function handle.

- This table contains names and descriptions of the built-in functions, where yj is a class label for a particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
The software normalizes the binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, e.g., `customFunction`, specify its function handle `'BinaryLoss',@customFunction.`

`customFunction` should have this form

\[
\text{bLoss} = \text{customFunction}(M,s)
\]

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in `Mdl.CodingMatrix`.
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( \text{bLoss} \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are linear classification models using:

- SVM, then `BinaryLoss` is 'hinge'
- Logistic regression, then `BinaryLoss` is 'quadratic'

Example: 'BinaryLoss','binodeviance'

Data Types: `char` | `string` | `function_handle`
Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a nonnegative integer.

To use this option, you must:

• Return the fourth output argument (Posterior).
• The linear classification models that compose the ECOC models must use logistic regression learners (that is, CVMdl.Trained{1}.BinaryLearners{1}.Learner must be 'logistic').
• PosteriorMethod must be 'kl'.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.

Example: 'NumKLInitializations',5

Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).
PosteriorMethod — Posterior probability estimation method

'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of 'PosteriorMethod' and 'kl' or 'qp'.

- To use this option, you must return the fourth output argument (Posterior) and the linear classification models that compose the ECOC models must use logistic regression learners (that is, CVMdl.Trained{1}.BinaryLearners{1}.Learner must be 'logistic').
- If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.
- If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on page 32-4990.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: single | double

Output Arguments

Label — Cross-validated, predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors
Cross-validated, predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell array of character vectors.

In most cases, Label is an $n$-by-$L$ array of the same data type as the observed class labels (Y) used to create CVMdl. (The software treats string arrays as cell arrays of character vectors.) $n$ is the number of observations in the predictor data ($X$) and $L$ is the number of regularization strengths in the linear classification models that compose the cross-validated ECOC model. That is, Label($i,j$) is the predicted class label for observation $i$ using the ECOC model of linear classification models that has regularization strength CVMdl.Trained{1}.BinaryLearners{1}.Lambda($j$).

If $Y$ is a character array and $L > 1$, then Label is a cell array of class labels.

The software assigns the predicted label corresponding to the class with the largest, negated, average binary loss (NegLoss), or, equivalently, the smallest average binary loss.

**NegLoss — Cross-validated, negated, average binary losses**

numeric array

Cross-validated, negated, average binary losses, returned as an $n$-by-$K$-by-$L$ numeric matrix or array. $K$ is the number of distinct classes in the training data and columns correspond to the classes in CVMdl.ClassNames. For $n$ and $L$, see Label. NegLoss($i,k,j$) is the negated, average binary loss for classifying observation $i$ into class $k$ using the linear classification model that has regularization strength CVMdl.Trained{1}.BinaryLoss{1}.Lambda($j$).

**PBScore — Cross-validated, positive-class scores**

numeric array

Cross-validated, positive-class scores, returned as an $n$-by-$B$-by-$L$ numeric array. $B$ is the number of binary learners in the cross-validated ECOC model and columns correspond to the binary learners in CVMdl.Trained{1}.BinaryLearners. For $n$ and $L$, see Label. PBScore($i,b,j$) is the positive-class score of binary learner $b$ for classifying observation $i$ into its positive class, using the linear classification model that has regularization strength CVMdl.Trained{1}.BinaryLearners{1}.Lambda($j$).

If the coding matrix varies across folds (that is, if the coding scheme is sparserandom or denserandom), then PBScore is empty ([]).

**Posterior — Cross-validated posterior class probabilities**

numeric array
Cross-validated posterior class probabilities, returned as an \( n \)-by-\( K \)-by-\( L \) numeric array. For dimension definitions, see \texttt{NegLoss}. \texttt{Posterior}(i,k,j) is the posterior probability for classifying observation \( i \) into class \( k \) using the linear classification model that has regularization strength \texttt{CVMdl.Trained{1}.BinaryLearners{1}.Lambda}(j).

To return posterior probabilities, \texttt{CVMdl.Trained{1}.BinaryLearner{1}.Learner} must be 'logistic'.

**Examples**

**Predict \( k \)-fold Cross-Validation Labels**

Load the NLP data set.

```matlab
load nlpdata
```

\( X \) is a sparse matrix of predictor data, and \( Y \) is a categorical vector of class labels.

Cross-validate an ECOC model of linear classification models.

```matlab
rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');
```

\texttt{CVMdl} is a \texttt{ClassificationPartitionedLinearECOC} model. By default, the software implements 10-fold cross validation.

Predict labels for the observations that \texttt{fitcecoc} did not use in training the folds.

```matlab
label = kfoldPredict(CVMdl);
```

Because there is one regularization strength in \texttt{CVMdl}, \texttt{label} is a column vector of predictions containing as many rows as observations in \texttt{X}.

Construct a confusion matrix.

```matlab
ConfusionTrain = confusionmat(Y,label)
```

\texttt{ConfusionTrain} = 13\( \times \)13

<table>
<thead>
<tr>
<th></th>
<th>2488</th>
<th>107</th>
<th>0</th>
<th>2</th>
<th>10</th>
<th>26</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97</td>
<td>3892</td>
<td>2</td>
<td>18</td>
<td>13</td>
<td>21</td>
<td>2</td>
</tr>
</tbody>
</table>
CVMdl.ClassNames

ans = 13x1 categorical array
    comm
dsp
ecoder
fixedpoint
hdlcoder
phased
physmod
simulink
stats
supportpkg
symbolic
vision
xpc

Rows correspond to the true class and columns to the predicted class. The dimensions correspond to the order in CVMdl.ClassNames.

Specify Custom Binary Loss

Load the NLP data set. Transpose the predictor data.

load nlpdata
X = X';

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or 'comm'.

Y(~ismember(Y,{'simulink','dsp','comm'}))) = 'others';
Create a linear classification model template that specifies optimizing the objective function using SpaRSA.

t = templateLinear('Solver','sparsa');

Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Specify that the predictor observations correspond to columns.

rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns');
CMdl1 = CVMdl.Trained{1}

CMdl1 =
    classreg.learning.classif.CompactClassificationECOC
    ResponseName: 'Y'
    ClassNames: [comm    dsp    simulink    others]
    ScoreTransform: 'none'
    BinaryLearners: {6x1 cell}
    CodingMatrix: [4x6 double]

Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model. It contains the property Trained, which is a 5-by-1 cell array holding a CompactClassificationECOC models that the software trained using the training set of each fold.

By default, the linear classification models that compose the ECOC models use SVMs. SVM scores are signed distances from the observation to the decision boundary.

Therefore, the domain is \((-\infty, \infty)\). Create a custom binary loss function that:

- Maps the coding design matrix \((M)\) and positive-class classification scores \((s)\) for each learner to the binary loss for each observation
- Uses linear loss
- Aggregates the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Or, you can specify an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;
Predict cross-validation labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 out-of-fold observations.

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);
table(Y(idx),label(idx),NegLoss(idx,1),NegLoss(idx,2),NegLoss(idx,3),...  
    NegLoss(idx,4),'VariableNames',{{'True'};{'Predicted'};...  
    categories(CVMdl.ClassNames))

ans=10×6 table
True      Predicted      comm         dsp       simulink    others
________    _________    _________    ________    ________    _______
others      others      -1.2319     -1.0488    0.048758     1.6175
dsp         dsp          -0.7387     -0.11534    -0.88466     0.2613
others      others      -0.1251     -0.8749    -0.99766     0.14517
dsp         dsp          2.5867      6.4187     -3.5867    -4.4165
others      others      -0.02535     -1.2287    -0.97464     0.19747
others      others      -2.6725     -0.56708    -0.51092     2.7453
others      others      -1.1605     -0.88321    -0.11679     0.43504
others      others      -1.9511     -1.3175     0.24735     0.95111
simulink    others      -7.848       -5.8203     4.8203      6.8457

The software predicts the label based on the maximum negated loss.

**Estimate Posterior Class Probabilities**

ECOC models composed of linear classification models return posterior probabilities for logistic regression learners only. This example requires the Parallel Computing Toolbox™ and the Optimization Toolbox™.

Load the NLP data set and preprocess the data as in “Specify Custom Binary Loss” on page 32-3356.

load nlpdata
X = X';
Y(~ismember(Y,{'simulink','dsp','comm'}))) = 'others';
Create a set of 5 logarithmically-spaced regularization strengths from $10^{-5}$ through $10^{-0.5}$.

$$\text{Lambda} = \logspace(-6,-0.5,5);$$

Create a linear classification model template that specifies optimizing the objective function using SpaRSA and to use logistic regression learners.

$$\text{t} = \text{templateLinear('Solver','sparsa','Learner','logistic','Lambda',\text{Lambda});}$$

Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Specify that the predictor observations correspond to columns, and to use parallel computing.

```matlab
rng(1); % For reproducibility
Options = statset('UseParallel',true);
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns',... 'Options',Options);
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

Predict the cross-validated posterior class probabilities. Specify to use parallel computing and to estimate posterior probabilities using quadratic programming.

```matlab
[label,~,~,Posterior] = kfoldPredict(CVMdl,'Options',Options,... 'PosteriorMethod','qp');
size(label)
label(3,4)
size(Posterior)
Posterior(3,:,4)
```

```matlab
ans =
 31572 5
```

```matlab
ans =
categorical
 others
```
Because there are five regularization strengths:

- **label** is a 31572-by-5 categorical array. `label(3,4)` is the predicted, cross-validated label for observation 3 using the model trained with regularization strength `Lambda(4)`.
- **Posterior** is a 31572-by-4-by-5 matrix. `Posterior(3,:,4)` is the vector of all estimated, posterior class probabilities for observation 3 using the model trained with regularization strength `Lambda(4)`. The order of the second dimension corresponds to `CVMdl.ClassNames`.

Display a random sample of cross-validated labels and posterior probabilities for the model trained using `Lambda(4)`.

```matlab
idx = randsample(size(label,1),10);
table(Y(idx),label(idx,4),Posterior(idx,1,4),Posterior(idx,2,4),...
 Posterior(idx,3,4),Posterior(idx,4,4),...
 'VariableNames',[['True';'Predicted';categories(CVMdl.ClassNames)])
```

```plaintext
ans =

10×6 table

<table>
<thead>
<tr>
<th>True</th>
<th>Predicted</th>
<th>comm</th>
<th>dsp</th>
<th>simulink</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>others</td>
<td>others</td>
<td>0.030309</td>
<td>0.022454</td>
<td>0.10401</td>
<td>0.84323</td>
</tr>
<tr>
<td>simulink</td>
<td>simulink</td>
<td>3.5104e-05</td>
<td>4.3154e-05</td>
<td>0.99877</td>
<td>0.0011543</td>
</tr>
<tr>
<td>dsp</td>
<td>others</td>
<td>0.15837</td>
<td>0.25784</td>
<td>0.18567</td>
<td>0.39811</td>
</tr>
<tr>
<td>others</td>
<td>others</td>
<td>0.093212</td>
<td>0.063752</td>
<td>0.12927</td>
<td>0.71376</td>
</tr>
<tr>
<td>dsp</td>
<td>dsp</td>
<td>0.0057401</td>
<td>0.89678</td>
<td>0.014939</td>
<td>0.082538</td>
</tr>
<tr>
<td>others</td>
<td>dsp</td>
<td>0.085715</td>
<td>0.054451</td>
<td>0.083765</td>
<td>0.77607</td>
</tr>
<tr>
<td>others</td>
<td>others</td>
<td>0.0061121</td>
<td>0.0057884</td>
<td>0.02409</td>
<td>0.96401</td>
</tr>
</tbody>
</table>
```
Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

• $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
• $s_j$ is the score of binary learner $j$ for an observation.
• $g$ is the binary loss function.
• $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.$$
Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1, 1, 0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j, s_j) \).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j, s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((\infty, \infty))</td>
<td>( \frac{\log[1 + \exp(-2y_j s_j)]}{2 \log(2)} )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((\infty, \infty))</td>
<td>( \exp(-y_j s_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((\infty, \infty))</td>
<td>( \frac{1 - \text{sign}(y_j s_j)}{2} )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((\infty, \infty))</td>
<td>( \frac{\text{max}(0, 1 - y_j s_j)}{2} )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((\infty, \infty))</td>
<td>( \frac{1 - y_j s_j}{2} )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((\infty, \infty))</td>
<td>( \frac{\log[1 + \exp(-y_j s_j)]}{2 \log(2)} )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>( \frac{1 - y_j^2 (2s_j - 1)^2}{2} )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**Algorithms**

- The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
  - \( m_{kj} \) is the element \((k, j)\) of the coding design matrix \( M \).
  - \( I \) is the indicator function.
  - \( \hat{p}_k \) is the class posterior probability estimate for class \( k \) of an observation, \( k = 1, ..., K \).
• \( r_j \) is the positive-class posterior probability for binary learner \( j \). That is, \( r_j \) is the probability that binary learner \( j \) classifies an observation into the positive class, given the training data.

**Posterior Estimation Using Kullback-Leibler Divergence**

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is

\[
\Delta(r, \hat{r}) = \sum_{j=1}^{L} w_j \left[ r_j \log \frac{r_j}{\hat{r}_j} + (1 - r_j) \log \frac{1 - r_j}{1 - \hat{r}_j} \right],
\]

where \( w_j = \sum_{S_j} w_i^* \) is the weight for binary learner \( j \).

- \( S_j \) is the set of observation indices on which binary learner \( j \) is trained.
- \( w_i^* \) is the weight of observation \( i \).

The software minimizes the divergence iteratively. The first step is to choose initial values \( \hat{p}^{(0)}_k; \ k = 1, \ldots, K \) for the class posterior probabilities.

- If you do not specify 'NumKLIterations', then the software uses both sets of deterministic initial values described next, and uses the one that minimizes \( \Delta \).

  - \( \hat{p}^{(0)}_k = 1 / K; \ k = 1, \ldots, K \).
  - \( \hat{p}^{(0)}_k; \ k = 1, \ldots, K \) is the solution of the system

\[
M_{01} \hat{p}^{(0)} = r,
\]

where \( M_{01} \) is \( M \) with all \( m_{kj} = -1 \) replaced with 0, and \( r \) is a vector of positive-class posterior probabilities returned by the \( L \) binary learners [Dietterich et al.] on page 18-222. The software uses \texttt{lsqnonneg} to solve the system.
• If you specify 'NumKLIterations', c, where c is a natural number, then the software does the following to choose \( \hat{p}_k^{(0)}; \ k = 1, ..., K \), and uses the one that minimizes \( \Delta \).

• The software chooses both sets of deterministic initial values as described previously.

• The software randomly generates c vectors of length K using \texttt{rand}, and then normalizes each vector to sum to 1.

At iteration \( t \), the software completes these steps:

1. Compute

\[
\hat{r}_j^{(t)} = \frac{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1)}{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1 \cup m_{kj} = -1)}.
\]

2. Estimate the next class posterior probability using

\[
\hat{p}_k^{(t+1)} = \hat{p}_k^{(t)} \frac{\sum_{j=1}^{L} w_j \left[ r_j I(m_{kj} = +1) + (1-r_j) I(m_{kj} = -1) \right]}{\sum_{j=1}^{L} w_j \left[ \hat{r}_j^{(t)} I(m_{kj} = +1) + (1-\hat{r}_j^{(t)}) I(m_{kj} = -1) \right]}.
\]

3. Normalize \( \hat{p}_k^{(t+1)}; \ k = 1, ..., K \) so that they sum to 1.

4. Check for convergence.

For more details, see [Hastie et al.] on page 18-222 and [Zadrozny] on page 18-224.

**Posterior Estimation Using Quadratic Programming**

Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:
Estimate the positive-class posterior probabilities, $r_j$, for binary learners $j = 1, \ldots, L$.

Using the relationship between $r_j$ and $\hat{p}_k$ [Wu et al.] on page 18-224, minimize

$$\sum_{j=1}^{L} \left[ -r_j \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = -1) + (1 - r_j) \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = +1) \right]^2$$

with respect to $\hat{p}_k$ and the restrictions

$$0 \leq \hat{p}_k \leq 1$$

$$\sum_k \hat{p}_k = 1.$$ 

The software performs minimization using `quadprog`.

**References**


## Extended Capabilities

### Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the `'UseParallel'` option to true.

Set the `'UseParallel'` field of the options structure to true using `statset` and specify the `'Options'` name-value pair argument in the call to this function.

For example: `'Options', statset('UseParallel',true)

For more information, see the `'Options'` name-value pair argument.

### See Also

- `ClassificationECOC` | `ClassificationLinear`
- `ClassificationPartitionedLinearECOC` | `confusionmat` | `fitcecoc` | `perfcurve`
- `predict` | `statset` | `testcholdout`

### Topics

- “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
- “Reproducibility in Parallel Statistical Computations” on page 30-15
Introduced in R2016a
**kfoldPredict**

Predict response for observations not used for training

**Syntax**

`label = kfoldPredict(obj)`  
`[label,score] = kfoldPredict(obj)`  
`[label,score,cost] = kfoldPredict(obj)`

**Description**

`label = kfoldPredict(obj)` returns class labels predicted by `obj`, a cross-validated classification. For every fold, `kfoldPredict` predicts class labels for in-fold observations using a model trained on out-of-fold observations.

`[label,score] = kfoldPredict(obj)` returns the predicted classification scores for in-fold observations using a model trained on out-of-fold observations.

`[label,score,cost] = kfoldPredict(obj)` returns misclassification costs.

**Input Arguments**

`obj`

Object of class `ClassificationPartitionedModel` or `ClassificationPartitionedEnsemble`.

**Output Arguments**

`label`

Vector of class labels of the same type as the response data used in training `obj`. (The software treats string arrays as cell arrays of character vectors.) Each entry of `label` corresponds to a predicted class label for the corresponding row of `X`. 
score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in obj.X, and K is the number of classes (in obj.ClassNames). score(i,j) represents the confidence that row i of obj.X is of class j. For details, see “Definitions” on page 32-3370.

cost

Numeric matrix of misclassification costs of size N-by-K. cost(i,j) is the average misclassification cost of predicting that row i of obj.X is of class j.

Examples

Estimate Cross-Validation Predictions from an Ensemble

Find the cross-validation predictions for a model based on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train an ensemble of classification trees using AdaBoostM2. Specify tree stumps as the weak learners.

rng(1); % For reproducibility
t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Cross validate the trained ensemble using 10-fold cross validation.

CVMdl = crossval(Mdl);

Estimate cross-validation predicted labels and scores.

[elabel,escore] = kfoldPredict(CVMdl);

Display the maximum and minimum scores of each class.

max(escore)

ans = 1x3
9.3862  8.9871  10.1866

\text{min}(\text{escore})
\text{ans} = 1\times3

\begin{align*}
0.0017 & & 3.8359 & & 0.8981
\end{align*}

\section*{Definitions}

\subsection*{Cost (discriminant analysis)}

The average misclassification cost is the mean misclassification cost for predictions made by the cross-validated classifiers trained on out-of-fold observations. The matrix of expected costs per observation is defined in “Cost” on page 20-8.

\subsection*{Score}

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- \texttt{AdaBoostM1} scores range from $-\infty$ to $\infty$.
- \texttt{Bag} scores range from 0 to 1.

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.
For example, consider classifying a predictor $X$ as true when $X < 0.15$ or $X > 0.95$, and $X$ is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```

Prune the tree:
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:
[-,score] = predict(tree1,X(1:10));
[(score X(1:10,:))]

ans = 10×3

0.9059   0.0941   0.8147
0.9059   0.0941   0.9058
0       1.0000   0.1270
0.9059   0.0941   0.9134
0.9059   0.0941   0.6324
0       1.0000   0.0975
0.9059   0.0941   0.2785
0.9059   0.0941   0.5469
0.9059   0.0941   0.9575
0.9059   0.0941   0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (.95,1) instead of the expected 5 observations.

See Also
ClassificationPartitionedModel | crossval | kfoldEdge | kfoldLoss | kfoldMargin | kfoldfun
**kfoldPredict**

Predict responses for observations not used for training

**Syntax**

\[ YHat = \text{kfoldPredict}(CVMdl) \]

**Description**

\[ YHat = \text{kfoldPredict}(CVMdl) \] returns cross-validated predicted responses by the cross-validated linear regression model \( CVMdl \). That is, for every fold, \( \text{kfoldPredict} \) predicts responses for observations that it holds out when it trains using all other observations.

\( YHat \) contains predicted responses for each regularization strength in the linear regression models that compose \( CVMdl \).

**Input Arguments**

- \( CVMdl \) — Cross-validated, linear regression model
  - \( \text{RegressionPartitionedLinear} \) model object

Cross-validated, linear regression model, specified as a \( \text{RegressionPartitionedLinear} \) model object. You can create a \( \text{RegressionPartitionedLinear} \) model using \( \text{fitrlinear} \) and specifying any of the one of the cross-validation, name-value pair arguments, for example, \( \text{CrossVal} \).

To obtain estimates, \( \text{kfoldPredict} \) applies the same data used to cross-validate the linear regression model (\( X \) and \( Y \)).
Output Arguments

**YHat — Cross-validated predicted responses**

numeric array

Cross-validated predicted responses, returned as an \(n\)-by-\(L\) numeric array. \(n\) is the number of observations in the predictor data that created \(CVMdl\) (see \(X\)) and \(L\) is the number of regularization strengths in \(CVMdl.Trained\{1\}.Lambda\). \(YHat(i,j)\) is the predicted response for observation \(i\) using the linear regression model that has regularization strength \(CVMdl.Trained\{1\}.Lambda(j)\).

The predicted response using the model with regularization strength \(j\) is \(\hat{y}_j = x\beta_j + b_j\).

- \(x\) is an observation from the predictor data matrix \(X\), and is row vector.
- \(\beta_j\) is the estimated column vector of coefficients. The software stores this vector in \(Mdl.Beta(:,j)\).
- \(b_j\) is the estimated, scalar bias, which the software stores in \(Mdl.Bias(j)\).

Examples

Predict Cross-Validated Responses

Simulate 10000 observations from this model

\[
y = x_{100} + 2x_{200} + e.
\]

- \(X = x_1, \ldots, x_{1000}\) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \(e\) is random normal error with mean 0 and standard deviation 0.3.

```plaintext
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
.nz = 0.1;
```

32-3375
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Cross-validate a linear regression model.

CVMdl = fitrlinear(X,Y,'CrossVal','on')

CVMdl =
    classreg.learning.partition.RegressionPartitionedLinear
    CrossValidatedModel: 'Linear'
    ResponseName: 'Y'
    NumObservations: 10000
    KFold: 10
    Partition: [1x1 cvpartition]
    ResponseTransform: 'none'

Properties, Methods

Mdl1 = CVMdl.Trained{1}

Mdl1 =
    RegressionLinear
    ResponseName: 'Y'
    ResponseTransform: 'none'
    Beta: [1000x1 double]
    Bias: 0.0107
    Lambda: 1.1111e-04
    Learner: 'svm'

Properties, Methods

By default, fitrlinear implements 10-fold cross-validation. CVMdl is a
RegressionPartitionedLinear model. It contains the property Trained, which is a
10-by-1 cell array holding 10 RegressionLinear models that the software trained using
the training set.

Predict responses for observations that fitrlinear did not use in training the folds.

yHat = kfoldPredict(CVMdl);

Because there is one regularization strength in Mdl, yHat is a numeric vector.
Predict for Models Containing Several Regularization Strengths

Simulate 10000 observations as in “Predict Cross-Validated Responses” on page 32-3375.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from $10^{-5}$ through $10^{-1}$.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Specify using least squares with a lasso penalty and optimizing the objective function using SpaRSA.

X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
                 'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

CVMdl is a RegressionPartitionedLinear model. Its Trained property contains a 5-by-1 cell array of trained RegressionLinear models, each one holds out a different fold during training. Because fitrlinear trained using 15 regularization strengths, you can think of each RegressionLinear model as 15 models.

Predict cross-validated responses.

YHat = kfoldPredict(CVMdl);
size(YHat)

ans = 1x2
     10000     15

YHat(2,:)
ans = 1×15
   -1.7338  -1.7332  -1.7319  -1.7299  -1.7266  -1.7239  -1.7135  -1.7210  -1.7324  -1.7063  -1.6397  -1.5112  -1.2631  -0.7841  -0.0096

YHat is a 10000-by-15 matrix. YHat(2,:) is the cross-validated response for observation 2 using the model regularized with all 15 regularization values.

See Also
RegressionLinear | RegressionPartitionedLinear | fitrlinear | predict

Introduced in R2016a
**kfoldPredict**

Predict response for observations not used for training

**Syntax**

```plaintext
yfit = kfoldPredict(obj)
```

**Description**

`yfit = kfoldPredict(obj)` returns the predicted values for the responses of the training data based on `obj`, an object trained on out-of-fold observations.

**Input Arguments**

`obj`

Object of class `RegressionPartitionedModel`. Create `obj` with `fitrtree` or `fitrensemble` along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create `obj` from a regression tree or regression ensemble with `crossval`.

**Output Arguments**

`yfit`

A vector of predicted values for the response data based on a model trained on out-of-fold observations.

**Examples**

Construct a partitioned regression model, and examine the cross-validation loss. The cross-validation loss is the mean squared error between `yfit` and the true response data:
load carsmall
XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;
tree = fitrtree(XX,YY);
cvmodel = crossval(tree);
L = kfoldLoss(cvmodel)

L =
    26.5271

yfit = kfoldPredict(cvmodel);
mean( (yfit - tree.Y).^2 )

ans =
    26.5271

See Also
fitrtree | kfoldLoss
**kmeans**

*k*-means clustering

**Syntax**

```plaintext
idx = kmeans(X,k)
dx = kmeans(X,k,Name,Value)
[idx,C] = kmeans(__)
[idx,C,sumd] = kmeans(__)
[idx,C,sumd,D] = kmeans(__)
```

**Description**

`idx = kmeans(X,k)` performs *k*-means clustering on page 32-3397 to partition the observations of the $n$-by-$p$ data matrix $X$ into $k$ clusters, and returns an $n$-by-1 vector ($idx$) containing cluster indices of each observation. Rows of $X$ correspond to points and columns correspond to variables.

By default, `kmeans` uses the squared Euclidean distance metric and the *k*-means++ algorithm on page 32-3397 for cluster center initialization.

`idx = kmeans(X,k,Name,Value)` returns the cluster indices with additional options specified by one or more `Name,Value` pair arguments.

For example, specify the cosine distance, the number of times to repeat the clustering using new initial values, or to use parallel computing.

`[idx,C] = kmeans(__)` returns the $k$ cluster centroid locations in the $k$-by-$p$ matrix $C$.

`[idx,C,sumd] = kmeans(__)` returns the within-cluster sums of point-to-centroid distances in the $k$-by-1 vector `sumd`.

`[idx,C,sumd,D] = kmeans(__)` returns distances from each point to every centroid in the $n$-by-$k$ matrix $D$. 
Examples

Train a k-Means Clustering Algorithm

Cluster data using k-means clustering, then plot the cluster regions.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

load fisheriris
X = meas(:,3:4);

figure;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
The larger cluster seems to be split into a lower variance region and a higher variance region. This might indicate that the larger cluster is two, overlapping clusters.

Cluster the data. Specify \( k = 3 \) clusters.

```matlab
rng(1); % For reproducibility
[idx,C] = kmeans(X,3);
```

\texttt{kmeans} uses the \textit{k}-means++ algorithm for centroid initialization and squared Euclidean distance by default. It is good practice to search for lower, local minima by setting the 'Replicates' name-value pair argument.

\texttt{idx} is a vector of predicted cluster indices corresponding to the observations in \( X \). \texttt{C} is a 3-by-2 matrix containing the final centroid locations.
Use \texttt{kmeans} to compute the distance from each centroid to points on a grid. To do this, pass the centroids (C) and points on a grid to \texttt{kmeans}, and implement one iteration of the algorithm.

\begin{verbatim}
x1 = min(X(:,1)):0.01:max(X(:,1));
x2 = min(X(:,2)):0.01:max(X(:,2));
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot
idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);
\end{verbatim}

\texttt{kmeans} displays a warning stating that the algorithm did not converge, which you should expect since the software only implemented one iteration.

Plot the cluster regions.

\begin{verbatim}
figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
         [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'.');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;
\end{verbatim}
Partition Data into Two Clusters

Randomly generate the sample data.

rng default; % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
    randn(100,2)*0.5-ones(100,2)];

figure;
plot(X(:,1),X(:,2),'.');
title 'Randomly Generated Data';
There appears to be two clusters in the data.

Partition the data into two clusters, and choose the best arrangement out of five initializations. Display the final output.

```matlab
opts = statset('Display','final');
[idx,C] = kmeans(X,2,'Distance','cityblock',
 'Replicates',5,'Options',opts);
```

Replicate 1, 3 iterations, total sum of distances = 201.533.
Replicate 2, 5 iterations, total sum of distances = 201.533.
Replicate 3, 3 iterations, total sum of distances = 201.533.
Replicate 4, 3 iterations, total sum of distances = 201.533.
Replicate 5, 2 iterations, total sum of distances = 201.533.
Best total sum of distances = 201.533

By default, the software initializes the replicates separately using $k$-means++.

Plot the clusters and the cluster centroids.

```matlab
figure;
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(C(:,1),C(:,2),'kx',...
 'MarkerSize',15,'LineWidth',3)
legend('Cluster 1','Cluster 2','Centroids',...
 'Location','NW')
title 'Cluster Assignments and Centroids'
hold off
```
You can determine how well separated the clusters are by passing idx to silhouette.

**Cluster Data Using Parallel Computing**

Clustering large data sets might take time, particularly if you use online updates (set by default). If you have a Parallel Computing Toolbox™ license and you set the options for parallel computing, then kmeans runs each clustering task (or replicate) in parallel. And, if Replicates > 1, then parallel computing decreases time to convergence.

Randomly generate a large data set from a Gaussian mixture model.
Mu = bsxfun(@times,ones(20,30),(1:20)'); % Gaussian mixture mean
rn30 = randn(30,30);
Sigma = rn30'*rn30; % Symmetric and positive-definite covariance
Mdl = gmdistribution(Mu,Sigma); % Define the Gaussian mixture distribution

rng(1); % For reproducibility
X = random(Mdl,10000);

Mdl is a 30-dimensional gmdistribution model with 20 components. X is a 10000-by-30 matrix of data generated from Mdl.

Specify the options for parallel computing.

stream = RandStream('mlfg6331_64'); % Random number stream
options = statset('UseParallel',1,'UseSubstreams',1,...
    'Streams',stream);

The input argument 'mlfg6331_64' of RandStream specifies to use the multiplicative lagged Fibonacci generator algorithm. options is a structure array with fields that specify options for controlling estimation.

Cluster the data using k-means clustering. Specify that there are k = 20 clusters in the data and increase the number of iterations. Typically, the objective function contains local minima. Specify 10 replicates to help find a lower, local minimum.

tic; % Start stopwatch timer
[idx,C,sumd,D] = kmeans(X,20,'Options',options,'MaxIter',10000,...
    'Display','final','Replicates',10);

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.
Replicate 5, 72 iterations, total sum of distances = 7.73161e+06.
Replicate 1, 64 iterations, total sum of distances = 7.72988e+06.
Replicate 3, 68 iterations, total sum of distances = 7.72576e+06.
Replicate 4, 84 iterations, total sum of distances = 7.72696e+06.
Replicate 6, 82 iterations, total sum of distances = 7.73006e+06.
Replicate 7, 40 iterations, total sum of distances = 7.73451e+06.
Replicate 2, 194 iterations, total sum of distances = 7.72953e+06.
Replicate 9, 105 iterations, total sum of distances = 7.72064e+06.
Replicate 10, 125 iterations, total sum of distances = 7.72816e+06.
Best total sum of distances = 7.72064e+06.

toc % Terminate stopwatch timer
Elapsed time is 61.915955 seconds.

The Command Window indicates that six workers are available. The number of workers might vary on your system. The Command Window displays the number of iterations and the terminal objective function value for each replicate. The output arguments contain the results of replicate 9 because it has the lowest total sum of distances.

### Input Arguments

**X** — Data
numeric matrix

Data, specified as a numeric matrix. The rows of X correspond to observations, and the columns correspond to variables.

If X is a numeric vector, then kmeans treats it as an n-by-1 data matrix, regardless of its orientation.

Data Types: single | double

**k** — Number of clusters
positive integer

Number of clusters in the data, specified as a positive integer.

Data Types: single | double

### Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Distance','cosine','Replicates',10,'Options',statset('UseParallel',1) specifies the cosine distance, 10 replicate clusters at different starting values, and to use parallel computing.

**Display** — Level of output to display

'off' (default) | 'final' | 'iter'
Level of output to display in the Command Window, specified as the comma-separated pair consisting of 'Display' and one of the following options:

- 'final' — Displays results of the final iteration
- 'iter' — Displays results of each iteration
- 'off' — Displays nothing

Example: 'Display','final'

**Distance — Distance metric**

'sqeuclidean' (default) | 'cityblock' | 'cosine' | 'correlation' | 'hamming'

Distance metric, in p-dimensional space, used for minimization, specified as the comma-separated pair consisting of 'Distance' and 'sqeuclidean', 'cityblock', 'cosine', 'correlation', or 'hamming'.

*kmeans* computes centroid clusters differently for the different, supported distance metrics. This table summarizes the available distance metrics. In the formulae, x is an observation (that is, a row of X) and c is a centroid (a row vector).

<table>
<thead>
<tr>
<th>Distance Metric</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sqeuclidean'</td>
<td>Squared Euclidean distance (default). Each centroid is the mean of the points in that cluster.</td>
<td>( d(x,c) = (x - c)(x - c)' )</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>Sum of absolute differences, i.e., the L1 distance. Each centroid is the component-wise median of the points in that cluster.</td>
<td>( d(x,c) = \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors). Each centroid is the mean of the points in that cluster, after normalizing those points to unit Euclidean length.</td>
<td>( d(x,c) = 1 - \frac{x'c'}{\sqrt{(x'x')(c'c')}} )</td>
</tr>
<tr>
<td>Distance Metric</td>
<td>Description</td>
<td>Formula</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values). Each centroid is the component-wise mean of the points in that cluster, after centering and normalizing those points to zero mean and unit standard deviation.</td>
<td></td>
</tr>
</tbody>
</table>

\[
d(x, c) = 1 - \frac{(x - \bar{x})(c - \bar{c})'}{\sqrt{(x - \bar{x})(x - \bar{x})'}\sqrt{(c - \bar{c})(c - \bar{c})'}}
\]

where

- \( \bar{x} = \frac{1}{p} \left( \sum_{j=1}^{p} x_j \right) \bar{1}_p \)
- \( \bar{c} = \frac{1}{p} \left( \sum_{j=1}^{p} c_j \right) \bar{1}_p \)
- \( \bar{1}_p \) is a row vector of \( p \) ones.

| 'hamming'       | This metric is only suitable for binary data. It is the proportion of bits that differ. Each centroid is the component-wise median of points in that cluster. | 

\[
d(x, y) = \frac{1}{p} \sum_{j=1}^{p} I\{x_j \neq y_j\}
\]

where \( I \) is the indicator function.

Example: 'Distance','cityblock'

**EmptyAction — Action to take if cluster loses all member observations**

'singleton' (default) | 'error' | 'drop'

Action to take if a cluster loses all its member observations, specified as the comma-separated pair consisting of 'EmptyAction' and one of the following options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'error'</td>
<td>Treat an empty cluster as an error.</td>
</tr>
</tbody>
</table>
### Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'drop'</td>
<td>Remove any clusters that become empty. kmeans sets the corresponding return values in C and D to NaN.</td>
</tr>
<tr>
<td>'singleton'</td>
<td>Create a new cluster consisting of the one point furthest from its centroid (default).</td>
</tr>
</tbody>
</table>

Example: 'EmptyAction','error'

### MaxIter — Maximum number of iterations

100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'MaxIter' and a positive integer.

Example: 'MaxIter',1000

Data Types: double | single

### OnlinePhase — Online update flag

'off' (default) | 'on'

Online update flag, specified as the comma-separated pair consisting of 'OnlinePhase' and 'off' or 'on'.

If OnlinePhase is on, then kmeans performs an online update phase in addition to a batch update phase. The online phase can be time consuming for large data sets, but guarantees a solution that is a local minimum of the distance criterion. In other words, the software finds a partition of the data in which moving any single point to a different cluster increases the total sum of distances.

Example: 'OnlinePhase','on'

### Options — Options for controlling iterative algorithm for minimizing fitting criteria

[] (default) | structure array returned by statset

Options for controlling the iterative algorithm for minimizing the fitting criteria, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. These options require Parallel Computing Toolbox.

This table summarizes the available options.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Streams'</td>
<td>A RandStream object or cell array of such objects. If you do not specify Streams, kmeans uses the default stream or streams. If you specify Streams, use a single object except when:</td>
</tr>
</tbody>
</table>
|               | • You have an open parallel pool  
|               | • UseParallel is true.  
|               | • UseSubstreams is false.  
|               | In that case, use a cell array the same size as the parallel pool. If a parallel pool is not open, then Streams must supply a single random number stream. |
| 'UseParallel' | • If true and Replicates > 1, then kmeans implements k-means algorithm on each replicate in parallel.  
|               | • If the Parallel Computing Toolbox is not installed, then computation occurs in serial mode. Default is false, meaning serial computation. |
| 'UseSubstreams'| Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. |

To ensure more predictable results, use parpool and explicitly create a parallel pool before invoking kmeans and setting 'Options', statset('UseParallel',1).

Example: 'Options', statset('UseParallel',1)

Data Types: struct

**Replicates — Number of times to repeat clustering using new initial cluster centroid positions**
1 (default) | positive integer
Number of times to repeat clustering using new initial cluster centroid positions, specified as the comma-separated pair consisting of 'Replicates' and an integer. kmeans returns the solution with the lowest sumd.

You can set 'Replicates' implicitly by supplying a 3-D array as the value for the 'Start' name-value pair argument.

Example: 'Replicates',5

Data Types: double | single

**Start — Method for choosing initial cluster centroid positions**

'plus' (default) | 'cluster' | 'sample' | 'uniform' | numeric matrix | numeric array

Method for choosing initial cluster centroid positions (or seeds), specified as the comma-separated pair consisting of 'Start' and 'cluster', 'plus', 'sample', 'uniform', a numeric matrix, or a numeric array. This table summarizes the available options for choosing seeds.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cluster'</td>
<td>Perform a preliminary clustering phase on a random 10% subsample of X. This preliminary phase is itself initialized using 'sample'.</td>
</tr>
<tr>
<td>'plus' (default)</td>
<td>Select k seeds by implementing the k-means++ algorithm on page 32-3397 for cluster center initialization.</td>
</tr>
<tr>
<td>'sample'</td>
<td>Select k observations from X at random.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>Select k points uniformly at random from the range of X. Not valid with the Hamming distance.</td>
</tr>
<tr>
<td>numeric matrix</td>
<td>k-by-p matrix of centroid starting locations. The rows of Start correspond to seeds. The software infers k from the first dimension of Start, so you can pass in [ ] for k.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>numeric array</td>
<td>k-by-p-r array of centroid starting locations. The rows of each page correspond to seeds. The third dimension invokes replication of the clustering routine. Page <em>j</em> contains the set of seeds for replicate <em>j</em>. The software infers the number of replicates (specified by the 'Replicates' name-value pair argument) from the size of the third dimension.</td>
</tr>
</tbody>
</table>

Example: 'Start','sample'

Data Types: char | string | double | single

**Note** The software treats NaNs as missing data, and removes any row of X containing at least one NaN. Removing rows of X reduces the sample size.

### Output Arguments

**idx — Cluster indices**

numeric column vector

Cluster indices, returned as a numeric column vector. *idx* has as many rows as *X*, and each row indicates the cluster assignment of the corresponding observation.

**C — Cluster centroid locations**

numeric matrix

Cluster centroid locations, returned as a numeric matrix. *C* is a k-by-*p* matrix, where row *j* is the centroid of cluster *j*.

**sumd — Within-cluster sums of point-to-centroid distances**

numeric column vector

Within-cluster sums of point-to-centroid distances, returned as a numeric column vector. *sumd* is a k-by-1 vector, where element *j* is the sum of point-to-centroid distances within cluster *j*. 
**D — Distances from each point to every centroid**

numeric matrix

Distances from each point to every centroid, returned as a numeric matrix. \( D \) is an \( n \)-by-\( k \) matrix, where element \((j,m)\) is the distance from observation \( j \) to centroid \( m \).

**Definitions**

**k-Means Clustering**

k-means clustering, or Lloyd’s algorithm [2], is an iterative, data-partitioning algorithm that assigns \( n \) observations to exactly one of \( k \) clusters defined by centroids, where \( k \) is chosen before the algorithm starts.

The algorithm proceeds as follows:

1. Choose \( k \) initial cluster centers (centroid). For example, choose \( k \) observations at random (by using `'Start','sample'`) or use the \( k \)-means ++ algorithm on page 32-3397 for cluster center initialization (the default).
2. Compute point-to-cluster-centroid distances of all observations to each centroid.
3. There are two ways to proceed (specified by `OnlinePhase`):
   - Batch update — Assign each observation to the cluster with the closest centroid.
   - Online update — Individually assign observations to a different centroid if the reassignment decreases the sum of the within-cluster, sum-of-squares point-to-cluster-centroid distances.

   For more details, see “Algorithms” on page 32-3399.
4. Compute the average of the observations in each cluster to obtain \( k \) new centroid locations.
5. Repeat steps 2 through 4 until cluster assignments do not change, or the maximum number of iterations is reached.

**k-means++ Algorithm**

The \( k \)-means++ algorithm uses an heuristic to find centroid seeds for \( k \)-means clustering. According to Arthur and Vassilvitskii [1], \( k \)-means++ improves the running time of Lloyd’s algorithm, and the quality of the final solution.
The \( k \)-means++ algorithm chooses seeds as follows, assuming the number of clusters is \( k \).

1. Select an observation uniformly at random from the data set, \( X \). The chosen observation is the first centroid, and is denoted \( c_1 \).

2. Compute distances from each observation to \( c_1 \). Denote the distance between \( c_j \) and the observation \( m \) as \( d(x_m, c_j) \).

3. Select the next centroid, \( c_2 \) at random from \( X \) with probability

\[
\frac{d^2(x_m, c_1)}{\sum_{j=1}^{n} d^2(x_j, c_1)}.
\]

4. To choose center \( j \):
   
   a. Compute the distances from each observation to each centroid, and assign each observation to its closest centroid.
   
   b. For \( m = 1, \ldots, n \) and \( p = 1, \ldots, j - 1 \), select centroid \( j \) at random from \( X \) with probability

\[
\frac{d^2(x_m, c_p)}{\sum_{\{h : x_h \in C_p\}} d^2(x_h, c_p)}.
\]

   where \( C_p \) is the set of all observations closest to centroid \( c_p \) and \( x_m \) belongs to \( C_p \).

   That is, select each subsequent center with a probability proportional to the distance from itself to the closest center that you already chose.

5. Repeat step 4 until \( k \) centroids are chosen.

Arthur and Vassilvitskii [1] demonstrate, using a simulation study for several cluster orientations, that \( k \)-means++ achieves faster convergence to a lower sum of within-cluster, sum-of-squares point-to-cluster-centroid distances than Lloyd’s algorithm.
Algorithms

- **kmeans** uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances, summed over all \( k \) clusters.

  1. This first phase uses batch updates, where each iteration consists of reassigning points to their nearest cluster centroid, all at once, followed by recalculation of cluster centroids. This phase occasionally does not converge to solution that is a local minimum. That is, a partition of the data where moving any single point to a different cluster increases the total sum of distances. This is more likely for small data sets. The batch phase is fast, but potentially only approximates a solution as a starting point for the second phase.

  2. This second phase uses online updates, where points are individually reassigned if doing so reduces the sum of distances, and cluster centroids are recomputed after each reassignment. Each iteration during this phase consists of one pass though all the points. This phase converges to a local minimum, although there might be other local minima with lower total sum of distances. In general, finding the global minimum is solved by an exhaustive choice of starting points, but using several replicates with random starting points typically results in a solution that is a global minimum.

- If \( \text{Replicates} = r > 1 \) and \( \text{Start} \) is \text{plus} (the default), then the software selects \( r \) possibly different sets of seeds according to the \( k \)-means++ algorithm on page 32-3397.

- If you enable the \text{UseParallel} option in \text{Options} and \( \text{Replicates} > 1 \), then each worker selects seeds and clusters in parallel.

References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

Only random sample initialization is supported. Supported syntaxes:

- `idx = kmeans(X,k)` performs classic k-means clustering.
- `[idx,C] = kmeans(X,k)` also returns the k cluster centroid locations.
- `[idx,C,sumd] = kmeans(X,k)` additionally returns the k within-cluster sums of point-to-centroid distances.
- `[___] = kmeans(___,Name,Value)` specifies additional name-value pair options using any of the other syntaxes. Valid options are:

  - `'Start'` — Method used to choose the initial cluster centroid positions. Value can be:
    - `'plus'` (default) — Select k observations from X using a variant of the kmeans ++ algorithm adapted for tall data.
    - `'sample'` — Select k observations from X at random.
    - Numeric matrix — A k-by-p matrix to explicitly specify starting locations.
  - `'Options'` — An options structure created using the `statset` function. For tall arrays, `kmeans` uses the fields listed here and ignores all other fields in the options structure:
    - `'Display'` — Level of display. Choices are 'iter' (default), 'off', and 'final'.
    - `'MaxIter'` — Maximum number of iterations. Default is 100.
    - `'TolFun'` — Convergency tolerance for the within-cluster sums of point-to-centroid distances. Default is $1e^{-4}$. This option field only works with tall arrays.

For more information, see “Tall Arrays” (MATLAB).
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the Start method uses random selections, the initial centroid cluster positions
  might not match MATLAB.
• If the number of rows in \( X \) is fixed, code generation does not remove rows of \( X \) that
  contain a NaN.
• The cluster centroid locations in \( C \) can have a different order than in MATLAB. In this
  case, the cluster indices in \( \text{idx} \) have corresponding differences.
• If you provide Display, its value must be 'off'.
• If you provide Streams, it must be empty and UseSubstreams must be false.
• When you set the UseParallel option to true:
  • Some computations can execute in parallel even when Replicates is 1. For large
    data sets, when Replicates is 1, consider setting the UseParallel option to
    true.
  • \textit{kmeans} uses \texttt{parfor} to create loops that run in parallel on supported shared-
    memory multicore platforms. Loops that run in parallel can be faster than loops
    that run on a single thread. If your compiler does not support the Open
    Multiprocessing (OpenMP) application interface or you disable OpenMP library,
    MATLAB Coder treats the \texttt{parfor}-loops as \texttt{for}-loops. To find supported compilers,
    see \url{https://www.mathworks.com/support/compilers/current_release/}.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using \texttt{statset} and specify
the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

32-3401
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
clusterdata | gmdistribution | linkage | parpool | silhouette | statset

Topics
“Create Clusters and Determine Separation” on page 16-22
“Determine the Correct Number of Clusters” on page 16-24
“Avoid Local Minima” on page 16-27
“Introduction to k-Means Clustering” on page 16-22

Introduced before R2006a
**kmedoids**

_k-medoids clustering_

**Syntax**

```plaintext
idx = kmedoids(X,k)
idx = kmedoids(X,k,Name,Value)
[idx,C] = kmedoids(___)
[idx,C,sumd] = kmedoids(___)
[idx,C,sumd,D] = kmedoids(___)
[idx,C,sumd,D,midx] = kmedoids(___)
[idx,C,sumd,D,midx,info] = kmedoids(__)
```

**Description**

`idx = kmedoids(X,k)` performs “k-medoids Clustering” on page 32-3419 to partition the observations of the n-by-p matrix X into k clusters, and returns an n-by-1 vector `idx` containing cluster indices of each observation. Rows of X correspond to points and columns correspond to variables. By default, `kmedoids` uses squared Euclidean distance metric and the _k-means++_ algorithm on page 32-3397 for choosing initial cluster medoid positions.

`idx = kmedoids(X,k,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments.

`[idx,C] = kmedoids(__)` returns the k cluster medoid locations in the k-by-p matrix C.

`[idx,C,sumd] = kmedoids(__)` returns the within-cluster sums of point-to-medoid distances in the k-by-1 vector `sumd`.

`[idx,C,sumd,D] = kmedoids(__)` returns distances from each point to every medoid in the n-by-k matrix D.

`[idx,C,sumd,D,midx] = kmedoids(__)` returns the indices `midx` such that C = X(midx,:). `midx` is a k-by-1 vector.
[idx,C,sumd,D,info] = kmedoids(__) returns a structure info with information about the options used by the algorithm when executed.

**Examples**

**Group Data into Two Clusters**

Randomly generate data.

```matlab
rng('default'); % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
 randn(100,2)*0.55-ones(100,2)];
figure;
plot(X(:,1),X(:,2),'.');
title('Randomly Generated Data');
```
Group data into two clusters using kmedoids. Use the cityblock distance metric.

```matlab
opts = statset('Display','iter');
[idx,C,sumd,d,midx,info] = kmedoids(X,2,'Distance','cityblock','Options',opts);
```

<table>
<thead>
<tr>
<th>rep</th>
<th>iter</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>209.856</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>209.856</td>
</tr>
</tbody>
</table>

Best total sum of distances = 209.856

info is a struct that contains information about how the algorithm was executed. For example, bestReplicate field indicates the replicate that was used to produce the final solution. In this example, the replicate number 1 was used since the default number of replicates is 1 for the default algorithm, which is pam in this case.
info

info = struct with fields:
    algorithm: 'pam'
    start: 'plus'
    distance: 'cityblock'
    iterations: 2
    bestReplicate: 1

Plot the clusters and the cluster medoids.

figure;
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',7)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',7)
plot(C(:,1),C(:,2),'co',...
    'MarkerSize',7,'LineWidth',1.5)
legend('Cluster 1','Cluster 2','Medoids',... 
    'Location','NW');
title('Cluster Assignments and Medoids');
hold off
Cluster Categorical Data Using k-Medoids

This example uses "Mushroom" data set [3][4][5][6][7] from the UCI machine learning archive [7], described in http://archive.ics.uci.edu/ml/datasets/Mushroom. The data set includes 22 predictors for 8,124 observations of various mushrooms. The predictors are categorical data types. For example, cap shape is categorized with features of 'b' for bell-shaped cap and 'c' for conical. Mushroom color is also categorized with features of 'n' for brown, and 'p' for pink. The data set also includes a classification for each mushroom of either edible or poisonous.
Since the features of the mushroom data set are categorical, it is not possible to define the mean of several data points, and therefore the widely-used $k$-means clustering algorithm cannot be meaningfully applied to this data set. $k$-medoids is a related algorithm that partitions data into $k$ distinct clusters, by finding medoids that minimize the sum of dissimilarities between points in the data and their nearest medoid.

The medoid of a set is a member of that set whose average dissimilarity with the other members of the set is the smallest. Similarity can be defined for many types of data that do not allow a mean to be calculated, allowing $k$-medoids to be used for a broader range of problems than $k$-means.

Using $k$-medoids, this example clusters the mushrooms into two groups, based on the predictors provided. It then explores the relationship between those clusters and the classifications of the mushrooms as either edible or poisonous.

This example assumes that you have downloaded the "Mushroom" data set from the UCI database and saved it in your current directory as a text file named agaricus-lepiota.txt. There is no column headers in the data, so readtable uses the default variable names.

```matlab
clear all
data = readtable('agaricus-lepiota.txt','ReadVariableNames',false);
```

Display the first 5 mushrooms with their first few features.

```matlab
data(1:5,1:10)
```

```matlab
ans =

<table>
<thead>
<tr>
<th>Var1</th>
<th>Var2</th>
<th>Var3</th>
<th>Var4</th>
<th>Var5</th>
<th>Var6</th>
<th>Var7</th>
<th>Var8</th>
<th>Var9</th>
<th>Var10</th>
</tr>
</thead>
<tbody>
<tr>
<td>'p'</td>
<td>'x'</td>
<td>'s'</td>
<td>'n'</td>
<td>'t'</td>
<td>'p'</td>
<td>'f'</td>
<td>'c'</td>
<td>'n'</td>
<td>'k'</td>
</tr>
<tr>
<td>'e'</td>
<td>'x'</td>
<td>'s'</td>
<td>'y'</td>
<td>'t'</td>
<td>'a'</td>
<td>'f'</td>
<td>'c'</td>
<td>'b'</td>
<td>'k'</td>
</tr>
<tr>
<td>'e'</td>
<td>'b'</td>
<td>'s'</td>
<td>'w'</td>
<td>'t'</td>
<td>'l'</td>
<td>'f'</td>
<td>'c'</td>
<td>'b'</td>
<td>'n'</td>
</tr>
<tr>
<td>'p'</td>
<td>'x'</td>
<td>'y'</td>
<td>'w'</td>
<td>'t'</td>
<td>'p'</td>
<td>'f'</td>
<td>'c'</td>
<td>'n'</td>
<td>'n'</td>
</tr>
<tr>
<td>'e'</td>
<td>'x'</td>
<td>'s'</td>
<td>'g'</td>
<td>'f'</td>
<td>'n'</td>
<td>'f'</td>
<td>'w'</td>
<td>'b'</td>
<td>'k'</td>
</tr>
</tbody>
</table>
```

Extract the first column, labeled data for edible and poisonous groups. Then delete the column.
labels = data(:,1);
labels = categorical(labels{:,:});
data(:,1) = [];

Store the names of predictors (features), which are described in http://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.names.

VarNames = {'cap_shape' 'cap_surface' 'cap_color' 'bruises' 'odor' ...
    'gill_attachment' 'gill_spacing' 'gill_size' 'gill_color' ...
    'stalk_shape' 'stalk_root' 'stalk_surface_above_ring' ...
    'stalk_surface_below_ring' 'stalk_color_above_ring' ...
    'stalk_color_below_ring' 'veil_type' 'veil_color' 'ring_number' ....
    'ring_type' 'spore_print_color' 'population' 'habitat'};

Set the variable names.

data.Properties.VariableNames = VarNames;

There are a total of 2480 missing values denoted as '?'.

sum(char(data{:,:}) == '?')

ans = 2480

Based on the inspection of the data set and its description, the missing values belong only to the 11th variable (stalk_root). Remove the column from the table.

data(:,11) = [];

kmedoids only accepts numeric data. You need to cast the categories you have into numeric type. The distance function you will use to define the dissimilarity of the data will be based on the double representation of the categorical data.

cats = categorical(data{:,:});
data = double(cats);

kmedoids can use any distance metric supported by pdist2 to cluster. For this example you will cluster the data using the Hamming distance because this is an appropriate distance metric for categorical data as illustrated below. The Hamming distance between two vectors is the percentage of the vector components that differ. For instance, consider these two vectors.

v1 = [1 0 2 1];
v2 = [1 1 2 1];

They are equal in the 1st, 3rd and 4th coordinate. Since 1 of the 4 coordinates differ, the Hamming distance between these two vectors is .25.

You can use the function pdist2 to measure the Hamming distance between the first and second row of data, the numerical representation of the categorical mushroom data. The value .2857 means that 6 of the 21 features of the mushroom differ.

pdist2(data(1,:), data(2,:), 'hamming')

ans =

    0.2857

In this example, you’re clustering the mushroom data into two clusters based on features to see if the clustering corresponds to edibility. The kmedoids function is guaranteed to converge to a local minima of the clustering criterion; however, this may not be a global minimum for the problem. It is a good idea to cluster the problem a few times using the 'replicates' parameter. When 'replicates' is set to a value, n, greater than 1, the k-medoids algorithm is run n times, and the best result is returned.

To run kmedoids to cluster data into 2 clusters, based on the Hamming distance and to return the best result of 3 replicates, you run the following.

rng('default'); % For reproducibility
[IDX, C, SUMD, D, MIDX, INFO] = kmedoids(data, 2, 'distance', 'hamming', 'replicates', 3);

Let’s assume that mushrooms in the predicted group 1 are poisonous and group 2 are all edible. To determine the performance of clustering results, calculate how many mushrooms in group 1 are indeed poisonous and group 2 are edible based on the known labels. In other words, calculate the number of false positives, false negatives, as well as true positives and true negatives.

Construct a confusion matrix (or matching matrix), where the diagonal elements represent the number of true positives and true negatives, respectively. The off-diagonal elements represent false negatives and false positives, respectively. For convenience, use the confusionmat function, which calculates a confusion matrix given known labels and predicted labels. Get the predicted label information from the IDX variable. IDX contains values of 1 and 2 for each data point, representing poisonous and edible groups, respectively.

predLabels = labels; % Initialize a vector for predicted labels.
predLabels(IDX==1) = categorical({'p'}); % Assign group 1 to be poisonous.
predLabels(IDX==2) = categorical({'e'}); % Assign group 2 to be edible.
confMatrix = confusionmat(labels,predLabels)

confMatrix =
    4176     32
     816  3100

Out of 4208 edible mushrooms, 4176 were correctly predicted to be in group 2 (edible group), and 32 were incorrectly predicted to be in group 1 (poisonous group). Similarly, out of 3916 poisonous mushrooms, 3100 were correctly predicted to be in group 1 (poisonous group), and 816 were incorrectly predicted to be in group 2 (edible group).

Given this confusion matrix, calculate the accuracy, which is the proportion of true results (both true positives and true negatives) against the overall data, and precision, which is the proportion of the true positives against all the positive results (true positives and false positives).

accuracy = (confMatrix(1,1)+confMatrix(2,2))/(sum(sum(confMatrix)))

accuracy =
    0.8956

precision = confMatrix(1,1) / (confMatrix(1,1)+confMatrix(2,1))

precision =
    0.8365

The results indicated that applying the k-medoids algorithm to the categorical features of mushrooms resulted in clusters that were associated with edibility.

**Input Arguments**

- **X — Data**
  numeric matrix

  Data, specified as a numeric matrix. The rows of X correspond to observations, and the columns correspond to variables.

- **k — Number of medoids**
  positive integer
Number of medoids in the data, specified as a positive integer.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Distance','euclidean','Replicates', 3,'Options',statset('UseParallel',1) specifies Euclidean distance, three replicate medoids at different starting values, and to use parallel computing.

**Algorithm — Algorithm to find medoids**

'pam' | 'small' | 'clara' | 'large'

Algorithm to find medoids, specified as the comma-separated pair consisting of 'Algorithm' and 'pam', 'small', 'clara', or 'large'. The default algorithm depends on the number of rows of X.

- If the number of rows of X is less than 3000, 'pam' is the default algorithm.
- If the number of rows is between 3000 and 10000, 'small' is the default algorithm.
- For all other cases, 'large' is the default algorithm.

You can override the default choice by explicitly stating the algorithm. This table summarizes the available algorithms.
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'pam'     | Partitioning Around Medoids (PAM) is the classical algorithm for solving the \( k \)-medoids problem described in [1]. After applying the initialization function to select initial medoid positions, the program performs the swap-step of the PAM algorithm, that is, it searches over all possible swaps between medoids and non-medoids to see if the sum of medoid to cluster member distances goes down. You can specify which initialization function to use via the 'Start' name-value pair argument.  

The algorithm proceeds as follows.  

1 Build-step: Each of \( k \) clusters is associated with a potential medoid. This assignment is performed using a technique specified by the 'Start' name-value pair argument.  

2 Swap-step: Within each cluster, each point is tested as a potential medoid by checking if the sum of within-cluster distances gets smaller using that point as the medoid. If so, the point is defined as a new medoid. Every point is then assigned to the cluster with the closest medoid.  

The algorithm iterates the build- and swap-steps until the medoids do not change, or other termination criteria are met.  

The algorithm can produce better solutions than the other algorithms in some situations, but it can be prohibitively long running.  

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'small'   | Use an algorithm similar to the k-means algorithm to find \( k \) medoids. This option employs a variant of the Lloyd’s iterations based on [2]. The algorithm proceeds as follows.  
1. For each point in each cluster, calculate the sum of distances from the point to every other point in the cluster. Choose the point that minimizes the sum as the new medoid.  
2. Update the cluster membership for each data point to reflect the new medoid.  
The algorithm repeats these steps until no further updates occur or other termination criteria are met. The algorithm has an optional PAM-like online update phase (specified by the 'OnlinePhase' name-value pair argument) that improves cluster quality. It tends to return higher quality solutions than the clara or large algorithms, but it may not be the best choice for very large data. |
| 'clara'   | Clustering LARge Applications (CLARA) [1] repeatedly performs the PAM algorithm on random subsets of the data. It aims to overcome scaling challenges posed by the PAM algorithm through sampling. The algorithm proceeds as follows.  
1. Select a subset of the data and apply the PAM algorithm to the subset.  
2. Assign points of the full data set to clusters by picking the closest medoid.  
The algorithm repeats these steps until the medoids do not change, or other termination criteria are met.  
For the best performance, it is recommended that you perform multiple replicates. By default, the program performs five replicates. Each replicate samples \( s \) rows from \( X \) (specified by 'NumSamples' name-value pair argument) to perform clustering on. By default, \( 40+2*\text{k} \) samples are selected. |
Algorithm | Description
--- | ---
'large' | This is similar to the small scale algorithm and repeatedly performs searches using a k-means like update. However, the algorithm examines only a random sample of cluster members during each iteration. The user-adjustable parameter, 'PercentNeighbors', controls the number of neighbors to examine. If there is no improvement after the neighbors are examined, the algorithm terminates the local search. The algorithm performs a total of r replicates (specified by 'Replicates' name-value pair argument) and returns the best clustering result. The algorithm has an optional PAM-like online phase (specified by the 'OnlinePhase' name-value pair argument) that improves cluster quality.

Example: 'Algorithm','pam'

**OnlinePhase** — Flag to perform PAM-like online update phase

'on' (default) | 'off'

A flag to perform PAM-like online update phase, specified as a comma-separated pair consisting of 'OnlinePhase' and 'on' or 'off'.

If it is on, then kmedoids performs a PAM-like update to the medoids after the Lloyd iterations in the small and large algorithms. During this online update phase, the algorithm chooses a small subset of data points in each cluster that are the furthest from and nearest to medoid. For each chosen point, it reassigns the clustering of the entire data set and check if this creates a smaller sum of distances than the best known.

In other words, the swap considerations are limited to the points near the medoids and far from the medoids. The near points are considered in order to refine the clustering. The far points are considered in order to escape local minima. Turning on this feature tends to improve the quality of solutions generated by both algorithms. Total run time tends to increase as well, but the increase typically is less than one iteration of PAM.

Example: OnlinePhase,'off'

**Distance** — Distance metric

'squeenclidean'(default) | 'euclidean' | 'seuclidean' | 'cityblock' | 'minkowski' | 'chebychev' | 'mahalanobis' | 'cosine' | 'correlation' | 'spearman' | 'hamming' | 'jaccard' | custom distance function
Distance metric, in p-dimensional space, specified as the comma-separate pair consisting of 'Distance' and 'euclidean', 'seuclidean', 'cityblock', 'minkowski', 'chebychev', 'mahalanobis', 'cosine', 'correlation', 'spearman', 'hamming', 'jaccard', or a custom distance function.

kmedoids minimizes the sum of medoid to cluster member distances. See pdist for the definition of each distance metric. kmedoids supports all distance metrics supported by pdist.

Example: 'Distance', 'hamming'

Options — Options to control iterative algorithm to minimize fitting criteria

[] (default) | structure array returned by statset

Options to control the iterative algorithm to minimize fitting criteria, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. This table summarizes these options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Level of display output. Choices are 'off' (default) and 'iter'.</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed. The default is 100.</td>
</tr>
<tr>
<td>UseParallel</td>
<td>If true, compute in parallel. If Parallel Computing Toolbox is not available, then computation occurs in serial mode. The default is false, meaning serial computation.</td>
</tr>
<tr>
<td>UseSubstreams</td>
<td>Set to true to compute in parallel in a reproducible fashion. The default is false. To compute reproducibly, you must also set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.</td>
</tr>
<tr>
<td>Streams</td>
<td>A RandStream object or cell array of such objects. For details about these options and parallel computing in Statistics and Machine Learning Toolbox, see “Speed Up Statistical Computations” or enter help parallelstats at the command line.</td>
</tr>
</tbody>
</table>

Example: 'Options', statset('Display', 'off')

Replicates — Number of times to repeat clustering using new initial cluster medoid positions

positive integer

32-3416
Number of times to repeat clustering using new initial cluster medoid positions, specified as a positive integer. The default value depends on the choice of algorithm. For pam and small, the default is 1. For clara, the default is 5. For large, the default is 3.

Example: 'Replicates',4

NumSamples — Number of samples to take from data when executing clara algorithm

40+2*k (default) | positive integer

Number of samples to take from the data when executing the clara algorithm, specified as a positive integer. The default number of samples is calculated as 40+2*k.

Example: 'NumSamples',160

PercentNeighbors — Percent of data set to examine using large algorithm

0.001 (default) | scalar value between 0 and 1

Percent of the data set to examine using the large algorithm, specified as a positive number.

The program examines percentneighbors*size(X,1) number of neighbors for the medoids. If there is no improvement in the within-cluster sum of distances, then the algorithm terminates.

The value of this parameter between 0 and 1, where a value closer to 1 tends to give higher quality solutions, but the algorithm takes longer to run, and a value closer to 0 tends to give lower quality solutions, but finishes faster.

Example: 'PercentNeighbors',0.01

Start — Method for choosing initial cluster medoid positions

'plus' (default) | 'sample' | 'cluster' | matrix

Method for choosing initial cluster medoid positions, specified as the comma-separated pair consisting of 'Start' and 'plus', 'sample', 'cluster', or a matrix. This table summarizes the available methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'plus' (default)</td>
<td>Select k observations from X according to the k-means++ algorithm on page 32-3397 for cluster center initialization.</td>
</tr>
</tbody>
</table>
### Method Descriptions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sample'</td>
<td>Select $k$ observations from $X$ at random.</td>
</tr>
<tr>
<td>'cluster'</td>
<td>Perform preliminary clustering phase on a random subsample (10%) of $X$. This preliminary phase is itself initialized using sample, that is, the observations are selected at random.</td>
</tr>
</tbody>
</table>

**matrix**

A custom $k$-by-$p$ matrix of starting locations. In this case, you can pass in [] for the $k$ input argument, and kmedoids infers $k$ from the first dimension of the matrix. You can also supply a 3-D array, implying a value for 'Replicates' from the array’s third dimension.

**Example:** 'Start','sample'

**Data Types:** char | string | single | double

### Output Arguments

**idx — Medoid indices**

numeric column vector

Medoid indices, returned as a numeric column vector. idx has as many rows as $X$, and each row indicates the medoid assignment of the corresponding observation.

**C — Cluster medoid locations**

numeric matrix

Cluster medoid locations, returned as a numeric matrix. C is a $k$-by-$p$ matrix, where row $j$ is the medoid of cluster $j$.

**sumd — Within-cluster sums of point-to-medoid distances**

numeric column vector

Within-cluster sums of point-to-medoid distances, returned as a numeric column vector. sumd is a $k$-by1 vector, where element $j$ is the sum of point-to-medoid distances within cluster $j$. 
**D — Distances from each point to every medoid**
numeric matrix

Distances from each point to every medoid, returned as a numeric matrix. **D** is an *n*-by-*k* matrix, where element \((j,m)\) is the distance from observation \(j\) to medoid \(m\).

**midx — Index to X**
column vector

Index to **X**, returned as a column vector of indices. **midx** is a *k*-by-1 vector and the indices satisfy \(C = X(midx,:)\).

**info — Algorithm information**
struct

Algorithm information, returned as a struct. **info** contains options used by the function when executed such as *k*-medoid clustering algorithm (**algorithm**), method used to choose initial cluster medoid positions (**start**), distance metric (**distance**), number of iterations taken in the best replicate (**iterations**) and the replicate number of the returned results (**bestReplicate**).

**Definitions**

**k-medoids Clustering**

*k*-medoids clustering is a partitioning method commonly used in domains that require robustness to outlier data, arbitrary distance metrics, or ones for which the mean or median does not have a clear definition.

It is similar to *k*-means, and the goal of both methods is to divide a set of measurements or observations into *k* subsets or clusters so that the subsets minimize the sum of distances between a measurement and a center of the measurement’s cluster. In the *k*-means algorithm, the center of the subset is the mean of measurements in the subset, often called a centroid. In the *k*-medoids algorithm, the center of the subset is a member of the subset, called a medoid.

The *k*-medoids algorithm returns medoids which are the actual data points in the data set. This allows you to use the algorithm in situations where the mean of the data does not exist within the data set. This is the main difference between *k*-medoids and *k*-means.
where the centroids returned by \( k \)-means may not be within the data set. Hence \( k \)-medoids is useful for clustering categorical data where a mean is impossible to define or interpret.

The function `kmedoids` provides several iterative algorithms that minimize the sum of distances from each object to its cluster medoid, over all clusters. One of the algorithms is called partitioning around medoids (PAM) [1] which proceeds in two steps.

1. **Build-step**: Each of \( k \) clusters is associated with a potential medoid. This assignment is performed using a technique specified by the 'Start' name-value pair argument.

2. **Swap-step**: Within each cluster, each point is tested as a potential medoid by checking if the sum of within-cluster distances gets smaller using that point as the medoid. If so, the point is defined as a new medoid. Every point is then assigned to the cluster with the closest medoid.

The algorithm iterates the build- and swap-steps until the medoids do not change, or other termination criteria are met.

You can control the details of the minimization using several optional input parameters to `kmedoids`, including ones for the initial values of the cluster medoids, and for the maximum number of iterations. By default, `kmedoids` uses the \( k \)-means++ algorithm on page 32-3397 for cluster medoid initialization and the squared Euclidean metric to determine distances.

**References**


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

See Also
clusterdata | evalclusters | kmeans | linkage | linkage | pdist | silhouette

Introduced in R2014b
knnsearch

Find k-nearest neighbors using object

Syntax

Idx = knnsearch(Mdl,Y)
Idx = knnsearch(Mdl,Y,Name,Value)
[Idx,D] = knnsearch(__)

Description

Idx = knnsearch(Mdl,Y) searches for the nearest neighbor (i.e., the closest point, row, or observation) in Mdl.X to each point (i.e., row or observation) in the query data Y using an exhaustive search or a Kd-tree. knnsearch returns Idx, which is a column vector of the indices in Mdl.X representing the nearest neighbors.

Idx = knnsearch(Mdl,Y,Name,Value) returns the indices of the closest points in Mdl.X to Y with additional options specified by one or more Name,Value pair arguments. For example, specify the number of nearest neighbors to search for, distance metric different from the one stored in Mdl.Distance. You can also specify which action to take if the closest distances are tied.

[Idx,D] = knnsearch(__) additionally returns the matrix D using any of the input arguments in the previous syntaxes. D contains the distances between each observation in Y that correspond to the closest observations in Mdl.X. The function arranges the columns of D in ascending order by closeness, with respect to the distance metric.

Examples

Search for Nearest Neighbors Using Kd-tree and Exhaustive Search

knnsearch accepts ExhaustiveSearcher or KDTreeSearcher model objects to search the training data for the nearest neighbors to the query data. An
ExhaustiveSearcher model invokes the exhaustive searcher algorithm, and a KDTreeSearcher model defines a Kd-tree, which knnsearch uses to search for nearest neighbors.

Load Fisher's iris data set. Randomly reserve five observations from the data for query data.

```matlab
clear; % For reproducibility
load fisheriris
rng(1); % For reproducibility
n = size(meas,1);
idx = randsample(n,5);
X = meas(~ismember(1:n,idx),:); % Training data
Y = meas(idx,:); % Query data
```

The variable `meas` contains 4 predictors.

Grow a default four-dimensional Kd-tree.

```matlab
MdlKDT = KDTreeSearcher(X)
```

```
MdlKDT =
 KDTreeSearcher with properties:
 BucketSize: 50
 Distance: 'euclidean'
 DistParameter: []
 X: [145x4 double]
```

`MdlKDT` is a KDTreeSearcher model object. You can alter its writable properties using dot notation.

Prepare an exhaustive nearest neighbor searcher.

```matlab
MdlES = ExhaustiveSearcher(X)
```

```
MdlES =
 ExhaustiveSearcher with properties:
 Distance: 'euclidean'
 DistParameter: []
 X: [145x4 double]
```
MdlKDT is an ExhaustiveSearcher model object. It contains the options, such as the distance metric, to use to find nearest neighbors.

Alternatively, you can grow a Kd-tree or prepare an exhaustive nearest neighbor searcher using createns.

Search the training data for the nearest neighbors indices that correspond to each query observation. Conduct both types of searches using the default settings. By default, the number of neighbors to search for per query observation is 1.

IdxKDT = knnsearch(MdlKDT,Y);
IdxES = knnsearch(MdlES,Y);
[IdxKDT IdxES]

ans = 5×2
17 17
 6  6
 1  1
 89 89
124 124

In this case, the results of the search are the same.

**Search for Nearest Neighbors of Query Data Using Minkowski Distance**

Grow a Kd-tree nearest neighbor searcher object by using the createns function. Pass the object and query data to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
tIdx = ~ismember(1:n,qIdx); % Indices of training data
Q = meas(qIdx,:);
X = meas(tIdx,:);
Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding nearest neighbors.

\[ \text{Mdl} = \text{createns}(X,'\text{Distance}','\text{minkowski}') \]

\[ \text{Mdl} = \text{KDTreeSearcher with properties:} \]

\[
\begin{array}{l}
\text{BucketSize: 50} \\
\text{Distance: 'minkowski'} \\
\text{DistParameter: 2} \\
\text{X: [145x4 double]} \\
\end{array}
\]

Because \( X \) has four columns and the distance metric is Minkowski, \text{createns} creates a \text{KDTreeSearcher} model object by default. The Minkowski distance exponent is 2 by default.

Find the indices of the training data (\text{Mdl}.X) that are the two nearest neighbors of each point in the query data (\( Q \)).

\[ \text{IdxNN} = \text{knnsearch(Mdl,Q,'K',2)} \]

\[ \text{IdxNN} = 5\times2 \]

\[
\begin{array}{ll}
17 & 4 \\
6 & 2 \\
1 & 12 \\
89 & 66 \\
124 & 100 \\
\end{array}
\]

Each row of \text{IdxNN} corresponds to a query data observation, and the column order corresponds to the order of the nearest neighbors, with respect to ascending distance. For example, based on the Minkowski distance, the second nearest neighbor of \( Q(3,:) \) is \( X(12,:) \).

**Include Ties in Nearest Neighbor Search**

Load Fisher's iris data set.

\text{load fisheriris}
Remove five irises randomly from the predictor data to use as a query set.

```matlab
rng(4); % For reproducibility
n = size(meas,1); % Sample size
qIdx = randsample(n,5); % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);
```

Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding nearest neighbors.

```matlab
Mdl = KDTreeSearcher(X);
```

`Mdl` is a `KDTreeSearcher` model object. By default, the distance metric for finding nearest neighbors is the Euclidean metric.

Find the indices of the training data (`X`) that are the seven nearest neighbors of each point in the query data (`Y`).

```matlab
[Idx,D] = knnsearch(Mdl,Y,'K',7,'IncludeTies',true);
```

`Idx` and `D` are five-element cell arrays of vectors, with each vector having at least seven elements.

Display the lengths of the vectors in `Idx`.

```matlab
cellfun('length',Idx)
an = 5×1
 8
 7
 7
 7
 7
```

Because cell 1 contains a vector with length greater than $k = 7$, query observation 1 (`Y(1,:)`) is equally close to at least two observations in `X`.

Display the indices of the nearest neighbors to `Y(1,:)` and their distances.

```matlab
nn5 = Idx{1}
nn5 = 1×8
```
nn5d = D{1}
nn5d = 1×8

0.1414  0.2646  0.2828  0.3000  0.3464  0.3742  0.3873  0.3873

Training observations 88 and 95 are 0.3873 cm away from query observation 1.

**Compare k-Nearest Neighbors Using Different Distance Metrics**

Train two KDTreeSearcher models using different distance metrics, and compare k-nearest neighbors of query data for the two models.

Load Fisher's iris data set. Consider the petal measurements as predictors.

```matlab
load fisheriris
X = meas(:,3:4); % Predictors
Y = species; % Response
```

Train a KDTreeSearcher model object by using the predictors. Specify the Minkowski distance with exponent 5.

```matlab
KDTreeMdl = KDTreeSearcher(X,'Distance','minkowski','P',5)
```

Find the 10 nearest neighbors from X to a query point (newpoint), first using Minkowski then Chebychev distance metrics. The query point must have the same column dimension as the data used to train the model.

```matlab
newpoint = [5 1.45];
[IdxMk,DMk] = knnsearch(KDTreeMdl,newpoint,'k',10);
[IdxCb,DCb] = knnsearch(KDTreeMdl,newpoint,'k',10,'Distance','chebychev');
```
IdxMk and IdxCb are 1-by-10 matrices containing the row indices of X corresponding to the nearest neighbors to newpoint using Minkowski and Chebychev distances, respectively. Element (1,1) is the nearest, element (1,2) is the next nearest, and so on.

Plot the training data, query point, and nearest neighbors.

```matlab
figure;
gscatter(X(:,1),X(:,2),Y);
title('Fisher''s Iris Data -- Nearest Neighbors');
xlabel('Petal length (cm)');
ylabel('Petal width (cm)');
hold on
plot(newpoint(1),newpoint(2),'kx','MarkerSize',10,'LineWidth',2); % Query point
plot(X(IdxMk,1),X(IdxMk,2),'o','Color',[.5 .5 .5],'MarkerSize',10); % Minkowski nearest neighbors
plot(X(IdxCb,1),X(IdxCb,2),'p','Color',[.5 .5 .5],'MarkerSize',10); % Chebychev nearest neighbors
legend('setosa','versicolor','virginica','query point','minkowski','chebychev','Location','Best');
```
Zoom in on the points of interest.

```matlab
h = gca; % Get current axis handle.
h.XLim = [4.5 5.5];
h.YLim = [1 2];
axis square;
```
Several observations are equal, which is why only eight nearest neighbors are identified in the plot.

Input Arguments

Md1 — Nearest neighbor searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbor searcher, specified as an ExhaustiveSearcher or KDTreeSearcher model object, respectively.
If \( Mdl \) is an \texttt{ExhaustiveSearcher} model, then \texttt{knnsearch} searches for nearest neighbors using an exhaustive search. Otherwise, \texttt{knnsearch} uses the grown Kd-tree to search for nearest neighbors.

**Y — Query data**
numeric matrix

Query data, specified as a numeric matrix.

\( Y \) is an \( m \)-by-\( K \) matrix. Rows of \( Y \) correspond to observations (i.e., examples), and columns correspond to predictors (i.e., variables or features). \( Y \) must have the same number of columns as the training data stored in \( Mdl.X \).

Data Types: \texttt{single} | \texttt{double}

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: \texttt{'K',2,'Distance','minkowski'} specifies to find the two nearest neighbors of \( Mdl.X \) to each point in \( Y \) and to use the Minkowski distance metric.

**For Both Nearest Neighbor Searchers**

**Distance — Distance metric**

\( Mdl.Distance \) (default) | \texttt{'cityblock'} | \texttt{'euclidean'} | \texttt{'mahalanobis'} | \texttt{'minkowski'} | \texttt{'seuclidean'} | function handle | ...

Distance metric used to find neighbors of the training data to the query observations, specified as the comma-separated pair consisting of \texttt{'Distance'} and a character vector, string scalar, or function handle.

For both types of nearest neighbor searchers, \texttt{knnsearch} supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
</tbody>
</table>

If Mdl is an ExhaustiveSearcher model object, then knnsearch also supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as row vectors).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between rows in Mdl.X and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from Mdl.X. To specify another scaling, use the 'Scale' name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>
If `Mdl` is an `ExhaustiveSearcher` model object, then you can also specify a function handle for a custom distance metric by using `@` (for example, `@distfun`). The custom distance function must:

- Have the form `function D2 = distfun(ZI,ZJ).`
- Take as arguments:
  - A 1-by-`K` vector `ZI` containing a single row from `Mdl.X` or `Y`, where `K` is the number of columns of `Mdl.X`.
  - An `m`-by-`K` matrix `ZJ` containing multiple rows of `Mdl.X` or `Y`, where `m` is a positive integer.
- Return an `m`-by-1 vector of distances `D2`, where `D2(j)` is the distance between the observations `ZI` and `ZJ(j,:)`.

For more details, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

**IncludeTies — Flag to include all nearest neighbors**

`false (0) (default) | true (1)`

Flag to include nearest neighbors that have the same distance from query observations, specified as the comma-separated pair consisting of `'IncludeTies'` and `false (0)` or `true (1)`.

If `IncludeTies` is true, then:

- `knnsearch` includes all nearest neighbors whose distances are equal to the `k`th smallest distance in the output arguments, where `k` is the number of searched nearest neighbors specified by the 'K' name-value pair argument.
- `Idx` and `D` are `m`-by-1 cell arrays such that each cell contains a vector of at least `k` indices and distances, respectively. Each vector in `D` contains arranged distances in ascending order. Each row in `Idx` contains the indices of the nearest neighbors corresponding to these smallest distances in `D`.

If `IncludeTies` is false, then `knnsearch` chooses the observation with the smallest index among the observations that have the same distance from a query point.

Example: 'IncludeTies',true

**K — Number of nearest neighbors**

1 (default) | positive integer
Number of nearest neighbors to search for in the training data per query observation, specified as the comma-separated pair consisting of 'K' and a positive integer.

Example: 'K',2

Data Types: single | double

**P — Exponent for Minkowski distance metric**

2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',3

Data Types: single | double

**For Exhaustive Nearest Neighbor Searchers**

**Cov — Covariance matrix for Mahalanobis distance metric**

nancov(Mdl.X) (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K matrix, where K is the number of columns of Mdl.X. If you specify Cov and do not specify 'Distance','mahalanobis', then knnsearch returns an error message.

Example: 'Cov',eye(3)

Data Types: single | double

**Scale — Scale parameter value for standardized Euclidean distance metric**

nanstd(Mdl.X) (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale has length K, where K is the number of columns of Mdl.X.

The software scales each difference between the training and query data using the corresponding element of Scale. If you specify Scale and do not specify 'Distance','seuclidean', then knnsearch returns an error message.

Example: 'Scale',quantile(Mdl.X,0.75) - quantile(Mdl.X,0.25)

Data Types: single | double
If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and Mdl.DistParameter do not change value.

### Output Arguments

**Idx — Training data indices of nearest neighbors**  
numeric matrix | cell array of numeric vectors

Training data indices of nearest neighbors, returned as a numeric matrix or cell array of numeric vectors.

- If you do not specify IncludeTies (false by default), then Idx is an m-by-k numeric matrix, where m is the number of rows in Y and k is the number of searched nearest neighbors specified by the 'K' name-value pair argument. Idx(j,l) indicates that Mdl.X(Idx(j,l),:) is the observation with the lth smallest distance to the query observation Y(j,:).
- If you specify 'IncludeTies', true, then Idx is an m-by-1 cell array such that cell j (Idx{j}) contains a vector of at least k indices of the closest observations in Mdl.X to the query observation Y(j,:). The function arranges the elements of the vectors in ascending order by distance.

**D — Distances of nearest neighbors**  
numeric matrix | cell array of numeric vectors

Distances of the nearest neighbors to the query data, returned as a numeric matrix or cell array of numeric vectors.

- If you do not specify IncludeTies (false by default), then D is an m-by-k numeric matrix, where m is the number of rows in Y and k is the number of searched nearest neighbors specified by the 'K' name-value pair argument. D(j,l) is the distance between Mdl.X(Idx(j,l),:) and the query observation Y(j,:) with respect to the distance metric, and it represents the lth smallest distance.
- If you specify 'IncludeTies', true, then D is an m-by-1 cell array such that cell j (D{j}) contains a vector of at least k distances of the closest observations in Mdl.X to the query observation Y(j,:). The function arranges the elements of the vectors in ascending order by distance.
**Tips**

knnsearch finds the \( k \) (positive integer) points in \( Mdl.X \) that are \( k \)-nearest for each \( Y \) point. In contrast, rangesearch finds all the points in \( Mdl.X \) that are within distance \( r \) (positive scalar) of each \( Y \) point.

**Alternative Functionality**

- knnsearch is an object function that requires an ExhaustiveSearcher or a KDTreeSearcher model object and query data. Under equivalent conditions, the knnsearch object function returns the same results as the knnsearch function when you specify the name-value pair argument 'NSMethod','exhaustive' or 'NSMethod','kdtree', respectively.
- For \( k \)-nearest neighbors classification, see fitcknn and ClassificationKNN.

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- This table contains notes about arguments of knnsearch.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>There are two ways to use Mdl in code generation. For an example, see “Code Generation for Nearest Neighbor Searcher” on page 31-15.</td>
</tr>
<tr>
<td></td>
<td>• Use <code>saveCompactModel</code>, <code>loadCompactModel</code>, and <code>codegen</code> to generate code for the <code>knnsearch</code> function. Save a trained model by using <code>saveCompactModel</code> and define an entry-point function that loads the saved model by using <code>loadCompactModel</code> and calls the <code>knnsearch</code> function. Then use <code>codegen</code> to generate code for the entry-point function.</td>
</tr>
<tr>
<td></td>
<td>• Include <code>coder.Constant(Mdl)</code> in the <code>-args</code> value of <code>codegen</code>.</td>
</tr>
<tr>
<td>'Distance'</td>
<td>• Cannot be a custom distance function.</td>
</tr>
<tr>
<td></td>
<td>• Must be a compile-time constant; its value cannot change in the generated code.</td>
</tr>
<tr>
<td>'IncludeTies'</td>
<td>Must be a compile-time constant; its value cannot change in the generated code.</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined exponent for the Minkowski distance in the generated code, include <code>{coder.Constant('Distance'),coder.Constant('Minkowski'),coder.Constant('P'),0}</code> in the <code>-args</code> value of <code>codegen</code>.</td>
</tr>
<tr>
<td>Idx</td>
<td>When you specify 'IncludeTies' as true, the sorted order of tied distances in the generated code can be different from the order in MATLAB due to numerical precision.</td>
</tr>
</tbody>
</table>

- For code generation, `knnsearch` uses `parfor` (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the `parfor`-loops as `for`-loops. To find supported compilers, see https://www.mathworks.com/support/compilers/current_release/. To disable OpenMP library, specify the `EnableOpenMP` property of the `codegen` configuration object as `false`. For details, see `coder.CodeConfig`. 

32-3437
For more information, see “Introduction to Code Generation” on page 31-2 and “Code Generation for Nearest Neighbor Searcher” on page 31-15.

See Also
ClassificationKNN | ExhaustiveSearcher | KDTreeSearcher | createns |
fitcknn | knnsearch | rangesearch

Topics
“k-Nearest Neighbor Search and Radius Search” on page 18-19
“Distance Metrics” on page 18-16

Introduced in R2010a
**knnsearch**

Find $k$-nearest neighbors using data

**Syntax**

Idx = knnsearch(X,Y)
Idx = knnsearch(X,Y,Name,Value)
[Idx,D] = knnsearch(__)

**Description**

Idx = knnsearch(X,Y) finds the nearest neighbor in X for each query point in Y and returns the indices of the nearest neighbors in Idx, a column vector. Idx has the same number of rows as Y.

Idx = knnsearch(X,Y,Name,Value) returns Idx with additional options specified using one or more name-value pair arguments. For example, you can specify the number of nearest neighbors to search for and the distance metric used in the search.

[Idx,D] = knnsearch(__) additionally returns the matrix D, using any of the input arguments in the previous syntaxes. D contains the distances between each observation in Y and the corresponding closest observations in X.

**Examples**

Find Nearest Neighbors

Find the patients in the hospital data set that most closely resemble the patients in Y, according to age and weight.

Load the hospital data set.
load hospital;
X = [hospital.Age hospital.Weight];
Y = [20 162; 30 169; 40 168; 50 170; 60 171];   % New patients

Perform a knnsearch between X and Y to find indices of nearest neighbors.

Idx = knnsearch(X,Y);

Find the patients in X closest in age and weight to those in Y.

X(Idx,:)

ans = 5×2

25   171
25   171
39   164
49   170
50   172

Find k-Nearest Neighbors Using Different Distance Metrics

Find the 10 nearest neighbors in X to each point in Y, first using the Minkowski distance metric and then using the Chebychev distance metric.

Load Fisher's iris data set.

load fisheriris
X = meas(:,3:4);    % Measurements of original flowers
Y = [5 1.45;6 2;2.75 .75];  % New flower data

Perform a knnsearch between X and the query points Y using Minkowski and Chebychev distance metrics.

[mIdx,mD] = knnsearch(X,Y,'K',10,'Distance','minkowski','P',5);
[cIdx,cD] = knnsearch(X,Y,'K',10,'Distance','chebychev');

Visualize the results of the two nearest neighbor searches. Plot the training data. Plot the query points with the marker X. Use circles to denote the Minkowski nearest neighbors. Use pentagrams to denote the Chebychev nearest neighbors.
gscatter(X(:,1),X(:,2),species)
line(Y(:,1),Y(:,2),"Marker","x","Color","k",...
   'Markersize',10,'Linewidth',2,'Linestyle','none')
line(X(mIdx,1),X(mIdx,2),"Color",[.5 .5 .5],"Marker","o",...
   'Linestyle','none','Markersize',10)
line(X(cIdx,1),X(cIdx,2),"Color",[.5 .5 .5],"Marker","p",...
   'Linestyle','none','Markersize',10)
legend('setosa','versicolor','virginica','query point',...
    'minkowski','chebychev','Location','best')
Input Arguments

X — Input data
numeric matrix

Input data, specified as a numeric matrix. Rows of X correspond to observations, and columns correspond to variables.

Data Types: single | double

Y — Query points
numeric matrix

Query points, specified as a numeric matrix. Rows of Y correspond to observations, and columns correspond to variables. Y must have the same number of columns as X.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: knnsearch(X,Y,'K',
10,'IncludeTies',true,'Distance','cityblock') searches for 10 nearest neighbors, including ties and using the city block distance.

K — Number of nearest neighbors
1 (default) | positive integer

Number of nearest neighbors to find in X for each point in Y, specified as the comma-separated pair consisting of 'K' and a positive integer.

Example: 'K',10

Data Types: single | double

IncludeTies — Flag to include all nearest neighbors
false (0) (default) | true (1)
Flag to include all nearest neighbors that have the same distance from query points, specified as the comma-separated pair consisting of 'IncludeTies' and false (0) or true (1).

If 'IncludeTies' is false, then knnsearch chooses the observation with the smallest index among the observations that have the same distance from a query point.

If 'IncludeTies' is true, then:

- knnsearch includes all nearest neighbors whose distances are equal to the \(k\)th smallest distance in the output arguments. To specify \(k\), use the 'K' name-value pair argument.
- \(\text{Idx}\) and \(\text{D}\) are \(m\)-by-1 cell arrays such that each cell contains a vector of at least \(k\) indices and distances, respectively. Each vector in \(\text{D}\) contains distances arranged in ascending order. Each row in \(\text{Idx}\) contains the indices of the nearest neighbors corresponding to the smallest distances in \(\text{D}\).

Example: 'IncludeTies',true

**NSMethod — Nearest neighbor search method**

'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod' and one of these values.

- 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors. 'kdtree' is the default value when the number of columns in \(X\) is less than or equal to 10, \(X\) is not sparse, and the distance metric is 'euclidean', 'cityblock', 'chebychev', or 'minkowski'. Otherwise, the default value is 'exhaustive'.

  The value 'kdtree' is valid only when the distance metric is one of the four metrics noted above.

- 'exhaustive' — Uses the exhaustive search algorithm by computing the distance values from all the points in \(X\) to each point in \(Y\).

Example: 'NSMethod','exhaustive'

**Distance — Distance metric**

'eucilidean' (default) | 'seuclidean' | 'cityblock' | 'chebychev' | 'minkowski' | 'mahalanobis' | function handle | ...
Distance metric `knnsearch` uses, specified as the comma-separated pair consisting of 'Distance' and one of the values in this table or a function handle.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. To specify another scaling, use the 'Scale' name-value pair argument.</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of non-zero coordinates that differ.</td>
</tr>
</tbody>
</table>

You can also specify a function handle for a custom distance metric by using @ (for example, @distfun). A custom distance function must:

- Have the form function `D2 = distfun(ZI,ZJ)`.
- Take as arguments:
  - A 1-by-`n` vector `ZI` containing a single row from `X` or from the query points `Y`.
  - An `m_2`-by-`n` matrix `ZJ` containing multiple rows of `X` or `Y`.
- Return an `m_2`-by-1 vector of distances `D2`, whose `j`th element is the distance between the observations `ZI` and `ZJ(j,:)`.  

32-3444
For more information, see “Distance Metrics” on page 18-16.

Example: 'Distance','chebychev'

**P — Exponent for Minkowski distance metric**
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',4

Data Types: single | double

**Cov — Covariance matrix for Mahalanobis distance metric**
nancov(X) (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix. This argument is valid only when 'Distance' is 'mahalanobis'.

Example: 'Cov',eye(4)

Data Types: single | double

**Scale — Scale parameter value for standardized Euclidean distance metric**
nanstd(X) (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. 'Scale' has length equal to the number of columns in X. When knnsearch computes the standardized Euclidean distance, each coordinate of X is scaled by the corresponding element of 'Scale', as is each query point. This argument is valid only when 'Distance' is 'seuclidean'.

Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)

Data Types: single | double

**BucketSize — Maximum number of data points in leaf node of Kd-tree**
50 (default) | positive integer

Maximum number of data points in the leaf node of the Kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer. This argument is valid only when NSMethod is 'kdtree'.

32-3445
Output Arguments

**Idx — Input data indices of nearest neighbors**
numeric matrix | cell array of numeric vectors

Input data indices of the nearest neighbors, returned as a numeric matrix or cell array of numeric vectors.

- If you do not specify `IncludeTies` (false by default), then `Idx` is an `m`-by-`k` numeric matrix, where `m` is the number of rows in `Y` and `k` is the number of searched nearest neighbors. `Idx(j,i)` indicates that `X(Idx(j,i),:)` is the observation with the `i`th smallest distance to the query point `Y(j,:)`.

- If you specify `'IncludeTies'`, `true`, then `Idx` is an `m`-by-`1` cell array such that cell `j` (`Idx{j}`) contains a vector of at least `k` indices of the closest observations in `X` to the query point `Y(j,:)`. The `knnsearch` function arranges the elements of the vectors in ascending order by distance.

**D — Distances of nearest neighbors**
numeric matrix | cell array of numeric vectors

Distances of the nearest neighbors to the query points, returned as a numeric matrix or cell array of numeric vectors.

- If you do not specify `IncludeTies` (false by default), then `D` is an `m`-by-`k` numeric matrix, where `m` is the number of rows in `Y` and `k` is the number of searched nearest neighbors. `D(j,i)` is the distance between `X(Idx(j,i),:)` and `Y(j,:)` with respect to the distance metric, and it represents the `i`th smallest distance.

- If you specify `'IncludeTies'`, `true`, then `D` is an `m`-by-`1` cell array such that cell `j` (`D{j}`) contains a vector of at least `k` distances of the closest observations in `X` to the query point `Y(j,:)`. The `knnsearch` function arranges the elements of the vectors in ascending order by distance.
Tips

• For a fixed positive integer \( k \), \texttt{knnsearch} finds the \( k \) points in \( X \) that are the nearest to each point in \( Y \). To find all points in \( X \) within a fixed distance of each point in \( Y \), use \texttt{rangesearch}.
• \texttt{knnsearch} does not save a search object. To create a search object, use \texttt{creatsens}.

Algorithms

For information on a specific search algorithm, see “Distance Metrics” on page 18-16.

Alternative Functionality

If you set the \texttt{knnsearch} function's 'NSMethod' name-value pair argument to the appropriate value ('exhaustive' for an exhaustive search algorithm or 'kdtree' for a Kd-tree algorithm), then the search results are equivalent to the results obtained by conducting a distance search using the \texttt{knnsearch} object function. Unlike the \texttt{knnsearch} function, the \texttt{knnsearch} object function requires an \texttt{ExhaustiveSearcher} or a \texttt{KDTreeSearcher} model object.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• For code generation, the default value of the 'NSMethod' name-value pair argument is 'exhaustive' when the number of columns in X is greater than 7.
• The value of the 'Distance' name-value pair argument must be a compile-time constant and cannot be a custom distance function.
• The value of the 'IncludeTies' name-value pair argument must be a compile-time constant.
• Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined exponent for the Minkowski distance in the generated code, include
  \{coder.Constant('Distance'),coder.Constant('Minkowski'),coder.Constant('P'),0\} in the -args value of codegen.
• When you specify 'IncludeTies' as true, the sorted order of tied distances in the generated code can be different from the order in MATLAB due to numerical precision.
• For code generation, knnsearch uses parfor (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the parfor-loops as for-loops. To find supported compilers, see https://www.mathworks.com/support/compilers/current_release/. To disable OpenMP library, specify the EnableOpenMP property of the codegen configuration object as false. For details, see coder.CodeConfig.

For more information on code generation, see “Introduction to Code Generation” on page 31-2 and “General Code Generation Workflow” on page 31-5.

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The 'IncludeTies' and 'NSMethod' Name arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
ExhaustiveSearcher | KDTreeSearcher | createns | knnsearch
**Topics**

“k-Nearest Neighbor Search and Radius Search” on page 18-19
“Distance Metrics” on page 18-16

**Introduced in R2010a**
kruskalwallis

Kruskal-Wallis test

Syntax

\[ p = \text{kruskalwallis}(x) \]
\[ p = \text{kruskalwallis}(x,\text{group}) \]
\[ p = \text{kruskalwallis}(x,\text{group},\text{displayopt}) \]
\[ [p,tbl,stats] = \text{kruskalwallis}(\_\_\_) \]

Description

\[ p = \text{kruskalwallis}(x) \] returns the \( p \)-value for the null hypothesis that the data in each column of the matrix \( x \) comes from the same distribution, using a Kruskal-Wallis test on page 32-3458. The alternative hypothesis is that not all samples come from the same distribution. \text{kruskalwallis} also returns an ANOVA table and a box plot.

\[ p = \text{kruskalwallis}(x,\text{group}) \] returns the \( p \)-value for a test of the null hypothesis that the data in each categorical group, as specified by the grouping variable \( \text{group} \) comes from the same distribution. The alternative hypothesis is that not all groups come from the same distribution.

\[ p = \text{kruskalwallis}(x,\text{group},\text{displayopt}) \] returns the \( p \)-value of the test and lets you display or suppress the ANOVA table and box plot.

\[ [p,tbl,stats] = \text{kruskalwallis}(\_\_\_) \] also returns the ANOVA table as the cell array \( tbl \) and the structure \( stats \) containing information about the test statistics.

Examples

Test Data Samples for the Same Distribution

Create two different normal probability distribution objects. The first distribution has \( \text{mu} = 0 \) and \( \text{sigma} = 1 \), and the second distribution has \( \text{mu} = 2 \) and \( \text{sigma} = 1 \).
pd1 = makedist('Normal');
pd2 = makedist('Normal','mu',2,'sigma',1);

Create a matrix of sample data by generating random numbers from these two distributions.

rng('default'); % for reproducibility
x = [random(pd1,20,2),random(pd2,20,1)];

The first two columns of x contain data generated from the first distribution, while the third column contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the same distribution.

p = kruskalwallis(x)
### Kruskal-Wallis ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Chi-sq</th>
<th>Prob&gt;Chi-sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>7631.1</td>
<td>2</td>
<td>3815.55</td>
<td>25.02</td>
<td>3.68957e-06</td>
</tr>
<tr>
<td>Error</td>
<td>10363.9</td>
<td>57</td>
<td>181.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17995</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The returned value of $p$ indicates that kruskalwallis rejects the null hypothesis that all three data samples come from the same distribution at a 1% significance level. The ANOVA table provides additional test results, and the box plot visually presents the summary statistics for each column in $x$.

**Conduct Followup Tests for Unequal Medians**

Create two different normal probability distribution objects. The first distribution has $\mu = 0$ and $\sigma = 1$. The second distribution has $\mu = 2$ and $\sigma = 1$. 
pd1 = makedist('Normal');
pd2 = makedist('Normal', 'mu', 2, 'sigma', 1);

Create a matrix of sample data by generating random numbers from these two distributions.

rng('default'); % for reproducibility
x = [random(pd1, 20, 2), random(pd2, 20, 1)];

The first two columns of x contain data generated from the first distribution, while the third column contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the same distribution. Suppress the output displays, and generate the structure stats to use in further testing.

[p, tbl, stats] = kruskalwallis(x, [], 'off')

p = 3.6896e-06

tbl = 4x6 cell array
  Columns 1 through 5
    {'Source'}    {'SS'       }    {'df'}    {'MS'      }    {'Chi-sq'  }
    {'Columns'}    {[7.6311e+03]}    {[ 2]}    {[3.8155e+03]}    {[ 25.0200]}
    {'Error' }    {[1.0364e+04]}    {[57]}    {[  181.8228]}    {0x0 double}
    {'Total' }    {[ 17995]}    {[59]}    {0x0 double  }    {0x0 double  }

  Column 6
    {'Prob>Chi-sq'}
    {[ 3.6896e-06]}
    {0x0 double  }
    {0x0 double  }

stats = struct with fields:
  gnames: [3x1 char]
  n: [20 20 20]
  source: 'kruskalwallis'
  meanranks: [26.7500 18.9500 45.8000]
  sumt: 0

The returned value of p indicates that the test rejects the null hypothesis at the 1% significance level. You can use the structure stats to perform additional followup testing.
The cell array tbl contains the same data as the graphical ANOVA table, including column and row labels.

Conduct a followup test to identify which data sample comes from a different distribution.

c = multcompare(stats)

Note: Intervals can be used for testing but are not simultaneous confidence intervals.
The results indicate that there is a significant difference between groups 1 and 3, so the test rejects the null hypothesis that the data in these two groups comes from the same distribution. The same is true for groups 2 and 3. However, there is not a significant difference between groups 1 and 2, so the test does not reject the null hypothesis that these two groups come from the same distribution. Therefore, these results suggest that the data in groups 1 and 2 come from the same distribution, and the data in group 3 comes from a different distribution.

**Test for the Same Distribution Across Groups**

Create a vector, `strength`, containing measurements of the strength of metal beams. Create a second vector, `alloy`, indicating the type of metal alloy from which the corresponding beam is made.

```matlab
strength = [82 86 79 83 84 85 86 87 74 82 ...
 78 75 76 77 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
 'al1','al1','al1','al1','al1','al1',...
 'al2','al2','al2','al2','al2','al2'};
```

Test the null hypothesis that the beam strength measurements have the same distribution across all three alloys.

```matlab
p = kruskalwallis(strength,alloy,'off')
p = 0.0018
```

The returned value of `p` indicates that the test rejects the null hypothesis at the 1% significance level.

**Input Arguments**

- `x` — Sample data
  
  vector | matrix

  Sample data for the hypothesis test, specified as a vector or an `m-by-n` matrix. If `x` is an `m-by-n` matrix, each of the `n` columns represents an independent sample containing `m` mutually independent observations.
Data Types: single | double

**group — Grouping variable**

numeric vector | logical vector | character array | string array | cell array of character vectors

Grouping variable, specified as a numeric or logical vector, a character or string array, or a cell array of character vectors.

- If `x` is a vector, then each element in `group` identifies the group to which the corresponding element in `x` belongs, and `group` must be a vector of the same length as `x`. If a row of `group` contains an empty value, that row and the corresponding observation in `x` are disregarded. NaN values in either `x` or `group` are similarly ignored.
- If `x` is a matrix, then each column in `x` represents a different group, and you can use `group` to specify labels for these columns. The number of elements in `group` and the number of columns in `x` must be equal.

The labels contained in `group` also annotate the box plot.

Example:

```{red,'
blue',
green',
'blue',
'red',
'blue',
'green',
'green',
'red'}
```

Data Types: single | double | logical | char | string | cell

**displayopt — Display option**

'on' (default) | 'off'

Display option, specified as 'on' or 'off'. If `displayopt` is 'on', `kruskalwallis` displays the following figures:

- An ANOVA table containing the sums of squares, degrees of freedom, and other quantities calculated based on the ranks of the data in `x`.
- A box plot of the data in each column of the data matrix `x`. The box plots are based on the actual data values, rather than on the ranks.

If `displayopt` is 'off', `kruskalwallis` does not display these figures.

If you specify a value for `displayopt`, you must also specify a value for `group`. If you do not have a grouping variable, specify `group` as `[]`.

Example: 'off'
## Output Arguments

**p — p-value**  
scalar value in the range [0,1]  

$p$-value of the test, returned as a scalar value in the range [0,1]. $p$ is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of $p$ cast doubt on the validity of the null hypothesis.

**tbl — ANOVA table**  

cell array  

ANOVA table of test results, returned as a cell array. `tbl` includes the sums of squares, degrees of freedom, and other quantities calculated based on the ranks of the data in `x`, as well as column and row labels.

**stats — Test data**  

structure  

Test data, returned as a structure. You can perform followup multiple comparison tests on pairs of sample medians by using `multcompare`, with `stats` as the input value.

## Definitions

### Kruskal-Wallis Test

The Kruskal-Wallis test is a nonparametric version of classical one-way ANOVA, and an extension of the Wilcoxon rank sum test to more than two groups. It compares the medians of the groups of data in `x` to determine if the samples come from the same population (or, equivalently, from different populations with the same distribution).

The Kruskal-Wallis test uses ranks of the data, rather than numeric values, to compute the test statistics. It finds ranks by ordering the data from smallest to largest across all groups, and taking the numeric index of this ordering. The rank for a tied observation is equal to the average rank of all observations tied with it. The $F$-statistic used in classical one-way ANOVA is replaced by a chi-square statistic, and the $p$-value measures the significance of the chi-square statistic.

The Kruskal-Wallis test assumes that all samples come from populations having the same continuous distribution, apart from possibly different locations due to group effects, and
that all observations are mutually independent. By contrast, classical one-way ANOVA replaces the first assumption with the stronger assumption that the populations have normal distributions.

See Also

anoval|boxplot|friedman|multcompare|ranksum

Topics

“Grouping Variables” on page 2-57

Introduced before R2006a
ksdensity

Kernel smoothing function estimate for univariate and bivariate data

Syntax

[f,xi] = ksdensity(x)
[f,xi] = ksdensity(x,pts)
[f,xi] = ksdensity(___,Name,Value)
[f,xi,bw] = ksdensity(___)

ksdensity(___)
ksdensity(ax,___)

Description

[f,xi] = ksdensity(x) returns a probability density estimate, f, for the sample data in the vector or two-column matrix x. The estimate is based on a normal kernel function, and is evaluated at equally-spaced points, xi, that cover the range of the data in x. ksdensity estimates the density at 100 points for univariate data, or 900 points for bivariate data.

ksdensity works best with continuously distributed samples.

[f,xi] = ksdensity(x,pts) specifies points (pts) to evaluate f. Here, xi and pts contain identical values.

[f,xi] = ksdensity(___,Name,Value) uses additional options specified by one or more name-value pair arguments in addition to any of the input arguments in the previous syntaxes. For example, you can define the function type ksdensity evaluates, such as probability density, cumulative probability, survivor function, and so on. Or you can specify the bandwidth of the smoothing window.

[f,xi,bw] = ksdensity(___) also returns the bandwidth of the kernel smoothing window, bw. The default bandwidth is the optimal for normal densities.

ksdensity(___) plots the kernel smoothing function estimate.
ksdensity(ax,___) plots the results using axes with the handle, ax, instead of the current axes returned by gca.

Examples

Estimate Density

Generate a sample data set from a mixture of two normal distributions.

rng('default') % For reproducibility
x = [randn(30,1); 5+randn(30,1)];

Plot the estimated density.

[f,xi] = ksdensity(x);
figure
plot(xi,f);
The density estimate shows the bimodality of the sample.

**Estimate Density with Boundary Correction**

Generate a nonnegative sample data set from the half-normal distribution.

```matlab
rng('default') % For reproducibility
pd = makedist('HalfNormal','mu',0,'sigma',1);
x = random(pd,100,1);
```

Estimate pdfs with two different boundary correction methods, log transformation and reflection, by using the 'BoundaryCorrection' name-value pair argument.
pts = linspace(0,5,1000); % points to evaluate the estimator
[f1,xi1] = ksdensity(x,pts,'Support','positive');
[f2,xi2] = ksdensity(x,pts,'Support','positive','BoundaryCorrection','reflection');

Plot the two estimated pdfs.

plot(xi1,f1,xi2,f2)
lgd = legend('log','reflection');
title(lgd, 'Boundary Correction Method')
xl = xlim;
xlim([xl(1)-0.25 xl(2)])

ksdensity uses a boundary correction method when you specify either positive or bounded support. The default boundary correction method is log transformation. When
ksdensity transforms the support back, it introduces the $1/x$ term in the kernel density estimator. Therefore, the estimate has a peak near $x = 0$. On the other hand, the reflection method does not cause undesirable peaks near the boundary.

**Estimate Cumulative Distribution Function at Specified Values**

Load the sample data.

```matlab
load hospital
```

Compute and plot the estimated cdf evaluated at a specified set of values.

```matlab
pts = (min(hospital.Weight):2:max(hospital.Weight));
figure()
ecdf(hospital.Weight)
hold on
[f,xi,bw] = ksdensity(hospital.Weight,pts,'Support','positive', ...
 'Function','cdf');
plot(xi,f,'-g','LineWidth',2)
legend('empirical cdf','kernel-bw:default','Location','northwest')
xlabel('Patient weights')
ylabel('Estimated cdf')
```
ksdensity seems to smooth the cumulative distribution function estimate too much. An estimate with a smaller bandwidth might produce a closer estimate to the empirical cumulative distribution function.

Return the bandwidth of the smoothing window.

bw

bw = 0.1070

Plot the cumulative distribution function estimate using a smaller bandwidth.

[f,xi] = ksdensity(hospital.Weight,pts,'Support','positive',... 'Function','cdf','Bandwidth',0.05);
The `ksdensity` estimate with a smaller bandwidth matches the empirical cumulative distribution function better.

**Plot Estimated Cumulative Density Function for Given Number of Points**

Load the sample data.
load hospital

Plot the estimated cdf evaluated at 50 equally spaced points.

figure()
ksdensity(hospital.Weight,'Support','positive','Function','cdf',... 
'NumPoints',50)
xlabel('Patient weights')
ylabel('Estimated cdf')
Estimate Survivor and Cumulative Hazard for Censored Failure Data

Generate sample data from an exponential distribution with mean 3.

```matlab
rng('default') % For reproducibility
x = random('exp',3,100,1);
```

Create a logical vector that indicates censoring. Here, observations with lifetimes longer than 10 are censored.

```matlab
T = 10;
cens = (x>T);
```

Compute and plot the estimated density function.

```matlab
figure
ksdensity(x,'Support','positive','Censoring',cens);
```
Compute and plot the survivor function.

```matlab
figure
ksdensity(x,'Support','positive','Censoring',cens,...
'Function','survivor');
```
Compute and plot the cumulative hazard function.

```matlab
figure
ksdensity(x,'Support','positive','Censoring',cens,...
'Function','cumhazard');
```
**Estimate Inverse Cumulative Distribution Function for Specified Probability Values**

Generate a mixture of two normal distributions, and plot the estimated inverse cumulative distribution function at a specified set of probability values.

```matlab
rng('default') % For reproducibility
x = [randn(30,1); 5+randn(30,1)];
pi = linspace(.01,.99,99);
figure
ksdensity(x,pi,'Function','icdf');
```
Return Bandwidth of Smoothing Window

Generate a mixture of two normal distributions.

rng('default')  % For reproducibility
x = [randn(30,1); 5+randn(30,1)];

Return the bandwidth of the smoothing window for the probability density estimate.

[f,xi,bw] = ksdensity(x);
bw
bw = 1.5141

The default bandwidth is optimal for normal densities.

Plot the estimated density.

```matlab
figure
plot(xi,f);
xlabel('xi')
ylabel('f')
hold on
```

Plot the density using an increased bandwidth value.
[f,xi] = ksdensity(x,'Bandwidth',1.8);
plot(xi,f,'--r','LineWidth',1.5)

A higher bandwidth further smooths the density estimate, which might mask some characteristics of the distribution.

Now, plot the density using a decreased bandwidth value.

[f,xi] = ksdensity(x,'Bandwidth',0.8);
plot(xi,f,'-.k','LineWidth',1.5)
legend('bw = default','bw = 1.8','bw = 0.8')
hold off
A smaller bandwidth smooths the density estimate less, which exaggerates some characteristics of the sample.

**Plot Kernel Density Estimate of Bivariate Data**

Create a two-column vector of points at which to evaluate the density.

```matlab
gridx1 = -0.25:.05:1.25;
gridx2 = 0:.1:15;
[x1,x2] = meshgrid(gridx1, gridx2);
x1 = x1(:);
```
x2 = x2(:);
x = [x1 x2];

Generate a 30-by-2 matrix containing random numbers from a mixture of bivariate normal distributions.

rng('default')  % For reproducibility
x = [0+.5*rand(20,1) 5+2.5*rand(20,1);
    .75+.25*rand(10,1) 8.75+1.25*rand(10,1)];

Plot the estimated density of the sample data.
figure
ksdensity(x,xi);
Input Arguments

x — Sample data
column vector | two-column matrix

Sample data for which ksdensity returns f values, specified as a column vector or two-column matrix. Use a column vector for univariate data, and a two-column matrix for bivariate data.

Example: [f,xi] = ksdensity(x)
Data Types: single | double

pts — Points to evaluate f
vector | two-column matrix

Points to evaluate f at, specified as a vector or two-column matrix. For univariate data, pts can be a row or column vector. The returned output f has the same dimensions as pts.

Example: pts = (0:1:25); ksdensity(x,pts);
Data Types: single | double

ax — Axes handle
handle

Axes handle for the figure ksdensity plots to, specified as a handle.

For example, if h is a handle for a figure, then ksdensity can plot to that figure as follows.

Example: ksdensity(h,x)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Censoring',cens,'Kernel','triangle','NumPoints',20,'Function','cdf' specifies that ksdensity estimates the cdf by evaluating at 20 points.
equally spaced points that covers the range of data, using the triangle kernel smoothing function and accounting for the censored data information in vector cens.

**Bandwidth — Bandwidth of the kernel smoothing window**

optimal value for normal densities (default) | scalar value | two-element vector

The bandwidth of the kernel-smoothing window, which is a function of the number of points in x, specified as the comma-separated pair consisting of 'Bandwidth' and a scalar value. If the sample data is bivariate, Bandwidth can also be a two-element vector. The default is optimal for estimating normal densities [1], but you might want to choose a larger or smaller value to smooth more or less.

If you specify 'BoundaryCorrection' as 'log'(default) and 'Support' as either 'positive' or a vector [L U], ksdensity converts bounded data to be unbounded by using log transformation. The value of 'Bandwidth' is on the scale of the transformed values.

Example: 'Bandwidth',0.8

Data Types: single | double

**BoundaryCorrection — Boundary correction method**

'log' (default) | 'reflection'

Boundary correction method, specified as the comma-separated pair consisting of 'BoundaryCorrection' and 'log' or 'reflection'.

---

32-3478
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'log'</td>
<td>ksdensity converts bounded data ( x ) to be unbounded by one of the following transformations. Then, it transforms back to the original bounded scale after density estimation.</td>
</tr>
<tr>
<td></td>
<td>- For univariate data, if you specify 'Support','positive', then ksdensity applies ( \log(x) ).</td>
</tr>
<tr>
<td></td>
<td>- For univariate data, if you specify 'Support',[( L ) ( U )], where ( L ) and ( U ) are numeric scalars and ( L &lt; U ), then ksdensity applies ( \log((x-L)/(U-x)) ).</td>
</tr>
<tr>
<td></td>
<td>- For bivariate data, ksdensity transforms each column of ( x ) in the same way with the univariate data.</td>
</tr>
<tr>
<td></td>
<td>The value of 'Bandwidth' and the ( bw ) output are on the scale of the transformed values.</td>
</tr>
<tr>
<td>'reflection'</td>
<td>ksdensity augments bounded data by adding reflected data near the boundaries, then it returns estimates corresponding to the original support. For details, see “Reflection Method” on page 32-3484.</td>
</tr>
</tbody>
</table>

ksdensity applies boundary correction only when you specify 'Support' as a value other than 'unbounded'.

Example: 'BoundaryCorrection','reflection'

**Censoring — Logical vector**

vector of 0s (default) | vector of 0s and 1s

Logical vector indicating which entries are censored, specified as the comma-separated pair consisting of 'Censoring' and a vector of binary values. A value of 0 indicates there is no censoring, 1 indicates that observation is censored. Default is there is no censoring. This name-value pair is only valid for univariate data.

Example: 'Censoring',censdata

Data Types: logical

**Function — Function to estimate**

'pdf' (default)| 'cdf' | 'icdf' | 'survivor' | 'cumhazard'

Function to estimate, specified as the comma-separated pair consisting of 'Function' and one of the following.
<table>
<thead>
<tr>
<th><strong>Value</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>'pdf'</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>'cdf'</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>'icdf'</td>
<td>Inverse cumulative distribution function. <code>ksdensity</code> computes the estimated inverse cdf of the values in <code>x</code>, and evaluates it at the probability values specified in <code>pi</code>. This value is valid only for univariate data.</td>
</tr>
<tr>
<td>'survivor'</td>
<td>Survivor function.</td>
</tr>
<tr>
<td>'cumhazard'</td>
<td>Cumulative hazard function. This value is valid only for univariate data.</td>
</tr>
</tbody>
</table>

Example: 'Function','icdf'

**Kernel — Type of kernel smoother**

'normal' (default) | 'box' | 'triangle' | 'epanechnikov' | function handle | character vector | string scalar

Type of kernel smoother, specified as the comma-separated pair consisting of 'Kernel' and one of the following.

- 'normal' (default)
- 'box'
- 'triangle'
- 'epanechnikov'

You can also specify a custom kernel function as a function handle (for example, `@normpdf`) or as either a character vector or string scalar (for example, 'normpdf'). This calls the function with one argument that is an array of distances between data values and locations where the density is evaluated. The function must return an array of the same size containing corresponding values of the kernel function.

When 'Function' is 'pdf', this kernel function returns density values. Otherwise, it returns cumulative probability values.

Specifying a custom kernel when 'Function' is 'icdf' returns an error.

For bivariate data, `ksdensity` applies the same kernel to each dimension.
Example: 'Kernel', 'box'

**NumPoints — Number of equally spaced points**

100 (default) | scalar value

Number of equally spaced points in \( xi \), specified as the comma-separated pair consisting of 'NumPoints' and a scalar value. This name-value pair is only valid for univariate data.

For example, for a kernel smooth estimate of a specified function at 80 equally spaced points within the range of sample data, input:

Example: 'NumPoints', 80

Data Types: single | double

**Support — Support for the density**

'unbounded' (default) | 'positive' | two-element vector, [L U] | two-by-two matrix, [L1 L2 ; U1 U2]

Support for the density, specified as the comma-separated pair consisting of 'support' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unbounded'</td>
<td>Default. Allow the density to extend over the whole real line.</td>
</tr>
<tr>
<td>'positive'</td>
<td>Restrict the density to positive values.</td>
</tr>
<tr>
<td>Two-element vector, [L U]</td>
<td>Give the finite lower and upper bounds for the support of the density. This option is only valid for univariate sample data.</td>
</tr>
<tr>
<td>Two-by-two matrix, [L1 L2 ; U1 U2]</td>
<td>Give the finite lower and upper bounds for the support of the density. The first row contains the lower limits and the second row contains the upper limits. This option is only valid for bivariate sample data.</td>
</tr>
</tbody>
</table>

For bivariate data, 'Support' can be a combination of positive, unbounded, or bounded variables specified as [0 -Inf ; Inf Inf] or [0 L ; Inf U].

Example: 'Support', 'positive'

Example: 'Support', [0 10]

Data Types: single | double | char | string

**PlotFcn — Function used to create kernel density plot**

'surf' (default) | 'contour' | 'plot3' | 'surfc'

32-3481
Function used to create kernel density plot, specified as the comma-separated pair consisting of 'PlotFcn' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'surf'</td>
<td>3-D shaded surface plot, created using surf</td>
</tr>
<tr>
<td>'contour'</td>
<td>Contour plot, created using contour</td>
</tr>
<tr>
<td>'plot3'</td>
<td>3-D line plot, created using plot3</td>
</tr>
<tr>
<td>'surfc'</td>
<td>Contour plot under a 3-D shaded surface plot, created using surfc</td>
</tr>
</tbody>
</table>

This name-value pair is only valid for bivariate sample data.

Example: 'PlotFcn','contour'

**Weights** — Weights for sample data
type: vector

Weights for sample data, specified as the comma-separated pair consisting of 'Weights' and a vector of length size(x,1), where x is the sample data.

Example: 'Weights',xw

Data Types: single | double

**Output Arguments**

**f** — Estimated function values
type: vector

Estimated function values, returned as a vector of the same dimension as xi or pts.

**xi** — Evaluation points
type: 100 equally spaced points | 900 equally spaced points | vector

Evaluation points at which ksdensity calculates f, returned as a vector. For univariate data, the default is 100 equally-spaced points that cover the range of data in x. For bivariate data, the default is 900 equally-spaced points created using meshgrid from 30 equally-spaced points in each dimension.

**bw** — Bandwidth of smoothing window
type: scalar value
Bandwidth of smoothing window, returned as a scalar value.

If you specify 'BoundaryCorrection' as 'log'(default) and 'Support' as either 'positive' or a vector [L U], ksdensity converts bounded data to be unbounded by using log transformation. The value of bw is on the scale of the transformed values.

Definitions

Kernel Distribution

A kernel distribution is a nonparametric representation of the probability density function (pdf) of a random variable. You can use a kernel distribution when a parametric distribution cannot properly describe the data, or when you want to avoid making assumptions about the distribution of the data. A kernel distribution is defined by a smoothing function and a bandwidth value, which control the smoothness of the resulting density curve.

The kernel density estimator is the estimated pdf of a random variable. For any real values of $x$, the kernel density estimator's formula is given by

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right),$$

where $x_1, x_2, ..., x_n$ are random samples from an unknown distribution, $n$ is the sample size, $K(\cdot)$ is the kernel smoothing function, and $h$ is the bandwidth.

The kernel estimator for the cumulative distribution function (cdf), for any real values of $x$, is given by

$$\hat{F}_h(x) = \int_{-\infty}^{x} \hat{f}_h(t)dt = \frac{1}{n} \sum_{i=1}^{n} G\left(\frac{x - x_i}{h}\right),$$

where $G(x) = \int_{-\infty}^{x} K(t)dt$.

For more details, see “Kernel Distribution” on page B-81.
Reflection Method

The reflection method is a boundary correction method that accurately finds kernel density estimators when a random variable has bounded support. If you specify 'BoundaryCorrection','reflection', ksdensity uses the reflection method. This method augments bounded data by adding reflected data near the boundaries, and estimates the pdf. Then, ksdensity returns the estimated pdf corresponding to the original support with proper normalization, so that the estimated pdf's integral over the original support is equal to one.

If you additionally specify 'Support',[L U], then ksdensity finds the kernel estimator as follows.

- If 'Function' is 'pdf', then the kernel density estimator is

\[
\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} \left[ K\left( \frac{x-x_i^-}{h} \right) + K\left( \frac{x-x_i^+}{h} \right) \right]
\]

for \( L \leq x \leq U \),

where \( x_i^- = 2L - x_i \), \( x_i^+ = 2U - x_i \), and \( x_i \) is the \( i \)th sample data.

- If 'Function' is 'cdf', then the kernel estimator for cdf is

\[
\hat{F}_h(x) = \frac{1}{n} \sum_{i=1}^{n} \left[ G\left( \frac{x-x_i^-}{h} \right) + G\left( \frac{x-x_i^+}{h} \right) \right] - \frac{1}{n} \sum_{i=1}^{n} \left[ G\left( \frac{L-x_i^-}{h} \right) + G\left( \frac{L-x_i^+}{h} \right) \right]
\]

for \( L \leq x \leq U \).

- To obtain a kernel estimator for an inverse cdf, a survivor function, or a cumulative hazard function (when 'Function' is 'icdf', 'survivor', or 'cumhazard'), ksdensity uses both \( \hat{f}_h(x) \) and \( \hat{F}_h(x) \).

If you additionally specify 'Support' as 'positive' or [0 inf], then ksdensity finds the kernel estimator by replacing [L U] with [0 inf] in the above equations.

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• Some options that require extra passes or sorting of the input data are not supported:
  • 'BoundaryCorrection'
  • 'Censoring'
  • 'Support' (support is always unbounded).
• Uses standard deviation (instead of median absolute deviation) to compute the bandwidth.

For more information, see “Tall Arrays” (MATLAB).

See Also
histogram | mvksdensity

Topics
“Fit Kernel Distribution Using ksdensity” on page 5-53
“Fit Distributions to Grouped Data Using ksdensity” on page 5-55
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Supported Distributions” on page 5-16
Introduced before R2006a
ktest

One-sample Kolmogorov-Smirnov test

Syntax

h = ktest(x)
h = ktest(x,Name,Value)
[h,p] = ktest(___)
[h,p,ksstat,cv] = ktest(___)  

Description

h = ktest(x) returns a test decision for the null hypothesis that the data in vector x comes from a standard normal distribution, against the alternative that it does not come from such a distribution, using the one-sample Kolmogorov-Smirnov test on page 32-3496. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = ktest(x,Name,Value) returns a test decision for the one-sample Kolmogorov-Smirnov test with additional options specified by one or more name-value pair arguments. For example, you can test for a distribution other than standard normal, change the significance level, or conduct a one-sided test.

[h,p] = ktest(__) also returns the p-value p of the hypothesis test, using any of the input arguments from the previous syntaxes.

[h,p,ksstat,cv] = ktest(__) also returns the value of the test statistic ksstat and the approximate critical value cv of the test.

Examples
Test for Standard Normal Distribution

Perform the one-sample Kolmogorov-Smirnov test by using `kstest`. Confirm the test decision by visually comparing the empirical cumulative distribution function (cdf) to the standard normal cdf.

Load the examgrades data set. Create a vector containing the first column of the exam grade data.

```matlab
load examgrades
test1 = grades(:,1);
```

Test the null hypothesis that the data comes from a normal distribution with a mean of 75 and a standard deviation of 10. Use these parameters to center and scale each element of the data vector, because `kstest` tests for a standard normal distribution by default.

```matlab
x = (test1-75)/10;
h = kstest(x)
```

The returned value of `h = 0` indicates that `kstest` fails to reject the null hypothesis at the default 5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

```matlab
cdfplot(x)
hold on
x_values = linspace(min(x),max(x));
plot(x_values,normcdf(x_values,0,1),'r-')
legend('Empirical CDF','Standard Normal CDF','Location','best')
```
The figure shows the similarity between the empirical cdf of the centered and scaled data vector and the cdf of the standard normal distribution.

**Specify the Hypothesized Distribution Using a Two-Column Matrix**

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

```matlab
load examgrades;
x = grades(:,1);
```
Specify the hypothesized distribution as a two-column matrix. Column 1 contains the data vector \( x \). Column 2 contains cdf values evaluated at each value in \( x \) for a hypothesized Student’s \( t \) distribution with a location parameter of 75, a scale parameter of 10, and one degree of freedom.

\[
\text{test}_\text{cdf} = [x, \text{cdf('tlocationscale',}x, 75, 10, 1)];
\]

Test if the data are from the hypothesized distribution.

\[
h = \text{kstest}(x, 'CDF', \text{test}_\text{cdf})
\]

\[
h = \text{logical}
\]

\[
1
\]

The returned value of \( h = 1 \) indicates that \text{kstest} rejects the null hypothesis at the default 5% significance level.

**Specify the Hypothesized Distribution Using a Probability Distribution Object**

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

\[
\text{load examgrades;}
\]

\[
x = \text{grades}(:,1);
\]

Create a probability distribution object to test if the data comes from a Student’s \( t \) distribution with a location parameter of 75, a scale parameter of 10, and one degree of freedom.

\[
\text{test}_\text{cdf} = \text{makedist('tlocationscale',}'\mu',75,'\sigma',10,'\nu',1);
\]

Test the null hypothesis that the data comes from the hypothesized distribution.

\[
h = \text{kstest}(x, 'CDF', \text{test}_\text{cdf})
\]

\[
h = \text{logical}
\]

\[
1
\]
The returned value of \( h = 1 \) indicates that \texttt{kstest} rejects the null hypothesis at the default 5% significance level.

**Test the Hypothesis at Different Significance Levels**

Load the sample data. Create a vector containing the first column of the students’ exam grades.

```matlab
load examgrades;
x = grades(:,1);
```

Create a probability distribution object to test if the data comes from a Student’s \( t \) distribution with a location parameter of 75, a scale parameter of 10, and one degree of freedom.

```matlab
test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);
```

Test the null hypothesis that data comes from the hypothesized distribution at the 1% significance level.

```matlab
[h,p] = kstest(x,'CDF',test_cdf,'Alpha',0.01)
h = logical
 1
p = 0.0021
```

The returned value of \( h = 1 \) indicates that \texttt{kstest} rejects the null hypothesis at the 1% significance level.

**Conduct a One-Sided Hypothesis Test**

Load the sample data. Create a vector containing the third column of the stock return data matrix.

```matlab
load stockreturns;
x = stocks(:,3);
```
Test the null hypothesis that the data comes from a standard normal distribution, against
the alternative hypothesis that the population cdf of the data is larger than the standard
normal cdf.

\[ [h,p,k,c] = kstest(x,'Tail','larger') \]

\[ h = \text{logical} \]
\[ 1 \]

\[ p = 5.0854e-05 \]
\[ k = 0.2197 \]
\[ c = 0.1207 \]

The returned value of \( h = 1 \) indicates that \text{kstest} rejects the null hypothesis in favor of
the alternative hypothesis at the default 5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

\[ [f,x\_values] = \text{ecdf}(x); \]
\[ J = \text{plot}(x\_values,f); \]
\[ \text{hold on}; \]
\[ K = \text{plot}(x\_values,\text{normcdf}(x\_values),'r--'); \]
\[ \text{set}(J,'\text{LineWidth'},2); \]
\[ \text{set}(K,'\text{LineWidth'},2); \]
\[ \text{legend}([J\ K],'\text{Empirical CDF}', '\text{Standard Normal CDF}', '\text{Location'}, '\text{SE}'); \]
The plot shows the difference between the empirical cdf of the data vector \( x \) and the cdf of the standard normal distribution.

**Input Arguments**

\( x \) — Sample data vector

Sample data, specified as a vector.

Data Types: single | double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail', 'larger', 'Alpha', 0.01 specifies a test using the alternative hypothesis that the cdf of the population from which the sample data is drawn is greater than the cdf of the hypothesized distribution, conducted at the 1% significance level.

**Alpha — Significance level**

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha', 0.01

Data Types: single | double

**CDF — cdf of hypothesized continuous distribution**

matrix | probability distribution object

cdf of hypothesized continuous distribution, specified the comma-separated pair consisting of 'CDF' and either a two-column matrix or a continuous probability distribution object. When CDF is a matrix, column 1 contains a set of possible x values, and column 2 contains the corresponding hypothesized cumulative distribution function values \( G(x) \). The calculation is most efficient if CDF is specified such that column 1 contains the values in the data vector \( x \). If there are values in \( x \) not found in column 1 of CDF, kstest approximates \( G(x) \) by interpolation. All values in \( x \) must lie in the interval between the smallest and largest values in the first column of CDF. By default, kstest tests for a standard normal distribution.

The one-sample Kolmogorov-Smirnov test on page 32-3496 is only valid for continuous cumulative distribution functions, and requires CDF to be predetermined. The result is not accurate if CDF is estimated from the data. To test \( x \) against the normal, lognormal, extreme value, Weibull, or exponential distribution without specifying distribution parameters, use lillietest instead.

Data Types: single | double

**Tail — Type of alternative hypothesis**

'unequal' (default) | 'larger' | 'smaller'
Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

'unequal' Test the alternative hypothesis that the cdf of the population from which x is drawn is not equal to the cdf of the hypothesized distribution.

'larger' Test the alternative hypothesis that the cdf of the population from which x is drawn is greater than the cdf of the hypothesized distribution.

'smaller' Test the alternative hypothesis that the cdf of the population from which x is drawn is less than the cdf of the hypothesized distribution.

If the values in the data vector x tend to be larger than expected from the hypothesized distribution, the empirical distribution function of x tends to be smaller, and vice versa.

Example: 'Tail','larger'

Output Arguments

h — Hypothesis test result
1 | 0
Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ksstat — Test statistic
nonnegative scalar value

Test statistic of the hypothesis test, returned as a nonnegative scalar value.
**cv — Critical value**
nonnegative scalar value

Critical value, returned as a nonnegative scalar value.

**Definitions**

**One-Sample Kolmogorov-Smirnov Test**

The one-sample Kolmogorov-Smirnov test is a nonparametric test of the null hypothesis that the population cdf of the data is equal to the hypothesized cdf.

The two-sided test for “unequal” cdf functions tests the null hypothesis against the alternative that the population cdf of the data is not equal to the hypothesized cdf. The test statistic is the maximum absolute difference between the empirical cdf calculated from \( x \) and the hypothesized cdf:

\[
D^* = \max_x \left| \hat{F}(x) - G(x) \right|
\]

where \( \hat{F}(x) \) is the empirical cdf and \( G(x) \) is the cdf of the hypothesized distribution.

The one-sided test for a “larger” cdf function tests the null hypothesis against the alternative that the population cdf of the data is greater than the hypothesized cdf. The test statistic is the maximum amount by which the empirical cdf calculated from \( x \) exceeds the hypothesized cdf:

\[
D^* = \max_x \left( \hat{F}(x) - G(x) \right)
\]

The one-sided test for a “smaller” cdf function tests the null hypothesis against the alternative that the population cdf of the data is less than the hypothesized cdf. The test statistic is the maximum amount by which the hypothesized cdf exceeds the empirical cdf calculated from \( x \):

\[
D^* = \max_x \left( G(x) - \hat{F}(x) \right)
\]
kstest computes the critical value cv using an approximate formula or by interpolation in a table. The formula and table cover the range $0.01 \leq \alpha \leq 0.2$ for two-sided tests and $0.005 \leq \alpha \leq 0.1$ for one-sided tests. cv is returned as NaN if alpha is outside this range.

**Algorithms**

kstest decides to reject the null hypothesis by comparing the p-value p with the significance level Alpha, not by comparing the test statistic ksstat with the critical value cv. Since cv is approximate, comparing ksstat with cv occasionally leads to a different conclusion than comparing p with Alpha.

**References**


**See Also**

adtest | kstest2 | lillietest

Introduced before R2006a
kstest2

Two-sample Kolmogorov-Smirnov test

Syntax

h = kstest2(x1,x2)
h = kstest2(x1,x2,Name,Value)
[h,p] = kstest2(__)
[h,p,ks2stat] = kstest2(__)

Description

h = kstest2(x1,x2) returns a test decision for the null hypothesis that the data in vectors x1 and x2 are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test on page 32-3502. The alternative hypothesis is that x1 and x2 are from different continuous distributions. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = kstest2(x1,x2,Name,Value) returns a test decision for a two-sample Kolmogorov-Smirnov test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

[h,p] = kstest2(__) also returns the asymptotic $p$-value p, using any of the input arguments from the previous syntaxes.

[h,p,ks2stat] = kstest2(__) also returns the test statistic ks2stat.

Examples

Test Two Samples for the Same Distribution

Generate sample data from two different Weibull distributions.
rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data in vectors x1 and x2 comes from populations with the same distribution.

h = kstest2(x1,x2)

h = logical
  1

The returned value of h = 1 indicates that ktest rejects the null hypothesis at the default 5% significance level.

Test the Hypothesis at Different Significance Levels

Generate sample data from two different Weibull distributions.

rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data vectors x1 and x2 are from populations with the same distribution at the 1% significance level.

[h,p] = kstest2(x1,x2,'Alpha',0.01)

h = logical
  0

p = 0.0317

The returned value of h = 0 indicates that ktest does not reject the null hypothesis at the 1% significance level.
**One-Sided Hypothesis Test**

Generate sample data from two different Weibull distributions.

```matlab
rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);
```

Test the null hypothesis that data in vectors `x1` and `x2` comes from populations with the same distribution, against the alternative hypothesis that the cdf of the distribution of `x1` is larger than the cdf of the distribution of `x2`.

```matlab
[h,p,k] = kstest2(x1,x2,'Tail','larger')
```

```
h = logical
 1
p = 0.0158
k = 0.2800
```

The returned value of `h = 1` indicates that `kstest` rejects the null hypothesis, in favor of the alternative hypothesis that the cdf of the distribution of `x1` is larger than the cdf of the distribution of `x2`, at the default 5% significance level. The returned value of `k` is the test statistic for the two-sample Kolmogorov-Smirnov test.

**Input Arguments**

**x1 — Sample data vector**

Sample data from the first sample, specified as a vector. Data vectors `x1` and `x2` do not need to be the same size.

Data Types: `single` | `double`

**x2 — Sample data vector**

Sample data from the second sample, specified as a vector. Data vectors `x1` and `x2` do not need to be the same size.
Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail', 'larger', 'Alpha', 0.01 specifies a test using the alternative hypothesis that the empirical cdf of x1 is larger than the empirical cdf of x2, conducted at the 1% significance level.

**Alpha — Significance level**

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha', 0.01

Data Types: single | double

**Tail — Type of alternative hypothesis**

'unequal' (default) | 'larger' | 'smaller'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

- 'unequal' Test the alternative hypothesis that the empirical cdf of x1 is unequal to the empirical cdf of x2.
- 'larger' Test the alternative hypothesis that the empirical cdf of x1 is larger than the empirical cdf of x2.
- 'smaller' Test the alternative hypothesis that the empirical cdf of x1 is smaller than the empirical cdf of x2.

If the data values in x1 tend to be larger than those in x2, the empirical distribution function of x1 tends to be smaller than that of x2, and vice versa.

Example: 'Tail', 'larger'

32-3501
Output Arguments

h — Hypothesis test result

1 | 0

Hypothesis test result, returned as a logical value.
- If $h = 1$, this indicates the rejection of the null hypothesis at the $\alpha$ significance level.
- If $h = 0$, this indicates a failure to reject the null hypothesis at the $\alpha$ significance level.

p — Asymptotic $p$-value

scalar value in the range (0,1)

Asymptotic $p$-value of the test, returned as a scalar value in the range (0,1). $p$ is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. The asymptotic $p$-value becomes very accurate for large sample sizes, and is believed to be reasonably accurate for sample sizes $n_1$ and $n_2$, such that $(n_1*n_2)/(n_1 + n_2) \geq 4$.

ks2stat — Test statistic

nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

Definitions

Two-Sample Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test that evaluates the difference between the cdfs of the distributions of the two sample data vectors over the range of $x$ in each data set.

The two-sided test uses the maximum absolute difference between the cdfs of the distributions of the two data vectors. The test statistic is

$$D^* = \max_x \left( |F_1(x) - F_2(x)| \right),$$
where \( \hat{F}_1(x) \) is the proportion of \( x_1 \) values less than or equal to \( x \) and \( \hat{F}_2(x) \) is the proportion of \( x_2 \) values less than or equal to \( x \).

The one-sided test uses the actual value of the difference between the cdfs of the distributions of the two data vectors rather than the absolute value. The test statistic is

\[
D^* = \max_x (F_1(x) - F_2(x)).
\]

**Algorithms**

In `kstest2`, the decision to reject the null hypothesis is based on comparing the \( p \)-value \( p \) with the significance level \( \text{Alpha} \), not by comparing the test statistic \( \text{ks2stat} \) with a critical value.

**References**


**See Also**

`adtest` | `ktest` | `lillietest`

**Introduced before R2006a**
kurtosis

Kurtosis

Syntax

\[
\text{k} = \text{kurtosis}(\text{X}) \\
\text{k} = \text{kurtosis}(\text{X,flag}) \\
\text{k} = \text{kurtosis}(\text{X,flag,'all'}) \\
\text{k} = \text{kurtosis}(\text{X,flag,dim}) \\
\text{k} = \text{kurtosis}(\text{X,flag,vecdim})
\]

Description

\(
\text{k} = \text{kurtosis}(\text{X}) \) returns the sample kurtosis of \( \text{X} \). For vectors, \text{kurtosis(x)} is the kurtosis of the elements in the vector \( x \). For matrices \text{kurtosis(X)} returns the sample kurtosis for each column of \( X \). For N-dimensional arrays, \text{kurtosis} operates along the first nonsingleton dimension of \( X \).

\( \text{k} = \text{kurtosis}(\text{X,flag}) \) specifies whether to correct for bias (\text{flag is 0}) or not (\text{flag is 1}, the default). When \( X \) represents a sample from a population, the kurtosis of \( X \) is biased, that is, it will tend to differ from the population kurtosis by a systematic amount that depends on the size of the sample. You can set \text{flag to 0} to correct for this systematic bias.

\( \text{k} = \text{kurtosis}(\text{X,flag,'all'}) \) returns the kurtosis of all elements of \( X \).

\( \text{k} = \text{kurtosis}(\text{X,flag,dim}) \) takes the kurtosis along the operating dimension \( \text{dim} \) of \( X \).

\( \text{k} = \text{kurtosis}(\text{X,flag,vecdim}) \) returns the kurtosis over the dimensions specified in the vector \text{vecdim}. Each element of \text{vecdim} represents a dimension of the input array \( X \). The output \( k \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \( X \) and \( k \). For example, if \( X \) is a 2-by-3-by-4 array, then \text{kurtosis(X,1,[1 2])} returns a 1-by-1-by-4 array. Each element of the output array is the biased kurtosis of the elements on the corresponding page of \( X \).
Examples

Find Kurtosis of Matrix

Set the random seed for reproducibility of the results.

rng('default')

Generate a matrix with 5 rows and 4 columns.

\[X = \text{randn}(5,4)\]

\[
X = \begin{bmatrix}
0.5377 & -1.3077 & -1.3499 & -0.2050 \\
1.8339 & -0.4336 & 3.0349 & -0.1241 \\
-2.2588 & 0.3426 & 0.7254 & 1.4897 \\
0.8622 & 3.5784 & -0.0631 & 1.4090 \\
0.3188 & 2.7694 & 0.7147 & 1.4172 \\
\end{bmatrix}
\]

Find the sample kurtosis of \(X\).

\[k = \text{kurtosis}(X)\]

\[
k = \begin{bmatrix}
2.7067 & 1.4069 & 2.3783 & 1.1759 \\
\end{bmatrix}
\]

\(k\) is a row vector containing the sample kurtosis of each column in \(X\).

Find Kurtosis Along Vector of Dimensions

Find the kurtosis over multiple dimensions by using the 'all' and 'vecdim' input arguments.

Set the random seed for reproducibility of the results.

rng('default')
Create a 4-by-3-by-2 array of random numbers.

\[
X = \text{randn([4 3 2])}
\]

\[
X = \\
X(:,:,1) = \\
\begin{bmatrix}
0.5377 & 0.3188 & 3.5784 \\
1.8339 & -1.3077 & 2.7694 \\
-2.2588 & -0.4336 & -1.3499 \\
0.8622 & 0.3426 & 3.0349 \\
\end{bmatrix}
\]

\[
X(:,:,2) = \\
\begin{bmatrix}
0.7254 & -0.1241 & 0.6715 \\
-0.0631 & 1.4897 & -1.2075 \\
0.7147 & 1.4090 & 0.7172 \\
-0.2050 & 1.4172 & 1.6302 \\
\end{bmatrix}
\]

Find the biased kurtosis of \(X\).

\[
kall = \text{kurtosis}(X,1,\text{'all'})
\]

\[
kall = 2.8029
\]

\(kall\) is the biased kurtosis of the entire sample \(X\).

Find the biased kurtosis of each page of \(X\) by specifying the first and second dimensions.

\[
kpage = \text{kurtosis}(X,1,[1 2])
\]

\[
kpage = \\
kpage(:,:,1) = \\
\begin{bmatrix}
1.9345 \\
\end{bmatrix}
\]

\[
kpage(:,:,2) = \\
\begin{bmatrix}
2.5877 \\
\end{bmatrix}
\]

For example, \(kpage(1,1,2)\) is the biased kurtosis of the elements in \(X(:,:,2)\).
Find the biased kurtosis of the elements in each \( X(i,:,:) \) slice by specifying the second and third dimensions.

\[
krow = \text{kurtosis}(X,1,[2\ 3])
\]

\[
krow = 4\times1
\]

\[
3.8457 \\
1.4306 \\
1.7094 \\
2.3378
\]

For example, \( krow(3) \) is the biased kurtosis of the elements in \( X(3,:,:) \).

**Tips**

- \text{kurtosis} treats NaNs as missing values and removes them.

**Algorithms**

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3. Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

\[
k = \frac{E((x - \mu)^4)}{\sigma^4}
\]

where \( \mu \) is the mean of \( x \), \( \sigma \) is the standard deviation of \( x \), and \( E(t) \) represents the expected value of the quantity \( t \). \text{kurtosis} computes a sample version of this population value.

**Note** Some definitions of kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0. The \text{kurtosis} function does not use this convention.
When you set \texttt{flag} to 1, the following equation applies:

\[
    k_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 \left( \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^2
\]

When you set \texttt{flag} to 0, the following equation applies:

\[
    k_0 = \frac{n-1}{(n-2)(n-3)} ((n+1)k_1 - 3(n-1)) + 3
\]

This bias-corrected formula requires that \( X \) contain at least four elements.

**Extended Capabilities**

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
  - \( k = \text{kurtosis}(X,\text{flag},'all') \)
  - \( k = \text{kurtosis}(X,\text{flag},\text{vecdim}) \)

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
• k = kurtosis(X,flag,'all')
• k = kurtosis(X,flag,vecdim)

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • k = kurtosis(X,flag,'all')
  • k = kurtosis(X,flag,vecdim)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
mean | moment | skewness | std | var

**Introduced before R2006a**
lasso

Lasso or elastic net regularization for linear models

Syntax

B = lasso(X,y)
B = lasso(X,y,Name,Value)
[B,FitInfo] = lasso(__)

Description

B = lasso(X,y) returns fitted least-squares regression coefficients for linear models of the predictor data X and the response y. Each column of B corresponds to a particular regularization coefficient in Lambda. By default, lasso performs lasso regularization using a geometric sequence of Lambda values.

B = lasso(X,y,Name,Value) fits regularized regressions with additional options specified by one or more name-value pair arguments. For example, 'Alpha', 0.5 sets elastic net as the regularization method, with the parameter Alpha equal to 0.5.

[B,FitInfo] = lasso(__) also returns the structure FitInfo, which contains information about the fit of the models, using any of the input arguments in the previous syntaxes.

Examples

Remove Redundant Predictors Using Lasso Regularization

Construct a data set with redundant predictors and identify those predictors by using lasso.

Create a matrix X of 100 five-dimensional normal variables. Create a response vector y from just two components of X, and add a small amount of noise.
rng default % For reproducibility
X = randn(100,5);
weights = [0;2;0;-3;0]; % Only two nonzero coefficients
y = X*weights + randn(100,1)*0.1; % Small added noise

Construct the default lasso fit.
B = lasso(X,y);

Find the coefficient vector for the 25th Lambda value in B.
B(:,25)
ans = 5x1
     0
    1.6093
     0
   -2.5865
     0

lasso identifies and removes the redundant predictors.

Remove Redundant Predictors by Using Cross-Validated Fits

Construct a data set with redundant predictors and identify those predictors by using cross-validated lasso.

Create a matrix X of 100 five-dimensional normal variables. Create a response vector y from two components of X, and add a small amount of noise.

rng default % For reproducibility
X = randn(100,5);
weights = [0;2;0;-3;0]; % Only two nonzero coefficients
y = X*weights + randn(100,1)*0.1; % Small added noise

Construct the lasso fit by using 10-fold cross-validation with labeled predictor variables.
[B,FitInfo] = lasso(X,y,'CV',10,'PredictorNames',{'x1','x2','x3','x4','x5'});

Display the variables in the model that corresponds to the minimum cross-validated mean squared error (MSE).
idxLambdaMinMSE = FitInfo.IndexMinMSE;
minMSEModelPredictors = FitInfo.PredictorNames(B(:,idxLambdaMinMSE)~=0)

minMSEModelPredictors = 1x2 cell array
    {'x2'}    {'x4'}

Display the variables in the sparsest model within one standard error of the minimum MSE.

idxLambda1SE = FitInfo.Index1SE;
sparseModelPredictors = FitInfo.PredictorNames(B(:,idxLambda1SE)~=0)

sparseModelPredictors = 1x2 cell array
    {'x2'}    {'x4'}

In this example, lasso identifies the same predictors for the two models and removes the redundant predictors.

**Lasso Plot with Cross-Validated Fits**

Visually examine the cross-validated error of various levels of regularization.

Load the sample data.

load acetylene

Create a design matrix with interactions and no constant term.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = [];
    % No constant term

Construct the lasso fit using 10-fold cross-validation. Include the FitInfo output so you can plot the result.

rng default % For reproducibility
[B,FitInfo] = lasso(D,y,'CV',10);

Plot the cross-validated fits.
The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue circle and dotted line locate the point with minimum cross-validation error plus one standard deviation.

**Predict Values Using Elastic Net Regularization**

Predict students' exam scores using `lasso` and the elastic net method.

Load the `examgrades` data set.
load examgrades
X = grades(:,1:4);
y = grades(:,5);

Split the data into training and test sets.

n = length(y);
c = cvpartition(n,'HoldOut',0.3);
idxTrain = training(c,1);
idxTest = ~idxTrain;
XTrain = X(idxTrain,:);
yTrain = y(idxTrain);
XTest = X(idxTest,:);
yTest = y(idxTest);

Find the coefficients of a regularized linear regression model using 10-fold cross-validation and the elastic net method with Alpha = 0.75. Use the largest Lambda value such that the mean squared error (MSE) is within one standard error of the minimum MSE.

[B,FitInfo] = lasso(XTrain,yTrain,'Alpha',0.75,'CV',10);
idxLambda1SE = FitInfo.Index1SE;
coef = B(:,idxLambda1SE);
coef0 = FitInfo.Intercept(idxLambda1SE);

Predict exam scores for the test data. Compare the predicted values to the actual exam grades using a reference line.

yhat = XTest*coef + coef0;
hold on
scatter(yTest,yhat)
plot(yTest,yTest)
xlabel('Actual Exam Grades')
ylabel('Predicted Exam Grades')
hold off
**Input Arguments**

**X — Predictor data**
numeric matrix

Predictor data, specified as a numeric matrix. Each row represents one observation, and each column represents one predictor variable.

Data Types: `single` | `double`

**y — Response data**
numeric vector
Response data, specified as a numeric vector. \( y \) has length \( n \), where \( n \) is the number of rows of \( X \). The response \( y(i) \) corresponds to the \( i \)th row of \( X \).

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name, Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as

```
Name1,Value1,...,NameN,ValueN.
```

Example: `lasso(X,y,'Alpha',0.75,'CV',10)` performs elastic net regularization with 10-fold cross-validation. The `'Alpha',0.75` name-value pair argument sets the parameter used in the elastic net optimization.

**AbsTol — Absolute error tolerance**

1e–4 (default) | positive scalar

Absolute error tolerance used to determine the convergence of the “ADMM Algorithm” on page 32-3524, specified as the comma-separated pair consisting of `'AbsTol'` and a positive scalar. The algorithm converges when successive estimates of the coefficient vector differ by an amount less than `AbsTol`.

**Note** This option applies only when you use `lasso` on tall arrays. See “Extended Capabilities” on page 32-0 for more information.

Example: `'AbsTol',1e–3`

Data Types: single | double

**Alpha — Weight of lasso versus ridge optimization**

1 (default) | positive scalar

Weight of lasso (\( L^1 \)) versus ridge (\( L^2 \)) optimization, specified as the comma-separated pair consisting of `'Alpha'` and a positive scalar value in the interval \((0,1]\). The value `Alpha = 1` represents lasso regression, `Alpha` close to 0 approaches ridge regression on page 11-135, and other values represent elastic net optimization. See “Elastic Net” on page 32-3523.

Example: `'Alpha',0.5`
Data Types: single | double

**B0 — Initial values for x-coefficients in ADMM Algorithm**

vector of zeros (default) | numeric vector

Initial values for x-coefficients in “ADMM Algorithm” on page 32-3524, specified as the comma-separated pair consisting of 'B0' and a numeric vector.

**Note** This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on page 32-0 for more information.

Data Types: single | double

**CV — Cross-validation specification for estimating mean squared error**

'resubstitution' (default) | positive integer scalar | cvpartition object

Cross-validation specification for estimating the mean squared error (MSE), specified as the comma-separated pair consisting of 'CV' and one of the following:

- 'resubstitution' — lasso uses X and y to fit the model and to estimate the MSE without cross-validation.
- Positive scalar integer K — lasso uses K-fold cross-validation.
- cvpartition object cvp — lasso uses the cross-validation method expressed in cvp. You cannot use a 'leaveout' partition with lasso.

Example: 'CV',3

**DFmax — Maximum number of nonzero coefficients**

Inf (default) | positive integer scalar

Maximum number of nonzero coefficients in the model, specified as the comma-separated pair consisting of 'DFmax' and a positive integer scalar. lasso returns results only for Lambda values that satisfy this criterion.

Example: 'DFmax',5

Data Types: single | double

**Lambda — Regularization coefficients**

nonnegative vector
Regularization coefficients, specified as the comma-separated pair consisting of 'Lambda' and a vector of nonnegative values. See “Lasso” on page 32-3523.

- If you do not supply Lambda, then lasso calculates the largest value of Lambda that gives a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of the sequence, and NumLambda gives the length of the vector.
- If you supply Lambda, then lasso ignores LambdaRatio and NumLambda.
- If Standardize is true, then Lambda is the set of values used to fit the models with the X data standardized to have zero mean and a variance of one.

The default is a geometric sequence of NumLambda values, with only the largest value able to produce B = 0.

Example: 'Lambda',linspace(0,1)
Data Types: single | double

**LambdaRatio — Ratio of smallest to largest Lambda values**

1e–4 (default) | positive scalar

Ratio of the smallest to the largest Lambda values when you do not supply Lambda, specified as the comma-separated pair consisting of 'LambdaRatio' and a positive scalar.

If you set LambdaRatio = 0, then lasso generates a default sequence of Lambda values and replaces the smallest one with 0.

Example: 'LambdaRatio',1e–2
Data Types: single | double

**MaxIter — Maximum number of iterations allowed**

positive integer scalar

Maximum number of iterations allowed, specified as the comma-separated pair consisting of 'MaxIter' and a positive integer scalar.

If the algorithm executes MaxIter iterations before reaching the convergence tolerance RelTol, then the function stops iterating and returns a warning message.

The function can return more than one warning when NumLambda is greater than 1.

Default values are 1e5 for standard data and 1e4 for tall arrays.
Example: 'MaxIter',1e3
Data Types: single | double

**MCReps — Number of Monte Carlo repetitions for cross-validation**
1 (default) | positive integer scalar

Number of Monte Carlo repetitions for cross-validation, specified as the comma-separated pair consisting of 'MCReps' and a positive integer scalar.

- If `CV` is 'resubstitution' or a `cvpartition` of type 'resubstitution', then `MCReps` must be 1.
- If `CV` is a `cvpartition` of type 'holdout', then `MCReps` must be greater than 1.

Example: 'MCReps',5
Data Types: single | double

**NumLambda — Number of Lambda values**
100 (default) | positive integer scalar

Number of Lambda values `lasso` uses when you do not supply `Lambda`, specified as the comma-separated pair consisting of 'NumLambda' and a positive integer scalar. `lasso` can return fewer than `NumLambda` fits if the residual error of the fits drops below a threshold fraction of the variance of `y`.

Example: 'NumLambda',50
Data Types: single | double

**Options — Option to cross-validate in parallel and specify random streams**

Option to cross-validate in parallel and specify the random streams, specified as the comma-separated pair consisting of 'Options' and a structure. This option requires Parallel Computing Toolbox.

Create the `Options` structure with `statset`. The option fields are:

- **UseParallel** — Set to true to compute in parallel. The default is false.
- **UseSubstreams** — Set to true to compute in parallel in a reproducible fashion. For reproducibility, set `Streams` to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. The default is false.
- **Streams** — A RandStream object or cell array consisting of one such object. If you do not specify Streams, then lasso uses the default stream.

  Example: 'Options', statset('UseParallel', true)

  Data Types: struct

**PredictorNames** — Names of predictor variables

{} (default) | string array | cell array of character vectors

Names of the predictor variables, in the order in which they appear in X, specified as the comma-separated pair consisting of 'PredictorNames' and a string array or cell array of character vectors.

Example: 'PredictorNames', {'x1', 'x2', 'x3', 'x4'}

Data Types: string | cell

**RelTol** — Convergence threshold for coordinate descent algorithm

1e-4 (default) | positive scalar

Convergence threshold for the coordinate descent algorithm [3], specified as the comma-separated pair consisting of 'RelTol' and a positive scalar. The algorithm terminates when successive estimates of the coefficient vector differ in the $L^2$ norm by a relative amount less than RelTol.

Example: 'RelTol', 5e-3

Data Types: single | double

**Rho** — Augmented Lagrangian parameter

positive scalar

Augmented Lagrangian parameter $\rho$ for the “ADMM Algorithm” on page 32-3524, specified as the comma-separated pair consisting of 'Rho' and a positive scalar. The default is automatic selection.

**Note** This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on page 32-0 for more information.

Example: 'Rho', 2

Data Types: single | double
**Standardize** — Flag for standardizing predictor data before fitting models

Flag for standardizing the predictor data X before fitting the models, specified as the comma-separated pair consisting of 'Standardize' and either true or false. If Standardize is true, then the X data is scaled to have zero mean and a variance of one. Standardize affects whether the regularization is applied to the coefficients on the standardized scale or the original scale. The results are always presented on the original data scale.

X and y are always centered.

Example: 'Standardize',false

Data Types: logical

**U0** — Initial value of scaled dual variable

vector of zeros (default) | numeric vector

Initial value of the scaled dual variable u in the “ADMM Algorithm” on page 32-3524, specified as the comma-separated pair consisting of 'U0' and a numeric vector.

**Note** This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on page 32-0 for more information.

Data Types: single | double

**Weights** — Observation weights

1/n*ones(n,1) (default) | nonnegative vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a nonnegative vector. Weights has length n, where n is the number of rows of X. The lasso function scales Weights to sum to 1.

Data Types: single | double

**Output Arguments**

**B** — Fitted coefficients

numeric matrix
Fitted coefficients, returned as a numeric matrix. \( B \) is a \( p \)-by-\( L \) matrix, where \( p \) is the number of predictors (columns) in \( X \), and \( L \) is the number of \( \text{Lambda} \) values. You can specify the number of \( \text{Lambda} \) values using the \text{NumLambda} name-value pair argument.

The coefficient corresponding to the intercept term is a field in \text{FitInfo}.

Data Types: \text{single} | \text{double}

\textbf{FitInfo — Fit information of models structure}

Fit information of the linear models, returned as a structure with the fields described in this table.

<table>
<thead>
<tr>
<th>Field in \text{FitInfo}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Intercept term ( \beta_0 ) for each linear model, a 1-by-( L ) vector</td>
</tr>
<tr>
<td>Lambda</td>
<td>Lambda parameters in ascending order, a 1-by-( L ) vector</td>
</tr>
<tr>
<td>Alpha</td>
<td>Value of the \text{Alpha} parameter, a scalar</td>
</tr>
<tr>
<td>DF</td>
<td>Number of nonzero coefficients in ( B ) for each value of \text{Lambda}, a 1-by-( L ) vector</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squared error (MSE), a 1-by-( L ) vector</td>
</tr>
<tr>
<td>PredictorNames</td>
<td>Value of the \text{PredictorNames} parameter, stored as a cell array of character vectors</td>
</tr>
</tbody>
</table>

If you set the \text{CV} name-value pair argument to cross-validate, the \text{FitInfo} structure contains these additional fields.

<table>
<thead>
<tr>
<th>Field in \text{FitInfo}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Standard error of MSE for each \text{Lambda}, as calculated during cross-validation, a 1-by-( L ) vector</td>
</tr>
<tr>
<td>LambdaMinMSE</td>
<td>\text{Lambda} value with the minimum MSE, a scalar</td>
</tr>
<tr>
<td>Lambda1SE</td>
<td>Largest \text{Lambda} value such that MSE is within one standard error of the minimum MSE, a scalar</td>
</tr>
<tr>
<td>IndexMinMSE</td>
<td>Index of \text{Lambda} with the value LambdaMinMSE, a scalar</td>
</tr>
<tr>
<td>Index1SE</td>
<td>Index of \text{Lambda} with the value Lambda1SE, a scalar</td>
</tr>
</tbody>
</table>
Definitions

Lasso

For a given value of $\lambda$, a nonnegative parameter, lasso solves the problem

$$
\min_{\beta_0, \beta} \left( \frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right).
$$

- $N$ is the number of observations.
- $y_i$ is the response at observation $i$.
- $x_i$ is data, a vector of length $p$ at observation $i$.
- $\lambda$ is a nonnegative regularization parameter corresponding to one value of $\text{Lambda}$.
- The parameters $\beta_0$ and $\beta$ are a scalar and a vector of length $p$, respectively.

As $\lambda$ increases, the number of nonzero components of $\beta$ decreases.

The lasso problem involves the $L^1$ norm of $\beta$, as contrasted with the elastic net algorithm.

Elastic Net

For $\alpha$ strictly between 0 and 1, and nonnegative $\lambda$, elastic net solves the problem

$$
\min_{\beta_0, \beta} \left( \frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda P_\alpha(\beta) \right),
$$

where

$$
P_\alpha(\beta) = \frac{(1-\alpha)}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 = \sum_{j=1}^{p} \left( \frac{(1-\alpha)}{2} \beta_j^2 + \alpha |\beta_j| \right).
$$

Elastic net is the same as lasso when $\alpha = 1$. For other values of $\alpha$, the penalty term $P_\alpha(\beta)$ interpolates between the $L^1$ norm of $\beta$ and the squared $L^2$ norm of $\beta$. As $\alpha$ shrinks toward 0, elastic net approaches ridge regression.
Algorithms

ADMM Algorithm

When operating on tall arrays, \texttt{lasso} uses an algorithm based on the Alternating Direction Method of Multipliers (ADMM) [5]. The notation used here is the same as in the reference paper. This method solves problems of the form

\[ \text{Minimize } l(x) + g(z) \]

Subject to \( Ax + Bz = c \)

Using this notation, the lasso regression problem is

\[ \text{Minimize } l(x) + g(z) = \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|z\|_1 \]

Subject to \( x - z = 0 \)

Because the loss function \( l(x) = \frac{1}{2} \|Ax - b\|_2^2 \) is quadratic, the iterative updates performed by the algorithm amount to solving a linear system of equations with a single coefficient matrix but several right-hand sides. The updates performed by the algorithm during each iteration are

\[
x^{k+1} = (A^T A + \rho I)^{-1} \left( A^T b + \rho \left( z^k - u^k \right) \right)
\]

\[
z^{k+1} = S_{\lambda/\rho} \left( x^{k+1} + u^k \right)
\]

\[
u^{k+1} = u^k + x^{k+1} - z^{k+1}
\]

\( A \) is the dataset (a tall array), \( x \) contains the coefficients, \( \rho \) is the penalty parameter (augmented Lagrangian parameter), \( b \) is the response (a tall array), and \( S \) is the soft thresholding operator.
lasso solves the linear system using Cholesky factorization because the coefficient matrix $A^T A + \rho I$ is symmetric and positive definite. Because $\rho$ does not change between iterations, the Cholesky factorization is cached between iterations.

Even though $A$ and $b$ are tall arrays, they appear only in the terms $A^T A$ and $A^T b$. The results of these two matrix multiplications are small enough to fit in memory, so they are precomputed and the iterative updates between iterations are performed entirely within memory.

References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• With tall arrays, lasso uses an algorithm based on ADMM (Alternating Direction Method of Multipliers).
• No elastic net support. The 'Alpha' parameter is always 1.
• No cross-validation ('CV' parameter) support, which includes the related parameter 'MCReps'.
• The output FitInfo does not contain the additional fields 'SE', 'LambdaMinMSE', 'Lambda1SE', 'IndexMinMSE', and 'Index1SE'.
• The 'Options' parameter is not supported because it does not contain options that apply to the ADMM algorithm. You can tune the ADMM algorithm using name-value pair arguments.
• Supported name-value pair arguments are:
  • 'Lambda'
  • 'LambdaRatio'
  • 'NumLambda'
  • 'Standardize'
  • 'PredictorNames'
  • 'RelTol'
  • 'Weights'
• Additional name-value pair arguments to control the ADMM algorithm are:
  • 'Rho' — Augmented Lagrangian parameter, \( \rho \). The default value is automatic selection.
  • 'AbsTol' — Absolute tolerance used to determine convergence. The default value is \( 1e-4 \).
  • 'MaxIter' — Maximum number of iterations. The default value is \( 1e4 \).
• 'B0' — Initial values for the coefficients x. The default value is a vector of zeros.
• 'U0' — Initial values of the scaled dual variable u. The default value is a vector of zeros.

For more information, see “Tall Arrays” (MATLAB).

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

**See Also**
fitlm|lassoPlot|lassoglm|ridge

**Topics**
“Lasso and Elastic Net” on page 11-140

**Introduced in R2011b**
lassoglm

Lasso or elastic net regularization for generalized linear models

Syntax

B = lassoglm(X,y)
B = lassoglm(X,y,distr)
B = lassoglm(X,y,distr,Name,Value)
[B,FitInfo] = lassoglm(__)

Description

B = lassoglm(X,y) returns penalized, maximum-likelihood fitted coefficients for generalized linear models of the predictor data X and the response y, where the values in y are assumed to have a normal probability distribution. Each column of B corresponds to a particular regularization coefficient in Lambda. By default, lassoglm performs lasso regularization using a geometric sequence of Lambda values.

B = lassoglm(X,y,distr) performs lasso regularization to fit the models using the probability distribution distr for y.

B = lassoglm(X,y,distr,Name,Value) fits regularized generalized linear regressions with additional options specified by one or more name-value pair arguments. For example, 'Alpha', 0.5 sets elastic net as the regularization method, with the parameter Alpha equal to 0.5.

[B,FitInfo] = lassoglm(__) also returns the structure FitInfo, which contains information about the fit of the models, using any of the input arguments in the previous syntaxes.

Examples
Remove Redundant Predictors Using Lasso Regularization

Construct a data set with redundant predictors and identify those predictors by using `lassoglm`.

Create a random matrix `X` with 100 observations and 10 predictors. Create the normally distributed response `y` using only four of the predictors and a small amount of noise.

```matlab
rng default
X = randn(100,10);
weights = [0.6;0.5;0.7;0.4];
y = X(:,[2 4 5 7])*weights + randn(100,1)*0.1; % Small added noise
```

Perform lasso regularization.

```matlab
B = lassoglm(X,y);
```

Find the coefficient vector for the 75th Lambda value in `B`.

```matlab
B(:,75)
```

```matlab
ans = 10×1
 0
 0.5431
 0
 0.3944
 0.6173
 0
 0.3473
 0
 0
 0
```

`lassoglm` identifies and removes the redundant predictors.

Cross-Validated Lasso Regularization of Generalized Linear Model

Construct data from a Poisson model, and identify the important predictors by using `lassoglm`. 
Create data with 20 predictors. Create a Poisson response variable using only three of the predictors plus a constant.

```matlab
rng default % For reproducibility
X = randn(100,20);
weights = [.4;.2;.3];
mu = exp(X(:,[5 10 15])*weights + 1);
y = poissrnd(mu);
```

Construct a cross-validated lasso regularization of a Poisson regression model of the data.

```matlab
[B,FitInfo] = lassoglm(X,y,'poisson','CV',10);
```

Examine the cross-validation plot to see the effect of the Lambda regularization parameter.

```matlab
lassoPlot(B,FitInfo,'plottype','CV');
legend('show') % Show legend
```
The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue circle and dotted line locate the point with minimum cross-validation error plus one standard deviation.

Find the nonzero model coefficients corresponding to the two identified points.

```matlab
idxLambdaMinDeviance = FitInfo.IndexMinDeviance;
mincoefs = find(B(:,idxLambdaMinDeviance))
```

```
mincoefs = 7×1
3 5 6
```
idxLambda1SE = FitInfo.Index1SE;
min1coefs = find(B(:,idxLambda1SE))

min1coefs = 3x1

5
10
15

The coefficients from the minimum-plus-one standard error point are exactly those coefficients used to create the data.

**Predict Values Using Lasso Regularization**

Predict whether students got a B or above on their last exam by using `lassoglm`.

Load the `examgrades` data set. Convert the last exam grades to a logical vector, where 1 represents a grade of 80 or above and 0 represents a grade below 80.

```matlab
load examgrades
X = grades(:,1:4);
y = grades(:,5);
yBinom = (y>=80);
```

Partition the data into training and test sets.

```matlab
rng default % Set the seed for reproducibility
c = cvpartition(yBinom,'HoldOut',0.3);
idxTrain = training(c,1);
idxTest = ~idxTrain;
XTrain = X(idxTrain,:);
yTrain = yBinom(idxTrain);
XTest = X(idxTest,:);
yTest = yBinom(idxTest);
```
Perform lasso regularization for generalized linear model regression with 3-fold cross-validation on the training data. Assume the values in $y$ are binomially distributed. Choose model coefficients corresponding to the Lambda with minimum expected deviance.

```matlab
[B,FitInfo] = lassoglm(XTrain,yTrain,'binomial','CV',3);
idxLambdaMinDeviance = FitInfo.IndexMinDeviance;
B0 = FitInfo.Intercept(idxLambdaMinDeviance);
coef = [B0; B(:,idxLambdaMinDeviance)]
```

```
coef = 5×1
-21.1911
 0.0235
 0.0670
 0.0693
 0.0949
```

Predict exam grades for the test data using the model coefficients found in the previous step. Specify the link function for a binomial response using 'logit'. Convert the prediction values to a logical vector.

```matlab
yhat = glmval(coef,XTest,'logit');
yhatBinom = (yhat>=0.5);
```

Determine the accuracy of the predictions using a confusion matrix.

```matlab
[c,order] = confusionmat(yTest,yhatBinom)
```

```
c = 2×2
 29 1
 4 2
```

```
order = 2x1 logical array
0
 1
```

The function correctly predicts 31 exam grades. However, the function incorrectly predicts that 1 student receives a B or above and 4 students receive a grade below a B.
Input Arguments

\( X \) — Predictor data

numeric matrix

Predictor data, specified as a numeric matrix. Each row represents one observation, and each column represents one predictor variable.

Data Types: single | double

\( y \) — Response data

numeric vector | logical vector | categorical array | numeric matrix

Response data, specified as a numeric vector, logical vector, categorical array, or two-column numeric matrix.

- When \( \text{distr} \) is not 'binomial', \( y \) is a numeric vector or categorical array of length \( n \), where \( n \) is the number of rows in \( X \). The response \( y(i) \) corresponds to row \( i \) in \( X \).
- When \( \text{distr} \) is 'binomial', \( y \) is one of the following:
  - Numeric vector of length \( n \), where each entry represents success (1) or failure (0)
  - Logical vector of length \( n \), where each entry represents success or failure
  - Categorical array of length \( n \), where each entry represents success or failure
  - Two-column numeric matrix, where the first column contains the number of successes for each observation and the second column contains the total number of trials

Data Types: single | double | logical | categorical

\( \text{distr} \) — Distribution of response data

'normal' | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of response data, specified as one of the following:

- 'normal'
- 'binomial'
- 'poisson'
- 'gamma'
- 'inverse gaussian'
lassoglm uses the default link function on page 32-3542 corresponding to distr. Specify another link function using the Link name-value pair argument.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: lassoglm(X,y,'poisson','Alpha',0.5) performs elastic net regularization assuming that the response values are Poisson distributed. The 'Alpha', 0.5 name-value pair argument sets the parameter used in the elastic net optimization.

**Alpha — Weight of lasso versus ridge optimization**

1 (default) | positive scalar

Weight of lasso \((L^1)\) versus ridge \((L^2)\) optimization, specified as the comma-separated pair consisting of 'Alpha' and a positive scalar value in the interval \((0, 1]\). The value \(\text{Alpha} = 1\) represents lasso regression, \(\text{Alpha}\) close to 0 approaches ridge regression, and other values represent elastic net optimization. See “Elastic Net” on page 32-3543.

Example: 'Alpha',0.75

Data Types: single | double

**CV — Cross-validation specification for estimating deviance**

'resubstitution' (default) | positive integer scalar | cvpartition object

Cross-validation specification for estimating the deviance, specified as the comma-separated pair consisting of 'CV' and one of the following:

- 'resubstitution' — lassoglm uses X and y to fit the model and to estimate the deviance without cross-validation.
- Positive scalar integer K — lassoglm uses K-fold cross-validation.
- cvpartition object cp — lassoglm uses the cross-validation method expressed in cp. You cannot use a 'leaveout' partition with lassoglm.

Example: 'CV',10

**DFmax — Maximum number of nonzero coefficients**

Inf (default) | positive integer scalar
Maximum number of nonzero coefficients in the model, specified as the comma-separated pair consisting of 'DFmax' and a positive integer scalar. `lassoglm` returns results only for Lambda values that satisfy this criterion.

Example: 'DFmax',25

Data Types: single | double

**Lambda — Regularization coefficients**

nonnegative vector

Regularization coefficients, specified as the comma-separated pair consisting of 'Lambda' and a vector of nonnegative values. See “Lasso” on page 32-3542.

- If you do not supply Lambda, then `lassoglm` estimates the largest value of Lambda that gives a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of the sequence, and NumLambda gives the length of the vector.
- If you supply Lambda, then `lassoglm` ignores LambdaRatio and NumLambda.
- If Standardize is true, then Lambda is the set of values used to fit the models with the X data standardized to have zero mean and a variance of one.

The default is a geometric sequence of NumLambda values, with only the largest value able to produce B = 0.

Data Types: single | double

**LambdaRatio — Ratio of smallest to largest Lambda values**

1e–4 (default) | positive scalar

Ratio of the smallest to the largest Lambda values when you do not supply Lambda, specified as the comma-separated pair consisting of 'LambdaRatio' and a positive scalar.

If you set LambdaRatio = 0, then `lassoglm` generates a default sequence of Lambda values and replaces the smallest one with 0.

Example: 'LambdaRatio',1e–2

Data Types: single | double

**Link — Mapping between mean of response and linear predictor**

'comploglog' | 'identity' | 'log' | 'logit' | 'loglog' | ...
Mapping between the mean $\mu$ of the response and the linear predictor $Xb$, specified as the comma-separated pair consisting of 'Link' and one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'comploglog'</td>
<td>$\log(-\log((1 - \mu))) = Xb$</td>
</tr>
<tr>
<td>'identity'</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'log'</td>
<td>$\log(\mu) = Xb$</td>
</tr>
<tr>
<td>'logit'</td>
<td>$\log(\mu/(1 - \mu)) = Xb$</td>
</tr>
<tr>
<td>'loglog'</td>
<td>$\log(-\log(\mu)) = Xb$</td>
</tr>
<tr>
<td>'probit'</td>
<td>$\Phi^{-1}(\mu) = Xb$, where $\Phi$ is the normal (Gaussian) cumulative distribution function</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>$\mu^{-1} = Xb$</td>
</tr>
<tr>
<td>$p$ (a number)</td>
<td>$\mu^p = Xb$</td>
</tr>
</tbody>
</table>

A cell array of the form `{FL FD FI}`, containing three function handles created using `@`, which define the link (FL), the derivative of the link (FD), and the inverse link (FI). Or, a structure of function handles with the field `Link` containing FL, the field `Derivative` containing FD, and the field `Inverse` containing FI. User-specified link function (see “Custom Link Function” on page 12-16)

Example: 'Link','probit'

Data Types: char | string | single | double | cell

**MaxIter** — Maximum number of iterations allowed

1e4 (default) | positive integer scalar

Maximum number of iterations allowed, specified as the comma-separated pair consisting of 'MaxIter' and a positive integer scalar.
If the algorithm executes `MaxIter` iterations before reaching the convergence tolerance `RelTol`, then the function stops iterating and returns a warning message.

The function can return more than one warning when `NumLambda` is greater than 1.

Example: 'MaxIter',1e3
Data Types: single | double

**MCReps — Number of Monte Carlo repetitions for cross-validation**

1 (default) | positive integer scalar

Number of Monte Carlo repetitions for cross-validation, specified as the comma-separated pair consisting of 'MCReps' and a positive integer scalar.

- If CV is 'resubstitution' or a cvpartition of type 'resubstitution', then MCReps must be 1.
- If CV is a cvpartition of type 'holdout', then MCReps must be greater than 1.

Example: 'MCReps',2
Data Types: single | double

**NumLambda — Number of Lambda values**

100 (default) | positive integer scalar

Number of Lambda values `lassoglm` uses when you do not supply `Lambda`, specified as the comma-separated pair consisting of 'NumLambda' and a positive integer scalar. `lassoglm` can return fewer than NumLambda fits if the deviance of the fits drops below a threshold fraction of the null deviance (deviance of the fit without any predictors X).

Example: 'NumLambda',150
Data Types: single | double

**Offset — Additional predictor variable**

text

Additional predictor variable, specified as the comma-separated pair consisting of 'Offset' and a numeric vector with the same number of rows as X. The `lassoglm` function keeps the coefficient value of Offset fixed at 1.0.

Data Types: single | double
Options — Option to cross-validate in parallel and specify random streams
structure

Option to cross-validate in parallel and specify the random streams, specified as the
comma-separated pair consisting of 'Options' and a structure. This option requires
Parallel Computing Toolbox.

Create the Options structure with statset. The option fields are:

• UseParallel — Set to true to compute in parallel. The default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. For
reproducibility, set Streams to a type allowing substreams: 'mlfg6331_64' or
'mrg32k3a'. The default is false.
• Streams — A RandStream object or cell array consisting of one such object. If you do
not specify Streams, then lassoglm uses the default stream.

Example: 'Options', statset('UseParallel', true)

Data Types: struct

PredictorNames — Names of predictor variables

{} (default) | string array | cell array of character vectors

Names of the predictor variables, in the order in which they appear in X, specified as the
c comma-separated pair consisting of 'PredictorNames' and a string array or cell array
of character vectors.

Example: 'PredictorNames', {'Height', 'Weight', 'Age'}

Data Types: string | cell

RelTol — Convergence threshold for coordinate descent algorithm

1e–4 (default) | positive scalar

Convergence threshold for the coordinate descent algorithm [3], specified as the comma-
separated pair consisting of 'RelTol' and a positive scalar. The algorithm terminates
when successive estimates of the coefficient vector differ in the $L^2$ norm by a relative
amount less than RelTol.

Example: 'RelTol', 2e–3

Data Types: single | double
Standardize — Flag for standardizing predictor data before fitting models
true (default) | false

Flag for standardizing the predictor data X before fitting the models, specified as the comma-separated pair consisting of 'Standardize' and either true or false. If Standardize is true, then the X data is scaled to have zero mean and a variance of one. Standardize affects whether the regularization is applied to the coefficients on the standardized scale or the original scale. The results are always presented on the original data scale.

Example: 'Standardize',false
Data Types: logical

Weights — Observation weights
1/n*ones(n,1) (default) | nonnegative vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a nonnegative vector. Weights has length n, where n is the number of rows of X. At least two values must be positive.

Data Types: single | double

Output Arguments

B — Fitted coefficients
numeric matrix

Fitted coefficients, returned as a numeric matrix. B is a p-by-L matrix, where p is the number of predictors (columns) in X, and L is the number of Lambda values. You can specify the number of Lambda values using the NumLambda name-value pair argument.

The coefficient corresponding to the intercept term is a field in FitInfo.

Data Types: single | double

FitInfo — Fit information of models
structure

Fit information of the generalized linear models, returned as a structure with the fields described in this table.
<table>
<thead>
<tr>
<th><strong>Field in FitInfo</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Intercept term $\beta_0$ for each linear model, a 1-by-$L$ vector</td>
</tr>
<tr>
<td>Lambda</td>
<td>Lambda parameters in ascending order, a 1-by-$L$ vector</td>
</tr>
<tr>
<td>Alpha</td>
<td>Value of the Alpha parameter, a scalar</td>
</tr>
<tr>
<td>DF</td>
<td>Number of nonzero coefficients in $B$ for each value of Lambda, a 1-by-$L$ vector</td>
</tr>
<tr>
<td>Deviance</td>
<td>Deviance of the fitted model for each value of Lambda, a 1-by-$L$ vector</td>
</tr>
<tr>
<td></td>
<td>If the model is cross-validated, then the values for Deviance represent the estimated expected deviance of the model applied to new data, as calculated by cross-validation. Otherwise, Deviance is the deviance of the fitted model applied to the data used to perform the fit.</td>
</tr>
<tr>
<td>PredictorNames</td>
<td>Value of the PredictorNames parameter, stored as a cell array of character vectors</td>
</tr>
</tbody>
</table>

If you set the CV name-value pair argument to cross-validate, the FitInfo structure contains these additional fields.

<table>
<thead>
<tr>
<th><strong>Field in FitInfo</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Standard error of Deviance for each Lambda, as calculated during cross-validation, a 1-by-$L$ vector</td>
</tr>
<tr>
<td>LambdaMinDeviance</td>
<td>Lambda value with minimum expected deviance, as calculated by cross-validation, a scalar</td>
</tr>
<tr>
<td>Lambda1SE</td>
<td>Largest Lambda value such that Deviance is within one standard error of the minimum, a scalar</td>
</tr>
<tr>
<td>IndexMinDeviance</td>
<td>Index of Lambda with the value LambdaMinDeviance, a scalar</td>
</tr>
<tr>
<td>Index1SE</td>
<td>Index of Lambda with the value Lambda1SE, a scalar</td>
</tr>
</tbody>
</table>
Definitions

Link Function

A link function $f(\mu)$ maps a distribution with mean $\mu$ to a linear model with data $X$ and coefficient vector $b$ using the formula

$$f(\mu) = Xb.$$ 

You can find the formulas for the link functions in the Link name-value pair argument description. This table lists the link functions that are typically used for each distribution.

<table>
<thead>
<tr>
<th>Distribution Family</th>
<th>Default Link Function</th>
<th>Other Typical Link Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td></td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>'comploglog','loglog','probit'</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td></td>
</tr>
<tr>
<td>'gamma'</td>
<td>'reciprocal'</td>
<td></td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>

Lasso

For a nonnegative value of $\lambda$, `lassoglm` solves the problem

$$\min_{\beta_0, \beta} \left( \frac{1}{N} \text{Deviance} (\beta_0, \beta) + \lambda \sum_{j=1}^{p} |\beta_j| \right).$$

- The function Deviance in this equation is the deviance of the model fit to the responses using the intercept $\beta_0$ and the predictor coefficients $\beta$. The formula for Deviance depends on the distr parameter you supply to `lassoglm`. Minimizing the $\lambda$-penalized deviance is equivalent to maximizing the $\lambda$-penalized loglikelihood.
- $N$ is the number of observations.
- $\lambda$ is a nonnegative regularization parameter corresponding to one value of Lambda.
The parameters \( \beta_0 \) and \( \beta \) are a scalar and a vector of length \( p \), respectively. As \( \lambda \) increases, the number of nonzero components of \( \beta \) decreases.

The lasso problem involves the \( L^1 \) norm of \( \beta \), as contrasted with the elastic net algorithm.

**Elastic Net**

For \( \alpha \) strictly between 0 and 1, and nonnegative \( \lambda \), elastic net solves the problem

\[
\min_{\beta_0, \beta} \left( \frac{1}{N} \text{Deviance}(\beta_0, \beta) + \lambda P_\alpha(\beta) \right),
\]

where

\[
P_\alpha(\beta) = \frac{(1-\alpha)}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 = \sum_{j=1}^{p} \left( \frac{(1-\alpha)}{2} \beta_j^2 + \alpha |\beta_j| \right).
\]

Elastic net is the same as lasso when \( \alpha = 1 \). For other values of \( \alpha \), the penalty term \( P_\alpha(\beta) \) interpolates between the \( L^1 \) norm of \( \beta \) and the squared \( L^2 \) norm of \( \beta \). As \( \alpha \) shrinks toward 0, elastic net approaches ridge regression.

**References**


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
fitglm | glmval | lasso | lassoPlot | ridge

Topics
"Regularize Poisson Regression“ on page 12-48
"Regularize Logistic Regression“ on page 12-51
"Regularize Wide Data in Parallel“ on page 12-59
"Lasso Regularization of Generalized Linear Models“ on page 12-45

Introduced in R2012a
lassoPlot

Trace plot of lasso fit

Syntax

lassoPlot(B)
lassoPlot(B,FitInfo)
lassoPlot(B,FitInfo,Name,Value)
[ax,figh] = lassoPlot(___)

Description

lassoPlot(B) creates a trace plot of the values in B against the $L^1$ norm of B.

lassoPlot(B,FitInfo) creates a plot with type depending on the data type of FitInfo and the value, if any, of the PlotType name-value pair.

lassoPlot(B,FitInfo,Name,Value) creates a plot with additional options specified by one or more Name,Value pair arguments.

[ax,figh] = lassoPlot(___), for any previous input syntax, returns a handle ax to the plot axis, and a handle figh to the figure window.

Input Arguments

B

Coefficients of a sequence of regression fits, as returned from the lasso or lassoglm functions. B is a p-by-NLambda matrix, where p is the number of predictors, and each column of B is a set of coefficients lasso calculates using one Lambda penalty value.

FitInfo

Information controlling the plot:
- **FitInfo** is a structure, especially as returned from `lasso` or `lassoglm` — `lassoPlot` creates a plot based on the `PlotType` name-value pair.

- **FitInfo** is a vector — `lassoPlot` forms the x-axis of the plot from the values in `FitInfo`. The length of `FitInfo` must equal the number of columns of `B`.

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Parent**

Axis in which to draw the plot.

**Default:** New plot

**PlotType**

Plot type when you specify a `FitInfo` vector or structure:

<table>
<thead>
<tr>
<th>PlotType</th>
<th>Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>'L1'</td>
<td><code>lassoPlot</code> creates the x-axis from the $L^1$ norm of the coefficients in <code>B</code>. The x-axis at the top of the plot contains the degrees of freedom (df), meaning the number of nonzero coefficients of <code>B</code>.</td>
</tr>
<tr>
<td>'Lambda'</td>
<td>When you choose this value, <code>FitInfo</code> must be a structure. <code>lassoPlot</code> creates the x-axis from the Lambda field of <code>FitInfo</code>. The x-axis at the top of the plot contains the degrees of freedom (df), meaning the number of nonzero coefficients of <code>B</code>.</td>
</tr>
<tr>
<td>PlotType</td>
<td>Plot</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 'CV'     | - For each Lambda, `lassoPlot` plots an estimate of the mean squared prediction error on new data for the model fitted by `lasso` with that value of Lambda.  
- `lassoPlot` plots error bars for the estimates.  

If you include a cross-validated `FitInfo` structure, `lassoPlot` also indicates two specific `Lambda` values with green and blue dashed lines.  
- A green, dashed line indicates the value of `Lambda` with a minimum cross-validated mean squared error (MSE).  
- A blue, dashed line indicates the greatest `Lambda` that is within one standard error of the minimum MSE. This `Lambda` value makes the sparsest model with relatively low MSE.  

To display the label for each plot in the legend of the figure, type `legend('show')` in the Command Window.  

**Default:** 'L1'  

**PredictorNames**  
String array or cell array of character vectors to label each coefficient of `B`. If the length of `PredictorNames` is less than the number of rows of `B`, the remaining labels are padded with default values.  

`lassoPlot` uses `PredictorNames` in `FitInfo` only if:  
- You created `FitInfo` with a call to `lasso` that included a `PredictorNames` name-value pair.  
- You call `lassoPlot` *without* a `PredictorNames` name-value pair.  
- You include `FitInfo` in your `lassoPlot` call.  

For an example, see “Lasso Plot with Default Plot Type” on page 32-3548.
Default: \{'B1', 'B2', \ldots\}\n
**XScale**

- 'linear' for linear x-axis
- 'log' for logarithmic scaled x-axis

Default: 'linear', except 'log' for the 'CV' plot type

**Output Arguments**

**ax**

Handle to the axis of the plot (see “Axes Appearance” (MATLAB)).

**figh**

Handle to the figure window (see “Special Object Identifiers” (MATLAB)).

**Examples**

**Lasso Plot with Default Plot Type**

Load the sample data

```matlab
load acetylene
```

Prepare the design matrix for lasso fit with interactions.

```matlab
X = [x1 x2 x3];
D = x2fx(X, 'interaction');
D(:,1) = [] ; % No constant term
```

The `x2fx` function returns the quadratic model in the order of a constant term, linear terms and interaction terms: constant term, x1, x2, x3, x1.*x2, x1.*x3, and x2.*x3.  

Fit a regularized model of the data using `lasso`.

```matlab
B = lasso(D,y);
```
Plot the lasso fits with labeled coefficients by using the `PredictorNames` name-value pair.

```matlab
lassoPlot(B,'PredictorNames',{'x1','x2','x3','x1.*x2','x1.*x3','x2.*x3'});
legend('show','Location','NorthWest') % Show legend
```

Each line represents a trace of the values in B for a single predictor variable: `x1`, `x2`, `x3`, `x1.*x2`, `x1.*x3`, and `x2.*x3`.

Display a data tip for the trace plot. A data tip appears when you hover over a data tip.
A data tip displays these lines of information: the name of the selected coefficient with a fitted value, the L1 norm of a set of coefficients including the selected coefficient, and the index of the corresponding Lambda.

**Lasso Plot with Lambda Plot Type**

Load the sample data.

```matlab
load acetylene
```

Prepare the data for lasso fit with interactions.
X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term

Fit a regularized model of the data with lasso.

[B,FitInfo] = lasso(D,y);

Plot the fits with the Lambda plot type and logarithmic scaling.

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');


**Lasso Plot with Cross-Validated Fits**

Visually examine the cross-validated error of various levels of regularization.

Load the sample data.

```matlab
load acetylene
```

Create a design matrix with interactions and no constant term.

```matlab
X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = [] ; % No constant term
```

Construct the lasso fit using 10-fold cross-validation. Include the `FitInfo` output so you can plot the result.

```matlab
rng default % For reproducibility
[B,FitInfo] = lasso(D,y,'CV',10);
```

Plot the cross-validated fits.

```matlab
lassoPlot(B,FitInfo,'PlotType','CV');
legend('show') % Show legend
```
The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue circle and dotted line locate the point with minimum cross-validation error plus one standard deviation.

See Also
lasso | lassoglm

Topics
“Lasso and Elastic Net” on page 11-140
Introduced in R2011b
**le**

**Class:** qrandstream

Less than or equal relation for handles

**Syntax**

\[ \text{h1} \leq \text{h2} \]

**Description**

Handles are equal if they are handles for the same object. All comparisons use a number associated with each handle object. Nothing can be assumed about the result of a handle comparison except that the repeated comparison of two handles in the same MATLAB session will yield the same result. The order of handle values is purely arbitrary and has no connection to the state of the handle objects being compared.

\[ \text{h1} \leq \text{h2} \] performs element-wise comparisons between handle arrays \( \text{h1} \) and \( \text{h2} \). \( \text{h1} \) and \( \text{h2} \) must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise \( \leq \) result.

If one of \( \text{h1} \) or \( \text{h2} \) is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

\[ \text{tf} = \text{le}(\text{h1}, \text{h2}) \] stores the result in a logical array of the same dimensions.

**See Also**

eq | ge | gt | lt | ne | qrandstream
Leap property

Class: qrandset

Interval between points

Description

Number of points to leap over and omit for each point taken from the sequence. The Leap property of a point set contains a positive integer which specifies the number of points in the sequence to leap over and omit for every point taken. The default Leap value is 0, which corresponds to taking every point from the sequence.

Leaping is a technique used to improve the quality of a point set. However, you must choose the Leap values with care; many Leap values create sequences that fail to touch on large sub-hyper-rectangles of the unit hypercube, and so fail to be a uniform quasi-random point set.

Choosing Leap Values for Halton Sets

A known rule for choosing Leap values for Halton sets is to set it to \((P-1)\) where \(P\) is a prime number that has not been used to generate one of the dimensions, i.e. for a \(k\)-dimensional point set \(P\) would be the \((k+1)th\) or greater prime.

Examples

Experiment with different leap values:

```
% No leaping produces the standard Halton sequence.
P = haltonset(5);
P(1:5,:)

% Set a leap of 1. The point set now includes every other point from the sequence.
P.Leap = 1;
P(1:5,:)
```
See Also
Skip | haltonset | net | qrandset | subsref
learnerCoderConfigurer

Create coder configurer of machine learning model

After training a machine learning model, create a coder configurer for the model by using learnerCoderConfigurer. Use the object functions and properties of the configurer to specify code generation options and to generate C/C++ code for the `predict` and `update` functions of the machine learning model. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow using a coder configurer. Use learnerCoderConfigurer for the highlighted step.

![Code generation workflow flowchart](image)

Syntax

```matlab
configurer = learnerCoderConfigurer(Mdl,X)
configurer = learnerCoderConfigurer(Mdl,X,Name,Value)
```

Description

`configurer = learnerCoderConfigurer(Mdl,X)` returns the coder configurer configurer for the machine learning model `Mdl`. Specify the predictor data `X` for the `predict` function of `Mdl`.

`configurer = learnerCoderConfigurer(Mdl,X,Name,Value)` returns a coder configurer with additional options specified by one or more name-value pair arguments.
For example, you can specify the number of output arguments in the predict function, the file name of generated C/C++ code, and the verbosity level of the coder configurer.

## Examples

### Generate Code Using Coder Configurer

Train a machine learning model and then generate code for the predict and update functions of the model by using a coder configurer.

Load the carsmall data set and train a support vector machine (SVM) regression model.

```matlab
load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);
```

`Mdl` is a RegressionSVM object.

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer. Specify the predictor data `X`. The learnerCoderConfigurer function uses the input `X` to configure the coder attributes of the predict function input.

```matlab
configurer = learnerCoderConfigurer(Mdl,X)
```

```matlab
configurer =
 RegressionSVMCoderConfigurer with properties:

 Update Inputs:
 Alpha: [1×1 LearnerCoderInput]
 SupportVectors: [1×1 LearnerCoderInput]
 Scale: [1×1 LearnerCoderInput]
 Bias: [1×1 LearnerCoderInput]

 Predict Inputs:
 X: [1×1 LearnerCoderInput]

 Code Generation Parameters:
 NumOutputs: 1
 OutputFileName: 'RegressionSVMModel'
```
**Properties, Methods**

`configurer` is a `RegressionSVMCoderConfigurer` object, which is a coder configurer of a `RegressionSVM` object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `RegressionSVM` model with default settings.

`generateCode(configurer)`

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'

`generateCode` generates these files for code generation.

`generateCode` generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions of the `RegressionSVM` model (Mdl), respectively. Then `generateCode` creates a MEX function named `RegressionSVMModel` for the two entry-point functions and the code for the MEX function in the `codegen\mex\RegressionSVMModel` folder and copies the MEX function to the current folder.

Display the contents of the `predict.m`, `update.m`, and `initialize.m` files.

```matlab
type predict.m % Display contents of predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end
```

```matlab
type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
initialize('update',varargin{:});
end
```
type initialize.m % Display contents of initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
coder.inline('always');
persistent model;
if isempty(model)
    model = loadCompactModel('RegressionSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        % SupportVectors
        % Scale
        % Bias

        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X

        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end
end

**Update Model Parameters in Generated Code**

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.
**Train Model**

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

`Mdl` is a `ClassificationSVM` object.

**Create Coder Configurer**

Create a coder configurer for the `ClassificationSVM` model by using `learnerCoderConfigurer`. Specify the predictor data `X`. The `learnerCoderConfigurer` function uses the input `X` to configure the coder attributes of the `predict` function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
```

`configurer` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.

**Specify Coder Attributes of Parameters**

Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of `X` so that the generated code accepts any number of observations. Modify the `SizeVector` and `VariableDimensions` attributes. The `SizeVector` attribute specifies the upper bound of the predictor data size, and the `VariableDimensions` attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];
```

The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is `Inf` and the size is variable, meaning that `X` can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.
The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support vectors in the generated code.

```matlab
cifigurer.SupportVectors.SizeVector = [250 34];
SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

cifigurer.SupportVectors.VariableDimensions = [true false];
VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
```

If you modify the coder attributes of SupportVectors, then the software modifies the coder attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

**Generate Code**

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the predict and update functions of the ClassificationSVM model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'

`generateCode` generates these files for code generation.

`generateCode` generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the predict and update functions of the ClassificationSVM model (Mdl), respectively. Then `generateCode` creates a
MEX function named `ClassificationSVMModel` for the two entry-point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX function to the current folder.

**Verify Generated Code**

Pass some predictor data to verify whether the `predict` function of `Mdl` and the `predict` function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

```
[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
```

Compare `label` and `label_mex` by using `isequal`.

```
isequal(label,label_mex)
ans = logical
 1
```

`isequal` returns logical 1 (true) if all the inputs are equal. The comparison confirms that the `predict` function of `Mdl` and the `predict` function in the MEX function return the same labels.

`score_mex` might include round-off differences compared with `score`. In this case, compare `score_mex` and `score`, allowing a small tolerance.

```
find(abs(score-score_mex) > 1e-8)
ans =
 0×1 empty double column vector
```

The comparison confirms that `score` and `score_mex` are equal within the tolerance $1\times10^{-8}$.

**Retrain Model and Update Parameters in Generated Code**

Retrain the model using the entire data set.

```
retrainedMdl = fitcsvm(X,Y);
```
Extract parameters to update by using `validatedUpdateInputs`. This function detects the modified model parameters in `retrainedMdl` and validates whether the modified parameter values satisfy the coder attributes of the parameters.

```matlab
params = validatedUpdateInputs(configurer,retrainedMdl);
```

Update parameters in the generated code.

```matlab
ClassificationSVMModel('update',params)
```

### Verify Generated Code

Compare the outputs from the `predict` function of `retrainedMdl` and the `predict` function in the updated MEX function.

```matlab
labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)
```

```matlab
ans = logical
 1
```

```matlab
find(abs(score-score_mex) > 1e-8)
```

```matlab
ans =
 0x1 empty double column vector
```

The comparison confirms that `labels` and `labels_mex` are equal, and the score values are equal within the tolerance.

### Input Arguments

**Mdl — Machine learning model**

full model object | compact model object

Machine learning model, specified as a full or compact model object, as given in this table of supported models.
<table>
<thead>
<tr>
<th>Model</th>
<th>Full Model Object</th>
<th>Compact Model Object</th>
<th>Training Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine (SVM)</td>
<td>ClassificationSVM</td>
<td>CompactClassificationSVM</td>
<td>fitcsvm</td>
</tr>
<tr>
<td>classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM regression</td>
<td>RegressionSVM</td>
<td>CompactRegressionSVM</td>
<td>fitrsvm</td>
</tr>
</tbody>
</table>

For the code generation usage notes and limitations of a machine learning model, see the Code Generation section of the model object page.

**X — Predictor data**

numeric matrix

Predictor data for the `predict` function of `Mdl`, specified as an `n`-by-`p` numeric matrix, where `n` is the number of observations and `p` is the number of predictor variables.

The `predict` function of a machine learning model predicts labels for classification and responses for regression for given predictor data. After creating the coder configurer `configurer`, you can use the `generateCode` function to generate C/C++ code for the `predict` function of `Mdl`. The generated code accepts predictor data that has the same size and data type of `X`. You can specify whether each dimension has a variable size or fixed size after creating `configurer`.

For example, if you want to generate C/C++ code that predicts labels using 100 observations with three predictor variables, then specify `X` as `zeros(100,3)`. The `learnerCoderConfigurer` function uses only the size and data type of `X`, not its values. Therefore, `X` can be predictor data or a MATLAB expression that represents the set of values with a certain data type. The output `configurer` stores the size and data type of `X` in the `X` property of `configurer`. You can modify the size and data type of `X` after creating `configurer`. For example, change the number of observations to 200 and the data type to `single`.

```matlab
configurer.X.SizeVector = [200 3];
configurer.X.DataType = 'single';
```

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify `X` as `zeros(100,3)` and change the `VariableDimensions` property.

```matlab
configurer.X.VariableDimensions = [1 0];
```
[1 0] indicates that the first dimension of $X$ (number of observations) has a variable size and the second dimension of $X$ (number of predictor variables) has a fixed size. The specified number of observations, 100 in this example, becomes the maximum allowed number of observations in the generated C/C++ code. To allow any number of observations, specify the bound as Inf.

`configurer.X.SizeVector = [Inf 3];`

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2,'OutputFileName','myModel')` sets the number of outputs in `predict` to 2 and specifies the file name 'myModel' for the generated C/C++ code.

**NumOutputs — Number of outputs in predict**

1 (default) | positive integer

Number of output arguments in the `predict` function of the machine learning model `Mdl`, specified as the comma-separated pair consisting of 'NumOutputs' and a positive integer. This table describes the number and type of outputs for the `predict` function of different models.

<table>
<thead>
<tr>
<th>Model</th>
<th><code>predict</code> function of Model</th>
<th>Number of Outputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td><code>predict</code></td>
<td>1</td>
<td>Predicted class labels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Predicted class labels and scores (or posterior probabilities)</td>
</tr>
<tr>
<td>SVM regression</td>
<td><code>predict</code></td>
<td>1</td>
<td>Predicted responses</td>
</tr>
</tbody>
</table>

For example, if you specify 'NumOutputs',1 for an SVM classification model, then `predict` returns predicted class labels in the generated C/C++ code.
After creating the coder configurer `configurer`, you can modify the number of outputs by using dot notation.

```matlab
configurer.NumOutputs = 2;
```

The `'NumOutputs'` name-value pair argument is equivalent to the `-nargout` compiler option of `codegen`. This option specifies the number of output arguments in the entry-point function of code generation. The object function `generateCode` of a coder configurer generates two entry-point functions—`predict.m` and `update.m` for the `predict` and `update` functions of `Mdl`, respectively—and generates C/C++ code for the two entry-point functions. The specified value for `'NumOutputs'` corresponds to the number of output arguments in `predict.m`.

Example: `'NumOutputs',2`

Data Types: `single` | `double`

**OutputFileName — File name of generated C/C++ code**

`Mdl` object name plus `'Model'` (default) | character vector | string scalar

File name of the generated C/C++ code, specified as the comma-separated pair consisting of `'OutputFileName'` and a character vector or string scalar.

The object function `generateCode` of a coder configurer generates C/C++ code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain operating system configurations. Also, the name must be a valid MATLAB function name.

The default file name is the object name of `Mdl` followed by `'Model'`. For example, if `Mdl` is a `CompactClassificationSVM` or `ClassificationSVM` object, then the default name is `'ClassificationSVMModel'`.

After creating the coder configurer `configurer`, you can modify the file name by using dot notation.

```matlab
configurer.OutputFileName = 'myModel';
```

Example: `'OutputFileName','myModel'`

Data Types: `char` | `string`
Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either true (logical 1) or false (logical 0). The verbosity level controls the display of notification messages at the command line for the coder configurer configurer.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true (logical 1)</td>
<td>The software displays notification messages when your changes to the coder attributes of a parameter result in changes for other dependent parameters.</td>
</tr>
<tr>
<td>false (logical 0)</td>
<td>The software does not display notification messages.</td>
</tr>
</tbody>
</table>

To enable updating machine learning model parameters in the generated code, you need to configure the coder attributes of the parameters before generating code. The coder attributes of parameters are dependent on each other, so the software stores the dependencies as configuration constraints. If you modify the coder attributes of a parameter by using the coder configurer configurer, and the modification requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters. The verbosity level determines whether or not the software displays notification messages for these subsequent changes.

After creating configurer, you can modify the verbosity level by using dot notation.

```matlab
configurer.Verbose = false;
```

Example: 'Verbose',false

Data Types: logical

Output Arguments

configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, returned as one of the coder configurer objects in this table.
Use the object functions and properties of a coder configurer object to configure code generation options and to generate C/C++ code for the predict and update functions of the machine learning model.

**See Also**
generateCode | update | validatedUpdateInputs

**Topics**
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

*Introduced in R2018b*
length

Class: dataset

Length of dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

n = length(A)

Description

n = length(A) returns the number of observations in the dataset A. length is equivalent to size(A,1).

See Also

size
length

Class: qrandset

Length of point set

Syntax

length(p)

Description

length(p) returns the number of points in the point set p. It is equivalent to size(p, 1).

See Also

qrandset | size
levelcounts

Element counts by level of a nominal or ordinal array

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Syntax**

```matlab
C = levelcounts(A)
C = levelcounts(A,dim)
```

**Description**

`C = levelcounts(A)` returns counts of the number of elements in the nominal or ordinal array `A` equal to each possible level in `A`.

- If `A` is a vector, then `C` is a vector containing as many elements as the number of levels in `A`.
- If `A` is a matrix, then `C` is a matrix of column counts.
- If `A` is an `N`-dimensional array, then `levelcounts` operates along the first nonsingleton dimension.

`C = levelcounts(A,dim)` operates along the dimension `dim`.

**Examples**

**Count Observations in Each Level**

Create a nominal array from data in a cell array.

```matlab
colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...{'blue','green','red'});
```
colors = 3x3 nominal array
    red    blue    green
    green   red    blue
    blue   red    green

Count the number of observations of each level in each column.
levelcounts(colors)
ans = 3x3
     1   1   1
     1   0   2
     1   2   0

Count the number of observations of each level in each row.
levelcounts(colors,2)
ans = 3x3
     1   1   1
     1   1   1
     1   1   1

Alternatively, you can use summary to display the counts with their labels. The default is to count elements in each column.
summary(colors)

    blue    green    red
     1       1       1
     1       0       2
     1       2       0

You can also count elements in each row.
summary(colors,2)

    blue    green    red
     1       1       1
     1       1       1
     1       1       1
Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

dim — Dimension along which to count
positive integer value

Dimension along which to count the number of elements in each level, specified as a positive integer value. For example, if the dimension is 1, then levelcounts counts along each column, while if the dimension is 2, then levelcounts counts along each row.

Data Types: double | single

See Also
nominal | ordinal | summary

Introduced in R2007a
leverage

Leverage

Syntax

\[ h = \text{leverage}(\text{data}) \]
\[ h = \text{leverage}(\text{data}, model) \]

Description

\( h = \text{leverage}(\text{data}) \) finds the leverage of each row (point) in the matrix \( \text{data} \) for a linear additive regression model.

\( h = \text{leverage}(\text{data}, model) \) finds the leverage on a regression, using a specified model type, where \( model \) can be one of the following:

- 'linear' - includes constant and linear terms
- 'interaction' - includes constant, linear, and cross product terms
- 'quadratic' - includes interactions and squared terms
- 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression due to its location in the space of the inputs.

Examples

One rule of thumb is to compare the leverage to \( 2p/n \) where \( n \) is the number of observations and \( p \) is the number of parameters in the model. For the Hald data set this value is 0.7692.

load hald
\[ h = \max(\text{leverage}(\text{ingredients}, \text{'linear'})) \]
\[ h =
\]
\[ 0.7004 \]
Since $0.7004 < 0.7692$, there are no high leverage points using this rule.

**Algorithms**

\[
[Q,R] = \text{qr}(x2fx(data,'model'),0);
\]

\[
\text{leverage} = (\text{sum}(Q'\cdot Q))'
\]

**References**


**See Also**

**Topics**

regstats

*Introduced before R2006a*
**lhsdesign**

Latin hypercube sample

**Syntax**

\[ X = \text{lhsdesign}(n,p) \]
\[ X = \text{lhsdesign}(...,\text{'smooth'},\text{'off'}) \]
\[ X = \text{lhsdesign}(...,\text{'criterion'},\text{criterion}) \]
\[ X = \text{lhsdesign}(...,\text{'iterations'},k) \]

**Description**

\[ X = \text{lhsdesign}(n,p) \] returns an \( n \)-by-\( p \) matrix, \( X \), containing a latin hypercube sample of \( n \) values on each of \( p \) variables. For each column of \( X \), the \( n \) values are randomly distributed with one from each interval \((0, 1/n), (1/n, 2/n), \ldots, (1-1/n, 1)\), and they are randomly permuted.

\[ X = \text{lhsdesign}(...,\text{'smooth'},\text{'off'}) \] produces points at the midpoints of the above intervals: \( 0.5/n, 1.5/n, \ldots, 1-0.5/n \). The default is 'on'.

\[ X = \text{lhsdesign}(...,\text{'criterion'},\text{criterion}) \] iteratively generates latin hypercube samples to find the best one according to \textit{criterion}, which can be 'none', 'maximin', or 'correlation'.

<table>
<thead>
<tr>
<th><strong>Criterion</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>No iteration.</td>
</tr>
<tr>
<td>'maximin'</td>
<td>Maximize minimum distance between points. This is the default.</td>
</tr>
<tr>
<td>'correlation'</td>
<td>Reduce correlation.</td>
</tr>
</tbody>
</table>

\[ X = \text{lhsdesign}(...,\text{'iterations'},k) \] iterates up to \( k \) times in an attempt to improve the design according to the specified criterion. The default is \( k = 5 \).
See Also
haltonset | lhsnorm | sobolset | unifrnd

Introduced before R2006a
**lhsnorm**

Latin hypercube sample from normal distribution

**Syntax**

```matlab
X = lhsnorm(mu, sigma, n)
X = lhsnorm(mu, sigma, n, flag)
[X, Z] = lhsnorm(...)```

Description

`X = lhsnorm(mu, sigma, n)` returns an `n`-by-`p` matrix, `X`, containing a latin hypercube sample of size `n` from a `p`-dimensional multivariate normal distribution with mean vector, `mu`, and covariance matrix, `sigma`.

`X` is similar to a random sample from the multivariate normal distribution, but the marginal distribution of each column is adjusted so that its sample marginal distribution is close to its theoretical normal distribution.

`X = lhsnorm(mu, sigma, n, flag)` controls the amount of smoothing in the sample. If `flag` is 'off', each column has points equally spaced on the probability scale. In other words, each column is a permutation of the values \(G(0.5/n), G(1.5/n), \ldots, G(1-0.5/n)\), where \(G\) is the inverse normal cumulative distribution for that column's marginal distribution. If `flag` is 'on' (the default), each column has points uniformly distributed on the probability scale. For example, in place of \(0.5/n\) you use a value having a uniform distribution on the interval \((0/n, 1/n)\).

`[X, Z] = lhsnorm(...)` also returns `Z`, the original multivariate normal sample before the marginals are adjusted to obtain `X`.

References

See Also
lhsdesign | mvnrnd

Introduced before R2006a
lillietest

Lilliefors test

Syntax

h = lillietest(x)
h = lillietest(x,Name,Value)
[h,p] = lillietest(__)
[h,p,kstat,critval] = lillietest(__)

Description

h = lillietest(x) returns a test decision for the null hypothesis that the data in vector x comes from a distribution in the normal family, against the alternative that it does not come from such a distribution, using a Lilliefors test. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = lillietest(x,Name,Value) returns a test decision with additional options specified by one or more name-value pair arguments. For example, you can test the data against a different distribution family, change the significance level, or calculate the p-value using a Monte Carlo approximation.

[h,p] = lillietest(__) also returns the p-value p, using any of the input arguments from the previous syntaxes.

[h,p,kstat,critval] = lillietest(__) also returns the test statistic kstat and the critical value critval for the test.

Examples

Test for Normal Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars.
load 'carbig'
[h,p,k,c] = lillietest(MPG)

Warning: P is less than the smallest tabulated value, returning 0.001.

h = 1
p = 1.0000e-03
k = 0.0789
c = 0.0451

The test statistic k is greater than the critical value c, so lillietest returns a result of h = 1 to indicate rejection of the null hypothesis at the default 5% significance level. The warning indicates that the returned P-value is less the smallest value in the table of precomputed values. To find a more accurate P-value, use MCTol to run a Monte Carlo approximation. See “Determine the p-value Using Monte Carlo Approximation” on page 32-3586.

Test the Hypothesis at Different Significance Levels

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

load 'examgrades'
x = grades(:,1);

Test the null hypothesis that the sample data comes from a normal distribution at the 1% significance level.

[h,p] = lillietest(x,'Alpha',0.01)

h = 0
p = 0.0348

The returned value of h = 0 indicates that lillietest does not reject the null hypothesis at the 1% significance level.
Test for Exponential Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows an exponential distribution across different makes of cars.

```matlab
load carbig
h = lillietest(MPG,'Distribution','exponential')
```

```matlab
h = 1
```

The returned value of \(h = 1 \) indicates that \texttt{lillietest} rejects the null hypothesis at the default 5\% significance level.

Test for Weibull Distribution

Generate two sample data sets, one from a Weibull distribution and another from a lognormal distribution. Perform the Lilliefors test to assess whether each data set is from a Weibull distribution. Confirm the test decision by performing a visual comparison using a Weibull probability plot (\texttt{wblplot}).

Generate samples from a Weibull distribution.

```matlab
rng('default')
data1 = wblrnd(0.5,2,[500,1]);
```

Perform the Lilliefors test by using the \texttt{lillietest}. To test data for a Weibull distribution, test if the logarithm of the data has an extreme value distribution.

```matlab
h1 = lillietest(log(data1),'Distribution','extreme value')
```

```matlab
h1 = 0
```

The returned value of \(h1 = 0 \) indicates that \texttt{lillietest} fails to reject the null hypothesis at the default 5\% significance level. Confirm the test decision using a Weibull probability plot.

```matlab
wblplot(data1)
```
The plot indicates that the data follows a Weibull distribution.

Generate samples from a lognormal distribution.

\[
data2 = \text{lognrnd}(5,2,[500,1]);\]

Perform the Lilliefors test.

\[
h2 = \text{lillietest}(\log(data2),'Distribution','\text{'extreme value'}')\]

\[
h2 = 1\]

The returned value of \(h2 = 1 \) indicates that \text{lillietest} rejects the null hypothesis at the default 5\% significance level. Confirm the test decision using a Weibull probability plot.
wblplot(data2)

The plot indicates that the data does not follow a Weibull distribution.

Determine the p-value Using Monte Carlo Approximation

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars. Determine the p-value using a Monte Carlo approximation with a maximum Monte Carlo standard error of $1e^{-4}$.
load carbig
[h,p] = lillietest(MPG,'MCTol',1e-4)

h = 1
p = 8.3333e-06

The returned value of \(h = 1 \) indicates that \texttt{lillietest} rejects the null hypothesis that the data comes from a normal distribution at the 5% significance level.

Input Arguments

\(x \) — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: \texttt{'Distribution','exponential','Alpha',0.01} tests the null hypothesis that the population distribution belongs to the exponential distribution family at the 1% significance level.

Alpha — Significance level

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of \texttt{'Alpha'} and a scalar value in the range (0,1).

- If \texttt{MCTol} is not used, \texttt{Alpha} must be in the range [0.001,0.50].
- If \texttt{MCTol} is used, \texttt{Alpha} must be in the range (0,1).

Example: \texttt{'Alpha',0.01}
Data Types: single | double

Distribution — Distribution family

'normal' (default) | 'exponential' | 'extreme value'

Distribution family for the hypothesis test, specified as the comma-separated pair consisting of 'Distr' and one of the following.

- 'normal' Normal distribution
- 'exponential' Exponential distribution
- 'extreme value' Extreme value distribution

- To test \(x \) for a lognormal distribution, test if \(\log(x) \) has a normal distribution.
- To test \(x \) for a Weibull distribution, test if \(\log(x) \) has an extreme value distribution.

Example: 'Distribution','exponential'

MCTol — Maximum Monte Carlo standard error

scalar value in the range (0,1)

Maximum Monte Carlo standard error on page 32-3590 for \(p \), the \(p \)-value of the test, specified as the comma-separated pair consisting of 'MCTol' and a scalar value in the range (0,1).

Example: 'MCTol',0.001

Data Types: single | double

Output Arguments

h — Hypothesis test result

1 | 0

Hypothesis test result, returned as 1 or 0.

- If \(h = 1 \), this indicates the rejection of the null hypothesis at the \(\alpha \) significance level.
- If \(h = 0 \), this indicates a failure to reject the null hypothesis at the \(\alpha \) significance level.
p — p-value

Scalar value in the range (0,1)

The p-value of the test, returned as a scalar value in the range (0,1). p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

- If `MCTol` is not used, p is computed using inverse interpolation into the table of critical values, and is returned as a scalar value in the range [0.001,0.50]. `lillietest` warns when p is not found within the tabulated range and returns either the smallest or largest tabulated value.
- If `MCTol` is used, `lillietest` conducts a Monte Carlo simulation to compute a more accurate p-value, and p is returned as a scalar value in the range (0,1).

kstat — Test statistic

Nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

critval — Critical value

Nonnegative scalar value

Critical value for the hypothesis test, returned as a nonnegative scalar value.

Definitions

Lilliefors Test

The Lilliefors test is a two-sided goodness-of-fit test suitable when the parameters of the null distribution are unknown and must be estimated. This is in contrast to the one-sample Kolmogorov-Smirnov test, which requires the null distribution to be completely specified.

The Lilliefors test statistic is:

\[D^* = \max_x |F(x) - G(x)|, \]
where \(\hat{F}(x) \) is the empirical cdf of the sample data and \(G(x) \) is the cdf of the hypothesized distribution with estimated parameters equal to the sample parameters.

\texttt{lillietest} can be used to test whether the data vector \(x \) has a lognormal or Weibull distribution by applying a transformation to the data vector and running the appropriate Lilliefors test:

- To test \(x \) for a lognormal distribution, test if \(\log(x) \) has a normal distribution.
- To test \(x \) for a Weibull distribution, test if \(\log(x) \) has an extreme value distribution.

The Lilliefors test cannot be used when the null hypothesis is not a location-scale family of distributions.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the \(p \)-value.

The Monte Carlo standard error is calculated as:

\[
SE = \sqrt{\frac{(\hat{p})(1 - \hat{p})}{mcreps}},
\]

where \(\hat{p} \) is the estimated \(p \)-value of the hypothesis test, and \(mcreps \) is the number of Monte Carlo replications performed.

The number of Monte Carlo replications, \(mcreps \), is determined such that the Monte Carlo standard error for \(\hat{p} \) less than the value specified for \(MCTol \).

Algorithms

To compute the critical value for the hypothesis test, \texttt{lillietest} interpolates into a table of critical values pre-computed using Monte Carlo simulation for sample sizes less than 1000 and significance levels between 0.001 and 0.50. The table used by \texttt{lillietest} is larger and more accurate than the table originally introduced by Lilliefors. If a more accurate \(p \)-value is desired, or if the desired significance level is less than 0.001 or greater than 0.50, the \(MCTol \) input argument can be used to run a Monte Carlo simulation to calculate the \(p \)-value more exactly.
When the computed value of the test statistic is greater than the critical value, \texttt{lillietest} rejects the null hypothesis at significance level Alpha.

\texttt{lillietest} treats NaN values in x as missing values and ignores them.

References

See Also

\texttt{adtest} | \texttt{cdfplot} | \texttt{jbtest} | \texttt{kstest} | \texttt{kstest2}

Introduced before R2006a
LinearModel class

Superclasses:

Linear regression model class

Description

An object comprising training data, model description, diagnostic information, and fitted coefficients for a linear regression. Predict model responses with the `predict` or `feval` methods.

Construction

```plaintext
mdl = fitlm(tbl) or mdl = fitlm(X,y) create a linear model of a table or dataset array tbl, or of the responses y to a data matrix X. For details, see fitlm.

mdl = stepwiselm(tbl) or mdl = stepwiselm(X,y) create a linear model of a table or dataset array tbl, or of the responses y to a data matrix X, with unimportant predictors excluded. For details, see stepwiselm.
```

Input Arguments

`tbl` — Input data
table | dataset array

Input data, specified as a table or dataset array. When `modelspec` is a `formula`, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.
To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

X — Predictor variables

matrix

Predictor variables, specified as an \(n \)-by-\(p \) matrix, where \(n \) is the number of observations and \(p \) is the number of predictor variables. Each column of \(X \) represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in \(X \).

Data Types: `single` | `double` | `logical`

y — Response variable

vector

Response variable, specified as an \(n \)-by-1 vector, where \(n \) is the number of observations. Each entry in \(y \) is the response for the corresponding row of \(X \).

Data Types: `single` | `double` | `logical`

Properties

CoefficientCovariance — Covariance matrix of coefficient estimates

numeric matrix

Covariance matrix of coefficient estimates, specified as a \(p \)-by-\(p \) matrix of numeric values. \(p \) is the number of coefficients in the fitted model.

CoefficientNames — Coefficient names

cell array of character vectors

Coefficient names, specified as a cell array of character vectors containing a label for each coefficient.

Coefficients — Coefficient values

table
Coefficient values, specified as a table. **Coefficients** has one row for each coefficient and the following columns:

- **Estimate** — Estimated coefficient value
- **SE** — Standard error of the estimate
- **tStat** — t statistic for a test that the coefficient is zero
- **pValue** — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in `mdl` the estimated coefficient vector is

```matlab
beta = mdl.Coefficients.Estimate
```

Use `coefTest` to perform other tests on the coefficients.

DFE — **Degrees of freedom for error**

positive integer value

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer value.

Diagnostics — **Diagnostic values**

table

Diagnostic values, specified as a table with the same number of rows as the input data (tbl or X). **Diagnostics** contains diagnostics helpful in finding outliers and influential observations. Many diagnostics describe the effect on the fit of deleting single observations. **Diagnostics** contains the following fields.
<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage</td>
<td>Diagonal elements of HatMatrix</td>
<td>Leverage indicates to what extent the predicted value for an observation is determined by the observed value for that observation. A value close to 1 indicates that the prediction is largely determined by that observation, with little contribution from the other observations. A value close to 0 indicates the fit is largely determined by the other observations. For a model with P coefficients and N observations, the average value of Leverage is P/N. An observation with Leverage larger than 2*P/N can be regarded as having high leverage.</td>
</tr>
<tr>
<td>CooksDistance</td>
<td>Cook's measure of scaled change in fitted values</td>
<td>CooksDistance is a measure of scaled change in fitted values. An observation with CooksDistance larger than three times the mean Cook's distance can be an outlier.</td>
</tr>
<tr>
<td>Dffits</td>
<td>Delete-1 scaled differences in fitted values vs. observation number</td>
<td>Dffits is the scaled change in the fitted values for each observation that would result from excluding that observation from the fit. Values with an absolute value larger than 2*sqrt(P/N) may be considered influential.</td>
</tr>
<tr>
<td>S2_i</td>
<td>Delete-1 variance vs. observation number</td>
<td>S2_i is a set of residual variance estimates obtained by deleting each observation in turn. These can be compared with the value of the MSE property.</td>
</tr>
<tr>
<td>CovRatio</td>
<td>Delete-1 ratio of determinant of covariance vs. observation number</td>
<td>CovRatio is the ratio of the determinant of the coefficient covariance matrix with each observation deleted in turn to the determinant of the covariance matrix for the full model. Values larger than 1+3P/N or smaller than 1-3P/N indicate influential points.</td>
</tr>
<tr>
<td>Dfbetas</td>
<td>Delete-1 scaled differences in covariance estimates vs. observation number</td>
<td>Dfbetas is an N-by-P matrix of the scaled change in the coefficient estimates that would result from excluding each observation in turn. Values larger than 3/sqrt(N) in absolute value indicate that the observation has a large influence on the corresponding coefficient.</td>
</tr>
<tr>
<td>Field</td>
<td>Meaning</td>
<td>Utility</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>HatMatrix</td>
<td>Projection matrix to compute fitted from observed responses</td>
<td>HatMatrix is an N-by-N matrix such that Fitted = HatMatrix*Y, where Y is the response vector and Fitted is the vector of fitted response values.</td>
</tr>
</tbody>
</table>

Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exception: Delete-1 diagnostics refer to the statistic with and without that observation (row) included in the fit. These diagnostics help identify important observations.

Fitted — Fitted response values based on input data
vector of numeric values

Fitted (predicted) response values based on input data, specified as an n-by-1 vector of numeric values. n is the number of observations in the input data. Use predict to compute predictions for other predictor values, or to compute confidence bounds on Fitted.

Formula — Model information
LinearFormula object | NonLinearFormula object

Model information, specified as a LinearFormula object or NonLinearFormula object. If you fit a linear or generalized linear regression model, then Formula is a LinearFormula object. If you fit a nonlinear regression model, then Formula is a NonLinearFormula object.

LogLikelihood — Log likelihood
numeric value

Log likelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.

ModelCriterion — Criterion for model comparison
structure

Criterion for model comparison, specified as a structure with the following fields:
• **AIC** — Akaike information criterion. AIC = \(-2*\log L + 2*m\), where \(\log L\) is the loglikelihood and \(m\) is the number of estimated parameters.

• **AICc** — Akaike information criterion corrected for the sample size. AICc = AIC + \((2*m*(m+1))/(n–m–1)\), where \(n\) is the number of observations.

• **BIC** — Bayesian information criterion. BIC = \(-2*\log L + m*\log(n)\).

• **CAIC** — Consistent Akaike information criterion. CAIC = \(-2*\log L + m*(\log(n) +1)\).

Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property by using dot notation. For example, in the model \(mdl\), the AIC value \(aic\) is:

\[aic = mdl.ModelCriterion.AIC\]

MSE — **Mean squared error**

numeric value

Mean squared error (residuals), specified as a numeric value. Mean square error is calculated as \(MSE = SSE / DFE\), where \(MSE\) is the mean square error, \(SSE\) is the sum of squared errors, and \(DFE\) is the degrees of freedom.

NumCoefficients — **Number of model coefficients**

positive integer

Number of model coefficients, specified as a positive integer. \(\text{NumCoefficients}\) includes coefficients that are set to zero when the model terms are rank deficient.

NumEstimatedCoefficients — **Number of estimated coefficients**

positive integer

Number of estimated coefficients in the model, specified as a positive integer. \(\text{NumEstimatedCoefficients}\) does not include coefficients that are set to zero when the model terms are rank deficient. \(\text{NumEstimatedCoefficients}\) is the degrees of freedom for regression.
NumObservations — Number of observations
positive integer

Number of observations the fitting function used in fitting, specified as a positive integer. This is the number of observations supplied in the original table, dataset, or matrix, minus any excluded rows (set with the Exclude name-value pair) or rows with missing values.

NumPredictors — Number of predictor variables
positive integer

Number of predictor variables used to fit the model, specified as a positive integer.

NumVariables — Number of variables
positive integer

Number of variables in the input data, specified as a positive integer. NumVariables is the number of variables in the original table or dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

ObservationInfo — Observation information
table

Observation information, specified as a n-by-4 table, where n is equal to the number of rows of input data. The four columns of ObservationInfo contain the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>Observation weights. Default is all 1.</td>
</tr>
<tr>
<td>Excluded</td>
<td>Logical value, 1 indicates an observation that you excluded from the fit with the Exclude name-value pair.</td>
</tr>
<tr>
<td>Missing</td>
<td>Logical value, 1 indicates a missing value in the input. Missing values are not used in the fit.</td>
</tr>
<tr>
<td>Subset</td>
<td>Logical value, 1 indicates the observation is not excluded or missing, so is used in the fit.</td>
</tr>
</tbody>
</table>

ObservationNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors containing the names of the observations used in the fit.
• If the fit is based on a table or dataset containing observation names, ObservationNames uses those names.
• Otherwise, ObservationNames is an empty cell array

PredictorNames — Names of predictors used to fit the model
cell array of character vectors

Names of predictors used to fit the model, specified as a cell array of character vectors.

Residuals — Residuals for fitted model
table

Residuals for fitted model, specified as a table that contains one row for each observation and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Observed minus fitted values.</td>
</tr>
<tr>
<td>Pearson</td>
<td>Raw residuals divided by RMSE.</td>
</tr>
<tr>
<td>Standardized</td>
<td>Raw residuals divided by their estimated standard deviation.</td>
</tr>
<tr>
<td>Studentized</td>
<td>Residual divided by an independent estimate of the residual standard deviation. The residual for observation i is divided by an estimate of the error standard deviation based on all observations except for observation i.</td>
</tr>
</tbody>
</table>

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model mdl, the ordinary raw residual vector r is:

```
r = mdl.Residuals.Raw
```

Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exceptions:

• raw contains the difference between the observed and predicted values.
• standardized is the residual, standardized in the usual way.
• studentized matches the standardized values because this residual is not used in the estimate of the residual standard deviation.
ResponseName — Response variable name

character vector

Response variable name, specified as a character vector.

RMSE — Root mean squared error

numeric value

Root mean squared error (residuals), specified as a numeric value. The root mean squared error (RMSE) is equal to $RMSE = \sqrt{MSE}$, where MSE is the mean squared error.

Robust — Robust fit information

structure

Robust fit information, specified as a structure with the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WgtFun</td>
<td>Robust weighting function, such as 'bisquare' (see robustfit)</td>
</tr>
<tr>
<td>Tune</td>
<td>Value specified for tuning parameter (can be [])</td>
</tr>
<tr>
<td>Weights</td>
<td>Vector of weights used in final iteration of robust fit. This field is empty for compacted CompactLinearModel models.</td>
</tr>
</tbody>
</table>

This structure is empty unless fitlm constructed the model using robust regression.

Rsquared — R-squared value for the model

structure

R-squared value for the model, specified as a structure.

For a linear or nonlinear model, Rsquared is a structure with two fields:

- **Ordinary** — Ordinary (unadjusted) R-squared
- **Adjusted** — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

- **Ordinary** — Ordinary (unadjusted) R-squared
- **Adjusted** — R-squared adjusted for the number of coefficients
• LLR — Log-likelihood ratio
• Deviance — Deviance
• AdjGeneralized — Adjusted generalized R-squared

The R-squared value is the proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:

$$Rsquared = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}.$$

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in `mdl` is

$$r2 = mdl.Rsquared.Adjusted$$

SSE — Sum of squared errors

Sum of squared errors (residuals), specified as a numeric value.

The Pythagorean theorem implies

$$SST = SSE + SSR.$$

SSR — Regression sum of squares

Regression sum of squares, specified as a numeric value. The regression sum of squares is equal to the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies

$$SST = SSE + SSR.$$

SST — Total sum of squares

Total sum of squares, specified as a numeric value. The total sum of squares is equal to the sum of squared deviations of response vector y from mean(y).

The Pythagorean theorem implies

$$SST = SSE + SSR.$$

32-3601
Steps — Stepwise fitting information

structure

Stepwise fitting information, specified as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Formula representing the starting model</td>
</tr>
<tr>
<td>Lower</td>
<td>Formula representing the lower bound model, these terms that must remain in the model</td>
</tr>
<tr>
<td>Upper</td>
<td>Formula representing the upper bound model, model cannot contain more terms than Upper</td>
</tr>
<tr>
<td>Criterion</td>
<td>Criterion used for the stepwise algorithm, such as 'sse'</td>
</tr>
<tr>
<td>PEnter</td>
<td>Value of the parameter, such as 0.05</td>
</tr>
<tr>
<td>PRemove</td>
<td>Value of the parameter, such as 0.10</td>
</tr>
<tr>
<td>History</td>
<td>Table representing the steps taken in the fit</td>
</tr>
</tbody>
</table>

The History table has one row for each step including the initial fit, and the following variables (columns).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Action taken during this step, one of:</td>
</tr>
<tr>
<td></td>
<td>• 'Start' — First step</td>
</tr>
<tr>
<td></td>
<td>• 'Add' — A term is added</td>
</tr>
<tr>
<td></td>
<td>• 'Remove' — A term is removed</td>
</tr>
<tr>
<td>TermName</td>
<td>• 'Start' step: The starting model specification</td>
</tr>
<tr>
<td></td>
<td>• 'Add' or 'Remove' steps: The term moved in that step</td>
</tr>
<tr>
<td>Terms</td>
<td>Terms matrix (see modelspec of fitlm)</td>
</tr>
<tr>
<td>DF</td>
<td>Regression degrees of freedom after this step</td>
</tr>
<tr>
<td>delDF</td>
<td>Change in regression degrees of freedom from previous step (negative for steps that remove a term)</td>
</tr>
<tr>
<td>Deviance</td>
<td>Deviance (residual sum of squares) at that step</td>
</tr>
<tr>
<td>FStat</td>
<td>F statistic that led to this step</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>PValue</td>
<td>p-value of the F statistic</td>
</tr>
</tbody>
</table>

The structure is empty unless you use `stepwiselm` or `stepwiseglm` to fit the model.

VariableInfo — Information about input variables

table

Information about input variables contained in `Variables`, specified as a table with one row for each model term and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Character vector giving variable class, such as 'double'</td>
</tr>
<tr>
<td>Range</td>
<td>Cell array giving variable range:</td>
</tr>
<tr>
<td></td>
<td>• Continuous variable — Two-element vector $[\text{min}, \text{max}]$, the minimum and maximum values</td>
</tr>
<tr>
<td></td>
<td>• Categorical variable — Cell array of distinct variable values</td>
</tr>
<tr>
<td>InModel</td>
<td>Logical vector, where <code>true</code> indicates the variable is in the model</td>
</tr>
<tr>
<td>IsCategorical</td>
<td>Logical vector, where <code>true</code> indicates a categorical variable</td>
</tr>
</tbody>
</table>

VariableNames — Names of variables used in fit

cell array of character vectors

Names of variables used in fit, specified as a cell array of character vectors.

- If the fit is based on a table or dataset, this property provides the names of the variables in that table or dataset.
- If the fit is based on a predictor matrix and response vector, `VariableNames` is the values in the `VarNames` name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

Variables — Data used to fit the model

table

Data used to fit the model, specified as a table. `Variables` contains both observation and response values. If the fit is based on a table or dataset array, `Variables` contains all of the data from that table or dataset array. Otherwise, `Variables` is a table created from the input data matrix X and response vector y.
Methods

addTerms Add terms to linear regression model
compact Compact linear regression model
dwtest Durbin-Watson test of linear model
fit Create linear regression model
plot Scatter plot or added variable plot of linear model
plotAdded Added variable plot or leverage plot for linear model
plotAdjustedResponse Adjusted response plot for linear regression model
plotDiagnostics Plot diagnostics of linear regression model
plotResiduals Plot residuals of linear regression model
removeTerms Remove terms from linear model
step Improve linear regression model by adding or removing terms
stepwise Create linear regression model by stepwise regression

Inherited Methods

anova Analysis of variance for linear model
coefCI Confidence intervals of coefficient estimates of linear model
coefTest Linear hypothesis test on linear regression model coefficients
disp Display linear regression model
feval Evaluate linear regression model prediction
plotEffects Plot main effects of each predictor in linear regression model
plotInteraction Plot interaction effects of two predictors in linear regression model
plotSlice Plot of slices through fitted linear regression surface
predict Predict response of linear regression model
random Simulate responses for linear regression model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Linear Regression Model of Matrix Data

Fit a linear model of the Hald data.

Load the data.

```matlab
load hald
X = ingredients; % Predictor variables
y = heat; % Response
```

Fit a default linear model to the data.

```matlab
mdl = fitlm(X,y)
```

```matlab
dmdl =
Linear regression model:
  y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
     Estimate        SE         tStat       pValue
    ________    _______    ________    ________
(Intercept)      62.405     70.071      0.8906     0.39913
x1               1.5511    0.74477      2.0827    0.070822
x2              0.51017    0.72379     0.70486      0.5009
x3              0.10191    0.75471     0.13503     0.89592
x4             -0.14406    0.70905    -0.20317     0.84407
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

Linear Regression with Categorical Predictor

Fit a model of a table that contains a categorical predictor.

Load the `carsmall` data.
load carsmall

Construct a table containing continuous predictor variable Weight, categorical predictor variable Year, and response variable MPG.

```matlab
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
```

Create a fitted model of MPG as a function of Year, Weight, and Weight^2. You don't have to include Weight explicitly in your formula because it is a lower-order term of Weight^2. The `fitlm` function includes Weight automatically.

```matlab
mdl = fitlm(tbl,'MPG ~ Year + Weight^2')
```

```matlab
mdl = 
Linear regression model:
    MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:
               Estimate      SE       tStat       pValue
    __________    ______    _______    __________
    (Intercept)    54.206    4.7117    11.505    2.6648e-19
    Weight         -0.016404    0.0031249    -5.2493    1.0283e-06
    Year_76          2.0887    0.71491     2.9215    0.0044137
    Year_82          8.1864    0.81531    10.041    2.6364e-16
    Weight^2    1.5573e-06    4.9454e-07      3.149    0.0022303

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885,  Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41
```

The `fitlm` function creates two dummy (indicator) variables for the categorical variate, Year. The dummy variable `Year_76` takes the value 1 if model year is 1976 and takes the value 0 if it is not. The dummy variable `Year_82` takes the value 1 if model year is 1982 and takes the value 0 if it is not. And the year 1970 is the reference year. The corresponding model is

\[
\hat{\text{MPG}} = 54.206 - 0.016404\text{Weight} + 2.0887\text{Year}_{76} + 8.1864\text{Year}_{82} + 1.5573 \cdot 10^{-06}\text{Weight}^2.
\]
Fit a Robust Linear Regression Model

Fit a linear regression model using a robust fitting method.

Load the sample data.

```matlab
load hald
```

The `hald` data measures the effect of cement composition on its hardening heat. The matrix `ingredients` contains the percent composition of four chemicals present in the cement. The array `heat` contains the heat of hardening after 180 days for each cement sample.

Fit a robust linear model to the data.

```matlab
mdl = fitlm(ingredients,heat,'linear','RobustOpts','on')
```

```matlab
mdl =
Linear regression model (robust fit):
    y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
                          Estimate    SE         tStat     pValue
     __________________    ________    ________    ________
     (Intercept)           60.09      75.818     0.79256    0.4509
     x1                   1.5753      0.80585    1.9548     0.086346
     x2                   0.5322      0.78315    0.67957    0.51596
     x3                  -0.13346    0.8166    0.16343    0.87424
     x4                   -0.12052    0.7672    -0.15709    0.87906

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979,    Adjusted R-Squared 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07
```

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X:
\[H = X(X^T X)^{-1} X^T. \]

The diagonal elements \(h_{ii} \) satisfy

\[
0 \leq h_{ii} \leq 1 \\
\sum_{i=1}^{n} h_{ii} = p,
\]

where \(n \) is the number of observations (rows of \(X \)), and \(p \) is the number of coefficients in the regression model.

Leverage

The leverage of observation \(i \) is the value of the \(i \)th diagonal term, \(h_{ii} \), of the hat matrix \(H \). Because the sum of the leverage values is \(p \) (the number of coefficients in the regression model), an observation \(i \) can be considered to be an outlier if its leverage substantially exceeds \(p/n \), where \(n \) is the number of observations.

Cook’s Distance

Cook’s distance is the scaled change in fitted values. Each element in \(\text{CooksDistance} \) is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook’s distance, \(D_i \), of observation \(i \) is

\[
D_i = \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(i)})^2}{p \cdot \text{MSE}},
\]

where

- \(\hat{y}_j \) is the \(j \)th fitted response value.
- \(\hat{y}_{j(i)} \) is the \(j \)th fitted response value, where the fit does not include observation \(i \).
- \(\text{MSE} \) is the mean squared error.
- \(p \) is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:
\[D_i = \frac{r_i^2}{p \text{MSE}} \left(\frac{h_{ii}}{(1-h_{ii})^2} \right), \]

where \(r_i \) is the \(i \)th residual, and \(h_{ii} \) is the \(i \)th leverage value.

CooksDistance is an \(n \)-by-1 column vector in the Diagnostics table of the LinearModel object.

Algorithms

The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is robustfit.

Alternatives

To remove redundant predictors in linear regression using lasso or elastic net, use the lasso function.

To regularize a regression with correlated terms using ridge regression, use the ridge or lasso functions.

To regularize a regression with correlated terms using partial least squares, use the plsregress function.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict and random functions support code generation.
- When you fit a model by using fitlm or stepwiselm, you cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the
'CategoricalVars' name-value pair argument. Code generation does not support categorical predictors. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
fitlm | plotPartialDependence | stepwiselm

Topics
“Linear Regression Workflow” on page 11-43
“Robust Regression versus Standard Least-Squares Fit” on page 11-132
“Linear Regression” on page 11-11

Introduced in R2012a
LinearMixedModel class

Linear mixed-effects model class

Description

A LinearMixedModel object represents a model of a response variable with fixed and random effects. It comprises data, a model description, fitted coefficients, covariance parameters, design matrices, residuals, residual plots, and other diagnostic information for a linear mixed-effects model. You can predict model responses with the `predict` function and generate random data at new design points using the `random` function.

Construction

You can fit a linear mixed-effects model using `fitlme(tbl,formula)` if your data is in a table or dataset array. Alternatively, if your model is not easily described using a formula, you can create matrices to define the fixed and random effects, and fit the model using `fitlmematrix(X,y,Z,G).

Input Arguments

- `tbl` — Input data
 table | dataset array
 Input data, which includes the response variable, predictor variables, and grouping variables, specified as a table or dataset array. The predictor variables can be continuous or grouping variables (see “Grouping Variables” on page 2-57). You must specify the model for the variables using `formula`.
 Data Types: `table`

- `formula` — Formula for model specification
 character vector or string scalar of the form `y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
Formula for model specification, specified as a character vector or string scalar of the form \('y \sim \text{fixed} + (\text{random1}|\text{grouping1}) + \ldots + (\text{randomR}|\text{groupingR})'\). For a full description, see “Formula” on page 32-3628.

Example: \('y \sim \text{treatment} + (1|\text{block})'\)

X — Fixed-effects design matrix

n-by-*p* matrix

Fixed-effects design matrix, specified as an *n*-by-*p* matrix, where *n* is the number of observations, and *p* is the number of fixed-effects predictor variables. Each row of *X* corresponds to one observation, and each column of *X* corresponds to one variable.

Data Types: `single` | `double`

y — Response values

n-by-1 vector

Response values, specified as an *n*-by-1 vector, where *n* is the number of observations.

Data Types: `single` | `double`

Z — Random-effects design

n-by-*q* matrix | cell array of *R* *n*-by-*q(r)* matrices, *r* = 1, 2, ..., *R*

Random-effects design, specified as either of the following.

- If there is one random-effects term in the model, then *Z* must be an *n*-by-*q* matrix, where *n* is the number of observations and *q* is the number of variables in the random-effects term.
- If there are *R* random-effects terms, then *Z* must be a cell array of length *R*. Each cell of *Z* contains an *n*-by-*q(r)* design matrix \(Z\{r\}\), *r* = 1, 2, ..., *R*, corresponding to each random-effects term. Here, \(q(r)\) is the number of random effects term in the *r*th random effects design matrix, \(Z\{r\}\).

Data Types: `single` | `double` | `cell`

G — Grouping variable or variables

n-by-1 vector | cell array of *R* *n*-by-1 vectors

Grouping variable or variables on page 2-57, specified as either of the following.

- If there is one random-effects term, then *G* must be an *n*-by-1 vector corresponding to a single grouping variable with *M* levels or groups.
G can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

- If there are multiple random-effects terms, then G must be a cell array of length R. Each cell of G contains a grouping variable $G\{r\}, \ r = 1, 2, ..., R,$ with $M(r)$ levels.

$G\{r\}$ can be a categorical vector, logical vector, numeric vector, character array, string array, or cell array of character vectors.

Data Types: categorical | logical | single | double | char | string | cell

Properties

Coefficients — Fixed-effects coefficient estimates

dataset array

Fixed-effects coefficient estimates and related statistics, stored as a dataset array containing the following fields.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the term.</td>
</tr>
<tr>
<td>Estimate</td>
<td>Estimated value of the coefficient.</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error of the coefficient.</td>
</tr>
<tr>
<td>tStat</td>
<td>t-statistics for testing the null hypothesis that the coefficient is equal to zero.</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom for the t-test. Method to compute DF is specified by the 'DFMethod' name-value pair argument. Coefficients always uses the 'Residual' method for 'DFMethod'.</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for the t-test.</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of the confidence interval for coefficient. Coefficients always uses the 95% confidence level, i.e. 'alpha' is 0.05.</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of confidence interval for coefficient. Coefficients always uses the 95% confidence level, i.e. 'alpha' is 0.05.</td>
</tr>
</tbody>
</table>
You can change 'DFMethod' and 'alpha' while computing confidence intervals for or testing hypotheses involving fixed- and random-effects, using the coefCI and coefTest methods.

CoefficientCovariance — Covariance of the estimated fixed-effects coefficients

*p-by-*p* matrix

Covariance of the estimated fixed-effects coefficients of the linear mixed-effects model, stored as a *p*-by-*p* matrix, where *p* is the number of fixed-effects coefficients.

You can display the covariance parameters associated with the random effects using the covarianceParameters method.

Data Types: double

CoefficientNames — Names of the fixed-effects coefficients

1-by-*p* cell array of character vectors

Names of the fixed-effects coefficients of a linear mixed-effects model, stored as a 1-by-*p* cell array of character vectors.

Data Types: cell

DFE — Residual degrees of freedom

Positive integer value

Residual degrees of freedom, stored as a positive integer value. \(DFE = n - p \), where *n* is the number of observations, and *p* is the number of fixed-effects coefficients.

This corresponds to the 'Residual' method of calculating degrees of freedom in the fixedEffects and randomEffects methods.

Data Types: double

FitMethod — Method used to fit the linear mixed-effects model

ML | REML

Method used to fit the linear mixed-effects model, stored as either of the following.

- ML, if the fitting method is maximum likelihood
- REML, if the fitting method is restricted maximum likelihood

Data Types: char
Formula — Specification of the fixed- and random-effects terms, and grouping variables

object

Specification of the fixed-effects terms, random-effects terms, and grouping variables that define the linear mixed-effects model, stored as an object.

For more information on how to specify the model to fit using a formula, see “Formula” on page 32-3628.

LogLikelihood — Maximized log or restricted log likelihood

scalar value

Maximized log likelihood or maximized restricted log likelihood of the fitted linear mixed-effects model depending on the fitting method you choose, stored as a scalar value.

Data Types: double

ModelCriterion — Model criterion

dataset array

Model criterion to compare fitted linear mixed-effects models, stored as a dataset array with the following columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Information Criterion</td>
</tr>
<tr>
<td>Loglikelihood</td>
<td>Log likelihood value of the model</td>
</tr>
<tr>
<td>Deviance</td>
<td>–2 times the log likelihood of the model</td>
</tr>
</tbody>
</table>

If \(n \) is the number of observations used in fitting the model, and \(p \) is the number of fixed-effects coefficients, then for calculating AIC and BIC,

- The total number of parameters is \(nc + p + 1 \), where \(nc \) is the total number of parameters in the random-effects covariance excluding the residual variance
- The effective number of observations is
 - \(n \), when the fitting method is maximum likelihood (ML)
 - \(n - p \), when the fitting method is restricted maximum likelihood (REML)

MSE — ML or REML estimate

positive scalar value
ML or REML estimate, based on the fitting method used for estimating σ^2, stored as a positive scalar value. σ^2 is the residual variance or variance of the observation error term of the linear mixed-effects model.

Data Types: double

NumCoefficients — Number of fixed-effects coefficients
positive integer value

Number of fixed-effects coefficients in the fitted linear mixed-effects model, stored as a positive integer value.

Data Types: double

NumEstimatedCoefficients — Number of estimated fixed-effects coefficients
positive integer value

Number of estimated fixed-effects coefficients in the fitted linear mixed-effects model, stored as a positive integer value.

Data Types: double

NumObservations — Number of observations
positive integer value

Number of observations used in the fit, stored as a positive integer value. This is the number of rows in the table or dataset array, or the design matrices minus the excluded rows or rows with NaN values.

Data Types: double

NumPredictors — Number of predictors
positive integer value

Number of variables used as predictors in the linear mixed-effects model, stored as a positive integer value.

Data Types: double

NumVariables — Total number of variables
positive integer value

Total number of variables including the response and predictors, stored as a positive integer value.
• If the sample data is in a table or dataset array `tbl`, `NumVariables` is the total number of variables in `tbl` including the response variable.

• If the fit is based on matrix input, `NumVariables` is the total number of columns in the predictor matrix or matrices, and response vector.

`NumVariables` includes variables, if there are any, that are not used as predictors or as the response.

Data Types: `double`

ObservationInfo — Information about the observations

table

Information about the observations used in the fit, stored as a table.

`ObservationInfo` has one row for each observation and the following four columns.

- **Weights**
 - The value of the weighted variable for that observation. Default value is 1.

- **Excluded**
 - `true`, if the observation was excluded from the fit using the `Exclude` name-value pair argument, `false`, otherwise. 1 stands for `true` and 0 stands for `false`.

- **Missing**
 - `true`, if the observation was excluded from the fit because any response or predictor value is missing, `false`, otherwise.

 Missing values include `NaN` for numeric variables, empty cells for cell arrays, blank rows for character arrays, and the `<undefined>` value for categorical arrays.

- **Subset**
 - `true`, if the observation was used in the fit, `false`, if it was not used because it is missing or excluded.

Data Types: `table`

ObservationNames — Names of observations

cell array of character vectors

Names of observations used in the fit, stored as a cell array of character vectors.
• If the data is in a table or dataset array, \(\text{tbl} \), containing observation names, \(\text{ObservationNames} \) has those names.

• If the data is provided in matrices, or a table or dataset array without observation names, then \(\text{ObservationNames} \) is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors

cell array of character vectors

Names of the variables that you use as predictors in the fit, stored as a cell array of character vectors that has the same length as \(\text{NumPredictors} \).

Data Types: cell

ResponseName — Names of response variable

character vector

Name of the variable used as the response variable in the fit, stored as a character vector.

Data Types: char

R squared — Proportion of variability in the response explained by the fitted model

structure

Proportion of variability in the response explained by the fitted model, stored as a structure. It is the multiple correlation coefficient or R-squared. \(\text{R squared} \) has two fields.

Ordinary

R-squared value, stored as a scalar value in a structure. \(\text{R squared}.\text{Ordinary} = 1 - \frac{\text{SSE}}{\text{SST}} \)

Adjusted

R-squared value adjusted for the number of fixed-effects coefficients, stored as a scalar value in a structure.

\[
\text{R squared}.\text{Adjusted} = 1 - \left(\frac{\text{SSE}}{\text{SST}} \right) \left(\frac{\text{DFT}}{\text{DFE}} \right),
\]

where \(\text{DFE} = n - p \), \(\text{DFT} = n - 1 \), and \(n \) is the total number of observations, \(p \) is the number of fixed-effects coefficients.
Data Types: struct

SSE — Error sum of squares
positive scalar value

Error sum of squares, that is, sum of the squared conditional residuals, stored as a positive scalar value.

\[
SSE = \sum ((y - F)^2), \quad \text{where} \quad y \text{ is the response vector, and } F \text{ is the fitted conditional response of the linear mixed-effects model. The conditional model has contributions from both fixed and random effects.}
\]

Data Types: double

SSR — Regression sum of squares
positive scalar value

Regression sum of squares, that is, the sum of squares explained by the linear mixed-effects regression, stored as a positive scalar value. It is the sum of squared deviations of the conditional fitted values from their mean.

\[
SSR = \sum ((F - \text{mean}(F))^2), \quad \text{where} \quad F \text{ is the fitted conditional response of the linear mixed-effects model. The conditional model has contributions from both fixed and random effects.}
\]

Data Types: double

SST — Total sum of squares
positive scalar value

Total sum of squares, that is, the sum of the squared deviations of the observed response values from their mean, stored as a positive scalar value.

\[
SST = \sum ((y - \text{mean}(y))^2) = SSR + SSE, \quad \text{where} \quad y \text{ is the response vector.}
\]

Data Types: double

Variables — Variables
table

Variables, stored as a table.

- If the fit is based on a table or dataset array `tbl`, then `Variables` is identical to `tbl`.

32-3619
• If the fit is based on matrix input, then Variables is a table containing all the variables in the predictor matrix or matrices, and response variable.

Data Types: table

VariableInfo — Information about the variables

`table`

Information about the variables used in the fit, stored as a table.

VariableInfo has one row for each variable and contains the following four columns.

- **Class**
 - Class of the variable ('double', 'cell', 'nominal', and so on).

- **Range**
 - Value range of the variable.
 - For a numerical variable, it is a two-element vector of the form `[min, max]`.
 - For a cell or categorical variable, it is a cell or categorical array containing all unique values of the variable.

- **InModel**
 - true, if the variable is a predictor in the fitted model.
 - false, if the variable is not in the fitted model.

- **IsCategorical**
 - true, if the variable has a type that is treated as a categorical predictor, such as cell, logical, or categorical, or if it is specified as categorical by the 'Categorical' name-value pair argument of the fit method.
 - false, if it is a continuous predictor.

Data Types: table

VariableNames — Names of the variables

`cell array of character vectors`

Names of the variables used in the fit, stored as a cell array of character vectors.
• If sample data is in a table or dataset array tbl, VariableNames contains the names of the variables in tbl.
• If sample data is in matrix format, then VariableInfo includes variable names you supply while fitting the model. If you do not supply the variable names, then VariableInfo contains the default names.

Data Types: cell

Methods

- **anova** Analysis of variance for linear mixed-effects model
- **coefCI** Confidence intervals for coefficients of linear mixed-effects model
- **coefTest** Hypothesis test on fixed and random effects of linear mixed-effects model
- **compare** Compare linear mixed-effects models
- **covarianceParameters** Extract covariance parameters of linear mixed-effects model
- **designMatrix** Fixed- and random-effects design matrices
- **disp** Display linear mixed-effects model
- **fit** Fit linear mixed-effects model using tables
- **fitmatrix** Fit linear mixed-effects model using design matrices
- **fitted** Fitted responses from a linear mixed-effects model
- **fixedEffects** Estimates of fixed effects and related statistics
- **plotResiduals** Plot residuals of linear mixed-effects model
- **predict** Predict response of linear mixed-effects model
- **random** Generate random responses from fitted linear mixed-effects model
- **randomEffects** Estimates of random effects and related statistics
- **residuals** Residuals of fitted linear mixed-effects model
- **response** Response vector of the linear mixed-effects model
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Random Intercept Model with Categorical Predictor

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in 9 different regions, estimated from Google® searches, plus a nationwide estimate from the Center for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a linear mixed-effects model with the influenza rates as the responses and region as the predictor variable, combine the nine columns corresponding to the regions into an array. The new dataset array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...'
 IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for region and a random intercept that varies by Date.

Because region is a nominal variable, fitlme takes the first region, NE, as the reference and creates eight dummy variables representing the other eight regions. For example, I[MidAtl] is the dummy variable representing the region MidAtl. For details, see “Dummy Indicator Variables” on page 2-60.

The corresponding model is

\[y_{im} = \beta_0 + \beta_1 I[MidAtl]_i + \beta_2 I[ENCentral]_i + \beta_3 I[WNCentral]_i + \beta_4 I[SAtl]_i + \beta_5 I[ESCentral]_i + \beta_6 I[WSCentral]_i + \beta_7 I[Mtn]_i + \beta_8 I[Pac]_i + b_{0m} + e_{im}, \quad m = 1, 2, \ldots, 52, \]
where y_{im} is the observation i for level m of grouping variable Date, β_j, $j = 0, 1, ..., 8$, are the fixed-effects coefficients, b_{0m} is the random effect for level m of the grouping variable Date, and ϵ_{im} is the observation error for observation i. The random effect has the prior distribution, $b_{0m} \sim N(0, \sigma_b^2)$ and the error term has the distribution, $\epsilon_{im} \sim N(0, \sigma^2)$.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

lme =
Linear mixed-effects model fit by ML

Model information:
 Number of observations 468
 Fixed effects coefficients 9
 Random effects coefficients 52
 Covariance parameters 2

Formula:
 FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
 AIC BIC LogLikelihood Deviance
 318.71 364.35 -148.36 296.71

Fixed effects coefficients (95% CIs):
 Name Estimate SE tStat DF
 '(Intercept)' 1.2233 0.096678 12.654 459
 'Region_MidAtl' 0.010192 0.052221 0.19518 459
 'Region_ENCentral' 0.051923 0.052221 0.9943 459
 'Region_WNCentral' 0.23687 0.052221 4.5359 459
 'Region_SAtl' 0.075481 0.052221 1.4454 459
 'Region_ESCentral' 0.33917 0.052221 6.495 459
 'Region_WSCentral' 0.069 0.052221 1.3213 459
 'Region_Mtn' 0.046673 0.052221 0.89377 459
 'Region_Pac' -0.16013 0.052221 -3.0665 459

 pValue Lower Upper
 1.085e-31 1.0334 1.4133
 0.84534 -0.092429 0.11281
 0.3206 -0.050698 0.15454
The p-values $7.3324e-06$ and $2.1623e-10$ respectively show that the fixed effects of the flu rates in regions WNCentral and ESEntral are significantly different relative to the flu rates in region NE.

The confidence limits for the standard deviation of the random-effects term, σ_b, do not include 0 (0.5297, 0.78368), which indicates that the random-effects term is significant. You can also test the significance of the random-effects terms using the `compare` method.

The estimated value of an observation is the sum of the fixed effects and the random-effect value at the grouping variable level corresponding to that observation. For example, the estimated best linear unbiased predictor (BLUP) of the flu rate for region WNCentral in week 10/9/2005 is

$$\hat{y}_{\text{WNCentral, 10/9/2005}} = \hat{\beta}_0 + \hat{\beta}_3 I[\text{WNCentral}] + \hat{b}_{10/9/2005}$$

$$= 1.2233 + 0.23687 - 0.1718$$

$$= 1.28837.$$

This is the fitted conditional response, since it includes contribution to the estimate from both the fixed and random effects. You can compute this value as follows.
beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')

y_hat = 1.2884

You can simply display the fitted value using the fitted method.

F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans = 1.2884

Compute the fitted marginal response for region WNCentral in week 10/9/2005.

F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans = 1.4602

Linear Mixed-Effects Model with a Random Slope

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower and the cylinders, and uncorrelated random-effect for intercept and acceleration grouped by the model year. This model corresponds to

\[
MPG_{im} = \beta_0 + \beta_1 Acc_i + \beta_2 HP + b_{0m} + b_{1m} Acc_{im} + e_{im}, \quad m = 1, 2, 3,
\]

with the random-effects terms having the following prior distributions:

\[
b_m = \begin{pmatrix} b_{0m} \\ b_{1m} \end{pmatrix} \sim N\left(0, \begin{pmatrix} \sigma_0^2 & \sigma_{0,1} \\ \sigma_{0,1} & \sigma_1^2 \end{pmatrix} \right),
\]

where \(m \) represents the model year.
First, prepare the design matrices for fitting the linear mixed-effects model.

\[
X = [\text{ones}(406,1) \text{ Acceleration Horsepower}];
\]
\[
Z = [\text{ones}(406,1) \text{ Acceleration}];
\]
\[
\text{Model Year} = \text{nominal} (\text{Model Year});
\]
\[
G = \text{Model Year};
\]

Now, fit the model using \text{fitlmematrix} with the defined design matrices and grouping variables. Use the 'fminunc' optimization algorithm.

\[
\text{lme} = \text{fitlmematrix}(X,\text{MPG},Z,G,'\text{FixedEffectPredictors}',\ldots
\{\text{'Intercept'},\text{'Acceleration'},\text{'Horsepower'}\},'	ext{RandomEffectPredictors}',\ldots
\{\{\text{'Intercept'},\text{'Acceleration'}\}\},'\text{RandomEffectGroups}',\{\text{'Model Year'}\},\ldots
'\text{FitMethod}','\text{REML}')
\]

\[
lme =
\]
Linear mixed-effects model fit by REML

Model information:
- Number of observations: 392
- Fixed effects coefficients: 3
- Random effects coefficients: 26
- Covariance parameters: 4

Formula:
Linear Mixed Formula with 4 predictors.

Model fit statistics:
- AIC: 2202.9
- BIC: 2230.7
- LogLikelihood: -1094.5
- Deviance: 2188.9

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Intercept'</td>
<td>50.064</td>
<td>2.3176</td>
<td>21.602</td>
<td>389</td>
<td>1.4185e-68</td>
</tr>
<tr>
<td>'Acceleration'</td>
<td>-0.57897</td>
<td>0.13843</td>
<td>-4.1825</td>
<td>389</td>
<td>3.5654e-05</td>
</tr>
<tr>
<td>'Horsepower'</td>
<td>-0.16958</td>
<td>0.0073242</td>
<td>-23.153</td>
<td>389</td>
<td>3.5289e-75</td>
</tr>
</tbody>
</table>

Lower Upper
-45.507 54.62
-0.85112 -0.30681
-0.18398 -0.15518

Random effects covariance parameters (95% CIs):
Group: Model Year (13 Levels)
The fixed effects coefficients display includes the estimate, standard errors (SE), and the 95% confidence interval limits (Lower and Upper). The \(p \)-values for (pValue) indicate that all three fixed-effects coefficients are significant.

The confidence intervals for the standard deviations and the correlation between the random effects for intercept and acceleration do not include zeros, hence they seem significant. Use the `compare` method to test for the random effects.

Display the covariance matrix of the estimated fixed-effects coefficients.

```markdown
lme.CoefficientCovariance
ans = 3x3

5.3711  -0.2809  -0.0126
-0.2809   0.0192   0.0005
-0.0126   0.0005   0.0001
```

The diagonal elements show the variances of the fixed-effects coefficient estimates. For example, the variance of the estimate of the intercept is 5.3711. Note that the standard errors of the estimates are the square roots of the variances. For example, the standard error of the intercept is 2.3176, which is \(\sqrt{5.3711} \).

The off-diagonal elements show the correlation between the fixed-effects coefficient estimates. For example, the correlation between the intercept and acceleration is \(-0.2809\) and the correlation between acceleration and horsepower is 0.0005.
Display the coefficient of determination for the model.

\texttt{lme.Rsquared}

\texttt{ans = struct with fields:}
 Ordinary: 0.7826
 Adjusted: 0.7815

The adjusted value is the R-squared value adjusted for the number of predictors in the model.

\section*{Definitions}

\subsection*{Formula}

In general, a formula for model specification is a character vector or string scalar of the form \texttt{\'y ~ terms\}'. For the linear mixed-effects models, this formula is in the form \texttt{\'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)\'}, where \texttt{fixed} and \texttt{random} contain the fixed-effects and the random-effects terms.

Suppose a table \texttt{tbl} contains the following:

- A response variable, \texttt{y}
- Predictor variables, \texttt{Xj}, which can be continuous or grouping variables
- Grouping variables, \texttt{g1}, \texttt{g2}, ..., \texttt{gR},

where the grouping variables in \texttt{Xj} and \texttt{gR} can be categorical, logical, character arrays, string arrays, or cell arrays of character vectors.

Then, in a formula of the form \texttt{\'y ~ fixed + (random1|g1) + ... + (randomR|gR)\'} , the term \texttt{fixed} corresponds to a specification of the fixed-effects design matrix \texttt{X}, \texttt{random1} is a specification of the random-effects design matrix \texttt{Z1} corresponding to grouping variable \texttt{g1}, and similarly \texttt{randomR} is a specification of the random-effects design matrix \texttt{ZR} corresponding to grouping variable \texttt{gR}. You can express the \texttt{fixed} and \texttt{random} terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
Wilkinson Notation vs. Standard Notation

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>X^k, where k is a positive integer</td>
<td>X, X^2, ..., X^k</td>
</tr>
<tr>
<td>X1 + X2</td>
<td>X1, X2</td>
</tr>
<tr>
<td>X1*X2</td>
<td>X1, X2, X1.*X2 (elementwise multiplication of X1 and X2)</td>
</tr>
<tr>
<td>X1:X2</td>
<td>X1.*X2 only</td>
</tr>
<tr>
<td>- X2</td>
<td>Do not include X2</td>
</tr>
<tr>
<td>X1*X2 + X3</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1 + X2 + X3 + X1:X2</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1X2X3 - X1:X2:X3</td>
<td>X1, X2, X3, X1X2, X1X3, X2*X3</td>
</tr>
<tr>
<td>X1*(X2 + X3)</td>
<td>X1, X2, X3, X1X2, X1X3</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1. Here are some examples for linear mixed-effects model specification.

Examples:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X1 + X2'</td>
<td>Fixed effects for the intercept, X1 and X2. This is equivalent to 'y ~ 1 + X1 + X2'.</td>
</tr>
<tr>
<td>'y ~ -1 + X1 + X2'</td>
<td>No intercept and fixed effects for X1 and X2. The implicit intercept term is suppressed by including -1.</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1)'</td>
</tr>
<tr>
<td>'y ~ X1 + (X1</td>
<td>g1)'</td>
</tr>
</tbody>
</table>
Formula

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'y ~ X1 + (1</td>
<td>g1) + (-1 + X1</td>
</tr>
<tr>
<td>'y ~ 1 + (1</td>
<td>g1) + (1</td>
</tr>
</tbody>
</table>

See Also

fitlme | fitlmematrix | plotPartialDependence
linhyptest

Linear hypothesis test

Syntax

\[p = \text{linhyptest}(\beta, \text{COVB}, c, H, dfe) \]
\[[p, t, r] = \text{linhyptest}(...) \]

Description

\[p = \text{linhyptest}(\beta, \text{COVB}, c, H, dfe) \] returns the \(p \) value \(p \) of a hypothesis test on a vector of parameters. \(\beta \) is a vector of \(k \) parameter estimates. \(\text{COVB} \) is the \(k \)-by-\(k \) estimated covariance matrix of the parameter estimates. \(c \) and \(H \) specify the null hypothesis in the form \(H^*b = c \), where \(b \) is the vector of unknown parameters estimated by \(\beta \). \(dfe \) is the degrees of freedom for the \(\text{COVB} \) estimate, or \(\text{Inf} \) if \(\text{COVB} \) is known rather than estimated.

\(\beta \) is required. The remaining arguments have default values:

- \(\text{COVB} = \text{eye}(k) \)
- \(c = \text{zeros}(k,1) \)
- \(H = \text{eye}(K) \)
- \(dfe = \text{Inf} \)

If \(H \) is omitted, \(c \) must have \(k \) elements and it specifies the null hypothesis values for the entire parameter vector.

\textbf{Note} The following functions return outputs suitable for use as the \(\text{COVB} \) input argument to \text{linhyptest}: \text{nlinfit}, \text{coxphfit}, \text{glmfit}, \text{mnrfit}, \text{regstats}, \text{robustfit}. \text{nlinfit} returns \(\text{COVB} \) directly; the other functions return \(\text{COVB} \) in \text{stats.covb}.

\[[p, t, r] = \text{linhyptest}(...) \] also returns the test statistic \(t \) and the rank \(r \) of the hypothesis matrix \(H \). If \(dfe \) is \(\text{Inf} \) or is not given, \(t*r \) is a chi-square statistic with \(r \)
degrees of freedom. If dfe is specified as a finite value, t is an F statistic with r and dfe degrees of freedom.

linhyptest performs a test based on an asymptotic normal distribution for the parameter estimates. It can be used after any estimation procedure for which the parameter covariances are available, such as regstats or glmfit. For linear regression, the p-values are exact. For other procedures, the p-values are approximate, and may be less accurate than other procedures such as those based on a likelihood ratio.

Examples

Fit a multiple linear model to the data in hald.mat:

```matlab
load hald
stats = regstats(heat,ingredients,'linear');
beta = stats.beta
beta =
   62.4054
   1.5511
   0.5102
   0.1019
  -0.1441
```

Perform an F-test that the last two coefficients are both 0:

```matlab
SIGMA = stats.covb;
dfe = stats.fstat.dfe;
H = [0 0 0 1 0;0 0 0 0 1];
c = [0;0];
[p,F] = linhyptest(beta,SIGMA,c,H,dfe)
p =
  0.4668
F =
  0.8391
```

See Also
coxphfit | glmfit | mnrfit | nlinfit | regstats | robustfit

Introduced in R2007a
linkage

Agglomerative hierarchical cluster tree

Syntax

Z = linkage(X)
Z = linkage(X,method)
Z = linkage(X,method,metric)
Z = linkage(X,method,metric,'savememory',value)
Z = linkage(X,method,pdist_inputs)
Z = linkage(y)
Z = linkage(y,method)

Description

Z = linkage(X) returns a matrix Z that encodes a tree containing hierarchical clusters of the rows of the input data matrix X.

Z = linkage(X,method) creates the tree using the specified method, which describes how to measure the distance between clusters. For more information, see “Linkages” on page 32-3643.

Z = linkage(X,method,metric) performs clustering by passing metric to the pdist function, which computes the distance between the rows of X.

Z = linkage(X,method,metric,'savememory',value) uses a memory-saving algorithm when value is 'on', and uses the standard algorithm when value is 'off'.

Z = linkage(X,method,pdist_inputs) passes pdist_inputs to the pdist function, which computes the distance between the rows of X. The pdist_inputs argument consists of the 'seuclidean', 'minkowski', or 'mahalanobis' metric and an additional distance metric option.
\[Z = \text{linkage}(y) \] uses a vector representation \(y \) of a distance matrix. \(y \) is either computed by \texttt{pdist} or is a more general dissimilarity matrix conforming to the output format of \texttt{pdist}.

\[Z = \text{linkage}(y, \text{method}) \] creates the tree using the specified \texttt{method}, which describes how to measure the distance between clusters.

Examples

Cluster Data and Plot Result

Randomly generate sample data with 20,000 observations.

```matlab
rng('default') % For reproducibility
X = rand(20000,3);

Create a hierarchical cluster tree using Ward's linkage. In this case, 'savememory' is set to 'on' by default. In general, choose the best value for 'savememory' based on the dimensions of \( X \) and the available memory.

\[ Z = \text{linkage}(X, 'ward'); \]

Cluster data into four groups and plot the result.

```matlab
c = \text{cluster}(Z, 'Maxclust', 4);
scatter3(X(:,1), X(:,2), X(:,3), 10, c)```
Compare Cluster Assignments to Classes

Compare cluster assignments of flowers to their species classification.

Load the sample data.

```markdown
load fisheriris
```

Compute three clusters of the Fisher iris data using the 'average' method and the 'chebychev' metric.

```markdown
```
\[Z = \text{linkage}(\text{meas}, 'average', 'chebychev'); \]
\[c = \text{cluster}(Z, 'maxclust', 3); \]

Create a dendrogram plot of \(Z \). To see the three clusters, use 'ColorThreshold' with a cutoff halfway between the third-from-last and second-from-last linkages.

\[\text{cutoff} = \text{median}([Z(\text{end}-2,3) \ Z(\text{end}-1,3)]); \]
\[\text{dendrogram}(Z, 'ColorThreshold', \text{cutoff}) \]

Display the last two rows of \(Z \) to see how the three clusters are combined into one. \(\text{linkage} \) combines the 293rd (blue) cluster with the 297th (red) cluster to form the 298th cluster with a linkage of 1.7583. \(\text{linkage} \) then combines the 296th (green) cluster with the 298th cluster.

\[\text{lastTwo} = Z(\text{end}-1:\text{end},:) \]
lastTwo = 2×3

293.0000 297.0000 1.7583
296.0000 298.0000 3.4445

See how the cluster assignments correspond to the three species. For example, one of the clusters contains 50 flowers of the second species and 40 flowers of the third species.

crosstab(c,species)

ans = 3×3

0 0 10
0 50 40
50 0 0

Observe Clustering Step in Hierarchical Tree

Load the examgrades data set.

load examgrades

Create a hierarchical tree using linkage. Use the 'single' method and the Minkowski metric with an exponent of 3.

Z = linkage(grades,'single',{'minkowski',3});

Observe the 25th clustering step.

Z(25,:)

ans = 1×3

86.0000 137.0000 4.5307

linkage combines the 86th observation and the 137th cluster to form a cluster of index 120 + 25 = 145, where 120 is the total number of observations in grades and 25 is the row number in Z. The shortest distance between the 86th observation and any of the points in the 137th cluster is 4.5307.
Cluster Data Using Dissimilarity Matrix

Create an agglomerative hierarchical cluster tree using a dissimilarity matrix.

Take a dissimilarity matrix X and convert it to a vector form that `linkage` accepts by using `squareform`.

```matlab
X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0];
y = squareform(X);
```

Create a cluster tree using `linkage` with the 'complete' method of calculating the distance between clusters. The first two columns of Z show how `linkage` combines clusters. The third column of Z gives the distance between clusters.

```matlab
Z = linkage(y,'complete')
Z = 3×3
     1     2     1     
     3     5     4     
     4     6     6
```

Create a dendrogram plot of Z. The x-axis corresponds to the leaf nodes of the tree, and the y-axis corresponds to the linkage distances between clusters.

```matlab
dendrogram(Z)
```
Input Arguments

X — Input data
numeric matrix

Input data, specified as a numeric matrix with two or more rows. The rows represent observations, and the columns represent categories or dimensions.

Data Types: `single` | `double`

method — Algorithm for computing distance between clusters

'single' (default) | 'average' | 'centroid' | 'complete' | ...
Algorithm for computing the distance between clusters, specified as one of the values in this table.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Unweighted average distance (UPGMA)</td>
</tr>
<tr>
<td>'centroid'</td>
<td>Centroid distance (UPGMC), appropriate for Euclidean distances only</td>
</tr>
<tr>
<td>'complete'</td>
<td>Farthest distance</td>
</tr>
<tr>
<td>'median'</td>
<td>Weighted center of mass distance (WPGMC), appropriate for Euclidean distances only</td>
</tr>
<tr>
<td>'single'</td>
<td>Shortest distance</td>
</tr>
<tr>
<td>'ward'</td>
<td>Inner squared distance (minimum variance algorithm), appropriate for Euclidean distances only</td>
</tr>
<tr>
<td>'weighted'</td>
<td>Weighted average distance (WPGMA)</td>
</tr>
</tbody>
</table>

For more information on these methods, see “Linkages” on page 32-3643.

metric — Distance metric

'euclidean'(default)	'squaredeuclidean'	'seuclidean'	'mahalanobis'	function handle

Distance metric, specified as any metric accepted by the pdist function. These metrics are described in the following table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance (default).</td>
</tr>
<tr>
<td>'squaredeuclidean'</td>
<td>Squared Euclidean distance. (This option is provided for efficiency only. It does not satisfy the triangle inequality.)</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between observations is scaled by dividing by the corresponding element of the standard deviation, (S = \text{nanstd}(X)). Use DistParameter to specify another value for (S).</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance using the sample covariance of (X, C = \text{nancov}(X)). Use DistParameter to specify another value for (C), where the matrix (C) is symmetric and positive definite.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. Use DistParameter to specify a different exponent P, where P is a positive scalar value of the exponent.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>@distfun</td>
<td>Custom distance function handle. A distance function has the form:</td>
</tr>
<tr>
<td></td>
<td>function D2 = distfun(ZI,ZJ)</td>
</tr>
<tr>
<td></td>
<td>% calculation of distance</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>where</td>
</tr>
<tr>
<td></td>
<td>• ZI is a 1-by-n vector containing a single observation.</td>
</tr>
<tr>
<td></td>
<td>• ZJ is an m2-by-n matrix containing multiple observations.</td>
</tr>
<tr>
<td></td>
<td>distfun must accept a matrix ZJ with an arbitrary number of observations.</td>
</tr>
<tr>
<td></td>
<td>• D2 is an m2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).</td>
</tr>
<tr>
<td></td>
<td>If your data is not sparse, you can generally compute distance more quickly by using a built-in distance instead of a function handle.</td>
</tr>
</tbody>
</table>

For more information, see “Distance Metrics” on page 32-4703.
Use `pdist_inputs` instead of `metric` to specify the additional input argument `DistParameter` of `pdist` for 'seuclidean', 'minkowski', or 'mahalanobis'.

Data Types: `char` | `string` | `function_handle`

pdist_inputs — Distance metric and distance metric option

cell array

Distance metric and distance metric option, specified as a cell array of the comma-separated pair consisting of the two input arguments `Distance` and `DistParameter` of the function `pdist`. This argument is valid only for specifying 'seuclidean', 'minkowski', or 'mahalanobis'.

Example: `{'minkowski',5}`

Data Types: `cell`

value — Flag for 'savememory' option

'on' | 'off'

Flag for the 'savememory' option, specified as either 'on' or 'off'. The 'on' setting causes `linkage` to construct clusters without computing the distance matrix. The 'on' setting is available only when `method` is 'centroid', 'median', or 'ward' and `metric` is 'euclidean'.

When `value` is 'on', the `linkage` run time is proportional to the number of dimensions (number of columns of `X`). When `value` is 'off', the `linkage` memory requirement is proportional to N^2, where N is the number of observations. The best (least-time) setting to use for `value` depends on the problem dimensions, number of observations, and available memory. The default `value` setting is a rough approximation of an optimal setting.

The default is 'on' when `X` has 20 columns or fewer, or the computer does not have enough memory to store the distance matrix. Otherwise, the default is 'off'.

Example: `{'savememory', 'on'}`

y — Distances

numeric vector

Distances, specified as a numeric vector with the same format as the output of the `pdist` function:

- A row vector of length $m(m - 1)/2$, corresponding to pairs of observations in a matrix with m rows
Distances arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m – 1))
y can be a more general dissimilarity matrix conforming to the output format of pdist.

Data Types: single | double

Output Arguments

Z — Agglomerative hierarchical cluster tree
numeric matrix

Agglomerative hierarchical cluster tree, returned as a numeric matrix. Z is an (m – 1)-by-3
matrix, where m is the number of observations in the original data. Columns 1 and 2 of Z
contain cluster indices linked in pairs to form a binary tree. The leaf nodes are numbered
from 1 to m. Leaf nodes are the singleton clusters from which all higher clusters are built.
Each newly formed cluster, corresponding to row Z(I,:), is assigned the index m + I.
The entries Z(I,1) and Z(I,2) contain the indices of the two component clusters that
form cluster m + I. The m – 1 higher clusters correspond to the interior nodes of the
clustering tree. Z(I,3) contains the linkage distance between the two clusters merged in
row Z(I,:).

For example, consider building a tree with 30 initial nodes. Suppose that cluster 5 and
cluster 7 are combined at step 12, and that the distance between them at that step is 1.5.
Then Z(12,:) is [5 7 1.5]. The newly formed cluster has index 12 + 30 = 42. If
cluster 42 appears in a later row, then the function is combining the cluster created at
step 12 into a larger cluster.

Data Types: single | double

Definitions

Linkages

A linkage is the distance between two clusters.

The following notation describes the linkages used by the various methods:

• Cluster r is formed from clusters p and q.
• n_r is the number of objects in cluster r.
• x_{ri} is the ith object in cluster r.

Single linkage, also called *nearest neighbor*, uses the smallest distance between objects in the two clusters.

$$d(r, s) = \min(\text{dist}(x_{ri}, x_{sj})), i \in (i, ..., n_r), j \in (1, ..., n_s)$$

• **Complete linkage**, also called *farthest neighbor*, uses the largest distance between objects in the two clusters.

$$d(r, s) = \max(\text{dist}(x_{ri}, x_{sj})), i \in (1, ..., n_r), j \in (1, ..., n_s)$$

• **Average linkage** uses the average distance between all pairs of objects in any two clusters.

$$d(r, s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} \text{dist}(x_{ri}, x_{sj})$$

• **Centroid linkage** uses the Euclidean distance between the centroids of the two clusters.

$$d(r, s) = \|\bar{x}_r - \bar{x}_s\|_2,$$

where

$$\bar{x}_r = \frac{1}{n_r} \sum_{i=1}^{n_r} x_{ri}$$

• **Median linkage** uses the Euclidean distance between weighted centroids of the two clusters.

$$d(r, s) = \|\tilde{x}_r - \tilde{x}_s\|_2,$$

where \tilde{x}_r and \tilde{x}_s are weighted centroids for the clusters r and s. If cluster r was created by combining clusters p and q, \tilde{x}_r is defined recursively as
\[
\bar{x}_r = \frac{1}{2} (\bar{x}_p + \bar{x}_q)
\]

- **Ward's linkage** uses the incremental sum of squares, that is, the increase in the total within-cluster sum of squares as a result of joining two clusters. The within-cluster sum of squares is defined as the sum of the squares of the distances between all objects in the cluster and the centroid of the cluster. The sum of squares metric is equivalent to the following distance metric \(d(r,s) \), which is the formula linkage uses.

\[
d(r,s) = \sqrt{\frac{2n_r n_s}{(n_r + n_s)} \| \bar{x}_r - \bar{x}_s \|_2},
\]

where

- \(\| \|_2 \) is the Euclidean distance.
- \(\bar{x}_r \) and \(\bar{x}_s \) are the centroids of clusters \(r \) and \(s \).
- \(n_r \) and \(n_s \) are the number of elements in clusters \(r \) and \(s \).

In some references, Ward's linkage does not use the factor of 2 multiplying \(n_r n_s \). The linkage function uses this factor so that the distance between two singleton clusters is the same as the Euclidean distance.

- **Weighted average linkage** uses a recursive definition for the distance between two clusters. If cluster \(r \) was created by combining clusters \(p \) and \(q \), the distance between \(r \) and another cluster \(s \) is defined as the average of the distance between \(p \) and \(s \) and the distance between \(q \) and \(s \).

\[
d(r,s) = \frac{(d(p,s) + d(q,s))}{2}
\]

Tips

- Computing linkage(y) can be slow when y is a vector representation of the distance matrix. For the 'centroid', 'median', and 'ward' methods, linkage checks whether y is a Euclidean distance. Avoid this time-consuming check by passing in X instead of y.
• The 'centroid' and 'median' methods can produce a cluster tree that is not monotonic. This result occurs when the distance from the union of two clusters, \(r \) and \(s \), to a third cluster is less than the distance between \(r \) and \(s \). In this case, in a dendrogram drawn with the default orientation, the path from a leaf to the root node takes some downward steps. To avoid this result, use another method. This figure shows a nonmonotonic cluster tree.

![Dendrogram](image)

In this case, cluster 1 and cluster 3 are joined into a new cluster, and the distance between this new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3. The result is a nonmonotonic tree.

• You can provide the output \(Z \) to other functions including \texttt{dendrogram} to display the tree, \texttt{cluster} to assign points to clusters, \texttt{inconsistent} to compute inconsistent measures, and \texttt{cophenet} to compute the cophenetic correlation coefficient.

\section*{See Also}
\texttt{cluster} | \texttt{clusterdata} | \texttt{cophenet} | \texttt{dendrogram} | \texttt{inconsistent} | \texttt{kmeans} | \texttt{pdist} | \texttt{silhouette} | \texttt{squareform}

\section*{Topics}
“Hierarchical Clustering” on page 16-4

\texttt{Introduced before R2006a}
loadCompactModel

Reconstruct model object from saved model for code generation

To generate C/C++ code for the object functions (predict, random, knnsearch, or rangesearch) of machine learning models, use saveCompactModel, loadCompactModel, and codegen. After training a machine learning model, save the model by using saveCompactModel. Define an entry-point function that loads the model by using loadCompactModel and calls an object function. Then use codegen or the MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow for the object functions of machine learning models. Use loadCompactModel for the highlighted step.

Syntax

Mdl = loadCompactModel(filename)

Description

Mdl = loadCompactModel(filename) reconstructs a classification model, regression model, or nearest neighbor searcher (Mdl) from the saved model stored in the MATLAB formatted binary file (MAT-file) named filename. You must create the filename file using saveCompactModel.

Examples
Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using `saveCompactModel`. Define an entry-point function that loads the model by using `loadCompactModel` and calls the `predict` function of the trained model. Then use `codegen` to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning models at the command line. For more details, see “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10. You can also generate code using the MATLAB Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20 for details. To learn about the code generation for finding nearest neighbors using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on page 31-15.

Train Model

Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for two classes only.

```matlab
load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);
```

Train a support vector machine (SVM) classification model using the processed data set.

```matlab
Mdl = fitcsvm(X,Y);
```

`Mdl` is a `ClassificationSVM` model.

Save Model

Save the SVM classification model to the file `SVMIris.mat` by using `saveCompactModel`.

```matlab
saveCompactModel(Mdl,'SVMIris');
```

Define Entry-Point Function

Define an entry-point function named `classifyIrises` that does the following:

- Accept iris flower measurements with columns corresponding to `meas`, and return predicted labels.
• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

```
type classifyIrises.m

function label = classifyIrises(X) %#codegen
%CLASSIFYIRISES Classify iris species using SVM Model
% CLASSIFYIRISES classifies the iris flower measurements in X using the
% compact SVM model in the file SVMIris.mat, and then returns class
% labels in label.
CompactMdl = loadCompactModel('SVMIris');
label = predict(CompactMdl,X);
end
```

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during code generation.

Note: If you click the button located in the upper-right section of this example and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function file.

Generate Code

Generate code for the entry-point function using codegen. Because C and C++ are statically typed languages, you must determine the properties of all variables in the entry-point function at compile time. Pass X as the value of the -args option to specify that the generated code must accept an input that has the same data type and array size as the training data X. If the number of observations is unknown at compile time, you can also specify the input as variable-size by using coder.typeof. For details, see “Specify Variable-Size Arguments for Code Generation” on page 31-57 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

```
codegen classifyIrises -args {X}
```

codegen generates the MEX function classifyIrises_mex with a platform-dependent extension.

Verify Generated Code

Compare the labels classified using predict, classifyIrises, and classifyIrises_mex.
label1 = predict(Mdl,X);
label2 = classifyIrises(X);
label3 = classifyIrises_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
1

isequal returns logical 1 (true), which means all the inputs are equal. The labels
classified all three ways are the same.

Input Arguments

filename — Name of MAT-file containing structure array representing a model object
character vector | string scalar

Name of MAT-file containing the structure array representing a model object, specified as
a character vector. You must create the filename file using saveCompactModel.

loadCompactModel reconstructs the model stored in the filename file at compile time.
For supported models, see the Mdl input argument of saveCompactModel.

The extension of the filename file must be .mat. If filename has no extension, then
loadCompactModel appends .mat.

If filename does not include a full path, then loadCompactModel loads the file from
the current folder.

Example: 'Mdl'

Data Types: char | string

Output Arguments

Mdl — Machine learning model
model object

Machine learning model, returned as one of the model objects in these tables.
Compact classification model object

<table>
<thead>
<tr>
<th>Model Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassificationKNN</td>
<td>A ClassificationKNN model object is a full object that does not have a corresponding compact object. saveCompactModel saves a compact version that does not include cross-validation parameters and hyperparameters. loadCompactModel returns the compact version saved using saveCompactModel.</td>
</tr>
<tr>
<td>ClassificationLinear</td>
<td>This model object is a full object that does not have a corresponding compact object. saveCompactModel saves the model as it is, and loadCompactModel returns the saved model.</td>
</tr>
<tr>
<td>CompactClassificationDiscriminant</td>
<td></td>
</tr>
<tr>
<td>CompactClassificationECOC</td>
<td></td>
</tr>
<tr>
<td>CompactClassificationEnsemble</td>
<td></td>
</tr>
<tr>
<td>CompactClassificationSVM</td>
<td>If you use saveCompactModel to save an SVM model that is equipped to predict posterior probabilities, and use loadCompactModel to load the model, then loadCompactModel cannot restore the ScoreTransform property into the MATLAB Workspace. However, loadCompactModel can load the model, including the ScoreTransform property, at compile time for code generation, within an entry-point function.</td>
</tr>
<tr>
<td>CompactClassificationTree</td>
<td></td>
</tr>
</tbody>
</table>
- **Compact regression model object**

<table>
<thead>
<tr>
<th>Model Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactGeneralizedLinearModel</td>
<td></td>
</tr>
<tr>
<td>CompactLinearModel</td>
<td>If you train a linear model by using <code>fitlm</code> and specifying <code>'RobustOpts'</code> as a structure with an anonymous function handle for the <code>RobustWgtFun</code> field, use <code>saveCompactModel</code> to save the model, and use <code>loadCompactModel</code> to load the model, then <code>loadCompactModel</code> cannot restore the Robust property into the MATLAB Workspace. However, <code>loadCompactModel</code> can load the model at compile time for code generation within an entry-point function.</td>
</tr>
<tr>
<td>CompactRegressionEnsemble</td>
<td></td>
</tr>
<tr>
<td>CompactRegressionGP</td>
<td></td>
</tr>
<tr>
<td>CompactRegressionSVM</td>
<td></td>
</tr>
<tr>
<td>CompactRegressionTree</td>
<td></td>
</tr>
<tr>
<td>RegressionLinear</td>
<td>This model object is a full object that does not have a corresponding compact object. <code>saveCompactModel</code> saves the model as it is, and <code>loadCompactModel</code> returns the saved model.</td>
</tr>
</tbody>
</table>

- **Nearest neighbor searcher object**

<table>
<thead>
<tr>
<th>Model Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExhaustiveSearcher</td>
<td>This model object is a full object that does not have a corresponding compact object. <code>saveCompactModel</code> saves the model as it is, and <code>loadCompactModel</code> returns the saved model.</td>
</tr>
<tr>
<td>KDTreeSearcher</td>
<td>This model object is a full object that does not have a corresponding compact object. <code>saveCompactModel</code> saves the model as it is, and <code>loadCompactModel</code> returns the saved model.</td>
</tr>
</tbody>
</table>
Mdl must be a compile-time constant. You cannot change it after you load it using loadCompactModel.

Alternative Functionality

- Use a coder configurer created by learnerCoderConfigurer for SVM models to generate C/C++ code. After training an SVM model, create a coder configurer of the model. Use the object functions and properties of the configurer to configure code generation options and to generate code for the predict and update functions of the model. If you generate code using a coder configurer, you can update model parameters in the generated code without having to regenerate the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
codegen | saveCompactModel

Topics
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
“Code Generation for Nearest Neighbor Searcher” on page 31-15
“Specify Variable-Size Arguments for Code Generation” on page 31-57
“Code Generation Support, Usage Notes, and Limitations” on page 31-49
Introduced in R2016b
logncdf

Lognormal cumulative distribution function

Syntax

\[p = \text{logncdf}(x, \mu, \sigma) \]
\[[p, plo, pup] = \text{logncdf}(x, \mu, \sigma, \text{pcov}, \alpha) \]
\[[p, plo, pup] = \text{logncdf}(___, 'upper') \]

Description

\[p = \text{logncdf}(x, \mu, \sigma) \] returns values at \(x \) of the lognormal cdf with distribution parameters \(\mu \) and \(\sigma \). \(\mu \) and \(\sigma \) are the mean and standard deviation, respectively, of the associated normal distribution. \(x, \mu, \) and \(\sigma \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \(x, \mu, \) or \(\sigma \) is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(\sigma \) must be positive.

\[[p, plo, pup] = \text{logncdf}(x, \mu, \sigma, \text{pcov}, \alpha) \] returns confidence bounds for \(p \) when the input parameters \(\mu \) and \(\sigma \) are estimates. \(\text{pcov} \) is the covariance matrix of the estimated parameters. \(\alpha \) specifies \(100(1 - \alpha)\% \) confidence bounds. The default value of \(\alpha \) is 0.05. \(plo \) and \(pup \) are arrays of the same size as \(p \) containing the lower and upper confidence bounds.

\[[p, plo, pup] = \text{logncdf}(___, 'upper') \] returns the complement of the lognormal cdf at each value in \(x \), using an algorithm that more accurately computes the extreme upper tail probabilities. You can use 'upper' with any of the previous syntaxes.

\text{logncdf} \text{ computes confidence bounds for } p \text{ using a normal approximation to the distribution of the estimate}

\[\frac{x - \hat{\mu}}{\hat{\sigma}} \]

and then transforming those bounds to the scale of the output \(p \). The computed bounds give approximately the desired confidence level when you estimate \(\mu, \sigma, \) and \(\text{pcov} \).
from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal cdf is

\[
p = F(x | \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^x e^{-\frac{(\ln(t)-\mu)^2}{2\sigma^2}} dt
\]

Examples

Compute the Lognormal Distribution cdf

Compute the cdf of a lognormal distribution with \(\mu = 0 \) and \(\sigma = 1 \).

\[
x = (0:0.2:10);
y = logncdf(x,0,1);
\]

Plot the cdf.

\[
plot(x,y);
grid;
xlabel('x');
ylabel('p');
\]
Algorithms

The function logncdf uses the inverse complementary error function erfc. The relationship between normcdf and erfc is

\[
\logncdf(x, 0, 1) = \frac{1}{2} \text{erfc} \left(-\frac{\log(x)}{\sqrt{2}} \right).
\]

The complementary error function \(\text{erfc}(x)\) is defined as
erfc(x) = 1 - erf(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} \, dt.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | lognfit | logninv | lognlike | lognpdf | lognrnd | lognstat

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
lognfit

Lognormal parameter estimates

Syntax

parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data,alpha)
[...,] = lognfit(data,alpha,censoring)
[...,] = lognfit(data,alpha,censoring,freq)
[...,] = lognfit(data,alpha,censoring,freq,options)

Description

parmhat = lognfit(data) returns a vector of maximum likelihood estimates
parmhat(1) = mu and parmhat(2) = sigma of parameters for a lognormal
distribution fitting data. mu and sigma are the mean and standard deviation,
respectively, of the associated normal distribution.

[parmhat,parmci] = lognfit(data) returns 95% confidence intervals for the
parameter estimates mu and sigma in the 2-by-2 matrix parmci. The first column of the
matrix contains the lower and upper confidence bounds for parameter mu, and the second
column contains the confidence bounds for parameter sigma.

[parmhat,parmci] = lognfit(data,alpha) returns 100(1 - alpha) % confidence
intervals for the parameter estimates, where alpha is a value in the range (0 1)
specifying the width of the confidence intervals. By default, alpha is 0.05, which
corresponds to 95% confidence intervals.

[...] = lognfit(data,alpha,censoring) accepts a Boolean vector censoring, of
the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = lognfit(data,alpha,censoring,freq) accepts a frequency vector, freq,
of the same size as data. Typically, freq contains integer frequencies for the
corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.

[..., alpha, censoring, freq, options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates when there is censoring. The lognormal fit function accepts an options structure which can be created using the function statset. Enter statset('lognfit') to see the names and default values of the parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.

Note With no censoring, lognfit computes sigma using the square root of the unbiased estimator of the variance. With censoring, sigma is the maximum likelihood estimate.

Examples

This example generates 100 independent samples of lognormally distributed data with \(\mu = 0 \) and \(\sigma = 3 \). parmhat estimates \(\mu \) and \(\sigma \) and parmci gives 99% confidence intervals around parmhat. Notice that parmci contains the true values of \(\mu \) and \(\sigma \).

```matlab
data = lognrnd(0,3,100,1);
[parmhat,parmci] = lognfit(data,0.01)
parmhat =
   -0.2480   2.8902
parmci =
   -1.0071   2.4393
   0.5111   3.5262
```

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
logncdf | logninv | lognlike | lognpdf | lognrnd | lognstat | mle

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
logninv

Lognormal inverse cumulative distribution function

Syntax

\[X = \text{logninv}(P, \mu, \sigma) \]

\[[X, XLO, XUP] = \text{logninv}(P, \mu, \sigma, \text{pcov}, \alpha)\]

Description

\[X = \text{logninv}(P, \mu, \sigma) \] returns values at \(P \) of the inverse lognormal cdf with distribution parameters \(\mu \) and \(\sigma \). \(\mu \) and \(\sigma \) are the mean and standard deviation, respectively, of the associated normal distribution. \(\mu \) and \(\sigma \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(X \). A scalar input for \(P, \mu, \) or \(\sigma \) is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(\sigma \) must be positive.

\[[X, XLO, XUP] = \text{logninv}(P, \mu, \sigma, \text{pcov}, \alpha)\] returns confidence bounds for \(X \) when the input parameters \(\mu \) and \(\sigma \) are estimates. \(\text{pcov} \) is the covariance matrix of the estimated parameters. \(\alpha \) specifies 100(1 - \(\alpha \))% confidence bounds. The default value of \(\alpha \) is 0.05. \(XLO \) and \(XUP \) are arrays of the same size as \(X \) containing the lower and upper confidence bounds.

\text{logninv} \text{ computes confidence bounds for } \text{P using a normal approximation to the distribution of the estimate} \]

\[\hat{\mu} + \hat{\sigma} q \]

where \(q \) is the \(P \)th quantile from a normal distribution with mean 0 and standard deviation 1. The computed bounds give approximately the desired confidence level when you estimate \(\mu, \sigma, \) and \(\text{pcov} \) from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as
where

\[p = F(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \int_{0}^{x} e^\frac{-\ln(t)-\mu^2}{2\sigma^2} dt \]

Examples

Compute the Lognormal Distribution Inverse cdf

Compute the inverse cdf of a lognormal distribution with \(\mu = 0 \) and \(\sigma = 0.5 \).

```matlab
p = (0.005:0.01:0.995);
crit = logninv(p,1,0.5);
```

Plot the inverse cdf.

```matlab
figure;
plot(p,crit)
xlabel('Probability');
ylabel('Critical Value');
grid
```
Algorithms

The function `logninv` uses the inverse complementary error function `erfcinv`. The relationship between `norminv` and `erfcinv` is

\[\text{logninv}(p, 0, 1) = \exp\left(-\sqrt{2}\text{erfcinv}(2p)\right). \]

The inverse complementary error function `erfcinv(x)` is defined as `erfcinv(erfc(x)) = x`, and the complementary error function `erfc(x)` is defined as...
erfc(x) = 1 - erf(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

icdf | logncdf | lognfit | lognlike | lognpdf | lognrnd | lognstat

Topics

“Lognormal Distribution” on page B-95

Introduced before R2006a
lognlike

Lognormal negative log-likelihood

Syntax

\[\text{nlogL} = \text{lognlike}(\text{params},\text{data}) \]
\[[\text{nlogL},\text{avar}] = \text{lognlike}(\text{params},\text{data}) \]
\[[...]. = \text{lognlike}(\text{params},\text{data},\text{censoring}) \]
\[[...]. = \text{lognlike}(\text{params},\text{data},\text{censoring},\text{freq}) \]

Description

\[\text{nlogL} = \text{lognlike}(\text{params},\text{data}) \] returns the negative log-likelihood of \text{data} for the lognormal distribution with parameters \text{params}. \text{params}(1) is the mean of the associated normal distribution, \text{mu}, and \text{params}(2) is the standard deviation of the associated normal distribution, \text{sigma}. The values of \text{mu} and \text{sigma} are scalars, and the output \text{nlogL} is a scalar. \text{params}(2) must be positive.

\[[\text{nlogL},\text{avar}] = \text{lognlike}(\text{params},\text{data}) \] returns the inverse of Fisher's information matrix. If the input parameter value in \text{params} is the maximum likelihood estimate, \text{avar} is its asymptotic variance. \text{avar} is based on the observed Fisher's information, not the expected information.

\[[...]. = \text{lognlike}(\text{params},\text{data},\text{censoring}) \] accepts a Boolean vector, \text{censoring}, of the same size as \text{data}, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

\[[...]. = \text{lognlike}(\text{params},\text{data},\text{censoring},\text{freq}) \] accepts a frequency vector, \text{freq}, of the same size as \text{data}. The vector \text{freq} typically contains integer frequencies for the corresponding elements in \text{data}, but can contain any nonnegative values. Pass in [] for \text{censoring} to use its default value.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
logncdf | lognfit | logninv | lognpdf | lognrnd | lognstat

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
lognpdf

Lognormal probability density function

Syntax

Y = lognpdf(X,mu,sigma)

Description

Y = lognpdf(X,mu,sigma) returns values at X of the lognormal pdf with distribution parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. X, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y. A scalar input for X, mu, or sigma is expanded to a constant array with the same dimensions as the other inputs. The parameters in sigma must be positive.

The lognormal pdf is

\[y = f(x \mid \mu, \sigma) = \frac{1}{x \sigma \sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} \]

The normal and lognormal distributions are closely related. If X is distributed lognormally with parameters \(\mu \) and \(\sigma \), then \(\log(X) \) is distributed normally with mean \(\mu \) and standard deviation \(\sigma \).

The mean \(m \) and variance \(v \) of a lognormal random variable are functions of \(\mu \) and \(\sigma \) that can be calculated with the lognstat function. They are:

\[m = \exp\left(\mu + \frac{\sigma^2}{2}\right) \]

\[v = \exp\left(2\mu + \sigma^2\right)\left(\exp\left(\sigma^2\right) - 1\right) \]

So, a lognormal distribution with mean \(m \) and variance \(v \) has parameters
\[
\mu = \log \left(\frac{m^2}{\sqrt{v + m^2}} \right) \\
\sigma = \sqrt{\log \left(\frac{v}{m^2 + 1} \right)}
\]

If you do not know the population mean and variance, \(m \) and \(v \), for the lognormal distribution, you can estimate \(\mu \) and \(\sigma \) in the following way:

\[
\text{mu} = \text{mean} (\log (X)) \\
\text{sigma} = \text{std} (\log (X))
\]

The lognormal distribution is applicable when the quantity of interest must be positive, since \(\log (X) \) exists only when \(X \) is positive.

Examples

Compute the Lognormal Distribution pdf

Compute the pdf of a lognormal distribution with \(\mu = 0 \) and \(\sigma = 1 \).

\[
x = (0:0.02:10); \\
y = \text{lognpdf} (x, 0, 1);
\]

Plot the pdf.

\[
\text{plot} (x, y); \, \text{grid}; \\
\text{xlabel} ('x'); \, \text{ylabel} ('p')
\]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
logncdf | lognfit | logninv | lognlike | lognrnd | lognstat | pdf

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
lognrnd

Lognormal random numbers

Syntax

\[R = \text{lognrnd}(\mu, \sigma) \]

\[R = \text{lognrnd}(\mu, \sigma, m, n, \ldots) \]

\[R = \text{lognrnd}(\mu, \sigma, [m, n, \ldots]) \]

Description

\[R = \text{lognrnd}(\mu, \sigma) \] returns an array of random numbers generated from the lognormal distribution with parameters \(\mu \) and \(\sigma \). \(\mu \) and \(\sigma \) are the mean and standard deviation, respectively, of the associated normal distribution. \(\mu \) and \(\sigma \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(R \). A scalar input for \(\mu \) or \(\sigma \) is expanded to a constant array with the same dimensions as the other input. The parameters in \(\sigma \) must be nonnegative. If \(\sigma \) is zero, then \(R \) is always equal to \(\exp(\mu) \).

\[R = \text{lognrnd}(\mu, \sigma, m, n, \ldots) \] or \[R = \text{lognrnd}(\mu, \sigma, [m, n, \ldots]) \]

generates an \(m \)-by-\(n \)-by-\(\ldots \) array. The \(\mu, \sigma \) parameters can each be scalars or arrays of the same size as \(R \).

The normal and lognormal distributions are closely related. If \(X \) is distributed lognormally with parameters \(\mu \) and \(\sigma \), then \(\log(X) \) is distributed normally with mean \(\mu \) and standard deviation \(\sigma \).

The mean \(m \) and variance \(v \) of a lognormal random variable are functions of \(\mu \) and \(\sigma \) that can be calculated with the lognstat function. They are:

\[
m = \exp\left(\mu + \frac{\sigma^2}{2}\right)
\]

\[
v = \exp\left(2\mu + \sigma^2\right)\left(\exp\left(\sigma^2\right)-1\right)
\]

A lognormal distribution with mean \(m \) and variance \(v \) has parameters
\[\mu = \log \left(\frac{m^2}{\sqrt{v + m^2}} \right) \]
\[\sigma = \sqrt{\log \left(\frac{v}{m^2 + 1} \right)} \]

Examples

Generate one million lognormally distributed random numbers with mean 1 and variance 2:

\[m = 1; \]
\[v = 2; \]
\[\mu = \log \left(\frac{m^2}{\sqrt{v + m^2}} \right); \]
\[\sigma = \sqrt{\log \left(\frac{v}{m^2 + 1} \right)}; \]

\[[M,V]= \text{lognstat}(\mu,\sigma) \]
\[M = 1 \]
\[V = 2.0000 \]

\[X = \text{lognrnd}(\mu,\sigma,1,1e6); \]
\[MX = \text{mean}(X) \]
\[MX = 0.9974 \]
\[VX = \text{var}(X) \]
\[VX = 1.9776 \]

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
logncdf | lognfit | logninv | lognlike | lognpdf | lognstat | normrnd | random

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
lognstat

Lognormal mean and variance

Syntax

\[[M,V] = \text{lognstat}(\mu,\sigma)\]

Description

\[[M,V] = \text{lognstat}(\mu,\sigma)\] returns the mean of and variance of the lognormal distribution with parameters \(\mu\) and \(\sigma\). \(\mu\) and \(\sigma\) are the mean and standard deviation, respectively, of the associated normal distribution. \(\mu\) and \(\sigma\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(\mu\) or \(\sigma\) is expanded to a constant array with the same dimensions as the other input. The parameters in \(\sigma\) must be positive.

The normal and lognormal distributions are closely related. If \(X\) is distributed lognormally with parameters \(\mu\) and \(\sigma\), then \(\log(X)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\).

The mean \(m\) and variance \(v\) of a lognormal random variable are functions of \(\mu\) and \(\sigma\) that can be calculated with the `lognstat` function. They are:

\[
m = \exp\left(\mu + \sigma^2 / 2\right)
\]

\[
v = \exp\left(2\mu + \sigma^2\right)\left(\exp\left(\sigma^2\right) - 1\right)
\]

A lognormal distribution with mean \(m\) and variance \(v\) has parameters

\[
\mu = \log\left(\frac{m^2}{\sqrt{v + m^2}}\right)
\]

\[
\sigma = \sqrt{\log\left(\frac{v}{m^2 + 1}\right)}
\]
Examples

Generate one million lognormally distributed random numbers with mean 1 and variance 2:

```matlab
m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));

[M,V]= lognstat(mu,sigma)
M =
    1
V =
    2.0000
X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)
MX =
    0.9974
VX = var(X)
VX =
    1.9776
```

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
logncdf | lognfit | logninv | lognlike | lognpdf | lognrnd

Topics
“Lognormal Distribution” on page B-95

Introduced before R2006a
logP

Log unconditional probability density for discriminant analysis classifier

Syntax

\[lp = \text{logP}(obj,Xnew) \]

Description

\[lp = \text{logP}(obj,Xnew) \] returns the log of the unconditional probability density of each row of \(Xnew \), computed using the discriminant analysis model \(obj \).

Input Arguments

- **obj**
 Discriminant analysis classifier, produced using \(\text{fitcdiscr} \).

- **Xnew**
 Matrix where each row represents an observation, and each column represents a predictor. The number of columns in \(Xnew \) must equal the number of predictors in \(obj \).

Output Arguments

- **lp**
 Column vector with the same number of rows as \(Xnew \). Each entry is the logarithm of the unconditional probability density of the corresponding row of \(Xnew \).

Examples
Compute Log Unconditional Probability Density of an Observation

Construct a discriminant analysis classifier for Fisher's iris data, and examine its prediction for an average measurement.

Load Fisher's iris data and construct a default discriminant analysis classifier.

\[\text{load } \text{fisheriris} \]
\[\text{Mdl} = \text{fitcdiscr(meas,species)}; \]

Find the log probability of the discriminant model applied to an average iris.

\[\text{logPAverage} = \logP(Mdl,\text{mean(meas)}) \]
\[\text{logPAverage} = -1.7254 \]

Definitions

Unconditional Probability Density

The unconditional probability density of a point \(x \) of a discriminant analysis model is

\[P(x) = \sum_{k=1}^{K} P(x, k), \]

where \(P(x, k) \) is the conditional density of the model at \(x \) for class \(k \), when the total number of classes is \(K \).

The conditional density \(P(x, k) \) is

\[P(x, k) = \frac{P(k)P(x|k)}{P(x)}, \]

where \(P(k) \) is the prior probability of class \(k \), and \(P(x|k) \) is the conditional density of \(x \) given class \(k \). The conditional density function of the multivariate normal with mean \(\mu_k \) and covariance \(\Sigma_k \) at a point \(x \) is

\[P(x | k) = \frac{1}{(2\pi|\Sigma_k|)^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right), \]
where $|\Sigma_k|$ is the determinant of Σ_k, and Σ_k^{-1} is the inverse matrix.

See Also
CompactClassificationDiscriminant | fitdiscr | mahal

Topics
“Discriminant Analysis Classification” on page 20-2
logP

Log unconditional probability density for naive Bayes classifier

Syntax

lp = logP(Mdl,tbl)
lp = logP(Mdl,X)

Description

lp = logP(Mdl,tbl) returns the log unconditional probability density on page 32-3684 of the observations (rows) in tbl using the naive Bayes model Mdl.

You can use lp to identify outliers in the training data.

lp = logP(Mdl,X) returns the log unconditional probability density on page 32-3684 of the observations (rows) in X using the naive Bayes model Mdl.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or CompactClassificationNaiveBayes model returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain additional columns for the response variable and observation weights. tbl must contain all the predictors used to train Mdl. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.
If you trained \texttt{Mdl} using sample data contained in a \texttt{table}, then the input data for this method must also be in a table.

Data Types: \texttt{table}

\textbf{\textit{X — Predictor data}}

\texttt{numeric matrix}

Predictor data, specified as a numeric matrix.

Each row of \textit{X} corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables making up the columns of \textit{X} must be the same as the variables that trained \texttt{Mdl}.

Data Types: \texttt{double | single}

\section*{Output Arguments}

\textbf{\textit{lp — Log of unconditional probability density}}

\texttt{numeric column vector}

Log of the unconditional probability density of the predictors, returned as a numeric column vector. \textit{lp} has as many elements as rows in \textit{X}, and each element is the log probability density of the corresponding row in \textit{X}.

If any rows in \textit{X} contain at least one \texttt{NaN}, then the corresponding element of \textit{lp} is \texttt{NaN}.

\section*{Examples}

\subsection*{Compute Unconditional Probability Densities of Observations}

Load Fisher's iris data set.

\begin{verbatim}
load fisheriris
X = meas; \% Predictors
Y = species; \% Response
\end{verbatim}

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally normally distributed given its label.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Compute the unconditional probability densities of the in-sample observations.

lp = logP(Mdl,X);
histogram(lp)
xlabel 'Log-unconditional probability'
ylabel 'Frequency'
title 'Histogram: Log-Unconditional Probability'

Identify indices of observations having log-unconditional probability less than -7.

idx = find(lp < -7)
Definitions

Unconditional Probability Density

The unconditional probability density of the predictors is its distribution marginalized over the classes.

In other words, the unconditional probability density is

\[
P(X_1, \ldots, X_P) = \sum_{k=1}^{K} P(X_1, \ldots, X_P, Y = k) = \sum_{k=1}^{K} P(X_1, \ldots, X_P | y = k)\pi(Y = k),
\]

where \(\pi(Y = k)\) is the class prior probability. The conditional distribution of the data given the class \((P(X_1, \ldots, X_P | y = k))\) and the class prior probability distributions are training options (i.e., are specified when training the classifier).

Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

See Also

ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | predict

Topics

“Naive Bayes Classification” on page 21-2
loss

Loss of k-nearest neighbor classifier

Syntax

$L = \text{loss}(\text{mdl}, \text{tbl}, \text{ResponseVarName})$
$L = \text{loss}(\text{mdl}, \text{tbl}, Y)$
$L = \text{loss}(\text{mdl}, X, Y)$
$L = \text{loss}(_, \text{Name}, \text{Value})$

Description

$L = \text{loss}(\text{mdl}, \text{tbl}, \text{ResponseVarName})$ returns a scalar representing how well mdl classifies the data in tbl when $\text{tbl}.\text{ResponseVarName}$ contains the true classifications. If tbl contains the response variable used to train mdl, then you do not need to specify ResponseVarName.

When computing the loss, the loss function normalizes the class probabilities in $\text{tbl}.\text{ResponseVarName}$ to the class probabilities used for training, which are stored in the Prior property of mdl.

The meaning of the classification loss (L) depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller classification loss values. For more details, see “Classification Loss” on page 32-3690.

$L = \text{loss}(\text{mdl}, \text{tbl}, Y)$ returns a scalar representing how well mdl classifies the data in tbl when Y contains the true classifications.

When computing the loss, the loss function normalizes the class probabilities in Y to the class probabilities used for training, which are stored in the Prior property of mdl.

$L = \text{loss}(\text{mdl}, X, Y)$ returns a scalar representing how well mdl classifies the data in X when Y contains the true classifications.

When computing the loss, the loss function normalizes the class probabilities in Y to the class probabilities used for training, which are stored in the Prior property of mdl.

32-3685
L = loss(___,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, you can specify the loss function and the classification weights.

Examples

Loss Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the Fisher iris data set.

load fisheriris

Create a classifier for five nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the loss of the classifier for a mean observation classified as 'versicolor'.

X = mean(meas);
Y = {'versicolor'};
L = loss(mdl,X,Y)
L = 0

All five nearest neighbors classify as 'versicolor'.

Input Arguments

mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl
can contain one additional column for the response variable. Multicolumn variables and
cell arrays other than cell arrays of character vectors are not allowed.

If `tbl` contains the response variable used to train `mdl`, then you do not need to specify
`ResponseVarName` or `Y`.

If you train `mdl` using sample data contained in a table, then the input data for `loss`
must also be in a table.

Data Types: `table`

ResponseVarName — Response variable name

name of a variable in `tbl`

Response variable name, specified as the name of a variable in `tbl`. If `tbl` contains the
response variable used to train `mdl`, then you do not need to specify `ResponseVarName`.

You must specify `ResponseVarName` as a character vector or string scalar. For example,
if the response variable is stored as `tbl.response`, then specify it as `'response'`.
Otherwise, the software treats all columns of `tbl`, including `tbl.response`, as
predictors.

The response variable must be a categorical, character, or string array, logical or numeric
vector, or cell array of character vectors. If the response variable is a character array,
then each element must correspond to one row of the array.

Data Types: `char` | `string`

X — Predictor data

numeric matrix

Predictor data, specified as a numeric matrix. Each row of `X` represents one observation,
and each column represents one variable.

Data Types: `single` | `double`

Y — Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric
vector, or cell array of character vectors. Each row of `Y` represents the classification of
the corresponding row of `X`. 32-3687
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:
loss(mdl,tbl,'response','LossFun','exponential','Weights','w') returns the weighted exponential loss of mdl classifying the data in tbl. Here, tbl.response is the response variable, and tbl.w is the weight variable.

LossFun — Loss function

'mincost' (default) | 'binodeviance' | 'classiferror' | 'exponential' | 'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss function name or a function handle.

- The following table lists the available loss functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. By default, k-nearest neighbor models return posterior probabilities as classification scores (see predict).
• You can specify a function handle for a custom loss function using @ (for example, @lossfun). Let \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel}(ext{mdl.ClassNames}) \)). Your custom loss function must have this form:

\[
\text{function lossvalue} = \text{lossfun}(C,S,W,Cost)
\]

- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in \(\text{mdl.ClassNames} \). Construct \(C \) by setting \(C(p,q) = 1 \), if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.
- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(\text{mdl.ClassNames} \). The argument \(S \) is a matrix of classification scores, similar to the output of \text{predict}.
- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes the weights to sum to 1.
- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification and 1 for misclassification.
- The output argument \(\text{lossvalue} \) is a scalar.

For more details on loss functions, see “Classification Loss” on page 32-3690.

Data Types: char | string | function_handle

Weights — Observation weights

\(\text{ones(size}(X,1),1) \) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in tbl.

If you specify \text{Weights} as a numeric vector, then the size of \text{Weights} must be equal to the number of rows in \(X \) or tbl.

If you specify \text{Weights} as the name of a variable in tbl, the name must be a character vector or string scalar. For example, if the weights are stored as tbl.w, then specify \text{Weights} as 'w'. Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

\text{loss} normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply \text{Weights}, \text{loss} computes the weighted classification loss.
Example: 'Weights','w'
Data Types: single | double | char | string

Algorithms

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- L is the weighted average classification loss.
- n is the sample size.
- For binary classification:
 - y_j is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - $f(X_j)$ is the raw classification score for observation (row) j of the predictor data X.
 - $m_j = y_j f(X_j)$ is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, $K \geq 3$):
 - y_j^* is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class y_j. For example, if the true class of the second observation is the third class and $K = 4$, then $y_2^* = [0 0 1 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
 - $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 - $m_j = y_j^* f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.
The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>(L = \sum_{j=1}^{n} w_j \log{1 + \exp[-2m_j]}).</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>(L = \sum_{j=1}^{n} w_j \exp(-m_j)).</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>(L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where (\hat{y}_j) is the class label corresponding to the class with the maximal posterior probability. (I{x}) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>(L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}).</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>(L = \sum_{j=1}^{n} w_j \log\left(1 + \exp(-m_j)\right)).</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,...,n$.</td>
</tr>
</tbody>
</table>
| | | **1** Estimate the 1-by-K vector of expected classification costs for observation j:
| | | $\gamma_j = f(X_j)C$. |
| | | $f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the input model stores in the `Cost` property. |
| | | **2** For observation j, predict the class label corresponding to the minimum expected classification cost:
| | | $\hat{y}_j = \min_{j=1,...,K} (\gamma_j)$.
| Quadratic loss | 'quadratic' | **3** Using C, identify the cost incurred (c_j) for making the prediction. |
| | | The weighted, average, minimum cost loss is $L = \sum_{j=1}^{n} w_j c_j$. |
| | | $L = \sum_{j=1}^{n} w_j (1 - m_j)^2$. |

This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through $[0,1]$.

32-3692
True Misclassification Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument when you run `fitcknn`. The value $\text{Cost}(i,j)$ is the cost of classifying an observation into class j if its true class is i. By default, $\text{Cost}(i,j) = 1$ if $i \neq j$, and $\text{Cost}(i,j) = 0$ if $i = j$. In other words, the cost is 0 for correct classification and 1 for incorrect classification.
Expected Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation. The third output of predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl, and you have K classes. You place the observations into a matrix Xnew with one observation per row. The command

[label, score, cost] = predict(mdl, Xnew)

returns a matrix cost of size Nobs-by-K, among other outputs. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the K classes. cost(n, j) is

$$
\sum_{i=1}^{K} \hat{P}(i \mid Xnew(n))C(j \mid i),
$$

where

- K is the number of classes.
- \(\hat{P}(i \mid Xnew(n))\) is the posterior probability on page 32-4943 of class i for observation Xnew(n).
- \(C(j \mid i)\) is the true misclassification cost of classifying an observation as j when its true class is i.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
ClassificationKNN | edge | fitcknn | margin

Topics
“Examine Quality of KNN Classifier” on page 18-37
“Predict Classification Using KNN Classifier” on page 18-38
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
loss

Class: ClassificationLinear

Classification loss for linear classification models

Syntax

L = loss(Mdl,X,Y)
L = loss(___,'Name',Value)

Description

L = loss(Mdl,X,Y) returns the classification losses on page 32-3706 for the binary, linear classification model Mdl using predictor data in X and corresponding class labels in Y. L contains classification error rates for each regularization strength in Mdl.

L = loss(___,'Name',Value) uses any of the previous syntaxes and additional options specified by one or more Name,Value pair arguments. For example, you can specify that columns in the predictor data correspond to observations or specify the classification loss function.

Input Arguments

Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix
Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in computation time.

The length of Y and the number of observations in X must be equal.

Data Types: `single` | `double`

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- The data type of Y must be the same as the data type of `Mdl.ClassNames`. (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in Y must be a subset of `Mdl.ClassNames`.
- If Y is a character array, then each element must correspond to one row of the array.
- The length of Y and the number of observations in X must be equal.

Data Types: `categorical` | `char` | `string` | `logical` | `single` | `double` | `cell`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

LossFun — Loss function

'`classiferror`' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.
The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. For linear classification models, logistic regression learners return posterior probabilities as classification scores by default, but SVM learners do not (see `predict`).

Specify your own function by using function handle notation.

Let `n` be the number of observations in `X` and `K` be the number of distinct classes (numel(Mdl.ClassNames), where Mdl is the input model). Your function must have this signature:

```matlab
lossvalue = lossfun(C,S,W,Cost)
```

- The output argument `lossvalue` is a scalar.
- You choose the function name (`lossfun`).
- `C` is an `n`-by-`K` logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in Mdl.ClassNames.

Construct `C` by setting `C(p,q) = 1`, if observation `p` is in class `q`, for each row. Set all other elements of row `p` to 0.

- `S` is an `n`-by-`K` numeric matrix of classification scores. The column order corresponds to the class order in Mdl.ClassNames. `S` is a matrix of classification scores, similar to the output of `predict`.
• **W** is an n-by-1 numeric vector of observation weights. If you pass **W**, the software normalizes the weights to sum to 1.

• **Cost** is a K-by-K numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Example: 'LossFun',@lossfun

Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in optimization-execution time.

Weights — Observation weights

numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. If you supply weights, **loss** computes the weighted classification loss.

Let \(n \) be the number of observations in \(X \).

• \(\text{numel(Weights)} \) must be \(n \).
• By default, **Weights** is \(\text{ones}(n,1) \).

loss normalizes **Weights** to sum up to the value of the prior probability in the respective class.

Data Types: double | single
Output Arguments

L — Classification losses
numeric scalar | numeric row vector

Classification losses, returned as a numeric scalar or row vector. The interpretation of L depends on Weights and LossFun.

L is the same size as Mdl.Lambda. L(j) is the classification loss of the linear classification model trained using the regularization strength Mdl.Lambda(j).

Examples

Estimate Test-Sample Classification Loss

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

rng(1); % For reproducibility
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the training set.
Extract the training and test data from the partition definition.

\[
\text{trainIdx} = \text{training(CVMdl.Partition);}
\]

\[
\text{testIdx} = \text{test(CVMdl.Partition);}
\]

Estimate the training- and test-sample classification error.

\[
\text{ceTrain} = \text{loss(CMdl,}X(\text{trainIdx,}:),\text{Ystats(trainIdx))}
\]

\[
\text{ceTrain} = 1.3572e-04
\]

\[
\text{ceTest} = \text{loss(CMdl,}X(\text{testIdx,}:),\text{Ystats(testIdx))}
\]

\[
\text{ceTest} = 5.2804e-04
\]

Because there is one regularization strength in \text{CMdl}, \text{ceTrain} and \text{ceTest} are numeric scalars.

Specify Custom Classification Loss

Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Classification Loss” on page 32-3700, and transpose the predictor data.

\[
\text{load nlpdata}
\]

\[
\text{Ystats = Y == 'stats';}
\]

\[
\text{X = X'};
\]

Train a binary, linear classification model. Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA. Specify that the predictor observations correspond to columns.

\[
\text{rng(1); % For reproducibility}
\]

\[
\text{CVMdl} = \text{fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...}
\]

\[
\quad \text{'ObservationsIn','columns');}
\]

\[
\text{CMdl} = \text{CVMdl.Trained{1};}
\]

\text{CVMdl} is a \text{ClassificationPartitionedLinear} model. It contains the property \text{Trained}, which is a 1-by-1 cell array holding a \text{ClassificationLinear} model that the software trained using the training set.

Extract the training and test data from the partition definition.
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Create an anonymous function that measures linear loss, that is,

\[L = \frac{\sum_j -w_j y_j f_j}{\sum_j w_j} . \]

\(w_j \) is the weight for observation \(j \), \(y_j \) is response \(j \) (-1 for the negative class, and 1 otherwise), and \(f_j \) is the raw classification score of observation \(j \). Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the LossFun name-value pair argument.

\[
\text{linearloss} = @(C,S,W,Cost)\sum(-W.*\text{sum}(S.*C,2))/\text{sum}(W);
\]

Estimate the training- and test-sample classification loss using the linear loss function.

\[
\text{ceTrain} = \text{loss}(\text{CMdl},X(:,\text{trainIdx}),\text{Ystats(}\text{trainIdx}\text{)},'\text{LossFun}',\text{linearloss},...'\text{ObservationsIn}',['\text{columns}'])
\]

\(\text{ceTrain} = -7.8330 \)

\[
\text{ceTest} = \text{loss}(\text{CMdl},X(:,\text{testIdx}),\text{Ystats(}\text{testIdx}\text{)},'\text{LossFun}',\text{linearloss},...'\text{ObservationsIn}',['\text{columns}'])
\]

\(\text{ceTest} = -7.7383 \)

Find Good Lasso Penalty Using Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 32-3701.

\[
\text{load nlpdata}
\text{Ystats = Y == 'stats'};
\]
X = X';

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{-0.5}$.

Lambda = logspace(-6,-0.5,11);

Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
 'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
 'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = classreg.learning.partition.ClassificationPartitionedLinear
 CrossValidatedModel: 'Linear'
 ResponseName: 'Y'
 NumObservations: 31572
 KFold: 1
 Partition: [1x1 cvpartition]
 ClassNames: [0 1]
 ScoreTransform: 'none'

Properties, Methods

Extract the trained linear classification model.

Md1 = CVMdl.Trained{1}

Md1 =
 ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
Beta: [34023x11 double]
Bias: [1x11 double]
Lambda: [1x11 double]
Learner: 'logistic'

Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample classification error.

ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',... 'Learner','logistic','Solver','sparsa','Regularization','lasso',... 'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),... log10(Lambda),log10(numNZCoeff + 1));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
Choose the index of the regularization strength that balances predictor variable sparsity and low classification error. In this case, a value between 10^{-4} to 10^{-1} should suffice.

```
idxFinal = 7;
```

Select the model from `Mdl` with the chosen regularization strength.

```
MdlFinal = selectModels(Mdl,idxFinal);
```

`MdlFinal` is a `ClassificationLinear` model containing one regularization strength. To estimate labels for new observations, pass `MdlFinal` and the new data to `predict`.
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- \(L \) is the weighted average classification loss.
- \(n \) is the sample size.
- For binary classification:
 - \(y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - \(f(X_j) \) is the raw classification score for observation (row) \(j \) of the predictor data \(X \).
 - \(m_j = y_j f(X_j) \) is the classification score for classifying observation \(j \) into the class corresponding to \(y_j \). Positive values of \(m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \(m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \(K \geq 3 \)):
 - \(y_j^* \) is a vector of \(K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \(y_j \). For example, if the true class of the second observation is the third class and \(K = 4 \), then \(y_2^* = [0 0 1 0]' \). The order of the classes corresponds to the order in the ClassNames property of the input model.
 - \(f(X_j) \) is the length \(K \) vector of class scores for observation \(j \) of the predictor data \(X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 - \(m_j = y_j^* f(X_j) \). Therefore, \(m_j \) is the scalar classification score that the model predicts for the true, observed class.
 - The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,
\[\sum_{j=1}^{n} w_j = 1. \]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[L = \sum_{j=1}^{n} w_j \log{1 + \exp[-2m_j]}.]</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[L = \sum_{j=1}^{n} w_j \exp(-m_j).]</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where (\hat{y}_j) is the class label corresponding to the class with the maximal posterior probability. (I{x}) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}.]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[L = \sum_{j=1}^{n} w_j \log{1 + \exp(-m_j)}.]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.</td>
</tr>
</tbody>
</table>

1. Estimate the 1-by-K vector of expected classification costs for observation j:

$$
\gamma_j = f(X_j) C.
$$

$f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the input model stores in the `Cost` property.

2. For observation j, predict the class label corresponding to the minimum expected classification cost:

$$
\hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j).
$$

3. Using C, identify the cost incurred (c_j) for making the prediction.

The weighted, average, minimum cost loss is

$$
L = \sum_{j=1}^{n} w_j c_j.
$$

| Quadratic loss | 'quadratic' | $L = \sum_{j=1}^{n} w_j \left(1 - m_j\right)^2$. |

This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through $[0,1]$.

32-3708
Algorithms

By default, observation weights are prior class probabilities. If you supply weights using `Weights`, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the renormalized weights to estimate the weighted classification loss.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
ClassificationLinear | fitclinear | predict

Introduced in R2016a
loss

Classification error

Syntax

L = loss(obj,X,Y)
L = loss(obj,X,Y,Name,Value)

Description

L = loss(obj,X,Y) returns the classification loss on page 32-3714, which is a scalar representing how well obj classifies the data in X, when Y contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class probabilities used for training, stored in the Prior property of obj.

L = loss(obj,X,Y,Name,Value) returns the loss with additional options specified by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj.
Class labels, with the same data type as exists in obj. The number of elements of \(Y \) must equal the number of rows of \(X \).

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

LossFun

Built-in, loss-function name (character vector or string scalar in the table) or function handle.

- The following table lists the available loss functions. Specify one using the corresponding value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'\texttt{mincost}’ is appropriate for classification scores that are posterior probabilities. Discriminant analysis models return posterior probabilities as classification scores by default (see \texttt{predict}).

- Specify your own function using function handle notation.

Suppose that \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel}(\text{Mdl.ClassNames}) \)). Your function must have this signature
\texttt{lossvalue = lossfun(C,S,W,Cost)}

where:

- The output argument \texttt{lossvalue} is a scalar.
- You choose the function name (\texttt{lossfun}).
- \texttt{C} is an \(n\)-by-\(K\) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \texttt{Mdl.ClassNames}.

 Construct \texttt{C} by setting \(C(p,q) = 1\) if observation \(p\) is in class \(q\), for each row. Set all other elements of row \(p\) to 0.
- \texttt{S} is an \(n\)-by-\(K\) numeric matrix of classification scores. The column order corresponds to the class order in \texttt{Mdl.ClassNames}. \texttt{S} is a matrix of classification scores, similar to the output of \texttt{predict}.
- \texttt{W} is an \(n\)-by-1 numeric vector of observation weights. If you pass \texttt{W}, the software normalizes them to sum to 1.
- \texttt{Cost} is a \(K\)-by-\(K\) numeric matrix of misclassification costs. For example, \texttt{Cost = ones(K) - eye(K)} specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', \texttt{@lossfun}.

For more details on loss functions, see “Classification Loss” on page 32-3714.

\textbf{Default:} 'mincost'

\textbf{Weights}

Numeric vector of length \(N\), where \(N\) is the number of rows of \texttt{X}. \texttt{weights} are nonnegative. \texttt{loss} normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply \texttt{weights}, \texttt{loss} computes weighted classification loss.

\textbf{Default:} \texttt{ones(N,1)}
Output Arguments

L

Classification loss on page 32-3714, a scalar. The interpretation of L depends on the values in weights and lossfun.

Examples

Estimate Classification Error

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using all observations in the data.

Mdl = fitcdiscr(meas,species);

Estimate the classification error of the model using the training observations.

L = loss(Mdl,meas,species)

L = 0.0200

Alternatively, if Mdl is not compact, then you can estimate the training-sample classification error by passing Mdl to resubLoss.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.
• L is the weighted average classification loss.
• n is the sample size.
• For binary classification:
 • y_j is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 • $f(X_j)$ is the raw classification score for observation (row) j of the predictor data X.
 • $m_j = y_j f(X_j)$ is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
• For algorithms that support multiclass classification (that is, $K \geq 3$):
 • y_j^* is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class y_j. For example, if the true class of the second observation is the third class and $K = 4$, then $y_j^* = [0 \ 0 \ 1 \ 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
 • $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 • $m_j = y_j^* f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.
• The weight for observation j is w_j. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

$$\sum_{j=1}^{n} w_j = 1.$$

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log \left[1 + \exp \left[-2m_j \right] \right].$</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j)$.</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observations where \hat{y}_j is the class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>label corresponding to the class with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximal posterior probability. $I{x}$ is the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max {0, 1 - m_j}$.</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j))$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Estimate the 1-by-K vector of expected classification costs for observation j:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j) C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the input model stores in the <code>Cost</code> property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 For observation j, predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}j = \min{j=1,\ldots,K} (\gamma_j)$.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>3 Using C, identify the cost incurred (c_j) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j (1 - m_j)^2$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through $[0,1]$.

32-3717
Posterior Probability

The posterior probability that a point \(z \) belongs to class \(j \) is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean \(\mu_j \) and covariance \(\Sigma_j \) at a point \(z \) is

\[
P(x | k) = \frac{1}{(2\pi |\Sigma_k|)^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right),
\]

where \(|\Sigma_k| \) is the determinant of \(\Sigma_k \), and \(\Sigma_k^{-1} \) is the inverse matrix.
Let $P(k)$ represent the prior probability of class k. Then the posterior probability that an observation x is of class k is

$$
\hat{P}(k \mid x) = \frac{P(x \mid k) P(k)}{P(x)},
$$

where $P(x)$ is a normalization constant, the sum over k of $P(x|k)P(k)$.

Prior Probability

The prior probability is one of three choices:

- 'uniform' — The prior probability of class k is one over the total number of classes.
- 'empirical' — The prior probability of class k is the number of training samples of class k divided by the total number of training samples.
- Custom — The prior probability of class k is the kth element of the prior vector. See `fitcdiscr`.

After creating a classification model (Mdl) you can set the prior using dot notation:

Mdl.Prior = v;

where v is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 20-8.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
ClassificationDiscriminant | edge | fitcdiscr | margin | predict

Topics
“Discriminant Analysis Classification” on page 20-2
loss

Classification loss for multiclass, error-correcting output codes model

Syntax

\[
L = \text{loss}(\text{Mdl}, \text{tbl}, \text{ResponseVarName})
\]

\[
L = \text{loss}(\text{Mdl}, \text{tbl}, Y)
\]

\[
L = \text{loss}(\text{Mdl}, X, Y)
\]

\[
L = \text{loss}(___, \text{Name}, \text{Value})
\]

Description

\(L = \text{loss}(\text{Mdl}, \text{tbl}, \text{ResponseVarName})\) returns the classification loss (L), a scalar representing how well the trained, multiclass, error-correcting output code (ECOC) model Mdl classifies the predictor data (tbl) as compared to the true class labels (ResponseVarName). Each row of tbl and ResponseVarName is an observation.

\(L = \text{loss}(\text{Mdl}, \text{tbl}, Y)\) returns the classification loss (L), a scalar representing how well the trained error-correcting output code (ECOC) multiclass classifier Mdl classifies the predictor data (tbl) as compared to the true class labels (Y). Each row of tbl and Y is an observation.

\(L = \text{loss}(\text{Mdl}, X, Y)\) returns the classification loss (L), a scalar representing how well the trained error-correcting output code (ECOC) multiclass classifier Mdl classifies the predictor data (X) as compared to the true class labels (Y). Each row of X and Y is an observation.

\(L = \text{loss}(___, \text{Name}, \text{Value})\) returns the classification loss with additional options specified by one or more Name, Value pair arguments, using any of the previous syntaxes. For example, you can specify a decoding scheme, classification loss function, or verbosity level.
Input Arguments

Mdl — Full or compact, multiclass ECOC model

ClassificationECOC model object | CompactClassificationECOC model object

Full or compact, multiclass ECOC model, specified as a ClassificationECOC or CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or CompactClassificationECOC.

tbl — Sample data

Table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain additional columns for the response variable and observation weights. tbl must contain all the predictors used to train Mdl. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained Mdl using sample data contained in a table, then the input data for this method must also be in a table.

Note If Mdl.BinaryLearners contains linear or kernel classification models (that is, ClassificationLinear or ClassificationKernel model objects), then you cannot specify sample data in a table. Instead, pass a matrix (X) and class labels (Y).

Data Types: table

ResponseVarName — Response variable name

Name of a variable in tbl

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all columns of tbl, including y, as predictors when training the model.
The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The variables composing the columns of X should be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y and the number of rows of X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle
Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-2y_js_j)]/2 log(2))</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>(\exp(-y_js_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_js_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>(\max(0,1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>((1 - y Js_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-y Js_j)]/2 log(2))</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>([1 - y_j(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle 'BinaryLoss', @`customFunction`.

`customFunction` has this form:

\[
\text{bLoss} = \text{customFunction}(M,s)
\]

where:

- \(M \) is the \(K \)-by-\(L \) coding matrix stored in \(\text{Mdl.CodingMatrix} \).
- \(s \) is the 1-by-\(L \) row vector of classification scores.
- \(\text{bLoss} \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \(K \) is the number of classes.
- \(L \) is the number of binary learners.
For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then BinaryLoss is 'hinge'
- Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is 'exponential'
- Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior', 1 in fitcecoc), then BinaryLoss is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the BinaryLoss property of the trained model at the command line.

Example: 'BinaryLoss', 'binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding', 'lossbased'

LossFun — Loss function

'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'classiferror' or a function handle.

You can:

- Specify the built-in function 'classiferror' for classification error, i.e., the proportion of misclassified observations.
- Specify your own function using function handle notation.
Suppose that \(n = \text{size}(X,1) \) is the sample size and \(k \) is the number of classes. Your function must have the signature \(\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost}) \), where:

- The output argument \(\text{lossvalue} \) is a scalar.
- You choose the function name (\(\text{lossfun} \)).
- \(C \) is an \(n \)-by-\(k \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \(\text{Mdl.ClassNames} \).

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(k \) numeric matrix of negated loss values for classes. Each row corresponds to an observation. The column order corresponds to the class order in \(\text{Mdl.ClassNames} \). \(S \) resembles the output argument \(\text{NegLoss} \) of \(\text{predict} \).

- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes its elements to sum to 1.

- \(\text{Cost} \) is a \(k \)-by-\(k \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'. \(\text{Mdl.BinaryLearners} \) must contain linear classification models.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', you can experience a significant reduction in execution time.

Options — Estimation options

[] (default) | structure array returned by \text{statset}
Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options', statset('UseParallel',1).

Verbose — Verbosity level

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

Weights — Observation weights

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in tbl. If you supply weights, then loss computes the weighted loss.

Weights requires the same length as the number of observations in X or tbl.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or string scalar. For example, if the weights are stored as tbl.w, then specify it as 'w'. Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If you do not specify your own loss function (using LossFun), then the software normalizes Weights to sum up to the value of the prior probability in the respective class.

If Mdl.BinaryLearners contains linear classification models, then you must specify a vector.

Data Types: single | double | char | string
Output Arguments

L — Classification loss
numeric scalar | numeric row vector

Classification loss, returned as a numeric scalar or row vector. L is a generalization or
resubstitution quality measure. Its interpretation depends on the loss function and
weighting scheme, but, in general, better classifiers yield smaller loss values.

If Mdl.BinaryLearners contains linear classification models, then L is a 1-by-ℓ vector,
where ℓ is the number of regularization strengths in the linear classification models (i.e.,
numel(Mdl.BinaryLearners{1}.Lambda)). L(j) is the loss for the model trained
using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, L is a scalar.

Examples

Determine the Test Sample Loss of ECOC Models

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers, and specify a 15% holdout sample. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
CVMdl is a ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

Estimate the test-sample loss.

\[
L = \text{loss}(CVMdl, XTest, YTest)
\]

\[
L = 0
\]

The ECOC model correctly classifies all out-of-sample irises.

Determine ECOC Model Quality Using a Custom Loss

Suppose that it is interesting to know how well a model classifies a particular class. This example shows how to pass such a custom loss function to \text{loss}.

Load Fisher's iris data set.

\[
\text{load fisheriris}
\]

\[
X = \text{meas};
\]

\[
Y = \text{categorical(species)};
\]

\[
n = \text{numel}(Y); \quad \% \text{Sample size}
\]

\[
classOrder = \text{unique}(Y) \quad \% \text{Class order}
\]

\[
classOrder = 3\times 1 \text{ categorical array}
\]

\[
\text{setosa, versicolor, virginica}
\]

\[
K = \text{numel(classOrder)}; \quad \% \text{Number of classes}
\]

\[
rng(1) \% \text{For reproducibility}
\]

Train an ECOC model using SVM binary classifiers and specifying a 15% holdout sample. It is good practice to define the class order. Specify to standardize the predictors using an SVM template.

\[
t = \text{templateSVM('Standardize',1)};
\]

\[
CVMdl = \text{fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);
\]

\[
CMdl = CVMdl.Trained{1}; \quad \% \text{Extract trained, compact classifier}
\]

\[
testInds = \text{test(CVMdl.Partition)}; \quad \% \text{Extract the test test indices}
\]

32-3729
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Compute the negated losses for the test-sample observations.
[~,negLoss] = predict(CMdl,XTest);

Create a function that takes the minimal loss for each observation, and then averages the
minimal losses across all observations.
lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the test-sample custom loss.
loss(CMdl,XTest,YTest,'LossFun',lossfun)
ans = 0.0033

The average, minimal, binary loss in the test sample is 0.0033.

Definitions

Classification Error

The classification error is a binary classification error measure that has the form

\[
L = \frac{\sum_{j=1}^{n} w_j e_j}{\sum_{j=1}^{n} w_j},
\]

where:
• \(w_j \) is the weight for observation \(j \). The software renormalizes the weights to sum to 1.
• $e_j = 1$ if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

• m_{kj} is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
• s_j is the score of binary learner j for an observation.
• g is the binary loss function.
• \hat{k} is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \sum_{j=1}^L m_{kj} g(m_{kj}, s_j).
$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \frac{\sum_{j=1}^L m_{kj} g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.
$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
This table summarizes the supported loss functions, where y_j is a class label for a particular binary learner (in the set $\{-1,1,0\}$), s_j is the score for observation j, and $g(y_j,s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/\log(2)$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/\log(2)$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

Algorithms

If you trained Mdl specifying to standardize the predictor data, then the software standardizes the columns of X using the corresponding means and standard deviations that the software stored in Mdl.BinaryLearner{j}.Mu and Mdl.BinaryLearner{j}.Sigma for learner j.

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | ClassificationKernel | ClassificationLinear | CompactClassificationECOC | fitcecoc | predict | resubLoss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
loss

Classification error

Syntax

L = loss(ens,tbl,ResponseVarName)
L = loss(ens,tbl,Y)
L = loss(ens,X,Y)
L = loss(___,Name,Value)

Description

L = loss(ens,tbl,ResponseVarName) returns the classification error for ensemble ens computed using table of predictors tbl and true class labels tbl.ResponseVarName.

L = loss(ens,tbl,Y) returns the classification error for ensemble ens computed using table of predictors tbl and true class labels Y.

L = loss(ens,X,Y) returns the classification error for ensemble ens computed using matrix of predictors X and true class labels Y.

L = loss(___,Name,Value) computes classification error with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes.

When computing the loss, loss normalizes the class probabilities in ResponseVarName or Y to the class probabilities used for training, stored in the Prior property of ens.

Input Arguments

ens

Classification ensemble created with fitcensemble, or a compact classification ensemble created with compact.
tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. tbl must contain all of the predictors used to train the model. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns of tbl, including Y, as predictors when training the model.

X

Matrix of data to classify. Each row of X represents one observation, and each column represents one predictor. X must have the same number of columns as the data used to train ens. X should have the same number of rows as the number of elements in Y.

If you trained ens using sample data contained in a matrix, then the input data for this method must also be in a matrix.

Y

Class labels of observations in tbl or X. Y should be of the same type as the classification used to train ens, and its number of elements should equal the number of rows of tbl or X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. loss uses only these learners for calculating loss.

Default: 1:NumTrained

Lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities.

- Bagged and subspace ensembles return posterior probabilities by default (ens.Method is 'Bag' or 'Subspace').
- If the ensemble method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or 'LogitBoost', then, to use posterior probabilities as classification scores, you must specify the double-logit score transform by entering

  ```matlab
  ens.ScoreTransform = 'doublelogit';
  ```

- For all other ensemble methods, the software does not support posterior probabilities as classification scores.
- Specify your own function using function handle notation.
Suppose that \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel(ens.ClassNames)} \), \(\text{ens} \) is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument \(\text{lossvalue} \) is a scalar.
- You choose the function name (\(\text{lossfun} \)).
- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \(\text{ens.ClassNames} \).

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(\text{ens.ClassNames} \). \(S \) is a matrix of classification scores, similar to the output of \(\text{predict} \).

- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.

- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun,@lossfun'.

For more details on loss functions, see “Classification Loss” on page 32-3740.

Default: '\text{classiferror}'

mode

Meaning of the output \(L \):

- 'ensemble' — \(L \) is a scalar value, the loss for the entire ensemble.
- 'individual' — \(L \) is a vector with one element per trained learner.
- 'cumulative' — \(L \) is a vector in which element \(J \) is obtained by using learners \(1:J \) from the input list of learners.

Default: 'ensemble'
UseObsForLearner

A logical matrix of size \(N\)-by-\(T\), where:
- \(N\) is the number of rows of \(X\).
- \(T\) is the number of weak learners in \(ens\).

When \(\text{UseObsForLearner}(i,j)\) is true, learner \(j\) is used in predicting the class of row \(i\) of \(X\).

Default: \(\text{true}(N,T)\)

weights

Vector of observation weights, with nonnegative entries. The length of \(\text{weights}\) must equal the number of rows in \(X\). When you specify \(\text{weights}\), \(\text{loss}\) normalizes the weights so that observation weights in each class sum to the prior probability of that class.

Default: \(\text{ones(size}(X,1),1)\)

Output Arguments

\(L\)

Classification loss on page 32-3740, by default the fraction of misclassified data. \(L\) can be a vector, and can mean different things, depending on the name-value pair settings.

Examples

Estimate Classification Error

Load Fisher's iris data set.

load fisheriris

Train a classification ensemble of 100 decision trees using AdaBoostM2. Specify tree stumps as the weak learners.
t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the classification error of the model using the training observations.

L = loss(ens,meas,species)
L = 0.0333

Alternatively, if ens is not compact, then you can estimate the training-sample classification error by passing ens to resubLoss.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
• For binary classification:
 • yj is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 • f(Xj) is the raw classification score for observation (row) j of the predictor data X.
 • mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to yj. Positive values of mj indicate correct classification and do not contribute much to the average loss. Negative values of mj indicate incorrect classification and contribute significantly to the average loss.
• For algorithms that support multiclass classification (that is, K ≥ 3):
 • yj* is a vector of K - 1 zeros, with 1 in the position corresponding to the true, observed class yj. For example, if the true class of the second observation is the third class and K = 4, then yj*2 = [0 0 1 0]. The order of the classes corresponds to the order in the ClassNames property of the input model.
• $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.

• $m_j = y_j^* f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.

• The weight for observation j is w_j. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

$$\sum_{j=1}^{n} w_j = 1.$$

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log {1 + \exp[-2m_j]}.$</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j).$</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}.$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where \hat{y}_j is the class label corresponding to the class with the maximal posterior probability. $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}.$</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j))$.</td>
</tr>
</tbody>
</table>
| Minimal cost | 'mincost' | Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1, \ldots, n$.
1 Estimate the 1-by-K vector of expected classification costs for observation j:
 $$\gamma_j = f(X_j)C.$$
 $f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. C is the cost matrix that the input model stores in the Cost property.
2 For observation j, predict the class label corresponding to the minimum expected classification cost:
 $$\hat{y}_j = \min_{j=1, \ldots, K} (\gamma_j).$$
3 Using C, identify the cost incurred (c_j) for making the prediction.
The weighted, average, minimum cost loss is
 $$L = \sum_{j=1}^{n} w_j c_j.$$ |
| Quadratic loss | 'quadratic' | $L = \sum_{j=1}^{n} w_j (1 - m_j)^2$. |
This figure compares the loss functions (except 'mincost') for one observation over m. Some functions are normalized to pass through [0,1].

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also

edge | loss | margin | predict
loss

Classification error for naive Bayes classifier

Syntax

\[
L = \text{loss}(\text{Mdl}, \text{tbl}, \text{ResponseVarName}) \\
L = \text{loss}(\text{Mdl}, \text{tbl}, Y) \\
L = \text{loss}(\text{Mdl}, X, Y) \\
L = \text{loss}(_, \text{Name}, \text{Value})
\]

Description

\[
L = \text{loss}(\text{Mdl}, \text{tbl}, \text{ResponseVarName}) \text{ returns the minimum classification loss (see } \text{"Classification Loss" on page 32-3751), a scalar representing how well the trained naive Bayes classifier Mdl classifies the predictor data in table tbl) as compared to the true class labels in tbl.\text{ResponseVarName.}
\]

\text{loss} normalizes the class probabilities in tbl.\text{ResponseVarName} to the prior class probabilities \text{fitcnb} used for training, stored in the Prior property of Mdl.

\[
L = \text{loss}(\text{Mdl}, \text{tbl}, Y) \text{ returns the minimum classification loss (L), a scalar representing how well the trained naive Bayes classifier Mdl classifies the predictor data in table tbl) as compared to the true class labels in Y.}
\]

\text{loss} normalizes the class probabilities in Y to the prior class probabilities \text{fitcnb} used for training, stored in the Prior property of Mdl.

\[
L = \text{loss}(\text{Mdl}, X, Y) \text{ returns the minimum classification loss (L), a scalar representing how well the trained naive Bayes classifier Mdl classifies the predictor data (X) as compared to the true class labels (Y).}
\]

\text{loss} normalizes the class probabilities in Y to the prior class probabilities \text{fitcnb} used for training, stored in the Prior property of Mdl.
L = loss(___,Name,Value) returns the classification loss with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or CompactClassificationNaiveBayes model returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain additional columns for the response variable and observation weights. tbl must contain all the predictors used to train Mdl. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained Mdl using sample data contained in a table, then the input data for this method must also be in a table.

Data Types: table

ResponseVarName — Response variable name
name of a variable in tbl

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all columns of tbl, including y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string
\textbf{X — Predictor data}
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables making up the columns of X should be the same as the variables that trained Mdl.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

\textbf{Y — Class labels}
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y and the number of rows of tbl or X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

\textbf{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

\textbf{LossFun — Loss function}
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. Naive Bayes models return posterior probabilities as classification scores by default (see `predict`).

- Specify your own function using function handle notation.

Suppose that \(n \) be the number of observations in \(X \) and \(K \) be the number of distinct classes (\(\text{numel(Mdl.ClassNames)} \), \(\text{Mdl} \) is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument \(\text{lossvalue} \) is a scalar.
- You choose the function name (\(\text{lossfun} \)).
- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \(\text{Mdl.ClassNames} \).

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.
- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(\text{Mdl.ClassNames} \). \(S \) is a matrix of classification scores, similar to the output of `predict`.
- \(W \) is an \(n \)-by-\(1 \) numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, $\text{Cost} = \text{ones}(K) - \text{eye}(K)$ specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

For more details on loss functions, see “Classification Loss” on page 32-3751.

Data Types: char | string | function_handle

Weights — Observation weights

ones(size(X,1),1) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in tbl. The software weighs the observations in each row of X or tbl with the corresponding weight in Weights.

If you specify Weights as a vector, then the size of Weights must be equal to the number of rows of X or tbl.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'. Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If you do not specify your own loss function, then the software normalizes Weights to add up to 1.

Data Types: double | char | string

Output Arguments

L — Classification loss

scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller loss values.
Examples

Determine Test Sample Minimum Cost Loss of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1); % For reproducibility

Train a naive Bayes classifier. Specify a 15% holdout sample for testing. It is good practice to specify the class order. Assume that each predictor is conditionally normally distributed given its label.

CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},...
 'Holdout',0.15);
CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample minimum cost loss.

L = loss(CMdl,XTest,YTest)
L = 0.0476

The test sample average classification cost is approximately 0.05.

You might improve the classification error by specifying better predictor distributions when you train the classifier.
Determine the Test Sample Classification Error of Naive Bayes Classifiers

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;    % Predictors
Y = species; % Response
rng(1); % For reproducibility
```

Train a naive Bayes classifier. Specify a 15% holdout sample for testing. It is good practice to specify the class order. Assume that each predictor is conditionally normally distributed given its label.

```matlab
CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},'Holdout',0.15);
CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds);
```

CVMdl is a `ClassificationPartitionedModel` classifier. It contains the property `Trained`, which is a 1-by-1 cell array holding a `CompactClassificationNaiveBayes` classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample classification error.

```matlab
L = loss(CMdl,XTest,YTest,'LossFun','classiferror')
L = 0.0476
```

The classifier misclassified approximately 5% of the test sample observations.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.
Consider the following scenario.

- \(L \) is the weighted average classification loss.
- \(n \) is the sample size.
- For binary classification:
 - \(y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - \(f(X_j) \) is the raw classification score for observation (row) \(j \) of the predictor data \(X \).
 - \(m_j = y_j f(X_j) \) is the classification score for classifying observation \(j \) into the class corresponding to \(y_j \). Positive values of \(m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \(m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \(K \geq 3 \)):
 - \(y_j^* \) is a vector of \(K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \(y_j \). For example, if the true class of the second observation is the third class and \(K = 4 \), then \(y_2^* = [0\ 0\ 1\ 0]' \). The order of the classes corresponds to the order in the \text{ClassNames} property of the input model.
 - \(f(X_j) \) is the length \(K \) vector of class scores for observation \(j \) of the predictor data \(X \). The order of the scores corresponds to the order of the classes in the \text{ClassNames} property of the input model.
 - \(m_j = y_j^* f(X_j) \). Therefore, \(m_j \) is the scalar classification score that the model predicts for the true, observed class.
 - The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.
<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left{1 + \exp\left[-2m_j\right]\right}.$</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp\left(-m_j\right).$</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}.$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where \hat{y}_j is the class label corresponding to the class with the maximal posterior probability. $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1- m_j}.$</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left(1 + \exp\left(-m_j\right)\right).$</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations (j = 1, \ldots, n).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Estimate the 1-by-(K) vector of expected classification costs for observation (j):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\gamma_j = f(\mathbf{X}_j) C.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f(\mathbf{X}_j)) is the column vector of class posterior probabilities for binary and multiclass classification. (C) is the cost matrix that the input model stores in the <code>Cost</code> property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. For observation (j), predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\hat{y}j = \min{j=1,\ldots,K} \gamma_j.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Using (C), identify the cost incurred ((c_j)) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[L = \sum_{j=1}^{n} w_j c_j.]</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>[L = \sum_{j=1}^{n} w_j (1-m_j)^2.]</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over \(m \). Some functions are normalized to pass through \([0,1]\).
Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong class.

There are two types of misclassification costs: true and expected. Let K be the number of classes.

- True misclassification cost — A K-by-K matrix, where element (i,j) indicates the misclassification cost of predicting an observation into class j if its true class is i. The software stores the misclassification cost in the property `Mdl.Cost`, and used in computations. By default, $Mdl.Cost(i,j) = 1$ if $i \neq j$, and $Mdl.Cost(i,j) = 0$ if $i = j$.

= j. In other words, the cost is 0 for correct classification, and 1 for any incorrect classification.

- Expected misclassification cost — A K-dimensional vector, where element k is the weighted average misclassification cost of classifying an observation into class k, weighted by the class posterior probabilities. In other words,

$$c_k = \sum_{j=1}^{K} \hat{P}(Y = j \mid x_1,...,x_P) \text{Cost}_{jk}.$$

the software classifies observations to the class corresponding with the lowest expected misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation $(x_1,...,x_P)$ is

$$\hat{P}(Y = k \mid x_1,...,x_P) = \frac{P(X_1,...,X_P \mid y = k)\pi(Y = k)}{P(X_1,...,X_P)},$$

where:

- $P(X_1,...,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class k. Mdl.DistributionNames stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. Mdl.Prior stores the prior distribution.
- $P(X_1,...,X_P)$ is the joint density of the predictors. The classes are discrete, so

$$P(X_1,...,X_P) = \sum_{k=1}^{K} P(X_1,...,X_P \mid y = k)\pi(Y = k).$$
Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | predict | resubLoss

Topics

“Naive Bayes Classification” on page 21-2
loss

Package: classreg.learning.classif

Find classification error for support vector machine (SVM) classifier

Syntax

L = loss(SVMModel,TBL,ResponseVarName)
L = loss(SVMModel,TBL,Y)
L = loss(SVMModel,X,Y)
L = loss(___,Name,Value)

Description

L = loss(SVMModel,TBL,ResponseVarName) returns the classification error (see “Classification Loss” on page 32-3764), a scalar representing how well the trained support vector machine (SVM) classifier (SVMModel) classifies the predictor data in table TBL compared to the true class labels in TBL.ResponseVarName.

loss normalizes the class probabilities in TBL.ResponseVarName to the prior class probabilities that fitcsvm used for training, stored in the Prior property of SVMModel.

The classification loss (L) is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller classification loss values.

L = loss(SVMModel,TBL,Y) returns the classification error for the predictor data in table TBL and the true class labels in Y.

loss normalizes the class probabilities in Y to the prior class probabilities that fitcsvm used for training, stored in the Prior property of SVMModel.

L = loss(SVMModel,X,Y) returns the classification error based on the predictor data in matrix X compared to the true class labels in Y.
L = loss(___,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, you can specify the loss function and the classification weights.

Examples

Determine Test Sample Classification Error of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},... 'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample classification error.

L = loss(CompactSVMModel,XTest,YTest)
L = 0.0787

The SVM classifier misclassifies approximately 8% of the test sample.

Determine Test Sample Hinge Loss of SVM Classifiers

Load the ionosphere data set.
load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
 'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample hinge loss.

L = loss(CompactSVMModel,XTest,YTest,'LossFun','hinge')
L = 0.2998

The hinge loss is approximately 0.3. Classifiers with hinge losses close to 0 are preferred.

Input Arguments

SVMMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional columns for the response variable and observation weights. TBL must contain all of the predictors used to train SVMMModel. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
If TBL contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for loss must also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: table

ResponseVarName — Response variable name

name of variable in TBL

Response variable name, specified as the name of a variable in TBL.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable Y is stored as TBL.Y, then specify ResponseVarName as 'Y'. Otherwise, the software treats all columns of TBL, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

X — Predictor data

numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables in the columns of X must be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the columns of X using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: double | single
Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in TBL or the number of rows in X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: `loss(SVMModel,TBL,Y,'Weights',W)` weighs the observations in each row of TBL using the corresponding weight in each row of the variable W in TBL.

LossFun — Loss function
'binodeviance' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss function name or a function handle.

- This table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
</tbody>
</table>
'mincost' is appropriate for classification scores that are posterior probabilities. You can specify to use posterior probabilities as classification scores for SVM models by setting 'FitPosterior', true when you cross-validate the model using fitcsvm.

- Specify your own function by using function handle notation.

Suppose that n is the number of observations in X, and K is the number of distinct classes (numel(SVMModel.ClassNames)) used to create the input model (SVMModel). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in SVMModel.ClassNames.

Construct C by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- S is an n-by-K numeric matrix of classification scores, similar to the output of predict. The column order corresponds to the class order in SVMModel.ClassNames.
- W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the weights to sum to 1.
- Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) – eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

For more details on loss functions, see “Classification Loss” on page 32-3764.
Example: 'LossFun','binodeviance'
Data Types: char | string | function_handle

Weights — Observation weights

ones(size(X,1),1) (default) | numeric vector | name of variable in TBL

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector or the name of a variable in TBL. The software weighs the observations in each row of X or TBL with the corresponding weight in Weights.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of rows in X or TBL.

If you specify Weights as the name of a variable in TBL, you must do so as a character vector or string scalar. For example, if the weights are stored as TBL.W, then specify Weights as 'W'. Otherwise, the software treats all columns of TBL, including TBL.W, as predictors.

If you do not specify your own loss function, then the software normalizes Weights to sum up to the value of the prior probability in the respective class.

Example: 'Weights','W'
Data Types: single | double | char | string

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- L is the weighted average classification loss.
- n is the sample size.
- For binary classification:
- \(y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.

- \(f(X_j) \) is the raw classification score for observation (row) \(j \) of the predictor data \(X \).

- \(m_j = y_j f(X_j) \) is the classification score for classifying observation \(j \) into the class corresponding to \(y_j \). Positive values of \(m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \(m_j \) indicate incorrect classification and contribute significantly to the average loss.

- For algorithms that support multiclass classification (that is, \(K \geq 3 \)):

 - \(y_j^* \) is a vector of \(K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \(y_j \). For example, if the true class of the second observation is the third class and \(K = 4 \), then \(y_2^* = [0 \ 0 \ 1 \ 0] \). The order of the classes corresponds to the order in the ClassNames property of the input model.

 - \(f(X_j) \) is the length \(K \) vector of class scores for observation \(j \) of the predictor data \(X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.

 - \(m_j = y_j^* f(X_j) \). Therefore, \(m_j \) is the scalar classification score that the model predicts for the true, observed class.

- The weight for observation \(j \) is \(w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>(L = \sum_{j=1}^{n} w_j \log\left{1 + \exp\left[-2m_j\right]\right}.)</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>(L = \sum_{j=1}^{n} w_j \exp\left(-m_j\right).)</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Classification error | 'classiferror' | \[L = \sum_{j=1}^{n} w_j I\{\hat{y}_j \neq y_j\}. \]
It is the weighted fraction of misclassified observations where \(\hat{y}_j \) is the class label corresponding to the class with the maximal posterior probability. \(I\{x\} \) is the indicator function. |
<p>| Hinge loss | 'hinge' | [L = \sum_{j=1}^{n} w_j \max{0, 1 - m_j}.] |
| Logit loss | 'logit' | [L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j)).] |</p>
<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
</table>
| Minimal cost | 'mincost' | Minimal cost. The software computes the weighted minimal cost using this procedure for observations \(j = 1,\ldots,n \).
1. Estimate the 1-by-\(K \) vector of expected classification costs for observation \(j \):
 \[\gamma_j = f(X_j) C. \]
 \(f(X_j) \) is the column vector of class posterior probabilities for binary and multiclass classification. \(C \) is the cost matrix that the input model stores in the Cost property.
2. For observation \(j \), predict the class label corresponding to the minimum expected classification cost:
 \[\hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j). \]
3. Using \(C \), identify the cost incurred \((c_j) \) for making the prediction.

The weighted, average, minimum cost loss is
 \[L = \sum_{j=1}^{n} w_j c_j. \]
| Quadratic loss | 'quadratic' | \[L = \sum_{j=1}^{n} w_j (1-m_j)^2. \] |

This figure compares the loss functions (except 'mincost') for one observation over \(m \). Some functions are normalized to pass through [0,1].
Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision boundary ranging from $-\infty$ to $+\infty$. A positive score for a class indicates that x is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score $f(x)$ is the trained SVM classification function. $f(x)$ is also the numerical, predicted response for x, or the score for predicting x into the positive class.
\[
f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b,
\]

where \((\alpha_1, ..., \alpha_n, b)\) are the estimated SVM parameters, \(G(x_j, x)\) is the dot product in the predictor space between \(x\) and the support vectors, and the sum includes the training set observations. The negative class classification score for \(x\), or the score for predicting \(x\) into the negative class, is \(-f(x)\).

If \(G(x_j, x) = x_j^\prime x\) (the linear kernel), then the score function reduces to

\[
f(x) = (x / s)^\prime \beta + b.
\]

\(s\) is the kernel scale and \(\beta\) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | predict

Introduced in R2014a
loss

Classification error

Syntax

L = loss(tree,TBL,ResponseVarName)
L = loss(tree,TBL,Y)
L = loss(tree,X,Y)

L = loss(___,Name,Value)

[L,se,NLeaf,bestlevel] = loss(___)

Description

L = loss(tree,TBL,ResponseVarName) returns a scalar representing how well tree classifies the data in TBL, when TBL.ResponseVarName contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class probabilities used for training, stored in the Prior property of tree.

L = loss(tree,TBL,Y) returns a scalar representing how well tree classifies the data in TBL, when Y contains the true classifications.

L = loss(tree,X,Y) returns a scalar representing how well tree classifies the data in X, when Y contains the true classifications.

L = loss(___,Name,Value) returns the loss with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify the loss function or observation weights.

[L,se,NLeaf,bestlevel] = loss(___) also returns the vector of standard errors of the classification errors (se), the vector of numbers of leaf nodes in the trees of the pruning sequence (NLeaf), and the best pruning level as defined in the TreeSize name-value pair (bestlevel).
Note loss returns se and further outputs only when the LossFun name-value pair is the default 'classiferror'.

Input Arguments

tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional columns for the response variable and observation weights. TBL must contain all the predictors used to train tree. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train tree, then you do not need to specify ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this method must also be in a table.

Data Types: table

X — Data to classify
numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation, and each column represents one predictor. X must have the same number of columns as the data used to train tree. X must have the same number of rows as the number of elements in Y.

Data Types: single | double

ResponseVarName — Response variable name
name of a variable in TBL
Response variable name, specified as the name of a variable in TBL. If TBL contains the response variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For example, if the response variable is stored as TBL.Response, then specify it as 'Response'. Otherwise, the software treats all columns of TBL, including TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. Y must be of the same type as the classification used to train tree, and its number of elements must equal the number of rows of X.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classiferror' | 'exponential' | 'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. Classification trees return posterior probabilities as classification scores by default (see predict).

- Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes (numel(tree.ClassNames)). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in tree.ClassNames.

Construct C by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- S is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in tree.ClassNames. S is a matrix of classification scores, similar to the output of predict.
- W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes them to sum to 1.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, $\text{Cost} = \text{ones}(K) - \text{eye}(K)$ specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 32-3780.

Data Types: char | string | function_handle

Weights — Observation weights

ones(size(X,1),1) (default) | name of a variable in TBL | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values or the name of a variable in TBL.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of rows in X or TBL.

If you specify Weights as the name of a variable in TBL, you must do so as a character vector or string scalar. For example, if the weights are stored as TBL.W, then specify it as 'W'. Otherwise, the software treats all columns of TBL, including TBL.W, as predictors.

loss normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply Weights, loss computes weighted classification loss.

Data Types: single | double | char | string

Name,Value arguments associated with pruning subtrees:

Subtrees — Pruning level

0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most $\text{max(tree.PruneList)}$. 0 indicates the full, unpruned tree and $\text{max(tree.PruneList)}$ indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then loss operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using $0:\text{max(tree.PruneList)}$.

32-3775
loss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

TreeSize — Tree size

' se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following values:

- ' se' — loss returns the highest pruning level with loss within one standard deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).
- 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

Output Arguments

L — Classification loss

vector of scalar values

Classification loss on page 32-3780, returned as a vector the length of Subtrees. The meaning of the error depends on the values in Weights and LossFun.

se — Standard error of loss

vector of scalar values

Standard error of loss, returned as a vector the length of Subtrees.

NLeaf — Number of leaf nodes

vector of integer values

Number of leaves (terminal nodes) in the pruned subtrees, returned as a vector the length of Subtrees.
bestlevel — Best pruning level

scalar value

Best pruning level as defined in the TreeSize name-value pair, returned as a scalar whose value depends on TreeSize:

- **TreeSize = 'se'** — loss returns the highest pruning level with loss within one standard deviation of the minimum ($L + se$, where L and se relate to the smallest value in Subtrees).
- **TreeSize = 'min'** — loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

By default, bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

Examples

Compute the In-sample Classification Error

Compute the resubstituted classification error for the ionosphere data set.

```matlab
load ionosphere
tree = fitctree(X,Y);
L = loss(tree,X,Y)
L = 0.0114
```

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.

```matlab
load fisheriris
n = size(meas,1);
```
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');
The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level) excluding the highest level.

```matlab
m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
```

```
trnLoss = 3×1
         0.0267
         0.0533
         0.3067
```

- The full, unpruned tree misclassifies about 2.7% of the training observations.
- The tree pruned to level 1 misclassifies about 5.3% of the training observations.
- The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.

Examine the validation sample classification error at each level excluding the highest level.

```matlab
valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)
```

```
valLoss = 3×1
         0.0369
         0.0237
         0.3067
```

- The full, unpruned tree misclassifies about 3.7% of the validation observations.
- The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
- The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 1.

```matlab
pruneMdl = prune(Mdl,'Level',1);
view(pruneMdl,'Mode','graph')
```
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.
• L is the weighted average classification loss.
• n is the sample size.
• For binary classification:
 • y_j is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 • $f(X_j)$ is the raw classification score for observation (row) j of the predictor data X.
 • $m_j = y_j f(X_j)$ is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
• For algorithms that support multiclass classification (that is, $K \geq 3$):
 • y_j^* is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class y_j. For example, if the true class of the second observation is the third class and $K = 4$, then $y^*_2 = [0 0 1 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
 • $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 • $m_j = y_j^* f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.
• The weight for observation j is w_j. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

$$\sum_{j=1}^{n} w_j = 1.$$

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log \left(1 + \exp[-2m_j]\right)$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>(L = \sum_{j=1}^{n} w_j \exp(-m_j)).</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>(L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}). It is the weighted fraction of misclassified observations where (\hat{y}_j) is the class label corresponding to the class with the maximal posterior probability. (I{x}) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>(L = \sum_{j=1}^{n} w_j \max{0,1-m_j}).</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>(L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j))).</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations (j = 1, \ldots, n).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Estimate the 1-by-(K) vector of expected classification costs for observation (j):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma_j = f(X_j)C).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f(X_j)) is the column vector of class posterior probabilities for binary and multiclass classification. (C) is the cost matrix that the input model stores in the Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 For observation (j), predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\hat{y}j = \min{j=1,\ldots,K} (\gamma_j)).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Using (C), identify the cost incurred ((c_j)) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L = \sum_{j=1}^{n} w_j c_j).</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>(L = \sum_{j=1}^{n} w_j (1 - m_j)^2).</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over \(m \). Some functions are normalized to pass through \([0,1]\).
There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the fitctree method. \(\text{Cost}(i,j) \) is the cost of classifying an observation into class \(j \) if its true class is \(i \). By default, \(\text{Cost}(i,j) = 1 \) if \(i \neq j \), and \(\text{Cost}(i,j) = 0 \) if \(i = j \). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

True Misclassification Cost
Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have \(N_{\text{obs}} \) observations that you want to classify with a trained classifier. Suppose you have \(K \) classes. You place the observations into a matrix \(X_{\text{new}} \) with one observation per row.

The expected cost matrix \(CE \) has size \(N_{\text{obs}} \)-by-\(K \). Each row of \(CE \) contains the expected (average) cost of classifying the observation into each of the \(K \) classes. \(CE(n,k) \) is

\[
\sum_{i=1}^{K} \hat{P}(i \mid X_{\text{new}}(n))C(k \mid i),
\]

where

- \(K \) is the number of classes.
- \(\hat{P}(i \mid X_{\text{new}}(n)) \) is the posterior probability of class \(i \) for observation \(X_{\text{new}}(n) \).
- \(C(k \mid i) \) is the true misclassification cost of classifying an observation as \(k \) when its true class is \(i \).

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor \(X \) as true when \(X < 0.15 \) or \(X > 0.95 \), and \(X \) is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
```
tree = fitctree(X,Y);
view(tree,'Mode','Graph')

Prune the tree:

tree1 = prune(tree,'Level',1);
view(tree1,'Mode','Graph')
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about \(.05/\ .85 = .06 \) for true, and about \(.8/\ .85 = .94 \) for false.

Compute the prediction scores for the first 10 rows of \(X \):

\[
[~, \text{score}] = \text{predict(treel, X(1:10))};
\]

\[
[\text{score} \ X(1:10, :)]
\]
Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range $(.95,1)$ instead of the expected 5 observations.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with the limitation:

- Only one output is supported.

For more information, see “Tall Arrays” (MATLAB).

See Also

`edge` | `fitctree` | `margin` | `predict`
loss

Regression error

Syntax

\[L = \text{loss}(\text{ens}, \text{tbl}, \text{ResponseVarName}) \]
\[L = \text{loss}(\text{ens}, \text{tbl}, Y) \]
\[L = \text{loss}(\text{ens}, X, Y) \]
\[L = \text{loss}(__, \text{Name}, \text{Value}) \]

Description

\[L = \text{loss}(\text{ens}, \text{tbl}, \text{ResponseVarName}) \] returns the mean squared error between the predictions of \(\text{ens} \) to the data in \(\text{tbl} \), compared to the true responses \(\text{tbl}.\text{ResponseVarName} \).

\[L = \text{loss}(\text{ens}, \text{tbl}, Y) \] returns the mean squared error between the predictions of \(\text{ens} \) to the data in \(\text{tbl} \), compared to the true responses \(Y \).

\[L = \text{loss}(\text{ens}, X, Y) \] returns the mean squared error between the predictions of \(\text{ens} \) to the data in \(X \), compared to the true responses \(Y \).

\[L = \text{loss}(__, \text{Name}, \text{Value}) \] computes the error in prediction with additional options specified by one or more \text{Name,Value} pair arguments, using any of the previous syntaxes.

Input Arguments

\textbf{ens}

A regression ensemble created with \textit{fitrensemble}, or the \textit{compact} method.

\textbf{tbl}

Sample data, specified as a table. Each row of \(\text{tbl} \) corresponds to one observation, and each column corresponds to one predictor variable. \(\text{tbl} \) must contain all of the predictors.
used to train the model. Multi-column variables and cell arrays other than cell arrays of
character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this
method must also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl. The response
variable must be a numeric vector.

You must specify `ResponseVarName` as a character vector or string scalar. For example,
if the response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the
software treats all columns of tbl, including Y, as predictors when training the model.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

NaN values in X are taken to be missing values. Observations with all missing values for X
are not used in the calculation of loss.

If you trained ens using sample data contained in a matrix, then the input data for this
method must also be in a matrix.

Y

A numeric column vector with the same number of rows as tbl or X. Each entry in Y is
the response to the data in the corresponding row of tbl or X.

NaN values in Y are taken to be missing values. Observations with missing values for Y are
not used in the calculation of loss.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the
argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
You can specify several name and value pair arguments in any order as
`Name1,Value1,...,NameN,ValueN`.
learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NumTrained

lossfun

Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function handle fun, loss calls it as

fun(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length.

- Y is the observed response.
- Yfit is the predicted response.
- W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.

Default: 'mse'

mode

Meaning of the output L:

- 'ensemble' — L is a scalar value, the loss for the entire ensemble.
- 'individual' — L is a vector with one element per trained learner.
- 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Default: 'ensemble'

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of observations in ens.X, and NumTrained is the number of weak learners. When UseObsForLearner(I,J) is true, predict uses learner J in predicting observation I.

Default: true(N,NumTrained)
weights

Numeric vector of observation weights with the same number of elements as Y. The formula for loss with weights is in “Weighted Mean Squared Error” on page 32-3793.

Default: ones(size(Y))

Output Arguments

L

Weighted mean squared error of predictions. The formula for loss is in “Weighted Mean Squared Error” on page 32-3793.

Examples

Find Mean-Squared Error of Ensemble Predictions

Find the loss of an ensemble predictor using the carsmall data set.

Load the carsmall data set and select engine displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of regression trees and find the regression error for predicting MPG.

ens = fitrensemble(X,MPG);
L = loss(ens,X,MPG)

L = 0.3463
Definitions

Weighted Mean Squared Error

Let \(n \) be the number of rows of data, \(x_j \) be the \(j \)th row of data, \(y_j \) be the true response to \(x_j \), and let \(f(x_j) \) be the response prediction of \(\text{ens} \) to \(x_j \). Let \(w \) be the vector of weights (all one by default).

First the weights are divided by their sum so they add to one: \(w \rightarrow w/\Sigma w \). The mean squared error \(L \) is

\[
L = \frac{1}{n} \sum_{j=1}^{n} w_j \left(f(x_j) - y_j \right)^2.
\]
loss

Regression error for Gaussian process regression model

Syntax

L = loss(gprMdl,Xnew,Ynew)
L = loss(gprMdl,Xnew,Ynew,Name,Value)

Description

L = loss(gprMdl,Xnew,Ynew) returns the mean squared error for the Gaussian process regression (GPR) model gpr, using the predictors in Xnew and observed response in Ynew.

L = loss(gprMdl,Xnew,Ynew,Name,Value) returns the mean squared error for the GPR model, gpr, with additional options specified by one or more Name,Value pair arguments. For example, you can specify a custom loss function or the observation weights.

Input Arguments

gprMdl — Gaussian process regression model
RegressionGP object | CompactRegressionGP object

Gaussian process regression model, specified as a RegressionGP (full) or CompactRegressionGP (compact) object.

Xnew — New observed data
table | m-by-d matrix

New data, specified as a table or an n-by-d matrix, where m is the number of observations, and d is the number of predictor variables in the training data.

If you trained gprMdl on a table, then Xnew must be a table that contains all the predictor variables used to train gprMdl.
If Xnew is a table, then it can also contain Ynew. And if it does, then you do not have to specify Ynew.

If you trained gprMdl on a matrix, then Xnew must be a numeric matrix with d columns, and can only contain values for the predictor variables.

Data Types: single | double | table

Ynew — New response values
n-by-1 vector

New observed response values, that correspond to the predictor values in Xnew, specified as an n-by-1 vector. n is the number of rows in Xnew. Each entry in Ynew is the observed response based on the predictor data in the corresponding row of Xnew.

If Xnew is a table containing new response values, you do not have to specify Ynew.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

lossfun — Loss function
'mse' (default) | function handle

Loss function, specified as 'mse' (mean squared error) or a function handle.

If you pass a function handle, say fun, loss calls it as shown below: fun(Y,Ypred,W), where Y, Ypred and W are numeric vectors of length n, and n is the number of rows in Xnew. Y is the observed response, Ypred is the predicted response, and W is the observation weights.

Example: 'lossfun',Fct calls the loss function Fct.

Data Types: char | string | function_handle

weights — Observation weights
vector of 1s (default) | n-by-1 vector
Observation weights, specified as \(n \)-by-1 vector, where \(n \) is the number of rows in \(X_{\text{new}} \). By default, the weight of each observation is 1.

Example: 'weights',\(W \) uses the observation weights in vector \(W \).

Data Types: double | single

Output Arguments

L — Regression error

scalar value

Regression error for the trained Gaussian process regression model, \(\text{gprMdl} \), returned as a scalar value.

Examples

Compute Regression Loss for Test Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','gprdata.mat'))
```

The data has 8 predictor variables and contains 500 observations in training data and 100 observations in test data. This is simulated data.

Fit a GPR model using the squared exponential kernel function with separate length scales for each predictor. Standardize the predictor values in the training data. Use the exact method for fitting and prediction.

```matlab
gprMdl = fitrgp(Xtrain,ytrain,'FitMethod','exact',... 'PredictMethod','exact','KernelFunction','ardsquaredexponential',... 'Standardize',1);
```

Compute the regression error for the test data.

```matlab
L = loss(gprMdl,Xtest,ytest)
L = 0.6928
```

Predict the responses for test data.
ypredtest = predict(gprMdl,Xtest);

Plot the test response along with the predictions.

figure;
plot(ytest,'r');
hold on;
plot(ypredtest,'b');
legend('Data','Predictions','Location','Best');

Manually compute the regression loss.

L = (ytest - ypredtest)'*(ytest - ypredtest)/length(ytest)
L = 0.6928
Specify Custom Loss Function

Load the sample data and store in a table.

```matlab
load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
    'VariableNames',
    {'meas1','meas2','meas3','meas4','species'});
```

Fit a GPR model using the first measurement as the response and the other variables as the predictors.

```matlab
mdl = fitrgp(tbl,'meas1');
```

Predict the responses using the trained model.

```matlab
ypred = predict(mdl,tbl);
```

Compute the mean absolute error.

```matlab
n = height(tbl);
y = tbl.meas1;
fun = @(y,ypred,w) sum(abs(y-ypred))/n;
L = loss(mdl,tbl,'lossfun',fun)
L = 0.2345
```

Alternatives

You can use `resubLoss` to compute the regression error for the trained GPR model at the observations in the training data.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.
This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
CompactRegressionGP | RegressionGP | compact | fitrgp | predict | resubLoss

Introduced in R2015b
loss

Regression error for support vector machine regression model

Syntax

\[
L = \text{loss}(\text{mdl}, \text{tbl}, \text{ResponseVarName})
\]

\[
L = \text{loss}(\text{mdl}, \text{tbl}, Y)
\]

\[
L = \text{loss}(\text{mdl}, X, Y)
\]

\[
L = \text{loss}(_, \text{Name}, \text{Value})
\]

Description

\[
L = \text{loss}(\text{mdl}, \text{tbl}, \text{ResponseVarName})
\]
returns the loss for the predictions of the support vector machine (SVM) regression model, \text{mdl}, based on the predictor data in the table \text{tbl} and the true response values in \text{tbl.ResponseVarName}.

\[
L = \text{loss}(\text{mdl}, \text{tbl}, Y)
\]
returns the loss for the predictions of the support vector machine (SVM) regression model, \text{mdl}, based on the predictor data in the table \text{X} and the true response values in the vector \text{Y}.

\[
L = \text{loss}(\text{mdl}, X, Y)
\]
returns the loss for the predictions of the support vector machine (SVM) regression model, \text{mdl}, based on the predictor data in \text{X} and the true responses in \text{Y}.

\[
L = \text{loss}(_, \text{Name}, \text{Value})
\]
returns the loss with additional options specified by one or more \text{Name}, \text{Value} pair arguments, using any of the previous syntaxes. For example, you can specify the loss function or observation weights.

Input Arguments

\text{mdl} — SVM regression model
RegressionSVM model | CompactRegressionSVM model

SVM regression model, specified as a RegressionSVM model or CompactRegressionSVM model returned by \text{fitrsvm} or \text{compact}, respectively.
tbl — Sample data

Table

Sample data, specified as a table. Each row of `tbl` corresponds to one observation, and each column corresponds to one predictor variable. Optionally, `tbl` can contain additional columns for the response variable and observation weights. `tbl` must contain all of the predictors used to train `mdl`. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained `mdl` using sample data contained in a `table`, then the input data for this method must also be in a `table`.

Data Types: `table`

ResponseVarName — Response variable name

Name of a variable in `tbl`

Response variable name, specified as the name of a variable in `tbl`. The response variable must be a numeric vector.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `Y` is stored as `tbl.Y`, then specify `ResponseVarName` as `'Y'`. Otherwise, the software treats all columns of `tbl`, including `Y`, as predictors when training the model.

Data Types: `char` | `string`

X — Predictor data

Numeric matrix

Predictor data, specified as a numeric matrix or table. Each row of `X` corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature).

If you trained `mdl` using a matrix of predictor values, then `X` must be a numeric matrix with `p` columns. `p` is the number of predictors used to train `mdl`.

The length of `Y` and the number of rows of `X` must be equal.

Data Types: `single` | `double`

Y — Observed response values

Vector of numeric values
Observed response values, specified as a vector of length \(n \) containing numeric values. Each entry in \(Y \) is the observed response based on the predictor data in the corresponding row of \(X \).

Data Types: \texttt{single} | \texttt{double}

Name-Value Pair Arguments

Specify optional comma-separated pairs of

- **Name**: the argument name
- **Value**: the corresponding value

Name must appear inside quotes. You can specify several name and value pair arguments in any order as

- \texttt{Name1,Value1,...,NameN,ValueN}.

LossFun — Loss function

- \texttt{'mse' (default) | 'epsiloninsensitive' | function handle}

Loss function, specified as the comma-separated pair consisting of

- **LossFun**: 'LossFun' and \texttt{'mse'}, \texttt{'epsiloninsensitive'}, or a function handle.

- The following table lists the available loss functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mse'</td>
<td>"Weighted Mean Squared Error" on page 32-3804</td>
</tr>
<tr>
<td>'epsiloninsensitive'</td>
<td>"Epsilon-Insensitive Loss Function" on page 32-3805</td>
</tr>
</tbody>
</table>

- Specify your own function using function handle notation.

Your function must have the signature

\[
\text{lossvalue} = \text{lossfun}(Y,Yfit,W),
\]

- The output argument \(\text{lossvalue} \) is a scalar value.
- You choose the function name \(\text{lossfun} \).
- \(Y \) is an \(n \)-by-1 numeric vector of observed response values.
- \(Yfit \) is an \(n \)-by-1 numeric vector of predicted response values, calculated using the corresponding predictor values in \(X \) (similar to the output of \texttt{predict})
- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.

Specify your function using \texttt{'LossFun','@lossfun'}.

32-3802
Example: 'LossFun','epsiloninsensitive'
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector. Weights must be the same length as the number of rows in X. The software weighs the observations in each row of X using the corresponding weight value in Weights.

Weights are normalized to sum to 1.
Data Types: single | double

Output Arguments

L — Regression loss
scalar value

Regression loss, returned as a scalar value.

Examples

Calculate Test Sample Loss for SVM Regression Model

This example shows how to train an SVM regression model, then calculate the resubstitution mean square error and epsilon-insensitive error.

Load the carsmall sample data.

load carsmall
rng default % for reproducibility

Specify Horsepower and Weight as the predictor variables (X), and MPG as the response variable (Y).

X = [Horsepower,Weight];
Y = MPG;
Train a linear SVM regression model. Standardize the data.

mdl = fitrsvm(X,Y,'Standardize',true);

mdl is a RegressionSVM model.

Determine how well the trained model generalizes to new predictor values by estimating the test sample mean square error and epsilon-insensitive error.

lossMSE = loss(mdl,X,Y)
lossEI = loss(mdl,X,Y,'LossFun','epsiloninsensitive')

lossMSE =
17.0256

lossEI =
2.2506

Definitions

Weighted Mean Squared Error

The weighted mean squared error is calculated as follows:

\[\text{mse} = \frac{\sum_{j=1}^{n} w_j (f(x_j) - y_j)^2}{\sum_{j=1}^{n} w_j}. \]

where:

- \(n \) is the number of rows of data
- \(x_j \) is the \(j \)th row of data
- \(y_j \) is the true response to \(x_j \)
• $f(x_j)$ is the response prediction of the SVM regression model mdl to x_j
• w is the vector of weights.

The weights in w are all equal to one by default. You can specify different values for weights using the 'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all weights, such that the normalized weights add to one.

Epsilon-Insensitive Loss Function

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (ε) of the function value. It is formally described as:

$$Loss_\varepsilon = \begin{cases} 0, & \text{if } |y - f(x)| \leq \varepsilon \\ |y - f(x)| - \varepsilon, & \text{otherwise.} \end{cases}$$

The mean epsilon-insensitive loss is calculated as follows:

$$Loss = \frac{\sum_{j=1}^{n} w_j \max(0, |y_j - f(x_j)| - \varepsilon)}{\sum_{j=1}^{n} w_j},$$

where:

• n is the number of rows of data
• x_j is the jth row of data
• y_j is the true response to x_j
• $f(x_j)$ is the response prediction of the SVM regression model mdl to x_j
• w is the vector of weights.

The weights in w are all equal to one by default. You can specify different values for weights using the 'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all weights, such that the normalized weights add to one.
Tips

- If `mdl` is a cross-validated `RegressionPartitionedSVM` model, use `kfoldloss` instead of `loss` to calculate the regression error.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
`CompactRegressionSVM` | `RegressionSVM` | `fitrsvm` | `kfoldloss`

Introduced in R2015b
loss

Regression error

Syntax

L = loss(tree,tbl,ResponseVarName)
L = loss(tree,x,y)
L = loss(___,Name,Value)
[L,se,NLeaf,bestlevel] = loss(___)

Description

L = loss(tree,tbl,ResponseVarName) returns the mean squared error between the predictions of tree to the data in tbl, compared to the true responses tbl.ResponseVarName.

L = loss(tree,x,y) returns the mean squared error between the predictions of tree to the data in x, compared to the true responses y.

L = loss(___,Name,Value) computes the error in prediction with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes.

[L,se,NLeaf,bestlevel] = loss(___) also returns the standard error of the loss (se), the number of leaves (terminal nodes) in the tree (NLeaf), and the optimal pruning level for tree (bestlevel).

Input Arguments

tree — Trained regression tree
RegressionTree object | CompactRegressionTree object

Trained regression tree, specified as a RegressionTree object constructed by fitrtree or a CompactRegressionTree object constructed by compact.
x — Predictor values
matrix of floating-point values

Predictor values, specified as matrix of floating-point values. Each column of x represents one variable, and each row represents one observation.

Data Types: single | double

ResponseVarName — Response variable name
name of a variable in tbl

Response variable name, specified as the name of a variable in tbl. You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable y is stored as `tbl.y`, then specify `ResponseVarName` as 'y'. Otherwise, the software treats all columns of tbl, including y, as predictors when training the model.

Data Types: char | string

y — Response data
numeric column vector

Response data, specified as a numeric column vector with the same number of rows as x. Each entry in y is the response to the data in the corresponding row of x.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

LossFun — Loss function

' mse' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a function handle for loss, or 'mse' representing mean-squared error. If you pass a function handle `fun`, `loss` calls `fun` as:

```matlab
fun(Y,Yfit,W)
```
- \(Y \) is the vector of true responses.
- \(Y_{\text{fit}} \) is the vector of predicted responses.
- \(W \) is the observation weights. If you pass \(W \), the elements are normalized to sum to 1.

All the vectors have the same number of rows as \(Y \).

Example: 'LossFun','mse'

Data Types: function_handle | char | string

Subtrees — Pruning level

0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most \(\max(tree.PruneList) \). 0 indicates the full, unpruned tree and \(\max(tree.PruneList) \) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then loss operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0: \(\max(tree.PruneList) \).

loss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

TreeSize — Tree size

'\text{se}' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following:

- 'se' — loss returns bestlevel that corresponds to the smallest tree whose mean squared error (MSE) is within one standard error of the minimum MSE.
• 'min' — loss returns bestlevel that corresponds to the minimal MSE tree.

Example: 'TreeSize','min'

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of a variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values. The software weights the observations in each row of X or tbl with the corresponding value in Weights. The size of Weights must equal the number of rows in X or tbl.

If you specify the input data as a table tbl, then Weights can be the name of a variable in tbl that contains a numeric vector. In this case, you must specify Weights as a variable name. For example, if weights vector W is stored as tbl.W, then specify Weights as 'W'. Otherwise, the software treats all columns of tbl, including W, as predictors when training the model.

Data Types: single | double | char | string

Output Arguments

L — Classification error
vector of scalar values

Classification error, returned as a vector the length of Subtrees. The error for each tree is the mean squared error, weighted with Weights. If you include LossFun, L reflects the loss calculated with LossFun.

se — Standard error of loss
vector of scalar values

Standard error of loss, returned as a vector the length of Subtrees.

NLeaf — Number of leaf nodes
vector of integer values

Number of leaves (terminal nodes) in the pruned subtrees, returned as a vector the length of Subtrees.

bestlevel — Best pruning level
scalar value
Best pruning level as defined in the `TreeSize` name-value pair, returned as a scalar whose value depends on `TreeSize`:

- `TreeSize = 'se'` — `loss` returns the highest pruning level with loss within one standard deviation of the minimum ($L + se$, where L and se relate to the smallest value in `Subtrees`).
- `TreeSize = 'min'` — `loss` returns the element of `Subtrees` with smallest loss, usually the smallest element of `Subtrees`.

Examples

Compute the In-Sample MSE

Load the `carsmall` data set. Consider `Displacement`, `Horsepower`, and `Weight` as predictors of the response `MPG`.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

Grow a regression tree using all observations.

```matlab
tree = fitrtree(X,MPG);
```

Estimate the in-sample MSE.

```matlab
L = loss(tree,X,MPG)
L = 4.8952
```

Find the Pruning Level Yielding the Optimal In-sample Loss

Load the `carsmall` data set. Consider `Displacement`, `Horsepower`, and `Weight` as predictors of the response `MPG`.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

Grow a regression tree using all observations.
Mdl = fitrtree(X,MPG);

View the regression tree.
view(Mdl,'Mode','graph');

Find the best pruning level that yields the optimal in-sample loss.
[L,se,NLeaf,bestLevel] = loss(Mdl,X,MPG,'Subtrees','all');
bestLevel

bestLevel = 1
The best pruning level is level 1.

Prune the tree to level 1.

```matlab
pruneMdl = prune(Mdl,'Level',bestLevel);
view(pruneMdl,'Mode','graph');
```
Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
Y = MPG;
```

Partition the data into training (50%) and validation (50%) sets.

```matlab
n = size(X,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false;                  % Validation set logical indices
```

Grow a regression tree using the training set.

```matlab
Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));
```

View the regression tree.

```matlab
view(Mdl,'Mode','graph');
```
The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 7 is just the root node (i.e., no splits).

Examine the training sample MSE for each subtree (or pruning level) excluding the highest level.

```matlab
m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
```

```
trnLoss = 7×1
        loss
32-3815
```

32-3815
The MSE for the full, unpruned tree is about 6 units.
The MSE for the tree pruned to level 1 is about 6.3 units.
The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

\[
\text{valLoss} = \text{loss(Mdl}, X(\text{idxVal}, :), Y(\text{idxVal}), 'SubTrees', 0:m) \\
\text{valLoss} = 7\times1 \\
\begin{array}{c}
32.1205 \\
31.5035 \\
32.0541 \\
30.8183 \\
26.3535 \\
30.0137 \\
38.4695
\end{array}
\]

The MSE for the full, unpruned tree (level 0) is about 32.1 units.
The MSE for the tree pruned to level 4 is about 26.4 units.
The MSE for the tree pruned to level 5 is about 30.0 units.
The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning \text{Mdl} to level 4.

\[
\text{pruneMdl} = \text{prune(Mdl}, '\text{Level}', 4); \\
\text{view(pruneMdl}, '\text{Mode}', '\text{graph}')
\]
Definitions

Mean Squared Error

The mean squared error m of the predictions $f(X_n)$ with weight vector w is
\[m = \frac{\sum w_n (f(X_n) - Y_n)^2}{\sum w_n}. \]

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with the limitation:

- Only one output is supported.

For more information, see “Tall Arrays” (MATLAB).

See Also
`fitrtree` | `predict`
loss

Class: FeatureSelectionNCAClassification

Evaluate accuracy of learned feature weights on test data

Syntax

\[\text{err} = \text{loss}(\text{mdl}, X, Y) \]
\[\text{err} = \text{loss}(\text{mdl}, X, Y, \text{Name}, \text{Value}) \]

Description

\[\text{err} = \text{loss}(\text{mdl}, X, Y) \] computes the misclassification error of the model \(\text{mdl} \), for the predictors in \(X \) and the class labels in \(Y \).

\[\text{err} = \text{loss}(\text{mdl}, X, Y, \text{Name}, \text{Value}) \] computes the classification error with additional options specified by one or more \text{Name}, \text{Value} pair arguments.

Input Arguments

\(\text{mdl} \) — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a FeatureSelectionNCAClassification object.

\(X \) — Predictor variable values
\n-by-\(p \) matrix

Predictor variable values, specified as an \(n \)-by-\(p \) matrix, where \(n \) is the number of observations and \(p \) is the number of predictor variables.

Data Types: single | double
Y — Class labels
categorical vector | logical vector | numeric vector | string array | cell array of character vectors of length \(n \) | character matrix with \(n \) rows

Class labels, specified as a categorical vector, logical vector, numeric vector, string array, cell array of character vectors of length \(n \), or character matrix with \(n \) rows, where \(n \) is the number of observations. Element \(i \) or row \(i \) of \(Y \) is the class label corresponding to row \(i \) of \(X \) (observation \(i \)).

Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as

Name1,Value1,...,NameN,ValueN

LossFunction — Loss function type
'veclassiferror' (default) | 'quadratic'

Loss function type, specified as a comma-separated pair consisting of 'Loss Function' and one of the following.

- 'classiferror' — Misclassification error, defined as

\[
\frac{1}{n} \sum_{i=1}^{n} I(k_i \neq t_i),
\]

where \(k_i \) is the predicted class and \(t_i \) is the true class for observation \(i \). \(I(k_i \neq t_i) \) is the indicator for when the \(k_i \) is not the same as \(t_i \).

- 'quadratic' — Quadratic loss function, defined as

\[
\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} (p_{ik} - I(i,k))^2,
\]
where \(c \) is the number of classes, \(p_{ik} \) is the estimate probability that \(i \)th observation belongs to class \(k \), and \(I(i,k) \) is the indicator that \(i \)th observation belongs to class \(k \).

Example: 'LossFunction','quadratic'

Output Arguments

err — Smaller-the-better accuracy measure for learned feature weights
scalar value

Smaller-the-better accuracy measure for learned feature weights, returned as a scalar value. You can specify the measure of accuracy using the `LossFunction` name-value pair argument.

Examples

Tune NCA Model for Classification

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','twodimclassdata.mat'));
```

This data set is simulated using the scheme described in [1]. This is a two-class classification problem in two dimensions. Data from the first class are drawn from two bivariate normal distributions \(N(\mu_1, \Sigma) \) or \(N(\mu_2, \Sigma) \) with equal probability, where \(\mu_1 = [-0.75, -1.5] \), \(\mu_2 = [0.75, 1.5] \), and \(\Sigma = I_2 \). Similarly, data from the second class are drawn from two bivariate normal distributions \(N(\mu_3, \Sigma) \) or \(N(\mu_4, \Sigma) \) with equal probability, where \(\mu_3 = [1.5, -1.5] \), \(\mu_4 = [-1.5, 1.5] \), and \(\Sigma = I_2 \). The normal distribution parameters used to create this data set result in tighter clusters in data than the data used in [1].

Create a scatter plot of the data grouped by the class.

```matlab
figure
gscatter(X(:,1),X(:,2),y)
```
Add 100 irrelevant features to \(X \). First generate data from a Normal distribution with a mean of 0 and a variance of 20.

\[
n = \text{size}(X,1);
\text{rng('default')}
X\text{with Bad Features} = [X, \text{randn}(n,100)\times\sqrt{20}];
\]

Normalize the data so that all points are between 0 and 1.

\[
X\text{with Bad Features} = \text{bsxfun(@rdivide,}...
\text{bsxfun(@minus,X\text{with Bad Features},}\text{min(X\text{with Bad Features},[])},1)), ...
\]
range(XwithBadFeatures,1));
X = XwithBadFeatures;

Fit a neighborhood component analysis (NCA) model to the data using the default Lambda (regularization parameter, λ) value. Use the LBFGS solver and display the convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ... 'Solver','lbfgs');

| Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe |

<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.519258e-03</td>
<td>1.494e-02</td>
<td>0.000e+00</td>
<td></td>
<td>4.015e+01</td>
<td>0.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>-3.093574e-01</td>
<td>7.186e-03</td>
<td>4.018e+00</td>
<td>OK</td>
<td>8.956e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>-4.809455e-01</td>
<td>4.444e-03</td>
<td>7.123e+00</td>
<td>OK</td>
<td>9.943e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>-4.938877e-01</td>
<td>3.544e-03</td>
<td>1.464e+00</td>
<td>OK</td>
<td>9.366e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>-4.964759e-01</td>
<td>2.901e-03</td>
<td>6.084e-01</td>
<td>OK</td>
<td>1.554e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>-4.972077e-01</td>
<td>1.323e-03</td>
<td>6.129e-01</td>
<td>OK</td>
<td>1.195e+02</td>
<td>5.000e-01</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>-4.974743e-01</td>
<td>1.569e-04</td>
<td>2.155e-01</td>
<td>OK</td>
<td>1.003e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>-4.974868e-01</td>
<td>3.844e-05</td>
<td>4.161e-02</td>
<td>OK</td>
<td>9.835e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>-4.974874e-01</td>
<td>1.417e-05</td>
<td>1.073e-02</td>
<td>OK</td>
<td>1.043e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>-4.974874e-01</td>
<td>4.893e-06</td>
<td>1.781e-03</td>
<td>OK</td>
<td>1.530e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>10</td>
<td>-4.974874e-01</td>
<td>9.404e-08</td>
<td>8.947e-04</td>
<td>OK</td>
<td>1.670e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 9.404e-08
Two norm of the final step = 8.947e-04, TolX = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights. The weights of the irrelevant features should be very close to zero.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
Predict the classes using the NCA model and compute the confusion matrix.

```matlab
ypred = predict(ncaMdl,X);
confusionmat(y,ypred)
```

```
ans =
     40     60
      6     94
```

Confusion matrix shows that 40 of the data that are in class 1 are predicted as belonging to class 1. 60 of the data from class 1 are predicted to be in class 2. Similarly, 94 of the
data from class 2 are predicted to be from class 2 and 6 of them are predicted to be from class 1. The prediction accuracy for class 1 is not good.

All weights are very close to zero, which indicates that the value of λ used in training the model is too large. When $\lambda \to \infty$, all features weights approach to zero. Hence, it is important to tune the regularization parameter in most cases to detect the relevant features.

Use five-fold cross-validation to tune λ for feature selection by using fscnca. Tuning λ means finding the λ value that will produce the minimum classification loss. To tune λ using cross-validation:

1. Partition the data into five folds. For each fold, cvpartition assigns four-fifths of the data as a training set and one-fifth of the data as a test set. Again for each fold, cvpartition creates a stratified partition, where each partition has roughly the same proportion of classes.

   ```
cvp = cvpartition(y,'kfold',5);
numtestsets = cvp.NumTestSets;
lambdavalues = linspace(0,2,20)/length(y);
lossvalues = zeros(length(lambdavalues),numtestsets);
```

2. Train the neighborhood component analysis (nca) model for each λ value using the training set in each fold.

3. Compute the classification loss for the corresponding test set in the fold using the nca model. Record the loss value.

4. Repeat this process for all folds and all λ values.

```matlab
for i = 1:length(lambdavalues)
    for k = 1:numtestsets
        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
ytrain = y(cvp.training(k),:);

        % Extract the test set from the partition object
        Xtest  = X(cvp.test(k),:);
ytest  = y(cvp.test(k),:);

        % Train an NCA model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ...
'Solver','lbfgs','Lambda',lambdavalues(i));

% Compute the classification loss for the test set using the NCA model
lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ...
    'LossFunction','quadratic');

end
end

Plot the average loss values of the folds versus the \( \lambda \) values. If the \( \lambda \) value that corresponds to the minimum loss falls on the boundary of the tested \( \lambda \) values, the range of \( \lambda \) values should be reconsidered.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on
Find the $\lambda$ value that corresponds to the minimum average loss.

```
 [~,idx] = min(mean(lossvalues,2)); % Find the index
 bestlambda = lambdavalues(idx) % Find the best lambda value
```

```
bestlambda =

0.0037
```

Fit the NCA model to all of the data using the best $\lambda$ value. Use the LBFGS solver and display the convergence information.
ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...  'Solver','lbfgs','Lambda',bestlambda);

o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
<th>ACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.246913e-01</td>
<td>1.231e-02</td>
<td>0.000e+00</td>
<td></td>
<td>4.873e+01</td>
<td>0.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>-3.41130e-01</td>
<td>5.717e-03</td>
<td>3.618e+00</td>
<td>OK</td>
<td>1.068e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>-5.22611e-01</td>
<td>3.763e-02</td>
<td>8.252e+00</td>
<td>OK</td>
<td>7.825e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>-5.81731e-01</td>
<td>8.496e-03</td>
<td>2.340e+00</td>
<td>OK</td>
<td>5.591e+01</td>
<td>5.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>-6.13263e-01</td>
<td>6.863e-03</td>
<td>2.526e+00</td>
<td>OK</td>
<td>8.228e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>-6.13526e-01</td>
<td>9.373e-03</td>
<td>7.341e+00</td>
<td>OK</td>
<td>3.244e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>-6.14789e-01</td>
<td>1.182e-03</td>
<td>2.933e+00</td>
<td>OK</td>
<td>2.447e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>-6.14871e-01</td>
<td>6.392e-04</td>
<td>6.688e-02</td>
<td>OK</td>
<td>3.195e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>-6.14952e-01</td>
<td>6.521e-04</td>
<td>9.354e-02</td>
<td>OK</td>
<td>1.236e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>-6.14997e-01</td>
<td>1.154e-04</td>
<td>1.191e+01</td>
<td>OK</td>
<td>1.171e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>10</td>
<td>-6.14999e-01</td>
<td>2.922e-05</td>
<td>1.983e+00</td>
<td>OK</td>
<td>7.365e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>11</td>
<td>-6.14999e-01</td>
<td>1.556e-05</td>
<td>8.354e-03</td>
<td>OK</td>
<td>1.288e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>12</td>
<td>-6.14999e-01</td>
<td>1.147e-05</td>
<td>7.256e-03</td>
<td>OK</td>
<td>2.332e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>13</td>
<td>-6.14999e-01</td>
<td>1.640e-05</td>
<td>6.781e-03</td>
<td>OK</td>
<td>2.287e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>14</td>
<td>-6.14999e-01</td>
<td>9.015e-06</td>
<td>6.265e-03</td>
<td>OK</td>
<td>9.974e+01</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>15</td>
<td>-6.14999e-01</td>
<td>7.763e-06</td>
<td>5.206e-03</td>
<td>OK</td>
<td>2.919e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>16</td>
<td>-6.14999e-01</td>
<td>8.374e-06</td>
<td>1.679e-02</td>
<td>OK</td>
<td>6.878e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>17</td>
<td>-6.14999e-01</td>
<td>9.387e-06</td>
<td>9.542e-03</td>
<td>OK</td>
<td>1.284e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>18</td>
<td>-6.14999e-01</td>
<td>3.250e-06</td>
<td>5.114e-03</td>
<td>OK</td>
<td>1.225e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
<tr>
<td>19</td>
<td>-6.14999e-01</td>
<td>1.574e-06</td>
<td>1.275e-03</td>
<td>OK</td>
<td>1.808e+02</td>
<td>1.000e+00</td>
<td>YES</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 5.764e-07
Two norm of the final step    = 6.765e-04, TolX    = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
fscnca correctly figures out that the first two features are relevant and that the rest are not. The first two features are not individually informative, but when taken together result in an accurate classification model.

Predict the classes using the new model and compute the accuracy.

ypred = predict(ncaMdl,X);
confusionmat(y,ypred)

ans =

32-3829
Confusion matrix shows that prediction accuracy for class 1 has improved. 88 of the data from class 1 are predicted to be from class 1, and 12 of them are predicted to be from class 2. 92 of the data from class 2 are predicted to be from class 2 and 8 of them are predicted to be from class 1.

References


See Also

FeatureSelectionNCAClassification | fscnca | predict | refit

Introduced in R2016b
loss

Class: FeatureSelectionNCARegression

Evaluate accuracy of learned feature weights on test data

Syntax

err = loss(mdl,X,Y)
err = loss(mdl,X,Y,Name,Value)

Description

err = loss(mdl,X,Y) returns the mean squared error as the measure of accuracy in err, for the model mdl, predictor values in X, and response values in Y.

err = loss(mdl,X,Y,Name,Value) returns the measure of accuracy, err, with the additional option specified by the Name,Value pair argument.

Input Arguments

mdl — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model for regression, specified as a FeatureSelectionNCARegression object.

X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables.

Data Types: single | double

Y — Response values
numeric real vector of length n
Response values, specified as a numeric real vector of length \( n \), where \( n \) is the number of observations.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

LossFunction — Loss function type

' mse ' (default) | ' mad ' 

Loss function type, specified as a comma-separated pair consisting of 'Loss Function' and one of the following.

<table>
<thead>
<tr>
<th>Loss Function Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mse'</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>'mad'</td>
<td>Mean absolute deviation</td>
</tr>
</tbody>
</table>

Example: 'LossFunction', 'mse'

Output Arguments

err — Smaller-the-better accuracy measure for learned feature weights

scalar value

Smaller-the-better accuracy measure for learned feature weights, returned as a scalar value. You can specify the measure of accuracy using the LossFunction name-value pair argument.

Examples
Tune NCA Model for Regression Using loss and predict

Load the sample data.

Download the housing data [1], from the UCI Machine Learning Repository [2]. The dataset has 506 observations. The first 13 columns contain the predictor values and the last column contains the response values. The goal is to predict the median value of owner-occupied homes in suburban Boston as a function of 13 predictors.

Load the data and define the response vector and the predictor matrix.

```matlab
load('housing.data');
X = housing(:,1:13);
y = housing(:,end);
```

Divide the data into training and test sets using the 4th predictor as the grouping variable for a stratified partitioning. This ensures that each partition includes similar amount of observations from each group.

```matlab
rng(1) % For reproducibility
cvp = cvpartition(X(:,4),'Holdout',56);
Xtrain = X(cvp.training,:);
ytrain = y(cvp.training,:);
Xtest = X(cvp.test,:);
ytest = y(cvp.test,:);
```

cvpartition randomly assigns 56 observations into a test set and the rest of the data into a training set.

Perform Feature Selection Using Default Settings

Perform feature selection using NCA model for regression. Standardize the predictor values.

```matlab
nca = fsrnca(Xtrain,ytrain,'Standardize',1);
```

Plot the feature weights.

```matlab
figure()
plot(nca.FeatureWeights,'ro')
```
The weights of irrelevant features are expected to approach zero. \texttt{fsrnca} identifies two features as irrelevant.

Compute the regression loss.

\[
L = \text{loss}(\text{nca}, X_{\text{test}}, y_{\text{test}}, \text\{'LossFunction', 'mad'\})
\]

\[
L = 2.5394
\]
Compute the predicted response values for the test set and plot them versus the actual response.

```
ypred = predict(nca,Xtest);
figure()
plot(ypred,ytest,'bo')
xlabel('Predicted response')
ylabel('Actual response')
```

A perfect fit versus the actual values forms a 45 degree straight line. In this plot, the predicted and actual response values seem to be scattered around this line. Tuning $\lambda$ (regularization parameter) value usually helps improve the performance.
Tune the regularization parameter using 10-fold cross-validation

Tuning \( \lambda \) means finding the \( \lambda \) value that will produce the minimum regression loss. Here are the steps for tuning \( \lambda \) using 10-fold cross-validation:

1. First partition the data into 10 folds. For each fold, \texttt{cvpartition} assigns 1/10th of the data as a training set, and 9/10th of the data as a test set.

   \[
   \begin{align*}
   n &= \text{length}(y\text{train}); \\
   \text{cvp} &= \text{cvpartition}(X\text{train}(:,4),\text{'kfold'},10); \\
   \text{numvalidsets} &= \text{cvp}.\text{NumTestSets};
   \end{align*}
   \]

   Assign the \( \lambda \) values for the search. Create an array to store the loss values.

   \[
   \begin{align*}
   \text{lambdavals} &= \text{linspace}(0,2,30)*\text{std}(y\text{train})/n; \\
   \text{lossvals} &= \text{zeros}([\text{length}([\text{lambdavals}]),\text{numvalidsets}]);
   \end{align*}
   \]

2. Train the neighborhood component analysis (nca) model for each \( \lambda \) value using the training set in each fold.

3. Fit a Gaussian process regression (gpr) model using the selected features. Next, compute the regression loss for the corresponding test set in the fold using the gpr model. Record the loss value.

4. Repeat this for each \( \lambda \) value and each fold.

   \[
   \begin{align*}
   \text{for} \ i &= 1: \text{length}([\text{lambdavals}]) \\
   \quad \text{for} \ k &= 1: \text{numvalidsets} \\
   & \quad X = X\text{train}(\text{cvp}.\text{training}(k),:); \\
   & \quad y = y\text{train}(\text{cvp}.\text{training}(k),:); \\
   & \quad X\text{valid} = X\text{train}(\text{cvp}.\text{test}(k),:); \\
   & \quad y\text{valid} = y\text{train}(\text{cvp}.\text{test}(k),:); \\
   & \quad \text{nca} = \text{fsrnca}(X,y,\text{'FitMethod'},\text{'exact'},... \\
   & \quad \quad \quad \text{'Lambda'},[\text{lambdavals}(i),..., \\
   & \quad \quad \quad \text{'Standardize'},1,\text{'LossFunction'},\text{'mad'}]); \\
   & \quad \text{% Select features using the feature weights and a relative} \\
   & \quad \text{% threshold.} \\
   & \quad \text{tol} = 1\text{e}-3; \\
   & \quad \text{selidx} = \text{nca}.\text{FeatureWeights} > \text{tol}\text{*max}(1,\text{max}([\text{nca}.\text{FeatureWeights}])); \\
   & \quad \text{% Fit a non-ARD GPR model using selected features.} \\
   & \quad \text{gpr} = \text{fitrgp}([X(:,\text{selidx})],y,\text{'Standardize'},1,...
   \end{align*}
   \]
Compute the average loss obtained from the folds for each $\lambda$ value. Plot the mean loss versus the $\lambda$ values.

```matlab
meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
```
Find the $\lambda$ value that produces the minimum loss value.

$$\left[~,\text{idx}\right] = \text{min}(\text{meanloss});$$

```matlab
bestlambda = lambdavals(idx)
```

$bestlambda = 0.0251$

Perform feature selection for regression using the best $\lambda$ value. Standardize the predictor values.
nca2 = fsrnca(Xtrain,ytrain,'Standardize',1,'Lambda',bestlambda,...
    'LossFunction','mad');

Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')

Compute the loss using the new nca model on the test data, which is not used to select
the features.

L2 = loss(nca2,Xtest,ytest,'LossFunction','mad')

L2 =
Tuning the regularization parameter helps identify the relevant features and reduces the loss.

Plot the predicted versus the actual response values in the test set.

```matlab
ypred = predict(nca2,Xtest);
figure;
plot(ypred,ytest,'bo');
```

The predicted response values seem to be closer to the actual values as well.
References


See Also
FeatureSelectionNCARegression | fsrnca | predict | refit

Introduced in R2016b
loss

Class: RegressionLinear

Regression loss for linear regression models

Syntax

L = loss(Mdl,X,Y)
L = loss(___ ,Name,Value)

Description

L = loss(Mdl,X,Y) returns the mean squared error (MSE) for the linear regression
model Mdl using predictor data in X and corresponding responses in Y. L contains an
MSE for each regularization strength in Mdl.

L = loss(___ ,Name,Value) uses any of the previous syntaxes and additional options
specified by one or more Name,Value pair arguments. For example, specify that columns
in the predictor data correspond to observations or specify the regression loss function.

Input Arguments

Mdl — Linear regression model
RegressionLinear model object

Linear regression model, specified as a RegressionLinear model object. You can create
a RegressionLinear model object using fitrlinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates
that rows correspond to individual observations, and columns correspond to individual
predictor variables.
Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in computation time.

The length of Y and the number of observations in X must be equal.

Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y and the number of observations in X must be equal.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding value. Also, in the table, \( f(x) = x\beta + b \).
  - \( \beta \) is a vector of \( p \) coefficients.
  - \( x \) is an observation from \( p \) predictor variables.
  - \( b \) is the scalar bias.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Epsilon-insensitive loss: $\ell[y,f(x)] = \max(0,</td>
</tr>
<tr>
<td>'mse'</td>
<td>MSE: $\ell[y,f(x)] = (y-f(x))^2$</td>
</tr>
</tbody>
</table>

'epsiloninsensitive' is appropriate for SVM learners only.

- Specify your own function using function handle notation.

Let $n$ be the number of observations in $X$. Your function must have this signature

```
lossvalue = lossfun(Y,Yhat,W)
```

where:

- The output argument `lossvalue` is a scalar.
- You choose the function name (`lossfun`).
- $Y$ is an $n$-dimensional vector of observed responses. `loss` passes the input argument `Y` in for `Y`.
- `Yhat` is an $n$-dimensional vector of predicted responses, which is similar to the output of `predict`.
- $W$ is an $n$-by-1 numeric vector of observation weights.

Specify your function using `'LossFun'`, `@lossfun`.

Data Types: `char` | `string` | `function_handle`

**ObservationsIn — Predictor data observation dimension**

- `'rows'` (default) | `'columns'`

Predictor data observation dimension, specified as the comma-separated pair consisting of `'ObservationsIn'` and `'columns'` or `'rows'`.

**Note** If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn'`, `'columns'`, then you might experience a significant reduction in optimization-execution time.
Weights — Observation weights
numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. If you supply weights, loss computes the weighted classification loss.

Let \( n \) be the number of observations in \( X \).

- \text{numel(Weights)} must be \( n \).
- By default, \text{Weights} is \text{ones}(n,1).

Data Types: double | single

Output Arguments

L — Regression losses
numeric scalar | numeric row vector

Regression losses, returned as a numeric scalar or row vector. The interpretation of \( L \) depends on \text{Weights} and \text{LossFun}.

\( L \) is the same size as \text{Mdl.Lambda}. \( L(j) \) is the regression loss of the linear regression model trained using the regularization strength \text{Mdl.Lambda}(j).

\textbf{Note} If \text{Mdl.FittedLoss} is 'mse', then the loss term in the objective function is half of the MSE. loss returns the MSE by default. Therefore, if you use loss to check the resubstitution (training) error, then there is a discrepancy between the MSE and optimization results that \text{fitrlinear} returns.

Examples

Estimate Test-Sample Mean Squared Error

Simulate 10000 observations from this model

\[
y = x_{100} + 2x_{200} + e.
\]
• \( X = x_1, \ldots, x_{1000} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.

• \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

```matlab
CVMdl = fitrlinear(X,Y,'Holdout',0.3);
Mdl = CVMdl.Trained{1}
```

```matlab
Mdl =
 RegressionLinear
 ResponseName: 'Y'
 ResponseTransform: 'none'
 Beta: [1000x1 double]
 Bias: -0.0066
 Lambda: 1.4286e-04
 Learner: 'svm'
```

CVMdl is a `RegressionPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `RegressionLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```matlab
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);
```

Estimate the training- and test-sample MSE.

```matlab
mseTrain = loss(Mdl,X(trainIdx,:),Y(trainIdx))
mseTrain = 0.1496
mseTest = loss(Mdl,X(testIdx,:),Y(testIdx))
mseTest = 3.2222
```
mseTest = 0.1798

Because there is one regularization strength in Mdl, mseTrain and mseTest are numeric scalars.

**Specify Custom Regression Loss**

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = x_1, \ldots, x_{1000} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
X = X'; % Put observations in columns for faster training

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

CVMdl = fitrlinear(X,Y,'Holdout',0.3,'ObservationsIn','columns');
Mdl = CVMdl.Trained{1}

Mdl =
  RegressionLinear
     ResponseName: 'Y'
     ResponseTransform: 'none'
     Beta: [1000x1 double]
     Bias: -0.0066
     Lambda: 1.4286e-04
     Learner: 'svm'

Properties, Methods
CVMdl is a `RegressionPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `RegressionLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```matlab
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);
```

Create an anonymous function that measures Huber loss ($\delta = 1$), that is,

\[
L = \sum_{j=1}^{n} w_j \ell_j,
\]

where

\[
\ell_j = \begin{cases} 
0.5 \hat{e}_j^2; & |\hat{e}_j| \leq 1 \\
|\hat{e}_j| - 0.5; & |\hat{e}_j| > 1.
\end{cases}
\]

$\hat{e}_j$ is the residual for observation $j$. Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

```matlab
huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5))/sum(W));
```

Estimate the training set and test set regression loss using the Huber loss function.

```matlab
eTrain = loss(Mdl,X(:,trainIdx),Y(trainIdx),'LossFun',huberloss,... 'ObservationsIn','columns')
eTrain = -0.4186
```

```matlab
eTest = loss(Mdl,X(:,testIdx),Y(testIdx),'LossFun',huberloss,... 'ObservationsIn','columns')
eTest = -0.4010
```
Find Good Lasso Penalty Using Regression Loss

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = \{x_1, ..., x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10\% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Create a set of 15 logarithmically-spaced regularization strengths from \( 10^{-4} \) through \( 10^{-1} \).

```matlab
Lambda = logspace(-4,-1,15);
```

Hold out 30\% of the data for testing. Identify the test-sample indices.

```matlab
cvp = cvpartition(numel(Y),'Holdout',0.30);
idxTest = test(cvp);
```

Train a linear regression model using lasso penalties with the strengths in \( \text{Lambda} \). Specify the regularization strengths, optimizing the objective function using SpaRSA, and the data partition. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

```matlab
X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
 'Solver','sparsa','Regularization','lasso','CVPartition',cvp);
Mdl1 = CVMdl.Trained{1};
numel(Mdl1.Lambda)
```

ans = 15
Mdl1 is a RegressionLinear model. Because Lambda is a 15-dimensional vector of regularization strengths, you can think of Mdl1 as 15 trained models, one for each regularization strength.

Estimate the test-sample mean squared error for each regularized model.

\[
\text{mse} = \text{loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');}
\]

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression model. Retrain the model using the entire data set and all options used previously, except the data-partition specification. Determine the number of nonzero coefficients per model.

\[
\text{Mdl} = \text{fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...}
\text{'Solver','sparsa','Regularization','lasso');}
\]

\[
\text{numNZCoeff} = \text{sum(Mdl.Beta==0);}
\]

In the same figure, plot the MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

\[
\text{figure;}
\text{[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...}
\text{log10(Lambda),log10(numNZCoeff));}
\]

\[
\text{hL1.Marker = 'o';}
\text{hL2.Marker = 'o';}
\text{ylabel(h(1),'log}_{10}\text{ MSE')}
\text{ylabel(h(2),'log}_{10}\text{ nonzero-coefficient frequency')}
\text{xlabel('log}_{10}\text{ Lambda')}
\text{hold off}
\]
Select the index or indices of Lambda that balance minimal classification error and predictor-variable sparsity (for example, Lambda(11)).

```matlab
idx = 11;
MdlFinal = selectModels(Mdl,idx);
```

`MdlFinal` is a trained `RegressionLinear` model object that uses `Lambda(11)` as a regularization strength.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
RegressionLinear | fitrlinear | predict

Introduced in R2016a
lowerparams

Lower Pareto tail parameters

Syntax

params = lowerparams(pd)

Description

params = lowerparams(pd) returns the two-element vector params, which includes the shape and scale parameters of the generalized Pareto distribution (GPD) in the lower tail of pd.

lowerparams does not return the location parameter of the GPD. The location parameter is the quantile value corresponding to the lower tail cumulative probability. Use the boundary function to return the location parameter.

Examples

Parameters of Lower Pareto Tail

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data by using paretotails. Find the distribution parameters of the lower Pareto tail by using the object function lowerparams.

Generate a sample data set containing 20% outliers.

rng('default'); % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a
fitted object consists of the empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of the data set.

```matlab
pd = paretotails(x,0.1,0.9)
```

```
pd =
Piecewise distribution with 3 segments
 -Inf < x < -1.33251 (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
 -1.33251 < x < 1.80149 (0.1 < p < 0.9): interpolated empirical cdf
 1.80149 < x < Inf (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)
```

Return the shape and scale parameters of the fitted GPD of the lower tail by using the `lowerparams` function.

```matlab
params = lowerparams(pd)
```

```
params = 1×2
 -0.0064 0.5670
```

You can also get the lower Pareto tail parameters by using the `LowerParameters` property. Access the `LowerParameters` property by using dot notation.

```matlab
pd.LowerParameters
ans = 1×2
 -0.0064 0.5670
```

The location parameter of the GPD is equal to the quantile value of the lower tail cumulative probability. Return the location parameter by using the `boundary` function.

```matlab
[p,q] = boundary(pd)
p = 2×1
 0.1000
 0.9000
```

```matlab
q = 2×1
 -1.3325
```
The values in `p` are the cumulative probabilities at the boundaries, and the values in `q` are the corresponding quantiles. `q(2)` is the location parameter of the GPD of the lower tail.

Use the `upperparams` function or the `UpperParameters` property to get the upper Pareto tail parameters.

### Input Arguments

**pd — Piecewise distribution with Pareto tails**

`paretotails` object

Piecewise distribution with Pareto tails, specified as a `paretotails` object.

### See Also

`boundary | gpfit | nsegments | paretotails | segment | upperparams`

### Topics

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

### Introduced in R2007a
lt

Class: qrandstream

Less than relation for handles

Syntax

h1 < h2

Description

h1 < h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise < result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

tf = lt(h1, h2) stores the result in a logical array of the same dimensions.

See Also

eq | ge | gt | le | ne | qrandstream
Isline

Add least-squares line to scatter plot

Syntax

lsline
lsline(ax)
h = lsline(__)

Description

lsline superimposes a least-squares line on each scatter plot in the current axes.

lsline ignores data points that are connected with solid, dashed, or dash-dot lines ('-', '--', or '-.') because it does not consider them to be scatter plots. To produce scatter plots, use the MATLAB scatter and plot functions.

lsline(ax) superimposes a least-squares line on the scatter plot in the axes specified by ax instead of the current axes (gca).

h = lsline(__) returns a column vector of least-squares line objects h using any of the previous syntaxes. Use h to modify the properties of a specific least-squares line after you create it. For a list of properties, see Line Properties.

Examples

Plot Least-Squares Line

Generate three sets of sample data and plot each set on the same figure.

x = 1:10;
rng default; % For reproducibility
figure;
y1 = x + randn(1,10);
scatter(x,y1,25,'b','*')
hold on

y2 = 2*x + randn(1,10);
plot(x,y2,'mo')

y3 = 3*x + randn(1,10);
plot(x,y3,'rx:')

Add a least-squares line for each set of sample data.
lsline
Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

\begin{verbatim}
rng default  % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);
\end{verbatim}

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create the first scatter plot on the top axis using y1, and the second scatter plot on the bottom axis using y2.
```matlab
figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);
scatter(ax1,x,y1)
scatter(ax2,x,y2)

lsline(ax1) % This is equivalent to reline(ax1)
mu = mean(y2);
refline(ax2,[0 mu])
```

Superimpose a least-squares line on the top plot, and a reference line at the mean of the y2 values in the bottom plot.
Use Least-Squares Line Object to Modify Line Properties

Define the x-variable and two different y-variables to use for the plots.

```matlab
rng default % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);
```

Define `ax1` as the top half of the figure, and `ax2` as the bottom half of the figure. Create the first scatter plot on the top axis using `y1`, and the second scatter plot on the bottom axis using `y2`. 
figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);

scatter(ax1,x,y1)
scatter(ax2,x,y2)

Superimpose a least-squares line on the top plot. Then, use the least-squares line object h1 to change the line color to red.

h1 = lsline(ax1);
h1.Color = 'r';

Superimpose a least-squares line on the bottom plot. Then, use the least-squares line object h2 to increase the line width to 5.

h2 = lsline(ax2);
h2.LineWidth = 5;
Input Arguments

**ax — Target axes**

gca (default) | axes object

Target axes, specified as an axes object. If you do not specify the axes and if the current axes are Cartesian axes, then the lsline function uses the current axes.
Output Arguments

h — One or more least-squares line objects
scalar | vector

One or more least-squares line objects, returned as a scalar or a vector. These objects are unique identifiers, which you can use to query and modify properties of a specific least-squares line. For a list of properties, see Chart Line.

See Also

(gca | gline | plot | refcurve | refline | scatter

Introduced before R2006a
**mad**

Mean or median absolute deviation

**Syntax**

\[
\begin{align*}
y &= \text{mad}(X) \\
y &= \text{mad}(X,1) \\
y &= \text{mad}(X,0) \\
y &= \text{mad}(X,\text{flag},'\text{all}') \\
y &= \text{mad}(X,\text{flag},\text{dim}) \\
y &= \text{mad}(X,\text{flag},\text{vecdim})
\end{align*}
\]

**Description**

\[y = \text{mad}(X)\] returns the mean absolute deviation of the values in \(X\). For vector input, \(y\) is \(\text{mean}(\text{abs}(X-\text{mean}(X)))\). For a matrix input, \(y\) is a row vector containing the mean absolute deviation of each column of \(X\). For \(N\)-dimensional arrays, \text{mad} operates along the first nonsingleton dimension of \(X\).

\[y = \text{mad}(X,1)\] returns the median absolute deviation of the values in \(X\). For vector input, \(y\) is \(\text{median}(\text{abs}(X-\text{median}(X)))\). For a matrix input, \(y\) is a row vector containing the median absolute deviation of each column of \(X\). For \(N\)-dimensional arrays, \text{mad} operates along the first nonsingleton dimension of \(X\).

\[y = \text{mad}(X,0)\] is the same as \(\text{mad}(X)\), and returns the mean absolute deviation of the values in \(X\).

\[y = \text{mad}(X,\text{flag},'\text{all}')\] returns the absolute deviation of all elements of \(X\). The \text{flag} value is 0 or 1 to indicate mean or median absolute deviation, respectively.

\[y = \text{mad}(X,\text{flag},\text{dim})\] computes the absolute deviation along the operating dimension \(\text{dim}\) of \(X\).

\[y = \text{mad}(X,\text{flag},\text{vecdim})\] returns the absolute deviation over the dimensions specified in the vector \text{vecdim}. Each element of \text{vecdim} represents a dimension of the input array \(X\). The output \(y\) has length 1 in the specified operating dimensions. The other dimension...
lengths are the same for $X$ and $y$. For example, if $X$ is a 2-by-3-by-4 array, then \texttt{mad}(X, 0, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the mean absolute deviation of the elements on the corresponding page of $X$.

### Examples

**Compare Robustness of Scale Estimates**

Compare the robustness of the standard deviation, mean absolute deviation, and median absolute deviation in the presence of outliers.

Create a data set $x$ of normally distributed data. Create another data set $x_0$ that contains the elements of $x$ and an additional outlier.

```matlab
rng('default') % For reproducibility
x = normrnd(0,1,1,50);
xo = [x 10];
```

Compute the ratio of the standard deviations of the two data sets.

```matlab
r1 = std(xo)/std(x)
r1 = 1.4633
```

Compute the ratio of the mean absolute deviations of the two data sets.

```matlab
r2 = mad(xo,0)/mad(x,0)
r2 = 1.1833
```

Compute the ratio of the median absolute deviations of the two data sets.

```matlab
r3 = mad(xo,1)/mad(x,1)
r3 = 1.0336
```

In this case, the median absolute deviation is less influenced by the outlier than the other two scale estimates.
Mean and Median Absolute Deviations of All Values

Find the mean and median absolute deviations of all the values in an array.

Create a 3-by-5-by-2 array \( X \) and add an outlier.

\[
X = \text{reshape}(1:30,[3 \ 5 \ 2]);
\]
\[
X(6) = 100
\]
\[
X = \]
\[
X(:,:,1) =
1  4  7  10  13
2  5  8  11  14
3 100  9  12  15
\]
\[
X(:,:,2) =
16 19 22 25 28
17 20 23 26 29
18 21 24 27 30
\]

Find the mean and median absolute deviations of the elements in \( X \).

\[
\text{meandev} = \text{mad}(X,0,'all')
\]
\[
\text{meandev} = 10.1178
\]
\[
\text{mediandev} = \text{mad}(X,1,'all')
\]
\[
\text{mediandev} = 7.5000
\]

\text{meandev} \text{ is the mean absolute deviation of all the elements in } X, \text{ and } \text{mediandev} \text{ is the median absolute deviation of all the elements in } X.

Tips

- \text{mad} \text{ treats NaNs as missing values and removes them.}
- For normally distributed data, multiply \text{mad} by one of the following factors to obtain an estimate of the normal scale parameter \( \sigma \):
• $\sigma = 1.253 \cdot \text{mad}(X, 0)$ — For mean absolute deviation
• $\sigma = 1.4826 \cdot \text{mad}(X, 1)$ — For median absolute deviation

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The following syntaxes do not support code generation.
  • $y = \text{mad}(X, \text{flag}, 'all')$
  • $y = \text{mad}(X, \text{flag}, \text{vecdim})$
• Empty dim input is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • $y = \text{mad}(X, \text{flag}, 'all')$
• \( y = \text{mad}(X, \text{flag}, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

iqr | range | std

*Introduced before R2006a*
mahal
Mahalanobis distance

Syntax

d2 = mahal(Y,X)

Description
d2 = mahal(Y,X) returns the squared Mahalanobis distance on page 32-3873 of each observation in Y to the reference samples in X.

Examples

Compare Mahalanobis and Squared Euclidean Distances

Generate a correlated bivariate sample data set.

rng('default') % For reproducibility
X = mvnrnd([0;0],[1 .9;.9 1],1000);

Specify four observations that are equidistant from the mean of X in Euclidean distance.
Y = [1 1;1 -1;-1 1;-1 -1];

Compute the Mahalanobis distance of each observation in Y to the reference samples in X.

```
d2_mahal = mahal(Y,X)
d2_mahal = 4x1
 1.1095
 20.3632
 19.5939
 1.0137
```
Compute the squared Euclidean distance of each observation in Y from the mean of X.

\[
d_2_{\text{Euclidean}} = \text{sum}((Y-\text{mean}(X)).^2,2)
\]

\[
d_2_{\text{Euclidean}} = 4\times1
\]

\[
2.0931 \\
2.0399 \\
1.9625 \\
1.9094
\]

Plot X and Y by using scatter and use marker color to visualize the Mahalanobis distance of Y to the reference samples in X.

```matlab
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
scatter(Y(:,1),Y(:,2),100,d2_mahal,'o','filled')
hb = colorbar;
ylabel(hb,'Mahalanobis Distance')
legend('X','Y','Location','best')
```
All observations in $Y (\{1, 1\}, [-1, -1], [1, -1], \text{and} [-1, 1])$ are equidistant from the mean of $X$ in Euclidean distance. However, $[1, 1]$ and $[-1, -1]$ are much closer to $X$ than $[1, -1]$ and $[-1, 1]$ in Mahalanobis distance. Because Mahalanobis distance considers the covariance of the data and the scales of the different variables, it is useful for detecting outliers.

**Input Arguments**

$Y$ — Data

$n$-by-$m$ numeric matrix
Data, specified as an \(n\)-by-\(m\) numeric matrix, where \(n\) is the number of observations and \(m\) is the number of variables in each observation.

\(X\) and \(Y\) must have the same number of columns, but can have different numbers of rows.

Data Types: `single` | `double`

\(X\) — Reference samples
\(p\)-by-\(m\) numeric matrix

Reference samples, specified as a \(p\)-by-\(m\) numeric matrix, where \(p\) is the number of samples and \(m\) is the number of variables in each sample.

\(X\) and \(Y\) must have the same number of columns, but can have different numbers of rows. \(X\) must have more rows than columns.

Data Types: `single` | `double`

**Output Arguments**

\(d2\) — Squared Mahalanobis distance
\(n\)-by-1 numeric vector

Squared Mahalanobis distance on page 32-3873 of each observation in \(Y\) to the reference samples in \(X\), returned as an \(n\)-by-1 numeric vector, where \(n\) is the number of observations in \(X\).

**Definitions**

**Mahalanobis Distance**

The Mahalanobis distance is a measure between a sample point and a distribution.

The Mahalanobis distance from a vector \(y\) to a distribution with mean \(\mu\) and covariance \(\Sigma\) is

\[ d = \sqrt{(y - \mu) \Sigma^{-1} (y - \mu)'} \]

This distance represents how far \(y\) is from the mean in number of standard deviations.
mahal returns the squared Mahalanobis distance \( d^2 \) from an observation in \( Y \) to the reference samples in \( X \). In the \texttt{mahal} function, \( \mu \) and \( \Sigma \) are the sample mean and covariance of the reference samples, respectively.

**See Also**
mahal | pdist

**Introduced before R2006a**
**mahal**

Mahalanobis distance to class means

**Syntax**

\[
M = \text{mahal}(\text{obj},X) \]

\[
M = \text{mahal}(\text{obj},X,\text{Name},\text{Value})
\]

**Description**

\[
M = \text{mahal}(\text{obj},X) \]

returns the squared Mahalanobis distances from observations in \(X\) to the class means in \(\text{obj}\).

\[
M = \text{mahal}(\text{obj},X,\text{Name},\text{Value})
\]

computes the squared Mahalanobis distance with additional options specified by one or more Name,Value pair arguments.

**Input Arguments**

\(\text{obj}\)

Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with fitcdiscr.

\(X\)

Numeric matrix of size \(n\)-by-\(p\), where \(p\) is the number of predictors in \(\text{obj}\), and \(n\) is any positive integer. \(\text{mahal}\) computes the Mahalanobis distances from the rows of \(X\) to each of the \(K\) means of the classes in \(\text{obj}\).

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**ClassLabels**

Class labels consisting of \( n \) elements of \( \text{obj}.Y \), where \( n \) is the number of rows of \( X \).

**Output Arguments**

**M**

Size and meaning of output \( M \) depends on whether the **ClassLabels** name-value pair is present:

- No **ClassLabels** — \( M \) is a numeric matrix of size \( n \)-by-\( K \), where \( K \) is the number of classes in \( \text{obj} \), and \( n \) is the number of rows in \( X \). \( M(i,j) \) is the squared Mahalanobis distance from the \( i \)th row of \( X \) to the mean of class \( j \).
- **ClassLabels** exists — \( M \) is a column vector with \( n \) elements. \( M(i) \) is the squared Mahalanobis distance from the \( i \)th row of \( X \) to the mean for the class of the \( i \)th element of **ClassLabels**.

**Examples**

Find the Mahalanobis distances from the mean of the Fisher iris data to the class means, using distinct covariance matrices for each class:

```matlab
load fisheriris
obj = fitcdiscr(meas,species,...
 'DiscrimType','quadratic');
mahadist = mahal(obj,mean(meas))
```

```matlab
mahadist =
 220.0667 5.0254 30.5804
```
Definitions

Mahalanobis Distance

The Mahalanobis distance \( d(x,y) \) between \( n \)-dimensional points \( x \) and \( y \), with respect to a given \( n \)-by-\( n \) covariance matrix \( S \), is

\[
d(x, y) = \sqrt{(x - y)^T S^{-1} (x - y)}.
\]

See Also
CompactClassificationDiscriminant | fitcdiscr | gmdistribution | mahal

Topics
“Discriminant Analysis Classification” on page 20-2
mahal

Mahalanobis distance to Gaussian mixture component

Syntax

d2 = mahal(gm,X)

Description

d2 = mahal(gm,X) returns the squared Mahalanobis distance of each observation in X to each Gaussian mixture component in gm.

Examples

Measure Mahalanobis Distance

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the mvnrnd function. Fit a Gaussian mixture model (GMM) to the generated data by using the fitgmdist function, and then compute Mahalanobis distances between the generated data and the mixture components of the fitted GMM.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture components.

```matlab
rng('default') % For reproducibility
mu1 = [1 2]; % Mean of the 1st component
sigma1 = [2 0; 0 .5]; % Covariance of the 1st component
mu2 = [-3 -5]; % Mean of the 2nd component
sigma2 = [1 0; 0 1]; % Covariance of the 2nd component
```

Generate an equal number of random variates from each component, and combine the two sets of random variates.
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];

The combined data set X contains random variates following a mixture of two bivariate Gaussian distributions.

Fit a two-component GMM to X.

gm = fitgmdist(X,2)
gm =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:   -2.9617   -4.9727

Component 2:
Mixing proportion: 0.500000
Mean:    0.9539    2.0261

fitgmdist fits a GMM to X using two mixture components. The means of Component 1 and Component 2 are [-2.9617,-4.9727] and [0.9539,2.0261], which are close to mu2 and mu1, respectively.

Compute the Mahalanobis distance of each point in X to each component of gm.

d2 = mahal(gm,X);

Plot X by using scatter and use marker color to visualize the Mahalanobis distance to Component 1.

scatter(X(:,1),X(:,2),10,d2(:,1),'.') % Scatter plot with points of size 10
c = colorbar;
ylabel(c,'Mahalanobis Distance to Component 1')
Input Arguments

\( \text{gm} \) — Gaussian mixture distribution

\text{gmdistribution} \ object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a \text{gmdistribution} \ object.

You can create a \text{gmdistribution} \ object using \text{gmdistribution} \ or \text{fitgmdist}. Use the \text{gmdistribution} \ function to create a \text{gmdistribution} \ object by specifying the
distribution parameters. Use the `fitgmdist` function to fit a `gmdistribution` model to data given a fixed number of components.

**X — Data**  
*n*-by-*m* numeric matrix

Data, specified as an *n*-by-*m* numeric matrix, where *n* is the number of observations and *m* is the number of variables in each observation.

If a row of *X* contains NaNs, then `mahal` excludes the row from the computation. The corresponding value in *d2* is NaN.

Data Types: `single` | `double`

**Output Arguments**

**d2 — Squared Mahalanobis distance**  
*n*-by-*k* numeric matrix

Squared Mahalanobis distance of each observation in *X* to each Gaussian mixture component in *gm*, returned as an *n*-by-*k* numeric matrix, where *n* is the number of observations in *X* and *k* is the number of mixture components in *gm*.

*d2(i,j)* is the squared distance of observation *i* to the *j*th Gaussian mixture component.

**Definitions**

**Mahalanobis Distance**

The Mahalanobis distance is a measure between a sample point and a distribution.

The Mahalanobis distance from a vector *x* to a distribution with mean *μ* and covariance *Σ* is

\[ d = \sqrt{(x - \mu)\Sigma^{-1}(x - \mu)'} \]

This distance represents how far *x* is from the mean in number of standard deviations.
mahal returns the squared Mahalanobis distance $d^2$ from an observation in $X$ to a mixture component in $gm$.

**See Also**
cluster | fitgmdist | gmdistribution | mahal | posterior

**Topics**
“Gaussian Mixture Models” on page 5-145
“Cluster Using Gaussian Mixture Models” on page 16-29
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
“Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48

**Introduced in R2007b**
maineffectsplot

Main effects plot for grouped data

Syntax

maineffectsplot(Y,GROUP)
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)  
[figh,AXESH] = maineffectsplot(...)

Description

maineffectsplot(Y,GROUP) displays main effects plots for the group means of matrix Y with groups defined by entries in GROUP, which can be a cell array or a matrix. Y is a numeric matrix or vector. If Y is a matrix, the rows represent different observations and the columns represent replications of each observation. If GROUP is a cell array, then each cell of GROUP must contain a grouping variable that is a categorical variable, numeric vector, character matrix, string array, or single-column cell array of character vectors. If GROUP is a matrix, then its columns represent different grouping variables. Each grouping variable must have the same number of rows as Y. The number of grouping variables must be greater than 1.

The display has one subplot per grouping variable, with each subplot showing the group means of Y as a function of one grouping variable.

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies one or more of the following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix, a string array, or a cell array of character vectors, one per grouping variable. Default names are 'X1', 'X2', ...

• 'statistic' — Values that indicate whether the group mean or the group standard deviation should be plotted. Use 'mean' or 'std'. The default is 'mean'. If the value is 'std', Y is required to have multiple columns.

• 'parent' — A handle to the figure window for the plots. The default is the current figure window.
[figh,AXESH] = maineffectsplot(...) returns the handle figh to the figure window and an array of handles AXESH to the subplot axes.

Examples

Main Effects Plot

Load the sample data.

load carsmall;

Display main effects plots for car weight with two grouping variables, model year and number of cylinders.

maineffectsplot(Weight,{Model_Year,Cylinders}, ...
    'varnames',{'Model Year','# of Cylinders'})
See Also
interactionplot | multivarichart

Topics
“Grouping Variables” on page 2-57

Introduced in R2006b
ClassificationDiscriminant.make

Class: ClassificationDiscriminant

Construct discriminant analysis classifier from parameters (to be removed)

Note ClassificationDiscriminant.make will be removed in a future release. Use makecdiscr instead.

Syntax

cobj = ClassificationDiscriminant.make(Mu,Sigma)
cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value)

Description

cobj = ClassificationDiscriminant.make(Mu,Sigma) constructs a compact discriminant analysis classifier from the class means Mu and covariance matrix Sigma.

cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value) constructs a compact classifier with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mu — Class means
matrix of scalar values

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

Data Types: single | double
**Sigma — Within-class covariance**

matrix of scalar values

Within-class covariance, specified as a matrix of scalar values.

- For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size $p$-by-$p$, where $p$ is the number of predictors.
- For a quadratic discriminant, Sigma is an array of size $p$-by-$p$-by-$K$, where $K$ is the number of classes. For each $i$, $\Sigma(:,:,i)$ is a symmetric, positive semidefinite matrix.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**ClassNames — Class names**

numeric vector | categorical vector | logical vector | character array | cell array of character vectors

Class names as ordered in `Mu`, specified as the comma-separated pair consisting of 'ClassNames' and an array containing grouping variables. Use any data type for a grouping variable, including numeric vector, categorical vector, logical vector, character array, or cell array of character vectors.

`ClassNames` names the classes, as ordered in `Mu`.

Default is 1:$K$, where $K$ is the number of classes (the number of rows of `Mu`).

Data Types: `single` | `double` | `logical` | `char` | `cell`

**Cost — Cost of misclassification**

square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of 'Cost' and a square matrix, where $\text{Cost}(i,j)$ is the cost of classifying a point into class $j$ if its true class is $i$. Alternatively, Cost can be a structure $S$ having two fields: $S.ClassNames$
containing the group names as a variable of the same type as \( y \), and \( S.ClassificationCosts \) containing the cost matrix.

The default is \( \text{Cost}(i,j)=1 \) if \( i \neq j \), and \( \text{Cost}(i,j)=0 \) if \( i=j \).

Data Types: `single` | `double` | `struct`

**PredictorNames — Predictor variable names**

`{'X1','X2',...}` (default) | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of `'PredictorNames'` and a cell array of character vectors containing the names for the predictor variables, in the order in which they appear in \( X \).

Data Types: `cell`

**Prior — Prior probabilities**

`'uniform'` (default) | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of `'Prior'` and one of the following.

- `'uniform'`, a character vector meaning all class prior probabilities are equal.
- A vector containing one scalar value for each class.
- A structure \( S \) with two fields:
  - \( S.ClassNames \) containing the class names as a variable of the same type as \( ClassNames \).
  - \( S.ClassProbs \) containing a vector of corresponding probabilities.

Data Types: `single` | `double` | `struct`

**ResponseName — Response variable name**

`'Y'` (default) | character vector

Response variable name, specified as the comma-separated pair consisting of `'ResponseName'` and a character vector containing the name of the response variable \( y \).

Example: `'ResponseName','Response'`

Data Types: `char`
**Output Arguments**

cobj — Discriminant analysis classifier

discriminant analysis classifier object

Discriminant analysis classifier, returned as a discriminant analysis classifier object of class `CompactClassificationDiscriminant`. You can use the `predict` method to predict classification labels for new data.

**Examples**

**Construct a Compact Linear Discriminant Analysis Classifier**

Construct a compact linear discriminant analysis classifier from the means and covariances of the Fisher iris data.

```matlab
load fisheriris
mu(1,:) = mean(meas(1:50,:));
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
cc = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147; % unbiased estimator of sigma
cpct = ClassificationDiscriminant.make(mu,sigstar,...
 'ClassNames',{'setosa','versicolor','virginica'})

cpct =
 classreg.learning.classif.CompactClassificationDiscriminant
 PredictorNames: {'x1' 'x2' 'x3' 'x4'}
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 DiscrimType: 'linear'
 Mu: [3x4 double]
```
Coeffs: [3x3 struct]

Properties, Methods

See Also
CompactClassificationDiscriminant | compact | fitcdiscr | makecdiscr

Topics
“Discriminant Analysis Classification” on page 20-2
makecdiscr

Construct discriminant analysis classifier from parameters

Syntax

\[ \text{cobj} = \text{makecdiscr}(\text{Mu}, \text{Sigma}) \]
\[ \text{cobj} = \text{makecdiscr}(\text{Mu}, \text{Sigma}, \text{Name}, \text{Value}) \]

Description

\[ \text{cobj} = \text{makecdiscr}(\text{Mu}, \text{Sigma}) \] constructs a compact discriminant analysis classifier from the class means \( \text{Mu} \) and covariance matrix \( \text{Sigma} \).

\[ \text{cobj} = \text{makecdiscr}(\text{Mu}, \text{Sigma}, \text{Name}, \text{Value}) \] constructs a compact classifier with additional options specified by one or more name-value pair arguments. For example, you can specify the cost of misclassification or the prior probabilities for each class.

Examples

Construct a Compact Linear Discriminant Analysis Classifier

Construct a compact linear discriminant analysis classifier from the means and covariances of the Fisher iris data.

\[ \text{load fisheriris} \]
\[ \text{mu}(1,:) = \text{mean}(	ext{meas}(1:50,:)); \]
\[ \text{mu}(2,:) = \text{mean}(	ext{meas}(51:100,:)); \]
\[ \text{mu}(3,:) = \text{mean}(	ext{meas}(101:150,:)); \]
\[ \text{mm1} = \text{repmat}(	ext{mu}(1,:),50,1); \]
\[ \text{mm2} = \text{repmat}(	ext{mu}(2,:),50,1); \]
\[ \text{mm3} = \text{repmat}(	ext{mu}(3,:),50,1); \]
\[ \text{cc} = \text{meas}; \]
\[ \text{cc}(1:50,:) = \text{cc}(1:50,:) - \text{mm1}; \]
cc(51:100,:) = cc(51:100,:) - mm2;
c(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147; % unbiased estimator of sigma
cpct = makecdiscr(mu,sigstar,...
    'ClassNames',{'setosa','versicolor','virginica'})

    cpct =
    classreg.learning.classif.CompactClassificationDiscriminant
        PredictorNames: {'x1' 'x2' 'x3' 'x4'}
        ResponseName: 'Y'
        CategoricalPredictors: []
        ClassNames: {'setosa' 'versicolor' 'virginica'}
        ScoreTransform: 'none'
        DiscrimType: 'linear'
        Mu: [3x4 double]
        Coeffs: [3x3 struct]

Properties, Methods

Input Arguments

Mu — Class means
matrix of scalar values

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

Data Types: single | double

Sigma — Within-class covariance
matrix of scalar values

Within-class covariance, specified as a matrix of scalar values.

- For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size p-by-p, where p is the number of predictors.
• For a quadratic discriminant, \( \Sigma \) is an array of size \( p \times p \times K \), where \( K \) is the number of classes. For each \( i \), \( \Sigma(:,:,i) \) is a symmetric, positive semidefinite matrix.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as

\[ \text{Name1,Value1,...,NameN,ValueN} \]

Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'} specifies a discriminant analysis classifier that uses 'setosa', 'versicolor', and 'virginica' as the grouping variables.

**ClassNames — Class names**

numeric vector | categorical vector | logical vector | character array | string array | cell array of character vectors

Class names as ordered in Mu, specified as the comma-separated pair consisting of 'ClassNames' and an array containing grouping variables. Use any data type for a grouping variable, including numeric vector, categorical vector, logical vector, character array, string array, or cell array of character vectors.

The default is \( 1:K \), where \( K \) is the number of classes (the number of rows of Mu).

Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'}

Data Types: single | double | logical | char | string | cell

**Cost — Cost of misclassification**

square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of 'Cost' and a square matrix, where \( \text{Cost}(i,j) \) is the cost of classifying a point into class \( j \) if its true class is \( i \). Alternatively, \( \text{Cost} \) can be a structure \( S \) having two fields: \( S.\text{ClassNames} \) containing the group names as a variable of the same type as \( y \), and \( S.\text{ClassificationCosts} \) containing the cost matrix.

The default is \( \text{Cost}(i,j)=1 \) if \( i\neq j \), and \( \text{Cost}(i,j)=0 \) if \( i=j \).
Data Types: single | double | struct

**PredictorNames — Predictor variable names**

{ 'X1', 'X2', ... } (default) | string array | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array or cell array of character vectors containing the names for the predictor variables, in the order in which they appear in X.

Data Types: string | cell

Prior — Prior probabilities

'uniform' (default) | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and one of the following:

- 'uniform', meaning all class prior probabilities are equal
- A vector containing one scalar value for each class
- A structure S with two fields:
  - S.ClassNames containing the class names as a variable of the same type as ClassNames
  - S.ClassProbs containing a vector of corresponding probabilities

Data Types: char | string | single | double | struct

ResponseName — Response variable name

'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and a character vector or string scalar containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char | string

**Output Arguments**

cobj — Discriminant analysis classifier
discriminant analysis classifier object
Discriminant analysis classifier, returned as a discriminant analysis classifier object of class CompactClassificationDiscriminant. You can use the predict method to predict classification labels for new data.

**Tips**

- You can change the discriminant type using dot notation after constructing cobj:

  ```
 cobj.DiscrimType = 'discrimType'
  ```

  where `discrimType` is one of 'linear', 'quadratic', 'diagLinear', 'diagQuadratic', 'pseudoLinear', or 'pseudoQuadratic'. You can change between linear types or between quadratic types, but cannot change between a linear and a quadratic type.

- `cobj` is a linear classifier when `Sigma` is a matrix. `cobj` is a quadratic classifier when `Sigma` is a three-dimensional array.

**See Also**

CompactClassificationDiscriminant | compact | fitcdiscr | predict

**Topics**

“Discriminant Analysis Classification” on page 20-2

**Introduced in R2014a**
makedist

Create probability distribution object

Syntax

pd = makedist(distname)
pd = makedist(distname,Name,Value)
list = makedist
makedist -reset

Description

pd = makedist(distname) creates a probability distribution object for the distribution distname, using the default parameter values.

pd = makedist(distname,Name,Value) creates a probability distribution object with one or more distribution parameter values specified by name-value pair arguments.

list = makedist returns a cell array list containing a list of the probability distributions that makedist can create.

makedist -reset resets the list of distributions by searching the path for files contained in a package named prob and implementing classes derived from ProbabilityDistribution.

Examples

Create a Normal Distribution Object

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')
\begin{verbatim}

pd =
    NormalDistribution

    Normal distribution
    mu = 0
    sigma = 1

Compute the interquartile range of the distribution.

r = iqr(pd)

r = 1.3490

\textbf{Create a Gamma Distribution Object}

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd =
    GammaDistribution

    Gamma distribution
    a = 1
    b = 1

Compute the mean of the gamma distribution.

mean = mean(pd)

mean = 1

\textbf{Specify Parameters for a Normal Distribution Object}

Create a normal distribution object with parameter values \( \mu = 75 \) and \( \sigma = 10 \).

pd = makedist('Normal','mu',75,'sigma',10)
\end{verbatim}
pd = NormalDistribution

Normal distribution
    mu = 75
    sigma = 10

Specify Parameters for a Gamma Distribution Object

Create a gamma distribution object with the parameter value \( a = 3 \) and the default value \( b = 1 \).

\[
pd = \text{makedist}('\text{Gamma}', 'a', 3)
\]

\[
pd = \text{GammaDistribution}
\]

Gamma distribution
    a = 3
    b = 1

Input Arguments

distname — Distribution name
character vector | string scalar

Distribution name, specified as one of the following character vectors or string scalars. The distribution specified by distname determines the type of the returned probability distribution object.

<table>
<thead>
<tr>
<th>Distribution Name</th>
<th>Description</th>
<th>Distribution Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>Beta distribution</td>
<td>BetaDistribution</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>Binomial distribution</td>
<td>BinomialDistribution</td>
</tr>
<tr>
<td>Distribution Name</td>
<td>Description</td>
<td>Distribution Object</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>Birnbaum-Saunders distribution</td>
<td>BirnbaumSaundersDistribution</td>
</tr>
<tr>
<td>'Burr'</td>
<td>Burr distribution</td>
<td>BurrDistribution</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>Exponential distribution</td>
<td>ExponentialDistribution</td>
</tr>
<tr>
<td>'ExtremeValue'</td>
<td>Extreme Value distribution</td>
<td>ExtremeValueDistribution</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>Gamma distribution</td>
<td>GammaDistribution</td>
</tr>
<tr>
<td>'GeneralizedExtremeValue'</td>
<td>Generalized Extreme Value</td>
<td>GeneralizedExtremeValueDistribution</td>
</tr>
<tr>
<td>'GeneralizedPareto'</td>
<td>Generalized Pareto distribution</td>
<td>GeneralizedParetoDistribution</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>Half-normal distribution</td>
<td>HalfNormalDistribution</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>Inverse Gaussian distribution</td>
<td>InverseGaussianDistribution</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>Logistic distribution</td>
<td>LogisticDistribution</td>
</tr>
<tr>
<td>'Loglogistic'</td>
<td>Loglogistic distribution</td>
<td>LoglogisticDistribution</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>Lognormal distribution</td>
<td>LognormalDistribution</td>
</tr>
<tr>
<td>'Multinomial'</td>
<td>Multinomial distribution</td>
<td>MultinomialDistribution</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>Nakagami distribution</td>
<td>NakagamiDistribution</td>
</tr>
<tr>
<td>'NegativeBinomial'</td>
<td>Negative Binomial distribution</td>
<td>NegativeBinomialDistribution</td>
</tr>
<tr>
<td>'Normal'</td>
<td>Normal distribution</td>
<td>NormalDistribution</td>
</tr>
<tr>
<td>'PiecewiseLinear'</td>
<td>Piecewise Linear distribution</td>
<td>PiecewiseLinearDistribution</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>Poisson distribution</td>
<td>PoissonDistribution</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>Rayleigh distribution</td>
<td>RayleighDistribution</td>
</tr>
<tr>
<td>'Rician'</td>
<td>Rician distribution</td>
<td>RicianDistribution</td>
</tr>
<tr>
<td>Distribution Name</td>
<td>Description</td>
<td>Distribution Object</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>'Stable'</td>
<td>Stable distribution</td>
<td>StableDistribution</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>t Location-Scale distribution</td>
<td>tLocationScaleDistribution</td>
</tr>
<tr>
<td>'Triangular'</td>
<td>Triangular distribution</td>
<td>TriangularDistribution</td>
</tr>
<tr>
<td>'Uniform'</td>
<td>Uniform distribution</td>
<td>UniformDistribution</td>
</tr>
<tr>
<td>'Weibull'</td>
<td>Weibull distribution</td>
<td>WeibullDistribution</td>
</tr>
</tbody>
</table>

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: makedist('Normal','mu',10) specifies a normal distribution with parameter mu equal to 10, and parameter sigma equal to the default value of 1.

**Beta Distribution**

*a* — **First shape parameter**

1 (default) | positive scalar value

Example: 'a',3

Data Types: single | double

*b* — **Second shape parameter**

1 (default) | positive scalar value

Example: 'b',5

Data Types: single | double

**Binomial Distribution**

*N* — **Number of trials**

1 (default) | positive integer value

Example: 'N',25
Data Types: single | double

\( p \) — Probability of success
\( 0.5 \) (default) | scalar value in the range \([0,1]\)
Example: 'p', 0.25
Data Types: single | double

**Birnbaum-Saunders Distribution**

\( \beta \) — Scale parameter
\( 1 \) (default) | positive scalar value
Example: 'beta', 2
Data Types: single | double

\( \gamma \) — Shape parameter
\( 1 \) (default) | nonnegative scalar value
Example: 'gamma', 0
Data Types: single | double

**Burr Distribution**

\( \alpha \) — Scale parameter
\( 1 \) (default) | positive scalar value
Example: 'alpha', 2
Data Types: single | double

\( c \) — First shape parameter
\( 1 \) (default) | positive scalar value
Example: 'c', 2
Data Types: single | double

\( k \) — Second shape parameter
\( 1 \) (default) | positive scalar value
Example: 'k', 5
Data Types: single | double
Exponential Distribution

\( \mu \) — Mean parameter
1 (default) | positive scalar value
Example: 'mu',5
Data Types: single | double

Extreme Value Distribution

\( \mu \) — Location parameter
0 (default) | scalar value
Example: 'mu',-2
Data Types: single | double

\( \sigma \) — Scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types: single | double

Gamma Distribution

\( a \) — Shape parameter
1 (default) | positive scalar value
Example: 'a',2
Data Types: single | double

\( b \) — Scale parameter
1 (default) | nonnegative scalar value
Example: 'b',0
Data Types: single | double

Generalized Extreme Value Distribution

\( k \) — Shape parameter
0 (default) | scalar value
Example: 'k',0
Data Types: single | double

**sigma — Scale parameter**
1 (default) | nonnegative scalar value
Example: 'sigma', 2
Data Types: single | double

**mu — Location parameter**
0 (default) | scalar value
Example: 'mu', 1
Data Types: single | double

**Generalized Pareto Distribution**

**k — Shape parameter**
1 (default) | scalar value
Example: 'k', 0
Data Types: single | double

**sigma — Scale parameter**
1 (default) | nonnegative scalar value
Example: 'sigma', 2
Data Types: single | double

**theta — Location parameter**
1 (default) | scalar value
Example: 'theta', 2
Data Types: single | double

**Half-Normal Distribution**

**mu — Location parameter**
0 (default) | scalar value
Example: 'mu', 1
Data Types: single | double
**sigma — Shape parameter**
1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types: single | double

**Inverse Gaussian Distribution**

**mu — Scale parameter**
1 (default) | positive scalar value
Example: 'mu',2
Data Types: single | double

**lambda — Shape parameter**
1 (default) | positive scalar value
Example: 'lambda',4
Data Types: single | double

**Logistic Distribution**

**mu — Mean**
0 (default) | scalar value
Example: 'mu',2
Data Types: single | double

**sigma — Scale parameter**
1 (default) | nonnegative scalar value
Example: 'sigma',4
Data Types: single | double

**Loglogistic Distribution**

**mu — Mean of logarithmic values**
0 (default) | scalar value
Example: 'mu',2
Data Types: single | double
**sigma — Scale parameter of logarithmic values**
1 (default) | nonnegative scalar value
Example: 'sigma', 4
Data Types: single | double

**Lognormal Distribution**

**mu — Mean of logarithmic values**
0 (default) | scalar value
Example: 'mu', 2
Data Types: single | double

**sigma — Standard deviation of logarithmic values**
1 (default) | nonnegative scalar value
Example: 'sigma', 2
Data Types: single | double

**Multinomial Distribution**

**probabilities — Outcome probabilities**
[0.500 0.500] (default) | vector of scalar values in the range [0, 1]

Outcome probabilities, specified as a vector of scalar values in the range [0, 1]. The probabilities sum to 1 and correspond to outcomes [1, 2, ..., k], where k is the number of elements in the probabilities vector.
Example: 'probabilities', [0.1 0.2 0.5 0.2] gives the probabilities that the outcome is 1, 2, 3, or 4, respectively.
Data Types: single | double

**Nakagami Distribution**

**mu — Shape parameter**
1 (default) | positive scalar value
Example: 'mu', 5
Data Types: single | double
**omega — Scale parameter**
1 (default) | positive scalar value
Example: 'omega',5
Data Types: single | double

**Negative Binomial Distribution**

**R — Number of successes**
1 (default) | positive scalar value
Example: 'R',5
Data Types: single | double

**p — Probability of success**
0.5 (default) | scalar value in the range (0,1]
Example: 'p',0.1
Data Types: single | double

**Normal Distribution**

**mu — Mean**
0 (default) | scalar value
Example: 'mu',2
Data Types: single | double

**sigma — Standard deviation**
1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types: single | double

**Piecewise Linear Distribution**

**x — Data values**
1 (default) | monotonically increasing vector of scalar values
Example: 'x',[1 2 3]
Data Types: single | double
**Fx — cdf values**
1 (default) | monotonically increasing vector of scalar values that start at 0 and end at 1
Example: 'Fx', [0.2 0.5 1]
Data Types: single | double

**Poisson Distribution**

**lambda — Mean**
1 (default) | nonnegative scalar value
Example: 'lambda', 5
Data Types: single | double

**Rayleigh Distribution**

**b — Defining parameter**
1 (default) | positive scalar value
Example: 'b', 3
Data Types: single | double

**Rician Distribution**

**s — Noncentrality parameter**
1 (default) | nonnegative scalar value
Example: 's', 0
Data Types: single | double

**sigma — Scale parameter**
1 (default) | positive scalar value
Example: 'sigma', 2
Data Types: single | double

**Stable Distribution**

**alpha — First shape parameter**
2 (default) | scalar value in the range (0,2]
Example: 'alpha', 1
Data Types: single | double

**beta — Second shape parameter**
0 (default) | scalar value in the range [-1,1]
Example: 'beta', 0.5
Data Types: single | double

**gam — Scale parameter**
1 (default) | scalar value in the range (0,∞)
Example: 'gam', 2
Data Types: single | double

**delta — Location parameter**
0 (default) | scalar value
Example: 'delta', 5
Data Types: single | double

**t Location-Scale Distribution**

**mu — Location parameter**
0 (default) | scalar value
Example: 'mu', -2
Data Types: single | double

**sigma — Scale parameter**
1 (default) | positive scalar value
Example: 'sigma', 2
Data Types: single | double

**nu — Degrees of freedom**
5 (default) | positive scalar value
Example: 'nu', 20
Data Types: single | double

**Triangular Distribution**
**a — Lower limit**
0 (default) | scalar value
Example: 'a', -2
Data Types: single | double

**b — Peak location**
0.5 (default) | scalar value greater than or equal to a
Example: 'b', 1
Data Types: single | double

**c — Upper limit**
1 (default) | scalar value greater than or equal to b
Example: 'c', 5
Data Types: single | double

**Uniform Distribution**

**lower — Lower parameter**
0 (default) | scalar value
Example: 'lower', -4
Data Types: single | double

**upper — Upper parameter**
1 (default) | scalar value greater than lower
Example: 'upper', 2
Data Types: single | double

**Weibull Distribution**

**a — Scale parameter**
1 (default) | positive scalar value
Example: 'a', 2
Data Types: single | double

**b — Shape parameter**
1 (default) | positive scalar value
Example: 'b', 5
Data Types: single | double

Output Arguments

pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object of the type specified by distname.

list — List of probability distributions
cell array of character vectors

List of probability distributions that makedist can create, returned as a cell array of character vectors.

Alternative Functionality

App

The Distribution Fitter app opens a graphical user interface for you to import data from the workspace and interactively fit a probability distribution to that data. You can then save the distribution to the workspace as a probability distribution object. Open the Distribution Fitter app using distributionFitter, or click Distribution Fitter on the Apps tab.

See Also
distributionFitter | fitdist

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
Introduced in R2013a
manova

Class: RepeatedMeasuresModel

Multivariate analysis of variance

Syntax

manovatbl = manova(rm)
manovatbl = manova(rm,Name,Value)
[manovatbl,A,C,D] = manova(__)

Description

manovatbl = manova(rm) returns the results of multivariate analysis of variance (manova) for the repeated measures model rm.

manovatbl = manova(rm,Name,Value) also returns manova results with additional options, specified by one or more Name,Value pair arguments.

[manovatbl,A,C,D] = manova(__) also returns arrays A, C, and D for the hypotheses tests of the form A*B*C = D, where D is zero.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**WithinModel** — Model specifying within-subjects hypothesis test
'veparateameans' (default) | model specification using formula | r-by-nc matrix

Model specifying the within-subjects hypothesis test, specified as one of the following:

- 'separateameans' — Compute a separate mean for each group, and test for equality among the means.

- Model specification — This is a model specification in the within-subject factors. Test each term in the model. In this case, tbl contains a separate manova for each term in the formula, with the multivariate response equal to the vector of coefficients of that term.

- An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y represents the matrix of repeated measures you use in the repeated measures model rm, then the output tbl contains a separate manova for each column of Y*C.

Example: 'WithinModel','separateameans'
Data Types: single | double | char | string

**By** — Single between-subjects factor
character vector | string scalar

Single between-subjects factor, specified as the comma-separated pair consisting of 'By' and a character vector or string scalar. manova performs a separate test of the within-subjects model for each value of this factor.

For example, if you have a between-subjects factor, Drug, then you can specify that factor to perform manova as follows.

Example: 'By','Drug'
Data Types: char | string

**Output Arguments**

**manovatbl** — Results of multivariate analysis of variance

table
Results of multivariate analysis of variance for the repeated measures model rm, returned as a table.

manova uses these methods to measure the contributions of the model terms to the overall covariance:

- Wilks’ Lambda
- Pillai’s trace
- Hotelling-Lawley trace
- Roy’s maximum root statistic

For details, see “Multivariate Analysis of Variance for Repeated Measures” on page 9-84.

manova returns the results for these tests for each group. manovatbl contains the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within</td>
<td>Within-subject terms</td>
</tr>
<tr>
<td>Between</td>
<td>Between-subject terms</td>
</tr>
<tr>
<td>Statistic</td>
<td>Name of the statistic computed</td>
</tr>
<tr>
<td>Value</td>
<td>Value of the corresponding statistic</td>
</tr>
<tr>
<td>F</td>
<td>$F$-statistic value</td>
</tr>
<tr>
<td>RSquare</td>
<td>Measure for variance explained</td>
</tr>
<tr>
<td>df1</td>
<td>Numerator degrees of freedom</td>
</tr>
<tr>
<td>df2</td>
<td>Denominator degrees of freedom</td>
</tr>
<tr>
<td>pValue</td>
<td>$p$-value for the corresponding $F$-statistic value</td>
</tr>
</tbody>
</table>

Data Types: table

### A — Specification based on between-subjects model

matrix | cell array

Specification based on the between-subjects model, returned as a matrix or a cell array. It permits the hypothesis on the elements within given columns of B (within time hypothesis). If manovatbl contains multiple hypothesis tests, A might be a cell array.

Data Types: single | double | cell
C — Specification based on within-subjects model
matrix | cell array

Specification based on the within-subjects model, returned as a matrix or a cell array. It permits the hypotheses on the elements within given rows of B (between time hypotheses). If manovatbl contains multiple hypothesis tests, C might be a cell array.

Data Types: single | double | cell

D — Hypothesis value

0

Hypothesis value, returned as 0.

Examples

Perform Multivariate Analysis of Variance

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...'
'VariableNames',
'species','meas1','meas2','meas3','meas4');

Meas = table([1 2 3 4],'
'VariableNames',
'Measurements');

Fit a repeated measures model where the measurements are the responses and the species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform multivariate analysis of variance.

manova(rm)

ans=8x9 table
  Within    Between    Statistic    Value    F    RSquare    df1    df2    pValue
### Return Arrays of the Hypothesis Test

Load the sample data.

```matlab
load fisheriris
```

The column vector `species` consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.
Store the data in a table array.

t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4), ...
'VariableNames', {'species', 'meas1', 'meas2', 'meas3', 'meas4'});
Meas = dataset([1 2 3 4], 'VarNames', {'Measurements'});

Fit a repeated measures model where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t, 'meas1-meas4~species', 'WithinDesign', Meas);

Perform multivariate analysis of variance. Also return the arrays for constructing the
hypothesis test.

[manovatbl, A, C, D] = manova(rm)

manovatbl = 8×9 table
Within     Between      Statistic    Value     F        RSquare     df1     df2     pValue
_________    ___________    _________    _______    _______    ___    ___    ___________
Constant    (Intercept)    Pillai         0.99013    4847.5    0.99013     3     145    3.7881e-145
Constant    (Intercept)    Wilks        0.0098724    4847.5    0.99013     3     145    3.7881e-145
Constant    (Intercept)    Hotelling       100.29    4847.5    0.99013     3     145    3.7881e-145
Constant    (Intercept)    Roy              100.29    4847.5    0.99013     3     145    3.7881e-145
Constant    species        Pillai         0.96909    45.749    0.48455     6     292     2.4729e-39
Constant    species        Wilks         0.041153    189.92    0.79714     6     290     2.3958e-97
Constant    species        Hotelling       23.051    555.17    0.92016     6     288    4.6662e-155
Constant    species        Roy              23.04    1121.3     0.9584     3     146    1.4771e-100

A = 2x1 cell array
{1x3 double}
{2x3 double}

C = 4x3

1   0   0
-1   1   0
0  -1   1
0    0   -1

D = 0

Index into matrix A.
A{1}
ans = 1x3
   1  0  0

A{2}
ans = 2x3
   0  1  0
   0  0  1

Tips
• The multivariate response for each observation (subject) is the vector of repeated measures.
• To test a more general hypothesis $A*B*C = D$, use `coeftest`.

See Also
anova | `coeftest` | fitrm | ranova

Topics
“Model Specification for Repeated Measures Models” on page 9-78
“Multivariate Analysis of Variance for Repeated Measures” on page 9-84
**manova1**

One-way multivariate analysis of variance

**Syntax**

```markdown
d = manova1(X,group)
d = manova1(X,group,alpha)
d,p] = manova1(...)
d,p,stats] = manova1(...)
```

**Description**

`d = manova1(X,group)` performs a one-way Multivariate Analysis of Variance (MANOVA) for comparing the multivariate means of the columns of `X`, grouped by `group`. `X` is an `m`-by-`n` matrix of data values, and each row is a vector of measurements on `n` variables for a single observation. `group` is a grouping variable defined as a categorical variable, vector, character array, string array, or cell array of character vectors. Two observations are in the same group if they have the same value in the `group` array. The observations in each group represent a sample from a population.

The function returns `d`, an estimate of the dimension of the space containing the group means. `manova1` tests the null hypothesis that the means of each group are the same `n`-dimensional multivariate vector, and that any difference observed in the sample `X` is due to random chance. If `d = 0`, there is no evidence to reject that hypothesis. If `d = 1`, then you can reject the null hypothesis at the 5% level, but you cannot reject the hypothesis that the multivariate means lie on the same line. Similarly, if `d = 2` the multivariate means may lie on the same plane in `n`-dimensional space, but not on the same line.

`d = manova1(X,group,alpha)` gives control of the significance level, `alpha`. The return value `d` will be the smallest dimension having `p > alpha`, where `p` is a `p`-value for testing whether the means lie in a space of that dimension.

`[d,p] = manova1(...)` also returns a `p`, a vector of `p`-values for testing whether the means lie in a space of dimension 0, 1, and so on. The largest possible dimension is either the dimension of the space, or one less than the number of groups. There is one element of `p` for each dimension up to, but not including, the largest.
If the \( i \)th \( p \)-value is near zero, this casts doubt on the hypothesis that the group means lie on a space of \( i-1 \) dimensions. The choice of a critical \( p \)-value to determine whether the result is judged statistically significant is left to the researcher and is specified by the value of the input argument \( \alpha \)pha. It is common to declare a result significant if the \( p \)-value is less than 0.05 or 0.01.

\[[d,p,stats] = \text{manova1}(\ldots)\] also returns \( \text{stats} \), a structure containing additional MANOVA results. The structure contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>( W )</td>
<td>Within-groups sum of squares and cross-products matrix</td>
</tr>
<tr>
<td>( B )</td>
<td>Between-groups sum of squares and cross-products matrix</td>
</tr>
<tr>
<td>( T )</td>
<td>Total sum of squares and cross-products matrix</td>
</tr>
<tr>
<td>( \text{dfW} )</td>
<td>Degrees of freedom for ( W )</td>
</tr>
<tr>
<td>( \text{dfB} )</td>
<td>Degrees of freedom for ( B )</td>
</tr>
<tr>
<td>( \text{dfT} )</td>
<td>Degrees of freedom for ( T )</td>
</tr>
<tr>
<td>( \lambda )</td>
<td>Vector of values of Wilk's lambda test statistic for testing whether the means have dimension 0, 1, etc.</td>
</tr>
<tr>
<td>( \text{chisq} )</td>
<td>Transformation of ( \lambda ) to an approximate chi-square distribution</td>
</tr>
<tr>
<td>( \text{chisqdf} )</td>
<td>Degrees of freedom for ( \text{chisq} )</td>
</tr>
<tr>
<td>( \text{eigenval} )</td>
<td>Eigenvalues of ( W^{-1}B )</td>
</tr>
<tr>
<td>( \text{eigenvect} )</td>
<td>Eigenvectors of ( W^{-1}B ); these are the coefficients for the canonical variables ( C ), and they are scaled so the within-group variance of the canonical variables is 1</td>
</tr>
<tr>
<td>( \text{canon} )</td>
<td>Canonical variables ( C ), equal to ( XC*eigenvect ), where ( XC ) is ( X ) with columns centered by subtracting their means</td>
</tr>
<tr>
<td>( \text{mdist} )</td>
<td>A vector of Mahalanobis distances from each point to the mean of its group</td>
</tr>
<tr>
<td>( \text{gmdist} )</td>
<td>A matrix of Mahalanobis distances between each pair of group means</td>
</tr>
</tbody>
</table>

The canonical variables \( C \) are linear combinations of the original variables, chosen to maximize the separation between groups. Specifically, \( C(:,1) \) is the linear combination of the \( X \) columns that has the maximum separation between groups. This means that among all possible linear combinations, it is the one with the most significant \( F \) statistic in
a one-way analysis of variance. \( C(:,2) \) has the maximum separation subject to it being orthogonal to \( C(:,1) \), and so on.

You may find it useful to use the outputs from \texttt{manova1} along with other functions to supplement your analysis. For example, you may want to start with a grouped scatter plot matrix of the original variables using \texttt{gplotmatrix}. You can use \texttt{gscatter} to visualize the group separation using the first two canonical variables. You can use \texttt{manovacluster} to graph a dendrogram showing the clusters among the group means.

**Assumptions**

The MANOVA test makes the following assumptions about the data in \( X \):

- The populations for each group are normally distributed.
- The variance-covariance matrix is the same for each population.
- All observations are mutually independent.

**Examples**

you can use \texttt{manova1} to determine whether there are differences in the averages of four car characteristics, among groups defined by the country where the cars were made.

```matlab
load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],...
 Origin)
```

```
d =
 3
p =
 0
 0.0000
 0.0075
 0.1934
```

There are four dimensions in the input matrix, so the group means must lie in a four-dimensional space. \texttt{manova1} shows that you cannot reject the hypothesis that the means lie in a 3-D subspace.
References


See Also
anov1 | canoncorr | gplotmatrix | gscatter | manovacluster

Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
**manovacluster**

Dendrogram of group mean clusters following MANOVA

**Syntax**

```matlab
manovacluster(stats)
manovacluster(stats,method)
H = manovacluster(stats,method)
```

**Description**

`manovacluster(stats)` generates a dendrogram plot of the group means after a multivariate analysis of variance (MANOVA). `stats` is the output `stats` structure from `manova1`. The clusters are computed by applying the single linkage method to the matrix of Mahalanobis distances between group means.

See `dendrogram` for more information on the graphical output from this function. The dendrogram is most useful when the number of groups is large.

`manovacluster(stats,method)` uses the specified method in place of single linkage. `method` can be one of these values, which identify the methods used to create the cluster hierarchy. (See `linkage` for additional information.)

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'single'</td>
<td>Shortest distance (default)</td>
</tr>
<tr>
<td>'complete'</td>
<td>Largest distance</td>
</tr>
<tr>
<td>'average'</td>
<td>Average distance</td>
</tr>
<tr>
<td>'centroid'</td>
<td>Centroid distance</td>
</tr>
<tr>
<td>'ward'</td>
<td>Incremental sum of squares</td>
</tr>
</tbody>
</table>

`H = manovacluster(stats,method)` returns a vector of handles to the lines in the figure.
Examples

Dendrogram of Group Means After MANOVA

Load the sample data.
load carbig
Define the variable matrix.
X = [MPG Acceleration Weight Displacement];
Perform one-way MANOVA to compare the means of MPG, Acceleration, Weight, and Displacement grouped by Origin.
[d,p,stats] = manova1(X-Origin);
Create a dendrogram plot of the group means.
manovacluster(stats)
See Also

cluster | dendrogram | linkage | manova

Introduced before R2006a
margin

Margin of k-nearest neighbor classifier

Syntax

m = margin(mdl,tbl,ResponseVarName)
m = margin(mdl,tbl,Y)
m = margin(mdl,X,Y)

Description

m = margin(mdl,tbl,ResponseVarName) returns the classification margins on page 32-3928 for mdl with data tbl and classification tbl.ResponseVarName. If tbl contains the response variable used to train mdl, then you do not need to specify ResponseVarName.

m is returned as a numeric vector of length size(tbl,1). Each entry in m represents the margin for the corresponding row of tbl and the corresponding true class label in tbl.ResponseVarName, computed using mdl.

m = margin(mdl,tbl,Y) returns the classification margins for mdl with data tbl and classification Y.

m = margin(mdl,X,Y) returns the classification margins for mdl with data X and classification Y. m is returned as a numeric vector of length size(X,1).

Examples

Margin Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where \( k = 5 \).

Load the Fisher iris data set.
load fisheriris

Create a classifier for five nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the margin of the classifier for a mean observation classified as 'versicolor'.

X = mean(meas);
Y = {'versicolor'};
m = margin(mdl,X,Y)

m = 1

All five nearest neighbors classify as 'versicolor'.

**Input Arguments**

mdl — *k*-nearest neighbor classifier model
ClassificationKNN object

*k*-nearest neighbor classifier model, specified as a ClassificationKNN object.

**tbl** — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain one additional column for the response variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If tbl contains the response variable used to train mdl, then you do not need to specify ResponseVarName or Y.

If you train mdl using sample data contained in a table, then the input data for margin must also be in a table.

Data Types: table

ResponseVarName — Response variable name

name of a variable in tbl
Response variable name, specified as the name of a variable in tbl. If tbl contains the response variable used to train mdl, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable is stored as tbl.response, then specify it as 'response'. Otherwise, the software treats all columns of tbl, including tbl.response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X represents one observation, and each column represents one variable.

Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Each row of Y represents the classification of the corresponding row of X.

Data Types: categorical | char | string | logical | single | double | cell

Definitions

Margin

The classification margin for each observation is the difference between the classification score for the true class and the maximal classification score for the false classes.
Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors with that classification divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page 32-4943.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
ClassificationKNN | edge | fitcknn | loss

Topics
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
margin

Class: ClassificationLinear

Classification margins for linear classification models

Syntax

m = margin(Mdl,X,Y)
m = margin(___,Name,Value)

Description

m = margin(Mdl,X,Y) returns the classification margins on page 32-3940 for the binary, linear classification model Mdl using predictor data in X and corresponding class labels in Y. m contains classification margins for each regularization strength in Mdl.

m = margin(___,Name,Value) uses any of the previous syntaxes and additional options specified by one or more Name,Value pair arguments. For example, you can specify that columns in the predictor data correspond to observations.

Input Arguments

Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.
**Note** If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in computation time.

The length of $Y$ and the number of observations in $X$ must be equal.

Data Types: single | double

$Y$ — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- The data type of $Y$ must be the same as the data type of `Mdl.ClassNames`. (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in $Y$ must be a subset of `Mdl.ClassNames`.
- If $Y$ is a character array, then each element must correspond to one row of the array.
- The length of $Y$ and the number of observations in $X$ must be equal.

Data Types: categorical | char | string | logical | single | double | cell

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**ObservationsIn** — Predictor data observation dimension
'srows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'.

**Note** If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', then you might experience a significant reduction in optimization-execution time.
Output Arguments

**m — Classification margins**

numeric column vector | numeric matrix

Classification margins on page 32-3940, returned as a numeric column vector or matrix.

*m* is \( n \)-by-\( L \), where \( n \) is the number of observations in `X` and \( L \) is the number of regularization strengths in `Mdl` (that is, `numel(Mdl.Lambda)`).

\( m(i,j) \) is the classification margin of observation \( i \) using the trained linear classification model that has regularization strength \( Mdl.Lambda(j) \).

Examples

Estimate Test-Sample Margins

Load the NLP data set.

```matlab
load nlpdata
```

`X` is a sparse matrix of predictor data, and `Y` is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

```matlab
Ystats = Y == 'stats';
```

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

```matlab
rng(1); % For reproducibility
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};
```
CVMdl is a `ClassificationPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `ClassificationLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```matlab
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);
```

Estimate the training- and test-sample margins.

```matlab
mTrain = margin(CMdl,X(trainIdx,:),Ystats(trainIdx));
mTest = margin(CMdl,X(testIdx,:),Ystats(testIdx));
```

Because there is one regularization strength in `CMdl`, `mTrain` and `mTest` are column vectors with lengths equal to the number of training and test observations, respectively.

Plot both sets of margins using box plots.

```matlab
figure;
boxplot([mTrain; mTest],[zeros(size(mTrain,1),1); ones(size(mTest,1),1)], ... 'Labels',{'Training set','Test set'});
h = gca;
h.YLim = [-5 60];
title 'Training- and Test-Set Margins'
```
The distributions of the margins between the training and test sets appear similar.

**Feature Selection Using Test-Sample Margins**

One way to perform feature selection is to compare test-sample margins from multiple models. Based solely on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Margins” on page 32-3932.
load nlpdata
Ystats = Y == 'stats';
X = X';
rng(1); % For reproducibility

Create a data partition which holds out 30% of the observations for testing.

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition); % Test-set indices
XTest = X(:,testIdx);
YTest = Ystats(testIdx);
Partition

Partition is a cvpartition object that defines the data set partition.

Randomly choose 10% of the predictor variables.

p = size(X,1); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Train two binary, linear classification models: one that uses the all of the predictors and one that uses the random 10%. Optimize the objective function using SpaRSA, and indicate that observations correspond to columns.

CVMdl = fitclinear(X,Ystats,'CVPartition',Partition,'Solver','sparsa',...
'ObservationsIn','columns');
PCVMdl = fitclinear(X(idxPart,:),Ystats,'CVPartition',Partition,'Solver','sparsa',...
'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Extract the trained ClassificationLinear models from the cross-validated models.

CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

Estimate the test sample margins for each classifier. Plot the distribution of the margins sets using box plots.

fullMargins = margin(CMdl,XTest,YTest,'ObservationsIn','columns');
partMargins = margin(PCMdl,XTest(idxPart,:),YTest,...
'ObservationsIn','columns');

figure;
boxplot([fullMargins partMargins], 'Labels',...;
{'All Predictors','10% of the Predictors'});
h = gca;
h.YLim = [-20 60];
title('Test-Sample Margins')

The margin distribution of CMdl is situated higher than the margin distribution of PCMdl.

**Find Good Lasso Penalty Using Margins**

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare distributions of test-sample margins.
Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Margins” on page 32-3932.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);
```

Create a set of 11 logarithmically-spaced regularization strengths from $10^{-8}$ through $10^1$.

```matlab
Lambda = logspace(-8,1,11);
```

Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e^{-8}$.

```matlab
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','CVPartition',Partition,'Learner','logistic','Solver','sparsa','Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
```

Extract the trained linear classification model.

```matlab
Mdl = CVMdl.Trained{1}
Mdl =
 ClassificationLinear
```
Mdl is a `ClassificationLinear` model object. Because `Lambda` is a sequence of regularization strengths, you can think of `Mdl` as 11 models, one for each regularization strength in `Lambda`.

Estimate the test-sample margins.

```matlab
m = margin(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');
size(m)
ans = 1x2
 9471 11
```

Because there are 11 regularization strengths, `m` has 11 columns.

Plot the test-sample margins for each regularization strength. Because logistic regression scores are in [0,1], margins are in [-1,1]. Rescale the margins to help identify the regularization strength that maximizes the margins over the grid.

```matlab
figure;
boxplot(10000.^m)
ylabel('Exponentiated test-sample margins')
xlabel('Lambda indices')
```
Several values of \texttt{Lambda} yield margin distributions that are compacted near 10000. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the centers of the margin distributions start decreasing.

\texttt{LambdaFinal = Lambda(5)};

Train a linear classification model using the entire data set and specify the desired regularization strength.
Md1Final = fitclinear(X,Ystats,'ObservationsIn','columns',...  
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass Md1Final and the new data to predict.

Definitions

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

\( x \) is an observation. If the true label of \( x \) is the positive class, then \( y \) is 1, and -1 otherwise. \( f(x) \) is the positive-class classification score for the observation \( x \). The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation \( x \), a row vector, into the positive class is defined by

\[ f_j(x) = x\beta_j + b_j. \]

For the model with regularization strength \( j \), \( \beta_j \) is the estimated column vector of coefficients (the model property Beta(:,j)) and \( b_j \) is the estimated, scalar bias (the model property Bias(j)).
The raw classification score for classifying \( x \) into the negative class is \(-f(x)\). The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

**Extended Capabilities**

**Tall Arrays**
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

**See Also**
ClassificationLinear | edge | fitlinear | predict

*Introduced in R2016a*
**margin**

Classification margins

**Syntax**

\[ m = \text{margin}(\text{obj}, X, Y) \]

**Description**

\[ m = \text{margin}(\text{obj}, X, Y) \] returns the classification margins for the matrix of predictors \( X \) and class labels \( Y \). For the definition, see “Definitions” on page 32-3944.

**Input Arguments**

**obj**

Discriminant analysis classifier of class `ClassificationDiscriminant` or `CompactClassificationDiscriminant`, typically constructed with `fitcdiscr`.

**X**

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in \( X \) must equal the number of predictors in \( \text{obj} \).

**Y**

Class labels, with the same data type as exists in \( \text{obj} \). The number of elements of \( Y \) must equal the number of rows of \( X \).
Output Arguments

m

Numeric column vector of length \text{size}(X,1). Each entry in \textit{m} represents the margin for the corresponding rows of \text{X} and (true class) \text{Y}, computed using \textit{obj}.

Examples

Compute the classification margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

\begin{verbatim}
load fisheriris
X = meas(:,1:2);
obj = fitcdiscr(X,species);
M = margin(obj,X,species);
M(end-10:end)
\end{verbatim}

\begin{verbatim}
ans =
0.6551
0.4838
0.6551
-0.5127
0.5659
0.4611
0.4949
0.1024
0.2787
-0.1439
-0.4444
\end{verbatim}

The classifier trained on all the data is better:

\begin{verbatim}
obj = fitcdiscr(meas,species);
M = margin(obj,meas,species);
M(end-10:end)
\end{verbatim}

\begin{verbatim}
ans =
0.9983
1.0000
0.9991
0.9978
\end{verbatim}
Definitions

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationDiscriminant | edge | fitcdiscr | loss | predict
Topics
“Discriminant Analysis Classification” on page 20-2
margin

Classification margins for multiclass, error-correcting output codes model

Syntax

m = margin(Mdl,tbl,ResponseVarName)
m = margin(Mdl,tbl,Y)
m = margin(Mdl,X,Y)
m = margin(Mdl,___,Name,Value)

Description

m = margin(Mdl,tbl,ResponseVarName) returns the classification margins on page 32-3957 (m) for the trained, multiclass, error-correcting output code (ECOC) model Mdl using the predictor data in table tbl and the class labels in tbl.ResponseVarName. Each row of tbl and ResponseVarName is an observation.

m = margin(Mdl,tbl,Y) returns the classification margins for the trained classifier Mdl using the predictor data in table tbl and the class labels in vector Y. Each row of tbl and Y is an observation.

m = margin(Mdl,X,Y) returns the classification margins for the trained classifier Mdl using the predictor data X and class labels Y. Each row of X and Y is an observation.

m = margin(Mdl,___,Name,Value) returns the classification margins with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — Full or compact, multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object
Full or compact, multiclass ECOC model, specified as a `ClassificationECOC` or `CompactClassificationECOC` model object.

To create a full or compact ECOC model, see `ClassificationECOC` or `CompactClassificationECOC`.

**tbl — Sample data**

`table`

Sample data, specified as a table. Each row of `tbl` corresponds to one observation, and each column corresponds to one predictor variable. Optionally, `tbl` can contain additional columns for the response variable and observation weights. `tbl` must contain all the predictors used to train `Mdl`. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained `Mdl` using sample data contained in a table, then the input data for this method must also be in a table.

**Note** If `Mdl.BinaryLearners` contains linear or kernel classification models (that is, `ClassificationLinear` or `ClassificationKernel` model objects), then you cannot specify sample data in a table. Instead, pass a matrix (`X`) and class labels (`Y`).

Data Types: `table`

**ResponseVarName — Response variable name**

`name of a variable in tbl`

Response variable name, specified as the name of a variable in `tbl`.

You must specify `ResponseVarName` as a character vector or string scalar. For example, if the response variable `y` is stored as `tbl.y`, then specify it as `'y'`. Otherwise, the software treats all columns of `tbl`, including `y`, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: `char` | `string`

**X — Predictor data**

`numeric matrix`
Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The variables composing the columns of X should be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y and the number of rows of X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j,s_j) \) is the binary loss formula.
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle 'BinaryLoss', @customFunction.

`customFunction` has this form:

```matlab
bLoss = customFunction(M,s)
```

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in `Mdl.CodingMatrix`.
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then `BinaryLoss` is 'hinge'
- Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is 'exponential'
- Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in fitcecoc), then BinaryLoss is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the BinaryLoss property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain linear classification models.

Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', you can experience a significant reduction in execution time.

Options — Estimation options

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.
To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel',1).

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. **Verbose** controls the number of diagnostic messages that the software displays in the Command Window.

If **Verbose** is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

**Output Arguments**

**m — Classification margins**

numeric column vector | numeric matrix

Classification margins on page 32-3957, returned as a numeric column vector.

m has the same length as Y. The software estimates each entry of m using the trained ECOC model Mdl, the corresponding row of X, and the true class label Y.

If Mdl.BinaryLearners contains linear classification models, then m is an n-by-L vector, where n is the number of observations in X and L is the number of regularization strengths in the linear classification models (i.e., numel(Mdl.BinaryLearners{1}.Lambda)). m(i,j) is the margin of observation i for the model trained using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, m is a column vector of length n.

**Examples**
Estimate Test-Sample Classification Margins of ECOC Models

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility
```

Train an ECOC model using SVM binary classifiers, and specify a 30% holdout sample. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

CVMdl is a ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

Estimate the test-sample classification margins. Display the distribution of the margins using a boxplot.

```matlab
m = margin(CMdl,XTest,YTest);
figure;
boxplot(m);
title 'Test-Sample Margins'
```
An observation margin is the positive-class, negated loss minus the maximum negative-class, negated loss. Classifiers that yield relatively large margins are desirable.

**Select ECOC Model Features by Examining Test-Sample Margins**

The classifier margins measure, for each observation, the difference between the positive-class, negated loss score and the maximal negative-class, negated loss. One way to perform feature selection is to compare test-sample margins from multiple models. Based solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set.
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);

Define these two data sets:
• fullX contains all four predictors.
• partX contains the sepal measurements.

fullX = X;
partX = X(:,1:2);

Train an ECOC model using SVM binary classifiers for each predictor set, and specify the partition definition. It is good practice to define the class order. Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
PCVMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

Estimate the test-sample margins for each classifier. For each model, display the distribution of the margins using a boxplot.

fullMargins = margin(CMdl,XTest,YTest);
partMargins = margin(PCMdl,XTest(:,3:4),YTest);

figure;
boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'});
title('Boxplots of Test-Sample Margins')
The margin distribution of CMd1 is situated higher, and with less variability than the margin distribution of PCMd1.

**Definitions**

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:
• $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).

• $s_j$ is the score of binary learner $j$ for an observation.

• $g$ is the binary loss function.

• $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$\hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}.$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j, s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_js_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_js_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_js_j)/2$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Score Domain</td>
<td>$g(y_j, s_j)$</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

### Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

### Tip

To compare margins or edges of several classifiers, use template objects to specify a common score transform function among the classifiers when you train them using fitcecoc.

### Algorithms

If you trained Mdl specifying to standardize the predictor data, then the software standardizes the columns of X using the corresponding means and standard deviations that the software stored in Mdl.BinaryLearner{1}.Mu and Mdl.BinaryLearner{1}.Sigma for learner j.
References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using `statset` and specify the 'Options' name-value pair argument in the call to this function.

For example: `Options,statset('UseParallel',true)`

For more information, see the 'Options' name-value pair argument.
See Also
ClassificationECOC | ClassificationKernel | ClassificationLinear |
CompactClassificationECOC | edge | fitcecoc | predict | resubMargin

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
margin

Classification margins

Syntax

M = margin(ens,tbl,ResponseVarName)
M = margin(ens,tbl,Y)
M = margin(ens,X,Y)
M = margin(___Name,Value)

Description

M = margin(ens,tbl,ResponseVarName) returns the classification margin for the predictions of ens on data tbl, when the true classifications are tbl.ResponseVarName.

M = margin(ens,tbl,Y) returns the classification margin for the predictions of ens on data tbl, when the true classifications are Y.

M = margin(ens,X,Y) returns the classification margin for the predictions of ens on data X, when the true classifications are Y.

M = margin(___Name,Value) calculates margin with additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes.

Input Arguments

ens

Classification ensemble created with fitensemble, or a compact classification ensemble created with compact.

tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. tbl must contain all of the predictors
used to train the model. Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must also be in a table.

**ResponseVarName**

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns of tbl, including Y, as predictors when training the model.

**X**

Matrix of data to classify. Each row of X represents one observation, and each column represents one predictor. X must have the same number of columns as the data used to train ens. X should have the same number of rows as the number of elements in Y.

If you trained ens using sample data contained in a matrix, then the input data for this method must also be in a matrix.

**Y**

Class labels of observations in tbl or X. Y should be of the same type as the classification used to train ens, and its number of elements should equal the number of rows of tbl or X.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name,** **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,** **Value1,** ..., **NameN,** **ValueN.**

**learners**

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge uses only these learners for calculating loss.

**Default:** 1:NumTrained
UseObsForLearner

A logical matrix of size N-by-T, where:

- N is the number of rows of X.
- T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

Output Arguments

M

A numeric column vector with the same number of rows as tbl or X. Each row of M gives the classification margin for that row of tbl or X.

Examples

Find Classification Margin

Find the margin for classifying an average flower from the fisheriris data as 'versicolor'.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

% Weak learner template tree object
% Weak learner template tree object
ens = fitensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Classify an average flower and find the classification margin.

flower = mean(meas);
predict(ens,flower)
ans = 1x1 cell array
    {'versicolor'}

margin(ens,flower,'versicolor')
ans = 3.2140

Definitions

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from 0 to 1.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
edge | loss | predict
margin
Classification margins for naive Bayes classifiers

Syntax

m = margin(Mdl,tbl,ResponseVarName)
m = margin(Mdl,tbl,Y)
m = margin(Mdl,X,Y)

Description

m = margin(Mdl,tbl,ResponseVarName) returns the classification margins on page 32-3971 (m) for the trained naive Bayes classifier Mdl using the predictor data in table tbl and the class labels in tbl.ResponseVarName.

m = margin(Mdl,tbl,Y) returns the classification margins (m) for the trained naive Bayes classifier Mdl using the predictor data in table tbl and the class labels in vector Y.

m = margin(Mdl,X,Y) returns the classification margins (m) for the trained naive Bayes classifier Mdl using the predictor data X and class labels Y.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or CompactClassificationNaiveBayes model returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, tbl can contain additional
columns for the response variable and observation weights. \( \text{tbl} \) must contain all the predictors used to train \( \text{Mdl} \). Multi-column variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained \( \text{Mdl} \) using sample data contained in a \text{table}, then the input data for this method must also be in a table.

Data Types: \text{table}

**ResponseVarName — Response variable name**

name of a variable in \( \text{tbl} \)

Response variable name, specified as the name of a variable in \( \text{tbl} \).

You must specify \text{ResponseVarName} as a character vector or string scalar. For example, if the response variable \( y \) is stored as \( \text{tbl} \cdot y \), then specify it as \'y\'. Otherwise, the software treats all columns of \( \text{tbl} \), including \( y \), as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: \text{char} | \text{string}

**\( X \) — Predictor data**

\text{numeric matrix}

Predictor data, specified as a numeric matrix.

Each row of \( X \) corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables making up the columns of \( X \) should be the same as the variables that trained \( \text{Mdl} \).

The length of \( Y \) and the number of rows of \( X \) must be equal.

Data Types: \text{double} | \text{single}

**\( Y \) — Class labels**

categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. \( Y \) must be the same as the data type of \( \text{Mdl} \cdot \text{ClassNames} \). (The software treats string arrays as cell arrays of character vectors.)
The length of Y and the number of rows of tbl or X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

**Output Arguments**

m — Classification margins

numeric vector

Classification margins on page 32-3971, returned as a numeric vector.

m has the same length equal to size(X,1). Each entry of m is the classification margin of the corresponding observation (row) of X and element of Y.

**Examples**

**Estimate Test-Sample Classification Margins of Naive Bayes Classifiers**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1);
```

Train a naive Bayes classifier. Specify a 30% holdout sample for testing. It is good practice to specify the class order. Assume that each predictor is conditionally normally distributed given its label.

```matlab
CVMdl = fitcnb(X,Y,'Holdout',0.30,...
 'ClassNames',{'setosa','versicolor','virginica'});
CMdl = CVMdl.Trained{1}; ...
 % Extract the trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds);
```

CVMdl is a `ClassificationPartitionedModel` classifier. It contains the property `Trained`, which is a 1-by-1 cell array holding a `CompactClassificationNaiveBayes` classifier that the software trained using the training set.
Estimate the test sample classification margins. Display the distribution of the margins using a boxplot.

```matlab
m = margin(CMdl,XTest,YTest);
figure;
boxplot(m);
title 'Distribution of the Test-Sample Margins';
```

An observation margin is the observed true class score minus the maximum false class score among all scores in the respective class. Classifiers that yield relatively large margins are desirable.
Select Naive Bayes Classifier Features by Examining Test Sample Margins

The classifier margins measure, for each observation, the difference between the true class observed score and the maximal false class score for a particular class. One way to perform feature selection is to compare test sample margins from multiple models. Based solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1);

Partition = cvpartition(Y,'Holdout',0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Partition defines the data set partition.

Define these two data sets:
• fullX contains all predictors.
• partX contains the last 2 predictors.

fullX = X;
partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set. Specify the partition definition.

FCVMdl = fitcnb(fullX,Y,'CVPartition',Partition);
PCVMdl = fitcnb(partX,Y,'CVPartition',Partition);
FCMdl = FCVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

FullCVMdl and PartCVMdl are ClassificationPartitionedModel classifiers. They contain the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.
Estimate the test sample margins for each classifier. Display the distributions of the margins for each model using boxplots.

```matlab
fullM = margin(FCMdl,XTest,YTest);
partM = margin(PCMd1,XTest(:,3:4),YTest);

figure;
boxplot([fullM partM],'Labels',{'All Predictors','Two Predictors'})
h = gca;
h.YLim = [0.98 1.01]; % Modify axis to see boxes.
title 'Boxplots of Test-Sample Margins';
```

The margins have a similar distribution, but PCMd1 is less complex.
Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their respective class. The software uses the normalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the score for the true class and maximal score for the false classes. Provided that they are on the same scale, margins serve as a classification confidence measure, i.e., among multiple classifiers, those that yield larger margins are better.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x_1,\ldots,x_P) is

$$
\hat{P}(Y = k \mid x_1,\ldots,x_P) = \frac{P(X_1,\ldots,X_P \mid y = k)\pi(Y = k)}{P(X_1,\ldots,X_P)},
$$

where:

- $P(X_1,\ldots,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class k. `Mdl.DistributionNames` stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. `Mdl.Prior` stores the prior distribution.
\[P(X_1,\ldots,X_p) \] is the joint density of the predictors. The classes are discrete, so

\[P(X_1,\ldots,X_p) = \sum_{k=1}^{K} P(X_1,\ldots,X_p \mid y = k) \pi(Y = k). \]

Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

Score

The naive Bayes score is the class posterior probability given the observation.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationNaiveBayes | CompactClassificationNaiveBayes | edge | fitcnb | loss | predict

Topics

“Naive Bayes Classification” on page 21-2
margin

Package: classreg.learning.classif

Find classification margins for support vector machine (SVM) classifier

Syntax

```matlab
m = margin(SVMModel,TBL,ResponseVarName)
m = margin(SVMModel,TBL,Y)
m = margin(SVMModel,X,Y)
```

Description

`m = margin(SVMModel,TBL,ResponseVarName)` returns the classification margins on page 32-3978 (m) for the trained support vector machine (SVM) classifier `SVMModel` using the sample data in table `TBL` and the class labels in `TBL.ResponseVarName`.

`m` is returned as a numeric vector with the same length as `Y`. The software estimates each entry of `m` using the trained SVM classifier `SVMModel`, the corresponding row of `X`, and the true class label `Y`.

`m = margin(SVMModel,TBL,Y)` returns the classification margins (m) for the trained SVM classifier `SVMModel` using the sample data in table `TBL` and the class labels in `Y`.

`m = margin(SVMModel,X,Y)` returns the classification margins for `SVMModel` using the predictor data in matrix `X` and the class labels in `Y`.

Examples

Estimate Test Sample Classification Margins of SVM Classifiers

Load the ionosphere data set.
load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; ...
 % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample classification margins.

m = margin(CompactSVMModel,XTest,YTest);

m(10:20)

ans = 11×1
4.9948
4.5611
-4.7963
5.5127
-2.8776
1.8673
9.4986
9.5018 ...

An observation margin is the observed true class score minus the maximum false class score among all scores in the respective class. Classifiers that yield relatively large margins are preferred.
Select SVM Classifier Features by Examining Test Sample Margins

Perform feature selection by comparing test sample margins from multiple models. Based solely on this comparison, the model with the highest margins is the best model.

Load the ionosphere data set.

```matlab
load ionosphere
rng(1); % For reproducibility
```

Partition the data set into training and test sets. Specify a 15% holdout sample for testing.

```matlab
Partition = cvpartition(Y,'Holdout',0.15);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

Partition defines the data set partition.

Define these two data sets:

- fullX contains all predictors (except the removed column of 0s).
- partX contains the last 20 predictors.

```matlab
fullX = X;
partX = X(:,end-20:end);
```

Train SVM classifiers for each predictor set. Specify the partition definition.

```matlab
FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);
PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);
FCSVMModel = FullCVSVMModel.Trained{1};
PCSVMModel = PartCVSVMModel.Trained{1};
```

FullCVSVMModel and PartCVSVMModel are ClassificationPartitionedModel classifiers. They contain the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample margins for each classifier.

```matlab
fullM = margin(FCSVMModel,XTest,YTest);
partM = margin(PCSVMModel,XTest(:,end-20:end),YTest);
n = size(XTest,1);
p = sum(fullM < partM)/n
```
$p = 0.2500$

Approximately 25% of the margins from the full model are less than those from the model with fewer predictors. This result suggests that the model trained with all the predictors is better.

Input Arguments

SVMMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional columns for the response variable and observation weights. TBL must contain all of the predictors used to train SVMMModel. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train SVMMModel, then you do not need to specify ResponseVarName or Y.

If you trained SVMMModel using sample data contained in a table, then the input data for margin must also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMMModel, then the software standardizes the columns of the predictor data using the corresponding means in SVMMModel.Mu and the standard deviations in SVMMModel.Sigma.

Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.
Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables in the columns of X must be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the columns of X using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: double | single

ResponseVarName — Response variable name

name of variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For example, if the response variable is stored as TBL.Response, then specify ResponseVarName as 'Response'. Otherwise, the software treats all columns of TBL, including TBL.Response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

Y — Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in TBL or the number of rows in X.

32-3977
Definitions

Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[m = 2yf(x). \]

\(x \) is an observation. If the true label of \(x \) is the positive class, then \(y \) is 1, and –1 otherwise. \(f(x) \) is the positive-class classification score for the observation \(x \). The classification margin is commonly defined as \(m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

The SVM classification score for classifying observation \(x \) is the signed distance from \(x \) to the decision boundary ranging from -\(\infty \) to +\(\infty \). A positive score for a class indicates that \(x \) is predicted to be in that class. A negative score indicates otherwise.
The positive class classification score \(f(x) \) is the trained SVM classification function. \(f(x) \) is also the numerical, predicted response for \(x \), or the score for predicting \(x \) into the positive class.

\[
f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b,
\]

where \((\alpha_1, ..., \alpha_n, b)\) are the estimated SVM parameters, \(G(x_j, x) \) is the dot product in the predictor space between \(x \) and the support vectors, and the sum includes the training set observations. The negative class classification score for \(x \), or the score for predicting \(x \) into the negative class, is \(-f(x)\).

If \(G(x_j, x) = x_j'x \) (the linear kernel), then the score function reduces to

\[
f(x) = (x / s)'\beta + b.
\]

\(s \) is the kernel scale and \(\beta \) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

Algorithms

For binary classification, the software defines the margin for observation \(j \), \(m_j \), as

\[m_j = 2y_j f(x_j), \]

where \(y_j \in \{-1, 1\} \), and \(f(x_j) \) is the predicted score of observation \(j \) for the positive class. However, \(m_j = y_j f(x_j) \) is commonly used to define the margin.

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM|CompactClassificationSVM|edge|fitcsvm|loss|predict

Introduced in R2014a
margin

Classification margins

Syntax

m = margin(tree,TBL,ResponseVarName)
m = margin(tree,TBL,Y)
m = margin(tree,X,Y)

Description

m = margin(tree,TBL,ResponseVarName) returns the classification margins for the table of predictors TBL and class labels TBL.ResponseVarName. For the definition, see “Margin” on page 32-3984.

m = margin(tree,TBL,Y) returns the classification margins for the table of predictors TBL and class labels Y.

m = margin(tree,X,Y) returns the classification margins for the matrix of predictors X and class labels Y.

Input Arguments

tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column corresponds to one predictor variable. Optionally, TBL can contain additional
columns for the response variable and observation weights. TBL must contain all the
predictors used to train tree. Multi-column variables and cell arrays other than cell
arrays of character vectors are not allowed.

If TBL contains the response variable used to train tree, then you do not need to specify
ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this
method must also be in a table.

Data Types: table

X — Data to classify
defined as a numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation,
and each column represents one predictor. X must have the same number of columns as
the data used to train tree. X must have the same number of rows as the number of
elements in Y.

Data Types: single | double

ResponseVarName — Response variable name
defined as the name of a variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the
response variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string
scalar. For example, if the response variable is stored as TBL.Response, then specify it
as 'Response'. Otherwise, the software treats all columns of TBL, including
TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric
vector, or cell array of character vectors. If the response variable is a character array,
then each element must correspond to one row of the array.

Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell
array of character vectors
Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. `Y` must be of the same type as the classification used to train `tree`, and its number of elements must equal the number of rows of `X`.

Data Types: `categorical` | `char` | `string` | `logical` | `single` | `double` | `cell`

Output Arguments

m — Margin

column vector

Margin, returned as a numeric column vector of length `size(X,1)`. Each entry in `m` represents the margin for the corresponding rows of `X` and (true class) `Y`, computed using `tree`.

Examples

Compute the classification margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries.

```matlab
load fisheriris
X = meas(:,1:2);
tree = fitctree(X,species);
M = margin(tree,X,species);
M(end-10:end)
```

```
ans =
 0.1111  
 0.1111  
 0.1111  
-0.2857  
 0.6364  
 0.6364  
 0.1111  
 0.7500  
 1.0000  
 0.6364  
 0.2000
```

The classification tree trained on all the data is better.
tree = fitctree(meas,species);
M = margin(tree,meas,species);
M(end-10:end)

ans =
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565

Definitions

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when \(X < 0.15 \) or \(X > 0.95 \), and X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);

32-3984
tree = fitctree(X,Y);
view(tree,'Mode','Graph')

Prune the tree:

tree1 = prune(tree,'Level',1);
view(tree1,'Mode','Graph')
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
```
ans = 10×3

0.9059 0.0941 0.8147
0.9059 0.0941 0.9058
0 1.0000 0.1270
0.9059 0.0941 0.9134
0.9059 0.0941 0.6324
0 1.0000 0.0975
0.9059 0.0941 0.2785
0.9059 0.0941 0.5469
0.9059 0.0941 0.9575
0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (.95, 1) instead of the expected 5 observations.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
edge | fitctree | loss | predict
margin

Class: CompactTreeBagger

Classification margin

Syntax

mar = margin(B,TBLnew,Ynew)
mar = margin(B,Xnew,Ynew)
mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description

mar = margin(B,TBLnew,Ynew) computes the classification margins for the predictors contained in the table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response variable. If you trained B using sample data contained in a table, then the input data for this method must also be in a table.

mar = margin(B,Xnew,Ynew) computes the classification margins for the predictors contained in the matrix Xnew given true response Ynew.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors, categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is the number of rows of TBLnew and Ynew, and NTrees is the number of trees in the ensemble B. For observation I and tree J, mar(I,J) is the difference between the score for the true class and the largest score for other classes. This method is available for classification ensembles only.

mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-value pairs:
'Mode'	How the method computes errors. If set to 'cumulative' (default), `margin` computes cumulative errors and `mar` is an `Nobs`-by-`NTrees` matrix, where the first column gives error from `trees(1)`, second column gives error from `trees(1:2)` etc., up to `trees(1:NTrees)`. If set to 'individual', `mar` is a `Nobs`-by-`NTrees` matrix, where each element is an error from each tree in the ensemble. If set to 'ensemble', `mar` a single column of length `Nobs` showing the cumulative margins for the entire ensemble.
'Trees'	Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length `NTrees` for 'cumulative' and 'individual' modes, where `NTrees` is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives error from `trees(1)`, the second element gives error from `trees(1:2)` etc.
'TreeWeights'	Vector of tree weights. This vector must have the same length as the 'Trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.
'UseInstanceForTree'	Logical matrix of size `Nobs`-by-`NTrees` indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

See Also

`TreeBagger.margin`
margin

Class: TreeBagger

Classification margin

Syntax

mar = margin(B,TBLnew,Ynew)
mar = margin(B,Xnew,Ynew)
mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description

mar = margin(B,TBLnew,Ynew) computes the classification margins for the predictors contained in the table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response variable. If you trained B using sample data contained in a table, then the input data for this method must also be in a table.

mar = margin(B,Xnew,Ynew) computes the classification margins for the predictors contained in the matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix, then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors, categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is the number of rows of TBLnew and Ynew, and NTrees is the number of trees in the ensemble B. For observation I and tree J, mar(I,J) is the difference between the score for the true class and the largest score for other classes. This method is available for classification ensembles only.

mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-value pairs:
'Mode'	Character vector or string scalar indicating how the method computes errors. If set to 'cumulative' (default), margin computes cumulative errors and `mar` is an `Nobs-by-NTrees` matrix, where the first column gives error from `trees(1)`, second column gives error from `trees(1:2)` etc., up to `trees(1:NTrees)`. If set to 'individual', `mar` is a `Nobs-by-NTrees` matrix, where each element is an error from each tree in the ensemble. If set to 'ensemble', `mar` a single column of length `Nobs` showing the cumulative margins for the entire ensemble.
'Trees'	Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length `NTrees` for 'cumulative' and 'individual' modes, where `NTrees` is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives error from `trees(1)`, the second element gives error from `trees(1:2)` etc.
'TreeWeights'	Vector of tree weights. This vector must have the same length as the 'Trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.
'UseInstanceForTree'	Logical matrix of size `Nobs-by-NTrees` indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

See Also
CompactTreeBagger.margin
margmean

Class: RepeatedMeasuresModel

Estimate marginal means

Syntax

```
tbl = margmean(rm,vars)
tbl = margmean(rm,vars,'alpha',alpha)
```

Description

```
tbl = margmean(rm,vars) returns the estimated marginal means for the variables vars, in the table tbl.
```

```
tbl = margmean(rm,vars,'alpha',alpha) returns the 100*(1-alpha)% confidence intervals for the marginal means.
```

Input Arguments

- **rm — Repeated measures model**
 RepeatedMeasuresModel object

 Repeated measures model, returned as a RepeatedMeasuresModel object.

 For properties and methods of this object, see RepeatedMeasuresModel.

- **vars — Variables for which to compute the marginal means**
 character vector | string scalar | string array | cell array of character vectors

 Variables for which to compute the marginal means, specified as a character vector or string scalar representing the name of a between or within-subjects factor in rm, or a string array or cell array of character vectors representing the names of multiple variables. Each between-subjects factor must be categorical.
For example, if you want to compute the marginal means for the variables Drug and Gender, then you can specify as follows.

Example: {'Drug','Gender'}

Data Types: char | string | cell

alpha — Confidence level

0.05 (default) | scalar value in the range of 0 to 1

Confidence level of the confidence intervals for population marginal means, specified as a scalar value in the range of 0 to 1. The confidence level is 100*(1–alpha)%.

For example, you can specify a 99% confidence level as follows.

Example: 'alpha',0.01

Data Types: double | single

Output Arguments

tbl — Estimated marginal means

table

Estimated marginal means, returned as a table. tbl contains one row for each combination of the groups of the variables you specify in vars, one column for each variable, and the following columns.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Estimated marginal means</td>
</tr>
<tr>
<td>StdErr</td>
<td>Standard errors of the estimates</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of a 95% confidence interval for the true population mean</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of a 95% confidence interval for the true population mean</td>
</tr>
</tbody>
</table>

Examples
Compute Marginal Means Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures y1 to y8 as responses. The table within includes the within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 to y8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Compute the marginal means grouped by the factors Group and Gender.

```
M = margmean(rm,{'Group' 'Gender'})
```

<table>
<thead>
<tr>
<th>Group</th>
<th>Gender</th>
<th>Mean</th>
<th>StdErr</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Female</td>
<td>15.946</td>
<td>5.6153</td>
<td>4.3009</td>
<td>27.592</td>
</tr>
<tr>
<td>A</td>
<td>Male</td>
<td>8.0726</td>
<td>5.7236</td>
<td>-3.7973</td>
<td>19.943</td>
</tr>
<tr>
<td>B</td>
<td>Female</td>
<td>11.758</td>
<td>5.7091</td>
<td>-0.08189</td>
<td>23.598</td>
</tr>
<tr>
<td>B</td>
<td>Male</td>
<td>2.2858</td>
<td>5.6748</td>
<td>-9.483</td>
<td>14.055</td>
</tr>
<tr>
<td>C</td>
<td>Female</td>
<td>-8.6183</td>
<td>5.871</td>
<td>-20.794</td>
<td>3.5574</td>
</tr>
<tr>
<td>C</td>
<td>Male</td>
<td>-13.551</td>
<td>5.7283</td>
<td>-25.431</td>
<td>-1.6712</td>
</tr>
</tbody>
</table>

Display the description for table M.

```
M.Properties.Description
```

ans =

'Estimated marginal means
Means computed with Age=13.7, IQ=98.2667'
Compute Estimated Marginal Means and Confidence Intervals

Load the sample data.

load fisheriris

The column vector, `species`, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix `meas` consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```
t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4),...
'VariableNames',
'betweenNames',
'WithinDesign',
'VarNames',

Meas = dataset([1 2 3 4],,...
'VarNames',

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

```
rm = fitrm(t, 'meas1-meas4~species', 'WithinDesign', Meas);

Compute the marginal means grouped by the factor species.

```
margmean(rm, 'species')
```

<table>
<thead>
<tr>
<th>species</th>
<th>Mean</th>
<th>StdErr</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'setosa'</td>
<td>2.5355</td>
<td>0.042807</td>
<td>2.4509</td>
<td>2.6201</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>3.573</td>
<td>0.042807</td>
<td>3.4884</td>
<td>3.6576</td>
</tr>
<tr>
<td>'virginica'</td>
<td>4.285</td>
<td>0.042807</td>
<td>4.2004</td>
<td>4.3696</td>
</tr>
</tbody>
</table>

The `StdError` field shows the standard errors of the estimated marginal means. The `Lower` and `Upper` fields show the lower and upper bounds for the 95% confidence intervals of the group marginal means, respectively. None of the confidence intervals overlap, which indicates that marginal means differ with species. You can also plot the estimated marginal means using the `plotprofile` method.

Compute the 99% confidence intervals for the marginal means.

```
margmean(rm, 'species', 'alpha', 0.01)
```

<table>
<thead>
<tr>
<th>species</th>
<th>Mean</th>
<th>StdErr</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'setosa'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'versicolor'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'virginica'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>'setosa'</td>
<td>2.5355</td>
<td>0.042807</td>
<td>2.4238</td>
<td>2.6472</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>3.573</td>
<td>0.042807</td>
<td>3.4613</td>
<td>3.6847</td>
</tr>
<tr>
<td>'virginica'</td>
<td>4.285</td>
<td>0.042807</td>
<td>4.1733</td>
<td>4.3967</td>
</tr>
</tbody>
</table>

See Also
multcompare | fitrm | plotprofile
mauchly

Class: RepeatedMeasuresModel

Mauchly’s test for sphericity

Syntax

\[
\text{tbl} = \text{mauchly}(\text{rm})
\]
\[
\text{tbl} = \text{mauchly}(\text{rm},\text{C})
\]

Description

\[
\text{tbl} = \text{mauchly}(\text{rm}) \text{ returns the result of the Mauchly's test for sphericity for the repeated measures model } \text{rm}.
\]

It tests the null hypothesis that the sphericity assumption is true for the response variables in \text{rm}.

For more information, see “Mauchly’s Test of Sphericity” on page 9-82.

\[
\text{tbl} = \text{mauchly}(\text{rm},\text{C}) \text{ returns the result of the Mauchly's test based on the contrast matrix } \text{C}.
\]

Input Arguments

\text{rm} — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

\text{C} — Contrasts
matrix
Contrasts, specified as a matrix. The default value of C is the Q factor in a QR decomposition of the matrix M, where M is defined so that Y*M is the difference between all successive pairs of columns of the repeated measures matrix Y.

Data Types: single | double

Output Arguments

tbl — Results of Mauchly’s test of sphericity
table

Results of Mauchly’s test for sphericity for the repeated measures model rm, returned as a table.

tbl contains the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Value of Mauchly’s W statistic</td>
</tr>
<tr>
<td>ChiStat</td>
<td>Chi-square statistic value</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom of the Chi-square statistic</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value corresponding to the Chi-square statistic</td>
</tr>
</tbody>
</table>

Data Types: table

Examples

Perform Mauchly’s Test

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.
Store the data in a table array.

```matlab
t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4),... 'VariableNames', {'species', 'meas1', 'meas2', 'meas3', 'meas4'});
Meas = dataset([1 2 3 4], 'VarNames', {'Measurements'});
```

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

```matlab
rm = fitrm(t, 'meas1-meas4~species', 'WithinDesign', Meas);
```

Perform Mauchly’s test to assess the sphericity assumption.

```matlab
mauchly(rm)
```

```
ans = 1×4 table
     W      ChiStat   DF    pValue
   ______    _______    __    __________
     0.55814    84.976     5     7.6149e-17
```

The small p-value (in the `pValue` field) indicates that the sphericity, hence the compound symmetry assumption, does not hold. You should use epsilon corrections to compute the p-values for a repeated measures anova. You can compute the epsilon corrections using the `epsilon` method and perform the repeated measures anova with the corrected p-values using the `ranova` method.

See Also
epsilon | fitrm | ranova

Topics
“Mauchly’s Test of Sphericity” on page 9-82
“Compound Symmetry Assumption and Epsilon Corrections” on page 9-80
mat2dataset

Convert matrix to dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

ds = mat2dataset(X)
ds = mat2dataset(X,Name,Value)

Description

ds = mat2dataset(X) converts a matrix to a dataset array.

ds = mat2dataset(X,Name,Value) performs the conversion using additional options specified by one or more Name,Value pair arguments.

Examples

Convert Matrix to Dataset Array

Convert a matrix to a dataset array using the default options.

Load sample data.

```matlab
load('fisheriris')
X = meas;
size(X)
```

ans = 1×2
Convert the matrix to a dataset array.

```matlab
ds = mat2dataset(X);
size(ds)
ans = 1×2
    150     4
ds(1:5,:)
ans =
    X1   X2   X3   X4
   5.1   3.5   1.4   0.2
   4.9   3.0   1.4   0.2
   4.7   3.2   1.3   0.2
   4.6   3.1   1.5   0.2
   5.0   3.6   1.4   0.2
```

When you do not specify variable names, `mat2dataset` uses the matrix name and column numbers to create default variable names.

Convert Matrix to Dataset Array with Variable Names

Load sample data.

```matlab
load('fisheriris')
X = meas;
size(X)
ans = 1×2
    150     4
```

Convert the matrix to a dataset array, providing a variable name for each of the four column of `X`.

```matlab
load('fisheriris')
X = meas;
size(X)
ans = 1×2
    150     4
```
ds = mat2dataset(X,'VarNames',{'SLength','SWidth','PLength','PWidth'});
size(ds)

ans = 1×2
 150 4

ds(1:5,:)

ans =
 SLength SWidth PLength PWidth
 5.1 3.5 1.4 0.2
 4.9 3.0 1.4 0.2
 4.7 3.2 1.3 0.2
 4.6 3.1 1.5 0.2
 5.0 3.6 1.4 0.2

Create a Dataset Array with Multicolumn Variables

Convert a matrix to a dataset array containing multicolumn variables.

Load sample data.

load('fisheriris')
X = meas;
size(X)

ans = 1×2
 150 4

Convert the matrix to a dataset array, combining the sepal measurements (the first two columns) into one variable named SepalMeas, and the petal measurements (third and fourth columns) into one variable names PetalMeas.

ds = mat2dataset(X,'NumCols',[2,2],...
 'VarNames',{ 'SepalMeas', 'PetalMeas'});
ds(1:5,:)

32-4002
ans =
 SepalMeas PetalMeas
 5.1 3.5 1.4 0.2
 4.9 3.0 1.4 0.2
 4.7 3.2 1.3 0.2
 4.6 3.1 1.5 0.2
 5.0 3.6 1.4 0.2

The output dataset array has 150 observations and 2 variables.

size(ds)
ans = 1x2
 150 2

Input Arguments

X — Input matrix
matrix

Input matrix to convert to a dataset array, specified as an M-by-N numeric matrix. Each column of X becomes a variable in the output M-by-N dataset array.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name,Value** arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: 'NumCols',[1,1,2,1] specifies that the 3rd and 4th columns of the input matrix should be combined into a single variable.

VarNames — Variable names for output dataset array
string array | cell array of character vectors
Variable names for the output dataset array, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors. You must provide a variable name for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.

Example: 'VarNames', {'myVar1', 'myVar2', 'myVar3'}

ObsNames — Observation names for output dataset array

string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of 'ObsNames' and a string array or cell array of character vectors. The names do not need to be valid MATLAB identifiers, but they must be unique.

NumCols — Number of columns for each variable

vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of 'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is greater than one, mat2dataset combines multiple columns in X into a single variable in ds. The vector you assign to NumCols must sum to size(X,2).

For example, to convert a matrix with eight columns into a dataset array with five variables, specify a vector with five elements that sum to eight, such as 'NumCols', [1,1,3,1,2].

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned by default with a variable for each column of X, and an observation for each row of X. If you specify NumCols, then the number of variables in ds is equal to the length of the specified vector of column numbers.

See Also

cell2dataset | dataset | struct2dataset
Topics
“Create a Dataset Array from Workspace Variables” on page 2-69
“Create a Dataset Array from a File” on page 2-75
“Dataset Arrays” on page 2-137

Introduced in R2012b
m scaled

Nonclassical multidimensional scaling

Syntax

Y = mdscale(D,p)
[Y,stress] = mdscale(D,p)
[Y,stress,disparities] = mdscale(D,p)
[...] = mdscale(D,p,'Name',value)

Description

Y = mdscale(D,p) performs nonmetric multidimensional scaling on the n-by- n dissimilarity matrix D, and returns Y, a configuration of n points (rows) in p dimensions (columns). The Euclidean distances between points in Y approximate a monotonic transformation of the corresponding dissimilarities in D. By default, mdscale uses Kruskal's normalized stress criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and non-negative elements everywhere else. A dissimilarity matrix in upper triangle form must have real, non-negative entries. mdscale treats NaNs in D as missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. mdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y approximate \(\sqrt{1-D} \). To use a different transformation, transform the similarities prior to calling mdscale.

[Y,stress] = mdscale(D,p) returns the minimized stress, i.e., the stress evaluated at Y.

[Y,stress,disparities] = mdscale(D,p) returns the disparities, that is, the monotonic transformation of the dissimilarities D.
[...] = mdscale(D,p,'Name',value) specifies one or more optional parameter name/value pairs that control further details of mdscale. Specify Name in single quotes. Available parameters are

- **Criterion**— The goodness-of-fit criterion to minimize. This also determines the type of scaling, either non-metric or metric, that mdscale performs. Choices for non-metric scaling are:
 - 'stress' — Stress normalized by the sum of squares of the inter-point distances, also known as stress1. This is the default.
 - 'sstress' — Squared stress, normalized with the sum of 4th powers of the inter-point distances.

Choices for metric scaling are:

 - 'metricstress' — Stress, normalized with the sum of squares of the dissimilarities.
 - 'metricsstress' — Squared stress, normalized with the sum of 4th powers of the dissimilarities.
 - 'sammon' — Sammon's nonlinear mapping criterion. Off-diagonal dissimilarities must be strictly positive with this criterion.
 - 'strain' — A criterion equivalent to that used in classical multidimensional scaling.

- **Weights** — A matrix or vector the same size as D, containing nonnegative dissimilarity weights. You can use these to weight the contribution of the corresponding elements of D in computing and minimizing stress. Elements of D corresponding to zero weights are effectively ignored.

Note When you specify weights as a full matrix, its diagonal elements are ignored and have no effect, since the corresponding diagonal elements of D do not enter into the stress calculation.

- **Start** — Method used to choose the initial configuration of points for Y. The choices are
 - 'cmdscale' — Use the classical multidimensional scaling solution. This is the default. 'cmdscale' is not valid when there are zero weights.
 - 'random' — Choose locations randomly from an appropriately scaled p-dimensional normal distribution with uncorrelated coordinates.
• An n-by-p matrix of initial locations, where n is the size of the matrix D and p is the number of columns of the output matrix Y. In this case, you can pass in $[]$ for p and `mdscale` infers p from the second dimension of the matrix. You can also supply a 3-D array, implying a value for 'Replicates' from the array's third dimension.

• Replicates — Number of times to repeat the scaling, each with a new initial configuration. The default is 1.

• Options — Options for the iterative algorithm used to minimize the fitting criterion. Pass in an options structure created by `statset`. For example,

```matlab
opts = statset('param1',val1,'param2',val2,...);
[y,stress,disp] = mdscale(dissimilarities,2,'Options',opts)
```

The choices of `statset` parameters are

• 'Display' — Level of display output. The choices are 'off' (the default), 'iter', and 'final'.

• 'MaxIter' — Maximum number of iterations allowed. The default is 200.

• 'TolFun' — Termination tolerance for the stress criterion and its gradient. The default is $1e^{-4}$.

• 'TolX' — Termination tolerance for the configuration location step size. The default is $1e^{-4}$.

Examples

```matlab
load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...
    Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer.
X = X(strcmp('K',cellstr(Mfg)),:);

% Create a dissimilarity matrix.
dissimilarities = pdist(X);

dissimilarities = pdist(X);

% Use non-metric scaling to recreate the data in 2D,
% and make a Shepard plot of the results.
[Y,stress,disp] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disp; dissimilarities]);
plot(dissimilarities,distances,'bo',...
dissimilarities(ord), disparities(ord), 'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'},'Location','NW');

% Do metric scaling on the same dissimilarities.
figure
[Y, stress] = ...
mdscale(dissimilarities,2, 'criterion', 'metricsstress');
distances = pdist(Y);
plot(dissimilarities, distances, 'bo', ...
[0 max(dissimilarities)], [0 max(dissimilarities)], 'r.-');
xlabel('Dissimilarities'); ylabel('Distances')
See Also

cmdscale | pdist | statset

Introduced before R2006a
mdsprox

**Class:** CompactTreeBagger

Multidimensional scaling of proximity matrix

**Syntax**

```matlab
[SC,EIGEN] = mdsprox(B,X)
[SC,EIGEN] = mdsprox(B,X,'param1',val1,'param2',val2,...)
```

**Description**

```matlab
[SC,EIGEN] = mdsprox(B,X) applies classical multidimensional scaling to the proximity matrix computed for the data in the matrix X, and returns scaled coordinates SC and eigenvalues EIGEN of the scaling transformation. The method applies multidimensional scaling to the matrix of distances defined as 1-prox, where prox is the proximity matrix returned by the proximity method.
```

You can supply the proximity matrix directly by using the 'Data' parameter.

```matlab
[SC,EIGEN] = mdsprox(B,X,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:
```

- **'Data'** Flag indicating how the method treats the X input argument. If set to 'predictors' (default), mdsprox assumes X to be a matrix of predictors and used for computation of the proximity matrix. If set to 'proximity', the method treats X as a proximity matrix returned by the proximity method.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Colors'</td>
<td>If you supply this argument, <code>mdsprox</code> makes overlaid scatter plots of two scaled coordinates using specified colors for different classes. You must supply the colors as a character vector or a string scalar with one letter for each color. If there are more classes in the data than letters in the supplied value, <code>mdsprox</code> plots only the first C classes, where C is the number of letters in the supplied value. For regression or if you do not provide the vector of true class labels, the method uses the first color for all observations in X.</td>
</tr>
<tr>
<td>'Labels'</td>
<td>Vector of true class labels for a classification ensemble. True class labels can be a numeric vector, character matrix, string array, or cell array of character vectors. If supplied, this vector must have as many elements as there are observations (rows) in X. This argument has no effect unless you also supply the 'Colors' argument.</td>
</tr>
<tr>
<td>'MDSCoordinates'</td>
<td>Indices of the two scaled coordinates to plot. By default, <code>mdsprox</code> makes a scatter plot of the first and second scaled coordinates which correspond to the two largest eigenvalues. You can specify any other two or three indices not exceeding the dimensionality of the scaled data. This argument has no effect unless you also supply the 'Colors' argument.</td>
</tr>
</tbody>
</table>

**See Also**

`TreeBagger.mdsprox | cmdscale | proximity`
mdsprox

Class: TreeBagger

Multidimensional scaling of proximity matrix

Syntax

\[ [S,E] = \text{mdsprox}(B) \]
\[ [S,E] = \text{mdsprox}(B,'\text{param1}',\text{val1},'\text{param2}',\text{val2},...) \]

Description

\[ [S,E] = \text{mdsprox}(B) \] returns scaled coordinates, \( S \), and eigenvalues, \( E \), for the proximity matrix in the ensemble \( B \). An earlier call to \( \text{fillprox}(B) \) must create the proximity matrix.

\[ [S,E] = \text{mdsprox}(B,'\text{param1}',\text{val1},'\text{param2}',\text{val2},...) \] specifies optional parameter name/value pairs:

'Keep'  
Array of indices of observations in the training data to use for multidimensional scaling. By default, this argument is set to 'all'. If you provide numeric or logical indices, the method uses only the subset of the training data specified by these indices to compute the scaled coordinates and eigenvalues.

'Colors'  
If you supply this argument, \( \text{mdsprox} \) makes overlaid scatter plots of two scaled coordinates using specified colors for different classes. You must supply the colors as a character vector or a string scalar with one letter for each color. If there are more classes in the data than letters in the supplied value, \( \text{mdsprox} \) plots only the first \( C \) classes, where \( C \) is the number of letters in the supplied value. For regression, the method uses the first color for all observations in \( X \).
'MDSCoordinates' Indices of the two scaled coordinates to plot. By default, mdsprox makes a scatter plot of the first and second scaled coordinates which correspond to the two largest eigenvalues. You can specify any other two or three indices not exceeding the dimensionality of the scaled data. This argument has no effect unless you also supply the 'Colors' argument.

See Also

CompactTreeBagger.mdsprox | cmdscale | fillprox
**mean**

**Package:** prob

Mean of probability distribution

**Syntax**

\[ m = \text{mean}(pd) \]

**Description**

\[ m = \text{mean}(pd) \] returns the mean \( m \) of the probability distribution \( pd \).

**Examples**

**Mean of a Fitted Distribution**

Load the sample data. Create a vector containing the first column of students’ exam grade data.

```matlab
load examgrades
x = grades(:,1);
```

Create a normal distribution object by fitting it to the data.

```matlab
pd = \text{fitdist}(x,\text{'Normal'})
```

\[ pd = \]

NormalDistribution

Normal distribution

\[
\begin{align*}
\mu &= 75.0083 & [73.4321, 76.5846] \\
\sigma &= 8.7202 & [7.7391, 9.98843]
\end{align*}
\]

Compute the mean of the fitted distribution.
m = mean(pd)
m = 75.0083

The mean of the normal distribution is equal to the parameter mu.

**Mean of a Skewed Distribution**

Create a Weibull probability distribution object.

```matlab
pd = makedist('Weibull','a',5,'b',2)
pd =
 WeibullDistribution
 Weibull distribution
 A = 5
 B = 2
```

Compute the mean of the distribution.

```matlab
mean = mean(pd)
mean = 4.4311
```

**Mean of a Uniform Distribution**

Create a uniform distribution object

```matlab
pd = makedist('Uniform','lower',-3,'upper',5)
pd =
 UniformDistribution
 Uniform distribution
 Lower = -3
 Upper = 5
```

Compute the mean of the distribution.

```matlab
m = mean(pd)
```
Mean of a Kernel Distribution

Load the sample data. Create a probability distribution object by fitting a kernel distribution to the miles per gallon (MPG) data.

```matlab
load carsmall;
pd = fitdist(MPG,'Kernel')
```

```matlab
pd =
 KernelDistribution

 Kernel = normal
 Bandwidth = 4.11428
 Support = unbounded
```

Compute the mean of the distribution.

```matlab
mean(pd)
```

```matlab
ans = 23.7181
```

Input Arguments

**pd — Probability distribution**

Probability distribution object of type `KernelDistribution`.

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>makedist</code></td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td><code>fitdist</code></td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
</tbody>
</table>
### Distribution Fitter

Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.

### Output Arguments

**m — Mean**

scalar value

Mean of the probability distribution, returned as a scalar value.

### See Also

- `Distribution Fitter`
- `fitdist`
- `makedist`
- `median`
- `std`

### Topics

“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced in R2013a
meanMargin

**Class:** CompactTreeBagger

Mean classification margin

**Syntax**

mar = meanMargin(B,TBLnew,Ynew)
mar = meanMargin(B,Xnew,Ynew)
mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

**Description**

mar = meanMargin(B,TBLnew,Ynew) computes average classification margins for the predictors contained in the table TBLnew given the true response Ynew. You can omit Ynew if TBLnew contains the response variable. If you trained B using sample data contained in a table, then the input data for this method must also be in a table.

mar = meanMargin(B,Xnew,Ynew) computes average classification margins for the predictors contained in the matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix, then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors, categorical vector, or logical vector. meanMargin averages the margins over all observations (rows) in TBLnew or Xnew for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of trees in the ensemble B. This method is available for classification ensembles only.

mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-value pairs:
'Mode' | How `meanMargin` computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from `trees(1)`, second column gives mean margins from `trees(1:2)` etc., up to `trees(1:NTrees)`. If set to 'individual', `mar` is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', `mar` is a scalar showing the cumulative mean margin for the entire ensemble.

'Trees' | Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives mean margin from `trees(1)`, the second element gives mean margin from `trees(1:2)` etc.

'TreeWeights' | Vector of tree weights. This vector must have the same length as the 'Trees' vector. `meanMargin` uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

See Also
TreeBagger.meanMargin
**meanMargin**

**Class:** TreeBagger

Mean classification margin

**Syntax**

mar = meanMargin(B,TBLnew,Ynew)
mar = meanMargin(B,Xnew,Ynew)

mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

**Description**

mar = meanMargin(B,TBLnew,Ynew) computes average classification margins for the predictors contained in the table TBLnew given the true response Ynew. You can omit Ynew if TBLnew contains the response variable. If you trained B using sample data contained in a table, then the input data for this method must also be in a table.

mar = meanMargin(B,Xnew,Ynew) computes average classification margins for the predictors contained in the matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix, then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors, categorical vector or logical vector. meanMargin averages the margins over all observations (rows) in TBLnew or Xnew for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of trees in the ensemble B. This method is available for classification ensembles only.

mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-value pairs:
'Mode'	Character vector or string scalar indicating how `meanMargin` computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from `trees(1)`, second column gives mean margins from `trees(1:2)` etc, up to `trees(1:NTrees)`. If set to 'individual', `mar` is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', `mar` is a scalar showing the cumulative mean margin for the entire ensemble.
'Trees'	Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where `NTrees` is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives mean margin from `trees(1)`, the second element gives mean margin from `trees(1:2)` etc.
'TreeWeights'	Vector of tree weights. This vector must have the same length as the 'Trees' vector. `meanMargin` uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.
'Weights'	Vector of observation weights to use for margin averaging. By default the weight of every observation is set to 1. The length of this vector must be equal to the number of rows in `X`.
'UseInstanceForTree'	Logical matrix of size Nobs-by-NumTrees indicating which trees to use to make predictions for each observation. By default the method uses all trees for all observations.

**See Also**
CompactTreeBagger.`meanMargin`
meansurrvarassoc

**Class:** classregtree

(Removed) Mean predictive measure of association for surrogate splits in decision tree

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[
MA = \text{meansurrvarassoc}(T) \\
MA = \text{meansurrvarassoc}(T,N)
\]

**Description**

\[
MA = \text{meansurrvarassoc}(T)
\]

returns a \( p \)-by-\( p \) matrix, \( MA \), with predictive measures of association for \( p \) predictors. Element \( MA(i,j) \) is the predictive measure of association averaged over surrogate splits on predictor \( j \) for which predictor \( i \) is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor \( i \) and surrogate splits on predictor \( j \) and dividing by the total number of optimal splits on predictor \( i \), including splits for which the predictive measure of association between predictors \( i \) and \( j \) is negative.

\[
MA = \text{meansurrvarassoc}(T,N)
\]

takes an array \( N \) of node numbers and returns the predictive measure of association averaged over the specified nodes.

**See Also**

classregtree | surrcutcategories | surrcutflip | surrcutpoint | surrcuttype | surrcutvar | surrvarassoc
surrogateAssociation

Mean predictive measure of association for surrogate splits in decision tree

Syntax

\[
\text{ma} = \text{surrogateAssociation}(\text{tree}) \\
\text{ma} = \text{surrogateAssociation}(\text{tree}, \text{N})
\]

Description

\[
\text{ma} = \text{surrogateAssociation}(\text{tree}) \text{ returns a matrix of predictive measures of association for the predictors in } \text{tree}.
\]

\[
\text{ma} = \text{surrogateAssociation}(\text{tree}, \text{N}) \text{ returns a matrix of predictive measures of association averaged over the nodes in vector } \text{N}.
\]

Input Arguments

tree

A classification tree constructed with \text{fitctree}, or a compact regression tree constructed with \text{compact}.

N

Vector of node numbers in \text{tree}.

Output Arguments

ma

\[
\text{ma} = \text{surrogateAssociation}(\text{tree}) \text{ returns a } P\text{-by-}P \text{ matrix, where } P \text{ is the number of predictors in } \text{tree}. \text{ma}(i,j) \text{ is the predictive measure of association on}
\]
page 32-4026 between the optimal split on variable i and a surrogate split on variable j. For more details, see “Algorithms” on page 32-4027.

- ma = surrogateAssociation(tree,N) returns a P-by-P representing the predictive measure of association between variables averaged over nodes in the vector N. N contains node numbers from 1 to max(tree.NumNodes).

Examples

Estimate Predictive Measures of Association for Surrogate Splits

Load Fisher's iris data set.

load fisheriris

Grow a classification tree using species as the response. Specify to use surrogate splits for missing values.

tree = fitctree(meas,species,'surrogate','on');

Find the mean predictive measure of association between the predictor variables.

ma = surrogateAssociation(tree)

ma = 4×4

1.0000        0         0         0
0    1.0000        0         0
0.4633    0.2500    1.0000    0.5000
0.2065    0.1413    0.4022    1.0000

Find the mean predictive measure of association averaged over the odd-numbered nodes in tree.

N = 1:2:tree.NumNodes;
ma = surrogateAssociation(tree,N)

ma = 4×4

1.0000        0         0         0
0    1.0000        0         0
Definitions

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose $x_j$ and $x_k$ are predictor variables $j$ and $k$, respectively, and $j \neq k$. At node $t$, the predictive measure of association between the optimal split $x_j < u$ and a surrogate split $x_k < v$ is

$$\lambda_{jk} = \frac{\min(P_L, P_R) - (1 - PL_Lk - PR_Rk)}{\min(P_L, P_R)}.$$  

- $P_L$ is the proportion of observations in node $t$, such that $x_j < u$. The subscript $L$ stands for the left child of node $t$.
- $P_R$ is the proportion of observations in node $t$, such that $x_j \geq u$. The subscript $R$ stands for the right child of node $t$.
- $PL_Lk$ is the proportion of observations at node $t$, such that $x_j < u$ and $x_k < v$.
- $PR_Rk$ is the proportion of observations at node $t$, such that $x_j \geq u$ and $x_k \geq v$.
- Observations with missing values for $x_j$ or $x_k$ do not contribute to the proportion calculations.

$\lambda_{jk}$ is a value in $(-\infty, 1]$. If $\lambda_{jk} > 0$, then $x_k < v$ is a worthwhile surrogate split for $x_j < u$. 

$0.7600 \ 0.5000 \ 1.0000 \ 1.0000$

$0.4130 \ 0.2826 \ 0.8043 \ 1.0000$
Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to the left or right child node using the best surrogate predictor. When the value of the best surrogate split predictor for the observation is also missing, the observation is sent to the left or right child node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending order by their predictive measure of association on page 32-2562.

Algorithms

Element \( ma(i,j) \) is the predictive measure of association averaged over surrogate splits on predictor \( j \) for which predictor \( i \) is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor \( i \) and surrogate splits on predictor \( j \) and dividing by the total number of optimal splits on predictor \( i \), including splits for which the predictive measure of association between predictors \( i \) and \( j \) is negative.

See Also

ClassificationTree | fitctree
**surrogateAssociation**

Mean predictive measure of association for surrogate splits in decision tree

**Syntax**

```matlab
ma = surrogateAssociation(tree)
ma = surrogateAssociation(tree,N)
```

**Description**

- `ma = surrogateAssociation(tree)` returns a matrix of predictive measures of association for the predictors in `tree`.
- `ma = surrogateAssociation(tree,N)` returns a matrix of predictive measures of association averaged over the nodes in vector `N`.

**Input Arguments**

- `tree`
  A regression tree constructed with `fitrtree`, or a compact regression tree constructed with `compact`.
- `N`
  Vector of node numbers in `tree`.

**Output Arguments**

- `ma`
  - `ma = surrogateAssociation(tree)` returns a P-by-P matrix, where P is the number of predictors in `tree`. `ma(i,j)` is the predictive measure of association on
page 32-4030 between the optimal split on variable \( i \) and a surrogate split on variable \( j \). For more details, see “Algorithms” on page 32-4031.

- \( \text{ma} = \text{surrogateAssociation}(\text{tree}, N) \) returns a \( P \)-by-\( P \) representing the predictive measure of association between variables averaged over nodes in the vector \( N \). \( N \) contains node numbers from 1 to \( \text{max}(\text{tree.NumNodes}) \).

### Examples

**Estimate Predictive Measures of Association for Surrogate Splits**

Load the `carsmall` data set. Specify `Displacement`, `Horsepower`, and `Weight` as predictor variables.

```
load carsmall
X = [Displacement Horsepower Weight];
```

Grow a regression tree using `MPG` as the response. Specify to use surrogate splits for missing values.

```
tree = fitrtree(X,MPG,'surrogate','on');
```

Find the mean predictive measure of association between the predictor variables.

```
ma = surrogateAssociation(tree)
ma = 3×3
 1.0000 0.2167 0.5083
 0.4521 1.0000 0.3769
 0.2540 0.2659 1.0000
```

Find the mean predictive measure of association averaged over the odd-numbered nodes in \( \text{tree} \).

```
N = 1:2:tree.NumNodes;
ma = surrogateAssociation(tree,N)
ma = 3×3
 1.0000 0.1250 0.6875
```
Definitions

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose $x_j$ and $x_k$ are predictor variables $j$ and $k$, respectively, and $j \neq k$. At node $t$, the predictive measure of association between the optimal split $x_j < u$ and a surrogate split $x_k < v$ is

$$
\lambda_{jk} = \frac{\min(P_L, P_R) - (1 - P_{L_k}R_k - P_{R_k}R_k)}{\min(P_L, P_R)}.
$$

- $P_L$ is the proportion of observations in node $t$, such that $x_j < u$. The subscript $L$ stands for the left child of node $t$.
- $P_R$ is the proportion of observations in node $t$, such that $x_j \geq u$. The subscript $R$ stands for the right child of node $t$.
- $P_{L_jL}$ is the proportion of observations at node $t$, such that $x_j < u$ and $x_k < v$.
- $P_{R_jR}$ is the proportion of observations at node $t$, such that $x_j \geq u$ and $x_k \geq v$.
- Observations with missing values for $x_j$ or $x_k$ do not contribute to the proportion calculations.

\( \lambda_{jk} \) is a value in \((-\infty, 1]\). If $\lambda_{jk} > 0$, then $x_k < v$ is a worthwhile surrogate split for $x_j < u$. 

Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to the left or right child node using the best surrogate predictor. When the value of the best surrogate split predictor for the observation is also missing, the observation is sent to the left or right child node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending order by their predictive measure of association on page 32-2562.

Algorithms

Element $ma(i, j)$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor $i$ and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative.

See Also

RegressionTree | fitrtree | prune
**median**

**Package:** prob

Median of probability distribution

**Syntax**

\[ m = \text{median}(pd) \]

**Description**

\[ m = \text{median}(pd) \] returns the median \( m \) for the probability distribution \( pd \)

**Examples**

**Median of a Fitted Distribution**

Load the sample data. Create a vector containing the first column of students' exam grade data.

```matlab
load examgrades
x = grades(:,1);
```

Create a normal distribution object by fitting it to the data.

```matlab
pd = fitdist(x,'Normal')
```

```
pd =
 NormalDistribution

 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]
```

Compute the median of the fitted distribution.
m = median(pd)
m = 75.0083

For a symmetrical distribution such as the normal distribution, the median is equal to the mean, \( \mu \).

**Median of a Skewed Distribution**

Create a Weibull probability distribution object.

\[
pd = \text{makedist('Weibull','a',5,'b',2)}
\]

\[
pd = \text{WeibullDistribution}
\]

\[
\text{Weibull distribution}
\]

\[
A = 5
\]

\[
B = 2
\]

Compute the median of the distribution.

\[
m = \text{median(pd)}
\]

\[
m = 4.1628
\]

For a skewed distribution such as the Weibull distribution, the median and the mean may not be equal.

Calculate the mean of the Weibull distribution and compare it to the median.

\[
\text{mean} = \text{mean(pd)}
\]

\[
\text{mean} = 4.4311
\]

The mean of the distribution is greater than the median.

Plot the pdf to visualize the distribution.

\[
x = [0:.1:15];
\]

\[
\text{pdf} = \text{pdf(pd,x)};
\]

\[
\text{plot}(x,\text{pdf})
\]
Input Arguments

pd — Probability distribution
 probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.
## Function or App

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive</td>
</tr>
<tr>
<td></td>
<td>Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>

## Output Arguments

**m** — Median

scalar value

Median of the probability distribution, returned as a scalar value. The value of m is the 50th percentile of the probability distribution.

## See Also

**Distribution Fitter** | **fitdist** | **makedist** | **mean**

## Topics

“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

## Introduced in R2013a
mergelevels

Merge levels of nominal or ordinal arrays

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Syntax**

\[ B = \text{mergelevels}(A,\text{oldlevels}) \]
\[ B = \text{mergelevels}(A,\text{oldlevels},\text{newlevel}) \]

**Description**

\[ B = \text{mergelevels}(A,\text{oldlevels}) \] merges two or more levels of \( A \).

- If \( A \) is a nominal array, \text{mergelevels} uses the first label in oldlevels as the new level.
- If \( A \) is an ordinal array, the levels specified by oldlevels must be consecutive, and \text{mergelevels} uses the label corresponding to the lowest level in oldlevels as the label for the new level.

\[ B = \text{mergelevels}(A,\text{oldlevels},\text{newlevel}) \] merges two or more levels into the new level with label newlevel.

**Examples**

**Create New Category From Merged Levels**

Create a nominal array from data in a cell array.

\[
\text{colors} = \text{nominal} (\{ 'r', 'b', 'g'; 'g', 'r', 'b'; 'b', 'r', 'g'},..., \\
\{ 'blue', 'green', 'red' \})
\]
colors = 3x3 nominal array
    red       blue      green
    green     red       blue
    blue      red       green

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

colors = mergelevels(colors,{'red','blue'},'purple')

colors = 3x3 nominal array
    purple     purple      green
    green      purple      purple
    purple     purple      green

Display the levels of colors.

getlevels(colors)

ans = 1x2 nominal array
    purple     green

Input Arguments

A — Nominal or ordinal array
    nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with
nominal or ordinal.

oldlevels — Levels to merge
    string array | cell array of character vectors | 2-D character array

Levels to merge, specified as a string array, cell array of character vectors, or 2-D
character array. For ordinal arrays, the levels in oldlevels must be consecutive.

Data Types: char | string | cell

newlevel — Level to create
    character vector | string scalar
Level to create from the merged levels, specified as a character vector or string scalar that gives the label for the new level.

Data Types: char | string

**Output Arguments**

**B — Nominal or ordinal array**

nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

**See Also**

addlevels | droplevels | nominal | ordinal | reorderlevels

**Topics**

“Merge Category Levels” on page 2-21

**Introduced in R2007a**
mhsample

Metropolis-Hastings sample

Syntax

```matlab
smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,'proprnd',proprnd)
smpl = mhsample(...,'symmetric',sym)
smpl = mhsample(...,'burnin',K)
smpl = mhsample(...,'thin',m)
smpl = mhsample(...,'nchain',n)
[smpl,accept] = mhsample(...)
```

Description

```matlab
smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,'proprnd',proprnd) draws nsamples random samples from a target stationary distribution pdf using the Metropolis-Hastings algorithm.

start is a row vector containing the start value of the Markov Chain, nsamples is an integer specifying the number of samples to be generated, and pdf, proppdf, and proprnd are function handles created using @. proppdf defines the proposal distribution density, and proprnd defines the random number generator for the proposal distribution. pdf and proprnd take one argument as an input with the same type and size as start. proppdf takes two arguments as inputs with the same type and size as start.

smpl is a column vector or matrix containing the samples. If the log density function is preferred, 'pdf' and 'proppdf' can be replaced with 'logpdf' and 'logproppdf'. The density functions used in Metropolis-Hastings algorithm are not necessarily normalized.

The proposal distribution \(q(x,y) \) gives the probability density for choosing \(x \) as the next point when \(y \) is the current point. It is sometimes written as \(q(x|y) \).

If the proppdf or logproppdf satisfies \(q(x,y) = q(y,x) \), that is, the proposal distribution is symmetric, mhsample implements Random Walk Metropolis-Hastings sampling. If the
proppdf or logproppdf satisfies \(q(x,y) = q(x) \), that is, the proposal distribution is independent of current values, \texttt{mhsample} implements Independent Metropolis-Hastings sampling.

\[
\text{smpl} = \text{mhsample}(...,'symmetric',\text{sym}) \]
draws \(n_{\text{samples}} \) random samples from a target stationary distribution \texttt{pdf} using the Metropolis-Hastings algorithm. \texttt{sym} is a logical value that indicates whether the proposal distribution is symmetric. The default value is false, which corresponds to the asymmetric proposal distribution. If \texttt{sym} is true, for example, the proposal distribution is symmetric, \texttt{proppdf} and \texttt{logproppdf} are optional.

\[
\text{smpl} = \text{mhsample}(...,'burnin',K) \]
generates a Markov chain with values between the starting point and the \(k^{\text{th}} \) point omitted in the generated sequence. Values beyond the \(k^{\text{th}} \) point are kept. \(k \) is a nonnegative integer with default value of \(0 \).

\[
\text{smpl} = \text{mhsample}(...,'thin',m) \]
generates a Markov chain with \(m-1 \) out of \(m \) values omitted in the generated sequence. \(m \) is a positive integer with default value of \(1 \).

\[
\text{smpl} = \text{mhsample}(...,'nchain',n) \]
generates \(n \) Markov chains using the Metropolis-Hastings algorithm. \(n \) is a positive integer with a default value of \(1 \). \texttt{smpl} is a matrix containing the samples. The last dimension contains the indices for individual chains.

\[
[\text{smpl},\text{accept}] = \text{mhsample}(...) \]
also returns \texttt{accept}, the acceptance rate of the proposed distribution. \texttt{accept} is a scalar if a single chain is generated and is a vector if multiple chains are generated.

Examples

Estimate Moments Using Independent Metropolis-Hastings Sampling

Use Independent Metropolis-Hastings sampling to estimate the second order moment of a Gamma distribution.

```matlab
rng default; % For reproducibility
alpha = 2.43;
beta = 1;
pdf = @(x)gampdf(x,alpha,beta); % Target distribution
proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);
proprnd = @(x)sum(...
```
exprnd(floor(alpha)/alpha,floor(alpha),1));
nsamples = 5000;
smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...
 'proppdf',proppdf);

Plot the results.

xxhat = cumsum(smpl.^2)./(1:nsamples)';
figure;
plot(1:nsamples,xxhat)
Random Walk Metropolis-Hastings Sampling

Use Random Walk Metropolis-Hastings sampling to generate sample data from a standard normal distribution.

```matlab
rng default  % For reproducibility
delta = .5;
df = @(x) normpdf(x);
proppdf = @(x,y) unifpdf(y-x,-delta,delta);
proprnd = @(x) x + rand*2*delta - delta;
nsamples = 15000;
x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);

% Plot the sample data.
figure;
h = histfit(x,50);
h(1).FaceColor = [.8 .8 1];
```
See Also
rand | slicesample

Topics
“Using the Metropolis-Hastings Algorithm” on page 7-12
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-12

Introduced in R2006a
mle

Maximum likelihood estimates

Syntax

phat = mle(data)
phat = mle(data,'distribution',dist)

phat = mle(data,'pdf',pdf,'start',start)
phat = mle(data,'pdf',pdf,'start',start,'cdf',cdf)

phat = mle(data,'logpdf',logpdf,'start',start)
phat = mle(data,'logpdf',logpdf,'start',start,'logsf',logsf)

phat = mle(data,'nloglf',nloglf,'start',start)

phat = mle(___,Name,Value)
[phat,pci] = mle(___)

Description

phat = mle(data) returns maximum likelihood estimates (MLEs) for the parameters of a normal distribution, using the sample data in the vector data.

phat = mle(data,'distribution',dist) returns parameter estimates for a distribution specified by dist.

phat = mle(data,'pdf',pdf,'start',start) returns parameter estimates for a custom distribution specified by the probability density function pdf. You must also specify the initial parameter values, start.

phat = mle(data,'pdf',pdf,'start',start,'cdf',cdf) returns parameter estimates for a custom distribution specified by the probability density function pdf and custom cumulative distribution function cdf.
phat = mle(data,'logpdf',logpdf,'start',start) returns parameter estimates for a custom distribution specified by the log probability density function logpdf. You must also specify the initial parameter values, start.

phat = mle(data,'logpdf',logpdf,'start',start,'logsf',logsf) returns parameter estimates for a custom distribution specified by the log probability density function logpdf and custom log survival function on page 32-4062 logsf.

phat = mle(data,'nloglf',nloglf,'start',start) returns parameter estimates for the custom distribution specified by the negative loglikelihood function nloglf. You must also specify the initial parameter values, start.

phat = mle(___,Name,Value) specifies options using name-value pair arguments in addition to any of the input arguments in previous syntaxes. For example, you can specify the censored data, frequency of observations, and confidence level.

[phat,pci] = mle(___) also returns the 95% confidence intervals for the parameters.

Examples

Estimate Parameters of Burr Distribution

Load the sample data.

load carbig

The variable MPG has the miles per gallon for different models of cars.

Draw a histogram of MPG data.

 histogram(MPG)
The distribution is somewhat right skewed. A symmetric distribution, such as normal distribution, might not be a good fit.

Estimate the parameters of the Burr Type XII distribution for the MPG data.

```matlab
phat = mle(MPG,'distribution','burr')
```

```matlab
phat = 1×3
    34.6447    3.7898    3.5722
```
The maximum likelihood estimates for the scale parameter α is 34.6447. The estimates for the two shape parameters c and k of the Burr Type XII distribution are 3.7898 and 3.5722, respectively.

Estimate Parameters of a Noncentral Chi-Square Distribution

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees of freedom 8 and noncentrality parameter 3.

```matlab
rng default % for reproducibility
x = ncx2rnd(8,3,1000,1);
```

Estimate the parameters of the noncentral chi-square distribution from the sample data. To do this, custom define the noncentral chi-square pdf using the pdf input argument.

```matlab
[phat,pci] = mle(x,'pdf',@(x,v,d)ncx2pdf(x,v,d),'start',[1,1])
```

```matlab
phat = 1x2
     8.1052   2.6693
```

```matlab
pci = 2x2
     7.1121   1.6025
     9.0983   3.7362
```

The estimate for the degrees of freedom is 8.1052 and the noncentrality parameter is 2.6693. The 95% confidence interval for the degrees of freedom is (7.1121,9.0983) and the noncentrality parameter is (1.6025,3.7362). The confidence intervals include the true parameter values of 8 and 3, respectively.

Fit Custom Distribution to Censored Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','readmissiontimes.mat'))
```
The data includes ReadmissionTime, which has readmission times for 100 patients. The column vector Censored has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom probability density and cumulative distribution function.

\[
custpdf = @(data,lambda) lambda*exp(-lambda*data);
custcdf = @(data,lambda) 1-exp(-lambda*data);
\]

Estimate the parameter, lambda, of the custom distribution for the censored sample data.

\[
phat = mle(ReadmissionTime,'pdf',custpdf,'cdf',custcdf,'start',0.05,'Censoring',Censored)
\]

\[
phat = 0.1096
\]

Fit Custom Log pdf and Survival Function

The data includes ReadmissionTime, which has readmission times for 100 patients. The column vector Censored has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom log probability density and survival function.

\[
custlogpdf = @(data,lambda,k) log(k)-k*log(lambda)+(k-1)*log(data)-(data/lambda).^k;
custlogsf = @(data,lambda,k) -(data/lambda).^k;
\]

Estimate the parameters, lambda and k, of the custom distribution for the censored sample data.

\[
phat = mle(ReadmissionTime,'logpdf',custlogpdf,'logsf',custlogsf,...
 'start',[1,0.75],'Censoring',Censored)
\]

\[
phat = 1x2
\]

\[
9.2090 1.4223
\]
The scale and shape parameters of the custom-defined distribution are 9.2090 and 1.4223, respectively.

Fit Custom Log Negative Likelihood Function

Load the sample data.

load(fullfile(matlabroot,'examples','stats','readmissiontimes.mat'));

The data includes ReadmissionTime, which has readmission times for 100 patients. This is simulated data.

Define a negative log likelihood function.

custnloglf = @(lambda,data,cens,freq) - length(data)*log(lambda) + nansum(lambda*data);

Estimate the parameters of the defined distribution.

phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)

phat = 0.1462

Estimate Probability of Success

Generate 100 random observations from a binomial distribution with the number of trials, \(n = 20 \), and the probability of success, \(P = 0.75 \).

data = binornd(20,0.75,100,1);

Estimate the probability of success and 95% confidence limits using the simulated sample data.

[phat,pci] = mle(data,'distribution','binomial','alpha',.05,'ntrials',20)

phat = 0.7615
pci = 2×1

0.7422
The estimate of probability of success is 0.7615 and the lower and upper limits of the 95% confidence interval are 0.7422 and 0.78. This interval covers the true value used to simulate the data.

Fit Distribution with Known Parameter

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees of freedom 10 and noncentrality parameter 5.

```matlab
rng default % for reproducibility
x = ncx2rnd(10,5,1000,1);
```

Suppose the noncentrality parameter is fixed at the value 5. Estimate the degrees of freedom of the noncentral chi-square distribution from the sample data. To do this, custom define the noncentral chi-square pdf using the `pdf` input argument.

```matlab
[phat,pci] = mle(x,'pdf',@(x,v,d)ncx2pdf(x,v,5),'start',1)
```

```matlab
phat = 9.9307
pci = 2×1
    9.5626
    10.2989
```

The estimate for the noncentrality parameter is 9.9307, with a 95% confidence interval of 9.5626 and 10.2989. The confidence interval includes the true parameter value of 10.

Fit Rician Distribution with Known Scale Parameter

Generate sample data of size 1000 from a Rician distribution with noncentrality parameter of 8 and scale parameter of 5. First create the Rician distribution.

```matlab
r = makedist('Rician','s',8,'sigma',5);
```
Now, generate sample data from the distribution you created above.

```matlab
rng default % For reproducibility
x = random(r,1000,1);
```

Suppose the scale parameter is known, and estimate the noncentrality parameter from sample data. To do this using `mle`, you must custom define the Rician probability density function.

```matlab
[phat,pci] = mle(x,'pdf',@(x,s,sigma) pdf('rician',x,s,5),'start',10)
```

```
phat = 7.8953
pci = 2×1
    7.5405
    8.2501
```

The estimate for the noncentrality parameter is 7.8953, with a 95% confidence interval of 7.5404 and 8.2501. The confidence interval includes the true parameter value of 8.

Fit a Distribution with Additional Parameter

Add a scale parameter to the chi-square distribution for adapting to the scale of data and fit it. First, generate sample data of size 1000 from a chi-square distribution with degrees of freedom 5, and scale it by the factor of 100.

```matlab
rng default % For reproducibility
x = 100*chi2rnd(5,1000,1);
```

Estimate the degrees of freedom and the scaling factor. To do this, custom define the chi-square probability density function using the `pdf` input argument. The density function requires a \(\frac{1}{s} \) factor for data scaled by \(s \).

```matlab
[phat,pci] = mle(x,'pdf',@(x,v,s)chi2pdf(x/s,v)/s,'start',[1,200])
```

```
phat = 1×2
    5.1079   99.1681
```
pci = 2×2

4.6862 90.1215
5.5297 108.2146

The estimate for the degrees of freedom is 5.1079 and the scale is 99.1681. The 95% confidence interval for the degrees of freedom is (4.6862,5.5279) and the scale parameter is (90.1215,108.2146). The confidence intervals include the true parameter values of 5 and 100, respectively.

Input Arguments

data — Sample data
vector

Sample data `mle` uses to estimate the distribution parameters, specified as a vector.

Data Types: single | double

dist — Distribution type
character vector or string scalar of distribution type

Distribution type to estimate parameters for, specified as one of the following.

<table>
<thead>
<tr>
<th>dist</th>
<th>Description</th>
<th>Parameter 1</th>
<th>Parameter 2</th>
<th>Parameter 3</th>
<th>Parameter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Bernoulli'</td>
<td>“Bernoulli Distribution” on page B-2</td>
<td>p: probability of success for each trial</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Beta'</td>
<td>“Beta Distribution” on page B-4</td>
<td>a: first shape parameter</td>
<td>b: second shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'bino' or 'Binomial'</td>
<td>“Binomial Distribution” on page B-9</td>
<td>n: number of trials</td>
<td>p: probability of success for each trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>dist</td>
<td>Description</td>
<td>Parameter 1</td>
<td>Parameter 2</td>
<td>Parameter 3</td>
<td>Parameter 4</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>"Birnbaum-Saunders Distribution" on page B-13</td>
<td>β: scale parameter</td>
<td>γ: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Burr'</td>
<td>"Burr Type XII Distribution" on page B-15</td>
<td>α: scale parameter</td>
<td>c: first shape parameter</td>
<td>k: second shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Discrete Uniform' or 'unid'</td>
<td>"Uniform Distribution (Discrete)" on page B-181</td>
<td>n: maximum observable value</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'exp' or 'Exponential'</td>
<td>"Exponential Distribution" on page B-32</td>
<td>μ: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'ev' or 'Extreme Value'</td>
<td>"Extreme Value Distribution" on page B-36</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'gam' or 'Gamma'</td>
<td>"Gamma Distribution" on page B-45</td>
<td>a: shape parameter</td>
<td>b: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'gev' or 'Generalized Extreme Value'</td>
<td>"Generalized Extreme Value Distribution" on page B-50</td>
<td>k: shape parameter</td>
<td>σ: scale parameter</td>
<td>μ: location parameter</td>
<td>—</td>
</tr>
<tr>
<td>'gp' or 'Generalized Pareto'</td>
<td>"Generalized Pareto Distribution" on page B-55</td>
<td>k: tail index (shape) parameter</td>
<td>σ: scale parameter</td>
<td>θ: threshold (location) parameter</td>
<td>—</td>
</tr>
<tr>
<td>'geo' or 'Geometric'</td>
<td>"Geometric Distribution" on page B-61</td>
<td>p: probability parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'hn' or 'Half Normal'</td>
<td>"Half-Normal Distribution" on page B-69</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>dist</td>
<td>Description</td>
<td>Parameter 1</td>
<td>Parameter 2</td>
<td>Parameter 3</td>
<td>Parameter 4</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>“Inverse Gaussian Distribution” on page B-78</td>
<td>(\mu): scale parameter</td>
<td>(\lambda): shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>“Logistic Distribution” on page B-91</td>
<td>(\mu): mean</td>
<td>(\sigma): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'LogLogistic'</td>
<td>“Loglogistic Distribution” on page B-93</td>
<td>(\mu): mean of logarithmic values</td>
<td>(\sigma): scale parameter of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logn' or 'LogNormal'</td>
<td>“Lognormal Distribution” on page B-95</td>
<td>(\mu): mean of logarithmic values</td>
<td>(\sigma): standard deviation of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>“Nakagami Distribution” on page B-114</td>
<td>(\mu): shape parameter</td>
<td>(\omega): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'nbin' or 'Negative Binomial'</td>
<td>“Negative Binomial Distribution” on page B-116</td>
<td>(r): number of successes</td>
<td>(p): probability of success in a single trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'norm' or 'Normal'</td>
<td>“Normal Distribution” on page B-130</td>
<td>(\mu): mean</td>
<td>(\sigma): standard deviation</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'poiss' or 'Poisson'</td>
<td>“Poisson Distribution” on page B-137</td>
<td>(\lambda): mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'rayl' or 'Rayleigh'</td>
<td>“Rayleigh Distribution” on page B-140</td>
<td>(b): scale parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rician'</td>
<td>“Rician Distribution” on page B-143</td>
<td>(s): noncentrality parameter</td>
<td>(\sigma): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Stable'</td>
<td>“Stable Distribution” on page B-145</td>
<td>(\alpha): first shape parameter</td>
<td>(\beta): second shape parameter</td>
<td>(\gamma): scale parameter</td>
<td>(\delta): location parameter</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>“t Location-Scale Distribution” on page B-166</td>
<td>(\mu): location parameter</td>
<td>(\sigma): scale parameter</td>
<td>(\nu): shape parameter</td>
<td>—</td>
</tr>
</tbody>
</table>
Description

<table>
<thead>
<tr>
<th>dist</th>
<th>Description</th>
<th>Parameter 1</th>
<th>Parameter 2</th>
<th>Parameter 3</th>
<th>Parameter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unif' or 'Uniform'</td>
<td>“Uniform Distribution (Continuous)” on page B-175</td>
<td>a: lower endpoint (minimum)</td>
<td>b: upper endpoint (maximum)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'wbl' or 'Weibull'</td>
<td>“Weibull Distribution” on page B-184</td>
<td>a: scale parameter</td>
<td>b: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Example: 'rician'

pdf — Custom probability density function

function handle

Custom probability distribution function, specified as a function handle created using `@`.

This custom function accepts the vector `data` and one or more individual distribution parameters as input parameters, and returns a vector of probability density values.

For example, if the name of the custom probability density function is `newpdf`, then you can specify the function handle in `mle` as follows.

Example: `@newpdf`

Data Types: `function_handle`

cdf — Custom cumulative distribution function

function handle

Custom cumulative distribution function, specified as a function handle created using `@`.

This custom function accepts the vector `data` and one or more individual distribution parameters as input parameters, and returns a vector of cumulative probability values.

You must define `cdf` with `pdf` if data is censored and you use the 'Censoring' name-value pair argument. If 'Censoring' is not present, you do not have to specify `cdf` while using `pdf`.

For example, if the name of the custom cumulative distribution function is `newcdf`, then you can specify the function handle in `mle` as follows.

Example: `@newcdf`

Data Types: `function_handle`
\textbf{logpdf — Custom log probability density function}

function handle

Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector \texttt{data} and one or more individual distribution parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is \texttt{customlogpdf}, then you can specify the function handle in \texttt{mle} as follows.

Example: \texttt{@customlogpdf}

Data Types: \texttt{function_handle}

\textbf{logsf — Custom log survival function}

function handle

Custom log survival function on page 32-4062, specified as a function handle created using @.

This custom function accepts the vector \texttt{data} and one or more individual distribution parameters as input parameters, and returns a vector of log survival probability values.

You must define \texttt{logsf} with \texttt{logpdf} if data is censored and you use the 'Censoring' name-value pair argument. If 'Censoring' is not present, you do not have to specify \texttt{logsf} while using \texttt{logpdf}.

For example, if the name of the custom log survival function is \texttt{logsurvival}, then you can specify the function handle in \texttt{mle} as follows.

Example: \texttt{@logsurvival}

Data Types: \texttt{function_handle}

\textbf{nloglf — Custom negative loglikelihood function}

function handle

Custom negative loglikelihood function, specified as a function handle created using @.

This custom function accepts the following input arguments.
params	Vector of distribution parameter values. `mle` detects the number of parameters from the number of elements in `start`.
data | Vector of data.
cens | Boolean vector of censored values.
freq | Vector of integer data frequencies.

`nloglf` must accept all four arguments even if you do not use the 'Censoring' or 'Frequency' name-value pair arguments. You can write 'nloglf' to ignore `cens` and `freq` arguments in that case.

`nloglf` returns a scalar negative loglikelihood value and optionally, a negative loglikelihood gradient vector (see the 'GradObj' field in 'Options').

If the name of the custom negative log likelihood function is `negloglik`, then you can specify the function handle in `mle` as follows.

Example: `@negloglik`

Data Types: `function_handle`

start — Initial parameter values

`scalar | vector`

Initial parameter values for the custom functions, specified as a scalar value or a vector of scalar values.

Use `start` when you fit custom distributions, that is, when you use `pdf` and `cdf`, `logpdf` and `logsf`, or `nloglf` input arguments.

Example: `0.05`

Example: `[100,2]`

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

32-4057
Example: 'Censoring', Cens, 'Alpha', 0.01, 'Options', Opt specifies that mle estimates the parameters for the distribution of censored data specified by array Cens, computes the 99% confidence limits for the parameter estimates, and uses the algorithm control parameters specified by the structure Opt.

Censoring — Indicator for censoring
array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of 'Censoring' and a Boolean array of the same size as data. Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed.

For example, if the censored data information is in the binary array called Censored, then you can specify the censored data as follows.

Example: 'Censoring', Censored

mle supports censoring for the following distributions:

- Birnbaum-Saunders
- Burr
- Exponential
- Extreme Value
- Gamma
- Inverse Gaussian
- Kernel
- Log-Logistic
- Logistic
- Lognormal
- Nakagami
- Normal
- Rician
- t Location-Scale
- Weibull

Data Types: logical

Frequency — Frequency of observations
array of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as the comma-separated pair consisting of 'Frequency' and an array containing nonnegative integer counts, which is the same size as data. The default is one observation per element of data.

For example, if the observation frequencies are stored in an array named Freq, you can specify the frequencies as follows.

Example: 'Frequency', Freq
Data Types: single | double

Alpha — Confidence level
0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval of parameter estimates, pci, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1). The confidence level of pci is $100(1-\text{Alpha})\%$. The default is 0.05 for 95% confidence.

For example, for 99% confidence limits, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double

NTrials — Number of trials
scalar value | vector

Number of trials for the corresponding element of data, specified as the comma-separated pair consisting of 'Ntrials' and a scalar or a vector of the same size as data.

Applies only to binomial distribution.

Example: 'Ntrials',total

Data Types: single | double

mu — Location parameter
0 (default) | scalar value

Location parameter for the half-normal distribution, specified as the comma-separated pair consisting of 'mu' and a scalar value.

Applies only to half-normal distribution.

Example: 'mu',1

Data Types: single | double

Options — Fitting algorithm control parameters
structure

Fitting algorithm control parameters, specified as the comma-separated pair consisting of 'Options' and a structure returned by `statset`.
Not applicable to all distributions.

Use the 'Options' name-value pair argument to control details of the maximum likelihood optimization when fitting a custom distribution. For parameter names and default values, type `statset('mlecustom')`. You can set the options under a new name and use that in the name-value pair argument. `mle` interprets the following `statset` parameters for custom distribution fitting.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'GradObj'</td>
<td>Default is 'off'. 'on' or 'off', indicating whether or not <code>fmincon</code> can expect the custom function provided with the <code>nloglf</code> input argument to return the gradient vector of the negative log-likelihood as a second output. <code>mle</code> ignores 'GradObj' when using <code>fminsearch</code>.</td>
</tr>
<tr>
<td>'DerivStep'</td>
<td>Default is $\text{eps}^{(1/3)}$. The relative difference, specified as a scalar or a vector the same size as <code>start</code>, used in finite difference derivative approximations when using <code>fmincon</code>, and 'GradObj' is 'off'. <code>mle</code> ignores 'DerivStep' when using <code>fminsearch</code>.</td>
</tr>
<tr>
<td>'FunValCheck'</td>
<td>Default is 'on'. 'on' or 'off', indicating whether or not <code>mle</code> should check the values returned by the custom distribution functions for validity. A poor choice of starting point can sometimes cause these functions to return NaNs, infinite values, or out-of-range values if they are written without suitable error checking.</td>
</tr>
<tr>
<td>'TolBnd'</td>
<td>Default is $1e-6$. An offset for lower and upper bounds when using <code>fmincon</code>. <code>mle</code> treats lower and upper bounds as strict inequalities, that is, open bounds. With <code>fmincon</code>, this is approximated by creating closed bounds inset from the specified lower and upper bounds by <code>TolBnd</code>.</td>
</tr>
</tbody>
</table>
Example: 'Options', statset('mlecustom')
Data Types: struct

LowerBound — Lower bounds for distribution parameters

- ∞ (default) | vector

Lower bounds for distribution parameters, specified as the comma-separated pair consisting of 'Lowerbound' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and logcdf, or nloglf input arguments.

Example: 'Lowerbound', 0
Data Types: single | double

UpperBound — Upper bounds for distribution parameters

∞ (default) | vector

Upper bounds for distribution parameters, specified as the comma-separated pair consisting of 'Upperbound' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and logsf, or nloglf input arguments.

Example: 'Upperbound', 1
Data Types: single | double

OptimFun — Optimization function

'fminsearch' (default) | 'fmincon'

Optimization function mle uses in maximizing the likelihood, specified as the comma-separated pair consisting of 'Optimfun' and either 'fminsearch' or 'fmincon'.

Default is 'fminsearch'.

You can only specify 'fmincon' if Optimization Toolbox is available.

The 'Optimfun' name-value pair argument is valid only when you fit custom distributions, that is, when you use the pdf and cdf, logpdf and logsf, or nloglf input arguments.

Example: 'Optimfun', 'fmincon'
Output Arguments

`phat — Parameter estimates`
scalar value | row vector

Parameter estimates, returned as a scalar value or a row vector.

`pci — Confidence intervals for parameter estimates`
2-by-`k` matrix

Confidence intervals for parameter estimates, returned as a column vector or a matrix depending on the number of parameters, hence the size of `phat`.

`pci` is a 2-by-`k` matrix, where `k` is the number of parameters `mle` estimates. The first and second rows of the `pci` show the lower and upper confidence limits, respectively.

Definitions

Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor function. It gives the probability that the survival time of an individual exceeds a certain value. Since the cumulative distribution function, \(F(t) \), is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, \(S(t) \), is the complement of the cumulative distribution function: \(S(t) = 1 - F(t) \).

Tips

When you supply distribution functions, `mle` computes the parameter estimates using an iterative maximization algorithm. With some models and data, a poor choice of starting point can cause `mle` to converge to a local optimum that is not the global maximizer, or to fail to converge entirely. Even in cases for which the log-likelihood is well-behaved near the global maximum, the choice of starting point is often crucial to convergence of the algorithm. In particular, if the initial parameter values are far from the MLEs, underflow in the distribution functions can lead to infinite log-likelihoods.
See Also
Distribution Fitter | fitdist | mlecov | statset

Topics
“Maximum Likelihood Estimation” on page 5-27
“What Is Survival Analysis?” on page 14-2
“Estimate Parameters of a Three-Parameter Weibull Distribution” on page B-186

Introduced before R2006a
mlecov

Asymptotic covariance of maximum likelihood estimators

Syntax

```matlab
acov = mlecov(params, data, 'pdf', pdf)
acov = mlecov(params, data, 'pdf', pdf, 'cdf', cdf)
acov = mlecov(params, data, 'logpdf', logpdf)
acov = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf)
acov = mlecov(params, data, 'nloglf', nloglf)
acov = mlecov(___, Name, Value)
```

Description

```matlab
acov = mlecov(params, data, 'pdf', pdf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified by the custom probability density function pdf.

mlecov computes a finite difference approximation to the Hessian of the log-likelihood at the maximum likelihood estimates params, given the observed data, and returns the negative inverse of that Hessian.

acov = mlecov(params, data, 'pdf', pdf, 'cdf', cdf) returns acov for a distribution specified by the custom probability density function pdf and cumulative distribution function cdf.

acov = mlecov(params, data, 'logpdf', logpdf) returns acov for a distribution specified by the custom log probability density function logpdf.

acov = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf) returns acov for a distribution specified by the custom log probability density function logpdf and custom log survival function on page 32-4073 logsf.
```
acov = mlecov(params, data, 'nloglf', nloglf) returns acov for a distribution specified by the custom negative loglikelihood function nloglf.

acov = mlecov(___, Name, Value) specifies options using name-value pair arguments in addition to any of the input arguments in previous syntaxes. For example, you can specify the censored data, frequency of observations, and confidence level.

Examples

Custom Probability Density Function

Load the sample data.

load carbig

The vector Weight shows the weights of 406 cars.

In the MATLAB Editor, create a function that returns the probability density function (pdf) of a lognormal distribution. Save the file in your current working folder as lognormpdf.m.

```matlab
function newpdf = lognormpdf(data, mu, sigma)
    newpdf = exp((-log(data)-mu).^2)/(2*sigma^2))./(data*sigma*sqrt(2*pi));
end
```

Estimate the parameters, mu and sigma, of the custom-defined distribution.

phat = mle(Weight, 'pdf', @lognormpdf, 'start', [4.5 0.3])

phat =

```
    7.9600   0.2804
```

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat, Weight, 'pdf', @lognormpdf)

acov =

```
        1.0e-03 *
    0.1937  -0.0000
  -0.0000   0.0968
```
Estimate the standard errors of estimates.

\[
se = \sqrt{\text{diag}(acov)}
\]

\[
se = \\
0.0139 \\
0.0098
\]

The standard error of the estimates of mu and sigma are 0.0139 and 0.0098, respectively.

Custom Log Probability Density Function

In the MATLAB Editor, create a function that returns the log probability density function of a beta distribution. Save the file in your current working folder as `betalogpdf.m`.

```matlab
function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);
```

Generate sample data from a beta distribution with parameters 1.23 and 3.45 and estimate the parameters using the simulated data.

```matlab
rng('default')
x = betarnd(1.23,3.45,25,1);
phat = mle(x,'dist','beta')
```

```
phat = 
    1.1213    2.7182
```

Compute the approximate covariance matrix of the parameter estimates.

```matlab
acov = mlecov(phat,x,'logpdf',@betalogpdf)
```

```
acov = 
0.0810    0.1646 \\
0.1646    0.6074
```

Custom Log pdf and Survival Function

Load the sample data.
The sample data includes `ReadmissionTime`, which has readmission times for 100 patients. The column vector `Censored` has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom log probability density and survival function.

```matlab
custlogpdf = @(data,lambda,k) log(k) - k*log(lambda) ... +(k-1)*log(data)-(data/lambda).^k;
custlogsf = @(data,lambda,k) -(data/lambda).^k;
```

Estimate the parameters, `lambda` and `k`, of the custom distribution for the censored sample data.

```matlab
phat = mle(ReadmissionTime,'logpdf',custlogpdf,... 'logsf',custlogsf,'start',[1,0.75],'Censoring',Censored)
```

```matlab
phat = 1x2
     9.2090    1.4223
```

The scale and shape parameters of the custom-defined distribution are 9.2090 and 1.4223, respectively.

Compute the approximate covariance matrix of the parameter estimates.

```matlab
acov = mlecov(phat,ReadmissionTime,... 'logpdf',custlogpdf,'logsf',custlogsf,'Censoring',Censored)
```

```matlab
acov = 2x2
         0.5653    0.0102
     0.0102         0.0163
```

Custom Log Negative Likelihood Function

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','readmissiontimes.mat'));
```
The sample data includes `ReadmissionTime`, which has readmission times for 100 patients. This is simulated data.

Define a negative log likelihood function.

```matlab
custnloglf = @(lambda,data,cens,freq) -length(data)*log(lambda)...
+ nansum(lambda*data);
```

Estimate the parameters of the defined distribution.

```matlab
phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)
```

```
phat = 0.1462
```

Compute the variance of the parameter estimate.

```matlab
acov = mlecov(phat,ReadmissionTime,'nloglf',custnloglf)
```

```
acov = 2.1374e-04
```

Compute the standard error.

```matlab
sqrt(acov)
```

```
an = 0.0146
```

Input Arguments

- **params** — Parameter estimates

 scalar value | vector

 Parameter estimates, specified as a scalar value or vector of scalar values. These parameter estimates must be maximum likelihood estimates. For example, you can specify parameter estimates returned by `mle`.

 Data Types: `single` | `double`

- **data** — Sample data

 vector

 Sample data `mle` uses to estimate the distribution parameters, specified as a vector.

 Data Types: `single` | `double`
pdf — Custom probability density function

function handle

Custom probability distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of probability density values.

For example, if the name of the custom probability density function is newpdf, then you can specify the function handle in mlecov as follows.

Example: @newpdf

Data Types: function_handle

cdf — Custom cumulative distribution function

function handle

Custom cumulative distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of cumulative probability values.

You must define cdf with pdf if data is censored and you use the 'Censoring' name-value pair argument. If 'Censoring' is not present, you do not have to specify cdf while using pdf.

For example, if the name of the custom cumulative distribution function is newcdf, then you can specify the function handle in mlecov as follows.

Example: @newcdf

Data Types: function_handle

logpdf — Custom log probability density function

function handle

Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is customlogpdf, then you can specify the function handle in mlecov as follows.
Example: @customlogpdf
Data Types: function_handle

logsf — Custom log survival function
function handle

Custom log survival function on page 32-4073, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log survival probability values.

You must define logsf with logpdf if data is censored and you use the 'Censoring' name-value pair argument. If 'Censoring' is not present, you do not have to specify logsf while using logpdf.

For example, if the name of the custom log survival function is logsurvival, then you can specify the function handle in mlecov as follows.

Example: @logsurvival
Data Types: function_handle

nloglf — Custom negative loglikelihood function
function handle

Custom negative loglikelihood function, specified as a function handle created using @.

This custom function accepts the following input arguments.

<table>
<thead>
<tr>
<th>params</th>
<th>Vector of distribution parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Vector of data</td>
</tr>
<tr>
<td>cens</td>
<td>Boolean vector of censored values</td>
</tr>
<tr>
<td>freq</td>
<td>Vector of integer data frequencies</td>
</tr>
</tbody>
</table>

nloglf must accept all four arguments even if you do not use the 'Censoring' or 'Frequency' name-value pair arguments. You can write 'nloglf' to ignore cens and freq arguments in that case.

nloglf returns a scalar negative loglikelihood value and optionally, a negative loglikelihood gradient vector (see the 'GradObj' field in 'Options').
If the name of the custom negative log likelihood function is `negloglik`, then you can specify the function handle in `mlecov` as follows.

Example: `@negloglik`

Data Types: `function_handle`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Censoring',cens,'Options',opt` specifies that `mlecov` reads the censored data information from the vector `cens` and performs according to the new options structure `opt`.

Censoring — Indicator for censoring

array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of `'Censoring'` and a Boolean array of the same size as `data`. Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed.

For censored data, you must use `cdf` with `pdf`, or `logsf` with `logpdf`, or `nloglf` must be defined to account for censoring.

For example, if the censored data information is in the binary array called `Censored`, then you can specify the censored data as follows.

Example: `'Censoring',Censored`

Data Types: `logical`

Frequency — Frequency of observations

array of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as the comma-separated pair consisting of `'Frequency'` and an array containing nonnegative integer counts, which is the same size as `data`. The default is one observation per element of `data`.
For example, if the observation frequencies are stored in an array named `Freq`, you can specify the frequencies as follows.

Example: 'Frequency',Freq

Data Types: single | double

Options — Numerical options
structure

Numerical options for the finite difference Hessian calculation, specified as the comma-separated pair consisting of 'Options' and a structure returned by `statset`.

You can set the options under a new name and use it in the name-value pair argument. The applicable `statset` parameters are as follows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
</table>
| 'GradObj' | Default is 'off'.
 | 'on' or 'off', indicating whether or not the function provided with |
 | the `nloglf` input argument can return the gradient vector of the |
 | negative log-likelihood as a second output. |
| 'DerivStep' | Default is `eps^(1/4)`. |
 | Relative step size used in finite difference for Hessian calculations.|
 | It can be a scalar, or the same size as `params`. A smaller value |
 | than the default might be appropriate if 'GradObj' is 'on'. |

Example: 'Options',statset('mlecov')

Data Types: struct

Output Arguments

`acov — Approximation to asymptotic covariance matrix`

p-by-*p* matrix

Approximation to asymptotic covariance matrix, returned as a *p*-by-*p* matrix, where *p* is the number of parameters in `params`.
Definitions

Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor function. It gives the probability that the survival time of an individual exceeds a certain value. Since the cumulative distribution function, $F(t)$, is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, $S(t)$, is the complement of the cumulative distribution function: $S(t) = 1 - F(t)$.

See Also
mle

Topics
“What Is Survival Analysis?” on page 14-2

Introduced before R2006a
mnpdf
Multinomial probability density function

Syntax
Y = mnpdf(X,PROB)

Description
Y = mnpdf(X,PROB) returns the pdf for the multinomial distribution with probabilities PROB, evaluated at each row of X. X and PROB are m-by-k matrices or 1-by-k vectors, where k is the number of multinomial bins or categories. Each row of PROB must sum to one, and the sample sizes for each observation (rows of X) are given by the row sums sum(X,2). Y is an m-by-1 vector, and mnpdf computes each row of Y using the corresponding rows of the inputs, or replicates them if needed.

Examples

Compute the Multinomial Distribution pdf

Compute the pdf of a multinomial distribution with a sample size of n = 10. The probabilities are p = 1/2 for outcome 1, p = 1/3 for outcome 2, and p = 1/6 for outcome 3.

p = [1/2 1/3 1/6];
n = 10;
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);

Compute the pdf of the distribution.

Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));
Plot the pdf on a 3-dimensional figure.

\[
Y = \text{reshape}(Y,n+1,n+1);
\]

\[
\text{bar3}(Y)
\]

\[
h = \text{gca};
\]

\[
h.\text{XTickLabel} = [0:n];
\]

\[
h.\text{YTickLabel} = [0:n];
\]

\[
\text{xlabel(}'x_1'\)
\]

\[
\text{ylabel(}'x_2'\)
\]

\[
\text{zlabel(}'Probability Mass'\)
\]

\[
\text{title(}'Trinomial Distribution'\)
\]

Note that the visualization does not show \(x_3\), which is determined by the constraint \(x_1 + x_2 + x_3 = n\).
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mnrnd

Topics
“Multinomial Distribution” on page B-99

Introduced in R2006b
mnrfit
Multinomial logistic regression

Syntax

B = mnrfit(X,Y)
B = mnrfit(X,Y,Name,Value)
[B,dev,stats] = mnrfit(___)

Description

B = mnrfit(X,Y) returns a matrix, B, of coefficient estimates for a multinomial logistic regression of the nominal responses in Y on the predictors in X.

B = mnrfit(X,Y,Name,Value) returns a matrix, B, of coefficient estimates for a multinomial model fit with additional options specified by one or more Name,Value pair arguments.

For example, you can fit a nominal, an ordinal, or a hierarchical model, or change the link function.

[B,dev,stats] = mnrfit(___) also returns the deviance of the fit, dev, and the structure stats for any of the previous input arguments. stats contains model statistics such as degrees of freedom, standard errors for coefficient estimates, and residuals.

Examples

Multinomial Regression for Nominal Responses

Fit a multinomial regression for nominal outcomes and interpret the results.

Load the sample data.

load fisheriris
The column vector, \texttt{species}, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix \texttt{meas} consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable using a categorical array.

\begin{verbatim}
sp = categorical(species);
\end{verbatim}

Fit a multinomial regression model to predict the species using the measurements.

\begin{verbatim}
[B,dev,stats] = mnrfit(meas,sp);
\end{verbatim}

\begin{verbatim}
B = 5×2
10^3 ×

 1.9345 0.0426
 0.6460 0.0025
 -0.5449 0.0067
 -0.4948 -0.0094
 -2.6472 -0.0183
\end{verbatim}

This is a nominal model for the response category relative risks, with separate slopes on all four predictors, that is, each category of \texttt{meas}. The first row of \texttt{B} contains the intercept terms for the relative risk of the first two response categories, setosa and versicolor versus the reference category, virginica. The last four rows contain the slopes for the models for the first two categories. \texttt{mnrfit} accepts the third category as the reference category.

The relative risk of an iris flower being species 2 (versicolor) versus species 3 (virginica) is the ratio of the two probabilities (the probability of being species 2 and the probability of being species 3). The model for the relative risk is

\[
\ln \left(\frac{\pi_{\text{versicolor}}}{\pi_{\text{virginica}}} \right) = 42.6 + 2.5X_1 + 6.7X_2 - 9.4X_3 - 18.3X_4.
\]

The coefficients express both the effects of the predictor variables on the relative risk and the log odds of being in one category versus the reference category. For example, the estimated coefficient 2.5 indicates that the relative risk of being species 2 (versicolor) versus species 3 (virginica) increases \(\exp(2.5)\) times for each unit increase in \(X_1\), the first
measurement, given all else is equal. The relative log odds of being versicolor versus virginica increases 2.5 times with a one-unit increase in X_1, given all else is equal.

If the coefficients are converging toward infinity or negative infinity, the estimated coefficients can vary slightly depending on your operating system.

Check the statistical significance of the model coefficients.

```
stats.p
ans = 5x2
     0    0.0000
     0    0.0281
     0    0.0000
     0    0.0000
     0    0.0000
```

The small P-values indicate that all measures are significant on the relative risk of being a setosa versus a virginica (species 1 compared to species 3) and being a versicolor versus a virginica (species 2 compared to species 3).

Request the standard errors of coefficient estimates.

```
stats.se
ans = 5x2
     12.4038   5.2719
     3.5783   1.1228
     3.1760   1.4789
     3.5403   1.2934
     7.1203   2.0967
```

Calculate the 95% confidence limits for the coefficients.

```
LL = stats.beta - 1.96.*stats.se;
UL = stats.beta + 1.96.*stats.se;
```

Display the confidence intervals for the coefficients of the model for the relative risk of being a setosa versus a virginica (the first column of coefficients in B).
Find the confidence intervals for the coefficients of the model for the relative risk of being a versicolor versus a virginica (the second column of coefficients in B).

\[
\begin{bmatrix}
[LL(:,2) \quad UL(:,2)]
\end{bmatrix}
\]

\[
\text{ans} = 5 \times 2
\]

\[
\begin{tabular}{rr}
32.3049 & 52.9707 \\
0.2645 & 4.6660 \\
3.7823 & 9.5795 \\
-11.9644 & -6.8944 \\
-22.3957 & -14.1766
\end{tabular}
\]

Multinominal Regression for Ordinal Responses

Fit a multinominal regression model for categorical responses with natural ordering among categories.

Load the sample data and define the predictor variables.

```matlab
load carbig
X = [Acceleration Displacement Horsepower Weight];
```

The predictor variables are the acceleration, engine displacement, horsepower, and weight of the cars. The response variable is miles per gallon (mpg).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg by labeling the response values in the range 9-19 as 1, 20-29 as 2, 30-39 as 3, and 40-48 as 4.
miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);

Fit an ordinal response model for the response variable miles.

[B,dev,stats] = mnrfit(X,miles,'model','ordinal');

B

B = 7×1

-16.6895
-11.7208
-8.0606
0.1048
0.0103
0.0645
0.0017

The first three elements of B are the intercept terms for the models, and the last four elements of B are the coefficients of the covariates, assumed common across all categories. This model corresponds to parallel regression, which is also called the proportional odds model, where there is a different intercept but common slopes among categories. You can specify this using the 'interactions','off' name-value pair argument, which is the default for ordinal models.

[B(1:3)'; repmat(B(4:end),1,3)]

ans = 5×3

-16.6895 -11.7208 -8.0606
0.1048 0.1048 0.1048
0.0103 0.0103 0.0103
0.0645 0.0645 0.0645
0.0017 0.0017 0.0017

The link function in the model is logit ('link','logit'), which is the default for an ordinal model. The coefficients express the relative risk or log odds of the mpg of a car being less than or equal to one value versus greater than that value.

The proportional odds model in this example is

32-4081
For example, the coefficient estimate of 0.1048 indicates that a unit change in acceleration would impact the odds of the mpg of a car being less than or equal to 19 versus more than 19, or being less than or equal to 29 versus greater than 29, or being less than or equal to 39 versus greater than 39, by a factor of \(\exp(0.01048) \) given all else is equal.

Assess the significance of the coefficients.

stats.p

ans = 7×1

0.0000
0.0000
0.0000
0.1899
0.0350
0.0000
0.0118

The \(P \)-values of 0.035, 0.0000, and 0.0118 for engine displacement, horsepower, and weight of a car, respectively, indicate that these factors are significant on the odds of mpg of a car being less than or equal to a certain value versus being greater than that value.

Hierarchical Multinomial Regression Model

Fit a hierarchical multinomial regression model.
Load the sample data.

load(fullfile(matlabroot,'examples','stats','smoking.mat'));

The data set smoking contains five variables: sex, age, weight, and systolic and diastolic blood pressure. Sex is a binary variable where 1 indicates female patients, and 0 indicates male patients.

Define the response variable.

Y = categorical(smoking.Smoker);

The data in Smoker has four categories:

• 0: Nonsmoker, 0 cigarettes a day
• 1: Smoker, 1–5 cigarettes a day
• 2: Smoker, 6–10 cigarettes a day
• 3: Smoker, 11 or more cigarettes a day

Define the predictor variables.

X = [smoking.Sex smoking.Age smoking.Weight ...
 smoking.SystolicBP smoking.DiastolicBP];

Fit a hierarchical multinomial model.

[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');

B

B = 6×3

 43.8148 5.9571 44.0712
 1.8709 -0.0230 -0.0662
 0.0188 0.0625 0.1335
 0.0046 -0.0072 -0.0130
 -0.2170 0.0416 -0.0324
 -0.2273 -0.1449 -0.4824

The first column of B includes the intercept and the coefficient estimates for the model of the relative risk of being a nonsmoker versus a smoker. The second column includes the parameter estimates for modeling the log odds of smoking 1–5 cigarettes a day versus more than five cigarettes a day given that a person is a smoker. Finally, the third column
includes the parameter estimates for modeling the log odds of a person smoking 6–10 cigarettes a day versus more than 10 cigarettes a day given he/she smokes more than 5 cigarettes a day.

The coefficients differ across categories. You can specify this using the 'interactions','on' name-value pair argument, which is the default for hierarchical models. So, the model in this example is

\[
\ln\left(\frac{P(y = 0)}{P(y > 0)}\right) = 43.8148 + 1.8709X_S + 0.0188X_A + 0.0046X_W - 0.2170X_{SBP} - 0.2273X_{DBP}
\]

\[
\ln\left(\frac{P(1 \leq y \leq 5)}{P(y > 5)}\right) = 5.9571 - 0.0230X_S + 0.0625X_A - 0.0072X_W + 0.0416X_{SBP} - 0.1449X_{DBP}
\]

\[
\ln\left(\frac{P(6 \leq y \leq 10)}{P(y > 10)}\right) = 44.0712 + 0.0662X_S + 0.1335X_A - 0.0130X_W - 0.0324X_{SBP} - 0.4824X_{DBP}
\]

For example, the coefficient estimate of 1.8709 indicates that the likelihood of being a smoker versus a nonsmoker increases by \(\exp(1.8709) = 6.49\) times as the gender changes from female to male given everything else held constant.

Assess the statistical significance of the terms.

\[
\text{stats.p}
\]

\[
\text{ans} = 6\times3
\]

\[
\begin{array}{ccc}
0.0000 & 0.5363 & 0.2149 \\
0.3549 & 0.9912 & 0.9835 \\
0.6850 & 0.2676 & 0.2313 \\
0.9032 & 0.8523 & 0.8514 \\
0.0009 & 0.5187 & 0.8165 \\
0.0004 & 0.0483 & 0.0545
\end{array}
\]

Sex, age, or weight don’t appear significant on any level. The \(p\)-values of 0.0009 and 0.0004 indicate that both types of blood pressure are significant on the relative risk of a person being a smoker versus a nonsmoker. The \(p\)-value of 0.0483 shows that only diastolic blood pressure is significant on the odds of a person smoking 0–5 cigarettes a day versus more than 5 cigarettes a day. Similarly, the \(p\)-value of 0.0545 indicates that
diastolic blood pressure is significant on the odds of a person smoking 6–10 cigarettes a day versus more than 10 cigarettes a day.

Check if any nonsignificant factors are correlated to each other. Draw a scatterplot of age versus weight grouped by sex.

```matlab
figure()
gscatter(smoking.Age,smoking.Weight,smoking.Sex)
legend('Male','Female')
xlabel('Age')
ylabel('Weight')
```
The range of weight of an individual seems to differ according to gender. Age does not seem to have any obvious correlation with sex or weight. Age is insignificant and weight seems to be correlated with sex, so you can eliminate both and reconstruct the model.

Eliminate age and weight from the model and fit a hierarchical model with sex, systolic blood pressure, and diastolic blood pressure as the predictor variables.

```matlab
X = double([smoking.Sex smoking.SystolicBP...
smoking.DiastolicBP]);
[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');
B

B = 4×3
    44.8456    5.3230   25.0248
    1.6045    0.2330    0.4982
   -0.2161    0.0497    0.0179
   -0.2222   -0.1358   -0.3092
```

Here, a coefficient estimate of 1.6045 indicates that the likelihood of being a nonsmoker versus a smoker increases by \(\exp(1.6045) = 4.97 \) times as sex changes from male to female. A unit increase in the systolic blood pressure indicates an \(\exp(-0.2161) = 0.8056 \) decrease in the likelihood of being a nonsmoker versus a smoker. Similarly, a unit increase in the diastolic blood pressure indicates an \(\exp(-0.2222) = 0.8007 \) decrease in the relative rate of being a nonsmoker versus being a smoker.

Assess the statistical significance of the terms.

```matlab
stats.p
```

ans = 4×3

```
    0.0000    0.4715    0.2325
    0.0210    0.7488    0.6362
    0.0010    0.4107    0.8899
    0.0003    0.0483    0.0718
```

The \(P \)-values of 0.0210, 0.0010, and 0.0003 indicate that the terms sex and both types of blood pressure are significant on the relative risk of a person being a nonsmoker versus a smoker, given the other terms in the model. Based on the \(P \)-value of 0.0483, diastolic blood pressure appears significant on the relative risk of a person smoking 1-5 cigarettes.
versus more than 5 cigarettes a day, given that this person is a smoker. Because none of the P-values on the third column are less than 0.05, you can say that none of the variables are statistically significant on the relative risk of a person smoking from 6-10 cigarettes versus more than 10 cigarettes, given that this person smokes more than 5 cigarettes a day.

Input Arguments

X — **Observations on predictor variables**

n-by-p matrix

Note

mnrfit automatically includes a constant term (intercept) in all models. Do not include a column of 1s in X.

Data Types: *single* | *double*

Y — **Response values**

n-by-k matrix | n-by-1 column vector

Response values, specified as a column vector or a matrix. Y can be one of the following:

- An n-by-k matrix, where $Y(i,j)$ is the number of outcomes of the multinomial category j for the predictor combinations given by $X(i,:)$. In this case, the number of observations are made at each predictor combination.
- An n-by-1 column vector of scalar integers from 1 to k indicating the value of the response for each observation. In this case, all sample sizes are 1.
- An n-by-1 categorical array indicating the nominal or ordinal value of the response for each observation. In this case, all sample sizes are 1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Model','ordinal','Link','probit' specifies an ordinal model with a probit link function.

Model — Type of model to fit

'nominal' (default) | 'ordinal' | 'hierarchical'

Type of model to fit, specified as the comma-separated pair consisting of 'Model' and one of the following.

'nominal'	Default. There is no ordering among the response categories.
'ordinal'	There is a natural ordering among the response categories.
'hierarchical'	The choice of response category is sequential/nested.

Example: 'Model','ordinal'

Interactions — Indicator for interaction between multinomial categories and coefficients

'on' | 'off'

Indicator for an interaction between the multinomial categories and coefficients, specified as the comma-separated pair consisting of 'Interactions' and one of the following.

| 'on' | Default for nominal and hierarchical models. Fit a model with different coefficients across categories. |
| 'off' | Default for ordinal models. Fit a model with a common set of coefficients for the predictor variables, across all multinomial categories. This is often described as parallel regression or the proportional odds model. |

In all cases, the model has different intercepts across categories. The choice of 'Interactions' determines the dimensions of the output array B.

Example: 'Interactions','off'

Link — Link function

'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function to use for ordinal and hierarchical models, specified as the comma-separated pair consisting of 'Link' and one of the following.
The link function defines the relationship between response probabilities and the linear combination of predictors, \(X\beta\). The link functions might be functions of cumulative or conditional probabilities based on whether the model is for an ordinal or a sequential/nested response. For example, for an ordinal model, \(\gamma\) represents the cumulative probability of being in categories 1 to \(j\) and the model with a logit link function as follows:

\[
\ln \left(\frac{\gamma}{1-\gamma} \right) = \ln \left(\frac{\pi_1 + \pi_2 + \cdots + \pi_j}{\pi_{j+1} + \cdots + \pi_k} \right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p,
\]

where \(k\) represents the last category.

You cannot specify the 'Link' parameter for nominal models; these always use a multinomial logit link,

\[
\ln \left(\frac{\pi_j}{\pi_r} \right) = \beta_{j0} + \beta_{j1} X_{j1} + \beta_{j2} X_{j2} + \cdots + \beta_{jp} X_{jp}, \quad j = 1, \ldots, k - 1,
\]

where \(\pi\) stands for a categorical probability, and \(r\) corresponds to the reference category. \texttt{mnrfit} uses the last category as the reference category for nominal models.

Example: 'Link', 'loglog'

EstDisp — Indicator for estimating dispersion parameter

'off' (default) | 'on'

Indicator for estimating a dispersion parameter, specified as the comma-separated pair consisting of 'EstDisp' and one of the following.

| 'off' | Default. Use the theoretical dispersion value of 1. |
'on' | Estimate a dispersion parameter for the multinomial distribution in computing standard errors.

Example: 'EstDisp','on'

Output Arguments

B — Coefficient estimates

vector | matrix

Coefficient estimates for a multinomial logistic regression of the responses in Y, returned as a vector or a matrix.

- If 'Interaction' is 'off', then B is a \(k - 1 + p \) vector. The first \(k - 1 \) rows of B correspond to the intercept terms, one for each \(k - 1 \) multinomial categories, and the remaining \(p \) rows correspond to the predictor coefficients, which are common for all of the first \(k - 1 \) categories.
- If 'Interaction' is 'on', then B is a \((p + 1)\)-by-\((k - 1)\) matrix. Each column of B corresponds to the estimated intercept term and predictor coefficients, one for each of the first \(k - 1 \) multinomial categories.

The estimates for the \(k \)th category are taken to be zero as mnrfit takes the last category as the reference category.

dev — Deviance of the fit

scalar value

Deviance of the fit, returned as a scalar value. It is twice the difference between the maximum achievable log likelihood and that attained under the fitted model. This corresponds to the sum of deviance residuals,

\[
dev = 2 \sum_{i}^{n} \sum_{j}^{k} y_{ij} \log \left(\frac{y_{ij}}{\pi_{ij} \cdot m_i} \right) = \sum_{i}^{n} rd_i,
\]

where \(rd_i \) are the deviance residuals. For deviance residuals see stats.

stats — Model statistics

structure

32-4090
Model statistics, returned as a structure that contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>The coefficient estimates. These are the same as B.</td>
</tr>
<tr>
<td>dfe</td>
<td>Degrees of freedom for error</td>
</tr>
<tr>
<td></td>
<td>- If 'Interactions' is 'off', then degrees of freedom is (n*(k - 1) - (k - 1 + p)).</td>
</tr>
<tr>
<td></td>
<td>- If 'Interactions' is 'on', then degrees of freedom is ((n - p + 1)*(k - 1)).</td>
</tr>
<tr>
<td>sfit</td>
<td>Estimated dispersion parameter.</td>
</tr>
<tr>
<td>s</td>
<td>Theoretical or estimated dispersion parameter.</td>
</tr>
<tr>
<td></td>
<td>- If 'Estdisp' is 'off', then (s) is the theoretical dispersion parameter, 1.</td>
</tr>
<tr>
<td></td>
<td>- If 'Estdisp' is 'on', then (s) is equal to the estimated dispersion parameter, sfit.</td>
</tr>
<tr>
<td>estdisp</td>
<td>Indicator for a theoretical or estimated dispersion parameter.</td>
</tr>
<tr>
<td>se</td>
<td>Standard errors of coefficient estimates, B.</td>
</tr>
<tr>
<td>coeffcorr</td>
<td>Estimated correlation matrix for B.</td>
</tr>
<tr>
<td>covb</td>
<td>Estimated covariance matrix for B.</td>
</tr>
<tr>
<td>t</td>
<td>(t) statistics for B.</td>
</tr>
<tr>
<td>p</td>
<td>(p)-values for B.</td>
</tr>
<tr>
<td>resid</td>
<td>Raw residuals. Observed minus fitted values, (r_{ij} = y_{ij} - \hat{\pi}_{ij} * m_i, \quad {i = 1, \ldots, n} \quad {j = 1, \ldots, k})</td>
</tr>
</tbody>
</table>

where \(\pi_{ij}\) is the categorical, cumulative or conditional probability, and \(m_i\) is the corresponding sample size.
Pearson residuals, which are the raw residuals scaled by the estimated standard deviation:

\[rp_{ij} = \frac{r_{ij}}{\hat{\sigma}_{ij}} = \frac{y_{ij} - \hat{\pi}_{ij} * m_i}{\sqrt{\hat{\pi}_{ij} * (1 - \hat{\pi}_{ij}) * m_i}}, \quad \left\{ \begin{array}{l} i = 1, \ldots, n \\ j = 1, \ldots, k \end{array} \right. \]

where \(\pi_{ij} \) is the categorical, cumulative, or conditional probability, and \(m_i \) is the corresponding sample size.

Deviance residuals:

\[rd_i = 2 * \sum_{j=1}^{k} r_{ij} * \log \left(\frac{y_{ij}}{\pi_{ij} * m_i} \right), \quad i = 1, \ldots, n. \]

where \(\pi_{ij} \) is the categorical, cumulative, or conditional probability, and \(m_i \) is the corresponding sample size.

Algorithms

`mnrfit` treats NaNs in either X or Y as missing values, and ignores them.

References

See Also

`fitglm` | `glmfit` | `glmval` | `mnrval`
Topics
“Multinomial Distribution” on page B-99
“Multinomial Models for Nominal Responses” on page 12-2
“Multinomial Models for Ordinal Responses” on page 12-5
“Hierarchical Multinomial Models” on page 12-9

Introduced in R2006b
mnrnd

Multinomial random numbers

Syntax

r = mnrnd(n,p)
R = mnrnd(n,p,m)
R = mnrnd(N,P)

Description

r = mnrnd(n,p) returns random values r from the multinomial distribution with parameters n and p. n is a positive integer specifying the number of trials (sample size) for each multinomial outcome. p is a 1-by-k vector of multinomial probabilities, where k is the number of multinomial bins or categories. p must sum to one. (If p does not sum to one, r consists entirely of NaN values.) r is a 1-by-k vector, containing counts for each of the k multinomial bins.

R = mnrnd(n,p,m) returns m random vectors from the multinomial distribution with parameters n and p. R is a m-by-k matrix, where k is the number of multinomial bins or categories. Each row of R corresponds to one multinomial outcome.

R = mnrnd(N,P) generates outcomes from different multinomial distributions. P is a m-by-k matrix, where k is the number of multinomial bins or categories and each of the m rows contains a different set of multinomial probabilities. Each row of P must sum to one. (If any row of P does not sum to one, the corresponding row of R consists entirely of NaN values.) N is a m-by-1 vector of positive integers or a single positive integer (replicated by mnrnd to a m-by-1 vector). R is a m-by-k matrix. Each row of R is generated using the corresponding rows of N and P.

Examples

Generate 2 random vectors with the same probabilities:
n = 1e3;
p = [0.2,0.3,0.5];
R = mnrnd(n,p,2)
R =
 215 282 503
 194 303 503

Generate 2 random vectors with different probabilities:

n = 1e3;
P = [0.2, 0.3, 0.5; ...
 0.3, 0.4, 0.3;];
R = mnrnd(n,P)
R =
 186 290 524
 290 389 321

See Also
mnpdf

Topics
“Multinomial Distribution” on page B-99

Introduced in R2006b
mnrval

Multinomial logistic regression values

Syntax

```matlab
pihat = mnrval(B,X)
[pihat,dlow,dhi] = mnrval(B,X,stats)
[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value)

tyhat = mnrval(B,X,ssize)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value)
```

Description

`pihat = mnrval(B,X)` returns the predicted probabilities for the multinomial logistic regression model with predictors, `X`, and the coefficient estimates, `B`.

`pihat` is an n-by-k matrix of predicted probabilities for each multinomial category. `B` is the vector or matrix that contains the coefficient estimates returned by `mnrfit`. And `X` is an n-by-p matrix which contains n observations for p predictors.

Note `mnrval` automatically includes a constant term in all models. Do not enter a column of 1s in `X`.

`[pihat,dlow,dhi] = mnrval(B,X,stats)` also returns 95% error bounds on the predicted probabilities, `pihat`, using the statistics in the structure, `stats`, returned by `mnrfit`.

The lower and upper confidence bounds for `pihat` are `pihat` minus `dlow` and `pihat` plus `dhi`, respectively. Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.
[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value) returns the predicted probabilities and 95% error bounds on the predicted probabilities pihat, with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the model type, link function, and the type of probabilities to return.

yhat = mnrval(B,X,ssize) returns the predicted category counts for sample sizes, ssize.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats) also computes 95% error bounds on the predicted counts yhat, using the statistics in the structure, stats, returned by mnrfit.

The lower and upper confidence bounds for yhat are yhat minus dlo and yhat plus dhi, respectively. Confidence bounds are nonsimultaneous and they apply to the fitted curve, not to new observations.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value) returns the predicted category counts and 95% error bounds on the predicted counts yhat, with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the model type, link function, and the type of predicted counts to return.

Examples

Estimate Category Probabilities for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category probabilities.

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.
Define the nominal response variable.

```matlab
sp = nominal(species);
sp = double(sp);
```

Now in `sp`, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species using the flower measurements as the predictor variables.

```matlab
[B,dev,stats] = mnrfit(meas,sp);
```

Estimate the probability of being a certain kind of species for an iris flower having the measurements (6.3, 2.8, 4.9, 1.7).

```matlab
x = [6.3, 2.8, 4.9, 1.7];
pihat = mnrval(B,x);
pihat
```

```matlab
pihat = 1×3
0    0.3977    0.6023
```

The probability of an iris flower having the measurements (6.3, 2.8, 4.9, 1.7) being a setosa is 0, a versicolor is 0.3977, and a virginica is 0.6023.

Estimate Upper and Lower Error Bounds for Probability Estimates of Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering among categories. Then estimate the upper and lower confidence bounds for the category probability estimates.

Load the sample data and define the predictor variables.

```matlab
load('carbig.mat')
X = [Acceleration Displacement Horsepower Weight];
```

The predictor variables are the acceleration, engine displacement, horsepower, and the weight of the cars. The response variable is miles per gallon (MPG).
Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg.

```matlab
miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);
miles = double(miles);
```
Now in miles, 1 indicates the cars with miles per gallon from 9 to 19, and 2 indicates the cars with miles per gallon from 20 to 29. Similarly, 3 and 4 indicate the cars with miles per gallon from 30 to 39 and 40 to 48, respectively.

Fit a multinomial regression model for the response variable `miles`. For an ordinal model, the default 'link' is logit and the default 'interactions' is 'off'.

```
[B,dev,stats] = mnrfit(X,miles,'model','ordinal');
```
Compute the probability estimates and 95% error bounds for probability confidence intervals for miles per gallon of a car with \(x = (12, 113, 110, 2670) \).

```matlab
x = [12,113,110,2670];
[pihat,dlow,hi] = mnrval(B,x,stats,'model','ordinal');
pihat
```

```
pihat = 1×4
0.0615    0.8426    0.0932    0.0027
```
Calculate the confidence bounds for the category probability estimates.

```matlab
LL = pihat - dlow;
UL = pihat + hi;
[LL;UL]
```

```
ans = 2×4
0.0073    0.7829    0.0283   -0.0003
0.1157    0.9022    0.1580    0.0057
```

Estimate Category Counts and Error Bounds for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category counts.
Load the sample data.

```matlab
load fisheriris
```

The column vector, `species`, consists of iris flowers of three different species, setosa, versicolor, and virginica. The double matrix `meas` consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

```matlab
sp = nominal(species);
sp = double(sp);
```

Now in `sp`, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species based on the flower measurements.

```matlab
[B,dev,stats] = mnrfit(meas,sp);
```

Estimate the number in each species category for a sample of 100 iris flowers all with the measurements (6.3, 2.8, 4.9, 1.7).

```matlab
x = [6.3, 2.8, 4.9, 1.7];
yhat = mnrval(B,x,18)
```

```matlab
yhat = 1×3
         0   7.1578   10.8422
```

Estimate the error bounds for the counts.

```matlab
[yhat,dlow,hi] = mnrval(B,x,18,stats,'model','nominal');
```

Calculate the confidence bounds for the category probability estimates.

```matlab
LL = yhat - dlow;
UL = yhat + hi;
[LL;UL]
```

```matlab
ans = 2×3
         0   3.3019    6.9863
         0  11.0137   14.6981
```
Plot the Count Estimates

Create sample data with one predictor variable and a categorical response variable with three categories.

```matlab
x = [-3 -2 -1 0 1 2 3]';
Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10;...
    5 14 6; 7 13 5; 8 11 6];
[Y x]
ans = 7×4
     1    11    13     -3
     2     9    14     -2
     6    14     5     -1
     5    10    10     0
     5    14     6     1
     7    13     5     2
     8    11     6     3
```

There are observations on seven different values of the predictor variable `x`. The response variable `Y` has three categories and the data shows how many of the 25 individuals are in each category of `Y` for each observation of `x`. For example, when `x` is -3, 1 of 25 individuals is observed in category 1, 11 observed in category 2, and 13 observed in category 3. Similarly, when `x` is 1, 5 of the individuals are observed in category 1, 14 are observed in category 2, and 6 are observed in category 3.

Plot the number in each category versus the `x` values, on a stacked bar graph.

```matlab
bar(x,Y,'stacked');
ylim([0 25]);
```
Fit a nominal model for the individual response category probabilities, with separate slopes on the single predictor variable, x, for each category.

\[
\text{betaHatNom} = \text{mnrfit}(x, Y, 'model', 'nominal', ... \\
'interactions', 'on')
\]

\[
\text{betaHatNom} = 2 \times 2 \\
\begin{array}{cc}
-0.6028 & 0.3832 \\
0.4068 & 0.1948
\end{array}
\]
The first row of \texttt{betaHatOrd} contains the intercept terms for the first two response categories. The second row contains the slopes. \texttt{mnrfit} accepts the third category as the reference category and hence assumes the coefficients for the third category are zero.

Compute the predicted probabilities for the three response categories.

\begin{verbatim}
xx = linspace(-4,4)';
piHatNom = mnrval(betaHatNom,xx,'model','nominal',...'
 'interactions','on');
\end{verbatim}

The probability of being in the third category is simply $1 - P(y = 1) - P(y = 2)$.

Plot the estimated cumulative number in each category on the bar graph.

\begin{verbatim}
line(xx,cumsum(25*piHatNom,2),'
 'LineWidth',2);
\end{verbatim}
The cumulative probability for the third category is always 1.

Now, fit a "parallel" ordinal model for the cumulative response category probabilities, with a common slope on the single predictor variable, \(x \), across all categories:

\[
\text{betaHatOrd} = \text{mnrfit}(x, Y, \text{'model', 'ordinal'}, ...
\text{ 'interactions', 'off'})
\]

betaHatOrd = 3\times1

-1.5001
0.7266
0.2642
The first two elements of \texttt{betaHatOrd} are the intercept terms for the first two response categories. The last element of \texttt{betaHatOrd} is the common slope.

Compute the predicted cumulative probabilities for the first two response categories. The cumulative probability for the third category is always 1.

\begin{verbatim}
piHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...
 'model','ordinal','interactions','off');
\end{verbatim}

Plot the estimated cumulative number on the bar graph of the observed cumulative number.

\begin{verbatim}
figure()
bar(x,cumsum(Y,2),'grouped');
ylim([0 25]);
line(xx,25*piHatOrd,'LineWidth',2);
\end{verbatim}
Input Arguments

B — Coefficient estimates
vector or matrix returned by `mnrfit`

Coefficient estimates for the multinomial logistic regression model, specified as a vector or matrix returned by `mnrfit`. It is a vector or matrix depending on the model and interactions.

Example: `B = mnrfit(X,y); pihat = mnrval(B,X)`

Data Types: `single` | `double`
\(X\) — **Sample data**

matrix

Sample data on predictors, specified as an \(n\)-by-\(p\). \(X\) contains \(n\) observations for \(p\) predictors.

Note \texttt{mnrval} automatically includes a constant term in all models. Do not enter a column of 1s in \(X\).

Example: \(\text{pihat} = \text{mnrval}(B,X)\)

Data Types: \texttt{single} | \texttt{double}

\texttt{stats} — **Model statistics**

structure returned by \texttt{mnrfit}

Model statistics, specified as a structure returned by \texttt{mnrfit}. You must use the \texttt{stats} input argument in \texttt{mnrval} to compute the lower and upper error bounds on the category probabilities and counts.

Example: \([B,\text{dev},\text{stats}] = \text{mnrfit}(X,y);[\text{pihat},\text{dlo},\text{dhi}] = \text{mnrval}(B,X,\text{stats})\)

\texttt{ssize} — **Sample sizes**

column vector of positive integers

Sample sizes to return the number of items in response categories for each combination of the predictor variables, specified as an \(n\)-by-1 column vector of positive integers.

For example, for a response variable having three categories, if an observation of the number of individuals in each category is \(y_1\), \(y_2\), and \(y_3\), respectively, then the sample size, \(m\), for that observation is \(m = y_1 + y_2 + y_3\).

If the sample sizes for \(n\) observations are in vector \texttt{sample}, then you can enter the sample sizes as follows.

Example: \(\text{yhat} = \text{mnrval}(B,X,\text{sample})\)

Data Types: \texttt{single} | \texttt{double}
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'model', 'ordinal', 'link', 'probit', 'type', 'cumulative' specifies that mnrval returns the estimates for cumulative probabilities for an ordinal model with a probit link function.

model — Type of multinomial model

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nominal'</td>
<td>Default. Specify when there is no ordering among the response categories.</td>
</tr>
<tr>
<td>'ordinal'</td>
<td>Specify when there is a natural ordering among the response categories.</td>
</tr>
<tr>
<td>'hierarchical'</td>
<td>Specify when the choice of response category is sequential.</td>
</tr>
</tbody>
</table>

Example: 'model', 'ordinal'

interactions — Indicator for interaction between multinomial categories and coefficients

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'on'</td>
<td>Default for nominal and hierarchical models. Specify to fit a model with different intercepts and coefficients across categories.</td>
</tr>
<tr>
<td>'off'</td>
<td>Default for ordinal models. Specify to fit a model with different intercepts, but a common set of coefficients for the predictor variables, across all multinomial categories. This is often described as parallel regression or proportional odds model.</td>
</tr>
</tbody>
</table>

Example: 'interactions', 'off'
Data Types: logical

link — Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function `mnrfit` uses for ordinal and hierarchical models, specified as the comma-separated pair consisting of 'link' and one of the following.

<table>
<thead>
<tr>
<th>'logit'</th>
<th>Default. (f(\gamma) = \ln(\gamma/(1 - \gamma)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'probit'</td>
<td>(f(\gamma) = \Phi^{-1}(\gamma)) — error term is normally distributed with variance 1</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>Complementary log-log (f(\gamma) = \ln(-\ln(1 - \gamma)))</td>
</tr>
<tr>
<td>'loglog'</td>
<td>(f(\gamma) = \ln(-\ln(\gamma)))</td>
</tr>
</tbody>
</table>

The link function defines the relationship between response probabilities and the linear combination of predictors, \(X\beta \).

\(\gamma \) might be cumulative or conditional probabilities based on whether the model is for an ordinal or a sequential/nested response.

You cannot specify the 'link' parameter for nominal models; these always use a multinomial logit link,

\[
\ln \left(\frac{\pi_j}{\pi_r} \right) = \beta_{j0} + \beta_{j1}X_{j1} + \beta_{j2}X_{j2} + \cdots + \beta_{jp}X_{jp}, \quad j = 1, \ldots, k - 1,
\]

where \(\pi \) stands for a categorical probability, and \(r \) corresponds to the reference category. \(k \) is the total number of response categories, \(p \) is the number of predictor variables. `mnrfit` uses the last category as the reference category for nominal models.

Example: 'link','loglog'

type — Type of probabilities or counts to estimate
'category' (default) | 'cumulative' | 'conditional'

Type of probabilities or counts to estimate, specified as the comma-separated pair including 'type' and one of the following.
'category'
Default. Specify to return predictions and error bounds for the probabilities (or counts) of the k multinomial categories.

'cumulative'
Specify to return predictions and confidence bounds for the cumulative probabilities (or counts) of the first k - 1 multinomial categories, as an n-by-(k - 1) matrix. The predicted cumulative probability for the kth category is always 1.

'conditional'
Specify to return predictions and error bounds in terms of the first k - 1 conditional category probabilities (counts), i.e., the probability (count) for category j, given an outcome in category j or higher. When 'type' is 'conditional', and you supply the sample size argument ssize, the predicted counts at each row of X are conditioned on the corresponding element of ssize, across all categories.

Example: 'type', 'cumulative'

confidence — Confidence level

0.95 (default) | scalar value in the range (0,1)

Confidence level for the error bounds, specified as the comma-separated pair consisting of 'confidence' and a scalar value in the range (0,1).

For example, for 99% error bounds, you can specify the confidence as follows:

Example: 'confidence', 0.99

Data Types: single | double

Output Arguments

pihat — Probability estimates

n-by-(k - 1) matrix

Probability estimates for each multinomial category, returned as an n-by-(k - 1) matrix, where n is the number of observations, and k is the number of response categories.

yhat — Count estimates

n-by-k-1 matrix
Count estimates for the number in each response category, returned as an \(n \)-by-\(k - 1 \) matrix, where \(n \) is the number of observations, and \(k \) is the number of response categories.

\textbf{dlow} — Lower error bound

\textbf{column vector}

Lower error bound to compute the lower confidence bound for \(\hat{p} \) or \(\hat{y} \), returned as a column vector.

The lower confidence bound for \(\hat{p} \) is \(\hat{p} \) minus \(\text{dlow} \). Similarly, the lower confidence bound for \(\hat{y} \) is \(\hat{y} \) minus \(\text{dlow} \). Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.

\textbf{dhi} — Upper error bound

\textbf{column vector}

Upper error bound to compute the upper confidence bound for \(\hat{p} \) or \(\hat{y} \), returned as a column vector.

The upper confidence bound for \(\hat{p} \) is \(\hat{p} \) plus \(\text{dhi} \). Similarly, the upper confidence bound for \(\hat{y} \) is \(\hat{y} \) plus \(\text{dhi} \). Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.

\textbf{References}

\textbf{See Also}

\texttt{fitglm} | \texttt{glmfit} | \texttt{glmval} | \texttt{mnrfit}

\textbf{Topics}

“Multinomial Models for Nominal Responses” on page 12-2
“Multinomial Models for Ordinal Responses” on page 12-5
“Hierarchical Multinomial Models” on page 12-9

\textbf{Introduced in R2006b}
moment

Central moments

Syntax

\[
m = \text{moment}(X,\text{order})
\]
\[
m = \text{moment}(X,\text{order},'\text{all}')
\]
\[
m = \text{moment}(X,\text{order},\text{dim})
\]
\[
m = \text{moment}(X,\text{order},\text{vecdim})
\]

Description

\[
m = \text{moment}(X,\text{order})\] returns the central sample moment of \(X\) specified by the positive integer \(\text{order}\). For vectors, \(\text{moment}(x,\text{order})\) returns the central moment of the specified order for the elements of \(x\). For matrices, \(\text{moment}(X,\text{order})\) returns the central moment of the specified order for each column. For N-dimensional arrays, \(\text{moment}\) operates along the first nonsingleton dimension of \(X\).

\[
m = \text{moment}(X,\text{order},'\text{all}')\] returns the moment of the specified order for all elements of \(X\).

\[
m = \text{moment}(X,\text{order},\text{dim})\] takes the moment along the operating dimension \(\text{dim}\) of \(X\).

\[
m = \text{moment}(X,\text{order},\text{vecdim})\] returns the moment over the dimensions specified in the vector \(\text{vecdim}\). Each element of \(\text{vecdim}\) represents a dimension of the input array \(X\). The output \(m\) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \(X\) and \(m\). For example, if \(X\) is a 2-by-3-by-4 array, then \(\text{moment}(X, 1, [1 2])\) returns a 1-by-1-by-4 array. Each element of the output array is the first moment of the elements on the corresponding page of \(X\).

Examples
Find Central Moment for Specified Order

Set the random seed for reproducibility of the results.

```matlab
rng('default')
```

Generate a matrix with 6 rows and 5 columns.

```matlab
X = randn(6,5)
```

```
6×5
0.5377   -0.4336    0.7254    1.4090    0.4889
1.8339    0.3426   -0.0631    1.4172    1.0347
-2.2588    3.5784    0.7147    0.6715    0.7269
0.8622    2.7694   -0.2050   -1.2075   -0.3034
0.3188   -1.3499   -0.1241    0.7172    0.2939
-1.3077    3.0349    1.4897    1.6302   -0.7873
```

Find the third order central moment of X.

```matlab
m = moment(X,3)
```

```
1×5
-1.1143   -0.9973    0.1234   -1.1023   -0.1045
```

m is a row vector containing the third order central moment of each column in X.

Find Central Moment Along Vector of Dimensions

Find the central moment over multiple dimensions by using the 'all' and vecdim input arguments.

Set the random seed for reproducibility of the results.

```matlab
rng('default')
```

Create a 4-by-3-by-2 array of random numbers.

```matlab
X = randn(4,3,2)
```
X =
X(:,:,1) =
 0.5377 0.3188 3.5784
 1.8339 -1.3077 2.7694
 -2.2588 -0.4336 -1.3499
 0.8622 0.3426 3.0349

X(:,:,2) =
 0.7254 -0.1241 0.6715
 -0.0631 1.4897 -1.2075
 0.7147 1.4090 0.7172
 -0.2050 1.4172 1.6302

Find the third order central moment of X.

mall = moment(X,3,'all')
mall = 0.2431

mall is the third order central moment of the entire input data set X.

Find the third order moment of each page of X by specifying the first and second dimensions.

mpage = moment(X,3,[1 2])

mpage =
mpage(:,:,1) =
 0.6002

mpage(:,:,2) =
 -0.3475

For example, mpage(1,1,2) is the third order central moment of the elements in X(:,:,2).
Find the third order moment of the elements in each \(X(i,:,:) \) slice by specifying the second and third dimensions.

\[
m_{\text{row}} = \text{moment}(X,3,[2 3])
\]

\[
m_{\text{row}} = \begin{bmatrix} 2.7552 \\ 0.0443 \\ -0.7585 \\ 0.5340 \end{bmatrix}
\]

For example, \(m_{\text{row}}(1) \) is the third order central moment of the elements in \(X(1,:,:). \)

Tips

Note that the central first moment is zero, and the second central moment is the variance computed using a divisor of \(n \) rather than \(n - 1 \), where \(n \) is the length of the vector \(x \) or the number of rows in the matrix \(X \).

The central moment of order \(k \) of a distribution is defined as

\[
m_k = E((x - \mu)^k)
\]

where \(E(x) \) is the expected value of \(x \).

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
• \(m = \text{moment}(X, \text{order}, 'all') \)
• \(m = \text{moment}(X, \text{order}, \text{vecdim}) \)
• If \(\text{order} \) is nonintegral and \(X \) is real, use \(\text{moment}(ext{complex}(X), \text{order}) \).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
 • \(m = \text{moment}(X, \text{order}, 'all') \)
 • \(m = \text{moment}(X, \text{order}, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
- kurtosis
- mean
- skewness
- std
- var

Introduced before R2006a
multcompare

Multiple comparison test

Syntax

c = multcompare(stats)
c = multcompare(stats,Name,Value)
[c,m] = multcompare(__)
[c,m,h] = multcompare(__)
[c,m,h,gnames] = multcompare(__)

Description

c = multcompare(stats) returns a matrix c of the pairwise comparison results from a multiple comparison test using the information contained in the stats structure. multcompare also displays an interactive graph of the estimates and comparison intervals. Each group mean is represented by a symbol, and the interval is represented by a line extending out from the symbol. Two group means are significantly different if their intervals are disjoint; they are not significantly different if their intervals overlap. If you use your mouse to select any group, then the graph will highlight all other groups that are significantly different, if any.

c = multcompare(stats,Name,Value) returns a matrix of pairwise comparison results, c, using additional options specified by one or more Name,Value pair arguments. For example, you can specify the confidence interval, or the type of critical value to use in the multiple comparison.

[c,m] = multcompare(__) also returns a matrix, m, which contains estimated values of the means (or whatever statistics are being compared) for each group and the corresponding standard errors. You can use any of the previous syntaxes.

[c,m,h] = multcompare(__) also returns a handle, h, to the comparison graph.

[c,m,h,gnames] = multcompare(__) also returns a cell array, gnames, which contains the names of the groups.
Examples

Multiple Comparison of Group Means

Load the sample data.

load carsmall

Perform a one-way analysis of variance (ANOVA) to see if there is any difference between the mileage of the cars by origin.

[p,t,stats] = anova1(MPG,Origin,'off');

Perform a multiple comparison of the group means.

[c,m,h,nms] = multcompare(stats);
multicorpare displays the estimates with comparison intervals around them. You can click the graphs of each country to compare its mean to those of other countries.

Now display the mean estimates and the standard errors with the corresponding group names.

[nms num2cell(m)]

ans = 6x3 cell array
{'USA' } {[21.1328]} {[0.8814]}
{'Japan' } {[31.8000]} {[1.8206]}
{'Germany'} {[28.4444]} {[2.3504]}
{'France' } {[23.6667]} {[4.0711]}
{'Sweden' } {[22.5000]} {[4.9860]}
Multiple Comparisons for Two-Way ANOVA

Load the sample data.

```matlab
load popcorn
popcorn
popcorn = 6×3
    5.5000  4.5000  3.5000
    5.5000  4.5000  4.0000
    6.0000  4.0000  3.0000
    6.5000  5.0000  4.0000
    7.0000  5.5000  5.0000
    7.0000  5.0000  4.5000
```

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix `popcorn` are brands (Gourmet, National, and Generic). The rows are popper types oil and air. In the study, researchers popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a multiple comparison test on the main effects.

```matlab
[~,~,stats] = anova2(popcorn,3,'off')
```

```matlab
stats = struct with fields:
    source: 'anova2'
    sigmasq: 0.1389
    colmeans: [6.2500 4.7500 4]
    coln: 6
    rowmeans: [4.5000 5.5000]
    rown: 9
    inter: 1
    pval: 0.7462
    df: 12
```

The `stats` structure includes
• The mean squared error (sigmasq)
• The estimates of the mean yield for each popcorn brand (colmeans)
• The number of observations for each popcorn brand (coln)
• The estimate of the mean yield for each popper type (rowmeans)
• The number of observations for each popper type (rown)
• The number of interactions (inter)
• The p-value that shows the significance level of the interaction term (pval)
• The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of popcorn brands (columns).

$c = \text{multcompare}(\text{stats})$

Note: Your model includes an interaction term. A test of main effects can be difficult to interpret when the model includes interactions.
The first two columns of c show the groups that are compared. The fourth column shows the difference between the estimated group means. The third and fifth columns show the lower and upper limits for 95% confidence intervals for the true mean difference. The sixth column contains the p-value for a hypothesis test that the corresponding mean difference is equal to zero. All p-values (0, 0, and 0.0116) are very small, which indicates that the popcorn yield differs across all three brands.
The figure shows the multiple comparison of the means. By default, the group 1 mean is highlighted and the comparison interval is in blue. Because the comparison intervals for the other two groups do not intersect with the intervals for the group 1 mean, they are highlighted in red. This lack of intersection indicates that both means are different than group 1 mean. Select other group means to confirm that all group means are significantly different from each other.

Perform a multiple comparison test to see the popcorn yield differs between the two popper types (rows).

```matlab
    c = multcompare(stats,'Estimate','row')
```

Note: Your model includes an interaction term. A test of main effects can be difficult to interpret when the model includes interactions.
c = 1×6

1.0000 2.0000 -1.3828 -1.0000 -0.6172 0.0001

The small p-value of 0.0001 indicates that the popcorn yield differs between the two popper types (air and oil). The figure shows the same results. The disjoint comparison intervals indicate that the group means are significantly different from each other.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

```matlab
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
```

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two levels, and every observation in y is identified by a combination of factor levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi' of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple comparison tests.

```matlab
[~,~,stats] = anovan(y,[g1 g2 g3], 'model','interaction',...
   'varnames', {'g1','g2','g3'});
```
The \(p \)-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of factor g3 are not significantly different. The \(p \)-value of 0.0347 indicates that the mean responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the \(p \)-value of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are significantly different.

\[
\text{results} = \text{multcompare}(ext{stats},'\text{Dimension}',[1 2])
\]
multcompare compares the combinations of groups (levels) of the two grouping variables, g_1 and g_2. In the results matrix, the number 1 corresponds to the combination of level 1 of g_1 and level hi of g_2, the number 2 corresponds to the combination of level 2 of g_1 and level hi of g_2. Similarly, the number 3 corresponds to
the combination of level 1 of g1 and level lo of g2, and the number 4 corresponds to the
combination of level 2 of g1 and level lo of g2. The last column of the matrix contains the
p-values.

For example, the first row of the matrix shows that the combination of level 1 of g1 and
level hi of g2 has the same mean response values as the combination of level 2 of g1 and
level hi of g2. The p-value corresponding to this test is 0.0280, which indicates that the
mean responses are significantly different. You can also see this result in the figure. The
blue bar shows the comparison interval for the mean response for the combination of
level 1 of g1 and level hi of g2. The red bars are the comparison intervals for the mean
response for other group combinations. None of the red bars overlap with the blue bar,
which means the mean response for the combination of level 1 of g1 and level hi of g2 is
significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval for
the group. The bar you click on turns to blue. The bars for the groups that are
significantly different are red. The bars for the groups that are not significantly different
are gray. For example, if you click on the comparison interval for the combination of level
1 of g1 and level lo of g2, the comparison interval for the combination of level 2 of g1
and level lo of g2 overlaps, and is therefore gray. Conversely, the other comparison
intervals are red, indicating significant difference.

Input Arguments

`stats — Test data
structure`

Test data, specified as a structure. You can create a structure using one of the following
functions:

- `anova1` — One-way analysis of variance.
- `anova2` — Two-way analysis of variance.
- `anovan` — N-way analysis of variance.
- `aoctool` — Interactive analysis of covariance tool.
- `friedman` — Friedman’s test.
- `kruskalwallis` — Kruskal-Wallis test.
multcompare does not support multiple comparisons using anovan output for a model that includes random or nested effects. The calculations for a random effects model produce a warning that all effects are treated as fixed. Nested models are not accepted.

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'CType','bonferroni','Display','off' computes the Bonferroni critical values, conducts the hypothesis tests at the 1% significance level, and omits the interactive display.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the multiple comparison test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1). The value specified for 'Alpha' determines the 100 × (1 – α) confidence levels of the intervals returned in the matrix c and in the figure.

Example: 'Alpha',0.01

Data Types: single | double

CType — Type of critical value
'tukey-kramer' (default) | 'hsd' | 'lsd' | 'bonferroni' | 'dunn-sidak' | 'scheffe'

Type of critical value to use for the multiple comparison, specified as the comma-separated pair consisting of 'CType' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'tukey-kramer'</td>
<td>Tukey's honest significant difference criterion on page 9-32</td>
</tr>
<tr>
<td>'hsd'</td>
<td>Tukey's honest significant difference criterion on page 9-32</td>
</tr>
<tr>
<td>'bonferroni'</td>
<td>Bonferroni method on page 9-33</td>
</tr>
<tr>
<td>'dunn-sidak'</td>
<td>Dunn and Sidák’s approach on page 9-33</td>
</tr>
</tbody>
</table>
Value | Description
---|---
'lsd' | Fisher's least significant difference procedure on page 9-34
'scheffe' | Scheffé's S procedure on page 9-35

Example: 'CType', 'bonferroni'

Display — Display toggle

' on' (default) | 'off'

Display toggle, specified as the comma-separated pair consisting of 'Display' and either ' on' or ' off'. If you specify ' on', then multcompare displays a graph of the estimates and their comparison intervals. If you specify ' off', then multcompare omits the graph.

Example: 'Display', 'off'

Dimension — Dimension over which to calculate marginal means

1 (default) | positive integer value | vector of positive integer values

A vector specifying the dimension or dimensions over which to calculate the population marginal means, specified as a positive integer value, or a vector of such values. Use the 'Dimension' name-value pair only if you create the input structure stats using the function anovan.

For example, if you specify 'Dimension' as 1, then multcompare compares the means for each value of the first grouping variable, adjusted by removing effects of the other grouping variables as if the design were balanced. If you specify 'Dimension' as [1,3], then multcompare computes the population marginal means for each combination of the first and third grouping variables, removing effects of the second grouping variable. If you fit a singular model, some cell means may not be estimable and any population marginal means that depend on those cell means will have the value NaN.

Population marginal means are described by Milliken and Johnson (1992) and by Searle, Speed, and Milliken (1980). The idea behind population marginal means is to remove any effect of an unbalanced design by fixing the values of the factors specified by 'Dimension', and averaging out the effects of other factors as if each factor combination occurred the same number of times. The definition of population marginal means does not depend on the number of observations at each factor combination. For designed experiments where the number of observations at each factor combination has no meaning, population marginal means can be easier to interpret than simple means ignoring other factors. For surveys and other studies where the number of observations at
each combination does have meaning, population marginal means may be harder to interpret.

Example: 'Dimension',[1,3]

Data Types: single | double

Estimate — Estimates to be compared
'column' (default) | 'row' | 'slope' | 'intercept' | 'pmm'

Estimates to be compared, specified as the comma-separated pair consisting of 'Estimate' and an allowable value. The allowable values for 'Estimate' depend on the function used to generate the input structure `stats`, according to the following table.

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>anova1</td>
<td>None. This name-value pair is ignored, and <code>multcompare</code> always compares the group means.</td>
</tr>
<tr>
<td>anova2</td>
<td>Either 'column' to compare column means, or 'row' to compare row means.</td>
</tr>
<tr>
<td>anovan</td>
<td>None. This name-value pair is ignored, and <code>multcompare</code> always compares the population marginal means as specified by the 'Dimension' name-value pair argument.</td>
</tr>
<tr>
<td>aoctool</td>
<td>Either 'slope', 'intercept', or 'pmm' to compare slopes, intercepts, or population marginal means, respectively. If the analysis of covariance model did not include separate slopes, then 'slope' is not allowed. If it did not include separate intercepts, then no comparisons are possible.</td>
</tr>
<tr>
<td>friedman</td>
<td>None. This name-value pair is ignored, and <code>multcompare</code> always compares the average column ranks.</td>
</tr>
<tr>
<td>kruskalwallis</td>
<td>None. This name-value pair is ignored, and <code>multcompare</code> always compares the average group ranks.</td>
</tr>
</tbody>
</table>

Example: 'Estimate','row'

Output Arguments

`c` — Matrix of multiple comparison results
matrix of scalar values
Matrix of multiple comparison results, returned as an \(p \)-by-6 matrix of scalar values, where \(p \) is the number of pairs of groups. Each row of the matrix contains the result of one paired comparison test. Columns 1 and 2 contain the indices of the two samples being compared. Column 3 contains the lower confidence interval, column 4 contains the estimate, and column 5 contains the upper confidence interval. Column 6 contains the \(p \)-value for the hypothesis test that the corresponding mean difference is not equal to 0.

For example, suppose one row contains the following entries.

\[
2.0000 \quad 5.0000 \quad 1.9442 \quad 8.2206 \quad 14.4971 \quad 0.0432
\]

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated to be 8.2206, and a 95% confidence interval for the true difference of the means is \([1.9442, 14.4971]\). The \(p \)-value for the corresponding hypothesis test that the difference of the means of groups 2 and 5 is significantly different from zero is 0.0432.

In this example the confidence interval does not contain 0, so the difference is significant at the 5% significance level. If the confidence interval did contain 0, the difference would not be significant. The \(p \)-value of 0.0432 also indicates that the difference of the means of groups 2 and 5 is significantly different from 0.

\[\textbf{m} \quad \textbf{— Matrix of estimates}\]

\text{matrix of scalar values}

Matrix of the estimates, returned as a matrix of scalar values. The first column of \(m \) contains the estimated values of the means (or whatever statistics are being compared) for each group, and the second column contains their standard errors.

\[\textbf{h} \quad \textbf{— Handle to the figure}\]

\text{handle}

Handle to the figure containing the interactive graph, returned as a handle. The title of this graph contains instructions for interacting with the graph, and the x-axis label contains information about which means are significantly different from the selected mean. If you plan to use this graph for presentation, you may want to omit the title and the x-axis label. You can remove them using interactive features of the graph window, or you can use the following commands.

\[
\text{title('')} \\
\text{xlabel('')}
\]

\[\textbf{gnames} \quad \textbf{— Group names}\]

\text{cell array of character vectors}

32-4131
Group names, returned as a cell array of character vectors. Each row of \texttt{gnames} contains the name of a group.

Definitions

Multiple Comparison Tests

Analysis of variance compares the means of several groups to test the hypothesis that they are all equal, against the general alternative that they are not all equal. Sometimes this alternative may be too general. You may need information about which pairs of means are significantly different, and which are not. A multiple comparison test can provide this information.

When you perform a simple \textit{t}-test of one group mean against another, you specify a significance level that determines the cutoff value of the \textit{t}-statistic. For example, you can specify the value \texttt{alpha = 0.05} to insure that when there is no real difference, you will incorrectly find a significant difference no more than 5\% of the time. When there are many group means, there are also many pairs to compare. If you applied an ordinary \textit{t}-test in this situation, the \texttt{alpha} value would apply to each comparison, so the chance of incorrectly finding a significant difference would increase with the number of comparisons. Multiple comparison procedures are designed to provide an upper bound on the probability that \textit{any} comparison will be incorrectly found significant.

References

See Also

\texttt{anova1|anova2|anovan|aocotool|friedman|kruskalwallis}
Introduced before R2006a
multcompare

Class: RepeatedMeasuresModel

Multiple comparison of estimated marginal means

Syntax

tbl = multcompare(rm,var)
tbl = multcompare(rm,var,Name,Value)

Description

tbl = multcompare(rm,var) returns multiple comparisons of the estimated marginal means based on the variable var in the repeated measures model rm.

tbl = multcompare(rm,var,Name,Value) returns multiple comparisons of the estimated marginal means with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the comparison type or which variable to group by.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

var — Variables for which to compute marginal means
character vector | string scalar

32-4134
Variables for which to compute the marginal means, specified as a character vector or string scalar representing the name of a between- or within-subjects factor in rm. If var is a between-subjects factor, it must be categorical.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Alpha — Confidence level

0.05 (default) | scalar value in the range of 0 through 1

Confidence level of the confidence intervals for population marginal means, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range of 0 through 1. The confidence level is 100*(1-alpha)%.

Example: 'alpha',0.01

Data Types: double | single

By — Factor to perform comparisons by

character vector | string scalar

Factor to do the comparisons by, specified as the comma-separated pair consisting of 'By' and a character vector or string scalar. The comparison between levels of var occurs separately for each value of the factor you specify.

If you have more than one between-subjects factors, A, B, and C, and if you want to do the comparisons of A levels separately for each level of C, then specify A as the var argument and specify C using the 'By' argument as follows.

Example: 'By',C

Data Types: char | string

ComparisonType — Type of critical value to use

'tukey-kramer' (default) | 'dunn-sidak' | 'bonferroni' | 'scheffe' | 'lsd'

Type of critical value to use, specified as the comma-separated pair consisting of 'ComparisonType' and one of the following.
<table>
<thead>
<tr>
<th>Comparison Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>'tukey-kramer'</td>
<td>Default. Also called Tukey’s Honest Significant Difference procedure. It is based on the Studentized range distribution. According to the unproven Tukey-Kramer conjecture, it is also accurate for problems where the quantities being compared are correlated, as in analysis of covariance with unbalanced covariate values.</td>
</tr>
</tbody>
</table>
| 'dunn-sidak' | Use critical values from the t distribution, after an adjustment for multiple comparisons that was proposed by Dunn and proved accurate by Sidák. The critical value is
\[
|t| = \frac{|\bar{y}_i - \bar{y}_j|}{\sqrt{MSE \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}} > t_{1-\eta/2,\nu},
\]
where
\[
\eta = 1 - (1 - \alpha)^{1/\nu}
\]
and ng is the number of groups (marginal means). This procedure is similar to, but less conservative than, the Bonferroni procedure. |
Comparison Type

| 'bonferroni' | Use critical values from the \(t \) distribution, after a Bonferroni adjustment to compensate for multiple comparisons. The critical value is
\[
 t_{\frac{\alpha}{2} \left(\frac{ng}{2} \right)^2},
\]
where \(ng \) is the number of groups (marginal means), and \(v \) is the error degrees of freedom. This procedure is conservative, but usually less so than the Scheffé procedure. |

| 'scheffe' | Use critical values from Scheffé's \(S \) procedure, derived from the \(F \) distribution. The critical value is
\[
 \sqrt{(ng - 1)F_{\alpha, ng-1, v}},
\]
where \(ng \) is the number of groups (marginal means), and \(v \) is the error degrees of freedom. This procedure provides a simultaneous confidence level for comparisons of all linear combinations of the means, and it is conservative for comparisons of simple differences of pairs. |

| 'lsd' | Least significant difference. This option uses plain \(t \)-tests. The critical value is
\[
 t_{\frac{\alpha}{2}, v},
\]
where \(v \) is the error degrees of freedom. It provides no protection against the multiple comparison problem. |

Example: 'ComparisonType','dunn-sidak'
Output Arguments

tbl — Results of multiple comparison table

Results of multiple comparisons of estimated marginal means, returned as a table. **tbl** has the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference</td>
<td>Estimated difference between the corresponding two marginal means</td>
</tr>
<tr>
<td>StdErr</td>
<td>Standard error of the estimated difference between the corresponding two marginal means</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for a test that the difference between the corresponding two marginal means is 0</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower limit of simultaneous 95% confidence intervals for the true difference</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper limit of simultaneous 95% confidence intervals for the true difference</td>
</tr>
</tbody>
</table>

Examples

Multiple Comparison of Estimated Marginal Means

Load the sample data.

```matlab
load fisheriris
```

The column vector `species` consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```matlab
t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...'VariableNames',
    {'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4],'VarNames',
    {'Measurements'});```
Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

```matlab
rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);
```

Perform a multiple comparison of the estimated marginal means of species.

```matlab
tbl = multcompare(rm,'species')
```

<table>
<thead>
<tr>
<th>species_1</th>
<th>species_2</th>
<th>Difference</th>
<th>StdErr</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>'setosa'</td>
<td>'versicolor'</td>
<td>-1.0375</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>-1.1794</td>
<td>-0.89562</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'virginica'</td>
<td>-1.7495</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>-1.8914</td>
<td>-1.6076</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'setosa'</td>
<td>1.0375</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>0.89562</td>
<td>1.1794</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'virginica'</td>
<td>-0.712</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>-0.85388</td>
<td>-0.57012</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'setosa'</td>
<td>1.7495</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>1.6076</td>
<td>1.8914</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'versicolor'</td>
<td>0.712</td>
<td>0.060539</td>
<td>9.5606e-10</td>
<td>0.57012</td>
<td>0.85388</td>
</tr>
</tbody>
</table>

The small \( P \)-values (in the `pValue` field) indicate that the estimated marginal means for the three species significantly differ from each other.

**Perform Multiple Comparisons with Specified Options**

Load the sample data.

```matlab
load repeatedmeas
```

The table `between` includes the between-subject variables age, IQ, group, gender, and eight repeated measures `y1` through `y8` as responses. The table `within` includes the within-subject variables `w1` and `w2`. This is simulated data.

Fit a repeated measures model, where the repeated measures `y1` through `y8` are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
R = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Perform a multiple comparison of the estimated marginal means based on the variable `Group`. 

32-4139
The small $p$-value of 0.0021493 indicates that there is significant difference between the marginal means of groups A and C. The $p$-value of 0.65436 indicates that the difference between the marginal means for groups A and B is not significantly different from 0.

`multcompare` uses the Tukey-Kramer test statistic by default. Change the comparison type to the Scheffe procedure.

```matlab
T = multcompare(R,'Group','ComparisonType','Scheffe')
```

<table>
<thead>
<tr>
<th>Group_1</th>
<th>Group_2</th>
<th>Difference</th>
<th>StdErr</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>4.9875</td>
<td>5.6271</td>
<td>0.67981</td>
<td>-9.7795</td>
<td>19.755</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>23.094</td>
<td>5.9261</td>
<td>0.0031072</td>
<td>7.5426</td>
<td>38.646</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>-4.9875</td>
<td>5.6271</td>
<td>0.67981</td>
<td>-19.775</td>
<td>9.755</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>18.107</td>
<td>5.8223</td>
<td>0.018169</td>
<td>2.8273</td>
<td>33.386</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>-23.094</td>
<td>5.9261</td>
<td>0.0031072</td>
<td>-38.646</td>
<td>-7.5426</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>-18.107</td>
<td>5.8223</td>
<td>0.018169</td>
<td>-33.386</td>
<td>-2.8273</td>
</tr>
</tbody>
</table>

The Scheffe test produces larger $p$-values, but similar conclusions.

Perform multiple comparisons of estimated marginal means based on the variable `Group` for each gender separately.

```matlab
T = multcompare(R,'Group','By','Gender')
```

<table>
<thead>
<tr>
<th>Gender</th>
<th>Group_1</th>
<th>Group_2</th>
<th>Difference</th>
<th>StdErr</th>
<th>pValue</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>A</td>
<td>B</td>
<td>4.9875</td>
<td>5.6271</td>
<td>0.67981</td>
<td>-9.7755</td>
</tr>
<tr>
<td>32</td>
<td>A</td>
<td>C</td>
<td>23.094</td>
<td>5.9261</td>
<td>0.0031072</td>
<td>7.5426</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>A</td>
<td>-4.9875</td>
<td>5.6271</td>
<td>0.67981</td>
<td>-19.775</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>C</td>
<td>18.107</td>
<td>5.8223</td>
<td>0.018169</td>
<td>2.8273</td>
</tr>
<tr>
<td>32</td>
<td>C</td>
<td>A</td>
<td>-23.094</td>
<td>5.9261</td>
<td>0.0031072</td>
<td>-38.646</td>
</tr>
<tr>
<td>32</td>
<td>C</td>
<td>B</td>
<td>-18.107</td>
<td>5.8223</td>
<td>0.018169</td>
<td>-33.386</td>
</tr>
</tbody>
</table>

32-4140
<table>
<thead>
<tr>
<th>Gender</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group A Mean</th>
<th>Group B Mean</th>
<th>Group C Mean</th>
<th>Difference Mean</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>A</td>
<td>B</td>
<td>4.1883</td>
<td>8.0177</td>
<td>0.86128</td>
<td>-15.953</td>
<td>24.329</td>
<td>0.0000</td>
</tr>
<tr>
<td>Female</td>
<td>A</td>
<td>C</td>
<td>24.565</td>
<td>8.2083</td>
<td>0.017697</td>
<td>3.9449</td>
<td>45.184</td>
<td>0.0038</td>
</tr>
<tr>
<td>Female</td>
<td>B</td>
<td>A</td>
<td>-4.1883</td>
<td>8.0177</td>
<td>0.86128</td>
<td>24.329</td>
<td>15.953</td>
<td>0.0000</td>
</tr>
<tr>
<td>Female</td>
<td>B</td>
<td>C</td>
<td>20.376</td>
<td>8.1101</td>
<td>0.049957</td>
<td>-0.0033459</td>
<td>40.749</td>
<td>0.0000</td>
</tr>
<tr>
<td>Female</td>
<td>C</td>
<td>A</td>
<td>-24.565</td>
<td>8.2083</td>
<td>0.017697</td>
<td>-45.184</td>
<td>3.9449</td>
<td>0.0038</td>
</tr>
<tr>
<td>Female</td>
<td>C</td>
<td>B</td>
<td>-20.376</td>
<td>8.1101</td>
<td>0.049957</td>
<td>-40.749</td>
<td>14.183</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>A</td>
<td>B</td>
<td>5.7868</td>
<td>7.9498</td>
<td>0.74977</td>
<td>-14.183</td>
<td>25.757</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>A</td>
<td>C</td>
<td>21.624</td>
<td>8.1829</td>
<td>0.038022</td>
<td>1.0676</td>
<td>42.179</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>B</td>
<td>A</td>
<td>-5.7868</td>
<td>7.9498</td>
<td>0.74977</td>
<td>-25.757</td>
<td>24.329</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>B</td>
<td>C</td>
<td>15.837</td>
<td>8.0511</td>
<td>0.14414</td>
<td>-36.062</td>
<td>4.3881</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>C</td>
<td>A</td>
<td>-21.624</td>
<td>8.1829</td>
<td>0.038022</td>
<td>-0.0033459</td>
<td>42.179</td>
<td>0.0000</td>
</tr>
<tr>
<td>Male</td>
<td>C</td>
<td>B</td>
<td>-15.837</td>
<td>8.0511</td>
<td>0.14414</td>
<td>-36.062</td>
<td>4.3881</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The results indicate that the difference between marginal means for groups A and B is not significant from 0 for either gender (corresponding $p$-values are 0.86128 for females and 0.74977 for males). The difference between marginal means for groups A and C is significant for both genders (corresponding $p$-values are 0.017697 for females and 0.038022 for males). While the difference between marginal means for groups B and C is significantly different from 0 for females ($p$-value is 0.049957), it is not significantly different from 0 for males ($p$-value is 0.14414).

**References**


**See Also**

fitrm | margmean | plotprofile
multivarichart

Multivari chart for grouped data

Syntax

multivarichart(y,GROUP)
multivarichart(Y)
multivarichart(...,param1,val1,param2,val2,...)
[charthandle,AXESH] = multivarichart(...)

Description

multivarichart(y,GROUP) displays the multivari chart for the vector y grouped by entries in GROUP that can be a cell array or a matrix. If GROUP is a cell array, then each cell in GROUP must contain a grouping variable that is a categorical vector, numeric vector, character matrix, string array, or single-column cell array of character vectors. If GROUP is a numeric matrix, then its columns represent different grouping variables. Each grouping variable must have the same number of elements as y. The number of grouping variables must be 2, 3, or 4.

Each subplot of the plot matrix contains a multivari chart for the first and second grouping variables. The x-axis in each subplot indicates values of the first grouping variable. The legend at the bottom of the figure window indicates values of the second grouping variable. The subplot at position (i,j) is the multivari chart for the subset of y at the ith level of the third grouping variable and the jth level of the fourth grouping variable. If the third or fourth grouping variable is absent, it is considered to have only one level.

multivarichart(Y) displays the multivari chart for a matrix Y. The data in different columns represent changes in one factor. The data in different rows represent changes in another factor.

multivarichart(...,param1,val1,param2,val2,...) specifies one or more of the following name/value pairs:
• 'varnames' — Grouping variable names in a character matrix, a string array, or a cell array of character vectors, one per grouping variable. Default names are 'X1', 'X2', ....

• 'plotorder' — 'sorted' or a vector containing a permutation of the integers from 1 to the number of grouping variables.

If 'plotorder' is 'sorted', the grouping variables are rearranged in descending order according to the number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each grouping variable should be plotted. For example, [2,3,1,4] indicates that the second grouping variable should be used as the x-axis of each subplot, the third grouping variable should be used as the legend, the first grouping variable should be used as the columns of the plot, and the fourth grouping variable should be used as the rows of the plot.

[charhandle,AXESH] = multivarichart(...) returns a handle charhandle to the figure window and a matrix AXESH of handles to the subplot axes.

Examples

Multivari Chart for Grouped Data

Display a multivari chart for data with two grouping variables.

rng default; % For reproducibility
y = randn(100,1); % Randomly generate response
group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))];
multivarichart(y,group)
Display a multivari chart for data with four grouping variables.

\[
y = \text{randn}(1000,1); \quad \% \text{ Randomly generate response}
group = \{\text{ceil}(2\times\text{rand}(1000,1)), \text{ceil}(3\times\text{rand}(1000,1)), \ldots
\text{ceil}(2\times\text{rand}(1000,1)), \text{ceil}(3\times\text{rand}(1000,1))\};
\text{multivarichart}(y, \text{group})
\]
See Also

interactionplot | maineffectsplot
Topics
“Grouping Variables” on page 2-57

Introduced in R2006b
mvksdensity

Kernel smoothing function estimate for multivariate data

Syntax

\[ f = \text{mvksdensity}(x, \text{pts}, '\text{Bandwidth}', \text{bw}) \]
\[ f = \text{mvksdensity}(x, \text{pts}, '\text{Bandwidth}', \text{bw}, \text{Name}, \text{Value}) \]

Description

\[ f = \text{mvksdensity}(x, \text{pts}, '\text{Bandwidth}', \text{bw}) \] computes a probability density estimate of the sample data in the \( n \)-by-\( d \) matrix \( x \), evaluated at the points in \( pts \) using the required name-value pair argument value \( bw \) for the bandwidth value. The estimation is based on a product Gaussian kernel function.

For univariate or bivariate data, use \( \text{ksdensity} \) instead.

\[ f = \text{mvksdensity}(x, \text{pts}, '\text{Bandwidth}', \text{bw}, \text{Name}, \text{Value}) \] returns any of the previous output arguments, using additional options specified by one or more \( \text{Name}, \text{Value} \) pair arguments. For example, you can define the function type that \( \text{mvksdensity} \) evaluates, such as probability density, cumulative probability, or survivor function. You can also assign weights to the input values.

Examples

Estimate Multivariate Kernel Density

Load the Hald cement data.

```
load hald
```

The data measures the heat of hardening for 13 different cement compositions. The predictor matrix \texttt{ingredients} contains the percent composition for each of four cement
ingredients. The response matrix heat contains the heat of hardening (in cal/g) after 180 days.

Estimate the kernel density for the first three observations in ingredients.

\[
\begin{align*}
\xi &= \text{ingredients}(1:3,:); \\
\mathbf{f} &= \text{mvksdensity}(\text{ingredients}, \xi, 'Bandwidth', 0.8);
\end{align*}
\]

### Estimate Multivariate Kernel Density Using Grids

Load the Hald cement data.

```matlab
load hald
```

The data measures the heat of hardening for 13 different cement compositions. The predictor matrix ingredients contains the percent composition for each of four cement ingredients. The response matrix heat contains the heat of hardening (in cal/g) after 180 days.

Create a array of points at which to estimate the density. First, define the range and spacing for each variable, using a similar number of points in each dimension.

\[
\begin{align*}
gridx1 &= 0:2:22; \\
gridx2 &= 20:5:80; \\
gridx3 &= 0:2:24; \\
gridx4 &= 5:5:65;
\end{align*}
\]

Next, use \texttt{ndgrid} to generate a full grid of points using the defined range and spacing.

\[
[x1, x2, x3, x4] = \text{ndgrid}(gridx1, gridx2, gridx3, gridx4);
\]

Finally, transform and concatenate to create an array that contains the points at which to estimate the density. This array has one column for each variable.

\[
\begin{align*}
x1 &= x1(:,:,:)'; \\
x2 &= x2(:,:,:)'; \\
x3 &= x3(:,:,:)'; \\
x4 &= x4(:,:,:)'; \\
\xi &= [x1(:) x2(:) x3(:) x4(:)];
\end{align*}
\]

Estimate the density.
[f,bw] = mvksdensity(ingredients,xi,...
   'Bandwidth',[4.0579 10.7345 4.4185 11.5466],...
   'Kernel','normpdf');

View the size of xi and f to confirm that mvksdensity calculates the density at each point in xi.

size_xi = size(xi)
size_xi = 1×2
         26364           4

size_f = size(f)
size_f = 1×2
         26364           1

Input Arguments

x — Sample data
numeric matrix

Sample data for which mvksdensity returns the probability density estimate, specified as an n-by-d matrix of numeric values. n is the number of data points (rows) in x, and d is the number of dimensions (columns).

Data Types: single | double

pts — Points at which to evaluate f
matrix

Points at which to evaluate the probability density estimate f, specified as a matrix with the same number of columns as x. The returned estimate f has the same length as pts.

Data Types: single | double

bw — Value for the bandwidth of the kernel smoothing window
scalar value | d-element vector
Value for the bandwidth of the kernel-smoothing window, specified as a scalar value or \(d\)-element vector. \(d\) is the number of dimensions (columns) in the sample data \(x\). If \(bw\) is a scalar value, it applies to all dimensions.

If you specify 'BoundaryCorrection' as 'log' (default) and 'Support' as either 'positive' or a two-row matrix, \(mvksdensity\) converts bounded data to be unbounded by using log transformation. The value of \(bw\) is on the scale of the transformed values.

Silverman's rule of thumb for the bandwidth is

\[
b_i = \sigma_i \left[ \frac{4}{(d+2)n} \right]^{1/(d+4)} , \quad i = 1,2,\ldots,d,
\]

where \(d\) is the number of dimensions, \(n\) is the number of observations, and \(\sigma_i\) is the standard deviation of the \(i\)th variate [4].

Example: 'Bandwidth',0.8
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: 'Kernel','triangle','Function,'cdf' specifies that \(mvksdensity\) estimates the cdf of the sample data using the triangle kernel function.

\textbf{BoundaryCorrection — Boundary correction method}

'log' (default) | 'reflection'

Boundary correction method, specified as the comma-separated pair consisting of 'BoundaryCorrection' and either 'log' or 'reflection'.
### Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 'log' | mvksdensity converts bounded data to be unbounded by using one of the following transformations. Then, it transforms back to the original bounded scale after density estimation.  
- If you specify 'Support','positive', then mvksdensity applies log(x_j) for each dimension, where x_j is the jth column of the input argument x.  
- If you specify 'Support' as a two-row matrix consisting of the lower and upper limits for each dimension, then mvksdensity applies log((x_j-L_j)/(U_j-x_j)) for each dimension, where L_j and U_j are the lower and upper limits of the jth dimension, respectively.  

The value of bw is on the scale of the transformed values. |
| 'reflection' | mvksdensity augments bounded data by adding reflected data near the boundaries, then it returns estimates corresponding to the original support. For details, see “Reflection Method” on page 32-4154. |

mvksdensity applies boundary correction only when you specify 'Support' as a value other than 'unbounded'.

Example: 'BoundaryCorrection','reflection'

**Function — Function to estimate**

'pdf' (default) | 'cdf' | 'survivor'

Function to estimate, specified as the comma-separated pair consisting of 'Function' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pdf'</td>
<td>Probability density function</td>
</tr>
<tr>
<td>'cdf'</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>'survivor'</td>
<td>Survivor function</td>
</tr>
</tbody>
</table>

Example: 'Function','cdf'

**Kernel — Type of kernel smoother**

'normal' (default) | 'box' | 'triangle' | 'epanechnikov' | function handle | function name
Type of kernel smoother, specified as the comma-separated pair consisting of 'Kernel' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>Normal (Gaussian) kernel</td>
</tr>
<tr>
<td>'box'</td>
<td>Box kernel</td>
</tr>
<tr>
<td>'triangle'</td>
<td>Triangular kernel</td>
</tr>
<tr>
<td>'epanechnikov'</td>
<td>Epanechnikov kernel</td>
</tr>
</tbody>
</table>

You can also specify a custom kernel function as a function handle (for example, @normpdf) or a function name in single quotes (for example, 'normpdf'). This calls the specified function using one argument that is an array of distances between data values and locations where the density is evaluated, normalized by the bandwidth in that dimension. The function must return an array of the same size containing the corresponding values of the kernel function.

`mvksdensity` applies the same kernel to each dimension.

Example: 'Kernel','box'

**Support — Support for the density**

'unbounded' (default) | 'positive' | 2-by-d matrix

Support for the density, specified as the comma-separated pair consisting of 'support' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unbounded'</td>
<td>Allow the density to extend over the whole real line</td>
</tr>
<tr>
<td>'positive'</td>
<td>Restrict the density to positive values</td>
</tr>
<tr>
<td>2-by-d matrix</td>
<td>Specify the finite lower and upper bounds for the support of the density. The first row contains the lower limits and the second row contains the upper limits. Each column contains the limits for one dimension of x.</td>
</tr>
</tbody>
</table>

'Support' can also be a combination of positive, unbounded, and bounded variables specified as [0 -Inf L ; Inf Inf U].
Example: 'Support','positive'
Data Types: single | double | char | string

Weights — Weights for sample data
vector

Weights for sample data, specified as the comma-separated pair consisting of 'Weights' and a vector of length size(x,1), where x is the sample data.
Example: 'Weights',xw
Data Types: single | double

Output Arguments

f — Estimated function values
vector

Estimated function values, returned as a vector of the same length as x.

Definitions

Multivariate Kernel Distribution

A multivariate kernel distribution is a nonparametric representation of the probability density function (pdf) of a random vector. You can use a kernel distribution when a parametric distribution cannot properly describe the data, or when you want to avoid making assumptions about the distribution of the data. A multivariate kernel distribution is defined by a smoothing function and a bandwidth matrix, which control the smoothness of the resulting density curve.

The multivariate kernel density estimator is the estimated pdf of a random vector. Let \( x = (x_1, x_2, \ldots, x_d)' \) be a \( d \)-dimensional random vector with a density function \( f \) and let \( y_i = (y_{i1}, y_{i2}, \ldots, y_{id})' \) be a random sample drawn from \( f \) for \( i = 1, 2, \ldots, n \), where \( n \) is the number of random samples. For any real vectors of \( x \), the multivariate kernel density estimator is given by
\[ \hat{f}_H(x) = \frac{1}{n} \sum_{i=1}^{n} K_H(x - y_i), \]

where \( K_H(x) = |H|^{-1/2} K(H^{-1/2}x) \), \( K(\cdot) \) is the kernel smoothing function, and \( H \) is the \( d \)-by-\( d \) bandwidth matrix.

mvksdensity uses a diagonal bandwidth matrix and a product kernel. That is, \( H^{1/2} \) is a square diagonal matrix with the elements of vector \((h_1, h_2, ..., h_d)\) on the main diagonal.

\( K(x) \) takes the product form \( K(x) = k(x_1)k(x_2)\cdots k(x_d) \), where \( k(\cdot) \) is a one-dimensional kernel smoothing function. Then, the multivariate kernel density estimator becomes

\[ \hat{f}_H(x) = \frac{1}{n} \sum_{i=1}^{n} K_H(x - y_i) = \frac{1}{nh_1h_2\cdots h_d} \sum_{i=1}^{n} K \left( \frac{x_1 - y_{i1}}{h_1}, \frac{x_2 - y_{i2}}{h_2}, \ldots, \frac{x_d - y_{id}}{h_d} \right) = \frac{1}{nh_1h_2\cdots h_d} \sum_{i=1}^{n} \prod_{j=1}^{d} k \left( \frac{x_j - y_{ij}}{h_j} \right). \]

The kernel estimator for the cumulative distribution function (cdf), for any real vectors of \( x \), is given by

\[ \hat{F}_H(x) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_d} \hat{f}_H(t) dt_d \cdots dt_1 = \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} G \left( \frac{x_j - y_{ij}}{h_j} \right), \]

where \( G(x_j) = \int_{-\infty}^{x_j} k(t_j) dt_j \).

### Reflection Method

The reflection method is a boundary correction method that accurately finds kernel density estimators when a random variable has bounded support. If you specify 'BoundaryCorrection', 'reflection', mvksdensity uses the reflection method.

If you additionally specify 'Support' as a two-row matrix consisting of the lower and upper limits for each dimension, then mvksdensity finds the kernel estimator as follows.

- If 'Function' is 'pdf', then the kernel density estimator is
\[ \hat{f}_H(x) = \frac{1}{nh_1h_2\ldots h_d} \sum_{i=1}^{n} \prod_{j=1}^{d} k \left( \frac{x_j - y_{ij}}{h_j} \right) + k \left( \frac{x_j - y_{ij}}{h_j} \right) \] for \( L_j \leq x_j \leq U_j \),

where \( y_{ij} = 2L_j - y_{ij}, y_{ij}^+ = 2U_j - y_{ij} \), and \( y_{ij} \) is the \( j \)th element of the \( i \)th sample data corresponding to \( x(i,j) \) of the input argument \( x \). \( L_j \) and \( U_j \) are the lower and upper limits of the \( j \)th dimension, respectively.

- If 'Function' is 'cdf', then the kernel estimator for cdf is

\[ \hat{F}_H(x) = \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} \left( G \left( \frac{x_j - y_{ij}}{h_j} \right) + G \left( \frac{x_j - y_{ij}}{h_j} \right) - G \left( \frac{L_j - y_{ij}}{h_j} \right) - G \left( \frac{L_j - y_{ij}}{h_j} \right) \right) \]

- To obtain a kernel estimator for a survivor function (when 'Function' is 'survivor'), \texttt{mvksdensity} uses both \( \hat{f}_H(x) \) and \( \hat{F}_H(x) \).

If you additionally specify 'Support' as 'positive' or a matrix including \([0 \inf] \), then \texttt{mvksdensity} finds the kernel density estimator by replacing \([L_j U_j] \) with \([0 \inf] \) in the above equations.

**References**


See Also
ksdensity

Topics
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Supported Distributions” on page 5-16

Introduced in R2016a
mvncdf

Multivariate normal cumulative distribution function

Syntax

\[ y = \text{mvncdf}(X) \]
\[ y = \text{mvncdf}(X,\mu,\text{SIGMA}) \]
\[ y = \text{mvncdf}(\text{xl},\text{xu},\mu,\text{SIGMA}) \]
\[ [y,\text{err}] = \text{mvncdf}(\ldots) \]
\[ [\ldots] = \text{mvncdf}(\ldots,\text{options}) \]

Description

\[ y = \text{mvncdf}(X) \] returns the cumulative probability of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of \( X \). Rows of the \( n \)-by-\( d \) matrix \( X \) correspond to observations or points, and columns correspond to variables or coordinates. \( y \) is an \( n \)-by-1 vector.

\[ y = \text{mvncdf}(X,\mu,\text{SIGMA}) \] returns the cumulative probability of the multivariate normal distribution with mean \( \mu \) and covariance \( \text{SIGMA} \), evaluated at each row of \( X \). \( \mu \) is a 1-by-\( d \) vector; and \( \text{SIGMA} \) is a \( d \)-by-\( d \) symmetric, positive definite matrix. \( \mu \) can also be a scalar value, which \text{mvncdf} replicates to match the size of \( X \). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, \( \text{SIGMA} \) may also be specified as a 1-by-\( d \) vector containing just the diagonal. Pass in the empty matrix [ ] for \( \mu \) to use as its default value when you want to only specify \( \text{SIGMA} \).

The multivariate normal cumulative probability at \( X \) is defined as the probability that a random vector \( V \), distributed as multivariate normal, will fall within the semi-infinite rectangle with upper limits defined by \( X \), for example, \( \Pr\{V(1) \leq X(1), V(2) \leq X(2), \ldots, V(d) \leq X(d)\} \).

\[ y = \text{mvncdf}(\text{xl},\text{xu},\mu,\text{SIGMA}) \] returns the multivariate normal cumulative probability evaluated over the rectangle with lower and upper limits defined by \( \text{xl} \) and \( \text{xu} \), respectively.
[\text{y, err}] = \text{mvncdf(...) returns an estimate of the error in y. For bivariate and trivariate distributions, mvncdf uses adaptive quadrature on a transformation of the t density, based on methods developed by Drezner and Wesolowsky and by Genz, as described in the references. The default absolute error tolerance for these cases is } 1 \times 10^{-8}.\text{ For four or more dimensions, mvncdf uses a quasi-Monte Carlo integration algorithm based on methods developed by Genz and Bretz, as described in the references. The default absolute error tolerance for these cases is } 1 \times 10^{-4}.\text{ }

[\ldots] = \text{mvncdf(..., options) specifies control parameters for the numerical integration used to compute y. This argument can be created by a call to statset. Choices of statset parameters:}

- 'TolFun' — Maximum absolute error tolerance. Default is $1 \times 10^{-8}$ when $d < 4$, or $1 \times 10^{-4}$ when $d \geq 4$.
- 'MaxFunEvals' — Maximum number of integrand evaluations allowed when $d \geq 4$. Default is $1 \times 10^{7}$. 'MaxFunEvals' is ignored when $d < 4$.
- 'Display' — Level of display output. Choices are 'off' (the default), 'iter', and 'final'. 'Display' is ignored when $d < 4$.

**Examples**

**Compute the Multivariate Normal cdf**

Compute and plot the cdf of a multivariate normal distribution with parameters $\text{mu} = [1 \ -1]$ and $\text{SIGMA} = [0.9 \ 0.4; \ 0.4 \ 0.3]$.

\begin{verbatim}
mu = [1 -1];
SIGMA = [0.9 0.4; 0.4 0.3];
figure;
[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];
p = mvncdf(X,mu,SIGMA);
surf(X1,X2,reshape(p,25,25));
\end{verbatim}
References


**Extended Capabilities**

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
mvnpdf | mvnrnd

**Topics**
“Multivariate Normal Distribution” on page B-102

**Introduced in R2006a**
mvnpdf

Multivariate normal probability density function

Syntax

\[
y = \text{mvnpdf}(X) \\
y = \text{mvnpdf}(X, \text{MU}) \\
y = \text{mvnpdf}(X, \text{MU}, \text{SIGMA})
\]

Description

\(y = \text{mvnpdf}(X)\) returns the \(n\)-by-1 vector \(y\), containing the probability density of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of the \(n\)-by-\(d\) matrix \(X\). Rows of \(X\) correspond to observations and columns correspond to variables or coordinates.

\(y = \text{mvnpdf}(X, \text{MU})\) returns the density of the multivariate normal distribution with mean \(\text{mu}\) and identity covariance matrix, evaluated at each row of \(X\). \(\text{MU}\) is a 1-by-\(d\) vector, or an \(n\)-by-\(d\) matrix. If \(\text{MU}\) is a matrix, the density is evaluated for each row of \(X\) with the corresponding row of \(\text{MU}\). \(\text{MU}\) can also be a scalar value, which \text{mvnpdf} replicates to match the size of \(X\).

\(y = \text{mvnpdf}(X, \text{MU}, \text{SIGMA})\) returns the density of the multivariate normal distribution with mean \(\text{MU}\) and covariance \(\text{SIGMA}\), evaluated at each row of \(X\). \(\text{SIGMA}\) is a \(d\)-by-\(d\) matrix, or a \(d\)-by-\(d\)-by-\(n\) array, in which case the density is evaluated for each row of \(X\) with the corresponding page of \(\text{SIGMA}\), i.e., \text{mvnpdf} computes \(y(i)\) using \(X(i,:)\) and \(\text{SIGMA}(:, :, i)\). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, \(\text{SIGMA}\) may also be specified as a 1-by-\(d\) vector or a 1-by-\(d\)-by-\(n\) array, containing just the diagonal. Specify \([\ ]\) for \(\text{MU}\) to use its default value when you want to specify only \(\text{SIGMA}\).

If \(X\) is a 1-by-\(d\) vector, \text{mvnpdf} replicates it to match the leading dimension of \(\text{MU}\) or the trailing dimension of \(\text{SIGMA}\).
Examples

mu = [1 -1];
SIGMA = [.9 .4; .4 .3];
X = mvnrnd(mu,SIGMA,10);
p = mvnpdf(X,mu,SIGMA);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mvncdf | mvnrnd | normpdf

Topics
“Multivariate Normal Distribution” on page B-102

Introduced before R2006a
mvregress

Multivariate linear regression

Syntax

beta = mvregress(X,Y)
beta = mvregress(X,Y,Name,Value)
[beta,Sigma] = mvregress(___)
[beta,Sigma,E,CovB,logL] = mvregress(__)

Description

beta = mvregress(X,Y) returns the estimated coefficients for a multivariate normal regression on page 32-4178 of the d-dimensional responses in Y on the design matrices in X.

beta = mvregress(X,Y,Name,Value) returns the estimated coefficients using additional options specified by one or more name-value pair arguments. For example, you can specify the estimation algorithm, initial estimate values, or maximum number of iterations for the regression.

[beta,Sigma] = mvregress(__) also returns the estimated d-by-d variance-covariance matrix of Y, using any of the input arguments from the previous syntaxes.

[beta,Sigma,E,CovB,logL] = mvregress(__) also returns a matrix of residuals E, estimated variance-covariance matrix of the regression coefficients CovB, and the value of the log likelihood objective function after the last iteration logL.

Examples

Multivariate Regression Model for Panel Data with Different Intercepts

Fit a multivariate regression model to panel data, assuming different intercepts and common slopes.
Load the sample data.

```
load('flu')
```

The dataset array `flu` contains national CDC flu estimates, and nine separate regional estimates based on Google® query data.

Extract the response and predictor data.

```
Y = double(flu(:,2:end-1));
[n,d] = size(Y);
x = flu.WtdILI;
```

The responses in `Y` are the nine regional flu estimates. Observations exist for every week over a one-year period, so \( n = 52 \). The dimension of the responses corresponds to the regions, so \( d = 9 \). The predictors in `x` are the weekly national flu estimates.

Plot the flu data, grouped by region.

```
figure;
regions = flu.Properties.VarNames(2:end-1);
plot(x,Y,'x')
legend(regions,'Location','NorthWest')
```
Fit the multivariate regression model

\[ y_{ij} = \alpha_j + \beta x_{ij} + \epsilon_{ij}, \]

where \( i = 1, \ldots, n \) and \( j = 1, \ldots, d \), with between-region concurrent correlation

\[ COV(\epsilon_{ij}, \epsilon_{ij}) = \sigma_{jj}. \]

There are \( K = 10 \) regression coefficients to estimate: nine intercept terms and a common slope. The input argument \( X \) should be an \( n \)-element cell array of \( d \)-by- \( K \) design matrices.
\( X = \text{cell}(n,1); \)
\[ \text{for } i = 1:n \]
\[ \quad X\{i\} = [\text{eye}(d) \ \text{repmat}(x(i),d,1)]; \]
\[ \text{end} \]
\[ [\beta, \Sigma] = \text{mvregress}(X,Y); \]

\( \beta \) contains estimates of the \( K \)-dimensional coefficient vector
\[ (\alpha_1, \alpha_2, \ldots, \alpha_9, \beta)' . \]

\( \Sigma \) contains estimates of the \( d \)-by- \( d \) variance-covariance matrix \( (\sigma_{ij})_{d \times d}, \)
\( i, j = 1, \ldots, d \) for the between-region concurrent correlations.

Plot the fitted regression model.

\[ B = [\beta(1:d)'; \ \text{repmat}(\beta(\text{end}),1,d)]; \]
\[ xx = \text{linspace}(0.5,3.5)'; \]
\[ \text{fits} = [\text{ones}(\text{size}(xx)), xx] \ast B; \]

\[ \text{figure}; \]
\[ h = \text{plot}(x,Y,'x', xx, \text{fits}, '-'); \]
\[ \text{for } i = 1:d \]
\[ \quad \text{set}(h(d+i), '\text{color}', \text{get}(h(i), '\text{color}')); \]
\[ \text{end} \]
\[ \text{legend(regions, 'Location', 'NorthWest');} \]
The plot shows that each regression line has a different intercept but the same slope. Upon visual inspection, some regression lines appear to fit the data better than others.

**Multivariate Regression for Panel Data with Different Slopes**

Fit a multivariate regression model to panel data using least squares, assuming different intercepts and slopes.

Load the sample data.

```
load('flu');
```
The dataset array `flu` contains national CDC flu estimates, and nine separate regional estimates based on Google® queries.

Extract the response and predictor data.

\[
Y = \text{double(}flu(:,2:end-1)));
\]
\[
[n,d] = \text{size}(Y);
\]
\[
x = flu.WtdILI;
\]

The responses in \(Y\) are the nine regional flu estimates. Observations exist for every week over a one-year period, so \(n = 52\). The dimension of the responses corresponds to the regions, so \(d = 9\). The predictors in \(x\) are the weekly national flu estimates.

Fit the multivariate regression model

\[
y_{ij} = \alpha_j + \beta_j x_{ij} + \epsilon_{ij},
\]

where \(i = 1, \ldots, n\) and \(j = 1, \ldots, d\), with between-region concurrent correlation

\[
\text{COV}(\epsilon_{ij}, \epsilon_{ij}) = \sigma_{jj}.
\]

There are \(K = 18\) regression coefficients to estimate: nine intercept terms, and nine slope terms. \(X\) is an \(n\)-element cell array of \(d\)-by- \(K\) design matrices.

\[
X = \text{cell}(n,1);
\]
\[
\text{for } i = 1:n
\]
\[
X\{i\} = [\text{eye}(d) \times(i)*\text{eye}(d)];
\]
\[
\text{end}
\]
\[
[beta,Sigma] = \text{mvregress}(X,Y,'algorithm','cwls');
\]

`beta` contains estimates of the \(K\)-dimensional coefficient vector

\[
(\alpha_1, \alpha_2, \ldots, \alpha_9, \beta_1, \beta_2, \ldots, \beta_9)'.
\]

Plot the fitted regression model.

\[
B = [beta(1:d)';beta(d+1:end)'];
\]
\[
xx = \text{linspace}(.5,3.5)';
\]
\[
\text{fits} = [\text{ones(size(xx))},xx]*B;
\]
\[
\text{figure};
\]
\[
h = \text{plot}(x,Y,'x',xx,\text{fits},'-');
\]
\[
\text{for } i = 1:d
\]
The plot shows that each regression line has a different intercept and slope.

**Multivariate Regression With a Single Design Matrix**

Fit a multivariate regression model using a single $n$-by-$P$ design matrix for all response dimensions.
Load the sample data.

```matlab
load('flu');
```

The dataset array `flu` contains national CDC flu estimates, and nine separate regional estimates based on Google® queries.

Extract the response and predictor data.

```matlab
Y = double(flu(:,2:end-1));
[n,d] = size(Y);
x = flu.WtdILI;
```

The responses in `Y` are the nine regional flu estimates. Observations exist for every week over a one-year period, so `n = 52`. The dimension of the responses corresponds to the regions, so `d = 9`. The predictors in `x` are the weekly national flu estimates.

Create an `n`-by-`P` design matrix `X`. Add a column of ones to include a constant term in the regression.

```matlab
X = [ones(size(x)),x];
```

Fit the multivariate regression model

\[
y_{ij} = \alpha_j + \beta_j x_{ij} + \epsilon_{ij},
\]

where \( i = 1, \ldots, n \) and \( j = 1, \ldots, d \), with between-region concurrent correlation

\[
COV(\epsilon_{ij}, \epsilon_{ij}) = \sigma_{jj}.
\]

There are 18 regression coefficients to estimate: nine intercept terms, and nine slope terms.

```matlab
[beta,Sigma,E,CovB,logL] = mvregress(X,Y);
```

`beta` contains estimates of the `P`-by-`d` coefficient matrix. `Sigma` contains estimates of the `d`-by-`d` variance-covariance matrix for the between-region concurrent correlations. `E` is a matrix of the residuals. `CovB` is the estimated variance-covariance matrix of the regression coefficients. `logL` is the value of the log likelihood objective function after the last iteration.

Plot the fitted regression model.
B = beta;
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;

figure;
h = plot(x,Y,'x', xx,fits,'-');
for i = 1:d
    set(h(d+i),'color',get(h(i),'color'));
end

regions = flu.Properties.VarNames(2:end-1);
legend(regions,'Location','NorthWest');
The plot shows that each regression line has a different intercept and slope.

**Input Arguments**

**X — Design matrices**

matrix | cell array of matrices

Design matrices for the multivariate regression, specified as a matrix or cell array of matrices. \( n \) is the number of observations in the data, \( K \) is the number of regression coefficients to estimate, \( p \) is the number of predictor variables, and \( d \) is the number of dimensions in the response variable matrix \( Y \).

- If \( d = 1 \), then specify \( X \) as a single \( n \)-by-\( K \) design matrix.
- If \( d > 1 \) and all \( d \) dimensions have the same design matrix, then you can specify \( X \) as a single \( n \)-by-\( p \) design matrix (not in a cell array).
- If \( d > 1 \) and all \( n \) observations have the same design matrix, then you can specify \( X \) as a cell array containing a single \( d \)-by-\( K \) design matrix.
- If \( d > 1 \) and all \( n \) observations do not have the same design matrix, then specify \( X \) as a cell array of length \( n \) containing \( d \)-by-\( K \) design matrices.

To include a constant term in the regression model, each design matrix should contain a column of ones.

`mvregress` treats NaN values in \( X \) as missing values, and ignores rows in \( X \) with missing values.

Data Types: single | double | cell

**Y — Response variables**

matrix

Response variables, specified as an \( n \)-by-\( d \) matrix. \( n \) is the number of observations in the data, and \( d \) is the number of dimensions in the response. When \( d = 1 \), `mvregress` treats the values in \( Y \) like \( n \) independent response values.

`mvregress` treats NaN values in \( Y \) as missing values, and handles them according to the estimation algorithm specified using the name-value pair argument `algorithm`.

Data Types: single | double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'algorithm','cwls','covar0',C specifies covariance-weighted least squares estimation using the covariance matrix C.

algorithm — Estimation algorithm
'mvn' | 'ecm' | 'cwls'

Estimation algorithm, specified as the comma-separated pair consisting of 'algorithm' and one of the following.

'mvn'	Ordinary multivariate normal maximum likelihood estimation.
'ecm'	Maximum likelihood estimation via the ECM algorithm.
'cwls'	Covariance-weighted least squares estimation.

The default algorithm depends on the presence of missing data.

- For complete data, the default is 'mvn'.
- If there are any missing responses (indicated by NaN), the default is 'ecm', provided the sample size is sufficient to estimate all parameters. Otherwise, the default algorithm is 'cwls'.

**Note** If algorithm has the value 'mvn', then mvregress removes observations with missing response values before estimation.

Example: 'algorithm','ecm'

beta0 — Initial estimates for regression coefficients

vector

Initial estimates for the regression coefficients, specified as the comma-separated pair consisting of 'beta0' and a vector with K elements. The default value is a vector of 0s.

The beta0 argument is not used if the estimation algorithm is 'mvn'.

32-4173
**covar0 — Initial estimate for variance-covariance matrix**

Initial estimate for the variance-covariance matrix, Sigma, specified as the comma-separated pair consisting of 'covar0' and a symmetric, positive definite, d-by-d matrix. The default value is the identity matrix.

If the estimation algorithm is 'cwls', then mvregress uses covar0 as the weighting matrix at each iteration, without changing it.

**covtype — Type of variance-covariance matrix**

'full' (default) | 'diagonal'

Type of variance-covariance matrix to estimate for Y, specified as the comma-separated pair consisting of 'covtype' and one of the following.

- 'full' Estimate all $d(d + 1)/2$ variance-covariance elements.
- 'diagonal' Estimate only the $d$ diagonal elements of the variance-covariance matrix.

Example: 'covtype','diagonal'

**maxiter — Maximum number of iterations**

100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as the comma-separated pair consisting of 'maxiter' and a positive integer.

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj are 0, then mvregress performs maxiter iterations with no convergence tests.

Example: 'maxiter',50

**outputfcn — Function to evaluate each iteration**

function handle

Function to evaluate at each iteration, specified as the comma-separated pair consisting of 'outputfcn' and a function handle. The function must return a logical true or false. At each iteration, mvregress evaluates the function. If the result is true,
iterations stop. Otherwise, iterations continue. For example, you could specify a function that plots or displays current iteration results, and returns true if you close the figure.

The function must accept three input arguments, in this order:

- Vector of current coefficient estimates
- Structure containing these three fields:
  - `Covar` — Current value of the variance-covariance matrix
  - `iteration` — Current iteration number
  - `fval` — Current value of the loglikelihood objective function
- Text that takes these three values:
  - `'init'` — When the function is called during initialization
  - `'iter'` — When the function is called after an iteration
  - `'done'` — When the function is called after completion

### `tolbeta` — Convergence tolerance for regression coefficients

```matlab
tolbeta = sqrt(eps) (default) | positive scalar value
```

Convergence tolerance for regression coefficients, specified as the comma-separated pair consisting of 'tolbeta' and a positive scalar value.

Let \( \mathbf{b}^t \) denote the estimate of the coefficient vector at iteration \( t \), and \( \tau_\beta \) be the tolerance specified by `tolbeta`. The convergence criterion for regression coefficient estimation is

\[
\| \mathbf{b}^t - \mathbf{b}^{t-1} \| < \tau_\beta \sqrt{K} \left( 1 + \| \mathbf{b}^t \| \right),
\]

where \( K \) is the length of \( \mathbf{b}^t \) and \( \| \mathbf{v} \| \) is the norm of a vector \( \mathbf{v} \).

Iterations continue until estimates are within the convergence tolerances `tolbeta` and `tolobj`, or the maximum number of iterations specified by `maxiter` is reached. If both `tolbeta` and `tolobj` are 0, then `mvregress` performs `maxiter` iterations with no convergence tests.

Example: `'tolbeta',1e-5"
**tolobj — Convergence tolerance for loglikelihood objective function**

`eps^(3/4)` (default) | positive scalar value

Convergence tolerance for the loglikelihood objective function, specified as the comma-separated pair consisting of 'tolobj' and a positive scalar value.

Let $L^t$ denote the value of the loglikelihood objective function at iteration $t$, and $\tau^t$ be the tolerance specified by tolobj. The convergence criterion for the objective function is

$$\left| L^t - L^{t-1} \right| < \tau^t \left( 1 + \left| L^t \right| \right).$$

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj are 0, then mvregress performs maxiter iterations with no convergence tests.

Example: 'tolobj',1e-5

**varformat — Format for parameter estimate variance-covariance matrix**

'beta' (default) | 'full'

Format for the parameter estimate variance-covariance matrix, CovB, specified as the comma-separated pair consisting of 'varformat' and one of the following.

'beta' Return the variance-covariance matrix for only the regression coefficient estimates, beta.

'full' Return the variance-covariance matrix for both the regression coefficient estimates, beta, and the variance-covariance matrix estimate, Sigma.

Example: 'varformat','full'

**vartype — Type of variance-covariance matrix for parameter estimates**

'hessian' (default) | 'fisher'

Type of variance-covariance matrix for parameter estimates, specified as the comma-separated pair consisting of 'vartype' and either 'hessian' or 'fisher'.

- If the value is 'hessian', then mvregress uses the Hessian, or observed information, matrix to compute CovB.
• If the value is 'fisher', then `mvregress` uses the complete-data Fisher, or expected information, matrix to compute CovB.

The 'hessian' method takes into account the increase uncertainties due to missing data, while the 'fisher' method does not.

Example: 'vartype','fisher'

### Output Arguments

**beta — Estimated regression coefficients**

column vector | matrix

Estimated regression coefficients, returned as a column vector or matrix.

- If you specify `X` as a single `n`-by-`K` design matrix, then `mvregress` returns `beta` as a column vector of length `K`. For example, if `X` is a 20-by-5 design matrix, then `beta` is a 5-by-1 column vector.
- If you specify `X` as a cell array containing one or more `d`-by-`K` design matrices, then `mvregress` returns `beta` as a column vector of length `K`. For example, if `X` is a cell array containing 2-by-10 design matrices, then `beta` is a 10-by-1 column vector.
- If you specify `X` as a single `n`-by-`p` design matrix (not in a cell array), and `Y` has dimension `d` > 1, then `mvregress` returns `beta` as a `p`-by-`d` matrix. For example, if `X` is a 20-by-5 design matrix, and `Y` has two dimensions such that `d` = 2, then `beta` is a 5-by-2 matrix, and the fitted `Y` values are `X` × `beta`.

**Sigma — Estimated variance-covariance matrix**

square matrix

Estimated variance-covariance matrix for the responses in `Y`, returned as a `d`-by-`d` square matrix.

**Note** The estimated variance-covariance matrix, `Sigma`, is not the sample covariance matrix of the residual matrix, `E`.

**E — Residuals**

matrix

Residuals for the fitted regression model, returned as an `n`-by-`d` matrix.
If algorithm has the value 'ecm' or 'cwls', then mvregress computes the residual values corresponding to missing values in Y as the difference between the conditionally imputed values on page 32-4179 and the fitted values.

**Note** If algorithm has the value 'mvn', then mvregress removes observations with missing response values before estimation.

**CovB — Parameter estimate variance-covariance matrix**

Square matrix

Parameter estimate variance-covariance matrix, returned as a square matrix.

- If varformat has the value 'beta' (default), then CovB is the estimated variance-covariance matrix of the coefficient estimates in beta.
- If varformat has the value 'full', then CovB is the estimated variance-covariance matrix of the combined estimates in beta and Sigma.

**logL — Loglikelihood objective function value**

Scalar value

Loglikelihood objective function value after the last iteration, returned as a scalar value.

**Definitions**

**Multivariate Normal Regression**

Multivariate normal regression is the regression of a d-dimensional response on a design matrix of predictor variables, with normally distributed errors. The errors can be heteroscedastic and correlated.

The model is

\[ y_i = X_i \beta + e_i, \quad i = 1, \ldots, n, \]

where

- \( y_i \) is a d-dimensional vector of responses.
• \( X_i \) is a design matrix of predictor variables.
• \( \beta \) is vector or matrix of regression coefficients.
• \( e_i \) is a \( d \)-dimensional vector of error terms, with multivariate normal distribution
  \[ e_i \sim MVN_d(0, \Sigma). \]

**Conditionally Imputed Values**

The expectation/conditional maximization (‘ecm’) and covariance-weighted least squares (‘cwls’) estimation algorithms include imputation of missing response values.

Let \( \tilde{y} \) denote missing observations. The conditionally imputed values are the expected value of the missing observation given the observed data, \( E(\tilde{y} \mid y) \).

The joint distribution of the missing and observed responses is a multivariate normal distribution,

\[
\begin{pmatrix}
\tilde{y} \\
y
\end{pmatrix}
\sim MVN
\begin{pmatrix}
\begin{pmatrix}
\tilde{X}\beta \\
y
\end{pmatrix} \\
\Sigma_{\tilde{y}\tilde{y}}
\end{pmatrix}
\begin{pmatrix}
\Sigma_{\tilde{y}}^{-1} & \Sigma_{\tilde{y}y} \\
\Sigma_{y\tilde{y}} & \Sigma_y
\end{pmatrix}
\].

Using properties of the multivariate normal distribution, the imputed conditional expectation is given by

\[
E(\tilde{y} \mid y) = \tilde{X}\beta + \Sigma_{\tilde{y}y}^{-1}(y - X\beta).
\]

**Note** `mvregress` only imputes missing response values. Observations with missing values in the design matrix are removed.

**References**


See Also
manova1 | mvregresslike

Topics
“Set Up Multivariate Regression Problems” on page 15-16
“Multivariate General Linear Model” on page 15-30
“Fixed Effects Panel Model with Concurrent Correlation” on page 15-36
“Longitudinal Analysis” on page 15-44
“Multivariate Linear Regression” on page 15-3
“Estimation of Multivariate Regression Models” on page 15-7

Introduced in R2006b
mvregresslike

Negative log-likelihood for multivariate regression

Syntax

\[
\text{nlogL} = \text{mvregresslike}(X,Y,b,\text{SIGMA},\text{alg})
\]

\[
[\text{nlogL},\text{COVB}] = \text{mvregresslike}(\ldots)
\]

\[
[\text{nlogL},\text{COVB}] = \text{mvregresslike}(\ldots,\text{type},\text{format})
\]

Description

\[
\text{nlogL} = \text{mvregresslike}(X,Y,b,\text{SIGMA},\text{alg})
\]
computes the negative log-likelihood \( \text{nlogL} \) for a multivariate regression of the \( d \)-dimensional multivariate observations in the \( n \)-by-\( d \) matrix \( Y \) on the predictor variables in the matrix or cell array \( X \), evaluated for the \( p \)-by-1 column vector \( b \) of coefficient estimates and the \( d \)-by-\( d \) matrix \( \text{SIGMA} \) specifying the covariance of a row of \( Y \). If \( d = 1 \), \( X \) can be an \( n \)-by-\( p \) design matrix of predictor variables. For any value of \( d \), \( X \) can also be a cell array of length \( n \), with each cell containing a \( d \)-by-\( p \) design matrix for one multivariate observation. If all observations have the same \( d \)-by-\( p \) design matrix, \( X \) can be a single cell.

\( \text{NaN} \) values in \( X \) or \( Y \) are taken as missing. Observations with missing values in \( X \) are ignored. Treatment of missing values in \( Y \) depends on the algorithm specified by \( \text{alg} \).

\( \text{alg} \) should match the algorithm used by \text{mvregress} to obtain the coefficient estimates \( b \), and must be one of the following:

- 'ecm' — ECM algorithm
- 'cwls' — Least squares conditionally weighted by \( \text{SIGMA} \)
- 'mvn' — Multivariate normal estimates computed after omitting rows with any missing values in \( Y \)

\[
[\text{nlogL},\text{COVB}] = \text{mvregresslike}(\ldots)
\] also returns an estimated covariance matrix \( \text{COVB} \) of the parameter estimates \( b \).

\[
[\text{nlogL},\text{COVB}] = \text{mvregresslike}(\ldots,\text{type},\text{format})
\] specifies the type and format of \( \text{COVB} \).
*type* is either:

- `'hessian'` — To use the Hessian or observed information. This method takes into account the increased uncertainties due to missing data. This is the default.
- `'fisher'` — To use the Fisher or expected information. This method uses the complete data expected information, and does not include uncertainty due to missing data.

*format* is either:

- `'beta'` — To compute COVB for b only. This is the default.
- `'full'` — To compute COVB for both b and SIGMA.

### See Also

`manova1` | `mvregress`

### Topics

“Multivariate Normal Distribution” on page B-102

*Introduced in R2007a*
mvnrnd

Multivariate normal random numbers

Syntax

R = mvnrnd(MU, SIGMA)
r = mvnrnd(MU, SIGMA, cases)

Description

R = mvnrnd(MU, SIGMA) returns an \( n \)-by-\( d \) matrix \( R \) of random vectors chosen from the multivariate normal distribution with mean \( MU \), and covariance \( SIGMA \). \( MU \) is a vector or \( n \)-by-\( d \) matrix, and \( mvnrnd \) generates each row of \( R \) using the corresponding row of \( MU \). \( SIGMA \) is a \( d \)-by-\( d \) symmetric positive semi-definite matrix, or a \( d \)-by-\( d \)-by-\( n \) array. If \( SIGMA \) is an array, \( mvnrnd \) generates each row of \( R \) using the corresponding page of \( SIGMA \), i.e., \( mvnrnd \) computes \( R(i,:) \) using \( MU(i,:) \) and \( SIGMA(:, :, i) \). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, \( SIGMA \) may also be specified as a 1-by-\( d \) vector or a 1-by-\( d \)-by-\( n \) array, containing just the diagonal. If \( MU \) is a 1-by-\( d \) vector, \( mvnrnd \) replicates it to match the trailing dimension of \( SIGMA \).

\[ r = mvnrnd(MU, SIGMA, cases) \] returns a cases-by-\( d \) matrix \( R \) of random vectors chosen from the multivariate normal distribution with a common 1-by-\( d \) mean vector \( MU \), and a common \( d \)-by-\( d \) covariance matrix \( SIGMA \).

Examples

Generate Multivariate Normal Random Numbers

Generate random numbers from a multivariate normal distribution with parameters \( mu = [2 3] \) and \( sigma = [1 1.5; 1.5 3] \).

\[ mu = [2 3]; \]
\[ sigma = [1 1.5; 1.5 3]; \]
rng default  % For reproducibility
R = mvnrnd(mu,sigma,100);

Plot the random numbers.

figure
plot(R(:,1),R(:,2),'+')
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mvncdf | mvnpdf | normrnd

Topics
“Multivariate Normal Distribution” on page B-102

Introduced before R2006a
**mvtcdf**

Multivariate $t$ cumulative distribution function

**Syntax**

\[
y = \text{mvtcdf}(X,C,\text{DF}) \\
y = \text{mvtcdf}(x_l,x_u,C,\text{DF}) \\
[y,\text{err}] = \text{mvtcdf}(...) \\
[...]) = \text{mvntdf}(...,\text{options})
\]

**Description**

\[
y = \text{mvtcdf}(X,C,\text{DF}) \text{ returns the cumulative probability of the multivariate } t \\
\text{distribution with correlation parameters } C \text{ and degrees of freedom } \text{DF}, \text{ evaluated at each} \\
\text{row of } X. \text{ Rows of the } n\text{-by-}d \text{ matrix } X \text{ correspond to observations or points, and columns} \\
\text{correspond to variables or coordinates. } y \text{ is an } n\text{-by-}1 \text{ vector.}
\]

\[
C \text{ is a symmetric, positive definite, } d\text{-by-}d \text{ matrix, typically a correlation matrix. If its} \\
\text{diagonal elements are not 1, } \text{mvtcdf scales } C \text{ to correlation form. } \text{mvtcdf does not} \\
\text{rescale } X. \text{ DF is a scalar, or a vector with } n \text{ elements.}
\]

The multivariate $t$ cumulative probability at $X$ is defined as the probability that a random \[
\text{vector } T, \text{ distributed as multivariate } t, \text{ will fall within the semi-infinite rectangle with} \\
\text{upper limits defined by } X, \text{ i.e., } \text{Pr}\{T(1) \leq X(1), T(2) \leq X(2), \ldots T(d) \leq X(d)\}.
\]

\[
y = \text{mvtcdf}(x_l,x_u,C,\text{DF}) \text{ returns the multivariate } t \text{ cumulative probability evaluated} \\
\text{over the rectangle with lower and upper limits defined by } x_l \text{ and } x_u, \text{ respectively.}
\]

\[
[y,\text{err}] = \text{mvtcdf}(...) \text{ returns an estimate of the error in } y. \text{ For bivariate and} \\
\text{trivariate distributions, } \text{mvtcdf uses adaptive quadrature on a transformation of the } t \\
\text{density, based on methods developed by Genz, as described in the references. The default} \\
\text{absolute error tolerance for these cases is } 1e-8. \text{ For four or more dimensions, } \text{mvtcdf} \\
\text{uses a quasi-Monte Carlo integration algorithm based on methods developed by Genz and} \\
\text{Bretz, as described in the references. The default absolute error tolerance for these cases} \\
\text{is } 1e-4.
\]
[...] = mvntdf(...,options) specifies control parameters for the numerical integration used to compute y. This argument can be created by a call to statset. Choices of statset parameters are:

- 'TolFun' — Maximum absolute error tolerance. Default is 1e-8 when \(d < 4\), or 1e-4 when \(d \geq 4\).
- 'MaxFunEvals' — Maximum number of integrand evaluations allowed when \(d \geq 4\). Default is 1e7. 'MaxFunEvals' is ignored when \(d < 4\).
- 'Display' — Level of display output. Choices are 'off' (the default), 'iter', and 'final'. 'Display' is ignored when \(d < 4\).

### Examples

#### Compute the Multivariate t Distribution cdf

Compute the cdf of a multivariate \(t\) distribution with correlation parameters \(C = [1 \quad .4; \quad .4 \quad 1]\) and 2 degrees of freedom.

```matlab
C = [1 .4; .4 1];
df = 2;
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
p = mvtcdf(X,C,df);
```

Plot the cdf.

```matlab
figure;
surf(X1,X2,reshape(p,25,25));
```
References


**See Also**
mvtpdf | mvtrnd

**Topics**
“Multivariate t Distribution” on page B-108

**Introduced in R2006a**
**mvtpdf**

Multivariate t probability density function

**Syntax**

\[
y = \text{mvtpdf}(X,C,df)
\]

**Description**

\[
y = \text{mvtpdf}(X,C,df)
\]

returns the probability density of the multivariate t distribution with correlation parameters \(C\) and degrees of freedom \(df\), evaluated at each row of \(X\). Rows of the \(n\)-by-\(d\) matrix \(X\) correspond to observations or points, and columns correspond to variables or coordinates. \(C\) is a symmetric, positive definite, \(d\)-by-\(d\) matrix, typically a correlation matrix. If its diagonal elements are not 1, \(\text{mvtpdf}\) scales \(C\) to correlation form. \(\text{mvtcdf}\) does not rescale \(X\). \(df\) is a scalar, or a vector with \(n\) elements. \(y\) is an \(n\)-by-1 vector.

**Examples**

**Compute the Multivariate t Distribution pdf**

Compute the pdf of a multivariate t distribution with correlation parameters \(C = [1 \quad .4; \quad .4 \quad 1]\) and 2 degrees of freedom.

\[
\begin{align*}
[X1,X2] &= \text{meshgrid}(\text{linspace}(-2,2,25)',\text{linspace}(-2,2,25)'); \\
X &= [X1(:) \quad X2(:)]; \\
C &= [1 \quad .4; \quad .4 \quad 1]; \\
df &= 2; \\
p &= \text{mvtpdf}(X,C,df);
\end{align*}
\]

Plot the pdf.

\[
\begin{align*}
\text{figure;} \\
\text{surf}(X1,X2,\text{reshape}(p,25,25))
\end{align*}
\]
See Also

mvtcdf | mvtrnd

Topics

“Multivariate t Distribution” on page B-108

Introduced in R2006b
**mvtrnd**

Multivariate $t$ random numbers

**Syntax**

$R = \text{mvtrnd}(C, df, \text{cases})$

$R = \text{mvtrnd}(C, df)$

**Description**

$R = \text{mvtrnd}(C, df, \text{cases})$ returns a matrix of random numbers chosen from the multivariate $t$ distribution, where $C$ is a correlation matrix. $df$ is the degrees of freedom and is either a scalar or is a vector with $\text{cases}$ elements. If $p$ is the number of columns in $C$, then the output $R$ has $\text{cases}$ rows and $p$ columns.

Let $t$ represent a row of $R$. Then the distribution of $t$ is that of a vector having a multivariate normal distribution with mean 0, variance 1, and covariance matrix $C$, divided by an independent chi-square random value having $df$ degrees of freedom. The rows of $R$ are independent.

$C$ must be a square, symmetric and positive definite matrix. If its diagonal elements are not all 1 (that is, if $C$ is a covariance matrix rather than a correlation matrix), $\text{mvtrnd}$ rescales $C$ to transform it to a correlation matrix before generating the random numbers.

$R = \text{mvtrnd}(C, df)$ returns a single random number from the multivariate $t$ distribution.

**Examples**

**Generate Multivariate $t$ Distribution Random Numbers**

Generate random numbers from a multivariate $t$ distribution with correlation parameters $\text{SIGMA} = [1 \ 0.8; 0.8 \ 1]$ and 3 degrees of freedom.
rng default; % For reproducibility
SIGMA = [1 0.8; 0.8 1];
R = mvtrnd(SIGMA,3,100);

Plot the random numbers.

figure;
plot(R(:,1),R(:,2),'+')

See Also
mvtcdf | mvtpdf
Topics
“Multivariate t Distribution” on page B-108

Introduced before R2006a
NumObservations property

Class: cvpartition

Number of observations (including observations with missing group values)

Description

Number of observations (including observations with missing group values).
nancov

Covariance ignoring NaN values

Syntax

Y = nancov(X)
Y = nancov(X1,X2)
Y = nancov(...,1)
Y = nancov(...,'pairwise')

Description

Y = nancov(X) is the covariance cov of X, computed after removing observations with NaN values.

For vectors x, nancov(x) is the sample variance of the remaining elements, once NaN values are removed. For matrices X, nancov(X) is the sample covariance of the remaining observations, once observations (rows) containing any NaN values are removed.

Y = nancov(X1,X2), where X1 and X2 are matrices with the same number of elements, is equivalent to nancov(X), where X = [X1(:) X2(:)].

nancov removes the mean from each variable (column for matrix X) before calculating Y. If n is the number of remaining observations after removing observations with NaN values, nancov normalizes Y by either n - 1 or n, depending on whether n > 1 or n = 1, respectively. To specify normalization by n, use Y = nancov(...,1).

Y = nancov(...,'pairwise') computes Y(i,j) using rows with no NaN values in columns i or j. The result Y may not be a positive definite matrix.

Examples

Generate random data for two variables (columns) with random missing values:
\[
X = \text{rand}(10,2);
p = \text{randperm}(	ext{numel}(X));
X(p(1:5)) = \text{NaN}
\]

\[
X = \\
\begin{bmatrix}
0.8147 & 0.1576 & \\
NaN & NaN & \\
0.1270 & 0.9572 & \\
0.9134 & NaN & \\
0.6324 & NaN & \\
0.0975 & 0.1419 & \\
0.2785 & 0.4218 & \\
0.5469 & 0.9157 & \\
0.9575 & 0.7922 & \\
0.9649 & NaN & \\
\end{bmatrix}
\]

Establish a correlation between a third variable and the other two variables:

\[
X(:,3) = \text{sum}(X,2)
\]

\[
X = \\
\begin{bmatrix}
0.8147 & 0.1576 & 0.9723 \\
NaN & NaN & NaN \\
0.1270 & 0.9572 & 1.0842 \\
0.9134 & NaN & NaN \\
0.6324 & NaN & NaN \\
0.0975 & 0.1419 & 0.2394 \\
0.2785 & 0.4218 & 0.7003 \\
0.5469 & 0.9157 & 1.4626 \\
0.9575 & 0.7922 & 1.7497 \\
0.9649 & NaN & NaN \\
\end{bmatrix}
\]

Compute the covariance matrix for the three variables after removing observations (rows) with \text{NaN} values:

\[
Y = \text{nancov}(X)
\]

\[
Y = \\
\begin{bmatrix}
0.1311 & 0.0096 & 0.1407 \\
0.0096 & 0.1388 & 0.1483 \\
0.1407 & 0.1483 & 0.2890 \\
\end{bmatrix}
\]
Alternative Functionality

Instead of using nancov, you can use the MATLAB function cov with the input argument nanflag. For example, instead of nancov(X), use cov(X,'omitrows'), and instead of nancov(X,'pairwise'), use cov(X,'partialrows').

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the input is variable-size and is [] at run time, the generated code returns [] not NaN.

See Also

NaN | cov | nanvar | var

Introduced before R2006a
**nanmax**

Maximum, ignoring NaN values

**Syntax**

```matlab
y = nanmax(X)
y = nanmax(X,[],dim)
[y,indices] = nanmax(___)
y = nanmax(X,[],'all')
y = nanmax(X,[],vecdim)
Y = nanmax(X1,X2)
```

**Description**

`y = nanmax(X)` is the maximum `max` of `X`, computed after removing NaN values.

For vectors `x`, `nanmax(x)` is the maximum of the remaining elements, once NaN values are removed. For matrices `X`, `nanmax(X)` is a row vector of column maxima, once NaN values are removed. For multidimensional arrays `X`, `nanmax` operates along the first nonsingleton dimension.

`y = nanmax(X,[],dim)` operates along the dimension `dim` of `X`.

`[y,indices] = nanmax(___)` also returns the row indices of the maximum values for each column in the vector `indices`.

`y = nanmax(X,[],'all')` returns the maximum of all elements of `X`, computed after removing NaN values.

`y = nanmax(X,[],vecdim)` returns the maximum over the dimensions specified in the vector `vecdim`, computed after removing NaN values. Each element of `vecdim` represents a dimension of the input array `X`. The output `y` has length 1 in the specified operating dimensions. The other dimension lengths are the same for `X` and `y`. For example, if `X` is a 2-by-3-by-4 array, then `nanmax(X,[],[1 2])` returns a 1-by-1-by-4 array. Each element of the output array is the maximum of the elements on the corresponding page of `X`.  

32-4199
Y = nanmax(X1,X2) returns an array Y the same size as X1 and X2 with \( Y(i,j) = \) nanmax\( (X1(i,j),X2(i,j)) \). Scalar inputs are expanded to an array of the same size as the other input.

## Examples

### Maximum of Matrix Data

Find the column maximum values and their indices for matrix data with missing values.

\[
X = \text{magic}(3);
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
[y,\text{indices}] = \text{nanmax}(X)
\]

\[
y = \begin{bmatrix}
4 \\
5 \\
\text{NaN}
\end{bmatrix}
\]

\[
\text{indices} = \begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix}
\]

### Maximum of All Values

Find the maximum of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array \( X \) with some missing values.

\[
X = \text{reshape}(1:30,[2 5 3]);
X([10:12 25]) = \text{NaN}
\]
Find the maximum of the elements of \( X \).

\[
y = \text{nanmax}(X,[],'all')
\]

\[
y = 30
\]

**Alternative Functionality**

Instead of using `nanmax`, you can use the MATLAB function `max` with the input argument `nanflag` specified as the value `'omitnan'`.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The following syntaxes do not support code generation.
  
  • \( y = \text{nanmax}(X, [], 'all') \)
  • \( y = \text{nanmax}(X, [], \text{vecdim}) \)

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following syntaxes do not support GPU arrays as input arguments.
  
  • \( y = \text{nanmax}(X, [], 'all') \)
  • \( y = \text{nanmax}(X, [], \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

Na\(\text{N}\) | max | nanmin

**Introduced before R2006a**
**nanmean**

Mean, ignoring NaN values

**Syntax**

\[
\begin{align*}
y &= \text{nanmean}(X) \\
y &= \text{nanmean}(X, 'all') \\
y &= \text{nanmean}(X, \text{dim}) \\
y &= \text{nanmean}(X, \text{vecdim})
\end{align*}
\]

**Description**

\[y = \text{nanmean}(X)\] returns the mean of the elements of \(X\), computed after removing all NaN values.

- If \(X\) is a vector, then \(\text{nanmean}(X)\) is the mean of all the non-NaN elements of \(X\).
- If \(X\) is a matrix, then \(\text{nanmean}(X)\) is a row vector of column means, computed after removing NaN values.
- If \(X\) is a multidimensional array, then \(\text{nanmean}\) operates along the first nonsingleton dimension of \(X\). The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. \(\text{nanmean}\) removes all NaN values.

For information on how \text{nanmean} treats arrays of all NaN values, see “Tips” on page 32-4209.

\[y = \text{nanmean}(X, 'all')\] returns the mean of all elements of \(X\), computed after removing NaN values.

\[y = \text{nanmean}(X, \text{dim})\] returns the mean along the operating dimension \(\text{dim}\) of \(X\), computed after removing NaN values.

\[y = \text{nanmean}(X, \text{vecdim})\] returns the mean over the dimensions specified in the vector \(\text{vecdim}\). The function computes the means after removing NaN values. For example, if \(X\) is a matrix, then \(\text{nanmean}(X, [1 2])\) is the mean of all non-NaN elements of \(X\) because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.
Examples

Mean of Matrix Data

Find the column means for matrix data with missing values.

\[
X = \text{magic}(3);
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
y = \text{nanmean}(X)
\]

\[
y = \begin{bmatrix}
3.5000 \\
3.0000 \\
\text{NaN}
\end{bmatrix}
\]

Mean of All Values

Find the mean of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array \(X\) with some missing values.

\[
X = \text{reshape}(1:30,[2 5 3]);
X([10:12 25]) = \text{NaN}
\]

\[
X = 
X(:,:,1) = 
\begin{bmatrix}
1 & 3 & 5 & 7 & 9 \\
2 & 4 & 6 & 8 & \text{NaN}
\end{bmatrix}
\]

\[
X(:,:,2) = 
\]
Find the mean of the elements of \(X\).

\[
y = \text{nanmean}(X,'all')
\]

\[
y = 15.6538
\]

**Mean Along Scalar Dimension**

Find the row means for matrix data with missing values by specifying to compute the means along the second dimension.

\[
X = \text{magic}(3);
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
y = \text{nanmean}(X,2)
\]

\[
y = \begin{bmatrix}
1 \\
4 \\
4
\end{bmatrix}
\]
Mean Along Vector Dimension

Find the mean of a multidimensional array over multiple dimensions.

Create a 2-by-5-by-3 array X with some missing values.

```matlab
X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN
```

```matlab
X(:,:,1) =
 1 3 5 7 9
 2 4 6 8 NaN

X(:,:,2) =
 NaN 13 15 17 19
 NaN 14 16 18 20

X(:,:,3) =
 21 23 NaN 27 29
 22 24 26 28 30
```

Find the mean of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

```matlab
ypage = nanmean(X,[1 2])
```

```matlab
ypage(:,:,1) =
 5

ypage(:,:,2) =
 16.5000

ypage(:,:,3) =
```
For example, \texttt{ypage(1,1,1)} is the mean of the non-\texttt{NaN} elements in \texttt{X(:,:,1)}.

Find the mean of the elements in each \texttt{X(i,:,:) slice by specifying dimensions 2 and 3 as the operating dimensions.}

\begin{verbatim}
yrow = nanmean(X,[2 3])
yrow = 2x1
14.5385
16.7692
\end{verbatim}

For example, \texttt{yrow(2)} is the mean of the non-\texttt{NaN} elements in \texttt{X(2,:,:)}. 

**Input Arguments**

\texttt{X} — Input data

scalar | vector | matrix | multidimensional array

Input data, specified as a scalar, vector, matrix, or multidimensional array.

If \texttt{X} is an empty array, then \texttt{nanmean(X)} is \texttt{NaN}. For more details, see “Tips” on page 32-4209.

Data Types: \texttt{single} \texttt{| double}

\texttt{dim} — Dimension to operate along

positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then the default value is the first array dimension whose size does not equal 1.

\texttt{dim} indicates the dimension whose length reduces to 1. \texttt{size(y,dim)} is 1 while the sizes of all other dimensions remain the same.

Consider a two-dimensional array \texttt{X}:
• If \( \text{dim} \) is equal to 1, then \( \text{nanmean}(X, 1) \) returns a row vector containing the mean for each column.
• If \( \text{dim} \) is equal to 2, then \( \text{nanmean}(X, 2) \) returns a column vector containing the mean for each row.

If \( \text{dim} \) is greater than \( \text{ndims}(X) \) or if \( \text{size}(X, \text{dim}) \) is 1, then \( \text{nanmean} \) returns \( X \).

Data Types: \text{single} | \text{double}

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of \( \text{vecdim} \) represents a dimension of the input array \( X \). The output \( y \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \( X \) and \( y \).

For example, if \( X \) is a 2-by-3-by-3 array, then \( \text{nanmean}(X, [1 \ 2]) \) returns a 1-by-1-by-3 array. Each element of the output is the mean of the elements on the corresponding page of \( X \).
Tips

- When nanmean computes the mean of an array of all NaN values, the array is empty once the NaN values are removed and, therefore, the sum of the remaining elements is 0. Because the mean calculation involves division by 0, the mean value is NaN. The output NaN is not a mean of NaN values.

Alternative Functionality

Instead of using nanmean, you can use the MATLAB function mean with the input argument nanflag specified as the value 'omitnan'.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The following syntaxes do not support code generation.
  - \( y = \text{nanmean}(X,'all') \)
  - \( y = \text{nanmean}(X,\text{vecdim}) \)

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- The following syntaxes do not support GPU arrays as input arguments.
  - \( y = \text{nanmean}(X,'all') \)
  - \( y = \text{nanmean}(X,\text{vecdim}) \)
For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | mean | nanmedian

Introduced before R2006a
**nanmedian**

Median, ignoring NaN values

**Syntax**

\[
y = \text{nanmedian}(X)
y = \text{nanmedian}(X,'all')
y = \text{nanmedian}(X,dim)
y = \text{nanmedian}(X,vecdim)
\]

**Description**

\( y = \text{nanmedian}(X) \) is the median of \( X \), computed after removing NaN values.

For vectors \( x \), \( \text{nanmedian}(x) \) is the median of the remaining elements, once NaN values are removed. For matrices \( X \), \( \text{nanmedian}(X) \) is a row vector of column medians, once NaN values are removed. For multidimensional arrays \( X \), \( \text{nanmedian} \) operates along the first nonsingleton dimension.

\( y = \text{nanmedian}(X,'all') \) returns the median of all elements of \( X \), computed after removing NaN values.

\( y = \text{nanmedian}(X,dim) \) takes the median along the operating dimension \( \text{dim} \) of \( X \).

\( y = \text{nanmedian}(X,vecdim) \) returns the median over the dimensions specified in the vector \( \text{vecdim} \), computed after removing NaN values. Each element of \( \text{vecdim} \) represents a dimension of the input array \( X \). The output \( y \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \( X \) and \( y \). For example, if \( X \) is a 2-by-3-by-4 array, then \( \text{nanmedian}(X,[1 2]) \) returns a 1-by-1-by-4 array. Each element of the output array is the median of the elements on the corresponding page of \( X \).

**Examples**
**Median of Matrix Data**

Find the column medians for matrix data with missing values.

\[
X = \text{magic}(3); \\
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
y = \text{nanmedian}(X)
\]

\[
y = \begin{bmatrix}
3.5000 \\
3.0000 \\
\text{NaN}
\end{bmatrix}
\]

**Median Along Vector Dimension**

Find the median of a multidimensional array over multiple dimensions.

Create a 3-by-5-by-2 array \(X\) with some missing values.

\[
X = \text{reshape}(1:30,[3 5 2]); \\
X([10:12 25]) = \text{NaN}
\]

\[
X =
\begin{align*}
X(:,:,1) & = \\
& = \\
& = \\
X(:,:,2) & = \\
& = 
\end{align*}
\]

\[
X(:, :, 1) = \\
& = \\
& = \\
X(:, :, 2) = \\
& = \\
& =
\]

32-4212
Find the median of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

\[
\text{ypage} = \text{nanmedian}(X,[1 2])
\]

\[
\text{ypage} = \\
\text{ypage}(,:,:1) = \\
6.5000
\]

\[
\text{ypage}(,:,:2) = \\
22.5000
\]

For example, \( \text{ypage}(1,1,1) \) is the median of the non-NaN elements in \( X(:,:,1) \).

Find the median of the elements in each \( X(:,i,:) \) slice by specifying dimensions 1 and 3 as the operating dimensions.

\[
\text{ycol} = \text{nanmedian}(X,[1 3])
\]

\[
\text{ycol} = 1\times5 \\
9.5000 \ 12.5000 \ 15.5000 \ 26.5000 \ 21.5000
\]

For example, \( \text{ycol}(4) \) is the median of the non-NaN elements in \( X(:,4,:) \).

**Alternative Functionality**

Instead of using \( \text{nanmedian} \), you can use the MATLAB function \( \text{median} \) with the input argument \( \text{nanflag} \) specified as the value 'omitnan'.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The following syntaxes do not support code generation.
  • y = nanmedian(X,'all')
  • y = nanmedian(X,vecdim)

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • y = nanmedian(X,'all')
  • y = nanmedian(X,vecdim)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | median | nanmean

Introduced before R2006a
**nanmin**

Minimum, ignoring NaN values

**Syntax**

```matlab
y = nanmin(X)
y = nanmin(X,[],dim)
[y,indices] = nanmin(__)
y = nanmin(X,[],'all')
y = nanmin(X,[],vecdim)
Y = nanmin(X1,X2)
```

**Description**

`y = nanmin(X)` is the minimum `min` of `X`, computed after removing NaN values.

For vectors `x`, `nanmin(x)` is the minimum of the remaining elements, once NaN values are removed. For matrices `X`, `nanmin(X)` is a row vector of column minima, once NaN values are removed. For multidimensional arrays `X`, `nanmin` operates along the first nonsingleton dimension.

`y = nanmin(X,[],dim)` operates along the dimension `dim` of `X`.

`[y,indices] = nanmin(__)` also returns the row indices of the minimum values for each column in the vector `indices`.

`y = nanmin(X,[],'all')` returns the minimum of all elements of `X`, computed after removing NaN values.

`y = nanmin(X,[],vecdim)` returns the minimum over the dimensions specified in the vector `vecdim`, computed after removing NaN values. Each element of `vecdim` represents a dimension of the input array `X`. The output `y` has length 1 in the specified operating dimensions. The other dimension lengths are the same for `X` and `y`. For example, if `X` is a 2-by-3-by-4 array, then `nanmin(X,[],[1 2])` returns a 1-by-1-by-4 array. Each element of the output array is the minimum of the elements on the corresponding page of `X`. 
$Y = \text{nanmin}(X1,X2)$ returns an array $Y$ the same size as $X1$ and $X2$ with $Y(i,j) = \text{nanmin}(X1(i,j),X2(i,j))$. Scalar inputs are expanded to an array of the same size as the other input.

**Examples**

**Minimum of Matrix Data**

Find the column minimum values and their indices for matrix data with missing values.

```matlab
X = magic(3);
X([1 6:9]) = NaN
X = 3×3
 NaN 1 NaN
 3 5 NaN
 4 NaN NaN

[y,indices] = nanmin(X)
y = 1×3
 3 1 NaN
indices = 1×3
 2 1 1
```

**Minimum of All Values**

Find the minimum of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array $X$ with some missing values.

```matlab
X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN
```
\[
X = \\
X(:,:,1) = \\
\begin{bmatrix}
1 & 3 & 5 & 7 & 9 \\
2 & 4 & 6 & 8 & \text{NaN}
\end{bmatrix}
\]

\[
X(:,:,2) = \\
\begin{bmatrix}
\text{NaN} & 13 & 15 & 17 & 19 \\
\text{NaN} & 14 & 16 & 18 & 20
\end{bmatrix}
\]

\[
X(:,:,3) = \\
\begin{bmatrix}
21 & 23 & \text{NaN} & 27 & 29 \\
22 & 24 & 26 & 28 & 30
\end{bmatrix}
\]

Find the minimum of the elements of \(X\).

\[
y = \text{nanmin}(X,[],'all')
\]

\[
y = 1
\]

**Alternative Functionality**

Instead of using \texttt{nanmin}, you can use the MATLAB function \texttt{min} with the input argument \texttt{nanflag} specified as the value \texttt{'omitnan'}.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• The following syntaxes do not support code generation.
  • \texttt{y = nanmin(X,[],'all')}  
  • \texttt{y = nanmin(X,[],vecdim)}

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • \texttt{y = nanmin(X,[],'all')}  
  • \texttt{y = nanmin(X,[],vecdim)}

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

\texttt{NaN} | \texttt{min} | \texttt{nanmax}

\textit{Introduced before R2006a}
nanstd

Standard deviation, ignoring NaN values

Syntax

\[ y = \text{nanstd}(X) \]
\[ y = \text{nanstd}(X, \text{flag}) \]
\[ y = \text{nanstd}(X, \text{flag}, 'all') \]
\[ y = \text{nanstd}(X, \text{flag}, \text{dim}) \]
\[ y = \text{nanstd}(X, \text{flag}, \text{vecdim}) \]

Description

\[ y = \text{nanstd}(X) \] is the standard deviation \text{std} of \( X \), computed after removing all NaN values.

- If \( X \) is a vector, then \( \text{nanstd}(X) \) is the sample standard deviation of all the non-NaN elements of \( X \).
- If \( X \) is a matrix, then \( \text{nanstd}(X) \) is a row vector of column sample standard deviations, computed after removing NaN values.
- If \( X \) is a multidimensional array, then \( \text{nanstd} \) operates along the first nonsingleton dimension of \( X \). The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. \( \text{nanstd} \) removes all NaN values.
- By default, \( \text{nanstd} \) normalizes \( y \) by \( n - 1 \), where \( n \) is the number of remaining observations after removing observations with NaN values.

\[ y = \text{nanstd}(X, \text{flag}) \] returns the standard deviation of \( X \) based on the normalization specified by flag. The flag is 0 (default) or 1 to specify normalization by \( n - 1 \) or \( n \), respectively, where \( n \) is the number of remaining observations after removing observations with NaN values.

\[ y = \text{nanstd}(X, \text{flag}, 'all') \] returns the standard deviation of all elements of \( X \), computed after removing NaN values.
\( y = \text{nanstd}(X, \text{flag}, \text{dim}) \) returns the standard deviation along the operating dimension \( \text{dim} \) of \( X \), computed after removing NaN values.

\( y = \text{nanstd}(X, \text{flag}, \text{vecdim}) \) returns the standard deviation over the dimensions specified in the vector \( \text{vecdim} \). The function computes the standard deviations after removing NaN values. For example, if \( X \) is a matrix, then \( \text{nanstd}(X, 0, [1 2]) \) is the sample standard deviation of all non-NaN elements of \( X \) because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.

**Examples**

**Standard Deviation of Matrix Data**

Find the column standard deviations for matrix data with missing values.

\[
X = \text{magic}(3);
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
y = \text{nanstd}(X)
\]

\[
y = \begin{bmatrix}
0.7071 & 2.8284 & \text{NaN}
\end{bmatrix}
\]

**Standard Deviation for Population vs. Sample**

Load the carsmall data set.

\[
\text{load carsmall}
\]
Compute the population and sample standard deviations for the Horsepower data. The `nanstd` function ignores the missing value in Horsepower.

\[
y_1 = \text{nanstd}(\text{Horsepower}, 1) \quad \% \text{ Population formula}
\]

\[
y_1 = 45.2963
\]

\[
y_2 = \text{nanstd}(\text{Horsepower}, 0) \quad \% \text{ Sample formula}
\]

\[
y_2 = 45.5268
\]

**Standard Deviation of All Values**

Find the standard deviation of all the values in an array, ignoring missing values.

Create a 3-by-4-by-2 array \(X\) with some missing values.

\[
X = \text{reshape}(1:24, [3 4 2]);
X([8:10 18]) = \text{NaN}
\]

\[
X = \\
X(:,:,1) = \\
\begin{array}{cccc}
1 & 4 & 7 & \text{NaN} \\
2 & 5 & \text{NaN} & 11 \\
3 & 6 & \text{NaN} & 12 \\
\end{array}
\]

\[
X(:,:,2) = \\
\begin{array}{cccc}
13 & 16 & 19 & 22 \\
14 & 17 & 20 & 23 \\
15 & \text{NaN} & 21 & 24 \\
\end{array}
\]

Find the sample standard deviation of the elements of \(X\).

\[
y = \text{nanstd}(X, 0, \text{'}all\text{'})
\]

\[
y = 7.5385
\]
**Standard Deviation Along Scalar Dimension**

Find the row standard deviations for matrix data with missing values. Specify to compute the sample standard deviations along the second dimension.

```
X = magic(3);
X([1 6:9]) = NaN
X = magic(3);
X([1 6:9]) = NaN
X = 3×3
 NaN 1 NaN
 3 5 NaN
 4 NaN NaN
```

```
y = nanstd(X,0,2)
y = 3×1
 0
 1.4142
 0
```

**Standard Deviation Along Vector Dimension**

Find the standard deviation of a multidimensional array over multiple dimensions.

Create a 3-by-4-by-2 array X with some missing values.

```
X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN
X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN
X(:,:,1) =
 1 4 7 NaN
 2 5 NaN 11
 3 6 NaN 12
X(:,:,2) =
X(:,:,2) =
```

```
X(:,:,1) =
 1 4 7 NaN
 2 5 NaN 11
 3 6 NaN 12
X(:,:,2) =
```
Find the sample standard deviation of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

ypage = nanstd(X,0,[1 2])

ypage =
ypage(:,:,1) =
    3.8079

ypage(:,:,2) =
    3.7779

For example, ypage(1,1,2) is the sample standard deviation of the non-NaN elements in X(:,:,2).

Find the sample standard deviation of the elements in each X(i,:,:) slice by specifying dimensions 2 and 3 as the operating dimensions.

yrow = nanstd(X,0,[2 3])

yrow = 3×1
    7.9102
    7.6904
    8.2158

For example, yrow(3) is the sample standard deviation of the non-NaN elements in X(3,:,:).

**Input Arguments**

X — Input data
scalar | vector | matrix | multidimensional array
Input data, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double

**flag — Indicator for normalization**

0 (default) | 1

Indicator for the normalization used to compute the standard deviation, specified as 0 or 1.

- If `flag` is 0 (default), then `nanstd` returns the sample standard deviation on page 32-4225 of `X`. `nanstd(X,0)` is the same as `nanstd(X)`.
- If `flag` is 1, then `nanstd` returns the population standard deviation on page 32-4226 of `X`.

Data Types: single | double

**dim — Dimension to operate along**

positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then the default value is the first array dimension whose size does not equal 1.

`dim` indicates the dimension whose length reduces to 1. `size(y,dim)` is 1 while the sizes of all other dimensions remain the same.

Consider a two-dimensional array `X`:

- If `dim` is equal to 1, then `nanstd(X,0,1)` returns a row vector containing the sample standard deviation for each column.
- If `dim` is equal to 2, then `nanstd(X,0,2)` returns a column vector containing the sample standard deviation for each row.

If `dim` is greater than `ndims(X)` or if `size(X,dim)` is 1, then `nanstd` returns an array of zeros with the same dimensions and missing values as `X`.

Data Types: single | double

**vecdim — Vector of dimensions**

positive integer vector
Vector of dimensions, specified as a positive integer vector. Each element of `vecdim` represents a dimension of the input array `X`. The output `y` has length 1 in the specified operating dimensions. The other dimension lengths are the same for `X` and `y`.

For example, if `X` is a 2-by-3-by-3 array, then `nanstd(X, 0, [1 2])` returns a 1-by-1-by-3 array. Each element of the output array is the sample standard deviation of the elements on the corresponding page of `X`.

Data Types: `single` | `double`

### Output Arguments

`y` — Standard deviation values

scalar | vector | matrix | multidimensional array

Standard deviation values, returned as a scalar, vector, matrix, or multidimensional array.

### Definitions

#### Sample Standard Deviation

The sample standard deviation `S` is given by

\[
S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}}.
\]
S is the square root of an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of independent, identically distributed samples. \( \bar{X} \) is the sample mean.

Notice that the denominator in this variance formula is \( n - 1 \).

**Population Standard Deviation**

If the data is the entire population of values, then you can use the *population standard deviation*,

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}.
\]

If \( X \) is a random sample from a population, then the mean \( \mu \) is estimated by the sample mean, and \( \sigma \) is the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is \( n \).

**Alternative Functionality**

Instead of using `nanstd`, you can use the MATLAB function `std` with the input argument `nanflag` specified as the value `'omitnan'`.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
• \( y = \text{nanstd}(X, \text{flag}, 'all') \)
• \( y = \text{nanstd}(X, \text{flag}, \text{vecdim}) \)

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • \( y = \text{nanstd}(X, \text{flag}, 'all') \)
  • \( y = \text{nanstd}(X, \text{flag}, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
NaN | nanmean | nanvar | std

*Introduced before R2006a*
nansum

Sum, ignoring NaN values

Syntax

y = nansum(X)
y = nansum(X,'all')
y = nansum(X,dim)
y = nansum(X,vecdim)

Description

y = nansum(X) returns the sum of the elements of X, computed after removing all NaN values.

- If X is a vector, then nansum(X) is the sum of all the non-NaN elements of X.
- If X is a matrix, then nansum(X) is a row vector of column sums, computed after removing NaN values.
- If X is a multidimensional array, then nansum operates along the first nonsingleton dimension of X. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. nansum removes all NaN values.

For information on how nansum treats arrays of all NaN values, see “Tips” on page 32-4234.

y = nansum(X,'all') returns the sum of all elements of X, computed after removing NaN values.

y = nansum(X,dim) returns the sum along the operating dimension dim of X, computed after removing NaN values.

y = nansum(X,vecdim) returns the sum over the dimensions specified in the vector vecdim. The function computes the sums after removing NaN values. For example, if X is a matrix, then nansum(X,[1 2]) is the sum of all non-NaN elements of X because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.
Examples

Sum of Matrix Data

Find the column sums for matrix data with missing values.

```matlab
X = magic(3);
X([1 6:9]) = NaN
X = 3×3
 NaN 1 NaN
 3 5 NaN
 4 NaN NaN
```

```matlab
y = nansum(X)
y = 1×3
 7 6 0
```

Sum of All Values

Find the sum of all the values in an array, ignoring missing values.

Create a 2-by-4-by-3 array `X` with some missing values.

```matlab
X = reshape(1:24,[2 4 3]);
X([5:6 20]) = NaN
X =
X(:,:,1) =
 1 3 NaN 7
 2 4 NaN 8
```
Find the sum of the elements of \( X \).

\[
y = \text{nansum}(X, 'all')
\]

\[
y = 269
\]

**Sum Along Scalar Dimension**

Find the row sums for matrix data with missing values by specifying to compute the sums along the second dimension.

\[
X = \text{magic}(3);
X([1 6:9]) = \text{NaN}
\]

\[
X = \begin{bmatrix}
\text{NaN} & 1 & \text{NaN} \\
3 & 5 & \text{NaN} \\
4 & \text{NaN} & \text{NaN}
\end{bmatrix}
\]

\[
y = \text{nansum}(X, 2)
\]

\[
y = \begin{bmatrix}
1 \\
8 \\
4
\end{bmatrix}
\]
Sum Along Vector Dimension

Find the sum of a multidimensional array over multiple dimensions.

Create a 2-by-4-by-3 array X with some missing values.

\[
X = \text{reshape}(1:24, [2 4 3]); \\
X([5:6 20]) = \text{NaN}
\]

\[
X(:,:,1) = \\
\begin{bmatrix}
1 & 3 & \text{NaN} & 7 \\
2 & 4 & \text{NaN} & 8 \\
\end{bmatrix}
\]

\[
X(:,:,2) = \\
\begin{bmatrix}
9 & 11 & 13 & 15 \\
10 & 12 & 14 & 16 \\
\end{bmatrix}
\]

\[
X(:,:,3) = \\
\begin{bmatrix}
17 & 19 & 21 & 23 \\
18 & \text{NaN} & 22 & 24 \\
\end{bmatrix}
\]

Find the sum of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

\[
y\text{page} = \text{nansum}(X, [1 2])
\]

\[
y\text{page} = \\
y\text{page}(:,:,1) = \\
25
\]

\[
y\text{page}(:,:,2) = \\
100
\]

\[
y\text{page}(:,:,3) = 
\]
For example, \texttt{ypage(1,1,1)} is the sum of the non-\texttt{NaN} elements in \texttt{X(:,:,1)}.

Find the sum of the elements in each \texttt{X(i,:,:)} slice by specifying dimensions 2 and 3 as the operating dimensions.

\begin{verbatim}
yrow = nansum(X,[2 3])
\end{verbatim}

\begin{verbatim}
yrow = 2x1
139
130
\end{verbatim}

For example, \texttt{yrow(2)} is the sum of the non-\texttt{NaN} elements in \texttt{X(2,:,:)}.

\section*{Input Arguments}

\texttt{X — Input data}

\begin{verbatim}
scalar | vector | matrix | multidimensional array
\end{verbatim}

Input data, specified as a scalar, vector, matrix, or multidimensional array.

If \texttt{X} is an empty array, then \texttt{nansum(X)} is \texttt{0}.

Data Types: \texttt{single} | \texttt{double}

\texttt{dim — Dimension to operate along}

\begin{verbatim}
positive integer scalar
\end{verbatim}

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then the default value is the first array dimension whose size does not equal 1.

\texttt{dim} indicates the dimension whose length reduces to 1. \texttt{size(y,dim)} is 1 while the sizes of all other dimensions remain the same.

Consider a two-dimensional array \texttt{X}:
• If \( \text{dim} \) is equal to 1, then \( \text{nansum}(X,1) \) returns a row vector containing the sum for each column.

• If \( \text{dim} \) is equal to 2, then \( \text{nansum}(X,2) \) returns a column vector containing the sum for each row.

If \( \text{dim} \) is greater than \( \text{ndims}(X) \) or if \( \text{size}(X,\text{dim}) \) is 1, then \( \text{nansum} \) returns \( X \), with 0 values in the place of any missing values.

Data Types: \( \text{single} \) | \( \text{double} \)

**vecdim — Vector of dimensions**
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of \( \text{vecdim} \) represents a dimension of the input array \( X \). The output \( y \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \( X \) and \( y \).

For example, if \( X \) is a 2-by-3-by-3 array, then \( \text{nansum}(X, [1 \ 2]) \) returns a 1-by-1-by-3 array. Each element of the output array is the sum of the elements on the corresponding page of \( X \).

Data Types: \( \text{single} \) | \( \text{double} \)

**Output Arguments**

**\( y \) — Sum values**
scalar | vector | matrix | multidimensional array

Sum values, returned as a scalar, vector, matrix, or multidimensional array.
Tips

• When `nansum` computes the sum of an array of all `NaN` values, the array is empty once the `NaN` values are removed and, therefore, the sum of the remaining elements is 0. The output 0 is not a sum of `NaN` values.

Alternative Functionality

Instead of using `nansum`, you can use the MATLAB function `sum` with the input argument `nanflag` specified as the value 'omitnan'.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The following syntaxes do not support code generation.
  
  • `y = nansum(X,'all')`
  
  • `y = nansum(X,vecdim)`

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following syntaxes do not support GPU arrays as input arguments.
  
  • `y = nansum(X,'all')`
  
  • `y = nansum(X,vecdim)`
For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | sum

Introduced before R2006a
nanvar

Variance, ignoring NaN values

Syntax

y = nanvar(X)
y = nanvar(X,w)
y = nanvar(X,w,'all')
y = nanvar(X,w,dim)
y = nanvar(X,w,vecdim)

Description

y = nanvar(X) is the variance var of X, computed after removing NaN values.
For vectors x, nanvar(x) is the sample variance of the remaining elements, once NaN values are removed. For matrices X, nanvar(X) is a row vector of column sample variances, once NaN values are removed. For multidimensional arrays X, nanvar operates along the first nonsingleton dimension.

nanvar removes the mean from each variable (column for matrix X) before calculating y. If n is the number of remaining observations after removing observations with NaN values, nanvar normalizes y by either n - 1 or n, depending on whether n > 1 or n = 1, respectively.

y = nanvar(X,w) computes the variance of X according to the weighting scheme w. When w is 0 (default), X is normalized by n - 1, where n is the number of non-NaN observations. When w is 1, w is normalized by the number of non-NaN observations. Otherwise, w can be a weight vector containing nonnegative elements. The length of w must equal the length of the dimension over which nanvar operates. Elements of X corresponding to NaN values of w are ignored.

y = nanvar(X,w,'all') returns the variance over all elements of X when w = 0 or w = 1. The nanvar function computes the variance after removing NaN values.

y = nanvar(X,w,dim) returns the variance along the operating dimension dim of X.
y = nanvar(X,w,vecdim) returns the variance over the dimensions specified in the vector vecdim, computed after removing NaN values. Each element of vecdim represents a dimension of the input array X. The output y has length 1 in the specified operating dimensions. The other dimension lengths are the same for X and y. For example, if X is a 2-by-3-by-4 array, then nanvar(X,[],[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the variance of the elements on the corresponding page of X. This syntax is supported when w = 0 or w = 1.

Examples

Variance of Matrix Data

Find the column variances for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN
X = 3×3
     NaN     1     NaN
     3     5     NaN
     4     NaN     NaN

y = nanvar(X)
y = 1×3
    0.5000    8.0000       NaN

Variance Along Vector Dimension

Find the variance of a multidimensional array over multiple dimensions.

Create a 3-by-4-by-2 array X with some missing values.

X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN
X =
X(:,:,1) =
   1     4     7   NaN
   2     5   NaN    11
   3     6   NaN    12

X(:,:,2) =
   13    16    19    22
   14    17    20    23
   15   NaN    21    24

Find the sample variance of each page of X by specifying dimensions 1 and 2 as the operating dimensions.
ypage = nanvar(X,0,[1 2])
ypage =
ypage(:,:,1) =
   14.5000
ypage(:,:,2) =
   14.2727

For example, ypage(1,1,2) is the sample variance of the non-NaN elements in X(:,,:2).

Find the sample variance of the elements in each X(:,i,:) slice by specifying dimensions 1 and 3 as the operating dimensions.
ycol = nanvar(X,0,[1 3])
ycol = 1x4
   44.0000   40.3000   42.9167   40.3000

For example, ycol(4) is the sample variance of the non-NaN elements in X(:,4,:).
Alternative Functionality

Instead of using \texttt{nanvar}, you can use the MATLAB function \texttt{var} with the input argument \texttt{nanflag} specified as the value 'omitnan'.

Extended Capabilities

\textbf{C/C++ Code Generation}

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The following syntaxes do not support code generation.
  - \( y = \text{nanvar}(X,w,'all') \)
  - \( y = \text{nanvar}(X,w,\text{vecdim}) \)

\textbf{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- The following syntaxes do not support GPU arrays as input arguments.
  - \( y = \text{nanvar}(X,w,'all') \)
  - \( y = \text{nanvar}(X,w,\text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

\textbf{See Also}

\texttt{NaN} | \texttt{nanmean} | \texttt{nanstd} | \texttt{var}
Introduced before R2006a
nbincdf

Negative binomial cumulative distribution function

Syntax

\[ y = \text{nbincdf}(x, R, p) \]
\[ y = \text{nbincdf}(x, R, p, \text{'upper'}) \]

Description

\[ y = \text{nbincdf}(x, R, p) \] computes the negative binomial cdf at each of the values in \( x \) using the corresponding number of successes, \( R \) and probability of success in a single trial, \( p \). \( x, R, \) and \( p \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( y \). A scalar input for \( x, R, \) or \( p \) is expanded to a constant array with the same dimensions as the other inputs.

\[ y = \text{nbincdf}(x, R, p, \text{'upper'}) \] returns the complement of the negative binomial cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The negative binomial cdf is

\[
y = F(x | r, p) = \sum_{i=0}^{x} \binom{r + i - 1}{i} p^r q^i I_{(0,1,...)}(i)
\]

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \( p \) of success. The number of extra trials you must perform in order to observe a given number \( R \) of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, \text{nbincdf} \ allows \( R \) to be any positive value, including nonintegers. When \( R \) is noninteger, the binomial coefficient in the definition of the cdf is replaced by the equivalent expression

\[
\frac{\Gamma(r + i)}{\Gamma(r)\Gamma(i + 1)}
\]
Examples

Compute Negative Binomial Distribution CDF

```matlab
x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)
```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | nbinfit | nbininv | nbinpdf | nbinrnd | nbinstat

Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
nbinfit

Negative binomial parameter estimates

Syntax

parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description

parmhat = nbinfit(data) returns the maximum likelihood estimates (MLEs) of the parameters of the negative binomial distribution given the data in the vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha) percent confidence intervals. By default, alpha = 0.05, which corresponds to 95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The negative binomial fit function accepts an options structure which you can create using the function statset. Enter statset('nbinfit') to see the names and default values of the parameters that nbinfit accepts in the options structure. See the reference page for statset for more information about these options.

Note The variance of a negative binomial distribution is greater than its mean. If the sample variance of the data in data is less than its sample mean, nbinfit cannot compute MLEs. You should use the poissfit function instead.

See Also

mle | nbincdf | nbininv | nbinpdf | nbinrnd | nbinstat | statset
Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
**nbininv**

Negative binomial inverse cumulative distribution function

**Syntax**

\[ X = \text{nbininv}(Y,R,P) \]

**Description**

\[ X = \text{nbininv}(Y,R,P) \] returns the inverse of the negative binomial cdf with corresponding number of successes, \( R \) and probability of success in a single trial, \( P \). Since the binomial distribution is discrete, \( \text{nbininv} \) returns the least integer \( X \) such that the negative binomial cdf evaluated at \( X \) equals or exceeds \( Y \). \( Y, R, \) and \( P \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( X \). A scalar input for \( Y, R, \) or \( P \) is expanded to a constant array with the same dimensions as the other inputs.

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \( P \) of success. The number of extra trials you must perform in order to observe a given number \( R \) of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, \( \text{nbininv} \) allows \( R \) to be any positive value, including nonintegers.

**Examples**

How many times would you need to flip a fair coin to have a 99% probability of having observed 10 heads?

\[
\text{flips} = \text{nbininv}(0.99,10,0.5) + 10
\]

\[
\text{flips} = 33
\]

Note that you have to flip at least 10 times to get 10 heads. That is why the second term on the right side of the equals sign is a 10.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | nbincdf | nbinfit | nbinpdf | nbinrnd | nbinstat

Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
**nbinpdf**

Negative binomial probability density function

**Syntax**

\[ Y = \text{nbinpdf}(X,R,P) \]

**Description**

\[ Y = \text{nbinpdf}(X,R,P) \] returns the negative binomial pdf at each of the values in \( X \) using the corresponding number of successes, \( R \) and probability of success in a single trial, \( P \). \( X, R, \) and \( P \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( Y \). A scalar input for \( X, R, \) or \( P \) is expanded to a constant array with the same dimensions as the other inputs. Note that the density function is zero unless the values in \( X \) are integers.

The negative binomial pdf is

\[
y = f(x \mid r, p) = \binom{r + x - 1}{x} p^r q^x I_{(0,1,\ldots)}(x)
\]

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \( P \) of success. The number of extra trials you must perform in order to observe a given number \( R \) of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, \text{nbinpdf} allows \( R \) to be any positive value, including nonintegers. When \( R \) is noninteger, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression

\[
\frac{\Gamma(r + x)}{\Gamma(r)\Gamma(x + 1)}
\]
Examples

Compute the Negative Binomial Distribution pdf

Compute the pdf of a negative binomial distribution with parameters \( R = 3 \) and \( p = 0.5 \).

\[
\begin{align*}
x &= 0:10; \\
y &= \text{nbinpdf}(x,3,0.5);
\end{align*}
\]

Plot the pdf.

\[
\begin{align*}
\text{figure; } & \\
\text{plot}(x,y,'+') & \\
\text{xlim([-0.5,10.5])}
\end{align*}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nbincdf | nbinfit | nbininv | nbinrnd | nbinstat | pdf
Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
nbinrnd

Negative binomial random numbers

Syntax

RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m,n,...)
RND = nbinrnd(R,P,[m,n,...])

Description

RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative binomial distribution with corresponding number of successes, R and probability of success in a single trial, P. R and P can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of RND. A scalar input for R or P is expanded to a constant array with the same dimensions as the other input.

RND = nbinrnd(R,P,m,n,...) or RND = nbinrnd(R,P,[m,n,...]) generates an m-by-n-by-... array. The R, P parameters can each be scalars or arrays of the same size as R.

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability P of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinrnd allows R to be any positive value, including nonintegers.

Examples

Suppose you want to simulate a process that has a defect probability of 0.01. How many units might Quality Assurance inspect before finding three defective items?

r = nbinrnd(3,0.01,1,6)+3
r =
   496   142   420   396   851   178
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

See Also
nbincdf | nbinfit | nbininv | nbinpdf | nbinstat | random

Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
**nbinstat**

Negative binomial mean and variance

**Syntax**

\[ [M,V] = \text{nbinstat}(R,P) \]

**Description**

\[ [M,V] = \text{nbinstat}(R,P) \] returns the mean of and variance for the negative binomial distribution with corresponding number of successes, \( R \) and probability of success in a single trial, \( P \). \( R \) and \( P \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( M \) and \( V \). A scalar input for \( R \) or \( P \) is expanded to a constant array with the same dimensions as the other input.

The mean of the negative binomial distribution with parameters \( r \) and \( p \) is \( rq / p \), where \( q = 1 - p \). The variance is \( rq / p^2 \).

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \( P \) of success. The number of extra trials you must perform in order to observe a given number \( R \) of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, \( \text{nbinstat} \) allows \( R \) to be any positive value, including nonintegers.

**Examples**

```matlab
p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =
 9.0000 18.0000 27.0000 36.0000 45.0000
 2.3333 4.6667 7.0000 9.3333 11.6667
 1.0000 2.0000 3.0000 4.0000 5.0000
 0.4286 0.8571 1.2857 1.7143 2.1429
```
0.1111  0.2222  0.3333  0.4444  0.5556

V =
  90.0000  180.0000  270.0000  360.0000  450.0000
  7.7778   15.5556   23.3333   31.1111   38.8889
  2.0000   4.0000   6.0000   8.0000  10.0000
 0.6122   1.2245   1.8367   2.4490   3.0612
0.1235   0.2469   0.3704   0.4938   0.6173

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nbincdf | nbinfit | nbininv | nbinpdf | nbinrnd

Topics
“Negative Binomial Distribution” on page B-116

Introduced before R2006a
FeatureSelectionNCAClassification class

Feature selection for classification using neighborhood component analysis (NCA)

Description

FeatureSelectionNCAClassification object contains the data, fitting information, feature weights, and other parameters of a neighborhood component analysis (NCA) model. fscnca learns the feature weights using a diagonal adaptation of NCA and returns an instance of a FeatureSelectionNCAClassification object. The function achieves feature selection by regularizing the feature weights.

Construction

Create a FeatureSelectionNCAClassification object using fscnca.

Properties

NumObservations — Number of observations in the training data

scalar

Number of observations in the training data (X and Y) after removing NaN or Inf values, stored as a scalar.

Data Types: double

ModelParameters — Model parameters

structure

Model parameters used for training the model, stored as a structure.

You can access the fields of ModelParameters using dot notation.

For example, for a FeatureSelectionNCAClassification object named mdl, you can access the LossFunction value using mdl.ModelParameters.LossFunction.
Data Types: struct

**Lambda — Regularization parameter**

 scalar

Regularization parameter used for training this model, stored as a scalar. For \( n \) observations, the best Lambda value that minimizes the generalization error of the NCA model is expected to be a multiple of \( 1/n \).

Data Types: double

**FitMethod — Name of fitting method**

`'exact' | 'none' | 'average'`

Name of the fitting method used to fit this model, stored as one of the following:

- `'exact'` — Perform fitting using all of the data.
- `'none'` — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to `fscnca`.
- `'average'` — Divide the data into partitions (subsets), fit each partition using the exact method, and return the average of the feature weights. You can specify the number of partitions using the `NumPartitions` name-value pair argument.

**Solver — Name of the solver used to fit this model**

`'lbfgs' | 'sgd' | 'minibatch-lbfgs'`

Name of the solver used to fit this model, stored as one of the following:

- `'lbfgs'` — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
- `'sgd'` — Stochastic gradient descent (SGD) algorithm
- `'minibatch-lbfgs'` — stochastic gradient descent with LBFGS algorithm applied to mini-batches

**GradientTolerance — Relative convergence tolerance on gradient norm**

 scalar

Relative convergence tolerance on the gradient norm for the `'lbfgs'` and `'minibatch-lbfgs'` solvers, stored as a positive scalar value.

Data Types: double
**IterationLimit** — Maximum number of iterations for optimization

positive integer

Maximum number of iterations for optimization, stored as a positive integer value.

Data Types: double

**PassLimit** — Maximum number of passes

positive integer

Maximum number of passes for 'sgd' and 'minibatch-lbfgs' solvers. Every pass processes all of the observations in the data.

Data Types: double

**InitialLearningRate** — Initial learning rate

positive real scalar

Initial learning rate for the 'sgd' and 'minibatch-lbfgs' solvers, stored as a positive real scalar. The learning rate decays over iterations starting at the value specified for InitialLearningRate.

Use the NumTuningIterations and TuningSubsetSize name-value pair arguments to control the automatic tuning of initial learning rate in the call to fscnca.

Data Types: double

**Verbose** — Verbosity level indicator

nonnegative integer

Verbosity level indicator, stored as a nonnegative integer. Possible values are:

- 0 — No convergence summary
- 1 — Convergence summary, including norm of gradient and objective function value
- >1 — More convergence information, depending on the fitting algorithm. When you use the 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes the iteration log from intermediate minibatch LBFGS fits.

Data Types: double

**InitialFeatureWeights** — Initial feature weights

p-by-1 vector of positive real scalars
Initial feature weights, stored as a $p$-by-1 vector of positive real scalars, where $p$ is the number of predictors in $X$.

Data Types: double

**FeatureWeights — Feature weights**

$p$-by-1 vector of real scalars

Feature weights, stored as a $p$-by-1 vector of real scalars, where $p$ is the number of predictors in $X$.

If `FitMethod` is 'average', then `FeatureWeights` is a $p$-by-$m$ matrix. $m$ is the number of partitions specified via the 'NumPartitions' name-value pair argument in the call to `fscnca`.

The absolute value of `FeatureWeights(k)` is a measure of the importance of predictor $k$. A `FeatureWeights(k)` value that is close to 0 indicates that predictor $k$ does not influence the response in $Y$.

Data Types: double

**FitInfo — Fit information**

structure

Fit information, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th><strong>Field Name</strong></th>
<th><strong>Meaning</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>Iteration index</td>
</tr>
<tr>
<td>Objective</td>
<td>Regularized objective function for minimization</td>
</tr>
<tr>
<td>UnregularizedObjective</td>
<td>Unregularized objective function for minimization</td>
</tr>
<tr>
<td>Gradient</td>
<td>Gradient of regularized objective function for minimization</td>
</tr>
</tbody>
</table>

- For classification, `UnregularizedObjective` represents the negative of the leave-one-out accuracy of the NCA classifier on the training data.
- For regression, `UnregularizedObjective` represents the leave-one-out loss between the true response and the predicted response when using the NCA regression model.
• For the 'lbfgs' solver, Gradient is the final gradient. For the 'sgd' and 'minibatch-lbfgs' solvers, Gradient is the final mini-batch gradient.

• If FitMethod is 'average', then FitInfo is an m-by-1 structure array, where m is the number of partitions specified via the 'NumPartitions' name-value pair argument.

You can access the fields of FitInfo using dot notation. For example, for a FeatureSelectionNCAClassificationobject named mdl, you can access the Objective field using mdl.FitInfo.Objective.

Data Types: struct

Mu — Predictor means
p-by-1 vector | []

Predictor means, stored as a p-by-1 vector for standardized training data. In this case, the predict method centers predictor matrix X by subtracting the respective element of Mu from every column.

If data is not standardized during training, then Mu is empty.

Data Types: double

Sigma — Predictor standard deviations
p-by-1 vector | []

Predictor standard deviations, stored as a p-by-1 vector for standardized training data. In this case, the predict method scales predictor matrix X by dividing every column by the respective element of Sigma after centering the data using Mu.

If data is not standardized during training, then Sigma is empty.

Data Types: double

X — Predictor values
n-by-p matrix

Predictor values used to train this model, stored as an n-by-p matrix. n is the number of observations and p is the number of predictor variables in the training data.

Data Types: double

Y — Response values
numeric vector of size n
Response values used to train this model, stored as a numeric vector of size \( n \), where \( n \) is the number of observations.

Data Types: double

\( W \) — Observation weights
numeric vector of size \( n \)

Observation weights used to train this model, stored as a numeric vector of size \( n \). The sum of observation weights is \( n \).

Data Types: double

**Methods**

- **loss**
  Evaluate accuracy of learned feature weights on test data
- **predict**
  Predict responses using neighborhood component analysis (NCA) classifier
- **refit**
  Refit neighborhood component analysis (NCA) model for classification

**Examples**

**Explore FeatureSelectionNCAClassification Object**

Load the sample data.

```matlab
load ionosphere
```

The data set has 34 continuous predictors. The response variable is the radar returns, labeled as b (bad) or g (good).

Fit a neighborhood component analysis (NCA) model for classification to detect the relevant features.

```matlab
mdl = fscnca(X,Y);
```

The returned NCA model, \( mdl \), is a FeatureSelectionNCAClassification object. This object stores information about the training data, model, and optimization. You can access the object properties, such as the feature weights, using dot notation.
Plot the feature weights.

```matlab
figure()
plot(mdl.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
```

The weights of the irrelevant features are zero. The 'Verbose', 1 option in the call to fscnca displays the optimization information on the command line. You can also visualize the optimization process by plotting the objective function versus the iteration number.

```matlab
figure
plot(mdl.FitInfo.Iteration,mdl.FitInfo.Objective,'ro-')
```
The `ModelParameters` property is a `struct` that contains more information about the model. You can access the fields of this property using dot notation. For example, see if the data was standardized or not.

```matlab
mdl.ModelParameters.Standardize
ans = logical
 0
```
0 means that the data was not standardized before fitting the NCA model. You can standardize the predictors when they are on very different scales using the 'Standardize', 1 name-value pair argument in the call to fscnca.

**Copy Semantics**

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

**See Also**

fscnca | loss | predict | refit

**Topics**

Class Attributes (MATLAB)
Property Attributes (MATLAB)

**Introduced in R2016b**
FeatureSelectionNCARegression class

Feature selection for regression using neighborhood component analysis (NCA)

Description

FeatureSelectionNCARegression contains the data, fitting information, feature weights, and other model parameters of a neighborhood component analysis (NCA) model. fsrnca learns the feature weights using a diagonal adaptation of NCA and returns an instance of FeatureSelectionNCARegression object. The function achieves feature selection by regularizing the feature weights.

Construction

Create a FeatureSelectionNCAClassification object using fsrnca.

Properties

NumObservations — Number of observations in the training data

scalar

Number of observations in the training data (X and Y) after removing NaN or Inf values, stored as a scalar.

Data Types: double

ModelParameters — Model parameters

structure

Model parameters used for training the model, stored as a structure.

You can access the fields of ModelParameters using dot notation.

For example, for a FeatureSelectionNCARegression object named mdl, you can access the LossFunction value using mdl.ModelParameters.LossFunction.
Data Types: struct

**Lambda — Regularization parameter**
scalar

Regularization parameter used for training this model, stored as a scalar. For \( n \) observations, the best \( \text{Lambda} \) value that minimizes the generalization error of the NCA model is expected to be a multiple of \( 1/n \).

Data Types: double

**FitMethod — Name of the fitting method used to fit this model**
'exact' | 'none' | 'average'

Name of the fitting method used to fit this model, stored as one of the following:

- 'exact' — Perform fitting using all of the data.
- 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to \texttt{fsrnca}.
- 'average' — The software divides the data into partitions (subsets), fits each partition using the exact method, and returns the average of the feature weights. You can specify the number of partitions using the NumPartitions name-value pair argument.

**Solver — Name of the solver used to fit this model**
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Name of the solver used to fit this model, stored as one of the following:

- 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
- 'sgd' — Stochastic gradient descent (SGD) algorithm
- 'minibatch-lbfgs' — stochastic gradient descent with LBFGS algorithm applied to mini-batches

**GradientTolerance — Relative convergence tolerance on gradient norm**
positive scalar

Relative convergence tolerance on the gradient norm for the 'lbfgs' and 'minibatch-lbfgs' solvers, stored as a positive scalar value.

Data Types: double
**IterationLimit** — Maximum number of iterations for optimization
positive integer

Maximum number of iterations for optimization, stored as a positive integer value.
Data Types: double

**PassLimit** — Maximum number of passes
positive integer

Maximum number of passes for 'sgd' and 'minibatch-lbfgs' solvers. Every pass processes all of the observations in the data.
Data Types: double

**InitialLearningRate** — Initial learning rate
positive real scalar

Initial learning rate for 'sgd' and 'minibatch-lbfgs' solvers. The learning rate decays over iterations starting at the value specified for InitialLearningRate.

Use the NumTuningIterations and TuningSubsetSize to control the automatic tuning of initial learning rate in the call to fsrnca.
Data Types: double

**Verbose** — Verbosity level indicator
nonnegative integer

Verbosity level indicator, stored as a nonnegative integer. Possible values are:
- 0 — No convergence summary
- 1 — Convergence summary, including norm of gradient and objective function value
- >1 — More convergence information, depending on the fitting algorithm. When you use the 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes the iteration log from intermediate minibatch LBFGS fits.

Data Types: double

**InitialFeatureWeights** — Initial feature weights
p-by-1 vector of positive real scalars

Initial feature weights, stored as a p-by-1 vector of positive real scalars, where p is the number of predictors in X.
Data Types: double

**FeatureWeights — Feature weights**

*p*-by-1 vector of real scalar values

Feature weights, stored as a *p*-by-1 vector of real scalar values, where *p* is the number of predictors in \( X \).

For 'FitMethod' equal to 'average', FeatureWeights is a *p*-by-*m* matrix, where *m* is the number of partitions specified via the 'NumPartitions' name-value pair argument in the call to fsrnca.

The absolute value of FeatureWeights\((k)\) is a measure of the importance of predictor \( k \). If FeatureWeights\((k)\) is close to 0, then this indicates that predictor \( k \) does not influence the response in \( Y \).

Data Types: double

**FitInfo — Fit information**

structure

Fit information, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>Iteration index</td>
</tr>
<tr>
<td>Objective</td>
<td>Regularized objective function for minimization</td>
</tr>
<tr>
<td>UnregularizedObjective</td>
<td>Unregularized objective function for minimization</td>
</tr>
<tr>
<td>Gradient</td>
<td>Gradient of regularized objective function for minimization</td>
</tr>
</tbody>
</table>

- For classification, UnregularizedObjective represents the negative of the leave-one-out accuracy of the NCA classifier on the training data.
- For regression, UnregularizedObjective represents the leave-one-out loss between the true response and the predicted response when using the NCA regression model.
- For the 'lbfgs' solver, Gradient is the final gradient. For the 'sgd' and 'minibatch-lbfgs' solvers, Gradient is the final mini-batch gradient.
• If `FitMethod` is 'average', then `FitInfo` is an `m`-by-1 structure array, where `m` is the number of partitions specified via the 'NumPartitions' name-value pair argument.

You can access the fields of `FitInfo` using dot notation. For example, for a `FeatureSelectionNCARegression` object named `mdl`, you can access the `Objective` field using `mdl.FitInfo.Objective`.

Data Types: `struct`

**Mu — Predictor means**

`p`-by-1 vector | `[]`

Predictor means, stored as a `p`-by-1 vector for standardized training data. In this case, the `predict` method centers predictor matrix `X` by subtracting the respective element of `Mu` from every column.

If data is not standardized during training, then `Mu` is empty.

Data Types: `double`

**Sigma — Predictor standard deviations**

`p`-by-1 vector | `[]`

Predictor standard deviations, stored as a `p`-by-1 vector for standardized training data. In this case, the `predict` method scales predictor matrix `X` by dividing every column by the respective element of `Sigma` after centering the data using `Mu`.

If data is not standardized during training, then `Sigma` is empty.

Data Types: `double`

**X — Predictor values**

`n`-by-`p` matrix

Predictor values used to train this model, stored as an `n`-by-`p` matrix. `n` is the number of observations and `p` is the number of predictor variables in the training data.

Data Types: `double`

**Y — Response values**

numeric vector of size `n`

Response values used to train this model, stored as a numeric vector of size `n`, where `n` is the number of observations.
Data Types: double

**W — Observation weights**
numeric vector of size \( n \)

Observation weights used to train this model, stored as a numeric vector of size \( n \). The sum of observation weights is \( n \).

Data Types: double

### Methods

- **loss**  Evaluate accuracy of learned feature weights on test data
- **predict**  Predict responses using neighborhood component analysis (NCA) regression model
- **refit**  Refit neighborhood component analysis (NCA) model for regression

### Examples

**Explore FeatureSelectionNCARegression Object**

Load the sample data.

```matlab
load imports-85
```

The first 15 columns contain the continuous predictor variables, whereas the 16th column contains the response variable, which is the price of a car. Define the variables for the neighborhood component analysis model.

```matlab
Predictors = X(:,1:15);
Y = X(:,16);
```

Fit a neighborhood component analysis (NCA) model for regression to detect the relevant features.

```matlab
mdl = fsrnca(Predictors,Y);
```
The returned NCA model, mdl, is a FeatureSelectionNCARegression object. This object stores information about the training data, model, and optimization. You can access the object properties, such as the feature weights, using dot notation.

Plot the feature weights.

```matlab
figure()
plot(mdl.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
```
The weights of the irrelevant features are zero. The 'Verbose', 1 option in the call to `fsrnca` displays the optimization information on the command line. You can also visualize the optimization process by plotting the objective function versus the iteration number.

```matlab
figure()
plot(mdl.FitInfo.Iteration, mdl.FitInfo.Objective, 'ro-')
grid on
xlabel('Iteration Number')
ylabel('Objective')
```

The `ModelParameters` property is a struct that contains more information about the model. You can access the fields of this property using dot notation. For example, see if the data was standardized or not.
mdl.ModelParameters.Standardize

ans = logical
   0

0 means that the data was not standardized before fitting the NCA model. You can standardize the predictors when they are on very different scales using the 'Standardize',1 name-value pair argument in the call to fsrnca.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

See Also

fsrnca | loss | predict | refit

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b
ncfcdf

Noncentral $F$ cumulative distribution function

Syntax

$p = 	ext{ncfcdf}(x, 
u_1, 
u_2, \delta)$
$p = 	ext{ncfcdf}(x, 
u_1, 
u_2, \delta, \text{'upper'})$

Description

$p = 	ext{ncfcdf}(x, 
u_1, 
u_2, \delta)$ computes the noncentral $F$ cdf at each value in $x$ using the corresponding numerator degrees of freedom in $\nu_1$, denominator degrees of freedom in $\nu_2$, and positive noncentrality parameters in $\delta$. $\nu_1$, $\nu_2$, and $\delta$ can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of $p$. A scalar input for $x$, $\nu_1$, $\nu_2$, or $\delta$ is expanded to a constant array with the same dimensions as the other inputs.

$p = 	ext{ncfcdf}(x, 
u_1, 
u_2, \delta, \text{'upper'})$ returns the complement of the noncentral $F$ cdf at each value in $x$, using an algorithm that more accurately computes the extreme upper tail probabilities.

The noncentral $F$ cdf is

$$F(x \mid \nu_1, \nu_2, \delta) = \sum_{j=0}^{\infty} \left( \frac{1}{2} \delta \right)^j \frac{-\delta}{j!} e^{-\frac{\delta}{2}} I \left( \frac{v_1 \cdot x}{v_2 + v_1 \cdot x} \left| \frac{v_1}{2} + j, \frac{v_2}{2} \right. \right)$$

where $I(x|a,b)$ is the incomplete beta function with parameters $a$ and $b$.

Examples
Compute Noncentral F Distribution cdf

Compare the noncentral $F$ cdf with $\delta = 10$ to the $F$ cdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).

```matlab
x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')
```

![Graph comparing noncentral F cdf with δ = 10 to F cdf with the same degrees of freedom](image-url)
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | ncfinv | ncfpdf | ncfnd | ncfstat

Topics
“Noncentral F Distribution” on page B-124

Introduced before R2006a
ncfinv

Noncentral $F$ inverse cumulative distribution function

Syntax

$X = \text{ncfinv}(P, NU1, NU2, \text{DELTA})$

Description

$X = \text{ncfinv}(P, NU1, NU2, \text{DELTA})$ returns the inverse of the noncentral $F$ cdf with numerator degrees of freedom $NU1$, denominator degrees of freedom $NU2$, and positive noncentrality parameter $\text{DELTA}$ for the corresponding probabilities in $P$. $P$, $NU1$, $NU2$, and $\text{DELTA}$ can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $X$. A scalar input for $P$, $NU1$, $NU2$, or $\text{DELTA}$ is expanded to a constant array with the same dimensions as the other inputs.

Examples

One hypothesis test for comparing two sample variances is to take their ratio and compare it to an $F$ distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively, then you reject the hypothesis that the first variance is equal to the second variance if their ratio is less than that computed below.

```matlab
critical = \text{finv}(0.95, 5, 20)
critical =
 2.7109
```

Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that you would detect this difference?

```matlab
prob = 1 - \text{ncfcdf}(\text{critical}, 5, 20, 2)
prob =
 0.1297
```

If the true ratio of variances is 2, what is the typical (median) value you would expect for the $F$ statistic?
ncfinv(0.5,5,20,2)
ans =
    1.2786

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | ncfcdf | ncfpdf | ncfmrnd | ncfstat

Topics
“Noncentral F Distribution” on page B-124

Introduced before R2006a
ncfpdf

Noncentral $F$ probability density function

Syntax

$Y = \text{ncfpdf}(X, \text{NU1}, \text{NU2}, \text{DELTA})$

Description

$Y = \text{ncfpdf}(X, \text{NU1}, \text{NU2}, \text{DELTA})$ computes the noncentral $F$ pdf at each of the values in $X$ using the corresponding numerator degrees of freedom in $\text{NU1}$, denominator degrees of freedom in $\text{NU2}$, and positive noncentrality parameters in $\text{DELTA}$. $X$, $\text{NU1}$, $\text{NU2}$, and $\text{B}$ can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $Y$. A scalar input for $P$, $\text{NU1}$, $\text{NU2}$, or $\text{DELTA}$ is expanded to a constant array with the same dimensions as the other inputs.

The $F$ distribution is a special case of the noncentral $F$ where $\delta = 0$. As $\delta$ increases, the distribution flattens like the plot in the example.

Examples

Compute Noncentral $F$ Distribution pdf

Compute the pdf of a noncentral $F$ distribution with degrees of freedom $\text{NU1} = 5$ and $\text{NU2} = 20$, and noncentrality parameter $\text{DELTA} = 10$. For comparison, also compute the pdf of an $F$ distribution with the same degrees of freedom.

```plaintext
x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
```

Plot the pdf of the noncentral $F$ distribution and the pdf of the $F$ distribution on the same figure.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ncfcdf | ncfinv | ncfrnd | ncfstat | pdf

Topics
“Noncentral F Distribution” on page B-124

Introduced before R2006a
ncfrnd

Noncentral $F$ random numbers

**Syntax**

```matlab
R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,m,n,...)
R = ncfrnd(NU1,NU2,DELTA,[m,n,...])
```

**Description**

$R = \text{ncfrnd}(NU1,NU2,DELTA)$ returns a matrix of random numbers chosen from the noncentral $F$ distribution with corresponding numerator degrees of freedom in $NU1$, denominator degrees of freedom in $NU2$, and positive noncentrality parameters in $DELTA$. $NU1$, $NU2$, and $DELTA$ can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of $R$. A scalar input for $NU1$, $NU2$, or $DELTA$ is expanded to a constant matrix with the same dimensions as the other inputs.

$R = \text{ncfrnd}(NU1,NU2,DELTA,m,n,...)$ or $R = \text{ncfrnd}(NU1,NU2,DELTA,[m,n,...])$ generates an $m$-by-$n$-by-... array. The $NU1$, $NU2$, $DELTA$ parameters can each be scalars or arrays of the same size as $R$.

**Examples**

Compute six random numbers from a noncentral $F$ distribution with 10 numerator degrees of freedom, 100 denominator degrees of freedom and a noncentrality parameter, $\delta$, of 4.0. Compare this to the $F$ distribution with the same degrees of freedom.

```matlab
r = ncfrnd(10,100,4,1,6)
r =
 2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)
r1 =
 0.9826 0.5911 1.0967 0.9681 2.0096 0.6598
```
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
ncfcdf | ncfinv | ncfpdf | ncfstat | random

Topics
“Noncentral F Distribution” on page B-124

Introduced before R2006a
ncfstat

Noncentral F mean and variance

Syntax

\[ [M,V] = \text{ncfstat}(NU1,NU2,DELTA) \]

Description

\[ [M,V] = \text{ncfstat}(NU1,NU2,DELTA) \] returns the mean of and variance for the noncentral F pdf with corresponding numerator degrees of freedom in \( NU1 \), denominator degrees of freedom in \( NU2 \), and positive noncentrality parameters in \( DELTA \). \( NU1, NU2, \) and \( DELTA \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( M \) and \( V \). A scalar input for \( NU1, NU2, \) or \( DELTA \) is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral F distribution with parameters \( \nu_1, \nu_2, \) and \( \delta \) is

\[
\frac{\nu_2(\delta + \nu_1)}{\nu_1(\nu_2 - 2)}
\]

where \( \nu_2 > 2 \).

The variance is

\[
2 \left( \frac{\nu_2}{\nu_1} \right)^2 \left[ \frac{(\delta + \nu_1)^2 + (2\delta + \nu_1)(\nu_2 - 2)}{(\nu_2 - 2)^2(\nu_2 - 4)} \right]
\]

where \( \nu_2 > 4 \).

Examples

\[ [m,v] = \text{ncfstat}(10,100,4) \]
\[ m = \]
\[
\begin{align*}
v &= 1.4286 \\
0.4252
\end{align*}
\]

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**See Also**
ncfcdf | ncfinv | ncfpdf | ncfrnd

**Topics**
“Noncentral F Distribution” on page B-124

**Introduced before R2006a**
nctcdf

Noncentral t cumulative distribution function

Syntax

\[ p = \text{nctcdf}(x,\nu,\delta) \]
\[ p = \text{nctcdf}(x,\nu,\delta, 'upper') \]

Description

\[ p = \text{nctcdf}(x,\nu,\delta) \] computes the noncentral t cdf at each value in \( x \) using the corresponding degrees of freedom in \( \nu \) and noncentrality parameters in \( \delta \). \( x, \nu, \) and \( \delta \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \( p \). A scalar input for \( x, \nu, \) or \( \delta \) is expanded to a constant array with the same dimensions as the other inputs.

\[ p = \text{nctcdf}(x,\nu,\delta, 'upper') \] returns the complement of the noncentral t cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

Examples

Compute Noncentral t Distribution cdf

Compare the noncentral t cdf with \( \text{DELTA} = 1 \) to the t cdf with the same number of degrees of freedom (10).

\[ x = (-5:0.1:5)'; \]
\[ p1 = \text{nctcdf}(x,10,1); \]
\[ p = \text{tcdf}(x,10); \]
\[ \text{plot}(x,p,'-',x,p1,':') \]
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | nctinv | nctpdf | nctrnd | nctstat

Topics
“Noncentral t Distribution” on page B-127

Introduced before R2006a
nctinv

Noncentral $t$ inverse cumulative distribution function

Syntax

$X = \text{nctinv}(P,NU,DELTA)$

Description

$X = \text{nctinv}(P,NU,DELTA)$ returns the inverse of the noncentral $t$ cdf with $NU$ degrees of freedom and noncentrality parameter $DELTA$ for the corresponding probabilities in $P$. $P$, $NU$, and $DELTA$ can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $X$. A scalar input for $P$, $NU$, or $DELTA$ is expanded to a constant array with the same dimensions as the other inputs.

Examples

$x = \text{nctinv}([0.1 \ 0.2],10,1)$
$x =$
-0.2914  0.1618

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | nctcdf | nctpdf | nctrnd | nctstat

Topics
“Noncentral t Distribution” on page B-127

Introduced before R2006a
nctpdf

Noncentral $t$ probability density function

Syntax

$Y = \text{nctpdf}(X,V,\text{DELTA})$

Description

$Y = \text{nctpdf}(X,V,\text{DELTA})$ computes the noncentral $t$ pdf at each of the values in $X$ using the corresponding degrees of freedom in $V$ and noncentrality parameters in $\text{DELTA}$. Vector or matrix inputs for $X$, $V$, and $\text{DELTA}$ must have the same size, which is also the size of $Y$. A scalar input for $X$, $V$, or $\text{DELTA}$ is expanded to a constant matrix with the same dimensions as the other inputs.

Examples

Compute Noncentral $t$ Distribution pdf

Compute the pdf of a noncentral $t$ distribution with degrees of freedom $V = 10$ and noncentrality parameter $\text{DELTA} = 1$. For comparison, also compute the pdf of a $t$ distribution with the same degrees of freedom.

```matlab
x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);
```

Plot the pdf of the noncentral $t$ distribution and the pdf of the $t$ distribution on the same figure.

```matlab
plot(x,nct,'b-','LineWidth',2)
hold on
plot(x,t,'g--','LineWidth',2)
legend('nct','t')
```
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nctcdf | nctinv | nctrnd | nctstat | pdf

Topics
“Noncentral t Distribution” on page B-127

Introduced before R2006a
nctrnd

Noncentral t random numbers

Syntax

R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,m,n,...)
R = nctrnd(V,DELTA,[m,n,...])

Description

R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the noncentral T distribution using the corresponding degrees of freedom in V and noncentrality parameters in DELTA. V and DELTA can be vectors, matrices, or multidimensional arrays. A scalar input for V or DELTA is expanded to a constant array with the same dimensions as the other input.

R = nctrnd(V,DELTA,m,n,...) or R = nctrnd(V,DELTA,[m,n,...]) generates an m-by-n-by-... array. The V, DELTA parameters can each be scalars or arrays of the same size as R.

Examples

nctrnd(10,1,5,1)
ans =
  1.6576
  1.0617
  1.4491
  0.2930
  3.6297
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
nctcdf | nctinv | nctpdf | nctstat | random

Topics
“Noncentral t Distribution” on page B-127

Introduced before R2006a
**nctstat**

Noncentral $t$ mean and variance

**Syntax**

$[M,V] = \text{nctstat}(NU,\text{DELTA})$

**Description**

$[M,V] = \text{nctstat}(NU,\text{DELTA})$ returns the mean of and variance for the noncentral $t$ pdf with $NU$ degrees of freedom and noncentrality parameter $\text{DELTA}$. $NU$ and $\text{DELTA}$ can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $M$ and $V$. A scalar input for $NU$ or $\text{DELTA}$ is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral $t$ distribution with parameters $\nu$ and $\delta$ is

$$
\frac{\delta (\nu / 2)^{1/2} \Gamma((\nu - 1) / 2)}{\Gamma(\nu / 2)}
$$

where $\nu > 1$.

The variance is

$$
\frac{\nu}{(\nu - 2)} (1 + \delta^2) - \frac{\nu}{2} \delta^2 \left[ \frac{\Gamma((\nu - 1) / 2)}{\Gamma(\nu / 2)} \right]^2
$$

where $\nu > 2$.

**Examples**

$[m,v] = \text{nctstat}(10,1)$
m = 1.0837

v = 1.3255

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nctcdf | nctinv | nctpdf | nctrnd

Topics
“Noncentral t Distribution” on page B-127

Introduced before R2006a
ncx2cdf

Noncentral chi-square cumulative distribution function

Syntax

\[ p = \text{ncx2cdf}(x,v,delta) \]
\[ p = \text{ncx2cdf}(x,v,delta,'upper') \]

Description

\( p = \text{ncx2cdf}(x,v,delta) \) computes the noncentral chi-square cdf at each value in \( x \) using the corresponding degrees of freedom in \( v \) and positive noncentrality parameters in \( \delta \). \( x, v, \) and \( \delta \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( p \). A scalar input for \( x, v, \) or \( \delta \) is expanded to a constant array with the same dimensions as the other inputs.

\( p = \text{ncx2cdf}(x,v,delta,'upper') \) returns the complement of the noncentral chi-square cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

\[
F(x | v, \delta) = \sum_{j=0}^{\infty} \left( \frac{1}{2} \delta \right)^j \frac{(-\delta)^j}{j!} e^{-\frac{x}{2}} \Pr \left[ \chi^2_{v+2j} \leq x \right]
\]

Examples
Compute Noncentral Chi-Square cdf

Compare the noncentral chi-square cdf with DELTA = 2 to the chi-square cdf with the same number of degrees of freedom (4):

```matlab
x = (0:0.1:10)';
npx2 = ncx2cdf(x,4,2);
chi2 = chi2cdf(x,4);

plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2','Location','NW')
```
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | ncx2inv | ncx2pdf | ncx2rnd | ncx2stat

Topics
“Noncentral Chi-Square Distribution” on page B-121

Introduced before R2006a
ncx2inv
Noncentral chi-square inverse cumulative distribution function

Syntax
X = ncx2inv(P,V,DELTA)

Description
X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf using the corresponding degrees of freedom in V and positive noncentrality parameters in DELTA, at the corresponding probabilities in P. P, V, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of X. A scalar input for P, V, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Examples
ncx2inv([0.01 0.05 0.1],4,2)
an =
   0.4858  1.1498  1.7066

Algorithms
ncx2inv uses Newton's method to converge to the solution.

References

**See Also**
ncdf | ncx2cdf | ncx2pdf | ncx2rnd | ncx2stat

**Topics**
“Noncentral Chi-Square Distribution” on page B-121

**Introduced before R2006a**
ncx2pdf

Noncentral chi-square probability density function

Syntax

Y = ncx2pdf(X,V,DELTA)

Description

Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at each of the
values in X using the corresponding degrees of freedom in V and positive noncentrality
parameters in DELTA. Vector or matrix inputs for X, V, and DELTA must have the same
size, which is also the size of Y. A scalar input for X, V, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice
distribution.

Examples

Compute Noncentral Chi-Square Distribution pdf

Compute the pdf of a noncentral chi-square distribution with degrees of freedom V = 4
and noncentrality parameter DELTA = 2. For comparison, also compute the pdf of a chi-
square distribution with the same degrees of freedom.

x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the
chi-square distribution.

figure;
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')

References

See Also
ncx2cdf | ncx2inv | ncx2rnd | ncx2stat | pdf

Topics
“Noncentral Chi-Square Distribution” on page B-121

Introduced before R2006a
ncx2rnd

Noncentral chi-square random numbers

Syntax

R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,m,n,...)
R = ncx2rnd(V,DELTA,[m,n,...])

Description

R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the noncentral chi-square distribution using the corresponding degrees of freedom in V and positive noncentrality parameters in DELTA. V and DELTA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for V or DELTA is expanded to a constant array with the same dimensions as the other input.

R = ncx2rnd(V,DELTA,m,n,...) or R = ncx2rnd(V,DELTA,[m,n,...]) generates an m-by-n-by-... array. The V, DELTA parameters can each be scalars or arrays of the same size as R.

Examples

ncx2rnd(4,2,6,3)
ans =
   6.8552   5.9650  11.2961
   5.2631   4.2640   5.9495
   9.1939   6.7162   3.8315
  10.3100   4.4828   7.1653
   2.1142   1.9826   4.6400
   3.8852   5.3999   0.9282
References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also

ncx2cdf | ncx2inv | ncx2pdf | ncx2stat | random

Topics

“Noncentral Chi-Square Distribution” on page B-121

Introduced before R2006a
ncx2stat

Noncentral chi-square mean and variance

Syntax

\[ [M, V] = \text{ncx2stat}(\nu, \delta) \]

Description

\[ [M, V] = \text{ncx2stat}(\nu, \delta) \]
returns the mean of and variance for the noncentral chi-square pdf with \( \nu \) degrees of freedom and noncentrality parameter \( \delta \). \( \nu \) and \( \delta \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \( M \) and \( V \). A scalar input for \( \nu \) or \( \delta \) is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters \( \nu \) and \( \delta \) is \( \nu + \delta \), and the variance is \( 2(\nu + 2\delta) \).

Examples

\[ [m, v] = \text{ncx2stat}(4, 2) \]
\[
m =
\begin{array}{c}
6 \\
\end{array}
\]
\[
v =
\begin{array}{c}
16 \\
\end{array}
\]

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ncx2cdf | ncx2inv | ncx2pdf | ncx2rnd

Topics
“Noncentral Chi-Square Distribution” on page B-121

Introduced before R2006a
ndims

Class: dataset

Number of dimensions of dataset array

Note  The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

n = ndims(A)

Description

n = ndims(A) returns the number of dimensions in the dataset A. The number of dimensions in an array is always 2.

See Also

size
ndims

Class: qrandset

Number of dimensions in matrix

Syntax

n = ndims(p)

Description

n = ndims(p) returns the number of dimensions in the matrix that is created by the syntax p(:,:). Since this is always a 2-D matrix, n is always equal to 2.

See Also

qrandset | size
ne

Class: qrandstream

Not equal relation for handles

Syntax

h1  ~=  h2

Description

Handles are equal if they are handles for the same object and are unequal otherwise. 

h1  ~=  h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise ~= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.

tf = ne(h1, h2) stores the result in a logical array of the same dimensions.

See Also

eq | ge | gt | le | lt | qrandstream
negloglik

Package: prob

Negative loglikelihood of probability distribution

Syntax

nll = negloglik(pd)

Description

nll = negloglik(pd) returns the value of the negative loglikelihood function for the data used to fit the probability distribution pd.

Examples

Negative Log Likelihood for a Fitted Distribution

Load the sample data.

load carsmall

Create a Weibull distribution object by fitting it to the mile per gallon (MPG) data.

pd = fitdist(MPG,'Weibull')

pd =
    WeibullDistribution

    Weibull distribution
    A = 26.5079    [24.8333, 28.2954]
    B = 3.27193    [2.79441, 3.83104]

Compute the negative log likelihood for the fitted Weibull distribution.
wnll = negloglik(pd)
wnll = 327.4942

**Negative Loglikelihood for a Kernel Distribution**

Load the sample data. Fit a kernel distribution to the miles per gallon (MPG) data.

```matlab
load carsmall;
pd = fitdist(MPG,'Kernel')
```

```matlab
pd =
 KernelDistribution
 Kernel = normal
 Bandwidth = 4.11428
 Support = unbounded
```

Compute the negative loglikelihood.

```matlab
nll = negloglik(pd)
nll = 327.3139
```

**Input Arguments**

*pd — Probability distribution*
probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td><strong>Distribution Fitter</strong></td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>
Output Arguments

nll — Negative loglikelihood
numeric value

Negative loglikelihood value for the data used to fit the distribution, returned as a numeric value.

See Also

Distribution Fitter | fitdist | mle | paramci | proflik

Topics

“Negative Loglikelihood Functions” on page 5-30
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced in R2013a
net

Class: qrandset

Generate quasi-random point set

Syntax

X = net(p,n)

Description

X = net(p,n) returns the first n points X from the point set p of the qrandset on page 32-5254 class. X is n-by-d, where d is the dimension of the point set.

Objects p of the @qrandset class encapsulate properties of a specified quasi-random sequence. Values of the point set are not generated and stored in memory until p is accessed using net or parenthesis indexing.

Examples

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```matlab
p = haltonset(3,'Skip',1e3,'Leap',1e2)
p = Halton point set in 3 dimensions (8.918019e+013 points)
 Properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none
```

Use scramble to apply reverse-radix scrambling:

```matlab
p = scramble(p,'RR2')
p = Halton point set in 3 dimensions (8.918019e+013 points)
```
Properties:

- Skip : 1000
- Leap : 100
- ScrambleMethod : RR2

Use net to generate the first four points:

\[
X_0 = \text{net}(p, 4)
\]

\[
X_0 = \\
\begin{pmatrix}
0.0928 & 0.6950 & 0.0029 \\
0.6958 & 0.2958 & 0.8269 \\
0.3013 & 0.6497 & 0.4141 \\
0.9087 & 0.7883 & 0.2166 \\
\end{pmatrix}
\]

Use parenthesis indexing to generate every third point, up to the 11th point:

\[
X = p(1:3:11,:) 
\]

\[
X = \\
\begin{pmatrix}
0.0928 & 0.6950 & 0.0029 \\
0.9087 & 0.7883 & 0.2166 \\
0.3843 & 0.9840 & 0.9878 \\
0.6831 & 0.7357 & 0.7923 \\
\end{pmatrix}
\]

**See Also**

haltonset | qrandstream | sobolset
**nLinearCoeffs**

Number of nonzero linear coefficients

**Syntax**

```matlab
ncoeffs = nLinearCoeffs(obj)
ncoeffs = nLinearCoeffs(obj,delta)
```

**Description**

`ncoeffs = nLinearCoeffs(obj)` returns the number of nonzero linear coefficients in the linear discriminant model `obj`.

`ncoeffs = nLinearCoeffs(obj,delta)` returns the number of nonzero linear coefficients for threshold parameter `delta`.

**Input Arguments**

- **obj**
  Discriminant analysis classifier, produced using `fitcdiscr`.

- **delta**
  Scalar or vector value of the Delta parameter. See “Gamma and Delta” on page 32-4320.

**Output Arguments**

- **ncoeffs**
  Nonnegative integer, the number of nonzero coefficients in the discriminant analysis model `obj`. 
If you call `nLinearCoeffs` with a `delta` argument, `ncoeffs` is the number of nonzero linear coefficients for threshold parameter `delta`. If `delta` is a vector, `ncoeffs` is a vector with the same number of elements.

If `obj` is a quadratic discriminant model, `ncoeffs` is the number of predictors in `obj`.

**Examples**

**Find the Number of Nonzero Coefficients in a Discriminant Analysis Classifier**

Find the number of nonzero coefficients in a discriminant analysis classifier for various `Delta` values.

Create a discriminant analysis classifier from the `fisheriris` data.

```matlab
load fisheriris
obj = fitcdiscr(meas,species);
```

Find the number of nonzero coefficients in `obj`.

```matlab
ncoeffs = nLinearCoeffs(obj)
ncoeffs = 4
```

Find the number of nonzero coefficients for `delta` = 1, 2, 4, and 8.

```matlab
delta = [1 2 4 8];
ncoeffs = nLinearCoeffs(obj,delta)
ncoeffs = 4×1
 4
 4
 3
 0
```

The `DeltaPredictor` property gives the values of `delta` where the number of nonzero coefficients changes.

```matlab
ncoeffs2 = nLinearCoeffs(obj,obj.DeltaPredictor)
```
Definitions

Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, \( \gamma \) and \( \delta \), that control regularization as follows. \texttt{cvshrink} helps you select appropriate values of the parameters.

Let \( \Sigma \) represent the covariance matrix of the data \( X \), and let \( \hat{X} \) be the centered data (the data \( X \) minus the mean by class). Define

\[
D = \text{diag}(\hat{X}^T \ast \hat{X}).
\]

The regularized covariance matrix \( \hat{\Sigma} \) is

\[
\hat{\Sigma} = (1 - \gamma) \Sigma + \gamma D.
\]

Whenever \( \gamma \geq \text{MinGamma} \), \( \hat{\Sigma} \) is nonsingular.

Let \( \mu_k \) be the mean vector for those elements of \( X \) in class \( k \), and let \( \mu_0 \) be the global mean vector (the mean of the rows of \( X \)). Let \( C \) be the correlation matrix of the data \( X \), and let \( \hat{C} \) be the regularized correlation matrix:

\[
\hat{C} = (1 - \gamma)C + \gamma I,
\]

where \( I \) is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point \( x \) is

\[
(x - \mu_0)^T \tilde{\Sigma}^{-1} (\mu_k - \mu_0) = \left[ (x - \mu_0)^T D^{-1/2} \right] \left[ \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right].
\]

The parameter \( \delta \) enters into this equation as a threshold on the final term in square brackets. Each component of the vector \( \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \) is set to zero if it is smaller in magnitude than the threshold \( \delta \). Therefore, for class \( k \), if component \( j \) is thresholded to zero, component \( j \) of \( x \) does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When \( \delta \geq \text{DeltaPredictor}(i) \), all classes \( k \) have

\[
\left| \tilde{C}^{-1} D^{-1/2} (\mu_k - \mu_0) \right| \leq \delta.
\]

Therefore, when \( \delta \geq \text{DeltaPredictor}(i) \), the regularized classifier does not use predictor \( i \).

**See Also**

CompactClassificationDiscriminant | cvshrink | fitcdiscr

**Topics**

“Discriminant Analysis Classification” on page 20-2
nlinfit

Nonlinear regression

Syntax

\begin{align*}
\beta &= \text{nlinfit}(X,Y,\text{modelfun},\beta_0) \\
\beta &= \text{nlinfit}(X,Y,\text{modelfun},\beta_0,\text{options}) \\
\beta &= \text{nlinfit}(\text{__},\text{Name},\text{Value}) \\
[\beta,R,J,\text{CovB},\text{MSE},\text{ErrorModelInfo}] &= \text{nlinfit}(\text{__})
\end{align*}

Description

\(\beta = \text{nlinfit}(X,Y,\text{modelfun},\beta_0)\) returns a vector of estimated coefficients for the nonlinear regression of the responses in \(Y\) on the predictors in \(X\) using the model specified by \(\text{modelfun}\). The coefficients are estimated using iterative least squares estimation, with initial values specified by \(\beta_0\).

\(\beta = \text{nlinfit}(X,Y,\text{modelfun},\beta_0,\text{options})\) fits the nonlinear regression using the algorithm control parameters in the structure \(\text{options}\). You can return any of the output arguments in the previous syntaxes.

\(\beta = \text{nlinfit}(\text{__},\text{Name},\text{Value})\) uses additional options specified by one or more name-value pair arguments. For example, you can specify observation weights or a nonconstant error model. You can use any of the input arguments in the previous syntaxes.

\([\beta,R,J,\text{CovB},\text{MSE},\text{ErrorModelInfo}] = \text{nlinfit}(\text{__})\) additionally returns the residuals, \(R\), the Jacobian of \(\text{modelfun}\), \(J\), the estimated variance-covariance matrix for the estimated coefficients, \(\text{CovB}\), an estimate of the variance of the error term, \(\text{MSE}\), and a structure containing details about the error model, \(\text{ErrorModelInfo}\).

Examples
Nonlinear Regression Model Using Default Options

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the initial values in `beta0`.

```matlab
beta = nlinfit(X,y,@hougen,beta0)
```

```matlab
beta = 5×1
 1.2526
 0.0628
 0.0400
 0.1124
 1.1914
```

Nonlinear Regression Using Robust Options

Generate sample data from the nonlinear regression model 

\[ y = b_1 + b_2 \cdot \exp\{-b_3 x\} + \epsilon, \]

where \( b_1, b_2, \) and \( b_3 \) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.1.

```matlab
modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
```

```matlab
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.1,100,1);
```

Set robust fitting options.

```matlab
opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
```

Fit the nonlinear model using the robust fitting options.
beta0 = [2;2;2];
beta = nlinfit(x,y,modelfun,beta0,opts)
beta = 3×1
    1.0041
    3.0997
    2.1483

**Nonlinear Regression Using Observation Weights**

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a vector of known observation weights.

W = [8 2 1 6 12 9 12 10 10 12 2 10 8]';

Fit the Hougen-Watson model to the rate data using the specified observation weights.

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',W);
beta

beta = 5×1
    2.2068
    0.1077
    0.0766
    0.1818
    0.6516

Display the coefficient standard errors.

sqrt(diag(CovB))
an = 5×1
Nonlinear Regression Using Weights Function Handle

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Specify a function handle for observation weights. The function accepts the model fitted values as input, and returns a vector of weights.

```matlab
a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
```

Fit the Hougen-Watson model to the rate data using the specified observation weights function.

```matlab
[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);
beta
```

```matlab
beta = 5×1
 0.8308
 0.0409
 0.0251
 0.0801
 1.8261
```

Display the coefficient standard errors.

```matlab
sqrt(diag(CovB))
```

```matlab
ans = 5×1
```
Nonlinear Regression Using Nonconstant Error Model

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the combined error model.

```matlab
[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');
```

beta

```
beta = 5×1

1.2526
0.0628
0.0400
0.1124
1.1914
```

Display the error model information.

ErrorModelInfo

```
ErrorModelInfo = struct with fields:
 ErrorModel: 'combined'
 ErrorParameters: [0.1517 5.6783e-08]
 ErrorVariance: [function_handle]
 MSE: 1.6245
 ScheffeSimPred: 6
 WeightFunction: 0
 FixedWeights: 0
```
**Input Arguments**

**X — Predictor variables**

matrix

Predictor variables for the nonlinear regression function, specified as a matrix. Typically, X is a design matrix of predictor (independent variable) values, with one row for each value in Y, and one column for each predictor. However, X can be any array that modelfun can accept.

Data Types: single | double

**Y — Response values**

vector

Response values (dependent variable) for fitting the nonlinear regression function, specified as a vector with the same number of rows as X.

Data Types: single | double

**modelfun — Nonlinear regression model function**

function handle

Nonlinear regression model function, specified as a function handle. modelfun must accept two input arguments, a coefficient vector and an array X—in that order—and return a vector of fitted response values.

For example, to specify the hougen nonlinear regression function, use the function handle @hougen.

Data Types: function_handle

**beta0 — Initial coefficient values**

vector

Initial coefficient values for the least squares estimation algorithm, specified as a vector.

**Note** Poor starting values can lead to a solution with large residual error.
Data Types: single | double

options — Estimation algorithm options
structure created using statset

Estimation algorithm options, specified as a structure you create using statset. The following statset parameters are applicable to nlinfit.

DerivStep — Relative difference for finite difference gradient
eps^(1/3) (default) | positive scalar value | vector

Relative difference for the finite difference gradient calculation, specified as a positive scalar value, or a vector the same size as beta. Use a vector to specify a different relative difference for each coefficient.

Display — Level of output display
'off' (default) | 'iter' | 'final'

Level of output display during estimation, specified as one of 'off', 'iter', or 'final'. If you specify 'iter', output is displayed at each iteration. If you specify 'final', output is displayed after the final iteration.

FunValCheck — Indicator for whether to check for invalid values
'on' (default) | 'off'

Indicator for whether to check for invalid values such as NaN or Inf from the objective function, specified as 'on' or 'off'.

MaxIter — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as a positive integer. Iterations continue until estimates are within the convergence tolerance, or the maximum number of iterations specified by MaxIter is reached.

RobustWgtFun — Weight function
character vector | string scalar | function handle | []

Weight function for robust fitting, specified as a valid character vector, string scalar, or function handle.

Note RobustWgtFun must have value [] when you use observation weights, W.
The following table describes the possible character vectors and string scalars. Let $r$ denote normalized residuals and $w$ denote robust weights. The indicator function $I[x]$ is equal to 1 if the expression $x$ is true, and 0 otherwise.

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>' '(default)'</code></td>
<td>No robust fitting</td>
<td>—</td>
</tr>
<tr>
<td><code>'andrews'</code></td>
<td>$w = I[</td>
<td>r</td>
</tr>
<tr>
<td><code>'bisquare'</code></td>
<td>$w = I[</td>
<td>r</td>
</tr>
<tr>
<td><code>'cauchy'</code></td>
<td>$w = \frac{1}{1 + r^2}$</td>
<td>2.385</td>
</tr>
<tr>
<td><code>'fair'</code></td>
<td>$w = \frac{1}{1 +</td>
<td>r</td>
</tr>
<tr>
<td><code>'huber'</code></td>
<td>$w = \frac{1}{\max(1,</td>
<td>r</td>
</tr>
<tr>
<td><code>'logistic'</code></td>
<td>$w = \tanh(r) / r$</td>
<td>1.205</td>
</tr>
<tr>
<td><code>'talwar'</code></td>
<td>$w = I[</td>
<td>r</td>
</tr>
<tr>
<td><code>'welsch'</code></td>
<td>$w = \exp[-r^2]$</td>
<td>2.985</td>
</tr>
</tbody>
</table>

You can alternatively specify a function handle that accepts a vector of normalized residuals as input, and returns a vector of robust weights as output. If you use a function handle, you must provide a `Tune` constant.

**Tune — Tuning constant**

*positive scalar value*

Tuning constant for robust fitting, specified as a positive scalar value. The tuning constant is used to normalize residuals before applying a robust weight function. The default tuning constant depends on the function specified by `RobustWgtFun`. 

32-4329
If you use a function handle to specify `RobustWgtFun`, then you must specify a value for `Tune`.

**TolFun — Termination tolerance on residual sum of squares**
1e-8 (default) | positive scalar value

Termination tolerance for the residual sum of squares, specified as a positive scalar value. Iterations continue until estimates are within the convergence tolerance, or the maximum number of iterations specified by `MaxIter` is reached.

**TolX — Termination tolerance on estimated coefficients**
1e-8 (default) | positive scalar value

Termination tolerance on the estimated coefficients, `beta`, specified as a positive scalar value. Iterations continue until estimates are within the convergence tolerance, or the maximum number of iterations specified by `MaxIter` is reached.

**Robust — Indicator for robust fitting**
'off' (default) | 'on'

Indicator for robust fitting, specified as 'off' or 'on'.

**Note** Robust will be removed in a future software release. Use `RobustWgtFun` for robust fitting.

**WgtFun — Weight function for robust fitting**
character vector | string scalar | function handle

Weight function for robust fitting, specified as a character vector or string scalar indicating a weight function, or a function handle. `WgtFun` is valid only when `Robust` has value 'on'.

**Note** `WgtFun` will be removed in a future software release. Use `RobustWgtFun` instead.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
You can specify several name and value pair arguments in any order as 
Name1,Value1,...,NameN,ValueN.

Example: 'ErrorModel','proportional','ErrorParameters',0.5 specifies a 
proportional error model, with initial value 0.5 for the error parameter estimation

**ErrorModel — Form of error term**
'constant' (default) | 'proportional' | 'combined'

Form of the error term, specified as the comma-separated pair consisting of
'ErrorModel' and 'constant', 'proportional', or 'combined' indicating the 
error model. Each model defines the error using a standard mean-zero and unit-variance 
variable e in combination with independent components: the function value f, and one or 
two parameters a and b.

'constant' (default) 
\[ y = f + ae \]

'proportional'  
\[ y = f + bfe \]

'combined'  
\[ y = f + (a + b|f|)e \]

The only allowed error model when using Weights is 'constant'.

**Note** options.RobustWgtFun must have value [] when using an error model other 
than 'constant'.

**ErrorParameters — Initial estimates for error model parameters**
1 or [1,1] (default) | scalar value | two-element vector

Initial estimates for the error model parameters in the chosen ErrorModel, specified as 
the comma-separated pair consisting of 'ErrorParameters' and a scalar value or two-
element vector.

<table>
<thead>
<tr>
<th>Error Model</th>
<th>Parameters</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>'proportional'</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>'combined'</td>
<td>a, b</td>
<td>[1,1]</td>
</tr>
</tbody>
</table>
For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for a and the starting value 2 for b as follows.

Example: 'ErrorParameters',[1,2]

You can only use the 'constant' error model when using Weights.

**Note** options.RobustWgtFun must have value [] when using an error model other than 'constant'.

Data Types: double | single

**Weights — Observation weights**

vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of real positive weights or a function handle. You can use observation weights to down-weight the observations that you want to have less influence on the fitted model.

- If W is a vector, then it must be the same size as Y.
- If W is a function handle, then it must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

**Note** options.RobustWgtFun must have value [] when you use observation weights.

Data Types: double | single | function_handle

**Output Arguments**

**beta — Estimated regression coefficients**

vector

Estimated regression coefficients, returned as a vector. The number of elements in beta equals the number of elements in beta0.
Let \( f(X_i, b) \) denote the nonlinear function specified by `modelfun`, where \( x_i \) are the predictors for observation \( i, i = 1, \ldots, N \), and \( b \) are the regression coefficients. The vector of coefficients returned in `beta` minimizes the weighted least squares equation,

\[
\sum_{i=1}^{N} w_i [y_i - f(x_i, b)]^2.
\]

For unweighted nonlinear regression, all of the weight terms are equal to 1.

**R — Residuals**

vector

Residuals for the fitted model, returned as a vector.

- If you specify observation weights using the name-value pair argument `Weights`, then `R` contains weighted residuals on page 32-4334.
- If you specify an error model other than `'constant'` using the name-value pair argument `ErrorModel`, then you can no longer interpret `R` as model fit residuals.

**J — Jacobian**

matrix

Jacobian of the nonlinear regression model, `modelfun`, returned as an \( N \)-by-\( p \) matrix, where \( N \) is the number of observations and \( p \) is the number of estimated coefficients.

- If you specify observation weights using the name-value pair argument `Weights`, then `J` is the weighted model function Jacobian on page 32-4335.
- If you specify an error model other than `'constant'` using the name-value pair argument `ErrorModel`, then you can no longer interpret `J` as the model function Jacobian.

**CovB — Estimated variance-covariance matrix**

matrix

Estimated variance-covariance matrix for the fitted coefficients, \( \beta \), returned as a \( p \)-by-\( p \) matrix, where \( p \) is the number of estimated coefficients. If the model Jacobian, \( J \), has full column rank, then \( \text{CovB} = \text{inv}(J' * J) * \text{MSE} \), where MSE is the mean squared error.

**MSE — Mean squared error**

scalar value
Mean squared error (MSE) of the fitted model, returned as a scalar value. MSE is an estimate of the variance of the error term. If the model Jacobian, J, has full column rank, then \( \text{MSE} = (R' * R) / (N - p) \), where \( N \) is the number of observations, and \( p \) is the number of estimated coefficients.

**ErrorModelInfo — Information about error model fit structure**

Information about the error model fit, returned as a structure with the following fields:

- **ErrorModel**: Chosen error model
- **ErrorParameters**: Estimated error parameters
- **ErrorVariance**: Function handle that accepts an \( N \)-by-\( p \) matrix, \( X \), and returns an \( N \)-by-1 vector of error variances using the estimated error model
- **MSE**: Mean squared error
- **ScheffeSimPred**: Schéffé parameter for simultaneous prediction intervals when using the estimated error model
- **WeightFunction**: Logical with value true if you used a custom weight function previously in `nlinfit`
- **FixedWeights**: Logical with value true if you used fixed weights previously in `nlinfit`
- **RobustWeightFunction**: Logical with value true if you used robust fitting previously in `nlinfit`

**Definitions**

**Weighted Residuals**

A weighted residual is a residual multiplied by the square root of the corresponding observation weight.

Given estimated regression coefficients, \( \mathbf{b} \), the residual for observation \( i \) is

\[
r_i = y_i - f(x_i, \mathbf{b}),
\]
where $y_i$ is the observed response and $f(x_i, b)$ is the fitted response at predictors $x_i$.

When you fit a weighted nonlinear regression with weights $w_i, i = 1,...,N$, `nlinfit` returns the weighted residuals,

$$r^*_i = \sqrt{w_i} (y_i - f(x_i, b)).$$

**Weighted Model Function Jacobian**

The weighted model function Jacobian is the nonlinear model Jacobian multiplied by the square root of the observation weight matrix.

Given estimated regression coefficients, $b$, the estimated model Jacobian, $J$, for the nonlinear function $f(x_i, b)$ has elements

$$J_{ij} = \frac{\partial f(x_i, b)}{\partial b_j},$$

where $b_j$ is the $j$th element of $b$.

When you fit a weighted nonlinear regression with diagonal weights matrix $W$, `nlinfit` returns the weighted Jacobian matrix,

$$J^* = W^{1/2}J.$$ 

**Tips**

- To produce error estimates on predictions, use the optional output arguments $R$, $J$, $CovB$, or $MSE$ as inputs to `nlpredci`.
- To produce error estimates on the estimated coefficients, $beta$, use the optional output arguments $R$, $J$, $CovB$, or $MSE$ as inputs to `nlparci`.
- If you use the robust fitting option, `RobustWgtFun`, you must use $CovB$—and might need $MSE$—as inputs to `nlpredci` or `nlparci` to ensure that the confidence intervals take the robust fit properly into account.
Algorithms

- `nlinfit` treats NaN values in Y or `modelfun(beta0,X)` as missing data, and ignores the corresponding observations.
- For nonrobust estimation, `nlinfit` uses the Levenberg-Marquardt nonlinear least squares algorithm [1].
- For robust estimation, `nlinfit` uses an iterative reweighted least squares algorithm ([2], [3]). At each iteration, the robust weights are recalculated based on each observation’s residual from the previous iteration. These weights downweight outliers, so that their influence on the fit is decreased. Iterations continue until the weights converge.
- When you specify a function handle for observation weights, the weights depend on the fitted model. In this case, `nlinfit` uses an iterative generalized least squares algorithm to fit the nonlinear regression model.

References


See Also

fitnlm|nlintool|nlparci|nlpredci

Topics

“Nonlinear Regression” on page 13-2

Introduced before R2006a
nlintool

Interactive nonlinear regression

Syntax

nlintool(X,y,fun,beta0)
nlintool(X,y,fun,beta0,alpha)
nlintool(X,y,fun,beta0,alpha,'xname','yname')

Description

nlintool(X,y,fun,beta0) is a graphical user interface to the nlinfit function, and uses the same input arguments. The interface displays plots of the fitted response against each predictor, with the other predictors held fixed. The fixed values are in the text boxes below each predictor axis. Change the fixed values by typing in a new value or by dragging the vertical lines in the plots to new positions. When you change the value of a predictor, all plots update to display the model at the new point in predictor space. Dashed red curves show 95% simultaneous confidence bands for the function.

nlintool(X,y,fun,beta0,alpha) shows 100(1-alpha)% confidence bands. These are simultaneous confidence bounds for the function value. Using the Bounds menu you can switch between simultaneous and non-simultaneous bounds, and between bounds on the function and bounds for predicting a new observation.

nlintool(X,y,fun,beta0,alpha,'xname','yname') labels the plots using the character matrix or string array 'xname' for the predictors and the character vector or string scalar 'yname' for the response.

Examples

The data in reaction.mat are partial pressures of three chemical reactants and the corresponding reaction rates. The function hougen implements the nonlinear Hougén-Watson model for reaction rates. The following fits the model to the data:
load reaction
nlintool(reactants, rate, @hougen, beta, 0.01, xn, yn)

See Also
nlinfit | polytool | rstool

Introduced before R2006a
nlmefit

Nonlinear mixed-effects estimation

Syntax

beta = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0,'Name',value)

Description

beta = nlmefit(X,y,group,V,fun,beta0) fits a nonlinear mixed-effects regression model and returns estimates of the fixed effects in beta. By default, nlmefit fits a model in which each parameter is the sum of a fixed and a random effect, and the random effects are uncorrelated (their covariance matrix is diagonal).

X is an n-by-h matrix of n observations on h predictors.

y is an n-by-1 vector of responses.

group is a grouping variable indicating m groups in the observations. group is a categorical variable, a numeric vector, a character matrix with rows for group names, a string array, or a cell array of character vectors. For more information on grouping variables, see “Grouping Variables” on page 2-57.

V is an m-by-g matrix or cell array of g group-specific predictors. These are predictors that take the same value for all observations in a group. The rows of V are assigned to groups using grp2idx, according to the order specified by grp2idx(group). Use a cell array for V if group predictors vary in size across groups. Use [] for V if there are no group-specific predictors.

fun is a handle to a function that accepts predictor values and model parameters and returns fitted values. fun has the form

yfit = modelfun(PHI,XFUN,VFUN)
The arguments are:

- **PHI** — A 1-by-$p$ vector of model parameters.
- **XFUN** — A $k$-by-$h$ array of predictors, where:
  - $k = 1$ if XFUN is a single row of $X$.
  - $k = n_i$ if XFUN contains the rows of $X$ for a single group of size $n_i$.
  - $k = n$ if XFUN contains all rows of $X$.
- **VFUN** — Group-specific predictors given by one of:
  - A 1-by-$g$ vector corresponding to a single group and a single row of $V$.
  - An $n$-by-$g$ array, where the $j$th row is $V(I, :)$ if the $j$th observation is in group $I$.

If $V$ is empty, nlmefit calls modelfun with only two inputs.

- **yfit** — A $k$-by-1 vector of fitted values

When either PHI or VFUN contains a single row, it corresponds to all rows in the other two input arguments.

**Note** If modelfun can compute yfit for more than one vector of model parameters per call, use the 'Vectorization' parameter (described later) for improved performance.

`beta0` is a $q$-by-1 vector with initial estimates for $q$ fixed effects. By default, $q$ is the number of model parameters $p$.

nlmefit fits the model by maximizing an approximation to the marginal likelihood with random effects integrated out, assuming that:

- Random effects are multivariate normally distributed and independent between groups.
- Observation errors are independent, identically normally distributed, and independent of the random effects.

`[beta, PSI] = nlmefit(X, y, group, V, fun, beta0)` also returns PSI, an $r$-by-$r$ estimated covariance matrix for the random effects. By default, $r$ is equal to the number of model parameters $p$.

`[beta, PSI, stats] = nlmefit(X, y, group, V, fun, beta0)` also returns stats, a structure with fields:
- **dfe** — The error degrees of freedom for the model
- **logl** — The maximized loglikelihood for the fitted model
- **rmse** — The square root of the estimated error variance (computed on the log scale for the exponential error model)
- **errorparam** — The estimated parameters of the error variance model
- **aic** — The Akaike information criterion, calculated as $\text{aic} = -2 \times \text{logl} + 2 \times \text{numParam}$, where $\text{numParam}$ is the number of fitting parameters, including the degree of freedom for covariance matrix of the random effects, the number of fixed effects and the number of parameters of the error model, and $\text{logl}$ is a field in the $\text{stats}$ structure
- **bic** — The Bayesian information criterion, calculated as $\text{bic} = -2 \times \text{logl} + \log(M) \times \text{numParam}$
  - $M$ is the number of groups.
  - $\text{numParam}$ and $\text{logl}$ are defined as in $\text{aic}$.

Note that some literature suggests that the computation of $\text{bic}$ should be $\text{bic} = -2 \times \text{logl} + \log(N) \times \text{numParam}$, where $N$ is the number of observations.

- **covb** — The estimated covariance matrix of the parameter estimates
- **sebeta** — The standard errors for $\beta$
- **ires** — The population residuals $(y - y_{\text{population}})$, where $y_{\text{population}}$ is the individual predicted values
- **pres** — The population residuals $(y - y_{\text{population}})$, where $y_{\text{population}}$ is the population predicted values
- **iwres** — The individual weighted residuals
- **pwres** — The population weighted residuals
- **cwres** — The conditional weighted residuals

$[\text{beta}, \text{PSI}, \text{stats}, B] = \text{nlmefit}(X, y, \text{group}, V, \text{fun}, \text{beta0})$ also returns $B$, an $r$-by-$m$ matrix of estimated random effects for the $m$ groups. By default, $r$ is equal to the number of model parameters $p$.

$[\text{beta}, \text{PSI}, \text{stats}, B] = \text{nlmefit}(X, y, \text{group}, V, \text{fun}, \text{beta0}, 'Name', value)$ specifies one or more optional parameter name/value pairs. Specify $Name$ inside single quotes.

Use the following parameters to fit a model different from the default. (The default model is obtained by setting both FEConstDesign and REConstDesign to $\text{eye}(p)$, or by
setting both \texttt{FEParamsSelect} and \texttt{REParamsSelect} to 1:p.) Use at most one parameter with an 'FE' prefix and one parameter with an 'RE' prefix. The \texttt{nlmefit} function requires you to specify at least one fixed effect and one random effect.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{FEParamsSelect}</td>
<td>A vector specifying which elements of the parameter vector \texttt{PHI} include a fixed effect, given as a numeric vector of indices from 1 to (p) or as a 1-by-(p) logical vector. If (q) is the specified number of elements, then the model includes (q) fixed effects.</td>
</tr>
<tr>
<td>\texttt{FEConstDesign}</td>
<td>A (p)-by-(q) design matrix \texttt{ADESIGN}, where \texttt{ADESIGN*beta} are the fixed components of the (p) elements of \texttt{PHI}.</td>
</tr>
<tr>
<td>\texttt{FEGroupDesign}</td>
<td>A (p)-by-(q)-by-(m) array specifying a different (p)-by-(q) fixed-effects design matrix for each of the (m) groups.</td>
</tr>
<tr>
<td>\texttt{FEObsDesign}</td>
<td>A (p)-by-(q)-by-(n) array specifying a different (p)-by-(q) fixed-effects design matrix for each of the (n) observations.</td>
</tr>
<tr>
<td>\texttt{REParamsSelect}</td>
<td>A vector specifying which elements of the parameter vector \texttt{PHI} include a random effect, given as a numeric vector of indices from 1 to (p) or as a 1-by-(p) logical vector. The model includes (r) random effects, where (r) is the specified number of elements.</td>
</tr>
<tr>
<td>\texttt{REConstDesign}</td>
<td>A (p)-by-(r) design matrix \texttt{BDESIGN}, where \texttt{BDESIGN*B} are the random components of the (p) elements of \texttt{PHI}.</td>
</tr>
<tr>
<td>\texttt{REGroupDesign}</td>
<td>A (p)-by-(r)-by-(m) array specifying a different (p)-by-(r) random-effects design matrix for each of the (m) groups.</td>
</tr>
<tr>
<td>\texttt{REObsDesign}</td>
<td>A (p)-by-(r)-by-(n) array specifying a different (p)-by-(r) random-effects design matrix for each of the (n) observations.</td>
</tr>
</tbody>
</table>

Use the following parameters to control the iterative algorithm for maximizing the likelihood:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefineBeta0</td>
<td>Determines whether nlmefit makes an initial refinement of beta0 by first fitting modelfun without random effects and replacing beta0 with beta. Choices are 'on' and 'off'. The default value is 'on'.</td>
</tr>
<tr>
<td>ErrorModel</td>
<td>A character vector or string scalar specifying the form of the error term. Default is 'constant'. Each model defines the error using a standard normal (Gaussian) variable e, the function value f, and one or two parameters a and b. Choices are:</td>
</tr>
<tr>
<td></td>
<td>• 'constant': ( y = f + a*e )</td>
</tr>
<tr>
<td></td>
<td>• 'proportional': ( y = f + b<em>f</em>e )</td>
</tr>
<tr>
<td></td>
<td>• 'combined': ( y = f + (a+b*f)*e )</td>
</tr>
<tr>
<td></td>
<td>• 'exponential': ( y = f*\exp(a<em>e) ), or equivalently ( \log(y) = \log(f) + a</em>e )</td>
</tr>
<tr>
<td></td>
<td>If this parameter is given, the output stats.errorparam field has the value</td>
</tr>
<tr>
<td></td>
<td>• a for 'constant' and 'exponential'</td>
</tr>
<tr>
<td></td>
<td>• b for 'proportional'</td>
</tr>
<tr>
<td></td>
<td>• [a b] for 'combined'</td>
</tr>
<tr>
<td>ApproximationType</td>
<td>The method used to approximate the likelihood of the model. Choices are:</td>
</tr>
<tr>
<td></td>
<td>• 'LME' — Use the likelihood for the linear mixed-effects model at the current conditional estimates of beta and B. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• 'RELME' — Use the restricted likelihood for the linear mixed-effects model at the current conditional estimates of beta and B.</td>
</tr>
<tr>
<td></td>
<td>• 'FO' — First-order Laplacian approximation without random effects.</td>
</tr>
<tr>
<td></td>
<td>• 'FOCE' — First-order Laplacian approximation at the conditional estimates of B.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------</td>
</tr>
<tr>
<td>Vectorization</td>
<td>Indicates acceptable sizes for the PHI, XFUN, and VFUN input arguments to modelfun. Choices are:</td>
</tr>
<tr>
<td></td>
<td>• 'SinglePhi' — modelfun can only accept a single set of model parameters at a time, so PHI must be a single row vector in each call. nlmefit calls modelfun in a loop, if necessary, with a single PHI vector and with XFUN containing rows for a single observation or group at a time. VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• 'SingleGroup' — modelfun can only accept inputs corresponding to a single group in the data, so XFUN must contain rows of X from a single group in each call. Depending on the model, PHI is a single row that applies to the entire group or a matrix with one row for each observation. VFUN is a single row.</td>
</tr>
<tr>
<td></td>
<td>• 'Full' — modelfun can accept inputs for multiple parameter vectors and multiple groups in the data. Either PHI or VFUN may be a single row that applies to all rows of XFUN or a matrix with rows corresponding to rows in XFUN. This option can improve performance by reducing the number of calls to modelfun, but may require modelfun to perform singleton expansion on PHI or V.</td>
</tr>
<tr>
<td>CovParameterization</td>
<td>Specifies the parameterization used internally for the scaled covariance matrix. Choices are 'chol' for the Cholesky factorization or 'logm' the matrix logarithm. The default is 'logm'.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CovPattern</td>
<td>Specifies an $r$-by-$r$ logical or numeric matrix $P$ that defines the pattern of the random-effects covariance matrix $PSI$. $nlmefit$ estimates the variances along the diagonal of $PSI$ and the covariances specified by nonzeros in the off-diagonal elements of $P$. Covariances corresponding to zero off-diagonal elements in $P$ are constrained to be zero. If $P$ does not specify a row-column permutation of a block diagonal matrix, $nlmefit$ adds nonzero elements to $P$ as needed. The default value of $P$ is $\text{eye}(r)$, corresponding to uncorrelated random effects. Alternatively, $P$ may be a 1-by-$r$ vector containing values in $1:r$, with equal values specifying groups of random effects. In this case, $nlmefit$ estimates covariances only within groups, and constrains covariances across groups to be zero.</td>
</tr>
</tbody>
</table>
| ParamTransform  | A vector of $p$-values specifying a transformation function $f()$ for each of the $P$ parameters: $XB = ADESIGN*BETA + BDESIGN*B PHI = f(XB)$. Each element of the vector must be one of the following integer codes specifying the transformation for the corresponding value of PHI:  
  - 0: $PHI = XB$ (default for all parameters)  
  - 1: $\log(PHI) = XB$  
  - 2: $\text{probit}(PHI) = XB$  
  - 3: $\text{logit}(PHI) = XB$ |
### Options

A structure of the form returned by `statset.nlmefit` uses the following `statset` parameters:

- **'DerivStep'** — Relative difference used in finite difference gradient calculation. May be a scalar, or a vector whose length is the number of model parameters \( p \). The default is \( \text{eps}^{(1/3)} \).
- **'Display'** — Level of iterative display during estimation. Choices are:
  - 'off' (default) — Displays no information
  - 'final' — Displays information after the final iteration
  - 'iter' — Displays information at each iteration
- **'FunValCheck'** — Check for invalid values, such as NaN or Inf, from `modelfun`. Choices are 'on' and 'off'. The default is 'on'.
- **'MaxIter'** — Maximum number of iterations allowed. The default is 200.
- **'OutputFcn'** — Function handle specified using @, a cell array with function handles or an empty array (default). The solver calls all output functions after each iteration.
- **'TolFun'** — Termination tolerance on the loglikelihood function. The default is \( 1 \times 10^{-4} \).
- **'TolX'** — Termination tolerance on the estimated fixed and random effects. The default is \( 1 \times 10^{-4} \).

### OptimFun

Specifies the optimization function used in maximizing the likelihood. Choices are 'fminsearch' to use `fminsearch` or 'fminunc' to use `fminunc`. The default is 'fminsearch'. You can specify 'fminunc' only if Optimization Toolbox software is installed.
Examples

Nonlinear Mixed-Effects Model

Enter and display data on the growth of five orange trees.

CIRC = [30 58 87 115 120 142 145; 33 69 111 156 172 203 203; 30 51 75 115 139 140; 32 62 112 167 179 209 214; 30 49 81 125 142 174 177];
time = [118 484 664 1004 1231 1372 1582];

h = plot(time,CIRC,'o','LineWidth',2);
xlabel('Time (days)')
ylabel('Circumference (mm)')
title('{\bf Orange Tree Growth}')
legend([repmat('Tree ',5,1),num2str((1:5))],...
  'Location','NW')
grid on
hold on
Use an anonymous function to specify a logistic growth model.

\[
\text{model} = @(\text{PHI},t)(\text{PHI}(:,1))/(1+\exp(-((t-\text{PHI}(:,2))/\text{PHI}(:,3))));
\]

Fit the model using \texttt{nlmefit} with default settings (that is, assuming each parameter is the sum of a fixed and a random effect, with no correlation among the random effects):

\[
\text{TIME} = \text{repmat(time,5,1)};
\]
\[
\text{NUMS} = \text{repmat}((1:5)',\text{size(time)});
\]

\[
\text{beta0} = [100 100 100];
\]
\[
[\text{beta1,PSII,stats1}] = \text{nlmefit}\text{(TIME(:,),CIRC(:,),NUMS(:,),...}
\]
\[
[],\text{model,}\text{beta0})
\]
beta1 = 3×1

191.3189
723.7608
346.2517

PSI1 = 3×3

962.1535         0         0
0    0.0000         0
0         0  297.9880

stats1 = struct with fields:
    dfe: 28
    logl: -131.5457
    mse: 59.7882
    rmse: 7.9016
    errorparam: 7.7323
    aic: 277.0913
    bic: 274.3574
    covb: [3x3 double]
    sebeta: [15.2249 33.1579 26.8235]
    ires: [35x1 double]
    pres: [35x1 double]
    iwres: [35x1 double]
    pwres: [35x1 double]
    cwres: [35x1 double]

The negligible variance of the second random effect, PSI1(2,2), suggests that it can be removed to simplify the model.

[beta2,PSI2,stats2,b2] = nlmefit(TIME(:),CIRC(:),...
    NUMS(:),[],model,beta0,'REParamsSelect',[1 3])

beta2 = 3×1

191.3193
723.7629
346.2532

PSI2 = 2×2
The loglikelihood `logl` is unaffected, and both the Akaike and Bayesian information criteria (`aic` and `bic`) are reduced, supporting the decision to drop the second random effect from the model.

Use the estimated fixed effects in `beta2` and the estimated random effects for each tree in `b2` to plot the model through the data.

```matlab
PHI = repmat(beta2,1,5) + ... % Fixed effects
 [b2(1,:);zeros(1,5);b2(2,:)]; % Random effects

for I = 1:5
 fitted_model=@(t)(PHI(1,I))./(1+exp(-(t-PHI(2,I))./ ...
 PHI(3,I)));
 plot(tplot,fitted_model(tplot),'Color',h(I).Color, ...
 'LineWidth',2)
end
```
References


**See Also**

nlinfit | nlme | nlmefitsa | nlpredci

**Topics**

“Mixed-Effects Models” on page 13-22
“Grouping Variables” on page 2-57

**Introduced in R2008b**
nlmefitsa

Fit nonlinear mixed-effects model with stochastic EM algorithm

Syntax

\[
[BETA, PSI, STATS, B] = nlmefitsa(X, Y, GROUP, V, MODELFUN, BETA0)
\]

\[
[BETA, PSI, STATS, B] = nlmefitsa(X, Y, GROUP, V, MODELFUN, BETA0, 'Name', Value)
\]

Description

\[
[BETA, PSI, STATS, B] = nlmefitsa(X, Y, GROUP, V, MODELFUN, BETA0)
\]
fits a nonlinear mixed-effects regression model and returns estimates of the fixed effects in BETA. By default, nlmefitsa fits a model where each model parameter is the sum of a corresponding fixed and random effect, and the covariance matrix of the random effects is diagonal, i.e., uncorrelated random effects.

The BETA, PSI, and other values this function returns are the result of a random (Monte Carlo) simulation designed to converge to the maximum likelihood estimates of the parameters. Because the results are random, it is advisable to examine the plot of simulation to results to be sure that the simulation has converged. It may also be helpful to run the function multiple times, using multiple starting values, or use the 'Replicates' parameter to perform multiple simulations.

\[
[BETA, PSI, STATS, B] = nlmefitsa(X, Y, GROUP, V, MODELFUN, BETA0, 'Name', Value)
\]
accepts one or more comma-separated parameter name/value pairs. Specify Name inside single quotes.

Input Arguments

Definitions:

In the following list of arguments, the following variable definitions apply:
• $n$ — number of observations
• $h$ — number of predictor variables
• $m$ — number of groups
• $g$ — number of group-specific predictor variables
• $p$ — number of parameters
• $f$ — number of fixed effects

**X**

An $n$-by-$h$ matrix of $n$ observations on $h$ predictor variables.

**Y**

An $n$-by-1 vector of responses.

**GROUP**

A grouping variable indicating to which of $m$ groups each observation belongs. `GROUP` can be a categorical variable, a numeric vector, a character matrix with rows for group names, a string array, or a cell array of character vectors.

**V**

An $m$-by-$g$ matrix of $g$ group-specific predictor variables for each of the $m$ groups in the data. These are predictor values that take on the same value for all observations in a group. Rows of $V$ are ordered according to `GRP2IDX(GROUP)`. Use an $m$-by-$g$ cell array for $V$ if any of the group-specific predictor values vary in size across groups. Specify [] for $V$ if there are no group predictors.

**MODELFUN**

A handle to a function that accepts predictor values and model parameters, and returns fitted values. `MODELFUN` has the form $YFIT = MODELFUN(PHI, XFUN, VFUN)$ with input arguments

• $PHI$ — A 1-by-$p$ vector of model parameters.
• $XFUN$ — An $l$-by-$h$ array of predictor variables where
  • $l$ is 1 if $XFUN$ is a single row of $X$
  • $l$ is $n_i$ if $XFUN$ contains the rows of $X$ for a single group of size $n_i$
• \( l \) is \( n \) if \( X\text{FUN} \) contains all rows of \( X \).
• \( V\text{FUN} \) — Either
  • A 1-by-\( g \) vector of group-specific predictors for a single group, corresponding to a single row of \( V \)
  • An \( n \)-by-\( g \) matrix, where the \( k \)-th row of \( V\text{FUN} \) is \( V(i,:) \) if the \( k \)-th observation is in group \( i \).

If \( V \) is empty, \texttt{nlmefitsa} calls \texttt{MODELFUN} with only two inputs.

\texttt{MODELFUN} returns an \( l \)-by-1 vector of fitted values \( Y\text{FIT} \). When either \( \text{PHI} \) or \( V\text{FUN} \) contains a single row, that one row corresponds to all rows in the other two input arguments. For improved performance, use the 'Vectorization' parameter name/value pair (described below) if \texttt{MODELFUN} can compute \( Y\text{FIT} \) for more than one vector of model parameters in one call.

\texttt{BETA0}

An \( f \)-by-1 vector with initial estimates for the \( f \) fixed effects. By default, \( f \) is equal to the number of model parameters \( p \). \texttt{BETA0} can also be an \( f \)-by-\( \text{REPS} \) matrix, and the estimation is repeated \( \text{REPS} \) times using each column of \texttt{BETA0} as a set of starting values.

\textbf{Name-Value Pair Arguments}

By default, \texttt{nlmefitsa} fits a model where each model parameter is the sum of a corresponding fixed and random effect. Use the following parameter name/value pairs to fit a model with a different number of or dependence on fixed or random effects. Use at most one parameter name with an 'FE' prefix and one parameter name with an 'RE' prefix. Note that some choices change the way \texttt{nlmefitsa} calls \texttt{MODELFUN}, as described further below.

\texttt{FEParamsSelect}

A vector specifying which elements of the model parameter vector \( \text{PHI} \) include a fixed effect, as a numeric vector with elements in \( 1:p \), or as a 1-by-\( p \) logical vector. The model will include \( f \) fixed effects, where \( f \) is the specified number of elements.

\texttt{FEConstDesign}

A \( p \)-by-\( f \) design matrix \( \text{ADesign} \), where \( \text{ADesign} \times \text{BETA} \) are the fixed components of the \( p \) elements of \( \text{PHI} \).
FEGroupDesign
A p-by-f-by-m array specifying a different p-by-f fixed effects design matrix for each of the m groups.

REParamsSelect
A vector specifying which elements of the model parameter vector PHI include a random effect, as a numeric vector with elements in 1:p, or as a 1-by-p logical vector. The model will include r random effects, where r is the specified number of elements.

REConstDesign
A p-by-r design matrix BDESIGN, where BDESIGN*B are the random components of the p elements of PHI. This matrix must consist of 0s and 1s, with at most one 1 per row.

The default model is equivalent to setting both FEConstDesign and REConstDesign to eye(p), or to setting both FEParamsSelect and REParamsSelect to 1:p.

Additional optional parameter name/value pairs control the iterative algorithm used to maximize the likelihood:

CovPattern
Specifies an r-by-r logical or numeric matrix PAT that defines the pattern of the random effects covariance matrix PSI. nlmefitsa computes estimates for the variances along the diagonal of PSI as well as covariances that correspond to non-zeroes in the off-diagonal of PAT. nlmefitsa constrains the remaining covariances, i.e., those corresponding to off-diagonal zeroes in PAT, to be zero. PAT must be a row-column permutation of a block diagonal matrix, and nlmefitsa adds non-zero elements to PAT as needed to produce such a pattern. The default value of PAT is eye(r), corresponding to uncorrelated random effects.

Alternatively, specify PAT as a 1-by-r vector containing values in 1:r. In this case, elements of PAT with equal values define groups of random effects, nlmefitsa estimates covariances only within groups, and constrains covariances across groups to be zero.

Cov0
Initial value for the covariance matrix PSI. Must be an r-by-r positive definite matrix. If empty, the default value depends on the values of BETA0.
**ComputeStdErrors**

true to compute standard errors for the coefficient estimates and store them in the output STATS structure, or false (default) to omit this computation.

**ErrorModel**

A character vector or string scalar specifying the form of the error term. Default is 'constant'. Each model defines the error using a standard normal (Gaussian) variable $e$, the function value $f$, and one or two parameters $a$ and $b$. Choices are

- 'constant' — $y = f + a e$
- 'proportional' — $y = f + b f e$
- 'combined' — $y = f + (a + b f) e$
- 'exponential' — $y = f \exp(a e)$, or equivalently $\log(y) = \log(f) + a e$

If this parameter is given, the output STATS.errorparam field has the value

- $a$ for 'constant' and 'exponential'
- $b$ for 'proportional'
- $[a \ b]$ for 'combined'

**ErrorParameters**

A scalar or two-element vector specifying starting values for parameters of the error model. This specifies the $a$, $b$, or $[a \ b]$ values depending on the ErrorModel parameter.

**LogLikMethod**

Specifies the method for approximating the loglikelihood. Choices are:

- 'is' — Importance sampling
- 'gq' — Gaussian quadrature
- 'lin' — Linearization
- 'none' — Omit the loglikelihood approximation (default)

**NBurnIn**

Number of initial burn-in iterations during which the parameter estimates are not recomputed. Default is 5.
NChains

Number \( c \) of "chains" simulated. Default is 1. Setting \( c > 1 \) causes \( c \) simulated coefficient vectors to be computed for each group during each iteration. Default depends on the data, and is chosen to provide about 100 groups across all chains.

NIterations

Number of iterations. This can be a scalar or a three-element vector. Controls how many iterations are performed for each of three phases of the algorithm:

1. simulated annealing
2. full step size
3. reduced step size

Default is \([150 \ 150 \ 100]\). A scalar is distributed across the three phases in the same proportions as the default.

NMCMCIterations

Number of Markov Chain Monte Carlo (MCMC) iterations. This can be a scalar or a three-element vector. Controls how many of three different types of MCMC updates are performed during each phase of the main iteration:

1. full multivariate update
2. single coordinate update
3. multiple coordinate update

Default is \([2 \ 2 \ 2]\). A scalar value is treated as a three-element vector with all elements equal to the scalar.

OptimFun

Either 'fminsearch' or 'fminunc', specifying the optimization function to be used during the estimation process. Default is 'fminsearch'. Use of 'fminunc' requires Optimization Toolbox.

Options

A structure created by a call to statset. nlmefitsa uses the following statset parameters:
• 'DerivStep' — Relative difference used in finite difference gradient calculation. May be a scalar, or a vector whose length is the number of model parameters p. The default is eps^(1/3).

• Display — Level of display during estimation.
  • 'off' (default) — Displays no information
  • 'final' — Displays information after the final iteration of the estimation algorithm
  • 'iter' — Displays information at each iteration

• FunValCheck
  • 'on' (sdefault) — Check for invalid values (such as NaN or Inf) from MODELFUN
  • 'off' — Skip this check

• OutputFcn — Function handle specified using @, a cell array with function handles or an empty array. nlmefitsa calls all output functions after each iteration. See nlmefitoutputfcn.m (the default output function for nlmefitsa) for an example of an output function.

**ParamTransform**

A vector of p-values specifying a transformation function f() for each of the p parameters:

\[
XB = ADESIGN*BETA + BDESIGN*B \\
PHI = f(XB)
\]

Each element of the vector must be one of the following integer codes specifying the transformation for the corresponding value of PHI:

• 0: PHI = XB (default for all parameters)
• 1: log(PHI) = XB
• 2: probit(PHI) = XB
• 3: logit(PHI) = XB

**Replicates**

Number REPS of estimations to perform starting from the starting values in the vector BETA0. If BETA0 is a matrix, REPS must match the number of columns in BETA0. Default is the number of columns in BETA0.
Vectorization

Determines the possible sizes of the PHI, XFUN, and VFUN input arguments to MODELFUN. Possible values are:

- 'SinglePhi' — MODELFUN is a function (such as an ODE solver) that can only compute YFIT for a single set of model parameters at a time, i.e., PHI must be a single row vector in each call. nlmefitsa calls MODELFUN in a loop if necessary using a single PHI vector and with XFUN containing rows for a single observation or group at a time. VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN.

- 'SingleGroup' — MODELFUN can only accept inputs corresponding to a single group in the data, i.e., XFUN must contain rows of X from a single group in each call. Depending on the model, PHI is a single row that applies to the entire group, or a matrix with one row for each observation. VFUN is a single row.

- 'Full' — MODELFUN can accept inputs for multiple parameter vectors and multiple groups in the data. Either PHI or VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN. Using this option can improve performance by reducing the number of calls to MODELFUN, but may require MODELFUN to perform singleton expansion on PHI or V.

The default for 'Vectorization' is 'SinglePhi'. In all cases, if V is empty, nlmefitsa calls MODELFUN with only two inputs.

Output Arguments

BETA

Estimates of the fixed effects

PSI

An r-by-r estimated covariance matrix for the random effects. By default, r is equal to the number of model parameters p.

STATS

A structure with the following fields:
• logl — The maximized loglikelihood for the fitted model; empty if the LogLikMethod parameter has its default value of 'none'

• rmse — The square root of the estimated error variance (computed on the log scale for the exponential error model)

• errorparam — The estimated parameters of the error variance model

• aic — The Akaike information criterion (empty if logl is empty), calculated as \( \text{aic} = -2 \times \text{logl} + 2 \times \text{numParam} \), where

  • logl is the maximized loglikelihood.

  • numParam is the number of fitting parameters, including the degree of freedom for covariance matrix of the random effects, the number of fixed effects and the number of parameters of the error model.

• bic — The Bayesian information criterion (empty if logl is empty), calculated as \( \text{bic} = -2 \times \text{logl} + \log(M) \times \text{numParam} \)

  • M is the number of groups.

  • logl and numParam are defined as in aic.

Note that some literature suggests that the computation of bic should be \( \text{bic} = -2 \times \text{logl} + \log(N) \times \text{numParam} \), where N is the number of observations. To adjust the value of the output you can redefine bic as follows: \( \text{bic} = \text{bic} - \text{numel(\text{unique(\text{group}))} + \text{numel(Y)} \)

• sebeta — The standard errors for BETA (empty if the ComputeStdErrors parameter has its default value of false)

• covb — The estimated covariance of the parameter estimates (empty if ComputeStdErrors is false)

• dfe — The error degrees of freedom

• pres — The population residuals \((y - y\_population)\), where \(y\_population\) is the population predicted values

• ires — The population residuals \((y - y\_population)\), where \(y\_population\) is the individual predicted values

• pwres — The population weighted residuals

• cwres — The conditional weighted residuals

• iwres — The individual weighted residuals
Examples

Nonlinear Mixed-Effects Model with Stochastic EM Algorithm

Load the sample data.

load indomethacin

Fit a model to data on concentrations of the drug indomethacin in the bloodstream of six subjects over eight hours.

model = @(phi,t)(phi(:,1).*exp(-phi(:,2).*t)+phi(:,3).*exp(-phi(:,4).*t));
phi0 = [1 1 1 1];
xform = [0 1 0 1]; % log transform for 2nd and 4th parameters
[beta,PSI,stats,br] = nlmefitsa(time,concentration,...
subject,[],model,phi0,'ParamTransform',xform)

beta =

0.8563
-0.7950
2.7744
1.0772

PSI =

0.0529  0     0     0
0     0.0220  0     0
0     0     0.4762  0
0     0     0     0.0120

stats =

struct with fields:

    logl: []
    aic: []
    bic: []
    sebeta: []
    dfe: 57
covb: []
errorparam: 0.0809
rmse: 0.0775
ires: [66x1 double]
pres: [66x1 double]
iwres: [66x1 double]
pwres: [66x1 double]
cwres: [66x1 double]

br =

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2255</td>
<td>0.0063</td>
<td>0.1600</td>
<td>0.1773</td>
<td>-0.3269</td>
<td>0.1157</td>
</tr>
<tr>
<td>0.0350</td>
<td>-0.1384</td>
<td>0.0058</td>
<td>0.0431</td>
<td>0.0093</td>
<td>-0.0453</td>
</tr>
<tr>
<td>-0.7557</td>
<td>-0.0550</td>
<td>0.8736</td>
<td>-0.7875</td>
<td>0.5304</td>
<td>0.1727</td>
</tr>
<tr>
<td>-0.0010</td>
<td>-0.0198</td>
<td>0.0137</td>
<td>-0.0757</td>
<td>0.0478</td>
<td>-0.0076</td>
</tr>
</tbody>
</table>
Plot the data along with an overall population fit

```matlab
clf
phi = [beta(1), exp(beta(2)), beta(3), exp(beta(4))];
h = gscatter(time,concentration,subject);
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
xx = linspace(0,8);
line(xx,model(phi,xx),'linewidth',2,'color','k')
```
Plot individual curves based on random-effect estimates.

```matlab
for j=1:6
 phir = [beta(1)+br(1,j), exp(beta(2)+br(2,j)), ...
 beta(3)+br(3,j), exp(beta(4)+br(4,j))];
 line(xx,model(phir,xx),'color',get(h(j),'color'))
end
```
Algorithms

In order to estimate the parameters of a nonlinear mixed effects model, we would like to choose the parameter values that maximize a likelihood function. These values are called the maximum likelihood estimates. The likelihood function can be written in the form

\[ p(y | \beta, \sigma^2, \Sigma) = \int p(y | \beta, \sigma^2) p(b | \Sigma) \, db \]

where
• $y$ is the response data
• $\beta$ is the vector of population coefficients
• $\sigma^2$ is the residual variance
• $\Sigma$ is the covariance matrix for the random effects
• $b$ is the set of unobserved random effects

Each $p()$ function on the right-hand-side is a normal (Gaussian) likelihood function that may depend on covariates.

Since the integral does not have a closed form, it is difficult to find parameters that maximize it. Delyon, Lavielle, and Moulines [1] proposed to find the maximum likelihood estimates using an Expectation-Maximization (EM) algorithm in which the E step is replaced by a stochastic procedure. They called their algorithm SAEM, for Stochastic Approximation EM. They demonstrated that this algorithm has desirable theoretical properties, including convergence under practical conditions and convergence to a local maximum of the likelihood function. Their proposal involves three steps:

1 Simulation: Generate simulated values of the random effects $b$ from the posterior density $p(b|\Sigma)$ given the current parameter estimates.
2 Stochastic approximation: Update the expected value of the loglikelihood function by taking its value from the previous step, and moving part way toward the average value of the loglikelihood calculated from the simulated random effects.
3 Maximization step: Choose new parameter estimates to maximize the loglikelihood function given the simulated values of the random effects.

References


See Also

nlinfit | nlmefit | nlpredci
Topics
“Mixed-Effects Models” on page 13-22
“Grouping Variables” on page 2-57

Introduced in R2010a
nlparci

Nonlinear regression parameter confidence intervals

Syntax

ci = nlparci(beta,resid,'covar',sigma)
ci = nlparci(beta,resid,'jacobian',J)
ci = nlparci(...,'alpha',alpha)

Description

$\text{ci} = \text{nlparci}(\text{beta}, \text{resid}, '\text{covar}', \text{sigma})$ returns the 95% confidence intervals $\text{ci}$ for the nonlinear least squares parameter estimates $\text{beta}$. Before calling $\text{nlparci}$, use $\text{nlinfit}$ to fit a nonlinear regression model and get the coefficient estimates $\text{beta}$, residuals $\text{resid}$, and estimated coefficient covariance matrix $\text{sigma}$.

$\text{ci} = \text{nlparci}(\text{beta}, \text{resid}, '\text{jacobian}', \text{J})$ is an alternative syntax that also computes 95% confidence intervals. $\text{J}$ is the Jacobian computed by $\text{nlinfit}$. If the 'robust' option is used with $\text{nlinfit}$, use the 'covar' input rather than the 'jacobian' input so that the required $\text{sigma}$ parameter takes the robust fitting into account.

$\text{ci} = \text{nlparci}(..., '\text{alpha}', \text{alpha})$ returns $100(1-\alpha)\%$ confidence intervals.

$\text{nlparci}$ treats NaNs in $\text{resid}$ or $\text{J}$ as missing values, and ignores the corresponding observations.

The confidence interval calculation is valid for systems where the length of $\text{resid}$ exceeds the length of $\text{beta}$ and $\text{J}$ has full column rank. When $\text{J}$ is ill-conditioned, confidence intervals may be inaccurate.
Examples

Fit to exponential decay

Suppose you have data, and want to fit a model of the form

\[ y_i = a_1 + a_2 \exp(-a_3 x_i) + \varepsilon_i. \]

Here the \( a_i \) are the parameters you want to estimate, \( x_i \) are the data points, the \( y_i \) are the responses, and the \( \varepsilon_i \) are noise terms.

1. Write a function handle that represents the model:

   \[
   \text{mdl} = @(a,x)(a(1) + a(2)*\exp(-a(3)*x));
   \]

2. Generate synthetic data with parameters \( a = [1;3;2] \), with the \( x \) data points distributed exponentially with parameter 2, and normally distributed noise with standard deviation 0.1:

   \[
   \text{rng}(9845,'twister') \text{ for reproducibility}
   \]
   \[
   a = [1;3;2];
   \]
   \[
   x = \text{exprnd}(2,100,1);
   \]
   \[
   \text{epsn} = \text{normrnd}(0,0.1,100,1);
   \]
   \[
   y = \text{mdl}(a,x) + \text{epsn};
   \]

3. Fit the model to data starting from the arbitrary guess \( a_0 = [2;2;2] \):

   \[
   a0 = [2;2;2];
   \]
   \[
   [\text{ahat},r,J,\text{cov},\text{mse}] = \text{nlinfit}(x,y,\text{mdl},a0);
   \]
   \[
   \text{ahat}
   \]
   \[
   \begin{array}{c}
   1.0153 \\
   3.0229 \\
   2.1070
   \end{array}
   \]

4. Check whether \([1;3;2]\) is in a 95% confidence interval using the Jacobian argument in nlparci:

   \[
   \text{ci} = \text{nlparci}(\text{ahat},r,'\text{Jacobian}',J)
   \]

   \[
   \begin{array}{cccc}
   0.9869 & 1.0438 \\
   2.9401 & 3.1058 \\
   1.9963 & 2.2177
   \end{array}
   \]
You can obtain the same result using the covariance argument:

```matlab
ci = nlparci(ahat,r,'covar',cov)
```

```matlab
ci =
 0.9869 1.0438
 2.9401 3.1058
 1.9963 2.2177
```

**See Also**
nlinfit | nlpredci

**Introduced before R2006a**
nlpredci

Nonlinear regression prediction confidence intervals

Syntax

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB)
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value)

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J)
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value)

Description

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB) returns predictions, Ypred, and 95% confidence interval half-widths, delta, for the nonlinear regression model modelfun at input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated coefficients, beta, residuals, R, and variance-covariance matrix, CovB.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value) uses additional options specified by one or more name-value pair arguments.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J) returns predictions, Ypred, and 95% confidence interval half-widths, delta, for the nonlinear regression model modelfun at input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated coefficients, beta, residuals, R, and Jacobian, J.

If you use a robust option with nlinfit, then you should use the Covar syntax rather than the Jacobian syntax. The variance-covariance matrix, CovB, is required to properly take the robust fitting into account.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value) uses additional options specified by one or more name-value pair arguments.
Examples

Confidence Interval for Nonlinear Regression Curve

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the initial values in `beta0`.

```matlab
[beta,R,J] = nlinfit(X,y,@hougen,beta0);
```

Obtain the predicted response and 95% confidence interval half-width for the value of the curve at average reactant levels.

```matlab
[ypred,delta] = nlpredci(@hougen,mean(X),beta,R,'Jacobian',J)
```

```matlab
ypred = 5.4622
delta = 0.1921
```

Compute the 95% confidence interval for the value of the curve.

```matlab
[ypred-delta,ypred+delta]
ans = 1×2
 5.2702 5.6543
```

Prediction Interval for New Observation

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```
Fit the Hougen-Watson model to the rate data using the initial values in beta0.

\[
[beta, R, J] = \text{nlinfit}(X, y, @hougen, beta0);
\]

Obtain the predicted response and 95% prediction interval half-width for a new observation with reactant levels \([100, 100, 100]\).

\[
[y_{\text{pred}}, \delta] = \text{nlpredci}(\text{hougen}, [100, 100, 100], beta, R, '\text{Jacobian}', J, ...
'\text{PredOpt}', '\text{observation}')
\]

\[
y_{\text{pred}} = 1.8346
\]
\[
\delta = 0.5101
\]

Compute the 95% prediction interval for the new observation.

\[
[y_{\text{pred}} - \delta, y_{\text{pred}} + \delta]
\]

\[
\text{ans} = 1\times2
\]

\[
1.3245  \quad 2.3447
\]

### Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model \(y = b_1 + b_2 \cdot \exp\{b_3 x\} + \epsilon\), where \(b_1, b_2, \text{ and } b_3\) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5.

\[
\text{modelfun} = @(b,x)(b(1)+b(2)*\exp(-b(3)*x));
\]

\[
\text{rng('default') } \% \text{ for reproducibility}
\]
\[
b = [1;3;2];
\]
\[
x = \text{exprnd}(2,100,1);
\]
\[
y = \text{modelfun}(b,x) + \text{normrnd}(0,0.5,100,1);
\]

Fit the nonlinear model using robust fitting options.

\[
\text{opts} = \text{statset('nlinfit')};
\]
\[
\text{opts.RobustWgtFun} = '\text{bisquare'};
\]
\[
beta0 = [2;2;2];
\]
\[
[beta, R, J, \text{CovB}, \text{MSE}] = \text{nlinfit}(x, y, \text{modelfun}, beta0, opts);
\]
Plot the fitted regression model and simultaneous 95% confidence bounds.

```matlab
xrange = min(x):.01:max(x);
[ypred,delta] = nlpredci(modelfun,xrange,beta,R,'Covar',CovB,...
 'MSE',MSE,'SimOpt','on');
lower = ypred - delta;
upper = ypred + delta;

figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,[lower;upper],'r--','LineWidth',1.5)
```
**Confidence Interval Using Observation Weights**

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Specify a function handle for observation weights, then fit the Hougen-Watson model to the rate data using the specified observation weights function.

```matlab
a = 1; b = 1;
weights = @(yhat) 1 ./ ((a + b*abs(yhat)).^2);
[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);
```

Compute the 95% prediction interval for a new observation with reactant levels `[100,100,100]` using the observation weight function.

```matlab
[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
 'PredOpt','observation','Weights',weights);
[ypred-delta,ypred+delta]
ans = 1×2
 1.5264 2.1033
```

**Confidence Interval Using Nonconstant Error Model**

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the combined error variance model.

```matlab
[beta,R,J,CovB,MSE,S] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');
```
Compute the 95% prediction interval for a new observation with reactant levels [100, 100, 100] using the fitted error variance model.

```matlab
[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
 'PredOpt','observation','ErrorModelInfo',S);
[ypred-delta,ypred+delta]
ans = 1×2
 1.3245 2.3447
```

### Input Arguments

**modelfun** — Nonlinear regression model function
function handle

Nonlinear regression model function, specified as a function handle. `modelfun` must accept two input arguments, a coefficient vector and an array `X`—in that order—and return a vector of fitted response values.

For example, to specify the `hougen` nonlinear regression function, use the function handle `@hougen`.

Data Types: `function_handle`

**X** — Input values for predictions
matrix

Input values for predictions, specified as a matrix. `nlpredci` makes a prediction for the covariates in each row of `X`. There should be a column in `X` for each coefficient in the model.

Data Types: `single` | `double`

**beta** — Estimated regression coefficients
vector returned by `nlinfit`

Estimated regression coefficients, specified as the vector of fitted coefficients returned by a previous call to `nlinfit`.

Data Types: `single` | `double`
**R — Residuals**
vector returned by `nlinfit`

Residuals for the fitted `modelfun`, specified as the vector of residuals returned by a previous call to `nlinfit`.

**CovB — Estimated variance-covariance matrix**
matrix returned by `nlinfit`

Estimated variance-covariance matrix for the fitted coefficients, `beta`, specified as the variance-covariance matrix returned by a previous call to `nlinfit`.

**J — Estimated Jacobian**
matrix returned by `nlinfit`

Estimated Jacobian of the nonlinear regression model, `modelfun`, specified as the Jacobian matrix returned by a previous call to `nlinfit`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Alpha',0.1,'PredOpt','observation'` specifies 90% prediction intervals for new observations.

**Alpha — Significance level**
0.05 (default) | scalar value in the range (0,1)

Significance level for the confidence interval, specified as the comma-separated pair consisting of `'Alpha'` and a scalar value in the range (0,1). If `Alpha` has value $\alpha$, then `nlpredci` returns intervals with $100 \times (1-\alpha)$% confidence level.

The default confidence level is 95% ($\alpha = 0.05$).

Example: `'Alpha',0.1`

Data Types: `single` | `double`

**ErrorModelInfo — Information about error model fit**
structure returned by `nlinfit`
Information about the error model fit, specified as the comma-separated pair consisting of 'ErrorModelInfo' and a structure returned by a previous call to nlinfit.

ErrorModelInfo only has an effect on the returned prediction interval when PredOpt has the value 'observation'. If you do not use ErrorModelInfo, then nlpredci assumes the error variance model is 'constant'.

The error model structure returned by nlinfit has the following fields:

- **ErrorModel**: Chosen error model
- **ErrorParameters**: Estimated error parameters
- **ErrorVariance**: Function handle that accepts an \( N \times p \) matrix, \( X \), and returns an \( N \times 1 \) vector of error variances using the estimated error model
- **MSE**: Mean squared error
- **ScheffeSimPred**: Schéffé parameter for simultaneous prediction intervals when using the estimated error model
- **WeightFunction**: Logical with value true if you used a custom weight function previously in nlinfit
- **FixedWeights**: Logical with value true if you used fixed weights previously in nlinfit
- **RobustWeightFunction**: Logical with value true if you used robust fitting previously in nlinfit

**MSE — Mean squared error**

MSE returned by nlinfit

Mean squared error (MSE) for the fitted nonlinear regression model, specified as the comma-separated pair consisting of 'MSE' and the MSE value returned by a previous call to nlinfit.

If you use a robust option with nlinfit, then you must specify the MSE when predicting new observations to properly take the robust fitting into account. If you do not specify the MSE, then nlpredci computes the MSE from the residuals, \( R \), and does not take the robust fitting into account.

For example, if \( \text{mse} \) is the MSE value returned by nlinfit, then you can specify 'MSE', \( \text{mse} \).

Data Types: single | double
**PredOpt — Prediction interval to compute**
'curve' (default) | 'observation'

Prediction interval to compute, specified as the comma-separated pair consisting of 'PredOpt' and either 'curve' or 'observation'.

- If you specify the value 'curve', then `nlpredci` returns confidence intervals for the estimated curve (function value) at the observations X.
- If you specify the value 'observation', then `nlpredci` returns prediction intervals for new observations at X.

If you specify 'observation' after using a robust option with `nlinfit`, then you must also specify a value for `MSE` to provide the robust estimate of the mean squared error.

Example: 'PredOpt', 'observation'

**SimOpt — Indicator for specifying simultaneous bounds**
'off' (default) | 'on'

Indicator for specifying simultaneous bounds, specified as the comma-separated pair consisting of 'SimOpt' and either 'off' or 'on'. Use the value 'off' to compute nonsimultaneous bounds, and 'on' for simultaneous bounds.

**Weights — Observation weights**
vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of positive scalar values or a function handle. The default is no weights.

- If you specify a vector of weights, then it must have the same number of elements as the number of observations (rows) in X.
- If you specify a function handle for the weights, then it must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, W, `nlpredci` estimates the error variance at observation i by $\text{mse} \times (1/W(i))$, where `mse` is the mean squared error value specified using `MSE`.

Example: 'Weights', @WFun

Data Types: double | single | function_handle
Output Arguments

**Ypred — Predicted responses**
vector

Predicted responses, returned as a vector with the same number of rows as `X`.

**delta — Confidence interval half-widths**
vector

Confidence interval half-widths, returned as a vector with the same number of rows as `X`. By default, `delta` contains the half-widths for nonsimultaneous 95% confidence intervals for `modelfun` at the observations in `X`. You can compute the lower and upper bounds of the confidence intervals as `Ypred - delta` and `Ypred + delta`, respectively.

If 'PredOpt' has value 'observation', then `delta` contains the half-widths for prediction intervals of new observations at the values in `X`.

Definitions

Confidence Intervals for Estimable Predictions

When the estimated model Jacobian is not of full rank, then it might not be possible to construct sensible confidence intervals at all prediction points. In this case, `nlpredci` still tries to construct confidence intervals for any estimable prediction points.

For example, suppose you fit the linear function \( f(x, \beta) = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} \) at the points in the design matrix

\[
X = \begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
\end{pmatrix}
\]
The estimated Jacobian at the values in \( X \) is the design matrix itself, \( J = X \). Thus, the Jacobian is not of full rank:

```matlab
rng('default') % For reproducibility
y = randn(6,1);
linfun = @(b,x) x*b;
beta0 = [1;1;1];
X = [repmat([1 1 0],3,1); repmat([1 0 1],3,1)];
[beta,R,J] = nlinfit(X,y,linfun,beta0);
```

Warning: The Jacobian at the solution is ill-conditioned, and some model parameters may not be estimated well (they are not identifiable). Use caution in making predictions.

In this example, `nlpredci` can only compute prediction intervals at points that satisfy the linear relationship

\[ x_{i1} = x_{i2} + x_{i3}. \]

If you try to compute confidence intervals for predictions at nonidentifiable points, `nlpredci` returns `NaN` for the corresponding interval half-widths:

```matlab
xpred = [1 1 1;0 1 -1;2 1 1];
[ypred,delta] = nlpredci(linfun,xpred,beta,R,'Jacobian',J)
```

```
ypred =
 -0.0035
 0.0798
 -0.0047

delta =
 NaN
 3.8102
 3.8102
```

Here, the first element of `delta` is `NaN` because the first row in `xpred` does not satisfy the required linear dependence, and is therefore not an estimable contrast.
**Tips**

- To compute confidence intervals for complex parameters or data, you need to split the problem into its real and imaginary parts. When calling `nlinfit`:

1. Define your parameter vector `beta` as the concatenation of the real and imaginary parts of the original parameter vector.
2. Concatenate the real and imaginary parts of the response vector `Y` as a single vector.
3. Modify your model function `modelfun` to accept `X` and the purely real parameter vector, and return a concatenation of the real and imaginary parts of the fitted values.

With the problem formulated this way, `nlinfit` computes real estimates, and confidence intervals are feasible.

**Algorithms**

- `nlpredci` treats NaN values in the residuals, `R`, or the Jacobian, `J`, as missing values, and ignores the corresponding observations.
- If the Jacobian, `J`, does not have full column rank, then some of the model parameters might be nonidentifiable. In this case, `nlpredci` tries to construct confidence intervals for estimable predictions on page 32-4381, and returns NaN for those that are not.

**References**


**See Also**

`NonLinearModel` | `nlinfit` | `nlparci`
Introduced before R2006a
nnmf

Nonnegative matrix factorization

Syntax

\[ [W,H] = \text{nnmf}(A,k) \]
\[ [W,H] = \text{nnmf}(A,k,\text{param1, val1, param2, val2, ...}) \]
\[ [W,H,D] = \text{nnmf}(...) \]

Description

\[ [W,H] = \text{nnmf}(A,k) \] factors the nonnegative \( n \)-by-\( m \) matrix \( A \) into nonnegative factors \( W \) (\( n \)-by-\( k \)) and \( H \) (\( k \)-by-\( m \)). The factorization is not exact; \( W*H \) is a lower-rank approximation to \( A \). The factors \( W \) and \( H \) are chosen to minimize the root-mean-squared residual \( D \) between \( A \) and \( W*H \):

\[ D = \frac{\text{norm}(A-W*H,'fro')}{\sqrt{N*M}} \]

The factorization uses an iterative method starting with random initial values for \( W \) and \( H \). Because the root-mean-squared residual \( D \) may have local minima, repeated factorizations may yield different \( W \) and \( H \). Sometimes the algorithm converges to a solution of lower rank than \( k \), which may indicate that the result is not optimal.

\( W \) and \( H \) are normalized so that the rows of \( H \) have unit length. The columns of \( W \) are ordered by decreasing length.

\[ [W,H] = \text{nnmf}(A,k,\text{param1, val1, param2, val2, ...}) \] specifies optional parameter name/value pairs from the following table.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'algorithm'</td>
<td>Either 'als' (the default) to use an alternating least-squares algorithm, or 'mult' to use a multiplicative update algorithm. In general, the 'als' algorithm converges faster and more consistently. The 'mult' algorithm is more sensitive to initial values, which makes it a good choice when using 'replicates' to find W and H from multiple random starting values.</td>
</tr>
<tr>
<td>'w0'</td>
<td>An n-by-k matrix to be used as the initial value for W.</td>
</tr>
<tr>
<td>'h0'</td>
<td>A k-by-m matrix to be used as the initial value for H.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>'options'</td>
<td>An options structure as created by the <code>statset</code> function. <code>nnmf</code> uses the following fields of the options structure:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Display — Level of display. Choices:</td>
<td></td>
</tr>
<tr>
<td>• 'off' (default) — No display</td>
<td></td>
</tr>
<tr>
<td>• 'final' — Display final result</td>
<td></td>
</tr>
<tr>
<td>• 'iter' — Iterative display of intermediate results</td>
<td></td>
</tr>
<tr>
<td>MaxIter — Maximum number of iterations. Default is 100. Unlike in optimization settings, reaching MaxIter iterations is treated as convergence.</td>
<td></td>
</tr>
<tr>
<td>TolFun — Termination tolerance on change in size of the residual. Default is 1e-4.</td>
<td></td>
</tr>
<tr>
<td>TolX — Termination tolerance on relative change in the elements of W and H. Default is 1e-4.</td>
<td></td>
</tr>
<tr>
<td>UseParallel — Set to true to compute in parallel. Default is false.</td>
<td></td>
</tr>
<tr>
<td>UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.</td>
<td></td>
</tr>
<tr>
<td>Streams — A RandStream object or cell array of such objects. If you do not specify Streams, <code>nnmf</code> uses the default stream or streams. If you choose to specify Streams, use a single object except in the case</td>
<td></td>
</tr>
<tr>
<td>• You have an open Parallel pool</td>
<td></td>
</tr>
<tr>
<td>• UseParallel is true</td>
<td></td>
</tr>
<tr>
<td>• UseSubstreams is false</td>
<td></td>
</tr>
</tbody>
</table>

In that case, use a cell array the same size as the Parallel pool.

To compute in parallel, you need Parallel Computing Toolbox.
### Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'replicates'</td>
<td>The number of times to repeat the factorization, using new random starting values for $W$ and $H$, except at the first replication if 'w0' and 'h0' are given. This is most beneficial with the 'mult' algorithm. The default is 1.</td>
</tr>
</tbody>
</table>

$[W,H,D] = \text{nnmf}(\ldots)$ also returns $D$, the root mean square residual.

### Examples

#### Nonnegative Rank-Two Approximation and Biplot

Load the sample data.

```matlab
clear all
load fisheriris
```

Compute a nonnegative rank-two approximation of the measurements of the four variables in Fisher's iris data.

```matlab
rng(1) \% For reproducibility
[W,H] = nnmf(meas,2);
```

```matlab
H
```

```
H = 2x4

0.6945 0.2856 0.6220 0.2218
0.8020 0.5683 0.1834 0.0149
```

The first and third variables in `meas` (sepal length and petal length, with coefficients 0.6945 and 0.6220, respectively) provide relatively strong weights to the first column of $W$. The first and second variables in `meas` (sepal length and sepal width, with coefficients 0.8020 and 0.5683) provide relatively strong weights to the second column of $W$.

Create a biplot of the data and the variables in `meas` in the column space of $W$.

```matlab
biplot(H,'scores',W,'varlabels',{'sl','sw','pl','pw'});
xlabel('Column 1')
ylabel('Column 2')
```
Change Algorithm

Starting from a random array \( X \) with rank 20, try a few iterations at several replicates using the multiplicative algorithm:

\[
X = \text{rand}(100,20) * \text{rand}(20,50);
\]
\[
\text{opt} = \text{statset}('\text{MaxIter}',5,'\text{Display}','\text{final}');
\]
\[
[W0,H0] = \text{nnmf}(X,5,'\text{replicates}',10,...
             '\text{options}',\text{opt},...
             '\text{algorithm}','\text{mult}');
\]
| rep | iteration | rms resid | |delta x| |
|-----|-----------|-----------|----------------|
| 1   | 5         | 0.560887  | 0.0245182      |
| 2   | 5         | 0.66418   | 0.0364471      |
| 3   | 5         | 0.609125  | 0.0358355      |
| 4   | 5         | 0.608894  | 0.0415491      |
| 5   | 5         | 0.619291  | 0.0455135      |
| 6   | 5         | 0.621549  | 0.0299965      |
| 7   | 5         | 0.640549  | 0.0438758      |
| 8   | 5         | 0.673015  | 0.0366856      |
| 9   | 5         | 0.606835  | 0.0318931      |
| 10  | 5         | 0.633526  | 0.0319591      |

Final root mean square residual = 0.560887

Continue with more iterations from the best of these results using alternating least squares:

```matlab
opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,5,'w0',W0,'h0',H0,...
 'options',opt,...
 'algorithm','als');
```

| rep | iteration | rms resid | |delta x| |
|-----|-----------|-----------|----------------|
| 1   | 24        | 0.257336  | 0.00271859     |

Final root mean square residual = 0.257336

References


Extended Capabilities

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
factoran | pca | statset

Introduced in R2008a
nodeclass

Class: classregtree

(Removed) Class values of nodes of classification tree

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

```
NAME=nodeclass(T)
NAME=nodeclass(T,J)
[NAME,ID]=nodeclass(...)
```

**Description**

`NAME=nodeclass(T)` returns an `n`-element cell array with the names of the most probable classes in each node of the tree `T`, where `n` is the number of nodes in the tree. Every element of this array is a character vector equal to one of the class names returned by `classname(T)`. For regression trees, `nodeclass` returns an empty cell array.

`NAME=nodeclass(T,J)` takes an array `J` of node numbers and returns the class names for the specified nodes.

```
[NAME,ID]=nodeclass(...) also returns a numeric array with the class index for each node. The class index is determined by the order of classes `classname` returns.
```

**See Also**

classname | classregtree | numnodes
nodeerr

Class: classregtree

(Removed) Return vector of node errors

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

e = nodeerr(t)
e = nodeerr(t,nodes)

Description

e = nodeerr(t) returns an n-element vector e of the errors of the nodes in the tree t, where n is the number of nodes. For a regression tree, the error e(i) for node i is the variance of the observations assigned to node i. For a classification tree, e(i) is the misclassification probability for node i.

e = nodeerr(t,nodes) takes a vector nodes of node numbers and returns the errors for the specified nodes.

The error e is the so-called resubstitution error computed by applying the tree to the same data used to create the tree. This error is likely to underestimate the error you would find if you applied the tree to new data. The test function provides options to compute the error (or cost) using cross-validation or a test sample.

References

See Also

classregtree | numnodes | test
nodemean

Class: classregtree

(Removed) Mean values of nodes of regression tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

NM = nodemean(T)
NM = nodemean(T,J)

Description

NM = nodemean(T) returns an n-element numeric array with mean values in each node of the tree T, where n is the number of nodes in the tree. Every element of this array is computed by averaging true Y values over all observations in the node. For classification trees, nodemean returns an empty numeric array.

NM = nodemean(T,J) takes an array J of node numbers and returns the mean values for the specified nodes.

See Also

classregtree | numnodes
nodeprob

Class: classregtree

(Removed) Node probabilities

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

\[
p = \text{nodeprob}(t)
\]

\[
p = \text{nodeprob}(t,\text{nodes})
\]

**Description**

\[
p = \text{nodeprob}(t)
\]

returns an \( n \)-element vector \( p \) of the probabilities of the nodes in the tree \( t \), where \( n \) is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. For a classification tree, this proportion is adjusted for any prior probabilities assigned to each class.

\[
p = \text{nodeprob}(t,\text{nodes})
\]

takes a vector \( \text{nodes} \) of node numbers and returns the probabilities for the specified nodes.

**References**


**See Also**

classregtree | nodesize | numnodes
nodesize

Class: classregtree

(Removed) Return node size

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

sizes = nodesize(t)
sizes = nodesize(t,nodes)

Description

sizes = nodesize(t) returns an n-element vector sizes of the sizes of the nodes in the tree t, where n is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

sizes = nodesize(t,nodes) takes a vector nodes of node numbers and returns the sizes for the specified nodes.

References


See Also
classregtree | numnodes
nominal

Arrays for nominal data

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Description

Nominal data are discrete, nonnumeric values that do not have a natural ordering. nominal array objects provide efficient storage and convenient manipulation of such data, while also maintaining meaningful labels for the values.

You can manipulate nominal arrays like ordinary numeric arrays, by subscripting, concatenating, and reshaping. Use nominal arrays as grouping variables when the elements indicate the group to which an observation belongs.

Creation

Syntax

B = nominal(X)
B = nominal(X,labels)
B = nominal(X,labels,levels)
B = nominal(X,labels,[],edges)

Description

B = nominal(X) creates a nominal array B from the array X. nominal creates the levels of B from the sorted unique values in X, and creates default labels for the levels.

B = nominal(X,labels) labels the levels in B according to labels.
B = nominal(X,labels,levels) creates a nominal array with possible levels defined by levels.

B = nominal(X,labels,[],edges) creates a nominal array by binning the numeric array X with bin edges given by the numeric vector edges.

**Input Arguments**

**X — Input array**
numeric | logical | character | string | categorical | cell array of character vectors

Input array to convert to nominal, specified as a numeric, logical, character, string, or categorical array, or a cell array of character vectors. The levels of the resulting nominal array correspond to the sorted unique values in X.

**labels — Labels for discrete levels**
character array | string array | cell array of character vectors

Labels for the discrete levels, specified as a character array, string array, or cell array of character vectors. By default, nominal assigns labels to the levels in B in order of the sorted unique values in X.

You can include duplicate labels in labels to merge multiple values in X into a single level in B.

Data Types: char | string | cell

**levels — Possible nominal levels**
vector

Possible nominal levels for the output nominal array, specified as a vector whose values can be compared to those in X using the equality operator. nominal assigns labels to each level from the corresponding elements of labels. If X contains any values not present in levels, the levels of the corresponding elements of B are undefined.

**edges — Bin edges**
numeric vector

Bin edges used to create the nominal array by binning a numeric array, specified as a numeric vector. The uppermost bin includes values equal to the rightmost edge. nominal assigns labels to each level in the resulting nominal array from the corresponding
elements of labels. When you specify the edges input argument, it must have one more element than labels.

**Output Arguments**

**B — Nominal array**

nominal array object

Nominal array, returned as a nominal array object.

By default, an element of B is undefined if the corresponding element of X is NaN (when X is numeric), an empty character vector (when X is a character), an empty or missing string (when X is a string), or undefined (when X is categorical). nominal treats such elements as undefined or missing and does not include entries for them among the possible levels. To create an explicit level for such elements instead of treating them as undefined, use the levels input argument and include NaN, the empty character vector, the empty or missing string, or an undefined element.

**Properties**

**labels — Level labels**

cell array of character vectors

This property is read-only.

Level labels, specified as a cell array of character vectors. Access labels using getlabels.

Data Types: cell

**undeflabel — Label for undefined levels**

'undefined' (default)

This property is read-only.

Label for undefined levels, specified as 'undefined'. You can find undefined elements in categorical arrays by using isundefined.
Object Functions

addlevels    Add levels to nominal or ordinal arrays
droplevels   Drop levels from a nominal or ordinal array
getlabels    Access nominal or ordinal array labels
getlevels    Access nominal or ordinal array levels
islevel      Determine if levels are in nominal or ordinal array
levelcounts  Element counts by level of a nominal or ordinal array
mergelevels  Merge levels of nominal or ordinal arrays
reorderlevels Reorder levels of nominal or ordinal arrays
setlabels    Assign labels to levels of nominal or ordinal arrays

The following is a partial list of the many other MATLAB array functions you can use with nominal arrays. For a complete list, see “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page 2-3.
double       Double-precision arrays
histogram     Histogram plot
isequal       Determine array equality
isundefined   Find undefined elements in categorical array
pie           Pie chart
summary       Print summary of table, timetable, or categorical array
times         Element-wise multiplication

Examples

Create and Label Nominal Arrays

Create nominal arrays from a cell array of character vectors and from integer data. Provide explicit labels.

Create a nominal array from a cell array of character vectors with values 'r', 'g', and 'b'. Label these levels 'red', 'green', and 'blue', respectively. nominal assigns the labels according to the sorted (alphabetical) order of the elements in X.

```
X = {'r' 'b' 'g';'g' 'r' 'b';'b' 'r' 'g'}
```

```
X =

3x3 cell array
```
labels = {'blue','green','red'};
B = nominal(X,labels)

B =

3x3 nominal array

red blue green
green red blue
blue red green

Create a nominal array from integer data with values 1 to 4, merging odd and even values into two nominal levels with the labels 'odd' and 'even'. Merge the values by duplicating the labels.

X = randi([1 4],5,2)

X =

4 1
4 2
1 3
4 4
3 4

labels = {'odd','even','odd','even'};
B = nominal(X,labels)

B =

5x2 nominal array

even odd
even even
Create and Manipulate Nominal Arrays

Create a nominal array from data in a cell array.

```matlab
X = {'r','b','g';'g','r','b';'b','r','g'};
labels = {'blue','green','red'};
colors = nominal(X,labels)

colors = 3x3 nominal array
 red blue green
 green red blue
 blue red green
```

Identify the elements in `colors` that are members of the level 'red'. A value of 1 in the resulting array indicates that the corresponding element of `colors` is a member of 'red'.

```matlab
colors == 'red'
ans = 3x3 logical array
 1 0 0
 0 1 0
 0 1 0
```

Identify the elements in `colors` that are members of either the level 'red' or 'blue'.

```matlab
ismember(colors,{'red','blue'})
ans = 3x3 logical array
 1 1 0
 0 1 1
 1 1 0
```

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

```matlab
nominal
colors = mergelevels(colors,{'red','blue'},'purple')

colors = 3x3 nominal array
 purple purple green
 green purple purple
 purple purple green

Display the levels of colors.

getlevels(colors)

ans = 1x2 nominal array
 purple green

Summarize the number of elements in each level. By default, summary returns counts for each column of the input array.

summary(colors)

 purple 2 3 1
 green 1 0 2

Create a pie chart for the data in colors.

pie(colors)
See Also

Topics
“Create Nominal and Ordinal Arrays” on page 2-4
“Add and Drop Category Levels” on page 2-24
“Plot Data Grouped by Category” on page 2-28
“Summary Statistics Grouped by Category” on page 2-43
“Advantages of Using Nominal and Ordinal Arrays” on page 2-49
“Index and Search Using Nominal and Ordinal Arrays” on page 2-52
“Grouping Variables” on page 2-57

Introduced in R2007a
notify

Class: qrandstream

Notify listeners of event

Syntax

```matlab
notify(h,'eventname')
notify(h,'eventname',data)
```

Description

`notify(h,'eventname')` notifies listeners added to the event named `eventname` on handle object array `h` that the event is taking place. `h` is the array of handles to objects triggering the event, and `eventname` must be a character vector.

`notify(h,'eventname',data)` provides a way of encapsulating information about an event which can then be accessed by each registered listener. `data` must belong to the `event.eventdata` class.

See Also

`addlistener` | `event.EventData` | `events` | `qrandstream`
NonLinearModel class

Nonlinear regression model class

Description

An object comprising training data, model description, diagnostic information, and fitted coefficients for a nonlinear regression. Predict model responses with the predict or feval methods.

Construction

Create a NonLinearModel object using fitnlm.

Properties

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

Covariance matrix of coefficient estimates, specified as a \(p \)-by-\(p \) matrix of numeric values. \(p \) is the number of coefficients in the fitted model.

CoefficientNames — Coefficient names
cell array of character vectors

Coefficient names, specified as a cell array of character vectors containing a label for each coefficient.

Coefficients — Coefficient values
table

Coefficient values, specified as a table. Coefficients has one row for each coefficient and the following columns:
Estimate — Estimated coefficient value
SE — Standard error of the estimate
\textit{tStat} — t statistic for a test that the coefficient is zero
\textit{pValue} — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in \texttt{mdl} the estimated coefficient vector is

\[
\texttt{beta} = \texttt{mdl.Coefficients.Estimate}
\]

Use \texttt{coefTest} to perform other tests on the coefficients.

\textbf{Diagnostics — Diagnostic information}

Diagnostics information for the model, specified as a table. Diagnostics can help identify outliers and influential observations. \texttt{Diagnostics} contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage</td>
<td>Diagonal elements of \texttt{HatMatrix}</td>
<td>Leverage indicates to what extent the predicted value for an observation is determined by the observed value for that observation. A value close to 1 indicates that the prediction is largely determined by that observation, with little contribution from the other observations. A value close to 0 indicates the fit is largely determined by the other observations. For a model with \textit{P} coefficients and \textit{N} observations, the average value of \textit{Leverage} is \textit{P}/\textit{N}. An observation with \textit{Leverage} larger than 2*\textit{P}/\textit{N} can be regarded as having high leverage.</td>
</tr>
<tr>
<td>CooksDistance</td>
<td>Cook's measure of scaled change in fitted values</td>
<td>\texttt{CooksDistance} is a measure of scaled change in fitted values. An observation with \texttt{CooksDistance} larger than three times the mean Cook's distance can be an outlier.</td>
</tr>
<tr>
<td>HatMatrix</td>
<td>Projection matrix to compute fitted from observed responses</td>
<td>\texttt{HatMatrix} is an \textit{N}-by-\textit{N} matrix such that \texttt{Fitted} = \texttt{HatMatrix}*\texttt{Y}, where \texttt{Y} is the response vector and \texttt{Fitted} is the vector of fitted response values.</td>
</tr>
</tbody>
</table>
DFE — Degrees of freedom for error
positive integer value

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients, specified as a positive integer value.

Fitted — Fitted response values based on input data
numeric vector

Fitted (predicted) values based on the input data, specified as a numeric vector. `fitnlm` attempts to make Fitted as close as possible to the response data.

Formula — Model information
LinearFormula object | NonLinearFormula object

Model information, specified as a `LinearFormula` object or `NonLinearFormula` object. If you fit a linear or generalized linear regression model, then `Formula` is a `LinearFormula` object. If you fit a nonlinear regression model, then `Formula` is a `NonLinearFormula` object.

Iterative — Information about fitting process
structure

Information about the fitting process, specified as a structure with the following fields:

- InitialCoefs — Initial coefficient values (the `beta0` vector)
- IterOpts — Options included in the `Options` name-value pair argument for `fitnlm`

LogLikelihood — Log likelihood
numeric value

Log likelihood of the model distribution at the response values, specified as a numeric value. The mean is fitted from the model, and other parameters are estimated as part of the model fit.

ModelCriterion — Criterion for model comparison
structure

Criterion for model comparison, specified as a structure with the following fields:

- AIC — Akaike information criterion. $AIC = -2 \cdot \text{logL} + 2 \cdot m$, where logL is the loglikelihood and m is the number of estimated parameters.
• **AICc** — Akaike information criterion corrected for the sample size. $AICc = AIC + \frac{(2m^2 + m)}{(n - m - 1)}$, where n is the number of observations.

• **BIC** — Bayesian information criterion. $BIC = -2 \log L + m \log(n)$.

• **CAIC** — Consistent Akaike information criterion. $CAIC = -2 \log L + m (\log(n) + 1)$.

Information criteria are model selection tools that you can use to compare multiple models fit to the same data. These criteria are likelihood-based measures of model fit that include a penalty for complexity (specifically, the number of parameters). Different information criteria are distinguished by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property by using dot notation. For example, in the model `mdl`, the AIC value `aic` is:

```matlab
aic = mdl.ModelCriterion.AIC
```

MSE — **Mean squared error**

`numeric value`

Mean squared error, specified as a numeric value. The mean squared error is an estimate of the variance of the error term in the model.

NumCoefficients — **Number of model coefficients**

`positive integer`

Number of coefficients in the fitted model, specified as a positive integer. `NumCoefficients` is the same as `NumEstimatedCoefficients` for `NonLinearModel` objects. `NumEstimatedCoefficients` is equal to the degrees of freedom for regression.

NumEstimatedCoefficients — **Number of estimated coefficients**

`positive integer`

Number of estimated coefficients in the fitted model, specified as a positive integer. `NumEstimatedCoefficients` is the same as `NumCoefficients` for `NonLinearModel` objects. `NumEstimatedCoefficients` is equal to the degrees of freedom for regression.

NumPredictors — **Number of predictor variables**

`positive integer`
Number of predictor variables used to fit the model, specified as a positive integer.

NumVariables — Number of variables
positive integer

Number of variables in the input data, specified as a positive integer. NumVariables is the number of variables in the original table or dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

ObservationInfo — Observation information
table

Observation information, specified as a n-by-4 table, where n is equal to the number of rows of input data. The four columns of ObservationInfo contain the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>Observation weights. Default is all 1.</td>
</tr>
<tr>
<td>Excluded</td>
<td>Logical value, 1 indicates an observation that you excluded from the fit with the Exclude name-value pair.</td>
</tr>
<tr>
<td>Missing</td>
<td>Logical value, 1 indicates a missing value in the input. Missing values are not used in the fit.</td>
</tr>
<tr>
<td>Subset</td>
<td>Logical value, 1 indicates the observation is not excluded or missing, so is used in the fit.</td>
</tr>
</tbody>
</table>

ObservationNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors containing the names of the observations used in the fit.

- If the fit is based on a table or dataset containing observation names, ObservationNames uses those names.
- Otherwise, ObservationNames is an empty cell array

PredictorNames — Names of predictors used to fit the model
cell array of character vectors

Names of predictors used to fit the model, specified as a cell array of character vectors.
Residuals — Residuals for fitted model

Residuals for fitted model, specified as a table that contains one row for each observation and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Observed minus fitted values.</td>
</tr>
<tr>
<td>Pearson</td>
<td>Raw residuals divided by RMSE.</td>
</tr>
<tr>
<td>Standardized</td>
<td>Raw residuals divided by their estimated standard deviation.</td>
</tr>
<tr>
<td>Studentized</td>
<td>Residual divided by an independent estimate of the residual standard deviation. The residual for observation (i) is divided by an estimate of the error standard deviation based on all observations except for observation (i).</td>
</tr>
</tbody>
</table>

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model \(mdl \), the ordinary raw residual vector \(r \) is:

\[
r = mdl.Residuals.Raw
\]

Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain \(\text{NaN} \) values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain \(\text{NaN} \) values, with the following exceptions:

- \(\text{raw} \) contains the difference between the observed and predicted values.
- \(\text{standardized} \) is the residual, standardized in the usual way.
- \(\text{studentized} \) matches the standardized values because this residual is not used in the estimate of the residual standard deviation.

ResponseName — Response variable name

character vector

Response variable name, specified as a character vector.

RMSE — Root mean squared error

numeric value
Root mean squared error, specified as a numeric value. The root mean squared error is an estimate of the standard deviation of the error term in the model.

Robust — Robust fit information

structure

Robust fit information, specified as a structure with the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WgtFun</td>
<td>Robust weighting function, such as 'bisquare' (see robustfit)</td>
</tr>
<tr>
<td>Tune</td>
<td>Value specified for tuning parameter (can be [])</td>
</tr>
<tr>
<td>Weights</td>
<td>Vector of weights used in final iteration of robust fit</td>
</tr>
</tbody>
</table>

This structure is empty unless fitnlm constructed the model using robust regression.

R_squared — R-squared value for the model

structure

R-squared value for the model, specified as a structure.

For a linear or nonlinear model, Rsquared is a structure with two fields:

- **Ordinary** — Ordinary (unadjusted) R-squared
- **Adjusted** — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

- **Ordinary** — Ordinary (unadjusted) R-squared
- **Adjusted** — R-squared adjusted for the number of coefficients
- **LLR** — Log-likelihood ratio
- **Deviance** — Deviance
- **AdjGeneralized** — Adjusted generalized R-squared

The R-squared value is the proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:

\[\text{R}^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}. \]
To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in `mdl` is

\[r_2 = mdl.Rsquared.Adjusted \]

SSE — Sum of squared errors
numeric value

Sum of squared errors (residuals), specified as a numeric value.

The Pythagorean theorem implies

\[\text{SST} = \text{SSE} + \text{SSR}. \]

SSR — Regression sum of squares
numeric value

Regression sum of squares, specified as a numeric value. The regression sum of squares is equal to the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies

\[\text{SST} = \text{SSE} + \text{SSR}. \]

SST — Total sum of squares
numeric value

Total sum of squares, specified as a numeric value. The total sum of squares is equal to the sum of squared deviations of response vector \(y \) from \(\text{mean}(y) \).

The Pythagorean theorem implies

\[\text{SST} = \text{SSE} + \text{SSR}. \]

VariableInfo — Information about input variables
table

Information about input variables contained in `Variables`, specified as a table with one row for each model term and the following columns.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Character vector giving variable class, such as 'double'</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Range</td>
<td>Cell array giving variable range:</td>
</tr>
<tr>
<td></td>
<td>• Continuous variable — Two-element vector ([min, max]), the minimum and maximum values</td>
</tr>
<tr>
<td></td>
<td>• Categorical variable — Cell array of distinct variable values</td>
</tr>
<tr>
<td>InModel</td>
<td>Logical vector, where (\text{true}) indicates the variable is in the model</td>
</tr>
<tr>
<td>IsCategorical</td>
<td>Logical vector, where (\text{true}) indicates a categorical variable</td>
</tr>
</tbody>
</table>

VariableNames — Names of variables used in fit
cell array of character vectors

Names of variables used in fit, specified as a cell array of character vectors.

- If the fit is based on a table or dataset, this property provides the names of the variables in that table or dataset.
- If the fit is based on a predictor matrix and response vector, `VariableNames` is the values in the `VarNames` name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

Variables — Data used to fit the model
table

Data used to fit the model, specified as a table. `Variables` contains both observation and response values. If the fit is based on a table or dataset array, `Variables` contains all of the data from that table or dataset array. Otherwise, `Variables` is a table created from the input data matrix \(X\) and response vector \(y\).
Methods

- **coefCI**: Confidence intervals of coefficient estimates of nonlinear regression model
- **coefTest**: Linear hypothesis test on nonlinear regression model coefficients
- **disp**: Display nonlinear regression model
- **feval**: Evaluate nonlinear regression model prediction
- **fit**: Fit nonlinear regression model
- **plotDiagnostics**: Plot diagnostics of nonlinear regression model
- **plotResiduals**: Plot residuals of nonlinear regression model
- **plotSlice**: Plot of slices through fitted nonlinear regression surface
- **predict**: Predict response of nonlinear regression model
- **random**: Simulate responses for nonlinear regression model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Fit a Nonlinear Regression Model

Fit a nonlinear regression model for auto mileage based on the `carbig` data. Predict the mileage of an average car.

Load the sample data. Create a matrix `X` containing the measurements for the horsepower (`Horsepower`) and weight (`Weight`) of each car. Create a vector `y` containing the response values in miles per gallon (`MPG`).

```matlab
load carbig
X = [Horsepower,Weight];
y = MPG;
```

Fit a nonlinear regression model.
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
 b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0)

mdl =
Nonlinear regression model:
 y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:
 Estimate SE tStat pValue
 ______ _______ ________ ________
 b1 -49.383 119.97 -0.41164 0.68083
 b2 376.43 567.05 0.66384 0.50719
 b3 -0.78193 0.47168 -1.6578 0.098177
 b4 422.37 776.02 0.54428 0.58656
 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Find the predicted mileage of an average auto. Since the sample data contains some missing (NaN) observations, compute the mean using nanmean.

Xnew = nanmean(X)

Xnew = 1x2
10^3 x

0.1051 2.9794

MPGnew = predict(mdl,Xnew)

MPGnew = 21.8073
Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

$$J_{i,j} = \frac{\partial f}{\partial \beta_j_{x_i,\beta}}$$

Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is

$$H = J(J^TJ)^{-1}J^T.$$

The diagonal elements H_{ii} satisfy

$$0 \leq h_{ii} \leq 1$$

$$\sum_{i=1}^{n} h_{ii} = p,$$

where n is the number of observations (rows of X), and p is the number of coefficients in the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, h_{ii}, of the hat matrix H. Because the sum of the leverage values is p (the number of coefficients in the regression model), an observation i can be considered to be an outlier if its leverage substantially exceeds p/n, where n is the number of observations.

Cook’s Distance

The Cook’s distance D_i of observation i is
Cook's distance is algebraically equivalent to the following expression:

\[D_i = \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(i)})^2}{p \text{MSE}}, \]

where

- \(\hat{y}_j \) is the \(j \)th fitted response value.
- \(\hat{y}_{j(i)} \) is the \(j \)th fitted response value, where the fit does not include observation \(i \).
- MSE is the mean squared error.
- \(p \) is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:

\[D_i = \frac{n_i^2}{p \text{MSE}} \left(\frac{h_{ii}}{(1-h_{ii})^2} \right), \]

where \(e_i \) is the \(i \)th residual.

See Also
GeneralizedLinearModel | LinearModel | fitnlm | nlinfit | plotPartialDependence | predict

Topics
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
normcdf

Normal cumulative distribution function

Syntax

\[
p = \text{normcdf}(x)
\]
\[
p = \text{normcdf}(x,\mu)
\]
\[
p = \text{normcdf}(x,\mu,\sigma)
\]
\[
[p,pLo,pUp] = \text{normcdf}(x,\mu,\sigma,p\text{Cov})
\]
\[
[p,pLo,pUp] = \text{normcdf}(x,\mu,\sigma,p\text{Cov},\alpha)
\]
\[
___ = \text{normcdf}(___,'upper')
\]

Description

\[
p = \text{normcdf}(x)\] returns the cumulative distribution function (cdf) of the standard normal distribution, evaluated at the values in \(x\).

\[
p = \text{normcdf}(x,\mu)\] returns the cdf of the normal distribution with mean \(\mu\) and unit standard deviation, evaluated at the values in \(x\).

\[
p = \text{normcdf}(x,\mu,\sigma)\] returns the cdf of the normal distribution with mean \(\mu\) and standard deviation \(\sigma\), evaluated at the values in \(x\).

\[
[p,pLo,pUp] = \text{normcdf}(x,\mu,\sigma,p\text{Cov})\] also returns the 95% confidence bounds \([p\text{Lo},p\text{Up}]\) of \(p\) when \(\mu\) and \(\sigma\) are estimates. \(p\text{Cov}\) is the covariance matrix of the estimated parameters.

\[
[p,pLo,pUp] = \text{normcdf}(x,\mu,\sigma,p\text{Cov},\alpha)\] specifies the confidence level for the confidence interval \([p\text{Lo},p\text{Up}]\) to be \(100(1-\alpha)\)%.

\[
___ = \text{normcdf}(___,'upper')\] returns the complement of the cdf, evaluated at the values in \(x\), using an algorithm that more accurately computes the extreme upper-tail probabilities. 'upper' can follow argument with any of the input arguments in the previous syntaxes.
Examples

Standard Normal Distribution cdf

Compute the probability that an observation from a standard normal distribution falls on the interval \([-1 \ 1]\).

\[
p = \text{normcdf}([-1 \ 1]);
p(2)-p(1)
\]

\[
\text{ans} = 0.6827
\]

About 68% of the observations from a normal distribution fall within one standard deviation of the mean 0.

Normal Distribution cdf

Compute the cdf values evaluated at the values in \(x\) for the normal distribution with mean \(mu\) and standard deviation \(sigma\).

\[
x = [-2,-1,0,1,2];
mu = 2;
sigma = 1;
p = \text{normcdf}(x,mu,sigma)
\]

\[
p = 1\times5
\]

\[
0.0000 \ 0.0013 \ 0.0228 \ 0.1587 \ 0.5000
\]

Compute the cdf values evaluated at zero for various normal distributions with different mean parameters.

\[
mu = [-2,-1,0,1,2];
sigma = 1;
p = \text{normcdf}(0,mu,sigma)
\]

\[
p = 1\times5
\]

\[
0.9772 \ 0.8413 \ 0.5000 \ 0.1587 \ 0.0228
\]
Confidence Interval of Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find the confidence interval of the corresponding cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard deviation 2.

```matlab
rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,n,1);
```

Estimate the distribution parameters mean and standard deviation by using `normfit`.

```matlab
[muHat,sigmaHat] = normfit(x)
muHat = 4.9347
sigmaHat = 1.9979
```

With no censoring, `muHat` is the sample mean and `sigmaHat` is the square root of the unbiased estimator of the variance. `muHat` is equal to the MLE of the mean parameter, but `sigmaHat` is not equal to the MLE of the standard deviation parameter. Transform `sigmaHat` into the MLE.

```matlab
sigmaHat = sqrt((n-1)/n)*sigmaHat
sigmaHat = 1.9969
```

Estimate the covariance of the distribution parameters by using `normlike`. The function `normlike` returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples used to estimate the MLEs.

```matlab
[~,pCov] = normlike([muHat,sigmaHat],x)
pCov = 2x2
```

```
 0.0040   -0.0000
-0.0000    0.0020
```

Find the cdf value at zero and its 95% confidence interval.
[p,pLo,pUp] = normcdf(0,muHat,sigmaHat,pCov)
p = 0.0067
pLo = 0.0047
pUp = 0.0095

p is the cdf value using the normal distribution with the parameters muHat and sigmaHat. The interval [pLo,pUp] is the 95% confidence interval of the cdf evaluated at 0, considering the uncertainty of muHat and sigmaHat using pCov. The 95% confidence interval means that the probability that [pLo,pUp] contains the true cdf value is 0.95.

Complementary cdf (Tail Distribution)

Determine the probability that an observation from a standard normal distribution will fall on the interval [10,Inf].

p1 = 1 - normcdf(10)
p1 = 0

normcdf(10) is nearly 1, so p1 becomes 0. Specify 'upper' so that normcdf computes the extreme upper-tail probabilities more accurately.

p2 = normcdf(10,'upper')
p2 = 7.6199e-24

You can use 'upper' to compute a right-tailed p-value.

Test for Normal Distribution Using Function Handle

Use the probability distribution function normcdf as a function handle in the chi-square goodness-of-fit test (chi2gof).

Test the null hypothesis that the sample data in the input vector x comes from a normal distribution with parameters \(\mu \) and \(\sigma \) equal to the mean (mean) and standard deviation (std) of the sample data, respectively.
rng('default') % For reproducibility
x = normrnd(50,5,100,1);
h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})
h = 0

The returned result $h = 0$ indicates that chi2gof does not reject the null hypothesis at the default 5% significance level.

Input Arguments

x — Values at which to evaluate cdf

 scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval $[pLo,pUp]$, then x must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple normal distributions, specify mu and $sigma$ using arrays. If one or more of the input arguments x, mu, and $sigma$ are arrays, then the array sizes must be the same. In this case, normcdf expands each scalar input into a constant array of the same size as the array inputs. Each element in p is the cdf value of the normal distribution specified by the corresponding elements in mu and $sigma$, evaluated at the corresponding element in x.

Example: $[-1,0,3,4]$

Data Types: single | double

mu — Mean

 scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval $[pLo,pUp]$, then mu must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple normal distributions, specify mu and $sigma$ using arrays. If one or more of the
input arguments `x`, `mu`, and `sigma` are arrays, then the array sizes must be the same. In this case, `normcdf` expands each scalar input into a constant array of the same size as the array inputs. Each element in `p` is the cdf value of the normal distribution specified by the corresponding elements in `mu` and `sigma`, evaluated at the corresponding element in `x`.

Example: `[0 1 2; 0 1 2]`

Data Types: `single` | `double`

`sigma` — Standard deviation

1 (default) | nonnegative scalar value | array of nonnegative scalar values

Standard deviation of the normal distribution, specified as a nonnegative scalar value or an array of nonnegative scalar values.

If `sigma` is zero, then the output `p` is either 0 or 1. `p` is 0 if `x` is smaller than `mu`, or 1 otherwise.

If you specify `pCov` to compute the confidence interval `[pLo,pUp]`, then `sigma` must be a scalar value.

To evaluate the cdf at multiple values, specify `x` using an array. To evaluate the cdfs of multiple normal distributions, specify `mu` and `sigma` using arrays. If one or more of the input arguments `x`, `mu`, and `sigma` are arrays, then the array sizes must be the same. In this case, `normcdf` expands each scalar input into a constant array of the same size as the array inputs. Each element in `p` is the cdf value of the normal distribution specified by the corresponding elements in `mu` and `sigma`, evaluated at the corresponding element in `x`.

Example: `[1 1 1; 2 2 2]`

Data Types: `single` | `double`

`pCov` — Covariance of estimates

2-by-2 numeric matrix

Covariance of the estimates `mu` and `sigma`, specified as a 2-by-2 matrix.

If you specify `pCov` to compute the confidence interval `[pLo,pUp]`, then `x`, `mu`, and `sigma` each must be a scalar value.
You can estimate mu and sigma by using normfit and estimate the covariance of mu and sigma by using normlike. For an example, see “Confidence Interval of Normal cdf Value” on page 32-4423.

Data Types: single | double

alpha — Confidence level

0.05 (default) | scalar in the range (0,1)

Confidence level for the confidence interval, specified as a scalar in the range (0,1). The confidence level is $100(1-\alpha)\%$, where alpha is the probability that the confidence interval does not contain the true value.

Example: 0.01

Data Types: single | double

Output Arguments

p — cdf values

scalar value | array of scalar values

cdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the same size as x, mu, and sigma after any necessary scalar expansion. Each element in p is the cdf value of the normal distribution specified by the corresponding elements in mu and sigma, evaluated at the corresponding element in x.

pLo — Lower confidence bound for p

scalar value | array of scalar values

Lower confidence bound for p, returned as a scalar value or an array of scalar values. pLo has the same size as p.

pUp — Upper confidence bound for p

scalar value | array of scalar values

Upper confidence bound for p, returned as a scalar value or an array of scalar values. pUp has the same size as p.
Definitions

Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, \(\mu \), is the mean. The second parameter, \(\sigma \), is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal cdf is

\[
p = F(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} \, dt.
\]

\(p \) is the probability that a single observation from a normal distribution with parameters \(\mu \) and \(\sigma \) falls in the interval \((-\infty, x]\).

Algorithms

- The \texttt{normcdf} function uses the inverse complementary error function \texttt{erfc}. The relationship between \texttt{normcdf} and \texttt{erfc} is

\[
\text{normcdf}(x) = \frac{1}{2} \text{erfc}\left(\frac{-x}{\sqrt{2}}\right).
\]

The complementary error function \(\texttt{erfc}(x) \) is defined as

\[
\text{erfc}(x) = 1 - \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} \, dt.
\]

- The \texttt{normcdf} function computes confidence bounds for \(p \) by using the delta method. \(\text{normcdf}(x, \mu, \sigma) \) is equivalent to \(\text{normcdf}(\frac{x-\mu}{\sigma}, 0, 1) \). Therefore, the \texttt{normcdf} function estimates the variance of \(\frac{x-\mu}{\sigma} \) using the covariance matrix of \(\mu \) and \(\sigma \) by the delta method, and finds the confidence bounds of \(\frac{x-\mu}{\sigma} \) using the estimates of this variance. Then, the function transforms the bounds to the scale of \(p \). The computed bounds give approximately the desired confidence level when you estimate \(\mu \), \(\sigma \), and \(p\text{Cov} \) from large samples.
Alternative Functionality

- `normcdf` is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic function `cdf`, which supports various probability distributions. To use `cdf`, create a `NormalDistribution` probability distribution object and pass the object as an input argument or specify the probability distribution name and its parameters. Note that the distribution-specific function `normcdf` is faster than the generic function `cdf`.

- Use the **Probability Distribution Function** app to create an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
NormalDistribution | cdf | erfc | normfit | norminv | normlike | normpdf

Topics
“Normal Distribution” on page B-130

Introduced before R2006a
normfit

Normal parameter estimates

Syntax

[muHat,sigmaHat] = normfit(x)

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x)

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,alpha)

[___] = normfit(x,alpha,censoring)

[___] = normfit(x,alpha,censoring,freq)

[___] = normfit(x,alpha,censoring,freq,options)

Description

[muHat,sigmaHat] = normfit(x) returns estimates of normal distribution parameters (the mean muHat and standard deviation sigmaHat), given the sample data in x. muHat is the sample mean, and sigmaHat is the square root of the unbiased estimator of the variance.

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x) also returns 95% confidence intervals for the parameter estimates on the mean and standard deviation in the arrays muCI and sigmaCI, respectively.

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,alpha) specifies the confidence level for the confidence intervals to be $100(1-\alpha)\%$.

[___] = normfit(x,alpha,censoring) specifies whether each value in x is right-censored or not. Use the logical vector censoring in which 1 indicates observations that are right-censored and 0 indicates observations that are fully observed. With censoring, muHat and sigmaHat are the maximum likelihood estimates (MLEs).

[___] = normfit(x,alpha,censoring,freq) specifies the frequency or weights of observation.
[___] = normfit(x,alpha,censoring,freq,options) specifies optimization options for the iterative algorithm normfit to use to compute MLEs with censoring. Create options by using the function statset.

You can pass in [] for alpha, censoring, and freq to use their default values.

Examples

Estimate Parameters and Confidence Intervals

Generate 1000 normal random numbers from the normal distribution with mean 3 and standard deviation 5.

```matlab
rng('default') % For reproducibility
x = normrnd(3,5,[1000,1]);
```

Find the parameter estimates and the 99% confidence intervals.

```matlab
[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,0.01)
muHat = 2.8368
sigmaHat = 4.9948
muCI = 2×1
   2.4292
   3.2445
sigmaCI = 2×1
   4.7218
   5.2989
```

muHat is the sample mean, and sigmaHat is the square root of the unbiased estimator of the variance. muCI and sigmaCI are the 99% confidence intervals of the mean and standard deviation parameters. The first row is the lower bound, and the second row is the upper bound.
Change Algorithm Options

Find the MLEs of a data set with censoring by using `normfit`. Use `statset` to specify the iterative algorithm options that `normfit` uses to compute MLEs for censored data, and find the MLEs again.

Load the sample data.

```matlab
load lightbulb
```

The first column of the data contains the lifetime (in hours) of two types of bulbs. The second column contains the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates that the bulb is fluorescent, and 0 indicates that the bulb is incandescent. The third column contains the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the item (bulb) is censored.

Find the indices for fluorescent bulbs.

```matlab
idx = find(lightbulb(:,2) == 0);
```

Assume that the lifetime follows the normal distribution, and find the MLEs of the normal distribution parameters. The second input argument of `normfit` specifies the confidence level. Pass in `[]` to use its default value 0.05. The third input argument specifies the censorship information.

```matlab
censoring = lightbulb(idx,3) == 1;
[muHat1,sigmaHat1] = normfit(lightbulb(idx,1),[],censoring)
```

```
muHat1 = 9.4966e+03
sigmaHat1 = 3.0640e+03
```

Display the default algorithm parameters that the function `normfit` uses to estimate the normal distribution parameters.

```matlab
statset('normfit')
```

```
ans = struct with fields:
  Display: 'off'
  MaxFunEvals: 200
  MaxIter: 100
  TolBnd: 1.0000e-06
```
Save the options under a different name. Change how the results will be displayed and the termination tolerance for the objective function, Display and TolFun.

```matlab
options = statset('normfit');
options.Display = 'final';
options.TolFun = 1e-10;
```

Alternatively, you can specify algorithm parameters by using the name-value pair arguments of the function `statset`.

```matlab
options = statset('Display','final','TolFun',1e-10);
```

Find the MLEs with the new algorithm parameters.

```matlab
[muHat2,sigmaHat2] = normfit(lightbulb(idx,1),[],censoring,[],options)
```

Successful convergence: Norm of gradient less than OPTIONS.TolFun

- muHat2 = 9.4966e+03
- sigmaHat2 = 3.0640e+03

`normfit` displays a report on the final iteration.
Convert Unbiased Estimator to MLE

The function `normfit` finds the sample mean and the square root of the unbiased estimator of the variance with no censoring. The sample mean is equal to the MLE of the mean parameter, but the square root of the unbiased estimator of the variance is not equal to the MLE of the standard deviation parameter.

Find the normal distribution parameters by using `normfit`, convert them into MLEs, and then compare the negative log likelihoods of the estimates by using `normlike`.

Generate 100 normal random numbers from the standard normal distribution.

```matlab
rng('default') % For reproducibility
n = 100;
x = normrnd(0,1,[n,1]);
```

Find the sample mean and the square root of the unbiased estimator of the variance.

```matlab
[muHat,sigmaHat] = normfit(x)
muHat = 0.1231
sigmaHat = 1.1624
```

Convert the square root of the unbiased estimator of the variance into the MLE of the standard deviation parameter.

```matlab
sigmaHat_MLE = sqrt((n-1)/n)*sigmaHat
sigmaHat_MLE = 1.1566
```

The difference between `sigmaHat` and `sigmaHat_MLE` is negligible for large `n`.

Alternatively, you can find the MLEs by using the function `mle`.

```matlab
phat = mle(x)
phat = 1x2
     0.1231    1.1566
```

`phat(1)` and `phat(2)` are the MLEs of the mean and the standard deviation parameter, respectively.
Confirm that the log likelihood of the MLEs (muHat and sigmaHat_MLE) is greater than the log likelihood of the unbiased estimators (muHat and sigmaHat) by using the normlike function.

\[
\log L = -\text{normlike}([\muHat, \sigmaHat], x)
\]

\[
\log L = -156.4424
\]

\[
\log L_{\text{MLE}} = -\text{normlike}([\muHat, \sigmaHat_{\text{MLE}}], x)
\]

\[
\log L_{\text{MLE}} = -156.4399
\]

Confidence Interval of Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find the confidence interval of the corresponding cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard deviation 2.

```matlab
rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,n,1);
```

Estimate the distribution parameters mean and standard deviation by using `normfit`.

```matlab
[muHat,sigmaHat] = normfit(x)
```

```
muHat = 4.9347
sigmaHat = 1.9979
```

With no censoring, muHat is the sample mean and sigmaHat is the square root of the unbiased estimator of the variance. muHat is equal to the MLE of the mean parameter, but sigmaHat is not equal to the MLE of the standard deviation parameter. Transform sigmaHat into the MLE.

```matlab
sigmaHat = sqrt((n-1)/n)*sigmaHat
```

```
sigmaHat = 1.9969
```
Estimate the covariance of the distribution parameters by using `normlike`. The function `normlike` returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples used to estimate the MLEs.

```matlab
[~,pCov] = normlike([muHat,sigmaHat],x)
pCov = 2×2
  0.0040   -0.0000
  -0.0000    0.0020
```

Find the cdf value at zero and its 95% confidence interval.

```matlab
[p,pLo,pUp] = normcdf(0,muHat,sigmaHat,pCov)
p = 0.0067
pLo = 0.0047
pUp = 0.0095
```

`p` is the cdf value using the normal distribution with the parameters `muHat` and `sigmaHat`. The interval `[pLo,pUp]` is the 95% confidence interval of the cdf evaluated at 0, considering the uncertainty of `muHat` and `sigmaHat` using `pCov`. The 95% confidence interval means that the probability that `[pLo,pUp]` contains the true cdf value is 0.95.

Input Arguments

- `x` — **Sample data**
 vector | matrix
 Sample data, specified as a vector or matrix.
 If you specify `censoring` or `freq`, `x` must be a vector.
 Data Types: `single` | `double`

- `alpha` — **Confidence level**
 0.05 (default) | scalar in the range (0,1) | vector
 32-4437
Confidence level for the confidence interval, specified as a scalar or vector where each element is in the range (0,1). The confidence level is $100(1-\alpha)\%$. α is the probability that the confidence interval does not contain the true value.

If α is a vector of size m, then muCI and sigmaCI are matrices of size 2-by-m. The first and second rows correspond to the lower and upper bounds of the confidence intervals, respectively.

Example: 0.01

Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector

Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use 1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.

Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x. The freq input argument typically contains nonnegative integer counts for the corresponding elements in x, but can contain any nonnegative values.

To obtain the weighted MLEs for the mean and standard deviation for a data set with censoring, specify weights of observations, normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.

Data Types: single | double

options — Optimization options
statset('normfit') (default) | structure

Optimization options, specified as a structure. options determines the control parameters for the iterative algorithm that normfit uses to compute MLEs for censored data.
Create options by using the function `statset` or by creating a structure array containing the fields and values described in this table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Value</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Amount of information displayed by the algorithm.</td>
<td>'off'</td>
</tr>
<tr>
<td></td>
<td>• 'off' — Displays no information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'final' — Displays the final output.</td>
<td></td>
</tr>
<tr>
<td>MaxFunEvals</td>
<td>Maximum number of objective function evaluations allowed, specified as a positive integer.</td>
<td>200</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum number of iterations allowed. Positive integer.</td>
<td>100</td>
</tr>
<tr>
<td>TolBnd</td>
<td>Lower bound of sigmaHat, specified as a positive scalar.</td>
<td>1e-6</td>
</tr>
<tr>
<td></td>
<td>The bounds for muHat and sigmaHat are [-Inf,Inf] and [TolBnd,Inf], respectively.</td>
<td></td>
</tr>
<tr>
<td>TolFun</td>
<td>Termination tolerance for the objective function value, specified as a positive scalar.</td>
<td>1e-8</td>
</tr>
<tr>
<td>TolX</td>
<td>Termination tolerance for the parameters, specified as a positive scalar.</td>
<td>1e-8</td>
</tr>
</tbody>
</table>

You can also enter `statset('normfit')` in the Command Window to see the names and default values of the fields that `normfit` accepts in the options structure.

Example: `statset('Display','final','MaxIter',1000)` specifies to display the final information of the iterative algorithm results, and changes the maximum number of iterations allowed to 1000.

Data Types: `struct`
Output Arguments

\textbf{muHat — Estimate of mean}

\texttt{scalar | vector}

Estimate of the mean parameter of the normal distribution, returned as a scalar or vector.

- With no censoring, \texttt{muHat} is the sample mean.
- With censoring, \texttt{muHat} is the MLE. To compute the weighted MLE, specify the weights of observations by using \texttt{freq}.

\textbf{sigmaHat — Estimate of standard deviation}

\texttt{scalar | vector}

Estimate of the standard deviation parameter of the normal distribution, returned as a scalar or vector.

- With no censoring, \texttt{sigmaHat} is the square root of the unbiased estimator of the variance. To compute the MLE with no censoring, use the \texttt{mle} function.
- With censoring, \texttt{sigmaHat} is the MLE. To compute the weighted MLE, specify the weights of observations by using \texttt{freq}.

\textbf{muCI — Confidence interval for mean}

\texttt{2-by-1 column vector | 2-by-\textit{m} matrix}

Confidence interval for the mean parameter of the normal distribution, returned as a 2-by-1 column vector or 2-by-\textit{m} matrix containing the lower and upper bounds of the $100(1-\alpha)%$ confidence interval. \textit{m} is the number of values in \texttt{alpha}.

\textbf{sigmaCI — Confidence interval for standard deviation}

\texttt{2-by-1 column vector | 2-by-\textit{m} matrix}

Confidence interval for the standard deviation parameter of the normal distribution, returned as a 2-by-1 column vector or 2-by-\textit{m} matrix containing the lower and upper bounds of the $100(1-\alpha)%$ confidence interval. \textit{m} is the number of values in \texttt{alpha}.
Algorithms

To compute the confidence intervals, `normfit` uses the exact method for uncensored data and the Wald method for censored data. The exact method provides exact coverage for uncensored samples based on t and chi-square distributions.

Alternative Functionality

`normfit` is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic functions `mle`, `fitdist`, and `paramci` and the Distribution Fitter app, which support various probability distributions.

- `mle` returns MLEs and the confidence intervals of MLEs for the parameters of various probability distributions. You can specify the probability distribution name or custom density function.
- Create a `NormalDistribution` probability distribution object by fitting the distribution to data using the `fitdist` function or the Distribution Fitter app. The object properties `mu` and `sigma` store the parameter estimates. To obtain the confidence intervals for the parameter estimates, pass the object to `paramci`.

References

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
Distribution Fitter | NormalDistribution | fitdist | mle | normcdf | norminv | normlike | paramci | statset

Topics
“Normal Distribution” on page B-130

Introduced before R2006a
norminv

Normal inverse cumulative distribution function

Syntax

```matlab
x = norminv(p)
x = norminv(p,mu)
x = norminv(p,mu,sigma)

[x,xLo,xUp] = norminv(p,mu,sigma,pCov)
[x,xLo,xUp] = norminv(p,mu,sigma,pCov,alpha)
```

Description

$x = \text{norminv}(p)$ returns the inverse of the standard normal cumulative distribution function (cdf), evaluated at the probability values in p.

$x = \text{norminv}(p,mu)$ returns the inverse of the normal cdf with mean mu and the unit standard deviation, evaluated at the probability values in p.

$x = \text{norminv}(p,mu,sigma)$ returns the inverse of the normal cdf with mean mu and standard deviation $sigma$, evaluated at the probability values in p.

$[x,xLo,xUp] = \text{norminv}(p,mu,sigma,pCov)$ also returns the 95% confidence bounds $[xLo,xUp]$ of x when mu and $sigma$ are estimates. $pCov$ is the covariance matrix of the estimated parameters.

$[x,xLo,xUp] = \text{norminv}(p,mu,sigma,pCov,alpha)$ specifies the confidence level for the confidence interval $[pLo,pUp]$ to be $100(1-\alpha)\%$.

Examples
Inverse of Standard Normal cdf

Find an interval that contains 95% of the values from a standard normal distribution.

\[
x = \text{norminv}([0.025 \ 0.975])
\]

\[
x = 1\times2
\]

\[-1.9600 \quad 1.9600\]

Note that the interval \(x\) is not the only such interval, but it is the shortest. Find another interval.

\[
x_l = \text{norminv}([0.01 \ 0.96])
\]

\[
x_l = 1\times2
\]

\[-2.3263 \quad 1.7507\]

The interval \(x_l\) also contains 95% of the probability, but it is longer than \(x\).

Inverse of Normal Distribution cdf

Compute the inverse of cdf values evaluated at the probability values in \(p\) for the normal distribution with mean \(\mu\) and standard deviation \(\sigma\).

\[
p = 0:0.25:1;
\]

\[
\mu = 2;
\]

\[
\sigma = 1;
\]

\[
x = \text{norminv}(p,\mu,\sigma)
\]

\[
x = 1\times5
\]

\[-\text{Inf} \quad 1.3255 \quad 2.0000 \quad 2.6745 \quad \text{Inf}\]

Compute the inverse of cdf values evaluated at 0.5 for various normal distributions with different mean parameters.
mu = [-2,-1,0,1,2];
sigma = 1;
x = norminv(0.5,mu,sigma)

x = 1x5
 -2 -1 0 1 2

Confidence Interval of Inverse Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find the confidence interval of the corresponding inverse cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard deviation 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,[n,1]);

Estimate the distribution parameters mean and standard deviation by using normfit.

[muHat,sigmaHat] = normfit(x)

muHat = 4.9347
sigmaHat = 1.9979

With no censoring, muHat is the sample mean and sigmaHat is the square root of the unbiased estimator of the variance. muHat is equal to the MLE of the mean parameter, but sigmaHat is not equal to the MLE of the standard deviation parameter. Transform sigmaHat into the MLE.

sigmaHat = sqrt((n-1)/n)*sigmaHat

sigmaHat = 1.9969

Estimate the covariance of the distribution parameters by using normlike. The function normlike returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples used to estimate the MLEs.

[~,pCov] = normlike([muHat,sigmaHat],x)
pCov = 2×2

0.0040 -0.0000
-0.0000 0.0020

Find the inverse cdf value at 0.5 and its 99% confidence interval.

[x,xLo,xUp] = norminv(0.5,muHat,sigmaHat,pCov,0.01)

x = 4.9347

xLo = 4.7721

xUp = 5.0974

x is the inverse cdf value using the normal distribution with the parameters muHat and sigmaHat. The interval [xLo,xUp] is the 99% confidence interval of the inverse cdf value evaluated at 0.5, considering the uncertainty of muHat and sigmaHat using pCov. The 99% confidence interval means that the probability that [xLo,xUp] contains the true inverse cdf value is 0.99.

Input Arguments

p — Probability values at which to evaluate inverse of cdf

scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the inverse of the cdf, specified as a scalar value or an array of scalar values, where each element is in the range [0,1].

If you specify pCov to compute the confidence interval [xLo,xUp], then p must be a scalar value.

To evaluate the icdf at multiple values, specify x using an array. To evaluate the icdfs of multiple normal distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar input into a constant array of the same size as the array inputs. Each element in x is the icdf value of the normal distribution specified by the corresponding elements in mu and sigma, evaluated at the corresponding element in p.

Example: [0.1,0.5,0.9]
Data Types: single | double

mu — Mean

0 (default) | scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval \([xLo, xUp]\), then mu must be a scalar value.

To evaluate the icdf at multiple values, specify x using an array. To evaluate the icdfs of multiple normal distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar input into a constant array of the same size as the array inputs. Each element in x is the icdf value of the normal distribution specified by the corresponding elements in mu and sigma, evaluated at the corresponding element in p.

Example: \([0 1 2; 0 1 2]\)

Data Types: single | double

sigma — Standard deviation

1 (default) | positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of positive scalar values.

If you specify pCov to compute the confidence interval \([xLo, xUp]\), then sigma must be a scalar value.

To evaluate the icdf at multiple values, specify x using an array. To evaluate the icdfs of multiple normal distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar input into a constant array of the same size as the array inputs. Each element in x is the icdf value of the normal distribution specified by the corresponding elements in mu and sigma, evaluated at the corresponding element in p.

Example: \([1 1 1; 2 2 2]\)

Data Types: single | double
pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates mu and sigma, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval \([x_{Lo}, x_{Up}]\), then \(p\), \(mu\), and \(sigma\) each must be a scalar value.

You can estimate \(mu\) and \(sigma\) by using `normfit` and estimate the covariance of \(mu\) and \(sigma\) by using `normlike`. For an example, see “Confidence Interval of Inverse Normal cdf Value” on page 32-4445.

Data Types: `single` | `double`

alpha — Confidence level
0.05 (default) | scalar in the range \((0,1)\)

Confidence level for the confidence interval, specified as a scalar in the range \((0,1)\). The confidence level is \(100(1-\alpha)\)%, where \(\alpha\) is the probability that the confidence interval does not contain the true value.

Example: 0.01

Data Types: `single` | `double`

Output Arguments

x — icdf values
scalar value | array of scalar values

icdf values, evaluated at the probability values in \(p\), returned as a scalar value or an array of scalar values. \(x\) is the same size as \(p\), \(mu\), and \(sigma\) after any necessary scalar expansion. Each element in \(x\) is the icdf value of the normal distribution specified by the corresponding elements in \(mu\) and \(sigma\), evaluated at the corresponding element in \(p\).

xLo — Lower confidence bound for x
scalar value | array of scalar values

Lower confidence bound for \(x\), returned as a scalar value or an array of scalar values. \(x_{Lo}\) has the same size as \(x\).
Definitions

Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, \(\mu \), is the mean. The second parameter, \(\sigma \), is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal inverse function is defined in terms of the normal cdf as

\[
x = F^{-1}(p \mid \mu, \sigma) = \{x : F(x \mid \mu, \sigma) = p\},
\]

where

\[
p = F(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\frac{-(x-\mu)^2}{2\sigma^2}} dt.
\]

The result \(x \) is the solution of the integral equation where you supply the desired probability \(p \).

Algorithms

- The \texttt{norminv} function uses the inverse complementary error function \texttt{erfcinv}. The relationship between \texttt{norminv} and \texttt{erfcinv} is

\[
\texttt{norminv}(p) = -\sqrt{2} \texttt{erfcinv}(2p)
\]

The inverse complementary error function \texttt{erfcinv}(x) is defined as \texttt{erfcinv(\texttt{erfc}(x))=x}, and the complementary error function \texttt{erfc}(x) is defined as...
erfc(x) = 1 - erf(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt.

- The norminv function computes confidence bounds for x by using the delta method. norminv(p,mu,sigma) is equivalent to mu+sigma*norminv(p,0,1). Therefore, the norminv function estimates the variance of mu+sigma*norminv(p,0,1) using the covariance matrix of mu and sigma by the delta method, and finds the confidence bounds using the estimates of this variance. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pCov from large samples.

Alternative Functionality

norminv is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic function icdf, which supports various probability distributions. To use icdf, create a NormalDistribution probability distribution object and pass the object as an input argument or specify the probability distribution name and its parameters. Note that the distribution-specific function norminv is faster than the generic function icdf.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NormalDistribution | erfcinv | icdf | normcdf | normfit | normlike | normspec

Topics
“Normal Distribution” on page B-130

Introduced before R2006a
normlike

Normal negative loglikelihood

Syntax

```matlab
nlogL = normlike(params,x)
nlogL = normlike(params,x,censoring)
nlogL = normlike(params,x,censoring,freq)
[nlogL,aVar] = normlike(___
```

Description

`nlogL = normlike(params,x)` returns the normal negative loglikelihood of the distribution parameters (`params`) given sample data (`x`). `params(1)` and `params(2)` correspond to the mean and standard deviation of the normal distribution, respectively.

`nlogL = normlike(params,x,censoring)` specifies whether each value in `x` is right-censored or not. Use the logical vector `censoring` in which 1 indicates observations that are right-censored and 0 indicates observations that are fully observed.

`nlogL = normlike(params,x,censoring,freq)` specifies the frequency or weights of observation. To specify `freq` without specifying `censoring`, you can pass `[]` for `censoring`.

`[nlogL,aVar] = normlike(___)` also returns the inverse of the Fisher information matrix `aVar`. If values in `params` are the maximum likelihood estimates (MLEs) of the parameters, `aVar` is an approximation to the asymptotic covariance matrix.

Examples
Negative Log Likelihood of MLEs

Find the MLEs of a data set with censoring by using `normfit`, and then find the negative log likelihood of the MLEs by using `normlike`.

Load the sample data.

```matlab
load lightbulb
```

The first column of the data contains the lifetime (in hours) of two types of bulbs. The second column contains the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates that the bulb is fluorescent, and 0 indicates that the bulb is incandescent. The third column contains the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the item (bulb) is censored.

Find the indices for fluorescent bulbs.

```matlab
idx = find(lightbulb(:,2) == 0);
```

Find the MLEs of the normal distribution parameters. The second input argument of `normfit` specifies the confidence level. Pass in `[]` to use its default value 0.05. The third input argument specifies the censorship information.

```matlab
censoring = lightbulb(idx,3) == 1;
[muHat,sigmaHat] = normfit(lightbulb(idx,1),[],censoring)
```

- `muHat = 9.4966e+03`
- `sigmaHat = 3.0640e+03`

Find the negative log likelihood of the MLEs.

```matlab
nlogL = normlike([muHat,sigmaHat],lightbulb(idx,1),censoring)
nlogL = 376.2305
```

Convert Unbiased Estimator to MLE

The function `normfit` finds the sample mean and the square root of the unbiased estimator of the variance with no censoring. The sample mean is equal to the MLE of the mean parameter, but the square root of the unbiased estimator of the variance is not equal to the MLE of the standard deviation parameter.
Find the normal distribution parameters by using `normfit`, convert them into MLEs, and then compare the negative log likelihoods of the estimates by using `normlike`.

Generate 100 normal random numbers from the standard normal distribution.

```matlab
rng('default') % For reproducibility
n = 100;
x = normrnd(0,1,[n,1]);
```

Find the sample mean and the square root of the unbiased estimator of the variance.

```matlab
[muHat,sigmaHat] = normfit(x)
muHat = 0.1231
sigmaHat = 1.1624
```

Convert the square root of the unbiased estimator of the variance into the MLE of the standard deviation parameter.

```matlab
sigmaHat_MLE = sqrt((n-1)/n)*sigmaHat
sigmaHat_MLE = 1.1566
```

The difference between `sigmaHat` and `sigmaHat_MLE` is negligible for large `n`.

Alternatively, you can find the MLEs by using the function `mle`.

```matlab
phat = mle(x)
phat = 1x2
     0.1231    1.1566
```

`phat(1)` and `phat(2)` are the MLEs of the mean and the standard deviation parameter, respectively.

Confirm that the log likelihood of the MLEs (`muHat` and `sigmaHat_MLE`) is greater than the log likelihood of the unbiased estimators (`muHat` and `sigmaHat`) by using the `normlike` function.

```matlab
logL = -normlike([muHat,sigmaHat],x)
logL = -156.4424
```
\[
\text{logL}_{\text{MLE}} = -\text{normlike}([\muHat, \sigmaHat_{\text{MLE}}], x)
\]
\[
\text{logL}_{\text{MLE}} = -156.4399
\]

Confidence Interval of Inverse Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find the confidence interval of the corresponding inverse cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard deviation 2.

\[
\text{rng}('\text{default}') \quad \% \text{ For reproducibility}
\]
\[
n = 1000; \quad \% \text{ Number of samples}
\]
\[
x = \text{normrnd}(5, 2, [n, 1]);
\]

Estimate the distribution parameters mean and standard deviation by using `normfit`.

\[
[\muHat, \sigmaHat] = \text{normfit}(x)
\]
\[
\muHat = 4.9347
\]
\[
\sigmaHat = 1.9979
\]

With no censoring, \(\muHat\) is the sample mean and \(\sigmaHat\) is the square root of the unbiased estimator of the variance. \(\muHat\) is equal to the MLE of the mean parameter, but \(\sigmaHat\) is not equal to the MLE of the standard deviation parameter. Transform \(\sigmaHat\) into the MLE.

\[
\sigmaHat = \sqrt{\frac{(n-1)}{n}} \times \sigmaHat
\]
\[
\sigmaHat = 1.9969
\]

Estimate the covariance of the distribution parameters by using `normlike`. The function `normlike` returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples used to estimate the MLEs.

\[
[\sim, \text{pCov}] = \text{normlike}([\muHat, \sigmaHat], x)
\]
\[
\text{pCov} = 2 \times 2
\]
\[
\begin{bmatrix}
0.0040 & -0.0000 \\
\end{bmatrix}
\]
Find the inverse cdf value at 0.5 and its 99% confidence interval.

\[[x, x_{\text{Lo}}, x_{\text{Up}}] = \text{norminv}(0.5, \mu_{\text{Hat}}, \sigma_{\text{Hat}}, \text{pCov}, 0.01) \]

\[x = 4.9347 \]
\[x_{\text{Lo}} = 4.7721 \]
\[x_{\text{Up}} = 5.0974 \]

\(x \) is the inverse cdf value using the normal distribution with the parameters \(\mu_{\text{Hat}} \) and \(\sigma_{\text{Hat}} \). The interval \([x_{\text{Lo}}, x_{\text{Up}}] \) is the 99% confidence interval of the inverse cdf value evaluated at 0.5, considering the uncertainty of \(\mu_{\text{Hat}} \) and \(\sigma_{\text{Hat}} \) using \(\text{pCov} \). The 99% confidence interval means that the probability that \([x_{\text{Lo}}, x_{\text{Up}}] \) contains the true inverse cdf value is 0.99.

Input Arguments

params — Normal distribution parameters

vector of two numeric values

Normal distribution parameters consisting of the mean and standard deviation, specified as a vector of two numeric values. \(\text{params}(1) \) and \(\text{params}(2) \) correspond to the mean and standard deviation of the normal distribution, respectively. \(\text{params}(2) \) must be positive.

Example: \([0,1]\)

Data Types: single | double

x — Sample data

vector

Sample data, specified as a vector.

Data Types: single | double

censoring — Indicator for censoring

array of 0s (default) | logical vector
Indicator for the censoring of each value in \(x \), specified as a logical vector of the same size as \(x \). Use 1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.

Data Types: logical

\textbf{freq — Frequency or weights of observations}

array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as \(x \). The \text{freq} input argument typically contains nonnegative integer counts for the corresponding elements in \(x \), but can contain any nonnegative values.

To obtain the weighted negative loglikelihood for the mean and standard deviation for a data set with censoring, specify weights of observations, normalized to the number of observations in \(x \).

The default is an array of 1s, meaning one observation per element of \(x \).

Data Types: single | double

\section*{Output Arguments}

\textbf{nlogL — Negative loglikelihood}

numeric value

Negative loglikelihood value of the distribution parameters (\text{params}) given sample data (\(x \)), returned as a numeric value.

\textbf{aVar — Inverse of Fisher information matrix}

numeric matrix

Inverse of the Fisher information matrix, returned as a 2-by-2 numeric matrix. \(\text{aVar} \) is based on the observed Fisher information given the observed data (\(x \)), not the expected information.

If values in \text{params} are the MLEs of the parameters, \(\text{aVar} \) is an approximation to the asymptotic variance-covariance matrix (also known as asymptotic covariance matrix). To find the MLEs, use \text{normfit} or \text{mle}.
Alternative Functionality

`normlike` is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic functions `mlecov`, `fitdist`, `negloglik`, and `proflik` and the Distribution Fitter app, which support various probability distributions.

- `mlecov` returns the asymptotic covariance matrix of the MLEs of the parameters for a distribution specified by the custom probability density function. For example, `mlecov(params,x,'pdf',@normpdf)` returns the asymptotic covariance matrix of the MLEs for the normal distribution.
- Create a NormalDistribution probability distribution object by fitting the distribution to data using the `fitdist` function or the Distribution Fitter app. The object property `ParameterCovariance` stores the covariance matrix of the parameter estimates. To obtain the negative loglikelihood of the parameter estimates and the profile of the likelihood function, pass the object to `negloglik` and `proflik`, respectively.

References

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also

Distribution Fitter | NormalDistribution | mle | mlecov | normcdf | normfit | norminv | proflik

Topics

“Negative Loglikelihood Functions” on page 5-30
“Normal Distribution” on page B-130

Introduced before R2006a
normpdf

Normal probability density function

Syntax

\[
y = \text{normpdf}(x) \\
y = \text{normpdf}(x, \mu) \\
y = \text{normpdf}(x, \mu, \sigma)
\]

Description

\(y = \text{normpdf}(x) \) returns the probability density function (pdf) of the standard normal distribution, evaluated at the values in \(x \).

\(y = \text{normpdf}(x, \mu) \) returns the pdf of the normal distribution with mean \(\mu \) and the unit standard deviation, evaluated at the values in \(x \).

\(y = \text{normpdf}(x, \mu, \sigma) \) returns the pdf of the normal distribution with mean \(\mu \) and standard deviation \(\sigma \), evaluated at the values in \(x \).

Examples

Standard Normal Distribution pdf

Compute the pdf values for the standard normal distribution at the values in \(x \).

\[
x = [-2, -1, 0, 1, 2]; \\
y = \text{normpdf}(x)
\]

\[
y = 1\times5 \\
 0.0540 0.2420 0.3989 0.2420 0.0540
\]
Normal Distribution pdf

Compute the pdf values evaluated at the values in x for the normal distribution with mean mu and standard deviation sigma.

```matlab
x = [-2,-1,0,1,2];
mu = 2;
sigma = 1;
y = normpdf(x,mu,sigma)
```

```
y = 1x5
     0.0001    0.0044    0.0540    0.2420    0.3989
```

Compute the pdf values evaluated at zero for various normal distributions with different mean parameters.

```matlab
mu = [-2,-1,0,1,2];
sigma = 1;
y = normpdf(0,mu,sigma)
```

```
y = 1x5
     0.0540    0.2420    0.3989    0.2420    0.0540
```

Input Arguments

- **x** — Values at which to evaluate pdf
 - scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value or an array of scalar values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple normal distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and sigma are arrays, then the array sizes must be the same. In this case, normpdf expands each scalar input into a constant array of the same size as
the array inputs. Each element in \(y \) is the pdf value of the normal distribution specified by the corresponding elements in \(\mu \) and \(\sigma \), evaluated at the corresponding element in \(x \).

Example: \([-1,0,3,4]\)

Data Types: `single` | `double`

mu — Mean

0 (default) | scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To evaluate the pdf at multiple values, specify \(x \) using an array. To evaluate the pdfs of multiple normal distributions, specify \(\mu \) and \(\sigma \) using arrays. If one or more of the input arguments \(x \), \(\mu \), and \(\sigma \) are arrays, then the array sizes must be the same. In this case, \texttt{normpdf} expands each scalar input into a constant array of the same size as the array inputs. Each element in \(y \) is the pdf value of the normal distribution specified by the corresponding elements in \(\mu \) and \(\sigma \), evaluated at the corresponding element in \(x \).

Example: \([0 \ 1 \ 2; \ 0 \ 1 \ 2]\)

Data Types: `single` | `double`

sigma — Standard deviation

1 (default) | positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of positive scalar values.

To evaluate the pdf at multiple values, specify \(x \) using an array. To evaluate the pdfs of multiple normal distributions, specify \(\mu \) and \(\sigma \) using arrays. If one or more of the input arguments \(x \), \(\mu \), and \(\sigma \) are arrays, then the array sizes must be the same. In this case, \texttt{normpdf} expands each scalar input into a constant array of the same size as the array inputs. Each element in \(y \) is the pdf value of the normal distribution specified by the corresponding elements in \(\mu \) and \(\sigma \), evaluated at the corresponding element in \(x \).

Example: \([1 \ 1 \ 1; \ 2 \ 2 \ 2]\)

Data Types: `single` | `double`
Output Arguments

y — pdf values
scalar value | array of scalar values

pdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. y is the same size as x, μ, and σ after any necessary scalar expansion. Each element in y is the pdf value of the normal distribution specified by the corresponding elements in μ and σ, evaluated at the corresponding element in x.

Definitions

Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, μ, is the mean. The second parameter, σ, is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal pdf is

$$y = f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

The likelihood function is the pdf viewed as a function of the parameters. Maximum likelihood estimates (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of x.

If z is standard normal, then $\sigma z + \mu$ is also normal with mean μ and standard deviation σ. Conversely, if x is normal with mean μ and standard deviation σ, then $z = (x - \mu) / \sigma$ is standard normal.

Alternative Functionality

- `normpdf` is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic function `pdf`, which supports various probability
distributions. To use pdf, create a `NormalDistribution` probability distribution object and pass the object as an input argument or specify the probability distribution name and its parameters. Note that the distribution-specific function `normpdf` is faster than the generic function `pdf`.

- Use the **Probability Distribution Function** app to create an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

`NormalDistribution` | `mvnpdf` | `normcdf` | `norminv` | `normrnd` | `normspec` | `pdf`

Topics

“Normal Distribution” on page B-130

Introduced before R2006a
normplot

Normal probability plot

Syntax

normplot(x)
normplot(ax,x)
h = normplot(__)

Description

normplot(x) creates a normal probability plot comparing the distribution of the data in x to the normal distribution.

normplot plots each data point in x using plus sign ('+') markers and draws two reference lines that represent the theoretical distribution. A solid reference line connects the first and third quartiles of the data, and a dashed reference line extends the solid line to the ends of the data. If the sample data has a normal distribution, then the data points appear along the reference line. A distribution other than normal introduces curvature in the data plot.

normplot(ax,x) adds a normal probability plot into the axes specified by ax.

h = normplot(__) returns graphics handles corresponding to the plotted lines, using any of the previous syntaxes.

Examples

Generate a Normal Probability Plot

Generate random sample data from a normal distribution with mu = 10 and sigma = 1.

rng default; % For reproducibility
x = normrnd(10,1,25,1);
Create a normal probability plot of the sample data.

```
figure;
normplot(x)
```

The plot indicates that the data follows a normal distribution.

Assess Normality Using a Normal Probability Plot

Generate 50 random numbers from each of four different distributions: A standard normal distribution; a Student's-t distribution with five degrees of freedom (a "fat-tailed"
distribution); a set of Pearson random numbers with \(\mu \) equal to 0, \(\sigma \) equal to 1, skewness equal to 0.5, and kurtosis equal to 3 (a "right-skewed" distribution); and a set of Pearson random numbers with \(\mu \) equal to 0, \(\sigma \) equal to 1, skewness equal to -0.5, and kurtosis equal to 3 (a "left-skewed" distribution).

\[
\text{rng(11)} \quad \% \text{ For reproducibility}
\]
\x1 = \text{normrnd}(0,1,[50,1]);
\x2 = \text{trnd}(5,[50,1]);
\x3 = \text{pearsrnd}(0,1,0.5,3,[50,1]);
\x4 = \text{pearsrnd}(0,1,-0.5,3,[50,1]);

Plot four histograms on the same figure for a visual comparison of the pdf of each distribution.

\[
\text{figure}
\]
\text{subplot}(2,2,1)
\text{histogram(x1,10)}
\text{title('Normal')}
\text{axis([-4,4,0,15])}

\text{subplot}(2,2,2)
\text{histogram(x2,10)}
\text{title('Fat Tails')}
\text{axis([-4,4,0,15])}

\text{subplot}(2,2,3)
\text{histogram(x3,10)}
\text{title('Right-Skewed')}
\text{axis([-4,4,0,15])}

\text{subplot}(2,2,4)
\text{histogram(x4,10)}
\text{title('Left-Skewed')}
\text{axis([-4,4,0,15])}

32-4467
The histograms show how each sample differs from the normal distribution.

Create a normal probability plot for each sample.

```matlab
figure
subplot(2,2,1)
normplot(x1)
title('Normal')

subplot(2,2,2)
normplot(x2)
title('Fat Tails')

subplot(2,2,3)
normplot(x3)
title('Right-Skewed')

subplot(2,2,4)
normplot(x4)
title('Left-Skewed')
```
normplot(x3)
title('Right-Skewed')

subplot(2,2,4)
normplot(x4)
title('Left-Skewed')

Adjust Normal Probability Plot Line Properties

Create a 50-by-2 matrix containing 50 random numbers from each of two different distributions: A standard normal distribution in column 1, and a set of Pearson random
numbers with \(\mu \) equal to 0, \(\sigma \) equal to 1, skewness equal to 0.5, and kurtosis equal to 3 (a "right-skewed" distribution) in column 2.

```matlab
rng default  % For reproducibility
x = [normrnd(0,1,[50,1]) pearsrnd(0,1,0.5,3,[50,1])];
```

Create a normal probability plot for both samples on the same figure. Return the plot line graphic handles.

```matlab
figure
h = normplot(x)
```

```matlab
h =
    6x1 Line array:
    Line
    Line
    Line
    Line
    Line
    Line

legend({'Normal','Right-Skewed'},'Location','southeast')
```
The handles h(1) and h(2) correspond to the data points for the normal and skewed distributions, respectively. The handles h(3) and h(4) correspond to the second and third quartile line fit to the sample data. The handles h(5) and h(6) correspond to the extrapolated line that extends to the minimum and maximum of each set of sample data.

To illustrate, increase the line width of the second and third quartile line for the normally distributed data sample (represented by h(3)) to 2.

\[
\text{h(3).LineWidth} = 2; \\
\text{h(4).LineWidth} = 2;
\]
Input Arguments

x — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. `normplot` displays each value in `x` using the symbol '+'.
If `x` is a matrix, then `normplot` displays a separate line for each column of `x`.

Data Types: `single` | `double`
ax — Target axes

Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. `normplot` adds an additional plot into the axes specified by `ax`. For details, see Axes Properties and UIAxes Properties.

Use `gca` to return the current axes for the current figure.

Output Arguments

h — Graphics handles for line objects

vector of Line graphics handles

Graphics handles for line objects, returned as a vector of Line graphics handles. Graphics handles are unique identifiers that you can use to query and modify the properties of a specific line on the plot. For each column of `x`, `normplot` returns three handles:

- The line representing the data points. `normplot` represents each data point in `x` using plus sign (`'+'`) markers.
- The line joining the first and third quartiles of each column of `x`, represented as a solid line.
- The extrapolation of the quartile line, extended to the minimum and maximum values of `x`, represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see “Access Property Values” (MATLAB). For information on the Line properties that you can set, see Primitive Line.

Algorithms

`normplot` matches the quantiles of sample data to the quantiles of a normal distribution. The sample data is sorted and plotted on the x-axis. The y-axis represents the quantiles of the normal distribution, converted into probability values. Therefore, the y-axis scaling is not linear.
Where the x-axis value is the \(i\)th sorted value from a sample of size \(N\), the y-axis value is the midpoint between evaluation points of the empirical cumulative distribution function of the data. The midpoint is equal to \(\frac{(i - 0.5)}{N}\).

`normplot` superimposes a reference line to assess the linearity of the plot. The line goes through the first and third quartiles of the data.

Alternative Functionality

You can use the `probpplot` function to create a probability plot. The `probpplot` function enables you to indicate censored data and specify the distribution for a probability plot.

See Also

`cdfplot` | `ecdf` | `probpplot` | `wblplot`

Topics

“Distribution Plots” on page 4-9
“Hypothesis Testing” on page 8-6
“Normal Distribution” on page B-130

Introduced before R2006a
normrnd

Normal random numbers

Syntax

\[r = \text{normrnd}(\mu, \sigma) \]
\[r = \text{normrnd}(\mu, \sigma, s_{z1}, \ldots, s_{zN}) \]
\[r = \text{normrnd}(\mu, \sigma, [s_{z1}, \ldots, s_{zN}]) \]

Description

\(r = \text{normrnd}(\mu, \sigma) \) generates a random number from the normal distribution with mean parameter \(\mu \) and standard deviation parameter \(\sigma \).

\(r = \text{normrnd}(\mu, \sigma, s_{z1}, \ldots, s_{zN}) \) or \(r = \text{normrnd}(\mu, \sigma, [s_{z1}, \ldots, s_{zN}]) \) generates a \(s_{z1} \)-by-\(\cdots \)-by-\(s_{zN} \) array of normal random numbers.

Examples

Generate Normal Random Number

Generate a single random value from the standard normal distribution.

\[\text{rng('default')} \quad \% \text{ For reproducibility} \]
\[r = \text{normrnd}(0,1) \]
\[r = 0.5377 \]
Reset Random Number Generator

Save the current state of the random number generator. Then create a 1-by-5 vector of normal random numbers from the normal distribution with mean 3 and standard deviation 10.

```matlab
s = rng;
r = normrnd(3,10,[1,5])
```

```
r = 1×5
```

Restore the state of the random number generator to `s`, and then create a new 1-by-5 vector of random numbers. The values are the same as before.

```matlab
rng(s);
r1 = normrnd(3,10,[1,5])
```

```
r1 = 1×5
```

Clone Size from Existing Array

Create a matrix of normally distributed random numbers with the same size as an existing array.

```matlab
A = [3 2; -2 1];
sz = size(A);
R = normrnd(0,1,sz)
```

```
R = 2×2
    0.5377   -2.2588
    1.8339    0.8622
```

You can combine the previous two lines of code into a single line.

```matlab
R = normrnd(1,0,size(A));
```
Input Arguments

mu — Mean

scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To generate random numbers from multiple normal distributions, specify **mu** and **sigma** using arrays. If both **mu** and **sigma** are arrays, then the array sizes must be the same. If either **mu** or **sigma** is a scalar, then **normrnd** expands the scalar argument into a constant array of the same size as the other argument. Each element in **r** is the random number generated from the normal distribution specified by the corresponding elements in **mu** and **sigma**.

Example: [0 1 2; 0 1 2]

Data Types: single | double

sigma — Standard deviation

nonnegative scalar value | array of nonnegative scalar values

Standard deviation of the normal distribution, specified as a nonnegative scalar value or an array of nonnegative scalar values.

If **sigma** is zero, then the output **r** is always equal to **mu**.

To generate random numbers from multiple normal distributions, specify **mu** and **sigma** using arrays. If both **mu** and **sigma** are arrays, then the array sizes must be the same. If either **mu** or **sigma** is a scalar, then **normrnd** expands the scalar argument into a constant array of the same size as the other argument. Each element in **r** is the random number generated from the normal distribution specified by the corresponding elements in **mu** and **sigma**.

Example: [1 1 1; 2 2 2]

Data Types: single | double

sz1,...,szN — Size of each dimension

integers | row vector of integers

Size of each dimension, specified as integers or a row vector of integers. For example, specifying 5,3,2 or [5,3,2] generates a 5-by-3-by-2 array of random numbers from the normal probability distribution.
If either mu or sigma is an array, then the specified dimensions sz1,...,szN must match the common dimensions of mu and sigma after any necessary scalar expansion. The default values of sz1,...,szN are the common dimensions.

- If you specify a single value sz1, then r is a square matrix of size sz1.
- If the size of any dimension is 0 or negative, then r is an empty array.
- Beyond the second dimension, normrnd ignores trailing dimensions with a size of 1. For example, normrnd(3,1,1,1) produces a 3-by-1 vector of random numbers.

Data Types: single | double

Output Arguments

r — Normal random numbers
scalar value | array of scalar values

Normal random numbers, returned as a scalar value or an array of scalar values with the dimensions specified by sz1,...,szN. Each element in r is the random number generated from the normal distribution specified by the corresponding elements in mu and sigma.

Alternative Functionality

- normrnd is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers the generic function random, which supports various probability distributions. To use random, create a NormalDistribution probability distribution object and pass the object as an input argument or specify the probability distribution name and its parameters. Note that the distribution-specific function normrnd is faster than the generic function random.
- Use randn to generate random numbers from the standard normal distribution.
- Use the random number generation user interface randtool to generate random numbers interactively.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NormalDistribution | lognrnd | mvnrnd | normcdf | normpdf | randn | random

Topics
“Random Number Generation” on page 5-35
“Normal Distribution” on page B-130

Introduced before R2006a
normspec

Normal density plot shading between specifications

Syntax

\[
p = \text{normspec}([\text{specs}])
\]

\[
p = \text{normspec}([\text{specs},\mu,\sigma])
\]

\[
p = \text{normspec}([\text{specs},\mu,\sigma,\text{region}])
\]

\[
[p,h] = \text{normspec}([___])
\]

Description

\[
p = \text{normspec}([\text{specs}])\] plots the standard normal density, shading the portion inside the specification limits given by the two-element vector specs, and returns the probability \(p \) of the shaded area. If spec has no lower limit, then set \(\text{specs}(1) \) to \(-\infty\); if spec has no upper limit, then set \(\text{specs}(2) \) to \(\infty \).

\[
p = \text{normspec}([\text{specs},\mu,\sigma])\] uses a normal density with parameters \(\mu \) and \(\sigma \).

\[
p = \text{normspec}([\text{specs},\mu,\sigma,\text{region}])\] specifies the shading region as either 'inside' or 'outside' the specification limits. The default is 'inside'.

\[
[p,h] = \text{normspec}([___])\] also returns a column vector of chart line objects using any of the input arguments in the previous syntaxes. Use \(h \) to modify properties of a specific chart line after you create it. For a list of properties, see Line.

Examples

Create Standard Normal Density Plot Shading Inside of Limits

Create a standard normal density plot, shading the portion inside the specification limits \([-1,1]\).
Create Normal Density Plot Shading Outside of Limits

Create a normal density plot, shading the portion outside the specification limits.

For example, consider a production process that fills cans of paint. The average amount of paint in any can is 1 gallon, but variability in the process produces a standard deviation of 2 ounces (2/128 gallons). Create a normal density plot, shading the portion corresponding to the probability that the cans will be filled under specification by 3 or more ounces.
\[p = \text{normspec}(\left[1-\frac{3}{128}, \infty\right], 1, \frac{2}{128}, 'outside') \]

\[p = 0.0668 \]

Input Arguments

specs — Specification limits

two-element numeric vector

Specification limits, specified as a two-element numeric vector. Set `specs(1)` to \(-\infty\) if there is no lower limit; set `specs(2)` to \(\infty\) if there is no upper limit.
Data Types: single | double

mu — Mean

0 (default) | scalar value

Mean of the normal distribution, specified as a scalar value.

Data Types: single | double

sigma — Standard deviation

1 (default) | positive scalar value

Standard deviation of the normal distribution, specified as a positive scalar value.

Data Types: single | double

region — Shading region

'inside' (default) | 'outside'

Shading region, specified as either 'inside' or 'outside'. The function `normspec` shades the region either 'inside' or 'outside' the specification limits.

Output Arguments

p — Probability of shaded area

nonnegative scalar value

Probability of the shaded area, returned as a nonnegative scalar value.

h — One or more chart line objects

scalar | vector

One or more chart line objects, returned as a scalar or vector. These objects are unique identifiers that you use to query and modify properties of a specific chart line. For a list of properties, see Chart Line.

See Also

capaplot | histfit
Topics
“Normal Distribution” on page B-130

Introduced before R2006a
normstat

Normal mean and variance

Syntax

\[[m,v] = \text{normstat}(\mu,\sigma) \]

Description

\[[m,v] = \text{normstat}(\mu,\sigma) \]
returns the mean and variance of the normal distribution with mean \(\mu \) and standard deviation \(\sigma \).

The mean of the normal distribution with parameters \(\mu \) and \(\sigma \) is \(\mu \), and the variance is \(\sigma^2 \).

Examples

Compute Mean and Variance

Compute the mean and variance of the normal distribution with parameters \(\mu \) and \(\sigma \).

\[
\mu = 1; \\
\sigma = 1:5; \\
[m,v] = \text{normstat}(\mu,\sigma)
\]

\[
m = 1\times5 \\
\begin{bmatrix}
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
v = 1\times5 \\
\begin{bmatrix}
1 & 4 & 9 & 16 & 25
\end{bmatrix}
\]
Input Arguments

mu — Mean
Scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To compute the means and variances of multiple normal distributions, specify distribution parameters using an array of scalar values. If both **mu** and **sigma** are arrays, then the array sizes must be the same. If either **mu** or **sigma** is a scalar, then **normstat** expands the scalar argument into a constant array of the same size as the other argument. Each element in m and v is the mean and variance of the normal distribution specified by the corresponding elements in **mu** and **sigma**.

Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation
Positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of positive scalar values.

To compute the means and variances of multiple normal distributions, specify distribution parameters using an array of scalar values. If both **mu** and **sigma** are arrays, then the array sizes must be the same. If either **mu** or **sigma** is a scalar, then **normstat** expands the scalar argument into a constant array of the same size as the other argument. Each element in m and v is the mean and variance of the normal distribution specified by the corresponding elements in **mu** and **sigma**.

Example: [1 1 1; 2 2 2]
Data Types: single | double

Output Arguments

m — Mean
Scalar value | array of scalar values

Mean of the normal distribution, returned as a scalar value or an array of scalar values. m is the same size as **mu** and **sigma** after any necessary scalar expansion. Each element in m
is the mean of the normal distribution specified by the corresponding elements in mu and sigma.

\[\mathbf{v} \] — Variance
scalar value | array of scalar values

Variance of the normal distribution, returned as a scalar value or an array of scalar values. \(\mathbf{v} \) is the same size as \(\mathbf{mu} \) and \(\mathbf{sigma} \) after any necessary scalar expansion. Each element in \(\mathbf{v} \) is the variance of the normal distribution specified by the corresponding elements in \(\mathbf{mu} \) and \(\mathbf{sigma} \).

Alternative Functionality

`normstat` is a function specific to normal distribution. Statistics and Machine Learning Toolbox also offers generic functions to compute summary statistics, including mean (`mean`), median (`median`), interquartile range (`iqr`), variance (`var`), and standard deviation (`std`), which support various probability distributions. To use these functions, create a `NormalDistribution` probability distribution object and pass the object as an input argument.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NormalDistribution | mean | normcdf | normpdf | normrnd | std | var

Topics
“Normal Distribution” on page B-130

Introduced before R2006a
nsegments

Number of segments in piecewise distribution

Syntax

\[n = \text{nsegments}(pd) \]

Description

\[n = \text{nsegments}(pd) \]
returns the number of segments in the piecewise distribution object \(pd \).

Examples

Number of Segments in \text{paretotails} Object

Generate a sample data set and fit a piecewise distribution with a Pareto tail to the data by using \text{paretotails}. Find the number of segments in the fitted distribution by using the object function \text{nsegments}.

Generate a sample data set containing 10% outliers in the right tail.

```matlab
rng('default'); % For reproducibility
right_tail = exprnd(5,100,1);
center = randn(900,1);
x = [center;right_tail];
```

Create a \text{paretotails} object by fitting a piecewise distribution to \(x \). Specify the boundaries of the tails using the lower and upper tail cumulative probabilities. Pass in 0 and 0.9 so that a fitted object does not contain a lower tail segment, and consists of the empirical distribution for the lower 90% of the data set and a generalized Pareto distribution (GPD) for the upper 10% of the data set.

```matlab
pd = paretotails(x,0,0.9)
```
pd =
Piecewise distribution with 2 segments
-Inf < x < 1.73931 (0 < p < 0.9): interpolated empirical cdf
 1.73931 < x < Inf (0.9 < p < 1): upper tail, GPD(0.643752,1.62246)

Return the number of segments in pd by using the nsegments function.

n = nsegments(pd)

n = 2

You can also get the number of segments by using the NumSegments property. Access the NumSegments property by using dot notation.

pd.NumSegments

ans = 2

Input Arguments

pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a paretotails object.

See Also

boundary | lowerparams | paretotails | segment | upperparams

Topics

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

Introduced in R2007a
numel

Class: dataset

Number of elements in dataset array

Note The `dataset` data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® `table` data type instead. See MATLAB table documentation for more information.

Syntax

\[n = \text{numel}(A) \]
\[n = \text{numel}(A, \text{varargin}) \]

Description

\[n = \text{numel}(A) \text{ returns 1. To find the number of elements, } n, \text{ in the dataset array } A, \text{ use } \text{prod(size(A)) or numel(A,'':'','')}. \]

\[n = \text{numel}(A, \text{varargin}) \text{ returns the number of subscripted elements, } n, \text{ in } A(\text{index1, index2, ... indexn}), \text{ where varargin is a string array or cell array whose elements are index1, index2, ... indexn}. \]

See Also

`length` | `size`
numnodes

Class: classregtree

(Removed) Number of nodes

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

n = numnodes(t)

Description

n = numnodes(t) returns the number of nodes n in the tree t.

References

See Also

classregtree
NumTestSets property

Class: cvpartition

Number of test sets

Description

Value is the number of folds in partitions of type 'kfold' and 'leaveout'.
Value is 1 in partitions of type 'holdout' and 'resubstitution'.
ObsNames property

Class: dataset

Cell array of nonempty, distinct character vectors giving names of observations in data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A cell array of nonempty, distinct character vectors giving the names of the observations in the data set. This property may be empty, but if not empty, the number of character vectors must equal the number of observations.
optimalleaforder

Optimal leaf ordering for hierarchical clustering

Syntax

leafOrder = optimalleaforder(tree,D)
leafOrder = optimalleaforder(tree,D,Name,Value)

Description

leafOrder = optimalleaforder(tree,D) returns an optimal leaf ordering for the hierarchical binary cluster tree, tree, using the distances, D. An optimal leaf ordering of a binary tree maximizes the sum of the similarities between adjacent leaves by flipping tree branches without dividing the clusters.

leafOrder = optimalleaforder(tree,D,Name,Value) returns the optimal leaf ordering using one or more name-value pair arguments.

Examples

Plot Dendrogram With Optimal Leaf Order

Create a hierarchical binary cluster tree using linkage. Then, compare the dendrogram plot with the default ordering to a dendrogram with an optimal leaf ordering.

Generate sample data.

rng('default') % For reproducibility
X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree. Use the distances and clustering tree to determine an optimal leaf order.
D = pdist(X);
tree = linkage(D,'average');
leafOrder = optimalleaforder(tree,D);

Plot the dendrogram with the default ordering and the dendrogram with the optimal leaf ordering.

figure()
subplot(2,1,1)
dendrogram(tree)
title('Default Leaf Order')

subplot(2,1,2)
dendrogram(tree,'reorder',leafOrder)
title('Optimal Leaf Order')
The order of the leaves in the bottom figure corresponds to the elements in `leafOrder`.

```matlab
leafOrder
```

```
leafOrder = 1×10
1     4     9    10     2     5     8     3     7     6
```

Optimal Leaf Order Using Inverse Distance Similarity

Generate sample data.
rng('default') % For reproducibility
X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree.
D = pdist(X);
tree = linkage(D,'average');

Use the inverse distance similarity transformation to determine an optimal leaf order.
leafOrder = optimalleaforder(tree,D,'Transformation','inverse')
leafOrder = 1×10
 1 4 9 10 2 5 8 3 7 6

Input Arguments

tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an (M – 1)-by-3 matrix that you generate using linkage, where M is the number of leaves.

D — Distances
matrix | vector

Distances for determining similarities between leaves, specified as a matrix or vector of distances. For example, you can generate distances using pdist.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Criteria','group','Transformation','inverse' specifies that the sum of similarities be maximized between every leaf and all other leaves in adjacent clusters, using an inverse similarity transformation.
Criteria — Optimization criterion
'adjacent' (default) | 'group'

Optimization criterion for determining an optimal leaf ordering, specified as the comma-separated pair consisting of 'criteria' and one of these values:

'adjacent' Maximize the sum of similarities between adjacent leaves.
'group' Maximize the sum of similarities between every leaf and all other leaves in the adjacent clusters at the same level of the dendrogram.

Example: 'Criteria','group'

Transformation — Method for transforming distances to similarities
'linear' (default) | 'inverse' | function handle

Method for transforming distances to similarities, specified as the comma-separated pair consisting of 'Transformation' and one of 'linear', 'inverse', or a function handle.

Let $d_{i,j}$ and $Sim_{i,j}$ denote the distance and similarity between leaves i and j, respectively. The included similarity transformations are:

'linear' $Sim_{i,j} = \max_{i,j} (d_{i,j}) - d_{i,j}$
'inverse' $Sim_{i,j} = 1/d_{i,j}$

To use a custom transformation function, specify a handle to a function that accepts a matrix of distances, D, and returns a matrix of similarities, S. The function should be monotonic decreasing in the range of distance values. S must have the same size as D, with $S(i,j)$ being the similarity computed based on $D(i,j)$.

Example: 'Transformation', @myTransform

Output Arguments

leafOrder — Optimal leaf order
vector

Optimal leaf order, returned as a length-M vector, where M is the number of leaves. leafOrder is a permutation of the vector 1:M, giving an optimal leaf ordering based on the specified distances and similarity transformation.
References

See Also

dendrogram | linkage | pdist

Introduced in R2012b
oobEdge

Out-of-bag classification edge

Syntax

```matlab
edge = oobEdge(ens)
edge = oobEdge(ens,Name,Value)
```

Description

`edge = oobEdge(ens)` returns out-of-bag classification edge for `ens`.

`edge = oobEdge(ens,Name,Value)` computes classification edge with additional options specified by one or more `Name,Value` pair arguments. You can specify several name-value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Input Arguments

`ens`

A classification bagged ensemble, constructed with `fitcensemble`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name-value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

`learners`

Indices of weak learners in the ensemble ranging from 1 to `ens.NumTrained`. `oobEdge` uses only these learners for calculating loss.

Default: `1:NumTrained`
mode

Character vector or string scalar representing the meaning of the output L:

- 'ensemble' — L is a scalar value, the loss for the entire ensemble.
- 'individual' — L is a vector with one element per trained learner.
- 'cumulative' — L is a vector in which element J is obtained by using learners $1:J$ from the input list of learners.

Default: 'ensemble'

Output Arguments

edge

Classification edge, a weighted average of the classification margin.

Examples

Estimate Out-of-Bag Edge

Load Fisher's iris data set.

load fisheriris

Train an ensemble of 100 bagged classification trees using the entire data set.

rng(1) % For reproducibility
Mdl = fitcensemble(meas,species,'Method','Bag');

Estimate the out-of-bag edge.

def = oobEdge(Mdl)
def = 0.8638
Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in \(\text{ens.Prior} \).

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix \(\text{ens.X} \).

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, \text{fitcensemble} generates many bootstrap replicas of the dataset and grows decision trees on these replicas. \text{fitcensemble} obtains each bootstrap replica by randomly selecting \(N \) observations out of \(N \) with replacement, where \(N \) is the dataset size. To find the predicted response of a trained ensemble, \text{predict} take an average over predictions from individual trees.

Drawing \(N \) out of \(N \) observations with replacement omits on average 37\% (\(1/e \)) of observations for each decision tree. These are "out-of-bag" observations. For each observation, \text{oobLoss} estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

See Also

\text{oobLoss} | \text{oobMargin} | \text{oobPredict}
oobError

Class: TreeBagger

Out-of-bag error

Syntax

err = oobError(B)
err = oobError(B,'param1',val1,'param2',val2,...)

Description

err = oobError(B) computes the misclassification probability (for classification trees) or mean squared error (for regression trees) for out-of-bag observations in the training data, using the trained bagger B. err is a vector of length NTrees, where NTrees is the number of trees in the ensemble.

err = oobError(B,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'Mode' Character vector or string scalar indicating how oobError computes errors. If set to 'cumulative' (default), the method computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees(1), second element gives error from trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.
Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives error from trees(1), the second element gives error from trees(1:2) etc.

Vector of tree weights. This vector must have the same length as the 'Trees' vector. oobError uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

Algorithms

oobError estimates the weighted ensemble error for out-of-bag observations. That is, oobError applies error to the training data stored in the input TreeBagger model B, and selects the out-of-bag observations for each tree to compose the ensemble error.

- B.X and B.Y are the training data predictors and responses, respectively.
- B.OOBIndices specifies which observations are out-of-bag for each tree in the ensemble.
- B.W specifies the observation weights.
- Optionally:
 - Using the 'Mode' name-value pair argument, you can specify to return the individual, weighted ensemble error for each tree, or the entire, weighted ensemble error. By default, oobError returns the cumulative, weighted ensemble error.
 - Using the 'Trees' name-value pair argument, you can choose which trees to use in the ensemble error calculations.
 - Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a weight.

oobError applies the algorithms described below. For more details, see error and predict.
For regression problems, `oobError` returns the weighted MSE.

1. `oobError` predicts responses for all out-of-bag observations.
2. The MSE estimate depends on the value of 'Mode'.

 - If you specify 'Mode','Individual', then `oobError` sets any in bag observations within a selected tree to the weighted sample average of the observed, training data responses. Then, `oobError` computes the weighted MSE for each selected tree.

 - If you specify 'Mode','Cumulative', then `oobError` returns a vector of cumulative, weighted MSEs, where MSE_t is the cumulative, weighted MSE for selected tree t. To compute MSE_t, for each observation that is out of bag for at least one tree through tree t, `oobError` computes the cumulative, weighted mean of the predicted responses through tree t. `oobError` sets observations that are in bag for all selected trees through tree t to the weighted sample average of the observed, training data responses. Then, `oobError` computes MSE_t.

 - If you specify 'Mode','Ensemble', then, for each observation that is out of bag for at least one tree, `oobError` computes the weighted mean over all selected trees. `oobError` sets observations that are in bag for all selected trees to the weighted sample average of the observed, training data responses. Then, `oobError` computes the weighted MSE, which is the same as the final, cumulative, weighted MSE.

In classification problems, `oobError` returns the weighted misclassification rate.

1. `oobError` predicts classes for all out-of-bag observations.
2. The weighted misclassification rate estimate depends on the value of 'Mode'.

 - If you specify 'Mode','Individual', then `oobError` sets any in bag observations within a selected tree to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, `oobError` considers the one listed first in the `ClassNames` property of the `TreeBagger` model the most popular. Then, `oobError` computes the weighted misclassification rate for each selected tree.

 - If you specify 'Mode','Cumulative', then `oobError` returns a vector of cumulative, weighted misclassification rates, where e_t^* is the cumulative, weighted misclassification rate for selected tree t. To compute e_t^*, for each observation that is out of bag for at least one tree through tree t, `oobError` finds the predicted, cumulative, weighted most popular class through tree t. `oobError` sets observations that are in bag for all selected trees through tree t to the weighted sample average of the observed, training data responses. Then, `oobError` computes MSE_t.
weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular. Then, oobError computes e_t^*.

- If you specify 'Mode','Ensemble', then, for each observation that is out of bag for at least one tree, oobError computes the weighted, most popular class over all selected trees. oobError sets observations that are in bag for all selected trees through tree t to the predicted, weighted, most popular class over all training responses. If there are multiple most popular classes, error considers the one listed first in the ClassNames property of the TreeBagger model the most popular. Then, oobError computes the weighted misclassification rate, which is the same as the final, cumulative, weighted misclassification rate.

See Also
TreeBagger | error | oobPredict | oobQuantileError | predict

Topics
"Bootstrap Aggregation (Bagging) of Regression Trees" on page 18-139
"Bootstrap Aggregation (Bagging) of Classification Trees" on page 18-152
oobLoss

Out-of-bag classification error

Syntax

L = oobloss(ens)
L = oobloss(ens,Name,Value)

Description

L = oobloss(ens) returns the classification error for ens computed for out-of-bag data.

L = oobloss(ens,Name,Value) computes error with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses only these learners for calculating loss.
Default: 1:NumTrained

lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. Bagged ensembles return posterior probabilities as classification scores by default.

- Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes (numel(ens.ClassNames), ens is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
- C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in ens.ClassNames.
Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in \(\text{ens.ClassNames} \). \(S \) is a matrix of classification scores, similar to the output of \text{predict}.
- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes them to sum to 1.
- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of misclassification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using \'LossFun',@\text{lossfun}.'

For more details on loss functions, see "Classification Loss" on page 32-4513.

Default: \'classiferror'

mode

Character vector or string scalar representing the meaning of the output \(L \):

- \'ensemble' — \(L \) is a scalar value, the loss for the entire ensemble.
- \'individual' — \(L \) is a vector with one element per trained learner.
- \'cumulative' — \(L \) is a vector in which element \(J \) is obtained by using learners 1:J from the input list of learners.

Default: \'ensemble'

Output Arguments

\(L \)

Classification loss on page 32-4513 of the out-of-bag observations, a scalar. \(L \) can be a vector, or can represent a different quantity, depending on the name-value settings.

Examples
Estimate Out-Of-Bag Error

Load Fisher's iris data set.

```matlab
load fisheriris
```

Grow a bag of 100 classification trees.

```matlab
rng(1) % For reproducibility
ens = fitcensemble(meas,species,'Method','Bag');
```

Estimate the out-of-bag classification error.

```matlab
L = oobLoss(ens)
L = 0.0533
```

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, `fitcensemble` generates many bootstrap replicas of the dataset and grows decision trees on these replicas. `fitcensemble` obtains each bootstrap replica by randomly selecting \(N \) observations out of \(N \) with replacement, where \(N \) is the dataset size. To find the predicted response of a trained ensemble, `predict` take an average over predictions from individual trees.

Drawing \(N \) out of \(N \) observations with replacement omits on average 37% \((1/e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, `oobLoss` estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- L is the weighted average classification loss.
- n is the sample size.
- For binary classification:
 - y_j is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
 - $f(X_j)$ is the raw classification score for observation (row) j of the predictor data X.
 - $m_j = y_j f(X_j)$ is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, $K \geq 3$):
 - y_j^* is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class y_j. For example, if the true class of the second observation is the third class and $K = 4$, then $y_2^* = [0 \ 0 \ 1 \ 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
 - $f(X_j)$ is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
 - $m_j = y_j^* f(X_j)$. Therefore, m_j is the scalar classification score that the model predicts for the true, observed class.
 - The weight for observation j is w_j. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]
Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[L = \sum_{j=1}^{n} w_j \log \left[1 + \exp \left(-2m_j \right) \right].]</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[L = \sum_{j=1}^{n} w_j \exp (-m_j).]</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[L = \sum_{j=1}^{n} w_j I {\hat{y}_j \neq y_j}.] It is the weighted fraction of misclassified observations where (\hat{y}_j) is the class label corresponding to the class with the maximal posterior probability. (I{x}) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[L = \sum_{j=1}^{n} w_j \max {0,1- m_j}.]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[L = \sum_{j=1}^{n} w_j \log \left(1 + \exp (-m_j) \right).]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Minimal cost | 'mincost' | Minimal cost. The software computes the weighted minimal cost using this procedure for observations \(j = 1, \ldots, n \).

1. Estimate the 1-by-\(K \) vector of expected classification costs for observation \(j \):

\[
\gamma_j = f(X_j)C.
\]

\(f(X_j) \) is the column vector of class posterior probabilities for binary and multiclass classification. \(C \) is the cost matrix that the input model stores in the \text{Cost} property.

2. For observation \(j \), predict the class label corresponding to the minimum expected classification cost:

\[
\hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j).
\]

3. Using \(C \), identify the cost incurred \((c_j) \) for making the prediction.

The weighted, average, minimum cost loss is

\[
L = \frac{1}{\sum_{j=1}^{n} w_j c_j}.
\]

Quadratic loss | 'quadratic' | \[
L = \frac{1}{\sum_{j=1}^{n} w_j (1-m_j)^2}.
\]

This figure compares the loss functions (except 'mincost') for one observation over \(m \). Some functions are normalized to pass through [0,1].
See Also
- loss
- oobEdge
- oobMargin
- oobPredict
oobLoss

Out-of-bag regression error

Syntax

\[
L = \text{oobLoss}(\text{ens}) \\
L = \text{oobLoss}(\text{ens},\text{Name},\text{Value})
\]

Description

\[
L = \text{oobLoss}(\text{ens})\text{ returns the mean squared error for }\text{ens} \text{ computed for out-of-bag data.}
\]

\[
L = \text{oobLoss}(\text{ens},\text{Name},\text{Value})\text{ computes error with additional options specified by one or more }\text{Name},\text{Value} \text{ pair arguments. You can specify several name-value pair arguments in any order as }\text{Name1},\text{Value1},...,\text{NameN},\text{ValueN}.
\]

Input Arguments

- **ens**

 A regression bagged ensemble, constructed with `fitrensemble`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name-value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

- **learners**

 Indices of weak learners in the ensemble ranging from 1 to `NumTrained`. `oobLoss` uses only these learners for calculating loss.
Default: 1:NumTrained

lossfun

Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function handle fun, oobLoss calls it as

FUN(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length. Y is the observed response, Yfit is the predicted response, and W is the observation weights.

Default: 'mse'

mode

Character vector or string scalar representing the meaning of the output L:

- 'ensemble' — L is a scalar value, the loss for the entire ensemble.
- 'individual' — L is a vector with one element per trained learner.
- 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Mean squared error of the out-of-bag observations, a scalar. L can be a vector, or can represent a different quantity, depending on the name-value settings.

Examples

Find Out-of-Bag Regression Error

Compute the out-of-bag error for the carsmall data.

Load the carsmall data set and select engine displacement, horsepower, and vehicle weight as predictors.
load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.
ens = fitrensemble(X,MPG,'Method','Bag');

Find the out-of-bag error.
rng(10,'twister') % For reproducibility
L = oobLoss(ens)
L = 16.7197

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitrensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitrensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where N is the dataset size. To find the predicted response of a trained ensemble, predict takes an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

See Also
loss|oobPredict
oobMargin

Out-of-bag classification margins

Syntax

margin = oobMargin(ens)
margin = oobMargin(ens,Name,Value)

Description

margin = oobMargin(ens) returns out-of-bag classification margins.

margin = oobMargin(ens,Name,Value) calculates margins with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens
A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners
Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NumTrained
Output Arguments

margin

A numeric column vector of length size(ens.X,1).

Examples

Find Out-of-Bag Classification Margins

Find the out-of-bag margins for a bagged ensemble from the Fisher iris data.

Load the sample data set.

load fisheriris

Train an ensemble of bagged classification trees.

ens = fitensemble(meas,species,'Method','Bag');

Find the number of out-of-bag margins that are equal to 1.

rng(10,'twister') % For reproducibility
margin = oobMargin(ens);
sum(margin == 1)

ans = 105

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where N is the dataset size. To find the predicted response of a trained ensemble, predict takes an average over predictions from individual trees.
Drawing \(N \) out of \(N \) observations with replacement omits on average 37\% \((1/e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, \texttt{oobLoss} estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix \texttt{ens.X}.

See Also

\texttt{margin|oobEdge|oobLoss|oobPredict}
oobMargin

Class: TreeBagger

Out-of-bag margins

Syntax

mar = oobMargin(B)
mar = oobMargin(B,'param1',val1,'param2',val2,...)

Description

mar = oobMargin(B) computes an Nobs-by-NTrees matrix of classification margins for out-of-bag observations in the training data, using the trained bagger B.

mar = oobMargin(B,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'Mode' Character vector or string scalar indicating how oobMargin computes errors. If set to 'cumulative' (default), the method computes cumulative margins and mar is an Nobs-by-NTrees matrix, where the first column gives margins from trees(1), second column gives margins from trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', mar is an Nobs-by-NTrees matrix, where each column gives margins from each tree in the ensemble. If set to 'ensemble', mar is a single column of length Nobs showing the cumulative margins for the entire ensemble.
'Trees' Vector of indices indicating what trees to include in this
calculation. By default, this argument is set to 'all' and the
method uses all trees. If 'Trees' is a numeric vector, the method
returns an Nobs-by-NTrees matrix for 'cumulative' and
'individual' modes, where NTrees is the number of elements
in the input vector, and a single column for 'ensemble' mode.
For example, in the 'cumulative' mode, the first column gives
margins from trees(1), the second column gives margins from
trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as
the 'Trees' vector. oobMargin uses these weights to combine
output from the specified trees by taking a weighted average
instead of the simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also
CompactTreeBagger.margin
oobMeanMargin

Class: TreeBagger

Out-of-bag mean margins

Syntax

```
mar = oobMeanMargin(B)
mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)
```

Description

```
mar = oobMeanMargin(B) computes average classification margins for out-of-bag observations in the training data, using the trained bagger B. oobMeanMargin averages the margins over all out-of-bag observations. mar is a row-vector of length NTrees, where NTrees is the number of trees in the ensemble.

mar = oobMeanMargin(B,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'Mode' Character vector or string scalar indicating how oobMeanMargin computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from trees(1), second column gives mean margins from trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', mar is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', mar is a scalar showing the cumulative mean margin for the entire ensemble.
```
'Trees' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'Trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives mean margin from trees(1), the second element gives mean margin from trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees' vector. oobMeanMargin uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

See Also
CompactTreeBagger.meanMargin
Predictor importance estimates by permutation of out-of-bag predictor observations for random forest of classification trees.

Syntax

\[
\text{Imp} = \text{oobPermutedPredictorImportance}(\text{Mdl}) \\
\text{Imp} = \text{oobPermutedPredictorImportance}(\text{Mdl}, \text{Name}, \text{Value})
\]

Description

\[
\text{Imp} = \text{oobPermutedPredictorImportance}(\text{Mdl}) \text{ returns a vector of out-of-bag, predictor importance estimates by permutation on page 32-4534 using the random forest of classification trees } \text{Mdl}. \text{Mdl must be a ClassificationBaggedEnsemble model object.}
\]

\[
\text{Imp} = \text{oobPermutedPredictorImportance}(\text{Mdl}, \text{Name}, \text{Value}) \text{ uses additional options specified by one or more Name,Value pair arguments. For example, you can speed up computation using parallel computing or indicate which trees to use in the predictor importance estimation.}
\]

Input Arguments

- **Mdl** — Random forest of classification trees
 ClassificationBaggedEnsemble model object

Random forest of classification trees, specified as a ClassificationBaggedEnsemble model object created by fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Learners — Indices of learners to use in predictor importance estimation

1:Mdl.NumTrained (default) | numeric vector of positive integers

Indices of learners to use in predictor importance estimation, specified as the comma-separated pair consisting of 'Learners' and a numeric vector of positive integers. Values must be at most Mdl.NumTrained. When oobPermutedPredictorImportance estimates the predictor importance, it includes the learners in Mdl.Trained(learners) only, where learners is the value of 'Learners'.

Example: 'Learners', [1:2:Mdl.NumTrained]

Options — Parallel computing options

[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. 'Options' requires a Parallel Computing Toolbox license.

oobPermutedPredictorImportance uses the 'UseParallel' field only. statset('UseParallel',true) invokes a pool of workers.

Example: 'Options', statset('UseParallel',true)

Output Arguments

Imp — Out-of-bag, predictor importance estimates by permutation

numeric vector

Out-of-bag, predictor importance estimates by permutation on page 32-4534, returned as a 1-by-

p numeric vector. p is the number of predictor variables in the training data (size(Mdl.X,2)). Imp(j) is the predictor importance of the predictor Mdl.PredictorNames(j).

Examples
Estimate Importance of Predictors

Load the census1994 data set. Consider a model that predicts a person's salary category given their age, working class, education level, martial status, race, sex, capital gain and loss, and number of working hours per week.

```matlab
load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race',
                 'sex','capital_gain','capital_loss','hours_per_week','salary'});
rng('default'); % For reproducibility

Train a random forest of 50 classification trees using the entire data set.

```matlab
Mdl = fitcensemble(X,'salary','Method','bag','NumLearningCycles',50);
```matlab

Mdl is a ClassificationBaggedEnsemble model.

Estimate predictor importance measures by permuting out-of-bag observations. Compare the estimates using a bar graph.

```matlab
imp = oobPermutedPredictorImportance(Mdl);

figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
imp is a 1-by-9 vector of predictor importance estimates. Larger values indicate predictors that have a greater influence on predictions. In this case, marital_status is the most important predictor, followed by capital_gain.

**Unbiased Estimates of Predictor Importance Using Parallel Computing**

This example requires a Parallel Computing Toolbox™ license.

Load the census1994 data set. Consider a model that predicts a person's salary category given their age, working class, education level, martial status, race, sex, capital gain and loss, and number of working hours per week.
load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race',...
' sex','capital_gain','capital_loss','hours_per_week','salary'});
rng('default'); % For reproducibility

Display the number of categories represented in the categorical variables using summary.
summary(X)

Variables:

age: 32561×1 double
    Values:
        min       17
        median    37
        max       90

workClass: 32561×1 categorical
    Values:
        Federal-gov         960
        Local-gov           2093
        Never-worked         7
        Private             22696
        Self-emp-inc       1116
        Self-emp-not-inc   2541
        State-gov           1298
        Without-pay         14
        <undefined>         1836

education_num: 32561×1 double
    Values:
        min        1
        median     10
        max        16

marital_status: 32561×1 categorical
    Values:
        Divorced       4443
        Married-AF-spouse     23
        Married-civ-spouse     14976
Married-spouse-absent  418
Never-married         10683
Separated             1025
Widowed               993

race: 32561×1 categorical
Values:
Amer-Indian-Eskimo    311
Asian-Pac-Islander    1039
Black                 3124
Other                 271
White                 27816

sex: 32561×1 categorical
Values:
Female    10771
Male      21790

capital_gain: 32561×1 double
Values:
min       0
median    0
max       99999

capital_loss: 32561×1 double
Values:
min       0
median    0
max       4356

hours_per_week: 32561×1 double
Values:
min       1
median    40
max       99

salary: 32561×1 categorical
Values:
Because there are few categories represented in the categorical variables compared to levels in the continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over the categorical variables.

Train a random forest of 50 classification trees using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits.

```matlab
t = templateTree('PredictorSelection','curvature','Surrogate','on');
Mdl = fitcensemble(X,'salary','Method','bag','NumLearningCycles',50,...
 'Learners',t);
```

Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations in parallel. Compare the estimates using a bar graph.

```matlab
options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);
figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
```

```matlab
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
In this case, capital_gain is the most important predictor, followed by martial_status. Compare these results to the results in “Estimate Importance of Predictors” on page 32-4528.

**Definitions**

**Out-of-Bag, Predictor Importance Estimates by Permutation**

Out-of-bag, predictor importance estimates by permutation measure how influential the predictor variables in the model are at predicting the response. The influence of a predictor increases with the value of this measure.
If a predictor is influential in prediction, then permuting its values should affect the model error. If a predictor is not influential, then permuting its values should have little to no effect on the model error.

The following process describes the estimation of out-of-bag predictor importance values by permutation. Suppose that \( R \) is a random forest of \( T \) learners and \( p \) is the number of predictors in the training data.

1. For tree \( t, t = 1,\ldots,T \):
   a. Identify the out-of-bag observations and the indices of the predictor variables that were split to grow tree \( t, s_t \subseteq \{1,\ldots,p\} \).
   b. Estimate the out-of-bag error \( \varepsilon_t \).
   c. For each predictor variable \( x_j, j \in s_t \):
      i. Randomly permute the observations of \( x_j \).
      ii. Estimate the model error, \( \varepsilon_{tj} \), using the out-of-bag observations containing the permuted values of \( x_j \).
      iii. Take the difference \( d_{tj} = \varepsilon_{tj} - \varepsilon_t \). Predictor variables not split when growing tree \( t \) are attributed a difference of 0.

2. For each predictor variable in the training data, compute the mean, \( \bar{d}_j \), and standard deviation, \( \sigma_j \), of the differences over the learners, \( j = 1,\ldots,p \).

3. The out-of-bag predictor importance by permutation for \( x_j \) is \( \frac{\bar{d}_j}{\sigma_j} \).

**Tips**

When growing a random forest using \texttt{fitcensemble}:

- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [3]. If the predictor data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than other variables, then consider specifying the curvature or interaction test.
- Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such trees are less likely to identify important variables in the presence of many irrelevant predictors than the application of the interaction test. Therefore, to account
for predictor interactions and identify importance variables in the presence of many irrelevant variables, specify the interaction test [2].

For more details, see templateTree.

References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationBaggedEnsemble | fitensemble | predictorImportance
Introduced in R2016b
**oobPermutedPredictorImportance**

Predictor importance estimates by permutation of out-of-bag predictor observations for random forest of regression trees

**Syntax**

```matlab
Imp = oobPermutedPredictorImportance(Mdl)
Imp = oobPermutedPredictorImportance(Mdl,Name,Value)
```

**Description**

`Imp = oobPermutedPredictorImportance(Mdl)` returns a vector of out-of-bag, predictor importance estimates by permutation on page 32-4544 using the random forest of regression trees `Mdl`. `Mdl` must be a `RegressionBaggedEnsemble` model object.

`Imp = oobPermutedPredictorImportance(Mdl,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, you can speed up computation using parallel computing or indicate which trees to use in the predictor importance estimation.

**Input Arguments**

`Mdl` — Random forest of regression trees

`RegressionBaggedEnsemble` model object

Random forest of regression trees, specified as a `RegressionBaggedEnsemble` model object created by `fitrensemble`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`. 
Learners — Indices of learners to use in predictor importance estimation
1:Mdl.NumTrained (default) | numeric vector of positive integers

Indices of learners to use in predictor importance estimation, specified as the comma-separated pair consisting of 'Learners' and a numeric vector of positive integers. Values must be at most Mdl.NumTrained. When oobPermutatedPredictorImportance estimates the predictor importance, it includes the learners in Mdl.Trained(learners) only, where learners is the value of 'Learners'.

Example: 'Learners',[1:2:Mdl.NumTrained]

Options — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. 'Options' requires a Parallel Computing Toolbox license.

oobPermutatedPredictorImportance uses the 'UseParallel' field only. statset('UseParallel',true) invokes a pool of workers.

Example: 'Options',statset('UseParallel',true)

Output Arguments

Imp — Out-of-bag, predictor importance estimates by permutation
numeric vector

Out-of-bag, predictor importance estimates by permutation on page 32-4544, returned as a 1-by-p numeric vector. p is the number of predictor variables in the training data (size(Mdl.X,2)). Imp(j) is the predictor importance of the predictor Mdl.PredictorNames(j).

Examples

Estimate Importance of Predictors

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower,
manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model-Year as categorical variables.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
 Model_Year,Weight,MPG);
rng('default'); % For reproducibility
```

Train a random forest of 500 regression trees using the entire data set.

```matlab
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',500);
Mdl
```

Mdl is a `RegressionBaggedEnsemble` model.

Estimate predictor importance measures by permuting out-of-bag observations. Compare the estimates using a bar graph.

```matlab
imp = oobPermutedPredictorImportance(Mdl);
figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
imp is a 1-by-7 vector of predictor importance estimates. Larger values indicate predictors that have a greater influence on predictions. In this case, Weight is the most important predictor, followed by Model_Year.

**Unbiased Estimates of Predictor Importance Using Parallel Computing**

This example requires a Parallel Computing Toolbox™ license.

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower,
manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);
rng('default'); % For reproducibility

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))
numMfg = numel(categories(Mfg))
numModelYear = numel(categories(Model_Year))

numCylinders =
    3

numMfg =
    28

numModelYear =
    3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 500 regression trees using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits.

t = templateTree('PredictorSelection','curvature','Surrogate','on');
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',500,...
    'Learners',t);
Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations in parallel. Compare the estimates using a bar graph.

```matlab
options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);
figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
```

```matlab
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
In this case, **Model Year** is the most important predictor, followed by **Cylinders**. Compare these results to the results in “Estimate Importance of Predictors” on page 32-4539.

### Definitions

**Out-of-Bag, Predictor Importance Estimates by Permutation**

Out-of-bag, predictor importance estimates by permutation measure how influential the predictor variables in the model are at predicting the response. The influence of a predictor increases with the value of this measure.
If a predictor is influential in prediction, then permuting its values should affect the model error. If a predictor is not influential, then permuting its values should have little to no effect on the model error.

The following process describes the estimation of out-of-bag predictor importance values by permutation. Suppose that $R$ is a random forest of $T$ learners and $p$ is the number of predictors in the training data.

1. For tree $t$, $t = 1, ..., T$:
   a. Identify the out-of-bag observations and the indices of the predictor variables that were split to grow tree $t$, $s_t \subseteq \{1, ..., p\}$.
   b. Estimate the out-of-bag error $\varepsilon_t$.
   c. For each predictor variable $x_j$, $j \in s_t$:
      i. Randomly permute the observations of $x_j$.
      ii. Estimate the model error, $\varepsilon_{tj}$, using the out-of-bag observations containing the permuted values of $x_j$.
      iii. Take the difference $d_{tj} = \varepsilon_{tj} - \varepsilon_t$. Predictor variables not split when growing tree $t$ are attributed a difference of 0.

2. For each predictor variable in the training data, compute the mean, $\bar{d}_j$, and standard deviation, $\sigma_j$, of the differences over the learners, $j = 1, ..., p$.

3. The out-of-bag predictor importance by permutation for $x_j$ is $\bar{d}_j / \sigma_j$.

**Tips**

When growing a random forest using `fitrensemble`:

- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [3]. If the predictor data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than other variables, then consider specifying the curvature or interaction test.

- Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such trees are less likely to identify important variables in the presence of many irrelevant predictors than the application of the interaction test. Therefore, to account
for predictor interactions and identify importance variables in the presence of many irrelevant variables, specify the interaction test [2].

For more details, see templateTree.

References


Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also

RegressionBaggedEnsemble | fitrensemble | plotPartialDependence | predictorImportance
Introduced in R2016b
**oobPredict**

Predict out-of-bag response of ensemble

**Syntax**

\[
\text{[label, score]} = \text{oobPredict(ens)} \\
\text{[label, score]} = \text{oobPredict(ens, Name, Value)}
\]

**Description**

\[
\text{[label, score]} = \text{oobPredict(ens)} \text{ returns class labels and scores for ens for out-} \\
\text{of-bag data.}
\]

\[
\text{[label, score]} = \text{oobPredict(ens, Name, Value)} \text{ computes labels and scores with} \\
\text{additional options specified by one or more Name, Value pair arguments.}
\]

**Input Arguments**

- **ens**
  A classification bagged ensemble, constructed with `fitcensemble`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name, Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1, Value1, ..., NameN, ValueN`.

- **learners**
  Indices of weak learners in the ensemble ranging from 1 to `ens.NumTrained`. `oobEdge` uses only these learners for calculating loss.

  **Default:** `1:NumTrained`
Output Arguments

**label**

Classification labels of the same data type as the training data \( Y \). (The software treats string arrays as cell arrays of character vectors.) There are \( N \) elements or rows, where \( N \) is the number of training observations. The label is the class with the highest score. In case of a tie, the label is earliest in \texttt{ens.ClassNames}.

**score**

An \( N \)-by-\( K \) numeric matrix for \( N \) observations and \( K \) classes. A high score indicates that an observation is likely to come from this class. Scores are in the range 0 to 1.

Examples

**Find Out-of-Bag Response of Classification Ensemble**

Find the out-of-bag predictions and scores for the Fisher iris data. Find the scores with notable uncertainty in the resulting classifications.

Load the sample data set.

```matlab
load fisheriris
```

Train an ensemble of bagged classification trees.

```matlab
ens = fitcensemble(meas,species,'Method','Bag');
```

Find the out-of-bag predictions and scores.

```matlab
rng(10,'twister') % For reproducibility
[label,score] = oobPredict(ens);
```

Find the scores in the range (0.2,0.8). These scores have notable uncertainty in the resulting classifications.

```matlab
unsure = ((score > .2) & (score < .8));
sum(sum(unsure)) % Number of uncertain predictions
```

```matlab
ans = 18
```
Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, `fitrensemble` generates many bootstrap replicas of the dataset and grows decision trees on these replicas. `fitrensemble` obtains each bootstrap replica by randomly selecting \(N\) observations out of \(N\) with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, `predict` takes an average over predictions from individual trees.

Drawing \(N\) out of \(N\) observations with replacement omits on average 37\% (\(1/e\)) of observations for each decision tree. These are "out-of-bag" observations. For each observation, `oobLoss` estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from \(\neg\infty\) to \(\infty\).
- Bag scores range from 0 to 1.

See Also

`oobEdge` | `oobLoss` | `oobMargin` | `predict`
**oobPredict**

Predict out-of-bag response of ensemble

**Syntax**

```matlab
Yfit = oobPredict(ens)
Yfit = oobPredict(ens,Name,Value)
```

**Description**

`Yfit = oobPredict(ens)` returns the predicted responses for the out-of-bag data in `ens`.

`Yfit = oobPredict(ens,Name,Value)` predicts responses with additional options specified by one or more `Name,Value` pair arguments.

**Input Arguments**

`ens`

A regression bagged ensemble, constructed with `fitrensemble`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

`learners`

Indices of weak learners in the ensemble ranging from 1 to `NumTrained`. `oobLoss` uses only these learners for calculating loss.

**Default**: `1:NumTrained`
Output Arguments

Yfit

A vector of predicted responses for out-of-bag data. Yfit has size(ens.X,1) elements.

You can find the indices of out-of-bag observations for weak learner L with the command
~ens.UseObsForLearner(:,L)

Examples

Find Out-of-Bag Response of Regression Ensemble

Compute the out-of-bag predictions for the carsmall data set. Display the first three terms of the fit.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.
ens = fitrensemble(X,MPG,'Method','Bag');

Find the out-of-bag predictions, and display the first three terms of the fit.

rng(10,'twister') % For reproducibility
Yfit = oobPredict(ens);
Yfit(1:3) % First three terms

ans = 3×1

15.9678
15.1642
15.0815
Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, `fitrensemble` generates many bootstrap replicas of the dataset and grows decision trees on these replicas. `fitrensemble` obtains each bootstrap replica by randomly selecting \(N\) observations out of \(N\) with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, `predict` takes an average over predictions from individual trees.

Drawing \(N\) out of \(N\) observations with replacement omits on average 37\% \((1/e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, `oobLoss` estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

See Also

`oobLoss` | `predict`
**oobPredict**

**Class:** TreeBagger

Ensemble predictions for out-of-bag observations

**Syntax**

```plaintext
Y = oobPredict(B)
Y = oobPredict(B, Name, Value)
[Y, stdevs] = oobPredict(___)
[Y, scores] = oobPredict(___)
[Y, scores, stdevs] = oobPredict(__)
```

**Description**

`Y = oobPredict(B)` computes predicted responses using the trained bagger `B` for out-of-bag observations in the training data. The output has one prediction for each observation in the training data. The returned `Y` is a cell array of character vectors for classification and a numeric array for regression.

`Y = oobPredict(B, Name, Value)` specifies additional options using one or both name-value pair arguments:

- `'Trees'` — Array of tree indices to use for computation of responses. The default is `all`.
- `'TreeWeights'` — Array of `NTrees` weights for weighting votes from the specified trees, where `NTrees` is the number of trees in the ensemble.

For regression, `[Y, stdevs] = oobPredict(__)` also returns standard deviations of the computed responses over the ensemble of the grown trees using any of the input argument combinations in previous syntaxes.

For classification, `[Y, scores] = oobPredict(__)` also returns scores for all classes. `scores` is a matrix with one row per observation and one column per class. For each out-of-bag observation and each class, the score generated by each tree is the probability of
the observation originating from the class, computed as the fraction of observations of the class in a tree leaf. `oobPredict` averages these scores over all trees in the ensemble.

\[ Y, \text{scores}, \text{stdevs} \] = `oobPredict(__)` also returns standard deviations of the computed scores for classification. \text{stdevs} is a matrix with one row per observation and one column per class, with standard deviations taken over the ensemble of the grown trees.

**Algorithms**

`oobPredict` and `predict` similarly predict classes and responses.

- In regression problems:
  - For each observation that is out of bag for at least one tree, `oobPredict` composes the weighted mean by selecting responses of trees in which the observation is out of bag. For this computation, the 'TreeWeights' name-value pair argument specifies the weights.
  - For each observation that is in bag for all trees, the predicted response is the weighted mean of all of the training responses. For this computation, the \text{W} property of the `TreeBagger` model (i.e., the observation weights) specify the weights.

- In classification problems:
  - For each observation that is out of bag for at least one tree, `oobPredict` composes the weighted mean of the class posterior probabilities by selecting the trees in which the observation is out of bag. Consequently, the predicted class is the class corresponding to the largest weighted mean. For this computation, the 'TreeWeights' name-value pair argument specifies the weights.
  - For each observation that is in bag for all trees, the predicted class is the weighted, most popular class over all training responses. For this computation, the \text{W} property of the `TreeBagger` model (i.e., the observation weights) specify the weights. If there are multiple most popular classes, `oobPredict` considers the one listed first in the \text{ClassNames} property of the `TreeBagger` model the most popular.

**See Also**

TreeBagger | compact | oobQuantilePredict | predict
Topics
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
**oobQuantileError**

**Class:** TreeBagger

Out-of-bag quantile loss of bag of regression trees

**Syntax**

```matlab
err = quantileError(Mdl)
err = quantileError(Mdl,Name,Value)
```

**Description**

```matlab
err = quantileError(Mdl) returns half of the out-of-bag mean absolute deviation (MAD) from comparing the true responses in Mdl.Y to the predicted, out-of-bag medians at Mdl.X, the predictor data, and using the bag of regression trees Mdl. Mdl must be a TreeBagger model object.
```

```matlab
err = quantileError(Mdl,Name,Value) uses additional options specified by one or more Name,Value pair arguments. For example, specify quantile probabilities, the error type, or which trees to include in the quantile-regression-error estimation.
```

**Input Arguments**

`Mdl` — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by TreeBagger.

- The value of `Mdl.Method` must be `regression`.
- When you train `Mdl` using TreeBagger, you must specify the name-value pair `'OOBPrediction','on'`. Consequently, TreeBagger saves required out-of-bag observation index matrix in `Mdl.OOBIndices`.

32-4557
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Mode — Ensemble error type
'ensemble' (default) | 'cumulative' | 'individual'

Ensemble error type, specified as the comma-separated pair consisting of 'Mode' and a value in this table. Suppose tau is the value of Quantile.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cumulative'</td>
<td>err is a Mdl.NumTrees-by-numel(tau) numeric matrix of cumulative quantile regression errors. err(j,k) is the tau(k) quantile regression error using the learners in Mdl.Trees(1:j) only.</td>
</tr>
<tr>
<td>'ensemble'</td>
<td>err is a 1-by-numel(tau) numeric vector of cumulative quantile regression errors for the entire ensemble. err(k) is the tau(k) ensemble quantile regression error.</td>
</tr>
<tr>
<td>'individual'</td>
<td>err is a Mdl.NumTrees-by-numel(tau) numeric matrix of quantile regression errors from individual learners. err(j,k) is the tau(k) quantile regression error using the learner in Mdl.Trees(j) only.</td>
</tr>
</tbody>
</table>

For 'cumulative' and 'individual', if you choose to include fewer trees in quantile estimation using Trees, then this action affects the number of rows in err and corresponding row indices.

Example: 'Mode','cumulative'

Quantile — Quantile probability

0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric vector containing values in the interval [0,1]. For each observation (row) in Mdl.X, oobQuantileError estimates corresponding quantiles for all probabilities in Quantile.

Example: 'Quantile',[0 0.25 0.5 0.75 1]

Data Types: single | double
Trees — Indices of trees to use in response estimation
'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of 'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', oobQuantileError uses all trees in the ensemble (that is, the indices 1:Mdl.NumTrees).

Values other than the default can affect the number of rows in err.

Example: 'Trees',[1 10 Mdl.NumTrees]
Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
ones(Mdl.NumTrees,1) (default) | numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is the value of Trees.

If you specify 'Mode','individual', then oobQuantileError ignores TreeWeights.
Data Types: single | double

Output Arguments

err — Half of out-of-bag quantile regression error
numeric scalar | numeric matrix

Half of the out-of-bag quantile regression error on page 32-4563, returned as a numeric scalar or T-by-numel(tau) matrix. tau is the value of Quantile.

T depends on the values of Mode, Trees, and Quantile. Suppose that you specify 'Quantile',tau and 'Trees',trees.
• For 'Mode','cumulative', err is a numel(trees)-by-numel(tau) numeric matrix. err(j,k) is the tau(k) cumulative, out-of-bag quantile regression error using the learners in Mdl.Trees(trees(1:j)).

• For 'Mode','ensemble', err is a 1-by-numel(tau) numeric vector. err(k) is the tau(k) cumulative, out-of-bag quantile regression error using the learners in Mdl.Trees(trees).

• For 'Mode','individual', err is a numel(trees)-by-numel(tau) numeric matrix. err(j,k) is the tau(k) out-of-bag quantile regression error using the learner in Mdl.Trees(trees(j)).

Examples

Estimate Out-of-Bag Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its engine displacement, weight, and number of cylinders. Consider Cylinders a categorical variable.

load carsmall
Cylinders = categorical(Cylinders);
X = table(Displacement,Weight,Cylinders,MPG);

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save the out-of-bag indices.

rng(1); % For reproducibility
Mdl = TreeBagger(100,X,'MPG','Method','regression','OOBPrediction','on');

Mdl is a TreeBagger ensemble.

Perform quantile regression, and out-of-bag estimate the MAD of the entire ensemble using the predicted conditional medians.

oobErr = oobQuantileError(Mdl)
oobErr = 1.5321

oobErr is an unbiased estimate of the quantile regression error for the entire ensemble.
Find Appropriate Ensemble Size Using Out-of-Bag Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its engine displacement, weight, and number of cylinders.

```matlab
load carsmall
X = table(Displacement,Weight,Cylinders,MPG);
```

Train an ensemble of bagged regression trees using the entire data set. Specify 250 weak learners and save the out-of-bag indices.

```matlab
rng('default'); % For reproducibility
Mdl = TreeBagger(250,X,'MPG','Method','regression',...
 'OOBPrediction','on');
```

Estimate the cumulative, out-of-bag, 0.25, 0.5, and 0.75 quantile regression errors.

```matlab
err = oobQuantileError(Mdl,'Quantile',[0.25 0.5 0.75],
 'Mode','cumulative');
```

`err` is an 250-by-3 matrix of cumulative, out-of-bag, quantile regression errors. Columns correspond to quantile probabilities and rows correspond to trees in the ensemble. The errors are cumulative, so they incorporate aggregated predictions from previous trees.

Plot the cumulative, out-of-bag, quantile errors on the same plot.

```matlab
figure;
plot(err);
legend('0.25 quantile error','0.5 quantile error','0.75 quantile error');
ylabel('Out-of-bag quantile error');
xlabel('Tree index');
title('Cumulative, Out-of-Bag, Quantile Regression Error')
```
All quantile error curves appear to level off after training about 50 trees. So, training 50 trees appears to be sufficient to achieve minimal quantile error for the three quantile probabilities.

**Definitions**

**Out-of-Bag**

In a bagged ensemble, observations are out-of-bag when they are left out of the training sample for a particular learner. Observations are in-bag when they are used to train a particular learner.
When bagging learners, a practitioner takes a bootstrap sample (that is, a random sample with replacement) of size $n$ for each learner, and then trains the learners using their respective bootstrap samples. Drawing $n$ out of $n$ observations with replacement omits on average about 37% of observations for each learner.

The out-of-bag ensemble error, the ensemble error estimated using out-of-bag observations only, is an unbiased estimator of the true ensemble error.

**Quantile Regression Error**

The quantile regression error of a model given observed predictor data and responses is the weighted mean absolute deviation (MAD). If the model under-predicts the response, then deviation weights are $\tau$, the quantile probability. If the model over-predicts, then deviation weights are $1 - \tau$.

That is, the $\tau$ quantile regression error is

$$
L_{\tau} = \frac{\sum_{\{j: y_j \geq \hat{y}_{\tau,j}\}} w_j (y_j - \hat{y}_{\tau,j})}{\sum_{j=1}^{n} w_j} + (1 - \tau) \frac{\sum_{\{j: y_j < \hat{y}_{\tau,j}\}} w_j (\hat{y}_{\tau,j} - y_j)}{\sum_{j=1}^{n} w_j}.
$$

$y_j$ is true response $j$, $\hat{y}_{\tau,j}$ is the $\tau$ quantile that the model predicts, and $w_j$ is observation weight $j$.

**Tip**

The out-of-bag ensemble error estimator is unbiased for the true ensemble error. So, to tune parameters of a random forest, estimate the out-of-bag ensemble error instead of implementing cross-validation.

**References**


**See Also**
TreeBagger | error | oobQuantilePredict | quantileError

**Topics**
“Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 18-178

**Introduced in R2016b**
oobQuantilePredict

**Class:** TreeBagger

Quantile predictions for out-of-bag observations from bag of regression trees

**Syntax**

\[
\begin{align*}
YFit &= \text{oobQuantilePredict}(Mdl) \\
YFit &= \text{oobQuantilePredict}(Mdl, Name, Value) \\
[YFit, YW] &= \text{oobQuantilePredict}(\_\_) 
\end{align*}
\]

**Description**

\[
\begin{align*}
YFit &= \text{oobQuantilePredict}(Mdl) \text{ returns a vector of medians of the predicted responses at all out-of-bag observations in } Mdl.X, \text{ the predictor data, and using } Mdl, \text{ which is a bag of regression trees. } Mdl \text{ must be a } \text{TreeBagger} \text{ model object and } Mdl.OOBIndices \text{ must be nonempty.} \\
YFit &= \text{oobQuantilePredict}(Mdl, Name, Value) \text{ uses additional options specified by one or more } Name, Value \text{ pair arguments. For example, specify quantile probabilities or trees to include for quantile estimation.} \\
[YFit, YW] &= \text{oobQuantilePredict}(\_\_) \text{ also returns a sparse matrix of response weights on page } 32-4575 \text{ using any of the previous syntaxes.}
\end{align*}
\]

**Input Arguments**

- **Mdl — Bag of regression trees**
  - TreeBagger model object (default)

  Bag of regression trees, specified as a TreeBagger model object created by `TreeBagger`.

  - The value of `Mdl.Method` must be `regression`. 
• When you train Mdl using TreeBagger, you must specify the name-value pair 'OOBPrediction','on'. Consequently, TreeBagger saves required out-of-bag observation index matrix in Mdl.OOBIndices.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Quantile — Quantile probability**

0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric vector containing values in the interval [0,1]. For each observation (row) in Mdl.X, oobQuantilePredict estimates corresponding quantiles for all probabilities in Quantile.

Example: 'Quantile',[0 0.25 0.5 0.75 1]

Data Types: single | double

**Trees — Indices of trees to use in response estimation**

'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of 'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', oobQuantilePredict uses the indices 1:Mdl.NumTrees.

Example: 'Trees',[1 10 Mdl.NumTrees]

Data Types: char | string | single | double

**TreeWeights — Weights to attribute to responses from individual trees**

numeric vector of nonnegative values
Weights to attribute to responses from individual trees, specified as the comma-separated pair consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is the value of the Trees name-value pair argument.

The default is ones(size(trees)).

Data Types: single | double

Output Arguments

YFit — Estimated quantiles
numeric matrix

Estimated quantiles for out-of-bag observations, returned as an n-by-numel(tau) numeric matrix. n is the number of observations in the training data (numel(Mdl.Y)) and tau is the value of the Quantile name-value pair argument. That is, YFit(j,k) is the estimated 100*tau(k) percentile of the response distribution given X(j,:) and using Mdl.

YW — Response weights
sparse matrix

Response weights on page 32-4575, returned as an n-by-n sparse matrix. n is the number of responses in the training data (numel(Mdl.Y)). YW(:,j) specifies the response weights for the observation in Mdl.X(j,:).

oobQuantilePredict predicts quantiles using linear interpolation of the empirical cumulative distribution function (cdf). For a particular observation, you can use its response weights to estimate quantiles using alternative methods, such as approximating the cdf using kernel smoothing on page B-81.

Examples

Predict Out-of-Bag Medians Using Quantile Regression

Load the carsmall data set. Consider a model that predicts the fuel economy (in MPG) of a car given its engine displacement.

load carsmall
Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save out-of-bag indices.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression','...
 'OOBPrediction','on');
```

`Mdl` is a `TreeBagger` ensemble.

Perform quantile regression to predict the out-of-bag median fuel economy for all training observations.

```matlab
oobMedianMPG = oobQuantilePredict(Mdl);
```

`oobMedianMPG` is an `n`-by-1 numeric vector of medians corresponding to the conditional distribution of the response given the sorted observations in `Mdl.X`. `n` is the number of observations, `size(Mdl.X,1)`.

Sort the observations in ascending order. Plot the observations and the estimated medians on the same figure. Compare the out-of-bag median and mean responses.

```matlab
[sX,idx] = sort(Mdl.X);
oobMeanMPG = oobPredict(Mdl);

figure;
plot(Displacement,MPG,'k.'); hold on
plot(sX,oobMedianMPG(idx));
plot(sX,oobMeanMPG(idx),'r--');
ylabel('Fuel economy'); xlabel('Engine displacement');
legend('Data','Out-of-bag median','Out-of-bag mean'); hold off;
```
Estimate Out-of-Bag Prediction Intervals Using Percentiles

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car (in MPG) given its engine displacement.

```matlab
load carsmall
```

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save out-of-bag indices.

```matlab
Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save out-of-bag indices.
```
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression',... 
    'OOBPrediction','on');

Perform quantile regression to predict the out-of-bag 2.5% and 97.5% percentiles.

oobQuantPredInts = oobQuantilePredict(Mdl,'Quantile',[0.025,0.975]);

oobQuantPredInts is an n-by-2 numeric matrix of prediction intervals corresponding to 
the out-of-bag observations in Mdl.X. n is number of observations, size(Mdl.X,1). The 
first column contains the 2.5% percentiles and the second column contains the 97.5% 
percentiles.

Plot the observations and the estimated medians on the same figure. Compare the 
percentile prediction intervals and the 95% prediction intervals, assuming the conditional 
distribution of MPG is Gaussian.

[oobMeanMPG,oobSTEMeanMPG] = oobPredict(Mdl);
STDNPredInts = oobMeanMPG + [-1 1]*norminv(0.975).*oobSTEMeanMPG;
[sX,idx] = sort(Mdl.X);

figure;
h1 = plot(Displacement,MPG,'k.');
hold on
h2 = plot(sX,oobQuantPredInts(idx,:),'b');
h3 = plot(sX,STDNPredInts(idx,:),'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend([h1,h2(1),h3(1)],{'Data','95% percentile prediction intervals',... 
    '95% Gaussian prediction intervals'});
hold off;
Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car (in MPG) given its engine displacement.

```matlab
load carsmall
```

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save the out-of-bag indices.

```matlab
Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners and save the out-of-bag indices.
```
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression',
          'OOBPrediction','on');

Estimate the out-of-bag response weights.

[~,YW] = oobQuantilePredict(Mdl);

YW is an n-by-n sparse matrix containing the response weights. n is the number of training
observations, numel(Y). The response weights for the observation in Mdl.X(j,:) are in
YW(:,j). Response weights are independent of any specified quantile probabilities.

Estimate the out-of-bag, conditional cumulative distribution function (ccdf) of the
responses by:

1. Sorting the responses is ascending order, and then sorting the response weights
   using the indices induced by sorting the responses.

2. Computing the cumulative sums over each column of the sorted response weights.

[sortY,sortIdx] = sort(Mdl.Y);
cpdf = full(YW(sortIdx,:));
ccdf = cumsum(cpdf);

ccdf(:,j) is the empirical out-of-bag ccdf of the response, given observation j.

Choose a random sample of four training observations. Plot the training sample and
identify the chosen observations.

[randX,idx] = datasample(Mdl.X,4);
figure;
plot(Mdl.X,Mdl.Y,'o');
hold on
plot(randX,Mdl.Y(idx),'*','MarkerSize',10);
text(randX-10,Mdl.Y(idx)+1.5,{'obs. 1' 'obs. 2' 'obs. 3' 'obs. 4'});
legend('Training Data','Chosen Observations');
xlabel('Engine displacement')
ylabel('Fuel economy')
hold off
Plot the out-of-bag ccdf for the four chosen responses in the same figure.

```matlab
figure;
plot(sortY,ccdf(:,idx));
legend('ccdf given obs. 1','ccdf given obs. 2','ccdf given obs. 3','ccdf given obs. 4','Location','SouthEast')
title('Out-of-Bag Conditional Cumulative Distribution Functions')
xlabel('Fuel economy')
ylabel('Empirical CDF')
```
Definitions

Out-of-Bag

In a bagged ensemble, observations are out-of-bag when they are left out of the training sample for a particular learner. Observations are in-bag when they are used to train a particular learner.

When bagging learners, a practitioner takes a bootstrap sample (that is, a random sample with replacement) of size $n$ for each learner, and then trains the learners using their
respective bootstrap samples. Drawing \( n \) out of \( n \) observations with replacement omits on average about 37\% of observations for each learner.

The out-of-bag ensemble error, the ensemble error estimated using out-of-bag observations only, is an unbiased estimator of the true ensemble error.

**Quantile Random Forest**

Quantile random forest [2] is a quantile-regression method that uses a random forest [1] of regression trees to model the conditional distribution of a response variable, given the value of predictor variables. You can use a fitted model to estimate quantiles in the conditional distribution of the response.

Besides quantile estimation, you can use quantile regression to estimate prediction intervals or detect outliers. For example:

- To estimate 95\% quantile prediction intervals, estimate the 0.025 and 0.975 quantiles.
- To detect outliers, estimate the 0.01 and 0.99 quantiles. All observations smaller than the 0.01 quantile and larger than the 0.99 quantile are outliers. All observations that are outside the interval \([L, U]\) can be considered outliers:

\[
L = Q_1 - 1.5 \times IQR
\]

and

\[
U = Q_3 + 1.5 \times IQR,
\]

where:

- \( Q_1 \) is the 0.25 quantile.
- \( Q_3 \) is the 0.75 quantile.
- \( IQR = Q_3 - Q_1 \) (the interquartile range).

**Response Weights**

Response weights are scalars that represent the conditional distribution of the response given a value in the predictor space. The observations in the bootstrap samples and the leaves that the training and test observations share induce response weights.
Given the observation \( x \), the response weight for observation \( j \) in the training sample using tree \( t \) in the ensemble is

\[
w_{jt}(x) = \frac{I\{X_j \in S_t(x)\}}{\sum_{k=1}^{n_{\text{train}}} I\{X_k \in S_t(x)\}},
\]

where:

- \( I\{h\} \) is the indicator function.
- \( S_t(x) \) is the leaf of tree \( t \) containing \( x \).
- \( n_{\text{train}} \) is the number of training observations.

In other words, the response weights of a particular tree form the conditional relative frequency distribution of the response.

The response weights for the entire ensemble are averaged over the trees:

\[
w^*(x) = \frac{1}{T} \sum_{t=1}^{T} w_{jt}(x).
\]

**Algorithms**

\texttt{oobQuantilePredict} estimates out-of-bag quantiles by applying \texttt{quantilePredict} to all observations in the training data (\texttt{Mdl.X}). For each observation, the method uses only the trees for which the observation is out-of-bag.

For observations that are in-bag for all trees in the ensemble, \texttt{oobQuantilePredict} assigns the sample quantile of the response data. In other words, \texttt{oobQuantilePredict} does not use quantile regression for out-of-bag observations. Instead, it assigns \texttt{quantile(Mdl.Y, tau)}, where \( \tau \) is the value of the Quantile name-value pair argument.
References


See Also
TreeBagger | oobQuantileError | predict | quantilePredict

Topics
“Conditional Quantile Estimation Using Kernel Smoothing” on page 18-174

Introduced in R2016b
optimizableVariable

Variable description for bayesopt or other optimizers

Description

Create variables for optimizers.

Creation

Syntax

variable = optimizableVariable(Name,Range)
variable = optimizableVariable(Name,Range,Name,Value)

Description

variable = optimizableVariable(Name,Range) creates a variable with the specified name and range of values.

variable = optimizableVariable(Name,Range,Name,Value) sets properties on page 32-4578 using name-value pair arguments. For example, optimizableVariable('xvar',[1 1000],'Type','integer') creates an integer variable from 1 to 1000. You can specify multiple name-value pair arguments. Enclose each property name in quotes.

Properties

Name — Variable name
character vector | string scalar

Variable name, specified as a character vector or string scalar. The name must be unique, meaning different from those of other variables in the optimization.
Note

- There are two names associated with an `optimizableVariable`:
  - The MATLAB workspace variable name
  - The name of the variable in the optimization

For example,

```matlab
xvar = optimizableVariable('spacevar',[1,100]);
```

`xvar` is the MATLAB workspace variable, and `spacevar` is the variable in the optimization.

Use these names as follows:

- Use `xvar` as an element in the vector of variables you pass to `bayesopt`. For example,
  ```matlab
 results = bayesopt(fun,[xvar,tvar])
  ```

- Use `'spacevar'` as the name of the variable in the optimization. For example, in an objective function,
  ```matlab
 function objective = mysvmfun(x,cdata,grp)
 SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...'
 'BoxConstraint',x.spacevar,...'
 'KernelScale',x.tvar);
 objective = kfoldLoss(crossval(SVMModel));
  ```

Example: 'X1'

Data Types: `char` | `string`

**Range — Variable range**

- 2-element increasing real vector | string array or cell array of names of categorical variables

Variable range, specified as a 2-element finite increasing real vector, or as a string array or cell array of names of categorical variables:

- For real or integer variables, `Range` gives the lower bound and upper bound of that variable.
• For categorical variables, Range gives the possible values.

Example: [-10,1]
Example: {'red','blue','black'}

Data Types: double | string | cell

**Type — Variable type**

'real' (default) | 'integer' | 'categorical'

Variable type, specified as 'real' (real variable), 'integer' (integer variable), or 'categorical' (categorical variable).

**Note** The MATLAB data type of both 'real' and 'integer' variables is the standard double-precision floating point number. The data type of 'categorical' variables is categorical. So, for example, to read a value of a categorical variable named 'colorv' in a table of variables named x, use the command char(x.colorv). For an example, see the objective function in “Custom Output Functions” on page 10-23.

Example: 'Type','categorical'

**Transform — Transform applied to variable**

'none' (default) | 'log'

Transform applied to variable, specified as 'none' (no transform) or 'log' (logarithmic transform).

For 'log', the variable must be 'real' or 'integer' and positive. The variable is searched and modeled on a log scale.

Example: 'Transform','log'

**Optimize — Indication to use variable in optimization**

true (default) | false

Indication to use variable in optimization, specified as true (use the variable) or false (do not use the variable).

Example: 'Optimize',false

Data Types: logical
**Note** You can use dot notation to change the following properties after creation.

- Range of real or integer variables. For example,
  ```
 xvar = optimizableVariable('x',[-10,10]);
 % Modify the range:
 xvar.Range = [1,5];
  ```
- Type between 'integer' and 'real'. For example,
  ```
 xvar.Type = 'integer';
  ```
- Transform of real or integer variables between 'log' and 'none'. For example,
  ```
 xvar.Transform = 'log';
  ```

You can use this flexibility, for example, to tweak an optimization that you want to continue. Update the range or transform using dot notation and then call `resume`.

**Object Functions**

bayesopt    Select optimal machine learning hyperparameters using Bayesian optimization

**Examples**

**Variables for Optimization Examples**

Real variable from 0 to 1:

```matlab
var1 = optimizableVariable('xvar',[0 1])
```

```matlab
var1 = optimizableVariable with properties:
 Name: 'xvar'
 Range: [0 1]
 Type: 'real'
 Transform: 'none'
 Optimize: 1
```

Integer variable from 1 to 1000 on a log scale:
var2 = optimizableVariable('ivar',[1 1000], 'Type','integer', 'Transform','log')

var2 =
    optimizableVariable with properties:

        Name: 'ivar'
        Range: [1 1000]
        Type: 'integer'
        Transform: 'log'
        Optimize: 1

Categorical variable of rainbow colors:

var3 = optimizableVariable('rvar',{'r' 'o' 'y' 'g' 'b' 'i' 'v'}, 'Type','categorical')

var3 =
    optimizableVariable with properties:

        Name: 'rvar'
        Range: {'r' 'o' 'y' 'g' 'b' 'i' 'v'}
        Type: 'categorical'
        Transform: 'none'
        Optimize: 1

See Also
BayesianOptimization | bayesopt

Topics
"Optimize a Cross-Validated SVM Classifier Using bayesopt" on page 10-55
"Bayesian Optimization Using bayesopt" on page 10-32

Introduced in R2016b
ordinal

Arrays for ordinal data

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Description**

Ordinal data are discrete, nonnumeric values that have a natural ordering. `ordinal` array objects provide efficient storage and convenient manipulation of such data, while also maintaining meaningful labels for the values.

You can manipulate `ordinal` arrays like ordinary numeric arrays, by subscripting, concatenating, and reshaping. Use `ordinal` arrays as grouping variables when the elements indicate the group to which an observation belongs.

**Creation**

**Syntax**

```matlab
B = ordinal(X)
B = ordinal(X,labels)
B = ordinal(X,labels,levels)
B = ordinal(X,labels,[]),edges)
```

**Description**

`B = ordinal(X)` creates an ordinal array `B` from the array `X`. `ordinal` creates the levels of `B` from the sorted unique values in `X`, and creates default labels for the levels.

`B = ordinal(X,labels)` labels the levels in `B` according to `labels`. 
B = ordinal(X,labels,levels) creates an ordinal array with possible levels defined by levels.

B = ordinal(X,labels,[],edges) creates an ordinal array by binning the numeric array X with bin edges given by the numeric vector edges.

**Input Arguments**

**X — Input array**  
numeric | logical | character | string | categorical | cell array of character vectors  

Input array to convert to ordinal, specified as a numeric, logical, character, string, or categorical array, or a cell array of character vectors. The levels of the resulting ordinal array correspond to the sorted unique values in X.

**labels — Labels for discrete levels**  
character array | string array | cell array of character vectors  

Labels for the discrete levels, specified as a character array, string array, or cell array of character vectors. By default, ordinal assigns labels to the levels in B in order of the sorted unique values in X.

You can include duplicate labels in labels to merge multiple values in X into a single level in B.

Data Types: char | string | cell

**levels — Possible ordinal levels**  
vector  

Possible ordinal levels for the output ordinal array, specified as a vector whose values can be compared to those in X using the equality operator. ordinal assigns labels to each level from the corresponding elements of labels. If X contains any values not present in levels, the levels of the corresponding elements of B are undefined.

**edges — Bin edges**  
numeric vector  

Bin edges used to create the ordinal array by binning a numeric array, specified as a numeric vector. The uppermost bin includes values equal to the rightmost edge. ordinal assigns labels to each level in the resulting ordinal array from the corresponding
elements of labels. When you specify the edges input argument, it must have one more element than labels.

**Output Arguments**

**B — Ordinal array**

ordinal array object

Ordinal array, returned as an ordinal array object.

By default, an element of B is undefined if the corresponding element of X is NaN (when X is numeric), an empty character vector (when X is a character), an empty or missing string (when X is a string), or undefined (when X is categorical). ordinal treats such elements as undefined or missing and does not include entries for them among the possible levels. To create an explicit level for such elements instead of treating them as undefined, use the levels input argument and include NaN, the empty character vector, the empty or missing string, or an undefined element.

**Properties**

**labels — Level labels**

cell array of character vectors

This property is read-only.

Level labels, specified as a cell array of character vectors. Access labels using getlabels.

Data Types: cell

**undeflabel — Label for undefined levels**

'〈undefined〉' (default)

This property is read-only.

Label for undefined levels, specified as '〈undefined〉'. You can find undefined elements in categorical arrays by using isundefined.
Object Functions
addlevels            Add levels to nominal or ordinal arrays
droplevels           Drop levels from a nominal or ordinal array
getlabels            Access nominal or ordinal array labels
getlevels            Access nominal or ordinal array levels
islevel              Determine if levels are in nominal or ordinal array
levelcounts          Element counts by level of a nominal or ordinal array
mergelevels          Merge levels of nominal or ordinal arrays
reorderlevels        Reorder levels of nominal or ordinal arrays
setlabels            Assign labels to levels of nominal or ordinal arrays

The following is a partial list of the many other MATLAB array functions you can use with ordinal arrays. For a complete list, see “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page 2-3.
double                Double-precision arrays
histogram             Histogram plot
isequal              Determine array equality
isundefined          Find undefined elements in categorical array
pie                  Pie chart
summary              Print summary of table, timetable, or categorical array
times                Element-wise multiplication

Examples

Create and Label Ordinal Arrays
Create an ordinal array from integer data, providing explicit labels.

quality = ordinal([1 2 3 3 2 1 2 1 3],...  
                 {'low' 'medium' 'high'})

quality = 1x9 ordinal array
Columns 1 through 7
     low    medium    high    high    medium    low    medium

Columns 8 through 9
     low    high
Show that the first element is less than the second element (low is less than medium).

\[ \text{quality}(1) < \text{quality}(2) \]

\[ \text{ans} = \text{logical} \]

Create an ordinal array by binning values between 0 and 1 into thirds with labels 'small', 'medium', and 'large'.

\[ X = \text{rand}(5,2) \]

\[ X = \begin{bmatrix} 0.8147 & 0.0975 \\ 0.9058 & 0.2785 \\ 0.1270 & 0.5469 \\ 0.9134 & 0.9575 \\ 0.6324 & 0.9649 \end{bmatrix} \]

\[ A = \text{ordinal}(X,\{'small', 'medium', 'large'\},[],[0 1/3 2/3 1]) \]

\[ A = \begin{bmatrix} \text{large} & \text{small} \\ \text{large} & \text{small} \\ \text{small} & \text{medium} \\ \text{large} & \text{large} \\ \text{medium} & \text{large} \end{bmatrix} \]

**Create and Manipulate Ordinal Arrays**

Create an ordinal array from integer data.

\[ \text{quality} = \text{ordinal}([1 2 3; 3 2 1; 2 1 3],\{'low', 'medium', 'high'\}) \]

\[ \text{quality} = \begin{bmatrix} \text{low} & \text{medium} & \text{high} \\ \text{high} & \text{medium} & \text{low} \\ \text{medium} & \text{low} & \text{high} \end{bmatrix} \]
Identify the elements in quality that are members of a level greater than or equal to 'medium'. A value of 1 in the resulting array indicates that the corresponding element of quality is a member of this level.

```matlab
quality >= 'medium'
ans = 3x3 logical array
 0 1 1
 1 1 0
 1 0 1
```

Identify the elements in quality that are members of either the level 'low' or 'high'.

```matlab
ismember(quality,{'low' 'high'})
ans = 3x3 logical array
 1 0 1
 1 0 1
 0 1 1
```

Merge the elements of the 'medium' and 'high' levels into a new level labeled 'ok'.

```matlab
quality = mergelevels(quality,{'medium','high'},'ok')
quality = 3x3 ordinal array
 low ok ok
 ok ok low
 ok low ok
```

Display the levels of quality.

```matlab
getlevels(quality)
ans = 1x2 ordinal array
 low ok
```

Summarize the number of elements in each level. By default, summary returns counts for each column of the input array.

```matlab
summary(quality)
```

32-4588
See Also

nominal

Topics

“Create Nominal and Ordinal Arrays” on page 2-4
“Reorder Category Levels” on page 2-11
“Categorize Numeric Data” on page 2-17
“Merge Category Levels” on page 2-21
“Sort Ordinal Arrays” on page 2-45
“Advantages of Using Nominal and Ordinal Arrays” on page 2-49
“Index and Search Using Nominal and Ordinal Arrays” on page 2-52
“Grouping Variables” on page 2-57

Introduced in R2007a
outlierMeasure

Class: CompactTreeBagger

Outlier measure for data

Syntax

out = outlierMeasure(B,X)
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)

Description

out = outlierMeasure(B,X) computes outlier measures for predictors X using trees in the ensemble B. The method computes the outlier measure for a given observation by taking an inverse of the average squared proximity between this observation and other observations. outlierMeasure then normalizes these outlier measures by subtracting the median of their distribution, taking the absolute value of this difference, and dividing by the median absolute deviation. A high value of the outlier measure indicates that this observation is an outlier.

You can supply the proximity matrix directly by using the 'Data' parameter.

out = outlierMeasure(B,X,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

'Data' Flag indicating how to treat the X input argument. If set to 'predictors' (default), the method assumes X is a matrix of predictors and uses it for computation of the proximity matrix. If set to 'proximity', the method treats X as a proximity matrix returned by the proximity method. If you do not supply the proximity matrix, outlierMeasure computes it internally. If you use the proximity method to compute a proximity matrix, supplying it as input to outlierMeasure reduces computing time.
'Labels' Vector of true class labels. True class labels can be a numeric vector, character matrix, string array, or cell array of character vectors. When you supply this parameter, the method performs the outlier calculation for any observations using only other observations from the same class. This parameter must specify one label for each observation (row) in X.

See Also
proximity
**parallelcoords**

Parallel coordinates plot

**Syntax**

`parallelcoords(x)`  
`parallelcoords(x,Name,Value)`  
`parallelcoords(ax,___)`  
`h = parallelcoords(___)`

**Description**

`parallelcoords(x)` creates a parallel coordinates plot of the multivariate data in the matrix `x`. Use a parallel coordinates plot to visualize high dimensional data, where each observation is represented by the sequence of its coordinate values plotted against their coordinate indices.

`parallelcoords(x,Name,Value)` creates a parallel coordinates plot with additional options specified by one or more Name,Value pair arguments. For example, you can standardize the data in `x` or label the coordinate tick marks along the horizontal axis of the plot.

`parallelcoords(ax,___)` creates a parallel coordinates plot using the axes specified by the axes graphic object `ax`, using any of the previous syntaxes.

`h = parallelcoords(___)` returns a column vector of handles to the Line objects created by `parallelcoords`, with one handle for each row of `x`.

**Examples**
Parallel Coordinates Plot for Grouped Data

Load the Fisher iris sample data.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from three species of iris flowers. The matrix meas contains all four measurements for each of 150 flowers. The cell array species contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Create a parallel coordinate plot using the measurement data in meas. Use a different color for each group as identified in species, and label the horizontal axis using the variable names.

parallelcoords(meas,'Group',species,'Labels',labels)
The resulting plot contains one line for each observation (flower). The color of each line indicates the flower species.

**Parallel Coordinates Plot with Quantile Values**

Load the Fisher iris sample data.

```matlab
load fisheriris
```

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from three species of iris flowers. The matrix `meas` contains all four measurements.
for each of 150 flowers. The cell array `species` contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

```matlab
labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};
```

Create a parallel coordinates plot using the measurement data in `meas`. Plot only the median, 25 percent, and 75 percent quartile values for each group identified in `species`. Label the horizontal axis using the variable names.

```matlab
parallelcoords(meas,'group',species,'labels',labels,...
 'quantile',.25)
```
The plot shows the median values for each group as a solid line and the quartile values as dotted lines of the same color. For example, the solid blue line shows the median value measured for each variable on setosa irises. The dotted blue line below the solid blue line shows the 25th percentile of measurements for each variable on setosa irises. The dotted blue line above the solid blue line shows the 75th percentile of measurements for each variable on setosa irises.

Adjust Line Properties in Parallel Coordinates Plot

Load the Fisher iris sample data.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from three species of iris flowers. The matrix meas contains all four measurements for each of 150 flowers. The cell array species contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Create a parallel coordinates plot using the measurement data in meas. Plot only the median, 25 percent, and 75 percent quartile values for each group identified in species. Label the horizontal axis using the variable names. Set the line width to 2.

parallelcoords(meas,'group',species,'labels',labels,'quantile',.25,'LineWidth',2)
Specifying 'LineWidth' in this way sets the width of every line in the plot to 2.

Recreate the parallel coordinates plot, but this time, use handles to increase the width of only the line representing the median value for each measurement made on irises in the setosa group.

```matlab
h = parallelcoords(meas,'group',species,'labels',labels,...
 'quantile',.25)
```
h =
9x1 Line array:

Line (median)
Line (lower quantile)
Line (upper quantile)
Line (median)
Line (lower quantile)
Line (upper quantile)
Line (median)
Line (lower quantile)
Line (upper quantile)
The returned column vector `h` contains handles that correspond to each line object created by `parallelcoords`. For example, `h(1)` corresponds to the median line for the first grouping variable (setosa).

Use dot notation to increase the width of the line showing the median value for each measurement made on irises in the setosa group.

```matlab
h(1).LineWidth = 2;
```
Input Arguments

\( x \) — Multivariate input data
numeric matrix

Multivariate input data, specified as an \( n \)-by-\( p \) matrix of numeric values. \( n \) is the number of rows of \( x \), and each row corresponds to an observation in \( x \). \( p \) is the number of columns in \( x \), and each column corresponds to a variable in \( x \).

\texttt{parallelcoords} treats NaN values in \( x \) as missing values and does not plot those coordinate values.

Data Types: \texttt{single} | \texttt{double}

\( \text{ax} \) — Axes for plot
axes graphic object

Axes for plot, specified as an axes graphic object. If you do not specify \( \text{ax} \), then \texttt{parallelcoords} creates the plot using the current axis. For more information on creating an axes graphic object, see \texttt{axes} and \texttt{Axes}.

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: \texttt{'}Group',species,'Quantile',.25\texttt{'} plots the median, 25 percent, and 75 percent quartile values for the input data, using a different color for each group identified in the variable \texttt{species}.

\textbf{Group} — Grouping variable for input data
numeric array | categorical variable | character matrix | string array | cell array

Grouping variable for input data, specified as the comma-separated pair consisting of \texttt{'}Group'} and a numeric array containing a group index for each observation. Alternatively, the array can be a categorical variable, character matrix, string array, or cell array containing a group name for each observation.

Data Types: \texttt{single} | \texttt{double} | \texttt{categorical} | \texttt{char} | \texttt{string} | \texttt{cell}
Labels — Horizontal axis labels
character array | string array | cell array

Horizontal axis labels, specified as the comma-separated pair consisting of 'Labels' and a character array, string array, or cell array containing the label names.
Example: 'Labels',{'Sepal Width','Sepal Length'}
Data Types: char | string | cell

Quantile — Quantiles of input data to plot
numeric value in the range (0,1)

Quantiles of input data to plot, specified as the comma-separated pair consisting of 'Quantile' and a numeric value in the range (0,1). If you specify a value alpha for 'Quantile', then parallelcoords plots only the median, alpha, and 1 - alpha quantiles for each of the variables (columns) in x.

The quantile plot option provides a useful summary of the data when x contains many observations.
Example: 'Quantile',.25
Data Types: single | double

Standardize — Method to standardize input data
'on' | 'PCA' | 'PCAStd'

Method to standardize input data, specified as the comma-separated pair consisting of 'Standardize' and one of the following.

<table>
<thead>
<tr>
<th>'on'</th>
<th>Scale each column of x to have a mean equal to 0 and a standard deviation equal to 1 before plotting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'PCA'</td>
<td>Create plot from the principal component scores of x, in order of decreasing eigenvalues. parallelcoords removes rows of x containing missing values (NaN) for PCA standardization.</td>
</tr>
<tr>
<td>'PCAStd'</td>
<td>Create plot using the standardized principal component scores.</td>
</tr>
</tbody>
</table>

Example: 'Standardize','on'
You can modify certain aspects of the plot lines by specifying a property name and value for any of the properties listed in Primitive Line. However, this approach applies the modification to all the lines in the plot. To modify only certain plot lines, use the syntax that returns graphics handles and use dot notation to adjust each line property individually. For an illustration, see “Adjust Line Properties in Parallel Coordinates Plot” on page 32-4596.

Output Arguments

h — Graphic handles for line objects
vector of Line graphic handles

Graphic handles for line objects, returned as a vector of Line graphic handles. Graphic handles are unique identifiers that you can use to query and modify the properties of a specific line on the plot. To view and set properties of line objects, use dot notation. For information on using dot notation, see “Access Property Values” (MATLAB). For information on the Line properties that you can set, see Primitive Line.

If you use the 'Quantile' name-value pair argument, then h contains one handle for each of the three lines objects created. If you use both the 'Quantile' and the 'Group' name-value pair arguments, then h contains three handles for each group.

See Also

andrewsplot | glyphplot

Topics

“Grouping Variables” on page 2-57
“Access Property Values” (MATLAB)

Introduced before R2006a
paramci

Package: prob

Confidence intervals for probability distribution parameters

Syntax

ci = paramci(pd)
ci = paramci(pd,Name,Value)

Description

ci = paramci(pd) returns the array ci containing the lower and upper boundaries of the 95% confidence interval for each parameter in probability distribution pd.

ci = paramci(pd,Name,Value) returns confidence intervals with additional options specified by one or more name-value pair arguments. For example, you can specify a different percentage for the confidence interval, or compute confidence intervals only for selected parameters.

Examples

Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students' exam grade data.

load examgrades
x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')
pd =
    NormalDistribution

    Normal distribution
    mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution parameters.

You can also obtain these intervals by using the function `paramci`.

```matlab
ci = paramci(pd)
ci = 2×2
 73.4321 7.7391
 76.5846 9.9884
```

Column 1 of `ci` contains the lower and upper 95% confidence interval boundaries for the `mu` parameter, and column 2 contains the boundaries for the `sigma` parameter.

### Change Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students' exam grade data.

```matlab
load examgrades
x = grades(:,1);
```

Fit a normal distribution object to the data.

```matlab
pd = fitdist(x,'Normal')
pd =
 NormalDistribution

 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]
```
Compute the 99% confidence interval for the distribution parameters.

\[ \text{ci} = \text{paramci}(\text{pd},'\text{Alpha}',.01) \]

\[ \text{ci} = \begin{bmatrix} 72.9245 & 7.4627 \\ 77.0922 & 10.4403 \end{bmatrix} \]

Column 1 of \text{ci} contains the lower and upper 99% confidence interval boundaries for the mu parameter, and column 2 contains the boundaries for the sigma parameter.

**Input Arguments**

- **pd** — Probability distribution
  
  Probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td><strong>Distribution Fitter</strong></td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: 'Alpha',0.01 specifies a 99% confidence interval.
**Alpha — Confidence level**

0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1). The confidence level of ci is \(100(1-\text{Alpha})\)%.

Example: 'Alpha',0.01

Data Types: single | double

**Parameter — Parameter list**

character vector | string array | cell array of character vectors

Parameter list for which to compute confidence intervals, specified as the comma-separated pair consisting of 'Parameter' and a character vector, string array, or cell array of character vectors containing the parameter names. By default, `paramci` computes confidence intervals for all distribution parameters.

Example: 'Parameter','mu'

Data Types: char | string | cell

**Type — Computation method**

'exact' | 'Wald' | 'lr'

Computation method for the confidence intervals, specified as the comma-separated pair consisting of 'Type' and 'exact', 'Wald', or 'lr'.

'exact' computes the confidence intervals using an exact method, and is available for the following distributions.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Computation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>Compute using the Clopper-Pearson method based on exact probability calculations. This method does not provide exact coverage probabilities.</td>
</tr>
<tr>
<td>Exponential</td>
<td>Compute using a method based on a chi-square distribution. This method provides exact coverage for complete and Type 2 censored samples.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Computation Method</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Normal</td>
<td>Computation method based on $t$ and chi-square distributions for uncensored samples provides exact coverage for uncensored samples. For censored samples, <em>paramci</em> uses the Wald method if <em>Type</em> is <em>exact</em>.</td>
</tr>
<tr>
<td>Lognormal</td>
<td>Computation method based on $t$ and chi-square distributions for uncensored samples provides exact coverage. For censored samples, <em>paramci</em> uses the Wald method if <em>Type</em> is <em>exact</em>.</td>
</tr>
<tr>
<td>Poisson</td>
<td>Computation method based on a chi-square distribution provides exact coverage. For large degrees of freedom, the chi-square is approximated by a normal distribution for numerical efficiency.</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>Computation method based on a chi-square distribution provides exact coverage probabilities.</td>
</tr>
</tbody>
</table>

*exact* is the default when it is available. Alternatively, you can specify *'Wald'* to compute the confidence intervals using the Wald method, or *'lr'* to compute the confidence intervals using the likelihood ratio method.

Example: *'Type','Wald'*

**LogFlag — Boolean flag for log scale**

*vector*

Boolean flag for the log scale, specified as the comma-separated pair consisting of *'LogFlag'* and a vector containing Boolean values corresponding to each distribution parameter. The flag specifies which Wald intervals to compute on a log scale. The default values depend on the distribution.

Example: *'LogFlag',[0,1]*

Data Types: *logical*
Output Arguments

**ci — Confidence interval array**

Confidence interval, returned as a $p$-by-2 array containing the lower and upper bounds of the $100(1-\text{Alpha})\%$ confidence interval for each distribution parameter. $p$ is the number of distribution parameters.

If you create pd by using `makedist` and specifying the distribution parameters, the lower and upper bounds are equal to the specified parameters.

**See Also**

- `Distribution Fitter`
- `fitdist`
- `makedist`
- `mle`
- `negloglik`
- `proflik`

**Topics**

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16

**Introduced in R2013a**
parent

Class: classregtree

(Removed) Parent node

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

p = parent(t)
p = parent(t,nodes)

Description

p = parent(t) returns an n-element vector p containing the number of the parent node for each node in the tree t, where n is the number of nodes. The parent of the root node is 0.

p = parent(t,nodes) takes a vector nodes of node numbers and returns the parent nodes for the specified nodes.

References


See Also
children | classregtree | numnodes
paretotails

Piecewise distribution with Pareto tails

Description

A paretotails object is a piecewise distribution with generalized Pareto distributions (GPDs) in the tails.

A paretotails object consists of one or two GPDs in the tails and another distribution in the center. You can specify the distribution type for the center by using the cdffun argument of paretotails when you create an object. Valid values are 'ecdf', 'kernel', and a function handle.

paretotails fits a distribution of type cdffun to the observations (x) and finds the quantiles corresponding to the lower and upper tail cumulative probabilities (pl and pu, respectively). Then, paretotails fits two GPDs to the lower 100*pl percent of the observations and the upper 100*(1–pu) percent of the observations, respectively. If x does not have at least two distinct observations in a tail, then paretotails does not create the corresponding tail segment.

Use the object functions boundary, segment, upperparams, and lowerparams to find distribution characteristics. lowerparams and upperparams return the parameters of the GPDs in the tails. boundary returns the boundary points between piecewise distribution segments, segment returns the segment of a piecewise distribution containing input values, and nsegments returns the number of segments in an object.

Use the object functions cdf, icdf, pdf, and random to evaluate the distribution. These functions are wellsuited to copula and other Monte Carlo simulations. pdf returns the GPD density in the tails and the slope of the cumulative distribution function (cdf) in the center. These probability density function (pdf) values in the center are generally not good estimates of the underlying density of the original data.

Creation

Create a piecewise distribution object using paretotails.
Syntax

```matlab
pd = paretotails(x,pl,pu)
pd = paretotails(x,pl,pu,cdfun)
```

Description

`pd = paretotails(x,pl,pu)` returns the piecewise distribution object `pd`, which consists of the empirical distribution in the center and generalized Pareto distributions in the tails. Specify the boundaries of the tails using the lower and upper tail cumulative probabilities `pl` and `pu`, respectively.

`pd = paretotails(x,pl,pu,cdfun)` specifies the type of center distribution segment using `cdfun`.

Input Arguments

`x` — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: double

`pl` — Lower tail cumulative probability
numeric scalar in the range [0,1]

Lower tail cumulative probability, specified as a numeric scalar in the range [0,1]. The quantile of `pl` is the boundary of the lower tail observations.

If `pl` is 0 or `x` does not have at least two distinct observations in the lower tail, then `paretotails` divides the input data in `x` into two groups, center and upper tail. In this case, the fitted piecewise distribution object `pd` consists of two segments: the empirical distribution in the center and GPD in the upper tail.

Example: 0.1
Data Types: single | double

`pu` — Upper tail cumulative probability
numeric scalar in the range [0,1]

...
Upper tail cumulative probability, specified as a numeric scalar in the range \([0, 1]\). The quantile of \(pu\) is the boundary of the upper tail observations.

If \(pu\) is 1 or \(x\) does not have at least two distinct observations in the upper tail, then \texttt{paretotails} divides the input data in \(x\) into two groups, center and lower tail. In this case, the fitted piecewise distribution object \(pd\) consists of two segments: the empirical distribution in the center and GPD in the lower tail.

Example: 0.9

Data Types: single | double

\textbf{\texttt{cdffun} — Type of center distribution segment}

Type of center distribution segment, specified as 'ecdf', 'kernel', or a function handle.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ecdf'</td>
<td>Interpolated empirical cdf. \texttt{paretotails} uses values in (x) as the midpoints in the vertical steps of the empirical cdf, and computes the estimates for the points between the values in (x) by linear interpolation. For details about how to find the interpolated empirical cdf, see A Piecewise Linear Nonparametric CDF Estimate.</td>
</tr>
<tr>
<td>'kernel'</td>
<td>Interpolated kernel smoothing estimate of the cdf. \texttt{paretotails} uses the \texttt{ksdensity} function to find cdf estimates for 100 points in the range of (x), and uses linear interpolation to compute the estimates for the points between the 100 points. 'kernel' is equivalent to specifying a function handle \texttt{fun = @(x)ksdensity(x,'function','cdf')};</td>
</tr>
</tbody>
</table>
Value | Description
-----|---------------------
function handle | Interpolated estimates using a specified function.

`paretotails` uses a handle to a function of the form `[p,xi] = fun(x)` that accepts the input data vector `x` and returns a vector `p` of cdf values and a vector `xi` of evaluation points. Values in `xi` must be sorted and distinct but do not have to equal the values in `x`. The `paretotails` function computes the cdf estimates for the points between the values in `xi` by linear interpolation.

`paretotails` uses `cdffun` to compute the quantiles corresponding to `pl` and `pu`.

Example: 'kernel'

**Properties**

**NumSegments — Number of segments**

```
3 | 2 | 1
```

This property is read-only.

Number of segments, including the center segment and tail segments in a `paretotail` object, specified as a scalar. `NumSegments` is 3, 2, or 1 if the number of the tail segments in the object is 2, 1, or 0, respectively.

Data Types: double

**LowerParameters — Lower tail GPD parameters**

```
numeric vector
```

This property is read-only.

Lower tail GPD parameters, fit to the lower extreme observations in `x`, specified as a numeric vector. The first value is the shape parameter and the second value is the scale parameter of the GPD.

The location parameter of the lower tail GPD is equal to the quantile of `pl`. Use the `boundary` function to return the location parameter. For example, run `[p,q] = boundary(pd)`, where `pd` is a `paretotails` object. `q(1)` is the location parameter.

Data Types: single | double
UpperParameters — Upper tail GPD parameters
numeric vector

This property is read-only.

Upper tail GPD parameters, fit to the upper extreme observations in x, specified as a numeric vector. The first value is the shape parameter and the second value is the scale parameter of the GPD.

The location parameter of the upper tail GPD is equal to the quantile of pu. Use the boundary function to return the location parameter. For example, run \([p,q] = \text{boundary}(pd)\), where pd is a paretotails object. q(2) is the location parameter.

Data Types: single | double

Object Functions

- boundary: Piecewise distribution boundaries
- cdf: Cumulative distribution function
- icdf: Inverse cumulative distribution function
- lowerparams: Lower Pareto tail parameters
- nsegments: Number of segments in piecewise distribution
- pdf: Probability density function
- random: Random numbers
- segment: Piecewise distribution segments containing input values
- upperparams: Upper Pareto tail parameters

Examples

Create paretotails with Empirical Distribution

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data. Specify an empirical distribution for the center by using paretotails with its default settings.

Generate a sample data set containing 100 random numbers from a \(t\) distribution with 3 degrees of freedom.

```matlab
rng('default'); % For reproducibility
t = trnd(3,100,1);
```
Create a `paretotails` object by fitting a piecewise distribution to `t`. Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of the data set.

```matlab
pd = paretotails(t,0.1,0.9)
```

```matlab
pd =
 Piecewise distribution with 3 segments
 -Inf < x < -1.84875 (0 < p < 0.1): lower tail, GPD(0.183032,1.00347)
 -1.84875 < x < 2.07662 (0.1 < p < 0.9): interpolated empirical cdf
 2.07662 < x < Inf (0.9 < p < 1): upper tail, GPD(0.333239,1.19705)
```

Each line of the object display shows the summary of each segment, including the GPD parameters (shape and scale parameters) and the boundary values in the quantiles and cumulative probabilities. Use the object functions `boundary`, `lowerparams`, and `upperparams` to return these values.

You can use the `nsegments` function to return the number of segments and the `segment` function to return the segment that contains input values.

You can also use the distribution functions `cdf`, `icdf`, `pdf`, and `random` to evaluate the distribution and generate random samples.

Plot the cdf of the `t` distribution and the cdf of the `paretotails` object on the same figure.

```matlab
x = linspace(-5,5);
plot(x,tcdf(x,3),'r--')
hold on
plot(x,cdf(pd,x),'b-')
```

Find the boundary points between the segments of the `paretotails` object by using `boundary`, and mark the points on the figure.

```matlab
[p,q] = boundary(pd);
plot(q,p,'bo')
legend('t Distribution','Pareto Tails Object','Boundary Points','Location','best')
hold off
```
Create paretotails with Function Handle

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data. Fit a center segment by using paretotails with a function handle.

Generate a sample data set containing 20% outliers.

```matlab
rng('default'); % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];
```
Define a function handle using ksdensity to specify a nondefault value of the bandwidth.

```matlab
myfun1 = @(x)ksdensity(x,'Bandwidth',.1,'Function','cdf');
```

Create a paretotails object by fitting a piecewise distribution with the specified kernel smoothing estimator to \( x \). Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the kernel estimator for the middle 80% of the data set and GPDs for the lower and upper 10% of the data set.

```matlab
pd1 = paretotails(x,0.1,0.9,myfun1)
```

```matlab
pd1 =
Piecewise distribution with 3 segments
-Inf < x < -1.35204 (0 < p < 0.1): lower tail, GPD(0.0104112,0.54947)
-1.35204 < x < 1.80824 (0.1 < p < 0.9): function: @(x)ksdensity(x,'Bandwidth',.1,'Function','cdf')
1.80824 < x < Inf (0.9 < p < 1): upper tail, GPD(0.227542,3.10586)
```

You can also use a parametric distribution for the center segment. Define a function that fits a normal distribution to data and returns the cdf values, and pass the function handle when you create a paretotails object.

```matlab
pd2 = paretotails(x,0.1,0.9,@myfun2)
```

```matlab
pd2 =
Piecewise distribution with 3 segments
-Inf < x < -2.70875 (0 < p < 0.1): lower tail, GPD(-0.358104,0.831855)
-2.70875 < x < 3.52195 (0.1 < p < 0.9): function: myfun2
3.52195 < x < Inf (0.9 < p < 1): upper tail, GPD(-0.0661815,5.04694)
```

```matlab
function [p,xi] = myfun2(x)
 pd = fitdist(x,'Normal');
 xi = linspace(min(x),max(x),length(x)*2);
 p = cdf(pd,xi);
end
```

**See Also**

ecdf|gpfit|ksdensity
Topics

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

Introduced in R2007a
**partialcorr**

Linear or rank partial correlation coefficients

**Syntax**

```matlab
rho = partialcorr(x)
rho = partialcorr(x,z)
rho = partialcorr(x,y,z)
rho = partialcorr(___,Name,Value)
[rho,pval] = partialcorr(___)```

Description

`rho = partialcorr(x)` returns the sample linear partial correlation coefficients between pairs of variables in `x`, controlling for the remaining variables in `x`.

`rho = partialcorr(x,z)` returns the sample linear partial correlation coefficients between pairs of variables in `x`, controlling for the variables in `z`.

`rho = partialcorr(x,y,z)` returns the sample linear partial correlation coefficients between pairs of variables in `x` and `y`, controlling for the variables in `z`.

`rho = partialcorr(___,Name,Value)` returns the sample linear partial correlation coefficients with additional options specified by one or more name-value pair arguments, using input arguments from any of the previous syntaxes. For example, you can specify whether to use Pearson or Spearman partial correlations, or specify how to treat missing values.

`[rho,pval] = partialcorr(___)` also returns a matrix `pval` of `p`-values for testing the hypothesis of no partial correlation against the one- or two-sided alternative that there is a nonzero partial correlation.

Examples

32-4619
Compute Partial Correlation Coefficients

Compute partial correlation coefficients between pairs of variables in the input matrix.

Load the sample data. Convert the genders in `hospital.Sex` to numeric group identifiers.

```matlab
load hospital;
hospital.SexID = grp2idx(hospital.Sex);
```

Create an input matrix containing the sample data.

```matlab
x = [hospital.SexID hospital.Age hospital.Smoker hospital.Weight];
```

Each row in `x` contains a patient’s gender, age, smoking status, and weight.

Compute partial correlation coefficients between pairs of variables in `x`, while controlling for the effects of the remaining variables in `x`.

```matlab
rho = partialcorr(x)
rho = 4x4
```

```
1.0000  -0.0105   0.0273   0.9421
-0.0105   1.0000   0.0419   0.0369
 0.0273   0.0419   1.0000   0.0451
 0.9421   0.0369   0.0451   1.0000
```

The matrix `rho` indicates, for example, a correlation of 0.9421 between gender and weight after controlling for all other variables in `x`. You can return the P-values as a second output, and examine them to confirm whether these correlations are statistically significant.

For a clearer display, create a table with appropriate variable and row labels.

```matlab
rho = array2table(rho, ...
    'VariableNames',
    {'SexID','Age','Smoker','Weight'},...
    'RowNames',
    {'SexID','Age','Smoker','Weight'});
```

```matlab
disp('Partial Correlation Coefficients')
Partial Correlation Coefficients
```

```matlab
disp(rho)
```
Test for Partial Correlations with Controlled Variables

Test for partial correlation between pairs of variables in the input matrix, while controlling for the effects of a second set of variables.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

```matlab
code
load hospital;
hospital.SexID = grp2idx(hospital.Sex);
```

Create two matrices containing the sample data.

```matlab
code
x = [hospital.Age hospital.BloodPressure];
z = [hospital.SexID hospital.Smoker hospital.Weight];
```

The x matrix contains the variables to test for partial correlation. The z matrix contains the variables to control for. The measurements for BloodPressure are contained in two columns: The first column contains the upper (systolic) number, and the second column contains the lower (diastolic) number. partialcorr treats each column as a separate variable.

Test for partial correlation between pairs of variables in x, while controlling for the effects of the variables in z. Compute the correlation coefficients.

```matlab
code
[rho,pval] = partialcorr(x,z)
rho = 3x3
```

\[
\begin{array}{ccc}
1.0000 & 0.1300 & 0.0462 \\
0.1300 & 1.0000 & 0.0012 \\
0.0462 & 0.0012 & 1.0000 \\
\end{array}
\]
The large values in `pval` indicate that there is no significant correlation between age and either blood pressure measurement after controlling for gender, smoking status, and weight.

For a clearer display, create tables with appropriate variable and row labels.

```
rho = array2table(rho, ...  
    'VariableNames',{'Age','BPTop','BPBottom'},...  
    'RowNames',{'Age','BPTop','BPBottom'});

pval = array2table(pval, ...  
    'VariableNames',{'Age','BPTop','BPBottom'},...  
    'RowNames',{'Age','BPTop','BPBottom'});

disp('Partial Correlation Coefficients')  

Partial Correlation Coefficients  

disp(rho)

```
```
   Age        BPTop      BPBottom
   ______    _________    _________
   Age                1         0.13     0.046202
   BPTop           0.13            1    0.0012475
   BPBottom    0.046202    0.0012475            1

```
```
disp('p-values')
p-values

disp(pval)
```
```
   Age       BPTop     BPBottom
   ______    _______    ________
   Age               0    0.20438    0.65316
   BPTop       0.20438          0    0.99032
   BPBottom    0.65316    0.99032          0
```
Test for Paired Partial Correlation Coefficients

Test for partial correlation between pairs of variables in the x and y input matrices, while controlling for the effects of a third set of variables.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

```matlab
load hospital;
hospital.SexID = grp2idx(hospital.Sex);
```

Create three matrices containing the sample data.

```matlab
x = [hospital.BloodPressure];
y = [hospital.Weight hospital.Age];
z = [hospital.SexID hospital.Smoker];
```

`partialcorr` can test for partial correlation between the pairs of variables in x (the systolic and diastolic blood pressure measurements) and y (weight and age), while controlling for the variables in z (gender and smoking status). The measurements for BloodPressure are contained in two columns: The first column contains the upper (systolic) number, and the second column contains the lower (diastolic) number. `partialcorr` treats each column as a separate variable.

Test for partial correlation between pairs of variables in x and y, while controlling for the effects of the variables in z. Compute the correlation coefficients.

```matlab
[rho,pval] = partialcorr(x,y,z)
```

```
rho = 2×2
     -0.0257    0.1289
       0.0292    0.0472

pval = 2×2
       0.8018    0.2058
       0.7756    0.6442
```
The results in pval indicate that, after controlling for gender and smoking status, there is no significant correlation between either of a patient’s blood pressure measurements and that patient’s weight or age.

For a clearer display, create tables with appropriate variable and row labels.

```matlab
rho = array2table(rho, ...  'RowNames',{'BPTop','BPBottom'},...  'VariableNames',{'Weight','Age'});
pval = array2table(pval, ...  'RowNames',{'BPTop','BPBottom'},...  'VariableNames',{'Weight','Age'});
disp('Partial Correlation Coefficients')
Partial Correlation Coefficients
disp(rho)
    Weight  Age
   __________    ________
     BPTop  -0.02568     0.12893
     BPBottom 0.029168    0.047226
disp('p-values')
p-values
disp(pval)
    Weight  Age
   __________    _______
     BPTop      0.80182     0.2058
     BPBottom 0.77556    0.64424
```

One-Tailed Partial Correlation Test

Test the hypothesis that pairs of variables have no correlation, against the alternative hypothesis that the correlation is greater than 0.
Load the sample data. Convert the genders in `hospital.Sex` to numeric group identifiers.

```matlab
load hospital;
hospital.SexID = grp2idx(hospital.Sex);
```

Create three matrices containing the sample data.

```matlab
x = [hospital.BloodPressure];
y = [hospital.Weight hospital.Age];
z = [hospital.SexID hospital.Smoker];
```

`partialcorr` can test for partial correlation between the pairs of variables in `x` (the systolic and diastolic blood pressure measurements) and `y` (weight and age), while controlling for the variables in `z` (gender and smoking status). The measurements for `BloodPressure` are contained in two columns: The first column contains the upper (systolic) number, and the second column contains the lower (diastolic) number. `partialcorr` treats each column as a separate variable.

Compute the correlation coefficients using a right-tailed test.

```matlab
[rho,pval] = partialcorr(x,y,z,'Tail','right')
```

```plaintext
rho = 2x2
     -0.0257  0.1289
      0.0292  0.0472

pval = 2x2
     0.5991  0.1029
     0.3878  0.3221
```

The results in `pval` indicate that `partialcorr` does not reject the null hypothesis of nonzero correlations between the variables in `x` and `y`, after controlling for the variables in `z`, when the alternative hypothesis is that the correlations are greater than 0.

For a clearer display, create tables with appropriate variable and row labels.

```matlab
rho = array2table(rho,
     'RowNames',{'BPTop','BPBottom'},
     'VariableNames',{'Weight','Age'});
pval = array2table(pval, ...
    'RowNames',{'BPTop','BPBottom'},...
    'VariableNames',{'Weight','Age'});

disp('Partial Correlation Coefficients')
Partial Correlation Coefficients
disp(rho)

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPTop</td>
<td>-0.02568</td>
<td>0.12893</td>
</tr>
<tr>
<td>BPBottom</td>
<td>0.029168</td>
<td>0.047226</td>
</tr>
</tbody>
</table>

disp('p-values')
p-values
disp(pval)

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPTop</td>
<td>0.59909</td>
<td>0.1029</td>
</tr>
<tr>
<td>BPBottom</td>
<td>0.38778</td>
<td>0.32212</td>
</tr>
</tbody>
</table>

**Input Arguments**

**x — Data matrix**
matrix

Data matrix, specified as an \( n \)-by-\( p_x \) matrix. The rows of \( x \) correspond to observations, and the columns correspond to variables.

Data Types: single | double

**y — Data matrix**
matrix

Data matrix, specified as an \( n \)-by-\( p_y \) matrix. The rows of \( y \) correspond to observations, and the columns correspond to variables.
Data Types: single | double

**z — Data matrix**

matrix

Data matrix, specified as an $n$-by-$p_z$ matrix. The rows of $z$ correspond to observations, and columns correspond to variables.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of *Name*, *Value* arguments. *Name* is the argument name and *Value* is the corresponding value. *Name* must appear inside quotes. You can specify several name and value pair arguments in any order as *Name1*,*Value1*,...,*NameN*,*ValueN*.

Example: *'Type','Spearman','Rows','complete'* computes Spearman partial correlations using only the data in rows that contain no missing values.

**Type — Type of partial correlations**

*Pearson* (default) | *Spearman*

Type of partial correlations to compute, specified as the comma-separated pair consisting of *'Type'* and one of the following.

- *'Pearson'* Compute Pearson (linear) partial correlations.
- *'Spearman'* Compute Spearman (rank) partial correlations.

Example: *'Type','Spearman'*

**Rows — Rows to use in computation**

*all* (default) | *complete* | *pairwise*

Rows to use in computation, specified as the comma-separated pair consisting of *'Rows'* and one of the following.

- *'all'* Use all rows of the input regardless of missing values (NaNs).
- *'complete'* Use only rows of the input with no missing values.
'pairwise'

Compute \( \rho(i,j) \) using rows with no missing values in column \( i \) or \( j \).

Example: 'Rows','complete'

**Tail — Alternative hypothesis**

'both' (default) | 'right' | 'left'

Alternative hypothesis to test against, specified as the comma-separated pair consisting of 'Tail' and one of the following.

'both'
Test the alternative hypothesis that the correlation is not 0.

'right'
Test the alternative hypothesis that the correlation is greater than 0.

'left'
Test the alternative hypothesis that the correlation is less than 0.

Example: 'Tail','right'

**Output Arguments**

**rho — Sample linear partial correlation coefficients**

matrix

Sample linear partial correlation coefficients, returned as a matrix.

- If you input only an \( x \) matrix, \( \rho \) is a symmetric \( p_x \)-by-\( p_x \) matrix. The \((i,j)\)th entry is the sample linear partial correlation between the \( i \)-th and \( j \)-th columns in \( x \).
- If you input \( x \) and \( z \) matrices, \( \rho \) is a symmetric \( p_x \)-by-\( p_x \) matrix. The \((i,j)\)th entry is the sample linear partial correlation between the \( i \)-th and \( j \)-th columns in \( x \), controlled for the variables in \( z \).
- If you input \( x \), \( y \), and \( z \) matrices, \( \rho \) is a \( p_x \)-by-\( p_y \) matrix, where the \((i,j)\)th entry is the sample linear partial correlation between the \( i \)-th column in \( x \) and the \( j \)-th column in \( y \), controlled for the variables in \( z \).

If the covariance matrix of \([x,z]\) is

\[
S = \begin{pmatrix}
S_{xx} & S_{xz} \\
S_{xz}^T & S_{zz}
\end{pmatrix},
\]
then the partial correlation matrix of \( x \), controlling for \( z \), can be defined formally as a normalized version of the covariance matrix: \( S_{xx} - (S_{xz}S_{zz}^{-1}S_{zx}^T) \).

\[ pval \text{ — } p-values \]

\( p \)-values, returned as a matrix. Each element of \( pval \) is the \( p \)-value for the corresponding element of \( \rho \).

If \( pval(i,j) \) is small, then the corresponding partial correlation \( \rho(i,j) \) is statistically significantly different from 0.

\( \text{partialcorr} \) computes \( p \)-values for linear and rank partial correlations using a Student's \( t \) distribution for a transformation of the correlation. This is exact for linear partial correlation when \( x \) and \( z \) are normal, but is a large-sample approximation otherwise.

**See Also**

\( \text{corr} \mid \text{corrcoef} \mid \text{partialcorri} \mid \text{tiedrank} \)

**Introduced before R2006a**
**partialcorri**

Partial correlation coefficients adjusted for internal variables

**Syntax**

\[
\begin{align*}
\text{rho} &= \text{partialcorri}(y,x) \\
\text{rho} &= \text{partialcorri}(y,x,z) \\
\text{rho} &= \text{partialcorri}([\_\_],[\_\_,\_\_,\_\_]) \\
[\text{rho},pval] &= \text{partialcorri}(\_\_)
\end{align*}
\]

**Description**

\(\text{rho} = \text{partialcorri}(y,x)\) returns the sample linear partial correlation coefficients between pairs of variables in \(y\) and \(x\), adjusting for the remaining variables in \(x\).

\(\text{rho} = \text{partialcorri}(y,x,z)\) returns the sample linear partial correlation coefficients between pairs of variables in \(y\) and \(x\), adjusting for the remaining variables in \(x\), after first controlling both \(x\) and \(y\) for the variables in \(z\).

\(\text{rho} = \text{partialcorri}([\_\_],[\_\_,\_\_,\_\_,\_\_,\_\_,\_\_,\_\_])\) returns the sample linear partial correlation coefficients with additional options specified by one or more name-value pair arguments, using input arguments from any of the previous syntaxes. For example, you can specify whether to use Pearson or Spearman partial correlations, or specify how to treat missing values.

\([\text{rho},pval] = \text{partialcorri}(\_\_}\) also returns a matrix \(pval\) of \(p\)-values for testing the hypothesis of no partial correlation against the one- or two-sided alternative that there is a nonzero partial correlation.

**Examples**
Compute Partial Correlation Coefficients

Compute partial correlation coefficients for each pair of variables in the x and y input matrices, while controlling for the effects of the remaining variables in x.

Load the sample data.

```matlab
load carsmall;
```

The data contains measurements from cars manufactured in 1970, 1976, and 1982. It includes MPG and Acceleration as performance measures, and Displacement, Horsepower, and Weight as design variables. Acceleration is the time required to accelerate from 0 to 60 miles per hour, so a high value for Acceleration corresponds to a vehicle with low acceleration.

Define the input matrices. The y matrix includes the performance measures, and the x matrix includes the design variables.

```matlab
y = [MPG,Acceleration];
x = [Displacement,Horsepower,Weight];
```

Compute the correlation coefficients. Include only rows with no missing values in the computation.

```matlab
rho = partialcorri(y,x,'Rows','complete')
rho = 2×3
 -0.0537 -0.1520 -0.4856
 -0.3994 -0.4008 0.4912
```

The results suggest, for example, a 0.4912 correlation between weight and acceleration after controlling for the effects of displacement and horsepower. You can return the p-values as a second output, and examine them to confirm whether these correlations are statistically significant.

For a clearer display, create a table with appropriate variable and row labels.

```matlab
rho = array2table(rho, ...
 'VariableNames',
 {'Displacement','Horsepower','Weight'}, ...
 'RowNames',
 {'MPG','Acceleration'});

disp('Partial Correlation Coefficients')
```
Partial Correlation Coefficients

disp(rho)

<table>
<thead>
<tr>
<th>Displacement</th>
<th>Horsepower</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPG</td>
<td>-0.053684</td>
<td>-0.15199</td>
</tr>
<tr>
<td>Acceleration</td>
<td>-0.39941</td>
<td>-0.40075</td>
</tr>
</tbody>
</table>

Test Partial Correlations While Controlling for Additional Variables

Test for partial correlation between pairs of variables in the x and y input matrices, while controlling for the effects of the remaining variables in x plus additional variables in matrix z.

Load the sample data.

load carsmall;

The data contains measurements from cars manufactured in 1970, 1976, and 1982. It includes MPG and Acceleration as performance measures, and Displacement, Horsepower, and Weight as design variables. Acceleration is the time required to accelerate from 0 to 60 miles per hour, so a high value for Acceleration corresponds to a vehicle with low acceleration.

Create a new variable Headwind, and randomly generate data to represent the notion of an average headwind along the performance measurement route.

rng('default'); % For reproducibility
Headwind = (10:-0.2:-9.8)’ + 5*randn(100,1);

Since headwind can affect the performance measures, control for its effects when testing for partial correlation between the remaining variables.

Define the input matrices. The y matrix includes the performance measures, and the x matrix includes the design variables. The z matrix contains additional variables to control for when computing the partial correlations, such as headwind.

```
y = [MPG,Acceleration];
x = [Displacement,Horsepower,Weight];
z = Headwind;
```
Compute the partial correlation coefficients. Include only rows with no missing values in the computation.

[rho,pval] = partialcorri(y,x,z,'Rows','complete')

rho = 2×3

0.0572   -0.1055   -0.5736
-0.3845   -0.3966    0.4674

pval = 2×3

0.5923    0.3221    0.0000
0.0002    0.0001    0.0000

The small returned P-value of 0.001 in pval indicates, for example, a significant negative correlation between horsepower and acceleration, after controlling for displacement, weight, and headwind.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...  
  'VariableNames',{'Displacement','Horsepower','Weight'}, ...  
  'RowNames',{'MPG','Acceleration'});
pval = array2table(pval, ...  
  'VariableNames',{'Displacement','Horsepower','Weight'}, ...  
  'RowNames',{'MPG','Acceleration'});

disp('Partial Correlation Coefficients, Accounting for Headwind')
Partial Correlation Coefficients, Accounting for Headwind
disp(rho)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Displacement</th>
<th>Horsepower</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPG</td>
<td>0.057197</td>
<td>-0.1055</td>
<td>-0.5736</td>
</tr>
<tr>
<td>Acceleration</td>
<td>-0.38452</td>
<td>-0.39658</td>
<td>0.4674</td>
</tr>
</tbody>
</table>

disp('P-values, Accounting for Headwind')
P-values, Accounting for Headwind
disp(pval)

<table>
<thead>
<tr>
<th></th>
<th>Displacement</th>
<th>Horsepower</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPG</td>
<td>0.59233</td>
<td>0.32212</td>
<td>3.4401e-09</td>
</tr>
<tr>
<td>Acceleration</td>
<td>0.00018272</td>
<td>0.00010902</td>
<td>3.4091e-06</td>
</tr>
</tbody>
</table>

**Input Arguments**

**x — Data matrix**

matrix

Data matrix, specified as an \(n\)-by-\(p_x\) matrix. The rows of \(x\) correspond to observations, and the columns correspond to variables.

Data Types: single | double

**y — Data matrix**

matrix

Data matrix, specified as an \(n\)-by-\(p_y\) matrix. The rows of \(y\) correspond to observations, and the columns correspond to variables.

Data Types: single | double

**z — Data matrix**

matrix

Data matrix, specified as an \(n\)-by-\(p_z\) matrix. The rows of \(z\) correspond to observations, and the columns correspond to variables.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1**, **Value1**, ..., **NameN**, **ValueN**.
Example: 'Type','Spearman','Rows','complete' computes Spearman partial
correlations using only the data in rows that contain no missing values.

**Type — Type of partial correlations**

| 'Pearson' (default) | 'Spearman' |

Type of partial correlations to compute, specified as the comma-separated pair consisting of 'Type' and either 'Pearson' or 'Spearman'. *Pearson* computes the Pearson (linear) partial correlations. *Spearman* computes the Spearman (rank) partial correlations.

Example: 'Type','Spearman'

**Rows — Rows to use in computation**

| 'all' (default) | 'complete' | 'pairwise' |

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows' and one of the following.

- 'all': Use all rows regardless of missing (NaN) values.
- 'complete': Use only rows with no missing values.
- 'pairwise': Use all available values in each column of $y$ when computing the partial correlation coefficients and $p$-values corresponding to that column. For each column of $y$, rows will be dropped corresponding to missing values in $x$ (and/or $z$, if supplied). However, remaining rows with valid values in that column of $y$ are used, even if there are missing values in other columns of $y$.

Example: 'Rows','complete'

**Tail — Alternative hypothesis**

| 'both' (default) | 'right' | 'left' |

Alternative hypothesis to test against, specified as the comma-separated pair consisting of 'Tail' and one of the following.

- 'both': Test the alternative hypothesis that the correlation is not zero.
'right'  
Test the alternative hypothesis that the correlation is greater than 0.

'left'  
Test the alternative hypothesis that the correlation is less than 0.

Example: 'Tail', 'right'

Output Arguments

rho — Sample linear partial correlation coefficients
matrix

Sample linear partial correlation coefficients, returned as a \( p_y \)-by-\( p_x \) matrix.

- If you input \( x \) and \( y \) matrices, the \((i,j)\)th entry is the sample linear partial correlation between the \(i\)th column in \( y \) and the \(j\)th column in \( x \), controlled for all the columns of \( x \) except column \( j \).
- If you input \( x \), \( y \), and \( z \) matrices, the \((i,j)\)th entry is the sample linear partial correlation between the \(i\)th column in \( y \) and the \(j\)th column in \( x \), adjusted for all the columns of \( x \) except column \( j \), after first controlling both \( x \) and \( y \) for the variables in \( z \).

pval — \( p \)-values
matrix

\( p \)-values, returned as a matrix. Each element of \( pval \) is the \( p \)-value for the corresponding element of \( rho \). If \( pval(i,j) \) is small, then the corresponding partial correlation \( rho(i,j) \) is statistically significantly different from zero.

partialcorri computes \( p \)-values for linear and rank partial correlations using a Student's \( t \) distribution for a transformation of the correlation. This is exact for linear partial correlation when \( x \) and \( z \) are normal, but is a large-sample approximation otherwise.

See Also

corr | partialcorr

Introduced in R2013b
**pca**

Principal component analysis of raw data

**Syntax**

```matlab
coeff = pca(X)
coeff = pca(X,Name,Value)
[coeff,score,latent] = pca(__)
[coeff,score,latent,tsquared] = pca(__)
[coeff,score,latent,tsquared,explained,mu] = pca(__)
```

**Description**

`coeff = pca(X)` returns the principal component coefficients, also known as loadings, for the \( n \)-by-\( p \) data matrix \( X \). Rows of \( X \) correspond to observations and columns correspond to variables. The coefficient matrix is \( p \)-by-\( p \). Each column of \( coeff \) contains coefficients for one principal component, and the columns are in descending order of component variance. By default, `pca` centers the data and uses the singular value decomposition (SVD) algorithm.

`coeff = pca(X,Name,Value)` returns any of the output arguments in the previous syntaxes using additional options for computation and handling of special data types, specified by one or more `Name,Value` pair arguments.

For example, you can specify the number of principal components `pca` returns or an algorithm other than SVD to use.

```matlab
[coeff,score,latent] = pca(__) also returns the principal component scores in score and the principal component variances in latent. You can use any of the input arguments in the previous syntaxes.
```

Principal component scores are the representations of \( X \) in the principal component space. Rows of `score` correspond to observations, and columns correspond to components.

The principal component variances are the eigenvalues of the covariance matrix of \( X \).
[coeff, score, latent, tsquared] = pca(___) also returns the Hotelling's T-squared statistic for each observation in X.

[coeff, score, latent, tsquared, explained, mu] = pca(___) also returns explained, the percentage of the total variance explained by each principal component and mu, the estimated mean of each variable in X.

Examples

Principal Components of a Data Set

Load the sample data set.

load hald

The ingredients data has 13 observations for 4 variables.

Find the principal components for the ingredients data.

coeff = pca(ingredients)

coeff = 4×4

-0.0678   -0.6460    0.5673    0.5062
-0.6785   -0.0200   -0.5440    0.4933
 0.0290    0.7553    0.4036    0.5156
 0.7309   -0.1085   -0.4684    0.4844

The rows of coeff contain the coefficients for the four ingredient variables, and its columns correspond to four principal components.

PCA in the Presence of Missing Data

Find the principal component coefficients when there are missing values in a data set.

Load the sample data set.

load imports-85
Data matrix $X$ has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform principal component analysis.

```matlab
coeff = pca(X(:,3:15));
```

By default, `pca` performs the action specified by the `'Rows','complete'` name-value pair argument. This option removes the observations with NaN values before calculation. Rows of NaNs are reinserted into `score` and `tsquared` at the corresponding locations, namely rows 56 to 59, 131, and 132.

Use `'pairwise'` to perform the principal component analysis.

```matlab
coeff = pca(X(:,3:15),'Rows','pairwise');
```

In this case, `pca` computes the $(i,j)$ element of the covariance matrix using the rows with no NaN values in the columns $i$ or $j$ of $X$. Note that the resulting covariance matrix might not be positive definite. This option applies when the algorithm `pca` uses is eigenvalue decomposition. When you don't specify the algorithm, as in this example, `pca` sets it to `'eig'`. If you require `'svd'` as the algorithm, with the `'pairwise'` option, then `pca` returns a warning message, sets the algorithm to `'eig'` and continues.

If you use the `'Rows','all'` name-value pair argument, `pca` terminates because this option assumes there are no missing values in the data set.

```matlab
coeff = pca(X(:,3:15),'Rows','all');
```

Error using pca (line 180)
Raw data contains NaN missing value while 'Rows' option is set to 'all'. Consider using

**Weighted PCA**

Use the inverse variable variances as weights while performing the principal components analysis.

Load the sample data set.

```matlab
load hald
```
Perform the principal component analysis using the inverse of variances of the ingredients as variable weights.

```matlab
[wcoeff,~,latent,~,explained] = pca(ingredients,...
'VariableWeights','variance')
```

```
wcoeff = 4x4

-2.7998 2.9940 -3.9736 1.4180
-8.7743 -6.4411 4.8927 9.9863
 2.5240 -3.8749 -4.0845 1.7196
 9.1714 7.5529 3.2710 11.3273
```

```
latent = 4x1

2.2357
1.5761
0.1866
0.0016
```

```
explained = 4x1

55.8926
39.4017
 4.6652
 0.0406
```

Note that the coefficient matrix, `wcoeff`, is not orthonormal.

Calculate the orthonormal coefficient matrix.

```matlab
coefforth = inv(diag(std(ingredients))) * wcoeff
```

```
coefforth = 4x4

-0.4760 0.5090 -0.6755 0.2411
-0.5639 -0.4139 0.3144 0.6418
 0.3941 -0.6050 -0.6377 0.2685
 0.5479 0.4512 0.1954 0.6767
```

Check orthonormality of the new coefficient matrix, `coefforth`. 
PCA Using ALS for Missing Data

Find the principal components using the alternating least squares (ALS) algorithm when there are missing values in the data.

Load the sample data.

load hald

The ingredients data has 13 observations for 4 variables.

Perform principal component analysis using the ALS algorithm and display the component coefficients.

[coeff, score, latent, tsquared, explained] = pca(ingredients);
coeff

coeff = 4×4

[-0.0678   -0.6460    0.5673    0.5062]
[-0.6785   -0.0200   -0.5440    0.4933]
[0.0290    0.7553    0.4036    0.5156]
[0.7309   -0.1085   -0.4684    0.4844]

Introduce missing values randomly.

y = ingredients;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.30;
y(ix) = NaN
Approximately 30% of the data has missing values now, indicated by NaN.

Perform principal component analysis using the ALS algorithm and display the component coefficients.

```matlab
[coeff1,score1,latent,tsquared,explained,mu1] = pca(y,...
 'algorithm','als');
coeff1
```

```
coeff1 = 4×4
 -0.0362 0.8215 -0.5252 0.2190
 -0.6831 -0.0998 0.1828 0.6999
 0.0169 0.5575 0.8215 -0.1185
 0.7292 -0.0657 0.1261 0.6694
```

Display the estimated mean.

```matlab
mu1
```

```
mu1 = 1×4
 8.9956 47.9088 9.0451 28.5515
```

Reconstruct the observed data.

```matlab
t = score1*coeff1' + repmat(mu1,13,1)
```
The ALS algorithm estimates the missing values in the data.

Another way to compare the results is to find the angle between the two spaces spanned by the coefficient vectors. Find the angle between the coefficients found for complete data and data with missing values using ALS.

```matlab
subspace(coeff,coeff1)
ans = 3.9965e-16
```

This is a small value. It indicates that the results if you use `pca` with 'Rows','complete' name-value pair argument when there is no missing data and if you use `pca` with 'algorithm','als' name-value pair argument when there is missing data are close to each other.

Perform the principal component analysis using 'Rows','complete' name-value pair argument and display the component coefficients.

```matlab
[coeff2,score2,latent,tsquared,explained,mu2] = pca(y,...
'Rows','complete');
coeff2
coeff2 = 4×3
-0.2054 0.8587 0.0492
-0.6694 -0.3720 0.5510
0.1474 -0.3513 -0.5187
0.6986 -0.0298 0.6518
```
In this case, pca removes the rows with missing values, and y has only four rows with no missing values. pca returns only three principal components. You cannot use the 'Rows','pairwise' option because the covariance matrix is not positive semidefinite and pca returns an error message.

Find the angle between the coefficients found for complete data and data with missing values using listwise deletion (when 'Rows','complete').

\[
\text{subspace(coeff(:,1:3),coeff2)}
\]

\[
\text{ans} = 0.3576
\]

The angle between the two spaces is substantially larger. This indicates that these two results are different.

Display the estimated mean.

\[
\text{mu2}
\]

\[
\text{mu2} = 1\times4
\]

\[
\begin{array}{cccc}
7.8889 & 46.9091 & 9.8750 & 29.6000 \\
\end{array}
\]

In this case, the mean is just the sample mean of y.

Reconstruct the observed data.

\[
\text{score2*coeff2}'
\]

\[
\text{ans} = 13\times4
\]

\[
\begin{array}{cccc}
\text{NaN} & \text{NaN} & \text{NaN} & \text{NaN} \\
-7.5162 & -18.3545 & 4.0968 & 22.0056 \\
\text{NaN} & \text{NaN} & \text{NaN} & \text{NaN} \\
\text{NaN} & \text{NaN} & \text{NaN} & \text{NaN} \\
-0.5644 & 5.3213 & -3.3432 & 3.6040 \\
\text{NaN} & \text{NaN} & \text{NaN} & \text{NaN} \\
12.8315 & -0.1076 & -6.3333 & -3.7758 \\
\end{array}
\]
This shows that deleting rows containing NaN values does not work as well as the ALS algorithm. Using ALS is better when the data has too many missing values.

**Principal Component Coefficients, Scores, and Variances**

Find the coefficients, scores, and variances of the principal components.

Load the sample data set.

```matlab
load hald
```

The ingredients data has 13 observations for 4 variables.

Find the principal component coefficients, scores, and variances of the components for the ingredients data.

```matlab
[coeff,score,latent] = pca(ingredients)
```

```matlab
coeff = 4×4

-0.0678 -0.6460 0.5673 0.5062
-0.6785 -0.0200 -0.5440 0.4933
 0.0290 0.7553 0.4036 0.5156
 0.7309 -0.1085 -0.4684 0.4844

score = 13×4

36.8218 -6.8709 -4.5909 0.3967
29.6073 4.6109 -2.2476 -0.3958
-12.9818 -4.2049 0.9022 -1.1261
23.7147 -6.6341 1.8547 -0.3786
-0.5532 -4.4617 -6.0874 0.1424
-10.8125 -3.6466 0.9130 -0.1350
-32.5882 8.9798 -1.6063 0.0818
22.6064 10.7259 3.2365 0.3243
-9.2626 8.9854 -0.0169 -0.5437
-3.2840 -14.1573 7.0465 0.3405
```

```matlab
latent = 4×1

pca 32-4645
```
Each column of \texttt{score} corresponds to one principal component. The vector, \texttt{latent}, stores the variances of the four principal components.

Reconstruct the centered ingredients data.

\texttt{Xcentered} = \texttt{score*coeff'}

\texttt{Xcentered} = 13\times4

\begin{verbatim}
-0.4615  -22.1538  -5.7692  30.0000
-6.4615  -19.1538   3.2308  22.0000
 3.5385   7.8462  -3.7692 -10.0000
 3.5385  -17.1538  -3.7692  17.0000
-0.4615   3.8462  -5.7692   3.0000
 3.5385   6.8462  -2.7692  -8.0000
-4.4615  22.8462   5.2308 -24.0000
-6.4615  -17.1538  10.2308  14.0000
-5.4615   5.8462   6.2308   8.0000
13.5385  -1.1538  -7.7692  -4.0000
\vdots
\end{verbatim}

The new data in \texttt{Xcentered} is the original ingredients data centered by subtracting the column means from corresponding columns.

Visualize both the orthonormal principal component coefficients for each variable and the principal component scores for each observation in a single plot.

\texttt{biplot(coeff(:,1:2),'scores',score(:,1:2),'varlabels',
{'v_1','v_2','v_3','v_4'})};
All four variables are represented in this biplot by a vector, and the direction and length of the vector indicate how each variable contributes to the two principal components in the plot. For example, the first principal component, which is on the horizontal axis, has positive coefficients for the third and fourth variables. Therefore, vectors $v_3$ and $v_4$ are directed into the right half of the plot. The largest coefficient in the first principal component is the fourth, corresponding to the variable $v_4$.

The second principal component, which is on the vertical axis, has negative coefficients for the variables $v_1$, $v_2$, and $v_4$, and a positive coefficient for the variable $v_3$. 
This 2-D biplot also includes a point for each of the 13 observations, with coordinates indicating the score of each observation for the two principal components in the plot. For example, points near the left edge of the plot have the lowest scores for the first principal component. The points are scaled with respect to the maximum score value and maximum coefficient length, so only their relative locations can be determined from the plot.

**T-Squared Statistic**

Find the Hotelling’s T-squared statistic values.

Load the sample data set.

```matlab
load hald
```

The ingredients data has 13 observations for 4 variables.

Perform the principal component analysis and request the T-squared values.

```matlab
[coeff,score,latent,tsquared] = pca(ingredients);
tsquared
```

```
tsquared = 13×1
 5.6803
 3.0758
 6.0002
 2.6198
 3.3681
 0.5668
 3.4818
 3.9794
 2.6086
 7.4818
 ⋮
```

Request only the first two principal components and compute the T-squared values in the reduced space of requested principal components.

```matlab
[coeff,score,latent,tsquared] = pca(ingredients,'NumComponents',2);
tsquared
```
tsquared = 13×1

5.6803
3.0758
6.0002
2.6198
3.3681
0.5668
3.4818
3.9794
2.6086
7.4818

:  

Note that even when you specify a reduced component space, pca computes the T-squared values in the full space, using all four components.

The T-squared value in the reduced space corresponds to the Mahalanobis distance in the reduced space.

tsquared = mahal(score,score)

tsqreduced = 13×1

3.179
2.0079
0.5874
1.7382
0.2955
0.4228
3.2457
2.6914
1.3619
2.9903

:  

Calculate the T-squared values in the discarded space by taking the difference of the T-squared values in the full space and Mahalanobis distance in the reduced space.

tsqdiscarded = tsquared - tsqreduced

tsqdiscarded = 13×1
Percent Variability Explained by Principal Components

Find the percent variability explained by the principal components. Show the data representation in the principal components space.

Load the sample data set.

```
load imports-85
```

Data matrix $X$ has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg.

Find the percent variability explained by principal components of these variables.

```
[coeff, score, latent, tsquared, explained] = pca(X(:,3:15));
```

```
explained
```

```
explained = 13x1

64.3429
35.4484
0.1550
0.0379
0.0078
0.0048
0.0013
0.0011
```
The first three components explain 99.95% of all variability.

Visualize the data representation in the space of the first three principal components.

```matlab
scatter3(score(:,1),score(:,2),score(:,3))
axis equal
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
zlabel('3rd Principal Component')
```
The data shows the largest variability along the first principal component axis. This is the largest possible variance among all possible choices of the first axis. The variability along the second principal component axis is the largest among all possible remaining choices of the second axis. The third principal component axis has the third largest variability, which is significantly smaller than the variability along the second principal component axis. The fourth through thirteenth principal component axes are not worth inspecting, because they explain only 0.05% of all variability in the data.

To skip any of the outputs, you can use ~ instead in the corresponding element. For example, if you don’t want to get the T-squared values, specify

```matlab
[coeff, score, latent, ~, explained] = pca(X(:,3:15));
```

### Input Arguments

**X — Input data**

matrix

Input data for which to compute the principal components, specified as an \( n \)-by-\( p \) matrix. Rows of \( X \) correspond to observations and columns to variables.

Data Types: `single` | `double`

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:

```matlab
'Algorithm','eig','Centered',false,'Rows','all','NumComponents',3
```

specifies that `pca` uses eigenvalue decomposition algorithm, not center the data, use all of the observations, and return only the first three principal components.

**Algorithm — Principal component algorithm**

'svd' (default) | 'eig' | 'als'
Principal component algorithm that pca uses to perform the principal component analysis, specified as the comma-separated pair consisting of 'Algorithm' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'svd'</td>
<td>Default. Singular value decomposition (SVD) of X.</td>
</tr>
<tr>
<td>'eig'</td>
<td>Eigenvalue decomposition (EIG) of the covariance matrix. The EIG algorithm is faster than SVD when the number of observations, n, exceeds the number of variables, p, but is less accurate because the condition number of the covariance is the square of the condition number of X.</td>
</tr>
<tr>
<td>'als'</td>
<td>Alternating least squares (ALS) algorithm. This algorithm finds the best rank-k approximation by factoring X into a n-by-k left factor matrix, L, and a p-by-k right factor matrix, R, where k is the number of principal components. The factorization uses an iterative method starting with random initial values. ALS is designed to better handle missing values. It is preferable to pairwise deletion ('Rows', 'pairwise') and deals with missing values without listwise deletion ('Rows', 'complete'). It can work well for data sets with a small percentage of missing data at random, but might not perform well on sparse data sets.</td>
</tr>
</tbody>
</table>

Example: 'Algorithm','eig'

**Centered — Indicator for centering columns**

true (default) | false

Indicator for centering the columns, specified as the comma-separated pair consisting of 'Centered' and one of these logical expressions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Default. pca centers X by subtracting column means before computing singular value decomposition or eigenvalue decomposition. If X contains NaN missing values, nanmean is used to find the mean with any available data. You can reconstruct the centered data using score*coeff'.</td>
</tr>
<tr>
<td>false</td>
<td>In this case pca does not center the data. You can reconstruct the original data using score*coeff'.</td>
</tr>
</tbody>
</table>

Example: 'Centered',false
**Data Types:** logical

**Economy — Indicator for economy size output**

- true (default) | false

Indicator for the economy size output when the degrees of freedom, \( d \), is smaller than the number of variables, \( p \), specified as the comma-separated pair consisting of 'Economy' and one of these logical expressions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Default. ( \text{pca} ) returns only the first ( d ) elements of ( \text{latent} ) and the corresponding columns of ( \text{coeff} ) and ( \text{score} ). This option can be significantly faster when the number of variables ( p ) is much larger than ( d ).</td>
</tr>
<tr>
<td>false</td>
<td>( \text{pca} ) returns all elements of ( \text{latent} ). The columns of ( \text{coeff} ) and ( \text{score} ) corresponding to zero elements in ( \text{latent} ) are zeros.</td>
</tr>
</tbody>
</table>

Note that when \( d < p \), \( \text{score}(::,d+1:p) \) and \( \text{latent}(d+1:p) \) are necessarily zero, and the columns of \( \text{coeff}(::,d+1:p) \) define directions that are orthogonal to \( X \).

Example: 'Economy',false

**Data Types:** logical

**NumComponents — Number of components requested**

- number of variables (default) | scalar integer

Number of components requested, specified as the comma-separated pair consisting of 'NumComponents' and a scalar integer \( k \) satisfying \( 0 < k \leq p \), where \( p \) is the number of original variables in \( X \). When specified, \( \text{pca} \) returns the first \( k \) columns of \( \text{coeff} \) and \( \text{score} \).

Example: 'NumComponents',3

**Data Types:** single | double

**Rows — Action to take for NaN values**

- 'complete' (default) | 'pairwise' | 'all'

Action to take for NaN values in the data matrix \( X \), specified as the comma-separated pair consisting of 'Rows' and one of the following.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'complete'</td>
<td>Default. Observations with NaN values are removed before calculation. Rows of NaNs are reinserted into score and tsquared at the corresponding locations.</td>
</tr>
<tr>
<td>'pairwise'</td>
<td>This option only applies when the algorithm is 'eig'. If you don’t specify the algorithm along with 'pairwise', then pca sets it to 'eig'. If you specify 'svd' as the algorithm, along with the option 'Rows','pairwise', then pca returns a warning message, sets the algorithm to 'eig' and continues. When you specify the 'Rows','pairwise' option, pca computes the (i,j) element of the covariance matrix using the rows with no NaN values in the columns i or j of X. Note that the resulting covariance matrix might not be positive definite. In that case, pca terminates with an error message.</td>
</tr>
<tr>
<td>'all'</td>
<td>X is expected to have no missing values. pca uses all of the data and terminates if any NaN value is found.</td>
</tr>
</tbody>
</table>

Example: 'Rows','pairwise'

**Weights — Observation weights**

ones (default) | row vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length n containing all positive elements.

Data Types: single | double

**VariableWeights — Variable weights**

row vector | 'variance'

Variable weights on page 32-4659, specified as the comma-separated pair consisting of 'VariableWeights' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>row vector</td>
<td>Vector of length p containing all positive elements.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'variance'</td>
<td>The variable weights are the inverse of sample variance. If you also assign weights to observations using 'Weights', then the variable weights become the inverse of weighted sample variance. If 'Centered' is set to true at the same time, the data matrix X is centered and standardized. In this case, pca returns the principal components based on the correlation matrix.</td>
</tr>
</tbody>
</table>

Example: 'VariableWeights','variance'

Data Types: single | double | char | string

**Coeff0 — Initial value for coefficients**

matrix of random values (default) | p-by-k matrix

Initial value for the coefficient matrix coeff, specified as the comma-separated pair consisting of 'Coeff0' and a p-by-k matrix, where p is the number of variables, and k is the number of principal components requested.

**Note** You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

**Score0 — Initial value for scores**

matrix of random values (default) | k-by-m matrix

Initial value for scores matrix score, specified as a comma-separated pair consisting of 'Score0' and an n-by-k matrix, where n is the number of observations and k is the number of principal components requested.

**Note** You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

**Options — Options for iterations**

structure
Options for the iterations, specified as a comma-separated pair consisting of 'Options' and a structure created by the `statset` function. `pca` uses the following fields in the options structure.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Display'</td>
<td>Level of display output. Choices are 'off', 'final', and 'iter'.</td>
</tr>
<tr>
<td>'MaxIter'</td>
<td>Maximum number steps allowed. The default is 1000. Unlike in optimization settings, reaching the MaxIter value is regarded as convergence.</td>
</tr>
<tr>
<td>'TolFun'</td>
<td>Positive number giving the termination tolerance for the cost function. The default is 1e-6.</td>
</tr>
<tr>
<td>'TolX'</td>
<td>Positive number giving the convergence threshold for the relative change in the elements of the left and right factor matrices, L and R, in the ALS algorithm. The default is 1e-6.</td>
</tr>
</tbody>
</table>

**Note** You can use this name-value pair only when 'algorithm' is 'als'.

You can change the values of these fields and specify the new structure in `pca` using the 'Options' name-value pair argument.

Example: `opt = statset('pca'); opt.MaxIter = 2000; coeff = pca(X,'Options',opt);`

Data Types: `struct`

**Output Arguments**

**coeff** — Principal component coefficients
matrix

Principal component coefficients, returned as a p-by-p matrix. Each column of coeff contains coefficients for one principal component. The columns are in the order of descending component variance, `latent`.

**score** — Principal component scores
matrix
Principal component scores, returned as a matrix. Rows of `score` correspond to observations, and columns to components.

`latent — Principal component variances`

column vector

Principal component variances, that is the eigenvalues of the covariance matrix of X, returned as a column vector.

`tSquared — Hotelling’s T-squared statistic`

column vector

“Hotelling’s T-Squared Statistic” on page 32-4658, which is the sum of squares of the standardized scores for each observation, returned as a column vector.

`explained — Percentage of total variance explained`

column vector

Percentage of the total variance explained by each principal component, returned as a column vector.

`mu — Estimated means`

row vector

Estimated means of the variables in X, returned as a row vector when `Centered` is set to `true`. When `Centered` is `false`, the software does not compute the means and returns a vector of zeros.

**Definitions**

**Hotelling’s T-Squared Statistic**

Hotelling’s T-squared statistic is a statistical measure of the multivariate distance of each observation from the center of the data set.

Even when you request fewer components than the number of variables, `pca` uses all principal components to compute the T-squared statistic (computes it in the full space). If you want the T-squared statistic in the reduced or the discarded space, do one of the following:
• For the T-squared statistic in the reduced space, use mahal(score, score).
• For the T-squared statistic in the discarded space, first compute the T-squared statistic using
  \[\text{[coeff, score, latent, tsquared]} = \text{pca}(X, 'NumComponents', k, ...),\]
  compute the T-squared statistic in the reduced space using
  \[\text{tsqreduced} = \text{mahal}(\text{score}, \text{score}),\]
  and then take the difference: \(\text{tsquared} - \text{tsqreduced}\).

**Degrees of Freedom**

The degrees of freedom, \(d\), is equal to \(n - 1\), if data is centered and \(n\) otherwise, where:

• \(n\) is the number of rows without any NaNs if you use 'Rows', 'complete'.
• \(n\) is the number of rows without any NaNs in the column pair that has the maximum number of rows without NaNs if you use 'Rows', 'pairwise'.

**Variable Weights**

Note that when variable weights are used, the coefficient matrix is not orthonormal. Suppose the variable weights vector you used is called \(\text{varwei}\), and the principal component coefficients vector \(\text{pca}\) returned is \(\text{wcoeff}\). You can then calculate the orthonormal coefficients using the transformation

\[\text{diag}(\sqrt{\text{varwei}}) \ast \text{wcoeff}.\]

**References**


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

- pca works directly with tall arrays by computing the covariance matrix and using the in-memory pcacov function to compute the principle components.
- Supported syntaxes are:
  - coeff = pca(X)
  - [coeff, score, latent] = pca(X)
  - [coeff, score, latent, explained] = pca(X)
  - [coeff, score, latent, tsquared] = pca(X)
  - [coeff, score, latent, tsquared, explained] = pca(X)
- Name-value pair arguments are not supported.

For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- When 'Algorithm' is 'als', the 'Display' value for 'Options' is ignored.
- If supplied, 'Weights' and 'VariableWeights' must be real.
- The generated code always returns the fifth output explained as a column vector.
- The generated code always returns the sixth output mu as a row vector.
- If mu is empty, pca returns mu as a 1-by-0 array. pca does not convert mu to a 0-by-0 empty array.
- The generated code does not treat an input matrix X that has all NaN values as a special case. The output dimensions are commensurate with corresponding finite inputs.
See Also
barttest | biplot | canoncorr | factoran | pcacov | pcares | ppcal | rotatefactors

Topics
“Analyze Quality of Life in U.S. Cities Using PCA” on page 15-81
“Principal Component Analysis (PCA)” on page 15-79

Introduced in R2012b
pcacov

Principal component analysis on covariance matrix

Syntax

COEFF = pcacov(V)
[COEFF,latent] = pcacov(V)
[COEFF,latent,explained] = pcacov(V)

Description

COEFF = pcacov(V) performs principal components analysis on the p-by-p covariance matrix V and returns the principal component coefficients, also known as loadings. COEFF is a p-by-p matrix, with each column containing coefficients for one principal component. The columns are in order of decreasing component variance.

pcacov does not standardize V to have unit variances. To perform principal components analysis on standardized variables, use the correlation matrix $R = V ./ (SD * SD')$, where $SD = \sqrt{\text{diag}(V)}$, in place of V. To perform principal components analysis directly on the data matrix, use pca.

[COEFF,latent] = pcacov(V) returns latent, a vector containing the principal component variances, that is, the eigenvalues of V.

[COEFF,latent,explained] = pcacov(V) returns explained, a vector containing the percentage of the total variance explained by each principal component.

Examples

load hald
covx = cov(ingredients);
[COEFF,latent,explained] = pcacov(covx)
COEFF =
  0.0678 -0.6460  0.5673 -0.5062
  0.6785 -0.0200 -0.5440 -0.4933
-0.0290  0.7553  0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844

latent =
  517.7969
  67.4964
  12.4054
  0.2372

explained =
  86.5974
  11.2882
   2.0747
   0.0397

References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

pcacov and factoran do not work directly on tall arrays. Instead, use C = gather(cov(X)) to compute the covariance matrix of a tall array. Then, you can use pcacov or factoran on the in-memory covariance matrix. Alternatively, you can use pca directly on a tall array.
For more information, see “Tall Arrays” (MATLAB).

**See Also**

barttest | biplot | factoran | pca | pcares | rotatefactors

**Introduced before R2006a**
pcares

Residuals from principal component analysis

Syntax

residuals = pcares(X,ndim)
[residuals,reconstructed] = pcares(X,ndim)

Description

residuals = pcares(X,ndim) returns the residuals obtained by retaining ndim principal components of the n-by-p matrix X. Rows of X correspond to observations, columns to variables. ndim is a scalar and must be less than or equal to p. residuals is a matrix of the same size as X. Use the data matrix, not the covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal components analysis based on standardized variables, that is, based on correlations, use pcares(zscore(X), ndim). You can perform principal components analysis directly on a covariance or correlation matrix, but without constructing residuals, by using pcacov.

[residuals,reconstructed] = pcares(X,ndim) returns the reconstructed observations; that is, the approximation to X obtained by retaining its first ndim principal components.

Examples

This example shows the drop in the residuals from the first row of the Hald data as the number of component dimensions increases from one to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);
\( r_{11} = r_1(1,:) \)
\[
\begin{bmatrix}
2.0350 & 2.8304 & -6.8378 & 3.0879
\end{bmatrix}
\]

\( r_{21} = r_2(1,:) \)
\[
\begin{bmatrix}
-2.4037 & 2.6930 & -1.6482 & 2.3425
\end{bmatrix}
\]

\( r_{31} = r_3(1,:) \)
\[
\begin{bmatrix}
0.2008 & 0.1957 & 0.2045 & 0.1921
\end{bmatrix}
\]

**References**


**See Also**

`factoran` | `pca` | `pcacov`

**Introduced before R2006a**
ppca

Probabilistic principal component analysis

Syntax

[coeff,score,pcvar] = ppca(Y,K)
[coeff,score,pcvar] = ppca(Y,K,Name,Value)
[coeff,score,pcvar,mu] = ppca(__)
[coeff,score,pcvar,mu,v,S] = ppca(__)

Description

[coeff,score,pcvar] = ppca(Y,K) returns the principal component coefficients for the n-by-p data matrix Y based on a probabilistic principal component analysis on page 32-4676 (PPCA). It also returns the principal component scores, which are the representations of Y in the principal component space, and the principal component variances, which are the eigenvalues of the covariance matrix of Y, in pcvar.

Each column of coeff contains coefficients for one principal component, and the columns are in descending order of component variance. Rows of score correspond to observations, and columns correspond to components. Rows of Y correspond to observations and columns correspond to variables.

Probabilistic principal component analysis might be preferable to other algorithms that handle missing data, such as the alternating least squares algorithm when any data vector has one or more missing values. It assumes that the values are missing at random through the data set. An expectation-maximization algorithm is used for both complete and missing data.

[coeff,score,pcvar] = ppca(Y,K,Name,Value) returns the principal component coefficients, scores, and variances using additional options for computation and handling of special data types, specified by one or more Name,Value pair arguments.

For example, you can introduce initial values for the residual variance, v, or change the termination criteria.
[coeff,score,pcvar,mu] = ppca(__) also returns the estimated mean of each variable in Y. You can use any of the input arguments in the previous syntaxes.

[coeff,score,pcvar,mu,v,S] = ppca(__) also returns the isotropic residual variance in v and the final results at convergence in structure S.

Examples

Perform Probabilistic Principal Component Analysis

Load the sample data.

load fisheriris

The double matrix meas consists of four types of measurements on the flowers, which, respectively, are the length and width of sepals and petals.

Introduce missing values randomly.

y = meas;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.20;
y(ix) = NaN;

Now, approximately 20% of the data is missing, indicated by NaN.

Perform probabilistic principal component analysis and request the component coefficients and variances.

[coeff,score,pcvar,mu] = ppca(y,3);
coeff

coeff = 4x3

0.3562 0.6709 -0.5518
-0.0765 0.7120 0.6332
0.8592 -0.1597 0.0596
0.3592 -0.1318 0.5395

pcvar
pcvar = 3×1
    4.0914
    0.2125
    0.0617

Perform principal component analysis using the alternating least squares algorithm and request the component coefficients and variances.

[coeff2,score2,pcvar2,mu2] = pca(y,'algorithm','als',... 'NumComponents',3);
coeff2
coeff2 = 4×3
    0.3376    0.4952    0.7406
   -0.0731    0.8609   -0.4476
    0.8657   -0.1168   -0.1233
    0.3623   -0.0086   -0.4857

pcvar2
pcvar2 = 3×1
    4.0733
    0.2652
    0.1222

The coefficients and the variances of the first two principal components are similar.

Another way to compare the results is to find the angle between the two spaces spanned by the coefficient vectors.

subspace(coeff,coeff2)
ans = 0.0884

The angle between the two spaces is pretty small. This indicates that these two results are close to each other.
Change the Termination Criteria for Probabilistic Principal Component Analysis

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform probabilistic principal component analysis and display the first three principal components.

[coeff,score,pcvar] = ppca(X(:,3:15),3);

Warning: Maximum number of iterations 1000 reached.

Change the termination tolerance for the cost function to 0.01.

opt = statset('ppca');
opt.TolFun = 0.01;

Perform probabilistic principal component analysis.

[coeff,score,pcvar] = ppca(X(:,3:15),3,'Options',opt);

Warning: Maximum number of iterations 1000 reached.

ppca now terminates before the maximum number of iterations is reached because it meets the tolerance for the cost function.

Reconstruct Observations

Load the sample data.

load hald
y = ingredients;

The ingredients data has 13 observations for 4 variables.
Introduce missing values to the data.

\[ y(2:16:end) = \text{NaN}; \]

Every 16th value is NaN. This corresponds to 7.69% of the data.

Find the first three principal components of data using PPCA and display the reconstructed observations.

\[
[\text{coeff}, \text{score}, \text{pcvar}, \text{mu}, v, S] = \text{ppca}(y, 3);
\]

Warning: Maximum number of iterations 1000 reached.

S.Recon

\[
\begin{array}{cccc}
6.8536 & 25.8700 & 5.8389 & 59.8730 \\
1.0433 & 28.9710 & 14.9654 & 51.9738 \\
11.5770 & 56.5067 & 8.6352 & 20.5076 \\
11.0835 & 31.0722 & 8.0920 & 47.0748 \\
7.0679 & 52.2556 & 6.0748 & 33.0598 \\
11.0486 & 55.0430 & 9.0534 & 22.0423 \\
2.8493 & 70.8691 & 16.8339 & 5.8656 \\
1.0333 & 31.0281 & 19.6907 & 44.0306 \\
2.0400 & 54.0354 & 18.0440 & 22.0349 \\
20.7822 & 46.8091 & 3.7603 & 25.8081 \\
\end{array}
\]

\[ \vdots \]

You can also reconstruct the observations using the principal components and the estimated mean.

\[ t = \text{score} \ast \text{coeff'} + \text{repmat(mu,13,1)}; \]

**Results at Convergence**

Load the data.

load hald

Here, ingredients is a real-valued matrix of predictor variables.
Perform the probabilistic principal components analysis and display coefficients.

```matlab
[coeff,score,pcvariance,mu,v,S] = ppca(ingredients,3);
```

Warning: Maximum number of iterations 1000 reached.

coeff

coeff = 4x3

```
-0.0693 -0.6459 0.5673
-0.6786 -0.0184 -0.5440
 0.0308 0.7552 0.4036
 0.7306 -0.1102 -0.4684
```

Display the algorithm results at convergence of the PPCA.

S

```matlab
S = struct with fields:
 W: [4x3 double]
 Xexp: [13x3 double]
 Recon: [13x4 double]
 v: 0.2372
 NumIter: 1000
 RMSResid: 0.2340
 nloglk: 149.3388
```

Display the matrix W.

S.W

```matlab
ans = 4x3
```

```
 0.5624 2.0279 5.4075
 4.8320 -10.3894 5.9202
-3.7521 -3.0555 -4.1552
-1.5144 11.7122 -7.2564
```

Orthogonalizing W recovers the coefficients.

```matlab
orth(S.W)
```
ans = 4×3
   -0.0693    0.6459    0.5673
   -0.6786    0.0184   -0.5440
    0.0308   -0.7552    0.4036
    0.7306    0.1102   -0.4684

**Input Arguments**

**Y — Input data**

*n-by*-*p* matrix

Input data for which to compute the principal components, specified as an *n*-by-*p* matrix. Rows of *Y* correspond to observations and columns correspond to variables.

Data Types: single | double

**K — Number of principal components**

Positive integer value less than rank

Number of principal components to return, specified as an integer value less than the rank of data. The maximum possible rank is min(*n*,*p*), where *n* is the number of observations and *p* is the number of variables. However, if the data is correlated, the rank might be smaller than min(*n*,*p*).

**ppca** orders the components based on their variance.

If K is min(*n*,*p*), **ppca** sets *K* equal to min(*n*,*p*) - 1, and 'W0' is truncated to min(*p*,*n*) - 1 columns if you specify a *p*-by-*p* W0 matrix.

For example, you can request only the first three components, based on the component variance as follows.

Example: `coeff = ppca(Y,3)`

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'W0',init,'Options',opt specifies that the initial values for 'W0' are in matrix init and pPCA uses the options defined by opt.

**W0 — Initial value of W**
matrix of random values (default) | p-by-k matrix

Initial value of W in the probabilistic principal component analysis on page 32-4676 algorithm, specified as a comma-separated pair consisting of 'W0' and a p-by-k matrix.

Data Types: single | double

**v0 — Initial value of residual variance**
random number (default) | positive scalar value

Initial value of residual variance, specified as the comma-separated pair consisting of 'v0' and a positive scalar value.

Data Types: single | double

**Options — Options for iterations**
structure

Options for the iterations, specified as a comma-separated pair 'Options' and a structure created by the statset function. pPCA uses the following fields in the options structure.

<table>
<thead>
<tr>
<th>'Display'</th>
<th>Level of display output. Choices are 'off', 'final', and 'iter'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'MaxIter'</td>
<td>Maximum number of steps allowed. The default is 1000. Unlike in optimization settings, reaching the MaxIter value is regarded as convergence.</td>
</tr>
<tr>
<td>'TolFun'</td>
<td>Positive integer stating the termination tolerance for the cost function. The default is 1e-6.</td>
</tr>
<tr>
<td>'TolX'</td>
<td>Positive integer stating the convergence threshold for the relative change in the elements of W. The default is 1e-6.</td>
</tr>
</tbody>
</table>

You can change the values of these fields and specify the new structure in pPCA using the 'Options' name-value pair argument.
Example: `opt = statset('ppca'); opt.MaxIter = 2000; coeff = pPCA(Y, 3,'Options',opt);`

Data Types: `struct`

### Output Arguments

- **coeff** — **Principal component coefficients**
  
  `p`-by-`k` matrix

  Principal component coefficients, returned as a `p`-by-`k` matrix. Each column of `coeff` contains coefficients for one principal component. The columns are in the order of descending component variance, `pcvar`.

- **score** — **Principal component scores**
  
  `n`-by-`k` matrix

  Principal component scores, returned as an `n`-by-`k` matrix. Rows of `score` correspond to observations, and columns correspond to components.

- **pcvar** — **Principal component variances**
  
  column vector

  Principal component variances, which are the eigenvalues of the covariance matrix of `Y`, returned as a column vector.

- **mu** — **Estimated mean**
  
  row vector

  Estimated mean of each variable in `Y`, returned as a row vector.

- **v** — **Isotropic residual variance**
  
  scalar value

  Isotropic residual variance, returned as a scalar value.

- **S** — **Final results at convergence**
  
  structure

  Final results at convergence, returned as a structure containing the following fields.
\( W \)  |  \( W \) at convergence.
---|---
Xexp | Conditional expectation of the estimated latent variable \( x \).
Recon | Reconstructed observations using \( k \) principal components. This is a low dimension approximation of the input data \( Y \), and is equal to \( \mu + \text{score} \times \text{coeff}' \).
\( \nu \) | Residual variance.
RMSResid | Root mean square of residuals.
NumIter | Number of iteration counts.
nloglk | Negative loglikelihood function value.

### Definitions

#### Probabilistic Principal Component Analysis

Probabilistic principal component analysis (PPCA) is a method to estimate the principal axes when any data vector has one or more missing values.

PPCA is based on an isotropic error model. It seeks to relate a \( p \)-dimensional observation vector \( y \) to a corresponding \( k \)-dimensional vector of latent (or unobserved) variable \( x \), which is normal with mean zero and covariance \( I(k) \). The relationship is

\[
y^T = W \times x^T + \mu + \varepsilon,
\]

where \( y \) is the row vector of observed variable, \( x \) is the row vector of latent variables, and \( \varepsilon \) is the isotropic error term. \( \varepsilon \) is Gaussian with mean zero and covariance of \( \nu \times I(k) \), where \( \nu \) is the residual variance. Here, \( k \) needs to be smaller than the rank for the residual variance to be greater than 0 (\( \nu > 0 \)). Standard principal component analysis, where the residual variance is zero, is the limiting case of PPCA. The observed variables, \( y \), are conditionally independent given the values of the latent variables, \( x \). So, the latent variables explain the correlations between the observation variables and the error explains the variability unique to a particular \( y \). The \( p \)-by-\( k \) matrix \( W \) relates the latent and observation variables, and the vector \( \mu \) permits the model to have a nonzero mean. PPCA assumes that the values are missing at random through the data set. This means that whether a data value is missing or not does not depend on the latent variable given the observed data values.
Under this model,

\[ y \sim N(\mu, W^T W + \nu I(k)) \]

There is no closed-form analytical solution for \( W \) and \( \nu \), so their estimates are determined by iterative maximization of the corresponding loglikelihood using an expectation-maximization (EM) algorithm. This EM algorithm handles missing values by treating them as additional latent variables. At convergence, the columns of \( W \) spans the subspace, but they are not orthonormal. `ppca` obtains the orthonormal coefficients, `coeff`, for the components by orthogonalization of \( W \).

**References**


**See Also**
barttest | biplot | canoncorr | factoran | pca | pcacov | pcares | rotatefactors

**Introduced in R2013a**
pdf

Package: prob

Probability density function

Syntax

\[ y = pdf('name',x,A) \]
\[ y = pdf('name',x,A,B) \]
\[ y = pdf('name',x,A,B,C) \]
\[ y = pdf('name',x,A,B,C,D) \]
\[ y = pdf(pd,x) \]

Description

\[ y = pdf('name',x,A) \] returns the probability density function (pdf) for the one-parameter distribution family specified by 'name' and the distribution parameter A, evaluated at the values in \( x \).

\[ y = pdf('name',x,A,B) \] returns the pdf for the two-parameter distribution family specified by 'name' and the distribution parameters A and B, evaluated at the values in \( x \).

\[ y = pdf('name',x,A,B,C) \] returns the pdf for the three-parameter distribution family specified by 'name' and the distribution parameters A, B, and C, evaluated at the values in \( x \).

\[ y = pdf('name',x,A,B,C,D) \] returns the pdf for the four-parameter distribution family specified by 'name' and the distribution parameters A, B, C, and D, evaluated at the values in \( x \).

\[ y = pdf(pd,x) \] returns the pdf of the probability distribution object pd, evaluated at the values in \( x \).
Examples

Compute the Normal Distribution pdf

Create a standard normal distribution object with the mean $\mu$ equal to 0 and the standard deviation $\sigma$ equal to 1.

```matlab
mu = 0;
sigma = 1;
pd = makedist('Normal','mu',mu,'sigma',sigma);
```

Define the input vector $x$ to contain the values at which to calculate the pdf.

```matlab
x = [-2 -1 0 1 2];
```

Compute the pdf values for the standard normal distribution at the values in $x$.

```matlab
y = pdf(pd,x)
y = 1x5
 0.0540 0.2420 0.3989 0.2420 0.0540
```

Each value in $y$ corresponds to a value in the input vector $x$. For example, at the value $x$ equal to 1, the corresponding pdf value $y$ is equal to 0.2420.

Alternatively, you can compute the same pdf values without creating a probability distribution object. Use the `pdf` function, and specify a standard normal distribution using the same parameter values for $\mu$ and $\sigma$.

```matlab
y2 = pdf('Normal',x,mu,sigma)
y2 = 1x5
 0.0540 0.2420 0.3989 0.2420 0.0540
```

The pdf values are the same as those computed using the probability distribution object.
Compute the Poisson Distribution pdf

Create a Poisson distribution object with the rate parameter, $\lambda$, equal to 2.

```matlab
lambda = 2;
pd = makedist('Poisson','lambda',lambda);
```

Define the input vector `x` to contain the values at which to calculate the pdf.

```matlab
x = [0 1 2 3 4];
```

Compute the pdf values for the Poisson distribution at the values in `x`.

```matlab
y = pdf(pd,x)
y = 1x5
 0.1353 0.2707 0.2707 0.1804 0.0902
```

Each value in `y` corresponds to a value in the input vector `x`. For example, at the value `x` equal to 3, the corresponding pdf value in `y` is equal to 0.1804.

Alternatively, you can compute the same pdf values without creating a probability distribution object. Use the `pdf` function, and specify a Poisson distribution using the same value for the rate parameter, $\lambda$.

```matlab
y2 = pdf('Poisson',x,lambda)
y2 = 1x5
 0.1353 0.2707 0.2707 0.1804 0.0902
```

The pdf values are the same as those computed using the probability distribution object.

Plot the pdf of a Standard Normal Distribution

Create a standard normal distribution object.

```matlab
pd = makedist('Normal')
```
pd =
    NormalDistribution

    Normal distribution
    mu = 0
    sigma = 1

Specify the x values and compute the pdf.

x = -3:.1:3;
pdf_normal = pdf(pd,x);

Plot the pdf.

plot(x,pdf_normal,'LineWidth',2)
Plot the pdf of a Weibull Distribution

Create a Weibull probability distribution object.

```matlab
pd = makedist('Weibull','a',5,'b',2)

pd =
 WeibullDistribution

 Weibull distribution
 A = 5
 B = 2
```
Specify the x values and compute the pdf.

```matlab
x = 0:.1:15;
y = pdf(pd,x);

Plot the pdf.

plot(x,y,'LineWidth',2)
```
# Input Arguments

'\textit{name}' — Probability distribution name  
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

<table>
<thead>
<tr>
<th>name</th>
<th>Distribution</th>
<th>Input Parameter A</th>
<th>Input Parameter B</th>
<th>Input Parameter C</th>
<th>Input Parameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>“Beta Distribution” on page B-4</td>
<td>(a): first shape parameter</td>
<td>(b): second shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>“Binomial Distribution” on page B-9</td>
<td>(n): number of trials</td>
<td>(p): probability of success for each trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>“Birnbaum-Saunders Distribution” on page B-13</td>
<td>(\beta): scale parameter</td>
<td>(\gamma): shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Burr'</td>
<td>“Burr Type XII Distribution” on page B-15</td>
<td>(\alpha): scale parameter</td>
<td>(c): first shape parameter</td>
<td>(k): second shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Chisquare'</td>
<td>“Chi-Square Distribution” on page B-28</td>
<td>(\nu): degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>“Exponential Distribution” on page B-32</td>
<td>(\mu): mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Extreme Value'</td>
<td>“Extreme Value Distribution” on page B-36</td>
<td>(\mu): location parameter</td>
<td>(\sigma): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'F'</td>
<td>“F Distribution” on page B-42</td>
<td>(\nu_1): numerator degrees of freedom</td>
<td>(\nu_2): denominator degrees of freedom</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>“Gamma Distribution” on page B-45</td>
<td>(a): shape parameter</td>
<td>(b): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>'Generalized Extreme Value'</td>
<td>“Generalized Extreme Value Distribution” on page B-50</td>
<td>$k$: shape parameter</td>
<td>$\sigma$: scale parameter</td>
<td>$\mu$: location parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Pareto'</td>
<td>“Generalized Pareto Distribution” on page B-55</td>
<td>$k$: tail index (shape) parameter</td>
<td>$\sigma$: scale parameter</td>
<td>$\mu$: threshold (location) parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Geometric'</td>
<td>“Geometric Distribution” on page B-61</td>
<td>$p$: probability parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>“Half-Normal Distribution” on page B-69</td>
<td>$\mu$: location parameter</td>
<td>$\sigma$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Hypergeometric'</td>
<td>“Hypergeometric Distribution” on page B-75</td>
<td>$m$: size of the population</td>
<td>$k$: number of items with the desired characteristic in the population</td>
<td>$n$: number of samples drawn</td>
<td>—</td>
</tr>
<tr>
<td>'Inverse Gaussian'</td>
<td>“Inverse Gaussian Distribution” on page B-78</td>
<td>$\mu$: scale parameter</td>
<td>$\lambda$: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>“Logistic Distribution” on page B-91</td>
<td>$\mu$: mean</td>
<td>$\sigma$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'LogLogistic'</td>
<td>“Loglogistic Distribution” on page B-93</td>
<td>$\mu$: mean of logarithmic values</td>
<td>$\sigma$: scale parameter of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>“Lognormal Distribution” on page B-95</td>
<td>$\mu$: mean of logarithmic values</td>
<td>$\sigma$: standard deviation of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>“Nakagami Distribution” on page B-114</td>
<td>$\mu$: shape parameter</td>
<td>$\omega$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Negative Binomial'</td>
<td>“Negative Binomial Distribution” on page B-116</td>
<td>$r$: number of successes</td>
<td>$p$: probability of success in a single trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral F'</td>
<td>“Noncentral F Distribution” on page B-124</td>
<td>$\nu_1$: numerator degrees of freedom</td>
<td>$\nu_2$: denominator degrees of freedom</td>
<td>$\delta$: noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral t'</td>
<td>“Noncentral t Distribution” on page B-127</td>
<td>$\nu$: degrees of freedom</td>
<td>$\delta$: noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral Chi-square'</td>
<td>“Noncentral Chi-Square Distribution” on page B-121</td>
<td>$\nu$: degrees of freedom</td>
<td>$\delta$: noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Normal'</td>
<td>“Normal Distribution” on page B-130</td>
<td>$\mu$: mean</td>
<td>$\sigma$: standard deviation</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>“Poisson Distribution” on page B-137</td>
<td>$\lambda$: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>“Rayleigh Distribution” on page B-140</td>
<td>$b$: scale parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rician'</td>
<td>“Rician Distribution” on page B-143</td>
<td>$s$: noncentrality parameter</td>
<td>$\sigma$: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Stable'</td>
<td>“Stable Distribution” on page B-145</td>
<td>$\alpha$: first shape parameter</td>
<td>$\beta$: second shape parameter</td>
<td>$\gamma$: scale parameter</td>
<td>$\delta$: location parameter</td>
</tr>
<tr>
<td>'T'</td>
<td>“Student's t Distribution” on page B-158</td>
<td>$\nu$: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>&quot;t Location-Scale Distribution&quot; on page B-166</td>
<td>( \mu ): location parameter</td>
<td>( \sigma ): scale parameter</td>
<td>( \nu ): shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Uniform'</td>
<td>&quot;Uniform Distribution (Continuous)&quot; on page B-175</td>
<td>( a ): lower endpoint (minimum)</td>
<td>( b ): upper endpoint (maximum)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Discrete Uniform'</td>
<td>&quot;Uniform Distribution (Discrete)&quot; on page B-181</td>
<td>( n ): maximum observable value</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Weibull'</td>
<td>&quot;Weibull Distribution&quot; on page B-184</td>
<td>( a ): scale parameter</td>
<td>( b ): shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Example: 'Normal'

**x — Values at which to evaluate pdf**

scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value, or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the same. In this case, pdf expands each scalar input into a constant array of the same size as the array inputs.

Example: [-1, 0, 3, 4]

Data Types: single | double

**A — First probability distribution parameter**

scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the same. In this case, pdf expands each scalar input into a constant array of the same size as the array inputs.
Data Types: single | double

**B — Second probability distribution parameter**
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments $x$, $A$, $B$, $C$, and $D$ are arrays, then the array sizes must be the same. In this case, $pdf$ expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

**C — Third probability distribution parameter**
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments $x$, $A$, $B$, $C$, and $D$ are arrays, then the array sizes must be the same. In this case, $pdf$ expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

**D — Fourth probability distribution parameter**
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments $x$, $A$, $B$, $C$, and $D$ are arrays, then the array sizes must be the same. In this case, $pdf$ expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

**pd — Probability distribution**
probability distribution object

Probability distribution, specified as a probability distribution object created with a function or app in this table.
<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive</td>
</tr>
<tr>
<td></td>
<td>Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
<tr>
<td>paretotails</td>
<td>Create a piecewise distribution object that has generalized Pareto</td>
</tr>
<tr>
<td></td>
<td>distributions in the tails.</td>
</tr>
</tbody>
</table>

Output Arguments

\( y \) — pdf values

scalar value | array of scalar values

pdf values, returned as a scalar value or an array of scalar values. \( y \) is the same size as \( x \) after any necessary scalar expansion. Each element in \( y \) is the pdf value of the distribution, specified by the corresponding elements in the distribution parameters (A, B, C, and D) or specified by the probability distribution object (pd), evaluated at the corresponding element in \( x \).

Alternative Functionality

- pdf is a generic function that accepts either a distribution by its name 'name' or a probability distribution object pd. It is faster to use a distribution-specific function, such as normpdf for the normal distribution and binopdf for the binomial distribution. For a list of distribution-specific functions, see “Supported Distributions” on page 5-16.
- Use the Probability Distribution Function app to create an interactive plot of the cumulative distribution function (cdf) or probability density function (pdf) for a probability distribution.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The input argument 'name' must be a compile-time constant. For example, to use the normal distribution, include coder.Constant('Normal') in the -args value of codegen.
- Code generation does not support the probability distribution object (pd) input argument.

See Also
Distribution Fitter | cdf | fitdist | icdf | makedist | mle | paretotails | random

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
**pdf**

Probability density function for Gaussian mixture distribution

**Syntax**

```matlab
y = pdf(gm,X)
```

**Description**

$y = \text{pdf}(gm,X)$ returns the probability density function (pdf) of the Gaussian mixture distribution $gm$, evaluated at the values in $X$.

**Examples**

**Compute pdf Values**

Create a `gmdistribution` object and compute its pdf values.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian mixture distribution.

```matlab
mu = [1 2; -3 -5];
sigma = [1 1]; % shared diagonal covariance matrix
```

Create a `gmdistribution` object by using the `gmdistribution` function. By default, the function creates an equal proportion mixture.

```matlab
gm = gmdistribution(mu,sigma)
gm =
```

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 1 2
Component 2:
Mixing proportion: 0.500000
Mean:  -3   -5

Compute the pdf values of gm.

\[
X = \begin{bmatrix} 0 & 0; 1 & 2; 3 & 3; 5 & 3 \end{bmatrix};
\]

\[
\text{pdf(gm,X)}
\]

\[
\begin{array}{c}
0.0065 \\
0.0796 \\
0.0065 \\
0.0000
\end{array}
\]

**Plot pdf**

Create a `gmdistribution` object and plot its pdf.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate Gaussian mixture components.

\[
p = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}; \quad \% \text{ Mixing proportions}
\]
\[
\text{mu} = \begin{bmatrix} 1 & 2; -3 & -5 \end{bmatrix}; \quad \% \text{ Means}
\]
\[
\text{sigma} = \text{cat}(3,[2 \ 0.5],[1 \ 1]) \quad \% \text{ Covariances 1-by-2-by-2 array}
\]

\[
sigma =
\begin{array}{c}
sigma(:,:,1) = \\
2.0000 0.5000
\end{array}
\]

\[
sigma(:,:,2) =
\begin{array}{c}
1 1
\end{array}
\]

The `cat` function concatenates the covariances along the third array dimension. The defined covariance matrices are diagonal matrices. `sigma(1,:,:)` contains the diagonal elements of the covariance matrix of component i.
Create a gmdistribution object by using the gmdistribution function.

```matlab
gm = gmdistribution(mu,sigma)
```

```
gm =
Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 1 2

Component 2:
Mixing proportion: 0.500000
Mean: -3 -5

Plot the pdf of the Gaussian mixture distribution by using ezsurf.

```matlab
ezsurf(@(x,y)pdf(gm,[x y]),[-10 10],[-10 10])
```
Input Arguments

gm — Gaussian mixture distribution

gm is a `gmdistribution` object.

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a `gmdistribution` object.

You can create a `gmdistribution` object using `gmdistribution` or `fitgmdist`. Use the `gmdistribution` function to create a `gmdistribution` object by specifying the...
distribution parameters. Use the `fitgmdist` function to fit a `gmdistribution` model to data given a fixed number of components.

X — Values at which to evaluate pdf

n-by-*m* numeric matrix

Values at which to evaluate the pdf, specified as an *n*-by-*m* numeric matrix, where *n* is the number of observations and *m* is the number of variables in each observation.

Data Types: `single` | `double`

Output Arguments

y — pdf values

n-by-1 numeric vector

Pdf values of the Gaussian mixture distribution `gm`, evaluated at `X`, returned as an *n*-by-1 numeric vector, where *n* is the number of observations in `X`.

The `pdf` function computes the pdf values by using the likelihood of each component given each observation and the component probabilities.

\[
y(i) = \sum_{j=1}^{k} L(C_j \mid O_i) P(C_j),
\]

where \(L(C_j \mid O_i) \) is the likelihood of component \(j \) given observation \(i \), and \(P(C_j) \) is the probability of component \(j \). The `pdf` function computes the likelihood term by using the multivariate normal pdf of the \(j \)th Gaussian mixture component evaluated at observation \(i \). The component probabilities are the mixing proportions of mixture components, the `ComponentProportion` property of `gm`.

See Also

cdf | `fitgmdist` | `gmdistribution` | `mvnpdf` | `random`

Topics

“Gaussian Mixture Models” on page 5-145

“Create Gaussian Mixture Model” on page 5-147
“Fit Gaussian Mixture Model to Data” on page 5-151
“Simulate Data from Gaussian Mixture Model” on page 5-156
“Cluster Using Gaussian Mixture Models” on page 16-29

Introduced in R2007b
pdist

Pairwise distance between pairs of observations

Syntax

D = pdist(X)
D = pdist(X,Distance)
D = pdist(X,Distance,DistParameter)

Description

D = pdist(X) returns the Euclidean distance between pairs of observations in X.

D = pdist(X,Distance) returns the distance by using the method specified by Distance.

D = pdist(X,Distance,DistParameter) returns the distance by using the method specified by Distance and DistParameter. You can specify DistParameter only when Distance is 'seuclidean', 'minkowski', or 'mahalanobis'.

Examples

Compute Euclidean Distance and Convert Distance Vector to Matrix

Compute the Euclidean distance between pairs of observations, and convert the distance vector to a matrix using squareform.

Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);

Compute the Euclidean distance.

D = pdist(X)
D = 1×3
 0.2954 1.0670 0.9448

The pairwise distances are arranged in the order (2,1), (3,1), (3,2). You can easily locate the distance between observations i and j by using squareform.

Z = squareform(D)
Z = 3×3
 0 0.2954 1.0670
 0.2954 0 0.9448
 1.0670 0.9448 0

squareform returns a symmetric matrix where Z(i,j) corresponds to the pairwise distance between observations i and j. For example, you can find the distance between observations 2 and 3.

Z(2,3)
ans = 0.9448

Pass Z to the squareform function to reproduce the output of the pdist function.

y = squareform(Z)
y = 1×3
 0.2954 1.0670 0.9448

The outputs y from squareform and D from pdist are the same.

Compute Minkowski Distance

Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Compute the Minkowski distance with the default exponent 2.

\[D1 = \text{pdist}(X,'\text{minkowski}') \]

\[
D1 = 1\times3 \\
0.2954 \quad 1.0670 \quad 0.9448
\]

Compute the Minkowski distance with an exponent of 1, which is equal to the city block distance.

\[D2 = \text{pdist}(X,'\text{minkowski}',1) \]

\[
D2 = 1\times3 \\
0.3721 \quad 1.5036 \quad 1.3136
\]

\[D3 = \text{pdist}(X,'\text{cityblock}') \]

\[
D3 = 1\times3 \\
0.3721 \quad 1.5036 \quad 1.3136
\]

Compute Pairwise Distance with Missing Elements Using a Custom Distance Function

Define a custom distance function that ignores coordinates with \texttt{NaN} values, and compute pairwise distance by using the custom distance function.

Create a matrix with three observations and two variables.

\[
\text{rng('default')} \quad \% \ \text{For reproducibility} \\
X = \text{rand}(3,2);
\]

Assume that the first element of the first observation is missing.

\[X(1,1) = \text{NaN}; \]

Compute the Euclidean distance.
D1 = pdist(X)

D1 =

 NaN NaN 0.9448

If observation i or j contains NaN values, the function pdist returns NaN for the pairwise distance between i and j. Therefore, D1(1) and D1(2), the pairwise distances (2,1) and (3,1), are NaN values.

Define a custom distance function naneucdist that ignores coordinates with NaN values and returns the Euclidean distance.

```matlab
function D2 = naneucdist(XI,XJ)
    %NANEUCDIST Euclidean distance ignoring coordinates with NaNs
    n = size(XI,2);
    sqdx = (XI-XJ).^2;
    nstar = sum(~isnan(sqdx),2); % Number of pairs that do not contain NaNs
    nstar(nstar == 0) = NaN; % To return NaN if all pairs include NaNs
    D2squared = nansum(sqdx,2).*n./nstar; % Correction for missing coordinates
    D2 = sqrt(D2squared);
end
```

Compute the distance with naneucdist by passing the function handle as an input argument of pdist.

D2 = pdist(X,@naneucdist)

D2 =

 0.3974 1.1538 0.9448

Input Arguments

X — Input data
numeric matrix
Input data, specified as a numeric matrix of size m-by-n. Rows correspond to individual observations, and columns correspond to individual variables.

Data Types: `single` | `double`

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as a character vector, string scalar, or function handle, as described in the following table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance (default).</td>
</tr>
<tr>
<td>'squaredeuclidean'</td>
<td>Squared Euclidean distance. (This option is provided for efficiency only. It does not satisfy the triangle inequality.)</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between observations is scaled by dividing by the corresponding element of the standard deviation, $S = \text{nanstd}(X)$. Use DistParameter to specify another value for S.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance using the sample covariance of X, $C = \text{nancov}(X)$. Use DistParameter to specify another value for C, where the matrix C is symmetric and positive definite.</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. Use DistParameter to specify a different exponent P, where P is a positive scalar value of the exponent.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>
| @distfun | Custom distance function handle. A distance function has the form

```matlab
function D2 = distfun(ZI,ZJ)
    % calculation of distance
    ...
end
```

where

- ZI is a 1-by-n vector containing a single observation.
- ZJ is an m2-by-n matrix containing multiple observations. distfun must accept a matrix ZJ with an arbitrary number of observations.
- D2 is an m2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more quickly by using a built-in distance instead of a function handle.

For definitions, see “Distance Metrics” on page 32-4703.

When you use 'seuclidean', 'minkowski', or 'mahalanobis', you can specify an additional input argument DistParameter to control these metrics. You can also use these metrics in the same way as the other metrics with a default value of DistParameter.

Example: 'minkowski'

DistParameter — Distance metric parameter values

<table>
<thead>
<tr>
<th>positive scalar</th>
<th>numeric vector</th>
<th>numeric matrix</th>
</tr>
</thead>
</table>

Distance metric parameter values, specified as a positive scalar, numeric vector, or numeric matrix. This argument is valid only when you specify Distance as 'seuclidean', 'minkowski', or 'mahalanobis'.

- If Distance is 'seuclidean', DistParameter is a vector of scaling factors for each dimension, specified as a positive vector. The default value is nanstd(X).
• If Distance is 'minkowski', DistParameter is the exponent of Minkowski distance, specified as a positive scalar. The default value is 2.
• If Distance is 'mahalanobis', DistParameter is a covariance matrix, specified as a numeric matrix. The default value is nan cov(X). DistParameter must be symmetric and positive definite.

Example: 'minkowski', 3

Data Types: single | double

Output Arguments

D — Pairwise distances
numeric row vector

Pairwise distances, returned as a numeric row vector of length \(m(m-1)/2\), corresponding to pairs of observations, where \(m\) is the number of observations in \(X\).

The distances are arranged in the order \((2,1), (3,1), \ldots, (m,1), (3,2), \ldots, (m,2), \ldots, (m,m-1)\), i.e., the lower-left triangle of the \(m\)-by-\(m\) distance matrix in column order. The pairwise distance between observations \(i\) and \(j\) is in \(D((i-1)*(m-i/2)+j-i)\) for \(i\leq j\).

You can convert \(D\) into a symmetric matrix by using the squareform function. \(Z =\) squareform\(D\) returns an \(m\)-by-\(m\) matrix where \(Z(i,j)\) corresponds to the pairwise distance between observations \(i\) and \(j\).

If observation \(i\) or \(j\) contains NaNs, then the corresponding value in \(D\) is NaN for the built-in distance functions.

\(D\) is commonly used as a dissimilarity matrix in clustering or multidimensional scaling. For details, see “Hierarchical Clustering” on page 16-4 and the function reference pages for cmdscale, cophenet, linkage, mdscale, and optimalleaforder. These functions take \(D\) as an input argument.

Definitions

Distance Metrics

A distance metric is a function that defines a distance between two observations. pdist supports various distance metrics: Euclidean distance, standardized Euclidean distance,
Mahalanobis distance, city block distance, Minkowski distance, Chebychev distance, cosine distance, correlation distance, Hamming distance, Jaccard distance, and Spearman distance.

Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors $x_1, x_2, ..., x_m$, the various distances between the vector x_s and x_t are defined as follows:

- **Euclidean distance**
 \[d_{st}^2 = (x_s - x_t)(x_s - x_t)' \]
 The Euclidean distance is a special case of the Minkowski distance, where $p = 2$.

- **Standardized Euclidean distance**
 \[d_{st}^2 = (x_s - x_t)V^{-1}(x_s - x_t)' \]
 where V is the n-by-n diagonal matrix whose jth diagonal element is $(S(j))^2$, where S is a vector of scaling factors for each dimension.

- **Mahalanobis distance**
 \[d_{st}^2 = (x_s - x_t)C^{-1}(x_s - x_t)' \]
 where C is the covariance matrix.

- **City block distance**
 \[d_{st} = \sum_{j=1}^{n} |x_{sj} - x_{tj}| \]
 The city block distance is a special case of the Minkowski distance, where $p = 1$.

- **Minkowski distance**
 \[d_{st} = \left(\sum_{j=1}^{n} |x_{sj} - x_{tj}|^p \right)^{\frac{1}{p}} \]
For the special case of $p = 1$, the Minkowski distance gives the city block distance. For the special case of $p = 2$, the Minkowski distance gives the Euclidean distance. For the special case of $p = \infty$, the Minkowski distance gives the Chebychev distance.

- **Chebychev distance**

 $$d_{st} = \max_j \left\{ |x_{sj} - x_{tj}| \right\}.$$

 The Chebychev distance is a special case of the Minkowski distance, where $p = \infty$.

- **Cosine distance**

 $$d_{st} = 1 - \frac{x_s x'_t}{\sqrt{(x_s x'_s)(x_t x'_t)}}.$$

- **Correlation distance**

 $$d_{st} = 1 - \frac{(x_s - \bar{x}_s)(x_t - \bar{x}_t)}{\sqrt{(x_s - \bar{x}_s)(x_s - \bar{x}_s)'(x_t - \bar{x}_t)(x_t - \bar{x}_t)'}},$$

 where

 $$\bar{x}_s = \frac{1}{n} \sum x_{sj} \quad \text{and} \quad \bar{x}_t = \frac{1}{n} \sum x_{tj}.$$

- **Hamming distance**

 $$d_{st} = \frac{\#(x_{sj} \neq x_{tj})}{n}.$$

- **Jaccard distance**

 $$d_{st} = \frac{\# \left[(x_{sj} \neq x_{tj}) \cap \left((x_{sj} \neq 0) \cup (x_{tj} \neq 0) \right) \right]}{\# \left[(x_{sj} \neq 0) \cup (x_{tj} \neq 0) \right]}.$$

- **Spearman distance**
\[d_{st} = 1 - \frac{(r_s - \bar{r}_s)(r_t - \bar{r}_t)'}{\sqrt{(r_s - \bar{r}_s)(r_s - \bar{r}_s)'}\sqrt{(r_t - \bar{r}_t)(r_t - \bar{r}_t)'}} \]

where

- \(r_{sj} \) is the rank of \(x_{sj} \) taken over \(x_{1j}, x_{2j}, \ldots, x_{mj} \), as computed by \texttt{tiedrank}.
- \(r_s \) and \(r_t \) are the coordinate-wise rank vectors of \(x_s \) and \(x_t \), i.e., \(r_s = (r_{s1}, r_{s2}, \ldots, r_{sn}) \).
-
\[
\bar{r}_s = \frac{1}{n} \sum_j r_{sj} = \frac{(n+1)}{2}.
\]
-
\[
\bar{r}_t = \frac{1}{n} \sum_j r_{tj} = \frac{(n+1)}{2}.
\]

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The distance input argument value (\texttt{Distance}) must be a compile-time constant. For example, to use the Minkowski distance, include \texttt{coder.Constant('Minkowski')} in the \texttt{-args} value of \texttt{codegen}.
- The distance input argument value (\texttt{Distance}) cannot be a custom distance function.
- For code generation, \texttt{pdist} uses \texttt{parfor} (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the \texttt{parfor}-loops as \texttt{for}-loops. To find supported compilers, see \url{https://www.mathworks.com/support/compilers/current_release/}. To disable OpenMP library, specify the \texttt{EnableOpenMP} property of the \texttt{codegen} configuration object as \texttt{false}. For details, see \texttt{coder.CodeConfig}.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The Distance argument must be specified as a character vector.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cluster | clusterdata | cmdscale | cophenet | dendrogram | inconsistent | linkage | pdist2 | silhouette | squareform

Topics
“Introduction to Cluster Analysis” on page 16-2
“Hierarchical Clustering” on page 16-4

Introduced before R2006a
pdist2

Pairwise distance between two sets of observations

Syntax

D = pdist2(X,Y,Distance)

D = pdist2(X,Y,Distance,DistParameter)

D = pdist2(___,Name,Value)

[D,I] = pdist2(___,Name,Value)

Description

D = pdist2(X,Y,Distance) returns the distance between each pair of observations in X and Y using the metric specified by Distance.

D = pdist2(X,Y,Distance,DistParameter) returns the distance using the metric specified by Distance and DistParameter. You can specify DistParameter only when Distance is 'seuclidean', 'minkowski', or 'mahalanobis'.

D = pdist2(___,Name,Value) specifies an additional option using one of the name-value pair arguments 'Smallest' or 'Largest' in addition to any of the arguments in the previous syntaxes.

For example,

- D = pdist2(X,Y,Distance,'Smallest',K) computes the distance using the metric specified by Distance and returns the K smallest pairwise distances to observations in X for each observation in Y in ascending order.
- D = pdist2(X,Y,Distance,DistParameter,'Largest',K) computes the distance using the metric specified by Distance and DistParameter and returns the K largest pairwise distances in descending order.
[D,I] = pdist2(___,Name,Value) also returns the matrix I using any of the arguments in the previous syntaxes. The matrix I contains the indices of the observations in X corresponding to the distances in D.

Examples

Compute Euclidean Distance

Create two matrices with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Compute the Euclidean distance. The default value of the input argument Distance is 'euclidean'. When computing the Euclidean distance without using a name-value pair argument, you do not need to specify Distance.

D = pdist2(X,Y)
D = 3×3

0.5387 0.8018 0.1538
0.7100 0.5951 0.3422
0.8805 0.4242 1.2050

D(i,j) corresponds to the pairwise distance between observation i in X and observation j in Y.

Compute Minkowski Distance

Create two matrices with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Compute the Minkowski distance with the default exponent 2.
D1 = pdist2(X,Y,'minkowski')
D1 = 3×3
 0.5387 0.8018 0.1538
 0.7100 0.5951 0.3422
 0.8805 0.4242 1.2050

Compute the Minkowski distance with an exponent of 1, which is equal to the city block distance.
D2 = pdist2(X,Y,'minkowski',1)
D2 = 3×3
 0.5877 1.0236 0.2000
 0.9598 0.8337 0.3899
 1.0189 0.4800 1.7036

D3 = pdist2(X,Y,'cityblock')
D3 = 3×3
 0.5877 1.0236 0.2000
 0.9598 0.8337 0.3899
 1.0189 0.4800 1.7036

Find the Two Smallest Pairwise Distances
Create two matrices with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Find the two smallest pairwise Euclidean distances to observations in X for each observation in Y.

[D,I] = pdist2(X,Y,'euclidean','Smallest',2)
D = 2×3

0.5387 0.4242 0.1538
0.7100 0.5951 0.3422

I = 2×3

1 3 1
2 2 2

For each observation in Y, pdist2 finds the two smallest distances by computing and comparing the distance values to all the observations in X. The function then sorts the distances in each column of D in ascending order. I contains the indices of the observations in X corresponding to the distances in D.

Compute Pairwise Distance with Missing Elements Using a Custom Distance Function

Define a custom distance function that ignores coordinates with NaN values, and compute pairwise distance by using the custom distance function.

Create two matrices with three observations and three variables.

```matlab
rng('default') % For reproducibility
X = rand(3,3)
Y = [X(:,1:2) rand(3,1)]
```

X =

```
0.8147    0.9134    0.2785
0.9058    0.6324    0.5469
0.1270    0.0975    0.9575
```

Y =

```
0.8147    0.9134    0.9649
0.9058    0.6324    0.1576
```
The first two columns of X and Y are identical. Assume that X(1,1) is missing.

\[X(1,1) = \text{NaN} \]

\[
X = \begin{bmatrix}
\text{NaN} & 0.9134 & 0.2785 \\
0.9058 & 0.6324 & 0.5469 \\
0.1270 & 0.0975 & 0.9575
\end{bmatrix}
\]

Compute the Hamming distance.

\[D1 = \text{pdist2}(X,Y,'\text{hamming}') \]

\[
D1 = \begin{bmatrix}
\text{NaN} & \text{NaN} & \text{NaN} \\
1.0000 & 0.3333 & 1.0000 \\
1.0000 & 1.0000 & 0.3333
\end{bmatrix}
\]

If observation \(i \) in \(X \) or observation \(j \) in \(Y \) contains \text{NaN} values, the function \text{pdist2} returns \text{NaN} for the pairwise distance between \(i \) and \(j \). Therefore, \(D1(1,1) \), \(D1(1,2) \), and \(D1(1,3) \) are \text{NaN} values.

Define a custom distance function \text{nanhamdist} that ignores coordinates with \text{NaN} values and computes the Hamming distance. When working with a large number of observations, you can compute the distance more quickly by looping over coordinates of the data.

```matlab
function D2 = nanhamdist(XI,XJ)
%NANHAMDIST Hamming distance ignoring coordinates with NaNs
[m,p] = size(XJ);
nesum = zeros(m,1);
pstar = zeros(m,1);
for q = 1:p
    notnan = ~(isnan(XI(q)) | isnan(XJ(:,q)));
    nesum = nesum + ((XI(q) ~= XJ(:,q)) & notnan);
    pstar = pstar + notnan;
end
D2 = nesum / pstar;
```

32-4712
end
D2 = nesum./pstar;

Compute the distance with `nanhamdist` by passing the function handle as an input argument of `pdist2`.

D2 = pdist2(X,Y,@nanhamdist)

D2 =

0.5000 1.0000 1.0000
1.0000 0.3333 1.0000
1.0000 1.0000 0.3333

Input Arguments

X, Y — Input data

numeric matrix

Input data, specified as a numeric matrix. `X` is an `mx`-by-`n` matrix and `Y` is an `my`-by-`n` matrix. Rows correspond to individual observations, and columns correspond to individual variables.

Data Types: `single` | `double`

Distance — Distance metric

character vector | string scalar | function handle

Distance metric, specified as a character vector, string scalar, or function handle, as described in the following table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance (default).</td>
</tr>
<tr>
<td>'squaredeuclidean'</td>
<td>Squared Euclidean distance. (This option is provided for efficiency only. It does not satisfy the triangle inequality.)</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between observations is scaled by dividing by the corresponding element of the standard deviation, (S = \text{nanstd}(X)). Use \text{DistParameter} to specify another value for (S).</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance using the sample covariance of (X), (C = \text{nancov}(X)). Use \text{DistParameter} to specify another value for (C), where the matrix (C) is symmetric and positive definite.</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. Use \text{DistParameter} to specify a different exponent (P), where (P) is a positive scalar value of the exponent.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| @distfun | Custom distance function handle. A distance function has the form

```matlab
function D2 = distfun(ZI,ZJ)  
% calculation of distance  
...
```

where

- ZI is a 1-by-n vector containing a single observation.
- ZJ is an m2-by-n matrix containing multiple observations.
 distfun must accept a matrix ZJ with an arbitrary number of observations.
- D2 is an m2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more quickly by using a built-in distance instead of a function handle.

For definitions, see “Distance Metrics” on page 32-4717.

When you use 'seuclidean', 'minkowski', or 'mahalanobis', you can specify an additional input argument DistParameter to control these metrics. You can also use these metrics in the same way as the other metrics with a default value of DistParameter.

Example: 'minkowski'

DistParameter — Distance metric parameter values

```matlab
positive scalar | numeric vector | numeric matrix
```

Distance metric parameter values, specified as a positive scalar, numeric vector, or numeric matrix. This argument is valid only when you specify Distance as 'seuclidean', 'minkowski', or 'mahalanobis'.

- If Distance is 'seuclidean', DistParameter is a vector of scaling factors for each dimension, specified as a positive vector. The default value is nanstd(X).
- If Distance is 'minkowski', DistParameter is the exponent of Minkowski distance, specified as a positive scalar. The default value is 2.
• If Distance is 'mahalanobis', DistParameter is a covariance matrix, specified as a numeric matrix. The default value is \(\text{nancov}(X) \). DistParameter must be symmetric and positive definite.

Example: 'minkowski',3
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name, Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: Either 'Smallest',K or 'Largest',K. You cannot use both 'Smallest' and 'Largest'.

Smallest — Number of smallest distances to find

positive integer

Number of smallest distances to find, specified as the comma-separated pair consisting of 'Smallest' and a positive integer. If you specify 'Smallest', then pdist2 sorts the distances in each column of D in ascending order.

Example: 'Smallest',3
Data Types: single | double

Largest — Number of largest distances to find

positive integer

Number of largest distances to find, specified as the comma-separated pair consisting of 'Largest' and a positive integer. If you specify 'Largest', then pdist2 sorts the distances in each column of D in descending order.

Example: 'Largest',3
Data Types: single | double
Output Arguments

D — Pairwise distances
numeric matrix

Pairwise distances, returned as a numeric matrix.

If you do not specify either 'Smallest' or 'Largest', then D is an mx-by-my matrix, where mx and my are the number of observations in X and Y, respectively. D(i, j) is the distance between observation i in X and observation j in Y. If observation i in X or observation j in Y contains NaN, then D(i, j) is NaN for the built-in distance functions.

If you specify either 'Smallest' or 'Largest' as K, then D is a K-by-my matrix. D contains either the K smallest or K largest pairwise distances to observations in X for each observation in Y. For each observation in Y, pdist2 finds the K smallest or largest distances by computing and comparing the distance values to all the observations in X. If K is greater than mx, pdist2 returns an mx-by-my matrix.

I — Sort index
positive integer matrix

Sort index, returned as a positive integer matrix. I is the same size as D. I contains the indices of the observations in X corresponding to the distances in D.

Definitions

Distance Metrics

A distance metric is a function that defines a distance between two observations. pdist2 supports various distance metrics: Euclidean distance, standardized Euclidean distance, Mahalanobis distance, city block distance, Minkowski distance, Chebychev distance, cosine distance, correlation distance, Hamming distance, Jaccard distance, and Spearman distance.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x₁, x₂, ..., xₘₓ, and an my-by-n data matrix Y, which is treated as my (1-by-n) row vectors y₁, y₂, ..., yₘᵧ, the various distances between the vector xₛ and yᵣ are defined as follows:

- Euclidean distance
\[d_{st}^2 = (x_s - y_t)(x_s - y_t)' . \]

The Euclidean distance is a special case of the Minkowski distance, where \(p = 2 \).

- **Standardized Euclidean distance**
 \[d_{st}^2 = (x_s - y_t)V^{-1}(x_s - y_t)' , \]
 where \(V \) is the \(n \)-by-\(n \) diagonal matrix whose \(j \)th diagonal element is \((S(j))^2\), where \(S \) is a vector of scaling factors for each dimension.

- **Mahalanobis distance**
 \[d_{st}^2 = (x_s - y_t)C^{-1}(x_s - y_t)' , \]
 where \(C \) is the covariance matrix.

- **City block distance**
 \[d_{st}^2 = \sum_{j=1}^{n} |x_{sj} - y_{tj}| . \]
 The city block distance is a special case of the Minkowski distance, where \(p = 1 \).

- **Minkowski distance**
 \[d_{st} = \sqrt[p]{\sum_{j=1}^{n} |x_{sj} - y_{tj}|^p} . \]
 For the special case of \(p = 1 \), the Minkowski distance gives the city block distance. For the special case of \(p = 2 \), the Minkowski distance gives the Euclidean distance. For the special case of \(p = \infty \), the Minkowski distance gives the Chebychev distance.

- **Chebychev distance**
 \[d_{st} = \max_j \{|x_{sj} - y_{tj}|\} . \]
 The Chebychev distance is a special case of the Minkowski distance, where \(p = \infty \).
• Cosine distance
\[d_{st} = 1 - \frac{x_s y'_t}{\sqrt{(x_s x'_s)(y_t y'_t)}}. \]

• Correlation distance
\[d_{st} = 1 - \frac{(x_s - \bar{x}_s)(y_t - \bar{y}_t)'}{\sqrt{(x_s - \bar{x}_s)(x_s - \bar{x}_s)'}\sqrt{(y_t - \bar{y}_t)(y_t - \bar{y}_t)'}}. \]

where
\[\bar{x}_s = \frac{1}{n} \sum_{j} x_{sj} \]
and
\[\bar{y}_t = \frac{1}{n} \sum_{j} y_{tj}. \]

• Hamming distance
\[d_{st} = \frac{\#(x_{sj} \neq y_{tj})}{n}. \]

• Jaccard distance
\[d_{st} = \frac{\#[(x_{sj} \neq y_{tj}) \cap ((x_{sj} \neq 0) \cup (y_{tj} \neq 0))]}{\#[(x_{sj} \neq 0) \cup (y_{tj} \neq 0)]}. \]

• Spearman distance
\[d_{st} = 1 - \frac{(r_s - \bar{r}_s)(r_t - \bar{r}_t)'}{\sqrt{(r_s - \bar{r}_s)(r_s - \bar{r}_s)'}\sqrt{(r_t - \bar{r}_t)(r_t - \bar{r}_t)'}}. \]

where
• r_{sj} is the rank of x_{sj} taken over $x_{1j}, x_{2j}, \ldots x_{mj}$, as computed by `tiedrank`.
• r_{tj} is the rank of y_{tj} taken over $y_{1j}, y_{2j}, \ldots y_{mj}$, as computed by `tiedrank`.
• r_s and r_t are the coordinate-wise rank vectors of x_s and y_t, i.e., $r_s = (r_{s1}, r_{s2}, \ldots r_{sn})$ and $r_t = (r_{t1}, r_{t2}, \ldots r_{tn})$.

$$
\bar{r}_s = \frac{1}{n} \sum_j r_{sj} = \frac{(n + 1)}{2}.
$$

$$
\bar{r}_t = \frac{1}{n} \sum_j r_{tj} = \frac{(n + 1)}{2}.
$$

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The distance input argument value (Distance) must be a compile-time constant. For example, to use the Minkowski distance, include `coder.Constant('Minkowski')` in the -args value of codegen.
• The distance input argument value (Distance) cannot be a custom distance function.
• Names in name-value pair arguments must be compile-time constants. For example, to use the 'Smallest' name-value pair argument in the generated code, include `{coder.Constant('Smallest'),0}` in the -args value of codegen.
• The sorted order of tied distances in the generated code can be different from the order in MATLAB due to numerical precision.
• For code generation, `pdist2` uses `parfor` (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the `parfor`-loops as `for`-loops. To find supported compilers, see https://www.mathworks.com/support/compilers/current_release/. To disable OpenMP library, specify the `EnableOpenMP` property of the `codegen` configuration object as `false`. For details, see `coder.CodeConfig`.

32-4720
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- The Distance argument must be specified as a character vector.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ExhaustiveSearcher | KDTreeSearcher | createns | knnsearch | pdist

Introduced in R2010a
pearsrnd

Pearson system random numbers

Syntax

\[
\begin{align*}
r &= \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, m, n) \\
r &= \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}) \\
r &= \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, m, n, \ldots) \\
r &= \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, [m, n, \ldots]) \\
[r, \text{type}] &= \text{pearsrnd}(\ldots) \\
[r, \text{type}, \text{coefs}] &= \text{pearsrnd}(\ldots)
\end{align*}
\]

Description

\[
r = \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, m, n)
\]
returns an \(m\)-by-\(n\) matrix of random numbers drawn from the distribution in the Pearson system with mean \(\mu\), standard deviation \(\sigma\), skewness \(\text{skew}\), and kurtosis \(\text{kurt}\). The parameters \(\mu\), \(\sigma\), \(\text{skew}\), and \(\text{kurt}\) must be scalars.

Note Because \(r\) is a random sample, its sample moments, especially the skewness and kurtosis, typically differ somewhat from the specified distribution moments.

pearsrnd uses the definition of kurtosis for which a normal distribution has a kurtosis of 3. Some definitions of kurtosis subtract 3, so that a normal distribution has a kurtosis of 0. The pearsrnd function does not use this convention.

Some combinations of moments are not valid; in particular, the kurtosis must be greater than the square of the skewness plus 1. The kurtosis of the normal distribution is defined to be 3.

\[
r = \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt})
\]
returns a scalar value.

\[
r = \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, m, n, \ldots) \text{ or } r = \text{pearsrnd}(\mu, \sigma, \text{skew}, \text{kurt}, [m, n, \ldots])
\]
returns an \(m\)-by-\(n\)-by-\(\ldots\) array.
[r,type] = pearsrnd(...) returns the type of the specified distribution within the Pearson system. type is a scalar integer from 0 to 7. Set m and n to 0 to identify the distribution type without generating any random values.

The seven distribution types in the Pearson system correspond to the following distributions:

- 0 — Normal on page B-130 distribution
- 1 — Four-parameter beta on page B-4 distribution
- 2 — Symmetric four-parameter beta on page B-4 distribution
- 3 — Three-parameter gamma on page B-45 distribution
- 4 — Not related to any standard distribution. The density is proportional to:

 \[
 (1 + ((x - a)/b)^2)^c \exp(-d \arctan((x - a)/b)).
 \]

- 5 — Inverse gamma on page B-45 location-scale distribution
- 6 — F on page B-42 location-scale distribution
- 7 — Student's t location-scale on page B-166 distribution

[r,type,coefs] = pearsrnd(...) returns the coefficients coefs of the quadratic polynomial that defines the distribution via the differential equation

\[
\frac{d}{dx} \log(p(x)) = \frac{-(a + x)}{c(0) + c(1)x + c(2)x^2}.
\]

Examples

Generate random values from the standard normal distribution:

\[r = \text{pearsrnd}(0,1,0,3,100,1); \quad \text{% Equivalent to randn(100,1)} \]

Determine the distribution type:

\[[r,\text{type}] = \text{pearsrnd}(0,1,1,4,0,0); \]
\[r = \]
\[[] \]
\[\text{type} = \]
\[1 \]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
The generated code matches MATLAB only when generated output \(r \) is scalar.

See Also
johnsrnd | random

Topics
“Generating Data Using Flexible Families of Distributions” on page 7-26

Introduced in R2006a
perfcurve

Receiver operating characteristic (ROC) curve or other performance curve for classifier output

Syntax

[X,Y] = perfcurve(labels,scores,posclass)
[X,Y,T] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,posclass)
[___] = perfcurve(labels,scores,posclass,Name,Value)

Description

[X,Y] = perfcurve(labels,scores,posclass) returns the X and Y coordinates of an ROC curve for a vector of classifier predictions, scores, given true class labels, labels, and the positive class label, posclass. You can visualize the performance curve using plot(X,Y).

[X,Y,T] = perfcurve(labels,scores,posclass) returns an array of thresholds on classifier scores for the computed values of X and Y.

[X,Y,T,AUC] = perfcurve(labels,scores,posclass) returns the area under the curve for the computed values of X and Y.

[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass) returns the optimal operating point of the ROC curve.

[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass) returns the Y values for negative subclasses.

[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,posclass) returns the negative class names.
[___] = perfcurve(labels,scores,posclass,Name,Value) returns the coordinates of a ROC curve and any other output argument from the previous syntaxes, with additional options specified by one or more Name,Value pair arguments.

For example, you can provide a list of negative classes, change the X or Y criterion, compute pointwise confidence bounds on page 32-4755 using cross validation or bootstrap, specify the misclassification cost, or compute the confidence bounds in parallel.

Examples

Plot ROC Curve for Classification by Logistic Regression

Load the sample data.

load fisheriris

Use only the first two features as predictor variables. Define a binary classification problem by using only the measurements that correspond to the species versicolor and virginica.

pred = meas(51:end,1:2);

Define the binary response variable.

resp = (1:100)'>50; % Versicolor = 0, virginica = 1

Fit a logistic regression model.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

Compute the ROC curve. Use the probability estimates from the logistic regression model as scores.

scores = mdl.Fitted.Probability;
[X,Y,T,AUC] = perfcurve(species(51:end,:),scores,'virginica');

perfcurve stores the threshold values in the array T.

Display the area under the curve.

AUC
AUC = 0.7918

The area under the curve is 0.7918. The maximum AUC is 1, which corresponds to a perfect classifier. Larger AUC values indicate better classifier performance.

Plot the ROC curve.

plot(X,Y)
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC for Classification by Logistic Regression')
Compare Classification Methods Using ROC Curve

Load the sample data.

```matlab
load ionosphere
```

X is a 351x34 real-valued matrix of predictors. Y is a character array of class labels: 'b' for bad radar returns and 'g' for good radar returns.

Reformat the response to fit a logistic regression. Use the predictor variables 3 through 34.

```matlab
resp = strcmp(Y,'b'); % resp = 1, if Y = 'b', or 0 if Y = 'g'
pred = X(:,3:34);
```

Fit a logistic regression model to estimate the posterior probabilities for a radar return to be a bad one.

```matlab
mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');
score_log = mdl.Fitted.Probability; % Probability estimates
```

Compute the standard ROC curve using the probabilities for scores.

```matlab
[Xlog,Ylog,Tlog,AUClog] = perfcurve(resp,score_log,'true');
```

Train an SVM classifier on the same sample data. Standardize the data.

```matlab
mdlSVM = fitcsvm(pred,resp,'Standardize',true);
```

Compute the posterior probabilities (scores).

```matlab
mdlSVM = fitPosterior(mdlSVM);
[~,score_svm] = resubPredict(mdlSVM);
```

The second column of `score_svm` contains the posterior probabilities of bad radar returns.

Compute the standard ROC curve using the scores from the SVM model.

```matlab
[Xsvm,Ysvm,Tsvm,AUCsvm] = perfcurve(resp,score_svm(:,mdlSVM.ClassNames),'true');
```

Fit a naive Bayes classifier on the same sample data.

```matlab
mdlNB = fitcnb(pred,resp);
```

Compute the posterior probabilities (scores).
[~,score_nb] = resubPredict(mdlNB);

Compute the standard ROC curve using the scores from the naive Bayes classification.

[Xnb,Ynb,Tnb,AUCnb] = perfcurve(resp,score_nb(:,mdlNB.ClassNames),'true');

Plot the ROC curves on the same graph.

plot(Xlog,Ylog)
hold on
plot(Xsvm,Ysvm)
plot(Xnb,Ynb)
legend('Logistic Regression','Support Vector Machines','Naive Bayes','Location','Best')
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC Curves for Logistic Regression, SVM, and Naive Bayes Classification')
hold off
Although SVM produces better ROC values for higher thresholds, logistic regression is usually better at distinguishing the bad radar returns from the good ones. The ROC curve for naive Bayes is generally lower than the other two ROC curves, which indicates worse in-sample performance than the other two classifier methods.

Compare the area under the curve for all three classifiers.

\[
\text{AUC}_{\text{log}} = 0.9659
\]

\[
\text{AUC}_{\text{svm}} = 0.9488
\]
AUCnb

AUCnb = 0.9393

Logistic regression has the highest AUC measure for classification and naive Bayes has the lowest. This result suggests that logistic regression has better in-sample average performance for this sample data.

Determine the Parameter Value for Custom Kernel Function

This example shows how to determine the better parameter value for a custom kernel function in a classifier using the ROC curves.

Generate a random set of points within the unit circle.

```matlab
rng(1); % For reproducibility
n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1)); % Random radii
r2 = sqrt(rand(2*n,1));

t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)]; % Random angles for Q1 and Q3

X1 = [r1.*cos(t1) r1.*sin(t1)]; % Polar-to-Cartesian conversion

% Random angles for Q2 and Q4

X2 = [r2.*cos(t2) r2.*sin(t2)];

r2 = sqrt(rand(2*n,1));

t2 = [pi/2*rand(n,1)+pi/2; (pi/2*rand(n,1)-pi/2)]; % Random angles for Q2 and Q4

X2 = [r2.*cos(t2) r2.*sin(t2)];

Define the predictor variables. Label points in the first and third quadrants as belonging to the positive class, and those in the second and fourth quadrants in the negative class.

```matlab
pred = [X1; X2];
resp = ones(4*n,1);
resp(2*n + 1:end) = -1; % Labels
```

Create the function `mysigmoid.m`, which accepts two matrices in the feature space as inputs, and transforms them into a Gram matrix using the sigmoid kernel.

```matlab
function G = mysigmoid(U,V)
% Sigmoid kernel function with slope gamma and intercept c

\[G = \tanh(\gamma U'V + c) \]
```
Train an SVM classifier using the sigmoid kernel function. It is good practice to standardize the data.

```matlab
SVMMModel1 = fitcsvm(pred,resp,'KernelFunction','mysigmoid',...
 'Standardize',true);
SVMMModel1 = fitPosterior(SVMMModel1);
[~,scores1] = resubPredict(SVMMModel1);
```

Set `gamma = 0.5` within `mysigmoid.m` and save as `mysigmoid2.m`. And, train an SVM classifier using the adjusted sigmoid kernel.

```matlab
function G = mysigmoid2(U,V)
 % Sigmoid kernel function with slope gamma and intercept c
 gamma = 0.5;
 c = -1;
 G = tanh(gamma*U*V' + c);
end
```

```matlab
SVMMModel2 = fitcsvm(pred,resp,'KernelFunction','mysigmoid2',...
 'Standardize',true);
SVMMModel2 = fitPosterior(SVMMModel2);
[~,scores2] = resubPredict(SVMMModel2);
```

Compute the ROC curves and the area under the curve (AUC) for both models.

```matlab
[x1,y1,~,auc1] = perfcurve(resp,scores1(:,2),1);
[x2,y2,~,auc2] = perfcurve(resp,scores2(:,2),1);
```

Plot the ROC curves.

```matlab
plot(x1,y1)
hold on
plot(x2,y2)
hold off
legend('gamma = 1','gamma = 0.5','Location','SE');
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC for classification by SVM');
The kernel function with the gamma parameter set to 0.5 gives better in-sample results.

Compare the AUC measures.

\[
\text{auc1} \\
\text{auc2}
\]

\[
\text{auc1} = 0.9518
\]

\[
\text{auc2} =
\]
The area under the curve for gamma set to 0.5 is higher than that for gamma set to 1. This also confirms that gamma parameter value of 0.5 produces better results. For visual comparison of the classification performance with these two gamma parameter values, see “Train SVM Classifier Using Custom Kernel” on page 18-196.

Plot ROC Curve for Classification Tree

Load the sample data.

```matlab
load fisheriris
```

The column vector, `species`, consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix `meas` consists of four types of measurements on the flowers: sepal length, sepal width, petal length, and petal width. All measures are in centimeters.

Train a classification tree using the sepal length and width as the predictor variables. It is a good practice to specify the class names.

```matlab
Model = fitctree(meas(:,1:2),species,...
    'ClassNames',{'setosa','versicolor','virginica'});
```

Predict the class labels and scores for the species based on the tree `Model`.

```matlab
[~,score] = resubPredict(Model);
```

The scores are the posterior probabilities that an observation (a row in the data matrix) belongs to a class. The columns of `score` correspond to the classes specified by 'ClassNames'. So, the first column corresponds to setosa, the second corresponds to versicolor, and the third column corresponds to virginica.

Compute the ROC curve for the predictions that an observation belongs to versicolor, given the true class labels `species`. Also compute the optimal operating point and y values for negative subclasses. Return the names of the negative classes.

Because this is a multiclass problem, you cannot merely supply `score(:,2)` as input to `perfcurve`. Doing so would not give `perfcurve` enough information about the scores
for the two negative classes (setosa and virginica). This problem is unlike a binary classification problem, where knowing the scores of one class is enough to determine the scores of the other class. Therefore, you must supply `perfcurve` with a function that factors in the scores of the two negative classes. One such function is

$$score(:,2) - \max(score(:,1),score(:,3)).$$

diffscore = score(:,2) - max(score(:,1),score(:,3));
[X,Y,T,~,OPTROCPT,suby,subnames] = perfcurve(species,diffscore,'versicolor');

X, by default, is the false positive rate (fallout or 1-specificity) and Y, by default, is the true positive rate (recall or sensitivity). The positive class label is `versicolor`. Because a negative class is not defined, `perfcurve` assumes that the observations that do not belong to the positive class are in one class. The function accepts it as the negative class.

OPTROCPT

OPTROCPT = 1x2

0.1000 0.8000

suby

suby = 12x2

0 0
0.1800 0.1800
0.4800 0.4800
0.5800 0.5800
0.6200 0.6200
0.8000 0.8000
0.8800 0.8800
0.9200 0.9200
0.9600 0.9600
0.9800 0.9800

subnames

subnames = 1x2 cell array

{`setosa`} {`virginica`}

Plot the ROC curve and the optimal operating point on the ROC curve.
Find the threshold that corresponds to the optimal operating point.

\[T((X==\text{OPTROCPT}(1)) \& (Y==\text{OPTROCPT}(2))) \]

\[\text{ans} = 0.2857 \]
Specify *virginica* as the negative class and compute and plot the ROC curve for *versicolor*.

Again, you must supply `perfcurve` with a function that factors in the scores of the negative class. An example of a function to use is $score(:,2) - score(:,3)$.

```matlab
diffscore = score(:,2) - score(:,3);
[X,Y,~,~,OPTROCPT] = perfcurve(species,diffscore,'versicolor', ... 
    'negClass','virginica');

OPTROCPT

OPTROCPT = 1×2
    0.1800    0.8200
```

```matlab
figure, plot(X,Y)
hold on
plot(OPTROCPT(1),OPTROCPT(2),'ro')
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve for Classification by Classification Trees')
hold off
```
Compute Pointwise Confidence Intervals for ROC Curve

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers: sepal length, sepal width, petal length, and petal width. All measures are in centimeters.
Use only the first two features as predictor variables. Define a binary problem by using only the measurements that correspond to the versicolor and virginica species.

```matlab
pred = meas(51:end,1:2);
```

Define the binary response variable.

```matlab
resp = (1:100)'>50;  % Versicolor = 0, virginica = 1
```

Fit a logistic regression model.

```matlab
mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');
```

Compute the pointwise confidence intervals on the true positive rate (TPR) by vertical averaging (VA) and sampling using bootstrap.

```matlab
[X,Y,T] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...
    'virginica','NBoot',1000,'XVals',[0:0.05:1]);
```

'NBoot',1000 sets the number of bootstrap replicas to 1000. 'XVals','All' prompts `perfcurve` to return X, Y, and T values for all scores, and average the Y values (true positive rate) at all X values (false positive rate) using vertical averaging. If you do not specify XVals, then `perfcurve` computes the confidence bounds using threshold averaging by default.

Plot the pointwise confidence intervals.

```matlab
errorbar(X,Y(:,1),Y(:,1)-Y(:,2),Y(:,3)-Y(:,1));
xlim([-0.02,1.02]); ylim([-0.02,1.02]);
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve with Pointwise Confidence Bounds')
legend('PCBwVA','Location','Best')
```
It might not always be possible to control the false positive rate (FPR, the X value in this example). So you might want to compute the pointwise confidence intervals on true positive rates (TPR) by threshold averaging.

```matlab
[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,... 'virginica','NBoot',1000);
```

If you set 'TVals' to 'All', or if you do not specify 'TVals' or 'Xvals', then `perfcurve` returns `X`, `Y`, and `T` values for all scores and computes pointwise confidence bounds for `X` and `Y` using threshold averaging.

Plot the confidence bounds.
Specify the threshold values to fix and compute the ROC curve. Then plot the curve.

```matlab
[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...
    'virginica','NBoot',1000,'TVals',0:0.05:1);
figure()
errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));
xlim([-0.02,1.02]); ylim([-0.02,1.02]);
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve with Pointwise Confidence Bounds')
legend('PCBwTA','Location','Best')
```

![ROC Curve with Pointwise Confidence Bounds](image)

32-4741
Input Arguments

labels — True class labels
numeric vector | logical vector | character matrix | string array | cell array of character vectors | categorical array
True class labels, specified as a numeric vector, logical vector, character matrix, string array, cell array of character vectors, or categorical array. For more information, see “Grouping Variables” on page 2-57.

Example: {'hi','mid','hi','low',...,'mid'}
Example: ['H','M','H','L',...,'M']

Data Types: single | double | logical | char | string | cell | categorical

scores — Scores returned by a classifier

vector of floating points

Scores returned by a classifier for some sample data, specified as a vector of floating points. `scores` must have the same number of elements as `labels`.

Data Types: single | double

posclass — Positive class label

numeric scalar | logical scalar | character vector | string scalar | cell containing a character vector | categorical scalar

Positive class label, specified as a numeric scalar, logical scalar, character vector, string scalar, cell containing a character vector, or categorical scalar. The positive class must be a member of the input labels. The value of `posclass` that you can specify depends on the value of `labels`.

<table>
<thead>
<tr>
<th>Labels value</th>
<th>posclass value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric vector</td>
<td>Numeric scalar</td>
</tr>
<tr>
<td>Logical vector</td>
<td>Logical scalar</td>
</tr>
<tr>
<td>Character matrix</td>
<td>Character vector</td>
</tr>
<tr>
<td>String array</td>
<td>String scalar</td>
</tr>
<tr>
<td>Cell array of character vectors</td>
<td>Character vector or cell containing character vector</td>
</tr>
<tr>
<td>Categorical vector</td>
<td>Categorical scalar</td>
</tr>
</tbody>
</table>

For example, in a cancer diagnosis problem, if a malignant tumor is the positive class, then specify `posclass` as 'malignant'.

Data Types: single | double | logical | char | string | cell | categorical
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'NegClass', 'versicolor', 'XCrit', 'fn', 'NBoot', 1000, 'BootType', 'per' specifies the species versicolor as the negative class, the criterion for the X-coordinate as false negative, the number of bootstrap samples as 1000. It also specifies that the pointwise confidence bounds are computed using the percentile method.

NegClass — List of negative classes

'Selection of negative classes

'all' (default) | numeric array | categorical array | string array | cell array of character vectors

List of negative classes, specified as the comma-separated pair consisting of 'NegClass', and a numeric array, a categorical array, a string array, or a cell array of character vectors. By default, perfcurve sets NegClass to 'all' and considers all nonpositive classes found in the input array of labels to be negative.

If NegClass is a subset of the classes found in the input array of labels, then perfcurve discards the instances with labels that do not belong to either positive or negative classes.

Example: 'NegClass', {'versicolor', 'setosa'}

Data Types: single | double | categorical | char | string | cell

XCrit — Criterion to compute for X

'fpr' (default) | 'fnr' | 'tnr' | 'ppv' | 'ecost' | ...

Criterion to compute for X, specified as the comma-separated pair consisting of 'XCrit' and one of the following.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tp</td>
<td>Number of true positive instances</td>
</tr>
<tr>
<td>fn</td>
<td>Number of false negative instances.</td>
</tr>
<tr>
<td>fp</td>
<td>Number of false positive instances.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>tn</td>
<td>Number of true negative instances.</td>
</tr>
<tr>
<td>tp+fp</td>
<td>Sum of true positive and false positive instances.</td>
</tr>
<tr>
<td>rpp</td>
<td>Rate of positive predictions.</td>
</tr>
<tr>
<td>rnn</td>
<td>Rate of negative predictions.</td>
</tr>
<tr>
<td>accu</td>
<td>Accuracy.</td>
</tr>
<tr>
<td>tpr, or sens, or reca</td>
<td>True positive rate, or sensitivity, or recall.</td>
</tr>
<tr>
<td>fnr, or miss</td>
<td>False negative rate, or miss.</td>
</tr>
<tr>
<td>fpr, or fall</td>
<td>False positive rate, or fallout, or 1 - specificity.</td>
</tr>
<tr>
<td>tnr, or spec</td>
<td>True negative rate, or specificity.</td>
</tr>
<tr>
<td>ppv, or prec</td>
<td>Positive predictive value, or precision.</td>
</tr>
<tr>
<td>npv</td>
<td>Negative predictive value.</td>
</tr>
<tr>
<td>ecost</td>
<td>Expected cost.</td>
</tr>
<tr>
<td>Custom criterion</td>
<td>A custom-defined function with the input arguments ((C, scale, cost)), where (C) is a 2-by-2 confusion matrix, (scale) is a 2-by-1 array of class scales, and (cost) is a 2-by-2 misclassification cost matrix.</td>
</tr>
</tbody>
</table>

Caution Some of these criteria return NaN values at one of the two special thresholds, 'reject all' and 'accept all'.

Example: 'XCrit', 'ecost'
YCrit — Criterion to compute for Y
'tpr' (default) | same criteria options for X

Criterion to compute for Y, specified as the comma-separated pair consisting of 'YCrit' and one of the same criteria options as for X. This criterion does not have to be a monotone function of the positive class score.

Example: 'YCrit','ecost'

XVals — Values for the X criterion
'all' (default) | numeric array

Values for the X criterion, specified as the comma-separated pair consisting of 'XVals' and a numeric array.

- If you specify XVals, then perfcurve computes X and Y and the pointwise confidence bounds on page 32-4755 for Y (when applicable) only for the specified XVals.
- If you do not specify XVals, then perfcurve, computes X and Y and the values for all scores by default.

Note You cannot set XVals and TVals at the same time.

Example: 'XVals',[0:0.05:1]

Data Types: single | double | char | string

TVals — Thresholds for the positive class score
'all' (default) | numeric array

Thresholds for the positive class score, specified as the comma-separated pair consisting of 'TVals' and either 'all' or a numeric array.

- If TVals is set to 'all' or not specified, and XVals is not specified, then perfcurve returns X, Y, and T values for all scores and computes pointwise confidence bounds on page 32-4755 for X and Y using threshold averaging.
- If TVals is set to a numeric array, then perfcurve returns X, Y, and T values for the specified thresholds and computes pointwise confidence bounds for X and Y at these thresholds using threshold averaging.

Note You cannot set XVals and TVals at the same time.
Example: 'TVals', [0:0.05:1]

Data Types: single | double | char | string

UseNearest — Indicator to use the nearest values in the data

'on' (default) | 'off'

Indicator to use the nearest values in the data instead of the specified numeric XVals or TVals, specified as the comma-separated pair consisting of 'UseNearest' and either 'on' or 'off'.

- If you specify numeric XVals and set UseNearest to 'on', then perfcurve returns the nearest unique X values found in the data, and it returns the corresponding values of Y and T.
- If you specify numeric XVals and set UseNearest to 'off', then perfcurve returns the sorted XVals.
- If you compute confidence bounds by cross validation or bootstrap, then this parameter is always 'off'.

Example: 'UseNearest', 'off'

ProcessNaN — perfcurve method for processing NaN scores

'ignore' (default) | 'addtofalse'

Perfcurve method for processing NaN scores, specified as the comma-separated pair consisting of 'ProcessNaN' and 'ignore' or 'addtofalse'.

- If ProcessNaN is 'ignore', then perfcurve removes observations with NaN scores from the data.
- If ProcessNaN is 'addtofalse', then perfcurve adds instances with NaN scores to false classification counts in the respective class. That is, perfcurve always counts instances from the positive class as false negative (FN), and it always counts instances from the negative class as false positive (FP).

Example: 'ProcessNaN', 'addtofalse'

Prior — Prior probabilities for positive and negative classes

'empirical' (default) | 'uniform' | array with two elements

Prior probabilities for positive and negative classes, specified as the comma-separated pair consisting of 'Prior' and 'empirical', 'uniform', or an array with two elements.
If \texttt{Prior} is 'empirical', then \texttt{perfcurve} derives prior probabilities from class frequencies.

If \texttt{Prior} is 'uniform', then \texttt{perfcurve} sets all prior probabilities to be equal.

Example: \texttt{'Prior',[0.3,0.7]}

Data Types: \texttt{single} | \texttt{double} | \texttt{char} | \texttt{string}

\textbf{Cost — Misclassification costs}

\begin{align*}
[0; 0.5; 0.5; 0] \text{ (default)} | 2\text{-by-2 matrix}
\end{align*}

Misclassification costs, specified as the comma-separated pair consisting of \texttt{'Cost'} and a 2-by-2 matrix, containing \([\text{Cost}(P|P), \text{Cost}(N|P); \text{Cost}(P|N), \text{Cost}(N|N)]\).

\text{Cost}(N|P) \text{ is the cost of misclassifying a positive class as a negative class. } \text{Cost}(P|N) \text{ is the cost of misclassifying a negative class as a positive class. Usually, } \text{Cost}(P|P) = 0 \text{ and } \text{Cost}(N|N) = 0, \text{ but } \texttt{perfcurve} \text{ allows you to specify nonzero costs for correct classification as well.}

Example: \texttt{'Cost',[0 0.7;0.3 0]}

Data Types: \texttt{single} | \texttt{double}

\textbf{Alpha — Confidence level}

\begin{align*}
0.05 \text{ (default)} | \text{ scalar value in the range 0 through 1}
\end{align*}

Confidence level for the confidence bounds, specified as the comma-separated pair consisting of \texttt{'Alpha'} and a scalar value in the range 0 through 1. \texttt{perfcurve} computes 100*(1 - \alpha) percent pointwise confidence bounds on page 32-4755 for \(X, Y, T,\) and AUC for a confidence level of \(\alpha\).

Example: \texttt{'Alpha',0.01} specifies 99% confidence bounds

Data Types: \texttt{single} | \texttt{double}

\textbf{Weights — Observation weights}

\begin{align*}
\text{vector of nonnegative scalar values} | \text{ cell array of vectors of nonnegative scalar values}
\end{align*}

Observation weights, specified as the comma-separated pair consisting of \texttt{'Weights'} and a vector of nonnegative scalar values. This vector must have as many elements as \texttt{scores} or \texttt{labels} do.

If \texttt{scores} and \texttt{labels} are in cell arrays and you need to supply \texttt{Weights}, the weights must be in a cell array as well. In this case, every element in \texttt{Weights} must be a numeric
vector with as many elements as the corresponding element in \textit{scores}. For example, \texttt{numel(weights{1}) == numel(scores{1})}.

When \texttt{perfcurve} computes the \textit{X}, \textit{Y} and \textit{T} or confidence bounds using cross-validation, it uses these observation weights instead of observation counts.

When \texttt{perfcurve} computes confidence bounds using bootstrap, it samples \textit{N} out of \textit{N} observations with replacement, using these weights as multinomial sampling probabilities.

The default is a vector of 1s or a cell array in which each element is a vector of 1s.

\textbf{Data Types:} \texttt{single} \textbar{} \texttt{double} \textbar{} \texttt{cell}

\textbf{NBoot — Number of bootstrap replicas}

\texttt{0} (default) \textbar{} \texttt{positive integer}

Number of bootstrap replicas for computation of confidence bounds, specified as the comma-separated pair consisting of \texttt{'NBoot'} and a positive integer. The default value 0 means the confidence bounds are not computed.

If \texttt{labels} and \texttt{scores} are cell arrays, this parameter must be 0 because \texttt{perfcurve} can use either cross-validation or bootstrap to compute confidence bounds.

Example: \texttt{'NBoot',500}

\textbf{Data Types:} \texttt{single} \textbar{} \texttt{double}

\textbf{BootType — Confidence interval type for bootci}

\texttt{'bca'} (default) \textbar{} \texttt{'norm'} \textbar{} \texttt{'per'} \textbar{} \texttt{'cper'} \textbar{} \texttt{'stud'}

Confidence interval type for \texttt{bootci} to use to compute confidence bounds, specified as the comma-separated pair consisting of \texttt{'BootType'} and one of the following:

- \texttt{'bca'} — Bias corrected and accelerated percentile method
- \texttt{'norm'} or \texttt{'normal'} — Normal approximated interval with bootstrapped bias and standard error
- \texttt{'per'} or \texttt{'percentile'} — Percentile method
- \texttt{'cper'} or \texttt{'corrected percentile'} — Bias corrected percentile method
- \texttt{'stud'} or \texttt{'student'} — Studentized confidence interval

Example: \texttt{'BootType','cper'}
BootArg — Optional input arguments for bootci

[] (default) | {'Nbootstd',nbootstd} | {'Stderr',stderr}

Optional input arguments for bootci to compute confidence bounds, specified as the comma-separated pair consisting of 'BootArg' and {'Nbootstd',nbootstd} or {'Stderr',stderr}, name-value pair arguments of bootci.

When you compute the studentized bootstrap confidence intervals ('BootType' is 'student'), you can additionally specify 'Nbootstd' or 'Stderr', name-value pair arguments of bootci, by using 'BootArg'.

- 'BootArg', {'Nbootstd',nbootstd} estimates the standard error of the bootstrap statistics using bootstrap with nbootstd data samples. nbootstd is a positive integer and its default is 100.
- 'BootArg', {'Stderr',stderr} evaluates the standard error of the bootstrap statistics by a user-defined function stderr that takes [1:numel(scores)]' as an input argument. stderr is a function handle.

Example: 'BootArg', {'Nbootstd',nbootstd}

Data Types: cell

Options — Options for controlling the computation of confidence intervals

[] (default) | structure array returned by statset

Options for controlling the computation of confidence intervals, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. These options require Parallel Computing Toolbox. perfcurve uses this argument for computing pointwise confidence bounds only. To compute these bounds, you must pass cell arrays for labels and scores or set NBoot to a positive integer.

This table summarizes the available options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'UseParallel'</td>
<td>• false — Serial computation (default).</td>
</tr>
<tr>
<td></td>
<td>• true — Parallel computation. You need Parallel Computing Toolbox for this option to work.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 'UseSubstreams' | • false — Do not use a separate substream for each iteration (default).
• true — Use a separate substream for each iteration to compute in parallel in a reproducible fashion. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. |
| 'Streams' | A RandStream object, or a cell array of such objects. If you specify Streams, use a single object, except when:
• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.
In that case, use a cell array of the same size as the parallel pool. If a parallel pool is not open, then Streams must supply a single random number stream. |

If 'UseParallel' is true and 'UseSubstreams' is false, then the length of 'Streams' must equal the number of workers used by perfcurve. If a parallel pool is already open, then the length of 'Streams' is the size of the parallel pool. If a parallel pool is not already open, then MATLAB might open a pool for you, depending on your installation and preferences. To ensure more predictable results, use parpool and explicitly create a parallel pool before invoking perfcurve and setting 'Options', statset('UseParallel',true).

Example: 'Options', statset('UseParallel',true)

Data Types: struct

Output Arguments

X — x-coordinates for the performance curve

vector, fpr (default) | m-by-3 matrix
x-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By default, X values are the false positive rate, FPR (fallout or 1 – specificity). To change X, use the XCrit name-value pair argument.

- If perfcurve does not compute the pointwise confidence bounds on page 32-4755, or if it computes them using vertical averaging, then X is a vector.
- If perfcurve computes the confidence bounds using threshold averaging, then X is an m-by-3 matrix, where m is the number of fixed threshold values. The first column of X contains the mean value. The second and third columns contain the lower bound and the upper bound, respectively, of the pointwise confidence bounds.

Y — y-coordinates for the performance curve
vector, tpr (default) | m-by-3 matrix

y-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By default, Y values are the true positive rate, TPR (recall or sensitivity). To change Y, use YCrit name-value pair argument.

- If perfcurve does not compute the pointwise confidence bounds on page 32-4755, then Y is a vector.
- If perfcurve computes the confidence bounds, then Y is an m-by-3 matrix, where m is the number of fixed X values or thresholds (T values). The first column of Y contains the mean value. The second and third columns contain the lower bound and the upper bound, respectively, of the pointwise confidence bounds.

T — Thresholds on classifier scores
vector | m-by-3 matrix

Thresholds on classifier scores for the computed values of X and Y, returned as a vector or m-by-3 matrix.

- If perfcurve does not compute the pointwise confidence bounds on page 32-4755, or computes them using threshold averaging, then T is a vector.
- If perfcurve computes the confidence bounds using vertical averaging, T is an m-by-3 matrix, where m is the number of fixed X values. The first column of T contains the mean value. The second and third columns contain the lower bound, and the upper bound, respectively, of the pointwise confidence bounds.

For each threshold, TP is the count of true positive observations with scores greater than or equal to this threshold, and FP is the count of false positive observations with scores greater than or equal to this threshold. perfcurve defines negative counts, TN and FN, in
a similar way. The function then sorts the thresholds in the descending order that corresponds to the ascending order of positive counts.

For the m distinct thresholds found in the array of scores, perfcurve returns the X, Y and T arrays with $m + 1$ rows. perfcurve sets elements $T(2:m+1)$ to the distinct thresholds, and $T(1)$ replicates $T(2)$. By convention, $T(1)$ represents the highest 'reject all' threshold, and perfcurve computes the corresponding values of X and Y for $TP = 0$ and $FP = 0$. The $T(end)$ value is the lowest 'accept all' threshold for which $TN = 0$ and $FN = 0$.

AUC — Area under the curve

scalar value | 3-by-1 vector

Area under the curve (AUC) for the computed values of X and Y, returned as a scalar value or a 3-by-1 vector.

- If perfcurve does not compute the pointwise confidence bounds on page 32-4755, AUC is a scalar value.
- If perfcurve computes the confidence bounds using vertical averaging, AUC is a 3-by-1 vector. The first column of AUC contains the mean value. The second and third columns contain the lower bound and the upper bound, respectively, of the confidence bound.

For a perfect classifier, AUC = 1. For a classifier that randomly assigns observations to classes, AUC = 0.5.

If you set XVals to 'all' (default), then perfcurve computes AUC using the returned X and Y values.

If XVals is a numeric array, then perfcurve computes AUC using X and Y values from all distinct scores in the interval, which are specified by the smallest and largest elements of XVals. More precisely, perfcurve finds X values for all distinct thresholds as if XVals were set to 'all', and then uses a subset of these (with corresponding Y values) between $\min(XVals)$ and $\max(XVals)$ to compute AUC.

perfcure uses trapezoidal approximation to estimate the area. If the first or last value of X or Y are NaNs, then perfcurve removes them to allow calculation of AUC. This takes care of criteria that produce NaNs for the special 'reject all' or 'accept all' thresholds, for example, positive predictive value (PPV) or negative predictive value (NPV).
OPTROCPT — Optimal operating point of the ROC curve

1-by-2 array

Optimal operating point of the ROC curve, returned as a 1-by-2 array with false positive rate (FPR) and true positive rate (TPR) values for the optimal ROC operating point.

`perfcurve` computes `OPTROCPT` for the standard ROC curve only, and sets to NaNs otherwise. To obtain the optimal operating point for the ROC curve, `perfcurve` first finds the slope, S, using

$$S = \frac{\text{Cost}(P \mid N) - \text{Cost}(N \mid N) \cdot N}{\text{Cost}(N \mid P) - \text{Cost}(P \mid P) \cdot P}$$

- Cost($N\mid P$) is the cost of misclassifying a positive class as a negative class. Cost($P\mid N$) is the cost of misclassifying a negative class as a positive class.
- $P = TP + FN$ and $N = TN + FP$. They are the total instance counts in the positive and negative class, respectively.

`perfcurve` then finds the optimal operating point by moving the straight line with slope S from the upper left corner of the ROC plot (FPR = 0, TPR = 1) down and to the right, until it intersects the ROC curve.

SUBY — Values for negative subclasses

array

Values for negative subclasses, returned as an array.

- If you specify only one negative class, then `SUBY` is identical to `Y`.
- If you specify k negative classes, then `SUBY` is a matrix of size m-by-k, where m is the number of returned values for `X` and `Y`, and k is the number of negative classes.

`perfcurve` computes `Y` values by summing counts over all negative classes.

`SUBY` gives values of the `Y` criterion for each negative class separately. For each negative class, `perfcurve` places a new column in `SUBY` and fills it with `Y` values for true negative (TN) and false positive (FP) counted just for this class.

SUBYNAMES — Negative class names

cell array

Negative class names, returned as a cell array.
• If you provide an input array of negative class names, \texttt{NegClass}, then \texttt{perfcurve} copies names into \texttt{SUBYNAMES}.

• If you do not provide \texttt{NegClass}, then \texttt{perfcurve} extracts \texttt{SUBYNAMES} from the input labels. The order of \texttt{SUBYNAMES} is the same as the order of columns in \texttt{SUBY}. That is, \texttt{SUBY(:,1)} is for negative class \texttt{SUBYNAMES{1}}, \texttt{SUBY(:,2)} is for negative class \texttt{SUBYNAMES{2}}, and so on.

\textbf{Algorithms}

\textbf{Pointwise Confidence Bounds}

If you supply cell arrays for \texttt{labels} and \texttt{scores}, or if you set \texttt{NBoot} to a positive integer, then \texttt{perfcurve} returns pointwise confidence bounds for \texttt{X}, \texttt{Y}, \texttt{T}, and \texttt{AUC}. You cannot supply cell arrays for \texttt{labels} and \texttt{scores} and set \texttt{NBoot} to a positive integer at the same time.

\texttt{perfcurve} resamples data to compute confidence bounds using either cross validation or bootstrap.

• Cross-validation — If you supply cell arrays for \texttt{labels} and \texttt{scores}, then \texttt{perfcurve} uses cross-validation and treats elements in the cell arrays as cross-validation folds. \texttt{labels} can be a cell array of numeric vectors, logical vectors, character matrices, cell arrays of character vectors, or categorical vectors. All elements in \texttt{labels} must have the same type. \texttt{scores} can be a cell array of numeric vectors. The cell arrays for \texttt{labels} and \texttt{scores} must have the same number of elements. The number of labels in cell \texttt{j} of \texttt{labels} must be equal to the number of scores in cell \texttt{j} of \texttt{scores} for any \texttt{j} in the range from 1 to the number of elements in \texttt{scores}.

• Bootstrap — If you set \texttt{NBoot} to a positive integer \texttt{n}, \texttt{perfcurve} generates \texttt{n} bootstrap replicas to compute pointwise confidence bounds. If you use \texttt{XCrit} or \texttt{YCrit} to set the criterion for \texttt{X} or \texttt{Y} to an anonymous function, \texttt{perfcurve} can compute confidence bounds only using bootstrap.

\texttt{perfcurve} estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — \texttt{perfcurve} estimates confidence bounds on \texttt{Y} and \texttt{T} at fixed values of \texttt{X}. That is, \texttt{perfcurve} takes samples of the ROC curves for fixed \texttt{X} values, averages the corresponding \texttt{Y} and \texttt{T} values, and computes the standard errors. You can use the \texttt{XVals} name-value pair argument to fix the \texttt{X} values for computing
confidence bounds. If you do not specify XVals, then perfcurve computes the confidence bounds at all X values.

- Threshold averaging (TA) — perfcurve takes samples of the ROC curves at fixed thresholds T for the positive class score, averages the corresponding X and Y values, and estimates the confidence bounds. You can use the TVals name-value pair argument to use this method for computing confidence bounds. If you set TVals to 'all' or do not specify TVals or XVals, then perfcurve returns X, Y, and T values for all scores and computes pointwise confidence bounds for Y and X using threshold averaging.

When you compute the confidence bounds, Y is an m-by-3 array, where m is the number of fixed X values or thresholds (T values). The first column of Y contains the mean value. The second and third columns contain the lower bound and the upper bound, respectively, of the pointwise confidence bounds. AUC is a row vector with three elements, following the same convention. If perfcurve computes the confidence bounds using VA, then T is an m-by-3 matrix, and X is a column vector. If perfcurve uses TA, then X is an m-by-3 matrix and T is a column-vector.

perfcurve returns pointwise confidence bounds. It does not return a simultaneous confidence band for the entire curve.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
bootci | classify | fitcnb | fitctree | fitrtree | glmfit | mnrfit

Topics
“Performance Curves” on page 17-3

Introduced in R2009a
plot

Class: clustering.evaluation.ClusterCriterion
Package: clustering.evaluation

Plot clustering evaluation object criterion values

Syntax

```matlab
plot(eva)
h = plot(eva)
```

Description

`plot(eva)` displays a plot of the criterion values versus the number of clusters, based on the values stored in the clustering evaluation object `eva`.

`h = plot(eva)` returns a handle to the plot line.

Input Arguments

- `eva` — **Clustering evaluation data**
 - clustering evaluation object
 - Clustering evaluation data, specified as a clustering evaluation object. Create a clustering evaluation object using `evalclusters`.

Output Arguments

- `h` — **Handle to plot line**
 - scalar value
 - Handle to the plot line, returned as a scalar value.
Examples

Plot the Clustering Evaluation Criterion Values

Plot the criterion values versus the number of clusters for each clustering solution stored in a clustering evaluation object.

Load the sample data.

```matlab
load fisheriris
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Create a clustering evaluation object. Cluster the data using `kmeans`, and evaluate the optimal number of clusters using the Calinski-Harabasz criterion.

```matlab
rng('default'); % For reproducibility
eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6]);
```

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

```matlab
figure;
plot(eva);
```
The plot shows that the highest Calinski-Harabasz value occurs at three clusters, suggesting that the optimal number of clusters is three.

See Also

evalclusters
plot

Class: LinearModel

Scatter plot or added variable plot of linear model

Syntax

 plot(mdl)
 h = plot(mdl)

Description

 plot(mdl) creates a plot of the full, fitted linear model, mdl. The plot type depends on
 the number of predictor variables.

 • If there is just one predictor variable, plot creates a scatter plot of the data along
 with a fitted curve and confidence bounds.
 • If there are multiple predictor variables, plot creates an added variable plot.
 • If there are no predictors, plot creates a histogram of the residuals.

 h = plot(mdl) returns handles to the lines in the plot.

Input Arguments

 mdl — Full, fitted linear regression model
 LinearModel object

 Full, fitted linear regression model, specified as a LinearModel object constructed using
 fitlm or stepwiselm.
Output Arguments

h — Graphics handles
vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.

Examples

Create an Added Variable Plot

Create a model of car mileage as a function of weight and model year. Then create a plot to see the significance of the model.

Create a linear model of mileage from the carsmall data.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create an added variable plot.

plot(mdl)
```
The plot illustrates that the model is significant because a horizontal line does not fit between the confidence bounds.

Definitions

Added Variable Plot and Adjust Response

An added variable plot illustrates the incremental effect on the response of specified terms by removing the effects of all other terms. The slope of the fitted line is the coefficient of the linear combination of the specified terms projected onto the best-fitting
direction. The adjusted response includes the constant (intercept) terms, and averages out all other terms.

Alternatives

Use `plotAdded` to select particular predictors for an added variable plot.

See Also

`LinearModel | plotAdded`

Topics

“Linear Regression” on page 11-11
plot

Class: RepeatedMeasuresModel

Plot data with optional grouping

Syntax

```matlab
plot(rm)
plot(rm,Name,Value)
H = plot(__)
```

Description

`plot(rm)` plots the measurements in the repeated measures model `rm` for each subject as a function of time. If there is a single numeric within-subjects factor, `plot` uses the values of that factor as the time values. Otherwise, `plot` uses the discrete values 1 through `r` as the time values, where `r` is the number of repeated measurements.

`plot(rm,Name,Value)` also plots the measurements in the repeated measures model `rm`, with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the factors to group by or change the line colors.

```matlab
H = plot(__) returns handles, H, to the plotted lines.
```

Input Arguments

- `rm` — **Repeated measures model**
 - `RepeatedMeasuresModel` object

Repeated measures model, returned as a `RepeatedMeasuresModel` object.

For properties and methods of this object, see `RepeatedMeasuresModel`.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Group — Name of between-subject factor or factors

character vector | string array | cell array of character vectors

Name of between-subject factor or factors, specified as the comma-separated pair consisting of 'Group' and a character vector, string array, or cell array of character vectors. This name-value pair argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to group the lines in the plot according to them, you can specify these factors as follows.

Example: 'Group', {'Drug', 'Sex'}

Data Types: char | string | cell

Marker — Marker to use for each group

string array | cell array of character vectors

Marker to use for each group, specified as the comma-separated pair consisting of 'Marker' and a string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify o as the marker for the groups of drug and x as the marker for the groups of sex as follows.

Example: 'Marker', {'o','o','x','x'}

Data Types: string | cell

Color — Color for each group

character vector | string array | cell array of character vectors | rows of a three-column RGB matrix

Color for each group, specified as the comma-separated pair consisting of 'Color' and a character vector, string array, cell array of character vectors, or rows of a three-column RGB matrix.
For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify red as the color for the groups of drug and blue as the color for the groups of sex as follows.

Example: 'Color','rrbb'

Data Types: single | double | char | string | cell

LineStyle — Line style for each group

string array | cell array of character vectors

Line style for each group, specified as the comma-separated pair consisting of 'LineStyle' and a string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify - as the line style of one group and : as the line style for the other group as follows.

Example: 'LineStyle',{'-' ':' '-' ':'}

Data Types: string | cell

Output Arguments

H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples

Plot Data by Group

Load the sample data.

load fisheriris

The column vector *species* consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix *meas* consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.
Store the data in a table array.

t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4), ...
'VariableNames', {'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]', 'VarNames', {'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t, 'meas1-meas4~species', 'WithinDesign', Meas);

Plot data grouped by the factor species.

plot(rm, 'group', 'species')
Change the line style for each group.

```matlab
plot(rm,'group','species','LineStyle',{'-','--',':'})
```

Plot Data Grouped by Two Factors

Load the sample data.

```matlab
load repeatedmeas
```
The table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures y1 through y8 as responses. The table within includes the within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Plot data with Group coded by color and Gender coded by line type.

```matlab
plot(rm,'group',{'Group' 'Gender'},'Color','rrbbgg',...
     'LineStyle',{'-' ':' '-' ':' '-' ':'},'Marker','.'
)
```
See Also
fitrm | multcompare | plotprofile
plotAdded

Class: LinearModel

Added variable plot or leverage plot for linear model

Syntax

plotAdded(mdl)
plotAdded(mdl,coef)
h = plotAdded(mdl,___)
h = plotAdded(mdl,coef,Name,Value)

Description

plotAdded(mdl) produces a generalized added variable plot for all terms in the full, fitted regression model mdl, except the constant term.

plotAdded(mdl,coef) produces an added variable plot for the coef terms in mdl, after adjusting for all other terms.

h = plotAdded(mdl,___) returns handles to the lines in the plot, using any of the previous syntaxes.

h = plotAdded(mdl,coef,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.
coef — Coefficients in regression model
character vector | string scalar | vector of coefficient numbers

Coefficients in regression model mdl, specified as one of the following:
- Character vector or string scalar giving a single coefficient name
- Vector of coefficient numbers in the mdl.CoefficientNames property.

Data Types: char | string | single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

Color — Color of line or marker
ColorSpec specification

Color of the line or marker, specified as the comma-separated pair consisting of 'Color' and a ColorSpec specification. For details, see linespec.

LineStyle — Line style
Chart Line Properties specification

Line style, specified as the comma-separated pair consisting of 'LineStyle' and a Chart Line specification. For details, see linespec.

LineWidth — Width of line or edges
0.5 (default) | positive numeric value

Width of the line or edges of filled area, in points, specified as the comma-separated pair consisting of 'LineWidth' and a positive numeric value. One point is equal to 1/72 inch.

MarkerEdgeColor — Color of marker or edge
ColorSpec specification
Color of the marker or edge color for filled markers, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and a ColorSpec specification. For details, see linespec.

MarkerFaceColor — Color of marker face
ColorSpec specification

Color of the marker face for filled markers, specified as the comma-separated pair consisting of 'MarkerFaceColor' and a ColorSpec specification. For details, see linespec.

MarkerSize — Size of marker
positive numeric value

Size of the marker in points, specified as the comma-separated pair consisting of 'MarkerSize' and a positive numeric value. One point is 1/72 inch.

Output Arguments

h — Graphics handles
vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.

Examples

Create an Added Variable Plot

Create a model of car mileage as a function of weight and model year. Then create a plot to see the significance of the model.

Create a linear model of mileage from the carsmall data.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```
Create an added variable plot.

```
plot(mdl)
```

The plot illustrates that the model is significant because a horizontal line does not fit between the confidence bounds.

Create an Added Variable Plot for Particular Variables

Create a model of car mileage as a function of weight and model year. Then create a plot to see the effect of the weight terms (`Weight` and `Weight^2`).
Create a linear model of mileage from the carsmall data.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```

Find the terms in the model corresponding to the Weight and Weight^2.

```matlab
mdl.CoefficientNames
```

```matlab
ans = 1x5 cell array
    {'(Intercept)'}    {'Weight'}    {'Year_76'}    {'Year_82'}    {'Weight^2'}
```

The weight terms are 2 and 5.

Create an added variable plot with the weight terms.

```matlab
coef = [2 5];
plotAdded(mdl,coef)
```
The plot illustrates that the weight terms are significant because a horizontal line does not fit between the confidence bounds.

Definitions

Added Variable Plot and Adjusted Response

An added variable plot illustrates the incremental effect on the response of specified terms by removing the effects of all other terms. The slope of the fitted line is the coefficient of the linear combination of the specified terms projected onto the best-fitting
direction. The adjusted response includes the constant (intercept) terms, and averages out all other terms.

Tips

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.

See Also

`LinearModel | plot`

Topics

“Plots to Understand Terms Effects” on page 11-34
“Linear Regression” on page 11-11
plotAdjustedResponse

Class: LinearModel

Adjusted response plot for linear regression model

Syntax

```matlab
plotAdjustedResponse(mdl,var)
h = plotAdjustedResponse(mdl,var)
h = plotAdjustedResponse(mdl,var,Name,Value)
```

Description

`plotAdjustedResponse(mdl,var)` gives an adjusted response plot for the variable `var` in the `mdl` regression model.

`h = plotAdjustedResponse(mdl,var)` returns handles to the lines in the plot.

`h = plotAdjustedResponse(mdl,var,Name,Value)` plots with additional options specified by one or more `Name,Value` pair arguments.

Input Arguments

`mdl` — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a `LinearModel` object constructed using `fitlm` or `stepwiselm`.

`var` — Variable for adjusted response plot
variable name | integer value

Variable for adjusted response plot, specified as a variable name or an integer value representing the index of a variable in `mdl.CoefficientNames`.

32-4779
Data Types: char | string | single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

Color — Color of line or marker

ColorSpec specification

Color of the line or marker, specified as the comma-separated pair consisting of 'Color' and a ColorSpec specification. For details, see linespec.

LineStyle — Line style

Chart Line Properties specification

Line style, specified as the comma-separated pair consisting of 'LineStyle' and a Chart Line specification. For details, see linespec.

LineWidth — Width of line or edges

0.5 (default) | positive numeric value

Width of the line or edges of filled area, in points, specified as the comma-separated pair consisting of 'LineWidth' and a positive numeric value. One point is equal to 1/72 inch.

MarkerEdgeColor — Color of marker or edge

ColorSpec specification

Color of the marker or edge color for filled markers, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and a ColorSpec specification. For details, see linespec.

MarkerFaceColor — Color of marker face

ColorSpec specification
Color of the marker face for filled markers, specified as the comma-separated pair consisting of 'MarkerFaceColor' and a ColorSpec specification. For details, see linespec.

MarkerSize — Size of marker

positive numeric value

Size of the marker in points, specified as the comma-separated pair consisting of 'MarkerSize' and a positive numeric value. One point is 1/72 inch.

Output Arguments

h — Graphics handles

vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.

Examples

Plot Adjusted Responses

Plot the adjusted responses of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```

Plot the effect of 'Weight' averaged over Year values.

```matlab
plotAdjustedResponse(mdl,'Weight')
```
Plot the effect of Year averaged over 'Weight' values. Include the h output.

```matlab
h = plotAdjustedResponse(mdl,'Year');
```
Change the adjusted data to black x instead of red o.

```matlab
h(1).Marker = 'x';
h(1).Color = 'k';
```
Definitions

Adjusted Response Plot

The adjusted response plot shows the fitted response as a function of \(\text{var} \), with the other predictors averaged out by averaging the fitted values over the data used in the fit. Adjusted data points are computed by adding the residual to the adjusted fitted value for each observation.
Tips

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.

See Also
LinearModel | plotAdded | plotEffects | plotInteraction

Topics
“Linear Regression” on page 11-11
plot

Plot Bayesian optimization results

Syntax

plot(results,'all')
plot(results,plotFcn1,plotFcn2,...)

Description

plot(results,'all') calls all predefined plot functions on results.
plot(results,plotFcn1,plotFcn2,...) calls the listed plot functions on results.

Examples

Plot After Optimization

This example shows how to plot the error model and the best objective trace after the optimization has finished. The objective function for this example throws an error for points with norm larger than 2.

```matlab
function f = makeanerror(x)
f = x.x1 - x.x2 - sqrt(4-x.x1^2-x.x2^2);

fun = @makeanerror;
Create the variables for optimization.
var1 = optimizableVariable('x1',[-5,5]);
var2 = optimizableVariable('x2',[-5,5]);
vars = [var1,var2];
```
Run the optimization without any plots. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function. Optimize for 60 iterations so the error model becomes well-trained.

```matlab
rng default
results = bayesopt(fun,vars,'MaxObjectiveEvaluations',60,...
    'AcquisitionFunctionName','expected-improvement-plus',...  
    'PlotFcn',[],'Verbose',0);
```

Plot the error model and the best objective trace.

```matlab
plot(results,@plotConstraintModels,@plotMinObjective)
```
Probability of feasibility
Error model
Input Arguments

results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

plotFcn — Plot function
function handle

Plot function, specified as a function handle.
There are several built-in plot functions:

<table>
<thead>
<tr>
<th>Model Plots — Apply When D ≤ 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@plotAcquisitionFunction</td>
<td>Plot the acquisition function surface.</td>
</tr>
</tbody>
</table>
| @plotConstraintModels | Plot each constraint model surface. Negative values indicate feasible points.

Also plot a \(P(\text{feasible}) \) surface.

Also plot the error model, if it exists, which ranges from –1 to 1. Negative values mean that the model probably does not error; positive values mean that it probably does error. The model is:

Plotted error = 2*Probability(error) - 1. |
@plotObjectiveEvaluation	Plot the objective function evaluation time model surface.
TimeModel	Plot the \(\text{fun} \) model surface, the estimated location of the minimum, and the location of the next proposed point to evaluate. For one-dimensional problems, plot envelopes one credible interval above and below the mean function, and envelopes one noise standard deviation above and below the mean.
@plotObjectiveModel	

<table>
<thead>
<tr>
<th>Trace Plots — Apply to All D</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@plotObjective</td>
<td>Plot each observed function value versus the number of function evaluations.</td>
</tr>
<tr>
<td>@plotObjectiveEvaluation</td>
<td>Plot each observed function evaluation run time versus the number of function evaluations.</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>@plotMinObjective</td>
<td>Plot the minimum observed and estimated function values versus the number of function evaluations.</td>
</tr>
<tr>
<td>@plotElapsedTime</td>
<td>Plot three curves: the total elapsed time of the optimization, the total function evaluation time, and the total modeling and point selection time, all versus the number of function evaluations.</td>
</tr>
</tbody>
</table>
You can include a handle to your own plot functions. For details, see “Bayesian Optimization Plot Functions” on page 10-14.

Example: @plotObjective

Data Types: function_handle

Alternative Functionality

You can specify plot functions in the `bayesopt` `PlotFcn` name-value pair. This allows you to monitor the progress of the optimization.

See Also

BayesianOptimization | bayesopt

Introduced in R2016b
plotDiagnostics

Class: GeneralizedLinearModel

Plot diagnostics of generalized linear regression model

Syntax

```matlab
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
[h] = plotDiagnostics(...)
[h] = plotDiagnostics(mdl,plottype,Name,Value)
```

Description

`plotDiagnostics(mdl)` plots diagnostics from the `mdl` linear model using leverage as the plot type.

`plotDiagnostics(mdl,plottype)` plots diagnostics from the `mdl` generalized linear model in a plot of type `plottype`.

`[h] = plotDiagnostics(...)` returns handles to the lines in the plot.

`[h] = plotDiagnostics(mdl,plottype,Name,Value)` plots with additional options specified by one or more `Name,Value` pair arguments.

Input Arguments

- **mdl**
 Generalized linear model, as constructed by `fitglm` or `stepwiseglm`.

- **plottype**
 Character vector or string scalar specifying the type of plot:
Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Note The plot property name-value pairs apply to the first returned handle `h(1)`.

Color

Color of the line or marker, a `ColorSpec` specification. For details, see `linespec`.

LineStyle

Type of line, a Chart Line specification. For details, see `linespec`.

LineWidth

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

Default: 0.5

MarkerEdgeColor

Color of the marker or edge color for filled markers, a `ColorSpec` specification. For details, see `linespec`.

MarkerFaceColor

Color of the marker face for filled markers, a `ColorSpec` specification. For details, see `linespec`.

Table

<table>
<thead>
<tr>
<th>Contour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'contour'</td>
<td>Residual vs. leverage with overlayed Cook's contours</td>
</tr>
<tr>
<td>'cookd'</td>
<td>Cook's distance</td>
</tr>
<tr>
<td>'leverage'</td>
<td>Leverage (diagonal of Hat matrix)</td>
</tr>
</tbody>
</table>

Default: 'leverage'
MarkerSize
Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h
Vector of handles to lines or patches in the plot.

Examples

Diagnostic Plots for Generalized Linear Models
Create leverage and Cook's distance plots of a fitted generalized linear model.

Generate artificial data for the model, Poisson random numbers with two underlying predictors $X(1)$ and $X(2)$.

```matlab
rng default % for reproducibility
rndvars = randn(100,2);
X = [2+ rndvars(:,1), rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.
```
mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');
```

Create a leverage plot.
```
plotDiagnostics(mdl)
```
Create a contour plot with Cook's distance.

plotDiagnostics(mdl,'contour')
Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and a diagonal weight matrix W:

$$H = X(X^T WX)^{-1} X^T W^T.$$

W has diagonal elements w_i:

32-4797
\[w_i = \frac{g'(\mu_i)}{\sqrt{V(\mu_i)}}, \]

where

- \(g \) is the link function mapping \(y_i \) to \(x_i b \).
- \(g' \) is the derivative of the link function \(g \).
- \(V \) is the variance function.
- \(\mu_i \) is the \(i \)th mean.

The diagonal elements \(H_{ii} \) satisfy

\[
0 \leq h_{ii} \leq 1
\]

\[
\sum_{i=1}^{n} h_{ii} = p,
\]

where \(n \) is the number of observations (rows of \(X \)), and \(p \) is the number of coefficients in the regression model.

Leverage

The leverage of observation \(i \) is the value of the \(i \)th diagonal term, \(h_{ii} \), of the hat matrix \(H \). Because the sum of the leverage values is \(p \) (the number of coefficients in the regression model), an observation \(i \) can be considered to be an outlier if its leverage substantially exceeds \(p/n \), where \(n \) is the number of observations.

Cook’s Distance

The Cook’s distance \(D_i \) of observation \(i \) is

\[
D_i = w_i \frac{e_i^2}{p \Phi} \frac{h_{ii}}{(1 - h_{ii})^2},
\]

where

\[w_i = \frac{g'(\mu_i)}{\sqrt{V(\mu_i)}}, \]
• \(\hat{\phi} \) is the dispersion parameter (estimated or theoretical).
• \(e_i \) is the linear predictor residual, \(g(y_i) - x_i \hat{\beta} \), where
 • \(g \) is the link function.
 • \(y_i \) is the observed response.
 • \(x_i \) is the observation.
 • \(\hat{\beta} \) is the estimated coefficient vector.
• \(p \) is the number of coefficients in the regression model.
• \(h_{ii} \) is the 1\(^{\text{st}} \) diagonal element of the Hat Matrix on page 32-2744 \(H \).

Tips

• For many plots, the Data Cursor tool in the figure window displays the \(x \) and \(y \) values for any data point, along with the observation name or number.

References

See Also

GeneralizedLinearModel

Topics

“Diagnostic Plots” on page 12-25
“Generalized Linear Models” on page 12-12
plotDiagnostics

Class: LinearModel

Plot diagnostics of linear regression model

Syntax

plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
h = plotDiagnostics(__)
h = plotDiagnostics(mdl,plottype,Name,Value)

Description

plotDiagnostics(mdl) plots diagnostics from the mdl linear model using the leverage values.

plotDiagnostics(mdl,plottype) plots diagnostics in a plot of type plottype.

h = plotDiagnostics(__) returns handles to the lines in the plot, using any of the previous syntaxes.

h = plotDiagnostics(mdl,plottype,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.
plotDiagnostics

plottype — Type of plot
'leverage' (default) | 'contour' | 'cookd' | 'covratio' | 'dfbetas' | 'dffits' | 's2_i'

Type of plot, specified as one of the following:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'contour'</td>
<td>Residual vs. leverage with overlayed Cook's contours</td>
</tr>
<tr>
<td>'cookd'</td>
<td>Cook's distance</td>
</tr>
<tr>
<td>'covratio'</td>
<td>Delete-1 ratio of determinant of covariance</td>
</tr>
<tr>
<td>'dfbetas'</td>
<td>Scaled delete-1 coefficient estimates</td>
</tr>
<tr>
<td>'dffits'</td>
<td>Scaled delete-1 fitted values</td>
</tr>
<tr>
<td>'leverage'</td>
<td>Leverage</td>
</tr>
<tr>
<td>'s2_i'</td>
<td>Delete-1 variance estimate</td>
</tr>
</tbody>
</table>

Delete-1 means compute a new model without the current observation. If the delete-1 calculation differs significantly from the model using all observations, then the observation is influential.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

Color — Color of line or marker
ColorSpec specification

Color of the line or marker, specified as the comma-separated pair consisting of 'Color' and a ColorSpec specification. For details, see linespec.

LineStyle — Line style
Chart Line Properties specification
Line style, specified as the comma-separated pair consisting of 'LineStyle' and a Chart Line specification. For details, see linespec.

LineWidth — Width of line or edges
0.5 (default) | positive numeric value

Width of the line or edges of filled area, in points, specified as the comma-separated pair consisting of 'LineWidth' and a positive numeric value. One point is equal to 1/72 inch.

MarkerEdgeColor — Color of marker or edge
ColorSpec specification

Color of the marker or edge color for filled markers, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and a ColorSpec specification. For details, see linespec.

MarkerFaceColor — Color of marker face
ColorSpec specification

Color of the marker face for filled markers, specified as the comma-separated pair consisting of 'MarkerFaceColor' and a ColorSpec specification. For details, see linespec.

MarkerSize — Size of marker
positive numeric value

Size of the marker in points, specified as the comma-separated pair consisting of 'MarkerSize' and a positive numeric value. One point is 1/72 inch.

Output Arguments

h — Graphics handles
vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.

Examples
Leverage Plot of Linear Model

Plot the leverage values of observations in a fitted model.

Load the `carsmall` data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```

Plot the leverage values.

```matlab
plotDiagnostics(mdl)
```
Plot the Cook's distance.

```matlab
plotDiagnostics(mdl, 'cookd')
```

The two diagnostic plots give different results.

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X:
\(H = X(X^TX)^{-1}X^T. \)

The diagonal elements \(h_{ii} \) satisfy

\[
0 \leq h_{ii} \leq 1
\]

\[
\sum_{i=1}^{n} h_{ii} = p,
\]

where \(n \) is the number of observations (rows of \(X \)), and \(p \) is the number of coefficients in the regression model.

Leverage

The leverage of observation \(i \) is the value of the \(i \)th diagonal term, \(h_{ii} \), of the hat matrix \(H \). Because the sum of the leverage values is \(p \) (the number of coefficients in the regression model), an observation \(i \) can be considered to be an outlier if its leverage substantially exceeds \(p/n \), where \(n \) is the number of observations.

Cook’s Distance

Cook’s distance is the scaled change in fitted values. Each element in \(\text{CooksDistance} \) is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook’s distance, \(D_i \), of observation \(i \) is

\[
D_i = \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(i)})^2}{p \text{ MSE}},
\]

where

- \(\hat{y}_j \) is the \(j \)th fitted response value.
- \(\hat{y}_{j(i)} \) is the \(j \)th fitted response value, where the fit does not include observation \(i \).
- MSE is the mean squared error.
- \(p \) is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:
\[D_i = \frac{r_i^2}{p \text{MSE} \left(\frac{h_{ii}}{1-h_{ii}} \right)^2}, \]

where \(r_i \) is the \(i \)th residual, and \(h_{ii} \) is the \(i \)th leverage value.

CooksDistance is an \(n \)-by-1 column vector in the Diagnostics table of the LinearModel object.

Tips

- For many plots, the Data Cursor tool in the figure window displays the \(x \) and \(y \) values for any data point, along with the observation name or number.

Alternatives

The mdl.Diagnostics property contains the information that plotDiagnostics uses to create plots.

References

See Also

LinearModel

Topics

“Diagnostic Plots” on page 11-22
“Linear Regression” on page 11-11
plotDiagnostics

Class: NonLinearModel

Plot diagnostics of nonlinear regression model

Syntax

plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
h = plotDiagnostics(...)
h = plotDiagnostics(mdl,plottype,Name,Value)

Description

plotDiagnostics(mdl) plots diagnostics from the mdl linear model using leverage as the plot type.

plotDiagnostics(mdl,plottype) plots diagnostics in a plot of type plottype.

h = plotDiagnostics(...) returns handles to the lines in the plot.

h = plotDiagnostics(mdl,plottype,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

plottype

Character vector or string scalar specifying the type of plot:
'contour'	Residual vs. leverage with overlayed Cook's contours
'cookd'	Cook's distance
'leverage'	Leverage (diagonal of Hat matrix)

Default: 'leverage'

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Note The plot property name-value pairs apply to the first returned handle `h(1)`.

Color

Color of the line or marker, a **ColorSpec** specification. For details, see `linespec`.

LineStyle

Type of line, a Chart Line specification. For details, see `linespec`.

LineWidth

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

Default: 0.5

MarkerEdgeColor

Color of the marker or edge color for filled markers, a **ColorSpec** specification. For details, see `linespec`.

MarkerFaceColor

Color of the marker face for filled markers, a **ColorSpec** specification. For details, see `linespec`.
MarkerSize

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Nonlinear Model Leverage Plot

Create a leverage plot of a fitted nonlinear model, and find the points with high leverage.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

```matlab
load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);
```

Create a leverage plot of the fitted model.

```matlab
plotDiagnostics(mdl)
```
Use data tips to examine the observation with high leverage. A data tip appears when you hover over a data point.
Alternatively, find the high-leverage observation at the command line.

```plaintext
find(mdl.Diagnostics.Leverage > 0.8)
```
Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

$$J_{i,j} = \left. \frac{\partial f}{\partial \beta_j} \right|_{x_i, \beta}$$

Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is

$$H = J(J^TJ)^{-1}J^T.$$

The diagonal elements H_{ii} satisfy

$$0 \leq h_{ii} \leq 1$$

$$\sum_{i=1}^{n} h_{ii} = p,$$

where n is the number of observations (rows of X), and p is the number of coefficients in the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, h_{ii}, of the hat matrix H. Because the sum of the leverage values is p (the number of coefficients in the regression model), an observation i can be considered to be an outlier if its leverage substantially exceeds p/n, where n is the number of observations.
Cook’s Distance

The Cook’s distance D_i of observation i is

$$D_i = \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(i)})^2}{p \cdot MSE},$$

where

- \hat{y}_j is the jth fitted response value.
- $\hat{y}_{j(i)}$ is the jth fitted response value, where the fit does not include observation i.
- MSE is the mean squared error.
- p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

$$D_i = \frac{r_i^2}{p \cdot MSE} \left(\frac{h_{ii}}{(1-h_{ii})^2} \right),$$

where e_i is the ith residual.

Tips

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.

References

See Also
NonLinearModel | plotResiduals

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-7
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
plotEffects

Class: CompactLinearModel

Plot main effects of each predictor in linear regression model

Syntax

plotEffects(mdl)

h = plotEffects(mdl)

Description

plotEffects(mdl) produces an effects plot for the predictors in the mdl regression model. The plot shows the estimated effect on the response from changing each predictor value, averaging out the effects of the other predictors. plotEffects chooses values to produce a relatively large effect on the response.

h = plotEffects(mdl) returns handles to the lines in the plot.

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

Output Arguments

h — Graphics handles
vector of graphics handles
Graphics handles to lines or patches in plot, returned as a vector of graphics handles.
\(h(1) \) is a handle to the circles that represent the main effect estimates.
\(h(j+1) \) is a handle to the line that defines the confidence interval for the effect of predictor \(j \).

Examples

Effects Plot for Fitted Linear Regression Model

Plot the effects of two predictors in a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');
```

Create an effects plot.

```matlab
plotEffects(mdl)
```
The width of each horizontal line in the figure shows a confidence interval for the effect on the response of the listed change in each predictor. The estimated effect of changing Year from 70 to 82 is an increase of about 8, and is between 6 and 10 with 95% confidence.

Tips

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.
Alternatives

Use plotInteraction for an effects plot of the interactions of two specified variables.

See Also
CompactLinearModel | LinearModel | plotAdjustedResponse | plotInteraction

Topics
“Plots to Understand Predictor Effects” on page 11-29
“Linear Regression” on page 11-11
plotInteraction

Class: CompactLinearModel

Plot interaction effects of two predictors in linear regression model

Syntax

```
plotInteraction(mdl,var1,var2)
pplotInteraction(mdl,var1,var2,ptype)
h = plotInteraction(__)
```

Description

`plotInteraction(mdl,var1,var2)` creates a plot of the interaction effects of the predictors `var1` and `var2` in `mdl`. The plot shows the estimated effect on the response from changing each predictor value, averaging out the effects of the other predictors. The plot also shows the estimated effect with the other predictor fixed at certain values. `plotInteraction` chooses values to produce a relatively large effect on the response. The plot lets you examine whether the effect of one predictor depends on the value of the other predictor.

`plotInteraction(mdl,var1,var2,ptype)` returns a plot of the type specified in `ptype`.

```
h = plotInteraction(__)```
returns handles to the lines in the plot, using any of the previous syntaxes.

**Input Arguments**

- **mdl** — Linear model object
  
  Linear model object, specified as a full `LinearModel` object constructed using `fitlm` or `stepwiselm`, or a compacted `CompactLinearModel` object constructed using `compact`.
var1 — First variable for plot
variable name

First variable for plot, specified as a variable name. plotInteraction chooses values of var1 to create relatively large changes in the response. If you set ptype equal to 'predictions', then the plot shows curves as a function of var2 with various fixed values of var1.

Data Types: char | string

var2 — Second variable for plot
variable name

Second variable for plot, specified as a variable name. plotInteraction chooses values of var2 to create relatively large changes in the response. If you set ptype equal to 'predictions', then the plot shows curves as a function of var2 with various fixed values of var1.

Data Types: char | string

ptype — Plot type
'effects' (default) | 'predictions'

Plot type, specified as one of the following.

• 'effects' — The plot shows each effect as a circle, with a horizontal bar showing the confidence interval for the estimated effect. plotInteraction computes the effect values from the adjusted response curve, as shown by the plotAdjustedResponse function.
• 'predictions' — The plot shows the adjusted response curve as a function of var2, with var1 fixed at certain values.

Output Arguments

h — Graphics handles
vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.
Examples

Interaction Plot for Linear Regression Model

Create a model of car mileage as a function of weight and model year. Then create a plot to see if the predictors have interactions.

Create a linear model of mileage from the carsmall data.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
var1 = 'Year';
var2 = 'Weight';
mdl = fitlm(tbl,'MPG ~ Year * Weight^2');

Create an interaction plot.
plotInteraction(mdl,var1,var2)
```
The plot might show an interaction, because the groups of points are not perfectly vertical. But the error bars seem large enough that a vertical line could pass within all of the confidence intervals for each group, possibly indicating no interaction.

**Prediction Curve Interaction Plot for Linear Model**

Create a model of car mileage as a function of weight and model year. Then create an interaction curve plot to see if the predictors have interactions.

Create a linear model of mileage from the carsmall data.
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
var1 = 'Year';
var2 = 'Weight';
mdl = fitlm(tbl,'MPG ~ Year * Weight^2');

Create an interaction plot with type 'predictions'.

plotInteraction(mdl,var1,var2,'predictions')

The curves are not parallel. This indicates interactions between the predictors. The effect is subtle enough not to definitively indicate a interaction.
Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.

Alternatives

Use plotEffects for an effects plot showing separate effects for all predictors.

See Also

CompactLinearModel | LinearModel | plotAdjustedResponse | plotEffects

Topics

“Plots to Understand Predictor Effects” on page 11-29
“Linear Regression” on page 11-11
plotprofile

Class: RepeatedMeasuresModel
Plot expected marginal means with optional grouping

Syntax

plotprofile(rm,X)
plotprofile(rm,Name,Value)
H = plotprofile(__)

Description

plotprofile(rm,X) plots the expected marginal means computed from the repeated measures model rm as a function of the variable X.

plotprofile(rm,Name,Value) plots the expected marginal means computed from the repeated measures model rm with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the factors to group by or change the line colors.

H = plotprofile(__) returns handles, H, to the plotted lines.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object
Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

X — Name of between-subjects or within-subjects factor
count scalar
Name of a between-subjects or within-subjects factor, specified as a character vector or string scalar.

For example, if you want to plot the marginal means as a function of the groups of a between-subjects variable drug, you can specify it as follows.

Example: 'Drug'

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Group — Name of between-subject factor or factors
character vector | string array | cell array of character vectors

Name of between-subject factor or factors, specified as the comma-separated pair consisting of 'Group' and a character vector, string array, or cell array of character vectors. This name-value pair argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to group the lines in the plot according to them, you can specify these factors as follows.

Example: 'Group', {'Drug', 'Sex'}

Data Types: char | string | cell

Marker — Marker to use for each group
string array | cell array of character vectors

Marker to use for each group, specified as the comma-separated pair consisting of 'Marker' and a string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify o as the marker for the groups of drug and x as the marker for the groups of sex as follows.

Example: 'Marker', {'o', 'o', 'x', 'x'}

Data Types: string | cell
Color — Color for each group
character vector | string array | cell array of character vectors | rows of a three-column RGB matrix

Color for each group, specified as the comma-separated pair consisting of 'Color' and a character vector, string array, cell array of character vectors, or rows of a three-column RGB matrix.

For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify red as the color for the groups of drug and blue as the color for the groups of sex as follows.

Example: 'Color','rrbb'

Data Types: single | double | char | string | cell

LineStyle — Line style for each group
string array | cell array of character vectors

Line style for each group, specified as the comma-separated pair consisting of 'LineStyle' and a string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups, you can specify - as the line style of one group and : as the line style for the other group as follows.

Example: 'LineStyle',{-' ':' '-' ':'}

Data Types: string | cell

Output Arguments

H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples
Plot Expected Marginal Means

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{"species","meas1","meas2","meas3","meas4"});
Meas = dataset([1 2 3 4],{'VarNames',{"Measurements"}});

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform data grouped by the factor species.

plotprofile(rm,'species')
The estimated marginal means seem to differ with group. You can compute the standard error and the 95% confidence intervals for the marginal means using the `margmean` method.

**Plot Marginal Means for Two Groups**

Load the sample data.

```
load repeatedmeas
```
The table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures y1 through y8 as responses. The table within includes the within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
rm = fitrm(between, 'y1-y8 ~ Group*Gender + Age + IQ', 'WithinDesign', within);
```

Plot the estimated marginal means based on the factors Group and Gender.

```matlab
ax1 = subplot(1,2,1);
plotprofile(rm, 'Group')
ax2 = subplot(1,2,2);
plotprofile(rm, 'Gender')
linkaxes([ax1 ax2], 'y')
```
Plot the estimated marginal means based on the factor Group and grouped by Gender.

```matlab
figure()
plotprofile(rm, 'Group', 'Group', 'Gender')
```
See Also

fitrm | margmean | plot
plotResiduals

**Class:** GeneralizedLinearModel

Plot residuals of generalized linear regression model

**Syntax**

plotResiduals(mdl)
plotResiduals(mdl,plottype)

h = plotResiduals(...)

h = plotResiduals(mdl,plottype,Name,Value)

**Description**

plotResiduals(mdl) gives a histogram plot of the residuals of the mdl nonlinear model.

plotResiduals(mdl,plottype) plots residuals in a plot of type plottype.

h = plotResiduals(...) returns handles to the lines in the plot.

h = plotResiduals(mdl,plottype,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.

**Input Arguments**

**mdl**

Generalized linear model, as constructed by fitglm or stepwiseglm.

**plottype**

Character vector or string scalar specifying the type of plot:
<table>
<thead>
<tr>
<th>'caseorder'</th>
<th>Residuals vs. case (row) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>'fitted'</td>
<td>Residuals vs. fitted values</td>
</tr>
<tr>
<td>'histogram'</td>
<td>Histogram</td>
</tr>
<tr>
<td>'lagged'</td>
<td>Residuals vs. lagged residual (r(t) vs. r(t-1))</td>
</tr>
<tr>
<td>'probability'</td>
<td>Normal probability plot</td>
</tr>
<tr>
<td>'symmetry'</td>
<td>Symmetry plot</td>
</tr>
</tbody>
</table>

**Default:** 'histogram'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

**Note** The plot property name-value pairs apply to the first returned handle h(1).

**Color**

Color of the line or marker, a ColorSpec specification. For details, see linespec.

**LineStyle**

Type of line, a Chart Line specification. For details, see linespec.

**LineWidth**

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

**Default:** 0.5

**MarkerEdgeColor**

Color of the marker or edge color for filled markers, a ColorSpec specification. For details, see linespec.
**MarkerFaceColor**

Color of the marker face for filled markers, a ColorSpec specification. For details, see `linespec`.

**MarkerSize**

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

**ResidualType**

Type of residual used in the plot.

<table>
<thead>
<tr>
<th>ResidualType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Raw'</td>
<td>Observed minus fitted values</td>
</tr>
<tr>
<td>'LinearPredictor'</td>
<td>Residuals on the linear predictor scale, equal to the adjusted response</td>
</tr>
<tr>
<td></td>
<td>value minus the fitted linear combination of the predictors</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>Raw residuals divided by RMSE</td>
</tr>
<tr>
<td>'Anscombe'</td>
<td>Residuals defined on transformed data with the transformation chosen to</td>
</tr>
<tr>
<td></td>
<td>remove skewness</td>
</tr>
<tr>
<td>'Deviance'</td>
<td>Residuals based on the contribution of each observation to the deviance</td>
</tr>
</tbody>
</table>

**Default:** 'Raw'

**Output Arguments**

**h**

Vector of handles to lines or patches in the plot.

**Examples**

**Residual Plots for Generalized Linear Models**

Create residual plots of a fitted generalized linear model.
Generate artificial data for the model, Poisson random numbers with two underlying predictors $X(1)$ and $X(2)$.

```matlab
rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');
```

Create a default residuals plot.

```matlab
plotResiduals(mdl)
```
Create a probability plot. The residuals do not match a normal distribution in the tails because they are more spread out.

plotResiduals(mdl,'probability')
Create a plot of the fitted residuals of Anscombe type.

plotResiduals(mdl,'fitted','ResidualType','Anscombe')
Definitions

Deviance

Deviance is twice the log likelihood of the model. Because this overall log likelihood is a sum of log likelihoods for each observation, the residual plot of deviance type shows the log likelihood per observation.
**Tips**

- For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number.

**See Also**

GeneralizedLinearModel

**Topics**

“Residuals — Model Quality for Training Data” on page 12-27
“Generalized Linear Models” on page 12-12
plotResiduals

Class: GeneralizedLinearMixedModel
Plot residuals of generalized linear mixed-effects model

Syntax

plotResiduals(glme,plottype)
plotResiduals(glme,plottype,Name,Value)

h = plotResiduals(___)

Description

plotResiduals(glme,plottype) plots the raw conditional residuals of the
generalized linear mixed-effects model glme in a plot of the type specified by plottype.

plotResiduals(glme,plottype,Name,Value) plots the conditional residuals of
glm in a plot using additional options specified by one or more Name,Value pair arguments. For
example, you can specify to plot the Pearson residuals.

h = plotResiduals(___ ) returns a handle, h, to the lines or patches in the plot of
residuals.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

plottype — Type of residual plot
'histogram' (default)| 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'
Type of residual plot, specified as one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'histogram'</td>
<td>Histogram of residuals</td>
</tr>
<tr>
<td>'caseorder'</td>
<td>Residuals versus case order. Case order is the same as the row order used in the input data tbl when fitting the model using fitglme.</td>
</tr>
<tr>
<td>'fitted'</td>
<td>Residuals versus fitted values</td>
</tr>
<tr>
<td>'lagged'</td>
<td>Residuals versus lagged residual ($r(t)$ versus $r(t - 1)$)</td>
</tr>
<tr>
<td>'probability'</td>
<td>Normal probability plot</td>
</tr>
<tr>
<td>'symmetry'</td>
<td>Symmetry plot</td>
</tr>
</tbody>
</table>

Example: plotResiduals(glme,'lagged')

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**ResidualType — Residual type**

'raw' (default) | 'Pearson'

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the following.

<table>
<thead>
<tr>
<th>Residual Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'raw'</td>
<td>$r_{ci} = y_i - g^{-1}(x_i^T \hat{\beta} + z_i^T \hat{\delta})$</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>$r_{ci}^{\text{Pearson}} = \frac{r_{ci}}{\sqrt{\frac{\hat{\sigma}^2}{w_i} \left[ \nu_i \left( \mu_i \left( \hat{\beta}, \hat{\delta} \right) \right) \right]}}$</td>
</tr>
</tbody>
</table>
In each of these equations:

- \( y_i \) is the \( i \)th element of the \( n \)-by-1 response vector, \( y \), where \( i = 1, \ldots, n \).
- \( g^{-1} \) is the inverse link function for the model.
- \( x_i^T \) is the \( i \)th row of the fixed-effects design matrix \( X \).
- \( z_i^T \) is the \( i \)th row of the random-effects design matrix \( Z \).
- \( \delta_i \) is the \( i \)th offset value.
- \( \sigma^2 \) is the dispersion parameter.
- \( w_i \) is the \( i \)th observation weight.
- \( \nu_i \) is the variance term for the \( i \)th observation.
- \( \mu_i \) is the mean of the response for the \( i \)th observation.
- \( \hat{\beta} \) and \( \hat{b} \) are estimated values of \( \beta \) and \( b \).

Raw residuals from a generalized linear mixed-effects model have nonconstant variance. Pearson residuals are expected to have an approximately constant variance, and are generally used for analysis.

Example: 'ResidualType', 'Pearson'

### Output Arguments

**h** — Handle to residual plot

*graphics object*

Handle to the residual plot, returned as a graphics object. You can use dot notation to change certain property values of the object, including face color for a histogram, and marker style and color for a scatterplot. For more information, see “Access Property Values” (MATLAB).

### Examples

#### Create Plots of Residuals

Load the sample data.
This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[ \log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_{\text{dev},ij} + \beta_3 \text{temp}_{\text{dev},ij} + \beta_4 \text{supplier}_{C,ij} + \beta_5 \text{supplier}_{B,ij} + b_i, \]

where
• \( \text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).

• \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1,2,\ldots,20 \)) during batch \( j \) (where \( j = 1,2,\ldots,5 \)).

• newprocess\(_{ij} \), time_dev\(_{ij} \), and temp_dev\(_{ij} \) are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, newprocess\(_{ij} \) indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.

• supplier\(_{Cij} \) and supplier\(_{Bij} \) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).

• \( b_i \sim N(0,\sigma^2_b) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

\[
\text{glme} = \text{fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')}
\]

Create diagnostic plots using Pearson residuals to test the model assumptions.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0. If the model is correct, we expect the Pearson residuals to be centered at 0.

\[
\text{plotResiduals(glme,'histogram','ResidualType','Pearson')}
\]
The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among the residuals (heteroscedasticity). We expect the conditional Pearson residuals to have a constant variance. Therefore, a plot of conditional Pearson residuals versus conditional fitted values should not reveal any systematic dependence on the conditional fitted values.

plotResiduals(glme,'fitted','ResidualType','Pearson')
The plot does not show a systematic dependence on the fitted values, so there are no signs of nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among the residuals. The conditional independence assumption in GLME implies that the conditional Pearson residuals are approximately uncorrelated.

plotResiduals(glme,'lagged','ResidualType','Pearson')
There is no pattern to the plot, so there are no signs of correlation among the residuals.

**See Also**

GeneralizedLinearMixedModel | fitglme | fitted | plot | residuals
plotResiduals

Class: LinearModel
Plot residuals of linear regression model

Syntax

plotResiduals(mdl)
plotResiduals(mdl,plottype)
h = plotResiduals(__)
h = plotResiduals(mdl,plottype,Name,Value)

Description

plotResiduals(mdl) gives a histogram plot of the residuals of the mdl linear model.

plotResiduals(mdl,plottype) plots residuals in a plot of type plottype.

h = plotResiduals(__) returns handles to the lines in the plot, using any of the previous syntaxes.

h = plotResiduals(mdl,plottype,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.

plottype — Plot type
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'
Plot type, specified as one of the following:

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'caseorder'</td>
<td>Residuals vs. case (row) order</td>
</tr>
<tr>
<td>'fitted'</td>
<td>Residuals vs. fitted values</td>
</tr>
<tr>
<td>'histogram'</td>
<td>Histogram</td>
</tr>
<tr>
<td>'lagged'</td>
<td>Residuals vs. lagged residual ($r(t)$ vs. $r(t-1)$)</td>
</tr>
<tr>
<td>'probability'</td>
<td>Normal probability plot</td>
</tr>
<tr>
<td>'symmetry'</td>
<td>Symmetry plot</td>
</tr>
</tbody>
</table>

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Note** The plot property name-value pairs apply to the first returned handle `h(1)`.

#### Color — Color of line or marker

ColorSpec specification

Color of the line or marker, specified as the comma-separated pair consisting of 'Color' and a ColorSpec specification. For details, see `linespec`.

#### LineStyle — Line style

Chart Line Properties specification

Line style, specified as the comma-separated pair consisting of 'LineStyle' and a Chart Line specification. For details, see `linespec`.

####LineWidth — Width of line or edges

0.5 (default) | positive numeric value

Width of the line or edges of filled area, in points, specified as the comma-separated pair consisting of 'LineWidth' and a positive numeric value. One point is equal to 1/72 inch.

#### MarkerEdgeColor — Color of marker or edge

ColorSpec specification
Color of the marker or edge color for filled markers, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and a ColorSpec specification. For details, see linespec.

**MarkerFaceColor — Color of marker face**

ColorSpec specification

Color of the marker face for filled markers, specified as the comma-separated pair consisting of 'MarkerFaceColor' and a ColorSpec specification. For details, see linespec.

**MarkerSize — Size of marker**

positive numeric value

Size of the marker in points, specified as the comma-separated pair consisting of 'MarkerSize' and a positive numeric value. One point is 1/72 inch.

**ResidualType — Residual type**

'raw' (default) | 'pearson' | 'standardized' | 'studentized'

Type of residual used in the plot, specified as the comma-separated pair consisting of 'ResidualType' and one of the following:

<table>
<thead>
<tr>
<th>ResidualType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'raw'</td>
<td>Observed minus fitted values</td>
</tr>
<tr>
<td>'pearson'</td>
<td>Raw residuals divided by RMSE</td>
</tr>
<tr>
<td>'standardized'</td>
<td>Raw residuals divided by their estimated standard deviation</td>
</tr>
<tr>
<td>'studentized'</td>
<td>Raw residuals divided by an independent (delete-1) estimate of their standard deviation</td>
</tr>
</tbody>
</table>

**Output Arguments**

**h — Graphics handles**

vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.
Examples

Histogram of Linear Model Residuals

Plot a histogram of the residuals of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Plot the raw residuals.

plotResiduals(mdl)
```
Normal Probability Plot of Linear Model Residuals

Create a normal probability plot of the residuals of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
X = [Weight,Model_Year];
mdl = fitlm(X,MPG,...
 'y ~ x2 + x1^2','Categorical',2);
```
Create a normal probability plot of the residuals of the fitted model.

```matlab
plotResiduals(mdl,'probability')
```

**Tips**

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.
Alternatives

The mdl.Residuals table contains the information in residual plots.

See Also
LinearModel | plotDiagnostics

Topics
“Residuals — Model Quality for Training Data” on page 11-24
“Linear Regression Workflow” on page 11-43
“Compare large and small stepwise models” on page 11-126
“Robust Regression versus Standard Least-Squares Fit” on page 11-132
plotResiduals

Class: LinearMixedModel

Plot residuals of linear mixed-effects model

Syntax

plotResiduals(lme,plottype)
plotResiduals(lme,plottype,Name,Value)

h = plotResiduals(__)

Description

plotResiduals(lme,plottype) plots the raw conditional residuals of the linear mixed-effects model lme in a plot of the type specified by plottype.

plotResiduals(lme,plottype,Name,Value) also plots the residuals of the linear mixed-effects model lme with additional options specified by one or more name-value pair arguments. For example, you can specify the residual type to plot.

plotResiduals also accepts some other name-value pair arguments that specify the properties of the primary line in the plot. For those name-value pairs, see plot.

h = plotResiduals(__) returns a handle, h, to the lines or patches in the plot of residuals.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.
plotResiduals — Type of residual plot

| 'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry' |

Type of residual plot, specified as one of the following.

- `'histogram'`: Default. Histogram of residuals
- `'caseorder'`: Residuals versus case (row) order
- `'fitted'`: Residuals versus fitted values
- `'lagged'`: Residuals versus lagged residual ($r(t)$ versus $r(t-1)$)
- `'probability'`: Normal probability plot
- `'symmetry'`: Symmetry plot

Example: `plotResiduals(lme,'lagged')`

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ResidualType — Residual type

| 'Raw' (default) | 'Pearson' | 'Standardized' |

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the following.

<table>
<thead>
<tr>
<th>Residual Type</th>
<th>Conditional</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Raw'</td>
<td>$r_i^C = \left[ y - X\hat{\beta} - Zb \right]_i$</td>
<td>$r_i^M = \left[ y - X\hat{\beta} \right]_i$</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>$pr_i^C = \frac{r_i^C}{\sqrt{\text{Var}_{y,b} \left( y - X\beta - Zb \right)_i}}$</td>
<td>$pr_i^M = \frac{r_i^M}{\sqrt{\text{Var}_{y} \left( y - X\beta \right)_i}}$</td>
</tr>
</tbody>
</table>
Residual Type | Conditional | Marginal
---|---|---
'Standardized' | $s_{t}^{C} = \frac{r_{i}^{C}}{\sqrt{\text{Var}(r^{C})_{ii}}}$ | $s_{t}^{M} = \frac{r_{i}^{M}}{\sqrt{\text{Var}(r^{M})_{ii}}}$

For more information on the conditional and marginal residuals and residual variances, see Definitions at the end of this page.

Example: 'ResidualType','Standardized'

### Output Arguments

**h — Handle to residual plot**

`handle`

Handle to the residual plot, returned as a handle.

### Examples

#### Examine Residuals

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'))
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.

```matlab
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Plot the histogram of the raw residuals.
plotResiduals(lme)

Plot the residuals versus the fitted values.
figure();
plotResiduals(lme,'fitted')
There is no obvious pattern, so there are no immediate signs of heteroscedasticity.

Create the normal probability plot of residuals.

```plaintext
figure();
plotResiduals(lme,'probability')
```
Data appears to be normal.

Find the observation number for the data that appears to be an outlier to the right of the plot.

```matlab
find(residuals(lme)>0.25)
```

```matlab
ans =
 101
```

Create a box plot of the raw, Pearson, and standardized residuals.

32-4861
\[ r = \text{residuals(lme)}; \]
\[ \text{pr} = \text{residuals(lme,'ResidualType','Pearson')}; \]
\[ \text{st} = \text{residuals(lme,'ResidualType','Standardized')}; \]
\[ X = [r \ \text{pr} \ \text{st}]; \]
\[ \text{boxplot}(X,'labels',\{'\text{Raw}',\'\text{Pearson}',\'\text{Standardized}'\}); \]

All three box plots point out the outlier on the right tail of the distribution. The box plots of raw and Pearson residuals also point out a second possible outlier on the left tail. Find the corresponding observation number.

\[ \text{find(pr<-2)} \]

\[ \text{ans =} \]

[32-4862]
Plot the raw residuals versus lagged residuals.

```matlab
plotResiduals(lme, 'lagged')
```

There is no obvious pattern in the graph. The residuals do not appear to be correlated.

**See Also**

`LinearMixedModel`, `fitted`, `residuals`
**plotResiduals**

**Class:** NonLinearModel

Plot residuals of nonlinear regression model

**Syntax**

```matlab
plotResiduals(mdl)
plotResiduals(mdl,plottype)
```

```
h = plotResiduals(...)
h = plotResiduals(mdl,plottype,Name,Value)
```

**Description**

`plotResiduals(mdl)` gives a histogram plot of the residuals of the `mdl` nonlinear model.

`plotResiduals(mdl,plottype)` plots residuals in a plot of type `plottype`.

```
h = plotResiduals(...) returns handles to the lines in the plot.
```

```
h = plotResiduals(mdl,plottype,Name,Value) plots with additional options specified by one or more Name,Value pair arguments.
```

**Input Arguments**

- **mdl**
  Nonlinear regression model, constructed by `fitnlm`.

- **plottype**
  Character vector or string scalar specifying the type of plot:
<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'caseorder'</td>
<td>Residuals vs. case (row) order</td>
</tr>
<tr>
<td>'fitted'</td>
<td>Residuals vs. fitted values</td>
</tr>
<tr>
<td>'histogram'</td>
<td>Histogram</td>
</tr>
<tr>
<td>'lagged'</td>
<td>Residuals vs. lagged residual (rt vs. r(t-1))</td>
</tr>
<tr>
<td>'probability'</td>
<td>Normal probability plot</td>
</tr>
<tr>
<td>'symmetry'</td>
<td>Symmetry plot</td>
</tr>
</tbody>
</table>

**Default:** 'histogram'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Note** The plot property name-value pairs apply to the first returned handle `h(1)`.

**Color**

Color of the line or marker, a `ColorSpec` specification. For details, see `linespec`.

**LineStyle**

Type of line, a Chart Line specification. For details, see `linespec`.

**LineWidth**

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

**Default:** 0.5

**MarkerEdgeColor**

Color of the marker or edge color for filled markers, a `ColorSpec` specification. For details, see `linespec`. 
MarkerFaceColor

Color of the marker face for filled markers, a ColorSpec specification. For details, see linespec.

MarkerSize

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

ResidualType

Type of residual used in the plot:

<table>
<thead>
<tr>
<th>ResidualType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Raw'</td>
<td>Observed minus fitted values</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>Raw residuals divided by RMSE</td>
</tr>
<tr>
<td>'Standardized'</td>
<td>Raw residuals divided by their estimated standard deviation</td>
</tr>
<tr>
<td>'Studentized'</td>
<td>Raw residuals divided by an independent (delete-1) estimate of their standard deviation</td>
</tr>
</tbody>
</table>

Default: 'Raw'

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Residual Plot

Plot the residuals of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);
Plot the residuals of the fitted model.

```matlab
plotResiduals(mdl)
```

**Residual Probability Plot**

Create a normal probability plot of the residuals of a fitted nonlinear model.

Load the `reaction` data and fit a model of the reaction rate as a function of reactants.

```matlab
load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);
```
Create a normal probability plot of the residuals of the fitted model.

```matlab
plotResiduals(mdl,'probability')
```

**Tips**

- For many plots, the Data Cursor tool in the figure window displays the x and y values for any data point, along with the observation name or number.
See Also
NonLinearModel | plotDiagnostics

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-7
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
plotSlice

Plot of slices through fitted generalized linear regression surface

Syntax

plotSlice(mdl)

h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a slice through the regression surface predicted by mdl. For each plot, the surface slice is shown as a function of a single predictor variable, with the other predictor variables held constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Input Arguments

mdl

Generalized linear model, specified as a full GeneralizedLinearModel object constructed using fitglm or stepwiseglm, or a compacted CompactGeneralizedLinearModel object constructed using compact.

Output Arguments

h

Vector of handles to lines or patches in the plot.
Examples

Slice Plot of Generalized Linear Regression Model

Create a slice plot of a Poisson generalized linear model.

Generate artificial data for the model using Poisson random numbers with two underlying predictors $X(1)$ and $X(2)$.

```matlab
rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');
```

Create the slice plot.

```matlab
plotSlice(mdl)
```

Drag the $x_1$ prediction line to the right and view the changes in the prediction and the response curve for the $x_2$ predictor.
Tips

- If there are more than eight predictors, plotSlice selects the first five for plotting. Use the Predictors menu to control which predictors are plotted.
- The Bounds menu lets you choose between simultaneous or non-simultaneous bounds, and between bounds on the function or bounds on a new observation.

See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | predict

Topics
“Diagnostic Plots” on page 12-25
“Plots to Understand Predictor Effects and How to Modify a Model” on page 12-30
“Generalized Linear Models” on page 12-12
plotSlice

Class: CompactLinearModel

Plot of slices through fitted linear regression surface

Syntax

plotSlice(mdl)
h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a slice through the regression surface predicted by mdl. For each plot, the surface slice is shown as a function of a single predictor variable, with the other predictor variables held constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

Output Arguments

h — Graphics handles
vector of graphics handle objects

Graphics handles, returned as a vector of graphics handles corresponding to the lines or patches in the plot.
Examples

Slice Plot for Linear Regression Model

Plot the slices through a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a slice plot.

plotSlice(mdl)
```

Drag the Weight prediction line to the right and observe the change in the predicted MPG and the response curve for Year.
Tips

• If there are more than eight predictors, `plotSlice` selects the first five for plotting. Use the **Predictors** menu to control which predictors are plotted.
• The **Bounds** menu lets you choose between simultaneous or non-simultaneous bounds, and between bounds on the function or bounds on a new observation.

See Also

`CompactLinearModel` | `LinearModel` | `predict`

Topics

“Plots to Understand Predictor Effects” on page 11-29
“Linear Regression” on page 11-11
plotSlice

Class: NonLinearModel

Plot of slices through fitted nonlinear regression surface

Syntax

plotSlice(mdl)

h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a slice through the regression surface predicted by mdl. For each plot, the surface slice is shown as a function of a single predictor variable, with the other predictor variables held constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Output Arguments

h

Vector of handles to lines or patches in the plot.
Examples

Slice Plot

Plot slices of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

```matlab
load reaction
mdl = fitnlm(reactants,...
 rate,@hougen,[1 .05 .02 .1 2]);
```

Create a slice plot

```matlab
plotSlice(mdl)
```

Drag the X1 prediction line to the right, and observe the change in the predicted response y and in the predicted response curves to X2 and X3.
Tips

- If there are more than eight predictors, plotSlice selects the first five for plotting. Use the Predictors menu to control which predictors are plotted.
- The Bounds menu lets you choose between simultaneous or non-simultaneous bounds, and between bounds on the function or bounds on a new observation.

See Also
NonLinearModel | predict

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-7
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
**plsregress**

Partial least-squares regression

**Syntax**

```matlab
[XL,YL] = plsregress(X,Y,ncomp)
[XL,YL,XS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA] = plsregress(X,Y,ncomp,...)
[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(...,
param1,val1,param2,val2,...)
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress(X,Y,ncomp,...)
```

**Description**

[XL,YL] = plsregress(X,Y,ncomp) computes a partial least-squares (PLS) regression of Y on X, using ncomp PLS components, and returns the predictor and response loadings in XL and YL, respectively. X is an n-by-p matrix of predictor variables, with rows corresponding to observations and columns to variables. Y is an n-by-m response matrix. XL is a p-by-ncomp matrix of predictor loadings, where each row contains coefficients that define a linear combination of PLS components that approximate the original predictor variables. YL is an m-by-ncomp matrix of response loadings, where each row contains coefficients that define a linear combination of PLS components that approximate the original response variables.

[XL,YL,XS] = plsregress(X,Y,ncomp) returns the predictor scores XS, that is, the PLS components that are linear combinations of the variables in X. XS is an n-by-ncomp orthonormal matrix with rows corresponding to observations and columns to components.

[XL,YL,XS,YS] = plsregress(X,Y,ncomp) returns the response scores YS, that is, the linear combinations of the responses with which the PLS components XS have maximum covariance. YS is an n-by-ncomp matrix with rows corresponding to observations and columns to components. YS is neither orthogonal nor normalized.
The `plsregress` function uses the SIMPLS algorithm, first centering X and Y by subtracting off column means to get centered variables $X_0$ and $Y_0$. However, it does not rescale the columns. To perform PLS with standardized variables, use `zscore` to normalize X and Y.

If `ncomp` is omitted, its default value is $\min(\text{size}(X,1)-1,\text{size}(X,2))$.

The relationships between the scores, loadings, and centered variables $X_0$ and $Y_0$ are:

$$XL = (XS'X_0)' = X_0'*XS,$$

$$YL = (XS'Y_0)' = Y_0'*XS,$$

$XL$ and $YL$ are the coefficients from regressing $X_0$ and $Y_0$ on $XS$, and $XS*XL'$ and $XS*YL'$ are the PLS approximations to $X_0$ and $Y_0$.

`plsregress` initially computes $YS$ as:

$$YS = Y_0*YL = Y_0*Y_0'*XS,$$

By convention, however, `plsregress` then orthogonalizes each column of $YS$ with respect to preceding columns of $XS$, so that $XS'*YS$ is lower triangular.

$$[XL,YL,XS,YS,BETA] = plsregress(X,Y,ncomp,...)$$

returns the PLS regression coefficients $BETA$. $BETA$ is a $(p+1)$-by-$m$ matrix, containing intercept terms in the first row:

$$Y = [\text{ones}(n,1),X]*BETA + Y\text{residuals},$$

$$Y_0 = X_0*BETA(2:end,:)+Y\text{residuals}.$$ Here $Y\text{residuals}$ is the vector of response residuals.

$$[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp)$$

returns a 2-by-$ncomp$ matrix $PCTVAR$ containing the percentage of variance explained by the model. The first row of $PCTVAR$ contains the percentage of variance explained in $X$ by each PLS component, and the second row contains the percentage of variance explained in $Y$.

$$[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp)$$

returns a 2-by-($ncomp+1$) matrix $MSE$ containing estimated mean-squared errors for PLS models with $0:ncomp$ components. The first row of $MSE$ contains mean-squared errors for the predictor variables in $X$, and the second row contains mean-squared errors for the response variable(s) in $Y$. 
[XL, YL, XS, YS, BETA, PCTVAR, MSE] = 
plsregress(..., param1, val1, param2, val2, ...) specifies optional parameter name/value pairs from the following table to control the calculation of MSE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cv'</td>
<td>The method used to compute MSE.</td>
</tr>
<tr>
<td></td>
<td>• When the value is a positive integer k, plsregress uses k-fold cross-validation.</td>
</tr>
<tr>
<td></td>
<td>• When the value is an object of the cvpartition on page 32-1169 class, other forms of cross-validation can be specified.</td>
</tr>
<tr>
<td></td>
<td>• When the value is 'resubstitution', plsregress uses X and Y both to fit the model and to estimate the mean-squared errors, without cross-validation.</td>
</tr>
<tr>
<td></td>
<td>The default is 'resubstitution'.</td>
</tr>
<tr>
<td>'mcreps'</td>
<td>A positive integer indicating the number of Monte-Carlo repetitions for cross-validation. The default value is 1. The value must be 1 if the value of 'cv' is 'resubstitution'.</td>
</tr>
<tr>
<td>options</td>
<td>A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with statset. Option fields:</td>
</tr>
<tr>
<td></td>
<td>• UseParallel — Set to true to compute in parallel. Default is false.</td>
</tr>
<tr>
<td></td>
<td>• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.</td>
</tr>
<tr>
<td></td>
<td>• Streams — A RandStream object or cell array consisting of one such object. If you do not specify Streams, plsregress uses the default stream.</td>
</tr>
</tbody>
</table>

To compute in parallel, you need Parallel Computing Toolbox.

[XL, YL, XS, YS, BETA, PCTVAR, MSE, stats] = plsregress(X, Y, ncomp, ...) returns a structure stats with the following fields:

- W — A p-by-ncomp matrix of PLS weights so that XS = X0*W.
- T2 — The $T^2$ statistic for each point in XS.
- Xresiduals — The predictor residuals, that is, $X0 - XS * XL'$.
- Yresiduals — The response residuals, that is, $Y0 - XS * YL'$.
Examples

Perform Partial Least-Squares Regression

Load data on near infrared (NIR) spectral intensities of 60 samples of gasoline at 401 wavelengths, and their octane ratings.

```matlab
load spectra
X = NIR;
y = octane;

Perform PLS regression with ten components.

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

Plot the percent of variance explained in the response variable as a function of the number of components.

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');
```
Compute the fitted response and display the residuals.

```matlab
yfit = [ones(size(X,1),1) X]*beta;
residuals = y - yfit;
stem(residuals)
xlabel('Observation');
ylabel('Residual');
```
References


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
regress | sequentialfs

Introduced in R2008a
**PointOrder property**

**Class:** sobolset

Point generation method

**Description**

The `PointOrder` property contains a character vector that specifies the order in which the Sobol sequence points are produced. The property value must be one of 'standard' or 'graycode'. When set to 'standard' the points produced match the original Sobol sequence implementation. When set to 'graycode', the sequence is generated using an implementation that uses the Gray code of the index instead of the index itself.

You can specify `PointOrder` as a character vector or string scalar using dot notation: `P.PointOrder = newPointOrder`. 
PointSet property

Class: qrandstream

Point set from which stream is drawn

Description

The PointSet property contains a copy of the point set from which the stream is providing points. The point set is specified during construction of a quasi-random stream and cannot subsequently be altered.

Examples

Q = qrandstream('sobol', 5, 'Skip', 8);
% Create a new stream based on the same sequence as that in Q
Q2 = qrandstream(Q.PointSet);
u1 = qrand(Q, 10)
u2 = qrand(Q2, 10) % contains exactly the same values as u1
poisscdf

Poisson cumulative distribution function

Syntax

\[ p = \text{poisscdf}(x, \lambda) \]
\[ p = \text{poisscdf}(x, \lambda, '\text{upper}') \]

Description

\[ p = \text{poisscdf}(x, \lambda) \] returns the Poisson cdf at each value in \( x \) using the corresponding mean parameters in \( \lambda \). \( x \) and \( \lambda \) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in \( \lambda \) must be positive.

\[ p = \text{poisscdf}(x, \lambda, '\text{upper}') \] returns the complement of the Poisson cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The Poisson cdf is

\[ p = F(x \mid \lambda) = e^{-\lambda} \sum_{i=0}^{\text{floor}(x)} \frac{\lambda^i}{i!} \]

Examples

Compute Poisson Distribution cdf

For example, consider a Quality Assurance department that performs random tests of individual hard disks. Their policy is to shut down the manufacturing process if an
inspector finds more than four bad sectors on a disk. What is the probability of shutting down the process if the mean number of bad sectors (\( \lambda \)) is two?

\[
\text{probability} = 1 - \text{poisscdf}(4, 2)
\]

\[
\text{probability} = 0.0527
\]

About 5% of the time, a normally functioning manufacturing process produces more than four flaws on a hard disk.

Suppose the average number of flaws (\( \lambda \)) increases to four. What is the probability of finding fewer than five flaws on a hard drive?

\[
\text{probability} = \text{poisscdf}(4, 4)
\]

\[
\text{probability} = 0.6288
\]

This means that this faulty manufacturing process continues to operate after this first inspection almost 63% of the time.

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
cdf | poissfit | poissinv | poisspdf | poissrnd | poisstat
Topics
“Poisson Distribution” on page B-137

Introduced before R2006a
poissfit

Poisson parameter estimates

Syntax

\[
\text{lambdahat} = \text{poissfit(data)} \\
[\text{lambdahat, lambdaci}] = \text{poissfit(data)} \\
[\text{lambdahat, lambdaci}] = \text{poissfit(data, alpha)}
\]

Description

\[
\text{lambdahat} = \text{poissfit(data)} \text{ returns the maximum likelihood estimate (MLE) of the} \\
\text{parameter of the Poisson distribution, } \lambda, \text{ given the data } \text{data}.
\]

\[
[\text{lambdahat, lambdaci}] = \text{poissfit(data)} \text{ also gives 95\% confidence intervals in} \\
\text{lambdaci}.
\]

\[
[\text{lambdahat, lambdaci}] = \text{poissfit(data, alpha)} \text{ gives } 100(1 - \alpha)\% \\
\text{confidence intervals. For example } \alpha = 0.001 \text{ yields 99.9\% confidence intervals}.
\]

The sample mean is the MLE of \( \lambda \).

\[
\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

Examples

\[
r = \text{poissrnd}(5,10,2); \\
[l, lci] = \text{poissfit(r)}
\]

\[
l =
\begin{array}{cc}
7.4000 & 6.3000 \\
\end{array}
\]

\[
lci =
\begin{array}{cc}
5.8000 & 4.8000 \\
9.1000 & 7.9000 \\
\end{array}
\]
See Also
mle | poisscdf | poissinv | poisspdf | poissrnd | poisstat

Topics
"Poisson Distribution" on page B-137

Introduced before R2006a
poissinv

Poisson inverse cumulative distribution function

Syntax

X = poissinv(P,lambda)

Description

X = poissinv(P,lambda) returns the smallest value X such that the Poisson cdf evaluated at X equals or exceeds P, using mean parameters in lambda. P and lambda can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input.

Examples

If the average number of defects (λ) is two, what is the 95th percentile of the number of defects?

```matlab
poissinv(0.95,2)
an5 =
 5
```

What is the median number of defects?

```matlab
median_defects = poissinv(0.50,2)
median_defects =
 2
```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
icdf | poisscdf | poissfit | poisspdf | poissrnd | poisstat

Topics
“Poisson Distribution” on page B-137

Introduced before R2006a
poisspdf

Poisson probability density function

Syntax

Y = poisspdf(X,lambda)

Description

Y = poisspdf(X,lambda) computes the Poisson pdf at each of the values in X using mean parameters in lambda. X and lambda can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in lambda must all be positive.

The Poisson pdf is

\[ f(x | \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}; x = 0, 1, 2, \ldots, \infty. \]

The density function is zero unless x is an integer.

Examples

A computer hard disk manufacturer has observed that flaws occur randomly in the manufacturing process at the average rate of two flaws in a 4 GB hard disk and has found this rate to be acceptable. What is the probability that a disk will be manufactured with no defects?

In this problem, \( \lambda = 2 \) and \( x = 0 \).

\[
\begin{align*}
p &= \text{poisspdf}(0,2) \\
p &= 0.1353
\end{align*}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
pdf | poisscdf | poissfit | poissinv | poissrnd | poisstat

Topics
“Poisson Distribution” on page B-137

Introduced before R2006a
**poissrnd**

Poisson random numbers

**Syntax**

\[
R = \text{poissrnd}(\lambda)
R = \text{poissrnd}(\lambda,m,n,...)
R = \text{poissrnd}(\lambda,[m,n,...])
\]

**Description**

\( R = \text{poissrnd}(\lambda) \) generates random numbers from the Poisson distribution with mean parameter \( \lambda \). \( \lambda \) can be a vector, a matrix, or a multidimensional array. The size of \( R \) is the size of \( \lambda \).

\( R = \text{poissrnd}(\lambda,m,n,...) \) or \( R = \text{poissrnd}(\lambda,[m,n,...]) \) generates an \( m \)-by-\( n \)-by-\( ... \) array. The \( \lambda \) parameter can be a scalar or an array of the same size as \( R \).

**Examples**

Generate a random sample of 10 pseudo-observations from a Poisson distribution with \( \lambda = 2 \).

\[
\text{lambda} = 2;
\]

\[
\text{random_sample1} = \text{poissrnd}(
\text{lambda},1,10)
\]
\[
\text{random_sample1} =
\begin{bmatrix}
1 & 0 & 1 & 2 & 1 & 3 & 4 & 2 & 0 & 0
\end{bmatrix}
\]

\[
\text{random_sample2} = \text{poissrnd}(\text{lambda},[1 10])
\]
\[
\text{random_sample2} =
\begin{bmatrix}
1 & 1 & 1 & 5 & 0 & 3 & 2 & 2 & 3 & 4
\end{bmatrix}
\]

\[
\text{random_sample3} = \text{poissrnd}(\text{lambda(ones(1,10)))}
\]
random_sample3 =
3 2 1 1 0 0 4 0 2 0

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
poisscdf | poissfit | poissinv | poisspdf | poisstat | random

Topics
“Poisson Distribution” on page B-137

Introduced before R2006a
poisstat

Poisson mean and variance

Syntax

M = poisstat(lambda)
[M,V] = poisstat(lambda)

Description

M = poisstat(lambda) returns the mean of the Poisson distribution using mean parameters in lambda. The size of M is the size of lambda.

[M,V] = poisstat(lambda) also returns the variance V of the Poisson distribution.

For the Poisson distribution with parameter \( \lambda \), both the mean and variance are equal to \( \lambda \).

Examples

Find the mean and variance for the Poisson distribution with \( \lambda = 2 \).

\[
[M,V] = poisstat([1 2; 3 4])
\]

\[
M =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]

\[
V =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
poisscdf | poissfit | poissinv | poisspdf | poissrnd

Topics
“Poisson Distribution” on page B-137

Introduced before R2006a
polyconf

Polynomial confidence intervals

Syntax

Y = polyconf(p,X)
[Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)

Description

Y = polyconf(p,X) evaluates the polynomial p at the values in X. p is a vector of coefficients in descending powers.

[Y,DELTA] = polyconf(p,X,S) takes outputs p and S from polyfit and generates 95% prediction intervals Y ± DELTA for new observations at the values in X.

[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...) specifies optional parameter name/value pairs chosen from the following list.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'alpha'</td>
<td>A value between 0 and 1 specifying a confidence level of 100*(1-alpha)%. The default is 0.05.</td>
</tr>
<tr>
<td>'mu'</td>
<td>A two-element vector containing centering and scaling parameters. With this option, polyconf uses (X-mu(1))/mu(2) in place of X.</td>
</tr>
<tr>
<td>'predopt'</td>
<td>Either 'observation' (the default) to compute prediction intervals for new observations at the values in X, or 'curve' to compute confidence intervals for the fit evaluated at the values in X. See below.</td>
</tr>
<tr>
<td>'simopt'</td>
<td>Either 'off' (the default) for nonsimultaneous bounds, or 'on' for simultaneous bounds. See below.</td>
</tr>
</tbody>
</table>

The 'predopt' and 'simopt' parameters can be understood in terms of the following functions:
- \( p(x) \) — the unknown mean function estimated by the fit
- \( l(x) \) — the lower confidence bound
- \( u(x) \) — the upper confidence bound

Suppose you make a new observation \( y_{n+1} \) at \( x_{n+1} \), so that

\[
y_{n+1}(x_{n+1}) = p(x_{n+1}) + \varepsilon_{n+1}
\]

By default, the interval \([l_{n+1}(x_{n+1}), u_{n+1}(x_{n+1})]\) is a 95% confidence bound on \( y_{n+1}(x_{n+1}) \).

The following combinations of the 'predopt' and 'simopt' parameters allow you to specify other bounds.

<table>
<thead>
<tr>
<th>'simopt'</th>
<th>'predopt'</th>
<th>Bounded Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>'off'</td>
<td>'observation'</td>
<td>( y_{n+1}(x_{n+1}) ) (default)</td>
</tr>
<tr>
<td>'off'</td>
<td>'curve'</td>
<td>( p(x_{n+1}) )</td>
</tr>
<tr>
<td>'on'</td>
<td>'observation'</td>
<td>( y_{n+1}(x) ), for all ( x )</td>
</tr>
<tr>
<td>'on'</td>
<td>'curve'</td>
<td>( p(x) ), for all ( x )</td>
</tr>
</tbody>
</table>

In general, 'observation' intervals are wider than 'curve' intervals, because of the additional uncertainty of predicting a new response value (the curve plus random errors). Likewise, simultaneous intervals are wider than nonsimultaneous intervals, because of the additional uncertainty of bounding values for all predictors \( x \).
Examples

This example uses code from the documentation example function `polydemo`, and calls the documentation example function `polystr` to convert the coefficient vector `p` into text for the polynomial expression displayed in the figure title. It combines the functions `polyfit`, `polyval`, `roots`, and `polyconf` to produce a formatted display of data with a polynomial fit.

**Note** Statistics and Machine Learning Toolbox documentation example files are located in the `\help\toolbox\stats\examples` subdirectory of your MATLAB root folder.
Display simulated data with a quadratic trend, a fitted quadratic polynomial, and 95% prediction intervals for new observations:

```matlab
xdata = -5:5;
ydata = xdata.^2 - 5*xdata - 3 + 5*randn(size(xdata));
degree = 2; % Degree of the fit
alpha = 0.05; % Significance level

% Compute the fit and return the structure used by % POLYCONF.
[p,S] = polyfit(xdata,ydata,degree);

% Compute the real roots and determine the extent of the % data.
r = roots(p)'; % Roots as a row vector.
real_r = r(imag(r) == 0); % Real roots.

% Assure that the data are row vectors.
xdata = reshape(xdata,1,length(xdata));
ydata = reshape(ydata,1,length(ydata));

% Extent of the data.
mx = min([real_r,xdata]);
Mx = max([real_r,xdata]);
my = min([ydata,0]);
My = max([ydata,0]);

% Scale factors for plotting.
sx = 0.05*(Mx-mx);
sy = 0.05*(My-my);

% Plot the data, the fit, and the roots.
hdata = plot(xdata,ydata,'md','MarkerSize',5,...
 'LineWidth',2);
hold on
xfit = mx-sx:0.01:Mx+sx;
yfit = polyval(p,xfit);
hfit = plot(xfit,yfit,'b-','LineWidth',2);
```
hroots = plot(real_r,zeros(size(real_r)),...
    'bo','MarkerSize',5,...
    'LineWidth',2,...
    'MarkerFaceColor','b');
grid on
plot(xfit,zeros(size(xfit)),'k-','LineWidth',2)
axis([mx-sx Mx+sx my-sy My+sy])

% Add prediction intervals to the plot.
[Y,DELTA] = polyconf(p,xfit,S,'alpha',alpha);
hconf = plot(xfit,Y+DELTA,'b--');
plot(xfit,Y-DELTA,'b--')

% Display the polynomial fit and the real roots.
approx_p = round(100*p)/100;  % Round for display.
htitle = title(['\bf Fit:  ',
    texlabel(polystr(approx_p))]);
set(htitle,'Color','b')
approx_real_r = round(100*real_r)/100;  % Round for display.
hxlabel = xlabel(['\bf Real Roots:     ',
    num2str(approx_real_r)]);
set(hxlabel,'Color','b')

% Add a legend.
legend([hdata,hfit,hroots,hconf],...
    'Data','Fit','Real Roots of Fit',...
    '95% Prediction Intervals')
See Also
polyfit | polytool | polyval

Introduced before R2006a
polytool

Interactive polynomial fitting

Syntax

polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)  

Description

polytool(x,y) fits a line to the vectors x and y and displays an interactive plot of the result in a graphical interface. You can use the interface to explore the effects of changing the parameters of the fit and to export fit results to the workspace.

polytool(x,y,n) initially fits a polynomial of degree n. The default is 1, which produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence intervals on the predicted values. The default is 0.05 which results in 95% confidence intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the graphical interface using xname and yname. Specify n and alpha as [] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects in the plot. The handles are returned in the degree: data, fit, lower bounds, upper bounds.

Examples

Interactive polynomial fitting

This example shows how to start an interactive fitting session with polytool.
Generate data from a quadratic curve with added noise.

```matlab
generating('default') % for reproducibility
x = -5:5;
y = x.^2 - 5*x - 3 + 5*randn(size(x));
```

Fit a quadratic (degree-2) model with \(0.90\) confidence intervals.

```matlab
n = 2;
alpha = 0.1;
polytool(x,y,n,alpha)
```

**See Also**
invpred | polyconf | polyfit | polyval

**Introduced before R2006a**
posterior

Posterior probability of Gaussian mixture component

Syntax

\[ P = \text{posterior}(gm, X) \]
\[ [P, n\text{logL}] = \text{posterior}(gm, X) \]

Description

\( P = \text{posterior}(gm, X) \) returns the posterior probability of each Gaussian mixture component in \( gm \) given each observation in \( X \).

\[ [P, n\text{logL}] = \text{posterior}(gm, X) \] also returns the negative loglikelihood of the Gaussian mixture model \( gm \) given the data \( X \).

Examples

Compute Posterior Probabilities

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the \text{mvnrnd} function. Fit a Gaussian mixture model (GMM) to the generated data by using the \text{fitgmdist} function, and then compute the posterior probabilities of the mixture components.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture components.

\[
\begin{align*}
\text{mu1} &= [2 \ 2]; & \% \text{Mean of the 1st component} \\
\text{sigma1} &= [2 \ 0; \ 0 \ 1]; & \% \text{Covariance of the 1st component} \\
\text{mu2} &= [-2 \ -1]; & \% \text{Mean of the 2nd component} \\
\text{sigma2} &= [1 \ 0; \ 0 \ 1]; & \% \text{Covariance of the 2nd component}
\end{align*}
\]
Generate an equal number of random variates from each component, and combine the
two sets of random variates.

```matlab
rng('default') % For reproducibility
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];
```

The combined data set \( X \) contains random variates following a mixture of two bivariate
Gaussian distributions.

Fit a two-component GMM to \( X \).

```matlab
gm = fitgmdist(X,2)
gm =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500765
Mean: -1.9675 -0.9654

Component 2:
Mixing proportion: 0.499235
Mean: 1.9657 2.0342
```

Plot \( X \) by using `scatter`. Visualize the fitted model \( gm \) by using `pdf` and `ezcontour`.

```matlab
figure
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-6 8],[-4 6])
c1 = colorbar;
ylabel(c1,'Probability Density Function')
```
Compute the posterior probabilities of the components.

\[ P = \text{posterior}(gm,X); \]

\[ P(i,j) \] is the posterior probability of the \( j \)th Gaussian mixture component given observation \( i \).

Plot the posterior probabilities of Component 1 by using the `scatter` function. Use the circle colors to visualize the posterior probability values.

```matlab
figure
scatter(X(:,1),X(:,2),10,P(:,1))
c2 = colorbar;
ylabel(c2,'Posterior Probability of Component 1')
```
Plot the posterior probabilities of Component 2.

```matlab
figure
scatter(X(:,1),X(:,2),10,P(:,2))
c3 = colorbar;
ylabel(c3,'Posterior Probability of Component 2')
```
## Input Arguments

**gm — Gaussian mixture distribution**

`gmdistribution` object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a `gmdistribution` object.

You can create a `gmdistribution` object using `gmdistribution` or `fitgmdist`. Use the `gmdistribution` function to create a `gmdistribution` object by specifying the
distribution parameters. Use the `fitgmdist` function to fit a `gmdistribution` model to data given a fixed number of components.

**X — Data**
n-by-m numeric matrix

Data, specified as an n-by-m numeric matrix, where n is the number of observations and m is the number of variables in each observation.

If a row of X contains NaNs, then posterior excludes the row from the computation. The corresponding value in P is NaN.

Data Types: `single` | `double`

### Output Arguments

**P — Posterior probability**
n-by-k numeric vector

Posterior probability of each Gaussian mixture component in gm given each observation in X, returned as an n-by-k numeric vector, where n is the number of observations in X and k is the number of mixture components in gm.

P(i,j) is the posterior probability of the jth Gaussian mixture component given observation i, `Probability(component j | observation i)`.

**nlogL — Negative loglikelihood**
numeric value

Negative loglikelihood value of the Gaussian mixture model gm given the data X, returned as a numeric value.

### See Also

`cluster` | `fitgmdist` | `gmdistribution` | `mahal`

### Topics

“Gaussian Mixture Models” on page 5-145
“Cluster Using Gaussian Mixture Models” on page 16-29
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 16-38
“Cluster Gaussian Mixture Data Using Soft Clustering” on page 16-48

Introduced in R2007b
**postFitStatistics**

**Class:** RegressionGP

Compute post-fit statistics for the exact Gaussian process regression model

**Syntax**

```matlab
loores = postFitStatistics(gprMdl)
[loores,neff] = postFitStatistics(gprMdl)
```

**Description**

`loores = postFitStatistics(gprMdl)` returns the leave-one-out residuals, `loores`, for the trained Gaussian process regression (GPR) model.

`[loores,neff] = postFitStatistics(gprMdl)` also returns the number of effective parameters, `neff`.

**Input Arguments**

`gprMdl` — Gaussian process regression model
RegressionGP object

Gaussian process regression model, specified as a RegressionGP object.

**Output Arguments**

`loores` — Leave-one-out residuals
n-by-1 matrix

Leave-one-out residuals, returned as an n-by-1 matrix, where n is the number of observations in the training data.
**neff — Number of effective parameters**

*n*-by-1 matrix

Number of effective parameters, returned as an *n*-by-1 matrix, where *n* is the number of observations in the training data.

## Examples

### Compute Post-Fit Statistics

Generate sample data.

```matlab
rng(0,'twister'); % For reproducibility
n = 1500;
x = linspace(-10,10,n);
y = sin(3*x).*cos(3*x) + sin(2*x).*cos(2*x) + sin(x) + cos(x) + 0.2*randn(n,1);
```

Fit a GPR model using the exact method for fitting and prediction.

```matlab
gprMdl = fitrgp(x,y,'Basis','linear','FitMethod','exact',
'PredictMethod','exact','KernelFunction','matern52');
```

Compute the leave-one-out residuals and the effective number of parameters in the trained model.

```matlab
[loores,neff] = postFitStatistics(gprMdl);
```

Predict the responses using the trained model.

```matlab
ypred = resubPredict(gprMdl);
```

Plot the true and predicted responses, and display effective number of parameters in the fit.

```matlab
figure()
plot(x,y,'r.');
hold on;
plot(x,ypred,'b');
xlabel('x');
ylabel('y');
legend('Data','GPR prediction','Location','Best');
```
effective number of parameters = 94.7514

Plot leave-one-out residuals.

figure()
plot(x,loores,'r.-');
xlabel('x');
ylabel('leave-one-out residuals');
**Tips**

- You can only compute the post-fit statistics when `PredictMethod` is 'exact'.
- If `FitMethod` is 'exact', then `postFitStatistics` accounts for the fact that the fixed basis function coefficients are estimated from the data.
- If `FitMethod` is different than 'exact', then `postFitStatistics` treats the fixed basis function coefficients as known.
- For all `PredictMethod` and `FitMethod` options, `postFitStatistics` treats the estimated kernel parameters and noise standard deviation as known.
See Also
RegressionGP | fitrgp

Introduced in R2015b
prctile

Percentiles of a data set

Syntax

Y = prctile(X,p)
Y = prctile(X,p,'all')
Y = prctile(X,p,dim)
Y = prctile(X,p,vecdim)
Y = prctile(___, 'Method', method)

Description

Y = prctile(X,p) returns percentiles of the elements in a data vector or array X for
the percentages p in the interval [0,100].

• If X is a vector, then Y is a scalar or a vector with the same length as the number of
  percentiles requested (length(p)). Y(i) contains the p(i) percentile.
• If X is a matrix, then Y is a row vector or a matrix, where the number of rows of Y is
equal to the number of percentiles requested (length(p)). The ith row of Y contains
  the p(i) percentiles of each column of X.
• For multidimensional arrays on page 32-4932, prctile operates along the first
  nonsingleton dimension on page 32-4933 of X.

Y = prctile(X,p,'all') returns percentiles of all the elements of X.

Y = prctile(X,p,dim) returns percentiles along the operating dimension dim.

Y = prctile(X,p,vecdim) returns percentiles over the dimensions specified in the
vector vecdim. For example, if X is a matrix, then prctile(X,50,[1 2]) returns the
50th percentile of all the elements of X because every element of a matrix is contained in
the array slice defined by dimensions 1 and 2.

Y = prctile(___, 'Method', method) returns either exact or approximate
percentiles based on the value of method, using any of the input argument combinations
in the previous syntaxes.
Examples

Percentiles of a Data Vector

Generate a data set of size 10.

```matlab
rng('default'); % for reproducibility
x = normrnd(5,2,1,10)
```

```
x = 1×10
6.0753 8.6678 0.4823 6.7243 5.6375 2.3846 4.1328 5.6852 12.1568 10.5389
```

Calculate the 42nd percentile.

```matlab
Y = prctile(x,42)
```

```
Y = 5.6709
```

Percentiles of All Values

Find the percentiles of all the values in an array.

Create a 3-by-5-by-2 array `X`.

```matlab
X = reshape(1:30,[3 5 2])
```

```
X =
X(:,:,1) =
 1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15
X(:,:,2) =
 16 19 22 25 28
 17 20 23 26 29
```
Find the 40th and 60th percentiles of the elements of $X$.

$Y = \text{prctile}(X,[40\ 60], 'all')$

$Y = \begin{bmatrix} 12.5000 \\ 18.5000 \end{bmatrix}$

$Y(1)$ is the 40th percentile of $X$, and $Y(2)$ is the 60th percentile of $X$.

**Percentiles of a Data Matrix**

Calculate the percentiles along the columns and rows of a data matrix for specified percentages.

Generate a 5-by-5 data matrix.

$X = (1:5)'*(2:6)$

$X = \begin{bmatrix} 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 8 & 10 & 12 \\ 6 & 9 & 12 & 15 & 18 \\ 8 & 12 & 16 & 20 & 24 \\ 10 & 15 & 20 & 25 & 30 \end{bmatrix}$

Calculate the 25th, 50th, and 75th percentiles along the columns of $X$.

$Y = \text{prctile}(X,[25\ 50\ 75],1)$

The rows of \( Y \) correspond to the percentiles of columns of \( X \). For example, the 25th, 50th, and 75th percentiles of the third column of \( X \) with elements (4, 8, 12, 16, 20) are 7, 12, and 17, respectively. \( Y = \text{prctile}(X, [25 \ 50 \ 75]) \) returns the same percentile matrix.

Calculate the 25th, 50th, and 75th percentiles along the rows of \( X \).

\[
Y = \text{prctile}(X, [25 \ 50 \ 75], 2)
\]

\[
Y = \begin{bmatrix}
2.7500 & 4.0000 & 5.2500 \\
5.5000 & 8.0000 & 10.5000 \\
8.2500 & 12.0000 & 15.7500 \\
11.0000 & 16.0000 & 21.0000 \\
13.7500 & 20.0000 & 26.2500
\end{bmatrix}
\]

The rows of \( Y \) correspond to the percentiles of rows of \( X \). For example, the 25th, 50th, and 75th percentiles of the first row of \( X \) with elements (2, 3, 4, 5, 6) are 2.75, 4, and 5.25, respectively.

**Percentiles of Multidimensional Array**

Find the percentiles of a multidimensional array along multiple dimensions simultaneously.

Create a 3-by-5-by-2 array \( X \).

\[
X = \text{reshape}(1:30, [3 \ 5 \ 2])
\]

\[
X = \begin{bmatrix}
1 & 4 & 7 & 10 & 13 \\
2 & 5 & 8 & 11 & 14 \\
3 & 6 & 9 & 12 & 15 \\
16 & 19 & 22 & 25 & 28 \\
17 & 20 & 23 & 26 & 29
\end{bmatrix}
\]
Calculate the 40th and 60th percentiles for each page of X by specifying dimensions 1 and 2 as the operating dimensions.

\[
Y_{\text{page}} = \text{prctile}(X, [40 \ 60], [1 \ 2])
\]

\[
Y_{\text{page}} =
\]

\[
Y_{\text{page}}(:,:,1) =
\]

\[
\begin{array}{c}
6.5000 \\
9.5000
\end{array}
\]

\[
Y_{\text{page}}(:,:,2) =
\]

\[
\begin{array}{c}
21.5000 \\
24.5000
\end{array}
\]

For example, \(Y_{\text{page}}(1,1,1)\) is the 40th percentile of the first page of \(X\), and \(Y_{\text{page}}(2,1,1)\) is the 60th percentile of the first page of \(X\).

Calculate the 40th and 60th percentiles of the elements in each \(X(:,i,:)\) slice by specifying dimensions 1 and 3 as the operating dimensions.

\[
Y_{\text{col}} = \text{prctile}(X, [40 \ 60], [1 \ 3])
\]

\[
Y_{\text{col}} = 2\times5
\]

\[
\begin{array}{c}
2.9000 \\
16.1000 \\
5.9000 \\
19.1000 \\
8.9000 \\
22.1000 \\
11.9000 \\
25.1000 \\
14.9000 \\
28.1000
\end{array}
\]

For example, \(Y_{\text{col}}(1,4)\) is the 40th percentile of the elements in \(X(:,4,:)\), and \(Y_{\text{col}}(2,4)\) is the 60th percentile of the elements in \(X(:,4,:)\).

**Percentiles of Tall Vector for Given Percentage**

Calculate exact and approximate percentiles of a tall column vector for a given percentage.
Create a datastore for the airlinesmall data set. Treat 'NA' values as missing data so that datastore replaces them with NaN values. Specify to work with the ArrTime variable.

```matlab
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames','ArrTime');
```

Create a tall table on top of the datastore, and extract the data from the tall table into a tall vector.

```matlab
t = tall(ds) % Tall table
Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

t =

M×1 tall table

 ArrTime

 735
 1124
 2218
 1431
 746
 1547
 1052
 1134
 :
 :

x = t{:,:} % Tall vector

x =

M×1 tall double column vector

 735
 1124
 2218
 1431
 746
 1547
Calculate the exact 50th percentile of \(x \). Because \(x \) is a tall column vector and \(p \) is a scalar, `prctile` returns the exact percentile value by default.

\[
p = 50;
y_{\text{Exact}} = \text{prctile}(x,p)
\]

\[
y_{\text{Exact}} = \begin{bmatrix}
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

Calculate the approximate 50th percentile of \(x \). Specify `'Method','approximate'` to use an approximation algorithm based on “T-Digest” on page 32-4933 for computing the percentile.

\[
y_{\text{Approx}} = \text{prctile}(x,p,'\text{Method}','\text{approximate}')
\]

\[
y_{\text{Approx}} = \begin{bmatrix}
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

Evaluate the tall arrays and bring the results into memory by using `gather`.

\[
[y_{\text{Exact}},y_{\text{Approx}}] = \text{gather}(y_{\text{Exact}},y_{\text{Approx}})
\]
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 9.7 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 16 sec

yExact = 1522

yApprox = 1.5220e+03

The values of the approximate percentile and the exact percentile are the same to the four digits shown.

Percentiles of Tall Matrix Along Different Dimensions

Calculate exact and approximate percentiles of a tall matrix for specified percentages along different dimensions.

Create a tall matrix X containing a subset of variables from the airlinesmall data set. See “Percentiles of Tall Vector for Given Percentage” on page 32-4925 for details about the steps to extract data from a tall array.

```matlab
varnames = {'ArrDelay','ArrTime','DepTime','ActualElapsedTime'}; % Subset of variables
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); % Datastore
t = tall(ds); % Tall table
X = t{:,varnames} % Tall matrix
X =

   8.0000    735.0000    642.0000     53.0000
   8.0000   1124.0000   1021.0000     63.0000
  21.0000   2218.0000   2055.0000     83.0000
  13.0000   1431.0000   1332.0000     59.0000
   4.0000    746.0000    629.0000     77.0000
  59.0000   1547.0000   1446.0000     61.0000
   3.0000   1052.0000    928.0000     84.0000
  11.0000   1134.0000    859.0000    155.0000
```
When operating along a dimension that is not 1, the `prctile` function calculates the exact percentiles only, so that it can perform the computation efficiently using a sorting-based algorithm (see “Algorithms” on page 32-4936) instead of an approximation algorithm based on “T-Digest” on page 32-4933.

Calculate the exact 25th, 50th, and 75th percentiles of \(X \) along the second dimension.

\[
p = [25 \ 50 \ 75]; \quad \text{% Vector of percentages}
\]

\[
Y_{\text{exact}} = \text{prctile}(X,p,2)
\]

\[
Y_{\text{exact}} = \\
\text{M}\times\text{N}\times\ldots \text{ tall double array} \\
\text{? \ ? \ ? \ ...} \\
\text{? \ ? \ ? \ ...} \\
\text{? \ ? \ ? \ ...} \\
: \ : \ : \\
: \ : \ :
\]

Preview deferred. Learn more.

When the function operates along the first dimension and \(p \) is a vector of percentages, you must use the approximation algorithm based on t-digest to compute the percentiles. Using the sorting-based algorithm to find the percentiles along the first dimension of a tall array is computationally intensive.

Calculate the approximate 25th, 50th, and 75th percentiles of \(X \) along the first dimension. Because the default dimension is 1, you do not need to specify a value for \(\text{dim} \).

\[
Y_{\text{approx}} = \text{prctile}(X,p,'\text{Method}', '\text{approximate}')
\]

\[
Y_{\text{approx}} = \\
\text{M}\times\text{N}\times\ldots \text{ tall double array} \\
\text{? \ ? \ ? \ ...} \\
\text{? \ ? \ ? \ ...} \\
\text{? \ ? \ ? \ ...} \\
: \ : \ : \\
: \ : \ :
\]

32-4929
Evaluate the tall arrays and bring the results into memory by using `gather`.

\[\text{[Yexact,Yapprox] = gather(Yexact,Yapprox);} \]

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.3 sec
Evaluation completed in 6.5 sec

Show the first five rows of the exact 25th, 50th, and 75th percentiles along the second dimension of \(X \).

\[\text{Yexact(1:5,:)} \]

\[
\begin{array}{ccc}
10^3 & \\
0.0305 & 0.3475 & 0.6885 \\
0.0355 & 0.5420 & 1.0725 \\
0.0520 & 1.0690 & 2.1365 \\
0.0360 & 0.6955 & 1.3815 \\
0.0405 & 0.3530 & 0.6875 \\
\end{array}
\]

Each row of the matrix \(\text{Yexact} \) contains the three percentiles of the corresponding row in \(X \). For example, \(30.5, 347.5, \) and \(688.5 \) are the 25th, 50th, and 75th percentiles, respectively, of the first row in \(X \).

Show the approximate 25th, 50th, and 75th percentiles of \(X \) along the first dimension.

\[\text{Yapprox} \]

\[
\begin{array}{cccc}
10^3 & \\
-0.0070 & 1.1149 & 0.9322 & 0.0700 \\
0 & 1.5220 & 1.3350 & 0.1020 \\
0.0110 & 1.9180 & 1.7400 & 0.1510 \\
\end{array}
\]

Each column of the matrix \(\text{Yapprox} \) corresponds to the three percentiles for each column of the matrix \(X \). For example, the first column of \(\text{Yapprox} \) with elements \((-7, 0, 11)\) contains the percentiles for the first column of \(X \).
Input Arguments

X — Input data
vector | array
Input data, specified as a vector or array.
Data Types: double | single

p — Percentages
scalar | vector
Percentages for which to compute percentiles, specified as a scalar or vector of scalars from 0 to 100.
Example: 25
Example: [25, 50, 75]
Data Types: double | single

dim — Dimension
positive integer
Dimension along which the percentiles of X are requested, specified as a positive integer. For example, for a matrix X, when dim = 1, prctile returns the percentile(s) of the columns of X; when dim = 2, prctile returns the percentile(s) of the rows of X. For a multidimensional array X, the length of the dimth dimension of Y is equal to the length of p.
Data Types: double | single

vecdim — Vector of dimensions
positive integer vector
Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a dimension of the input array X. The output Y has length length(p) in the smallest specified operating dimension (that is, dimension min(vecdim)) and has length 1 in each of the remaining operating dimensions. The other dimension lengths are the same for X and Y.
For example, consider a 2-by-3-by-3 array X with p = [20 40 60 80]. In this case, `prctile(X,p,[1 2])` returns an array, where each page of the array contains the 20th, 40th, 60th, and 80th percentiles of the elements of the corresponding page of X. Because 1 and 2 are the operating dimensions, with min([1 2]) = 1 and length(p) = 4, the output is a 4-by-1-by-3 array.

Data Types: `single` | `double`

method — Method for calculating percentiles

'exact' (default) | 'approximate'

Method for calculating percentiles, specified as 'exact' or 'approximate'. By default, `prctile` returns the exact percentiles by implementing an algorithm on page 32-4936 that uses sorting. You can specify 'method', 'approximate' for `prctile` to return approximate percentiles by implementing an algorithm that uses T-Digest on page 32-4933.

Data Types: `char` | `string`

Output Arguments

Y — Percentiles

scalar | array

Percentiles of a data vector or array, returned as a scalar or array for one or more percentage values.

- If X is a vector, then Y is a scalar or a vector with the same length as the number of percentiles requested (length(p)). Y(i) contains the p(i)th percentile.
- If X is an array of dimension d, then Y is an array with the length of the smallest operating dimension equal to the number of percentiles requested (length(p)).

Definitions

Multidimensional Array

A *multidimensional array* is an array with more than two dimensions. For example, if X is a 1-by-3-by-4 array, then X is a 3-D array.
Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of X.

Linear Interpolation

Linear interpolation uses linear polynomials to find \(y_i = f(x_i) \), the values of the underlying function \(Y = f(X) \) at the points in the vector or array \(x \). Given the data points \((x_1, y_1) \) and \((x_2, y_2) \), where \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \), linear interpolation finds \(y = f(x) \) for a given \(x \) between \(x_1 \) and \(x_2 \) as follows:

\[
y = f(x) = y_1 + \frac{(x - x_1)}{(x_2 - x_1)}(y_2 - y_1).
\]

Similarly, if the \(100(1.5/n) \)th percentile is \(y_{1.5/n} \) and the \(100(2.5/n) \)th percentile is \(y_{2.5/n} \), then linear interpolation finds the \(100(2.3/n) \)th percentile, \(y_{2.3/n} \) as:

\[
y_{2.3/n} = y_{1.5/n} + \frac{2.3}{n} \frac{1.5}{n} \left(y_{2.5/n} - y_{1.5/n} \right).
\]

T-Digest

T-digest\[2\] on page 32-4936 is a probabilistic data structure that is a sparse representation of the empirical cumulative distribution function (CDF) of a data set. T-digest is useful for computing approximations of rank-based statistics (such as percentiles and quantiles) from online or distributed data in a way that allows for controllable accuracy, particularly near the tails of the data distribution.

For data that is distributed in different partitions, t-digest computes quantile estimates (and percentile estimates) for each data partition separately, and then combines the estimates while maintaining a constant-memory bound and constant relative accuracy of computation \((q(1-q) \) for the \(q \)th quantile). For these reasons, t-digest is practical for working with tall arrays.
To estimate quantiles of an array that is distributed in different partitions, first build a t-digest in each partition of the data. A t-digest clusters the data in the partition and summarizes each cluster by a centroid value and an accumulated weight that represents the number of samples contributing to the cluster. T-digest uses large clusters (widely spaced centroids) to represent areas of the CDF that are near \(q = 0.5 \) and uses small clusters (tightly spaced centroids) to represent areas of the CDF that are near \(q = 0 \) or \(q = 1 \).

T-digest controls the cluster size by using a scaling function that maps a quantile \(q \) to an index \(k \) with a compression parameter \(\delta \). That is,

\[
k(q, \delta) = \delta \cdot \left(\frac{\sin^{-1}(2q-1)}{\pi} + \frac{1}{2} \right),
\]

where the mapping \(k \) is monotonic with minimum value \(k(0, \delta) = 0 \) and maximum value \(k(1, \delta) = \delta \).
Scaling Function for $\delta = 10$

The scaling function translates the quantile q to the scaling factor k in order to give variable size steps in q. As a result, cluster sizes are unequal (larger around the center quantiles and smaller near $q = 0$ or $q = 1$). The smaller clusters allow for better accuracy near the edges of the data.

To update a t-digest with a new observation that has a weight and location, find the cluster closest to the new observation. Then, add the weight and update the centroid of the cluster based on the weighted average, provided that the updated weight of the cluster does not exceed the size limitation.
You can combine independent t-digests from each partition of the data by taking a union of the t-digests and merging their centroids. To combine t-digests, first sort the clusters from all the independent t-digests in decreasing order of cluster weights. Then, merge neighboring clusters, when they meet the size limitation, to form a new t-digest.

Once you form a t-digest that represents the complete data set, you can estimate the endpoints (or boundaries) of each cluster in the t-digest and then use interpolation between the end-points of each cluster to find accurate quantile estimates.

Algorithms

For an \(n \)-element vector \(X \), \texttt{prctile} returns percentiles by using a sorting-based algorithm as follows:

1. The sorted elements in \(X \) are taken as the \(100(0.5/n) \)th, \(100(1.5/n) \)th, ..., \(100([n - 0.5]/n) \)th percentiles. For example:
 - For a data vector of five elements such as \{6, 3, 2, 10, 1\}, the sorted elements \{1, 2, 3, 6, 10\} respectively correspond to the 10th, 30th, 50th, 70th, and 90th percentiles.
 - For a data vector of six elements such as \{6, 3, 2, 10, 8, 1\}, the sorted elements \{1, 2, 3, 6, 8, 10\} respectively correspond to the \((50/6)\)th, \((150/6)\)th, \((250/6)\)th, \((350/6)\)th, \((450/6)\)th, and \((550/6)\)th percentiles.

2. \texttt{prctile} uses linear interpolation on page 32-4933 to compute percentiles for percentages between \(100(0.5/n) \) and \(100([n - 0.5]/n) \).

3. \texttt{prctile} assigns the minimum or maximum values of the elements in \(X \) to the percentiles corresponding to the percentages outside that range.

\texttt{prctile} treats NaNs as missing values and removes them.

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
 - \(Y = \text{prctile}(X,p,'all') \)
 - \(Y = \text{prctile}(X,p,\text{vecdim}) \)
 - \(Y = \text{prctile}(X,p) \) returns the exact percentiles (using a sorting-based algorithm on page 32-4936) under these conditions.
 - \(X \) is a tall column vector and \(p \) is a scalar. In this case, \(\text{dim} = 1 \).
 - \(X \) is a tall matrix and \(\text{dim} \) is not 1.
 - If \(p \) is a vector and \(\text{dim} \) is 1, then you must specify 'Method','approximate' to use an approximation algorithm based on T-Digest on page 32-4933 for computing the percentiles.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The following syntaxes do not support code generation.
 - \(Y = \text{prctile}(X,p,'all') \)
 - \(Y = \text{prctile}(X,p,\text{vecdim}) \)
 - See “Automatic dimension restriction” (MATLAB Coder).
 - If the output \(Y \) is a vector, the orientation of \(Y \) differs from MATLAB when all of the following are true:
 - You do not supply \(\text{dim} \).
 - \(X \) is a variable-size array, and not a variable-size vector, at compile time, but \(X \) is a vector at run time.
• The orientation of the vector X does not match the orientation of the vector p.

In this case, the output Y matches the orientation of X, not the orientation of p.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following syntaxes do not support GPU arrays as input arguments.

 • \(Y = \text{prctile}(X,p,\text{'all'}) \)
 • \(Y = \text{prctile}(X,p,\text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

iqr | median | nanmedian | quantile

Topics

“Quantiles and Percentiles” on page 3-6

Introduced before R2006a
predict

Predict labels using k-nearest neighbor classification model

Syntax

```matlab
label = predict(mdl,X)
[label,score,cost] = predict(mdl,X)
```

Description

`label = predict(mdl,X)` returns a vector of predicted class labels for the predictor data in the table or matrix `X`, based on the trained k-nearest neighbor classification model `mdl`. See “Predicted Class Label” on page 32-4942.

`[label,score,cost] = predict(mdl,X)` also returns:

- A matrix of classification scores (`score`) indicating the likelihood that a label comes from a particular class. For k-nearest neighbor, scores are posterior probabilities. See “Posterior Probability” on page 32-4943.
- A matrix of expected classification cost (`cost`). For each observation in `X`, the predicted class label corresponds to the minimum expected classification costs among all classes. See “Expected Cost” on page 32-4944.

Examples

k-Nearest Neighbor Classification Predictions

Create a k-nearest neighbor classifier for Fisher's iris data, where `k = 5`. Evaluate some model predictions on new data.

Load the Fisher iris data set.
load fisheriris
X = meas;
Y = species;

Create a classifier for five nearest neighbors. Standardize the noncategorical predictor data.
mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);

Predict the classifications for flowers with minimum, mean, and maximum characteristics.
Xnew = [min(X);mean(X);max(X)];
[label,score,cost] = predict(mdl,Xnew)

label = 3x1 cell array
 {'versicolor' }
 {'versicolor' }
 {'virginica'}

score = 3x3

 0.4000 0.6000 0
 0 1.0000 0
 0 0 1.0000

cost = 3x3

 0.6000 0.4000 1.0000
 1.0000 0 1.0000
 1.0000 1.0000 0

The second and third rows of the score and cost matrices have binary values, which means all five nearest neighbors of the mean and maximum flower measurements have identical classifications.

Input Arguments
mdl — k-nearest neighbor classifier model
ClassificationKNN object
k-nearest neighbor classifier model, specified as a ClassificationKNN object.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
 - The variables that make up the columns of X must have the same order as the predictor variables used to train mdl.
 - If you train mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl contains all numeric predictor variables. k-nearest neighbor classification requires homogeneous predictors. Therefore, to treat all numeric predictors in Tbl as categorical during training, set 'CategoricalPredictors','all' when you train using fitcknn. If Tbl contains heterogeneous predictors (for example, numeric and categorical data types) and X is a numeric matrix, then predict throws an error.
- For a table:
 - predict does not support multicolumn variables and cell arrays other than cell arrays of character vectors.
 - If you train mdl using a table (for example, Tbl), then all predictor variables in X must have the same variable names and data types as those used to train mdl (stored in mdl.PredictorNames). However, the column order of X does not need to correspond to the column order of Tbl. Both Tbl and X can contain additional variables (response variables, observation weights, and so on), but predict ignores them.
 - If you train mdl using a numeric matrix, then the predictor names in mdl.PredictorNames and corresponding predictor variable names in X must be the same. To specify predictor names during training, see the PredictorNames name-value pair argument of fitcknn. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, and so on), but predict ignores them.

If you set 'Standardize',true in fitcknn to train mdl, then the software standardizes the columns of X using the corresponding means in mdl.Mu and standard deviations in mdl.Sigma.
Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character vectors

Predicted class labels for the observations (rows) in X, returned as a categorical array, character array, logical vector, vector of numeric values, or cell array of character vectors. `label` has length equal to the number of rows in X. The label is the class with minimal expected cost. See “Predicted Class Label” on page 32-4942.

score — Predicted class scores or posterior probabilities
numeric matrix

Predicted class scores or posterior probabilities, returned as a numeric matrix of size n-by-K. n is the number of observations (rows) in X, and K is the number of classes (in `mdl.ClassNames`). `score(i,j)` is the posterior probability that observation i in X is of class j in `mdl.ClassNames`. See “Posterior Probability” on page 32-4943.

Data Types: `single` | `double`

cost — Expected classification costs
numeric matrix

Expected classification costs, returned as a numeric matrix of size n-by-K. n is the number of observations (rows) in X, and K is the number of classes (in `mdl.ClassNames`). `cost(i,j)` is the cost of classifying row i of X as class j in `mdl.ClassNames`. See “Expected Cost” on page 32-4944.

Data Types: `single` | `double`

Algorithms

Predicted Class Label

`predict` classifies by minimizing the expected classification cost:
\[\hat{y} = \text{arg min}_{y=1,...,K} \sum_{j=1}^{K} \hat{P}(j \mid x) C(y \mid j), \]

where

- \(\hat{y} \) is the predicted classification.
- \(K \) is the number of classes.
- \(\hat{P}(j \mid x) \) is the posterior probability of class \(j \) for observation \(x \).
- \(C(y \mid j) \) is the cost of classifying an observation as \(y \) when its true class is \(j \).

Posterior Probability

Consider a vector (single query point) \(x_{\text{new}} \) and a model \(\text{mdl} \).

- \(k \) is the number of nearest neighbors used in prediction, \(\text{mdl.NumNeighbors} \).
- \(\text{nbd}(\text{mdl}, x_{\text{new}}) \) specifies the \(k \) nearest neighbors to \(x_{\text{new}} \) in \(\text{mdl.X} \).
- \(\text{Y(nbd)} \) specifies the classifications of the points in \(\text{nbd}(\text{mdl}, x_{\text{new}}) \), namely \(\text{mdl.Y(nbd)} \).
- \(\text{W(nbd)} \) specifies the weights of the points in \(\text{nbd}(\text{mdl}, x_{\text{new}}) \).
- \(\text{prior} \) specifies the priors of the classes in \(\text{mdl.Y} \).

If the model contains a vector of prior probabilities, then the observation weights \(W \) are normalized by class to sum to the priors. This process might involve a calculation for the point \(x_{\text{new}} \), because weights can depend on the distance from \(x_{\text{new}} \) to the points in \(\text{mdl.X} \).

The posterior probability \(p(j \mid x_{\text{new}}) \) is

\[p(j \mid x_{\text{new}}) = \frac{\sum_{i \in \text{nbd}} W(i) 1_{Y(X(i))=j}}{\sum_{i \in \text{nbd}} W(i)}. \]

Here, \(1_{Y(X(i))=j} \) is 1 when \(\text{mdl.Y(i)} = j \), and 0 otherwise.
True Misclassification Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument when you run `fitcknn`. The value $\text{Cost}(i,j)$ is the cost of classifying an observation into class j if its true class is i. By default, $\text{Cost}(i,j) = 1$ if $i \neq j$, and $\text{Cost}(i,j) = 0$ if $i = j$. In other words, the cost is 0 for correct classification and 1 for incorrect classification.

Expected Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation. The third output of `predict` is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl, and you have K classes. You place the observations into a matrix Xnew with one observation per row. The command

```
[label, score, cost] = predict(mdl, Xnew)
```

returns a matrix `cost` of size Nobs-by-K, among other outputs. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the K classes. $\text{cost}(n,j)$ is

$$
\sum_{i=1}^{K} \hat{P}(i \mid Xnew(n)) \cdot C(j \mid i),
$$

where

- K is the number of classes.
- $\hat{P}(i \mid Xnew(n))$ is the posterior probability on page 32-4943 of class i for observation $Xnew(n)$.
- $C(j \mid i)$ is the true misclassification cost of classifying an observation as j when its true class is i.

32-4944
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdl</td>
<td>A <code>ClassificationKNN</code> model object is a full object that does not have a corresponding compact object. <code>saveCompactModel</code> saves a compact version that does not include cross-validation parameters and hyperparameters. For the usage notes and limitations of the model object, see “Code Generation” on page 32-431 of the <code>ClassificationKNN</code> object.</td>
</tr>
<tr>
<td>X</td>
<td>Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be <code>numel(mdl.PredictorNames)</code>. Rows and columns must correspond to observations and predictors, respectively. For code generation, <code>predict</code> uses <code>parfor</code> (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not</td>
</tr>
</tbody>
</table>
support the Open Multiprocessing (OpenMP) application interface or you disable
OpenMP library, MATLAB Coder treats the parfor-loops as for-loops. To find
supported compilers, see https://www.mathworks.com/support/compilers/
current_release/. To disable OpenMP library, specify the EnableOpenMP property
of the codegen configuration object as false. For details, see coder.CodeConfig.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationKNN | fitcknn

Topics
“Predict Classification Using KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
predict

Class: ClassificationLinear

Predict labels for linear classification models

Syntax

Label = predict(Mdl,X)
Label = predict(Mdl,X,Name,Value)
[Label,Score] = predict(__)

Description

Label = predict(Mdl,X) returns predicted class labels for each observation in the predictor data X based on the trained, binary, linear classification model Mdl. Label contains class labels for each regularization strength in Mdl.

Label = predict(Mdl,X,Name,Value) returns predicted class labels with additional options specified by one or more Name,Value pair arguments. For example, you can specify that columns in the predictor data correspond to observations.

[Label,Score] = predict(__) also returns classification scores on page 32-4958 for both classes using any of the previous syntaxes. Score contains classification scores for each regularization strength in Mdl.

Input Arguments

Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix
Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.

Note If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in computation time.

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

ObservationsIn — Predictor data observation dimension

`'rows'` (default) | `'columns'`

Predictor data observation dimension, specified as the comma-separated pair consisting of `'ObservationsIn'` and `'columns'` or `'rows'`.

Note If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in optimization-execution time.

Output Arguments

Label — Predicted class labels

categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell array of character vectors.

In most cases, `Label` is an n-by-L array of the same data type as the observed class labels (Y) used to train `Mdl`. (The software treats string arrays as cell arrays of character vectors.)
predictions. \(n \) is the number of observations in \(X \) and \(L \) is the number of regularization strengths in \(\text{Mdl.Lambda} \). That is, \(\text{Label}(i,j) \) is the predicted class label for observation \(i \) using the linear classification model that has regularization strength \(\text{Mdl.Lambda}(j) \).

If \(Y \) is a character array and \(L > 1 \), then \(\text{Label} \) is a cell array of class labels.

Score — Classification scores
numeric array

Classification scores on page 32-4958, returned as a \(n \)-by-2-by-\(L \) numeric array. \(n \) is the number of observations in \(X \) and \(L \) is the number of regularization strengths in \(\text{Mdl.Lambda} \). \(\text{Score}(i,k,j) \) is the score for classifying observation \(i \) into class \(k \) using the linear classification model that has regularization strength \(\text{Mdl.Lambda}(j) \). \(\text{Mdl.ClassNames} \) stores the order of the classes.

If \(\text{Mdl.Learner} \) is 'logistic', then classification scores are posterior probabilities.

Examples

Predict Training-Sample Labels

Load the NLP data set.

```matlab
load nlpdata
```

\(X \) is a sparse matrix of predictor data, and \(Y \) is a categorical vector of class labels. There are more than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation web pages.

```matlab
Ystats = Y == 'stats';
```

Train a binary, linear classification model using the entire data set, which can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

```matlab
rng(1); % For reproducibility
Mdl = fitclinear(X,Ystats);
```
Mdl is a ClassificationLinear model.

Predict the training-sample, or resubstitution, labels.

\[
\text{label} = \text{predict}(\text{Mdl}, X);
\]

Because there is one regularization strength in Mdl, \text{label} is column vectors with lengths equal to the number of observations.

Construct a confusion matrix.

\[
\text{ConfusionTrain} = \text{confusionmat}(\text{Ystats}, \text{label})
\]

\[
\text{ConfusionTrain} = 2 \times 2
\]

\[
\begin{array}{cc}
30018 & 0 \\
1 & 1553
\end{array}
\]

The model misclassifies only one 'stats' documentation page as being outside of the Statistics and Machine Learning Toolbox documentation.

Predict Test-Sample Labels

Load the NLP data set and preprocess it as in “Predict Training-Sample Labels” on page 32-4949. Transpose the predictor data matrix.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```

Train a binary, linear classification model that can identify whether the word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™ documentation. Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

```matlab
rng(1); % For reproducibility
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
'Solver','sparsa','Holdout',0.30,...
'ObservationsIn','columns');
Mdl = CVMdl.Trained{1};
```
CVMdl is a `ClassificationPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `ClassificationLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```matlab
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);
```

Predict the training- and test-sample labels.

```matlab
labelTrain = predict(Mdl,X(:,trainIdx),'ObservationsIn','columns');
labelTest = predict(Mdl,X(:,testIdx),'ObservationsIn','columns');
```

Because there is one regularization strength in Mdl, `labelTrain` and `labelTest` are column vectors with lengths equal to the number of training and test observations, respectively.

Construct a confusion matrix for the training data.

```matlab
ConfusionTrain = confusionmat(Ystats(trainIdx),labelTrain)
```

```
ConfusionTrain = 2x2

   21013           0
     3     1085
```

The model misclassifies only three documentation pages as being outside of Statistics and Machine Learning Toolbox documentation.

Construct a confusion matrix for the test data.

```matlab
ConfusionTest = confusionmat(Ystats(testIdx),labelTest)
```

```
ConfusionTest = 2x2

     9003           2
     3     463
```

The model misclassifies three documentation pages as being outside the Statistics and Machine Learning Toolbox, and two pages as being inside.
Estimate Posterior Class Probabilities

Estimate test-sample, posterior class probabilities, and determine the quality of the model by plotting a ROC curve. Linear classification models return posterior probabilities for logistic regression learners only.

Load the NLP data set and preprocess it as in “Predict Test-Sample Labels” on page 32-4950.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```

Randomly partition the data into training and test sets by specifying a 30% holdout sample. Identify the test-set indices.

```matlab
cvp = cvpartition(Ystats,'Holdout',0.30);
idxTest = test(cvp);
```

Train a binary linear classification model. Fit logistic regression learners using SpaRSA. To hold out the test set, specify the partitioned model.

```matlab
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','CVPartition',cvp,...
    'Learner','logistic','Solver','sparsa');
Mdl = CVMdl.Trained{1};
```

`Mdl` is a `ClassificationLinear` model trained using the training set specified in the partition `cvp` only.

Predict the test-sample posterior class probabilities.

```matlab
[~,posterior] = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');
```

Because there is one regularization strength in `Mdl`, `posterior` is a matrix with 2 columns and rows equal to the number of test-set observations. Column `i` contains posterior probabilities of `Mdl.ClassNames(i)` given a particular observation.

Obtain false and true positive rates, and estimate the AUC. Specify that the second class is the positive class.

```matlab
[fpr,tpr,~,auc] = perfcurve(Ystats(idxTest),posterior(:,2),Mdl.ClassNames(2));
auc
```
auc = 0.9985

The AUC is 1, which indicates a model that predicts well.

Plot an ROC curve.

```matlab
figure;
plot(fpr,tpr)
h = gca;
h.XLim(1) = -0.1;
h.YLim(2) = 1.1;
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve')
```

![ROC Curve](image-url)
The ROC curve and AUC indicate that the model classifies the test-sample observations almost perfectly.

Find Good Lasso Penalty Using AUC

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample values of the AUC.

Load the NLP data set. Preprocess the data as in “Predict Test-Sample Labels” on page 32-4950.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';
```

Create a data partition that specifies to holdout 10% of the observations. Extract test-sample indices.

```matlab
rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.10);
testIdx = test(Partition);
XTest = X(:,testIdx);
n = sum(testIdx)
n = 3157
YTest = Ystats(testIdx);
```

There are 3157 observations in the test sample.

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{-0.5}$.

```matlab
Lambda = logspace(-6,-0.5,11);
```

Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e-8$.
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
 'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
 'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl =
 classreg.learning.partition.ClassificationPartitionedLinear
 CrossValidatedModel: 'Linear'
 ResponseName: 'Y'
 NumObservations: 31572
 KFold: 1
 Partition: [1x1 cvpartition]
 ClassNames: [0 1]
 ScoreTransform: 'none'

Properties, Methods

Extract the trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 =
 ClassificationLinear
 ResponseName: 'Y'
 ClassNames: [0 1]
 ScoreTransform: 'logit'
 Beta: [34023x11 double]
 Bias: [1x11 double]
 Lambda: [1x11 double]
 Learner: 'logistic'

Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample predicted labels and posterior class probabilities.

[label,posterior] = predict(Mdl1,XTest,'ObservationsIn','columns');
Mdl1.ClassNames;
posterior(3,1,5)
ans = 1.0000

label is a 3157-by-11 matrix of predicted labels. Each column corresponds to the predicted labels of the model trained using the corresponding regularization strength. posterior is a 3157-by-2-by-11 matrix of posterior class probabilities. Columns correspond to classes and pages correspond to regularization strengths. For example, posterior(3,1,5) indicates that the posterior probability that the first class (label 0) is assigned to observation 3 by the model that uses Lambda(5) as a regularization strength is 1.0000.

For each model, compute the AUC. Designate the second class as the positive class.

```matlab
auc = 1:numel(Lambda);  % Preallocation
for j = 1:numel(Lambda)
    [~,~,~,auc(j)] = perfcurve(YTest,posterior(:,2,j),Mdl1.ClassNames(2));
end
```

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you trained the model. Determine the number of nonzero coefficients per model.

```matlab
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);
```

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

```matlab
figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(auc),... 
    log10(Lambda),log10(numNZCoeff + 1));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'
log_{10} \text{ AUC}')
ylabel(h(2),'
log_{10} \text{ nonzero-coefficient frequency}')
xlabel('log_{10} \text{ Lambda}')
title('Test-Sample Statistics')
hold off
```
Choose the index of the regularization strength that balances predictor variable sparsity and high AUC. In this case, a value between 10^{-2} to 10^{-1} should suffice.

idxFinal = 9;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate labels for new observations, pass MdlFinal and the new data to predict.
Definitions

Classification Score

For linear classification models, the raw classification score for classifying the observation \(x \), a row vector, into the positive class is defined by

\[
f_{j}(x) = x\beta_j + b_j.
\]

For the model with regularization strength \(j \), \(\beta_j \) is the estimated column vector of coefficients (the model property \(\text{Beta}(\cdot,j) \)) and \(b_j \) is the estimated, scalar bias (the model property \(\text{Bias}(j) \)).

The raw classification score for classifying \(x \) into the negative class is \(-f(x)\). The software classifies observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see \(\text{ScoreTransform} \)).

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use \text{saveCompactModel}, \text{loadCompactModel}, and \text{codegen} to generate code for the \text{predict} function. Save a trained model by using \text{saveCompactModel} and define
an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-442 of the <code>ClassificationLinear</code> object.</td>
</tr>
<tr>
<td>X</td>
<td>• Must be a single- or double-precision matrix and can be variable-size.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'ObservationsIn','rows' (default), then the number of columns in X must be <code>numel(Mdl.PredictorNames)</code>. Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td></td>
<td>• If you specify 'ObservationsIn','columns', then the number of rows in X must be <code>numel(Mdl.PredictorNames)</code>. Rows and columns must correspond to predictors and observations, respectively.</td>
</tr>
<tr>
<td>Name-value pair</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to use the 'ObservationsIn' name-value pair argument in the generated code, include <code>coder.Constant('ObservationsIn'), coder.typeof('a',[1,7],[0,1])</code> in the -args value of codegen.</td>
</tr>
<tr>
<td>arguments</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

`ClassificationLinear` | `confusionmat` | `fitclinear` | `loss` | `perfcurve` | `testcholdout`

Introduced in R2016a
predict

Predict labels using discriminant analysis classification model

Syntax

```matlab
label = predict(Mdl,X)
[label,score,cost] = predict(Mdl,X)
```

Description

`label = predict(Mdl,X)` returns a vector of predicted class labels for the predictor data in the table or matrix `X`, based on the trained discriminant analysis classification model `Mdl`.

`[label,score,cost] = predict(Mdl,X)` also returns:

- A matrix of classification scores (`score`) indicating the likelihood that a label comes from a particular class. For discriminant analysis, scores are posterior probabilities on page 32-4965.
- A matrix of expected classification cost on page 32-4966 (`cost`). For each observation in `X`, the predicted class label corresponds to the minimum expected classification cost among all classes.

Input Arguments

- **Mdl** — Discriminant analysis classification model
 - `ClassificationDiscriminant` model object |
 - `CompactClassificationDiscriminant` model object

 Discriminant analysis classification model, specified as a `ClassificationDiscriminant` or `CompactClassificationDiscriminant` model object returned by `fitcdiscr`.

- **X** — Predictor data to be classified
 - `numeric matrix` | `table`
Predictor data to be classified, specified as a numeric matrix or table.

Each row of \(X \) corresponds to one observation, and each column corresponds to one variable. All predictor variables in \(X \) must be numeric vectors.

- For a numeric matrix, the variables that compose the columns of \(X \) must have the same order as the predictor variables that trained \(Mdl \).
- For a table:
 - \texttt{predict} does not support multi-column variables and cell arrays other than cell arrays of character vectors.
 - If you trained \(Mdl \) using a table (for example, \(Tbl \)), then all predictor variables in \(X \) must have the same variable names and data types as those that trained \(Mdl \) (stored in \(Mdl.PredictorNames \)). However, the column order of \(X \) does not need to correspond to the column order of \(Tbl \). \(Tbl \) and \(X \) can contain additional variables (response variables, observation weights, etc.), but \texttt{predict} ignores them.
 - If you trained \(Mdl \) using a numeric matrix, then the predictor names in \(Mdl.PredictorNames \) and corresponding predictor variable names in \(X \) must be the same. To specify predictor names during training, see the \texttt{PredictorNames} name-value pair argument of \texttt{fitcdiscr}. \(X \) can contain additional variables (response variables, observation weights, etc.), but \texttt{predict} ignores them.

Data Types: \texttt{table} | \texttt{double} | \texttt{single}

Output Arguments

\textbf{label — Predicted class labels}

categorical array | character array | logical vector | vector of numeric values | cell array of character vectors

Predicted class labels on page 32-4966, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

- \texttt{label}:
 - Is the same data type as the observed class labels (\(Y \)) that trained \(Mdl \). (The software treats string arrays as cell arrays of character vectors.)
 - Has length equal to the number of rows of \(X \).
score — Predicted class posterior probabilities
numeric matrix

Predicted class posterior probabilities on page 32-4965, returned as a numeric matrix of size N-by-K. N is the number of observations (rows) in X, and K is the number of classes (in `Mdl.ClassNames`). $score(i,j)$ is the posterior probability that observation i in X is of class j in `Mdl.ClassNames`.

cost — Expected classification costs
numeric matrix

Expected classification costs on page 32-4966, returned as a matrix of size N-by-K. N is the number of observations (rows) in X, and K is the number of classes (in `Mdl.ClassNames`). $cost(i,j)$ is the cost of classifying row i of X as class j in `Mdl.ClassNames`.

Examples

Predict Class Labels Using Discriminant Analysis Model

Load Fisher's iris data set. Determine the sample size.

```plaintext
load fisheriris
N = size(meas,1);
```

Partition the data into training and test sets. Hold out 10% of the data for testing.

```plaintext
rng(1); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);   % Test set indices
```

Store the training data in a table.

```plaintext
tblTrn = array2table(meas(idxTrn,:));
tblTrn.Y = species(idxTrn);
```

Train a discriminant analysis model using the training set and default options.

```plaintext
Mdl = fitcdiscr(tblTrn,'Y');
```

Predict labels for the test set. You trained `Mdl` using a table of data, but you can predict labels using a matrix.
labels = predict(Mdl, meas(idxTest,:));

Construct a confusion matrix for the test set.

Mdl.ClassNames
ans = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

confusionmat(species(idxTest), labels)
ans = 3x3
 8 0 0
 0 2 1
 0 0 4

Mdl misclassifies one versicolor iris as virginica in the test set.

Plot Class Posterior Probability Regions

Load Fisher's iris data set. Consider training using the petal lengths and widths only.

load fisheriris
X = meas(:,3:4);

Train a quadratic discriminant analysis model using the entire data set.

Mdl = fitcdiscr(X, species, 'DiscrimType', 'quadratic');

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

xMax = max(X);
xMin = min(X);
d = 0.01;
[x1Grid, x2Grid] = meshgrid(xMin(1):d:xMax(1), xMin(2):d:xMax(2));
[~,score] = predict(Mdl,[x1Grid(:),x2Grid(:)]);
Mdl.ClassNames

ans = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

score is a matrix of class posterior probabilities. The columns correspond to the classes in Mdl.ClassNames. For example, score(j,1) is the posterior probability that observation j is a setosa iris.

Plot the posterior probability of versicolor classification for each observation in the grid and plot the training data.

figure;
contourf(x1Grid,x2Grid,reshape(score(:,2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
caxis([0 1]);
colormap jet;
hold on
gscatter(X(:,1),X(:,2),species,'mcy','.x+');
axis tight
title('Posterior Probability of versicolor');
hold off
The posterior probability region exposes a portion of the decision boundary.

Definitions

Posterior Probability

The posterior probability that a point z belongs to class j is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean μ_j and covariance Σ_j at a point z is
\[P(x \mid k) = \frac{1}{(2\pi |\Sigma_k|)^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right), \]

where \(|\Sigma_k| \) is the determinant of \(\Sigma_k \), and \(\Sigma_k^{-1} \) is the inverse matrix.

Let \(P(k) \) represent the prior probability of class \(k \). Then the posterior probability that an observation \(x \) is of class \(k \) is

\[\hat{P}(k \mid x) = \frac{P(x \mid k) P(k)}{P(x)}, \]

where \(P(x) \) is a normalization constant, the sum over \(k \) of \(P(x \mid k) P(k) \).

Prior Probability

The prior probability is one of three choices:

- 'uniform' — The prior probability of class \(k \) is one over the total number of classes.
- 'empirical' — The prior probability of class \(k \) is the number of training samples of class \(k \) divided by the total number of training samples.
- Custom — The prior probability of class \(k \) is the \(k \)th element of the prior vector. See `fitcdiscr`.

After creating a classification model (Md1) you can set the prior using dot notation:

\[\text{Md1.Prior} = v; \]

where \(v \) is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 20-8.

Predicted Class Label

`predict` classifies so as to minimize the expected classification cost:
\[\hat{y} = \arg \min_{y=1,\ldots,K} \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k), \]

where

- \(\hat{y} \) is the predicted classification.
- \(K \) is the number of classes.
- \(\hat{P}(k \mid x) \) is the posterior probability on page 20-7 of class \(k \) for observation \(x \).
- \(C(y \mid k) \) is the cost on page 20-8 of classifying an observation as \(y \) when its true class is \(k \).

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.
- This table contains notes about arguments of `predict`.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md1</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-753 of the CompactClassificationDiscriminant object.</td>
</tr>
</tbody>
</table>
| X | • Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be numel(Mdl.PredictorNames).
 • Rows and columns must correspond to observations and predictors, respectively. |

For more information, see “Introduction to Code Generation” on page 31-2.

See Also

ClassificationDiscriminant | CompactClassificationDiscriminant | edge | fitcdiscr | loss | margin

Topics

“Discriminant Analysis Classification” on page 20-2

Introduced in R2011b
predict

Predict labels using multiclass, error-correcting output codes model

Syntax

```matlab
label = predict(Mdl,X)
label = predict(Mdl,X,Name,Value)
[label,NegLoss,PBScore] = predict(__)
[label,NegLoss,PBScore,Posterior] = predict(__)
```

Description

`label = predict(Mdl,X)` returns a vector of predicted class labels for the predictor data in the table or matrix `X`, based on the full or compact, trained, multiclass, error-correcting output code (ECOC) model `Mdl`.

`label = predict(Mdl,X,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, specify the posterior probability estimation method, decoding scheme, or verbosity level.

`[label,NegLoss,PBScore] = predict(__)` uses any of the input arguments in the previous syntaxes and additionally returns:

- An array of negated average binary loss on page 32-4986 per class (`NegLoss`). For each observation in `X`, `predict` assigns the label of the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
- An array of positive-class scores (`PBScore`) for the observations classified by each binary learner.

`[label,NegLoss,PBScore,Posterior] = predict(__)` additionally returns posterior class probability estimates for observations (`Posterior`).

To obtain posterior class probabilities, you must set `'FitPosterior',1` when training the ECOC model using `fitcecoc`. Otherwise, `predict` throws an error.
Input Arguments

Mdl — Full or compact, multiclass ECOC model
ClassificationECOC model object | *CompactClassificationECOC* model object

Full or compact, multiclass ECOC model, specified as a *ClassificationECOC* or *CompactClassificationECOC* model object.

To create a full or compact ECOC model, see *ClassificationECOC* or *CompactClassificationECOC*.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
 - The variables making up the columns of X must have the same order as the predictor variables that trained Mdl.
 - If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical during training, identify categorical predictors using the *CategoricalPredictors* name-value pair argument of *fitcecoc*. If Tbl contains heterogeneous predictor variables (for example, numeric and categorical data types) and X is a numeric matrix, then predict throws an error.
- For a table:
 - *predict* does not support multicolon variables and cell arrays other than cell arrays of character vectors.
 - If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have the same variable names and data types as those that trained Mdl (stored in *Mdl.PredictorNames*). However, the column order of X does not need to correspond to the column order of Tbl. Tbl and X can contain additional variables (response variables, observation weights, etc.), but predict ignores them.
 - If you trained Mdl using a numeric matrix, then the predictor names in *Mdl.PredictorNames* and corresponding predictor variable names in X must be
the same. To specify predictor names during training, see the PredictorNames name-value pair argument of fitcecoc. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, etc.), but predict ignores them.

Note If Mdl.BinaryLearners contains linear or kernel classification models (that is, ClassificationLinear or ClassificationKernel model objects), then you cannot specify sample data in a table. Instead, pass a matrix of predictor data.

Data Types: table | double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/[2\log(2)])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>(\text{max}(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Score Domain</td>
<td>$g(y_j, s_j)$</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle `'BinaryLoss',@customFunction`.

`customFunction` has this form:

```matlab
def bLoss = customFunction(M,s)
```

where:

- M is the K-by-L coding matrix stored in `Mdl.CodingMatrix`.
- s is the 1-by-L row vector of classification scores.
- $bLoss$ is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- K is the number of classes.
- L is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then `BinaryLoss` is 'hinge'
- Ensembles trained by `AdaboostM1` or `GentleBoost`, then `BinaryLoss` is 'exponential'
- Ensembles trained by `LogitBoost`, then `BinaryLoss` is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior', 1 in `fitcecoc`), then `BinaryLoss` is 'quadratic'
Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the BinaryLoss property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values

0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl' (the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.

Example: 'NumKLInitializations',5

Data Types: single | double

ObservationsIn — Predictor data observation dimension

'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of 'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain linear classification models.
Note If you orient your predictor matrix so that observations correspond to columns and specify 'ObservationsIn','columns', you can experience a significant reduction in execution time.

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of 'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on page 32-4990.

• If you do not request the fourth output argument (Posterior), then the software ignores the value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbosity controls the number of diagnostic messages that the software displays in the Command Window.
If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: single | double

Output Arguments

`label` — Predicted class labels

categorical array | character array | logical array | numeric array | cell array of character vectors

Predicted class labels, returned as a categorical, character, logical, or numeric array, or cell array of character vectors. The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

`label` is of the same data type as the class labels used to train `Mdl`. (The software treats string arrays as cell arrays of character vectors.) The number of rows of `label` and the number of observations in `X` are equal.

If `Mdl.BinaryLearners` contains linear classification models, then `label` is an `m`-by-`L` matrix, where `m` is the number of observations in `X`, and `L` is the number of regularization strengths in the linear classification models (i.e., `numel(Mdl.BinaryLearners{1}.Lambda)`). `label(i,j)` is the predicted label of observation `i` for the model trained using regularization strength `Mdl.BinaryLearners{1}.Lambda(j)`.

Otherwise, `label` is a column vector of length `m`.

`NegLoss` — Negated average binary losses

numeric matrix | numeric array

Negated, average binary losses, returned as a numeric matrix or array.

- If `Mdl.BinaryLearners` contains linear classification models, then `NegLoss` is a `m`-by-`K`-by-`L` array.
 - `m` is the number of observations in `X`.

32-4975
• \(K \) is the number of distinct classes in the training data (that is, \(\text{numel(Mdl.ClassNames)} \)).

• \(L \) is the number of regularization strengths in the linear classification models (that is, \(\text{numel(Mdl.BinaryLearners{1}.Lambda)} \)).

\(\text{NegLoss}(i,k,j) \) is the negated, average binary loss for observation \(i \), corresponding to class \(\text{Mdl.ClassNames}(k) \), for the model trained using regularization strength \(\text{Mdl.BinaryLearners{1}.Lambda}(j) \).

• Otherwise, \(\text{NegLoss} \) is an \(m \)-by-\(K \) matrix.

PBScore — Positive-class scores

| numeric matrix | numeric array |

Positive-class scores for each binary learner, returned as a numeric matrix or array.

• If \(\text{Mdl.BinaryLearners} \) contains linear classification models, then \(\text{PBScore} \) is an \(m \)-by-\(B \)-by-\(L \) array.

 • \(m \) is the number of observations in \(X \).
 • \(B \) is the number of binary learners (that is, \(\text{numel(Mdl.BinaryLearners)} \)).
 • \(L \) is the number of regularization strengths in the linear classification models (that is, \(\text{numel(Mdl.BinaryLearners{1}.Lambda)} \)).

\(\text{PBScore}(i,b,j) \) is the positive-class score for observation \(i \), using binary learner \(b \), for the model trained using regularization strength \(\text{Mdl.BinaryLearners{1}.Lambda}(j) \).

• Otherwise, \(\text{PBScore} \) is an \(m \)-by-\(B \) matrix.

Posterior — Posterior class probabilities

| numeric matrix | numeric array |

Posterior class probabilities, returned as a numeric matrix or array.

• If \(\text{Mdl.BinaryLearners} \) contains linear classification models, then \(\text{Posterior} \) is an \(m \)-by-\(K \)-by-\(L \) array. For dimension definitions, see \(\text{NegLoss} \). \(\text{Posterior}(i,k,j) \) is the posterior probability that observation \(i \) comes from class \(\text{Mdl.ClassNames}(k) \), for the model trained using regularization strength \(\text{Mdl.BinaryLearners{1}.Lambda}(j) \).

• Otherwise, \(\text{Posterior} \) is an \(m \)-by-\(K \) matrix.
Examples

Predict Test-Sample Labels of Training Data Using ECOC Models

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility
```

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample. It is good practice to define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

CVMdl is a ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

Predict the test-sample labels. Print a random subset of true and predicted labels.

```matlab
labels = predict(CMdl,XTest);
idx = randsample(sum(testInds),10);
table(YTest(idx),labels(idx),
     'VariableNames',{'TrueLabels','PredictedLabels'})
```

```matlab
ans =
10x2 table
    TrueLabels     PredictedLabels
        setosa         setosa
```
Mdl correctly labeled all except one of the test-sample observations with indices idx.

Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
K = numel(classOrder); % Number of classes
rng(1); % For reproducibility
```

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample. It is good practice to define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

CVMdl is a ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

SVM scores are signed distances from the observation to the decision boundary. Therefore, \((-\infty, \infty)\) is the domain. Create a custom binary loss function that:
• Maps the coding design matrix \((M)\) and positive-class classification scores \((s)\) for each learner to the binary loss for each observation
• Uses linear loss
• Aggregates the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Or, you can specify an anonymous binary loss function.

\[
customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;
\]

Predict test-sample labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 test-sample observations.

\[
[label,NegLoss] = predict(CMdl,XTest,'BinaryLoss',customBL);
\]

\[
idx = randsample(sum(testInds),10);
\]

classOrder

table(YTest(idx),label(idx),NegLoss(idx,:),'VariableNames',...
 {'TrueLabel','PredictedLabel','NegLoss'})

classOrder =

3x1 categorical array

 setosa
 versicolor
 virginica

ans =

10x3 table

<table>
<thead>
<tr>
<th>TrueLabel</th>
<th>PredictedLabel</th>
<th>NegLoss</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.1857</td>
</tr>
<tr>
<td>versicolor</td>
<td>virginica</td>
<td>1.9878</td>
</tr>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>-3.6735</td>
</tr>
<tr>
<td>virginica</td>
<td>versicolor</td>
<td>0.39592</td>
</tr>
</tbody>
</table>
The order of the columns corresponds to the elements of `classOrder`. The software predicts the label based on the maximum negated loss. The results seem to indicate that the median of the linear losses might not perform as well as other losses.

Estimate Posterior Probabilities Using ECOC Classifiers

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility
```

Create an SVM template, and specify the Gaussian kernel. It is good practice to standardize the predictors.

```matlab
t = templateSVM('Standardize',1,'KernelFunction','gaussian');
t
```

`t` is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior probabilities (which are returned by `predict` or `resubPredict`) using the `'FitPosterior'` name-value pair argument. Display diagnostic messages during the training using the `'Verbose'` name-value pair argument. It is good practice to specify the class order.

```matlab
Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'Verbose',2);
```

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary learner, but you can adjust options for each binary learner by passing in a cell vector of templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic messages during the computation of labels and class posterior probabilities using the 'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);
Mdl.BinaryLoss

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

ans =

'quadratic'

The software assigns an observation to the class that yields the smallest average binary loss. Since all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),
 'VariableNames',
 {'TrueLabel','PredLabel','Posterior'});

ans =

3x1 cell array
ans =

10x3 table

<table>
<thead>
<tr>
<th>TrueLabel</th>
<th>PredLabel</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.0039321 0.0039869 0.99208</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.017067 0.018263 0.96467</td>
</tr>
<tr>
<td>'virginica'</td>
<td>'virginica'</td>
<td>0.014948 0.015856 0.9692</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>2.2197e-14 0.87317 0.12683</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999 0.00025091 0.00074639</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'virginica'</td>
<td>2.2195e-14 0.059429 0.94057</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>2.2194e-14 0.97001 0.029986</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999 0.0002499 0.00074741</td>
</tr>
<tr>
<td>'versicolor'</td>
<td>'versicolor'</td>
<td>0.0085646 0.98259 0.008849</td>
</tr>
<tr>
<td>'setosa'</td>
<td>'setosa'</td>
<td>0.999 0.00025013 0.00074718</td>
</tr>
</tbody>
</table>

The columns of `Posterior` correspond to the class order of `Mdl.ClassNames`.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

```matlab
xMax = max(X);
xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));
x2Pts = linspace(xMin(2),xMax(2));
[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

 [~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);
```

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

```matlab
figure;
contourf(x1Grid,x2Grid,...
    reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));
```
h = colorbar;
h.YLabel.String = 'Maximum posterior';
h.YLabel.FontSize = 15;
hold on
gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);
gh(2).LineWidth = 2;
gh(3).LineWidth = 2;

title 'Iris Petal Measurements and Maximum Posterior';
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
axis tight
legend(gh,'Location','NorthWest')
hold off
Estimate Test-Sample Posterior Probabilities Using Parallel Computing

Train an error-correcting output codes, multiclass model and estimate posterior probabilities using parallel computing.

Load the `arrhythmia` data set. Determine the class distribution.

```matlab
code
load arrhythmia
Y = categorical(Y);
tabulate(Y)
n = numel(Y);
K = numel(unique(Y));
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.99%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.06%</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0.88%</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.11%</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>4.87%</td>
</tr>
</tbody>
</table>

Several classes are not represented in the data, and many of the other classes have low relative frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak, classification tree learners.

```matlab
t = templateEnsemble('GentleBoost',50,'Tree');
t```

`t` is a template object. Most of the options are empty ([]). The software uses default values for all empty options during training.

Since there are many classes, specify a sparse random coding design.

```matlab
rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');
```

Train an ECOC model using parallel computing. Hold out 15% of the data and fit posterior probabilities.

```matlab
pool = parpool; % Invokes workers
options = statset('UseParallel',1);
CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
 'FitPosterior',1,'Holdout',0.15);
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testInds = test(CVMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
```

Starting parallel pool parpool using the 'local' profile ... connected to 4 workers.
CVMdl is a ClassificationPartitionedECOC model. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model that the software trained using the training set.

The pool invokes four workers. The number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified as not having arrhythmia (class 1) given the data for a random set of test-sample observations.

```
 [~,~,~,posterior] = predict(CMdl,XTest,'Options',options);
 idx = randsample(sum(testInds),10);
 table(idx,YTest(idx),posterior(idx,1),...
 'VariableNames',{'TestSampleIndex','TrueLabel','PosteriorNoArrhythmia'})
```

```
ans =

<table>
<thead>
<tr>
<th>TestSampleIndex</th>
<th>TrueLabel</th>
<th>PosteriorNoArrhythmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6</td>
<td>0.60631</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>0.23674</td>
</tr>
<tr>
<td>51</td>
<td>2</td>
<td>0.13802</td>
</tr>
<tr>
<td>33</td>
<td>10</td>
<td>0.43831</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.94332</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.97278</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0.62807</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>0.96876</td>
</tr>
<tr>
<td>56</td>
<td>16</td>
<td>0.29375</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0.64512</td>
</tr>
</tbody>
</table>
```

**Definitions**

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:
• $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
• $s_j$ is the score of binary learner $j$ for an observation.
• $g$ is the binary loss function.
• $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}.
$$

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j, s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Score Domain</td>
<td>$g(y_j, s_j)$</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**Algorithms**

- If you train Mdl specifying to standardize the predictor data, then the software standardizes the columns of $X$ using the corresponding means and standard deviations that the software stored in Mdl.BinaryLearner{j}.Mu and Mdl.BinaryLearner{j}.Sigma for learner j.

- The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
  - $m_{kj}$ is the element $(k,j)$ of the coding design matrix $M$.
  - $I$ is the indicator function.
  - $\hat{p}_k$ is the class posterior probability estimate for class $k$ of an observation, $k = 1,\ldots,K$.
  - $r_j$ is the positive-class posterior probability for binary learner $j$. That is, $r_j$ is the probability that binary learner $j$ classifies an observation into the positive class, given the training data.

**Posterior Estimation Using Kullback-Leibler Divergence**

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is
\[
\Delta(r, r) = \sum_{j=1}^{L} w_j \left[ r_j \log \frac{r_j}{r_j} + (1-r_j) \log \frac{1-r_j}{1-r_j} \right],
\]

where \( w_j = \sum_{S} w_i^* \) is the weight for binary learner \( j \).

- \( S_j \) is the set of observation indices on which binary learner \( j \) is trained.
- \( w_i^* \) is the weight of observation \( i \).

The software minimizes the divergence iteratively. The first step is to choose initial values \( \hat{p}_k^{(0)}; k = 1,\ldots,K \) for the class posterior probabilities.

- If you do not specify 'NumKLIterations', then the software uses both sets of deterministic initial values described next, and uses the one that minimizes \( \Delta \).

- \( \hat{p}_k^{(0)} = 1 / K; k = 1,\ldots,K \).

- \( \hat{p}_k^{(0)}; k = 1,\ldots,K \) is the solution of the system

\[
M_{01} \hat{p}^{(0)} = r,
\]

where \( M_{01} \) is \( M \) with all \( m_{kj} = -1 \) replaced with 0, and \( r \) is a vector of positive-class posterior probabilities returned by the \( L \) binary learners [Dietterich et al.] on page 18-222. The software uses \texttt{lsqnonneg} to solve the system.

- If you specify 'NumKLIterations', \( c \), where \( c \) is a natural number, then the software does the following to choose \( \hat{p}_k^{(0)}; k = 1,\ldots,K \), and uses the one that minimizes \( \Delta \).

- The software chooses both sets of deterministic initial values as described previously.
- The software randomly generates \( c \) vectors of length \( K \) using \texttt{rand}, and then normalizes each vector to sum to 1.

At iteration \( t \), the software completes these steps:
1 Compute

\[ \hat{r}_j^{(t)} = \frac{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1)}{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1 \cup m_{kj} = -1)} \]

2 Estimate the next class posterior probability using

\[ \hat{p}_k^{(t+1)} = \hat{p}_k^{(t)} \frac{\sum_{j=1}^{L} w_j \left[ r_j I(m_{kj} = +1) + (1-r_j) I(m_{kj} = -1) \right]}{\sum_{j=1}^{L} w_j \left[ \hat{r}_j^{(t)} I(m_{kj} = +1) + (1-\hat{r}_j^{(t)}) I(m_{kj} = -1) \right]} \]

3 Normalize \( \hat{p}_k^{(t+1)}, k = 1, \ldots, K \) so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 18-222 and [Zadrozny] on page 18-224.

**Posterior Estimation Using Quadratic Programming**

Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:

1 Estimate the positive-class posterior probabilities, \( r_j \), for binary learners \( j = 1, \ldots, L \).

2 Using the relationship between \( r_j \) and \( \hat{p}_k \) [Wu et al.] on page 18-224, minimize

\[ \sum_{j=1}^{L} \left[ -r_j \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = -1) + (1-r_j) \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = +1) \right]^2 \]

with respect to \( \hat{p}_k \) and the restrictions.
\[ 0 \leq \hat{p}_k \leq 1 \]
\[ \sum_k \hat{p}_k = 1. \]

The software performs minimization using \texttt{quadprog}.

\section*{References}


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.
- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-767 of the CompactClassificationECOC object.</td>
</tr>
</tbody>
</table>
| X         | • Must be a single- or double-precision matrix and can be variable-size.  
            • If you specify 'ObservationsIn','rows' (default), then the number of columns in X must be `numel(Mdl.PredictorNames)`. Rows and columns must correspond to observations and predictors, respectively.  
            • If you specify 'ObservationsIn','columns', then the number of rows in X must be `numel(Mdl.PredictorNames)`. Rows and columns must correspond to predictors and observations, respectively. |
<p>| Posterior | You cannot return this output argument.                                                                                                               |</p>
<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to use the 'ObservationsIn' name-value pair argument in the generated code, include {coder.Constant('ObservationsIn'), coder.typeof('a',[1,7],[0,1])} in the -args value of codegen.</td>
</tr>
<tr>
<td>BinaryLoss</td>
<td>Must be a supported binary loss function name, for example, 'linear'</td>
</tr>
<tr>
<td>NumKLIInitializations</td>
<td>You cannot specify this name-value pair argument.</td>
</tr>
<tr>
<td>Options</td>
<td>You cannot specify this name-value pair argument.</td>
</tr>
<tr>
<td>PosteriorMethod</td>
<td>You cannot specify this name-value pair argument.</td>
</tr>
<tr>
<td>Verbose</td>
<td>If you plan to generate a MEX file, then you can specify Verbose. Otherwise, codegen does not support Verbose for other file types.</td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

**See Also**

ClassificationECOC | ClassificationKernel | ClassificationLinear |
CompactClassificationECOC | fitcecoc | quadprog | resubPredict | statset
Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15

Introduced in R2014b
predict

Predict labels using ensemble of classification models

Syntax

labels = predict(Mdl,X)
labels = predict(Mdl,X,Name,Value)
[labels,score] = predict(__)

Description

labels = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the table or matrix X, based on the full or compact, trained classification ensemble Mdl.

labels = predict(Mdl,X,Name,Value) uses additional options specified by one or more Name,Value pair arguments.

[labels,score] = predict(__) also returns a matrix of classification scores on page 32-4999 (score), indicating the likelihood that a label comes from a particular class, using any of the input arguments in the previous syntaxes. For each observation in X, the predicted class label corresponds to the maximum score among all classes.

Input Arguments

Mdl

A classification ensemble created by fitensemble or a compact classification ensemble created by compact.

X

Predictor data to be classified, specified as a numeric matrix or table.
Each row of $X$ corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables making up the columns of $X$ must have the same order as the predictor variables that trained $Mdl$.
  - If you trained $Mdl$ using a table (for example, $Tbl$), then $X$ can be a numeric matrix if $Tbl$ contains all numeric predictor variables. To treat numeric predictors in $Tbl$ as categorical during training, identify categorical predictors using the CategoricalPredictors name-value pair argument of fitcensemble. If $Tbl$ contains heterogeneous predictor variables (for example, numeric and categorical data types) and $X$ is a numeric matrix, then predict throws an error.

- For a table:
  - predict does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained $Mdl$ using a table (for example, $Tbl$), then all predictor variables in $X$ must have the same variable names and be of the same data types as those that trained $Mdl$ (stored in $Mdl$.PredictorNames). However, the column order of $X$ does not need to correspond to the column order of $Tbl$. $Tbl$ and $X$ can contain additional variables (response variables, observation weights, etc.), but predict ignores them.
  - If you trained $Mdl$ using a numeric matrix, then the predictor names in $Mdl$.PredictorNames and corresponding predictor variable names in $X$ must be the same. To specify predictor names during training, see the PredictorNames name-value pair argument of fitcensemble. All predictor variables in $X$ must be numeric vectors. $X$ can contain additional variables (response variables, observation weights, etc.), but predict ignores them.

### Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

#### Learners

Indices of weak learners predict uses for computation of responses, a numeric vector.
\textbf{Default:} 1: \( T \), where \( T \) is the number of weak learners in \textit{Mdl}

\textit{UseObsForLearner}

A logical matrix of size \( N \)-by-\( T \), where:

- \( N \) is the number of rows of \( X \).
- \( T \) is the number of weak learners in \textit{Mdl}.

When \textit{UseObsForLearner}(i,j) is \textit{true}, learner \( j \) is used in predicting the class of row \( i \) of \( X \).

\textbf{Default:} \textit{true}(\( N \),\( T \))

\section*{Output Arguments}

\textit{labels}

Vector of classification labels. \textit{labels} has the same data type as the labels used in training \textit{Mdl}. (The software treats string arrays as cell arrays of character vectors.)

\textit{score}

A matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of this observation originating from this class computed as the fraction of observations of this class in a tree leaf. \textit{predict} averages these scores over all trees in the ensemble.

\section*{Examples}

\subsection*{Predict Class Labels Using Classification Ensemble}

Load Fisher's iris data set. Determine the sample size.

\begin{verbatim}
load fisheriris
N = size(meas,1);
\end{verbatim}

Partition the data into training and test sets. Hold out 10\% of the data for testing.
rng(1); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices

Store the training data in a table.

tblTrn = array2table(meas(idxTrn,:));
tblTrn.Y = species(idxTrn);

Train a classification ensemble using AdaBoostM2 and the training set. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(tblTrn,'Y','Method','AdaBoostM2','Learners',t);

Predict labels for the test set. You trained model using a table of data, but you can predict labels using a matrix.

labels = predict(Mdl,meas(idxTest,:));

Construct a confusion matrix for the test set.

Mdl.ClassNames

ans = 3x1 cell array
   {'setosa'    }
   {'versicolor'}
   {'virginica' }

confusionmat(species(idxTest),labels)

ans = 3x3
   8  0  0
   0  2  1
   0  0  4

Mdl misclassifies one versicolor iris as virginica in the test set.
Definitions

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from 0 to 1.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use saveCompactModel, loadCompactModel, and codegen to generate code for the predict function. Save a trained model by using saveCompactModel and define an entry-point function that loads the saved model by using loadCompactModel and calls the predict function. Then use codegen to generate code for the entry-point function.
- This table contains notes about arguments of predict.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-774 of the CompactClassificationEnsemble object.</td>
</tr>
<tr>
<td>X</td>
<td>• Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be numel(Mdl.PredictorNames).</td>
</tr>
<tr>
<td></td>
<td>• Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow user-defined indices up to 5 weak learners in the generated code, include {coder.Constant('Learners'),coder.typeof(0, [1,5],[0,1])} in the -args value of codegen.</td>
</tr>
</tbody>
</table>
**predict**

Predict labels using naive Bayes classification model

**Syntax**

```matlab
label = predict(Mdl,X)
[label,Posterior,Cost] = predict(Mdl,X)
```

**Description**

`label = predict(Mdl,X)` returns a vector of predicted class labels for the predictor data in the table or matrix `X`, based on the trained, full or compact naive Bayes classifier `Mdl`.

`[label,Posterior,Cost] = predict(Mdl,X)` also returns:

- A matrix of posterior probabilities indicating the likelihood that a label comes from a particular class.
- A matrix of misclassification costs. For each observation in `X`, the predicted class label corresponds to the minimum expected classification costs among all classes.

**Input Arguments**

- **Mdl** — *Naive Bayes classifier*
  - `ClassificationNaiveBayes` model | `CompactClassificationNaiveBayes` model
  
  Naive Bayes classifier, specified as a `ClassificationNaiveBayes` model or `CompactClassificationNaiveBayes` model returned by `fitcnb` or `compact`, respectively.

- **X** — *Predictor data to be classified*
  - numeric matrix | table
  
  Predictor data to be classified, specified as a numeric matrix or table.
Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables making up the columns of \( X \) must have the same order as the predictor variables that trained \( \text{Mdl} \).
  - If you trained \( \text{Mdl} \) using a table (for example, \( \text{Tbl} \)), then \( X \) can be a numeric matrix if \( \text{Tbl} \) contains all numeric predictor variables. To treat numeric predictors in \( \text{Tbl} \) as categorical during training, identify categorical predictors using the \texttt{CategoricalPredictors} name-value pair argument of \texttt{fitcnb}. If \( \text{Tbl} \) contains heterogeneous predictor variables (for example, numeric and categorical data types) and \( X \) is a numeric matrix, then \texttt{predict} throws an error.

- For a table:
  - \texttt{predict} does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained \( \text{Mdl} \) using a table (for example, \( \text{Tbl} \)), then all predictor variables in \( X \) must have the same variable names and data types as those that trained \( \text{Mdl} \) (stored in \( \text{Mdl.PredictorNames} \)). However, the column order of \( X \) does not need to correspond to the column order of \( \text{Tbl} \). \( \text{Tbl} \) and \( X \) can contain additional variables (response variables, observation weights, etc.), but \texttt{predict} ignores them.
  - If you trained \( \text{Mdl} \) using a numeric matrix, then the predictor names in \( \text{Mdl.PredictorNames} \) and corresponding predictor variable names in \( X \) must be the same. To specify predictor names during training, see the \texttt{PredictorNames} name-value pair argument of \texttt{fitcnb}. All predictor variables in \( X \) must be numeric vectors. \( X \) can contain additional variables (response variables, observation weights, etc.), but \texttt{predict} ignores them.

\textbf{Data Types:} table | double | single

\textbf{Notes:}

- If \( \text{Mdl.DistributionNames} \) is 'mn', then the software returns NaNs corresponding to rows of \( X \) containing at least one NaN.
- If \( \text{Mdl.DistributionNames} \) is not 'mn', then the software ignores NaN values when estimating misclassification costs and posterior probabilities. Specifically, the software
computes the conditional density of the predictors given the class by leaving out the factors corresponding to missing predictor values.

- For predictor distribution specified as 'mvmn', if \( X \) contains levels that are not represented in the training data (i.e., not in \( \text{Mdl.CategoricalLevels} \) for that predictor), then the conditional density of the predictors given the class is 0. For those observations, the software returns the corresponding value of \( \text{Posterior} \) as a NaN. The software determines the class label for such observations using the class prior probability, stored in \( \text{Mdl.Prior} \).

### Output Arguments

**label — Predicted class labels**

categorical vector | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical vector, character array, logical or numeric vector, or cell array of character vectors.

**label:**

- Is the same data type as the observed class labels (\( \text{Mdl.Y} \)) that trained \( \text{Mdl} \)
- Has length equal to the number of rows of \( \text{Mdl.X} \)
- Is the class yielding the lowest expected misclassification cost (\( \text{Cost} \))

**Posterior — Class posterior probabilities**

numeric matrix

Class posterior probabilities on page 32-5010, returned as a numeric matrix. \( \text{Posterior} \) has rows equal to the number of rows of \( X \) and columns equal to the number of distinct classes in the training data (\( \text{size(Mdl.ClassNames,1)} \)).

\( \text{Posterior}(j,k) \) is the predicted posterior probability of class \( k \) (i.e., in class \( \text{Mdl.ClassNames}(k) \)) given the observation in row \( j \) of \( X \).

Data Types: double

**Cost — Expected misclassification costs**

numeric matrix
Expected misclassification costs on page 32-5009, returned as a numeric matrix. Cost has rows equal to the number of rows of X and columns equal to the number of distinct classes in the training data (size(Mdl.ClassNames,1)).

Cost(j,k) is the expected misclassification cost of the observation in row j of X being predicted into class k (i.e., in class Mdl.ClassNames(k)).

**Examples**

**Label Test Sample Observations of Naive Bayes Classifiers**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1);
```

Train a naive Bayes classifier and specify to holdout 30% of the data for a test sample. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
CVMdl = fitcnb(X,Y,'Holdout',0.30,...
 'ClassNames',{'setosa','versicolor','virginica'});
CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier
testIdx = test(CVMdl.Partition); % Extract the test indices
XTest = X(testIdx,:);
YTest = Y(testIdx);
```

CVMdl is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes classifier that the software trained using the training set.

Label the test sample observations. Display the results for a random set of 10 observations in the test sample.

```matlab
idx = randsample(sum(testIdx),10);
label = predict(CMdl,XTest);
table(YTest(idx),label(idx),'VariableNames',
 {'TrueLabel','PredictedLabel'})
```
Estimate Posterior Probabilities and Misclassification Costs

A goal of classification is to estimate posterior probabilities of new observations using a trained algorithm. Many applications train algorithms on large data sets, which can use resources that are better used elsewhere. This example shows how to efficiently estimate posterior probabilities of new observations using a Naive Bayes classifier.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
rng(1);
```

Partition the data set into two sets: one in the training set, and the other is new unobserved data. Reserve 10 observations for the new data set.

```matlab
n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);
```

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label. Conserve memory by reducing the size of the trained SVM classifier.
Mdl = fitcnb(X(inds,:),Y(inds),...  
    'ClassNames',{'setosa','versicolor','virginica'});
CMdl = compact(Mdl);
whos('Mdl','CMdl')

The CompactClassificationNaiveBayes classifier (CMdl) uses less space than the  
ClassificationNaiveBayes classifier (Mdl) because the latter stores the data.

Predict the labels, posterior probabilities, and expected class misclassification costs.  
Since true labels are available, compare them with the predicted labels.

CMdl.ClassNames

ans = 3x1 cell array  
    {'setosa'}    
    {'versicolor'}  
    {'virginica'}

[labels,PostProbs,MisClassCost] = predict(CMdl,XNew);
table(YNew,labels,PostProbs,'VariableNames',...  
    {'TrueLabels','PredictedLabels',...  
    'PosteriorProbabilities'})

MisClassCost
PostProbs and MisClassCost are 15-by-3 numeric matrices, where each row corresponds to a new observation and each column corresponds to a class. The order of the columns corresponds to the order of CMdl.ClassNames.

Plot Posterior Probability Regions for Naive Bayes Classifiers

Load Fisher's iris data set. Train the classifier using the petal lengths and widths.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
```

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
Mdl = fitcnb(X,Y,...
 'ClassNames',{'setosa','versicolor','virginica'});
```

Mdl is a ClassificationNaiveBayes model. You can access its properties using dot notation.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

```matlab
xMax = max(X);
xMin = min(X);
h = 0.01;
[x1Grid,x2Grid] = meshgrid(xMin(1):h:xMax(1),xMin(2):h:xMax(2));
```
[~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

Plot the posterior probability regions and the training data.

figure;
% Plot posterior regions
scatter(x1Grid(:),x2Grid(:),1,PosteriorRegion);
% Adjust color bar options
h = colorbar;
h.Ticks = [0 0.5 1];
h.TickLabels = {'setosa','versicolor','virginica'};
h.YLabel.String = 'Posterior';
h.YLabel.Position = [-0.5 0.5 0];
% Adjust color map options
d = 1e-2;
cmap = zeros(201,3);
cmap(1:101,1) = 1:-d:0;
cmap(1:201,2) = [0:d:1 1-d:-d:0];
cmap(101:201,3) = 0:d:1;
colormap(cmap);
% Plot data
hold on
gh = gscatter(X(:,1),X(:,2),Y,'k','dx*');
title 'Iris Petal Measurements and Posterior Probabilities';
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
axis tight
legend(gh,'Location','Best')
hold off
Definitions

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong class.

There are two types of misclassification costs: true and expected. Let $K$ be the number of classes.
• True misclassification cost — A $K$-by-$K$ matrix, where element $(i,j)$ indicates the misclassification cost of predicting an observation into class $j$ if its true class is $i$. The software stores the misclassification cost in the property Mdl.Cost, and used in computations. By default, $\text{Mdl.Cost}(i,j) = 1$ if $i \neq j$, and $\text{Mdl.Cost}(i,i) = 0$ if $i = j$. In other words, the cost is 0 for correct classification, and 1 for any incorrect classification.

• Expected misclassification cost — A $K$-dimensional vector, where element $k$ is the weighted average misclassification cost of classifying an observation into class $k$, weighted by the class posterior probabilities. In other words,

$$c_k = \sum_{j=1}^{K} \hat{P}(Y = j | x_1, \ldots, x_P) \text{Cost}_{jk}.$$  

the software classifies observations to the class corresponding with the lowest expected misclassification cost.

**Posterior Probability**

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is $k$ for a given observation $(x_1, \ldots, x_P)$ is

$$\hat{P}(Y = k | x_1, \ldots, x_P) = \frac{P(X_1, \ldots, X_P | y = k)\pi(Y = k)}{P(X_1, \ldots, X_P)},$$

where:

• $P(X_1, \ldots, X_P | y = k)$ is the conditional joint density of the predictors given they are in class $k$. Mdl.DistributionNames stores the distribution names of the predictors.

• $\pi(Y = k)$ is the class prior probability distribution. Mdl.Prior stores the prior distribution.

• $P(X_1, \ldots, X_P)$ is the joint density of the predictors. The classes are discrete, so 

$$P(X_1, \ldots, X_P) = \sum_{k=1}^{K} P(X_1, \ldots, X_P | y = k)\pi(Y = k).$$
Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

References


Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also

ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | loss | resubPredict

Topics

“Naive Bayes Classification” on page 21-2
“Grouping Variables” on page 2-57
predict

Package: classreg.learning.classif

Predict labels using support vector machine (SVM) classifier

Syntax

label = predict(SVMModel,X)
[label,score] = predict(SVMModel,X)

Description

label = predict(SVMModel,X) returns a vector of predicted class labels for the predictor data in the table or matrix X, based on the trained support vector machine (SVM) classification model SVMModel. The trained SVM model can either be full or compact.

[label,score] = predict(SVMModel,X) also returns a matrix of scores (score) indicating the likelihood that a label comes from a particular class. For SVM, likelihood measures are either classification scores on page 32-5018 or class posterior probabilities on page 32-5019. For each observation in X, the predicted class label corresponds to the maximum score among all classes.

Examples

Label Test Sample Observations of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.
CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...  
'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Label the test sample observations. Display the results for the first 10 observations in the
test sample.

[label,score] = predict(CompactSVMModel,XTest);
table(YTest(1:10),label(1:10),score(1:10,2),'VariableNames',
       {'TrueLabel','PredictedLabel','Score'})

ans=10×3 table
      TrueLabel        PredictedLabel    Score
    _______    ______________    ________
       'b'            'b'           -1.7177
       'g'            'g'            2.0003
       'b'            'b'           -9.6841
       'g'            'g'            2.5618
       'b'            'b'            -1.548
       'g'            'g'            2.0984
       'b'            'b'           -2.7018
       'b'            'b'          -0.66291
       'g'            'g'            1.6046
       'g'            'g'            1.7731

Predict Labels and Posterior Probabilities of SVM Classifiers

Label new observations using an SVM classifier.

Load the ionosphere data set. Assume that the last 10 observations become available
after you train the SVM classifier.

load  ionosphere
rng(1); % For reproducibility
n = size(X,1); % Training sample size
isInds = 1:(n-10); % In-sample indices
oosInds = (n-9):n; % Out-of-sample indices

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class. Conserve memory by reducing the size of the trained SVM classifier.

SVMMModel = fitcsvm(X(isInds,:),Y(isInds),'Standardize',true,...
                  'ClassNames',{'b','g'});
CompactSVMMModel = compact(SVMMModel);
whos('SVMMModel','CompactSVMMModel')

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompactSVMMModel</td>
<td>1x1</td>
<td>29936</td>
<td>classreg.learning.classif.CompactClassificationSVM</td>
</tr>
<tr>
<td>SVMMModel</td>
<td>1x1</td>
<td>137268</td>
<td>ClassificationSVM</td>
</tr>
</tbody>
</table>

The CompactClassificationSVM classifier (CompactSVMMModel) uses less space than the ClassificationSVM classifier (SVMMModel) because SVMMModel stores the data.

Estimate the optimal score-to-posterior-probability transformation function.

CompactSVMMModel = fitPosterior(CompactSVMMModel, ...
                                X(isInds,:),Y(isInds))

CompactSVMMModel =
classreg.learning.classif.CompactClassificationSVM
  ResponseName: 'Y'
  CategoricalPredictors: []
  ClassNames: {'b'  'g'}
  ScoreTransform: @(S)sigmoid(S,-1.968452e+00,3.121267e-01)
  Alpha: [88x1 double]
  Bias: -0.2143
  KernelParameters: [1x1 struct]
    Mu: [1x34 double]
    Sigma: [1x34 double]
  SupportVectors: [88x34 double]
  SupportVectorLabels: [88x1 double]

Properties, Methods

The optimal score transformation function (CompactSVMMModel.ScoreTransform) is the sigmoid function because the classes are inseparable.
Predict the out-of-sample labels and positive class posterior probabilities. Because true labels are available, compare them with the predicted labels.

\[
[\text{labels,PostProbs}] = \text{predict}(
\text{CompactSVMModel}, X(oosInds,:), )
\]

\[
\text{table}(Y(oosInds), \text{labels,PostProbs}(:,2), 'VariableNames', ... \\
\{'\text{TrueLabels}', '\text{PredictedLabels}', '\text{PosClassPosterior}'\})
\]

\[
\begin{array}{ccc}
\text{TrueLabels} & \text{PredictedLabels} & \text{PosClassPosterior} \\
'g' & 'g' & 0.98419 \\
'g' & 'g' & 0.95545 \\
'g' & 'g' & 0.67792 \\
'g' & 'g' & 0.94448 \\
'g' & 'g' & 0.98744 \\
'g' & 'g' & 0.92482 \\
'g' & 'g' & 0.97111 \\
'g' & 'g' & 0.96986 \\
'g' & 'g' & 0.97803 \\
'g' & 'g' & 0.94361 \\
\end{array}
\]

\text{PostProbs} is a 10-by-2 matrix, where the first column is the negative class posterior probabilities, and the second column is the positive class posterior probabilities corresponding to the new observations.

\section*{Input Arguments}

\textbf{SVMModel} — SVM classification model  
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

\textbf{X} — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.
Each row of X corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables in the columns of X must have the same order as the predictor variables that trained SVMModel.
  - If you trained SVMModel using a table (for example, Tbl) and Tbl contains all numeric predictor variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical during training, identify categorical predictors by using the CategoricalPredictors name-value pair argument of fitcsvm. If Tbl contains heterogeneous predictor variables (for example, numeric and categorical data types) and X is a numeric matrix, then predict throws an error.

- For a table:
  - predict does not support multicolumn variables and cell arrays other than cell arrays of character vectors.
  - If you trained SVMModel using a table (for example, Tbl), then all predictor variables in X must have the same variable names and data types as those that trained SVMModel (stored in SVMModel.PredictorNames). However, the column order of X does not need to correspond to the column order of Tbl. Also, Tbl and X can contain additional variables (response variables, observation weights, and so on), but predict ignores them.
  - If you trained SVMModel using a numeric matrix, then the predictor names in SVMModel.PredictorNames and corresponding predictor variable names in X must be the same. To specify predictor names during training, see the PredictorNames name-value pair argument of fitcsvm. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, and so on), but predict ignores them.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the columns of X using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: table | double | single
Output Arguments

**label — Predicted class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

*label* has the same data type as the observed class labels (*Y*) that trained *SVMModel*, and its length is equal to the number of rows in *X*. (The software treats string arrays as cell arrays of character vectors.)

For one-class learning, *label* is the one class represented in the observed class labels.

**score — Predicted class scores or posterior probabilities**
numeric column vector | numeric matrix

Predicted class scores on page 32-5018 or posterior probabilities on page 32-5019, returned as a numeric column vector or numeric matrix.

- For one-class learning, *score* is a column vector with the same number of rows as the observations (*X*). The elements of *score* are the positive class scores for the corresponding observations. You cannot obtain posterior probabilities for one-class learning.
- For two-class learning, *score* is a two-column matrix with the same number of rows as *X*.
  - If you fit the optimal score-to-posterior-probability transformation function using *fitPosterior* or *fitSVMPosterior*, then *score* contains class posterior probabilities. That is, if the value of *SVMModel.ScoreTransform* is not *none*, then the first and second columns of *score* contain the negative class (*SVMModel.ClassNames{1}*)) and positive class (*SVMModel.ClassNames{2}*)) posterior probabilities for the corresponding observations, respectively.
  - Otherwise, the first column contains the negative class scores and the second column contains the positive class scores for the corresponding observations.

If *SVMModel.KernelParameters.Function* is 'linear', then the classification score for the observation *x* is

\[
 f(x) = (x / s)'\beta + b. \]
SVMModel stores $\beta$, $b$, and $s$ in the properties Beta, Bias, and KernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor data that were applied during training. Specifically, if you specify 'Standardize',true when using fitcsvm, then you must standardize the predictor data manually by using the mean SVMModel.Mu and standard deviation SVMModel.Sigma, and then divide the result by the kernel scale in SVMModel.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before estimation.

If SVMModel.KernelParameters.Function is not 'linear', then Beta is empty ([]).

Definitions

Classification Score

The SVM classification score for classifying observation $x$ is the signed distance from $x$ to the decision boundary ranging from $-\infty$ to $+\infty$. A positive score for a class indicates that $x$ is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score $f(x)$ is the trained SVM classification function.

$f(x)$ is also the numerical, predicted response for $x$, or the score for predicting $x$ into the positive class.

$$f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b,$$

where $(\alpha_1, ..., \alpha_n, b)$ are the estimated SVM parameters, $G(x_j, x)$ is the dot product in the predictor space between $x$ and the support vectors, and the sum includes the training set observations. The negative class classification score for $x$, or the score for predicting $x$ into the negative class, is $-f(x)$.

If $G(x_j, x) = x_j'x$ (the linear kernel), then the score function reduces to
\[ f(x) = (x / s)' \beta + b. \]

\( s \) is the kernel scale and \( \beta \) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

**Posterior Probability**

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For SVM, the posterior probability is a function of the score \( P(s) \) that observation \( j \) is in class \( k = \{-1,1\} \).

- For separable classes, the posterior probability is the step function

\[
P(s_j) = \begin{cases} 
0; & s < \max_{y_k = -1} s_k \\
\pi; & \max_{y_k = -1} s_k \leq s_j \leq \min_{y_k = +1} s_k , \\
1; & s_j > \min_{y_k = +1} s_k 
\end{cases}
\]

where:

- \( s_j \) is the score of observation \( j \).
- \(+1\) and \(-1\) denote the positive and negative classes, respectively.
- \( \pi \) is the prior probability that an observation is in the positive class.
- For inseparable classes, the posterior probability is the sigmoid function

\[
P(s_j) = \frac{1}{1 + \exp(As_j + B)},
\]

where the parameters \( A \) and \( B \) are the slope and intercept parameters, respectively.
Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

Tips

If you are using a linear SVM model for classification and the model has many support vectors, then using predict for the prediction method can be slow. To efficiently classify observations based on a linear SVM model, remove the support vectors from the model object by using discardSupportVectors.

Algorithms

• By default and irrespective of the model kernel function, MATLAB uses the dual representation of the score function to classify observations based on trained SVM models, specifically

\[ \hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j G(x, x_j) + \hat{b}. \]

This prediction method requires the trained support vectors and \( \alpha \) coefficients (see the SupportVectors and Alpha properties of the SVM model).

• By default, the software computes optimal posterior probabilities using Platt’s method [1]:
  1. Perform 10-fold cross-validation.
  2. Fit the sigmoid function parameters to the scores returned from the cross-validation.
  3. Estimate the posterior probabilities by entering the cross-validation scores into the fitted sigmoid function.

• The software incorporates prior probabilities in the SVM objective function during training.

• For SVM, predict and resubPredict classify observations into the class yielding the largest score (the largest posterior probability). The software accounts for
misclassification costs by applying the average-cost correction before training the classifier. That is, given the class prior vector $P$, misclassification cost matrix $C$, and observation weight vector $w$, the software defines a new vector of observation weights ($W$) such that

$$W_j = w_j P_j \sum_{k=1}^{K} C_{jk}.$$  

References


Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- You can generate C/C++ code for both predict and update by using a coder configurer or generate code only for predict by using saveCompactModel, loadCompactModel, and codegen.

- Code generation for predict and update — Create a coder configurer by using learnerCoderConfigurer and then generate code by using generateCode. Then you can update model parameters in the generated code without having to regenerate the code.
• Code generation for `predict` — Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

• This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
</table>
| SVMModel | • If you use `saveCompactModel` to save an SVM model that is equipped to predict posterior probabilities, and use `loadCompactModel` to load the model, then `loadCompactModel` cannot restore the `ScoreTransform` property into the MATLAB Workspace. However, `loadCompactModel` can load the model, including the `ScoreTransform` property, at compile time for code generation, within an entry-point function.  
• For the usage notes and limitations of the model object, see “Code Generation” on page 32-801 of the `CompactClassificationSVM` object. |
| X        | • Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in `X` must be `numel(SVMdl.PredictorNames)`.  
• Rows and columns must correspond to observations and predictors, respectively. |

For more information, see “Introduction to Code Generation” on page 31-2.

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

`ClassificationSVM` | `CompactClassificationSVM` | `fitSVMPosterior` | `fitcsvm` | `loss` | `resubPredict`


Topics

“Support Vector Machines for Binary Classification” on page 18-183
“Analyze Images Using Linear Support Vector Machines” on page 18-215
“Train SVM Classifier Using Custom Kernel” on page 18-196
“Plot Posterior Probability Regions for SVM Classification Models” on page 18-212

Introduced in R2014a
predict

Predict labels using classification tree

Syntax

`label = predict(Mdl,X)`
`label = predict(Mdl,X,Name,Value)`
`[label,score,node,cnum] = predict(___)`

Description

`label = predict(Mdl,X)` returns a vector of predicted class labels for the predictor data in the table or matrix `X`, based on the trained, full or compact classification tree `Mdl`.

`label = predict(Mdl,X,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, you can specify to prune `Mdl` to a particular level before predicting labels.

`[label,score,node,cnum] = predict(___)` uses any of the input argument in the previous syntaxes and additionally returns:

- A matrix of classification scores (`score`) indicating the likelihood that a label comes from a particular class. For classification trees, scores are posterior probabilities. For each observation in `X`, the predicted class label on page 32-5031 corresponds to the minimum expected misclassification cost on page 32-5035 among all classes.
- A vector of predicted node numbers for the classification (`node`).
- A vector of predicted class number for the classification (`cnum`).

Input Arguments

`Mdl` — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object
Trained classification tree, specified as a `ClassificationTree` or `CompactClassificationTree` model object. That is, `Mdl` is a trained classification model returned by `fitctree` or `compact`.

**X — Predictor data to be classified**

numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of `X` corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables making up the columns of `X` must have the same order as the predictor variables that trained `Mdl`.
  - If you trained `Mdl` using a table (for example, `Tbl`), then `X` can be a numeric matrix if `Tbl` contains all numeric predictor variables. To treat numeric predictors in `Tbl` as categorical during training, identify categorical predictors using the `CategoricalPredictors` name-value pair argument of `fitctree`. If `Tbl` contains heterogeneous predictor variables (for example, numeric and categorical data types) and `X` is a numeric matrix, then `predict` throws an error.

- For a table:
  - `predict` does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained `Mdl` using a table (for example, `Tbl`), then all predictor variables in `X` must have the same variable names and data types as those that trained `Mdl` (stored in `Mdl.PredictorNames`). However, the column order of `X` does not need to correspond to the column order of `Tbl`. `Tbl` and `X` can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.
  - If you trained `Mdl` using a numeric matrix, then the predictor names in `Mdl.PredictorNames` and corresponding predictor variable names in `X` must be the same. To specify predictor names during training, see the `PredictorNames` name-value pair argument of `fitctree`. All predictor variables in `X` must be numeric vectors. `X` can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.

Data Types: `table` | `double` | `single`
**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

**Subtrees — Pruning level**

0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most **max(Mdl.PruneList)**. 0 indicates the full, unpruned tree and **max(Mdl.PruneList)** indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then predict operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using **0:max(Mdl.PruneList)**.

predict prunes Mdl to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of Mdl must be nonempty. In other words, grow Mdl by setting 'Prune','on', or by pruning Mdl using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

**Output Arguments**

**label — Predicted class labels**

vector | array

Predicted class labels on page 32-5031, returned as a vector or array. Each entry of **label** corresponds to the class with minimal expected cost for the corresponding row of X.
Suppose `Subtrees` is a numeric vector containing T elements (for 'all', see `Subtrees`), and X has N rows.

- If the response data type is `char` and:
  - \( T = 1 \), then `label` is a character matrix containing N rows. Each row contains the predicted label produced by subtree `Subtrees`.
  - \( T > 1 \), then `label` is an N-by-T cell array.
- Otherwise, `label` is an N-by-T array having the same data type as the response. (The software treats string arrays as cell arrays of character vectors.)

In the latter two cases, column \( j \) of `label` contains the vector of predicted labels produced by subtree `Subtrees(j)`.

**score — Posterior probabilities**
numeric matrix

Posterior probabilities, returned as a numeric matrix of size N-by-K, where N is the number of observations (rows) in X, and K is the number of classes (in `Mdl.ClassNames`). `score(i,j)` is the posterior probability that row \( i \) of X is of class \( j \).

If `Subtrees` has T elements, and X has N rows, then `score` is an N-by-K-by-T array, and `node` and `cnum` are N-by-T matrices.

**node — Node numbers**
numeric vector

Node numbers for the predicted classes, returned as a numeric vector. Each entry corresponds to the predicted node in `Mdl` for the corresponding row of X.

**cnum — Class numbers**
numeric vector

Class numbers corresponding to the predicted labels, returned as a numeric vector. Each entry of `cnum` corresponds to a predicted class number for the corresponding row of X.

**Examples**
Predict Labels Using a Classification Tree

Examine predictions for a few rows in a data set left out of training.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Partition the data into training (50%) and validation (50%) sets.

```matlab
n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false; % Validation set logical indices
```

Grow a classification tree using the training set.

```matlab
Mdl = fitctree(meas(idxTrn,:),species(idxTrn));
```

Predict labels for the validation data. Count the number of misclassified observations.

```matlab
label = predict(Mdl,meas(idxVal,:));
label(randsample(numel(label),5)) % Display several predicted labels
```

```matlab
ans = 5x1 cell array
 {setosa}
 {setosa}
 {setosa}
 {virginica}
 {versicolor}
```

```matlab
numMisclass = sum(~strcmp(label,species(idxVal)))
```

```matlab
numMisclass = 3
```

The software misclassifies three out-of-sample observations.

Estimate Class Posterior Probabilities Using a Classification Tree

Load Fisher's iris data set.

Load Fisher's iris data set.
load fisheriris

Partition the data into training (50%) and validation (50%) sets.

\[
n = \text{size}(\text{meas,1});
\]
\[
\text{rng}(1) \quad \% \text{For reproducibility}
\]
\[
\text{idxTrn} = \text{false}(n,1);
\]
\[
\text{idxTrn(randsample(n,round(0.5*n)))} = \text{true}; \quad \% \text{Training set logical indices}
\]
\[
\text{idxVal} = \text{idxTrn == false}; \quad \% \text{Validation set logical indices}
\]

Grow a classification tree using the training set, and then view it.

\[
\text{Mdl} = \text{fitctree}(\text{meas(idxTrn,:),species(idxTrn)});
\]
\[
\text{view(Mdl,'Mode','graph')}
\]
The resulting tree has four levels.

Estimate posterior probabilities for the test set using subtrees pruned to levels 1 and 3.

```
 [~,Posterior] = predict(Mdl,meas(idxVal,:), 'SubTrees', [1 3]);
 Mdl.ClassNames

 ans = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }
```
Posterior(randsample(size(Posterior,1),5),:,:),...  
% Display several posterior probabilities
ans =
ans(:,:,1) =
1.0000  0  0
1.0000  0  0
1.0000  0  0
0  0  1.0000
0  0.8571  0.1429

ans(:,:,2) =
0.3733  0.3200  0.3067
0.3733  0.3200  0.3067
0.3733  0.3200  0.3067
0.3733  0.3200  0.3067
0.3733  0.3200  0.3067
0.3733  0.3200  0.3067

The elements of Posterior are class posterior probabilities:

- Rows correspond to observations in the validation set.
- Columns correspond to the classes as listed in Mdl.ClassNames.
- Pages correspond to the subtrees.

The subtree pruned to level 1 is more sure of its predictions than the subtree pruned to level 3 (i.e., the root node).

**Definitions**

**Predicted Class Label**

predict classifies by minimizing the expected classification cost:

\[
\hat{y} = \arg\min_{y=1,...,K} \sum_{j=1}^{K} \hat{P}(j | x)C(y | j),
\]
where

• \( \hat{y} \) is the predicted classification.
• \( K \) is the number of classes.
• \( \hat{P}(j|x) \) is the posterior probability of class \( j \) for observation \( x \).
• \( C(y|j) \) is the cost of classifying an observation as \( y \) when its true class is \( j \).

**Score (tree)**

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor \( X \) as true when \( X < 0.15 \) or \( X > 0.95 \), and \( X \) is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```
Prune the tree:

\[
\text{tree1} = \text{prune(tree}, \text{'}Level',1); \\
\text{view(tree1,} \text{'}Mode', \text{'}Graph'})
\]
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
```
Indeed, every value of $X$ (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of $X$ have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in $X$ in the range (.95,1) instead of the expected 5 observations.

**True Misclassification Cost**

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the fitctree method. Cost(i,j) is the cost of classifying an observation into class j if its true class is i. By default, Cost(i,j)=1 if i~j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

**Expected Cost**

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the K classes. CE(n,k) is
\[ \sum_{i=1}^{K} \hat{P}(i \mid X_{\text{new}}(n))C(k \mid i), \]

where

- \( K \) is the number of classes.
- \( \hat{P}(i \mid X_{\text{new}}(n)) \) is the posterior probability of class \( i \) for observation \( X_{\text{new}}(n) \).
- \( C(k \mid i) \) is the true misclassification cost of classifying an observation as \( k \) when its true class is \( i \).

**Predictive Measure of Association**

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose \( x_j \) and \( x_k \) are predictor variables \( j \) and \( k \), respectively, and \( j \neq k \). At node \( t \), the predictive measure of association between the optimal split \( x_j < u \) and a surrogate split \( x_k < v \) is

\[
\lambda_{jk} = \frac{\min(P_L, P_R) - (1 - P_{LjL_k} - P_{RjR_k})}{\min(P_L, P_R)}.
\]

- \( P_L \) is the proportion of observations in node \( t \) such that \( x_j < u \). The subscript \( L \) stands for the left child of node \( t \).
- \( P_R \) is the proportion of observations in node \( t \) such that \( x_j \geq u \). The subscript \( R \) stands for the right child of node \( t \).
- \( P_{LjL_k} \) is the proportion of observations at node \( t \) such that \( x_j < u \) and \( x_k < v \).
- \( P_{RjR_k} \) is the proportion of observations at node \( t \) such that \( x_j \geq u \) and \( x_k \geq v \).
- Observations with missing values for \( x_j \) or \( x_k \) do not contribute to the proportion calculations.
\( \lambda_{jk} \) is a value in \((-\infty, 1]\). If \( \lambda_{jk} > 0 \), then \( x_k < v \) is a worthwhile surrogate split for \( x_j < u \).

**Algorithms**

`predict` generates predictions by following the branches of \( \text{Mdl} \) until it reaches a leaf node or a missing value. If `predict` reaches a leaf node, it returns the classification of that node.

If `predict` reaches a node with a missing value for a predictor, its behavior depends on the setting of the `Surrogate` name-value pair when `fitctree` constructs \( \text{Mdl} \).

- **Surrogate** = 'off' (default) — `predict` returns the label with the largest number of training samples that reach the node.
- **Surrogate** = 'on' — `predict` uses the best surrogate split at the node. If all surrogate split variables with positive predictive measure of association are missing, `predict` returns the label with the largest number of training samples that reach the node. For a definition, see “Predictive Measure of Association” on page 32-5036.

**Extended Capabilities**

**Tall Arrays**
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.
• This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-812 of the CompactClassificationTree object.</td>
</tr>
</tbody>
</table>
| X                | • Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be `numel(Mdl.PredictorNames)`.
  • Rows and columns must correspond to observations and predictors, respectively. |
| label            | If the response data type is `char` and codegen cannot determine that the value of Subtrees is a scalar, then label is a cell array of character vectors. |
| Name-value pair arguments | Names in name-value pair arguments must be compile-time constants. For example, to allow user-defined pruning levels in the generated code, include 
  `{coder.Constant('Subtrees'),coder.typeof(0, [1,n],[0,1])}` in the -args value of codegen, where n is max(Mdl.PruneList). |

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
- ClassificationTree
- CompactClassificationTree
- `compact`
- `edge`
- `fitctree`
- `loss`
- `margin`
- `prune`

**Topics**
- “Specify Variable-Size Arguments for Code Generation” on page 31-57

**Introduced in R2011a**
**predict**

Predict responses using ensemble of regression models

**Syntax**

\[ Yfit = \text{predict}(\text{Mdl},X) \]
\[ Yfit = \text{predict}(\text{Mdl},X,\text{Name,Value}) \]

**Description**

\( Yfit = \text{predict}(\text{Mdl},X) \) returns predicted responses to the predictor data in the table or matrix \( X \), based on the regression ensemble model \( \text{Mdl} \).

\( Yfit = \text{predict}(\text{Mdl},X,\text{Name,Value}) \) uses additional options specified by one or more \( \text{Name,Value} \) pair arguments.

**Input Arguments**

\( \text{Mdl} \)

Regression ensemble created by \text{fitrensemble}, or by the \text{compact} method.

\( X \)

Predictor data used to generate responses, specified as a numeric matrix or table.

Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables making up the columns of \( X \) must have the same order as the predictor variables that trained \( \text{Mdl} \).
  - If you trained \( \text{Mdl} \) using a table (for example, \( \text{Tbl} \)), then \( X \) can be a numeric matrix if \( \text{Tbl} \) contains all numeric predictor variables. To treat numeric predictors in \( \text{Tbl} \)
as categorical during training, identify categorical predictors using the 
CategoricalPredictors name-value pair argument of fitrensemble. If Tbl 
contains heterogeneous predictor variables (for example, numeric and categorical 
data types) and X is a numeric matrix, then predict throws an error.

- For a table:
  - predict does not support multi-column variables and cell arrays other than cell 
    arrays of character vectors.
  - If you trained Mdl using a table (for example, Tbl), then all predictor variables in X 
    must have the same variable names and data types as those that trained Mdl 
    (stored in Mdl.PredictorNames). However, the column order of X does not need 
    to correspond to the column order of Tbl. Tbl and X can contain additional 
    variables (response variables, observation weights, etc.), but predict ignores 
    them.
  - If you trained Mdl using a numeric matrix, then the predictor names in 
    Mdl.PredictorNames and corresponding predictor variable names in X must be 
    the same. To specify predictor names during training, see the PredictorNames 
    name-value pair argument of fitrensemble. All predictor variables in X must be 
    numeric vectors. X can contain additional variables (response variables, 
    observation weights, etc.), but predict ignores them.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the 
argument name and Value is the corresponding value. Name must appear inside quotes. 
You can specify several name and value pair arguments in any order as 
Name1, Value1, ..., NameN, ValueN.

**Learners**

Indices of weak learners in the ensemble ranging from 1 to NumTrained, where 
NumTrained is the number of weak learners.

**Default:** 1:NumTrained

**UseObsForLearner**

A logical matrix of size N-by-NumTrained, where N is the number of observations in X, 
and NumTrained is the number of weak learners. When UseObsForLearner(I,J) is 
true, predict uses learner J in predicting observation I.
Default: true(N,NumTrained)

Output Arguments

Yfit

A numeric column vector with the same number of rows as TBLdata or Xdata. Each row of Yfit gives the predicted response to the corresponding row of TBLdata or Xdata, based on the ens regression model.

Examples

Predict Responses Based on Regression Ensemble

Find the predicted mileage for a car based on regression ensemble trained on the carsmall data.

Load the carsmall data set and select the number of cylinders, engine displacement, horsepower, and vehicle weight as predictors.

```matlab
load carsmall
X = [Cylinders Displacement Horsepower Weight];
```

Train an ensemble of regression trees and predict MPG for a four-cylinder car, with 200 cubic inch engine displacement, 150 horsepower, weighing 3000 lbs.

```matlab
rens = fitrensemble(X,MPG);
Mileage = predict(rens,[4 200 150 3000])
```

Mileage = 25.6467

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.
This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.
- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-843 of the <code>CompactRegressionEnsemble</code> object.</td>
</tr>
<tr>
<td>X</td>
<td>• Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be <code>numel(Mdl.PredictorNames)</code>.</td>
</tr>
<tr>
<td></td>
<td>• Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td>Name-value pair</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow user-defined indices up to 5 weak learners in the generated code, include</td>
</tr>
<tr>
<td>arguments</td>
<td><code>{coder.Constant('Learners'),coder.typeof(0,[1,5],[0,1])}</code> in the -args value of codegen.</td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
`CompactRegressionEnsemble` | `RegressionBaggedEnsemble` | `RegressionEnsemble` | `fitrensemble` | `loss`
predict

Predict response of Gaussian process regression model

Syntax

ypred = predict(gprMdl,Xnew)
[ypred,ysd] = predict(gprMdl,Xnew)
[ypred,ysd,yint] = predict(gprMdl,Xnew)
[ypred,ysd,yint] = predict(gprMdl,Xnew,Name,Value)

Description

ypred = predict(gprMdl,Xnew) returns the predicted responses ypred for the full or compact Gaussian process regression (GPR) model, gprMdl, and the predictor values in Xnew.

[ypred,ysd] = predict(gprMdl,Xnew) also returns the estimated standard deviations for the new responses at the predictor values in Xnew from a trained GPR model.

[ypred,ysd,yint] = predict(gprMdl,Xnew) also returns the 95% prediction intervals, yint, for the true responses corresponding to each row of Xnew.

[ypred,ysd,yint] = predict(gprMdl,Xnew,Name,Value) also returns the prediction intervals with additional options specified by one or more Name,Value pair arguments. For example, you can specify the confidence level of the prediction interval.

Input Arguments

gprMdl — Gaussian process regression model
RegressionGP object | CompactRegressionGP object

Gaussian process regression model, specified as a RegressionGP (full) or CompactRegressionGP (compact) object.
**Xnew — New values for the predictors**

*table | m-by-d matrix*

New values for the predictors that `fitrgp` uses in training the GPR model, specified as a table or an *m*-by-*d* matrix. *m* is the number of observations and *d* is the number of predictor variables in the training data.

If you trained `gprMdl` on a table, then `Xnew` must be a table that contains all the predictor variables used to train `gprMdl`.

If you trained `gprMdl` on a matrix, then `Xnew` must be a numeric matrix with *d* columns.

Data Types: `single` | `double` | `table`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range from 0 to 1

Confidence level for the prediction intervals, specified as the comma-separated pair consisting of `'Alpha'` and a scalar value in the range from 0 to 1.

Example: `'Alpha',0.01` specifies 99% prediction intervals.

Data Types: `single` | `double`

**Output Arguments**

**ypred — Predicted response values**

*n*-by-1 vector

Predicted response values, returned as an *n*-by-1 vector.

**ysd — Estimated standard deviation of the new response values**

*n*-by-1 vector
Estimated standard deviation of the new response values, returned as an $n$-by-1 vector, where $ysd(i)$, $i = 1, 2, ..., n$, contains the estimated standard deviation of the new response corresponding to the predictor values at the $i^{th}$ row of $X_{new}$ from the trained GPR model.

**yint — Prediction intervals for the true response values**

$n$-by-2 matrix

Prediction intervals for the true response values corresponding to each row of $X_{new}$, returned as an $n$-by-2 matrix. The first column of $yint$ contains the lower limits and the second column contains the upper limits of the prediction intervals.

### Examples

**Compute Predicted Responses**

Generate the sample data.

```matlab
n = 10000;
rng(1) % For reproducibility
x = linspace(0.5,2.5,n)';
y = sin(10*pi.*x) ./ (2.*x)+(x-1).^4 + 1.5*rand(n,1);
```

Fit a GPR model using the Matern 3/2 kernel function with separate length scale for each predictor and an active set size of 100. Use the subset of regressors approximation method for parameter estimation and fully independent conditional method for prediction.

```matlab
gprMdl = fitrgp(x,y,'KernelFunction','ardmatern32',...
'ActiveSetSize',100,'FitMethod','sr','PredictMethod','fic');
```

Compute the predictions.

```matlab
[ypred,~,yci] = predict(gprMdl,x);
```

Plot the data along with the predictions and prediction intervals.

```matlab
plot(x,y,'r.');
hold on
plot(x,ypred);
plot(x,yci(:,1),'k--');
plot(x,yci(:,2),'k--');
```
Compute Predictions When Data in Table

Load the sample data and store in a table.

```matlab
load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
 'VariableNames',
 'meas1', 'meas2', 'meas3', 'meas4', 'species');
```
Fit a GPR model using the first measurement as the response and the other variables as the predictors.

```matlab
mdl = fitrgp(tbl,'meas1');
```

Compute the predictions and the 99% confidence intervals.

```matlab
[ypred,~,yci] = predict(mdl,tbl,'Alpha',0.01);
```

Plot the true response and the predictions along with the prediction intervals.

```matlab
figure();
plot(mdl.Y,'r.');
hold on;
plot(ypred);
plot(yci(:,1),'k:');
plot(yci(:,2),'k:');
legend('True response','GPR predictions','Lower prediction limit','Upper prediction limit','Location','Best');
```
Plot Predicted Response for Test Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','gprdata.mat'));
```

The data contains training and test data. There are 500 observations in training data and 100 observations in test data. The data has 8 predictor variables. This is simulated data.

Fit a GPR model using the squared exponential kernel function with a separate length scale for each predictor. Standardize predictors in the training data. Use the exact fitting and prediction methods.
gprMdl = fitrgp(Xtrain,ytrain,'Basis','constant',...
'FitMethod','exact','PredictMethod','exact',...
'KernelFunction','ardsquaredexponential','Standardize',1);

Predict the responses for test data.
[ytestpred,~,ytestci] = predict(gprMdl,Xtest);

Plot the test response along with the predictions.

figure;
plot(ytest,'r');
hold on;
plot(ytestpred,'b');
plot(ytestci(:,1),'k:');
plot(ytestci(:,2),'k:');
legend('Actual response','GPR predictions',...
'95% lower','95% upper','Location','Best');
hold off
Tips

- You can choose the prediction method while training the GPR model using the `PredictMethod` name-value pair argument in `fitrgp`. The default prediction method is 'exact' for \( n \leq 10000 \), where \( n \) is the number of observations in the training data, and 'bcd' (block coordinate descent), otherwise.

- Computation of standard deviations, \( ysd \), and prediction intervals, \( yint \), is not supported when `PredictMethod` is 'bcd'.

- If `gprMdl` is a `CompactRegressionGP` object, you cannot compute standard deviations, \( ysd \), or prediction intervals, \( yint \), for `PredictMethod` equal to 'sr' or...
'fic'. To compute ysd and yint for PredictMethod equal to 'sr' or 'fic', use the full regression (RegressionGP) object.

**Alternatives**

You can use resubPredict to compute the predicted responses for the trained GPR model at the observations in the training data.

**Extended Capabilities**

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use saveCompactModel, loadCompactModel, and codegen to generate code for the predict function. Save a trained model by using saveCompactModel and define an entry-point function that loads the saved model by using loadCompactModel and calls the predict function. Then use codegen to generate code for the entry-point function.

- This table contains notes about arguments of predict.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-851 of the CompactRegressionGP object.</td>
</tr>
<tr>
<td><strong>Argument</strong></td>
<td><strong>Notes and Limitations</strong></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>X</td>
<td>• Must be a single- or double-precision matrix and can be variable-size. However, the number of columns in Xnew must be numel(gprMdl.PredictorNames). &lt;br&gt;• Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined significance level in the generated code, include {coder.Constant('Alpha'),0} in the -args value of codegen.</td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
CompactRegressionGP | RegressionGP | compact | fitrgp | loss | resubPredict

**Introduced in R2015b**
predict
Predict responses using support vector machine regression model

Syntax
yfit = predict(Mdl,X)

Description
yfit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the table or matrix X, based on the full or compact, trained support vector machine (SVM) regression model Mdl.

Input Arguments
Mdl — SVM regression model
RegressionSVM object | CompactRegressionSVM object
SVM regression model, specified as a RegressionSVM model or a CompactRegressionSVM model, returned by fitrsvm or compact, respectively.

X — Predictor data used to generate responses
numeric matrix | table
Predictor data used to generate responses, specified as a numeric matrix or table. Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:
  • The variables making up the columns of X must have the same order as the predictor variables that trained Mdl.
  • If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl contains all numeric predictor variables. To treat numeric predictors in Tbl
as categorical during training, identify categorical predictors using the CategoricalPredictors name-value pair argument of fitrsvm. If Tbl contains heterogeneous predictor variables (for example, numeric and categorical data types) and X is a numeric matrix, then predict throws an error.

- For a table:
  - predict does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have the same variable names and data types as those that trained Mdl (stored in Mdl.PredictorNames). However, the column order of X does not need to correspond to the column order of Tbl. Tbl and X can contain additional variables (response variables, observation weights, etc.), but predict ignores them.
  - If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames and corresponding predictor variable names in X must be the same. To specify predictor names during training, see the PredictorNames name-value pair argument of fitrsvm. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, etc.), but predict ignores them.

If you set 'Standardize',true in fitrsvm to train Mdl, then the software standardizes the columns of X using the corresponding means in Mdl.Mu and standard deviations in Mdl.Sigma.

Data Types: table | double | single

**Output Arguments**

**yfit — Predicted responses**
vector

Predicted responses, returned as a vector of length n, where n is the number of observations in the training data.

Examples

Predict Test Sample Response for SVM Regression Model

Load the carsmall data set. Consider a model that predicts a car's fuel efficiency given its horsepower and weight. Determine the sample size.

```matlab
load carsmall
tbl = table(Horsepower,Weight,MPG);
N = size(tbl,1);
```

Partition the data into training and test sets. Hold out 10% of the data for testing.

```matlab
rng(10); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices
```

Train a linear SVM regression model. Standardize the data.

```matlab
Mdl = fitrsvm(tbl(idxTrn,:),'MPG','Standardize',true);
```

Mdl is a RegressionSVM model.

Predict responses for the test set.

```matlab
YFit = predict(Mdl,tbl(idxTest,:));
```

Create a table containing the observed response values and the predicted response values side by side.

```matlab
table(tbl.MPG(idxTest),YFit,'VariableNames',
 {'ObservedValue','PredictedValue'});
```

```
ans=10×2 table
 ObservedValue PredictedValue
 _______ ___________
 14 9.4833
 27 28.938
 10 7.765
 28 27.155
 22 21.054
```
Tips

• If mdl is a cross-validated RegressionPartitionedSVM model, use kfoldPredict instead of predict to predict new response values.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer or generate code only for predict by using saveCompactModel, loadCompactModel, and codegen.

• Code generation for predict and update — Create a coder configurer by using learnerCoderConfigurer and then generate code by using generateCode. Then you can update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveCompactModel and define an entry-point function that loads the saved model
by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-859 of the <code>CompactRegressionSVM</code> object.</td>
</tr>
</tbody>
</table>
| X        | • Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be `numel(Mdl.PredictorNames)`.  
  • Rows and columns must correspond to observations and predictors, respectively. |

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**

`CompactRegressionSVM` | `RegressionSVM` | `fitrsvm` | `kfoldPredict`

**Introduced in R2015b**
predict

Predict responses using regression tree

Syntax

Yfit = predict(Mdl,X)
Yfit = predict(Mdl,X,Name,Value)
[Yfit,node] = predict(___)

Description

Yfit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the table or matrix X, based on the full or compact regression tree Mdl.

Yfit = predict(Mdl,X,Name,Value) predicts response values with additional options specified by one or more Name,Value pair arguments. For example, you can specify to prune Mdl to a particular level before predicting responses.

[Yfit,node] = predict(____) also returns a vector of predicted node numbers for the responses, using any of the input arguments in the previous syntaxes.

Input Arguments

Mdl — Trained regression tree
RegressionTree model object | CompactRegressionTree model object

Trained classification tree, specified as a RegressionTree or CompactRegressionTree model object. That is, Mdl is a trained classification model returned by fitrtree or compact.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.
Each row of \( X \) corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
  - The variables making up the columns of \( X \) must have the same order as the predictor variables that trained \( \text{Mdl} \).
  - If you trained \( \text{Mdl} \) using a table (for example, \( \text{Tbl} \)), then \( X \) can be a numeric matrix if \( \text{Tbl} \) contains all numeric predictor variables. To treat numeric predictors in \( \text{Tbl} \) as categorical during training, identify categorical predictors using the \text{CategoricalPredictors} name-value pair argument of \text{fitrtree}. If \( \text{Tbl} \) contains heterogeneous predictor variables (for example, numeric and categorical data types) and \( X \) is a numeric matrix, then \text{predict} throws an error.

- For a table:
  - \text{predict} does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained \( \text{Mdl} \) using a table (for example, \( \text{Tbl} \)), then all predictor variables in \( X \) must have the same variable names and data types as those that trained \( \text{Mdl} \) (stored in \( \text{Mdl.PredictorNames} \)). However, the column order of \( X \) does not need to correspond to the column order of \( \text{Tbl} \). \( \text{Tbl} \) and \( X \) can contain additional variables (response variables, observation weights, etc.), but \text{predict} ignores them.
  - If you trained \( \text{Mdl} \) using a numeric matrix, then the predictor names in \( \text{Mdl.PredictorNames} \) and corresponding predictor variable names in \( X \) must be the same. To specify predictor names during training, see the \text{PredictorNames} name-value pair argument of \text{fitrtree}. All predictor variables in \( X \) must be numeric vectors. \( X \) can contain additional variables (response variables, observation weights, etc.), but \text{predict} ignores them.

Data Types: \text{table} | \text{double} | \text{single}

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \text{Name1,Value1,...,NameN,ValueN}.
Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(Mdl.PruneList). 0 indicates the full, unpruned tree and max(Mdl.PruneList) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then predict operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0:max(Mdl.PruneList).

predict prunes Mdl to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of Mdl must be nonempty. In other words, grow Mdl by setting 'Prune','on', or by pruning Mdl using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

Output Arguments

Yfit — Predicted response values
numeric column vector

Predicted response values, returned as a numeric column vector with the same number of rows as X. Each row of Yfit gives the predicted response to the corresponding row of X, based on the Mdl.

node — Node numbers
numeric vector

Node numbers for the predictions, specified as a numeric vector. Each entry corresponds to the predicted leaf node in Mdl for the corresponding row of X.
Examples

Predict a Response Using a Regression Tree

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

Grow a regression tree using the entire data set.

```matlab
Mdl = fitrtree(X,MPG);
```

Predict the MPG for a car with 200 cubic inch engine displacement, 150 horsepower, and that weighs 3000 lbs.

```matlab
X0 = [200 150 3000];
MPG0 = predict(Mdl,X0)
```

MPG0 = 21.9375

The regression tree predicts the car's efficiency to be 21.94 mpg.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

• This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-867 of the <code>CompactRegressionTree</code> object.</td>
</tr>
</tbody>
</table>
| X              | • Must be a single-precision or double-precision matrix and can be variable-size. However, the number of columns in X must be `numel(Mdl.PredictorNames)`.  
  • Rows and columns must correspond to observations and predictors, respectively. |
| Name-value pair arguments | Names in name-value pair arguments must be compile-time constants. For example, to allow user-defined pruning levels in the generated code, include `{coder.Constant('Subtrees'),coder.typeof(0, [1,n],[0,1])}` in the -args value of `codegen`, where n is `max(Mdl.PruneList)`. |

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**

`CompactRegressionTree` | `RegressionTree` | `compact` | `fitrtree` | `loss`

**Topics**

“Predict Out-of-Sample Responses of Subtrees” on page 19-13  
“Decision Trees” on page 19-2  
“Prediction Using Classification and Regression Trees” on page 19-11  
“Specify Variable-Size Arguments for Code Generation” on page 31-57

**Introduced in R2011a**
predict

Class: RegressionLinear

Predict response of linear regression model

Syntax

YHat = predict(Mdl,X)
YHat = predict(Mdl,X,Name,Value)

Description

YHat = predict(Mdl,X) returns predicted responses for each observation in the predictor data X based on the trained linear regression model Mdl. YHat contains responses for each regularization strength in Mdl.

YHat = predict(Mdl,X,Name,Value) returns predicted responses with additional options specified by one or more Name,Value pair arguments. For example, specify that columns in the predictor data correspond to observations.

Input Arguments

Mdl — Linear regression model
RegressionLinear model object

Linear regression model, specified as a RegressionLinear model object. You can create a RegressionLinear model object using fitrlinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.
**Note** If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in computation time.

The length of \( Y \) and the number of observations in \( X \) must be equal.

**Data Types:** `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**ObservationsIn — Predictor data observation dimension**

`'rows'` (default) | `'columns'`

Predictor data observation dimension, specified as the comma-separated pair consisting of `'ObservationsIn'` and `'columns'` or `'rows'`.

**Output Arguments**

**YHat — Predicted responses**

numeric matrix

Predicted responses, returned as a \( n \)-by-\( L \) numeric matrix. \( n \) is the number of observations in \( X \) and \( L \) is the number of regularization strengths in `Mdl.Lambda`. \( YHat(i,j) \) is the response for observation \( i \) using the linear regression model that has regularization strength \( Mdl.Lambda(j) \).

The predicted response using the model with regularization strength \( j \) is \( \hat{y}_j = x\beta_j + b_j \).
• $x$ is an observation from the predictor data matrix $X$, and is row vector.

• $\beta_j$ is the estimated column vector of coefficients. The software stores this vector in $\text{Mdl.Beta(:,:,j)}$.

• $b_j$ is the estimated, scalar bias, which the software stores in $\text{Mdl.Bias(j)}$.

**Examples**

**Predict Test-Sample Responses**

Simulate 10000 observations from this model

$$y = x_{100} + 2x_{200} + e.$$ 

• $X = x_1, ..., x_{1000}$ is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.

• $e$ is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

```matlab
CVMdl = fitrlinear(X,Y,'Holdout',0.3);
Mdl = CVMdl.Trained{1}
```

```
Mdl =
 RegressionLinear
 ResponseName: 'Y'
 ResponseTransform: 'none'
 Beta: [1000x1 double]
 Bias: -0.0066
 Lambda: 1.4286e-04
 Learner: 'svm'
```
Properties, Methods

CVMdl is a RegressionPartitionedLinear model. It contains the property Trained, which is a 1-by-1 cell array holding a RegressionLinear model that the software trained using the training set.

Extract the training and test data from the partition definition.

```matlab
trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);
```

Predict the training- and test-sample responses.

```matlab
yHatTrain = predict(Mdl,X(trainIdx,:));
yHatTest = predict(Mdl,X(testIdx,:));
```

Because there is one regularization strength in Mdl, yHatTrain and yHatTest are numeric vectors.

**Predict from Best-Performing Model**

Predict responses from the best-performing, linear regression model that uses a lasso-penalty and least squares.

Simulate 10000 observations as in “Predict Test-Sample Responses” on page 32-5065.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Create a set of 15 logarithmically-spaced regularization strengths from $10^{-5}$ through $10^{-1}$.

```matlab
Lambda = logspace(-5,-1,15);
```
Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Optimize the objective function using SpaRSA.

```matlab
X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
 'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
```

```matlab
numCLModels = numel(CVMdl.Trained)
```

```matlab
numCLModels = 5
```

`CVMdl` is a `RegressionPartitionedLinear` model. Because `fitrlinear` implements 5-fold cross-validation, `CVMdl` contains 5 `RegressionLinear` models that the software trains on each fold.

Display the first trained linear regression model.

```matlab
Mdl1 = CVMdl.Trained{1}
```

```matlab
Mdl1 = RegressionLinear
 ResponseName: 'Y'
 ResponseTransform: 'none'
 Beta: [1000x15 double]
 Bias: [1x15 double]
 Lambda: [1x15 double]
 Learner: 'leastsquares'
```

`Mdl1` is a `RegressionLinear` model object. `fitrlinear` constructed `Mdl1` by training on the first four folds. Because `Lambda` is a sequence of regularization strengths, you can think of `Mdl1` as 11 models, one for each regularization strength in `Lambda`.

Estimate the cross-validated MSE.

```matlab
mse = kfoldLoss(CVMdl);
```

Higher values of `Lambda` lead to predictor variable sparsity, which is a good quality of a regression model. For each regularization strength, train a linear regression model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.
Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
Choose the index of the regularization strength that balances predictor variable sparsity and low MSE (for example, \(\text{Lambda(10)}\)).

\[
\text{idxFinal} = 10;
\]

Extract the model with corresponding to the minimal MSE.

\[
\text{MdlFinal} = \text{selectModels(Mdl, idxFinal)}
\]

\[
\text{MdlFinal} = \text{RegressionLinear}
\]
\[
\text{ResponseName: 'Y'}
\]
\[
\text{ResponseTransform: 'none'}
\]
\[
\text{Beta: [1000x1 double]}
\]
Bias: -0.0050
Lambda: 0.0037
Learner: 'leastsquares'

Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)
idxNZCoeff = 2×1
     100
     200

EstCoeff = Mdl.Beta(idxNZCoeff)
EstCoeff = 2×1
     1.0051
     1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients EstCoeff are close to the coefficients that simulated the data.

Simulate 10 new observations, and predict corresponding responses using the best-performing model.

XNew = sprandn(d,10,nz);
YHat = predict(MdlFinal,XNew,'ObservationsIn','columns');

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-5559 of the RegressionLinear object.</td>
</tr>
<tr>
<td>X</td>
<td>• Must be a single- or double-precision matrix and can be variable-size.</td>
</tr>
<tr>
<td></td>
<td>• If you specify ‘ObservationsIn’, 'rows' (default), then the number of columns in X must be <code>numel(Mdl.PredictorNames)</code>. Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td></td>
<td>• If you specify ‘ObservationsIn’, 'columns', then the number of rows in X must be <code>numel(Mdl.PredictorNames)</code>. Rows and columns must correspond to predictors and observations, respectively.</td>
</tr>
<tr>
<td>Name-value pair</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to use the 'ObservationsIn' name-value pair argument in the generated code, include {coder.Constant('ObservationsIn'), coder.typeof('a', [1,7],[0,1])} in the -args value of codegen.</td>
</tr>
<tr>
<td>arguments</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
RegressionLinear | fitrlinear

32-5071
Introduced in R2016a
**predict**

Class: CompactTreeBagger

Predict responses using ensemble of bagged decision trees

**Syntax**

\[Y\text{fit} = \text{predict}(B,X)\]
\[Y\text{fit} = \text{predict}(B,X,\text{Name},\text{Value})\]
\[[Y\text{fit},\text{stdevs}] = \text{predict}(\_\_\_)\]
\[[Y\text{fit},\text{scores}] = \text{predict}(\_\_\_)\]
\[[Y\text{fit},\text{scores},\text{stdevs}] = \text{predict}(\_\_\_)\]

**Description**

\[Y\text{fit} = \text{predict}(B,X)\] returns a vector of predicted responses for the predictor data in the table or matrix \(X\), based on the compact ensemble of bagged decision trees \(B\). \(Y\text{fit}\) is a cell array of character vectors for classification and a numeric array for regression. By default, predict takes a democratic (nonweighted) average vote from all trees in the ensemble.

\(B\) is a trained CompactTreeBagger model object, that is, a model returned by compact.

\(X\) is a table or matrix of predictor data used to generate responses. Rows represent observations and columns represent variables.

- If \(x\) is a numeric matrix:
  - The variables making up the columns of \(x\) must have the same order as the predictor variables that trained \(B\).
  - If you trained \(B\) using a table (for example, Tbl), then \(x\) can be a numeric matrix if Tbl contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical during training, identify categorical predictors using the CategoricalPredictors name-value pair argument of TreeBagger. If Tbl contains heterogeneous predictor variables (for example, numeric and categorical data types) and \(x\) is a numeric matrix, then predict throws an error.
- If X is a table:
  - `predict` does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  - If you trained B using a table (for example, Tbl), then all predictor variables in X must have the same variable names and be of the same data types as those that trained B (stored in B.PredictorNames). However, the column order of X does not need to correspond to the column order of Tbl. Tbl and X can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.
  - If you trained B using a numeric matrix, then the predictor names in B.PredictorNames and corresponding predictor variable names in X must be the same. To specify predictor names during training, see the `PredictorNames` name-value pair argument of `TreeBagger`. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.

\[
Yfit = \text{predict}(B,X,\text{Name,Value})
\]
specifies additional options using one or more name-value pair arguments:

- 'Trees' — Array of tree indices to use for computation of responses. The default is 'all'.
- 'TreeWeights' — Array of NTrees weights for weighting votes from the specified trees, where NTrees is the number of trees in the ensemble.
- 'UseInstanceForTree' — Logical matrix of size Nobs-by-NTrees indicating which trees to use to make predictions for each observation, where Nobs is the number of observations. By default all trees are used for all observations.

For regression, \([Yfit,\text{stdevs}] = \text{predict}(\text{___})\) also returns standard deviations of the computed responses over the ensemble of the grown trees using any of the input argument combinations in previous syntaxes.

For classification, \([Yfit,\text{scores}] = \text{predict}(\text{___})\) also returns scores for all classes. scores is a matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of the observation originating from the class, computed as the fraction of observations of the class in a tree leaf. `predict` averages these scores over all trees in the ensemble.

\([Yfit,\text{scores,\text{stdevs}}] = \text{predict}(\text{___})\) also returns standard deviations of the computed scores for classification. stdevs is a matrix with one row per observation and
one column per class, with standard deviations taken over the ensemble of the grown trees.

**Algorithms**

- For regression problems, the predicted response for an observation is the weighted average of the predictions using selected trees only. That is,

\[
\hat{y}_{bag} = \frac{1}{T} \sum_{t=1}^{T} \alpha_t \hat{y}_t I(t \in S),
\]

- \( \hat{y}_t \) is the prediction from tree \( t \) in the ensemble.
- \( S \) is the set of indices of selected trees that comprise the prediction (see 'Trees' and 'UseInstanceForTree'). \( I(t \in S) \) is 1 if \( t \) is in the set \( S \), and 0 otherwise.
- \( \alpha_t \) is the weight of tree \( t \) (see 'TreeWeights').

- For classification problems, the predicted class for an observation is the class that yields the largest weighted average of the class posterior probabilities (i.e., classification scores) computed using selected trees only. That is,

\[
\hat{P}_{bag} (c \mid x) = \frac{1}{T} \sum_{t=1}^{T} \alpha_t \hat{P}_t (c \mid x) I(t \in S),
\]

1. For each class \( c \in C \) and each tree \( t = 1,...,T \), `predict` computes \( \hat{P}_t (c \mid x) \), which is the estimated posterior probability of class \( c \) given observation \( x \) using tree \( t \). \( C \) is the set of all distinct classes in the training data. For more details on classification tree posterior probabilities, see `fitctree` and `predict`.

2. `predict` computes the weighted average of the class posterior probabilities over the selected trees.

3. The predicted class is the class that yields the largest weighted average.
\[ \hat{y}_{\text{bag}} = \arg \max_{c \in C} \{ \hat{P}_{\text{bag}} (c \mid x) \}. \]

**See Also**
CompactTreeBagger | error

**Topics**
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
predict

Predict response of generalized linear regression model

Syntax

ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description

ypred = predict(mdl,Xnew) returns the predicted response of the mdl generalized linear regression model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl

Generalized linear model, specified as a full GeneralizedLinearModel object constructed using fitglm or stepwiseglm, or a compacted CompactGeneralizedLinearModel object constructed using compact.

Xnew

Points at which mdl predicts responses.

- If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

**Alpha**

Positive scalar from 0 to 1. Confidence level of yci is 100(1 – alpha)%.

**Default:** 0.05, meaning a 95% confidence interval.

**BinomialSize**

Value of the binomial n parameter for each row in the training data. BinomialSize can be a vector the same length as Xnew, or a scalar that applies to each row. The default value 1 produces ypred values that are predicted proportions. Use BinomialSize only if mdl is fit to a binomial distribution.

**Default:** 1

**Offset**

Value of the offset for each row in Xnew. Offset can be a vector the same length as Xnew, or a scalar that applies to each row. The offset is used as an additional predictor with a coefficient value fixed at 1. In other words, if b is the fitted coefficient vector, and link is the link function,

\[
\text{link}(\text{ypred}) = \text{Offset} + X\text{new} \times b.
\]

**Default:** zeros(size(Xnew,1))

**Simultaneous**

Logical value specifying whether the confidence bounds are for all predictor values simultaneously (true), or hold for each individual predictor value (false). Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the
entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.

For details, see `polyconf`.

**Default**: false

### Output Arguments

**ypred**

Vector of predicted mean values at `Xnew`.

**yci**

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

### Examples

#### Generalized Linear Model Predictions

Create a generalized linear model, and predict its response to new data.

Generate artificial data for the model using Poisson random numbers with two underlying predictors `X(1)` and `X(2).

```matlab
rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');
```

Create points for prediction.

```matlab
predict
```
[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Xnew = [Xtest1(:),Xtest2(:)];

Predict responses at the new points.
ypred = predict(mdl,Xnew);

Plot the predictions.
surf(Xtest1,Xtest2,reshape(ypred,9,9))

Create confidence intervals on the predictions.
[ypred yci] = predict(mdl,Xnew);
Generate Code from Function That Predicts Responses Given New Data

Train a generalized linear model, and then generate code from a function that classifies new observations based on the model. This example is based on the “Generalized Linear Model Predictions” on page 32-5079 example.

Generate artificial data.

```matlab
rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');
```

Create points for prediction.

```matlab
[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Xnew = [Xtest1(:),Xtest2(:)];
```

Save the fitted generalized linear model to the file GLMMdl.mat.

```matlab
saveCompactModel(mdl,'GLMMdl');
```

Define a function in your current working folder called mypredictGLM.m that:

- Accepts measurements with columns corresponding to those in Xnew and valid name-value pair arguments
- Loads the fitted generalized linear model in GLMMdl.mat
- Returns predictions and confidence interval bounds

```matlab
function [yhat,ci] = mypredictGLM(x,varargin) %#codegen
%MYPREDICTGLM Predict response using GLM model
%MYPREDICTGLM predicts responses for the n observations in the n-by-1 vector x using using the GLM model stored in the MAT-file GLMMdl.mat, and then returns the predictions in the n-by-1 vector yhat.
%MYPREDICTGLM also returns confidence interval bounds for the predictions in the n-by-2 vector ci.
```
CompactMdl = loadCompactModel('GLMMdl');
narginchk(1,Inf);
[yhat,ci] = predict(CompactMdl,x,varargin{:});
end

Generate a MEX function from `mypredictGLM.m`. Specify returning 90% simultaneous confidence intervals on the predictions. Because C uses static typing, `codegen` must determine the properties of all variables in MATLAB® files at compile time. To designate arguments as compile-time constants, use `coder.Constant`.

codegen -config:mex mypredictGLM -args {Xnew,coder.Constant('Alpha'),0.1,coder.Constant('Simultaneous')}false}

The MEX file `mypredictGLM_mex.mexw64` generates to your present working directory. The file extension depends on your platform.

Compare predictions using `predict` and `mypredictGLM_mex`. Specify name-value pair arguments in the same order as in the `-args` argument in the call to `codegen`.

[yhat1,ci1] = predict(mdl,Xnew,'Alpha',0.1,'Simultaneous',true);
[yhat2,ci2] = mypredictGLM_mex(Xnew,'Alpha',0.1,'Simultaneous',true);

comp1 = (yhat1 - yhat2)'*(yhat1 - yhat2);
comp2 = diag((ci1 - ci2)'*(ci1 - ci2));
agree1 = comp1 < eps
agree2 = comp2 < eps

agree1 =
    logical
    1

agree2 =
    2x1 logical array
    1
    1
The generated MEX file produces the same results as `predict`.

**Tips**

- For predictions with added noise, use `random`.
- For a syntax that can be easier to use with models created from dataset arrays, try `feval`.

**Alternatives**

`feval` gives the same predictions, but uses separate input arrays for each predictor, instead of one input array containing all predictors.

`random` predicts with added noise.

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.
- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mdl</code></td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-836 of the <code>CompactGeneralizedLinearModel</code> object.</td>
</tr>
<tr>
<td>Argument</td>
<td>Notes and Limitations</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| Xnew         | • Must be a single- or double-precision matrix and can be variable-size. However, the number of columns in Xnew must be numel(mdl.PredictorNames).
|              | • Rows and columns must correspond to observations and predictors, respectively. |
| Name-value pair arguments | Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined significance level in the generated code, include `{coder.Constant('Alpha'),0}` in the -args value of codegen. |

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
CompactGeneralizedLinearModel | GeneralizedLinearModel | fitglm | random

**Topics**
“Predict or Simulate Responses to New Data” on page 12-34
“Generalized Linear Model Workflow” on page 12-40
“Generalized Linear Models” on page 12-12

**Introduced in R2012a**
predict

**Class:** GeneralizedLinearMixedModel

Predict response of generalized linear mixed-effects model

**Syntax**

```matlab
ypred = predict(glme)
ypred = predict(glme,tblnew)
ypred = predict(___,Name,Value)
[ypred,ypredCI] = predict(__)
[ypred,ypredCI,DF] = predict(__)
```

**Description**

`ypred = predict(glme)` returns the predicted conditional means of the response, `ypred`, using the original predictor values used to fit the generalized linear mixed-effects model `glme`.

`ypred = predict(glme,tblnew)` returns the predicted conditional means using the new predictor values specified in `tblnew`.

If a grouping variable in `tblnew` has levels that are not in the original data, then the random effects for that grouping variable do not contribute to the 'Conditional' prediction at observations where the grouping variable has new levels.

`ypred = predict(__,Name,Value)` returns the predicted conditional means of the response using additional options specified by one or more `Name,Value` pair arguments. For example, you can specify the confidence level, simultaneous confidence bounds, or contributions from only fixed effects. You can use any of the input arguments in the previous syntaxes.

`[ypred,ypredCI] = predict(__)` also returns 95% point-wise confidence intervals, `ypredCI`, for each predicted value.
[ypred,ypredCI,DF] = predict(__) also returns the degrees of freedom, DF, used to compute the confidence intervals.

**Input Arguments**

**glme — Generalized linear mixed-effects model**

GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

**tblnew — New input data**

table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on page 2-57, specified as a table or dataset array. The predictor variables can be continuous or grouping variables. tblnew must have the same variables as the original table or dataset array used in fitglme to fit the generalized linear mixed-effects model glme.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range [0,1]. For a value \(\alpha\), the confidence level is \(100 \times (1 - \alpha)\%\).

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double
Conditional — Indicator for conditional predictions
true (default) | false

Indicator for conditional predictions, specified as the comma-separated pair consisting of 'Conditional' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Contributions from both fixed effects and random effects (conditional)</td>
</tr>
<tr>
<td>false</td>
<td>Contribution from only fixed effects (marginal)</td>
</tr>
</tbody>
</table>

Example: 'Conditional',false

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'residual'</td>
<td>The degrees of freedom value is assumed to be constant and equal to $n - p$, where $n$ is the number of observations and $p$ is the number of fixed effects.</td>
</tr>
<tr>
<td>'none'</td>
<td>The degrees of freedom is set to infinity.</td>
</tr>
</tbody>
</table>

Example: 'DFMethod', 'none'

Offset — Model offset
zeros(m,1) (default) | m-by-1 vector of scalar values

Model offset, specified as a vector of scalar values of length $m$, where $m$ is the number of rows in tblnew. The offset is used as an additional predictor and has a coefficient value fixed at 1.

Simultaneous — Type of confidence bounds
false (default) | true

Type of confidence bounds, specified as the comma-separated pair consisting of 'Simultaneous' and either false or true.
• If 'Simultaneous' is false, then predict computes nonsimultaneous confidence bounds.
• If 'Simultaneous' is true, predict returns simultaneous confidence bounds.

Example: 'Simultaneous',true

Output Arguments

ypred — Predicted responses
vector

Predicted responses, returned as a vector. If the 'Conditional' name-value pair argument is specified as true, ypred contains predictions for the conditional means of the responses given the random effects. Conditional predictions include contributions from both fixed and random effects. Marginal predictions include only contributions from fixed effects.

To compute marginal predictions, predict computes conditional predictions, but substitutes a vector of zeros in place of the empirical Bayes predictors (EBPs) of the random effects.

ypredCI — Point-wise confidence intervals
two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column matrix. The first column of ypredCI contains the lower bound, and the second column contains the upper bound. By default, ypredCI contains the 95% nonsimultaneous confidence intervals for the predictions. You can change the confidence level using the Alpha name-value pair argument, and make them simultaneous using the Simultaneous name-value pair argument.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'), predict computes the confidence intervals using the conditional mean squared error of prediction (CMSEP) approach conditional on the estimated covariance parameters and the observed response. Alternatively, you can interpret the confidence intervals as approximate Bayesian credible intervals conditional on the estimated covariance parameters and the observed response.
When fitting a GLME model using `fitglme` and one of the pseudo likelihood fit methods ('MPL' or 'REML'), `predict` bases the computations on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

**DF — Degrees of freedom**

**vector | scalar value**

Degrees of freedom used in computing the confidence intervals, returned as a vector or a scalar value.

- If 'Simultaneous' is false, then DF is a vector.
- If 'Simultaneous' is true, then DF is a scalar value.

**Examples**

**Predict Responses at Original Design Values**

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (`newprocess`)
- Processing time for each batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (`supplier`)
- Number of defects in the batch (`defects`)
The data also includes \texttt{time\_dev} and \texttt{temp\_dev}, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using \texttt{newprocess}, \texttt{time\_dev}, \texttt{temp\_dev}, and \texttt{supplier} as fixed-effects predictors. Include a random-effects term for intercept grouped by \texttt{factory}, to account for quality differences that might exist due to factory-specific variations. The response variable \texttt{defects} has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as ‘effects’, so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

$$\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij})$$

This corresponds to the generalized linear mixed-effects model

$$\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time\_dev}_{ij} + \beta_3 \text{temp\_dev}_{ij} + \beta_4 \text{supplier}_C_{ij} + \beta_5 \text{supplier}_B_{ij} + b_i,$$

where

- \text{defects}_{ij} is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
- \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, \ldots, 20 \)) during batch \( j \) (where \( j = 1, 2, \ldots, 5 \)).
- \text{newprocess}_{ij}, \text{time\_dev}_{ij}, \text{and temp\_dev}_{ij} are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, \text{newprocess}_{ij} indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.
- \text{supplier}_C_{ij} \text{ and } \text{supplier}_B_{ij} are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).
- \( b_i \sim \mathcal{N}(0, \sigma_b^2) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Predict the response values at the original design values. Display the first ten predictions along with the observed response values.

ypred = predict(glme);
[ypred(1:10),mfr.defects(1:10)]

ans = 10×2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9883</td>
<td>6.0000</td>
</tr>
<tr>
<td>5.9423</td>
<td>7.0000</td>
</tr>
<tr>
<td>5.1318</td>
<td>6.0000</td>
</tr>
<tr>
<td>5.6295</td>
<td>5.0000</td>
</tr>
<tr>
<td>5.3499</td>
<td>6.0000</td>
</tr>
<tr>
<td>5.2134</td>
<td>5.0000</td>
</tr>
<tr>
<td>4.6430</td>
<td>4.0000</td>
</tr>
<tr>
<td>4.5342</td>
<td>4.0000</td>
</tr>
<tr>
<td>5.3903</td>
<td>9.0000</td>
</tr>
<tr>
<td>4.6529</td>
<td>4.0000</td>
</tr>
</tbody>
</table>

Column 1 contains the predicted response values at the original design values. Column 2 contains the observed response values.

**Predict Responses at Values in New Table**

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

\[ \text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_\text{C}_{ij} + \beta_5 \text{supplier}_\text{B}_{ij} + b_i,
\]

where

• \( \text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \( i \) during batch \( j \).
• \( \mu_{ij} \) is the mean number of defects corresponding to factory \( i \) (where \( i = 1, 2, ..., 20 \)) during batch \( j \) (where \( j = 1, 2, ..., 5 \)).
• \( \text{newprocess}_{ij} \), \( \text{time}_\text{dev}_{ij} \), and \( \text{temp}_\text{dev}_{ij} \) are the measurements for each variable that correspond to factory \( i \) during batch \( j \). For example, \( \text{newprocess}_{ij} \) indicates whether the batch produced by factory \( i \) during batch \( j \) used the new process.
• **supplier\_C\_ij** and **supplier\_B\_ij** are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i\) during batch \(j\).

• \(b_i \sim N(0,\sigma_b^2)\) is a random-effects intercept for each factory \(i\) that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Predict the response values at the original design values.

```matlab
ypred = predict(glme);
```

Create a new table by copying the first 10 rows of `mfr` into `tblnew`.

```matlab
tblnew = mfr(1:10,:);
```

The first 10 rows of `mfr` include data collected from trials 1 through 5 for factories 1 and 2. Both factories used the old process for all of their trials during the experiment, so `newprocess = 0` for all 10 observations.

Change the value of `newprocess` to 1 for the observations in `tblnew`.

```matlab
tblnew.newprocess = ones(height(tblnew),1);
```

Compute predicted response values and nonsimultaneous 99% confidence intervals using `tblnew`. Display the first 10 rows of the predicted values based on `tblnew`, the predicted values based on `mfr`, and the observed response values.

```matlab
[ypred_new,ypredCI] = predict(glme,tblnew,'Alpha',0.01);
[ypred_new,ypred(1:10),mfr.defects(1:10)]
```

```matlab
ans = 10×3
3.4536 4.9883 6.0000
4.1142 5.9423 7.0000
3.9530 5.1318 6.0000
3.8976 5.6295 5.0000
3.7040 5.3499 6.0000
3.6095 5.2134 5.0000
3.2146 4.6430 4.0000
3.1393 4.5342 4.0000
3.7320 5.3903 9.0000
```
Column 1 contains predicted response values based on the data in tblnew, where newprocess = 1. Column 2 contains predicted response values based on the original data in mfr, where newprocess = 0. Column 3 contains the observed response values in mfr. Based on these results, if all other predictors retain their original values, the predicted number of defects appears to be smaller when using the new process.

Display the 99% confidence intervals for rows 1 through 10 corresponding to the new predicted response values.

ypredCI(1:10,1:2)

ans = 10×2

1.6983    7.0235
1.9191    8.8201
1.8735    6.7380
2.0149    7.5395
1.9034    7.2079
1.8918    6.8871
1.6776    6.1597
1.5404    6.3976
1.9574    7.1154
1.6892    6.1436

References


See Also

GeneralizedLinearMixedModel | fitglme | fitted | random
predict

**Class:** CompactLinearModel

Predict response of linear regression model

**Syntax**

```plaintext
ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)
```

**Description**

`ypred = predict(mdl,Xnew)` returns the predicted response of the `mdl` linear regression model to the points in `Xnew`.

`[ypred,yci] = predict(mdl,Xnew)` returns confidence intervals for the true mean responses.

`[ypred,yci] = predict(mdl,Xnew,Name,Value)` predicts responses with additional options specified by one or more `Name,Value` pair arguments.

**Input Arguments**

- **mdl** — Linear model object
  - `LinearModel` object | `CompactLinearModel` object
    - Linear model object, specified as a full `LinearModel` object constructed using `fitlm` or `stepwiselm`, or a compacted `CompactLinearModel` object constructed using `compact`.

- **Xnew** — New predictor input values
  - `table` | `dataset array` | `numeric matrix`
    - New predictor input values, specified as a table, dataset array, or numeric matrix.
- If \( \text{Xnew} \) is a table or dataset array, it must contain the predictor names in \( \text{mdl} \).
- If \( \text{Xnew} \) is a numeric matrix, it must have the same number of variables (columns) as was used to create \( \text{mdl} \). Furthermore, all variables used in creating \( \text{mdl} \) must be numeric.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name**,**Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,**,**Value1,**,...,**NameN,**,**ValueN**.

**Alpha — Alpha value for confidence interval**

0.05 (default) | numeric value in the range \([0,1]\)

Alpha value for confidence interval, specified as the comma-separated pair consisting of \('\text{Alpha}'\) and a numeric value in the range \([0,1]\). The confidence level of \( \text{yci} \) is equal to \(100(1-\text{alpha})\)%'. For example, specifying Alpha as 0.05 corresponds to a 95% confidence interval.

**Prediction — Prediction type**

'curve' (default) | 'observation'

Prediction type, specified as the comma-separated pair consisting of \('\text{Prediction}'\) and one of the following.

- 'curve' — predict predicts confidence bounds for the fitted mean values.
- 'observation' — predict predicts confidence bounds for the new observations. This results in wider bounds because the error in a new observation is equal to the error in the estimated mean value, plus the variability in the observation from the true mean.

For details, see polyconf.

**Simultaneous — Flag to compute simultaneous confidence bounds**

false (default) | true

Flag to compute simultaneous confidence bounds, specified as the comma-separated pair consisting of Simultaneous and either false or true. If you specify true, then the function computes confidence bounds are for all predictor values simultaneously. If you specify false, then the function calculates confidence bounds using a hold for each individual
predictor value. Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.

For details, see polyconf.

Output Arguments

**ypred** — Predicted mean response values  
numeric vector

Predicted mean response values evaluated at **Xnew**, returned as a numeric vector. **ypred** is the same size as **Xnew**.

**yci** — Confidence intervals for predicted responses  
two-column numeric matrix

Confidence intervals for predicted responses, returned as a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

Examples

**Predict Response Values Using Linear Model**

Create a model of car mileage as a function of weight, and predict the response.

Create a quadratic model of car mileage as a function of weight from the **carsmall** data.

```matlab
load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');
```

Create predicted responses to the data.

```matlab
Xnew = X;
ypred = predict(mdl,Xnew);
```
Plot the original responses and the predicted responses to see how they differ.

```matlab
plot(X,y,'o',Xnew,ypred,'x')
legend('Data','Predictions')
```

**Generate Code From Function That Predicts Responses Given New Data**

This example is based on “Predict Response Values Using Linear Model” on page 32-5097.

Load the `carsmall` data set, and then fit the quadratic regression model.
load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Create points for prediction from the sorted in-sample data.
Xnew = sort(X);

Save the fitted quadratic model to the file QLMMdl.mat.
saveCompactModel(mdl,'QLMMdl');

Define a function in your current working folder called mypredictQLM.m that:
• Accepts measurements commensurate with Xnew and perhaps valid name-value pair arguments
• Loads the fitted quadratic model in QLMMdl.mat
• Returns predictions and confidence interval bounds

function [yhat,ci] = mypredictQLM(x,varargin) %#codegen
%MYPREDICTQLM Predict response using linear model
% MYPREDICTQLM predicts responses for the n observations in the n-by-1
% vector x using using the linear model stored in the MAT-file
% QLMMdl.mat, and then returns the predictions in the n-by-1 vector yhat.
% MYPREDICTQLM also returns confidence interval bounds for the
% predictions in the n-by-2 vector ci.
CompactMdl = loadCompactModel('QLMMdl');
narginchk(1,Inf);
[yhat,ci] = predict(CompactMdl,x,varargin{:});
end

Generate a MEX function from mypredictQLM.m. Specify returning 90% simultaneous confidence intervals on the predictions. Because C uses static typing, codegen must determine the properties of all variables in MATLAB® files at compile time. To designate arguments as compile-time constants, use coder.Constant.

codegen -config:mex mypredictQLM -args {Xnew,coder.Constant('Alpha'),0.1,coder.Constant('Simultaneous')}

The MEX file mypredictQLM_mex.mexw64 generates to your present working directory. The file extension depends on your platform.
Compare predictions and confidence intervals using `predict` and `mypredictQLM_mex` by plotting both with the data. Specify name-value pair arguments in the same order as in the `-args` argument in the call to `codegen`.

```matlab
[yhat1,ci1] = predict(mdl,Xnew,'Alpha',0.1,'Simultaneous',true);
[yhat2,ci2] = mypredictQLM_mex(Xnew,'Alpha',0.1,'Simultaneous',true);

figure;
hold on;
plot(Xnew,yhat1,'ro',Xnew,yhat2,'g*');
plot(Xnew,ci1,'r-','LineWidth',4);
plot(Xnew,ci2,'g--','LineWidth',2);
legend({'Data','predict estimates','MEX estimates','predict CIs','MEX CIs'});
xlabel('Weight');
ylabel('MPG');
```
The generated MEX file and `predict` return essentially the same results.

**Tips**

- For predictions with added noise, use `random`.

**Alternatives**

`feval` gives the same predictions, but uses multiple input arrays with one component in each input argument. `feval` can be simpler to use with a model created from a table or dataset array, although `feval` does not give confidence intervals on its predictions.
random predicts with added noise.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `predict` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `predict` function. Then use `codegen` to generate code for the entry-point function.

- This table contains notes about arguments of `predict`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdl</td>
<td>If you train a linear model by using <code>fitlm</code> and specifying <code>'RobustOpts'</code> as a structure with an anonymous function handle for the <code>RobustWgtFun</code> field, use <code>saveCompactModel</code> to save the model, and use <code>loadCompactModel</code> to load the model, then <code>loadCompactModel</code> cannot restore the Robust property into the MATLAB Workspace. However, <code>loadCompactModel</code> can load the model at compile time for code generation within an entry-point function. For the usage notes and limitations of the model object, see “Code Generation” on page 32-824 of the <code>CompactLinearModel</code> object.</td>
</tr>
<tr>
<td>Xnew</td>
<td>Must be a single- or double-precision matrix and can be variable-size. However, the number of columns in <code>Xnew</code> must be <code>numel(mdl.PredictorNames)</code>. Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td>Argument</td>
<td>Notes and Limitations</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined significance level in the generated code, include <code>{coder.Constant('Alpha'),0}</code> in the <code>-args</code> value of <code>codegen</code>.</td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.

**See Also**
CompactLinearModel | LinearModel | feval | fitlm | random | stepwiselm

**Topics**
“Predict or Simulate Responses to New Data” on page 11-38
“Linear Regression” on page 11-11

**Introduced in R2012a**
**predict**

**Class:** LinearMixedModel

Predict response of linear mixed-effects model

**Syntax**

ypred = predict(lme)
ypred = predict(lme,tblnew)
ypred = predict(lme,Xnew,Znew)
ypred = predict(lme,Xnew,Znew,Gnew)
ypred = predict(___,'Name',Value)
[ypred,ypredCI] = predict(__)
[ypred,ypredCI,DF] = predict(__)

**Description**

`ypred = predict(lme)` returns a vector of conditional predicted responses on page 32-5118 `ypred` at the original predictors used to fit the linear mixed-effects model `lme`.

`ypred = predict(lme,tblnew)` returns a vector of conditional predicted responses `ypred` from the fitted linear mixed-effects model `lme` at the values in the new table or dataset array `tblnew`. Use a table or dataset array for `predict` if you use a table or dataset array for fitting the model `lme`.

If a particular grouping variable in `tblnew` has levels that are not in the original data, then the random effects for that grouping variable do not contribute to the 'Conditional' prediction at observations where the grouping variable has new levels.

`ypred = predict(lme,Xnew,Znew)` returns a vector of conditional predicted responses `ypred` from the fitted linear mixed-effects model `lme` at the values in the new fixed- and random-effects design matrices, `Xnew` and `Znew`, respectively. `Znew` can also be a cell array of matrices. In this case, the grouping variable `G` is `ones(n,1)`, where `n` is the number of observations used in the fit.

Use the matrix format for `predict` if using design matrices for fitting the model `lme`.
ypred = predict(lme,Xnew,Znew,Gnew) returns a vector of conditional predicted responses ypred from the fitted linear mixed-effects model lme at the values in the new fixed- and random-effects design matrices, Xnew and Znew, respectively, and the grouping variable Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

ypred = predict(___,Name,Value) returns a vector of predicted responses ypred from the fitted linear mixed-effects model lme with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the confidence level, simultaneous confidence bounds, or contributions from only fixed effects.

[ypred,ypredCI] = predict(___) also returns confidence intervals ypredCI for the predictions ypred for any of the input arguments in the previous syntaxes.

[ypred,ypredCI,DF] = predict(___) also returns the degrees of freedom DF used in computing the confidence intervals for any of the input arguments in the previous syntaxes.

### Input Arguments

**lme — Linear mixed-effects model**

LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.

**tblnew — New input data**

table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on page 2-57, specified as a table or dataset array. The predictor variables can be continuous or grouping variables. tblnew must have the same variables as in the original table or dataset array used to fit the linear mixed-effects model lme.

**Xnew — New fixed-effects design matrix**

n-by-p matrix
New fixed-effects design matrix, specified as an $n$-by-$p$ matrix, where $n$ is the number of observations and $p$ is the number of fixed predictor variables. Each row of $X$ corresponds to one observation and each column of $X$ corresponds to one variable.

Data Types: single | double

**Znew — New random-effects design**

$n$-by-$q$ matrix | cell array of length $R$

New random-effects design, specified as an $n$-by-$q$ matrix or a cell array of $R$ design matrices $Z\{r\}$, where $r = 1, 2, ..., R$. If $Znew$ is a cell array, then each $Z\{r\}$ is an $n$-by-$q(r)$ matrix, where $n$ is the number of observations, and $q(r)$ is the number of random predictor variables.

Data Types: single | double | cell

**Gnew — New grouping variable or variables**

vector | cell array of grouping variables of length $R$

New grouping variable or variables on page 2-57, specified as a vector or a cell array, of length $R$, of grouping variables with the same levels or groups as the original grouping variables used to fit the linear mixed-effects model lme.

Data Types: single | double | categorical | logical | char | string | cell

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value $\alpha$, the confidence level is $100\%(1-\alpha)\%$.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha', 0.01

Data Types: single | double
**Conditional — Indicator for conditional predictions**

*true (default) | false*

Indicator for conditional prediction on page 32-5118s, specified as the comma-separated pair consisting of 'Conditional' and one of the following.

- **true**: Contributions from both fixed effects and random effects (conditional)
- **false**: Contribution from only fixed effects (marginal)

Example: 'Conditional,false'

**DFMethod — Method for computing approximate degrees of freedom**

* 'residual' (default) | 'satterthwaite' | 'none'*

Method for computing approximate degrees of freedom to use in the confidence interval computation, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

- **'residual'**: Default. The degrees of freedom are assumed to be constant and equal to \( n - p \), where \( n \) is the number of observations and \( p \) is the number of fixed effects.
- **'satterthwaite'**: Satterthwaite approximation.
- **'none'**: All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.

Example: 'DFMethod','satterthwaite'

**Simultaneous — Type of confidence bounds**

*false (default) | true*

Type of confidence bounds, specified as the comma-separated pair consisting of 'Simultaneous' and one of the following.

- **false**: Default. Nonsimultaneous bounds.
- **true**: Simultaneous bounds.

Example: 'Simultaneous',true
**Prediction — Type of prediction**

'curve' (default) | 'observation'

Type of prediction, specified as the comma-separated pair consisting of 'Prediction' and one of the following.

- 'curve'
  Default. Confidence bounds for the predictions based on the fitted function.
- 'observation'
  Variability due to observation error for the new observations is also included in the confidence bound calculations and this results in wider bounds.

Example: 'Prediction','observation'

---

**Output Arguments**

**ypred** — Predicted responses

vector

Predicted responses, returned as a vector. *ypred* can contain the conditional or marginal responses, depending on the value choice of the 'Conditional' name-value pair argument. Conditional predictions include contributions from both fixed and random effects.

**ypredCI** — Point-wise confidence intervals

two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column matrix. The first column of *yCI* contains the lower bounds, and the second column contains the upper bound. By default, *yCI* contains the 95% confidence intervals for the predictions. You can change the confidence level using the *Alpha* name-value pair argument, make them simultaneous using the *Simultaneous* name-value pair argument, and also make them for a new observation rather than for the curve using the *Prediction* name-value pair argument.

**DF** — Degrees of freedom

vector | scalar value
Degrees of freedom used in computing the confidence intervals, returned as a vector or a scalar value.

- If the 'Simultaneous' name-value pair argument is false, then DF is a vector.
- If the 'Simultaneous' name-value pair argument is true, then DF is a scalar value.

**Examples**

**Predict Responses at the Original Design Values**

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
```

Predict the response values at the original design values. Display the first five predictions with the observed response values.

```matlab
yhat = predict(lme);
[yhat(1:5) ds.Yield(1:5)]
```

ans = 5×2
Plot Predictions vs. Observed Responses

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed effect for Weight, and a random intercept grouped by Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);
lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

Create predicted responses to the data.

yhat = predict(lme,tbl);

Plot the original responses and the predicted responses to see how they differ. Group them by model year.

figure()
gscatter(Weight,MPG,Model_Year)
hold on
gscatter(Weight,yhat,Model_Year,[],'o+x')
legend('70-data','76-data','82-data','70-pred','76-pred','82-pred')
hold off
Predict Responses at Values in a New Dataset Array

Load the sample data.

load(fullfile(matlabroot,'examples','stats','fertilizer.mat'));

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.
Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Create a new dataset array with design values. The new dataset array must have the same variables as the original dataset array you use for fitting the model lme.

dsnew = dataset();
dsnew.Soil = nominal({'Sandy';'Silty'});
dsnew.Tomato = nominal({'Cherry';'Vine'});
dsnew.Fertilizer = nominal([2;2]);

Predict the conditional and marginal responses at the original design points.

yhatC = predict(lme,dsnew);
yhatM = predict(lme,dsnew,'Conditional',false);
[yhatC yhatM]
ans = 2×2
    92.7505   111.6667
    87.5891    82.6667

Predict Responses at the Values in New Design Matrices

Load the sample data.
load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year.
First, prepare the design matrices for fitting the linear mixed-effects model.

\[
X = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} & \text{Horsepower} \end{bmatrix};
\]
\[
Z = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} \end{bmatrix};
\]
\[
\text{Model\_Year} = \text{nominal}(\text{Model\_Year});
\]
\[
G = \text{Model\_Year};
\]

Now, fit the model using `fitlmematrix` with the defined design matrices and grouping variables.

\[
lme = \text{fitlmematrix}(X,\text{MPG},Z,G,\text{'FixedEffectPredictors'},\ldots,
\{\text{'Intercept'},\text{'Acceleration'},\text{'Horsepower'}\},\text{'RandomEffectPredictors'},\ldots
\{\{\text{'Intercept'},\text{'Acceleration'}\}\},\text{'RandomEffectGroups'},\{\text{'Model\_Year'}\});
\]

Create the design matrices that contain the data at which to predict the response values. `Xnew` must have three columns as in `X`. The first column must be a column of 1s. And the values in the last two columns must correspond to `Acceleration` and `Horsepower`, respectively. The first column of `Znew` must be a column of 1s, and the second column must contain the same `Acceleration` values as in `Xnew`. The original grouping variable in `G` is the model year. So, `Gnew` must contain values for the model year. Note that `Gnew` must contain nominal values.

\[
Xnew = \begin{bmatrix} 1 & 13.5 & 185; 1,17,205; 1,21.2,193 \end{bmatrix};
\]
\[
Znew = \begin{bmatrix} 1,13.5; 1,17; 1,21.2 \end{bmatrix}; \text{ alternatively } Znew = Xnew(:,1:2);
\]
\[
Gnew = \text{nominal}([73,77,82]);
\]

Predict the responses for the data in the new design matrices.

\[
yhat = \text{predict}(lme,Xnew,Znew,Gnew)
\]

\[
yhat = 3\times1
\]
\[
\begin{bmatrix}
8.7063 \\
5.4423 \\
12.5384
\end{bmatrix}
\]

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects terms for intercept and acceleration. First, change the original random effects design and the random effects grouping variables. Then, refit the model.

\[
Z = \{\text{ones}(406,1),\text{Acceleration}\};
\]
\[
G = \{\text{Model\_Year},\text{Model\_Year}\};
lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'});

Now, recreate the new random effects design, Znew, and the grouping variable design, Gnew, using which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};
MY = nominal([73 77 82]);
Gnew = {MY,MY};

Predict the responses using the new design matrices.

yhat = predict(lme,Xnew,Znew,Gnew)

yhat = 3×1

8.6365
5.9199
12.1247

Compute Confidence Intervals for Predictions

Load the sample data.
load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year. First, store the variables in a table.

tbl = table(MPG,Acceleration,Horsepower,Model_Year);

Now, fit the model using fitlme with the defined design matrices and grouping variables.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Create the new data and store it in a new table.

tblnew = table();
tblnew.Acceleration = linspace(8,25)';
tblnew.Horsepower = linspace(nanmin(Horsepower),nanmax(Horsepower))';
tblnew.Model_Year = repmat(70,100,1);

linspace creates 100 equally distanced values between the lower and the upper input limits. Model_Year is fixed at 70. You can repeat this for any model year.

Compute and plot the predicted values and 95% confidence limits (nonsimultaneous).

[ypred,yCI,DF] = predict(lme,tblnew);
figure();
h1 = line(tblnew.Acceleration,ypred);
hold on;
h2 = plot(tblnew.Acceleration,yCI,'g-.');

Display the degrees of freedom.

32-5115
DF(1)
ans = 389

Compute and plot the simultaneous confidence bounds.

[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true);
h3 = plot(tblnew.Acceleration,yCI,'r--');

Display the degrees of freedom.

DF
DF = 389
Compute the simultaneous confidence bounds using the Satterthwaite method to compute the degrees of freedom.

```matlab
[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true,'DFMethod','satterthwaite');
h4 = plot(tblnew.Acceleration,yCI,'k:');
hold off
xlabel('Acceleration')
ylabel('Response')
ylim([-50,60])
xlim([8,25])
legend([h1,h2(1),h3(1),h4(1)],'Predicted response','95%','95% Sim',... '95% Sim-Satt','Location','Best')
```

Display the degrees of freedom.
DF

\[ DF = 3.6001 \]

**Definitions**

**Conditional and Marginal Predictions**

A conditional prediction includes contributions from both fixed and random effects, whereas a marginal model includes contribution from only fixed effects.

Suppose the linear mixed-effects model `lme` has an \( n \)-by-\( p \) fixed-effects design matrix \( X \) and an \( n \)-by-\( q \) random-effects design matrix \( Z \). Also, suppose the estimated \( p \)-by-1 fixed-effects vector is \( \hat{\beta} \), and the \( q \)-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is \( \hat{b} \). The predicted conditional response is

\[ \hat{y}_{\text{Cond}} = X \hat{\beta} + Z \hat{b}, \]

which corresponds to the 'Conditional','true' name-value pair argument.

The predicted marginal response is

\[ \hat{y}_{\text{Mar}} = X \hat{\beta}, \]

which corresponds to the 'Conditional','false' name-value pair argument.

When making predictions, if a particular grouping variable has new levels (1s that were not in the original data), then the random effects for the grouping variable do not contribute to the 'Conditional' prediction at observations where the grouping variable has new levels.

**See Also**

LinearMixedModel | fitted | random
**predict**

**Class:** FeatureSelectionNCAClassification

Predict responses using neighborhood component analysis (NCA) classifier

**Syntax**

```
[labels,postprobs,classnames] = predict(mdl,X)
```

**Description**

```
[labels,postprobs,classnames] = predict(mdl,X) computes the predicted labels, labels, corresponding to the rows of X, using the model mdl.
```

**Input Arguments**

- **mdl** — Neighborhood component analysis model for classification
  FeatureSelectionNCAClassification object
  Neighborhood component analysis model for classification, specified as a FeatureSelectionNCAClassification object.

- **X** — Predictor variable values
  $n$-by-$p$ matrix
  Predictor variable values, specified as an $n$-by-$p$ matrix, where $n$ is the number of observations and $p$ is the number of predictor variables.

  Data Types: single | double
Output Arguments

labels — Predicted class labels
categorical vector | logical vector | numeric vector | cell array of character vectors | character array

Predicted class labels corresponding to the rows of X, returned as a categorical, logical, or numeric vector, a cell array of character vectors of length n, or a character array with n rows. n is the number of observations. The type of labels is the same as Y used in training.

postprobs — Posterior probabilities
n-by-c matrix

Posterior probabilities, returned as an n-by-c matrix, where n is the number of observations and c is the number of classes. A posterior probability, postprobs(i,:), represents the membership of an observation in X(i,:) in classes 1 through c.

classnames — Class names
cell array of character vectors

Class names corresponding to posterior probabilities, returned as a cell array of character vectors. Each character vector is the class name corresponding to a column of postprobs.

Examples

Tune NCA Model for Classification

Load the sample data.

load(fullfile(matlabroot,'examples','stats','twodimclassdata.mat'));

This data set is simulated using the scheme described in [1]. This is a two-class classification problem in two dimensions. Data from the first class are drawn from two bivariate normal distributions \( N(\mu_1, \Sigma) \) or \( N(\mu_2, \Sigma) \) with equal probability, where \( \mu_1 = [-0.75, -1.5] \), \( \mu_2 = [0.75, 1.5] \), and \( \Sigma = I_2 \). Similarly, data from the second class are drawn from two bivariate normal distributions \( N(\mu_3, \Sigma) \) or \( N(\mu_4, \Sigma) \) with equal
probability, where $\mu_3 = [1.5, -1.5]$, $\mu_4 = [-1.5, 1.5]$ and $\Sigma = I_2$. The normal distribution parameters used to create this data set result in tighter clusters in data than the data used in [1].

Create a scatter plot of the data grouped by the class.

```matlab
figure
gscatter(X(:,1),X(:,2),y)
xlabel('x1')
ylabel('x2')
```

Add 100 irrelevant features to $X$. First generate data from a Normal distribution with a mean of 0 and a variance of 20.
n = size(X,1);
rng('default')
XwithBadFeatures = [X, randn(n,100)*sqrt(20)];

 Normalize the data so that all points are between 0 and 1.

XwithBadFeatures = bsxfun(@rdivide,...
    bsxfun(@minus,XwithBadFeatures,min(XwithBadFeatures,[],1)), ...
    range(XwithBadFeatures,1));
X = XwithBadFeatures;

Fit a neighborhood component analysis (NCA) model to the data using the default Lambda (regularization parameter, \( \lambda \)) value. Use the LBFGS solver and display the convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
    'Solver','lbfgs');

| Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

Plot the feature weights. The weights of the irrelevant features should be very close to zero.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
Predict the classes using the NCA model and compute the confusion matrix.

```matlab
ypred = predict(ncaMdl,X);
confusionmat(y,ypred)
```

```
ans =
 40 60
 6 94
```
Confusion matrix shows that 40 of the data that are in class 1 are predicted as belonging to class 1. 60 of the data from class 1 are predicted to be in class 2. Similarly, 94 of the data from class 2 are predicted to be from class 2 and 6 of them are predicted to be from class 1. The prediction accuracy for class 1 is not good.

All weights are very close to zero, which indicates that the value of $\lambda$ used in training the model is too large. When $\lambda \to \infty$, all features weights approach to zero. Hence, it is important to tune the regularization parameter in most cases to detect the relevant features.

Use five-fold cross-validation to tune $\lambda$ for feature selection by using fscnca. Tuning $\lambda$ means finding the $\lambda$ value that will produce the minimum classification loss. To tune $\lambda$ using cross-validation:

1. Partition the data into five folds. For each fold, cvpartition assigns four-fifths of the data as a training set and one-fifth of the data as a test set. Again for each fold, cvpartition creates a stratified partition, where each partition has roughly the same proportion of classes.

```matlab
cvp = cvpartition(y,'kfold',5);
numtestsets = cvp.NumTestSets;
lambdavalues = linspace(0,2,20)/length(y);
lossvalues = zeros(length(lambdavalues),numtestsets);
```

2. Train the neighborhood component analysis (nca) model for each $\lambda$ value using the training set in each fold.

3. Compute the classification loss for the corresponding test set in the fold using the nca model. Record the loss value.

4. Repeat this process for all folds and all $\lambda$ values.

```matlab
for i = 1:length(lambdavalues)
 for k = 1:numtestsets
 % Extract the training set from the partition object
 Xtrain = X(cvp.training(k),:);
 ytrain = y(cvp.training(k),:);

 % Extract the test set from the partition object
 Xtest = X(cvp.test(k),:);
 ytest = y(cvp.test(k),:);
```
% Train an NCA model for classification using the training set
ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ... 
  'Solver','lbfgs','Lambda',lambdavalues(i));

% Compute the classification loss for the test set using the NCA
% model
lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ... 
  'LossFunction','quadratic');

end
end

Plot the average loss values of the folds versus the λ values. If the λ value that 
corresponds to the minimum loss falls on the boundary of the tested λ values, the range 
of λ values should be reconsidered.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on

32-5125
Find the $\lambda$ value that corresponds to the minimum average loss.

```matlab
[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value

bestlambda =

0.0037
```

Fit the NCA model to all of the data using the best $\lambda$ value. Use the LBFGS solver and display the convergence information.
ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, 'Solver','lbfgs','Lambda',bestlambda);

Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

<table>
<thead>
<tr>
<th>ITER</th>
<th>FUN VALUE</th>
<th>NORM GRAD</th>
<th>NORM STEP</th>
<th>CURV</th>
<th>GAMMA</th>
<th>ALPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.246913e-01</td>
<td>1.231e-02</td>
<td>0.000e+00</td>
<td></td>
<td>4.873e+01</td>
<td>0.000e+00</td>
</tr>
<tr>
<td>1</td>
<td>-3.411330e-01</td>
<td>5.717e-03</td>
<td>3.618e+00</td>
<td>OK</td>
<td>1.068e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>2</td>
<td>-5.226111e-01</td>
<td>3.763e-02</td>
<td>8.252e+00</td>
<td>OK</td>
<td>7.825e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>3</td>
<td>-5.817731e-01</td>
<td>8.196e-03</td>
<td>2.340e+00</td>
<td>OK</td>
<td>5.591e+01</td>
<td>5.000e+00</td>
</tr>
<tr>
<td>4</td>
<td>-6.132632e-01</td>
<td>6.863e-03</td>
<td>2.526e+00</td>
<td>OK</td>
<td>8.282e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>5</td>
<td>-6.135264e-01</td>
<td>9.373e-03</td>
<td>7.341e-01</td>
<td>OK</td>
<td>3.244e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>6</td>
<td>-6.147894e-01</td>
<td>8.233e-03</td>
<td>3.933e-01</td>
<td>OK</td>
<td>2.447e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>7</td>
<td>-6.148714e-01</td>
<td>6.882e-03</td>
<td>2.404e-01</td>
<td>OK</td>
<td>3.195e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>8</td>
<td>-6.149524e-01</td>
<td>6.521e-04</td>
<td>9.345e-02</td>
<td>OK</td>
<td>1.236e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>9</td>
<td>-6.149972e-01</td>
<td>1.154e-04</td>
<td>1.983e-01</td>
<td>OK</td>
<td>1.171e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>10</td>
<td>-6.149990e-01</td>
<td>2.922e-05</td>
<td>1.983e-02</td>
<td>OK</td>
<td>7.365e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>11</td>
<td>-6.149993e-01</td>
<td>1.155e-05</td>
<td>7.256e-03</td>
<td>OK</td>
<td>1.288e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>12</td>
<td>-6.149994e-01</td>
<td>1.147e-05</td>
<td>7.256e-03</td>
<td>OK</td>
<td>2.332e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>13</td>
<td>-6.149995e-01</td>
<td>1.156e-05</td>
<td>8.354e-03</td>
<td>OK</td>
<td>1.171e-01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>14</td>
<td>-6.149996e-01</td>
<td>9.015e-06</td>
<td>6.265e-03</td>
<td>OK</td>
<td>9.974e+01</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>15</td>
<td>-6.149996e-01</td>
<td>7.636e-06</td>
<td>5.206e-03</td>
<td>OK</td>
<td>2.919e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>16</td>
<td>-6.149997e-01</td>
<td>8.374e-06</td>
<td>1.679e-02</td>
<td>OK</td>
<td>6.878e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>17</td>
<td>-6.149997e-01</td>
<td>9.387e-06</td>
<td>9.542e-03</td>
<td>OK</td>
<td>1.284e+02</td>
<td>5.000e+00</td>
</tr>
<tr>
<td>18</td>
<td>-6.149997e-01</td>
<td>3.250e-06</td>
<td>5.114e-03</td>
<td>OK</td>
<td>1.225e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>19</td>
<td>-6.149997e-01</td>
<td>1.574e-06</td>
<td>1.275e-03</td>
<td>OK</td>
<td>1.808e+02</td>
<td>1.000e+00</td>
</tr>
<tr>
<td>20</td>
<td>-6.149997e-01</td>
<td>5.764e-07</td>
<td>6.657e-04</td>
<td>OK</td>
<td>2.905e+02</td>
<td>1.000e+00</td>
</tr>
</tbody>
</table>

Infinity norm of the final gradient = 5.764e-07
Two norm of the final step = 6.657e-04, TolX = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')

32-5127
fscnca correctly figures out that the first two features are relevant and that the rest are not. The first two features are not individually informative, but when taken together result in an accurate classification model.

Predict the classes using the new model and compute the accuracy.

```matlab
ypred = predict(ncaMdl,X);
confusionmat(y,ypred)
```

```matlab
ans =

32-5128
Confusion matrix shows that prediction accuracy for class 1 has improved. 88 of the data from class 1 are predicted to be from 1, and 12 of them are predicted to be from class 2. 92 of the data from class 2 are predicted to be from class 2 and 8 of them are predicted to be from class 1.

References

See Also

FeatureSelectionNCAClassification | fscnca | loss | refit

Introduced in R2016b
predict

Class: FeatureSelectionNCARegression

Predict responses using neighborhood component analysis (NCA) regression model

Syntax

```plaintext
ypred = predict(mdl,X)
```

Description

`ypred = predict(mdl,X)` computes the predicted response values, `ypred`, corresponding to rows of `X`, using the model `mdl`.

Input Arguments

- `mdl` — Neighborhood component analysis model for regression
 FeatureSelectionNCARegression object

 Neighborhood component analysis model for regression, specified as a FeatureSelectionNCARegression object.

- `X` — Predictor variable values
 n-by-p matrix

 Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables.

 Data Types: single | double

Output Arguments

- `ypred` — Predicted response values
 n-by-1 vector
Predicted response values, specified as an n-by-1 vector, where n is the number of observations.

Examples

Tune NCA Model for Regression Using loss and predict

Load the sample data.

Download the housing data [1], from the UCI Machine Learning Repository [2]. The dataset has 506 observations. The first 13 columns contain the predictor values and the last column contains the response values. The goal is to predict the median value of owner-occupied homes in suburban Boston as a function of 13 predictors.

Load the data and define the response vector and the predictor matrix.

```matlab
load('housing.data');
X = housing(:,1:13);
y = housing(:,end);
```

Divide the data into training and test sets using the 4th predictor as the grouping variable for a stratified partitioning. This ensures that each partition includes similar amount of observations from each group.

```matlab
rng(1) % For reproducibility
cvp = cvpartition(X(:,4),'Holdout',56);
Xtrain = X(cvp.training,:);
ytrain = y(cvp.training,:);
Xtest  = X(cvp.test,:);
ytest  = y(cvp.test,:);
```

cvpartition randomly assigns 56 observations into a test set and the rest of the data into a training set.

Perform Feature Selection Using Default Settings

Perform feature selection using NCA model for regression. Standardize the predictor values.

```matlab
nca = fsrnca(Xtrain,ytrain,'Standardize',1);
```

Plot the feature weights.
The weights of irrelevant features are expected to approach zero. `fsrnca` identifies two features as irrelevant.

Compute the regression loss.

```matlab
L = loss(nca,Xtest,ytest,'LossFunction','mad')
```

```
L =
    2.5394
```
Compute the predicted response values for the test set and plot them versus the actual response.

```matlab
ypred = predict(nca,Xtest);
figure()
plot(ypred,ytest,'bo')
xlabel('Predicted response')
ylabel('Actual response')
```

A perfect fit versus the actual values forms a 45 degree straight line. In this plot, the predicted and actual response values seem to be scattered around this line. Tuning λ (regularization parameter) value usually helps improve the performance.
Tune the regularization parameter using 10-fold cross-validation

Tuning λ means finding the λ value that will produce the minimum regression loss. Here are the steps for tuning λ using 10-fold cross-validation:

1. First partition the data into 10 folds. For each fold, `cvpartition` assigns 1/10th of the data as a training set, and 9/10th of the data as a test set.

   ```
   n = length(ytrain);
   cvp = cvpartition(Xtrain(:,4),'kfold',10);
   numvalidsets = cvp.NumTestSets;
   ```

 Assign the λ values for the search. Create an array to store the loss values.

   ```
   lambdavals = linspace(0,2,30)*std(ytrain)/n;
   lossvals = zeros(length(lambdavals),numvalidsets);
   ```

2. Train the neighborhood component analysis (nca) model for each λ value using the training set in each fold.

3. Fit a Gaussian process regression (gpr) model using the selected features. Next, compute the regression loss for the corresponding test set in the fold using the gpr model. Record the loss value.

4. Repeat this for each λ value and each fold.

   ```
   for i = 1:length(lambdavals)
       for k = 1:numvalidsets
           X = Xtrain(cvp.training(k),:);
           y = ytrain(cvp.training(k),:);
           Xvalid = Xtrain(cvp.test(k),:);
           yvalid = ytrain(cvp.test(k),:);

           nca = fsrnca(X,y,'FitMethod','exact',...'
                          'Lambda',lambdavals(i),...'
                          'Standardize',1,'LossFunction','mad');

           % Select features using the feature weights and a relative
           % threshold.
           tol = 1e-3;
           selidx = nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights));

           % Fit a non-ARD GPR model using selected features.
           gpr = fitrgp(X(:,selidx),y,'Standardize',1,...
                        'FitMethod','exact','LossFunction','mad');
   ```
'KernelFunction','squaredexponential','Verbose',0);

lossvals(i,k) = loss(gpr,Xvalid(:,selidx),yvalid);

end
end

Compute the average loss obtained from the folds for each \(\lambda \) value. Plot the mean loss versus the \(\lambda \) values.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
Find the λ value that produces the minimum loss value.

```matlab
[~,idx] = min(meanloss);
bestlambda = lambdavals(idx)
bestlambda =
0.0251
```

Perform feature selection for regression using the best λ value. Standardize the predictor values.
nca2 = fsrnca(Xtrain,ytrain,'Standardize',1,'Lambda',bestlambda,...
'LossFunction','mad');

Plot the feature weights.
figure()
plot(nca.FeatureWeights,'ro')

Compute the loss using the new nca model on the test data, which is not used to select the features.
L2 = loss(nca2,Xtest,ytest,'LossFunction','mad')

L2 =
Tuning the regularization parameter helps identify the relevant features and reduces the loss.

Plot the predicted versus the actual response values in the test set.

```matlab
ypred = predict(nca2,Xtest);
figure;
plot(ypred,ytest,'bo');
```

The predicted response values seem to be closer to the actual values as well.
References

See Also
FeatureSelectionNCARegression | fsrnca | loss | refit

Introduced in R2016b
predict

Class: NonLinearModel

Predict response of nonlinear regression model

Syntax

ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description

ypred = predict(mdl,Xnew) returns the predicted response of the mdl nonlinear regression model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional options specified by one or more Name,Value pair arguments.

Input Arguments

mdl
Nonlinear regression model, constructed by fitnlm.

Xnew
Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If \(X_{\text{new}}\) is a numeric matrix, it must have the same number of variables (columns) as was used to create \(\text{mdl}\). Furthermore, all variables used in creating \(\text{mdl}\) must be numeric.

Name-Value Pair Arguments

Specify optional comma-separated pairs of \(\text{Name,Value}\) arguments. \(\text{Name}\) is the argument name and \(\text{Value}\) is the corresponding value. \(\text{Name}\) must appear inside quotes. You can specify several name and value pair arguments in any order as \(\text{Name1,Value1,...,NameN,ValueN}\).

Alpha

Positive scalar from \(0\) to \(1\). Confidence level of \(\text{yci}\) is \(100(1 - \alpha)\)%.

Default: \(0.05\), meaning a 95% confidence interval.

Prediction

Type of prediction:

• 'curve' — \(\text{predict}\) predicts confidence bounds for the fitted mean values.
• 'observation' — \(\text{predict}\) predicts confidence bounds for the new observations. This results in wider bounds because the error in a new observation is equal to the error in the estimated mean value, plus the variability in the observation from the true mean.

For details, see \(\text{polyconf}\).

Default: 'curve'

Simultaneous

Logical value specifying whether the confidence bounds are for all predictor values simultaneously (true), or hold for each individual predictor value (false). Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.

For details, see \(\text{polyconf}\).

Default: false
Weights

Vector of real, positive value weights or a function handle.

- If you specify a vector, then it must have the same number of elements as the number of observations (or rows) in Xnew.
- If you specify a function handle, then the function must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, W, `predict` estimates the error variance at observation i by $\text{MSE} \cdot (1/W(i))$, where MSE is the mean squared error.

Default: No weights

Output Arguments

`ypred`

Predicted mean values at Xnew. `ypred` is the same size as each component of Xnew.

`yci`

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

Examples

Predict Responses

Create a nonlinear model of car mileage as a function of weight, and predict the response.

Create an exponential model of car mileage as a function of weight from the `carsmall` data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

```matlab
load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
```
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Create predicted responses to the data.
Xnew = X;
ypred = predict(mdl,Xnew);

Plot the original responses and the predicted responses to see how they differ.
plot(X,y,'o',X,ypred,'x')
legend('Data','Predicted')
Confidence Intervals for Predictions

Create a nonlinear model of car mileage as a function of weight, and examine confidence intervals of some responses.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

```matlab
load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);
```

Create predicted responses to the smallest, mean, and largest data points.

```matlab
Xnew = [min(X);mean(X);max(X)];
[ypred,yci] = predict(mdl,Xnew)
```

```matlab
ypred = 3x1
   34.9469
   22.6868
   10.0617
```

```matlab
yci = 3x2
   32.5212   37.3726
   21.4061   23.9674
   7.0148    13.1086
```

Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model

\[y = b_1 + b_2 \exp(-b_3 x) + \epsilon \]
where b_1, b_2, and b_3 are coefficients, and the error term ϵ is normally distributed with mean 0 and standard deviation 0.5.

```matlab
modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
```

rng('default') % For reproducibility

```matlab
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);
```

Fit the nonlinear model using robust fitting options.

```matlab
opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
b0 = [2;2;2];
mdl = fitnlm(x,y,modelfun,b0,'Options',opts);
```

Plot the fitted regression model and simultaneous 95% confidence bounds.

```matlab
xrange = [min(x):.01:max(x)]';
[ypred,yci] = predict(mdl,xrange,'Simultaneous',true);
figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,yci','r--','LineWidth',1.5)
```
Confidence Interval Using Observation Weights

Load sample data.

```matlab
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Specify a function handle for observation weights, then fit the Hougen-Watson model to the rate data using the specified observation weights function.
a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights);

Compute the 95% prediction interval for a new observation with reactant levels [100,100,100] using the observation weight function.

[ypred,yci] = predict(mdl,[100,100,100], 'Prediction','observation', ... 'Weights',weights)

ypred = 1.8149
yci = 1×2
 1.5264 2.1033

Tips

- For predictions with added noise, use `random`.
- For a syntax that can be easier to use with models created from tables or dataset arrays, try `feval`.

References

See Also

NonLinearModel | random

Topics

“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression Workflow” on page 13-15
“Nonlinear Regression” on page 13-2
predict

Class: RepeatedMeasuresModel

Compute predicted values given predictor values

Syntax

```matlab
ypred = predict(rm,tnew)
ypred = predict(rm,tnew,Name,Value)
[ypred,yci] = predict(__)
```

Description

`ypred = predict(rm,tnew)` returns the predicted values from the repeated measures model `rm` using the predictor values from the table `t`.

`ypred = predict(rm,tnew,Name,Value)` returns the predicted values from the repeated measures model `rm` with additional options specified by one or more `Name,Value` pair arguments.

For example, you can specify the within-subjects design matrix.

`[ypred,yci] = predict(__)` also returns the 95% confidence interval for the predicted values.

Input Arguments

- `rm` — Repeated measures model
 - `RepeatedMeasuresModel` object

 Repeated measures model, returned as a `RepeatedMeasuresModel` object.

 For properties and methods of this object, see `RepeatedMeasuresModel`.
tnew — New data
table used to create rm (default) | table

New data including the values of the response variables and the between-subject factors used as predictors in the repeated measures model, rm, specified as a table. tnew must contain all of the between-subject factors used to create rm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

Alpha — Confidence level
0.05 (default) | scalar value in the range of 0 through 1

Confidence level of the confidence intervals for the predicted values, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range of 0 to 1. The confidence level is 100*(1-alpha)%.

Example: 'alpha', 0.01
Data Types: double | single

WithinModel — Model for within-subject factors
'separatemeans' | 'orthogonalcontrasts' | character vector | string scalar

Model for the within-subject factors, specified as the comma-separated pair consisting of 'WithinModel' and one of the following:

- 'separatemeans' — Compute a separate mean for each group.
- 'orthogonalcontrasts' — Valid when the within-subject design consists of a single numeric factor T. This specifies a model consisting of orthogonal polynomials up to order T^(r-1), where r is the number of repeated measures.
- A character vector or string scalar that defines a model specification in the within-subject factors.

Example: 'WithinModel','orthogonalcontrasts'
Data Types: char | string
WithinDesign — Design for within-subject factors

vector | matrix | table

Design for within-subject factors, specified as the comma-separated pair consisting of 'WithinDesign' and a vector, matrix, or a table. It provides the values of the within-subject factors in the same form as the RM.WithinDesign property.

Example: 'WithinDesign','Time'

Data Types: single | double | table

Output Arguments

ypred — Predicted values

n-by-r matrix

Predicted values from the repeated measures model rm, returned as an n-by-r matrix, where n is the number of rows in tnew and r is the number of repeated measures in rm.

yci — Confidence intervals for predicted values

n-by-r-by-2 matrix

Confidence intervals for predicted values from the repeated measures model rm, returned as an n-by-r-by-2 matrix.

These are nonsimultaneous intervals for predicting the mean response at the specified predictor values. For predicted value ypred(i,j), the lower limit of the interval is yci(i,j,1) and the upper limit is yci(i,j,2).

Examples

Predict Response Values

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.
 Store the data in a table array.

\[
t = \text{table}(\text{species, meas(:,1), meas(:,2), meas(:,3), meas(:,4),} \ldots \\
\quad \text{'VariableNames', {'species','meas1','meas2','meas3','meas4'}});
\]

Meas = dataset([1 2 3 4], 'VarNames', {'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

\[
\text{rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)};
\]

Predict responses for the three species.

\[
\text{Y = predict(rm,t([1 51 101],:))}
\]

\[
\begin{array}{cccc}
5.0060 & 3.4280 & 1.4620 & 0.2460 \\
5.9360 & 2.7700 & 4.2600 & 1.3260 \\
6.5880 & 2.9740 & 5.5520 & 2.0260 \\
\end{array}
\]

Predict Response Values and Plot Predictions

Load the sample data.

```
load longitudinalData
```

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

\[
\text{Gender} = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M'];
\]

Store the data in a proper table array format to perform repeated measures analysis.

\[
t = \text{table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),} \ldots \\
\quad \text{'VariableNames', {'Gender','t0','t2','t4','t6','t8'}});
\]

Define the within-subjects variable.
Fit a repeated measures model, where the blood levels are the responses and gender is the predictor variable.

```matlab
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
```

Predict the responses at intermediate times.

```matlab
time = linspace(0,8);
Y = predict(rm,t([1 5 8 12],:), ... 
    'WithinModel','orthogonalcontrasts','WithinDesign',time);
```

Plot the predictions along with the estimated marginal means.

```matlab
plotprofile(rm,'Time','Group',{'Gender'})
hold on;
plot(time,Y,'Color','k','LineStyle',':');
legend('Gender=F','Gender=M','Predictions')
hold off
```
Compute and Plot Confidence Intervals

Load the sample data.

```matlab
load longitudinalData
```

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M'];

Store the data in a proper table array format to perform repeated measures analysis.

```
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5), ... 
    'VariableNames',{'Gender','t0','t2','t4','t6','t8'});```

Define the within-subjects variable.

```
Time = [0 2 4 6 8]';
```

Fit a repeated measures model, where the blood levels are the responses and gender is the predictor variable.

```
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
```

Predict the responses at intermediate times.

```
time = linspace(0,8)';
[ypred,ypredci] = predict(rm,t([1 5 8 12],:), ...
 'WithinModel','orthogonalcontrasts','WithinDesign',time);
```

Plot the predictions and the confidence intervals for predictions along with the estimated marginal means.

```
p1 = plotprofile(rm,'Time','Group',{'Gender'});
hold on;
p2 = plot(time,ypred,'Color','k','LineStyle',':');
p3 = plot(time,ypredci(:,:,1),'k--');
p4 = plot(time,ypredci(:,:,2),'k--');
legend([p1;p2(1);p3(1)],'Gender=F','Gender=M','Predictions','Confidence Intervals')
hold off
```
See Also
fitrm | random
predict

**Class:** TreeBagger

Predict responses using ensemble of bagged decision trees

**Syntax**

\[
\text{Yfit} = \text{predict}(B,X) \\
\text{Yfit} = \text{predict}(B,X,\text{Name},\text{Value}) \\
[\text{Yfit,stderrs}] = \text{predict}(\_\_\_) \\
[\text{Yfit,scores}] = \text{predict}(\_\_\_) \\
[\text{Yfit,scores,stderrs}] = \text{predict}(\_\_\_)
\]

**Description**

\( \text{Yfit} = \text{predict}(B,X) \) returns a vector of predicted responses for the predictor data in the table or matrix \( X \), based on the ensemble of bagged decision trees \( B \). \( \text{Yfit} \) is a cell array of character vectors for classification and a numeric array for regression. By default, \text{predict} takes a democratic (nonweighted) average vote from all trees in the ensemble.

\( B \) is a trained **TreeBagger** model object, that is, a model returned by **TreeBagger**.

\( X \) is a table or matrix of predictor data used to generate responses. Rows represent observations and columns represent variables.

- If \( X \) is a numeric matrix:
  - The variables making up the columns of \( X \) must have the same order as the predictor variables that trained \( B \).
  - If you trained \( B \) using a table (for example, \( Tbl \)), then \( X \) can be a numeric matrix if \( Tbl \) contains all numeric predictor variables. To treat numeric predictors in \( Tbl \) as categorical during training, identify categorical predictors using the **CategoricalPredictors** name-value pair argument of **TreeBagger**. If \( Tbl \) contains heterogeneous predictor variables (for example, numeric and categorical data types) and \( X \) is a numeric matrix, then \text{predict} throws an error.
• If \( X \) is a table:
  • `predict` does not support multi-column variables and cell arrays other than cell arrays of character vectors.
  • If you trained \( B \) using a table (for example, \( \text{Tbl} \)), then all predictor variables in \( X \) must have the same variable names and be of the same data types as those that trained \( B \) (stored in \( B.\text{PredictorNames} \)). However, the column order of \( X \) does not need to correspond to the column order of \( \text{Tbl} \). \( \text{Tbl} \) and \( X \) can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.
  • If you trained \( B \) using a numeric matrix, then the predictor names in \( B.\text{PredictorNames} \) and corresponding predictor variable names in \( X \) must be the same. To specify predictor names during training, see the `PredictorNames` name-value pair argument of `TreeBagger`. All predictor variables in \( X \) must be numeric vectors. \( X \) can contain additional variables (response variables, observation weights, etc.), but `predict` ignores them.

\[
\text{Yfit} = \text{predict}(B,X,\text{Name},\text{Value})
\]
specifies additional options using one or more name-value pair arguments:

• `'Trees'` — Array of tree indices to use for computation of responses. The default is `'all'`.
• `'TreeWeights'` — Array of \( N\text{Trees} \) weights for weighting votes from the specified trees, where \( N\text{Trees} \) is the number of trees in the ensemble.
• `'UseInstanceForTree'` — Logical matrix of size \( N\text{obs} \)-by-\( N\text{Trees} \) indicating which trees to use to make predictions for each observation, where \( N\text{obs} \) is the number of observations. By default all trees are used for all observations.

For regression, \([\text{Yfit},\text{stdevs}] = \text{predict}(\text{___})\) also returns standard deviations of the computed responses over the ensemble of the grown trees using any of the input argument combinations in previous syntaxes.

For classification, \([\text{Yfit},\text{scores}] = \text{predict}(\text{___})\) also returns scores for all classes. \( \text{scores} \) is a matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of the observation originating from the class, computed as the fraction of observations of the class in a tree leaf. `predict` averages these scores over all trees in the ensemble.

\([\text{Yfit},\text{scores},\text{stdevs}] = \text{predict}(\text{___})\) also returns standard deviations of the computed scores for classification. \( \text{stdevs} \) is a matrix with one row per observation and
one column per class, with standard deviations taken over the ensemble of the grown trees.

## Algorithms

- For regression problems, the predicted response for an observation is the weighted average of the predictions using selected trees only. That is,

\[
\hat{y}_{bag} = \frac{1}{\sum_{t=1}^{T} \alpha_t I(t \in S)} \sum_{t=1}^{T} \alpha_t \hat{y}_t I(t \in S).
\]

- \( \hat{y}_t \) is the prediction from tree \( t \) in the ensemble.
- \( S \) is the set of indices of selected trees that comprise the prediction (see 'Trees' and 'UseInstanceForTree'). \( I(t \in S) \) is 1 if \( t \) is in the set \( S \), and 0 otherwise.
- \( \alpha_t \) is the weight of tree \( t \) (see 'TreeWeights').

- For classification problems, the predicted class for an observation is the class that yields the largest weighted average of the class posterior probabilities (i.e., classification scores) computed using selected trees only. That is,

\[
\hat{P}_{bag} (c | x) = \frac{1}{\sum_{t=1}^{T} \alpha_t I(t \in S)} \sum_{t=1}^{T} \alpha_t \hat{P}_t (c | x) I(t \in S).
\]

- The predicted class is the class that yields the largest weighted average.
\[ \hat{y}_{\text{bag}} = \arg\max_{c \in C} \{ \hat{P}_{\text{bag}} (c \mid x) \}. \]

**See Also**
TreeBagger | error | oobPredict | predict | quantilePredict

**Topics**
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
predictConstraints

Predict coupled constraint violations at a set of points

Syntax

ConstraintViolations = predictConstraints(results,XTable)
[ConstraintViolations,sigma] = predictConstraints(results,XTable)

Description

ConstraintViolations = predictConstraints(results,XTable) returns the coupled constraint function violations at the points in XTable.

[ConstraintViolations,sigma] = predictConstraints(results,XTable) also returns the standard deviations of the coupled constraint functions.

Examples

Predict Coupled Constraints

This example shows how to predict the coupled constraints of an optimized SVM model. For details of this model, see “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');

The objective function is the cross-validation loss of the SVM model for the partition c.
The coupled constraint is the number of support vectors in the model minus 100. The model has 200 data points, so the coupled constraint values range from -100 to 100. Positive values mean the constraint is not satisfied.

function [objective,constraint] = mysvmfun(x,cdata,grp,c)
    SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',
        'BoxConstraint',x.box,...
        'KernelScale',x.sigma);
cvModel = crossval(SVMModel,'CVPartition',c);
    objective = kfoldLoss(cvModel);
    constraint = sum(SVMModel.IsSupportVector)-100.5;

Call the optimizer using this function and its one coupled constraint.

fun = @(x)mysvmfun(x,cdata,grp,c);
results = bayesopt(fun,[sigma,box],
    'IsObjectiveDeterministic',true,...
    'NumCoupledConstraints',1,'PlotFcn',...
    {@plotMinObjective,@plotConstraintModels,@plotObjectiveModel},...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective

Function evaluations vs. Min objective
The constraint model plot shows that most parameters in the range are infeasible, and are feasible only for relatively high values of the box parameter and a small range of the sigma parameter. Predict the coupled constraint values for several values of the control variables box and sigma.

```matlab
sigma = logspace(-2,2,11)';
box = logspace(0,5,11)';
```
XTable = table(sigma,box);
cons = predictConstraints(results,XTable);
[XTable,table(cons)]

ans =

11x3 table

<table>
<thead>
<tr>
<th>sigma</th>
<th>box</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1</td>
<td>99.443</td>
</tr>
<tr>
<td>0.025119</td>
<td>3.1623</td>
<td>106.49</td>
</tr>
<tr>
<td>0.063096</td>
<td>10</td>
<td>94.468</td>
</tr>
<tr>
<td>0.15849</td>
<td>31.623</td>
<td>25.134</td>
</tr>
<tr>
<td>0.39811</td>
<td>100</td>
<td>-38.732</td>
</tr>
<tr>
<td>1</td>
<td>316.23</td>
<td>-55.156</td>
</tr>
<tr>
<td>2.5119</td>
<td>1000</td>
<td>-34.181</td>
</tr>
<tr>
<td>6.3096</td>
<td>3162.3</td>
<td>5.0153</td>
</tr>
<tr>
<td>15.849</td>
<td>10000</td>
<td>39.465</td>
</tr>
<tr>
<td>39.811</td>
<td>31623</td>
<td>60.9</td>
</tr>
<tr>
<td>100</td>
<td>1e+05</td>
<td>71.906</td>
</tr>
</tbody>
</table>

Input Arguments

results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.

Data Types: table
Output Arguments

**ConstraintViolations — Constraint violations**

N-by-K matrix

Constraint violations, returned as an N-by-K matrix, where there are N rows in XTable and K coupled constraints. The constraint violations are the posterior means of the Gaussian process model of the coupled constraints at the points in XTable.

**sigma — Constraint standard deviations**

N-by-K matrix

Constraint standard deviations, returned as an N-by-K matrix, where there are N rows in XTable and K coupled constraints. The standard deviations represent those of the posterior distribution at the points in XTable.

See Also

BayesianOptimization | bayesopt

Introduced in R2016b
predictError

Predict error value at a set of points

Syntax

error = predictError(results,XTable)
[error,sigma] = predictError(results,XTable)

Description

error = predictError(results,XTable) returns the posterior mean of the error coupled constraint at the points in XTable.

[error,sigma] = predictError(results,XTable) also returns the posterior standard deviations.

Examples

Error Prediction

This example shows optimizing a function that throws an error when the evaluation point has norm larger than 2. The error model for the objective function learns this behavior.

Create variables named x1 and x2 that range from -5 to 5.

var1 = optimizableVariable('x1',[-5,5]);
var2 = optimizableVariable('x2',[-5,5]);
vars = [var1,var2];

The following objective function throws an error when the norm of x = [x1,x2] exceeds 2:

function f = makeanerror(x)
f = x.x1 - x.x2 - sqrt(4-x.x1^2-x.x2^2);

fun = @makeanerror;

Plot the error model and minimum objective as the optimization proceeds. Optimize for 60 iterations so the error model becomes well-trained. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

rng default
results = bayesopt(fun,vars,'Verbose',0,'MaxObjectiveEvaluations',60,...
'AcquisitionFunctionName','expected-improvement-plus',...,
'PlotFcn',{@plotMinObjective,@plotConstraintModels});
Predict the error at points on the line $x_1 = x_2$. If the error model were perfect, it would have value -1 at every point where the norm of $x$ is no more than 2, and value 1 at all other points.

```matlab
x1 = (-5:0.5:5)';
x2 = x1;
XTable = table(x1,x2);
```
error = predictError(results, XTable);
normx = sqrt(x1.^2 + x2.^2);
[XTable, table(normx, error)]

ans =

21x4 table

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>normx</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-5</td>
<td>7.0711</td>
<td>0.94663</td>
</tr>
<tr>
<td>-4.5</td>
<td>-4.5</td>
<td>6.364</td>
<td>0.97396</td>
</tr>
<tr>
<td>-4</td>
<td>-4</td>
<td>5.6569</td>
<td>0.99125</td>
</tr>
<tr>
<td>-3.5</td>
<td>-3.5</td>
<td>4.9497</td>
<td>1.0033</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>4.2426</td>
<td>1.0018</td>
</tr>
<tr>
<td>-2.5</td>
<td>-2.5</td>
<td>3.5355</td>
<td>0.99627</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>2.8284</td>
<td>1.0043</td>
</tr>
<tr>
<td>-1.5</td>
<td>-1.5</td>
<td>2.1213</td>
<td>0.89866</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1.4142</td>
<td>0.4746</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.5</td>
<td>0.70711</td>
<td>0.0042389</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.16004</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.70711</td>
<td>-0.012397</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.4142</td>
<td>0.30187</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>2.1213</td>
<td>0.88588</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.8284</td>
<td>1.0872</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>3.5355</td>
<td>0.997</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4.2426</td>
<td>0.99861</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5</td>
<td>4.9497</td>
<td>0.98894</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5.6569</td>
<td>0.98941</td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
<td>6.364</td>
<td>0.98956</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7.0711</td>
<td>0.95549</td>
</tr>
</tbody>
</table>

**Input Arguments**

**results** — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.
**XTable — Prediction points**
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.

Data Types: table

**Output Arguments**

**error — Mean of error coupled constraint**
N-by-1 vector

Mean of error coupled constraint, returned as an N-by-1 vector, where N is the number of rows of XTable. The mean is the posterior mean of the error coupled constraint at the points in XTable.

bayesopt deems your objective function to return an error if it returns anything other than a finite real scalar. See “Objective Function Errors” on page 10-44.

**sigma — Standard deviation of error coupled constraint**
N-by-1 vector

Standard deviation of error coupled constraint, returned as an N-by-1 vector, where N is the number of rows of XTable.

**See Also**
BayesianOptimization | bayesopt

**Introduced in R2016b**
**predictObjective**

Predict objective function at a set of points

**Syntax**

```
objective = predictObjective(results,XTable)
[objective,sigma] = predictObjective(results,XTable)
```

**Description**

`objective = predictObjective(results,XTable)` returns the estimated objective function value at the points in `XTable`.

`[objective,sigma] = predictObjective(results,XTable)` also returns estimated standard deviations.

**Examples**

**Predict Cross-Validation Loss of an Optimized Classifier**

This example shows how to estimate the cross-validation loss of an optimized classifier.

Optimize a KNN classifier for the `ionosphere` data, meaning find parameters that minimize the cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, and set the `AcquisitionFunctionName` option to 'expected-improvement-plus'.

```matlab
load ionosphere
rng default
num = optimizableVariable('n', [1, 30], 'Type', 'integer');
dst = optimizableVariable('dst', {'chebychev', 'euclidean', 'minkowski'}, 'Type', 'categorical');
c = cvpartition(351, 'Kfold', 5);
```
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst], 'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus');
Create a table of points to estimate.

```matlab
b = categorical({'chebychev','euclidean','minkowski'});
n = [1;1;1;4;2;2];
dst = [b(1);b(2);b(3);b(1);b(1);b(3)];
XTable = table(n,dst);
```

Estimate the objective and standard deviation of the objective at these points.

```matlab
[objective,sigma] = predictObjective(results,XTable);
[XTable,table(objective,sigma)]
```

```
ans=6×4 table
 n dst objective sigma
 _ _________ _________ _________
```
### Input Arguments

**results** — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

**XTable** — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.

Data Types: table

### Output Arguments

**objective** — Objective estimates
N-by-1 vector

Objective estimates, returned as an N-by-1 vector, where N is the number of rows of XTable. The estimates are the mean values of the posterior distribution of the Gaussian process model of the objective function.

**sigma** — Standard deviations of objective function
N-by-1 vector

Standard deviations of objective function, returned as an N-by-1 vector, where N is the number of rows of XTable. The standard deviations are those of the posterior distribution of the Gaussian process model of the objective function.
See Also
BayesianOptimization | bayesopt

Introduced in R2016b
predictObjectiveEvaluationTime

Predict objective function run times at a set of points

Syntax

time = predictObjectiveEvaluationTime(results,XTable)

Description

time = predictObjectiveEvaluationTime(results,XTable) returns estimated objective evaluation times at the points in XTable.

Examples

Predict Evaluation Time of Objective In an Optimized Model

This example shows how to estimate the objective function evaluation time in an optimized Bayesian model of SVM classification.

Create an optimized SVM model. For details of this model, see “Optimize a Cross-Validated SVM Classifier Using bayesopt” on page 10-55.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
minfn = @(z)kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
    'KernelFunction','rbf','BoxConstraint',z.box,...
    'KernelScale',z.sigma));
results = bayesopt(minfn,[sigma,box],'IsObjectiveDeterministic',true,...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
Predict the evaluation time for various points.

```matlab
sigma = logspace(-5,5,11)';
box = 1e5*ones(size(sigma));
XTable = table(sigma,box);
time = predictObjectiveEvaluationTime(results,XTable);
[XTable,table(time)]
```

```
ans=11×3 table
 sigma box time
 _____ _____ _______
 1e-05 1e+05 0.38212
 0.0001 1e+05 0.36903
```
Input Arguments

results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.

Data Types: table

Output Arguments

time — Estimated objective evaluation times
N-by-1 vector

Estimated objective evaluation times, returned as an N-by-1 vector, where N is the number of rows of XTable. The estimated values are the means of the posterior distribution of the Gaussian process model of the evaluation times of the objective function.

See Also
BayesianOptimization | bayesopt
Introduced in R2016b
predictorImportance

Estimates of predictor importance

Syntax

```matlab
imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)
```

Description

`imp = predictorImportance(ens)` computes estimates of predictor importance for `ens` by summing these estimates over all weak learners in the ensemble. `imp` has one element for each input predictor in the data used to train this ensemble. A high value indicates that this predictor is important for `ens`.

```
[imp,ma] = predictorImportance(ens)
```
returns a P-by-P matrix with predictive measures of association for P predictors, when the learners in `ens` contain surrogate splits. See “Definitions” on page 32-5187.

Input Arguments

`ens`

A classification ensemble created by `fitcensemble`, or by the `compact` method.

Output Arguments

`imp`

A row vector with the same number of elements as the number of predictors (columns) in `ens.X`. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance.
ma

A P-by-P matrix of predictive measures of association for P predictors. Element \( ma(I,J) \) is the predictive measure of association averaged over surrogate splits on predictor J for which predictor I is the optimal split predictor. predictorImportance averages this predictive measure of association over all trees in the ensemble.

Examples

Estimate Predictor Importance

Estimate the predictor importance for all variables in the Fisher iris data.

Load Fisher's iris data set.

load fisheriris

Train a classification ensemble using AdaBoostM2. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the predictor importance for all predictor variables.

imp = predictorImportance(ens)

imp = 1×4
    0.0004    0.0016    0.1157    0.0434

The first two predictors are not very important in the ensemble.

Predictor Importance and Surrogate Splits

Estimate the predictor importance for all variables in the Fisher iris data for an ensemble where the trees contain surrogate splits.
Load Fisher's iris data set.

load fisheriris

Grow an ensemble of 100 classification trees using AdaBoostM2. Specify tree stumps as the weak learners, and also identify surrogate splits.

t = templateTree('MaxNumSplits',1,'Surrogate','on');
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the predictor importance and predictive measures of association for all predictor variables.

[imp,ma] = predictorImportance(ens)

imp = 1x4

0.0674  0.0417  0.1582  0.1537

ma = 4x4

1.0000   0   0   0
0.0115  1.0000  0.0022  0.0054
0.2812  0.1752  1.0000  0.5220
0.0766  0.0458  0.2307  1.0000

The first two predictors show much more importance than the analysis in “Estimate Predictor Importance” on page 32-5186.

Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for ens by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. If ens is grown without surrogate splits, this sum is taken over best splits found at each branch node. If ens is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train ens. Predictor importance associated
with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

**Impurity and Node Error**

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair argument:

- **Gini's Diversity Index (gdi)** — The Gini index of a node is

\[ 1 - \sum_i p^2(i), \]

where the sum is over the classes \( i \) at the node, and \( p(i) \) is the observed fraction of classes with class \( i \) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- **Deviance ('deviance')** — With \( p(i) \) defined the same as for the Gini index, the deviance of a node is

\[ -\sum_i p(i) \log_2 p(i). \]

A pure node has deviance 0; otherwise, the deviance is positive.

- **Twoing rule ('twoing')** — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let \( L(i) \) denote the fraction of members of class \( i \) in the left child node after a split, and \( R(i) \) denote the fraction of members of class \( i \) in the right child node after a split. Choose the split criterion to maximize

\[ P(L)P(R)\left(\sum_i |L(i) - R(i)|\right)^2, \]

where \( P(L) \) and \( P(R) \) are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.
Node error — The node error is the fraction of misclassified classes at a node. If $j$ is the class with the largest number of training samples at a node, the node error is 

$$1 - p(j).$$

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose $x_j$ and $x_k$ are predictor variables $j$ and $k$, respectively, and $j \neq k$. At node $t$, the predictive measure of association between the optimal split $x_j < u$ and a surrogate split $x_k < v$ is

$$\lambda_{jk} = \frac{\min(P_L, P_R) - \left(1 - P_{L_i}L_k - P_{R_i}R_k\right)}{\min(P_L, P_R)}.$$

- $P_L$ is the proportion of observations in node $t$, such that $x_j < u$. The subscript $L$ stands for the left child of node $t$.
- $P_R$ is the proportion of observations in node $t$, such that $x_j \geq u$. The subscript $R$ stands for the right child of node $t$.
- $P_{L_j}L_k$ is the proportion of observations at node $t$, such that $x_j < u$ and $x_k < v$.
- $P_{R_j}R_k$ is the proportion of observations at node $t$, such that $x_j \geq u$ and $x_k \geq v$.
- Observations with missing values for $x_j$ or $x_k$ do not contribute to the proportion calculations.

$\lambda_{jk}$ is a value in $(-\infty, 1]$. If $\lambda_{jk} > 0$, then $x_k < v$ is a worthwhile surrogate split for $x_j < u$.

Algorithms

Element $ma(i, j)$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is
computed by summing positive values of the predictive measure of association over optimal splits on predictor $i$ and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative.

**See Also**

predictorImportance | templateTree
predictorImportance

Estimates of predictor importance

Syntax

imp = predictorImportance(tree)

Description

imp = predictorImportance(tree) computes estimates of predictor importance for tree by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes.

Input Arguments

tree

A classification tree created by fitctree, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns) in tree.X. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance.

Examples
Estimate Predictor Importance Values

Load Fisher's iris data set.

\texttt{load fisheriris}

Grow a classification tree.

\texttt{Mdl = fitctree(meas,species);}

Compute predictor importance estimates for all predictor variables.

\texttt{imp = predictorImportance(Mdl)}

\texttt{imp = 1x4}

\begin{array}{cccc}
0 & 0 & 0.0907 & 0.0682 \\
\end{array}

The first two elements of \texttt{imp} are zero. Therefore, the first two predictors do not enter into \texttt{Mdl} calculations for classifying irises.

Estimates of predictor importance do not depend on the order of predictors if you use surrogate splits, but do depend on the order if you do not use surrogate splits.

Permute the order of the data columns in the previous example, grow another classification tree, and then compute predictor importance estimates.

\texttt{measPerm = meas(:,[4 1 3 2]);}
\texttt{MdlPerm = fitctree(measPerm,species);}
\texttt{impPerm = predictorImportance(MdlPerm)}

\texttt{impPerm = 1x4}

\begin{array}{cccc}
0.1515 & 0 & 0.0074 & 0 \\
\end{array}

The estimates of predictor importance are not a permutation of \texttt{imp}.

Surrogate Splits and Predictor Importance

Load Fisher's iris data set.
load fisheriris

Grow a classification tree. Specify usage of surrogate splits.

Mdl = fitctree(meas,species,'Surrogate','on');

Compute predictor importance estimates for all predictor variables.

imp = predictorImportance(Mdl)

imp = 1×4

0.0791    0.0374    0.1530    0.1529

All predictors have some importance. The first two predictors are less important than the final two.

Permute the order of the data columns in the previous example, grow another classification tree specifying usage of surrogate splits, and then compute predictor importance estimates.

measPerm  = meas(:,[4 1 3 2]);
MdlPerm = fitctree(measPerm,species,'Surrogate','on');
impPerm = predictorImportance(MdlPerm)

impPerm = 1×4

0.1529    0.0791    0.1530    0.0374

The estimates of predictor importance are a permutation of imp.

**Unbiased Predictor Importance Estimates**

Load the census1994 data set. Consider a model that predicts a person's salary category given their age, working class, education level, martial status, race, sex, capital gain and loss, and number of working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race','sex','capital_gain','capital_loss','hours_per_week','salary'});
Display the number of categories represented in the categorical variables using `summary`.

```r
summary(X)
```

Variables:

**age**: 32561x1 double

Values:

- Min: 17
- Median: 37
- Max: 90

**workClass**: 32561x1 categorical

Values:

- Federal-gov: 960
- Local-gov: 2093
- Never-worked: 7
- Private: 22696
- Self-emp-inc: 1116
- Self-emp-not-inc: 2541
- State-gov: 1298
- Without-pay: 14
- NumMissing: 1836

**education_num**: 32561x1 double

Values:

- Min: 1
- Median: 10
- Max: 16

**marital_status**: 32561x1 categorical

Values:

- Divorced: 4443
- Married-AF-spouse: 23
- Married-civ-spouse: 14976
- Married-spouse-absent: 418
- Never-married: 10683
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Separated</td>
<td>1025</td>
</tr>
<tr>
<td>Widowed</td>
<td>993</td>
</tr>
</tbody>
</table>

race: 32561x1 categorical
Values:

- Amer-Indian-Eskimo: 311
- Asian-Pac-Islander: 1039
- Black: 3124
- Other: 271
- White: 27816

sex: 32561x1 categorical
Values:

- Female: 10771
- Male: 21790

capital_gain: 32561x1 double
Values:

- Min: 0
- Median: 0
- Max: 99999

capital_loss: 32561x1 double
Values:

- Min: 0
- Median: 0
- Max: 4356

hours_per_week: 32561x1 double
Values:

- Min: 1
- Median: 40
- Max: 99
Because there are few categories represented in the categorical variables compared to levels in the continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over the categorical variables.

Train a classification tree using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing observations in the data, specify usage of surrogate splits.

```matlab
Mdl = fitctree(X,'salary','PredictorSelection','curvature',... 'Surrogate','on');
```

Estimate predictor importance values by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

```matlab
imp = predictorImportance(Mdl);
figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```
In this case, `capital_gain` is the most important predictor, followed by `education_num`.

**Definitions**

**Predictor Importance**

`predictorImportance` computes estimates of predictor importance for `tree` by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. If `tree` is grown without surrogate splits, this sum is taken over
best splits found at each branch node. If \texttt{tree} is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. \texttt{imp} has one element for each input predictor in the data used to train \texttt{tree}. Predictor importance associated with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

Estimates of predictor importance do not depend on the order of predictors if you use surrogate splits, but do depend on the order if you do not use surrogate splits.

If you use surrogate splits, \texttt{predictorImportance} computes estimates before the tree is reduced by pruning or merging leaves. If you do not use surrogate splits, \texttt{predictorImportance} computes estimates after the tree is reduced by pruning or merging leaves. Therefore, reducing the tree by pruning affects the predictor importance for a tree grown without surrogate splits, and does not affect the predictor importance for a tree grown with surrogate splits.

**Impurity and Node Error**

\texttt{ClassificationTree} splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the \texttt{SplitCriterion} name-value pair argument:

- Gini's Diversity Index (\texttt{gdi}) — The Gini index of a node is
  
  \[ 1 - \sum_i p^2(i), \]

  where the sum is over the classes \(i\) at the node, and \(p(i)\) is the observed fraction of classes with class \(i\) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance (\texttt{deviance}) — With \(p(i)\) defined the same as for the Gini index, the deviance of a node is
  
  \[ -\sum_i p(i) \log_2 p(i). \]

  A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class $i$ in the left child node after a split, and $R(i)$ denote the fraction of members of class $i$ in the right child node after a split. Choose the split criterion to maximize

$$P(L)P(R)\left(\sum_{i}|L(i) - R(i)|\right)^2,$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

• Node error — The node error is the fraction of misclassified classes at a node. If $j$ is the class with the largest number of training samples at a node, the node error is

$$1 - \frac{p(j)}{p(j)}.$$

See Also
fitcensemble | fitctree | oobPermutedPredictorImportance | predictorImportance
predictorImportance

Estimates of predictor importance

Syntax

imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)

Description

imp = predictorImportance(ens) computes estimates of predictor importance for ens by summing these estimates over all weak learners in the ensemble. imp has one element for each input predictor in the data used to train this ensemble. A high value indicates that this predictor is important for ens.

[imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive measures of association for P predictors.

Input Arguments

ens
A regression ensemble created by fitrensemble, or by the compact method.

Output Arguments

imp
A row vector with the same number of elements as the number of predictors (columns) in ens.X. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance.
**Examples**

**Estimate Predictor Importance**

Estimate the predictor importance for all predictor variables in the data.

Load the `carsmall` data set.

```matlab
load carsmall
```

Grow an ensemble of 100 regression trees for `MPG` using `Acceleration`, `Cylinders`, `Displacement`, `Horsepower`, `Model_Year`, and `Weight` as predictors. Specify tree stumps as the weak learners.

```matlab
X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1);
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);
```

Estimate the predictor importance for all predictor variables.

```matlab
imp = predictorImportance(ens)
```

```matlab
imp = 1×6
 0.0150 0 0.0066 0.1111 0.0437 0.5181
```

`Weight`, the last predictor, has the most impact on mileage. The second predictor has importance 0, which means that the number of cylinders has no impact on predictions made with `ens`.

**ma**

A P-by-P matrix of predictive measures of association for P predictors. Element `ma(I,J)` is the predictive measure of association averaged over surrogate splits on predictor `J` for which predictor `I` is the optimal split predictor. `predictorImportance` averages this predictive measure of association over all trees in the ensemble.
**Predictor Importance and Surrogate Splits**

Estimate the predictor importance for all variables in the data and where the regression tree ensemble contains surrogate splits.

Load the carsmall data set.

```matlab
load carsmall
```

Grow an ensemble of 100 regression trees for MPG using Acceleration, Cylinders, Displacement, Horsepower, Model Year, and Weight as predictors. Specify tree stumps as the weak learners, and also identify surrogate splits.

```matlab
X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1,'Surrogate','on');
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);
```

Estimate the predictor importance and predictive measures of association for all predictor variables.

```matlab
[imp,ma] = predictorImportance(ens)
```

```matlab
imp = 1x6
 0.2065 0.3799 0.4100 0.6190 0.3670 0.5476

ma = 6x6
 1.0000 0.0098 0.0102 0.0098 0.0033 0.0067
 0.0056 0.0084 1.0000 0.0078 0.0022 0.0084
 0.2232 0.1574 0.2066 1.0000 0.0580 0.2059
 0.0061 0.0070 0.0063 0.0064 1.0000 0.0056
 0.0200 0.0368 0.0620 0.0521 0.0098 1.0000
```

Comparing `imp` to the results in “Estimate Predictor Importance” on page 32-5201, `Horsepower` has the greatest impact on mileage, with `Weight` having the second greatest impact.
Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for tree by summing changes in the mean squared error (MSE) due to splits on every predictor and dividing the sum by the number of branch nodes. If the tree is grown without surrogate splits, this sum is taken over best splits found at each branch node. If the tree is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train this tree. At each node, MSE is estimated as node error weighted by the node probability. Variable importance associated with this split is computed as the difference between MSE for the parent node and the total MSE for the two children.

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules that split observations. Among all possible decision splits that are compared to the optimal split (found by growing the tree), the best surrogate decision split on page 32-2087 yields the maximum predictive measure of association. The second-best surrogate split has the second-largest predictive measure of association.

Suppose $x_j$ and $x_k$ are predictor variables $j$ and $k$, respectively, and $j \neq k$. At node $t$, the predictive measure of association between the optimal split $x_j < u$ and a surrogate split $x_k < v$ is

$$\lambda_{jk} = \frac{\min(P_L, P_R) - \left(1 - P_{L_jL_k} - P_{R_jR_k}\right)}{\min(P_L, P_R)}.$$

- $P_L$ is the proportion of observations in node $t$, such that $x_j < u$. The subscript $L$ stands for the left child of node $t$.
- $P_R$ is the proportion of observations in node $t$, such that $x_j \geq u$. The subscript $R$ stands for the right child of node $t$.
- $P_{L_jL_k}$ is the proportion of observations at node $t$, such that $x_j < u$ and $x_k < v$.
- $P_{R_jR_k}$ is the proportion of observations at node $t$, such that $x_j \geq u$ and $x_k \geq v$. 

32-5203
Observations with missing values for $x_j$ or $x_k$ do not contribute to the proportion calculations.

$\lambda_{jk}$ is a value in $(-\infty, 1]$. If $\lambda_{jk} > 0$, then $x_k < v$ is a worthwhile surrogate split for $x_j < u$.

**Algorithms**

Element $ma(i,j)$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor $i$ and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative.

**See Also**

`plotPartialDependence` | `predictorImportance` | `templateTree`
predictorImportance

Estimates of predictor importance

Syntax

imp = predictorImportance(tree)

Description

imp = predictorImportance(tree) computes estimates of predictor importance for tree by summing changes in the mean squared error due to splits on every predictor and dividing the sum by the number of branch nodes.

Input Arguments

tree

A regression tree created by fitrtree, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns) in tree.X. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance.

Examples
**Estimate Predictor Importance**

Estimate the predictor importance for all predictor variables in the data.

Load the `carsmall` data set.

```matlab
load carsmall
```

Grow a regression tree for `MPG` using `Acceleration`, `Cylinders`, `Displacement`, `Horsepower`, `Model_Year`, and `Weight` as predictors.

```matlab
X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
tree = fitrtree(X,MPG);
```

Estimate the predictor importance for all predictor variables.

```matlab
imp = predictorImportance(tree)
imp = 1×6
 0.0228 0.1068 0.1075 0.1829 0.3348 2.6645
```

Weight, the last predictor, has the most impact on mileage. The predictor with the minimal impact on making predictions is the first variable, which is `Acceleration`.

**Predictor Importance and Surrogate Splits**

Estimate the predictor importance for all variables in the data and where the regression tree contains surrogate splits.

Load the `carsmall` data set.

```matlab
load carsmall
```

Grow a regression tree for `MPG` using `Acceleration`, `Cylinders`, `Displacement`, `Horsepower`, `Model_Year`, and `Weight` as predictors. Specify to identify surrogate splits.

```matlab
X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
tree = fitrtree(X,MPG,'Surrogate','on');
```
Estimate the predictor importance for all predictor variables.

imp = predictorImportance(tree)

imp = 1×6
     1.0449    2.4560    2.5570    2.5788    2.0832    2.8938

Comparing imp to the results in “Estimate Predictor Importance” on page 32-5205, Weight still has the most impact on mileage, but Cylinders is the fourth most important predictor.

Unbiased Predictor Importance Estimates

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
            Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))
numCylinders = 3
numMfg = numel(categories(Mfg))
numMfg = 28
numModelYear = numel(categories(Model_Year))
numModelYear = 3
Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a regression tree using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits.

Mdl = fitrtree(X,'MPG','PredictorSelection','curvature','Surrogate','on');

Estimate predictor importance values by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

imp = predictorImportance(Mdl);

figure; bar(imp); title('Predictor Importance Estimates'); ylabel('Estimates'); xlabel('Predictors'); h = gca; h.XTickLabel = Mdl.PredictorNames; h.XTickLabelRotation = 45; h.TickLabelInterpreter = 'none';
In this case, **Displacement** is the most important predictor, followed by **Horsepower**.

### Definitions

#### Predictor Importance

`predictorImportance` computes estimates of predictor importance for tree by summing changes in the mean squared error (MSE) due to splits on every predictor and dividing the sum by the number of branch nodes. If the tree is grown without surrogate splits, this sum is taken over best splits found at each branch node. If the tree is grown
with surrogate splits, this sum is taken over all splits at each branch node including
surrogate splits. \texttt{imp} has one element for each input predictor in the data used to train
this tree. At each node, MSE is estimated as node error weighted by the node probability.
Variable importance associated with this split is computed as the difference between MSE
for the parent node and the total MSE for the two children.

Estimates of predictor importance do not depend on the order of predictors if you use
surrogate splits, but do depend on the order if you do not use surrogate splits.

If you use surrogate splits, \texttt{predictorImportance} computes estimates before the tree
is reduced by pruning or merging leaves. If you do not use surrogate splits,
\texttt{predictorImportance} computes estimates after the tree is reduced by pruning or
merging leaves. Therefore, reducing the tree by pruning affects the predictor importance
for a tree grown without surrogate splits, and does not affect the predictor importance for
a tree grown with surrogate splits.

\textbf{See Also}

\texttt{fitrensemble} | \texttt{fitrtree} | \texttt{oobPermutedPredictorImportance} | 
\texttt{plotPartialDependence} | \texttt{predictorImportance}
princomp

(Removed) Principal component analysis (PCA) on data

Note princomp has been removed. Use pca instead.

Syntax

[COEFF,SCORE] = princomp(X)
[COEFF,SCORE,latent] = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X,'econ')

Description

COEFF = princomp(X) performs principal components analysis (PCA) on the n-by-p data matrix X, and returns the principal component coefficients, also known as loadings. Rows of X correspond to observations, columns to variables. COEFF is a p-by-p matrix, each column containing coefficients for one principal component. The columns are in order of decreasing component variance.

princomp centers X by subtracting off column means, but does not rescale the columns of X. To perform principal components analysis with standardized variables, that is, based on correlations, use princomp(zscore(X)). To perform principal components analysis directly on a covariance or correlation matrix, use pcacov.

[COEFF,SCORE] = princomp(X) returns SCORE, the principal component scores; that is, the representation of X in the principal component space. Rows of SCORE correspond to observations, columns to components.

[COEFF,SCORE,latent] = princomp(X) returns latent, a vector containing the eigenvalues of the covariance matrix of X.

[COEFF,SCORE,latent,tsquare] = princomp(X) returns tsquare, which contains Hotelling's T^2 statistic for each data point.
The scores are the data formed by transforming the original data into the space of the principal components. The values of the vector latent are the variance of the columns of SCORE. Hotelling's $T^2$ is a measure of the multivariate distance of each observation from the center of the data set.

When $n \leq p$, $\text{SCORE}(:,n:p)$ and $\text{latent}(n:p)$ are necessarily zero, and the columns of $\text{COEFF}(:,n:p)$ define directions that are orthogonal to $X$.

$[...] = \text{princomp}(X, 'econ')$ returns only the elements of latent that are not necessarily zero, and the corresponding columns of COEFF and SCORE, that is, when $n \leq p$, only the first $n - 1$. This can be significantly faster when $p$ is much larger than $n$.

**References**


**See Also**

barttest | biplot | canoncorr | factoran | pca | pcacov | pcares | rotatefactors

**Topics**

“Principal Component Analysis (PCA)” on page 15-79

**Introduced before R2006a**
probplot

Probability plots

Syntax

probplot(y)
probplot(y,cens)
probplot(y,cens,freq)
probplot(dist,___)

probplot(ax,___)
probplot(ax,pd)
probplot(ax,fun,params)

probplot(___,'noref')

h = probplot(__)

Description

probplot(y) creates a normal probability plot comparing the distribution of the data in y to the normal distribution.

probplot plots each data point in y using marker symbols and draws a reference line that represents the theoretical distribution. If the sample data has a normal distribution, then the data points appear along the reference line. The reference line connects the first and third quartiles of the data and extends to the ends of the data. A distribution other than normal introduces curvature in the data plot.

probplot(y,cens) creates a probability plot using the censoring data in cens.

probplot(y,cens,freq) creates a probability plot using the censoring data in cens and the frequency data in freq.

probplot(dist,___) creates a probability plot for the distribution specified by dist, using any of the input arguments in the previous syntaxes.
probplot(ax,___) adds a probability plot into the existing probability plot axes specified by ax, using any of the input arguments in the previous syntaxes.

probplot(ax,pd) adds a fitted line on the existing probability plot axes specified by ax to represent the probability distribution pd.

probplot(ax,fun,params) adds a fitted line on the existing probability plot axes specified by ax to represent the function fun with the parameters params.

probplot(___,'noref') omits the reference line from the plot.

h = probplot(___) returns graphics handles corresponding to the plotted lines.

Examples

Create Weibull Probability Plot

Generate sample data and create a probability plot.

Generate sample data. The sample x1 contains 500 random numbers from a Weibull distribution with scale parameter A = 3 and shape parameter B = 3. The sample x2 contains 500 random numbers from a Rayleigh distribution with scale parameter B = 3.

rng('default'); % For reproducibility
x1 = wblrnd(3,3,[500,1]);
x2 = raylrnd(3,[500,1]);

Create a probability plot to assess whether the data in x1 and x2 comes from a Weibull distribution.

figure
probplot('weibull',x1,x2)
legend('Weibull Sample','Rayleigh Sample','Location','best')
The probability plot shows that the data in \( x_1 \) comes from a Weibull distribution, while the data in \( x_2 \) does not.

Alternatively, you can use `wblplot` to create a Weibull probability plot.

**Add Fitted Line to Probability Plot**

Create a probability plot and an additional fitted line on the same figure.

Generate sample data containing about 20% outliers in the tails. The left tail of the sample data contains 10 values randomly generated from an exponential distribution with
parameter \( \mu = 1 \). The right tail contains 10 values randomly generated from an exponential distribution with parameter \( \mu = 5 \). The center of the sample data contains 80 values randomly generated from a standard normal distribution.

```matlab
rng('default') % For reproducibility
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];
```

Create a probability plot to assess whether the sample data comes from a normal distribution.

```matlab
probplot(data)
```

Plot a \( t \) location-scale curve on the same figure to compare with \( data \).

```matlab
p = mle(data,'distribution','tLocationScale');
t = @(data,mu,sig,df)cdf('tLocationScale',data,mu,sig,df);
h = probplot(gca,t,p);
h.Color = 'r';
h.LineStyle = '-';
title('{\bf Probability Plot}')
legend('Normal','Data','t','Location','NW')
```
The plot shows that neither the normal line nor the \( t \) location-scale curve fits the tails very well because of the outliers.

**Identify Significant Effects with Half-Normal Probability Plot**

Create a half-normal probability distribution plot to identify significant effects in an experiment to study factors that might influence flow rate in a chemical manufacturing process. The four factors are reactants A, B, C, and D. Each factor is present at two levels (high and low concentration). The experiment contains only one replication at each factor level.
Load the sample data.

load flowrate

The first four columns of the table flowrate contain the design matrix for the factors and their interactions. The design matrix is coded to use 1 for the high factor level and -1 for the low factor level. The fifth column of flowrate contains the measured flow rate.

Fit a linear regression model using rate as the response variable. Use predictor variables A, B, C, D, and all of their interaction terms.

mdl = fitlm(flowrate,'rate ~ A*B*C*D');

Calculate and store the absolute value of the factor effect estimates. To obtain the factor effect estimates, multiply the coefficient estimates obtained during the model fitting by two. This step is necessary because the regression coefficients measure the effect of a one-unit change in x on the mean of y. However, the effects estimates measure a two-unit change in x due to the design matrix coding of -1 and 1. Exclude the baseline measurement. Note that the factor order in mdl may be different from the order in the original design matrix.

effects = abs(mdl.Coefficients{2:end,1}*2);

Create a half-normal probability plot using the absolute value of the effects estimates, excluding the baseline.

figure
h = probplot('halfnormal',effects);
Label the points and format the plot. First, return the index values for the sorted effects estimates (from lowest to highest). Then use these index values to sort the probability values stored in the graphics handle (h(1).YData).

```
[b,i] = sort(effects);
prob(i) = h(1).YData;
```

Add text labels to the plot at each point. For each point, the x-value is the effects estimate and the y-value is the corresponding probability.

```
text(effects,prob,mdl.CoefficientNames(2:end), 'FontSize', 8, ...
 'VerticalAlignment', 'top')
h(1).Color = 'r';
```
The points located far from the reference line represent the significant effects.

Create a Normal Probability Plot Using Frequency Data

Generate simulated frequency data.

```matlab
y = 1:10;
freq = [2 4 6 7 9 8 7 7 6 5];

Create a normal probability plot using the frequency data.

probplot(y,[],freq)
The normal probability plot shows that the data do not have a normal distribution.

Input Arguments

`y` — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. `probplot` displays each value in `y` using marker symbols including ‘x’ and ‘o’. If `y` is a matrix, then `probplot` displays a separate line for each column of `y`.
Not all distributions are appropriate for all data sets. `probplot` errors if the data set is inappropriate for a specified distribution. See `dist` for appropriate data ranges for each distribution.

dist — Distribution for probability plot

probability distribution object | 'normal' | 'exponential' | 'extreme value' | 'half normal' | 'lognormal' | ...

Distribution for probability plot, specified as a probability distribution object or one of the following distribution names:

<table>
<thead>
<tr>
<th>Name</th>
<th>Plot Type</th>
<th>Data Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>Normal probability plot</td>
<td>All values</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential probability plot</td>
<td>Nonnegative values</td>
</tr>
<tr>
<td>'extreme value'</td>
<td>Extreme value probability plot</td>
<td>All values</td>
</tr>
<tr>
<td>'half normal'</td>
<td>Half-normal probability plot</td>
<td>All values</td>
</tr>
<tr>
<td>'lognormal'</td>
<td>Lognormal probability plot</td>
<td>Positive values</td>
</tr>
<tr>
<td>'logistic'</td>
<td>Logistic probability plot</td>
<td>All values</td>
</tr>
<tr>
<td>'loglogistic'</td>
<td>Loglogistic probability plot</td>
<td>Positive values</td>
</tr>
<tr>
<td>'rayleigh'</td>
<td>Rayleigh probability plot</td>
<td>Positive values</td>
</tr>
<tr>
<td>'weibull'</td>
<td>Weibull probability plot</td>
<td>Positive values</td>
</tr>
</tbody>
</table>

The default is 'normal' if you create a probability plot in a new figure. If you add a probability plot to a figure that already includes one by using the `ax` input argument, then the default is the plot type of the existing probability plot.

You can create a probability distribution object with specified parameter values using `makedist`. Alternatively, fit a probability distribution object to sample data using `fitdist`. For more information on probability distribution objects, see “Working with Probability Distributions” on page 5-3.

The y-axis scale is based on the selected distribution. The x-axis has a log scale for the Weibull, loglogistic, and lognormal distributions, and a linear scale for the others.

Not all distributions are appropriate for all data sets. `probplot` errors if the data set is inappropriate for a specified distribution.
Example: 'weibull'

cens — Censoring data
numeric vector

Censoring data, specified as a numeric vector. cens must be the same length as y, and contain a 1 value for observations that are right-censored and a 0 value for observations that are measured exactly.

Data Types: single | double

freq — Frequency data
vector of integer values

Frequency data, specified as a vector of integer values. freq must be the same length as y. freq contains the integer frequencies for the corresponding elements in y.

To create a probability plot using frequency data but not censoring data, specify empty brackets ([]) for cens.

Data Types: single | double

ax — Target axes

Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. probplot adds an additional plot into the axes specified by ax. For details, see Axes Properties and UIAxes Properties.

Use gca to return the current axes for the current figure.

pd — Probability distribution for reference line

probability distribution object

Probability distribution for reference line, specified as a probability distribution object. probplot adds a fitted line to the axes specified by ax to represent the probability distribution specified by pd.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a probability distribution object to sample data using fitdist. For more information on probability distribution objects, see “Working with Probability Distributions” on page 5-3.
fun — Function for reference line
function handle

Function for reference line, specified as a function handle. probplot adds a fitted line to the axes specified by ax to represent the function specified by fun, evaluated at the parameters specified by params.

fun is a function handle to a cdf function, specified using the function handle operator @. The function must accept a vector of input values as its first argument, and return a vector containing the cdf evaluated at each input value. Specify the parameter values required to evaluate fun using the params argument. For more information on function handles, see “Create Function Handle” (MATLAB).

Example: @wblpdf

Data Types: function_handle

params — Reference line function parameters
vector of numeric values | cell array

Reference line function parameters, specified as a vector of numeric values or a cell array. probplot adds a fitted line to the axes specified by ax to represent the function specified by fun, evaluated at the parameters specified by params.

fun is a function handle to a cdf function, specified using the function handle operator @. The function must accept a vector of values as its first argument, and return a vector of cdf values evaluated at each value. Specify the parameter values required to evaluate fun using the params argument. For more information on function handles, see “Create Function Handle” (MATLAB).

Output Arguments

h — Graphic handles for line objects
vector of Line graphic handles

Graphic handles for line objects, returned as a vector of Line graphic handles. Graphic handles are unique identifiers that you can use to query and modify the properties of a specific line on the plot. For each column of y, probplot returns two handles:

- The line representing the data points. probplot represents each data point in y using marker symbols such as ' + ' and ' o '.

32-5224
• The line showing the theoretical distribution for the probability plot, represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see “Access Property Values” (MATLAB). For information on the Line properties that you can set, see Primitive Line.

Algorithms

`probplot` matches the quantiles of sample data to the quantiles of a given probability distribution. The sample data is sorted, scaled according to the choice of `dist`, and plotted on the x-axis. When `dist` is 'lognormal', 'loglogistic', or 'weibull', the scaling is logarithmic. Otherwise, the scaling is linear. The y-axis represents the quantiles of the distribution specified in `dist`, converted into probability values. The scaling depends on the given distribution and is not linear.

Where the x-axis value is the ith sorted value from a sample of size N, the y-axis value is the midpoint between evaluation points of the empirical cumulative distribution function of the data. In the case of uncensored data, the midpoint is equal to \(\frac{i - 0.5}{N} \).

`probplot` superimposes a reference line to assess the linearity of the plot. If the data is uncensored, then the line goes through the first and third quartiles of the data. If the data is censored, then the line shifts accordingly. If the data is uncensored and `dist` is 'half normal', then `probplot` uses the zeroth and second quartiles instead.

See Also

`ecdf` | `normplot` | `wblplot`

Topics

“Distribution Plots” on page 4-9
“Hypothesis Testing” on page 8-6

Introduced before R2006a
procrustes

Procrustes analysis

Syntax

d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)
[...] = procrustes(...,'scaling',flag)
[...] = procrustes(...,'reflection',flag)

Description

d = procrustes(X,Y) determines a linear transformation (translation, reflection, orthogonal rotation, and scaling) of the points in matrix Y to best conform them to the points in matrix X. The goodness-of-fit criterion is the sum of squared errors. procrustes returns the minimized value of this dissimilarity measure in d. d is standardized by a measure of the scale of X, given by:

\[
\text{sum}\left(\text{sum}\left((X-\text{repmat(mean(X,1),size(X,1),1)))}^2,1\right)\right)
\]

That is, the sum of squared elements of a centered version of X. However, if X comprises repetitions of the same point, the sum of squared errors is not standardized.

X and Y must have the same number of points (rows), and procrustes matches Y(i) to X(i). Points in Y can have smaller dimension (number of columns) than those in X. In this case, procrustes adds columns of zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation that maps Y to Z. transform is a structure array with fields:

- c — Translation component
- T — Orthogonal rotation and reflection component
• b — Scale component

That is:

c = transform.c;
T = transform.T;
b = transform.b;
Z = b*Y*T + c;

\[
[...]' = \text{procrustes}(\ldots, '\text{scaling}', \text{flag}), \text{when flag is false, allows you to compute the transformation without a scale component (that is, with } b \text{ equal to 1). The default } \text{flag is true.}
\]

\[
[...]' = \text{procrustes}(\ldots, '\text{reflection}', \text{flag}), \text{when flag is false, allows you to compute the transformation without a reflection component (that is, with } \det(T) \text{ equal to 1). The default } \text{flag is 'best', which computes the best-fitting transformation, whether or not it includes a reflection component. A flag of true forces the transformation to be computed with a reflection component (that is, with } \det(T) \text{ equal to -1).}
\]

Examples

Procrustes Analysis

Generate the sample data in two dimensions.

```matlab
rng('default')
n = 10;
X = normrnd(0,1,[n 2]);
```

Rotate, scale, translate, and add some noise to sample points.

```matlab
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S+2,0.05,n,2);
```

Conform Y to X using procrustes analysis.

```matlab
[d,Z,tr] = procrustes(X,Y);
```

Plot the original X and Y with the transformed Y.

```matlab
plot(X(:,1),X(:,2),'rx',Y(:,1),Y(:,2),'b.',Z(:,1),Z(:,2),'bx');
```
References

See Also

See Also

cmdscale | factoran

Introduced before R2006a
proflik

Package: prob

Profile likelihood function for probability distribution

Syntax

[ll,param] = proflik(pd,pnum)
[ll,param] = proflik(pd,pnum,'Display',display)
[ll,param] = proflik(pd,pnum,setparam)
[ll,param] = proflik(pd,pnum,setparam,'Display',display)
[ll,param,other] = proflik(____)

Description

[ll,param] = proflik(pd,pnum) returns a vector ll of loglikelihood values and a vector param of corresponding parameter values for the parameter in the position indicated by pnum.

[ll,param] = proflik(pd,pnum,'Display',display) returns the loglikelihood values and corresponding parameter values, and plots the profile likelihood overlaid on an approximation of the loglikelihood.

[ll,param] = proflik(pd,pnum,setparam) returns the loglikelihood values and corresponding parameter values as specified by setparam.

[ll,param] = proflik(pd,pnum,setparam,'Display',display) returns the loglikelihood values and corresponding parameter values as specified by setparam, and plots the profile likelihood overlaid on an approximation of the loglikelihood.

[ll,param,other] = proflik(____) also returns a matrix other containing the values of the other parameters that maximize the likelihood, using any of the input arguments from the previous syntaxes.
Examples

Profile Likelihood of a Distribution Parameter

Load the sample data. Create a probability distribution object by fitting a Weibull distribution to the miles per gallon (MPG) data.

```matlab
load carsmall
pd = fitdist(MPG,'Weibull')
```

```matlab
dp =
   WeibullDistribution

   Weibull distribution
   A = 26.5079   [24.8333, 28.2954]
   B = 3.27193   [2.79441, 3.83104]
```

View the parameter names for the distribution.

```matlab
pd.ParameterNames
```

```matlab
ans = 1x2 cell array
     {'A'}    {'B'}
```

For the Weibull distribution, A is in position 1, and B is in position 2.

Compute the profile likelihood for B, which is in position pnum = 2.

```matlab
[ll,param] = proflik(pd,2);
```

Display the loglikelihood values for the estimated values of B.

```matlab
[ll',param']
```

```matlab
ans = 21×2
     -329.9688    2.7132
     -329.4312    2.7748
     -328.9645    2.8365
     -328.5661    2.8981
     -328.2340    2.9597
     -327.9658    3.0213
```
These results show that the profile log likelihood is maximized between the estimated \(B \) values of 3.2678 and 3.3295, which correspond to loglikelihood values -327.4943 and -327.5178. From the earlier fit, the MLE of \(B \) is 3.27193, which is in this interval as expected.

Profile Likelihood With Restricted Parameter Values

Load the sample data. Create a probability distribution object by fitting a generalized extreme value distribution to the miles per gallon (MPG) data.

```matlab
load carsmall
pd = fitdist(MPG,'GeneralizedExtremeValue')
```

```matlab
pd =
    GeneralizedExtremeValueDistribution

    Generalized Extreme Value distribution
    k = -0.207765   [-0.381674, -0.0338564]
    sigma = 7.49674   [6.31755, 8.89603]
    mu = 20.6233   [18.8859, 22.3606]
```

View the parameter names for the distribution.

```matlab
pd.ParameterNames
```

```matlab
ans = 1x3 cell array
    {'k'}    {'sigma'}    {'mu'}
```

For the generalized extreme value distribution, \(k \) is in position 1, \(sigma \) is in position 2, and \(mu \) is in position 3.

Compute the profile likelihood for \(mu \), which is in position \(pnum = 3 \). Restrict the computation to parameter values from 20 to 22, and display the plot.
The plot shows the estimated value for the parameter \(\mu \) that maximizes the loglikelihood.

Display the loglikelihood values for the estimated values of \(\mu \), and the values of the other distribution parameters that maximize the corresponding loglikelihood.

\[
[ll',param',other] = proflik(pd,3,20:.1:22,'display','on');
\]

\[
\text{ans} = 21 \times 4
\]

\[
\begin{array}{cccc}
-327.5706 & 20.0000 & -0.1803 & 7.4087 \\
-327.4971 & 20.1000 & -0.1846 & 7.4218
\end{array}
\]
The first column contains the log likelihood value that corresponds to the estimate of \(\mu \) in the second column. The log likelihood is maximized between the parameter values 20.6000 and 20.7000, corresponding to log likelihood values -327.3223 and -327.3257. The third column contains the value of \(k \) that maximizes the corresponding log likelihood for \(\mu \). The fourth column contains the value of \(\sigma \) that maximizes the corresponding log likelihood for \(\mu \).

Input Arguments

pd — Probability distribution

probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>

pnum — Parameter number

positive integer value

Parameter number for which to compute the profile likelihood, specified as a positive integer value corresponding to the position of the desired parameter in the parameter name vector. For example, a Weibull distribution has a parameter name vector \{ 'A', 'B' \}, so specify pnum as 2 to compute the profile likelihood for B.
Data Types: single | double

`setparam` — Parameter value restriction
scalar value | vector of scalar values

Parameter value restriction, specified as a scalar value or a vector of such values. If you do not specify `setparam`, `proflik` chooses the values for output vector `param` based on the default confidence interval method for the probability distribution `pd`. If the parameter can take only restricted values, and if the confidence interval violates that restriction, you can use `setparam` to specify valid values.

Example: `[3,3.5,4]`

`display` — Display toggle
'off' (default) | 'on'

Display toggle, specified as either 'on' or 'off'. Specify 'on' to display the profile of the exact loglikelihood overlaid on the Wald approximation of the loglikelihood. Specify 'off' to omit the display. The Wald approximation is based on a Taylor series expansion around the estimated parameter value, as a function of the parameter in position `pnum` or its logarithm. The intersection of the curves with the horizontal dotted line marks the endpoints of 95% confidence intervals.

Output Arguments

`ll` — Loglikelihood values
vector

Loglikelihood values, returned as a vector. The loglikelihood is the value of the likelihood with the parameter in position `pnum` set to the values in `param`, maximized over the remaining parameters.

`param` — Parameter values
vector

Parameter values corresponding to the loglikelihood values in `ll`, returned as a vector. If you specify parameter values using `setparam`, then `param` is equal to `setparam`.

`other` — Other parameter values
matrix
Other parameter values that maximize the likelihood, returned as a matrix. Each row of `other` contains the values for all parameters except the parameter in position `pnum`.

See Also
- Distribution Fitter
- `fitdist`
- `mle`
- `negloglik`
- `paramci`

Topics
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16

Introduced in R2013a
proximity

Class: CompactTreeBagger

Proximity matrix for data

Syntax

prox = proximity(B,X)

Description

prox = proximity(B,X) computes a numeric matrix of size Nobs-by-Nobs of proximities for data X, where Nobs is the number of observations (rows) in X. Proximity between any two observations in the input data is defined as a fraction of trees in the ensemble B for which these two observations land on the same leaf. This is a symmetric matrix with ones on the diagonal and off-diagonal elements ranging from 0 to 1.
prune

Class: ClassificationTree

Produce sequence of subtrees by pruning

Syntax

\[
\text{tree1} = \text{prune}(\text{tree}) \\
\text{tree1} = \text{prune}(\text{tree}, \text{Name,Value})
\]

Description

\[
\text{tree1} = \text{prune}(\text{tree}) \text{ creates a copy of the classification tree } \text{tree} \text{ with its optimal pruning sequence filled in.}
\]

\[
\text{tree1} = \text{prune}(\text{tree}, \text{Name,Value}) \text{ creates a pruned tree with additional options specified by one Name,Value pair argument. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.}
\]

Input Arguments

tree

A classification tree created with fitctree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Alpha

A numeric scalar. prune prunes tree to the specified value of the pruning cost.
Level

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree \(\max(\text{tree.PrunedList}) \). \text{prune} returns the tree pruned to this level.

Nodes

A numeric vector with elements from 1 to \(\text{tree.NumNodes} \). Any tree branch nodes listed in \text{nodes} become leaf nodes in \text{tree1}, unless their parent nodes are also pruned.

Output Arguments

tree1

A classification tree.

Examples

Prune and Display a Classification Tree

Construct and display a full classification tree for Fisher's iris data.

```matlab
load fisheriris;
varnames = {'SL','SW','PL','PW'};
t1 = fitctree(meas,species,'MinParentSize',5,'PredictorNames',varnames);
view(t1,'Mode','graph');
```
Construct and display the next largest tree from the optimal pruning sequence.

```matlab
t2 = prune(t1,'Level',1);
view(t2,'Mode','graph');
```
Tips

- \texttt{tree1 = prune(tree)} returns the decision tree \texttt{tree1} that is the full, unpruned tree, but with optimal pruning information added. This is useful only if you created \texttt{tree} by pruning another tree, or by using the \texttt{fitctree} function with pruning set 'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it is more efficient to create the optimal pruning sequence first.
See Also

fitctree
prune

Class: classregtree

(Removed) Prune tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

t2 = prune(t1,'level',level)
t2 = prune(t1,'nodes',nodes)
t2 = prune(t1)

Description

t2 = prune(t1,'level',level) takes a decision tree t1 and a pruning level level, and returns the decision tree t2 pruned to that level. If level is 0, there is no pruning. Trees are pruned based on an optimal pruning scheme that first prunes branches giving less improvement in error cost.

t2 = prune(t1,'nodes',nodes) prunes the nodes listed in the nodes vector from the tree. Any t1 branch nodes listed in nodes become leaf nodes in t2, unless their parent nodes are also pruned. Use view to display the node numbers for any node you select.

t2 = prune(t1) returns the decision tree t2 that is the full, unpruned t1, but with optimal pruning information added. This is useful only if t1 is created by pruning another tree, or by using the classregtree function with the 'prune' parameter set to 'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf nodes and removing the leaf nodes under the original branch.
References

See Also

classregtree | test | view
prune

Class: RegressionTree

Produce sequence of subtrees by pruning

Syntax

tree1 = prune(tree)
tree1 = prune(tree,Name,Value)

Description

tree1 = prune(tree) creates a copy of the regression tree tree with its optimal pruning sequence filled in.

tree1 = prune(tree,Name,Value) creates a pruned tree with additional options specified by one Name,Value pair argument. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

tree

A regression tree created with fitrtree.

Name-Value Pair Arguments

Optional comma-separated pair of Name,Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes ('). You can specify only one name-value pair argument.

Alpha

A numeric scalar from 0 (no pruning) to 1 (prune to one node). Prunes to minimize the sum of (Alpha times the number of leaf nodes) and a cost (mean squared error).
Level

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree \(\max(\text{tree.PruneList}) \). `prune` returns the tree pruned to this level.

Nodes

A numeric vector with elements from 1 to `tree.NumNodes`. Any tree branch nodes listed in `Nodes` become leaf nodes in `tree1`, unless their parent nodes are also pruned.

Output Arguments

tree1

A regression tree.

Examples

Prune Regression Tree

Load the `carsmall` data set. Consider Horsepower and Weight as predictor variables.

```matlab
load carsmall;
X = [Weight Horsepower];
varNames = {'Weight' 'Horsepower'};
```

Grow a regression tree using the entire data set. View the tree.

```matlab
Mdl = fitrtree(X,MPG,'PredictorNames',varNames)
```

```
Mdl =
    RegressionTree
    PredictorNames: {'Weight'  'Horsepower'}
    ResponseName: 'Y'
    CategoricalPredictors: []
    ResponseTransform: 'none'
    NumObservations: 94
```
Properties, Methods

view(Mdl,'Mode','graph');

The regression tree has 16 pruning levels.

Prune the regression tree to pruning-level 10. View the pruned tree.

MdlPruned = prune(Mdl,'Level',10);
view(MdlPruned,'Mode','graph');
The pruned tree has six pruning levels.

Alternatively, you can use the pruning-level field in the Regression tree viewer to prune the tree.
Tips

- `tree1 = prune(tree)` returns the decision tree `tree1` that is the full, unpruned tree, but with optimal pruning information added. This is useful only if you created `tree` by pruning another tree, or by using `fitrtree` with pruning set 'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it is more efficient to create the optimal pruning sequence first.

See Also

`fitrtree`
prunelist

Class: classregtree

(Removed) Pruning levels for decision tree nodes

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

\[
P = \text{prunelist}(T) \\
P = \text{prunelist}(T,J)
\]

Description

\[
P = \text{prunelist}(T)
\]

returns an \(n\)-element numeric vector with the pruning levels in each node of the tree \(T\), where \(n\) is the number of nodes. When you call \(\text{prune}(T, 'level', level)\), nodes with the pruning levels below \(level\) are pruned, and nodes with the pruning levels greater or equal to \(level\) are not pruned.

\[
P = \text{prunelist}(T,J)
\]

takes an array \(J\) of node numbers and returns the pruning levels for the specified nodes.

See Also
classregtree | numnodes
qrand

Class: qrandstream

Generate quasi-random points from stream

Syntax

\[x = \text{qrand}(q) \]
\[X = \text{qrand}(q,n) \]

Description

\[x = \text{qrand}(q) \] returns the next value \(x \) in the quasi-random number stream \(q \) of the qrandstream class. \(x \) is a 1-by-\(d \) vector, where \(d \) is the dimension of the stream. The command sets \(q \text{.State} \) to the index in the underlying point set of the next value to be returned.

\[X = \text{qrand}(q,n) \] returns the next \(n \) values \(X \) in an \(n \)-by-\(d \) matrix.

Objects \(q \) of the qrandstream class encapsulate properties of a specified quasi-random number stream. Values of the stream are not generated and stored in memory until \(q \) is accessed using qrand.

Examples

Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:

\[q = \text{qrandstream('halton',3,'Skip',1e3,'Leap',1e2) \]
\[q = \]

Halton quasi-random stream in 3 dimensions
Point set properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none
nextIdx = q.State
nextIdx =
 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
 0.0928 0.3475 0.0051
 0.6958 0.2035 0.2371
 0.3013 0.8496 0.4307
 0.9087 0.5629 0.6166
nextIdx = q.State
nextIdx =
 5

X2 = qrand(q,4)
X2 =
 0.2446 0.0238 0.8102
 0.5298 0.7540 0.0438
 0.3843 0.5112 0.2758
 0.8335 0.2245 0.4694
nextIdx = q.State
nextIdx =
 9

Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
 1

X = qrand(q,4)
X =
 0.0928 0.3475 0.0051
 0.6958 0.2035 0.2371
 0.3013 0.8496 0.4307
 0.9087 0.5629 0.6166
See Also
qrandstream | reset
qrandset class

Quasi-random point sets

Description

qrandset is a base class that encapsulates a sequence of multi-dimensional quasi-random numbers. This base class is abstract and cannot be instantiated directly. Concrete subclasses include *sobolset* and *haltonset*.

Construction

qrandset Abstract quasi-random point set class

Methods

- disp Display qrandset object
- end Last index in indexing expression for point set
- length Length of point set
- ndims Number of dimensions in matrix
- net Generate quasi-random point set
- scramble Scramble quasi-random point set
- size Number of dimensions in matrix
- subsref Subscripted reference for qrandset
Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Number of dimensions</td>
</tr>
<tr>
<td>Leap</td>
<td>Interval between points</td>
</tr>
<tr>
<td>ScrambleMethod</td>
<td>Settings that control scrambling</td>
</tr>
<tr>
<td>Skip</td>
<td>Number of initial points to omit from sequence</td>
</tr>
<tr>
<td>Type</td>
<td>Name of sequence on which point set (P) is based</td>
</tr>
</tbody>
</table>

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

See Also

haltonset | sobolset

Topics

“Quasi-Random Point Sets” on page 7-17
qrandset

Class: qrandset

Abstract quasi-random point set class

Description

qrandset is an abstract class, and you cannot create instances of it directly. You must use haltonset or sobolset to create a qrandset object.

See Also

haltonset | sobolset

Introduced in R2009a
qrandstream class

Quasi-random number streams

Construction

qrandstream Construct quasi-random number stream

Methods

addlistener Add listener for event
delete Delete handle object
disp Display qrandstream object
eq Test handle equality
findobj Find objects matching specified conditions
findprop Find property of MATLAB handle object
ge Greater than or equal relation for handles
gt Greater than relation for handles
isvalid Test handle validity
le Less than or equal relation for handles
lt Less than relation for handles
ne Not equal relation for handles
notify Notify listeners of event
qrand Generate quasi-random points from stream
rand Generate quasi-random points from stream
reset Reset state
Properties

PointSet Point set from which stream is drawn
State Current state of the stream

Copy Semantics

Handle. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.
qrandstream

Class: qrandstream

Construct quasi-random number stream

Syntax

q = qrandstream(type,d)
q = qrandstream(type,d,prop1,val1,prop2,val2,...)
q = qrandstream(p)

Description

q = qrandstream(type,d) constructs a d-dimensional quasi-random number stream q of the qrandstream on page 32-5257 class, of type specified by type. type is either 'halton' or 'sobol', and q is based on a point set from either the haltonset on page 32-2925 class or sobolset on page 32-6175 class, respectively, with default property settings.

q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies property name/value pairs for the point set on which the stream is based. Applicable properties depend on type.

q = qrandstream(p) constructs a stream based on the specified point set p. p must be a point set from either the haltonset on page 32-2925 class or sobolset on page 32-6175 class.

Examples

Construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =

Halton quasi-random stream in 3 dimensions
Point set properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none

nextIdx = q.State
nextIdx =
 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
 0.0928 0.3475 0.0051
 0.6958 0.2035 0.2371
 0.3013 0.8496 0.4307
 0.9087 0.5629 0.6166

nextIdx = q.State
nextIdx =
 5

X2 = qrand(q,4)
X2 =
 0.2446 0.0238 0.8102
 0.5298 0.7540 0.0438
 0.3843 0.5112 0.2758
 0.8335 0.2245 0.4694

nextIdx = q.State
nextIdx =
 9

Use reset to reset the stream, and then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
 1

X = qrand(q,4)
X =
 0.0928 0.3475 0.0051
 0.6958 0.2035 0.2371
 0.3013 0.8496 0.4307
 0.9087 0.5629 0.6166
See Also
haltonset | qrand | reset | sobolset

Introduced in R2008a
qqplot

Quantile-quantile plot

Syntax

```matlab
qqplot(x)
qqplot(x,pd)
qqplot(x,y)
qqplot(___,pvec)

h = qqplot(__)
```

Description

`qqplot(x)` displays a quantile-quantile plot of the quantiles of the sample data `x` versus the theoretical quantile values from a normal distribution. If the distribution of `x` is normal, then the data plot appears linear.

`qqplot` plots each data point in `x` using plus sign ('+') markers and draws two reference lines that represent the theoretical distribution. A solid reference line connects the first and third quartiles of the data, and a dashed reference line extends the solid line to the ends of the data.

`qqplot(x,pd)` displays a quantile-quantile plot of the quantiles of the sample data `x` versus the theoretical quantiles of the distribution specified by the probability distribution object `pd`. If the distribution of `x` is the same as the distribution specified by `pd`, then the plot appears linear.

`qqplot(x,y)` displays a quantile-quantile plot of the quantiles of the sample data `x` versus the quantiles of the sample data `y`. If the samples come from the same distribution, then the plot appears linear.

`qqplot(___,pvec)` displays a quantile-quantile plot with the quantiles specified in the vector `pvec`, using any of the previous syntaxes.
h = qqplot(___) returns the handles (h) to the lines in the quantile-quantile plot.

Examples

Quantile-Quantile Plot for Normal Distribution

Use a quantile-quantile plot to determine whether gas prices in Massachusetts follow a normal distribution.

Load the sample data.

load gas

The sample data in price1 and price2 represent gasoline prices at 20 different gas stations in Massachusetts. The samples were collected during two different months.

Create a quantile-quantile plot to determine if the gas prices in price1 follow a normal distribution.

figure
qqplot(price1)
The plot produces an approximately straight line, suggesting that the gas prices follow a normal distribution.

Quantile-Quantile Plot With Two Samples

Use a quantile-quantile plot to determine whether two sets of sample data come from the same distribution.

Load the sample data.

```matlab
load gas
```
The sample data in \texttt{price1} and \texttt{price2} represent gasoline prices at 20 different gas stations in Massachusetts. The samples were collected during two different months.

Create a quantile-quantile plot using both sets of sample data, to assess whether prices at different times have the same distribution.

\begin{verbatim}
qqplot(price1,price2);
\end{verbatim}

The plot produces an approximately straight line, suggesting that the two sets of sample data have the same distribution.
Quantile-Quantile Plot for Weibull Distribution

Use a quantile-quantile plot to determine whether sample data comes from a Weibull distribution.

Load the sample data.

load lightbulb

The first column of the data has the lifetime (in hours) of two types of light bulbs. The second column has information about the type of light bulb. 1 indicates fluorescent bulbs whereas 0 indicates the incandescent bulbs. The third column has censoring information. 1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Remove the censored data.

lightbulb = [lightbulb(lightbulb(:,3)==0,1),...
 lightbulb(lightbulb(:,3)==0,2)];

Create a variable for each light bulb type. Include only uncensored data.

fluo = [lightbulb(lightbulb(:,2)==0,1)];
insc = [lightbulb(lightbulb(:,2)==1,1)];

Create a Weibull probability distribution object using the default parameters of A = 1 and B = 1.

pd = makedist('Weibull');

Create a q-q plot to determine whether the lifetime of fluorescent bulbs has a Weibull distribution.

figure
qqplot(fluo,pd)
The plot is not a straight line, suggesting that the lifetime data for fluorescent bulbs does not follow a Weibull distribution.

Input Arguments

x — Sample data

numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. If `x` is a matrix, then `qqplot` displays a separate line for each column.
qqplot displays the sample data using the plot symbol '+' . A line joining the first and third quartiles of each distribution is superimposed on the plot. The line represents a robust linear fit of the order statistics for the data in x. This line is extrapolated out to the minimum and maximum values in x to help evaluate the linearity of the data.

Data Types: single | double

y — Second set of sample data
numeric vector | numeric matrix

Second set of sample data, specified as a numeric vector or numeric matrix. x and y do not need to be the same length. However, if x and y are matrices, they must contain the same number of columns. If x and y are matrices, then qqplot displays a separate line for each pair of columns.

qqplot selects the quantiles to plot based on the size of the smaller data set.

Data Types: single | double

pd — Hypothesized probability distribution
probability distribution object

Hypothesized probability distribution, specified as a probability distribution object. qqplot plots the quantiles of the input data x versus the theoretical quartiles of the distribution specified by pd.

Create a probability distribution object with specified parameter values using makedist, or fit a probability distribution object to data using fitdist.

pvec — Quantiles for plot
numeric value in the range [0,100] | vector of numeric values in the range [0,100]

Quantiles for plot, specified as a numeric value, or vector of numeric values, in the range [0,100].

For a single set of sample data (x), qqplot uses the quantiles in x. For two sets of sample data (x and y), qqplot uses the quantiles in the smaller of the two data sets.

Data Types: single | double
Output Arguments

h — Graphics handles for line objects

vector of `Line` graphics handles

Graphics handles for line objects, returned as a vector of `Line` graphics handles. Graphics handles are unique identifiers that you can use to query and modify the properties of a specific line on the plot. For each column of `x`, `qqplot` returns three handles:

- The line representing the data points. `qqplot` represents each data point in `x` using plus sign (`'+') markers.
- The line joining the first and third quartiles of each column of `x`, represented as a solid line.
- The extrapolation of the quartile line, extended to the minimum and maximum values of `x`, represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see “Access Property Values” (MATLAB). For information on the `Line` properties that you can set, see Primitive Line.

Definitions

Quantile-Quantile Plot

A *quantile-quantile plot* (also called a *q-q plot*) visually assesses whether sample data comes from a specified distribution. Alternatively, a q-q plot assesses whether two sets of sample data come from the same distribution.

A q-q plot orders the sample data values from smallest to largest, then plots these values against the expected value for the specified distribution at each quantile in the sample data. The quantile values of the input sample appear along the y-axis, and the theoretical values of the specified distribution at the same quantiles appear along the x-axis. If the resulting plot is linear, then the sample data likely comes from the specified distribution.

The q-q plot selects quantiles based on the number of values in the sample data. If the sample data contains `n` values, then the plot uses `n` quantiles. Plot the `i`th ordered value...
(also called the ith order statistic) against the \(\frac{i - 0.5}{n} \) th quantile of the specified distribution.

A q-q plot can also assess whether two sets of sample data have the same distribution, even if you do not know the underlying distribution. The quantile values for the first data set appear on the x-axis and the corresponding quantile values for the second data set appear on the y-axis. Since q-q plots rely on quantiles, the number of data points in the two samples does not need to be equal. If the sample sizes are unequal, the q-q plot chooses the quantiles based on the smaller data set. If the resulting plot is linear, then the two sets of sample data likely come from the same distribution.

See Also

`normplot` | `probplot`

Topics

“Distribution Plots” on page 4-9

Introduced before R2006a
quantile

Quantiles of a data set

Syntax

\[\text{Y} = \text{quantile}(\text{X},\text{p}) \]
\[\text{Y} = \text{quantile}(\text{X},\text{N}) \]
\[\text{Y} = \text{quantile}(_,\text{'}all\text{'}_) \]
\[\text{Y} = \text{quantile}(_,\text{dim}) \]
\[\text{Y} = \text{quantile}(_,\text{vecdim}) \]
\[\text{Y} = \text{quantile}(_,\text{'}Method\text{',method}) \]

Description

\(Y = \text{quantile}(X,p) \) returns quantiles of the elements in data vector or array \(X \) for the cumulative probability or probabilities \(p \) in the interval \([0,1]\).

- If \(X \) is a vector, then \(Y \) is a scalar or a vector having the same length as \(p \).
- If \(X \) is a matrix, then \(Y \) is a row vector or a matrix where the number of rows of \(Y \) is equal to the length of \(p \).
- For multidimensional arrays, quantile operates along the first nonsingleton dimension of \(X \).

\(Y = \text{quantile}(X,N) \) returns quantiles for \(N \) evenly spaced cumulative probabilities \((1/(N + 1), 2/(N + 1), ..., N/(N + 1))\) for integer \(N>1 \).

- If \(X \) is a vector, then \(Y \) is a scalar or a vector with length \(N \).
- If \(X \) is a matrix, then \(Y \) is a matrix where the number of rows of \(Y \) is equal to \(N \).
- For multidimensional arrays, quantile operates along the first nonsingleton dimension of \(X \).

\(Y = \text{quantile}(_,\text{'}all\text{'}_) \) returns quantiles of all the elements of \(X \) for either of the first two syntaxes.
Y = quantile(___,dim) returns quantiles along the operating dimension dim for either of the first two syntaxes.

Y = quantile(___,vecdim) returns quantiles over the dimensions specified in the vector vecdim for either of the first two syntaxes. For example, if X is a matrix, then quantile(X,0.5,[1 2]) returns the 0.5 quantile of all the elements of X because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.

Y = quantile(___,'Method',method) returns either exact or approximate quantiles based on the value of method, using any of the input argument combinations in the previous syntaxes.

Examples

Quantiles for Given Probabilities

Calculate the quantiles of a data set for specified probabilities.

Generate a data set of size 10.

```matlab
clear; % for reproducibility
x = normrnd(0,1,1,10)
x = 1×10
   0.5377    1.8339   -2.2588    0.8622    0.3188   -1.3077   -0.4336    0.3426    3.5784    2.7694
```

Calculate the 0.3 quantile.

```matlab
y = quantile(x,0.30)
y = -0.0574
```

Calculate the quantiles for the cumulative probabilities 0.025, 0.25, 0.5, 0.75, and 0.975.

```matlab
y = quantile(x,[0.025 0.25 0.50 0.75 0.975])
y = 1×5
   -2.2588   -0.4336    0.4401    1.8339    3.5784
```
Quantiles for N Evenly Spaced Cumulative Probabilities

Calculate the quantiles of a data set for a given number of quantiles.

Generate a data set of size 10.

```matlab
rng('default'); % for reproducibility
x = normrnd(0,1,1,10)
x = 1×10
    0.5377    1.8339   -2.2588    0.8622    0.3188   -1.3077   -0.4336    0.3426    3.5784    2.7694
```

Calculate four evenly spaced quantiles.

```matlab
y = quantile(x,4)
y = 1×4
-0.8706    0.3307    0.6999    2.3017
```

Using `y = quantile(x,[0.2,0.4,0.6,0.8])` is another way to return the four evenly spaced quantiles.

Quantiles of a Matrix for Given Probabilities

Calculate the quantiles along the columns and rows of a data matrix for specified probabilities.

Generate a 4-by-6 data matrix.

```matlab
rng default  % For reproducibility
X = normrnd(0,1,4,6)
X = 4×6
    0.5377    0.3188    3.5784    0.7254   -0.1241    0.6715
```

32-5273
Calculate the 0.3 quantile for each column of \(X \) (\text{dim} = 1).

\[
y = \text{quantile}(X,0.3,1)
\]

\[
y = 1\times6
\]

\[
\begin{array}{cccccc}
-0.3013 & -0.6958 & 1.5336 & -0.1056 & 0.9491 & 0.1078 \\
\end{array}
\]

\text{quantile} \text{ returns a row vector } y \text{ when calculating one quantile for each column of a matrix. For example, } -0.3013 \text{ is the 0.3 quantile of the first column of } X \text{ with elements (0.5377, 1.8339, -2.2588, 0.8622). Because the default value of dim is 1, you can return the same result with } y = \text{quantile}(X,0.3).\]

Calculate the 0.3 quantile for each row of \(X \) (\text{dim} = 2).

\[
y = \text{quantile}(X,0.3,2)
\]

\[
y = 4\times1
\]

\[
\begin{array}{cccc}
0.3844 & -0.8642 & -1.0750 & 0.4985 \\
\end{array}
\]

\text{quantile} \text{ returns a column vector } y \text{ when calculating one quantile for each row of a matrix. For example } 0.3844 \text{ is the 0.3 quantile of the first row of } X \text{ with elements (0.5377, 0.3188, 3.5784, 0.7254, -0.1241, 0.6715).}\]

Quantiles of a Matrix for Given Number of Quantiles

Calculate the \(N \) evenly spaced quantiles along the columns and rows of a data matrix.

Generate a 6-by-10 data matrix.
rng('default'); % for reproducibility
X = unidrnd(10,6,7)

X = 6×7

9 3 10 8 7 8 7
10 6 5 10 8 1 4
 2 10 9 7 8 3 10
10 10 2 1 4 1 1
 7 2 5 9 7 1 5
 1 10 10 10 2 9 4

Calculate three evenly spaced quantiles for each column of X (dim = 1).
y = quantile(X,3,1)
y = 3×7

2.0000 3.0000 5.0000 7.0000 4.0000 1.0000 4.0000
8.0000 8.0000 7.0000 8.5000 7.0000 2.0000 4.5000
10.0000 10.0000 10.0000 10.0000 8.0000 8.0000 7.0000

Each column of matrix y corresponds to the three evenly spaced quantiles of each column of matrix X. For example, the first column of y with elements (2, 8, 10) has the quantiles for the first column of X with elements (9, 10, 2, 10, 7, 1). y = quantile(X,3) returns the same answer because the default value of dim is 1.

Calculate three evenly spaced quantiles for each row of X (dim = 2).
y = quantile(X,3,2)
y = 6×3

7.0000 8.0000 8.7500
4.2500 6.0000 9.5000
4.0000 8.0000 9.7500
1.0000 2.0000 8.5000
2.7500 5.0000 7.0000
2.5000 9.0000 10.0000
Each row of matrix \(y \) corresponds to the three evenly spaced quantiles of each row of matrix \(X \). For example, the first row of \(y \) with elements \((7, 8, 8.75) \) has the quantiles for the first row of \(X \) with elements \((9, 3, 10, 8, 7, 8, 7) \).

Quantiles of Multidimensional Array for Given Probabilities

Calculate the quantiles of a multidimensional array for specified probabilities by using the 'all' and \texttt{vecdim} input arguments.

Create a 3-by-5-by-2 array \(X \). Specify the vector of probabilities \(p \).

\[
X = \text{reshape}(1:30, [3 \\ 5 \\ 2])
\]

\[
X =
X(:,:,1) =
\begin{bmatrix}
1 & 4 & 7 & 10 & 13 \\
2 & 5 & 8 & 11 & 14 \\
3 & 6 & 9 & 12 & 15 \\
\end{bmatrix}
\]

\[
X(:,:,2) =
\begin{bmatrix}
16 & 19 & 22 & 25 & 28 \\
17 & 20 & 23 & 26 & 29 \\
18 & 21 & 24 & 27 & 30 \\
\end{bmatrix}
\]

\[
p = [0.25 \\ 0.75];
\]

Calculate the 0.25 and 0.75 quantiles of all the elements in \(X \).

\[
Yall = \text{quantile}(X,p,'all')
\]

\[
Yall = 2x1
\]

\[
\begin{bmatrix}
8 \\
23 \\
\end{bmatrix}
\]

\(Yall(1) \) is the 0.25 quantile of \(X \), and \(Yall(2) \) is the 0.75 quantile of \(X \).
Calculate the 0.25 and 0.75 quantiles for each page of X by specifying dimensions 1 and 2 as the operating dimensions.

\[
Y_{\text{page}} = \text{quantile}(X,p,[1 \ 2])
\]

\[
Y_{\text{page}} = \\
Y_{\text{page}}(:,:,1) = \\
4.2500 \\
11.7500
\]

\[
Y_{\text{page}}(:,:,2) = \\
19.2500 \\
26.7500
\]

For example, \(Y_{\text{page}}(1,1,1)\) is the 0.25 quantile of the first page of X, and \(Y_{\text{page}}(2,1,1)\) is the 0.75 quantile of the first page of X.

Calculate the 0.25 and 0.75 quantiles of the elements in each \(X(i,:,:)\) slice by specifying dimensions 2 and 3 as the operating dimensions.

\[
Y_{\text{row}} = \text{quantile}(X,p,[2 \ 3])
\]

\[
Y_{\text{row}} = 3\times2 \\
7 \ 22 \\
8 \ 23 \\
9 \ 24
\]

For example, \(Y_{\text{row}}(3,1)\) is the 0.25 quantile of the elements in \(X(3,:,:)\), and \(Y_{\text{row}}(3,2)\) is the 0.75 quantile of the elements in \(X(3,:,:)\).

Median and Quartiles for Even Number of Data Elements

Find median and quartiles of a vector, \(x\), with even number of elements.

Enter the data.
\(x = [2 \ 5 \ 6 \ 10 \ 11 \ 13] \)

\(x = 1 \times 6 \)

\[
\begin{array}{cccccc}
2 & 5 & 6 & 10 & 11 & 13 \\
\end{array}
\]

Calculate the median of \(x \).

\(y = \text{quantile}(x,0.50) \)

\(y = 8 \)

Calculate the quartiles of \(x \).

\(y = \text{quantile}(x,[0.25, \ 0.5, \ 0.75]) \)

\(y = 1 \times 3 \)

\[
\begin{array}{cccc}
5 & 8 & 11 \\
\end{array}
\]

Using \(y = \text{quantile}(x,3) \) is another way to compute the quartiles of \(x \).

These results might be different than the textbook definitions because \text{quantile} uses “Linear Interpolation” on page 32-5289 to find the median and quartiles.

Median and Quartiles for Odd Number of Data Elements

Find median and quartiles of a vector, \(x \), with odd number of elements.

Enter the data.

\(x = [2 \ 4 \ 6 \ 8 \ 10 \ 12 \ 14] \)

\(x = 1 \times 7 \)

\[
\begin{array}{cccccc}
2 & 4 & 6 & 8 & 10 & 12 & 14 \\
\end{array}
\]

Find the median of \(x \).

\(y = \text{quantile}(x,0.50) \)
\[
y = 8
\]
Find the quartiles of \(x\).
\[
y = \text{quantile}(x,[0.25, 0.5, 0.75])
\]
\[
y = \begin{bmatrix} 4.5000 & 8.0000 & 11.5000 \end{bmatrix}
\]
Using \(y = \text{quantile}(x,3)\) is another way to compute the quartiles of \(x\).

These results might be different than the textbook definitions because \texttt{quantile} uses “Linear Interpolation” on page 32-5289 to find the median and quartiles.

Quantiles of Tall Vector for Given Probability

Calculate exact and approximate quantiles of a tall column vector for a given probability.

Create a datastore for the \texttt{airlinesmall} data set. Treat 'NA' values as missing data so that \texttt{datastore} replaces them with \texttt{NaN} values. Specify to work with the \texttt{ArrTime} variable.

\[
ds = \text{datastore('airlinesmall.csv','TreatAsMissing','NA',...}
\]
\[
'\text{SelectedVariableNames}',\text{'ArrTime'})
\]

Create a tall table on top of the datastore, and extract the data from the tall table into a tall vector.

\[
t = \text{tall}(ds) \quad \% \text{Tall table}
\]

Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

\[
t = \begin{bmatrix}
M \times 1 \text{ tall table}
\end{bmatrix}
\]

\[
\text{ArrTime}
\]
x = t{:,::} % Tall vector

x =

M×1 tall double column vector

735
1124
2218
1431
746
1547
1052
1134
:
:
:

Calculate the exact quantile of x for \(p = 0.5 \). Because X is a tall column vector and p is a scalar, quantile returns the exact quantile value by default.

\[
p = 0.5; \quad % \text{Cumulative probability}
\]
\[
y_{\text{Exact}} = \text{quantile}(x,p)
\]

yExact =

M×N×... tall double array

? ? ? ...
? ? ? ...
? ? ? ...
?: : : ...
?: : : ...

Preview deferred. Learn more.
Calculate the approximate quantile of x for \(p = 0.5 \). Specify 'Method','approximate' to use an approximation algorithm based on “T-Digest” on page 32-5290 for computing the quantiles.

\[
y\text{Approx} = \text{quantile}(x,p,'Method','approximate')
\]

\[
y\text{Approx} = \\
\text{MxNx... tall double array}
\]

Evaluate the tall arrays and bring the results into memory by using \texttt{gather}.

\[
[y\text{Exact},y\text{Approx}] = \text{gather}(y\text{Exact},y\text{Approx})
\]

The values of the approximate quantile and the exact quantile are the same to the four digits shown.

Quantiles of Tall Matrix Along Different Dimensions

Calculate exact and approximate quantiles of a tall matrix for specified cumulative probabilities along different dimensions.
Create a tall matrix X containing a subset of variables from the airlinesmall data set. See “Quantiles of Tall Vector for Given Probability” on page 32-5279 for details about the steps to extract data from a tall array.

```matlab
varnames = {'ArrDelay','ArrTime','DepTime','ActualElapsedTime'}; % Subset of variables
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); % Datastore
t = tall(ds); % Tall table
X = t{:,varnames} % Tall matrix
```

When operating along a dimension that is not 1, the `quantile` function calculates the exact quantiles only, so that it can perform the computation efficiently using a sorting-based algorithm (see “Algorithms” on page 32-5292) instead of an approximation algorithm based on “T-Digest” on page 32-5290.

Calculate the exact quantiles of X along the second dimension for the cumulative probabilities 0.25, 0.5, and 0.75.

```matlab
p = [0.25 0.50 0.75]; % Vector of cumulative probabilities
Yexact = quantile(X,p,2)
```

Y_{exact} =

```
M×N×... tall double array
: : : ... : : : ...
```
When the function operates along the first dimension and \(p \) is a vector of cumulative probabilities, you must use the approximation algorithm based on t-digest to compute the quantiles. Using the sorting-based algorithm to find the quantiles along the first dimension of a tall array is computationally intensive.

Calculate the approximate quantiles of \(X \) along the first dimension for the cumulative probabilities 0.25, 0.5, and 0.75. Because the default dimension is 1, you do not need to specify a value for \(\text{dim} \).

\[
	ext{Yapprox} = \text{quantile}(X,p,'\text{Method}','\text{approximate}')
\]

\[
\text{Yapprox} = \\
\begin{array}{ccc}
? & ? & ? \\
? & ? & ? \\
? & ? & ? \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{array}
\]

Evaluate the tall arrays and bring the results into memory by using \texttt{gather}.

\[
[Y\text{exact},Y\text{approx}] = \text{gather}(Y\text{exact},Y\text{approx});
\]

```
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.3 sec
Evaluation completed in 3 sec
```

Show the first five rows of the exact quantiles of \(X \) (along the second dimension) for the cumulative probabilities 0.25, 0.5, and 0.75.

\[
Y\text{exact}(1:5,:) \\
\text{ans} = 5\times3 \\
\begin{array}{ccc}
10^3 \times \\
0.0305 & 0.3475 & 0.6885 \\
0.0355 & 0.5420 & 1.0725 \\
\end{array}
\]
Each row of the matrix Yexact contains the three quantiles of the corresponding row in X. For example, 30.5, 347.5, and 688.5 are the 0.25, 0.5, and 0.75 quantiles, respectively, of the first row in X.

Show the approximate quantiles of X (along the first dimension) for the cumulative probabilities 0.25, 0.5, and 0.75.

Yapprox

\[
Y_{\text{approx}} = \begin{bmatrix}
0.0520 & 1.0690 & 2.1365 \\
0.0360 & 0.6955 & 1.3815 \\
0.0405 & 0.3530 & 0.6875 \\
\end{bmatrix}
\]

Each column of the matrix Yapprox corresponds to the three quantiles for each column of the matrix X. For example, the first column of Yapprox with elements (–7, 0, 11) contains the quantiles for the first column of X.

Quantiles of Tall Matrix for N Evenly Spaced Probabilities

Calculate exact and approximate quantiles along different dimensions of a tall matrix for N evenly spaced cumulative probabilities.

Create a tall matrix X containing a subset of variables from the airlinesmall data set. See “Quantiles of Tall Vector for Given Probability” on page 32-5279 for details about the steps to extract data from a tall array.

```matlab
varnames = {'ArrDelay','ArrTime','DepTime','ActualElapsedTime'}; % Subset of variables
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); % Datastore
t = tall(ds); % Tall table
X = t{:,varnames}
```
To find evenly spaced quantiles along the first dimension, you must use the approximation algorithm based on “T-Digest” on page 32-5290. Using the sorting-based algorithm (see “Algorithms” on page 32-5292) to find quantiles along the first dimension of a tall array is computationally intensive.

Calculate three evenly spaced quantiles along the first dimension of \(X \). Because the default dimension is 1, you do not need to specify a value for \(\text{dim} \). Specify ‘Method’, 'approximate' to use the approximation algorithm.

\[
N = 3; \quad \% \text{Number of quantiles} \\
Y_{\text{approx}} = \text{quantile}(X,N,'Method','approximate')
\]

\[
Y_{\text{approx}} =
\]

\[
M \times N \times \ldots \text{ tall double array}
\]

\[
? \quad ? \quad ? \quad \ldots \\
? \quad ? \quad ? \quad \ldots \\
? \quad ? \quad ? \quad \ldots \\
: \quad : \quad : \\
: \quad : \quad : \\
\]

To find evenly spaced quantiles along any other dimension (\(\text{dim} \) is not 1), \text{quantile} calculates the exact quantiles only, so that it can perform the computation efficiently by using the sorting-based algorithm.

Calculate three evenly spaced quantiles along the second dimension of \(X \). Because \(\text{dim} \) is not 1, \text{quantile} returns the exact quantiles by default.
Yexact = quantile(X,N,2)

Yexact =

M×N×... tall double array

? ? ? ...
? ? ? ...
? ? ? ...
: : : ...
: : :

Preview deferred. Learn more.

Evaluate the tall arrays and bring the results into memory by using `gather`.

[Yapprox,Yexact] = gather(Yapprox,Yexact);

Evaluating tall expression using the Parallel Pool 'local':
 - Pass 1 of 1: Completed in 1.8 sec
 Evaluation completed in 2.5 sec

Show the approximate quantiles of \(X \) (along the first dimension) for the three evenly spaced cumulative probabilities.

Yapprox

Yapprox = 3×4
10^3 ×

-0.0070 1.1148 0.9322 0.0700
 0 1.5220 1.3350 0.1020
 0.0110 1.9180 1.7400 0.1510

Each column of the matrix \(Y_{\text{approx}} \) corresponds to the three evenly spaced quantiles for each column of the matrix \(X \). For example, the first column of \(Y_{\text{approx}} \) with elements \((-7, 0, 11)\) contains the quantiles for the first column of \(X \).

Show the first five rows of the exact quantiles of \(X \) (along the second dimension) for the three evenly spaced cumulative probabilities.

Yexact(1:5,:)
Each row of the matrix Yexact contains the three evenly spaced quantiles of the corresponding row in X. For example, 30.5, 347.5, and 688.5 are the 0.25, 0.5, and 0.75 quantiles, respectively, of the first row in X.

Input Arguments

X — Input data

type: vector | array

Input data, specified as a vector or array.

Data Types: double | single

p — Cumulative probabilities

type: scalar | vector

Cumulative probabilities for which to compute the quantiles, specified as a scalar or vector of scalars from 0 to 1.

Example: 0.3
Example: [0.25, 0.5, 0.75]
Example: (0:0.25:1)

Data Types: double | single

N — Number of quantiles

type: positive integer

Number of quantiles to compute, specified as a positive integer. quantile returns N quantiles that divide the data set into evenly distributed N+1 segments.

Data Types: double | single
dim — Dimension

positive integer

Dimension along which the quantiles of a matrix \(X\) are requested, specified as a positive integer. For example, for a matrix \(X\), when \(\text{dim} = 1\), \text{quantile} returns the quantile(s) of the columns of \(X\); when \(\text{dim} = 2\), \text{quantile} returns the quantile(s) of the rows of \(X\). For a multidimensional array \(X\), the length of the \(\text{dim}\)th dimension of \(Y\) is the same as the length of \(p\).

Data Types: single | double

vecdim — Vector of dimensions

positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of \(\text{vecdim}\) represents a dimension of the input array \(X\). In the smallest specified operating dimension (that is, dimension \(\text{min}(\text{vecdim})\)), the output \(Y\) has length equal to the number of quantiles requested (either \(N\) or \(\text{length}(p)\)). In each of the remaining operating dimensions, \(Y\) has length 1. The other dimension lengths are the same for \(X\) and \(Y\).

For example, consider a 2-by-3-by-3 array \(X\) with \(p = [0.2 \ 0.4 \ 0.6 \ 0.8]\). In this case, \text{quantile}(X,p,[1 2]) returns an array, where each page of the array contains the 0.2, 0.4, 0.6, and 0.8 quantiles of the elements on the corresponding page of \(X\). Because 1 and 2 are the operating dimensions, with \(\text{min}([1 \ 2]) = 1\) and \(\text{length}(p) = 4\), the output is a 4-by-1-by-3 array.

Data Types: single | double

method — Method for calculating quantiles

'exact' (default) | 'approximate'

Method for calculating quantiles, specified as 'exact' or 'approximate'. By default, \text{quantile} returns the exact quantiles by implementing an algorithm on page 32-5292 that uses sorting. You can specify 'method','approximate' for \text{quantile} to return approximate quantiles by implementing an algorithm that uses T-Digest on page 32-5290.

Data Types: char | string

Output Arguments

Y — Quantiles

scalar | array
Quantiles of a data vector or array, returned as a scalar or array for one or multiple values of cumulative probabilities.

- If X is a vector, then Y is a scalar or a vector with the same length as the number of quantiles requested (N or length(p)). Y(i) contains the p(i) quantile.
- If X is an array of dimension d, then Y is an array with the length of the smallest operating dimension equal to the number of quantiles requested (N or length(p)).

Definitions

Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-by-4 array, then X is a 3-D array.

First Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of X.

Linear Interpolation

Linear interpolation uses linear polynomials to find \(y_i = f(x_i) \), the values of the underlying function \(Y = f(X) \) at the points in the vector or array x. Given the data points \((x_1, y_1)\) and \((x_2, y_2)\), where \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \), linear interpolation finds \(y = f(x) \) for a given \(x \) between \(x_1 \) and \(x_2 \) as follows:

\[
y = f(x) = y_1 + \frac{(x - x_1)}{(x_2 - x_1)}(y_2 - y_1).
\]

Similarly, if the \(1.5/n \) quantile is \(y_{1.5/n} \) and the \(2.5/n \) quantile is \(y_{2.5/n} \), then linear interpolation finds the \(2.3/n \) quantile \(y_{2.3/n} \) as
T-Digest

T-digest[2] on page 32-5292 is a probabilistic data structure that is a sparse representation of the empirical cumulative distribution function (CDF) of a data set. T-digest is useful for computing approximations of rank-based statistics (such as percentiles and quantiles) from online or distributed data in a way that allows for controllable accuracy, particularly near the tails of the data distribution.

For data that is distributed in different partitions, t-digest computes quantile estimates (and percentile estimates) for each data partition separately, and then combines the estimates while maintaining a constant-memory bound and constant relative accuracy of computation (\(q(1 - q) \) for the \(q \)th quantile). For these reasons, t-digest is practical for working with tall arrays.

To estimate quantiles of an array that is distributed in different partitions, first build a t-digest in each partition of the data. A t-digest clusters the data in the partition and summarizes each cluster by a centroid value and an accumulated weight that represents the number of samples contributing to the cluster. T-digest uses large clusters (widely spaced centroids) to represent areas of the CDF that are near \(q = 0.5 \) and uses small clusters (tightly spaced centroids) to represent areas of the CDF that are near \(q = 0 \) or \(q = 1 \).

T-digest controls the cluster size by using a scaling function that maps a quantile \(q \) to an index \(k \) with a compression parameter \(\delta \). That is,

\[
k(q, \delta) = \delta \left(\sin^{-1}(2q - 1) + \frac{1}{2} \right),
\]

where the mapping \(k \) is monotonic with minimum value \(k(0, \delta) = 0 \) and maximum value \(k(1, \delta) = \delta \).
Scaling Function for $\delta = 10$

The scaling function translates the quantile q to the scaling factor k in order to give variable size steps in q. As a result, cluster sizes are unequal (larger around the center quantiles and smaller near $q = 0$ or $q = 1$). The smaller clusters allow for better accuracy near the edges of the data.

To update a t-digest with a new observation that has a weight and location, find the cluster closest to the new observation. Then, add the weight and update the centroid of the cluster based on the weighted average, provided that the updated weight of the cluster does not exceed the size limitation.
You can combine independent t-digests from each partition of the data by taking a union of the t-digests and merging their centroids. To combine t-digests, first sort the clusters from all the independent t-digests in decreasing order of cluster weights. Then, merge neighboring clusters, when they meet the size limitation, to form a new t-digest.

Once you form a t-digest that represents the complete data set, you can estimate the endpoints (or boundaries) of each cluster in the t-digest and then use interpolation between the end-points of each cluster to find accurate quantile estimates.

Algorithms

For an n-element vector X, `quantile` computes quantiles by using a sorting-based algorithm as follows:

1. The sorted elements in X are taken as the $(0.5/n), (1.5/n), ..., ([n - 0.5]/n)$ quantiles. For example:
 - For a data vector of five elements such as $\{6, 3, 2, 10, 1\}$, the sorted elements $\{1, 2, 3, 6, 10\}$ respectively correspond to the $0.1, 0.3, 0.5, 0.7, 0.9$ quantiles.
 - For a data vector of six elements such as $\{6, 3, 2, 10, 8, 1\}$, the sorted elements $\{1, 2, 3, 6, 8, 10\}$ respectively correspond to the $(0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6), (5.5/6)$ quantiles.

2. `quantile` uses “Linear Interpolation” on page 32-5289 to compute quantiles for probabilities between $(0.5/n)$ and $([n - 0.5]/n)$.

3. For the quantiles corresponding to the probabilities outside that range, `quantile` assigns the minimum or maximum values of the elements in X.

`quantile` treats NaNs as missing values and removes them.

References

ExtendedCapabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
 - \(Y = \text{quantile}(_, \text{'all'}) \)
 - \(Y = \text{quantile}(_, \text{vecdim}) \)
 - \(Y = \text{quantile}(X, p) \) returns the exact quantiles (using a sorting-based algorithm on page 32-5292) under these conditions.
 - \(X \) is a tall column vector and \(p \) is a scalar. In this case, \(\text{dim} \) is 1.
 - \(X \) is a tall matrix and \(\text{dim} \) is not 1.
 - If \(p \) is a vector and \(\text{dim} \) is 1, then you must specify 'Method', 'approximate' to use an approximation algorithm based on T-Digest on page 32-5290 for computing the quantiles.
 - \(Y = \text{quantile}(X, N) \) returns the exact quantiles only when \(\text{quantile} \) is operating along a dimension other than the first dimension. If \(\text{dim} \) is 1, then you must specify 'Method', 'approximate' to use an approximation algorithm based on t-digest for computing the quantiles.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The following syntaxes do not support code generation.
 - \(Y = \text{quantile}(_, \text{'all'}) \)
 - \(Y = \text{quantile}(_, \text{vecdim}) \)
 - See “Automatic dimension restriction” (MATLAB Coder).
 - If the output \(Y \) is a vector, the orientation of \(Y \) differs from MATLAB when all of the following are true:
• You do not supply `dim`.
• `X` is a variable-size array, and not a variable-size vector, at compile time, but `X` is a vector at run time.
• The orientation of the vector `X` does not match the orientation of the vector `p`.
 In this case, the output `Y` matches the orientation of `X`, not the orientation of `p`.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
 • `Y = quantile(__,'all')`
 • `Y = quantile(__,vecdim)`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
`iqr` | `median` | `nanmedian` | `prctile`

Topics
“Quantiles and Percentiles” on page 3-6

Introduced before R2006a
rand

Class: qrandstream

Generate quasi-random points from stream

Syntax

rand
rand(q,n)
rand(q)
rand(q,m,n)
rand(q,[m,n])
rand(q,m,n,p,...)
rand(q,[m,n,p,...])

Description

rand returns a matrix of quasi-random values and is intended to allow objects of the qrandstream on page 32-5257 class to be used in code that contains calls to the rand method of the MATLAB pseudo-random randstream class. Due to the multidimensional nature of quasi-random numbers, only some syntaxes of rand are supported by the qrandstream class.

rand(q,n) returns an n-by-n matrix only when n is equal to the number of dimensions. Any other value of n produces an error.

rand(q) returns a scalar only when the stream is in one dimension. Having more than one dimension in q produces an error.

rand(q,m,n) or rand(q,[m,n]) returns an m-by-n matrix only when n is equal to the number of dimensions in the stream. Any other value of n produces an error.

rand(q,m,n,p,...) or rand(q,[m,n,p,...]) produces an error unless p and all following dimensions sizes are equal to one.
Examples

Generate the first 256 points from a 5-D Sobol sequence:

```matlab
q = qrandstream('sobol',5);
X = rand(q,256,5);
```

See Also

qrand | qrandstream | rand
quantileError

Class: TreeBagger

Quantile loss using bag of regression trees

Syntax

err = quantileError(Mdl,X)
err = quantileError(Mdl,X,ResponseVarName)
err = quantileError(Mdl,X,Y)
err = quantileError(___,Name,Value)

Description

err = quantileError(Mdl,X) returns half of the mean absolute deviation (MAD) from comparing the true responses in the table X to the predicted medians resulting from applying the bag of regression trees Mdl to the observations of the predictor data in X.

- Mdl must be a TreeBagger model object.
- The response variable name in X must have the same name as the response variable in the table containing the training data.

err = quantileError(Mdl,X,ResponseVarName) uses the true response and predictor variables contained in the table X. ResponseVarName is the name of the response variable and Mdl.PredictorNames contain the names of the predictor variables.

err = quantileError(Mdl,X,Y) uses the predictor data in the table or matrix X and the response data in the vector Y.

err = quantileError(___,Name,Value) uses any of the previous syntaxes and additional options specified by one or more Name,Value pair arguments. For example, specify quantile probabilities, the error type, or which trees to include in the quantile-regression-error estimation.
Input Arguments

- **Mdl** — Bag of regression trees
 TreeBagger model object (default)

 Bag of regression trees, specified as a TreeBagger model object created by TreeBagger. The value of Mdl.Method must be regression.

- **X** — Sample data
 numeric matrix | table

 Sample data used to estimate quantiles, specified as a numeric matrix or table.

 Each row of X corresponds to one observation, and each column corresponds to one variable. If you specify Y, then the number of rows in X must be equal to the length of Y.

 - For a numeric matrix:

 - The variables making up the columns of X must have the same order as the predictor variables that trained Mdl (stored in Mdl.PredictorNames).

 - If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl contains all numeric predictor variables. If Tbl contains heterogeneous predictor variables (for example, numeric and categorical data types), then `quantileError` throws an error.

 - Specify Y for the true responses.

 - For a table:

 - `quantileError` does not support multi-column variables and cell arrays other than cell arrays of character vectors.

 - If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have the same variable names and data types as those variables that trained Mdl (stored in Mdl.PredictorNames). However, the column order of X does not need to correspond to the column order of Tbl. Tbl and X can contain additional variables (response variables, observation weights, etc.).

 - If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames and corresponding predictor variable names in X must be the same. To specify predictor names during training, see the PredictorNames name-value pair argument of TreeBagger. All predictor variables in X must be numeric vectors. X can contain additional variables (response variables, observation weights, etc.).
• If X contains the response variable:
 • If the response variable has the same name as the response variable that trained Mdl, then you do not have to supply the response variable name or vector of true responses. `quantileError` uses that variable for the true responses by default.
 • You can specify `ResponseVarName` or Y for the true responses.

Data Types: `table` | `double` | `single`

ResponseVarName — Response variable name

character vector | string scalar

Response variable name, specified as a character vector or string scalar. `ResponseVarName` must be the name of the response variable in the table of sample data X.

If the table X contains the response variable, and it has the same name as the response variable used to train Mdl, then you do not have to specify `ResponseVarName`. `quantileError` uses that variable for the true responses by default.

Data Types: `char` | `string`

Y — True responses

numeric vector

True responses, specified as a numeric vector. The number of rows in X must be equal to the length of Y.

Data Types: `double` | `single`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Mode — Ensemble error type

`'ensemble'` (default) | `'cumulative'` | `'individual'`

Ensemble error type, specified as the comma-separated pair consisting of `Mode` and a value in this table. Suppose `tau` is the value of Quantile.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cumulative'</td>
<td>err is a Mdl.NumTrees-by-numel(tau) numeric matrix of cumulative quantile regression errors. err(j,k) is the tau(k) quantile regression error using the learners in Mdl.Trees(1:j) only.</td>
</tr>
<tr>
<td>'ensemble'</td>
<td>err is a 1-by-numel(tau) numeric vector of cumulative quantile regression errors for the entire ensemble. err(k) is the tau(k) ensemble quantile regression error.</td>
</tr>
<tr>
<td>'individual'</td>
<td>err is a Mdl.NumTrees-by-numel(tau) numeric matrix of quantile regression errors from individual learners. err(j,k) is the tau(k) quantile regression error using the learner in Mdl.Trees(j) only.</td>
</tr>
</tbody>
</table>

For 'cumulative' and 'individual', if you include fewer trees in quantile estimation using Trees or UseInstanceForTree, then the number of rows in err decreases from Mdl.NumTrees.

Example: 'Mode','cumulative'

Weights — Observation weights

ones(size(X,1),1) (default) | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values with length equal to size(X,1). quantileError uses Weights to compute the weighted average of the deviations when estimating the quantile regression error.

By default, quantileError attributes a weight of 1 to each observation, which yields an unweighted average of the deviations.

Quantile — Quantile probability

0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric vector containing values in the interval [0,1]. For each element in Quantile, quantileError returns corresponding quantile regression errors for all probabilities in Quantile.

Example: 'Quantile',[0 0.25 0.5 0.75 1]

Data Types: single | double

Trees — Indices of trees to use in response estimation

'all' (default) | numeric vector of positive integers
Indices of trees to use in response estimation, specified as the comma-separated pair consisting of 'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', quantileError uses all trees in the ensemble (that is, the indices 1:Mdl.NumTrees).

Values other than the default can affect the number of rows in err.

Example: 'Trees',[1 10 Mdl.NumTrees]

Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
ones(Mdl.NumTrees,1) (default) | numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is the value of Trees.

If you specify 'Mode','individual', then quantileError ignores TreeWeights.

Data Types: single | double

UseInstanceForTree — Indicators specifying which trees to use to make predictions for each observation
'all' (default) | logical matrix

Indicators specifying which trees to use to make predictions for each observation, specified as the comma-separated pair consisting of 'UseInstanceForTree' and an n-by-Mdl.Trees logical matrix. n is the number of observations (rows) in X. Rows of UseInstanceForTree correspond to observations and columns correspond to learners in Mdl.Trees. 'all' indicates to use all trees for all observations when estimating the quantiles.

If UseInstanceForTree(j,k) = true, then quantileError uses the tree in Mdl.Trees(k) when it predicts the response for the observation X(j,:).

You can estimate quantiles using the response data in Mdl.Y directly instead of using the predictions from the random forest by specifying a row composed entirely of false values. For example, to estimate the quantile for observation j using the response data,
and to use the predictions from the random forest for all other observations, specify this matrix:

```matlab
UseInstanceForTree = true(size(Mdl.X,2),Mdl.NumTrees);
UseInstanceForTree(j,:) = false(1,Mdl.NumTrees);
```

Values other than the default can affect the number of rows in `err`. Also, the value of `Trees` affects the value of `UseInstanceForTree`. Suppose that `U` is the value of `UseInstanceForTree`. `quantileError` ignores the columns of `U` corresponding to trees not being used in estimation from the specification of `Trees`. That is, `quantileError` resets the value of `'UseInstanceForTree'` to `U(:,trees)`, where `trees` is the value of `'Trees'`.

Data Types: `char` | `string` | `logical`

Output Arguments

err — Half of quantile regression error
numeric scalar | numeric matrix

Half of the quantile regression error on page 32-5305, returned as a numeric scalar or `T`-by-numel(`tau`) matrix. `tau` is the value of `Quantile`.

`T` depends on the values of `Mode`, `Trees`, `UseInstanceForTree`, and `Quantile`. Suppose that you specify `'Trees'`, `trees` and you use the default value of `'UseInstanceForTree'`.

- For `'Mode','cumulative'`, `err` is a `numel(trees)`-by-numel(`tau`) numeric matrix. `err(j,k)` is the `tau(k)` cumulative quantile regression error using the learners in `Mdl.Trees(trees(1:j))`.
- For `'Mode','ensemble'`, `err` is a 1-by-numel(`tau`) numeric vector. `err(k)` is the `tau(k)` cumulative quantile regression error using the learners in `Mdl.Trees(trees)`.
- For `'Mode','individual'`, `err` is a `numel(trees)`-by-numel(`tau`) numeric matrix. `err(j,k)` is the `tau(k)` quantile regression error using the learner in `Mdl.Trees(trees(j))`.

Examples
Estimate In-Sample Quantile Regression Error

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car given its engine displacement, weight, and number of cylinders. Consider `Cylinders` a categorical variable.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
X = table(Displacement,Weight,Cylinders,MPG);
```

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(100,X,'MPG','Method','regression');
```

`Mdl` is a `TreeBagger` ensemble.

Perform quantile regression, and estimate the MAD of the entire ensemble using the predicted conditional medians.

```matlab
err = quantileError(Mdl,X)
```

```matlab
err = 1.2586
```

Because `X` is a table containing the response and commensurate variable names, you do not have to specify the response variable name or data. However, you can specify the response using this syntax.

```matlab
err = quantileError(Mdl,X,'MPG')
```

```matlab
err = 1.2586
```

Find Appropriate Ensemble Size Using Quantile Regression Error

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car given its engine displacement, weight, and number of cylinders.

```matlab
load carsmall
X = table(Displacement,Weight,Cylinders,MPG);
```
Randomly split the data into two sets: 75% training and 25% testing. Extract the subset indices.

```matlab
rng(1); % For reproducibility
cvp = cvpartition(size(X,1), 'Holdout', 0.25);
idxTrn = training(cvp);
idxTest = test(cvp);
```

Train an ensemble of bagged regression trees using the training set. Specify 250 weak learners.

```matlab
Mdl = TreeBagger(250, X(idxTrn,:), 'MPG', 'Method', 'regression');
```

Estimate the cumulative 0.25, 0.5, and 0.75 quantile regression errors for the test set. Pass the predictor data in as a numeric matrix, and the response data in as a vector.

```matlab
erg = quantileError(Mdl, X(idxTest, 1:3), MPG(idxTest), 'Quantile', [0.25 0.5 0.75], ...
                    'Mode', 'cumulative');
```

`err` is a 250-by-3 matrix of cumulative quantile regression errors. Columns correspond to quantile probabilities and rows correspond to trees in the ensemble. The errors are cumulative, so they incorporate aggregated predictions from previous trees. Although, `Mdl` was trained using a table, if all predictor variables in the table are numeric, then you can supply a matrix of predictor data instead.

Plot the cumulative quantile errors on the same plot.

```matlab
figure;
plot(err);
legend('0.25 quantile error', '0.5 quantile error', '0.75 quantile error');
ylabel('Quantile error');
xlabel('Tree index');
title('Cumulative Quantile Regression Error')
```
Training using about 60 trees appears to be enough for the first two quartiles, but the third quartile requires about 150 trees.

Definitions

Quantile Regression Error

The quantile regression error of a model given observed predictor data and responses is the weighted mean absolute deviation (MAD). If the model under-predicts the response, then deviation weights are \(\tau \), the quantile probability. If the model over-predicts, then deviation weights are \(1 - \tau \).
That is, the τ quantile regression error is

$$L_\tau = \tau \frac{\sum_{j: y_j \geq \hat{y}_{\tau,j}} w_j (y_j - \hat{y}_{\tau,j})}{\sum_{j=1}^{n} w_j} + (1 - \tau) \frac{\sum_{j: y_j < \hat{y}_{\tau,j}} w_j (\hat{y}_{\tau,j} - y_j)}{\sum_{j=1}^{n} w_j}.$$

y_j is true response j, $\hat{y}_{\tau,j}$ is the τ quantile that the model predicts, and w_j is observation weight j.

Tips

- To tune the number of trees in the ensemble, set 'Mode', 'cumulative' and plot the quantile regression errors with respect to tree indices. The maximal number of required trees is the tree index where the quantile regression error appears to level off.
- To investigate the performance of a model when the training sample is small, use `oobQuantileError` instead.

References

See Also

TreeBagger | error | oobQuantileError | quantilePredict

Introduced in R2016b
quantilePredict

Class: TreeBagger

Predict response quantile using bag of regression trees

Syntax

YFit = quantilePredict(Mdl,X)
YFit = quantilePredict(Mdl,X,Name,Value)
[YFit,YW] = quantilePredict(__)

Description

YFit = quantilePredict(Mdl,X) returns a vector of medians of the predicted responses at X, a table or matrix of predictor data, and using the bag of regression trees Mdl. Mdl must be a TreeBagger model object.

YFit = quantilePredict(Mdl,X,Name,Value) uses additional options specified by one or more Name,Value pair arguments. For example, specify quantile probabilities or which trees to include for quantile estimation.

[YFit,YW] = quantilePredict(__) also returns a sparse matrix of response weights on page 32-5318.

Input Arguments

Mdl — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by TreeBagger. The value of Mdl.Method must be regression.

X — Predictor data
numeric matrix | table
Predictor data used to estimate quantiles, specified as a numeric matrix or table.

Each row of \(\mathbf{X} \) corresponds to one observation, and each column corresponds to one variable.

- For a numeric matrix:
 - The variables making up the columns of \(\mathbf{X} \) must have the same order as the predictor variables that trained \(\text{Mdl} \).
 - If you trained \(\text{Mdl} \) using a table (for example, \(\text{Tbl} \)), then \(\mathbf{X} \) can be a numeric matrix if \(\text{Tbl} \) contains all numeric predictor variables. If \(\text{Tbl} \) contains heterogeneous predictor variables (for example, numeric and categorical data types) and \(\mathbf{X} \) is a numeric matrix, then \text{quantilePredict} throws an error.

- For a table:
 - \text{quantilePredict} does not support multi-column variables and cell arrays other than cell arrays of character vectors.
 - If you trained \(\text{Mdl} \) using a table (for example, \(\text{Tbl} \)), then all predictor variables in \(\mathbf{X} \) must have the same variable names and data types as those variables that trained \(\text{Mdl} \) (stored in \(\text{Mdl.PredictorNames} \)). However, the column order of \(\mathbf{X} \) does not need to correspond to the column order of \(\text{Tbl} \). \(\text{Tbl} \) and \(\mathbf{X} \) can contain additional variables (response variables, observation weights, etc.), but \text{quantilePredict} ignores them.
 - If you trained \(\text{Mdl} \) using a numeric matrix, then the predictor names in \(\text{Mdl.PredictorNames} \) and corresponding predictor variable names in \(\mathbf{X} \) must be the same. To specify predictor names during training, see the \text{PredictorNames} name-value pair argument of \text{TreeBagger}. All predictor variables in \(\mathbf{X} \) must be numeric vectors. \(\mathbf{X} \) can contain additional variables (response variables, observation weights, etc.), but \text{quantilePredict} ignores them.

Data Types: \text{table} \mid \text{double} \mid \text{single}

Name-Value Pair Arguments

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \text{Name1,Value1,...,NameN,ValueN}.

32-5308
Quantile — Quantile probability

0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric vector containing values in the interval [0,1]. For each observation (row) in X, quantilePredict returns corresponding quantiles for all probabilities in Quantile.

Example: 'Quantile',[0 0.25 0.5 0.75 1]

Data Types: single | double

Trees — Indices of trees to use in response estimation

'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of 'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', quantilePredict uses the indices 1:Mdl.NumTrees.

Example: 'Trees',[1 10 Mdl.NumTrees]

Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees

numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is the value of the Trees name-value pair argument.

The default is ones(size(trees)).

Data Types: single | double

UseInstanceForTree — Indicators specifying which trees to use to make predictions for each observation

'all' (default) | logical matrix

Indicators specifying which trees to use to make predictions for each observation, specified as the comma-separated pair consisting of 'UseInstanceForTree' and an n-by-Mdl.Trees logical matrix. n is the number of observations (rows) in X. Rows of
UseInstanceForTree correspond to observations and columns correspond to learners in Mdl.Trees. 'all' indicates to use all trees for all observations when estimating the quantiles.

If UseInstanceForTree\((j,k) = \text{true} \), then quantilePredict uses the tree in Mdl.Trees\((trees(k)) \) when it predicts the response for the observation \(X(j,:) \).

You can estimate the quantile using the response data in Mdl.Y directly instead of using the predictions from the random forest by specifying a row composed entirely of false values. For example, to estimate the quantile for observation \(j \) using the response data, and to use the predictions from the random forest for all other observations, specify this matrix:

\[
\text{UseInstanceForTree} = \text{true}(\text{size}(\text{Mdl}.X,2),\text{Mdl}.\text{NumTrees});
\text{UseInstanceForTree}(j,:) = \text{false}(1,\text{Mdl}.\text{NumTrees});
\]

Data Types: char | string | logical

Output Arguments

YFit — Estimated quantiles

numeric matrix

Estimated quantiles, returned as an \(n \)-by-\(\text{numel}(\text{tau}) \) numeric matrix. \(n \) is the number of observations in \(X(\text{size}(X,1)) \) and \(\text{tau} \) is the value of Quantile. That is, \(\text{YFit}(j,k) \) is the estimated \(100*\text{tau}(k) \)% percentile of the response distribution given \(X(j,:) \) and using Mdl.

YW — Response weights

sparse matrix

Response weights on page 32-5318, returned as an \(n_{\text{train}} \)-by-\(n \) sparse matrix. \(n_{\text{train}} \) is the number of responses in the training data (\(\text{numel}(\text{Mdl}.Y) \)) and \(n \) is the number of observations in \(X(\text{size}(X,1)) \).

quantilePredict predicts quantiles using linear interpolation of the empirical cumulative distribution function (C.D.F.). For a particular observation, you can use its response weights to estimate quantiles using alternative methods, such as approximating the C.D.F. using kernel smoothing.
Note quantilePredict derives response weights by passing an observation through the trees in the ensemble. If you specify UseInstanceForTree and you compose row \(j \) entirely of false values, then \(YW(:,j) = Mdl.W \) instead, that is, the observation weights.

Examples

Predict Training Sample Medians

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');

Mdl is a TreeBagger ensemble.

Perform quantile regression to predict the median MPG for all sorted training observations.

medianMPG = quantilePredict(Mdl,sort(Displacement));

medianMPG is an \(n \)-by-1 numeric vector of medians corresponding to the conditional distribution of the response given the sorted observations in Displacement. \(n \) is the number of observations in Displacement.

Plot the observations and the estimated medians on the same figure. Compare the median and mean responses.

meanMPG = predict(Mdl,sort(Displacement));

figure;
plot(Displacement,MPG,'k.');
hold on
plot(sort(Displacement),medianMPG);
plot(sort(Displacement),meanMPG,'r--');
Estimate Prediction Intervals Using Percentiles

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car given its engine displacement.

```matlab
load carsmall
```
Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');
```

Perform quantile regression to predict the 2.5% and 97.5% percentiles for ten equally-spaced engine displacements between the minimum and maximum in-sample displacement.

```matlab
predX = linspace(min(Displacement),max(Displacement),10)';
quantPredInts = quantilePredict(Mdl,predX,'Quantile',[0.025,0.975]);
```

quantPredInts is a 10-by-2 numeric matrix of prediction intervals corresponding to the observations in predX. The first column contains the 2.5% percentiles and the second column contains the 97.5% percentiles.

Plot the observations and the estimated medians on the same figure. Compare the percentile prediction intervals and the 95% prediction intervals assuming the conditional distribution of MPG is Gaussian.

```matlab
[meanMPG,steMeanMPG] = predict(Mdl,predX);
stndPredInts = meanMPG + [-1 1]*norminv(0.975).*steMeanMPG;

figure;
hold on
h1 = plot(Displacement,MPG,'k.);
h2 = plot(predX,quantPredInts,'b');
h3 = plot(predX,stndPredInts,'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend([h1,h2(1),h3(1)],{'Data','95% percentile prediction intervals',...'
95% Gaussian prediction intervals'});
hold off;
```
Estimate Conditional Cumulative Distribution Using Quantile Regression

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car given its engine displacement.

```matlab
load carsmall
```

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');
```
Estimate the response weights for a random sample of four training observations. Plot the training sample and identify the chosen observations.

```matlab
[predX,idx] = datasample(Mdl.X,4);
[~,YW] = quantilePredict(Mdl,predX);
n = numel(Mdl.Y);

figure;
plot(Mdl.X,Mdl.Y,'o');
hold on
plot(predX,Mdl.Y(idx),'*','MarkerSize',10);
text(predX-10,Mdl.Y(idx)+1.5,{'obs. 1' 'obs. 2' 'obs. 3' 'obs. 4'});
legend('Training Data','Chosen Observations');
xlabel('Engine displacement')
ylabel('Fuel economy')
hold off
```
YW is an \(n \)-by-4 sparse matrix containing the response weights. Columns correspond to test observations and rows correspond to responses in the training sample. Response weights are independent of the specified quantile probability.

Estimate the conditional cumulative distribution function (C.C.D.F.) of the responses by:

1. Sorting the responses in ascending order, and then sorting the response weights using the indices induced by sorting the responses.
2. Computing the cumulative sums over each column of the sorted response weights.

\[
\text{[sortY, sortIdx]} = \text{sort(Mdl.Y)}; \\
cpdf = \text{full(YW(sortIdx,:))}; \\
ccdf = \text{cumsum(cpdf)};
\]
ccdf(:,j) is the empirical C.C.D.F. of the response given test observation j.

Plot the four empirical C.C.D.F. in the same figure.

```matlab
figure;
plot(sortY,ccdf);
legend('C.C.D.F. given test obs. 1','C.C.D.F. given test obs. 2','C.C.D.F. given test obs. 3','C.C.D.F. given test obs. 4','Location','SouthEast')
title('Conditional Cumulative Distribution Functions')
xlabel('Fuel economy')
ylabel('Empirical CDF')
```
Definitions

Response Weights

Response weights are scalars that represent the conditional distribution of the response given a value in the predictor space. The observations in the bootstrap samples and the leaves that the training and test observations share induce response weights.

Given the observation x, the response weight for observation j in the training sample using tree t in the ensemble is

$$w_{xj}(x) = I\{X_j \in S_t(x)\} / \sum_{k=1}^{n_{\text{train}}} I\{X_k \in S_t(x)\},$$

where:

- $I\{h\}$ is the indicator function.
- $S_t(x)$ is the leaf of tree t containing x.
- n_{train} is the number of training observations.

In other words, the response weights of a particular tree form the conditional relative frequency distribution of the response.

The response weights for the entire ensemble are averaged over the trees:

$$w_{xj}(x) = \frac{1}{T} \sum_{t=1}^{T} w_{tj}(x).$$

Quantile Random Forest

Quantile random forest [2] is a quantile-regression method that uses a random forest [1] of regression trees to model the conditional distribution of a response variable, given the value of predictor variables. You can use a fitted model to estimate quantiles in the conditional distribution of the response.
Besides quantile estimation, you can use quantile regression to estimate prediction intervals or detect outliers. For example:

- To estimate 95% quantile prediction intervals, estimate the 0.025 and 0.975 quantiles.
- To detect outliers, estimate the 0.01 and 0.99 quantiles. All observations smaller than the 0.01 quantile and larger than the 0.99 quantile are outliers. All observations that are outside the interval \([L, U]\) can be considered outliers:

\[
L = Q_1 - 1.5 * IQR
\]

and

\[
U = Q_3 + 1.5 * IQR,
\]

where:

- \(Q_1\) is the 0.25 quantile.
- \(Q_3\) is the 0.75 quantile.
- \(IQR = Q_3 - Q_1\) (the interquartile range).

Tip

`quantilePredict` estimates the conditional distribution of the response using the training data every time you call it. To predict many quantiles efficiently, or quantiles for many observations efficiently, you should pass `X` as a matrix or table of observations and specify all quantiles in a vector using the `Quantile` name-value pair argument. That is, avoid calling `quantilePredict` within a loop.

Algorithms

- `TreeBagger` grows a random forest of regression trees using the training data. Then, to implement quantile random forest on page 32-5318, `quantilePredict` predicts quantiles using the empirical conditional distribution of the response given an observation from the predictor variables. To obtain the empirical conditional distribution of the response:
1. `quantilePredict` passes all the training observations in `Mdl.X` through all the
trees in the ensemble, and stores the leaf nodes of which the training observations
are members.

2. `quantilePredict` similarly passes each observation in `X` through all the trees in
the ensemble.

3. For each observation in `X`, `quantilePredict`:
 a. Estimates the conditional distribution of the response by computing response
 weights on page 32-5318 for each tree.
 b. For observation `k` in `X`, aggregates the conditional distributions for the entire
 ensemble:

\[
\hat{F}(y | X = x_k) = \sum_{j=1}^{n} \sum_{t=1}^{T} \frac{1}{T} w_{tj}(x_k) I\{Y_j \leq y\}.
\]

 Here, `n` is the number of training observations (`size(Y,1)`) and `T` is the number of
trees in the ensemble (`Mdl.NumTrees`).

4. For observation `k` in `X`, the \(\tau \) quantile or, equivalently, the 100\(\tau \)% percentile, is

\[
Q_\tau(x_k) = \inf\{y : F(y | X = x_k) \geq \tau\}.
\]

 This process describes how `quantilePredict` uses all specified weights.

1. For all training observations `j = 1,...,n` and all chosen trees `t = 1,...,T`,

 `quantilePredict` attributes the product \(v_{tj} = b_{tj}w_{j,\text{obs}} \) to training observation `j`
 (stored in `Mdl.X(j,:)` and `Mdl.Y(j)`). \(b_{tj} \) is the number of times observation `j` is
 in the bootstrap sample for tree `t`. \(w_{j,\text{obs}} \) is the observation weight in `Mdl.W(j)`.

2. For each chosen tree, `quantilePredict` identifies the leaves in which each
 training observation falls. Let \(S_t(x_j) \) be the set of all observations contained in the
 leaf of tree `t` of which observation `j` is a member.

3. For each chosen tree, `quantilePredict` normalizes all weights within a
 particular leaf to sum to 1, that is,\[
 v_{tj}^* = \frac{v_{tj}}{\sum_{i \in S_t(x_j)} v_{ti}}.
 \]
For each training observation and tree, quantilePredict incorporates tree weights \(w_{t,\text{tree}} \) specified by TreeWeights, that is, \(w_{t,\text{tree}}^* = w_{t,\text{tree}}v_t^* \). Trees not chosen for prediction have 0 weight.

For all test observations \(k = 1, \ldots, K \) in \(X \) and all chosen trees \(t = 1, \ldots, T \), quantilePredict predicts the unique leaves in which the observations fall, and then identifies all training observations within the predicted leaves. quantilePredict attributes the weight \(u_{tj} \) such that

\[
u_{tj} = \begin{cases} w_{tj,\text{tree}}^*; & \text{if } x_k \in S_t(x_j) \\ 0; & \text{otherwise} \end{cases}
\]

quantilePredict sums the weights over all chosen trees, that is,

\[
u_j = \sum_{t=1}^{T} u_{tj}.
\]

quantilePredict creates response weights by normalizing the weights so that they sum to 1, that is,

\[
w_j^* = \frac{u_j}{\sum_{j=1}^{n} u_j}.
\]

References

See Also

TreeBagger | oobQuantilePredict | predict | quantileError

Topics

“Detect Outliers Using Quantile Regression” on page 18-167
Introduced in R2016b
randg

Gamma random numbers with unit scale

Syntax

- `Y = randg`
- `Y = randg(A)`
- `Y = randg(A,m)`
- `Y = randg(A,m,n,p,...)`
- `Y = randg(A,[m,n,p,...])`

Description

`Y = randg` returns a scalar random value chosen from a gamma distribution with unit scale and shape.

`Y = randg(A)` returns a matrix of random values chosen from gamma distributions with unit scale. `Y` is the same size as `A`, and `randg` generates each element of `Y` using a shape parameter equal to the corresponding element of `A`.

`Y = randg(A,m)` returns an `m`-by-`m` matrix of random values chosen from gamma distributions with shape parameters `A`. `A` is either an `m`-by-`m` matrix or a scalar. If `A` is a scalar, `randg` uses that single shape parameter value to generate all elements of `Y`.

`Y = randg(A,m,n,p,...)` or `Y = randg(A,[m,n,p,...])` returns an `m`-by-`n`-by-`p`-by-... array of random values chosen from gamma distributions with shape parameters `A`. `A` is either an `m`-by-`n`-by-`p`-by-... array or a scalar.

`randg` produces pseudo-random numbers using the MATLAB functions `rand` and `randn`. The sequence of numbers generated is determined by the settings of the uniform random number generator that underlies `rand` and `randn`. Control that shared random number generator using `rng`. See the `rng` documentation for more information.

Note To generate gamma random numbers and specify both the scale and shape parameters, you should call `gamrnd`.

32-5323
Examples

Example 1

Generate a 100-by-1 array of values drawn from a gamma distribution with shape parameter 3.

\[r = \text{randg}(3,100,1); \]

Example 2

Generate a 100-by-2 array of values drawn from gamma distributions with shape parameters 3 and 2.

\[A = \begin{bmatrix} \text{ones}(100,1)*3 & \text{ones}(100,1)*2 \end{bmatrix}; \]
\[r = \text{randg}(A, [100,2]); \]

Example 3

To create reproducible output from \texttt{randg}, reset the random number generator used by \texttt{rand} and \texttt{randn} to its default startup settings. This way \texttt{randg} produces the same random numbers as if you restarted MATLAB.

\[\text{rng}('default') \]
\[\text{randg}(3,1,5) \]

\[\text{ans} = \]
\[\begin{bmatrix} 6.9223 & 4.3369 & 1.0505 & 3.2662 & 11.3269 \end{bmatrix} \]

Example 4

Save the settings for the random number generator used by \texttt{rand} and \texttt{randn}, generate 5 values from \texttt{randg}, restore the settings, and repeat those values.

\[s = \text{rng}; \% \text{Obtain the current state of the random stream} \]
\[r1 = \text{randg}(10,1,5) \]

\[r1 = \]
rng(s); % Reset the stream to the previous state
r2 = randg(10,1,5)

r2 =

r2 contains exactly the same values as r1.

Example 5

Reinitialize the random number generator used by rand and randn with a seed based on the current time. randg returns different values each time you do this. Note that it is usually not necessary to do this more than once per MATLAB session.

rng('shuffle');
randg(2,1,5);

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

gamrnd

Introduced before R2006a
random

Package: prob

Random numbers

Syntax

R = random('name',A)
R = random('name',A,B)
R = random('name',A,B,C)
R = random('name',A,B,C,D)
R = random(pd)
R = random(___,sz1,...,szN)
R = random(___,[sz1,...,szN])

Description

R = random('name',A) returns a random number from the one-parameter distribution family specified by 'name' and the distribution parameter A.

R = random('name',A,B) returns a random number from the two-parameter distribution family specified by 'name' and the distribution parameters A and B.

R = random('name',A,B,C) returns a random number from the three-parameter distribution family specified by 'name' and the distribution parameters A, B, and C.

R = random('name',A,B,C,D) returns a random number from the four-parameter distribution family specified by 'name' and the distribution parameters A, B, C, and D.

R = random(pd) returns a random number from the probability distribution object pd.

R = random(___,sz1,...,szN) or R = random(___,[sz1,...,szN]) generates a sz1-by-⋯-by-szN array of random numbers from the specified probability distribution using input arguments from any of the previous syntaxes.
Examples

Generate One Random Number

Create a standard normal probability distribution object.

```matlab
pd = makedist('Normal')

pd =
    NormalDistribution
    Normal distribution
    mu = 0
    sigma = 1
```

Generate one random number from the distribution.

```matlab
rng('default') % For reproducibility
r1 = random(pd)

r1 = 0.5377
```

Alternatively, you can generate a standard normal random number by specifying its name and parameters.

```matlab
r2 = random('Normal',0,1)

r2 = 1.8339
```

Reset Random Number Generator

Save the current state of the random number generator. Then generate a random number from the Poisson distribution with rate parameter 5.

```matlab
s = rng;
r = random('Poisson',5)

r = 5
```
Restore the state of the random number generator to s, and then create a new random number. The value is the same as before.

```matlab
rng(s);
r1 = random('Poisson',5)
r1 = 5
```

Clone Size from Existing Array

Create a matrix of random numbers with the same size as an existing array. Use the stable distribution with shape parameters 2 and 0, scale parameter 1, and location parameter 0.

```matlab
A = [3 2; -2 1];
sz = size(A);
R = random('Stable',2,0,1,0,sz)
```

```
R = 2×2
    0.7604   -3.1945
    2.5935    1.2193
```

You can combine the previous two lines of code into a single line.

```matlab
R = random('Stable',2,0,1,0,size(A))
```

```
R = 2×2
  0.4508   -0.6132
-1.8494    0.4845
```

Generate Multiple Random Numbers

Create a Weibull probability distribution object using the default parameter values.

```matlab
pd = makedist('Weibull')
```
pd = WeibullDistribution

Weibull distribution
A = 1
B = 1

Generate random numbers from the distribution.
rng('default') % For reproducibility
r = random(pd,10000,1);

Construct a histogram using 100 bins with a Weibull distribution fit.
histfit(r,100,'weibull')
Generate Multidimensional Array of Random Numbers

Create a standard normal probability distribution object.

```matlab
pd = makedist('Normal')
```

```matlab
pd =
    NormalDistribution
        Normal distribution
        mu = 0
```


\[\text{sigma} = 1 \]

Generate a 2-by-3-by-2 array of random numbers from the distribution.

\[r = \text{random(pd,[2,3,2])} \]

\[
\begin{array}{ccc}
0.5377 & -2.2588 & 0.3188 \\
1.8339 & 0.8622 & -1.3077 \\
\end{array}
\]

\[
\begin{array}{ccc}
-0.4336 & 3.5784 & -1.3499 \\
0.3426 & 2.7694 & 3.0349 \\
\end{array}
\]

Input Arguments

'**name**' — Probability distribution name

character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

<table>
<thead>
<tr>
<th>name</th>
<th>Distribution</th>
<th>Input Parameter A</th>
<th>Input Parameter B</th>
<th>Input Parameter C</th>
<th>Input Parameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Beta'</td>
<td>“Beta Distribution” on page B-4</td>
<td>(a): first shape parameter</td>
<td>(b): second shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Binomial'</td>
<td>“Binomial Distribution” on page B-9</td>
<td>(n): number of trials</td>
<td>(p): probability of success for each trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'BirnbaumSaunders'</td>
<td>"Birnbaum-Saunders Distribution" on page B-13</td>
<td>β: scale parameter</td>
<td>γ: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Burr'</td>
<td>"Burr Type XII Distribution" on page B-15</td>
<td>α: scale parameter</td>
<td>c: first shape parameter</td>
<td>k: second shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Chisquare'</td>
<td>"Chi-Square Distribution" on page B-28</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Exponential'</td>
<td>"Exponential Distribution" on page B-32</td>
<td>μ: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Extreme Value'</td>
<td>"Extreme Value Distribution" on page B-36</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'F'</td>
<td>"F Distribution" on page B-42</td>
<td>ν_1: numerator degrees of freedom</td>
<td>ν_2: denominator degrees of freedom</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Gamma'</td>
<td>"Gamma Distribution" on page B-45</td>
<td>a: shape parameter</td>
<td>b: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Extreme Value'</td>
<td>"Generalized Extreme Value Distribution" on page B-50</td>
<td>k: shape parameter</td>
<td>σ: scale parameter</td>
<td>μ: location parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Generalized Pareto'</td>
<td>"Generalized Pareto Distribution" on page B-55</td>
<td>k: tail index (shape) parameter</td>
<td>σ: scale parameter</td>
<td>μ: threshold (location) parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Geometric'</td>
<td>"Geometric Distribution" on page B-61</td>
<td>p: probability parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'HalfNormal'</td>
<td>"Half-Normal Distribution" on page B-69</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Hypergeometric'</td>
<td>Hypergeometric Distribution on page B-75</td>
<td>(m): size of the population</td>
<td>(k): number of items with the desired characteristic in the population</td>
<td>(n): number of samples drawn</td>
<td>—</td>
</tr>
<tr>
<td>'InverseGaussian'</td>
<td>Inverse Gaussian Distribution on page B-78</td>
<td>(\mu): scale parameter</td>
<td>(\lambda): shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Logistic'</td>
<td>Logistic Distribution on page B-91</td>
<td>(\mu): mean</td>
<td>(\sigma): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'LogLogistic'</td>
<td>Loglogistic Distribution on page B-93</td>
<td>(\mu): mean of logarithmic values</td>
<td>(\sigma): scale parameter of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Lognormal'</td>
<td>Lognormal Distribution on page B-95</td>
<td>(\mu): mean of logarithmic values</td>
<td>(\sigma): standard deviation of logarithmic values</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Nakagami'</td>
<td>Nakagami Distribution on page B-114</td>
<td>(\mu): shape parameter</td>
<td>(\omega): scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Negative Binomial'</td>
<td>Negative Binomial Distribution on page B-116</td>
<td>(r): number of successes</td>
<td>(p): probability of success in a single trial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral F'</td>
<td>Noncentral F Distribution on page B-124</td>
<td>(\nu_1): numerator degrees of freedom</td>
<td>(\nu_2): denominator degrees of freedom</td>
<td>(\delta): noncentrality parameter</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>'Noncentral t'</td>
<td>"Noncentral t Distribution" on page B-127</td>
<td>ν: degrees of freedom</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Noncentral Chi-square'</td>
<td>"Noncentral Chi-Square Distribution" on page B-121</td>
<td>ν: degrees of freedom</td>
<td>δ: noncentrality parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Normal'</td>
<td>"Normal Distribution" on page B-130</td>
<td>μ: mean</td>
<td>σ: standard deviation</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Poisson'</td>
<td>"Poisson Distribution" on page B-137</td>
<td>λ: mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rayleigh'</td>
<td>"Rayleigh Distribution" on page B-140</td>
<td>b: scale parameter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Rician'</td>
<td>"Rician Distribution" on page B-143</td>
<td>s: noncentrality parameter</td>
<td>σ: scale parameter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Stable'</td>
<td>"Stable Distribution" on page B-145</td>
<td>α: first shape parameter</td>
<td>β: second shape parameter</td>
<td>γ: scale parameter</td>
<td>δ: location parameter</td>
</tr>
<tr>
<td>'T'</td>
<td>"Student's t Distribution" on page B-158</td>
<td>ν: degrees of freedom</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'tLocationScale'</td>
<td>"t Location-Scale Distribution" on page B-166</td>
<td>μ: location parameter</td>
<td>σ: scale parameter</td>
<td>ν: shape parameter</td>
<td>—</td>
</tr>
<tr>
<td>'Uniform'</td>
<td>"Uniform Distribution (Continuous)" on page B-175</td>
<td>a: lower endpoint (minimum)</td>
<td>b: upper endpoint (maximum)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'Discrete Uniform'</td>
<td>"Uniform Distribution (Discrete)" on page B-181</td>
<td>n: maximum observable value</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>name</td>
<td>Distribution</td>
<td>Input Parameter A</td>
<td>Input Parameter B</td>
<td>Input Parameter C</td>
<td>Input Parameter D</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>'Weibull'</td>
<td>“Weibull Distribution” on page B-184</td>
<td>a: scale parameter</td>
<td>b: shape parameter</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Example: 'Normal'

A — First probability distribution parameter

scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the same. In this case, random expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

B — Second probability distribution parameter

scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the same. In this case, random expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

C — Third probability distribution parameter

scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the same. In this case, random expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double
D — Fourth probability distribution parameter
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the same. In this case, random expands each scalar input into a constant array of the same size as the array inputs.

Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created with a function or app in this table.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
<tr>
<td>paretotails</td>
<td>Create a piecewise distribution object that has generalized Pareto distributions in the tails.</td>
</tr>
</tbody>
</table>

sz1,...,szN — Size of each dimension
integer values | row vector of integer values

Size of each dimension, specified as integer values or a row vector of integer values. For example, specifying 5, 3, 2 or [5, 3, 2] generates a 5-by-3-by-2 array of random numbers from the specified probability distribution.

If one or more of the input arguments A, B, C, and D are arrays, then the specified dimensions sz1,...,szN must match the common dimensions of A, B, C, and D after any necessary scalar expansion. The default values of sz1,...,szN are the common dimensions.
• If you specify a single value sz1, then R is a square matrix of size sz1.
• If the size of any dimension is 0 or negative, then R is an empty array.
• Beyond the second dimension, random ignores trailing dimensions with a size of 1. For example, random(3,1,1,1) produces a 3-by-1 vector of random numbers.

Data Types: single | double

Output Arguments

R — Random number
scalar value | array of scalar values

Random number generated from the specified probability distribution, returned as a scalar value or an array of scalar values with the dimensions specified by sz1,...,szN.

If you specify distribution parameters A, B, C, or D, then each element in R is the random number generated from the distribution specified by the corresponding elements in A, B, C, and D.

Alternative Functionality

• random is a generic function that accepts either a distribution by its name 'name' or a probability distribution object pd. It is faster to use a distribution-specific function, such as randn and normrnd for the normal distribution and binornd for the binomial distribution. For a list of distribution-specific functions, see “Supported Distributions” on page 5-16.
• Use the random number generation user interface randtool to generate random numbers interactively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

- The input argument 'name' must be a compile-time constant. For example, to use the normal distribution, include `coder.Constant('Normal')` in the -args value of codegen.
- Code generation does not support the probability distribution object (pd) input argument.

See Also

Distribution Fitter | cdf | fitdist | icdf | makedist | mle | paretotails | pdf

Topics

“Random Number Generation” on page 5-35
“Generate Random Numbers Using the Triangular Distribution” on page 5-63
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
random

Simulate responses for generalized linear regression model

Syntax

```matlab
ysim = random(mdl,Xnew)
ysim = random(mdl,Xnew,Name,Value)
```

Description

`ysim = random(mdl,Xnew)` simulates responses from the `mdl` generalized linear model to the data in `Xnew`.

`ysim = random(mdl,Xnew,Name,Value)` simulates responses with additional options specified by one or more `Name,Value` pair arguments.

Input Arguments

- **mdl**

 Generalized linear model, specified as a full `GeneralizedLinearModel` object constructed using `fitglm` or `stepwiseglm`, or a compacted `CompactGeneralizedLinearModel` object constructed using `compact`.

- **Xnew**

 Points at which `mdl` predicts responses.

 - If `Xnew` is a table or dataset array, it must contain the predictor names in `mdl`.
 - If `Xnew` is a numeric matrix, it must have the same number of variables (columns) as was used to create `mdl`. Furthermore, all variables used in creating `mdl` must be numeric.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BinomialSize

The value of the binomial \(n \) parameter for each row in the training data. BinomialSize can be a vector the same length as Xnew, or a scalar that applies to each row. The default value 1 produces ysim values that are predicted proportions. Use BinomialSize only if mdl is fit to a binomial distribution.

Default: 1

Offset

Value of the offset for each row in Xnew. Offset can be a vector the same length as Xnew, or a scalar that applies to each row. The offset is used as an additional predictor with a coefficient value fixed at 1. In other words, if \(b \) is the fitted coefficient vector, and link is the link function,

\[
\text{link}(\text{ysim}) = \text{Offset} + \text{Xnew} \ast b.
\]

Default: zeros(size(Xnew,1))

Output Arguments

ysim

Vector of simulated values at Xnew.

random generates ysim using random values with mean given by the fitted model, and with the distribution used in mdl. The values in ysim are independent conditional on the predictors. For binomial and Poisson fits, random generates ysim with the specified distribution with no adjustment for any estimated dispersion.
Examples

Generalized Linear Model Simulation

Create a generalized linear model, and simulate its response to new data.

Generate artificial data for the model, Poisson random numbers with one underlying predictors X.

```matlab
rng('default') % reproducible
X = rand(20,1);
mu = exp(1 + 2*X);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```matlab
mdl = fitglm(X,y,'y ~ x1','distr','poisson');
```

Create points for prediction.

```matlab
Xnew = (0:.05:1)';
```

Simulate responses at the new points.

```matlab
ysim = random(mdl,Xnew);
```

Plot the simulated values along with the original values.

```matlab
plot(X,y,'rx',Xnew,ysim,'bo',... 
    Xnew,feval(mdl,Xnew),'g-')
legend('Data','Simulated','Fitted Mean',... 
    'Location','best')
```
Generate Code From Function That Simulates Responses Given New Data

Train a generalized linear model, and then generate code from a function that draws random responses from the model given new predictor data.

Generate artificial data, specifically:

- \(x \sim N(1, 0.5^2) \).
- \(\beta_0 = 1 \) and \(\beta = -2 \).
rng('default') % For reproducibility
x = 1 + randn(100,1)*0.5;
beta = -2;
p = exp(1 + x*beta)./(1 + exp(1 + x*beta)); % Inverse logit
n = 10;
y = binornd(n,p,100,1);

Create a generalized linear regression model of binomial data. Specify a binomial sample size of 10.
mdl = fitglm(x,y,'y ~ x1','Distribution','Binomial','BinomialSize',n);

Save the fitted generalized linear model to the file GLMMdl.mat.
saveCompactModel(mdl,'GLMMdl');

In your current folder, define a function called myrandomGLM.m that:
• Accepts measurements with columns corresponding to those in X and valid name-value pair arguments
• Loads the fitted generalized linear model in GLMMdl.mat
• Simulates responses from the loaded GLM model

function y = myrandomGLM(x,varargin) %#codegen
%MYPARAMGLM Simulate response using GLM model
% MYPARAMGLM simulates responses for the n observations in the n-by-1 vector x using the GLM model stored in the MAT-file GLMMdl.mat, and then returns the simulations in the n-by-1 vector y.
CompactMdl = loadCompactModel('GLMMdl');
narginchk(1,Inf);
y = random(CompactMdl,x,varargin{:});
end

Generate a MEX function from myrandomGLM.m. Specify the in-sample predictor data X and 10 for the binomial parameter n. Because C uses static typing, codegen must determine the properties of all variables in MATLAB® files at compile time. To designate arguments as compile-time constants, use coder.Constant.
codegen -config:mex myrandomGLM -args \{x,coder.Constant('BinomialSize'),coder.Constant(n)\}

codegen generates the MEX file myrandomGLM_mex.mexw64 in your current folder. The file extension depends on your platform.

Simulate responses using the MEX function.

```matlab
ysim = myrandomGLM_mex(x,'BinomialSize',n);
```

Plot the simulated values and the data in the same figure.

```matlab
figure;
plot(x,y,'bo',x,ysim,'r*');
legend('Observed responses','Simulated responses');
xlabel('x');
ylabel('y');
```
The observed and simulated responses appear to be similarly distributed.

Alternatives

For predictions without random noise, use `predict` or `feval`.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `random` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `random` function. Then use `codegen` to generate code for the entry-point function.

- If either of the following is true, then `random` can return a different sequence of numbers than MATLAB.
 - The output is nonscalar.
 - An input parameter is invalid for the distribution.

- This table contains notes about arguments of `random`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdl</td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-836 of the <code>CompactGeneralizedLinearModel</code> object.</td>
</tr>
<tr>
<td>Xnew</td>
<td>• You must supply <code>Xnew</code>.</td>
</tr>
<tr>
<td></td>
<td>• Must be a single- or double-precision matrix and can be variable-size. However, the number of columns in <code>Xnew</code> must be <code>numel(mdl.PredictorNames)</code>.</td>
</tr>
<tr>
<td></td>
<td>• Rows and columns must correspond to observations and predictors, respectively.</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to use the 'BinomialSize' name-value pair argument in the generated code, include <code>{coder.Constant('BinomialSize'),0}</code> in the -args value of codegen.</td>
</tr>
</tbody>
</table>

For more information, see “Introduction to Code Generation” on page 31-2.
See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | predict

Topics
“Predict or Simulate Responses to New Data” on page 12-34
“Generalized Linear Models” on page 12-12

Introduced in R2012a
random

Class: GeneralizedLinearMixedModel

Generate random responses from fitted generalized linear mixed-effects model

Syntax

ysim = random(glme)
ysim = random(glme,tblnew)
ysim = random(___,Name,Value)

Description

ysim = random(glme) returns simulated responses, ysim, from the fitted generalized linear mixed-effects model glme, at the original design points.

ysim = random(glme,tblnew) returns simulated responses using new input values specified in the table or dataset array, tblnew.

ysim = random(___,Name,Value) returns simulated responses using additional options specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify observation weights, binomial sizes, or offsets for the model.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

tblnew — New input data
table | dataset array
New input data, which includes the response variable, predictor variables, and grouping variables on page 2-57, specified as a table or dataset array. The predictor variables can be continuous or grouping variables. tblnew must contain the same variables as the original table or dataset array, tbl, used to fit the generalized linear mixed-effects model glme.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

BinomialSize — Number of trials for binomial distribution

ones(m,1) (default) | m-by-1 vector of positive integer values

Number of trials for binomial distribution, specified as the comma-separated pair consisting of 'BinomialSize' and an m-by-1 vector of positive integer values, where m is the number of rows in tblnew. The 'BinomialSize' name-value pair applies only to the binomial distribution. The value specifies the number of binomial trials when generating the random response values.

Data Types: single | double

Offset — Model offset

zeros(m,1) (default) | vector of scalar values

Model offset, specified as a vector of scalar values of length m, where m is the number of rows in tblnew. The offset is used as an additional predictor and has a coefficient value fixed at 1.

Weights — Observation weights

m-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an m-by-1 vector of nonnegative scalar values, where m is the number of rows in tblnew. If the response distribution is binomial or Poisson, then 'Weights' must be a vector of positive integers.

Data Types: single | double
Output Arguments

ysim — Simulated response values

m-by-1 vector

Simulated response values, returned as an *m*-by-1 vector, where *m* is the number of rows in `tblnew`. `random` creates `ysim` by first generating the random-effects vector based on its fitted prior distribution. `random` then generates `ysim` from its fitted conditional distribution given the random effects. `random` takes into account the effect of observation weights specified when fitting the model using `fitglme`, if any.

Examples

Simulate Random Responses From a GLME Model

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (`newprocess`)
- Processing time for each batch, in hours (`time`)
- Temperature of the batch, in degrees Celsius (`temp`)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (`supplier`)
- Number of defects in the batch (`defects`)

The data also includes `time_dev` and `temp_dev`, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.
Fit a generalized linear mixed-effects model using `newprocess`, `time_dev`, `temp_dev`, and `supplier` as fixed-effects predictors. Include a random-effects term for intercept grouped by `factory`, to account for quality differences that might exist due to factory-specific variations. The response variable `defects` has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[
defects_{ij} \sim \text{Poisson}(\mu_{ij})
\]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_\text{C}_{ij} + \beta_5 \text{supplier}_\text{B}_{ij} + b_i,
\]

where

- \(\text{defects}_{ij}\) is the number of defects observed in the batch produced by factory \(i\) during batch \(j\).
- \(\mu_{ij}\) is the mean number of defects corresponding to factory \(i\) (where \(i = 1, 2, ..., 20\)) during batch \(j\) (where \(j = 1, 2, ..., 5\)).
- \(\text{newprocess}_{ij}\), \(\text{time}_\text{dev}_{ij}\), and \(\text{temp}_\text{dev}_{ij}\) are the measurements for each variable that correspond to factory \(i\) during batch \(j\). For example, \(\text{newprocess}_{ij}\) indicates whether the batch produced by factory \(i\) during batch \(j\) used the new process.
- \(\text{supplier}_\text{C}_{ij}\) and \(\text{supplier}_\text{B}_{ij}\) are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i\) during batch \(j\).
- \(b_i \sim N(0, \sigma_b^2)\) is a random-effects intercept for each factory \(i\) that accounts for factory-specific variation in quality.

\[
glme = \text{fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)')}\]

Use `random` to simulate a new response vector from the fitted model.
rng(0,'twister'); % For reproducibility
ynew = random(glme);

Display the first 10 rows of the simulated response vector.

ynew(1:10)
ans = 10×1
 3
 3
 1
 7
 5
 8
 7
 9
 5
 9

Simulate a new response vector using new input values. Create a new table by copying
the first 10 rows of mfr into tblnew.

tblnew = mfr(1:10,:);

The first 10 rows of mfr include data collected from trials 1 through 5 for factories 1 and 2. Both factories used the old process for all of their trials during the experiment, so
newprocess = 0 for all 10 observations.

Change the value of newprocess to 1 for the observations in tblnew.

tblnew.newprocess = ones(height(tblnew),1);

Simulate new responses using the new input values in tblnew.

ynew2 = random(glme,tblnew)
ynew2 = 10×1
 2
 3
 5
 4
 2
Definitions

Conditional Distribution Method

random generates random data from the fitted generalized linear mixed-effects model as follows:

- Sample \(b_{\text{sim}} \sim P\left(b \mid \theta, \sigma^2 \right) \), where \(P\left(b \mid \theta, \sigma^2 \right) \) is the estimated prior distribution of random effects, and \(\hat{\theta} \) is a vector of estimated covariance parameters, and \(\hat{\sigma}^2 \) is the estimated dispersion parameter.

- Given \(b_{\text{sim}} \) for \(i = 1 \) to \(m \), sample \(y_{\text{sim} _i} \sim P\left(y_{\text{new} _i} \mid b_{\text{sim}}, \beta, \theta, \sigma^2 \right) \), where

\[
P\left(y_{\text{new} _i} \mid b_{\text{sim}}, \beta, \theta, \sigma^2 \right)
\]

is the conditional distribution of the \(i \)th new response \(y_{\text{new} _i} \) given \(b_{\text{sim}} \) and the model parameters.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | predict
random

Random variate from Gaussian mixture distribution

Syntax

Y = random(gm)
Y = random(gm,n)
[Y,compIdx] = random(__)

Description

Y = random(gm) generates a 1-by-\(m\) random variate from the \(m\)-dimensional Gaussian mixture distribution \(gm\).

Y = random(gm,n) returns \(n\) random variates. Each row of \(Y\) is a random variate generated from the \(m\)-dimensional Gaussian mixture distribution \(gm\).

[Y,compIdx] = random(__) also returns an \(n\)-by-1 index vector \(compIdx\) for any of the input arguments in previous syntaxes. \(compIdx(i)\) indicates the mixture component used to generate the \(i\)th random variate \(Y(i,:)\).

Examples

Generate Random Variates

Create a gmdistribution object and generate random variates.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian mixture distribution.

\[
\mu = [1 \ 2; -3 \ -5];
\]
\[
\sigma = [1 \ 1]; \ % \text{shared diagonal covariance matrix}
\]
Create a `gmdistribution` object by using the `gmdistribution` function. By default, the function creates an equal proportion mixture.

```matlab
gm = gmdistribution(mu,sigma)

gm =
Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5
```

Generate 1000 random variates.

```matlab
rng('default'); % For reproducibility
[Y,compIdx] = random(gm,1000);
```

`compIdx(i)` indicates the mixture component used to generate the `i`th random variate `Y(i,:)`. Count the number of random variates generated by Component 1.

```matlab
numIdx1 = sum(compIdx == 1)
numIdx1 = 512
```

`random` generates about half of the random variates using Component 1 because `gm` has equal mixing proportions.

Plot the generated random variates by using `scatter`.

```matlab
scatter(Y(:,1),Y(:,2),10,'.') % Scatter plot with points of size 10
```
Reset Random Number Generator

Reset the random number generator to generate the same random variate.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate Gaussian mixture components.

\[
\begin{align*}
p &= \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}; & \text{Mixing proportions} \\
\mu &= \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}; & \text{Means} \\
\sigma &= \text{cat}(3, \begin{bmatrix} 2 & .5 \\ 1 & 1 \end{bmatrix}) & \text{Covariances 1-by-2-by-2 array}
\end{align*}
\]
sigma =
sigma(:,:,1) =

2.0000 0.5000

sigma(:,:,2) =

1 1

The `cat` function concatenates the covariances along the third array dimension. The defined covariance matrices are diagonal matrices. `sigma(1,:,:i)` contains the diagonal elements of the covariance matrix of component `i`.

Create a `gmdistribution` object by using the `gmdistribution` function.

gm = gmdistribution(mu,sigma);

Save the current state of the random number generator, and then generate a random variate using `gm`.

```
s = rng;
r = random(gm)
r = 1×2
   -1.1661   -7.2588
```

Restore the state of the random number generator to `s`, and then generate a random variate using `gm`. The values are the same as before.

```
rng(s);
r1 = random(gm)
r1 = 1×2
   -1.1661   -7.2588
```
Input Arguments

gm — Gaussian mixture distribution

gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the gmdistribution function to create a gmdistribution object by specifying the distribution parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed number of components.

n — Number of random variates

1 (default) | positive integer

Number of random variates to generate, specified as a positive integer.

Data Types: single | double

Output Arguments

Y — Random variate

1-by-\(m \) numeric vector | \(n \)-by-\(m \) numeric matrix

Random variate, returned as a 1-by-\(m \) numeric vector or an \(n \)-by-\(m \) numeric matrix. Each row of \(Y \) is a random variate generated from the \(m \)-dimensional Gaussian mixture distribution \(gm \).

compIdx — Component index

positive integer | \(n \)-by-1 numeric vector

Component index, returned as a positive integer or an \(n \)-by-1 index vector, where \(\text{compIdx}(i) \) indicates the mixture component used to generate the \(i \)th random variate \(Y(i,:) \).

See Also

cdf | fitgmdist | gmdistribution | mvnrnd | pdf
Topics
“Gaussian Mixture Models” on page 5-145
“Create Gaussian Mixture Model” on page 5-147
“Fit Gaussian Mixture Model to Data” on page 5-151
“Simulate Data from Gaussian Mixture Model” on page 5-156
“Cluster Using Gaussian Mixture Models” on page 16-29

Introduced in R2007b
random

Class: CompactLinearModel

Simulate responses for linear regression model

Syntax

ysim = random(mdl)
ysim = random(mdl,Xnew)

Description

ysim = random(mdl) simulates responses from the fitted linear model mdl at the original design points.

ysim = random(mdl,Xnew) simulates responses from the mdl linear model to the data in Xnew, adding random noise.

Input Arguments

mdl — Linear model object
LinearModel object | CompactLinearModel object

Linear model object, specified as a full LinearModel object constructed using fitlm or stepwiselm, or a compacted CompactLinearModel object constructed using compact.

Xnew — New predictor input values
table | dataset array | numeric matrix

New predictor input values, specified as a table, dataset array, or numeric matrix.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.
Output Arguments

ysim — Predicted mean values
numeric vector

Predicted mean values at Xnew, perturbed by random noise, returned as a numeric vector. The noise is independent and normally distributed, with mean equal to zero, and variance equal to the estimated error variance of the model.

Examples

Simulate Response Data From Linear Regression Model

Create a model of car mileage as a function of weight, and simulate the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.

load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Create simulated responses to the data.

Xnew = X;
ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')
Alternatives

For predictions without random noise, use predict or feval.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Use `saveCompactModel`, `loadCompactModel`, and `codegen` to generate code for the `random` function. Save a trained model by using `saveCompactModel` and define an entry-point function that loads the saved model by using `loadCompactModel` and calls the `random` function. Then use `codegen` to generate code for the entry-point function.
- If either of the following is true, then `random` can return a different sequence of numbers than MATLAB.
 - The output is nonscalar.
 - An input parameter is invalid for the distribution.
- This table contains notes about arguments of `random`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mdl</code></td>
<td>If you train a linear model by using <code>fitlm</code> and specifying <code>RobustOpts</code> as a structure with an anonymous function handle for the <code>RobustWgtFun</code> field, use <code>saveCompactModel</code> to save the model, and use <code>loadCompactModel</code> to load the model, then <code>loadCompactModel</code> cannot restore the Robust property into the MATLAB Workspace. However, <code>loadCompactModel</code> can load the model at compile time for code generation within an entry-point function.</td>
</tr>
<tr>
<td></td>
<td>For the usage notes and limitations of the model object, see “Code Generation” on page 32-824 of the <code>CompactLinearModel</code> object.</td>
</tr>
<tr>
<td>Argument</td>
<td>Notes and Limitations</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| Xnew | • You must supply Xnew.
 | • Must be a single- or double-precision matrix and can be variable-size. However, the number of columns in Xnew must be numel(mdl.PredictorNames).
 | • Rows and columns must correspond to observations and predictors, respectively. |

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
CompactLinearModel | LinearModel | feval | predict

Topics
“random” on page 11-40
“Linear Regression” on page 11-11

Introduced in R2012a
random

Class: LinearMixedModel

Generate random responses from fitted linear mixed-effects model

Syntax

```matlab
ysim = random(lme)
ysim = random(lme,tblnew)
ysim = random(lme,Xnew,Znew)
ysim = random(lme,Xnew,Znew,Gnew)
```

Description

`ysim = random(lme)` returns a vector of simulated responses `ysim` from the fitted linear mixed-effects model `lme` at the original fixed- and random-effects design points, used to fit `lme`.

`random` simulates new random-effects vector and new observation errors. So, the simulated response is

\[
y_{sim} = X\hat{\beta} + Z\hat{b} + \varepsilon,
\]

where \(\hat{\beta}\) is the estimated fixed-effects coefficients, \(\hat{b}\) is the new random effects, and \(\varepsilon\) is the new observation error.

`random` also accounts for the effect of observation weights, if you use any when fitting the model.

`ysim = random(lme,tblnew)` returns a vector of simulated responses `ysim` from the fitted linear mixed-effects model `lme` at the values in the new table or dataset array `tblnew`. Use a table or dataset array for `random` if you use a table or dataset array for fitting the model `lme`.

`ysim = random(lme,Xnew,Znew)` returns a vector of simulated responses `ysim` from the fitted linear mixed-effects model `lme` at the values in the new fixed- and random-
effects design matrices, Xnew and Znew, respectively. Znew can also be a cell array of matrices. Use the matrix format for random if you use design matrices for fitting the model lme.

ysim = random(lme,Xnew,Znew,Gnew) returns a vector of simulated responses ysim from the fitted linear mixed-effects model lme at the values in the new fixed- and random-effects design matrices, Xnew and Znew, respectively, and the grouping variable Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

Input Arguments

lme — Linear mixed-effects model
 LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on page 2-57, specified as a table or dataset array. The predictor variables can be continuous or grouping variables. tblnew must have the same variables as in the original table or dataset array used to fit the linear mixed-effects model lme.

Xnew — New fixed-effects design matrix
 n-by-p matrix

New fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations and p is the number of fixed predictor variables. Each row of X corresponds to one observation and each column of X corresponds to one variable.

Data Types: single | double

Znew — New random-effects design
 n-by-q matrix | cell array of length R

New random-effects design, specified as an n-by-q matrix or a cell array of R design matrices Z{r}, where r = 1, 2, ..., R. If Znew is a cell array, then each Z{r} is an n-by-q(r)
matrix, where \(n \) is the number of observations, and \(q(r) \) is the number of random predictor variables.

Data Types: `single` | `double` | `cell`

Gnew — New grouping variable or variables

vector | cell array of grouping variables of length \(R \)

New grouping variable or variables on page 2-57, specified as a vector or a cell array, of length \(R \), of grouping variables used to fit the linear mixed-effects model, \(\text{lme} \).

`random` treats all levels of each grouping variable as new levels. It draws an independent random effects vector for each level of each grouping variable.

Data Types: `single` | `double` | `categorical` | `logical` | `char` | `string` | `cell`

Output Arguments

ysim — Simulated response values

\(n \)-by-1 vector

Simulated response values, returned as an \(n \)-by-1 vector, where \(n \) is the number of observations.

Examples

Generate Random Responses at the Original Design Values

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'));
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called \(ds \), for practical purposes, and define \text{Tomoato}, \text{Soil}, and \text{Fertilizer} as categorical variables.
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Generate random response values at the original design points. Display the first five values.

rng(123,'twister') % For reproducibility
ysim = random(lme);
ysim(1:5)

ans = 5×1

114.8785
134.2018
154.2818
169.7554
84.6089

Plot Randomly Generated vs. Observed Response Values

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed-effects for Weight, and a random intercept grouped by Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);
lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

Randomly generate responses using the original data.

rng(123,'twister') % For reproducibility
ysim = random(lme,tbl);
Plot the original and the randomly generated responses to see how they differ. Group them by model year.

```matlab
figure()
gscatter(Weight,MPG,Model_Year)
hold on
gscatter(Weight,ysim,Model_Year,[],'o+x')
legend('70-data','76-data','82-data','70-sim','76-sim','82-sim')
hold off
```

Note that the simulated random response values for year 82 are lower than the original data for that year. This might be due to a lower simulated random effect for year 82 than the estimated random effect in the original data.
Generate Responses Using a New Dataset Array

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','fertilizer.mat'))
```

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called `ds`, for practical purposes, and define `Tomato`, `Soil`, and `Fertilizer` as categorical variables.

```matlab
ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);
```

Fit a linear mixed-effects model, where `Fertilizer` and `Tomato` are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

```matlab
lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
```

Create a new dataset array with design values. The new dataset array must have the same variables as the original dataset array you use for fitting the model `lme`.

```matlab
dsnw = dataset();
dsnw.Soil = nominal({'Sandy';'Silty';'Silty'});
dsnw.Tomato = nominal({'Cherry';'Vine';'Plum'});
dsnw.Fertilizer = nominal([2;2;4]);
```

Generate random responses at the new points.

```matlab
rng(123,'twister') % For reproducibility
ysim = random(lme,dsnw)
```

```matlab
ysim = 3×1
         99.6006
```
Generate Random Responses Using New Design Matrices

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and cylinders, and potentially correlated random effect for intercept and acceleration grouped by model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

\[
X = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} & \text{Horsepower} \end{bmatrix};
\]

\[
Z = \begin{bmatrix} \text{ones}(406,1) & \text{Acceleration} \end{bmatrix};
\]

Model_Year = nominal(Model_Year);

G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.

\[
lme = \text{fitlmematrix}(X,\text{MPG},Z,G,'\text{FixedEffectPredictors}','\{\text{Intercept}','\text{Acceleration}','\text{Horsepower}\}',...\text{'RandomEffectPredictors'},\text{'RandomEffectGroups'},\{\text{Model_Year}\});
\]

Create the design matrices that contain the data at which to predict the response values. Xnew must have three columns as in X. The first column must be a column of 1s. And the values in the last two columns must correspond to Acceleration and Horsepower, respectively. The first column of Znew must be a column of 1s, and the second column must contain the same Acceleration values as in Xnew. The original grouping variable in G is the model year. So, Gnew must contain values for the model year. Note that Gnew must contain nominal values.

\[
Xnew = \begin{bmatrix} 1 & 13.5 & 185; 1,17,205; 1,21.2,193 \end{bmatrix};
\]

\[
Znew = \begin{bmatrix} 1,13.5; 1,17; 1,21.2 \end{bmatrix};
\]

Gnew = nominal([73 77 82]);

Generate random responses for the data in the new design matrices.
rng(123,'twister') % For reproducibility
ysim = random(lme,Xnew,Znew,Gnew)

ysim = 3×1
 15.7416
 10.6085
 6.8796

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects terms for intercept and acceleration. First, change the original random effects design and the random effects grouping variables. Then, fit the model.

Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};
lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
 {'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
 {{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'});

Now, recreate the new random effects design, Znew, and the grouping variable design, Gnew, using which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};
MY = nominal([73 77 82]);
Gnew = {MY,MY};

Generate random responses using the new design matrices.

rng(123,'twister') % For reproducibility
ysim = random(lme,Xnew,Znew,Gnew)

ysim = 3×1
 16.8280
 10.4375
 4.1027

See Also
 LinearMixedModel | fitlme | fitlmematrix | predict
random

Class: NonLinearModel

Simulate responses for nonlinear regression model

Syntax

```matlab
ysim = random(mdl)
ysim = random(mdl,Xnew)
ysim = random(mdl,Xnew,'Weights',W)
```

Description

```matlab
ysim = random(mdl) simulates responses from the fitted nonlinear model mdl at the original design points.

ysim = random(mdl,Xnew) simulates responses from the fitted nonlinear model mdl to the data in Xnew, adding random noise.

ysim = random(mdl,Xnew,'Weights',W) simulates responses using the observation weights, W.
```

Input Arguments

- **mdl**
 Nonlinear regression model, constructed by `fitnlm`.

- **Xnew**
 Points at which mdl predicts responses.
 - If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

W

Vector of real, positive value weights or a function handle.

• If you specify a vector, then it must have the same number of elements as the number of observations (or rows) in Xnew.
• If you specify a function handle, the function must accept a vector of predicted response values as input, and returns a vector of real positive weights as output.

Given weights, W, random estimates the error variance at observation i by MSE*(1/W(i)), where MSE is the mean squared error.

Default: No weights

Output Arguments

ysim

Vector of predicted mean values at Xnew, perturbed by random noise. The noise is independent, normally distributed, with mean zero, and variance equal to the estimated error variance of the model.

Examples

Simulate Responses

Create a nonlinear model of car mileage as a function of weight, and simulate the response.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Create simulated responses to the data.

Xnew = X;
ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')
Alternatives

For predictions without added noise, use `predict`.

See Also
NonLinearModel | feval | predict

Topics
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-10
“Nonlinear Regression” on page 13-2
random

Class: RepeatedMeasuresModel

Generate new random response values given predictor values

Syntax

ysim = random(rm,tnew)

Description

ysim = random(rm,tnew) generates random response values from the repeated measures model rm using the predictor variables from table tnew.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

tnew — New data
table used to create rm (default) | table

New data including the values of the response variables and the between-subject factors used as predictors in the repeated measures model, rm, specified as a table. tnew must contain all of the between-subject factors used to create rm.

Output Arguments

ysim — Random response values
n-by-r matrix
Random response values random generates, returned as an \(n \)-by-\(r \) matrix, where \(n \) is the number of rows in \(t_{\text{new}} \), and \(r \) is the number of repeated measures in \(rm \).

Examples

Randomly Generate New Response Values

Load the sample data.

```matlab
load fisheriris
```

The column vector `species` consists of iris flowers of three different species: setosa, versicolor, and virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

```matlab
t = table(species, meas(:,1), meas(:,2), meas(:,3), meas(:,4),... 'VariableNames', {'species','meas1','meas2','meas3','meas4'});
```

Fit a repeated measures model, where the measurements are the responses and the `species` is the predictor variable.

```matlab
rm = fitrm(t,'meas1-meas4~species','WithinDesign', Meas);
```

Randomly generate new response values.

```matlab
ysim = random(rm);
```

`random` uses the predictor values in the original sample data you use to fit the repeated measures model `rm` in table `t`.

Randomly Generate Response Values Using New Data

Load the sample data.

```matlab
load repeatedmeas
```
The table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures \(y_1 \) through \(y_8 \) as responses. The table within includes the within-subject variables \(w_1 \) and \(w_2 \). This is simulated data.

Fit a repeated measures model, where the repeated measures \(y_1 \) through \(y_8 \) are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Define a table with new values for the predictor variables.

```matlab
tnew = table(16,93,{'B'},{'Male'},'VariableNames',{'Age','IQ','Group','Gender'});
```

Randomly generate new response values using the values in the new table `tnew`.

```matlab
ysim = random(rm,tnew)
```

Algorithms

`random` computes `ysim` by creating predicted values and adding random noise values. For each row, the noise has a multivariate normal distribution with covariance the same as `rm.Covariance`.

See Also

`fitrm` | `predict`
randomEffects

Class: GeneralizedLinearMixedModel

Estimates of random effects and related statistics

Syntax

```matlab
B = randomEffects(glme)
[B,BNames] = randomEffects(glme)
[B,BNames,stats] = randomEffects(glme)
[B,BNames,stats] = randomEffects(glme,Name,Value)
```

Description

`B = randomEffects(glme)` returns the estimates of the empirical Bayes predictors (EPBs) of random effects in the generalized linear mixed-effects model `glme` conditional on the estimated covariance parameters and the observed response.

`[B,BNames] = randomEffects(glme)` also returns the names of the coefficients, `BNames`. Each name corresponds to a coefficient in `B`.

`[B,BNames,stats] = randomEffects(glme)` also returns related statistics, `stats`, for the estimated EBPs of random effects in `glme`.

`[B,BNames,stats] = randomEffects(glme,Name,Value)` returns any of the above output arguments using additional options specified by one or more `Name,Value` pair arguments. For example, you can specify the confidence interval level, or the method for computing the approximate degrees of freedom.

Input Arguments

`glme` — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object
Generalized linear mixed-effects model, specified as a `GeneralizedLinearMixedModel` object. For properties and methods of this object, see `GeneralizedLinearMixedModel`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Alpha — Confidence level

0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of `Alpha` and a scalar value in the range [0,1]. For a value α, the confidence level is $100 \times (1 - \alpha)\%$.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: `Alpha`,0.01

Data Types: `single` | `double`

DFMethod — Method for computing approximate degrees of freedom

`'residual'` (default) | `'none'`

Method for computing approximate degrees of freedom, specified as the comma-separated pair consisting of `DFMethod` and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'residual'</code></td>
<td>The degrees of freedom value is assumed to be constant and equal to $n - p$, where n is the number of observations and p is the number of fixed effects.</td>
</tr>
<tr>
<td><code>'none'</code></td>
<td>The degrees of freedom is set to infinity.</td>
</tr>
</tbody>
</table>

Example: `DFMethod`, 'none'
Output Arguments

B — Estimated empirical Bayes predictors for the random effects
 column vector

Estimated empirical Bayes predictors (EBPs) for the random effects in the generalized linear mixed-effects model glme, returned as a column vector. The EBPs in B are approximated by the mode of the empirical posterior distribution of the random effects given the estimated covariance parameters and the observed response.

Suppose glme has R grouping variables g₁, g₂, ..., gᵣ, with levels m₁, m₂, ..., mᵣ, respectively. Also suppose q₁, q₂, ..., qᵣ are the lengths of the random-effects vectors that are associated with g₁, g₂, ..., gᵣ, respectively. Then, B is a column vector of length q₁*m₁ + q₂*m₂ + ... + qᵣ*mᵣ.

randomEffects creates B by concatenating the empirical Bayes predictors of random-effects vectors corresponding to each level of each grouping variable as \([g₁ \text{level}_1; g₁ \text{level}_2; \ldots; g₁ \text{level}_{m₁}; g₂ \text{level}_1; g₂ \text{level}_2; \ldots; g₂ \text{level}_{m₂}; \ldots; gᵣ \text{level}_1; gᵣ \text{level}_2; \ldots; gᵣ \text{level}_{mᵣ}]\).

BNames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimated empirical Bayes predictors and related statistics
table

Estimated empirical Bayes predictors (EBPs) and related statistics for the random effects in the generalized linear mixed-effects model glme, returned as a table. stats has one row for each of the random effects, and one column for each of the following statistics.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Grouping variable associated with the random effect</td>
</tr>
<tr>
<td>Level</td>
<td>Level within the grouping variable corresponding to the random effect</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the random-effect coefficient</td>
</tr>
</tbody>
</table>
Column Name
<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
</tr>
<tr>
<td>SEPred</td>
</tr>
<tr>
<td>tStat</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>pValue</td>
</tr>
<tr>
<td>Lower</td>
</tr>
<tr>
<td>Upper</td>
</tr>
</tbody>
</table>

`randomEffects` computes the confidence intervals using the conditional mean squared error of prediction (CMSEP) approach conditional on the estimated covariance parameters and the observed response. An alternative interpretation of the confidence intervals is that they are approximate Bayesian credible intervals conditional on the estimated covariance parameters and the observed response.

When fitting a GLME model using `fitglme` and one of the pseudo likelihood fit methods ('MPL' or 'REML'), `randomEffects` computes confidence intervals and related statistics based on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

Examples

Compute and Plot Estimated Random Effects

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The
A company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_\text{A}_{ij} + \beta_5 \text{supplier}_\text{B}_{ij} + b_i, \]

where

- defects_{ij} is the number of defects observed in the batch produced by factory i during batch j.
• μ_{ij} is the mean number of defects corresponding to factory i (where $i = 1, 2, ..., 20$) during batch j (where $j = 1, 2, ..., 5$).

• newprocess$_{ij}$, time$_{dev}_{ij}$, and temp$_{dev}_{ij}$ are the measurements for each variable that correspond to factory i during batch j. For example, newprocess$_{ij}$ indicates whether the batch produced by factory i during batch j used the new process.

• supplier$_{Cij}$ and supplier$_{Bij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory i during batch j.

• $b_i \sim N(0, \sigma_b^2)$ is a random-effects intercept for each factory i that accounts for factory-specific variation in quality.

```
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Compute and display the names and estimated values of the empirical Bayes predictors (EBPs) for the random effects.

```
[B,BNames] = randomEffects(glme)
```

```
B = 20×1
     0.2913
     0.1542
    -0.2633
    -0.4257
     0.5453
    -0.1069
     0.3040
    -0.1653
    -0.1458
    -0.0816
    : 

BNames=20×3 table
      Group      Level        Name
    ______    _____    _____________
      'factory'    '1'      '(Intercept)'
Each row of B contains the estimated EPB for the random-effects coefficient named in the corresponding row of Bnames. For example, the value -0.2633 in row 3 of B is the estimated EPB for \'(Intercept)\' for level '3' of factory.

### Compute 99% Confidence Intervals for Random Effects

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[
\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij})
\]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1\text{newprocess}_{ij} + \beta_2\text{time\_dev}_{ij} + \beta_3\text{temp\_dev}_{ij} + \beta_4\text{supplier\_C}_{ij} + \beta_5\text{supplier\_B}_{ij} + b_i
\]

where

• \(\text{defects}_{ij}\) is the number of defects observed in the batch produced by factory \(i\) during batch \(j\).

• \(\mu_{ij}\) is the mean number of defects corresponding to factory \(i\) (where \(i = 1, 2, \ldots, 20\)) during batch \(j\) (where \(j = 1, 2, \ldots, 5\)).

• \(\text{newprocess}_{ij}, \text{time\_dev}_{ij}, \text{and temp\_dev}_{ij}\) are the measurements for each variable that correspond to factory \(i\) during batch \(j\). For example, \(\text{newprocess}_{ij}\) indicates whether the batch produced by factory \(i\) during batch \(j\) used the new process.
• supplier\_C_{ij} and supplier\_B_{ij} are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \( i \) during batch \( j \).

• \( b_i \sim N(0, \sigma^2_b) \) is a random-effects intercept for each factory \( i \) that accounts for factory-specific variation in quality.

\[
\text{glme} = \text{fitglme}(\text{mfr}, '\text{defects} \sim 1 + \text{newprocess} + \text{time\_dev} + \text{temp\_dev} + \text{supplier} + (1|\text{factory})', '\text{Distribution}', '\text{Poisson}', '\text{Link}', '\text{log}', '\text{FitMethod}', '\text{Laplace}', '\text{DummyVarCoding}', '\text{effects}')
\]

Compute and display the 99% confidence intervals for the random-effects coefficients.

\[
[B, BNames, stats] = \text{randomEffects}(\text{glme}, '\text{Alpha}', 0.01);
\]

\[
\text{stats} =
\]

\[
\text{Random effect coefficients: DFMethod = 'residual', Alpha = 0.01}
\]

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
<th>Estimate</th>
<th>SEPred</th>
</tr>
</thead>
<tbody>
<tr>
<td>'factory'</td>
<td>'1'</td>
<td>'(Intercept)'</td>
<td>0.29131</td>
<td>0.19163</td>
</tr>
<tr>
<td>'factory'</td>
<td>'2'</td>
<td>'(Intercept)'</td>
<td>0.15423</td>
<td>0.19216</td>
</tr>
<tr>
<td>'factory'</td>
<td>'3'</td>
<td>'(Intercept)'</td>
<td>-0.26325</td>
<td>0.21249</td>
</tr>
<tr>
<td>'factory'</td>
<td>'4'</td>
<td>'(Intercept)'</td>
<td>-0.42568</td>
<td>0.21667</td>
</tr>
<tr>
<td>'factory'</td>
<td>'5'</td>
<td>'(Intercept)'</td>
<td>0.5453</td>
<td>0.17963</td>
</tr>
<tr>
<td>'factory'</td>
<td>'6'</td>
<td>'(Intercept)'</td>
<td>-0.10692</td>
<td>0.20133</td>
</tr>
<tr>
<td>'factory'</td>
<td>'7'</td>
<td>'(Intercept)'</td>
<td>0.30404</td>
<td>0.18397</td>
</tr>
<tr>
<td>'factory'</td>
<td>'8'</td>
<td>'(Intercept)'</td>
<td>-0.16527</td>
<td>0.20505</td>
</tr>
<tr>
<td>'factory'</td>
<td>'9'</td>
<td>'(Intercept)'</td>
<td>-0.14577</td>
<td>0.203</td>
</tr>
<tr>
<td>'factory'</td>
<td>'10'</td>
<td>'(Intercept)'</td>
<td>-0.08163</td>
<td>0.20256</td>
</tr>
<tr>
<td>'factory'</td>
<td>'11'</td>
<td>'(Intercept)'</td>
<td>0.014529</td>
<td>0.21421</td>
</tr>
<tr>
<td>'factory'</td>
<td>'12'</td>
<td>'(Intercept)'</td>
<td>0.17706</td>
<td>0.20721</td>
</tr>
<tr>
<td>'factory'</td>
<td>'13'</td>
<td>'(Intercept)'</td>
<td>0.24872</td>
<td>0.20522</td>
</tr>
<tr>
<td>'factory'</td>
<td>'14'</td>
<td>'(Intercept)'</td>
<td>0.21145</td>
<td>0.20678</td>
</tr>
<tr>
<td>'factory'</td>
<td>'15'</td>
<td>'(Intercept)'</td>
<td>0.2777</td>
<td>0.20345</td>
</tr>
<tr>
<td>'factory'</td>
<td>'16'</td>
<td>'(Intercept)'</td>
<td>-0.25175</td>
<td>0.22568</td>
</tr>
<tr>
<td>'factory'</td>
<td>'17'</td>
<td>'(Intercept)'</td>
<td>-0.13507</td>
<td>0.22301</td>
</tr>
<tr>
<td>'factory'</td>
<td>'18'</td>
<td>'(Intercept)'</td>
<td>-0.1627</td>
<td>0.22269</td>
</tr>
<tr>
<td>'factory'</td>
<td>'19'</td>
<td>'(Intercept)'</td>
<td>-0.32083</td>
<td>0.23294</td>
</tr>
<tr>
<td>'factory'</td>
<td>'20'</td>
<td>'(Intercept)'</td>
<td>0.058418</td>
<td>0.21481</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5202</td>
<td>94</td>
<td>0.13182</td>
<td>-0.21251</td>
<td>0.79514</td>
</tr>
</tbody>
</table>
The first three columns of stats contain the group name, level, and random-effects coefficient name. Column 4 contains the estimated EBP of the random-effects coefficient. The last two columns of stats, Lower and Upper, contain the lower and upper bounds of the 99% confidence interval, respectively. For example, for the coefficient for '(Intercept)' for level 3 of factory, the estimated EBP is -0.26325, and the 99% confidence interval is [-0.82191,0.29541].

### References


### See Also

GeneralizedLinearMixedModel | coefCI | coefTest | fixedEffects
randomEffects

Class: LinearMixedModel

Estimates of random effects and related statistics

Syntax

B = randomEffects(lme)
[B,Bnames] = randomEffects(lme)
[B,Bnames,stats] = randomEffects(lme)
[B,Bnames,stats] = randomEffects(lme,Name,Value)

Description

B = randomEffects(lme) returns the estimates of the best linear unbiased predictors (BLUPs) of random effects in the linear mixed-effects model lme.

[B,Bnames] = randomEffects(lme) also returns the names of the coefficients in Bnames. Each name corresponds to a coefficient in B.

[B,Bnames,stats] = randomEffects(lme) also returns the estimated BLUPs of random effects in the linear mixed-effects model lme and related statistics.

[B,Bnames,stats] = randomEffects(lme,Name,Value) also returns the BLUPs of random effects in the linear mixed-effects model lme and related statistics with additional options specified by one or more Name,Value pair arguments.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Alpha — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

Example: 'Alpha',0.01

Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for the t-statistics that test the random-effects coefficients against 0, specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual'          Default. The degrees of freedom are assumed to be constant and equal to n – p, where n is the number of observations and p is the number of fixed effects.

'satterthwaite'    Satterthwaite approximation.

'none'             All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.

Example: 'DFMethod','satterthwaite'
Output Arguments

B — Estimated best linear unbiased predictors of random effects
column vector

Estimated best linear unbiased predictors of random effects of linear mixed-effects model lme, returned as a column vector.

Suppose lme has R grouping variables g_1, g_2, ..., g_R, with levels m_1, m_2, ..., m_R, respectively. Also suppose q_1, q_2, ..., q_R are the lengths of the random-effects vectors that are associated with g_1, g_2, ..., g_R, respectively. Then, B is a column vector of length q_1*m_1 + q_2*m_2 + ... + q_R*m_R.

randomEffects creates B by concatenating the best linear unbiased predictors of random-effects vectors corresponding to each level of each grouping variable as [g_1level_1; g_1level_2; ...; g_1level_{m_1}; g_2level_1; g_2level_2; ...; g_2level_{m_2}; ...; g_Rlevel_1; g_Rlevel_2; ...; g_Rlevel_{m_R}]'.

Bnames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimates of random effects BLUPs and related statistics
dataset array

Estimates of random effects BLUPs and related statistics, returned as a dataset array that has one row for each of the fixed effects and one column for each of the following statistics.

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
<th>Estimate</th>
<th>SEPred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grouping variable associated with the random effect</td>
<td>Level within the grouping variable corresponding to the random effect</td>
<td>Name of the random-effect coefficient</td>
<td>Best linear unbiased predictor (BLUP) of random effect</td>
<td>Standard error of the estimate (BLUP minus random effect)</td>
</tr>
</tbody>
</table>
**Examples**

**Display Random-Effects Estimates and Coefficient Names**

Load the sample data.

```matlab
load carbig
```

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and horsepower, and potentially correlated random effects for intercept and acceleration, grouped by the model year. First, store the data in a table.

```matlab
tbl = table(Acceleration,Horsepower,Model_Year,MPG);
```

Fit the model.

```matlab
lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');
```

Compute the BLUPs of the random-effects coefficients and display the names of the corresponding random effects.

```matlab
[B,Bnames] = randomEffects(lme)
```

```
B = 26×1
 3.1270
 -0.2426
 -1.6532
 -0.0086
```
1.2075
-0.2179
4.4107
-0.4887
-1.3103
-0.0208
:

Bnames=26×3 table

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Model_Year'</td>
<td>'70'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'70'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'71'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'71'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'72'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'72'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'73'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'73'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'74'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'74'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'75'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'75'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'76'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'76'</td>
<td>'Acceleration'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'77'</td>
<td>'(Intercept)'</td>
</tr>
<tr>
<td>'Model_Year'</td>
<td>'77'</td>
<td>'Acceleration'</td>
</tr>
</tbody>
</table>
:

Since intercept and acceleration have potentially correlated random effects, grouped by model year of the cars, `randomEffects` creates a separate row for intercept and acceleration at each level of the grouping variable.

Compute the covariance parameters of the random effects.

```matlab
[~,~,stats] = covarianceParameters(lme)
```

```
stats = 2x1 cell array
 {3x7 classreg.regr.lmeutils.titleddataset}
 {1x5 classreg.regr.lmeutils.titleddataset}
```

```
stats{1}
```
ans =  
Covariance Type: FullCholesky

<table>
<thead>
<tr>
<th>Group</th>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model_Year</td>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
</tr>
<tr>
<td>Model_Year</td>
<td>'Acceleration'</td>
<td>'(Intercept)'</td>
<td>'corr'</td>
</tr>
<tr>
<td>Model_Year</td>
<td>'Acceleration'</td>
<td>'Acceleration'</td>
<td>'std'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3475</td>
<td>1.2862</td>
<td>8.7119</td>
</tr>
<tr>
<td>-0.87971</td>
<td>-0.98501</td>
<td>-0.29676</td>
</tr>
<tr>
<td>0.33789</td>
<td>0.1825</td>
<td>0.62558</td>
</tr>
</tbody>
</table>

The correlation value suggests that random effects seem negatively correlated. Plot the random effects for intercept versus acceleration to confirm this.

plot(B(1:2:end),B(2:2:end),'r*')
Compute Random-Effects Estimates and Related Statistics

Load the sample data.

load(fullfile(matlabroot,'examples','stats','fertilizer.mat'));

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four fertilizers. This is simulated data.
Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and Fertilizer as categorical variables.

\[
ds = \text{fertilizer}; \\
ds.\text{Tomato} = \text{nominal}(ds.\text{Tomato}); \\
ds.\text{Soil} = \text{nominal}(ds.\text{Soil}); \\
ds.\text{Fertilizer} = \text{nominal}(ds.\text{Fertilizer});
\]

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil types) independently.

\[
lme = \text{fitlme}(ds, 'Yield \sim Fertilizer \times Tomato + (1|Soil) + (1|Soil:Tomato)');
\]

Compute the BLUPs and related statistics for random effects.

\[
[-, -, \text{stats}] = \text{randomEffects}(lme)
\]

\[
\text{stats} = \\
\text{Random effect coefficients: DFMethod = 'Residual', Alpha = 0.05}
\]

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Soil'</td>
<td>'Loamy'</td>
<td>'(Intercept)'</td>
<td>1.0061</td>
</tr>
<tr>
<td>'Soil'</td>
<td>'Sandy'</td>
<td>'(Intercept)'</td>
<td>-1.5236</td>
</tr>
<tr>
<td>'Soil'</td>
<td>'Silty'</td>
<td>'(Intercept)'</td>
<td>0.51744</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Loamy Cherry'</td>
<td>'(Intercept)'</td>
<td>12.46</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Loamy Grape'</td>
<td>'(Intercept)'</td>
<td>-2.6429</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Loamy Heirloom'</td>
<td>'(Intercept)'</td>
<td>16.681</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Loamy Plum'</td>
<td>'(Intercept)'</td>
<td>-5.0172</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Loamy Vine'</td>
<td>'(Intercept)'</td>
<td>-4.6874</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Sandy Cherry'</td>
<td>'(Intercept)'</td>
<td>-17.393</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Sandy Grape'</td>
<td>'(Intercept)'</td>
<td>-7.3679</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Sandy Heirloom'</td>
<td>'(Intercept)'</td>
<td>-8.621</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Sandy Plum'</td>
<td>'(Intercept)'</td>
<td>7.669</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Sandy Vine'</td>
<td>'(Intercept)'</td>
<td>0.28246</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Silty Cherry'</td>
<td>'(Intercept)'</td>
<td>4.9326</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Silty Grape'</td>
<td>'(Intercept)'</td>
<td>10.011</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Silty Heirloom'</td>
<td>'(Intercept)'</td>
<td>-8.0599</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Silty Plum'</td>
<td>'(Intercept)'</td>
<td>-2.6519</td>
</tr>
<tr>
<td>'Soil:Tomato'</td>
<td>'Silty Vine'</td>
<td>'(Intercept)'</td>
<td>4.405</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEPred</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3374</td>
<td>0.43044</td>
<td>40</td>
<td>0.66918</td>
<td>-3.718</td>
<td>5.7303</td>
</tr>
<tr>
<td>2.3374</td>
<td>-0.65181</td>
<td>40</td>
<td>0.51825</td>
<td>-6.2477</td>
<td>3.2006</td>
</tr>
</tbody>
</table>
The first three rows contain the random-effects estimates and the statistics for the three levels, Loamy, Sandy, and Silty of the grouping variable Soil. The corresponding $p$-values 0.66918, 0.51825, and 0.82593 indicate that these random-effects are not significantly different from 0. The following 15 rows include the BLUPS of random-effects estimates for the intercept, grouped by the variable Tomato nested in Soil, i.e. interaction of Tomato and Soil.

### Compute Confidence Intervals with Specified Options

Load the sample data.

```matlab
load shift
```

Fit a linear mixed-effects model with a random intercept grouped by operator, to assess if there is a significant difference in the performance according to the time of the shift. Use the restricted maximum likelihood method.

```matlab
lme = fitlme(shift,'QCDiv ~ Shift + (1|Operator)');
```

Compute the 99% confidence intervals for random effects using the residuals option to compute the degrees of freedom. This is the default method.

```matlab
[~,~,stats] = randomEffects(lme,'Alpha',0.01)
```
stats =
Random effect coefficients: DFMethod = 'Residual', Alpha = 0.01

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
<th>Estimate</th>
<th>SEPred</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Operator'</td>
<td>'1'</td>
<td>'(Intercept)'</td>
<td>0.57753</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'2'</td>
<td>'(Intercept)'</td>
<td>1.1757</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'3'</td>
<td>'(Intercept)'</td>
<td>-2.1715</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'4'</td>
<td>'(Intercept)'</td>
<td>2.3655</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'5'</td>
<td>'(Intercept)'</td>
<td>-1.9472</td>
<td>0.90378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63902</td>
<td>12</td>
<td>0.53482</td>
<td>-2.1831</td>
<td>3.3382</td>
</tr>
<tr>
<td>1.3009</td>
<td>12</td>
<td>0.21772</td>
<td>-1.5849</td>
<td>3.9364</td>
</tr>
<tr>
<td>-2.4027</td>
<td>12</td>
<td>0.033352</td>
<td>-4.9322</td>
<td>0.58909</td>
</tr>
<tr>
<td>2.6174</td>
<td>12</td>
<td>0.022494</td>
<td>-0.39511</td>
<td>5.1261</td>
</tr>
<tr>
<td>-2.1546</td>
<td>12</td>
<td>0.052216</td>
<td>-4.7079</td>
<td>0.81337</td>
</tr>
</tbody>
</table>

Compute the 99% confidence intervals for random effects using the Satterthwaite approximation to compute the degrees of freedom.

```
[~,~,stats] = randomEffects(lme,'DFMethod','satterthwaite','Alpha',0.01)
```

stats =
Random effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
<th>Name</th>
<th>Estimate</th>
<th>SEPred</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Operator'</td>
<td>'1'</td>
<td>'(Intercept)'</td>
<td>0.57753</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'2'</td>
<td>'(Intercept)'</td>
<td>1.1757</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'3'</td>
<td>'(Intercept)'</td>
<td>-2.1715</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'4'</td>
<td>'(Intercept)'</td>
<td>2.3655</td>
<td>0.90378</td>
</tr>
<tr>
<td>'Operator'</td>
<td>'5'</td>
<td>'(Intercept)'</td>
<td>-1.9472</td>
<td>0.90378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63902</td>
<td>6.4253</td>
<td>0.5449</td>
<td>-2.684</td>
<td>3.3382</td>
</tr>
<tr>
<td>1.3009</td>
<td>6.4253</td>
<td>0.23799</td>
<td>-2.0858</td>
<td>4.4372</td>
</tr>
<tr>
<td>-2.4027</td>
<td>6.4253</td>
<td>0.050386</td>
<td>-5.433</td>
<td>1.09</td>
</tr>
<tr>
<td>2.6174</td>
<td>6.4253</td>
<td>0.037302</td>
<td>-0.89598</td>
<td>5.627</td>
</tr>
<tr>
<td>-2.1546</td>
<td>6.4253</td>
<td>0.071626</td>
<td>-5.2087</td>
<td>1.3142</td>
</tr>
</tbody>
</table>
The Satterhwaite method usually produces smaller values for the degrees of freedom (DF), which results in larger p-values (pValue) and larger confidence intervals (Lower and Upper) for the random-effects estimates.

See Also
LinearMixedModel | coefCI | coefTest | fitlme | fixedEffects
**randsample**

Random sample

**Syntax**

```matlab
y = randsample(n,k)
y = randsample(population,k)
y = randsample(___,'replacement')
y = randsample(n,k,true,w)
y = randsample(population,k,true,w)
y = randsample(s,___)
```

**Description**

`y = randsample(n,k)` returns `k` values sampled uniformly at random, without replacement, from the integers `1` to `n`.

`y = randsample(population,k)` returns a vector of `k` values sampled uniformly at random, without replacement, from the values in the vector `population`.

`y = randsample(___,'replacement')` returns a sample taken with replacement if `replacement` is `true`, or without replacement if `replacement` is `false`. Specify `replacement` following any of the input argument combinations in the previous syntaxes.

`y = randsample(n,k,true,w)` uses a vector of non-negative weights, `w`, whose length is `n`, to determine the probability that an integer `i` is selected as an entry for `y`.

`y = randsample(population,k,true,w)` uses a vector of nonnegative weights, `w`, of the same length as the vector `population`, to determine the probability that a value `population(i)` is selected as an entry for `y`.

`y = randsample(s,___)` uses the stream `s` for random number generation. The option `s` can precede any of the input arguments in the previous syntaxes. `s` is a member of the `RandStream` class.
Examples

Sample Unique Value from Range

Draw a single value from the integers 1 through 10.

\[
\begin{align*}
n &= 10; \\
x &= \text{randsample}(n,1) \\
x &= 9
\end{align*}
\]

Sample from Population Vector

Create the random seed for reproducibility of the results.

\[
\begin{align*}
s &= \text{RandStream}('mlfg6331_64'); \\
\text{population} &= 10:20; \\
y &= \text{randsample}(s,\text{population},1) \\
y &= 17
\end{align*}
\]

Generate Random Sequence for Specified Probabilities

Create the random number stream for reproducibility.

\[
\begin{align*}
s &= \text{RandStream}('mlfg6331_64'); \\
\text{R} &= \text{randsample}(s,'ACGT',48,\text{true},[0.15 \ 0.35 \ 0.35 \ 0.15]) \\
\text{R} &= \text{'GGCGCGCAAGGCACCTGCTCGACTCG'}
\end{align*}
\]
**Set Random Number Stream**

Create the random number stream for reproducibility.

```matlab
s = RandStream('mlfg6331_64');
```

Draw five values with replacement from the integers 1:10.

```matlab
y = randsample(s,10,5,true)
```

```
y = 5×1
 7
 8
 5
 7
 8
```

**Input Arguments**

- **n** — Upper limit of range
  
  positive integer

  Upper limit of the range (1 to n) from which to sample, specified as a positive integer. By default, `randsample` samples uniformly at random, without replacement, from the values in the range 1 to n.

  Data Types: `single` | `double`

- **population** — Input data
  
  vector

  Input data from which to sample, specified as a vector. By default, `randsample` samples uniformly at random, without replacement, from the values in `population`. The orientation of `y` (row or column) is the same as that of `population`.

  If `population` is a numeric vector containing only nonnegative integer values, and `population` can have the length 1, then use `y =`
`population(randsample(length(population),k))` instead of `y = randsample(population,k)`.

Example: `y = randsample([50:100],20)` returns a vector of 20 values sampled uniformly at random, without replacement, from the population vector consisting of integers from 50 to 100.

Data Types: `single` | `double` | `logical` | `char` | `string` | `categorical`

**k — Number of samples**

Positive integer

Number of samples, specified as a positive integer.

Example: `randsample(20,10)` returns a vector of 10 values sampled uniformly at random, without replacement, from the integers 1 to 20.

Data Types: `single` | `double`

**replacement — Indicator for sampling with replacement**

`false` (default) | `true`

Indicator for sampling with replacement, specified as either `false` or `true`.

Example: `randsample(10,2,true)` returns two values with replacement from the integers 1 to 10.

Data Types: `logical`

**w — Sampling weights**

`ones(n,1)` (default) | vector of nonnegative scalar values

Sampling weights, specified as a vector of nonnegative scalar values. The length of `w` must be equal to the range of integers to sample or the length of `population`. The vector `w` must have at least one positive value. If `w` contains negative values or NaN values, `randsample` displays an error message. The `randsample` function samples with probability proportional to `w(i)/sum(w)`. Usually, `w` is a vector of probabilities. The `randsample` function supports specifying weights only for sampling with replacement.

Example: `[0.1 0.5 0.35 0.46]`

Data Types: `single` | `double`

**s — Random number stream**

MATLAB default random number stream (default) | `RandStream`
Random number stream, specified as the MATLAB default random number stream or RandStream. For details, see “Creating and Controlling a Random Number Stream” (MATLAB).

Example: \( s = \text{RandStream('mlfg6331_64')} \) creates a random number stream that uses the multiplicative lagged Fibonacci generator algorithm.

**Output Arguments**

\( y \) — Sample

vector | scalar

Sample, returned as a vector or scalar.

- If \( k = 1 \), then \( y \) is a scalar.
- If \( k > 1 \), then \( y \) is a \( k \)-by-1 vector.

**Tips**

To sample data randomly, with or without replacement, use `datasample`.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- When you sample without replacement, the order of the output values might not match the order in MATLAB.
- Code generation does not support the random number stream input argument \( s \).

For more information on code generation, see “Introduction to Code Generation” on page 31-2 and “General Code Generation Workflow” on page 31-5.
See Also
RandStream | datasample | rand | randperm

Introduced before R2006a
**randtool**

Interactive random number generation

**Syntax**

`randtool`

**Description**

`randtool` opens the Random Number Generation Tool.

The Random Number Generation Tool is a graphical user interface that generates random samples from specified probability distributions and displays the samples as histograms. Use the tool to explore the effects of changing parameters and sample size on the distributions.
Start by selecting a distribution, then enter the desired sample size.
You can also

- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.
- Draw another sample from the same distribution, with the same size and parameters.
- Export the current sample to your workspace. A dialog box enables you to provide a name for the sample.

`randttool` does not provide printing functionality in MATLAB Online.

**Introduced before R2006a**
range

Range of values

Syntax

\[
\begin{align*}
    y &= \text{range}(X) \\
    y &= \text{range}(X, 'all') \\
    y &= \text{range}(X, \text{dim}) \\
   y &= \text{range}(X, \text{vecdim})
\end{align*}
\]

Description

\[
y = \text{range}(X)\] returns the difference between the maximum and minimum values of sample data in \(X\).

- If \(X\) is a vector, then \(\text{range}(X)\) is the range of the values in \(X\).
- If \(X\) is a matrix, then \(\text{range}(X)\) is a row vector containing the range of each column in \(X\).
- If \(X\) is a multidimensional array, then \(\text{range}\) operates along the first nonsingleton dimension of \(X\), treating the values as vectors. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. If \(X\) is an empty array with first dimension 0, then \(\text{range}(X)\) returns an empty array with the same size as \(X\).

\[
y = \text{range}(X, 'all')\] returns the range of all elements in \(X\).

\[
y = \text{range}(X, \text{dim})\] returns the range along the operating dimension \(\text{dim}\) of \(X\). For example, if \(X\) is a matrix, then \(\text{range}(X, 2)\) is a column vector containing the range value of each row.

\[
y = \text{range}(X, \text{vecdim})\] returns the range over the dimensions specified in the vector \(\text{vecdim}\). For example, if \(X\) is a matrix, then \(\text{range}(X, [1 2])\) is the range of all elements in \(X\) because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.
Examples

**Range of Standard Normal Random Numbers**

Generate five large samples of standard normal random numbers.

```matlab
rng('default') % For reproducibility
rv = normrnd(0,1,1000,5);
```

Find the range values of the samples.

```matlab
near6 = range(rv)
near6 = 1x5
```

The range value is approximately 6 for each sample.

**Range of Exam Scores**

Find the range of exam scores over the course of five exams.

Load the `examgrades` data set.

```matlab
load examgrades
```

Find the range of all exam scores.

```matlab
y = range(grades,'all')
y = 46
```

**Range of Exam Scores by Student**

Find the range of exam scores for each student over the course of five exams.
Load the examgrades data set.

load examgrades

Find the range of exam scores for the first 10 students. For example, the difference between the eighth student's best and worst exam scores is 7 points.

\[
X = \text{grades}(1:10,:); \\
y = \text{range}(X,2)
\]

\[
y = \begin{bmatrix}
12 \\
13 \\
10 \\
12 \\
8 \\
16 \\
14 \\
7 \\
12 \\
10
\end{bmatrix}
\]

**Range Along Vector Dimension**

Find the range of a multidimensional array over multiple dimensions.

Create a 3-by-5-by-2 array of normal random numbers with mean \( \mu = 2 \) and standard deviation \( \sigma = 7 \).

\[
\text{rng('default')} \quad \text{% For reproducibility} \\
\mu = 2; \\
\sigma = 7; \\
X = \text{normrnd}(\mu,\sigma,[3 5 2])
\]

\[
X(:,:,1) = \\
\begin{bmatrix}
5.7637 & 8.0352 & -1.0351 & 21.3861 & 7.0778 \\
\end{bmatrix}
\]

\[
X(:,:,2) = \\
\begin{bmatrix}
-13.7398 & 5.4083 & 22.1783 & 1.2842 & 1.0277
\end{bmatrix}
\]
Find the range of each page of \( X \) by specifying dimensions 1 and 2 as the operating
dimensions.

\[
\text{ypage} = \text{range}(X,[1\ 2])
\]

\[
\text{ypage} = \\
\text{ypage}(:,:,1) = \\
40.8607
\]

\[
\text{ypage}(:,:,2) = \\
19.8641
\]

For example, \( \text{ypage}(1,1,2) \) is the range of all the elements in \( X(:,:,2) \).

Find the range of the elements in each \( X(i,:,:) \) slice by specifying dimensions 2 and 3
as the operating dimensions.

\[
\text{yrow} = \text{range}(X,[2\ 3])
\]

\[
\text{yrow} = 3\times1 \\
27.8385 \\
22.2864 \\
40.8607
\]

For example, \( \text{yrow}(3) \) is the range of all the elements in \( X(3,:,:). \)
Input Arguments

**X — Data sample**

    scalar | vector | matrix | multidimensional array

Data sample, specified as a scalar, vector, matrix, or multidimensional array.

- If `X` is a scalar, then `range(X)` is 0.
- If `X` is a 0-by-0 empty array, then `range(X)` is also an empty array.

Data Types: `single` | `double` | `logical` | `datetime` | `duration`

**dim — Dimension to operate along**

    positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then the default value is the first array dimension whose size does not equal 1.

`dim` indicates the dimension whose length reduces to 1. `size(y,dim)` is 1, while the sizes of all other dimensions remain the same unless `size(X,dim)` is 0. If `size(X,dim)` is 0, then `range(X,dim)` returns an empty array of the same size as `X`.

Consider a two-dimensional data sample `X`:

- If `dim` is equal to 1, then `range(X,1)` returns a row vector containing the range for each column.
- If `dim` is equal to 2, then `range(X,2)` returns a column vector containing the range for each row.

If `dim` is greater than `ndims(X)`, `range` returns an array of zeros with the same dimensions and missing values as `X`.

Data Types: `single` | `double`

**vecdim — Vector of dimensions**

    positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of `vecdim` represents a dimension of the input array `X`. The output `y` has length 1 in the specified operating dimensions. The other dimension lengths are the same for `X` and `y`.  

32-5415
For example, if \( X \) is a 2-by-3-by-3 array, then \( \text{range}(X, [1 2]) \) returns a 1-by-1-by-3 array. Each element of the output array is the range of the elements on the corresponding page of \( X \).

Data Types: single | double

Output Arguments

\( y \) — Difference between maximum and minimum values
scalar | vector | matrix | multidimensional array

Difference between the maximum and minimum values, returned as a scalar, vector, matrix, or multidimensional array.

Tips

- \( \text{range} \) treats NaNs as missing values and ignores them.
- \( \text{range} \) provides an easily calculated estimate of the spread of a sample. Avoid using \( \text{range} \) with data that has outliers because they have an undue influence on this statistic.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:
• The following syntaxes are not supported.
  • \( y = \text{range}(X,'all') \)
  • \( y = \text{range}(X,	ext{vecdim}) \)

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • \( y = \text{range}(X,'all') \)
  • \( y = \text{range}(X,	ext{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
\( \text{iqr} \) | \( \text{mad} \) | \( \text{std} \)

Introduced before R2006a
rangesearch

Find all neighbors within specified distance using object

Syntax

Idx = rangesearch(Mdl,Y,r)
Idx = rangesearch(Mdl,Y,r,Name,Value)
[Idx,D] = rangesearch(__)

Description

Idx = rangesearch(Mdl,Y,r) searches for all neighbors (i.e., points, rows, or observations) in Mdl.X within radius r of each point (i.e., row or observation) in the query data Y using an exhaustive search or a Kd-tree. rangesearch returns Idx, which is a column vector of the indices of Mdl.X within r units.

Idx = rangesearch(Mdl,Y,r,Name,Value) returns the indices of the observation in Mdl.X within radius r of each observation in Y with additional options specified by one or more Name,Value pair arguments. For example, you can specify to use a different distance metric than is stored in Mdl.Distance or a different distance metric parameter than is stored in Mdl.DistParameter.

[Idx,D] = rangesearch(__) additionally returns the matrix D using any of the input arguments in the previous syntaxes. D contains the distances between the observations in Mdl.X within radius r of each observation in Y. The function arranges the columns of D in ascending order by closeness, with respect to the distance metric.

Examples

Search for Neighbors Within a Radius Using Kd-tree and Exhaustive Search

rangesearch accepts ExhaustiveSearcher or KDTreeSearcher model objects to search the training data for the nearest neighbors to the query data. An
ExhaustiveSearcher model invokes the exhaustive searcher algorithm, and a KDTreeSearcher model defines a Kd-tree, which rangesearch uses to search for nearest neighbors.

Load Fisher's iris data set. Randomly reserve five observations from the data for query data. Focus on the petal dimensions.

```matlab
load fisheriris
rng(1); % For reproducibility
n = size(meas,1);
idx = randsample(n,5);
X = meas(~ismember(1:n,idx),3:4); % Training data
Y = meas(idx,3:4); % Query data

Grow a default two-dimensional Kd-tree.

MdlKDT = KDTreeSearcher(X)

MdlKDT =
 KDTreeSearcher with properties:
 BucketSize: 50
 Distance: 'euclidean'
 DistParameter: []
 X: [145x2 double]

MdlKDT is a KDTreeSearcher model object. You can alter its writable properties using dot notation.

Prepare an exhaustive nearest neighbor searcher.

MdlES = ExhaustiveSearcher(X)

MdlES =
 ExhaustiveSearcher with properties:
 Distance: 'euclidean'
 DistParameter: []
 X: [145x2 double]

MdlES is an ExhaustiveSearcher model object. It contains the options, such as the distance metric, to use to find nearest neighbors.
Alternatively, you can grow a Kd-tree or prepare an exhaustive nearest neighbor searcher using `creatsens`.

Search training data for the nearest neighbor indices that correspond to each query observation that are within a 0.5 cm radius. Conduct both types of searches and use the default settings.

```matlab
r = 0.15; % Search radius
IdxKDT = rangesearch(MdlKDT,Y,r);
IdxES = rangesearch(MdlES,Y,r);
[IdxKDT IdxES]
```

```matlab
ans = 5x2 cell array
    {1x27 double}    {1x27 double}
    {[ 13]}         {[ 13]}
    {1x27 double}    {1x27 double}
    {1x2  double}    {1x2  double}
    {1x0  double}    {1x0  double}
```

`IdxKDT` and `IdxES` are cell arrays of vectors corresponding to the indices of `X` that are within 0.15 cm of the observations in `Y`. Each row of the index matrices corresponds to a query observation.

Compare the results between the methods.

```matlab
cellfun(@isequal,IdxKDT,IdxES)
```

```matlab
ans = 5x1 logical array
    1
    1
    1
    1
    1
```

In this case, the results are the same.

Plot the results for the setosa irises.

```matlab
setosaIdx = strcmp(species(~ismember(1:n,idx)),'setosa');
XSetosa = X(setosaIdx,:);
ySetosaIdx = strcmp(species(idx),'setosa');
YSetosa = Y(ySetosaIdx,:);
```
figure;
plot(XSetosa(:,1),XSetosa(:,2),'.k');
hold on;
plot(YSetosa(:,1),YSetosa(:,2),'*r');
for j = 1:sum(ySetosaIdx)
 c = YSetosa(j,:);
 circleFun = @(x1,x2)r^2 - (x1 - c(1)).^2 - (x2 - c(2)).^2;
 ezplot(circleFun,[c(1) + [-1 1]*r, c(2) + [-1 1]*r])
end
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
title 'Setosa Petal Measurements';
legend('Observations','Query Data','Search Radius');
axis equal
hold off
Search for Neighbors Within a Radius Using the Mahalanobis Distance

Load Fisher's iris data set.

```matlab
load fisheriris
```

Remove five irises randomly from the predictor data to use as a query set.

```matlab
rng(1);                  % For reproducibility
n = size(meas,1);        % Sample size
qIdx = randsample(n,5);  % Indices of query data
```
\[X = \text{meas}(-\text{ismember}(1:n,qIdx,:),:); \]
\[Y = \text{meas}(qIdx,:); \]

Prepare a default exhaustive nearest neighbor searcher.

\[\text{Mdl} = \text{ExhaustiveSearcher}(X) \]

\[\text{Mdl} = \]
\[\text{ExhaustiveSearcher with properties:} \]
\[\quad \text{Distance: 'euclidean'} \]
\[\quad \text{DistParameter: []} \]
\[\quad \text{X: [145x4 double]} \]

\text{Mdl} \text{ is an ExhaustiveSearcher model.}

Find the indices of the training data (X) that are within 0.15 cm of each point in the query data (Y). Specify that the distances are with respect to the Mahalanobis metric.

\[r = 1; \]
\[\text{Idx} = \text{rangesearch}(\text{Mdl},Y,r,'Distance','mahalanobis') \]

\[\text{Idx} = 5x1 \text{ cell array} \]
\[\{1x15 \text{ double}\} \]
\[\{1x5 \text{ double}\} \]
\[\{1x6 \text{ double}\} \]
\[\{[\quad 84}\} \]
\[\{[\quad 69]\} \]

\text{Idx}{3}

\[\text{ans} = 1x6 \]
\[\begin{array}{cccccc}
1 & 34 & 33 & 22 & 24 & 2
\end{array} \]

Each cell of \text{Idx} corresponds to a query data observation and contains in X a vector of indices of the neighbors within 0.15cm of the query data. \text{rangesearch} arranges the indices in ascending order by distance. For example, using the Mahalanobis distance, the second nearest neighbor of \text{Y}(3,:) is \text{X}(34,:).
Compute Distances of Neighbors Within a Radius

Load Fisher's iris data set.

```matlab
load fisheriris
```

Remove five irises randomly from the predictor data to use as a query set.

```matlab
rng(4);                     % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);
```

Grow a four-dimensional Kd-tree using the training data. Specify to use the Minkowski distance for finding nearest neighbors.

```matlab
Mdl = KDTreeSearcher(X);
```

`Mdl` is a `KDTreeSearcher` model. By default, the distance metric for finding nearest neighbors is the Euclidean metric.

Find the indices of the training data (`X`) that are within 0.5 cm from each point in the query data (`Y`).

```matlab
r = 0.5;
[Idx,D] = rangesearch(Mdl,Y,r);
```

`Idx` and `D` are five-element cell arrays of vectors. The vector values in `Idx` are the indices in `X`. The `X` indices represent the observations that are within 0.5 cm of the query data, `Y`. `D` contains the distances that correspond to the observations.

Display the results for query observation 3.

```matlab
Idx{3}
ans = 1x2
    127   122

D{3}
ans = 1x2
```
The closest observation to \(Y(3,:) \) is \(X(127,:) \), which is 0.2646 cm away. The next closest is \(X(122,:) \), which is 0.4359 cm away. All other observations are greater than 0.5 cm away from \(Y(5,:) \).

Input Arguments

Mdl — Nearest neighbor searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbor searcher, specified as an ExhaustiveSearcher or KDTreeSearcher model object, respectively.

If `Mdl` is an ExhaustiveSearcher model, then `rangesearch` searches for nearest neighbors using an exhaustive search. Otherwise, `rangesearch` uses the grown Kd-tree to search for nearest neighbors.

Y — Query data
numeric matrix

Query data, specified as a numeric matrix.

\(Y \) is an \(m \)-by-\(K \) matrix. Rows of \(Y \) correspond to observations (i.e., examples), and columns correspond to predictors (i.e., variables or features). \(Y \) must have the same number of columns as the training data stored in `Mdl.X`.

Data Types: `single` | `double`

r — Search radius
nonnegative scalar

Search radius around each point in the query data, specified as a nonnegative scalar.

`rangesearch` finds all observations in `Mdl.X` that are within distance \(r \) of each observation in \(Y \). The property `Mdl.Distance` stores the distance.

Data Types: `single` | `double`
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Distance','minkowski','P',3 specifies to find all observations in Mdl.X within distance r of each observation in Y, using the Minkowski distance metric with exponent 3.

For Both Nearest Neighbor Searchers

Distance — Distance metric
Mdl.Distance (default) | 'cityblock' | 'euclidean' | 'mahalanobis' | 'minkowski' | 'seuclidean' | function handle | ...

Distance metric used to find neighbors of the training data to the query observations, specified as the comma-separated pair consisting of 'Distance' and a character vector, string scalar, or function handle.

For both types of nearest neighbor searchers, rangesearch supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
</tbody>
</table>

If Mdl is an ExhaustiveSearcher model object, then rangesearch also supports these distance metrics.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as row vectors).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, which is the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between rows in Mdl.X and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from Mdl.X. To specify another scaling, use the 'Scale' name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>

If Mdl is an ExhaustiveSearcher model object, then you can also specify a function handle for a custom distance metric by using @ (for example, @distfun). The custom distance function must:

- Have the form function D2 = distfun(ZI,ZJ).
- Take as arguments:
 - A 1-by-K vector ZI containing a single row from Mdl.X or Y, where K is the number of columns of Mdl.X.
 - An m-by-K matrix ZJ containing multiple rows of Mdl.X or Y, where m is a positive integer.
- Return an m-by-1 vector of distances D2, where D2(j) is the distance between the observations ZI and ZJ(j,:).
For more details, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric

2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P' and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.

Example: 'P',3

Data Types: single | double

For Exhaustive Nearest Neighbor Searchers

Cov — Covariance matrix for Mahalanobis distance metric

`nancov(Mdl.X)` (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K matrix, where K is the number of columns of Mdl.X. If you specify Cov and do not specify 'Distance','mahalanobis', then rangesearch returns an error message.

Example: 'Cov',eye(3)

Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric

`nanstd(Mdl.X)` (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale has length K, where K is the number of columns of Mdl.X.

The software scales each difference between the training and query data using the corresponding element of Scale. If you specify Scale and do not specify 'Distance','seuclidean', then rangesearch returns an error message.

Example: 'Scale',quantile(Mdl.X,0.75) - quantile(Mdl.X,0.25)

Data Types: single | double
Note If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and Mdl.DistParameter do not change value.

Output Arguments

Idx — Training data indices of nearest neighbors

Cell array of numeric vectors

Training data indices of nearest neighbors, returned as a cell array of numeric vectors.

Idx is an m-by-1 cell array such that cell j (Idx{j}) contains an m_j-dimensional vector of indices of the observations in Mdl.X that are within r units to the query observation Y(j,:) r. rangesearch arranges the elements of the vectors in ascending order by distance.

D — Distances of nearest neighbors to the query data

Cell array of numeric vectors

Distances of the neighbors to the query data, returned as a numeric matrix or cell array of numeric vectors.

D is an m-by-1 cell array such that cell j (D{j}) contains an m_j-dimensional vector of the distances that the observations in Mdl.X are from the query observation Y(j,:) r. All elements of the vector are less than r. The function arranges the elements of the vectors in ascending order.

Tips

knnsearch finds the k (positive integer) points in Mdl.X that are k-nearest for each Y point. In contrast, rangesearch finds all the points in Mdl.X that are within distance r (positive scalar) of each Y point.

Alternative Functionality

rangesearch is an object function of that requires an ExhaustiveSearcher or a KDTreeSearcher model object, query data, and a distance. Under equivalent conditions, rangesearch returns the same results as rangesearch when you specify the name-
value pair argument 'NSMethod','exhaustive' or 'NSMethod','kdtree', respectively.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- This table contains notes about arguments of rangesearch.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Notes and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdl</td>
<td>There are two ways to use Mdl in code generation. For an example, see "Code Generation for Nearest Neighbor Searcher" on page 31-15.</td>
</tr>
<tr>
<td></td>
<td>• Use saveCompactModel, loadCompactModel, and codegen to generate code for the rangesearch function. Save a trained model by using saveCompactModel and define an entry-point function that loads the saved model by using loadCompactModel and calls the rangesearch function. Then use codegen to generate code for the entry-point function.</td>
</tr>
<tr>
<td></td>
<td>• Include coder.Constant(Mdl) in the -args value of codegen.</td>
</tr>
<tr>
<td>'Distance'</td>
<td>• Cannot be a custom distance function.</td>
</tr>
<tr>
<td></td>
<td>• Must be a compile-time constant; its value cannot change in the generated code.</td>
</tr>
<tr>
<td>Name-value pair arguments</td>
<td>Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined exponent for the Minkowski distance in the generated code, include {coder.Constant('Distance'),coder.Constant('Min kowski'),coder.Constant('P'),0} in the -args value of codegen.</td>
</tr>
</tbody>
</table>
The sorted order of tied distances in the generated code can be different from the order in MATLAB due to numerical precision.

For code generation, `rangesearch` uses `parfor` (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the `parfor`-loops as `for`-loops. To find supported compilers, see https://www.mathworks.com/support/compilers/current_release/. To disable OpenMP library, specify the `EnableOpenMP` property of the `codegen` configuration object as `false`. For details, see `coder.CodeConfig`.

For more information, see “Introduction to Code Generation” on page 31-2 and “Code Generation for Nearest Neighbor Searcher” on page 31-15.

See Also

ExhaustiveSearcher | KDTreeSearcher | createns | knnsearch | rangesearch

Topics

“k-Nearest Neighbor Search and Radius Search” on page 18-19
“Distance Metrics” on page 18-16

Introduced in R2011b
rangesearch

Find all neighbors within specified distance using data

Syntax

idx = rangesearch(X,Y,r)
[idx,D]= rangesearch(X,Y,r)
[idx,D]= rangesearch(X,Y,r,Name,Value)

Description

idx = rangesearch(X,Y,r) finds all the X points that are within distance r of the Y points. Rows of X and Y correspond to observations, and columns correspond to variables.

[idx,D]= rangesearch(X,Y,r) returns the distances between each row of Y and the rows of X that are r or less distant.

[idx,D]= rangesearch(X,Y,r,Name,Value) finds nearby points with additional options specified by one or more Name,Value pair arguments.

Input Arguments

X

mx-by-n numeric matrix, where each row represents one n-dimensional point. The number of columns n must equal as the number of columns in Y.

Y

my-by-n numeric matrix, where each row represents one n-dimensional point. The number of columns n must equal as the number of columns in X.
Search radius, a scalar.

\(r \)

rangesearch finds all \(X \) points (rows) that are within distance \(r \) of each \(Y \) point. The meaning of distance depends on the Distance name-value pair.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BucketSize

Maximum number of data points in the leaf node of the \(kd \)-tree. This argument is only meaningful when \(kd \)-tree is used for finding nearest neighbors.

Default: 50

Cov

Positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This argument is only valid when the Distance name-value pair argument is 'mahalanobis'.

Default: \(\text{nancov}(X) \)

Distance

Character vector, string scalar, or function handle specifying the distance metric.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between (X) and a query point is scaled, meaning divided by a scale value (S). The default value of (S) is the standard deviation computed from (X), (S = \text{nanstd}(X)). To specify another value for (S), use the Scale name-value pair argument.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is the sample covariance matrix of X, as computed by nancov(X). To specify a different value for C, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'P' name-value pair argument.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, the percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>@distfun</td>
<td>Distance function handle. distfun has the form function D2 = distfun(ZI,ZJ) ... where • ZI is a 1-by-N vector containing one row of X or Y. • ZJ is an M2-by-N matrix containing multiple rows of X or Y. • D2 is an M2-by-1 vector of distances, and D2(k) is the distance between the observations ZI and ZJ(k,:)</td>
</tr>
</tbody>
</table>

For definitions, see “Distance Metrics” on page 18-16.

Default: NS.Distance
NSMethod

Nearest neighbor search method.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'kdtree'</td>
<td>Creates and uses a kd-tree to find nearest neighbors. 'kdtree' is only valid when the distance metric is one of:</td>
</tr>
<tr>
<td></td>
<td>• 'chebychev'</td>
</tr>
<tr>
<td></td>
<td>• 'cityblock'</td>
</tr>
<tr>
<td></td>
<td>• 'euclidean'</td>
</tr>
<tr>
<td></td>
<td>• 'minkowski'</td>
</tr>
<tr>
<td>'exhaustive'</td>
<td>Uses the exhaustive search algorithm. The distances from all X points to each Y point are computed to find nearest neighbors.</td>
</tr>
</tbody>
</table>

Default: 'kdtree' when the number of columns of X is not greater than 10, X is not sparse, and the distance metric is one of the valid 'kdtree' metrics. Otherwise, the default is 'exhaustive'.

P

Positive scalar indicating the exponent of Minkowski distance. This argument is only valid when the Distance name-value pair argument is 'minkowski'.

Default: 2

Scale

Vector S containing nonnegative values, with length equal to the number of columns in X. Each coordinate difference between X and a query point is scaled by the corresponding element of S. This argument is only valid when the Distance name-value pair argument is 'seuclidean'.

Default: nanstd(X)
Output Arguments

idx

my-by-1 cell array, where my is the number of rows in Y. idx{I} contains the indices of points (rows) in X whose distances to Y(I,:) are not greater than r. The entries in idx{I} are in ascending order of distance.

D

my-by-1 cell array, where my is the number of rows in Y. D{I} contains the distance values between Y(I,:) and the corresponding points in idx{I}.

Examples

Find the X points that are within a Euclidean distance 1.5 of each Y point. Both X and Y are samples of 5-D normally distributed variables.

rng('default') % for reproducibility
X = randn(100,5);
Y = randn(10,5);
[idx, dist] = rangesearch(X,Y,1.5)

idx =
 [1x7 double]
 [1x2 double]
 [1x11 double]
 [1x2 double]
 [1x12 double]
 [1x9 double]
 [89]
 [1x0 double]
 [1x0 double]
 [1x0 double]

dist =
 [1x7 double]
 [1x2 double]
 [1x11 double]
 [1x2 double]
 [1x12 double]
 [1x9 double]
In this case, the last three Y points are more than 1.5 distant from any X point. X(89,:) is 1.1739 distant from Y(7,:), and there is no other X point that is within distance 1.5 of Y(7,:). There are 12 points in X within distance 1.5 of Y(5,:).

Definitions

Distance Metrics

For definitions, see “Distance Metrics” on page 18-16.

Tips

• For a fixed positive integer K, knnsearch finds K points in X that are nearest each Y point. In contrast, for a fixed positive real value r, rangesearch finds all the X points that are within a distance r of each Y point.

Algorithms

For an overview of the kd-tree algorithm, see “k-Nearest Neighbor Search Using a Kd-Tree” on page 18-21.

The exhaustive search algorithm finds the distance of each point in X to each point in Y.

Alternatives

rangesearch is the ExhaustiveSearcher function for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'exhaustive'.

rangesearch is the KDTreeSearcher function for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'kdtree'.

[1.1739]
[1x0 double]
[1x0 double]
[1x0 double]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- For code generation, the default value of the 'NSMethod' name-value pair argument is 'exhaustive' when the number of columns in X is greater than 7.
- The value of the 'Distance' name-value pair argument must be a compile-time constant and cannot be a custom distance function.
- Names in name-value pair arguments must be compile-time constants. For example, to allow a user-defined exponent for the Minkowski distance in the generated code, include
 {coder.Constant('Distance'),coder.Constant('Minkowski'),coder.Constant('P'),0} in the -args value of codegen.
- The sorted order of tied distances in the generated code can be different from the order in MATLAB due to numerical precision.
- For code generation, rangesearch uses parfor (by default) to create loops that run in parallel on supported shared-memory multicore platforms. If your compiler does not support the Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB Coder treats the parfor-loops as for-loops. To find supported compilers, see https://www.mathworks.com/support/compilers/current_release/. To disable OpenMP library, specify the EnableOpenMP property of the codegen configuration object as false. For details, see coder.CodeConfig.

For more information on code generation, see “Introduction to Code Generation” on page 31-2 and “General Code Generation Workflow” on page 31-5.

See Also
ExhaustiveSearcher | KDTreeSearcher | createns | knnsearch | pdist2

Topics
“k-Nearest Neighbor Search and Radius Search” on page 18-19
Introduced in R2011b
ranksum

Wilcoxon rank sum test

Syntax

\[p = \text{ranksum}(x,y) \]
\[[p,h] = \text{ranksum}(x,y) \]
\[[p,h,stats] = \text{ranksum}(x,y) \]
\[[___] = \text{ranksum}(x,y,\text{Name,Value}) \]

Description

\[p = \text{ranksum}(x,y) \] returns the \(p \)-value of a two-sided Wilcoxon rank sum test on page 32-5445. \text{ranksum} tests the null hypothesis that data in \(x \) and \(y \) are samples from continuous distributions with equal medians, against the alternative that they are not. The test assumes that the two samples are independent. \(x \) and \(y \) can have different lengths.

This test is equivalent to a Mann-Whitney U-test.

\[[p,h] = \text{ranksum}(x,y) \] also returns a logical value indicating the test decision. The result \(h = 1 \) indicates a rejection of the null hypothesis, and \(h = 0 \) indicates a failure to reject the null hypothesis at the 5\% significance level.

\[[p,h,stats] = \text{ranksum}(x,y) \] also returns the structure \text{stats} with information about the test statistic.

\[[___] = \text{ranksum}(x,y,\text{Name,Value}) \] returns any of the output arguments in the previous syntaxes, for a rank sum test with additional options specified by one or more \text{Name,Value} pair arguments.

Examples
Test for Equal Median of Two Populations

Test the hypothesis of equal medians for two independent unequal-sized samples.

Generate sample data.

```matlab
rng('default') % for reproducibility
x = unifrnd(0,1,10,1);
y = unifrnd(0.25,1.25,15,1);
```

These samples come from populations with identical distributions except for a shift of 0.25 in the location.

Test the equality of medians of \(x\) and \(y\).

```matlab
p = ranksum(x,y)
p = 0.0375
```

The \(P\)-value of 0.0375 indicates that `ranksum` rejects the null hypothesis of equal medians at the default 5% significance level.

Statistics of the Test for Two Population Medians

Obtain the statistics of the test for the equality of two population medians.

Load the sample data.

```matlab
load mileage
```

Test if the mileage per gallon is the same for the first and second type of cars.

```matlab
[p,h,stats] = ranksum(mileage(:,1),mileage(:,2))
p = 0.0043
h = logical
   1

stats = struct with fields:
    ranksum: 21.5000
```
Both the \(p \)-value, 0.043, and \(h = 1 \) indicate the rejection of the null hypothesis of equal medians at the default 5% significance level. Because the sample sizes are small (six each), \texttt{ranksum} calculates the \(p \)-value using the exact method. The structure \texttt{stats} includes only the value of the rank sum test statistic.

Increase in the Median

Test the hypothesis of an increase in the population median.

Load the sample data.

\[
\text{load(fullfile(matlabroot,'examples','stats','weather.mat'));}
\]

The weather data shows the daily high temperatures taken in the same month in two consecutive years.

Perform a left-sided test to assess the increase in the median at the 1% significance level.

\[
[p,h,stats] = \text{ranksum(year1,year2,'alpha',0.01,...
'tail','left')}
\]

\[
p = 0.1271
\]

\[
h = \text{logical}
\]

\[
0
\]

\[
\text{stats} = \text{struct with fields:}
\]

\[
\quad \text{zval: -1.1403}
\]

\[
\quad \text{ranksum: 837.5000}
\]

Both the \(p \)-value of 0.1271 and \(h = 0 \) indicate that there is not enough evidence to reject the null hypothesis and conclude that there is a positive shift in the median of observed high temperatures in the same month from year 1 to year 2 at the 1% significance level.

Notice that \texttt{ranksum} uses the approximate method to calculate the \(p \)-value due to the large sample sizes.

Use the exact method to calculate the \(p \)-value.
[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...
'tail','left','method','exact')

p = 0.1273
h = logical
 0

stats = struct with fields:
 ranksum: 837.5000

The results of the approximate and exact methods are consistent with each other.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.

Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. The length of y does not have to be the same as the length of x.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a right-tailed rank sum test with 1% significance level, which returns the approximate p-value.
alpha — Significance level

0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range 0 to 1. The significance level of h is 100 * alpha%.

Example: 'alpha', 0.01

Data Types: double | single

method — Computation method of the p-value

'exact' | 'approximate'

Computation method of the p-value, p, specified as the comma-separated pair consisting of 'method' and one of the following:

<table>
<thead>
<tr>
<th>'exact'</th>
<th>Exact computation of the p-value, p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'approximate'</td>
<td>Normal approximation while computing the p-value, p.</td>
</tr>
</tbody>
</table>

When 'method' is unspecified, the default is:

- 'exact' if min(n_x,n_y) < 10 and n_x + n_y < 20
- 'approximate' otherwise

n_x and n_y are the sizes of the samples in x and y, respectively.

Example: 'method','exact'

tail — Type of test

'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:

<table>
<thead>
<tr>
<th>'both'</th>
<th>Two-sided hypothesis test, where the alternative hypothesis states that x and y have different medians. Default test type if 'tail' is not specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'right'</td>
<td>Right-tailed hypothesis test, where the alternative hypothesis states that the median of x is greater than the median of y.</td>
</tr>
<tr>
<td>'left'</td>
<td>Left-tailed hypothesis test, where the alternative hypothesis states that the median of x is less than the median of y.</td>
</tr>
</tbody>
</table>
Example: 'tail','left'

Output Arguments

p — p-value of the test
nonnegative scalar

p-value of the test, returned as a positive scalar from 0 to 1. *p* is the probability of observing a test statistic as or more extreme than the observed value under the null hypothesis. `ranksum` computes the two-sided *p*-value by doubling the most significant one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

- If *h* = 1, this indicates rejection of the null hypothesis at the 100 * alpha% significance level.
- If *h* = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha% significance level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in `stats` are:

- `ranksum`: Value of the rank sum test statistic
- `zval`: Value of the z-statistic on page 32-5446 (computed when 'method' is 'approximate')

Definitions

Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric test for two populations when samples are independent. If X and Y are independent samples with different sample sizes, the test statistic which `ranksum` returns is the rank sum of the first sample.
The Wilcoxon rank sum test is equivalent to the Mann-Whitney U-test. The Mann-Whitney U-test is a nonparametric test for equality of population medians of two independent samples \(X \) and \(Y \).

The Mann-Whitney U-test statistic, \(U \), is the number of times a \(y \) precedes an \(x \) in an ordered arrangement of the elements in the two independent samples \(X \) and \(Y \). It is related to the Wilcoxon rank sum statistic in the following way: If \(X \) is a sample of size \(n_X \), then

\[
U = W - \frac{n_X(n_X + 1)}{2}.
\]

z-Statistic

For large samples, `ranksum` uses a z-statistic to compute the approximate \(p \)-value of the test.

If \(X \) and \(Y \) are two independent samples of size \(n_X \) and \(n_Y \), where \(n_X < n_Y \) the z-statistic is

\[
z = \frac{W - E(W)}{\sqrt{V(W)}} = \frac{W - \left[\frac{n_Xn_Y + n_X(n_X + 1)}{2} \right] - 0.5 \cdot \text{sign}(W - E(W))}{\sqrt{\frac{n_Xn_Y(n_X + n_Y + 1) - \text{tiescor}}{12},}}
\]

with continuity correction and tie adjustment. Here \(\text{tiescor} \) is given by

\[
\text{tiescor} = \frac{2 \cdot \text{tieadj}}{(n_X + n_Y)(n_X + n_Y - 1)},
\]

where `ranksum` uses \([\text{ranks}, \text{tieadj}] = \text{tiedrank}(x, y)\) to obtain tie adjustments. The standard normal distribution gives the \(p \)-value for this \(z \)-statistic.

Algorithms

`ranksum` treats NaNs in \(x \) and \(y \) as missing values and ignores them.
For a two-sided test of medians with unequal sample sizes, the test statistic that `ranksum` returns is the rank sum of the first sample.

References

See Also

`kruskalwallis`, `signrank`, `signtest`, `ttest2`

Introduced before R2006a
ranova

Class: RepeatedMeasuresModel

Repeated measures analysis of variance

Syntax

```matlab
ranovatbl = ranova(rm)
ranovatbl = ranova(rm,'WithinModel',WM)
[ranovatbl,A,C,D] = ranova(__)
```

Description

`ranovatbl = ranova(rm)` returns the results of repeated measures analysis of variance for a repeated measures model `rm` in table `ranovatbl`.

`ranovatbl = ranova(rm,'WithinModel',WM)` returns the results of repeated measures analysis of variance using the responses specified by the within-subject model `WM`.

`[ranovatbl,A,C,D] = ranova(__)` also returns arrays `A`, `C`, and `D` for the hypotheses tests of the form `A*B*C = D`, where `D` is zero.

Input Arguments

- **`rm` — Repeated measures model**
 RepeatedMeasuresModel object

 Repeated measures model, returned as a RepeatedMeasuresModel object.

 For properties and methods of this object, see RepeatedMeasuresModel.

- **`WM` — Model specifying responses**
 'separatemeans' (default) | `r`-by-`nc` contrast matrix | character vector or string scalar that defines a model specification
Model specifying the responses, specified as one of the following:

- 'separatemeans' — Compute a separate mean for each group.
- C — r-by-nc contrast matrix specifying the nc contrasts among the r repeated measures. If Y represents a matrix of repeated measures, ranova tests the hypothesis that the means of Y*C are zero.
- A character vector or string scalar that defines a model specification in the within-subject factors. You can define the model based on the rules for the terms in the modelspec argument of fitrm. Also see “Model Specification for Repeated Measures Models” on page 9-78.

For example, if there are three within-subject factors w1, w2, and w3, then you can specify a model for the within-subject factors as follows.

Example: 'WithinModel','w1+w2+w2*w3'

Data Types: single | double | char | string

Output Arguments

ranovatbl — Results of repeated measures anova table

Results of repeated measures anova, returned as a table.

ranovatbl includes a term representing all differences across the within-subjects factors. This term has either the name of the within-subjects factor if specified while fitting the model, or the name Time if the name of the within-subjects factor is not specified while fitting the model or there are more than one within-subjects factors. **ranovatbl** also includes all interactions between the terms in the within-subject model and all between-subject model terms. It contains the following columns.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SumSq</td>
<td>Sum of squares.</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom.</td>
</tr>
<tr>
<td>MeanSq</td>
<td>Mean squared error.</td>
</tr>
<tr>
<td>F</td>
<td>F-statistic.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>pValue</td>
<td>p-value for the corresponding F-statistic. A small p-value indicates significant term effect.</td>
</tr>
<tr>
<td>pValueGG</td>
<td>p-value with Greenhouse-Geisser adjustment.</td>
</tr>
<tr>
<td>pValueHF</td>
<td>p-value with Huynh-Feldt adjustment.</td>
</tr>
<tr>
<td>pValueLB</td>
<td>p-value with Lower bound adjustment.</td>
</tr>
</tbody>
</table>

The last three *p*-values are the adjusted *p*-values for use when the compound symmetry assumption is not satisfied. For details, see “Compound Symmetry Assumption and Epsilon Corrections” on page 9-80. The `mauchy` method tests for sphericity (hence, compound symmetry) and `epsilon` method returns the epsilon adjustment values.

A — Specification based on between-subjects model

Matrix | Cell array

Specification based on the between-subjects model, returned as a matrix or a cell array. It permits the hypothesis on the elements within given columns of B (within time hypothesis). If `ranovatbl` contains multiple hypothesis tests, A might be a cell array.

Data Types: `single` | `double` | `cell`

C — Specification based on within-subjects model

Matrix | Cell array

Specification based on the within-subjects model, returned as a matrix or a cell array. It permits the hypotheses on the elements within given rows of B (between time hypotheses). If `ranovatbl` contains multiple hypothesis tests, C might be a cell array.

Data Types: `single` | `double` | `cell`

D — Hypothesis value

0

Hypothesis value, returned as 0.

Examples
Repeated Measures Analysis of Variance

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),... 'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

There are four measurements, three types of species, and 150 observations. So, degrees of freedom for measurements is (4−1) = 3, for species-measurements interaction it is (4−1)*(3−1) = 6, and for error it is (150−4)*(3−1) = 441. ranova computes the last three \(p \)-values using Greenhouse-Geisser, Huynh-Feldt, and Lower bound corrections, respectively. You can check the compound symmetry (sphericity) assumption using the mauchly method, and display the epsilon corrections using the epsilon method.
Longitudinal Data

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','longitudinalData.mat'));
```

The matrix `Y` contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of `Y` corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

```matlab
Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M'];
```

Store the data in a proper table array format to do repeated measures analysis.

```matlab
t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...'
VariableNames',{'Gender','t0','t2','t4','t6','t8'});
```

Define the within-subjects variable.

```matlab
Time = [0 2 4 6 8]';
```

Fit a repeated measures model, where the blood levels are the responses and gender is the predictor variable.

```matlab
rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);
```

Perform repeated measures analysis of variance.

```matlab
ranovatbl = ranova(rm)
```

```
ranovatbl=3×8 table

<table>
<thead>
<tr>
<th>SumSq</th>
<th>DF</th>
<th>MeanSq</th>
<th>F</th>
<th>pValue</th>
<th>pValueGG</th>
<th>pValueHF</th>
<th>pValueLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept):Time     881.7  4  220.43  37.539  3.0348e-15  4.7325e-09  2.4439e-10  2.6198e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender:Time          17.65  4  4.4125  0.75146  0.56126  0.4877  0.50707  0.40063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error(Time)         328.83 56  5.872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

There are 5 time points, 2 genders, and 16 observations. So, the degrees of freedom for time is (5–1) = 4, for gender-time interaction it is (5–1)*(2–1) = 4, and for error it is (16–2)*(5–1) = 56. The small \(P \)-value of 2.6198e–05 indicates that there is a significant effect
of time on blood pressure. The p-value of 0.40063 indicates that there is no significant gender-time interaction.

Specify the Within-Subjects Model

Load the sample data.

```matlab
load repeatedmeas
```

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated measures y_1 through y_8 as responses. The table within includes the within-subject variables w_1 and w_2. This is simulated data.

Fit a repeated measures model, where the repeated measures y_1 through y_8 are the responses, and age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the within-subject design matrix.

```matlab
rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);
```

Perform repeated measures analysis of variance.

```matlab
ranovatbl = ranova(rm)
```

ranovatbl

```matlab
7×8 table

<table>
<thead>
<tr>
<th>SumSq</th>
<th>DF</th>
<th>MeanSq</th>
<th>F</th>
<th>pValue</th>
<th>pValueGG</th>
<th>pValueHF</th>
<th>pValueLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept):Time</td>
<td>6645.2</td>
<td>7</td>
<td>949.31</td>
<td>2.2689</td>
<td>0.031674</td>
<td>0.071235</td>
<td>0.056257</td>
</tr>
<tr>
<td>Age:Time</td>
<td>5824.3</td>
<td>7</td>
<td>832.05</td>
<td>1.9887</td>
<td>0.059978</td>
<td>0.10651</td>
<td>0.090128</td>
</tr>
<tr>
<td>IQ:Time</td>
<td>5188.3</td>
<td>7</td>
<td>741.18</td>
<td>1.7715</td>
<td>0.096749</td>
<td>0.14492</td>
<td>0.12892</td>
</tr>
<tr>
<td>Group:Time</td>
<td>15800</td>
<td>14</td>
<td>1128.6</td>
<td>2.6975</td>
<td>0.0014425</td>
<td>0.011884</td>
<td>0.0064346</td>
</tr>
<tr>
<td>Gender:Time</td>
<td>4455.8</td>
<td>7</td>
<td>636.55</td>
<td>1.5214</td>
<td>0.16381</td>
<td>0.20533</td>
<td>0.19258</td>
</tr>
<tr>
<td>Group:Gender:Time</td>
<td>4247.3</td>
<td>14</td>
<td>303.38</td>
<td>0.72511</td>
<td>0.74677</td>
<td>0.663</td>
<td></td>
</tr>
<tr>
<td>Error(Time)</td>
<td>64433</td>
<td>154</td>
<td>418.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Specify the model for the within-subject factors. Also display the matrices used in the hypothesis test.

```matlab
[rannovatbl,A,C,D] = ranova(rm,'WithinModel','w1+w2')
```
ranovatbl=21×8 table

<table>
<thead>
<tr>
<th></th>
<th>SumSq</th>
<th>DF</th>
<th>MeanSq</th>
<th>F</th>
<th>pValue</th>
<th>pValueGG</th>
<th>pValueHF</th>
<th>pValueLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3141.7</td>
<td>1</td>
<td>3141.7</td>
<td>2.5034</td>
<td>0.12787</td>
<td>0.12787</td>
<td>0.12787</td>
<td>0.12787</td>
</tr>
<tr>
<td>Age</td>
<td>537.48</td>
<td>1</td>
<td>537.48</td>
<td>0.42828</td>
<td>0.51962</td>
<td>0.51962</td>
<td>0.51962</td>
<td>0.51962</td>
</tr>
<tr>
<td>IQ</td>
<td>2975.9</td>
<td>1</td>
<td>2975.9</td>
<td>2.3712</td>
<td>0.13785</td>
<td>0.13785</td>
<td>0.13785</td>
<td>0.13785</td>
</tr>
<tr>
<td>Group</td>
<td>20836</td>
<td>2</td>
<td>10418</td>
<td>8.3012</td>
<td>0.00206</td>
<td>0.00206</td>
<td>0.00206</td>
<td>0.00206</td>
</tr>
<tr>
<td>Gender</td>
<td>3036.3</td>
<td>1</td>
<td>3036.3</td>
<td>2.4194</td>
<td>0.13411</td>
<td>0.13411</td>
<td>0.13411</td>
<td>0.13411</td>
</tr>
<tr>
<td>Group:Gender</td>
<td>211.8</td>
<td>2</td>
<td>105.9</td>
<td>0.08438</td>
<td>0.91937</td>
<td>0.91937</td>
<td>0.91937</td>
<td>0.91937</td>
</tr>
<tr>
<td>Error</td>
<td>27609</td>
<td>22</td>
<td>1255</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(Intercept):w1</td>
<td>146.75</td>
<td>1</td>
<td>146.75</td>
<td>0.23326</td>
<td>0.63389</td>
<td>0.63389</td>
<td>0.63389</td>
<td>0.63389</td>
</tr>
<tr>
<td>Age:w1</td>
<td>942.02</td>
<td>1</td>
<td>942.02</td>
<td>1.4974</td>
<td>0.23402</td>
<td>0.23402</td>
<td>0.23402</td>
<td>0.23402</td>
</tr>
<tr>
<td>IQ:w1</td>
<td>11.563</td>
<td>1</td>
<td>11.563</td>
<td>0.01838</td>
<td>0.89339</td>
<td>0.89339</td>
<td>0.89339</td>
<td>0.89339</td>
</tr>
<tr>
<td>Group:w1</td>
<td>4481.9</td>
<td>2</td>
<td>2240.9</td>
<td>3.562</td>
<td>0.04569</td>
<td>0.04569</td>
<td>0.04569</td>
<td>0.04569</td>
</tr>
<tr>
<td>Gender:w1</td>
<td>270.65</td>
<td>1</td>
<td>270.65</td>
<td>0.4302</td>
<td>0.51869</td>
<td>0.51869</td>
<td>0.51869</td>
<td>0.51869</td>
</tr>
<tr>
<td>Group:Gender:w1</td>
<td>240.37</td>
<td>2</td>
<td>120.19</td>
<td>0.19104</td>
<td>0.82746</td>
<td>0.82746</td>
<td>0.82746</td>
<td>0.82746</td>
</tr>
<tr>
<td>Error(w1)</td>
<td>13841</td>
<td>22</td>
<td>629.12</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(Intercept):w2</td>
<td>3663.8</td>
<td>3</td>
<td>1221.3</td>
<td>3.8381</td>
<td>0.01351</td>
<td>0.02033</td>
<td>0.01575</td>
<td>0.06289</td>
</tr>
<tr>
<td>Age:w2</td>
<td>1199.9</td>
<td>3</td>
<td>399.95</td>
<td>1.2569</td>
<td>0.27432</td>
<td>0.27462</td>
<td>0.27462</td>
<td>0.27462</td>
</tr>
</tbody>
</table>

A = 6x1 cell array
{1x8 double}
{1x8 double}
{1x8 double}
{2x8 double}
{1x8 double}
{2x8 double}

C = 1x3 cell array
{8x1 double} {8x1 double} {8x3 double}

D = 0

Display the contents of A.

[A{1};A{2};A{3};A{4};A{5};A{6}]

ans = 8x8

1 0 0 0 0 0 0 0

32-5454
Display the contents of C.

[C\{1\} C\{2\} C\{3\}]

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Algorithms

`ranova` computes the regular p-value (in the `pValue` column of the `rmanova` table) using the F-statistic cumulative distribution function:

\[
p\text{-value} = 1 - \text{fcdf}(F, v_1, v_2).
\]

When the compound symmetry assumption is not satisfied, `ranova` uses a correction factor epsilon, ε, to compute the corrected p-values as follows:

\[
p\text{-value_corrected} = 1 - \text{fcdf}(F, \varepsilon v_1, \varepsilon v_2).
\]

The `mauchly` method tests for sphericity (hence, compound symmetry) and `epsilon` method returns the epsilon adjustment values.
See Also
anova | epsilon | fitrm | manova | mauchly

Topics
“Model Specification for Repeated Measures Models” on page 9-78
“Compound Symmetry Assumption and Epsilon Corrections” on page 9-80
“Mauchly’s Test of Sphericity” on page 9-82
raylcdf

Rayleigh cumulative distribution function

Syntax

\[p = \text{raylcdf}(x,b) \]
\[p = \text{raylcdf}(x,b,'upper') \]

Description

\[p = \text{raylcdf}(x,b) \] returns the Rayleigh cdf at each value in \(x \) using the corresponding scale parameter, \(b \). \(x \) and \(b \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \(x \) or \(b \) is expanded to a constant array with the same dimensions as the other input.

\[p = \text{raylcdf}(x,b,'upper') \] returns the complement of the Rayleigh cdf at each value in \(x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The Rayleigh cdf is

\[y = F(x \mid b) = \int_0^x \frac{t}{b^2} e^{-\frac{t^2}{2b^2}} dt \]

Examples

Compute and Plot Rayleigh Distribution cdf

Compute the cdf of a Rayleigh distribution with parameter \(B = 1 \).

\[x = 0:0.1:3; \]
\[p = \text{raylcdf}(x,1); \]
Plot the cdf.

```matlab
figure;
plot(x,p)
```

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | raylfit | raylinv | raylpdf | raylrnd | raylstat

Topics
“Rayleigh Distribution” on page B-140

Introduced before R2006a
raylfit

Rayleigh parameter estimates

Syntax

raylfit(data,alpha)
[phat,pci] = raylfit(data,alpha)

Description

raylfit(data,alpha) returns the maximum likelihood estimates of the parameter of the Rayleigh distribution given the data in the vector data.

[phat,pci] = raylfit(data,alpha) returns the maximum likelihood estimate and 100(1 - alpha)% confidence interval given the data. The default value of the optional parameter alpha is 0.05, corresponding to 95% confidence intervals.

See Also

mle | raylcdf | raylinv | raylpdf | raylrnd | raylstat

Topics

“Rayleigh Distribution” on page B-140

Introduced before R2006a
raylinv

Rayleigh inverse cumulative distribution function

Syntax

X = raylinv(P,B)

Description

X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution function using the corresponding scale parameter, B at the corresponding probabilities in P. P and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for P or B is expanded to a constant array with the same dimensions as the other input.

Examples

x = raylinv(0.9,1)
x = 2.1460

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
raylcdf | raylpdf | raylrnd | raylstat

Topics
“Rayleigh Distribution” on page B-140

Introduced before R2006a
raylpdf

Rayleigh probability density function

Syntax

\[Y = \text{raylpdf}(X,B) \]

Description

\[Y = \text{raylpdf}(X,B) \] computes the Rayleigh pdf at each of the values in \(X \) using the corresponding scale parameter, \(B \). \(X \) and \(B \) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(Y \). A scalar input for \(X \) or \(B \) is expanded to a constant array with the same dimensions as the other input.

The Rayleigh pdf is

\[y = f(x | b) = \frac{x}{b^2} e^{-\frac{x^2}{2b^2}} \]

Examples

Compute and Plot Rayleigh Distribution pdf

Compute the pdf of a Rayleigh distribution with parameter \(B = 0.5 \).

\[
\begin{align*}
x &= [0:0.01:2]; \\
p &= \text{raylpdf}(x,0.5);
\end{align*}
\]

Plot the pdf.

\[
\begin{align*}
\text{figure; } \\
\text{plot(x,p)}
\end{align*}
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
pdf | raylcdf | raylfit | raylinv | raylrnd | raylstat

Topics
“Rayleigh Distribution” on page B-140

Introduced before R2006a
raylrnd
Rayleigh random numbers

Syntax
R = raylrnd(B)
R = raylrnd(B,v)
R = raylrnd(B,m,n)

Description
R = raylrnd(B) returns a matrix of random numbers chosen from the Rayleigh distribution with scale parameter, B. B can be a vector, a matrix, or a multidimensional array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter B, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter B, where scalars m and n are the row and column dimensions of R.

Examples
r = raylrnd(1:5)
r =
1.7986 0.8795 3.3473 8.9159 3.5182
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
random | raylcdf | raylfit | raylinv | raylpdf | raylstat

Topics
“Rayleigh Distribution” on page B-140

Introduced before R2006a
raylstat

Rayleigh mean and variance

Syntax

\[[M,V] = \text{raylstat}(B) \]

Description

\[[M,V] = \text{raylstat}(B) \] returns the mean of and variance for the Rayleigh distribution with scale parameter \(B \).

The mean of the Rayleigh distribution with parameter \(b \) is \(b\sqrt{\pi}/2 \) and the variance is

\[
\frac{4 - \pi}{2} b^2
\]

Examples

\[
\begin{align*}
[mn,v] &= \text{raylstat}(1) \\
mn &= \\
&= 1.2533 \\
v &= \\
&= 0.4292
\end{align*}
\]

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
raylcdf | raylfit | raylinv | raylpdf | raylrnd

Topics
“Rayleigh Distribution” on page B-140

Introduced before R2006a
rcoplot

Residual case order plot

Syntax

rcoplot(r,rint)

Description

rcoplot(r,rint) displays an errorbar plot of the confidence intervals on the residuals from a regression. The residuals appear in the plot in case order. Inputs r and rint are outputs from the regress function.

Examples

The following plots residuals and prediction intervals from a regression of a linearly additive model to the data in moore.mat:

```matlab
load moore
X = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
alpha = 0.05;
[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha);
coplot(res,Ires)
```
The interval around the first residual, shown in red, does not contain zero. This indicates that the residual is larger than expected in 95% of new observations, and suggests the data point is an outlier.

See Also

regress

Introduced before R2006a
ReconstructionICA

Feature extraction by reconstruction ICA

Description

ReconstructionICA applies reconstruction independent component analysis (RICA) to learn a transformation that maps input predictors to new predictors.

Creation

Create a ReconstructionICA object by using the rica function.

Properties

FitInfo — Fitting history
structure

This property is read-only.

Fitting history, returned as a structure with two fields:

• Iteration — Iteration numbers from 0 through the final iteration.
• Objective — Objective function value at each corresponding iteration. Iteration 0 corresponds to the initial values, before any fitting.

Data Types: struct

InitialTransformWeights — Initial feature transformation weights
p-by-q matrix

This property is read-only.

Initial feature transformation weights, returned as a p-by-q matrix, where p is the number of predictors passed in X and q is the number of features that you want. These weights
are the initial weights passed to the creation function. The data type is single when the training data \(X \) is single.

Data Types: single | double

ModelParameters — Parameters for training model

structure

This property is read-only.

Parameters for training the model, returned as a structure. The structure contains a subset of the fields that correspond to the rica name-value pairs that were in effect during model creation:

- **IterationLimit**
- **VerbosityLevel**
- **Lambda**
- **Standardize**
- **ContrastFcn**
- **GradientTolerance**
- **StepTolerance**

For details, see the rica Name,Value on page 32-5972 pairs.

Data Types: struct

Mu — Predictor means when standardizing

p-by-1 vector

This property is read-only.

Predictor means when standardizing, returned as a p-by-1 vector. This property is nonempty when the Standardize name-value pair is true at model creation. The value is the vector of predictor means in the training data. The data type is single when the training data \(X \) is single.

Data Types: single | double

NonGaussianityIndicator — Non-Gaussianity of sources

length-q vector of \(\pm 1 \)

This property is read-only.
Non-Gaussianity of sources, returned as a length-
q
vector of ±1.

- \text{NonGaussianityIndicator}(k) = 1 \text{ means rica models the } k\text{th source as sub-
Gaussian.}
- \text{NonGaussianityIndicator}(k) = -1 \text{ means rica models the } k\text{th source as super-
Gaussian, with a sharp peak at 0.}

Data Types: double

NumLearnedFeatures — Number of output features

positive integer

This property is read-only.

Number of output features, returned as a positive integer. This value is the q argument
passed to the creation function, which is the requested number of features to learn.

Data Types: double

NumPredictors — Number of input predictors

positive integer

This property is read-only.

Number of input predictors, returned as a positive integer. This value is the number of
predictors passed in \(X \) to the creation function.

Data Types: double

Sigma — Predictor standard deviations when standardizing

p-by-1 vector

This property is read-only.

Predictor standard deviations when standardizing, returned as a p-by-1 vector. This
property is nonempty when the \text{Standardize} name-value pair is \text{true} at model creation.
The value is the vector of predictor standard deviations in the training data. The data type
is single when the training data \(X \) is single.

Data Types: single | double

TransformWeights — Feature transformation weights

p-by-q matrix
This property is read-only.

Feature transformation weights, returned as a \(p \)-by-\(q \) matrix, where \(p \) is the number of predictors passed in \(X \) and \(q \) is the number of features that you want. The data type is single when the training data \(X \) is single.

Data Types: single | double

Object Functions

transform Transform predictors into extracted features

Examples

Create Reconstruction ICA Object

Create a ReconstructionICA object by using the rica function.

Load the caltech101 image patches.

data = load('caltech101patches');
size(data.X)
ans = 1x2

100000 363

There are 100,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
q = 100;
Mdl = rica(data.X,q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

Mdl =
 ReconstructionICA
 ModelParameters: [1x1 struct]
NumPredictors: 363
NumLearnedFeatures: 100
Mu: []
Sigma: []
FitInfo: [1x1 struct]
TransformWeights: [363x100 double]
InitialTransformWeights: []
NonGaussianityIndicator: [100x1 double]

Properties, Methods

rica issues a warning because it stopped due to reaching the iteration limit, instead of reaching a step-size limit or a gradient-size limit. You can still use the learned features in the returned object by calling the transform function.

See Also
SparseFiltering | rica | sparsefilt | transform

Topics
“Feature Extraction Workflow” on page 15-165
“Extract Mixed Signals” on page 15-201
“Feature Extraction” on page 15-159

Introduced in R2017a
refcurve

Add reference curve to plot

Syntax

refcurve(p)
refcurve
hcurve = refcurve(...)

Description

refcurve(p) adds a polynomial reference curve with coefficients p to the current axes. If p is a vector with n+1 elements, the curve is:

\[y = p(1)x^n + p(2)x^{(n-1)} + \ldots + p(n)x + p(n+1) \]

refcurve with no input arguments adds a line along the x axis.

hcurve = refcurve(...) returns the handle hcurve to the curve.

Examples

Add Population and Fitted Mean Functions

Generate data with a polynomial trend.

\[
p = [1 -2 -1 0];
t = 0:0.1:3;
rng default \quad \% For reproducibility
y = polyval(p,t) + 0.5*randn(size(t));
\]

Plot data and add the population mean function using refcurve.
plot(t,y,'ro')
h = refcurve(p);
h.Color = 'r';

Also add the fitted mean function.

q = polyfit(t,y,3);
refcurve(q)
legend('Data','Population Mean','Fitted Mean',...
 'Location','NW')
Plot Trajectories of a Batted Baseball Using refcurve

Introduce the relevant physical constants.

\[
\begin{align*}
M &= 0.145; & \text{% Mass (kg)} \\
R &= 0.0366; & \text{% Radius (m)} \\
A &= \pi R^2; & \text{% Area (m^2)} \\
rho &= 1.2; & \text{% Density of air (kg/m^3)} \\
C &= 0.5; & \text{% Drag coefficient} \\
D &= \rho C A / 2; & \text{% Drag proportional to the square of the speed} \\
g &= 9.8; & \text{% Acceleration due to gravity (m/s^2)}
\end{align*}
\]
Simulate the trajectory with drag proportional to the square of the speed, assuming constant acceleration in each time interval.

\[dt = 1 \times 10^{-2}; \quad \% \text{Simulation time interval (s)} \]
\[r_0 = [0 \ 1]; \quad \% \text{Initial position (m)} \]
\[s_0 = 50; \quad \% \text{Initial speed (m/s)} \]
\[\alpha_0 = 35; \quad \% \text{Initial angle (deg)} \]
\[v_0 = s_0 \times [\cos(\alpha_0) \ \sin(\alpha_0)]; \quad \% \text{Initial velocity (m/s)} \]

\[r = r_0; \]
\[v = v_0; \]
\[\text{trajectory} = r_0; \]
\[\text{while } r(2) > 0 \]
\[\quad a = [0 \ -g] - (D/M) \times \text{norm}(v) \times v; \]
\[\quad v = v + a \times dt; \]
\[\quad r = r + v \times dt + (1/2) \times a \times (dt^2); \]
\[\quad \text{trajectory} = [\text{trajectory}; r]; \]
\[\text{end} \]

Plot trajectory and use refcurve to add the drag-free parabolic trajectory (found analytically) to the plot of trajectory.

\[\text{figure} \]
\[\text{plot(trajectory(:,1),trajectory(:,2),'m','LineWidth',2)} \]
\[\text{xlim([0,250])} \]
\[\text{h = refcurve([-g/(2*v0(1)^2),...} \]
\[\quad (g*r0(1)/v0(1)^2) + (v0(2)/v0(1)),...} \]
\[\quad (-g*r0(1)^2/(2*v0(1)^2)) - (v0(2)*r0(1)/v0(1)) + r0(2)]}; \]
\[\text{h.Color = 'c';} \]
\[\text{h.LineWidth = 2;} \]
\[\text{axis equal} \]
\[\text{ylim([0,50])} \]
\[\text{grid on} \]
\[\text{xlabel('Distance (m)')} \]
\[\text{ylabel('Height (m)')} \]
\[\text{title('{\bf Baseball Trajectories}') \}
\[\text{legend('With Drag','Without Drag')} \]

32-5480
See Also

gline | lsline | polyfit | refline

Introduced before R2006a
refit

Class: GeneralizedLinearMixedModel

Refit generalized linear mixed-effects model

Syntax

\[\text{glmnew} = \text{refit}(\text{glme}, \text{ynew}) \]

Description

\[\text{glmnew} = \text{refit}(\text{glme}, \text{ynew}) \] returns a refitted generalized linear mixed-effects model, \(\text{glmnew} \), based on the input model \(\text{glme} \), using a new response vector, \(\text{ynew} \).

Input Arguments

\texttt{glme} — Generalized linear mixed-effects model

GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a \texttt{GeneralizedLinearMixedModel} object. For properties and methods of this object, see \texttt{GeneralizedLinearMixedModel}.

\texttt{ynew} — New response vector

\(n \)-by-1 vector of scalar values

New response vector, specified as an \(n \)-by-1 vector of scalar values, where \(n \) is the number of observations used to fit \(\text{glme} \).

For an observation \(i \) with prior weights \(w_i \) and binomial size \(n_i \) (when applicable), the response values \(y_i \) contained in \(\text{ynew} \) can have the following values.
<table>
<thead>
<tr>
<th>Distribution</th>
<th>Permitted Values</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>[\left{ 0, \frac{1}{w_i n_i}, \frac{2}{w_i n_i}, ..., 1 \right}]</td>
<td>(w_i^p) and (n_i) are integer values > 0</td>
</tr>
<tr>
<td>Poisson</td>
<td>[\left{ 0, \frac{1}{w_i^p}, \frac{2}{w_i^p}, ..., 1 \right}]</td>
<td>(w_i^p) is an integer value > 0</td>
</tr>
<tr>
<td>Gamma</td>
<td>(0,(\infty))</td>
<td>(w_i^p) \geq 0</td>
</tr>
<tr>
<td>InverseGaussian</td>
<td>(0,(\infty))</td>
<td>(w_i^p) \geq 0</td>
</tr>
<tr>
<td>Normal</td>
<td>(-(\infty),(\infty))</td>
<td>(w_i^p) \geq 0</td>
</tr>
</tbody>
</table>

You can access the prior weights property \(w_i^p \) using dot notation.

 glut.ObservationInfo.Weights

Data Types: single | double

Output Arguments

glmenew — Generalized linear mixed-effects model

GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, returned as a GeneralizedLinearMixedModel object. glmenew is an updated version of the generalized linear mixed-effects model glme, refit to the values in the response vector ynew.

For properties and methods of this object, see GeneralizedLinearMixedModel.

Examples

Refit Model to New Response Vector

Load the sample data.

load mfr
This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time}_\text{dev}_{ij} + \beta_3 \text{temp}_\text{dev}_{ij} + \beta_4 \text{supplier}_\text{C}_{ij} + \beta_5 \text{supplier}_\text{B}_{ij} + b_i, \]

where
• defects_{ij} is the number of defects observed in the batch produced by factory i during batch j.

• μ_{ij} is the mean number of defects corresponding to factory i (where $i = 1, 2, \ldots, 20$) during batch j (where $j = 1, 2, \ldots, 5$).

• $\text{newprocess}_{ij}, \text{time}_\text{dev}_{ij}$, and $\text{temp}_\text{dev}_{ij}$ are the measurements for each variable that correspond to factory i during batch j. For example, newprocess_{ij} indicates whether the batch produced by factory i during batch j used the new process.

• $\text{supplier}_\text{C}_{ij}$ and $\text{supplier}_\text{B}_{ij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory i during batch j.

• $b_i \sim N(0, \sigma_b^2)$ is a random-effects intercept for each factory i that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Use `random` to simulate a new response vector from the fitted model.

```matlab
rng(0,'twister');  % For reproducibility
ynew = random(glme);
```

Refit the model using the new response vector:

```matlab
glme = refit(glme,ynew)
```

glme =

Generalized linear mixed-effects model fit by ML

Model information:
- Number of observations: 100
- Fixed effects coefficients: 6
- Random effects coefficients: 20
- Covariance parameters: 1
- Distribution: Poisson
- Link: Log
- FitMethod: Laplace
Formula:
\[
\text{defects} \sim 1 + \text{newprocess} + \text{time}_\text{dev} + \text{temp}_\text{dev} + \text{supplier} + (1 | \text{factory})
\]

Model fit statistics:

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>LogLikelihood</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>469.24</td>
<td>487.48</td>
<td>-227.62</td>
<td>455.24</td>
</tr>
</tbody>
</table>

Fixed effects coefficients (95% CIs):

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>1.5738</td>
<td>0.18674</td>
<td>8.4276</td>
<td>94</td>
<td>4.0158e-13</td>
</tr>
<tr>
<td>'newprocess'</td>
<td>-0.21089</td>
<td>0.2306</td>
<td>-0.91455</td>
<td>94</td>
<td>0.36277</td>
</tr>
<tr>
<td>'time_dev'</td>
<td>-0.13769</td>
<td>0.77477</td>
<td>-0.17772</td>
<td>94</td>
<td>0.85933</td>
</tr>
<tr>
<td>'temp_dev'</td>
<td>0.24339</td>
<td>0.84657</td>
<td>0.2875</td>
<td>94</td>
<td>0.77436</td>
</tr>
<tr>
<td>'supplier_C'</td>
<td>-0.12102</td>
<td>0.07323</td>
<td>-1.6526</td>
<td>94</td>
<td>0.10175</td>
</tr>
<tr>
<td>'supplier_B'</td>
<td>0.098254</td>
<td>0.066943</td>
<td>1.4677</td>
<td>94</td>
<td>0.14551</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>DF</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.203</td>
<td>1.9445</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.66875</td>
<td>0.24696</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.676</td>
<td>1.4006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.4375</td>
<td>1.9243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.26642</td>
<td>0.024381</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.034662</td>
<td>0.23117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random effects covariance parameters:

Group: factory (20 Levels)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'(Intercept)'</td>
<td>'(Intercept)'</td>
<td>'std'</td>
<td>0.46587</td>
</tr>
</tbody>
</table>

Group: Error

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sqrt(Dispersion)'</td>
<td>1</td>
</tr>
</tbody>
</table>

Tips

- You can use `refit` and `random` to conduct a simulated likelihood ratio test or parametric bootstrap.
See Also
GeneralizedLinearMixedModel | designMatrix | fitted | residuals
refit

Class: FeatureSelectionNCAClassification

Refit neighborhood component analysis (NCA) model for classification

Syntax

mdlrefit = refit(mdl,Name,Value)

Description

mdlrefit = refit(mdl,Name,Value) refits the model mdl, with modified parameters specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model or classification, specified as a FeatureSelectionNCAClassification object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Fitting Options

FitMethod — Method for fitting the model
mdl.FitMethod (default) | 'exact' | 'none' | 'average'
Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and one of the following.

- 'exact' — Performs fitting using all of the data.
- 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to fscnca.
- 'average' — The function divides the data into partitions (subsets), fits each partition using the exact method, and returns the average of the feature weights. You can specify the number of partitions using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

Lambda — Regularization parameter

Lambda = Regularization parameter

mdl.Lambda (default) | non-negative scalar value

Regularization parameter, specified as the comma-separated pair consisting of 'Lambda' and a non-negative scalar value.

For \(n \) observations, the best Lambda value that minimizes the generalization error of the NCA model is expected to be a multiple of \(1/n \)

Example: 'Lambda',0.01

Data Types: double,

Solver — Solver type

mdl.Solver (default) | 'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of 'Solver' and one of the following.

- 'lbfgs' — Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (LBFGS algorithm)
- 'sgd' — Stochastic gradient descent
- 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-batches

Example: 'solver','minibatch-lbfgs'

InitialFeatureWeights — Initial feature weights

mdl.InitialFeatureWeights (default) | \(p \)-by-1 vector of real positive scalar values
Initial feature weights, specified as the comma-separated pair consisting of 'InitialFeatureWeights' and a p-by-1 vector of real positive scalar values.

Data Types: double | single

Verbose — Indicator for verbosity level

mdl.Verbose (default) | 0 | 1 | >1

Indicator for verbosity level for the convergence summary display, specified as the comma-separated pair consisting of 'Verbose' and one of the following.

- 0 — No convergence summary
- 1 — Convergence summary including iteration number, norm of the gradient, and objective function value.
- >1 — More convergence information depending on the fitting algorithm

When using solver 'minibatch-lbfgs' and verbosity level >1, the convergence information includes iteration log from intermediate minibatch LBFGS fits.

Example: 'Verbose',2

Data Types: double | single

LBFGS or Mini-Batch LBFGS Options

GradientTolerance — Relative convergence tolerance

mdl.GradientTolerance (default) | positive real scalar value

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive real scalar value.

Example: 'GradientTolerance',0.00001

Data Types: double | single

SGD or Mini-Batch LBFGS Options

InitialLearningRate — Initial learning rate for solver sgd

mdl.InitialLearningRate (default) | positive real scalar value

Initial learning rate for solver sgd, specified as the comma-separated pair consisting of 'InitialLearningRate' and a positive scalar value.
When using solver type 'sgd', the learning rate decays over iterations starting with the value specified for 'InitialLearningRate'.

Example: 'InitialLearningRate', 0.8

Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'

`mdl.PassLimit` (default) | positive integer value

Maximum number of passes for solver 'sgd' (stochastic gradient descent), specified as the comma-separated pair consisting of 'PassLimit' and a positive integer. Every pass processes `size(mdl.X,1)` observations.

Example: 'PassLimit', 10

Data Types: double | single

SGD or LBFGS or Mini-Batch LBFGS Options

IterationLimit — Maximum number of iterations

`mdl.IterationLimit` (default) | positive integer value

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

Example: 'IterationLimit', 250

Data Types: double | single

Output Arguments

`mdlrefit` — Neighborhood component analysis model for classification

FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a `FeatureSelectionNCAClassification` object. You can either save the results as a new model or update the existing model as `mdl = refit(mdl, Name, Value)`.

Examples

32-5491
Refit NCA Model for Classification with Modified Settings

Generate checkerboard data using the `generateCheckerBoardData.m` function.

```matlab
rng(2016,'twister'); % For reproducibility
pps = 1375;
[X,y] = generateCheckerBoardData(pps);
X = X + 2;

Plot the data.

figure
plot(X(y==1,1),X(y==1,2),'rx')
hold on
plot(X(y==-1,1),X(y==-1,2),'bx')

[n,p] = size(X)

n = 22000

p = 2
```
Add irrelevant predictors to the data.

\[
Q = 98; \\
X_{\text{rnd}} = \text{unifrnd}(0,4,n,Q); \\
X_{\text{obs}} = [X,X_{\text{rnd}}];
\]

This piece of code creates 98 additional predictors, all uniformly distributed between 0 and 4.

Partition the data into training and test sets. To create stratified partitions, so that each partition has similar proportion of classes, use \textit{y} instead of \texttt{length(y)} as the partitioning criteria.

\[
cvp = \text{cvspartition(y,'holdout',2000)};
\]
cvpartition randomly chooses 2000 of the observations to add to the test set and the rest of the data to add to the training set. Create the training and validation sets using the assignments stored in the cvpartition object cvp.

```matlab
Xtrain = Xobs(cvp.training(1),:);
ytrain = y(cvp.training(1),:);
Xval = Xobs(cvp.test(1),:);
yval = y(cvp.test(1),:);
```

Compute the misclassification error without feature selection.

```matlab
nca = fscnca(Xtrain,ytrain,'FitMethod','none','Standardize',true, ... 'Solver','lbfgs');
loss_nofs = loss(nca,Xval,yval)
```

```matlab
loss_nofs =
0.5165
```

'FitMethod','none' option uses the default weights (all 1s), which means all features are equally important.

This time, perform feature selection using neighborhood component analysis for classification, with \(\lambda = \frac{1}{n} \).

```matlab
w0 = rand(100,1);
n = length(ytrain)
lambda = 1/n;
nca = refit(nca,'InitialFeatureWeights',w0,'FitMethod','exact', ... 'Lambda',lambda,'solver','sgd');
```

```matlab
n =
20000
```

Plot the objective function value versus the iteration number.

```matlab
figure()
plot(nca.FitInfo.Iteration,nca.FitInfo.Objective,'ro')
hold on
```
Compute the misclassification error with feature selection.

```matlab
loss_withfs = loss(nca,Xval,yval)
```

```matlab
loss_withfs =
0.0115
```

Plot the selected features.
Select features using the feature weights and a relative threshold.

tol = 0.15;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))

selidx =

1
Feature selection improves the results and \texttt{fscnca} detects the correct two features as relevant.

\textbf{See Also}
FeatureSelectionNCAClassification | \texttt{fscnca} | \texttt{loss} | \texttt{predict}

\textit{Introduced in R2016b}
refit

Class: FeatureSelectionNCARegression

Refit neighborhood component analysis (NCA) model for regression

Syntax

```matlab
mdlrefit = refit(mdl,Name,Value)
```

Description

`mdlrefit = refit(mdl,Name,Value)` refits the model `mdl`, with modified parameters specified by one or more `Name,Value` pair arguments.

Input Arguments

- `mdl` — Neighborhood component analysis model for regression
 FeatureSelectionNCARegression object

 Neighborhood component analysis model or classification, specified as a `FeatureSelectionNCARegression` object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Fitting Options

- **FitMethod** — Method for fitting the model
  ```matlab
  mdl.FitMethod (default) | 'exact' | 'none' | 'average'
  ```
Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and one of the following.

- 'exact' — Performs fitting using all of the data.
- 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to `fsrnca`.
- 'average' — The function divides the data into partitions (subsets), fits each partition using the exact method, and returns the average of the feature weights. You can specify the number of partitions using the `NumPartitions` name-value pair argument.

Example: 'FitMethod','none'

Lambda — Regularization parameter

`mdl.Lambda` (default) | non-negative scalar value

Regularization parameter, specified as the comma-separated pair consisting of 'Lambda' and a non-negative scalar value.

For `n` observations, the best Lambda value that minimizes the generalization error of the NCA model is expected to be a multiple of `1/n`

Example: 'Lambda',0.01

Data Types: double | single

Solver — Solver type

`mdl.Solver` (default) | 'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of 'Solver' and one of the following.

- 'lbfgs' — Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (LBFGS algorithm)
- 'sgd' — Stochastic gradient descent
- 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-batches

Example: 'solver','minibatch-lbfgs'

InitialFeatureWeights — Initial feature weights

`mdl.InitialFeatureWeights` (default) | `p`-by-1 vector of real positive scalar values
Initial feature weights, specified as the comma-separated pair consisting of 'InitialFeatureWeights' and a p-by-1 vector of real positive scalar values.

Data Types: double | single

Verbose — Indicator for verbosity level
mdl.Verbose (default) | 0 | 1 | >1

Indicator for verbosity level for the convergence summary display, specified as the comma-separated pair consisting of 'Verbose' and one of the following.

- 0 — No convergence summary
- 1 — Convergence summary including iteration number, norm of the gradient, and objective function value.
- >1 — More convergence information depending on the fitting algorithm

When using solver 'minibatch-lbfgs' and verbosity level >1, the convergence information includes iteration log from intermediate minibatch LBFGS fits.

Example: 'Verbose',2

Data Types: double | single

LBFGS or Mini-Batch LBFGS Options

GradientTolerance — Relative convergence tolerance
mdl.GradientTolerance (default) | positive real scalar value

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive real scalar value.

Example: 'GradientTolerance',0.00001

Data Types: double | single

SGD or Mini-Batch LBFGS Options

InitialLearningRate — Initial learning rate for solver sgd
mdl.InitialLearningRate (default) | positive real scalar value

Initial learning rate for solver sgd, specified as the comma-separated pair consisting of 'InitialLearningRate' and a positive scalar value.
When using solver type 'sgd', the learning rate decays over iterations starting with the value specified for 'InitialLearningRate'.

Example: 'InitialLearningRate', 0.8
Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'
mdl.PassLimit (default) | positive integer value

Maximum number of passes for solver 'sgd' (stochastic gradient descent), specified as the comma-separated pair consisting of 'PassLimit' and a positive integer. Every pass processes size(mdl.X,1) observations.

Example: 'PassLimit', 10
Data Types: double | single

SGD or LBFGS or Mini-Batch LBFGS Options

IterationLimit — Maximum number of iterations
mdl.IterationLimit (default) | positive integer value

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

Example: 'IterationLimit', 250
Data Types: double | single

Output Arguments

mdlrefit — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model or classification, returned as a FeatureSelectionNCARegression object. You can either save the results as a new model or update the existing model as mdl = refit(mdl, Name, Value).

Examples
Refit NCA Model for Regression with Modified Settings

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','robotarm.mat'))
```

The robotarm (pumadyn32nm) dataset is created using a robot arm simulator with 7168 training and 1024 test observations with 32 features [1], [2]. This is a preprocessed version of the original data set. Data are preprocessed by subtracting off a linear regression fit followed by normalization of all features to unit variance.

Compute the generalization error without feature selection.

```matlab
nca = fsrnca(Xtrain,ytrain,'FitMethod','none','Standardize',1);
L = loss(nca,Xtest,ytest)
L = 0.9017
```

Now, refit the model and compute the prediction loss with feature selection, with $\lambda = 0$ (no regularization term) and compare to the previous loss value, to determine feature selection seems necessary for this problem. For the settings that you do not change, `refit` uses the settings of the initial model `nca`. For example, it uses the feature weights found in `nca` as the initial feature weights.

```matlab
nca2 = refit(nca,'FitMethod','exact','Lambda',0);
L2 = loss(nca2,Xtest,ytest)
L2 = 0.1088
```

The decrease in the loss suggests that feature selection is necessary.

Plot the feature weights.

```matlab
figure()
plot(nca2.FeatureWeights,'ro')
```
Tuning the regularization parameter usually improves the results. Suppose that, after tuning λ using cross-validation as in "Tune Regularization Parameter in NCA for Regression" on page 32-2654, the best λ value found is 0.0035. Refit the nca model using this λ value and stochastic gradient descent as the solver. Compute the prediction loss.

```matlab
nca3 = refit(nca2, 'FitMethod', 'exact', 'Lambda', 0.0035, ...
          'Solver', 'sgd');
L3 = loss(nca3, Xtest, ytest)
```

$L3 = 0.0573$

Plot the feature weights.
After tuning the regularization parameter, the loss decreased even more and the software identified four of the features as relevant.

References

See Also
FeatureSelectionNCARegression | fsrnca | loss | predict

Introduced in R2016b
refline

Add reference line to plot

Syntax

refline(m,b)
refline(coeffs)
refline
refline(ax,___)
hline = refline(___)

Description

refline(m,b) adds a reference line with slope m and intercept b to the current axes.
refline(coeffs) adds the line defined by the elements of the vector coeffs to the figure.
refline with no input arguments is equivalent to lsline.
refline(ax,___) adds a reference line to the plot in the axis specified by ax, using any of the input arguments in the previous syntaxes.
hline = refline(___) returns the reference line object hline using any of the input arguments in the previous syntaxes. Use hline to modify properties of a specific reference line after you create it. For a list of properties, see Line Properties.

Examples

Add Reference Line at the Mean

Generate sample data for an independent variable x and a dependent variable y.
\begin{verbatim}
x = 1:10;
y = x + randn(1,10);

Create a scatter plot of x and y.

scatter(x,y,25,'b','*')
\end{verbatim}

Superimpose a least-squares line on the scatter plot.

refline
Add a reference line at the mean of the scatter plot.

```matlab
mu = mean(y);
hline = refline([0 mu]);
hline.Color = 'r';
```
The red line is the reference line at the mean of the data.

Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

```matlab
rng default  % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);
```
Define `ax1` as the top half of the figure, and `ax2` as the bottom half of the figure. Create the first scatter plot on the top axis using `y1`, and the second scatter plot on the bottom axis using `y2`.

```matlab
figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);
scatter(ax1,x,y1)
scatter(ax2,x,y2)
```

Superimpose a least-squares line on the top plot, and a reference line at the mean of the `y2` values in the bottom plot.
lsline(ax1) % This is equivalent to refline(ax1)

mu = mean(y2);
refline(ax2,[0 mu])

Input Arguments

\(m \) — Slope of reference line
numeric scalar

Slope of the reference line, specified as a numeric scalar. The function uses \(m \) to define the line
\[y = mx + b. \]

Example: `refline(-1,1)`

Data Types: `single` | `double`

b — Intercept of reference line

numeric scalar

Intercept of the reference line, specified as a numeric scalar. The function uses \(b \) to define the line

\[y = mx + b. \]

Example: `refline(2,-10)`

Data Types: `single` | `double`

coeffs — Linear coefficients

length-two numeric vector

Linear coefficients, specified as a length-two numeric vector. \(\text{coeffs} \) contains the coefficients of a line defined as

\[y = \text{coeffs}(1)x + \text{coeffs}(2). \]

Example: `refline([-1,2])`

Data Types: `single` | `double`

ax — Target axes

gca (default) | axes object

Target axes, specified as an axes object. If you do not specify the axes and if the current axes are Cartesian axes, then the `refline` function uses the current axes.

Output Arguments

hline — One or more reference line objects

scalar | vector

One or more reference line objects, returned as a scalar or a vector. These objects are unique identifiers, which you can use to query and modify properties of a specific reference line. For a list of properties, see Chart Line.
See Also

gline | lsline | refcurve

Introduced before R2006a
regress

Multiple linear regression

Syntax

\[
b = \text{regress}(y,X)\\
[b,bint] = \text{regress}(y,X)\\
[b,bint,r] = \text{regress}(y,X)\\
[b,bint,r,rint] = \text{regress}(y,X)\\
[b,bint,r,rint,stats] = \text{regress}(y,X)\\
[___] = \text{regress}(y,X,\alpha)
\]

Description

\(b = \text{regress}(y,X)\) returns a vector \(b\) of coefficient estimates for a multiple linear regression of the responses in vector \(y\) on the predictors in matrix \(X\). The matrix \(X\) must include a column of ones.

\([b,bint] = \text{regress}(y,X)\) also returns a matrix \(b\text{int}\) of 95% confidence intervals for the coefficient estimates.

\([b,bint,r] = \text{regress}(y,X)\) also returns an additional vector \(r\) of residuals.

\([b,bint,r,rint] = \text{regress}(y,X)\) also returns a matrix \(rint\) of intervals that can be used to diagnose outliers.

\([b,bint,r,rint,stats] = \text{regress}(y,X)\) also returns a vector \(stats\) that contains the \(R^2\) statistic, the \(F\)-statistic and its \(p\)-value, and an estimate of the error variance.

\([___] = \text{regress}(y,X,\alpha)\) uses a \(100\times(1-\alpha)\)% confidence level to compute \(b\text{int}\) and \(rint\). Specify any of the output argument combinations in the previous syntaxes.

Examples
Estimate Multiple Linear Regression Coefficients

Load the carsmall data set. Identify weight and horsepower as predictors and mileage as the response.

```matlab
load carsmall
x1 = Weight;
x2 = Horsepower;    % Contains NaN data
y = MPG;

Compute the regression coefficients for a linear model with an interaction term.

```matlab
X = [ones(size(x1)) x1 x2 x1.*x2];
b = regress(y,X) % Removes NaN data
```

```matlab
b = 4×1
 60.7104
 -0.0102
 -0.1882
 0.0000
```

Plot the data and the model.

```matlab
scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):100:max(x1);
x2fit = min(x2):10:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
view(50,10)
hold off
```
Diagnose Outliers Using Residuals

Load the examgrades data set.

```matlab
load examgrades
```

Use the last exam scores as response data and the first two exam scores as predictor data.

```matlab
y = grades(:,5);
X = [ones(size(grades(:,1))) grades(:,1:2)];
```
Perform multiple linear regression with alpha = 0.01.
[~,~,r,rint] = regress(y,X,0.01);

Diagnose outliers by finding the residual intervals rint that do not contain 0.

`contain0 = (rint(:,1)<0 & rint(:,2)>0);
idx = find(contain0==false)`

`idx = 2×1
     53
     54`

Observations 53 and 54 are possible outliers.

Create a scatter plot of the residuals. Fill in the points corresponding to the outliers.

`hold on
scatter(y,r)
scatter(y(idx),r(idx),'b','filled')
xlabel("Last Exam Grades")
ylabel("Residuals")
hold off"
Determine Significance of Linear Regression Relationship

Load the hald data set. Use heat as the response variable and ingredients as the predictor data.

```matlab
load hald
y = heat;
X1 = ingredients;
x1 = ones(size(X1,1),1);
X = [x1 X1]; % Includes column of ones
```

Perform multiple linear regression and generate model statistics.
Because the $R^2$ value of 0.9824 is close to 1, and the p-value of 0.0000 is less than the default significance level of 0.05, a significant linear regression relationship exists between the response $y$ and the predictor variables in $X$.

**Input Arguments**

**y — Response data**
numeric vector

Response data, specified as an $n$-by-1 numeric vector. Rows of $y$ correspond to different observations. $y$ must have the same number of rows as $X$.

Data Types: single | double

**X — Predictor data**
numeric matrix

Predictor data, specified as an $n$-by-$p$ numeric matrix. Rows of $X$ correspond to observations, and columns correspond to predictor variables. $X$ must have the same number of rows as $y$.

Data Types: single | double

**alpha — Significance level**
0.05 (default) | positive scalar

Significance level, specified as a positive scalar. alpha must be between 0 and 1.

Data Types: single | double
Output Arguments

**b — Coefficient estimates for multiple linear regression**

numeric vector

Coefficient estimates for multiple linear regression, returned as a numeric vector. b is a p-by-1 vector, where p is the number of predictors in X. If the columns of X are linearly dependent, `regress` sets the maximum number of elements of b to zero.

Data Types: `double`

**bint — Lower and upper confidence bounds for coefficient estimates**

numeric matrix

Lower and upper confidence bounds for coefficient estimates, returned as a numeric matrix. bint is a p-by-2 matrix, where p is the number of predictors in X. The first column of bint contains lower confidence bounds for each of the coefficient estimates; the second column contains upper confidence bounds. If the columns of X are linearly dependent, `regress` returns zeros in elements of bint corresponding to the zero elements of b.

Data Types: `double`

**r — Residuals**

numeric vector

Residuals, returned as a numeric vector. r is a p-by-1 vector, where p is the number of predictors in X.

Data Types: `single` | `double`

**rint — Intervals to diagnose outliers**

numeric matrix

Intervals to diagnose outliers, returned as a numeric matrix. rint is a p-by-2 matrix, where p is the number of predictors in X. If the interval rint(i,:) for observation i does not contain zero, the corresponding residual is larger than expected in 100*(1-alpha)% of new observations, suggesting an outlier. For more information, see “Algorithms” on page 32-5521.

Data Types: `single` | `double`

**stats — Model statistics**

numeric vector
Model statistics, returned as a numeric vector including the $R^2$ statistic, the $F$-statistic and its $p$-value, and an estimate of the error variance.

- $X$ must include a column of ones so that the model contains a constant term. The $F$-statistic and its $p$-value are computed under this assumption and are not correct for models without a constant.
- The $F$-statistic is the test statistic of the $F$-test on the regression model. The $F$-test looks for a significant linear regression relationship between the response variable and the predictor variables.
- The $R^2$ statistic can be negative for models without a constant, indicating that the model is not appropriate for the data.

Data Types: single | double

**Tips**

- `regress` treats `NaN` values in $X$ or $y$ as missing values. `regress` omits observations with missing values from the regression fit.

**Algorithms**

**Residual Intervals**

In a linear model, observed values of $y$ and their residuals are random variables. Residuals have normal distributions with zero mean but with different variances at different values of the predictors. To put residuals on a comparable scale, `regress` “Studentizes” the residuals. That is, `regress` divides the residuals by an estimate of their standard deviation that is independent of their value. Studentized residuals have $t$-distributions with known degrees of freedom. The intervals returned in `rint` are shifts of the 100*(1-$\alpha$)% confidence intervals of these $t$-distributions, centered at the residuals.

**References**

See Also
LinearModel | fitlm | mvregress | rcoplot | stepwiselm

Topics
“Interpret Linear Regression Results” on page 11-65
“Linear Regression Workflow” on page 11-43

Introduced before R2006a
RegressionBaggedEnsemble

**Package:** classreg.learning.regr

**Superclasses:**

Regression ensemble grown by resampling

**Description**

RegressionBaggedEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners.

**Construction**

Create a bagged regression ensemble object using `fitrensemble`.

**Properties**

**CategoricalPredictors**

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

**CombineWeights**

A character vector describing how the ensemble combines learner predictions.

**ExpandedPredictorNames**

Expanded predictor names, stored as a cell array of character vectors.
If the model uses encoding for categorical variables, then \texttt{ExpandedPredictorNames} includes the names that describe the expanded variables. Otherwise, \texttt{ExpandedPredictorNames} is the same as \texttt{PredictorNames}.

\textbf{FitInfo}

A numeric array of fit information. The \texttt{FitInfoDescription} property describes the content of this array.

\textbf{FitInfoDescription}

Character vector describing the meaning of the \texttt{FitInfo} array.

\textbf{FResample}

A numeric scalar between 0 and 1. \texttt{FResample} is the fraction of training data \texttt{fitrensemble} resampled at random for every weak learner when constructing the ensemble.

\textbf{HyperparameterOptimizationResults}

Description of the cross-validation optimization of hyperparameters, stored as a \texttt{BayesianOptimization} object or a table of hyperparameters and associated values. Nonempty when the \texttt{OptimizeHyperparameters} name-value pair is nonempty at creation. Value depends on the setting of the \texttt{HyperparameterOptimizationOptions} name-value pair at creation:

- 'bayesopt' (default) — Object of class \texttt{BayesianOptimization}
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

\textbf{LearnerNames}

Cell array of character vectors with names of the weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, \texttt{LearnerNames} is \texttt{{'Tree'}}.

\textbf{Method}

A character vector with the name of the algorithm \texttt{fitrensemble} used for training the ensemble.
**ModelParameters**
Parameters used in training ens.

**NumObservations**
Numeric scalar containing the number of observations in the training data.

**NumTrained**
Number of trained learners in the ensemble, a positive scalar.

**PredictorNames**
A cell array of names for the predictor variables, in the order in which they appear in X.

**ReasonForTermination**
A character vector describing the reason fitrensemble stopped adding weak learners to the ensemble.

**Regularization**
A structure containing the result of the regularize method. Use Regularization with shrink to lower resubstitution error and shrink the ensemble.

**Replace**
Boolean flag indicating if training data for weak learners in this ensemble were sampled with replacement. Replace is true for sampling with replacement, false otherwise.

**ResponseName**
A character vector with the name of the response variable Y.

**ResponseTransform**
Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:
ens.ResponseTransform = @function
Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of rows (observations) in the training data X, and NumTrained is the number of trained weak learners. UseObsForLearner(I,J) is true if observation I was used for training learner J, and is false otherwise.

W

The scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is 1.

X

The matrix of predictor values that trained the ensemble. Each column of X represents one variable, and each row represents one observation.

Y

The numeric column vector with the same number of rows as X that trained the ensemble. Each entry in Y is the response to the data in the corresponding row of X.

Methods

- oobLoss: Out-of-bag regression error
- oobPermutedPredictorImportance: Predictor importance estimates by permutation of out-of-bag predictor observations for random forest of regression trees
- oobPredict: Predict out-of-bag response of ensemble
Inherited Methods

compact Create compact regression ensemble
crossval Cross validate ensemble
cvshrink Cross validate shrinking (pruning) ensemble
regularize Find weights to minimize resubstitution error plus penalty term
resubLoss Regression error by resubstitution
resubPredict Predict response of ensemble by resubstitution
resume Resume training ensemble
shrink Prune ensemble

loss Regression error
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance
removeLearners Remove members of compact regression ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Bagged Ensemble of Regression Trees

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a bagged ensemble of 100 regression trees using all measurements.
rng(1) % For reproducibility
Mdl = fitrensemble(X,Y,'Method','bag')

Mdl =
    classreg.learning.regr.RegressionBaggedEnsemble
        ResponseName: 'Y'
        CategoricalPredictors: []
        ResponseTransform: 'none'
        NumObservations: 94
        NumTrained: 100
        Method: 'Bag'
        LearnerNames: {'Tree'}
        ReasonForTermination: 'Terminated normally after completing the requested number of
                          FitInfo: []
                          FitInfoDescription: 'None'
                          Regularization: []
                          FResample: 1
                          Replace: 1
                          UseObsForLearner: [94x100 logical]

Properties, Methods

Mdl is a RegressionBaggedEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained, compact
regression trees (CompactRegressionTree model objects) that compose the ensemble.

Plot a graph of the first trained regression tree.

view(Mdl.Trained{1}, 'Mode', 'graph')
By default, `fitrensemble` grows deep trees for bags of trees.

Estimate the in-sample mean-squared error (MSE).

\[
L = \text{resubLoss}(Mdl)
\]

\[
L = 12.5791
\]
Tip

For a bagged ensemble of regression trees, the Trained property of ens stores a cell vector of ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of tree t in the cell vector, enter

view(ens.Trained{t})

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train an ensemble by using fitrensemble, code generation limitations for regression trees also apply to ensembles of regression trees. For more details, see “Code Generation” on page 32-867 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
RegressionEnsemble | fitrensemble | plotPartialDependence | view

Introduced in R2011a
RegressionEnsemble

**Package:** classreg.learning.regr  
**Superclasses:**  
Ensemble regression

**Description**

RegressionEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners.

**Construction**

Create a regression ensemble object using `fitrensemble`.

**Properties**

**CategoricalPredictors**

Categorical predictor indices, specified as a vector of positive integers.  
`CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

**CombineWeights**

A character vector describing how the ensemble combines learner predictions.

**ExpandedPredictorNames**

Expanded predictor names, stored as a cell array of character vectors.
If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

**FitInfo**

A numeric array of fit information. The `FitInfoDescription` property describes the content of this array.

**FitInfoDescription**

Character vector describing the meaning of the `FitInfo` array.

**LearnerNames**

Cell array of character vectors with names of the weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, `LearnerNames` is `{'Tree'}`.

**HyperparameterOptimizationResults**

Description of the cross-validation optimization of hyperparameters, stored as a `BayesianOptimization` object or a table of hyperparameters and associated values. Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- 'bayesopt' (default) — Object of class `BayesianOptimization`
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

**Method**

A character vector with the name of the algorithm `fitrensemble` used for training the ensemble.

**ModelParameters**

Parameters used in training `ens`. 

32-5532
**NumObservations**

Numeric scalar containing the number of observations in the training data.

**NumTrained**

Number of trained learners in the ensemble, a positive scalar.

**PredictorNames**

A cell array of names for the predictor variables, in the order in which they appear in X.

**ReasonForTermination**

A character vector describing the reason `fitrensemble` stopped adding weak learners to the ensemble.

**Regularization**

A structure containing the result of the `regularize` method. Use `Regularization` with `shrink` to lower resubstitution error and shrink the ensemble.

**ResponseName**

A character vector with the name of the response variable Y.

**ResponseTransform**

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a `ResponseTransform` function using dot notation:

```
ens.ResponseTransform = @function
```

**Trained**

The trained learners, a cell array of compact regression models.

**TrainedWeights**

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.
The scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is 1.

The matrix of predictor values that trained the ensemble. Each column of X represents one variable, and each row represents one observation.

The numeric column vector with the same number of rows as X that trained the ensemble. Each entry in Y is the response to the data in the corresponding row of X.

Methods

compact Create compact regression ensemble
crossval Cross validate ensemble
cvshrink Cross validate shrinking (pruning) ensemble
regularize Find weights to minimize resubstitution error plus penalty term
resubLoss Regression error by resubstitution
resubPredict Predict response of ensemble by resubstitution
resume Resume training ensemble
shrink Prune ensemble

Inherited Methods

loss Regression error
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance
removeLearners Remove members of compact regression ensemble
Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Boosted Regression Ensemble

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a boosted ensemble of 100 regression trees using the LSBoost method. Specify that Cylinders is a categorical variable.

Mdl = fitrensemble(X,Y,'Method','LSBoost',
    'PredictorNames',{'W','C'},'CategoricalPredictors',2)

Mdl =
    classreg.learning.regr.RegressionEnsemble
    PredictorNames: {'W'  'C'}
    ResponseName: 'Y'
    CategoricalPredictors: 2
    ResponseTransform: 'none'
    NumObservations: 94
    NumTrained: 100
    Method: 'LSBoost'
    LearnerNames: {'Tree'}
    ReasonForTermination: 'Terminated normally after completing the requested number of
    FitInfo: [100x1 double]
    FitInfoDescription: {2x1 cell}
    Regularization: []

Properties, Methods

Mdl is a RegressionEnsemble model object that contains the training data, among other things.
Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained regression trees (CompactRegressionTree model objects) that compose the ensemble.

Plot a graph of the first trained regression tree.

```matlab
view(Mdl.Trained{1}, 'Mode', 'graph')
```

By default, `fitrensemble` grows shallow trees for boosted ensembles of trees.

Predict the fuel economy of 4,000 pound cars with 4, 6, and 8 cylinders.
XNew = [4000*ones(3,1) [4; 6; 8]];
mpgNew = predict(Mdl,XNew)

mpgNew = 3×1
19.5926
18.6388
15.4810

Tip

For an ensemble of regression trees, the Trained property contains a cell vector of ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of tree t in the cell vector, enter

view(ens.Trained{t})

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train an ensemble by using fitrensemble, code generation limitations for regression trees also apply to ensembles of regression trees. For more details, see “Code Generation” on page 32-867 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationEnsemble | CompactRegressionEnsemble | fitrensemble | plotPartialDependence | templateTree | view
Introduced in R2011a
RegressionGP class

Superclasses:
Gaussian process regression model class

Description
RegressionGP is a Gaussian process regression (GPR) model. You can train a GPR model, using fitrgp. Using the trained model, you can

- Predict responses for training data using resubPredict or new predictor data using predict. You can also compute the prediction intervals.
- Compute the regression loss for training data using resubLoss or new data using loss.

Construction
Create a RegressionGP object by using fitrgp.

Properties
Fitting

FitMethod — Method used to estimate the parameters

```
'none' | 'exact' | 'sd' | 'sr' | 'fic'
```

Method used to estimate the basis function coefficients, β; noise standard deviation, σ; and kernel parameters, θ, of the GPR model, stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>Fit Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>No estimation. fitrgp uses the initial parameter values as the parameter values.</td>
</tr>
</tbody>
</table>
Fit Method | Description
---|---
'exact' | Exact Gaussian process regression.
'sd' | Subset of data points approximation.
'sr' | Subset of regressors approximation.
'fic' | Fully independent conditional approximation.

**BasisFunction — Explicit basis function**

'none' | 'constant' | 'linear' | 'pureQuadratic' | function handle

Explicit basis function used in the GPR model, stored as a character vector or a function handle. It can be one of the following. If \( n \) is the number of observations, the basis function adds the term \( H \beta \) to the model, where \( H \) is the basis matrix and \( \beta \) is a \( p \)-by-1 vector of basis coefficients.

<table>
<thead>
<tr>
<th>Explicit Basis</th>
<th>Basis Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>Empty matrix.</td>
</tr>
<tr>
<td>'constant'</td>
<td>( H = 1 ) (( n )-by-1 vector of 1s, where ( n ) is the number of observations)</td>
</tr>
<tr>
<td>'linear'</td>
<td>( H = [1, X] )</td>
</tr>
<tr>
<td>'pureQuadratic'</td>
<td>( H = [1, X, X_2], ) where ( X_2 = \begin{bmatrix} x_{11}^2 &amp; x_{12}^2 &amp; \cdots &amp; x_{1d}^2 \ x_{21}^2 &amp; x_{22}^2 &amp; \cdots &amp; x_{2d}^2 \ \vdots &amp; \vdots &amp; \ddots &amp; \vdots \ x_{n1}^2 &amp; x_{n2}^2 &amp; \cdots &amp; x_{nd}^2 \end{bmatrix} ).</td>
</tr>
</tbody>
</table>
Explicit Basis | Basis Matrix
---|---
Function handle | Function handle, `hfcn`, that `fitrgp` calls as:

\[ H = hfcn(X), \]

where \( X \) is an \( n \)-by-\( d \) matrix of predictors and \( H \) is an \( n \)-by-\( p \) matrix of basis functions.

Data Types: `char` | `function_handle`

**Beta — Estimated coefficients**
vector

Estimated coefficients for the explicit basis functions, stored as a vector. You can define the explicit basis function by using the `BasisFunction` name-value pair argument in `fitrgp`.

Data Types: `double`

**Sigma — Estimated noise standard deviation**
scalar value

Estimated noise standard deviation of the GPR model, stored as a scalar value.

Data Types: `double`

**CategoricalPredictors — Indices of categorical predictors**
vector of positive integers

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

Data Types: `single` | `double`

**HyperparameterOptimizationResults — Description of the cross-validation optimization of hyperparameters**
`BayesianOptimization` object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, stored as a `BayesianOptimization` object or a table of hyperparameters and associated values.
Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- `'bayesopt'` (default) — Object of class `BayesianOptimization`
- `'gridsearch'` or `'randomsearch'` — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

Data Types: `table`

**LogLikelihood — Maximized marginal log likelihood**
scalar value | `[]`

Maximized marginal log likelihood of the GPR model, stored as a scalar value if the `FitMethod` is different from `'none'`. If `FitMethod` is `'none'`, then `LogLikelihood` is empty.

If `FitMethod` is `'sd'`, `'sr'`, or `'fic'`, then `LogLikelihood` is the maximized approximation of the marginal log likelihood of the GPR model.

Data Types: `double`

**ModelParameters — Parameters used for training**
`GPParams` object

Parameters used for training the GPR model, stored as a `GPParams` object.

**Kernel Function**

**KernelFunction — Form of the covariance function**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'squaredExponential'</code></td>
<td>Squared exponential kernel.</td>
</tr>
<tr>
<td><code>'matern32'</code></td>
<td>Matern kernel with parameter 3/2.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'matern52'</td>
<td>Matern kernel with parameter 5/2.</td>
</tr>
<tr>
<td>'ardsquaredexponential'</td>
<td>Squared exponential kernel with a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern32'</td>
<td>Matern kernel with parameter 3/2 and a separate length scale per predictor.</td>
</tr>
<tr>
<td>'ardmatern52'</td>
<td>Matern kernel with parameter 5/2 and a separate length scale per predictor.</td>
</tr>
<tr>
<td>Function handle</td>
<td>A function handle that fitrgp can call like this:</td>
</tr>
<tr>
<td></td>
<td>[Kmn = kfcn(Xm,Xn,theta)] where Xm is an m-by-d matrix, Xn is an n-by-d</td>
</tr>
<tr>
<td></td>
<td>matrix and Kmn is an m-by-n matrix of kernel products such that Kmn(i,j) is</td>
</tr>
<tr>
<td></td>
<td>the kernel product between Xm(i,:) and Xn(j,:). theta is the r-by-1</td>
</tr>
<tr>
<td></td>
<td>unconstrained parameter vector for kfcn.</td>
</tr>
</tbody>
</table>

Data Types: char | function_handle

**KernelInformation — Information about the parameters of the kernel function**

Information about the parameters of the kernel function used in the GPR model, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the kernel function</td>
</tr>
<tr>
<td>KernelParameters</td>
<td>Vector of the estimated kernel parameters</td>
</tr>
<tr>
<td>KernelParameterNames</td>
<td>Names associated with the elements of KernelParameters.</td>
</tr>
</tbody>
</table>

Data Types: struct

**Prediction**

**PredictMethod — Method used to make predictions**

'exact' | 'bcd' | 'sd' | 'sr' | 'fic'
Method that `predict` uses to make predictions from the GPR model, stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>PredictMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'exact'</td>
<td>Exact Gaussian process regression</td>
</tr>
<tr>
<td>'bcd'</td>
<td>Block Coordinate Descent</td>
</tr>
<tr>
<td>'sd'</td>
<td>Subset of Data points approximation</td>
</tr>
<tr>
<td>'sr'</td>
<td>Subset of Regressors approximation</td>
</tr>
<tr>
<td>'fic'</td>
<td>Fully Independent Conditional approximation</td>
</tr>
</tbody>
</table>

**Alpha — Weights**

numeric vector

Weights used to make predictions from the trained GPR model, stored as a numeric vector. `predict` computes the predictions for a new predictor matrix $X_{new}$ by using the product

$$K(X_{new}, A) \alpha.$$

$K(X_{new}, A)$ is the matrix of kernel products between $X_{new}$ and active set vector $A$ and $\alpha$ is a vector of weights.

Data Types: double

**BCDInformation — Information on BCD-based computation of Alpha**

structure | []

Information on block coordinate descent (BCD)-based computation of $\alpha$ when `PredictMethod` is 'bcd', stored as a structure containing the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient</td>
<td>$n$-by-$1$ vector containing the gradient of the BCD objective function at convergence.</td>
</tr>
<tr>
<td>Objective</td>
<td>Scalar containing the BCD objective function at convergence.</td>
</tr>
</tbody>
</table>
Field Name | Description
---|---
SelectionCounts | n-by-1 integer vector indicating the number of times each point was selected into a block during BCD.

Alpha property contains the Alpha vector computed from BCD.

If PredictMethod is not 'bcd', then BCDInformation is empty.

Data Types: struct

ResponseTransform — Transformation applied to predicted response

'none' (default)

Transformation applied to the predicted response, stored as a character vector describing how the response values predicted by the model are transformed. In RegressionGP, ResponseTransform is 'none' by default, and RegressionGP does not use ResponseTransform when making predictions.

Active Set Selection

ActiveSetVectors — Subset of training data

matrix

Subset of training data used to make predictions from the GPR model, stored as a matrix. predict computes the predictions for a new predictor matrix Xnew by using the product

\[ K(X_{new}, A) \alpha. \]

\( K(X_{new}, A) \) is the matrix of kernel products between \( X_{new} \) and active set vector \( A \) and \( \alpha \) is a vector of weights.

ActiveSetVectors is equal to the training data X for exact GPR fitting and a subset of the training data X for sparse GPR methods. When there are categorical predictors in the model, ActiveSetVectors contains dummy variables for the corresponding predictors.

Data Types: double

ActiveSetHistory — History of active set selection and parameter estimation

structure
History of interleaved active set selection and parameter estimation on page 32-5550 for \texttt{FitMethod} equal to \texttt{'sd'}, \texttt{'sr'}, or \texttt{'fic'}, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParameterVector</td>
<td>Cell array containing the parameter vectors: basis function coefficients, $\beta$, kernel function parameters $\theta$, and noise standard deviation $\sigma$.</td>
</tr>
<tr>
<td>ActiveSetIndices</td>
<td>Cell array containing the active set indices.</td>
</tr>
<tr>
<td>Loglikelihood</td>
<td>Vector containing the maximized log likelihoods.</td>
</tr>
<tr>
<td>CriterionProfile</td>
<td>Cell array containing the active set selection criterion values as the active set grows from size 0 to its final size.</td>
</tr>
</tbody>
</table>

**Data Types:** struct

\textbf{ActiveSetMethod} — Method used to select the active set  
\texttt{'sgma'} | \texttt{'entropy'} | \texttt{'likelihood'} | \texttt{'random'}

Method used to select the active set for sparse methods (\texttt{'sd'}, \texttt{'sr'}, or \texttt{'fic'}), stored as a character vector. It can be one of the following.

<table>
<thead>
<tr>
<th>ActiveSetMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{'sgma'}</td>
<td>Sparse greedy matrix approximation</td>
</tr>
<tr>
<td>\texttt{'entropy'}</td>
<td>Differential entropy-based selection</td>
</tr>
<tr>
<td>\texttt{'likelihood'}</td>
<td>Subset of regressors log likelihood-based selection</td>
</tr>
<tr>
<td>\texttt{'random'}</td>
<td>Random selection</td>
</tr>
</tbody>
</table>

The selected active set is used in parameter estimation or prediction, depending on the choice of \texttt{FitMethod} and \texttt{PredictMethod} in \texttt{fitrgp}.

\textbf{ActiveSetSize} — Size of the active set  
\texttt{integer value}

Size of the active set for sparse methods (\texttt{'sd'}, \texttt{'sr'}, or \texttt{'fic'}), stored as an integer value.
Data Types: double

**IsActiveSetVector — Indicators for selected active set**
logical vector

Indicators for selected active set for making predictions from the trained GPR model, stored as a logical vector. These indicators mark the subset of training data that `fitrgp` selects as the active set. For example, if X is the original training data, then

```
ActiveSetVectors = X(IsActiveSetVector,:).
```

Data Types: logical

**Training Data**

**NumObservations — Number of observations in training data**
scalar value

Number of observations in training data, stored as a scalar value.

Data Types: double

**X — Training data**

*n*-by-*d* table | *n*-by-*d* matrix

Training data, stored as an *n*-by-*d* table or matrix, where *n* is the number of observations and *d* is the number of predictor variables (columns) in the training data. If the GPR model is trained on a table, then *X* is a table. Otherwise, *X* is a matrix.

Data Types: double | table

**Y — Observed response values**

*n*-by-1 vector

Observed response values used to train the GPR model, stored as an *n*-by-1 vector, where *n* is the number of observations.

Data Types: double

**PredictorNames — Names of predictors**

cell array of character vectors

Names of predictors used in the GPR model, stored as a cell array of character vectors. Each name (cell) corresponds to a column in *X*.

Data Types: cell
ExpandedPredictorNames — Names of expanded predictors
cell array of character vectors

Names of expanded predictors for the GPR model, stored as a cell array of character vectors. Each name (cell) corresponds to a column in ActiveSetVectors.

If the model uses dummy variables for categorical variables, then ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.

Data Types: cell

ResponseName — Name of the response variable
character vector

Name of the response variable in the GPR model, stored as a character vector.

Data Types: char

PredictorLocation — Means of predictors
1-by-\(d\) vector | []

Means of predictors used for training the GPR model if the training data is standardized, stored as a 1-by-\(d\) vector. If the training data is not standardized, PredictorLocation is empty.

If PredictorLocation is not empty, then the predict method centers the predictor values by subtracting the respective element of PredictorLocation from every column of \(X\).

If there are categorical predictors, then PredictorLocation includes a 0 for each dummy variable corresponding to those predictors. The dummy variables are not centered or scaled.

Data Types: double

PredictorScale — Standard deviations of predictors
1-by-\(d\) vector | []

Standard deviations of predictors used for training the GPR model if the training data is standardized, stored as a 1-by-\(d\) vector. If the training data is not standardized, PredictorScale is empty.
If `PredictorScale` is not empty, the `predict` method scales the predictors by dividing every column of `X` by the respective element of `PredictorScale` (after centering using `PredictorLocation`).

If there are categorical predictors, then `PredictorLocation` includes a 1 for each dummy variable corresponding to those predictors. The dummy variables are not centered or scaled.

Data Types: `double`

**RowsUsed — Indicators for rows used in training**

`logical vector` | `[]`

Indicators for rows used in training the GPR model, stored as a logical vector. If all rows are used in training the model, then `RowsUsed` is empty.

Data Types: `logical`

**Methods**

- `compact` Create compact Gaussian process regression model
- `crossval` Cross-validate Gaussian process regression model
- `postFitStatistics` Compute post-fit statistics for the exact Gaussian process regression model
- `resubLoss` Resubstitution loss for a trained Gaussian process regression model
- `resubPredict` Resubstitution prediction from a trained Gaussian process regression model

**Inherited Methods**

- `loss` Regression error for Gaussian process regression model
- `predict` Predict response of Gaussian process regression model
Definitions

Active Set Selection and Parameter Estimation

For subset of data, subset of regressors, or fully independent conditional approximation fitting methods (FitMethod equal to 'sd', 'sr', or 'fic'), if you do not provide the active set, fitrgp selects the active set and computes the parameter estimates in a series of iterations.

In the first iteration, the software uses the initial parameter values in vector \( \eta_0 = [\beta_0, \sigma_0, \theta_0] \) to select an active set \( A_1 \). It maximizes the GPR marginal log likelihood or its approximation using \( \eta_0 \) as the initial values and \( A_1 \) to compute the new parameter estimates \( \eta_1 \). Next, it computes the new log likelihood \( L_1 \) using \( \eta_1 \) and \( A_1 \).

In the second iteration, the software selects the active set \( A_2 \) using the parameter values in \( \eta_1 \). Then, using \( \eta_1 \) as the initial values and \( A_2 \), it maximizes the GPR marginal log likelihood or its approximation and estimates the new parameter values \( \eta_2 \). Then using \( \eta_2 \) and \( A_2 \), computes the new log likelihood value \( L_2 \).

The following table summarizes the iterations and what is computed at each iteration.

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>Active Set</th>
<th>Parameter Vector</th>
<th>Log Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>( A_1 )</td>
<td>( \eta_1 )</td>
<td>( L_1 )</td>
</tr>
<tr>
<td>2</td>
<td>( A_2 )</td>
<td>( \eta_2 )</td>
<td>( L_2 )</td>
</tr>
<tr>
<td>3</td>
<td>( A_3 )</td>
<td>( \eta_3 )</td>
<td>( L_3 )</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The software iterates similarly for a specified number of repetitions. You can specify the number of replications for active set selection using the NumActiveSetRepeats name-value pair argument.

Tips

- You can access the properties of this class using dot notation. For example, KernelInformation is a structure holding the kernel parameters and their names. Hence, to access the kernel function parameters of the trained model gprMdl, use gprMdl.KernelInformation.KernelParameters.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The `predict` function supports code generation.
• When you train a Gaussian process regression model by using `fitrgp`, you cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. Code generation does not support categorical predictors. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using `dummyvar` before fitting the model.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
CompactRegressionGP | compact | fitrgp | plotPartialDependence

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2015b
RegressionLinear class

Linear regression model for high-dimensional data

Description

RegressionLinear is a trained linear model object for regression; the linear model is a support vector machine regression (SVM) or linear regression model. fitrlinear fits a RegressionLinear model by minimizing the objective function using techniques that reduce computation time for high-dimensional data sets (e.g., stochastic gradient descent). The regression loss plus the regularization term compose the objective function.

Unlike other regression models, and for economical memory usage, RegressionLinear model objects do not store the training data. However, they do store, for example, the estimated linear model coefficients, estimated coefficients, and the regularization strength.

You can use trained RegressionLinear models to predict responses for new data. For details, see predict.

Construction

Create a RegressionLinear object by using fitrlinear.

Properties

Linear Regression Properties

Epsilon — Half of width of epsilon-insensitive band

nonnegative scalar

Half of the width of the epsilon-insensitive-band, specified as a nonnegative scalar.

If Learner is not 'svm', then Epsilon is an empty array ([]).

Data Types: single | double
**Lambda — Regularization term strength**
nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as a nonnegative scalar or vector of nonnegative values.

Data Types: `double` | `single`

**Learner — Linear regression model type**
'leastsquares' | 'svm'

Linear regression model type, specified as 'leastsquares' or 'svm'.

In this table, \( f(x) = x\beta + b \).

- \( \beta \) is a vector of \( p \) coefficients.
- \( x \) is an observation from \( p \) predictor variables.
- \( b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss function</th>
<th>FittedLoss Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'leastsquares'</td>
<td>Linear regression via ordinary least squares</td>
<td>Mean squared error (MSE): ( \ell[y, f(x)] = \frac{1}{2}[y - f(x)]^2 )</td>
<td>'mse'</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine regression</td>
<td>Epsilon-insensitive: ( \ell[y, f(x)] = \max[0,</td>
<td>y - f(x)</td>
</tr>
</tbody>
</table>

**Beta — Linear coefficient estimates**
numeric vector

Linear coefficient estimates, specified as a numeric vector with length equal to the number of predictors.

Data Types: `double`

**Bias — Estimated bias term**
numeric scalar

Estimated bias term or model intercept, specified as a numeric scalar.
Data Types: double

**FittedLoss — Loss function used to fit the linear model**
'epsiloninsensitive' | 'mse'

Loss function used to fit the model, specified as 'epsiloninsensitive' or 'mse'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss function</th>
<th>Learner Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Support vector machine regression</td>
<td>Epsilon-insensitive: ( \ell(y, f(x)) = \max(0,</td>
<td>y - f(x)</td>
</tr>
<tr>
<td>'mse'</td>
<td>Linear regression via ordinary least squares</td>
<td>Mean squared error (MSE): ( \ell(y, f(x)) = \frac{1}{2} (y - f(x))^2 )</td>
<td>'leastsquares'</td>
</tr>
</tbody>
</table>

**Regularization — Complexity penalty type**
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss function (see FittedLoss) and a regularization value from this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso (L1)'</td>
<td>Lasso ((L_1)) penalty: ( \lambda \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'ridge (L2)'</td>
<td>Ridge ((L_2)) penalty: ( \frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2 )</td>
</tr>
</tbody>
</table>

\( \lambda \) specifies the regularization term strength (see Lambda).

The software excludes the bias term \((\beta_0)\) from the regularization penalty.
Other Regression Properties

**ModelParameters** — Parameters used for training model

structure

Parameters used for training the RegressionLinear model, specified as a structure.

Access fields of `ModelParameters` using dot notation. For example, access the relative tolerance on the linear coefficients and the bias term by using `Mdl.ModelParameters.BetaTolerance`.

Data Types: `struct`

**PredictorNames** — Predictor names

cell array of character vectors

Predictor names in order of their appearance in the predictor data `X`, specified as a cell array of character vectors. The length of `PredictorNames` is equal to the number of columns in `X`.

Data Types: `cell`

**ExpandedPredictorNames** — Expanded predictor names

cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

Because a RegressionLinear model does not support categorical predictors, `ExpandedPredictorNames` and `PredictorNames` are equal.

Data Types: `cell`

**ResponseName** — Response variable name

character vector

Response variable name, specified as a character vector.

Data Types: `char`

**ResponseTransform** — Response transformation function

'none' | function handle

Response transformation function, specified as 'none' or a function handle. `ResponseTransform` describes how the software transforms raw response values.
For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: `char` | `function_handle`

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loss</code></td>
<td>Regression loss for linear regression models</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>Predict response of linear regression model</td>
</tr>
<tr>
<td><code>selectModels</code></td>
<td>Select fitted regularized linear regression models</td>
</tr>
</tbody>
</table>

## Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

## Examples

### Train Linear Regression Model

Train a linear regression model using SVM, dual SGD, and ridge regularization.

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = x_1, \ldots, x_{1000} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
```
Train a linear regression model. By default, \texttt{fitrlinear} uses support vector machines with a ridge penalty, and optimizes using dual SGD for SVM. Determine how well the optimization algorithm fit the model to the data by extracting a fit summary.

\begin{verbatim}
[X,Y] = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

[Mdl,FitInfo] = fitrlinear(X,Y)

Mdl = RegressionLinear
    ResponseName: 'Y'
    ResponseTransform: 'none'
    Beta: [1000x1 double]
    Bias: -0.0056
    Lambda: 1.0000e-04
    Learner: 'svm'

Properties, Methods

FitInfo = struct with fields:
    Lambda: 1.0000e-04
    Objective: 0.2725
    PassLimit: 10
    NumPasses: 10
    BatchLimit: []
    NumIterations: 100000
    GradientNorm: NaN
    GradientTolerance: 0
    RelativeChangeInBeta: 0.4907
    BetaTolerance: 1.0000e-04
    DeltaGradient: 1.5816
    DeltaGradientTolerance: 0.1000
    TerminationCode: 0
    TerminationStatus: {'Iteration limit exceeded.'}
    Alpha: [10000x1 double]
    History: []
    FitTime: 0.1190
    Solver: {'dual'}
\end{verbatim}
Mdl is a RegressionLinear model. You can pass Mdl and the training or new data to loss to inspect the in-sample mean-squared error. Or, you can pass Mdl and new predictor data to predict to predict responses for new observations.

FitInfo is a structure array containing, among other things, the termination status (TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is good practice to use FitInfo to determine whether optimization-termination measurements are satisfactory. In this case, fitrlinear reached the maximum number of iterations. Because training time is fast, you can retrain the model, but increase the number of passes through the data. Or, try another solver, such as LBFGS.

### Predict Responses Using Linear Regression Model

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = \{x_1, \ldots, x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Hold out 5% of the data.

```matlab
rng(1); % For reproducibility
cvp = cvpartition(n,'Holdout',0.05)
cvp =
Hold-out cross validation partition
 NumObservations: 10000
 NumTestSets: 1
 TrainSize: 9500
 TestSize: 500
```
cvp is a CVPartition object that defines the random partition of n data into training and test sets.

Train a linear regression model using the training set. For faster training time, orient the predictor data matrix so that the observations are in columns.

```matlab
idxTrain = training(cvp); % Extract training set indices
X = X';
Mdl = fitrlinear(X(:,idxTrain),Y(idxTrain),'ObservationsIn','columns');
```

Predict observations and the mean squared error (MSE) for the hold out sample.

```matlab
idxTest = test(cvp); % Extract test set indices
yHat = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');
L = loss(Mdl,X(:,idxTest),Y(idxTest),'ObservationsIn','columns')
L = 0.1851
```

The hold-out sample MSE is 0.1852.

### Extended Capabilities

#### C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train a linear regression model by using fitrlinear, the following restrictions apply.
  - The predictor data input argument value (X) must be a full numeric matrix.
  - You can specify only one regularization strength, either 'auto' or a nonnegative scalar for the 'Lambda' name-value pair argument.
  - The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.
See Also
RegressionPartitionedLinear | fitrlinear | plotPartialDependence | predict

Introduced in R2016a
RegressionPartitionedEnsemble

**Package:** classreg.learning.partition  
**Superclasses:** Cross-validated regression ensemble

**Description**

RegressionPartitionedEnsemble is a set of regression ensembles trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more “kfold” methods: kfoldfun, kfoldLoss, or kfoldPredict. Every “kfold” method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly 4/5 of the data and every test fold contains roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y with the first 1/5 excluded, the second model stored in Trained{2} was trained on X and Y with the second 1/5 excluded, and so on. When you call kfoldPredict, it computes predictions for the first 1/5 of the data using the first model, for the second 1/5 of data using the second model and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation.

**Construction**

cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble. For syntax details, see the crossval method reference page.

cvens = fitrensemble(X,Y,Name,Value) creates a cross-validated ensemble when Name is one of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpairition'. For syntax details, see the fitrensemble function reference page.

**Input Arguments**

ens

A regression ensemble constructed with fitrensemble.
Properties

**CategoricalPredictors**
Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

**CrossValidatedModel**
Name of the cross-validated model, a character vector.

**Kfold**
Number of folds used in a cross-validated tree, a positive integer.

**ModelParameters**
Object holding parameters of `tree`.

**NumObservations**
Numeric scalar containing the number of observations in the training data.

**NTrainedPerFold**
Vector of `Kfold` elements. Each entry contains the number of trained learners in this cross-validation fold.

**Partition**
The partition of class `cvpartition` used in creating the cross-validated ensemble.

**PredictorNames**
A cell array of names for the predictor variables, in the order in which they appear in `X`.

**ResponseName**
Name of the response variable `Y`, a character vector.
**ResponseTransform**

Function handle for transforming scores, or character vector representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

**Trainable**

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains its training data and weights.

**Trained**

Cell array of compact ensembles trained on cross-validation folds.

**W**

The scaled weights, a vector with length n, the number of rows in X.

**X**

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

**Y**

A numeric column vector with the same number of rows as X. Each entry in Y is the response to the data in the corresponding row of X.

**Methods**

- kfoldLoss: Cross-validation loss of partitioned regression ensemble
- resume: Resume training ensemble
Inherited Methods

- kfoldfun: Cross validate function
- kfoldLoss: Cross-validation loss of partitioned regression model
- kfoldPredict: Predict response for observations not used for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Construct Partitioned Regression Ensemble

Construct a partitioned regression ensemble, and examine the cross-validation losses for the folds.

Load the carsmall data set.

load carsmall;

Create a subset of variables.

XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;

Construct the ensemble model.

rens = fitrensemble(XX,YY);

Create a cross-validated ensemble from rens.

rng(10,'twister') % For reproducibility
cvrens = crossval(rens);

Examine the cross-validation losses.

L = kfoldLoss(cvrens,'mode','individual')
L = 10×1
L is a vector containing the cross-validation loss for each trained learner in the ensemble.

**See Also**

ClassificationPartitionedEnsemble | RegressionEnsemble | RegressionPartitionedModel | fitrtree
RegressionPartitionedLinear

**Package:** classreg.learning.partition

**Superclasses:**

Cross-validated linear regression model for high-dimensional data

**Description**

RegressionPartitionedLinear is a set of linear regression models trained on cross-validated folds. To obtain a cross-validated, linear regression model, use fitrlinear and specify one of the cross-validation options. You can estimate the predictive quality of the model, or how well the linear regression model generalizes, using one or more of these “kfold” methods: kfoldPredict and kfoldLoss.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-fold observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five roughly equally sized groups. The training fold contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1. The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the last four groups and reserves the observations in the first group for validation.
2. The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and last three groups. The software reserves the observations in the second group for validation.
3. The software proceeds in a similar fashion for the third through fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1 using the first model, group 2 for the second model, and so on. In short, the software estimates a response for every observation using the model trained without that observation.

**Note** Unlike other cross-validated, regression models, RegressionPartitionedLinear model objects do not store the predictor data set.
Construction

CVMdl = fitrlinear(X,Y,Name,Value) creates a cross-validated, linear regression model when Name is either 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'. For more details, see fitrlinear.

Properties

Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.

For example, 'Linear' specifies a cross-validated linear model for binary classification or regression.

Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.

Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate the linear model, specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double
**Partition — Data partition**
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

**Trained — Linear regression models trained on cross-validation folds**
cell array of RegressionLinear model objects

Linear regression models trained on cross-validation folds, specified as a cell array of RegressionLinear models. Trained has \( k \) cells, where \( k \) is the number of folds.

Data Types: cell

**W — Observation weights**
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. \( W \) has \( \text{NumObservations} \) elements.

The software normalizes the weights used for training so that \( \text{nansum}(W) = 1 \).

Data Types: single | double

**Y — Observed responses**
numeric vector

Observed responses used to cross-validate the model, specified as a numeric vector containing \( \text{NumObservations} \) elements.

Each row of \( Y \) represents the observed response of the corresponding observation in the predictor data.

Data Types: single | double

**Other Regression Properties**

**CategoricalPredictors — Categorical predictor indices**
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. \( \text{CategoricalPredictors} \) contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).
Data Types: single | double

**PredictorNames — Predictor names**
cell array of character vectors

Predictor names in their order of appearance in predictor data used to train CVMdl, specified as a cell array of character vectors. `PredictorNames` has length equal to the number of predictor variables in the predictor data.

Data Types: cell

**ResponseName — Response variable name**
character vector

Response variable name, specified as a character vector.

Data Types: char

**ResponseTransform — Response transformation function**
'none' | function handle

Response transformation function, specified as 'none' or a function handle. `ResponseTransform` describes how the software transforms raw response values.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: char | function_handle

**Methods**

- `kfoldLoss` Regression loss for observations not used in training
- `kfoldPredict` Predict responses for observations not used for training

**Copy Semantics**

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Create Cross-Validated Linear Regression Model

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = \{x_1, ..., x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

```matlab
rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
```

Cross-validate a linear regression model. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

```matlab
X = X';
CVMdl = fitrlinear(X,Y,'CrossVal','on','ObservationsIn','columns');
```

\( CVMdl \) is a `RegressionPartitionedLinear` cross-validated model. Because `fitrlinear` implements 10-fold cross-validation by default, \( CVMdl.Trained \) contains a cell vector of ten `RegressionLinear` models. Each cell contains a linear regression model trained on nine folds, and then tested on the remaining fold.

Predict responses for out-of-fold observations and estimate the generalization error by passing \( CVMdl \) to `kfoldPredict` and `kfoldLoss`, respectively.

```matlab
oofYHat = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)
```

\( ge = 0.1748 \)

The estimated, generalization, mean squared error is 0.1748.
Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares, implement 5-fold cross-validation.

Simulate 10000 observations from this model

\[ y = x_{100} + 2x_{200} + e. \]

- \( X = \{x_1, \ldots, x_{1000}\} \) is a 10000-by-1000 sparse matrix with 10\% nonzero standard normal elements.
- \( e \) is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from \( 10^{-5} \) through \( 10^{-1} \).

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that the observations are in columns. Optimize the objective function using SpaRSA.

X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

numCLModels = numel(CVMdl.Trained)
numCLModels = 5

CVMdl is a RegressionPartitionedLinear model. Because fitrlinear implements 5-fold cross-validation, CVMdl contains 5 RegressionLinear models that the software trains on each fold.
Display the first trained linear regression model.

\[
Mdl1 = \text{CVMdl.Trained\{1\}}
\]

\[
Mdl1 =
\begin{array}{l}
\text{RegressionLinear} \\
\quad \text{ResponseName: 'Y'} \\
\quad \text{ResponseTransform: 'none'} \\
\quad \text{Beta: [1000x15 double]} \\
\quad \text{Bias: [1x15 double]} \\
\quad \text{Lambda: [1x15 double]} \\
\quad \text{Learner: 'leastsquares'}
\end{array}
\]

Properties, Methods

\textit{Mdl1} is a \texttt{RegressionLinear} model object. \texttt{fitrlinear} constructed \textit{Mdl1} by training on the first four folds. Because \texttt{Lambda} is a sequence of regularization strengths, you can think of \textit{Mdl1} as 15 models, one for each regularization strength in \texttt{Lambda}.

Estimate the cross-validated MSE.

\[
mse = \text{kfoldLoss(CVMdl)};
\]

Higher values of \texttt{Lambda} lead to predictor variable sparsity, which is a good quality of a regression model. For each regularization strength, train a linear regression model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

\[
\text{Mdl} = \text{fitrlinear}(X,Y,'ObservationsIn','columns','Lambda',\texttt{Lambda},...
\qquad 'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
\]

\[
\text{numNZCoeff} = \text{sum(Mdl.Beta} \neq 0);
\]

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

\[
\text{figure}
\]

\[
[h,hL1,hL2] = \text{plotyy(log10(Lambda),log10(mse),...}
\quad \text{log10(Lambda),log10(numNZCoeff)});
\]

\[
hL1.\text{Marker} = 'o';
\]

\[
hL2.\text{Marker} = 'o';
\]

\[
\text{ylabel(h(1),'log}_{10} \text{ MSE')}
\]

\[
\text{ylabel(h(2),'log}_{10} \text{ nonzero-coefficient frequency')}
\]
Choose the index of the regularization strength that balances predictor variable sparsity and low MSE (for example, \texttt{Lambda(10)}).

```matlab
idxFinal = 10;

Extract the model with corresponding to the minimal MSE.

```matlab
MdlFinal = selectModels(Mdl,idxFinal)
```

```matlab
MdlFinal =
    RegressionLinear
    ResponseName: 'Y'
```
ResponseTransform: 'none'
 Beta: [1000x1 double]
 Bias: -0.0050
 Lambda: 0.0037
 Learner: 'leastsquares'

Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)
idxNZCoeff = 2×1
 100
 200

EstCoeff = Mdl.Beta(idxNZCoeff)
EstCoeff = 2×1
 1.0051
 1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients EstCoeff are close to the coefficients that simulated the data.

See Also
RegressionLinear | fitrlinear | kfoldLoss | kfoldPredict

Introduced in R2016a
RegressionPartitionedModel

Package: classreg.learning.partition

Cross-validated regression model

Description

RegressionPartitionedModel is a set of regression models trained on cross-validated folds. Estimate the quality of regression by cross validation using one or more “kfold” methods: kfoldPredict, kfoldLoss, and kfoldfun. Every “kfold” method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly 4/5 of the data and every test fold contains roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y with the first 1/5 excluded, the second model stored in Trained{2} was trained on X and Y with the second 1/5 excluded, and so on. When you call kfoldPredict, it computes predictions for the first 1/5 of the data using the first model, for the second 1/5 of data using the second model and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation.

Construction

cvmodel = crossval(tree) creates a cross-validated classification model from a regression tree. For syntax details, see the crossval method reference page.

cvmodel = fitrtree(X,Y,Name,Value) creates a cross-validated model when name is one of 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. For syntax details, see the fitrtree function reference page.

Input Arguments

tree

A regression tree constructed with fitrtree.
Properties

CategoricalPredictors
Categorical predictor indices, specified as a vector of positive integers.
CategoricalPredictors contains index values corresponding to the columns of the
predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).

CrossValidatedModel
Name of the cross-validated model, a character vector.

Kfold
Number of folds used in a cross-validated tree, a positive integer.

ModelParameters
Object holding parameters of tree.

Partition
The partition of class cvpartition used in the cross-validated model.

PredictorNames
A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName
Name of the response variable Y, a character vector.

ResponseTransform
Function handle for transforming the raw response values (mean squared error). The
function handle should accept a matrix of response values and return a matrix of the
same size. The default character vector 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

ctree.ResponseTransform = @function
Trained

The trained learners, a cell array of compact regression models.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the response to the data in the corresponding row of X.

Methods

kfoldfun Cross validate function
kfoldLoss Cross-validation loss of partitioned regression model
kfoldPredict Predict response for observations not used for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Evaluate Cross-Validation Error

Load the sample data. Create a variable X containing the Horsepower and Weight data.

load carsmall

X = [Horsepower Weight];
Construct a regression tree using the sample data.

cvtree = fitrtree(X,MPG,'crossval','on');

Evaluate the cross-validation error of the carsmall data using Horsepower and Weight as predictor variables for mileage (MPG).

L = kfoldLoss(cvtree)

L = 25.5338

See Also
ClassificationPartitionedModel | RegressionPartitionedEnsemble
RegressionPartitionedSVM

Package: classreg.learning.partition
Superclasses:

Cross-validated support vector machine regression model

Description

RegressionPartitionedSVM is a set of support vector machine (SVM) regression models trained on cross-validated folds.

Construction

CVMdl = crossval(mdl) returns a cross-validated (partitioned) support vector machine regression model, CVMdl, from a trained SVM regression model, mdl.

CVMdl = crossval(mdl,Name,Value) returns a cross-validated model with additional options specified by one or more Name,Value pair arguments. Name can also be a property name on page 32-5579 and Value is the corresponding value. Name must appear inside single quotes ('). You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Properties

CategoricalPredictors — Indices of categorical predictors
vector of positive integers
Categorical predictor indices, specified as a vector of positive integers. \texttt{CategoricalPredictors} contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

Data Types: \texttt{single} | \texttt{double}

\textbf{CrossValidatedModel — Name of the cross-validated model}

character vector

Name of the cross-validated model, stored as a character vector.

Data Types: \texttt{char}

\textbf{KFold — Number of cross-validation folds}

positive integer value

Number of cross-validation folds, stored as a positive integer value.

Data Types: \texttt{single} | \texttt{double}

\textbf{ModelParameters — Cross-validation parameters}

object

Cross-validation parameters, stored as an object.

\textbf{NumObservations — Number of observations}

positive integer value

Number of observations in the training data, stored as a positive integer value.

Data Types: \texttt{single} | \texttt{double}

\textbf{Partition — Data partition for cross-validation}

cvpartition object

Data partition for cross-validation, stored as a \texttt{cvpartition} object.

\textbf{PredictorNames — Predictor names}

cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in the order in which they appear in \texttt{X}. \texttt{PredictorNames} has a length equal to the number of columns in \texttt{X}.

32-5580
Data Types: cell

ResponseName — Response variable name
character vector

Response variable name, stored as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. *ResponseTransform* describes how the software transforms raw response values.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where *function* accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: char | function_handle

Trained — Trained, compact regression models
cell array of CompactRegressionSVM models

Trained, compact regression models, stored as a cell array of CompactRegressionSVM models.

Data Types: cell

W — Observation weights
vector of numeric values

Observation weights used to train the model, stored as a numeric vector containing *NumObservation* number of elements. *fitrsvm* normalizes the weights used for training so that they sum to 1.

Data Types: single | double

X — Predictor values
matrix of numeric values | table of numeric values

Predictor values used to train the model, stored as a matrix of numeric values if the model is trained on a matrix, or a table if the model is trained on a table. *X* has size *n*-by-*p*,

32-5581
where \(n \) is the number of rows and \(p \) is the number of predictor variables or columns in the training data.

Data Types: single | double | table

\(Y \) — Observed responses
numeric vector

Observed responses used to cross-validate the model, specified as a numeric vector containing \(\text{NumObservations} \) elements.

Each row of \(Y \) represents the observed classification of the corresponding row of \(X \).

Data Types: single | double

Methods

Inherited Methods

- kfoldfun: Cross validate function
- kfoldLoss: Cross-validation loss of partitioned regression model
- kfoldPredict: Predict response for observations not used for training

Examples

Train Cross-Validated SVM Regression Model Using crossval

This example shows how to train a cross-validated SVM regression model using crossval.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility
```
The sample data contains 4177 observations. All of the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2. Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the model using 10-fold cross validation.

CVMdl = crossval(mdl)

CVMdl =

 classreg.learning.partition.RegressionPartitionedSVM
 CrossValidatedModel: 'SVM'
 PredictorNames: {1x8 cell}
 CategoricalPredictors: 1
 ResponseName: 'Var9'
 NumObservations: 4177
 KFold: 10
 Partition: [1x1 cvpartition]
 ResponseTransform: 'none'

CVMdl is a RegressionPartitionedSVM cross-validated regression model. The software:

1. Randomly partitions the data into ten equally-sized sets.

2. Trains an SVM regression model on nine of the ten sets.

3. Repeats steps 1 and 2 \(k = 10 \) times. It leaves out one of the partitions each time, and trains on the other nine partitions.

4. Combines generalization statistics for each fold.

Display the first of the 10 trained models.
FirstModel = CVMdl.Trained{1}

FirstModel =

 classreg.learning.regr.CompactRegressionSVM
 PredictorNames: {1x8 cell}
 ResponseName: 'Var9'
 ResponseTransform: 'none'
 Alpha: [3553x1 double]
 Bias: 11.0623
 KernelParameters: [1x1 struct]
 Mu: [0 0 0 0.5242 0.4080 0.1393 0.8300 0.3599 0.1811 0.2392]
 Sigma: [1 1 1 0.1205 0.0995 0.0392 0.4907 0.2217 0.1103 0.1392]
 SupportVectors: [3553x10 double]

Properties, Methods

FirstModel is the first of the 10 trained CompactRegressionSVM models.

Specify Cross-Validation Holdout Proportion for SVM Regression

This example shows how to specify a holdout proportion for training a cross-validated SVM regression model.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2. Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);

mdl is a trained RegressionSVM regression model.
Cross validate the regression model by specifying a 10% holdout sample.

```matlab
CVMdl = crossval(mdl,'Holdout',0.1)
```

```
CVMdl =

classreg.learning.partition.RegressionPartitionedSVM
    CrossValidatedModel: 'SVM'
    PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
        ResponseName: 'Var9'
        NumObservations: 4177
            KFold: 1
                Partition: [1x1 cvpartition]
                    ResponseTransform: 'none'
```

Properties, Methods

CVMdl is a *RegressionPartitionedSVM* model object.

Extract and display the trained, compact SVM regression model from *CVMdl*.

```matlab
CVMdl.Trained{1}
```

```
TrainedModel =

classreg.learning.regr.CompactRegressionSVM
    PredictorNames: {1x8 cell}
        ResponseName: 'Var9'
        ResponseTransform: 'none'
            Alpha: [3530x1 double]
                Bias: 11.2646
            KernelParameters: [1x1 struct]
                Mu: [0 0 0 0.5244 0.4080 0.1393 0.8282 0.3595 0.1805 0.2386]
                Sigma: [1 1 1 0.1198 0.0989 0.0388 0.4891 0.2218 0.1093 0.1390]
                SupportVectors: [3530x10 double]
```

Properties, Methods
TrainedModel is a CompactRegressionSVM regression model that was trained using 90% of the data.

Alternatives

You can create a RegressionPartitionedSVM model using the following techniques:

• Use the training function fitrsvm and specify one of the 'CrossVal', 'Holdout', 'KFold', or 'Leaveout' name-value pairs.
• Train a model using fitrsvm, then cross validate the model using the crossval method.
• Create a cross validation partition using cvpartition, then pass the resulting partition object to fitrsvm during training using the 'CVPartition' name-value pair.

References

See Also

RegressionSVM | crossval | cvpartition | fitrsvm
Introduced in R2015b
RegressionSVM class

Superclasses:
Support vector machine regression model

Description

RegressionSVM is a support vector machine (SVM) regression model. Train a RegressionSVM model using `fitrsvm` and the sample data.

RegressionSVM models store data, parameter values, support vectors, and algorithmic implementation information. You can use these models to:

- Estimate resubstitution predictions. For details, see `resubPredict`.
- Predict values for new data. For details, see `predict`.
- Compute resubstitution loss. For details, see `resubLoss`.
- Compute the mean square error or epsilon-insensitive loss. For details, see `loss`.

Construction

Create a RegressionSVM object by using `fitrsvm`.

Properties

Alpha — Dual problem coefficients
vector of numeric values

Dual problem coefficients, specified as a vector of numeric values. Alpha contains m elements, where m is the number of support vectors in the trained SVM regression model. The dual problem introduces two Lagrange multipliers for each support vector. The values of Alpha are the differences between the two estimated Lagrange multipliers for the support vectors. For more details, see “Understanding Support Vector Machine Regression” on page 25-2.
If you specified to remove duplicates using `RemoveDuplicates`, then, for a particular set of duplicate observations that are support vectors, `Alpha` contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero coefficient to one observation from the set of duplicates and a coefficient of 0 to all other duplicate observations in the set.

Data Types: `single` | `double`

Beta — Primal linear problem coefficients

vector of numeric values | '[]'

Primal linear problem coefficients, stored as a numeric vector of length `p`, where `p` is the number of predictors in the SVM regression model.

The values in `Beta` are the linear coefficients for the primal optimization problem.

If the model is obtained using a kernel function other than 'linear', this property is empty ('[]').

The `predict` method computes predicted response values for the model as `YFIT = (X/S) × Beta + Bias`, where `S` is the value of the kernel scale stored in the `KernelParameters.Scale` property.

Data Types: `single` | `double`

Bias — Bias term

scalar value

Bias term in the SVM regression model, stored as a scalar value.

Data Types: `single` | `double`

BoxConstraints — Box constraints for dual problem coefficients

vector of numeric values

Box constraints for dual problem alpha coefficients, stored as a numeric vector containing `n` elements, where `n` is the number of observations in `X` (`Mdl.NumObservations`).

The absolute value of the dual coefficient `Alpha` for observation `i` cannot exceed `BoxConstraints(i)`.

If you specify removing duplicates using 'RemoveDuplicates', then for a given set of duplicate observations, MATLAB sums the box constraints, and then attributes the sum to one observation and box constraints of 0 to all other observations in the set.
Data Types: `single` | `double`

CacheInfo — Caching information
structure

Caching information, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Size'</td>
<td>Positive scalar value indicating the cache size (in MB) that the software reserves to store entries of the Gram matrix. Set the cache size by using the <code>'CacheSize'</code> name-value pair argument in <code>fitrsvm</code>.</td>
</tr>
<tr>
<td>'Algorithm'</td>
<td>Character vector containing the name of the algorithm used to remove entries from the cache when its capacity is exceeded. Currently, the only available caching algorithm is <code>'Queue'</code>. You cannot set the caching algorithm.</td>
</tr>
</tbody>
</table>

Data Types: `struct`

CategoricalPredictors — Indices of categorical predictors
vector of positive integers

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty (`[]`).

Data Types: `single` | `double`

ConvergenceInfo — Convergence information
structure

Convergence information, stored as a structure with the following fields.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converged</td>
<td>Logical flag indicating whether the algorithm converged. A value of 1 indicates convergence.</td>
</tr>
<tr>
<td>ReasonForConvergence</td>
<td>Character vector indicating the criterion the software used to detect convergence.</td>
</tr>
<tr>
<td>Gap</td>
<td>Scalar feasibility gap between the dual and primal objective functions.</td>
</tr>
<tr>
<td>GapTolerance</td>
<td>Scalar tolerance for the feasibility gap. You can set this tolerance using the 'GapTolerance' name-value pair argument in fitrsvm.</td>
</tr>
<tr>
<td>DeltaGradient</td>
<td>Scalar gradient difference between upper and lower violators.</td>
</tr>
<tr>
<td>DeltaGradientTolerance</td>
<td>Scalar tolerance for the gradient difference. You can set this tolerance using the DeltaGradientTolerance name-value pair argument in fitrsvm.</td>
</tr>
<tr>
<td>LargestKKTViolation</td>
<td>Maximal scalar Karush-Kuhn-Tucker (KKT) violation value.</td>
</tr>
<tr>
<td>KKTtolerance</td>
<td>Scalar tolerance for the largest KKT violation. You can set this tolerance using the 'KKTtolerance' name-value pair argument in fitrsvm.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>History</td>
<td>Structure containing convergence information recorded at periodic intervals during the model training process. This structure contains the following fields:</td>
</tr>
<tr>
<td></td>
<td>• NumIterations — Array of iteration indices at which the software recorded convergence criteria.</td>
</tr>
<tr>
<td></td>
<td>• Gap — Gap values at these iterations.</td>
</tr>
<tr>
<td></td>
<td>• DeltaGradient — DeltaGradient values at these iterations.</td>
</tr>
<tr>
<td></td>
<td>• LargestKKTViolation — LargestKKTViolation values at these iterations.</td>
</tr>
<tr>
<td></td>
<td>• NumSupportVectors — Number of support vectors at these iterations.</td>
</tr>
<tr>
<td></td>
<td>• Objective — Objective values at these iterations.</td>
</tr>
<tr>
<td>Objective</td>
<td>Numeric value of the dual objective.</td>
</tr>
</tbody>
</table>

Data Types: struct

Epsilon — Half the width of the epsilon-insensitive band

nonnegative scalar value

Half the width of the epsilon-insensitive band, stored as a nonnegative scalar value.

Data Types: single | double

ExpandedPredictorNames — Expanded predictor names

cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

Data Types: cell
Gradient — Gradient values in training data
vector of numeric values

Gradient values in training data, stored as a numeric vector containing $2n$ elements, where n is the number of observations in the training data.

Element i of Gradient contains the gradient value for the Alpha coefficient that corresponds to the upper boundary of the epsilon-insensitive band at observation i at the end of the optimization.

Element $i + NumObservations$ of Gradient contains the gradient value for the Alpha coefficient that corresponds to the lower boundary of the epsilon-insensitive band at observation i at the end of the optimization.

Data Types: single | double

HyperparameterOptimizationResults — Description of the cross-validation optimization of hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, stored as a BayesianOptimization object or a table of hyperparameters and associated values. Nonempty when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on the setting of the HyperparameterOptimizationOptions name-value pair at creation:

- 'bayesopt' (default) — Object of class BayesianOptimization
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

Data Types: table

IsSupportVector — Flag indicating whether observation is support vector
logical vector

Flag indicating whether an observation is a support vector, stored as an n-by-1 logical vector. n is the number of observations in X (see NumObservations). A value of 1 indicates that the corresponding observation in the training data is a support vector.

If you specify removing duplicates using RemoveDuplicates, then for a given set of duplicate observations that are support vectors, IsSupportVector flags only one as a support vector.
Data Types: logical

KernelParameters — Kernel function parameters
structure

Kernel function parameters, stored as a structure with the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Kernel function name (a character vector).</td>
</tr>
<tr>
<td>Scale</td>
<td>Numeric scale factor used to divide predictor values.</td>
</tr>
</tbody>
</table>

You can specify values for `KernelParameters.Function` and `KernelParameters.Scale` by using the `KernelFunction` and `KernelScale` name-value pair arguments in `fitrsvm`, respectively.

Data Types: struct

ModelParameters — Parameter values
model parameter object

Parameter values used to train the SVM regression model, stored as a model parameter object. Access the properties of `ModelParameters` using dot notation. For example, access the value of `Epsilon` used to train the model as `Mdl.ModelParameters.Epsilon`.

Mu — Predictor means
vector of numeric values ‘[]’

Predictor means, stored as a vector of numeric values.

If the predictors are standardized, then `Mu` is a numeric vector of length `p`, where `p` is the number of predictors used to train the model. In this case, the `predict` method centers predictor matrix `X` by subtracting the corresponding element of `Mu` from each column.

If the predictors are not standardized, then `Mu` is empty (‘[]’).

If the data contains categorical predictors, then `Mu` includes elements for the dummy variables for those predictors. The corresponding entries in `Mu` are 0 because dummy variables are not centered or scaled.

Data Types: `single` | `double`
NumIterations — Number of iterations required for convergence
positive integer value

Number of iterations required for the optimization routine to reach convergence, stored as a positive integer value.

To set a limit on the number of iterations, use the 'IterationLimit' name-value pair argument of fitrsvm.

Data Types: single | double

NumObservations — Number of observations
positive integer value

Number of observations in the training data, stored as a positive integer value.

Data Types: single | double

PredictorNames — Predictor names

cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in the order they appear in X. PredictorNames has a length equal to the number of columns in X.

Data Types: cell

OutlierFraction — Expected fraction of outliers

scalar value in the range [0,1]

Expected fraction of outliers in the training set, stored as a scalar value in the range [0,1]. You can specify the expected fraction of outliers using the 'OutlierFraction' name-value pair argument in fitrsvm.

Data Types: double

ResponseName — Response variable name

character vector

Response variable name, stored as a character vector.

Data Types: char

ResponseTransform — Response transformation function

'none' | function handle
Response transformation function, specified as 'none' or a function handle.
ResponseTransform describes how the software transforms raw response values.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: char | function_handle

ShrinkagePeriod — Number of iterations between reductions of active set
nonnegative integer value

Number of iterations between reductions of the active set during optimization, stored as a nonnegative integer value.

You can set the shrinkage period by using the 'ShrinkagePeriod' name-value pair argument in fitrsvm.

Data Types: single | double

Sigma — Predictor standard deviations
vector of numeric values | '[]'

Predictor standard deviations, stored as a vector of numeric values.

If the predictors are standardized, then Sigma is a numeric vector of length p, where p is the number of predictors used to train the model. In this case, the predict method scales the predictor matrix X by dividing each column by the corresponding element of Sigma, after centering each element using Mu.

If the predictors are not standardized, then Sigma is empty ('[]').

If the data contains categorical predictors, Sigma includes elements for the dummy variables for those predictors. The corresponding entries in Sigma are 1, because dummy variables are not centered or scaled.

Data Types: single | double

Solver — Name of solver algorithm
character vector

Name of the solver algorithm used to solve the optimization problem, stored as a value in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SMO'</td>
<td>Sequential Minimal Optimization</td>
</tr>
<tr>
<td>'ISDA'</td>
<td>Iterative Single Data Algorithm</td>
</tr>
<tr>
<td>'L1QP'</td>
<td>L1 soft-margin minimization by quadratic programming (requires an Optimization Toolbox license).</td>
</tr>
</tbody>
</table>

SupportVectors — Support vectors

matrix of numeric values

Support vectors, stored as an m-by-p matrix of numeric values. m is the number of support vectors ($\text{sum}($Mdl.IsSupportVector$)$), and p is the number of predictors in X.

If you specified to remove duplicates using RemoveDuplicates, then for a given set of duplicate observations that are support vectors, SupportVectors contains one unique support vector.

Data Types: single | double

W — Observation weights

vector of numeric values

Observation weights used to train the model, stored as a numeric vector containing NumObservation number of elements. fitrsvm normalizes the weights used for training so that they sum to 1.

Data Types: single | double

X — Predictor values

matrix of numeric values | table of numeric values

Predictor values used to train the model, stored as a matrix of numeric values if the model is trained on a matrix, or a table if the model is trained on a table. X has size n-by-p, where n is the number of rows and p is the number of predictor variables or columns in the training data.

Data Types: single | double | table

Y — Observed response values

vector of numeric values
Observed response values, stored as a numeric vector containing `NumObservations` number of elements.

Data Types: `single` | `double`

Methods

- `compact` Compact support vector machine regression model
- `crossval` Cross-validated support vector machine regression model
- `resubLoss` Resubstitution loss for support vector machine regression model
- `resubPredict` Predict resubstitution response of support vector machine regression model
- `resume` Resume training support vector machine regression model

Inherited Methods

- `discardSupportVectors` Discard support vectors
- `loss` Regression error for support vector machine regression model
- `predict` Predict responses using support vector machine regression model

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Train Linear Support Vector Machine Regression Model

This example shows how to train a linear support vector machine (SVM) regression model using sample data stored in matrices.

Load the `carsmall` data set.
load carsmall
rng default % for reproducibility

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

X = [Horsepower,Weight];
Y = MPG;

Train a linear SVM regression model.

Mdl = fitrsvm(X,Y)

Mdl = RegressionSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 Alpha: [76x1 double]
 Bias: 43.1920
 KernelParameters: [1x1 struct]
 NumObservations: 93
 BoxConstraints: [93x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [93x1 logical]
 Solver: 'SMO'

Properties, Methods

The Command Window shows that Mdl is a trained RegressionSVM model and a list of its properties.

Check the model for convergence.

Mdl.ConvergenceInfo.Converged
ans = logical
 0

0 indicates that the model did not converge.

MdlStd = fitrsvm(X,Y,'Standardize',true)
MdlStd = RegressionSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ResponseTransform: 'none'
 Alpha: [77x1 double]
 Bias: 22.9131
 KernelParameters: [1x1 struct]
 Mu: [109.3441 2.9625e+03]
 Sigma: [45.3545 805.9668]
 NumObservations: 93
 BoxConstraints: [93x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [93x1 logical]
 Solver: 'SMO'

Check the model for convergence.

MdlStd.ConvergenceInfo.Converged

ans = logical
 1

1 indicates that the model did converge.

Compute the resubstitution mean squared error for the new model.

lStd = resubLoss(MdlStd)

lStd = 17.0256

Train Support Vector Machine Regression Model

Train a support vector machine regression model using the abalone data from the UCI Machine Learning Repository.

Download the data and save it in your current folder with the name 'abalone.csv'.

32-5600
websave('abalone.csv',url);

Read the data into a table. Specify the variable names.

varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';
 'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'};
Tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
Tbl.Properties.VariableNames = varnames;

The sample data contains 4177 observations. All the predictor variables are continuous except for Sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings (stored in Rings) on the abalone and determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale. Standardize the data.

rng default % For reproducibility
Mdl = fitrsvm(Tbl,'Rings','KernelFunction','gaussian','KernelScale','auto',...
 'Standardize',true)

Mdl =

RegressionSVM
 PredictorNames: {1×8 cell}
 ResponseName: 'Rings'
 CategoricalPredictors: 1
 ResponseTransform: 'none'
 Alpha: [3635×1 double]
 Bias: 10.8144
 KernelParameters: [1×1 struct]
 Mu: [1×10 double]
 Sigma: [1×10 double]
 NumObservations: 4177
 BoxConstraints: [4177×1 double]
 ConvergenceInfo: [1×1 struct]
 IsSupportVector: [4177×1 logical]
 Solver: 'SMO'

The Command Window shows that Mdl is a trained RegressionSVM model and displays a property list.
Display the properties of Mdl using dot notation. For example, check to confirm whether the model converged and how many iterations it completed.

\[
\begin{align*}
\text{conv} &= \text{Mdl.ConvergenceInfo.Converged} \\
\text{iter} &= \text{Mdl.NumIterations}
\end{align*}
\]

\[
\begin{align*}
\text{conv} &= \\
&= \text{logical} \\
&= 1 \\
\text{iter} &= \\
&= 2759
\end{align*}
\]

The returned results indicate that the model converged after 2759 iterations.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The `predict` function supports code generation.
• When you train an SVM regression model by using `fitrsvm`, the following restrictions apply.
 • Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using `dummyvar` before fitting the model.
 • The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
`CompactRegressionSVM` | `RegressionPartitionedSVM` | `fitrsvm` | `plotPartialDependence`

Topics
“Understanding Support Vector Machine Regression” on page 25-2

Introduced in R2015b
RegressionSVMCoderConfigurer

Coder configurer for support vector machine (SVM) regression model

Description

A RegressionSVMCoderConfigurer object is a coder configurer of an SVM regression model (RegressionSVM and CompactRegressionSVM).

A coder configurer offers convenient features to configure code generation options, generate C/C++ code, and update model parameters in the generated code.

- Configure code generation options and specify the coder attributes for SVM model parameters using object properties.
- Generate C/C++ code for the predict and update functions of the SVM regression model by using generateCode. Generating C/C++ code requires MATLAB Coder.
- Update model parameters in the generated C/C++ code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when you retrain the SVM model with new data or settings. Before updating model parameters, use validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of an SVM regression model, see the Code Generation sections of CompactRegressionSVM, predict, and update.
Creation

After training an SVM regression model by using fitrsvm, create a coder configurer for the model by using learnerCoderConfigurer.

Properties

Code Generation Options

X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of predictor data to pass to the generated C/C++ code for the predict function of the SVM regression model, specified as a LearnerCoderInput object.

A LearnerCoderInput object includes the following attributes:

- **SizeVector**
 - Array size of the predictor data if the corresponding VariableDimensions value is false.
 - Upper bound of the array size if the corresponding VariableDimensions value is true.

- **VariableDimensions** — Indicator specifying whether each dimension of the predictor data has a variable size or fixed size. A value of true (logical 1) means that the corresponding dimension has a variable size; a value of false (logical 0) means that the corresponding dimension has a fixed size. The default value is false (logical 0) for all dimensions.

- **DataType** — Data type of the predictor data.

- **Tunability** — Always true, meaning that the generated C/C++ code accepts predictor data that satisfies the other three attributes.

When you create the coder configurer configurer by using the learnerCoderConfigurer function, the input argument X of the function specifies the SizeVector and DataType attributes. You can modify these two attributes and specify the VariableDimensions attribute by using dot notation.
For example, if you want to generate C/C++ code that accepts predictor data with 100 observations of three predictor variables, then specify the coder attributes of \(X \) as follows:

```matlab
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];
```

\([0 \ 0]\) indicates that the first and second dimensions of \(X \) (number of observations and number of predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify the coder attributes of \(X \) as follows:

```matlab
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];
```

\([1 \ 0]\) indicates that the first dimension of \(X \) (number of observations) has a variable size and the second dimension of \(X \) (number of predictor variables) has a fixed size. The specified number of observations, 100 in this example, becomes the maximum allowed number of observations in the generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict

1 (default)

Number of output arguments to return from the generated C/C++ code for the `predict` function of the SVM regression model, specified as 1. `predict` returns predicted responses in the generated C/C++ code.

The `NumOutputs` property is equivalent to the '-nargout' compiler option of `codegen`. This option specifies the number of output arguments in the entry-point function of code generation. The object function `generateCode` generates two entry-point functions—`predict.m` and `update.m` for the `predict` and `update` functions of an SVM regression model, respectively—and generates C/C++ code for the two entry-point functions. The specified value for the `NumOutputs` property corresponds to the number of output arguments in the entry-point function `predict.m`.

Data Types: `single` | `double`

OutputFileName — File name of generated C/C++ code

`'RegressionSVMModel'` (default) | character vector

File name of the generated C/C++ code, specified as a character vector.
The object function `generateCode` of the coder configurer `configurer` generates C/C++ code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain operating system configurations. Also, the name must be a valid MATLAB function name.

After creating `configurer`, you can specify the file name by using dot notation.

```matlab
className.OutputFileName = 'myModel';
```

Data Types: `char`

Verbose — Verbosity level

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>true</code> (logical 1)</td>
<td>The software displays notification messages when your changes to the coder attributes of a parameter result in changes for other dependent parameters.</td>
</tr>
<tr>
<td><code>false</code> (logical 0)</td>
<td>The software does not display notification messages.</td>
</tr>
</tbody>
</table>

Verbosity level, specified as `true` (logical 1) or `false` (logical 0). The verbosity level controls the display of notification messages at the command line.

To enable updating machine learning model parameters in the generated code, you need to configure the coder attributes of the parameters before generating code. The coder attributes of parameters are dependent on each other, so the software stores the dependencies as configuration constraints. If you modify the coder attributes of a parameter by using the coder configurer `configurer`, and the modification requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters. The verbosity level determines whether or not the software displays notification messages for these subsequent changes.

After creating `configurer`, you can modify the verbosity level by using dot notation.

```matlab
className.Verbose = false;
```

Data Types: `logical`
Properties for Coder Attributes of SVM Regression Model Parameters

The properties listed in this section specify the coder attributes of the SVM regression model parameters that you can update. To enable updating the parameters in the generated code, you need to specify the coder attributes of the parameters before generating code. Use a LearnerCoderInput object to specify the coder attributes of each parameter.

LearnerCoderInput object To generate C/C++ code that allows updating the parameters of a machine learning model, you must specify the coder attributes of each parameter. A coder configurer uses a LearnerCoderInput object to specify the coder attributes of the model parameters and their array values.

A LearnerCoderInput object has the attributes described in this table.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SizeVector</td>
<td>• Array size if the corresponding VariableDimensions value is false.</td>
<td>Array size of the corresponding model parameter</td>
</tr>
<tr>
<td></td>
<td>• Upper bound of the array size if the corresponding VariableDimensions value is true.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To allow an unbounded array, specify the bound as Inf.</td>
<td></td>
</tr>
</tbody>
</table>
| VariableDimensions | Indicator specifying whether each dimension of the array has a variable size or fixed size. A value of true (logical 1) means that the corresponding dimension has a variable size; a value of false (logical 0) means that the corresponding dimension has a fixed size. | false (logical 0) for all dimensions, indicating a fixed size
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataType</td>
<td>Data type of the array</td>
<td>Data type of the corresponding model parameter</td>
</tr>
<tr>
<td>Tunability</td>
<td>Indicator specifying whether or not update in the generated C/C++ code allows the array values to be updated</td>
<td>Determined depending on the model parameter</td>
</tr>
</tbody>
</table>

You can modify the coder attributes by using dot notation. For example, after creating the coder configurer `configurer`, specify the coder attributes of the coefficients `Alpha`.

```matlab
configurer.Alpha.SizeVector = [100 1];
configurer.Alpha.VariableDimensions = [1 0];
configurer.Alpha.DataType = 'double';
configurer.Alpha.Tunability = 1;
```

If you specify the verbosity level (Verbose) as `true` (default), then the software displays notification messages when you modify the coder attributes of a machine learning model parameter and the modification changes the coder attributes of other dependent parameters.

Alpha — Coder attributes of dual problem coefficients

LearnerCoderInput object

Coder attributes of the dual problem coefficients (`Alpha` of an SVM regression model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using `discardSupportVectors`, the Tunability value of the LearnerCoderInput object must be `false` for `Alpha`. Otherwise, the Tunability value must be `true`.

Beta — Coder attributes of primal linear problem coefficients

LearnerCoderInput object

Coder attributes of the primal linear problem coefficients (`Beta` of an SVM regression model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using `discardSupportVectors`, the Tunability value of the LearnerCoderInput object must be `true` for `Beta`. Otherwise, the Tunability value must be `false`.

32-5609
Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of an SVM regression model), specified as a LearnerCoderInput object.

The Tunability value of the LearnerCoderInput object must be true for Bias.

Mu — Coder attributes of predictor means
LearnerCoderInput object

Coder attributes of the predictor means (Mu of an SVM regression model), specified as a LearnerCoderInput object.

If you train an SVM model using standardized predictor data by specifying 'Standardize',true, the default Tunability value of the LearnerCoderInput object is true for Mu. Otherwise, the default value is false.

Scale — Coder attributes of kernel scale parameter
LearnerCoderInput object

Coder attributes of the kernel scale parameter (KernelParameters.Scale of an SVM regression model), specified as a LearnerCoderInput object.

The default Tunability value of the LearnerCoderInput object is true for Scale.

Sigma — Coder attributes of predictor standard deviations
LearnerCoderInput object

Coder attributes of the predictor standard deviations (Sigma of an SVM regression model), specified as a LearnerCoderInput object.

If you train an SVM model using standardized predictor data by specifying 'Standardize',true, the default Tunability value of the LearnerCoderInput object is true for Sigma. Otherwise, the default value is false.

SupportVectors — Coder attributes of support vectors
LearnerCoderInput object

Coder attributes of the support vectors (SupportVectors of an SVM regression model), specified as a LearnerCoderInput object.

If you train an SVM model with a linear kernel function and discard support vectors by using discardSupportVectors, the Tunability value of the LearnerCoderInput
object must be \textit{false} for \texttt{SupportVectors}. Otherwise, the \textit{Tunability} value must be \textit{true}.

Customization of Code Generation

To customize the code generation workflow, use the \texttt{generateFiles} function and the following three properties with \texttt{codegen}, instead of using the \texttt{generateCode} function.

After generating the two entry-point function files (\texttt{predict.m} and \texttt{update.m}) by using the \texttt{generateFiles} function, you can modify these files according to your code generation workflow. For example, you can modify the \texttt{predict.m} file to include data preprocessing, or you can add these entry-point functions to another code generation project. Then, you can generate C/C++ code by using the \texttt{codegen} function and the \texttt{codegen} arguments appropriate for the modified entry-point functions or code generation project. Use the three properties described in this section as a starting point to set the \texttt{codegen} arguments.

CodeGenerationArguments — codegen arguments

cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the \texttt{generateCode} function if you do not need to customize your workflow.

Instead of using \texttt{generateCode} with the coder configurer \texttt{configurer}, you can generate C/C++ code as follows:

\begin{verbatim}
generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs)
\end{verbatim}

If you customize the code generation workflow, modify \texttt{cgArgs} accordingly before calling \texttt{codegen}.

If you modify other properties of \texttt{configurer}, the software updates the \texttt{CodeGenerationArguments} property accordingly.

Data Types: cell
PredictInputs — Input argument of predict
cell array of a coder.PrimitiveType object

This property is read-only.

Input argument of the entry-point function `predict.m` for code generation, specified as a cell array of a coder.PrimitiveType object. The coder.PrimitiveType object includes the coder attributes of predictor data stored in the `X` property.

The coder.PrimitiveType object in `PredictInputs` is equivalent to `configurer.CodeGenerationArguments{6}` for the coder configurer `configurer`.

If you modify the coder attributes of predictor data, then the software updates the coder.PrimitiveType object accordingly.

Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function `update.m` for code generation, specified as a cell array of a structure including coder.PrimitiveType objects. Each coder.PrimitiveType object includes the coder attributes of a tunable machine learning model parameter.

The structure in `UpdateInputs` is equivalent to `configurer.CodeGenerationArguments{3}` for the coder configurer `configurer`.

If you modify the coder attributes of a model parameter by using the coder configurer properties ("Properties for Coder Attributes of SVM Regression Model Parameters" on page 32-5608), then the software updates the corresponding coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine learning model parameter as false, then the software removes the corresponding coder.PrimitiveType object from the UpdateInputs list.

Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model and then generate code for the predict and update functions of the model by using a coder configurer.

Load the carsmall data set and train a support vector machine (SVM) regression model.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);

Mdl is a RegressionSVM object.

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input.

cconfigurer = learnerCoderConfigurer(Mdl,X)

cconfigurer = RegressionSVMCoderConfigurer with properties:

Update Inputs:
 Alpha: [1x1 LearnerCoderInput]
 SupportVectors: [1x1 LearnerCoderInput]
 Scale: [1x1 LearnerCoderInput]
 Bias: [1x1 LearnerCoderInput]

Predict Inputs:
 X: [1x1 LearnerCoderInput]

Code Generation Parameters:
configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a RegressionSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use generateCode to generate code for the predict and update functions of the RegressionSVM model with default settings.

generateCode(configurer)

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
generateCode generates these files for code generation.

generateCode generates the MATLAB files required to generate code, including the two entry-point functions predict.m and update.m for the predict and update functions of the RegressionSVM model (Mdl), respectively. Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point functions and the code for the MEX function in the codegen\mex\RegressionSVMModel folder and copies the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files.

type predict.m % Display contents of predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
initialize('update',varargin{:});
end

type initialize.m % Display contents of initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 19-Jul-2018 13:17:23
coder.inline('always');
persistent model;
if isempty(model)
 model = loadCompactModel('RegressionSVMModel.mat');
end
switch(command)
 case 'update'
 % Update struct fields: Alpha
 % SupportVectors
 % Scale
 % Bias

 model = update(model,varargin{:});
 case 'predict'
 % Predict Inputs: X

 X = varargin{1};
 if nargin == 2
 [varargout{1:nargout}] = predict(model,X);
 else
 PVPairs = cell(1,nargin-2);
 for i = 1:nargin-2
 PVPairs{1,i} = varargin{i+1};
 end
 [varargout{1:nargout}] = predict(model,X,PVPairs{:});
 end
end
end

Update Model Parameters in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts responses for new predictor data. Then retrain the model.
using the whole data set and update parameters in the generated code without regenerating the code.

Train Model

Load the carsmall data set and train an SVM regression model using the first 50 observations.

```matlab
load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X(1:50,:),Y(1:50));
```

Mdl is a RegressionSVM object.

Create Coder Configurer

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:));
```

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a RegressionSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM regression model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM regression model.

First, specify the coder attributes of X so that the generated code accepts any number of observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector attribute specifies the upper bound of the predictor data size, and the VariableDimensions attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 2];
configurer.X.VariableDimensions = [true false];
```

The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X
can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. \(X \) contains two predictors, so the value of the \(\text{SizeVector} \) attribute must be two and the value of the \(\text{VariableDimensions} \) attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of \(\text{SupportVectors} \) so that you can update the support vectors in the generated code.

```matlab
congurer.SupportVectors.SizeVector = [250 2];
```

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.

```matlab
congurer.SupportVectors.VariableDimensions = [true false];
```

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.

If you modify the coder attributes of \(\text{SupportVectors} \), then the software modifies the coder attributes of \(\text{Alpha} \) to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `RegressionSVM` model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
- 'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'

`generateCode` generates these files for code generation.

`generateCode` generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions.
of the RegressionSVM model (Mdl), respectively. Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point functions in the codegen `mex\RegressionSVMModel` folder and copies the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the `predict` function of Mdl and the `predict` function in the MEX function return the same predicted responses. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

```matlab
yfit = predict(Mdl,X);
yfit_mex = RegressionSVMModel('predict',X);
```

`yfit_mex` might include round-off differences compared with `yfit`. In this case, compare `yfit` and `yfit_mex`, allowing a small tolerance.

```matlab
find(abs(yfit-yfit_mex) > 1e-6)
an =
0×1 empty double column vector
```

The comparison confirms that `yfit` and `yfit_mex` are equal within the tolerance `1e–6`.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

```matlab
retrainedMdl = fitrsvm(X,Y);
```

Extract parameters to update by using `validatedUpdateInputs`. This function detects the modified model parameters in `retrainedMdl` and validates whether the modified parameter values satisfy the coder attributes of the parameters.

```matlab
params = validatedUpdateInputs(configurer,retrainedMdl);
```

Update parameters in the generated code.

```matlab
RegressionSVMModel('update',params)
```

Verify Generated Code

Compare the outputs from the `predict` function of `retrainedMdl` and the `predict` function in the updated MEX function.
yfit = predict(retrainedMdl, X);
yfit_mex = RegressionSVMModel('predict', X);
find(abs(yfit - yfit_mex) > 1e-6)

ans =

0×1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e-6.

See Also
CompactRegressionSVM | RegressionSVM | learnerCoderConfigurer | predict | update

Topics
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

Introduced in R2018b
RegressionTree class

Superclasses:

Regression tree

Description

A decision tree with binary splits for regression. An object of class RegressionTree can predict responses for new data with the predict method. The object contains the data used for training, so can compute resubstitution predictions.

Construction

Create a RegressionTree object by using fitrtree.

Properties

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. If none of the predictors are categorical, then this property is empty ([]).

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in CategoricalSplits gives left and right values for a categorical split. For each branch node with categorical split j based on a categorical predictor variable z, the left child is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom.
Children

An n-by-2 array containing the numbers of the child nodes for each node in `tree`, where `n` is the number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in `tree`, where `n` is the number of nodes. For each branch node `i` based on a categorical predictor variable `x`, the left child is chosen if `x` is among the categories listed in `CutCategories{i,1}`, and the right child is chosen if `x` is among those listed in `CutCategories{i,2}`. Both columns of `CutCategories` are empty for branch nodes based on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

CutPoint

An n-element vector of the values used as cut points in `tree`, where `n` is the number of nodes. For each branch node `i` based on a continuous predictor variable `x`, the left child is chosen if `x<CutPoint(i)` and the right child is chosen if `x>=CutPoint(i)`. CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in `tree`, where `n` is the number of nodes. For each node `i`, `CutType{i}` is:

- 'continuous' — If the cut is defined in the form `x < v` for a variable `x` and cut point `v`.
- 'categorical' — If the cut is defined by whether a variable `x` takes a value in a set of categories.
- '' — If `i` is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.
CutPredictor

An n-element cell array of the names of the variables used for branching in each node in `tree`, where n is the number of nodes. These variables are sometimes known as *cut variables*. For leaf nodes, `CutPredictor` contains an empty character vector.

`CutPoint` contains the cut points for 'continuous' cuts, and `CutCategories` contains the set of categories.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a `BayesianOptimization` object or a table of hyperparameters and associated values. Nonempty when the `OptimizeHyperparameters` name-value pair is nonempty at creation. Value depends on the setting of the `HyperparameterOptimizationOptions` name-value pair at creation:

- 'bayesopt' (default) — Object of class `BayesianOptimization`
- 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)

IsBranchNode

An n-element logical vector `ib` that is `true` for each branch node and `false` for each leaf node of `tree`.

ModelParameters

Object holding parameters of `tree`.
NumObservations

Number of observations in the training data, a numeric scalar. `NumObservations` can be less than the number of rows of input data `X` when there are missing values in `X` or response `Y`.

NodeError

An `n`-element vector `e` of the errors of the nodes in `tree`, where `n` is the number of nodes. `e(i)` is the misclassification probability for node `i`.

NodeMean

An `n`-element numeric array with mean values in each node of `tree`, where `n` is the number of nodes in the tree. Every element in `NodeMean` is the average of the true `Y` values over all observations in the node.

NodeProbability

An `n`-element vector `p` of the probabilities of the nodes in `tree`, where `n` is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

NodeRisk

An `n`-element vector of the risk of the nodes in the tree, where `n` is the number of nodes. The risk for each node is the node error weighted by the node probability.

NodeSize

An `n`-element vector `sizes` of the sizes of the nodes in `tree`, where `n` is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

NumNodes

The number of nodes `n` in `tree`.

Parent

An `n`-element vector `p` containing the number of the parent node for each node in `tree`, where `n` is the number of nodes. The parent of the root node is `0`.
PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in \(X \).

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to \(M \), then \(\text{PruneAlpha} \) has \(M + 1 \) elements sorted in ascending order. \(\text{PruneAlpha}(1) \) is for pruning level 0 (no pruning), \(\text{PruneAlpha}(2) \) is for pruning level 1, and so on.

PruneList

An \(n \)-element numeric vector with the pruning levels in each node of \(\text{tree} \), where \(n \) is the number of nodes. The pruning levels range from 0 (no pruning) to \(M \), where \(M \) is the distance between the deepest leaf and the root node.

ResponseName

A character vector that specifies the name of the response variable (\(Y \)).

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The function handle must accept a matrix of response values and return a matrix of the same size. The default 'none' means \(@(x)x \), or no transformation.

Add or change a `ResponseTransform` function using dot notation:

\[
\text{tree}.\text{ResponseTransform} = @\text{function}
\]

RowsUsed

An \(n \)-element logical vector indicating which rows of the original predictor data (\(X \)) were used in fitting. If the software uses all rows of \(X \), then \(\text{RowsUsed} \) is an empty array ([]).

SurrogateCutCategories

An \(n \)-element cell array of the categories used for surrogate splits in \(\text{tree} \), where \(n \) is the number of nodes in \(\text{tree} \). For each node \(k \), \(\text{SurrogateCutCategories} \{k\} \) is a cell array. The length of \(\text{SurrogateCutCategories} \{k\} \) is equal to the number of surrogate predictors found at this node. Every element of \(\text{SurrogateCutCategories} \{k\} \) is either an empty character vector for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-
element cell array lists categories assigned to the left child by this surrogate split, and
the second element of this two-element cell array lists categories assigned to the right
child by this surrogate split. The order of the surrogate split variables at each node is
matched to the order of variables in `SurrogateCutPredictor`. The optimal-split
variable at this node does not appear. For nonbranch (leaf) nodes,
`SurrogateCutCategories` contains an empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in `tree`,
where n is the number of nodes in `tree`. For each node k, `SurrogateCutFlip{K}` is a
numeric vector. The length of `SurrogateCutFlip{K}` is equal to the number of
surrogate predictors found at this node. Every element of `SurrogateCutFlip{K}` is
either zero for a categorical surrogate predictor, or a numeric cut assignment for a
continuous surrogate predictor. The numeric cut assignment can be either -1 or +1. For
every surrogate split with a numeric cut C based on a continuous predictor variable Z, the
left child is chosen if Z < C and the cut assignment for this surrogate split is +1, or if
Z ≥ C and the cut assignment for this surrogate split is -1. Similarly, the right child is
chosen if Z ≥ C and the cut assignment for this surrogate split is +1, or if Z < C and the
cut assignment for this surrogate split is -1. The order of the surrogate split variables at
each node is matched to the order of variables in `SurrogateCutPredictor`. The
optimal-split variable at this node does not appear. For nonbranch (leaf) nodes,
`SurrogateCutFlip` contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in `tree`, where n
is the number of nodes in `tree`. For each node k, `SurrogateCutPoint{K}` is a numeric
vector. The length of `SurrogateCutPoint{K}` is equal to the number of surrogate
predictors found at this node. Every element of `SurrogateCutPoint{K}` is either `NaN`
for a categorical surrogate predictor, or a numeric cut for a continuous surrogate
predictor. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z < C and `SurrogateCutFlip` for this surrogate split
is +1, or if Z ≥ C and `SurrogateCutFlip` for this surrogate split is -1. Similarly, the right child is
chosen if Z ≥ C and `SurrogateCutFlip` for this surrogate split is +1, or if Z < C and `SurrogateCutFlip` for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by
`SurrogateCutPredictor`. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, `SurrogateCutPoint` contains an empty cell.
SurrogateCutType

An \(n \)-element cell array indicating types of surrogate splits at each node in tree, where \(n \) is the number of nodes in tree. For each node \(k \), SurrogateCutType\{\(k \}\} is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form \(Z < V \) for a variable \(Z \) and cut point \(V \) or 'categorical' if the cut is defined by whether \(Z \) takes a value in a set of categories.

SurrogateCutPredictor

An \(n \)-element cell array of the names of the variables used for surrogate splits in each node in tree, where \(n \) is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An \(n \)-element cell array of the predictive measures of association for surrogate splits in tree, where \(n \) is the number of nodes in tree. For each node \(k \), SurrogatePredictorAssociation\{\(k \}\} is a numeric vector. The length of SurrogatePredictorAssociation\{\(k \}\} is equal to the number of surrogate predictors found at this node. Every element of SurrogatePredictorAssociation\{\(k \}\} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length \(n \), the number of rows in \(X \).
A matrix of predictor values. Each column of \(X \) represents one variable, and each row represents one observation.

\(Y \)

A numeric column vector with the same number of rows as \(X \). Each entry in \(Y \) is the response to the data in the corresponding row of \(X \).

Methods

- compact: Compact regression tree
- crossval: Cross-validated decision tree
- cvloss: Regression error by cross validation
- prune: Produce sequence of subtrees by pruning
- resubLoss: Regression error by resubstitution
- resubPredict: Predict resubstitution response of tree

Inherited Methods

- loss: Regression error
- surrogateAssociation: Mean predictive measure of association for surrogate splits in decision tree
- predict: Predict responses using regression tree
- predictorImportance: Estimates of predictor importance
- view: View tree

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).
Examples

Construct a Regression Tree

Load the sample data.

```matlab
load carsmall;
```

Construct a regression tree using the sample data.

```matlab
tree = fitrtree([Weight, Cylinders],MPG,...
               'categoricalpredictors',2,'MinParentSize',20,...
               'PredictorNames',{'W','C'});
```

```matlab
tree = RegressionTree
    PredictorNames: {'W'  'C'}
    ResponseName: 'Y'
    CategoricalPredictors: 2
    ResponseTransform: 'none'
    NumObservations: 94
```

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

```matlab
mileage4K = predict(tree,[4000 4; 4000 6; 4000 8])
mileage4K = 3x1
    19.2778
    19.2778
    14.3889
```

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- The predict function supports code generation.
- When you train a regression tree model by using fitrtree, the following restrictions apply.
 - Code generation does not support categorical predictors. You cannot supply training data in a table that contains at least one categorical predictor, and you cannot use the 'CategoricalPredictors' name-value pair argument. To dummy-code variables that you want treated as categorical, preprocess the categorical data by using dummyvar before fitting the model.
 - The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous function.
 - You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair argument must be 'off'.

For more information, see “Introduction to Code Generation” on page 31-2.

See Also
ClassificationTree | CompactRegressionTree | RegressionEnsemble | fitrtree | plotPartialDependence | predict

Topics
“Decision Trees” on page 19-2

Introduced in R2011a
regstats

Regression diagnostics

Syntax

regstats(y,X,model)
stats = regstats(...)
stats = regstats(y,X,model,whichstats)

Description

regstats(y,X,model) performs a multilinear regression of the responses in y on the predictors in X. X is an n-by-p matrix of p predictors at each of n observations. y is an n-by-1 vector of observed responses.

Note By default, regstats adds a first column of 1s to X, corresponding to a constant term in the model. Do not enter a column of 1s directly into X.

The optional input model controls the regression model. By default, regstats uses a linear additive model with a constant term. model can be any one of the following:

• 'linear' — Constant and linear terms (the default)
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

Alternatively, model can be a matrix of model terms accepted by the x2fx function. See x2fx for a description of this matrix and for a description of the order in which terms appear. You can use this matrix to specify other models including ones without a constant term.

With this syntax, the function displays a graphical user interface (GUI) with a list of diagnostic statistics, as shown in the following figure.
When you select check boxes corresponding to the statistics you want to compute and click **OK**, *regstats* returns the selected statistics to the MATLAB workspace. The names
of the workspace variables are displayed on the right-hand side of the interface. You can change the name of the workspace variable to any valid MATLAB variable name.

stats = regstats(...) creates the structure stats, whose fields contain all of the diagnostic statistics for the regression. This syntax does not open the GUI. The fields of stats are listed in the following table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Q from the QR decomposition of the design matrix</td>
</tr>
<tr>
<td>R</td>
<td>R from the QR decomposition of the design matrix</td>
</tr>
<tr>
<td>beta</td>
<td>Regression coefficients</td>
</tr>
<tr>
<td>covb</td>
<td>Covariance of regression coefficients</td>
</tr>
<tr>
<td>yhat</td>
<td>Fitted values of the response data</td>
</tr>
<tr>
<td>r</td>
<td>Residuals</td>
</tr>
<tr>
<td>mse</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>rsquare</td>
<td>R^2 statistic</td>
</tr>
<tr>
<td>adjrsquare</td>
<td>Adjusted R^2 statistic</td>
</tr>
<tr>
<td>leverage</td>
<td>Leverage</td>
</tr>
<tr>
<td>hatmat</td>
<td>Hat matrix</td>
</tr>
<tr>
<td>s2_i</td>
<td>Delete-1 variance</td>
</tr>
<tr>
<td>beta_i</td>
<td>Delete-1 coefficients</td>
</tr>
<tr>
<td>standres</td>
<td>Standardized residuals</td>
</tr>
<tr>
<td>studres</td>
<td>Studentized residuals</td>
</tr>
<tr>
<td>dfbetas</td>
<td>Scaled change in regression coefficients</td>
</tr>
<tr>
<td>ddfit</td>
<td>Change in fitted values</td>
</tr>
<tr>
<td>dffits</td>
<td>Scaled change in fitted values</td>
</tr>
<tr>
<td>covratio</td>
<td>Change in covariance</td>
</tr>
<tr>
<td>cookd</td>
<td>Cook's distance</td>
</tr>
<tr>
<td>tstat</td>
<td>t statistics and p-values for coefficients</td>
</tr>
<tr>
<td>fstat</td>
<td>F statistic and p-value</td>
</tr>
<tr>
<td>dwstat</td>
<td>Durbin-Watson statistic and p-value</td>
</tr>
</tbody>
</table>
Note that the fields names of stats correspond to the names of the variables returned to the MATLAB workspace when you use the GUI. For example, stats.beta corresponds to the variable beta that is returned when you select **Coefficients** in the GUI and click **OK**.

\[
\text{stats} = \text{regstats}(y,X,\text{model},\text{whichstats}) \]

returns only the statistics that you specify in `whichstats`. `whichstats` can be a single character vector such as 'leverage', a string array such as

\[
\text{"leverage","standres","studres"} \]

, or a cell array of character vectors such as

\[
\text{\{'leverage','standres','studres'\}} \]

. Set `whichstats` to 'all' to return all of the statistics.

Note The F statistic is computed under the assumption that the model contains a constant term. It is not correct for models without a constant. The R^2 statistic can be negative for models without a constant, which indicates that the model is not appropriate for the data.

Examples

Open the `regstats` GUI using data from `hald.mat`:

\[
\text{load hald} \\
\text{regstats(heat,ingredients,'linear');} \\
\]

Select **Fitted Values** and **Residuals** in the GUI:

![Screenshot of GUI with Fitted Values and Residuals selected]

Click **OK** to export the fitted values and residuals to the MATLAB workspace in variables named `yhat` and `r`, respectively.

You can create the same variables using the `stats` output, without opening the GUI:

\[
\text{whichstats} = \{\text{'yhat','r'}\}; \\
\text{stats} = \text{regstats(heat,ingredients,'linear',whichstats);} \\
\text{yhat} = \text{stats.yhat;} \\
\text{r} = \text{stats.r;} \\
\]
References

See Also

LinearModel | fitlm | stepwiselm

Topics

“Interpret Linear Regression Results” on page 11-65
“Linear Regression Workflow” on page 11-43

Introduced before R2006a
regularize

Find weights to minimize resubstitution error plus penalty term

Syntax

ens1 = regularize(ens)
ens1 = regularize(ens,Name,Value)

Description

ens1 = regularize(ens) finds optimal weights for learners in ens by lasso regularization. regularize returns a regression ensemble identical to ens, but with a populated Regularization property.

ens1 = regularize(ens,Name,Value) computes optimal weights with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A regression ensemble, created by fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

lambda

Vector of nonnegative regularization parameter values for lasso. For the default setting of lambda, regularize calculates the smallest value lambda_max for which all optimal
weights for learners are 0. The default value of lambda is a vector including 0 and nine exponentially-spaced numbers from lambda_max/1000 to lambda_max.

Default: [0 logspace(log10(lambda_max/1000),log10(lambda_max),9)]

MaxIter

Maximum number of iterations allowed, specified as a positive integer. If the algorithm executes MaxIter iterations before reaching the convergence tolerance, then the function stops iterating and returns a warning message. The function can return more than one warning when either npass or the number of lambda values is greater than 1.

Default: 1e3

npass

Maximal number of passes for lasso optimization, a positive integer.

Default: 10

reltol

Relative tolerance on the regularized loss for lasso, a numeric positive scalar.

Default: 1e-3

verbose

Verbosity level, either 0 or 1. When set to 1, regularize displays more information as it runs.

Default: 0

Output Arguments

ens1

A regression ensemble. Usually you set ens1 to the same name as ens.
Examples

Regularize Ensemble of Bagged Trees

Regularize an ensemble of bagged trees.

Generate sample data.

```matlab
rng(10,'twister') % For reproducibility
X = rand(2000,20);
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;
```

Regularize an ensemble of bagged regression trees.

```matlab
bag = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',300);
bag = regularize(bag,'lambda',[0.001 0.1],'verbose',1);
```

Starting lasso minimization for Lambda=0.001. Initial MSE=0.110607.
 Lasso minimization completed pass 1 for Lambda=0.001
 MSE = 0.0899652
 Relative change in MSE = 0.229447
 Number of learners with non-zero weights = 12
 Lasso minimization completed pass 2 for Lambda=0.001
 MSE = 0.064488
 Relative change in MSE = 0.39507
 Number of learners with non-zero weights = 43
 Lasso minimization completed pass 3 for Lambda=0.001
 MSE = 0.0608422
 Relative change in MSE = 0.0599211
 Number of learners with non-zero weights = 64
 Lasso minimization completed pass 4 for Lambda=0.001
 MSE = 0.0600689
 Relative change in MSE = 0.0128732
 Number of learners with non-zero weights = 82
 Lasso minimization completed pass 5 for Lambda=0.001
 MSE = 0.0599416
 Relative change in MSE = 0.00212391
 Number of learners with non-zero weights = 95
 Lasso minimization completed pass 6 for Lambda=0.001
 MSE = 0.0599377
 Relative change in MSE = 6.56533e-05
 Number of learners with non-zero weights = 108
 Lasso minimization completed pass 7 for Lambda=0.001
```
MSE = 0.0599377
Relative change in MSE = 5.37559e-07
Number of learners with non-zero weights = 109
Lasso minimization completed pass 8 for Lambda=0.001
MSE = 0.0599376
Relative change in MSE = 4.5759e-07
Number of learners with non-zero weights = 108
Completed lasso minimization for Lambda=0.001.
Resubstitution MSE changed from 0.110607 to 0.0599376.
Number of learners reduced from 300 to 108.
Starting lasso minimization for Lambda=0.1. Initial MSE=0.110607.
Lasso minimization completed pass 1 for Lambda=0.1
MSE = 0.113013
Relative change in MSE = 0.0212885
Number of learners with non-zero weights = 10
Lasso minimization completed pass 2 for Lambda=0.1
MSE = 0.086583
Relative change in MSE = 0.30526
Number of learners with non-zero weights = 27
Lasso minimization completed pass 3 for Lambda=0.1
MSE = 0.080426
Relative change in MSE = 0.0765551
Number of learners with non-zero weights = 42
Lasso minimization completed pass 4 for Lambda=0.1
MSE = 0.0795375
Relative change in MSE = 0.0111715
Number of learners with non-zero weights = 57
Lasso minimization completed pass 5 for Lambda=0.1
MSE = 0.0792384
Relative change in MSE = 0.00377379
Number of learners with non-zero weights = 67
Lasso minimization completed pass 6 for Lambda=0.1
MSE = 0.0786909
Relative change in MSE = 0.00695864
Number of learners with non-zero weights = 75
Lasso minimization completed pass 7 for Lambda=0.1
MSE = 0.0787917
Relative change in MSE = 0.00128042
Number of learners with non-zero weights = 77
Lasso minimization completed pass 8 for Lambda=0.1
MSE = 0.0788015
Relative change in MSE = 0.000123345
Number of learners with non-zero weights = 87
Lasso minimization completed pass 9 for Lambda=0.1
MSE = 0.0788032
Relative change in MSE = 2.1627e-05
Number of learners with non-zero weights = 87
Completed lasso minimization for Lambda=0.1.
Resubstitution MSE changed from 0.110607 to 0.0788032.
Number of learners reduced from 300 to 87.

regularize reports on its progress.

Inspect the resulting regularization structure.

bag.Regularization

ans = struct with fields:
   Method: 'Lasso'
   TrainedWeights: [300x2 double]
   Lambda: [1.0000e-03 0.1000]
   ResubstitutionMSE: [0.0599 0.0788]
   CombineWeights: @classreg.learning.combiner.WeightedSum

Check how many learners in the regularized ensemble have positive weights. These are the learners included in a shrunken ensemble.

sum(bag.Regularization.TrainedWeights > 0)

ans = 1x2
    108    87

Shrink the ensemble using the weights from Lambda = 0.1.

cmp = shrink(bag,'weightcolumn',2)

cmp =
   classreg.learning.regr.CompactRegressionEnsemble
       ResponseName: 'Y'
       CategoricalPredictors: []
       ResponseTransform: 'none'
       NumTrained: 87

Properties, Methods
The compact ensemble contains 87 members, less than 1/3 of the original 300.

### Definitions

**Lasso**

The lasso algorithm finds an optimal set of learner weights $\alpha_t$ that minimize

$$\sum_{n=1}^{N} w_n g\left(\left(\sum_{t=1}^{T} \alpha_t h_t(x_n)\right), y_n\right) + \lambda \sum_{t=1}^{T} |\alpha_t|,$$

Here

- $\lambda \geq 0$ is a parameter you provide, called the lasso parameter.
- $h_t$ is a weak learner in the ensemble trained on $N$ observations with predictors $x_n$, responses $y_n$, and weights $w_n$.
- $g(f,y) = (f - y)^2$ is the squared error.

### See Also

cvshrink | lasso | shrink

### Topics

“Ensemble Regularization” on page 18-86
relieff

Rank importance of predictors using ReliefF or RReliefF algorithm

Syntax

[ranks,weights] = relieff(X,y,k)
[ranks,weights] = relieff(X,y,k,Name,Value)

Description

[ranks,weights] = relieff(X,y,k) returns the ranks and weights of predictors for the input data matrix X and response vector y, using either the ReliefF or RReliefF algorithm with k nearest neighbors.

If y is numeric, relieff performs RReliefF analysis for regression by default. Otherwise, relieff performs ReliefF analysis for classification using k nearest neighbors per class. For more information on ReliefF and RReliefF, see “Algorithms” on page 32-5648.

[ranks,weights] = relieff(X,y,k,Name,Value) specifies additional options using one or more name-value pair arguments. For example, 'updates',10 sets the number of observations randomly selected for computing weights to 10.

Examples

Determine Important Predictors

Load the sample data.

load fisheriris

Find the important predictors using 10 nearest neighbors.

[ranks,weights] = relieff(meas,species,10)
ranks shows the predictor numbers listed according to their ranking. The fourth predictor is the most important, and the second predictor is the least important. weights gives the weight values in the same order as the predictors. The first predictor has a weight of 0.1399, and the fourth predictor has a weight of 0.3754.

**Rank Predictors by Importance**

Load the sample data.

```matlab
load ionosphere
```

Rank the predictors based on importance using 10 nearest neighbors.

```matlab
[ranks,weights] = relieff(X,Y,10);
```

Create a bar plot of predictor importance weights.

```matlab
bar(weights(ranks))
xlabel('Predictor rank')
ylabel('Predictor importance weight')
```
Select the top 5 most important predictors. Find the columns of these predictors in $X$. 

\[
\text{ranks}(1:5)
\]

\[
\text{ans} = 1\times5
\]

\[
24 \quad 3 \quad 8 \quad 5 \quad 14
\]

The 24th column of $X$ is the most important predictor of $Y$. 

32-5643
**Determine Important Categorical Predictors**

Rank categorical predictors using `relieff`.

Load the sample data.

```matlab
gload carbig
```

Convert the categorical predictor variables `Mfg`, `Model`, and `Origin` to numerical values, and combine them into an input matrix. Specify the response variable `MPG`.

```matlab
X = [grp2idx(Mfg) grp2idx(Model) grp2idx(Origin)];
y = MPG;
```

Find the ranks and weights of the predictor variables using 10 nearest neighbors and treating the data in `X` as categorical.

```matlab
[ranks,weights] = relieff(X,y,10,'categoricalx','on')
ranks = 1×3
 2 3 1
weights = 1×3
 -0.0019 0.0501 0.0114
```

The `Model` predictor is the most important in predicting `MPG`. The `Mfg` variable has a negative weight, indicating it is not a good predictor of `MPG`.

**Input Arguments**

- **X — Predictor data**
  
  numeric matrix

  Predictor data, specified as a numeric matrix. Each row of `X` corresponds to one observation, and each column corresponds to one variable.

  Data Types: `single` | `double`
y — Response data
numeric vector | categorical vector | logical vector | character array | string array | cell array of character vectors

Response data, specified as a numeric vector, categorical vector, logical vector, character array, string array, or cell array of character vectors.

Data Types: single | double | categorical | logical | char | string | cell

k — Number of nearest neighbors
positive integer scalar

Number of nearest neighbors, specified as a positive integer scalar.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: relieff(X,y,5,'method','classification','categoricalx','on') specifies 5 nearest neighbors and treats the response variable and predictor data as categorical.

method — Method for computing weights
'regression' | 'classification'

Method for computing weights, specified as the comma-separated pair consisting of 'method' and either 'regression' or 'classification'. If y is numeric, 'regression' is the default method. Otherwise, 'classification' is the default.

Example: 'method','classification'

prior — Prior probabilities for each class
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'prior' and a value in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class probabilities are determined from class frequencies in y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class probabilities are equal.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>One value exists for each distinct group name.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.group contains the group names as a variable of the same type as y.</td>
</tr>
<tr>
<td></td>
<td>• S.prob contains a vector of corresponding probabilities.</td>
</tr>
</tbody>
</table>

Example: 'prior', 'uniform'

Data Types: single | double | char | string | struct

**updates — Number of observations for computing weights**

'all' (default) | positive integer scalar

Number of observations to select at random for computing weights, specified as the comma-separated pair consisting of 'updates' and either 'all' or a positive integer scalar. By default, relieff uses all observations.

Example: 'updates', 25

Data Types: single | double | char | string

**categoricalx — Categorical predictors flag**

'off' (default) | 'on'

Categorical predictors flag, specified as the comma-separated pair consisting of 'categoricalx' and either 'on' or 'off'. If you specify 'on', then relieff treats all predictors in X as categorical. Otherwise, it treats all predictors in X as numeric. You cannot mix numeric and categorical predictors.

Example: 'categoricalx', 'on'

**sigma — Distance scaling factor**

numeric positive scalar
Distance scaling factor, specified as the comma-separated pair consisting of 'sigma' and a numeric positive scalar. For observation \( i \), influence on the predictor weight from its nearest neighbor \( j \) is multiplied by \( e^{-\text{rank}(i,j)/\sigma^2} \). \text{rank}(i,j) \) is the position of the \( j \)th observation among the nearest neighbors of the \( i \)th observation, sorted by distance. The default is \( \text{Inf} \) for classification (all nearest neighbors have the same influence) and 50 for regression.

Example: 'sigma',20

Data Types: single | double

### Output Arguments

- **ranks — Indices of most important predictors**
  numeric vector

Indices of the most important predictors, returned as a numeric vector. \( \text{ranks} \) are the indices of the columns in \( X \) ordered by predictor importance. For example, if \( \text{ranks}(3) \) is 5, then the third most important predictor is the fifth column in \( X \).

Data Types: double

- **weights — Weights of predictors**
  numeric vector

Weights of the predictors, returned as a numeric vector. \( \text{weights} \) range from -1 to 1 with large positive weights assigned to important predictors.

Data Types: double

### Tips

- Predictor ranks and weights usually depend on \( k \). If you set \( k \) to 1, then the estimates can be unreliable for noisy data. If you set \( k \) to a value comparable with the number of observations (rows) in \( X \), \text{relieff} \) can fail to find important predictors. You can start with \( k = 10 \) and investigate the stability and reliability of \text{relieff} \) ranks and weights for various values of \( k \).
- \text{relieff} removes observations with NaN values.
Algorithms

ReliefF

ReliefF finds the weights of predictors in the case where \( y \) is a multiclass categorical variable. The algorithm penalizes the predictors that give different values to neighbors of the same class, and rewards predictors that give different values to neighbors of different classes.

ReliefF first sets all predictor weights \( W_j \) to 0. Then, the algorithm iteratively selects a random observation \( x_r \), finds the \( k \)-nearest observations to \( x_r \) for each class, and updates, for each nearest neighbor \( x_q \), all the weights for the predictors \( F_j \) as follows:

If \( x_r \) and \( x_q \) are in the same class,

\[
W_j^i = W_j^{i-1} - \frac{\Delta_j(x_r, x_q)}{m} \cdot d_{rq}.
\]

If \( x_r \) and \( x_q \) are in different classes,

\[
W_j^i = W_j^{i-1} + \frac{p_{y_q}}{1 - p_{y_r}} \cdot \frac{\Delta_j(x_r, x_q)}{m} \cdot d_{rq}.
\]

- \( W_j^i \) is the weight of the predictor \( F_j \) at the \( i \)th iteration step.
- \( p_{y_r} \) is the prior probability of the class to which \( x_r \) belongs, and \( p_{y_q} \) is the prior probability of the class to which \( x_q \) belongs.
- \( m \) is the number of iterations specified by `'updates'`.
- \( \Delta_j(x_r, x_q) \) is the difference in the value of the predictor \( F_j \) between observations \( x_r \) and \( x_q \). Let \( x_{rj} \) denote the value of the \( j \)th predictor for observation \( x_r \), and let \( x_{qj} \) denote the value of the \( j \)th predictor for observation \( x_q \).
  - For discrete \( F_j \),

\[
\Delta_j(x_r, x_q) = \begin{cases} 
0, & x_{rj} = x_{qj} \\
1, & x_{rj} \neq x_{qj} 
\end{cases}.
\]
• For continuous $F_j$,

$$
\Delta_j(x_r, x_q) = \frac{|x_{rq} - x_{qj}|}{\max(F_j) - \min(F_j)}.
$$

• $d_{rq}$ is a distance function of the form

$$
d_{rq} = \frac{\tilde{d}_{rq}}{\sum_{l=1}^{k} \tilde{d}_{rl}}.
$$

The distance is subject to the scaling

$$
\tilde{d}_{rq} = e^{-(\text{rank}(r,q)/\text{sigma})^2}
$$

where $\text{rank}(r,q)$ is the position of the qth observation among the nearest neighbors of the rth observation, sorted by distance. $k$ is the number of nearest neighbors, specified by k. You can change the scaling by specifying 'sigma'.

**RReliefF**

RReliefF works with continuous $y$. Similar to ReliefF, RReliefF also penalizes the predictors that give different values to neighbors with the same response values, and rewards predictors that give different values to neighbors with different response values. However, RReliefF uses intermediate weights to compute the final predictor weights.

Given two nearest neighbors, assume the following:

• $W_{dy}$ is the weight of having different values for the response $y$.
• $W_{dj}$ is the weight of having different values for the predictor $F_j$.
• $W_{dy \wedge dj}$ is the weight of having different response values and different values for the predictor $F_j$.

RReliefF first sets the weights $W_{dy}$, $W_{dj}$, $W_{dy \wedge dj}$, and $W_j$ equal to 0. Then, the algorithm iteratively selects a random observation $x_r$, finds the $k$-nearest observations to $x_r$, and updates, for each nearest neighbor $x_q$, all the intermediate weights as follows:
\[
W_{dy}^{i} = W_{dy}^{i-1} + \Delta_y(x_r, x_q) \cdot d_{rq}.
\]

\[
W_{dj}^{i} = W_{dj}^{i-1} + \Delta_j(x_r, x_q) \cdot d_{rq}.
\]

\[
W_{dy,dj}^{i} = W_{dy,dj}^{i-1} + \Delta_y(x_r, x_q) \cdot \Delta_j(x_r, x_q) \cdot d_{rq}.
\]

- The \(i\) and \(i-1\) superscripts denote the iteration step number. \(m\) is the number of iterations specified by 'updates'.
- \(\Delta_y(x_r, x_q)\) is the difference in the value of the continuous response \(y\) between observations \(x_r\) and \(x_q\). Let \(y_r\) denote the value of the response for observation \(x_r\), and let \(y_q\) denote the value of the response for observation \(x_q\).

\[
\Delta_y(x_r, x_q) = \frac{|y_r - y_q|}{\max(y) - \min(y)}.
\]
- The \(\Delta_j(x_r, x_q)\) and \(d_{rq}\) functions are the same as for “ReliefF” on page 32-5648.

RRelieff calculates the predictor weights \(W_j\) after fully updating all the intermediate weights.

\[
W_j = \frac{W_{dy,dj}}{W_{dy}} - \frac{W_{dj} - W_{dy,dj}}{m - W_{dy}}.
\]

For more information, see [2].

**References**


**See Also**

knnsearch | pdist2 | plotPartialDependence | sequentialfs

**Introduced in R2010b**
removeLearners

Remove members of compact classification ensemble

Syntax

cens1 = removeLearners(cens,idx)

Description

cens1 = removeLearners(cens,idx) creates a compact classification ensemble identical to cens only without the ensemble members in the idx vector.

Input Arguments

cens
Compact classification ensemble, constructed with compact.

idx
Vector of positive integers with entries from 1 to cens.NumTrained, where cens.NumTrained is the number of members in cens. cens1 contains all members of cens except those with indices in idx.

Typically, you set idx = j:cens.NumTrained for some positive integer j.

Output Arguments

cens1
Compact classification ensemble, identical to cens except cens1 does not contain those members of cens with indices in idx.
Examples

Remove Learners from an Ensemble

Create a compact classification ensemble. Compact it further by removing members of the ensemble.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble for the ionosphere data using AdaBoostM1. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Create a compact classification ensemble cens from ens.

cens = compact(ens);

Remove the last 50 members of the ensemble.

cens1 = removeLearners(cens,idx);

Tips

- Typically, set cens1 equal to cens to retain just one ensemble.
- Removing learners reduces the memory used by the ensemble and speeds up its predictions.

See Also
CompactClassificationEnsemble
Topics
“Classification with Imbalanced Data” on page 18-99
**removeLearners**

Remove members of compact regression ensemble

**Syntax**

```matlab
cens1 = removeLearners(cens,idx)
```

**Description**

```matlab
cens1 = removeLearners(cens,idx)
```
creates a compact regression ensemble identical to `cens` only without the ensemble members in the `idx` vector.

**Input Arguments**

- `cens` (Compact regression ensemble, constructed with `compact`)
- `idx` (Vector of positive integers with entries from 1 to `cens.NumTrained`, where `cens.NumTrained` is the number of members in `cens`. `cens1` contains the members of `cens` except those with indices in `idx`.

Typically, you set `idx = j:cens.NumTrained` for some positive integer `j`.

**Output Arguments**

- `cens1` (Compact regression ensemble, identical to `cens` except `cens1` does not contain members of `cens` with indices in `idx`.)

32-5655
Examples

Remove Learners from an Ensemble

Create a compact regression ensemble. Compact it further by removing members of the ensemble.

Load the carsmall data set and select Weight and Cylinders as predictors.

```matlab
load carsmall
X = [Weight Cylinders];

Train a regression ensemble using LSBoost. Specify tree stumps as the weak learners.

```matlab
t = templateTree('MaxNumSplits',1);
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t,...
                    'CategoricalPredictors',2);
```matlab

Create a compact classification ensemble cens from ens.

```matlab
cens = compact(ens);
```

Remove the last 50 members of the ensemble.

```matlab
cens1 = removeLearners(cens,idx);
```

Tips

- Typically, set cens1 equal to cens to retain just one ensemble.
- Removing learners reduces the memory used by the ensemble and speeds up its predictions.

See Also
CompactRegressionEnsemble
removeTerms

Class: GeneralizedLinearModel
Remove terms from generalized linear model

Syntax

mdl1 = removeTerms(mdl,terms)

Description

mdl1 = removeTerms(mdl,terms) returns a linear model the same as mdl but with fewer terms.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

terms

Terms to remove from the mdl regression model. Specify as either a:

- Text representing one or more terms to remove. For details, see “Wilkinson Notation” on page 32-5659.
- Row or rows in the terms matrix (see modelspec in fitglm). For example, if there are three variables A, B, and C:

 [0 0 0] represents a constant term or intercept
 [0 1 0] represents B; equivalently, A^0 * B^1 * C^0
 [1 0 1] represents A*C
 [2 0 0] represents A^2
 [0 1 2] represents B*(C^2)
Output Arguments

mdl1

Generalized linear model, the same as mdl but without the terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.

Examples

Remove a Term from a Generalized Linear Regression Model

This example makes a model using two predictors, then removes one.

Generate artificial data for the model, Poisson random numbers with two underlying predictors X(1) and X(2).

rng('default') % for reproducibility
rngvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson')

mdl =
Generalized linear regression model:
 log(y) ~ 1 + x1 + x2
 Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0405</td>
<td>0.022122</td>
<td>47.034</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>0.9968</td>
<td>0.003362</td>
<td>296.49</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>1.987</td>
<td>0.0063433</td>
<td>313.24</td>
<td>0</td>
</tr>
</tbody>
</table>

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Remove the second predictor from the model.

mdl1 = removeTerms(mdl,'x2')

mdl1 =
Generalized linear regression model:
 log(y) ~ 1 + x1
 Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.7784</td>
<td>0.014043</td>
<td>197.85</td>
<td>0</td>
</tr>
<tr>
<td>x1</td>
<td>1.1732</td>
<td>0.0033653</td>
<td>348.6</td>
<td>0</td>
</tr>
</tbody>
</table>

100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
</tbody>
</table>
Wilkinson Notation

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using `-1`

For details, see Wilkinson and Rogers [1].

Alternatives

`step` adds or removes terms from a model using a greedy one-step algorithm.

References

See Also

- `GeneralizedLinearModel`
- `addTerms`
- `step`
- `stepwiseglm`

Topics

- “Plots to Understand Predictor Effects and How to Modify a Model” on page 12-30
- “Generalized Linear Model Workflow” on page 12-40
- “Generalized Linear Models” on page 12-12
removeTerms

Class: LinearModel

Remove terms from linear model

Syntax

mdl1 = removeTerms(mdl,terms)

Description

mdl1 = removeTerms(mdl,terms) returns a linear regression model mdl1 that is the same as the input model mdl, but with terms removed as specified by terms.

Input Arguments

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.

terms — Terms to remove from regression model
formula | matrix

Terms to remove from the regression model mdl, specified as one of the following:

- Formula representing one or more terms to remove. For details, see Wilkinson Notation on page 32-5663.
- Row or rows in the terms matrix (see the modelspec argument description in the fitting function fitlm). For example, if there are three variables A, B, and C:

 - [0 0 0] represents a constant term or intercept
 - [0 1 0] represents B; equivalently, A^0 * B^1 * C^0
 - [1 0 1] represents A*C
Output Arguments

mdl1 — Regression model with fewer terms
LinearModel object

Regression model with fewer terms, returned as a LinearModel object. mdl1 is the same as mdl but with terms removed. To overwrite mdl, set mdl1 equal to mdl.

Examples

Remove Terms from a Linear Regression Model

Construct a default linear model of the Hald data. Remove terms with high \(p \)-values.

Load the data.

```matlab
load hald
X = ingredients;  \% predictor variables
y = heat;  \% response
```

Fit a default linear model to the data.

```matlab
mdl = fitlm(X,y)
```

```
mdl =  
Linear regression model:  
  y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
        Estimate      SE         tStat     pValue
    __________    ________    ________    ________
    (Intercept)      62.405     70.071      0.8906     0.39913
    x1               1.5511    0.74477      2.0827    0.070822
    x2              0.51017    0.72379     0.70486      0.5009
    x3              0.10191    0.75471     0.13503     0.89592
```
Remove the x3 and x4 terms because their P-values are so high.

\[
\text{terms} = 'x3 + x4'; \quad \% \text{ terms to remove}
\]
\[
\text{mdl1} = \text{removeTerms(mdl, terms)}
\]

\[
\text{mdl1} =\]

Linear regression model:
\[
y \sim 1 + x1 + x2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>52.577</td>
<td>2.2862</td>
<td>22.998</td>
</tr>
<tr>
<td>x1</td>
<td>1.4683</td>
<td>0.1213</td>
<td>12.105</td>
</tr>
<tr>
<td>x2</td>
<td>0.66225</td>
<td>0.045855</td>
<td>14.442</td>
</tr>
</tbody>
</table>

The new model has the same adjusted R-Squared value (0.974) as the previous model, meaning it is about as good a fit. All the terms in the new model have extremely low \(p \)-values.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

Alternatives

Use `stepwiselm` to select a model from a starting model, continuing until no single step is beneficial.

Use `addTerms` to add particular terms.

Use `step` to optimally improve the model by adding or removing terms.

References

See Also

LinearModel | addTerms | stepwiselm
Topics
“Change Models” on page 11-36
“Linear Regression” on page 11-11
reorderlevels

Reorder levels of nominal or ordinal arrays

Note The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

Syntax

B = reorderlevels(A,newlevels)

Description

B = reorderlevels(A,newlevels) returns a nominal or ordinal array object of the same type as A, but with levels in the new order specified by newlevels.

For ordinal arrays, the order of the levels has significance for relational operators, finding minimum and maximum values, and sorting.

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

newlevels — New order of levels
string array | cell array of character vectors | 2-D character matrix

New order of levels, specified as a string array, cell array of character vectors, or 2-D character matrix. newlevels must be a reordering of the labels returned by getlabels.

Data Types: char | string | cell
Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

See Also
addlevels | droplevels | getlabels | nominal | ordinal | reorderlevels

Topics
“Reorder Category Levels” on page 2-11
“Sort Ordinal Arrays” on page 2-45

Introduced in R2007a
repartition

Class: cvpartition

Repartition data for cross-validation

Syntax

cnew = repartition(c)

Description

cnew = repartition(c) constructs an object cnew of the cvpartition on page 32-1169 class defining a random partition of the same type as c, where c is also an object of the cvpartition on page 32-1169 class.

Repartitioning is useful for Monte-Carlo repetitions of cross-validation analyses. repartition is called by crossval when the 'mcreps' parameter is specified.

Examples

Partition and repartition 100 observations for 3-fold cross-validation:

c = cvpartition(100,'kfold',3)
c =
K-fold cross validation partition
 N: 100
NumTestSets: 3
TrainSize: 67 66 67
TestSize: 33 34 33

cnew = repartition(c)
cnew =
K-fold cross validation partition
 N: 100
NumTestSets: 3
TrainSize: 67 66 67
TestSize: 33 34 33

Check for equality of the test data in the first fold:

isequal(test(c,1),test(cnew,1))
ans =
 0

See Also

cvpartition
RepeatedMeasuresModel class

Repeated measures model class

Description

A RepeatedMeasuresModel object represents a model fitted to data with multiple measurements per subject. The object comprises data, fitted coefficients, covariance parameters, design matrix, error degrees of freedom, and between- and within-subjects factor names for a repeated measures model. You can predict model responses using the predict method and generate random data at new design points using the random method.

Construction

You can fit a repeated measures model using fitrm(t, modelspec).

Input Arguments

t — Input data

Table

Input data, which includes the values of the response variables and the between-subject factors to use as predictors in the repeated measures model, specified as a table.

Data Types: table

modelspec — Formula for model specification

Character vector or string scalar of the form 'y1-yk ~ terms'

Formula for model specification, specified as a character vector or string scalar of the form 'y1-yk ~ terms'. Specify the terms using Wilkinson notation. fitrm treats the variables used in model terms as categorical if they are categorical (nominal or ordinal), logical, character arrays, string arrays, or a cell array of character vectors.

Example: 'y1-y4 ~ x1 + x2 * x3'
Data Types: char | string

Properties

BetweenDesign — Design for between-subject factors

table

Design for between-subject factors and values of repeated measures, stored as a table.

Data Types: table

BetweenModel — Model for between-subjects factors

character vector

Model for between-subjects factors, stored as a character vector. This character vector is the text representation to the right of the tilde in the model specification you provide when fitting the repeated measures model using `fitrm`.

Data Types: char

BetweenFactorNames — Names of variables used as between-subject factors

cell array of character vectors

Names of variables used as between-subject factors in the repeated measures model, `rm`, stored as a cell array of character vectors.

Data Types: cell

ResponseNames — Names of variables used as response variables

cell array of character vectors

Names of variables used as response variables in the repeated measures model, `rm`, stored as a cell array of character vectors.

Data Types: cell

WithinDesign — Values of within-subject factors

table

Values of the within-subject factors, stored as a table.

Data Types: table
WithinModel — Model for within-subjects factors
character vector

Model for within-subjects factors, stored as a character vector.

You can specify `WithinModel` as a character vector or a string scalar using dot notation:
`Mdl.WithinModel = newWithinModelValue`.

WithinFactorNames — Names of within-subject factors
cell array of character vectors

Names of the within-subject factors, stored as a cell array of character vectors.

Data Types: cell

Coefficients — Values of estimated coefficients
table

Values of the estimated coefficients for fitting the repeated measures as a function of the terms in the between-subjects model, stored as a table.

`fitrm` defines the coefficients for a categorical term using 'effects' coding, which means coefficients sum to 0. There is one coefficient for each level except the first. The implied coefficient for the first level is the sum of the other coefficients for the term.

You can display the coefficient values as a matrix rather than a table using `coef = r.Coefficients{:,:,}`.

You can display marginal means for all levels using the `margmean` method.

Data Types: table

Covariance — Estimated response covariances
table

Estimated response covariances, that is, covariance of the repeated measures, stored as a table. `fitrm` computes the covariances around the mean returned by the fitted repeated measures model `rm`.

You can display the covariance values as a matrix rather than a table using `coef = r.Covariance{:,:,}`.

Data Types: table
DFE — Error degrees of freedom
scalar value

Error degrees of freedom, stored as a scalar value. DFE is the number of observations minus the number of estimated coefficients in the between-subjects model.

Data Types: double

Methods

- `anova`: Analysis of variance for between-subject effects
- `epsilon`: Epsilon adjustment for repeated measures anova
- `grpstats`: Compute descriptive statistics of repeated measures data by group
- `manova`: Multivariate analysis of variance
- `margmean`: Estimate marginal means
- `mauchly`: Mauchly’s test for sphericity
- `multcompare`: Multiple comparison of estimated marginal means
- `plot`: Plot data with optional grouping
- `plotprofile`: Plot expected marginal means with optional grouping
- `predict`: Compute predicted values given predictor values
- `random`: Generate new random response values given predictor values
- `ranova`: Repeated measures analysis of variance

Examples

Fit a Repeated Measures Model

Load the sample data.

```matlab
load fisheriris
```

The column vector, `species`, consists of iris flowers of three different species: setosa, versicolor, virginica. The double matrix `meas` consists of four types of measurements on the flowers: the length and width of sepals and petals in centimeters, respectively.
Store the data in a table array.

\[
t = \text{table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...}
\]
\[
\text{'VariableNames',
}[\text{'}species',
\text{'meas1','meas2','meas3','meas4'}\text{']});
\]
\[
\text{Meas = table([1 2 3 4','VariableNames',
\text{'}Measurements'}]);
\]

Fit a repeated measures model, where the measurements are the responses and the species is the predictor variable.

\[
\text{rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)}
\]
\[
\text{rm = }
\]
\[
\text{RepeatedMeasuresModel with properties:}
\]
\[
\text{Between Subjects:}
\]
\[
\text{BetweenDesign: [150x5 table]}
\]
\[
\text{ResponseNames: {'meas1' 'meas2' 'meas3' 'meas4'}}
\]
\[
\text{BetweenFactorNames: {'species'}}
\]
\[
\text{BetweenModel: '1 + species'}
\]
\[
\text{Within Subjects:}
\]
\[
\text{WithinDesign: [4x1 table]}
\]
\[
\text{WithinFactorNames: {'Measurements'}}
\]
\[
\text{WithinModel: 'separatemeans'}
\]
\[
\text{Estimates:}
\]
\[
\text{Coefficients: [3x4 table]}
\]
\[
\text{Covariance: [4x4 table]}
\]

Display the coefficients.

\[
\text{rm.Coefficients}
\]
\[
\text{ans=3x4 table}
\]
\[
\begin{array}{cccc}
\text{(Intercept)} & 5.8433 & 3.0573 & 3.758 & 1.1993 \\
\text{species_setosa} & -0.83733 & 0.37067 & -2.296 & -0.95333 \\
\text{species_versicolor} & 0.092667 & -0.28733 & 0.502 & 0.12667 \\
\end{array}
\]

-fitrm uses the 'effects' contrasts, which means that the coefficients sum to 0. The rm.DesignMatrix has one column of 1s for the intercept, and two other columns species_setosa and species_versicolor, which are as follows:
species_setosa = \[
 \begin{cases}
 1, & \text{if setosa} \\
 0, & \text{if versicolor} \\
 -1, & \text{if virginica}
 \end{cases}
\]

and

species_versicolor = \[
 \begin{cases}
 0, & \text{if setosa} \\
 1, & \text{if versicolor} \\
 -1, & \text{if virginica}
 \end{cases}
\]

Display the covariance matrix.

\texttt{rm.Covariance}

\texttt{ans=}4\times4 \texttt{ table}

\begin{array}{cccc}
\text{meas1} & \text{meas2} & \text{meas3} & \text{meas4} \\
\hline
\text{meas1} & 0.26501 & 0.092721 & 0.16751 & 0.038401 \\
\text{meas2} & 0.092721 & 0.11539 & 0.055244 & 0.03271 \\
\text{meas3} & 0.16751 & 0.055244 & 0.18519 & 0.042665 \\
\text{meas4} & 0.038401 & 0.03271 & 0.042665 & 0.041882 \\
\end{array}

Display the error degrees of freedom.

\texttt{rm.DFE}

\texttt{ans} = 147

The error degrees of freedom is the number of observations minus the number of estimated coefficients in the between-subjects model, e.g. 150 - 3 = 147.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the multipliers (coefficients) of those factors.
Use these rules to specify the responses in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1, Y2, Y3</td>
<td>Specific list of variables</td>
</tr>
<tr>
<td>Y1-Y5</td>
<td>All table variables from Y1 through Y5</td>
</tr>
</tbody>
</table>

Use these rules to specify terms in `modelspec`.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>X^k</td>
<td>X, X^2, ..., X^k</td>
</tr>
<tr>
<td>X1 + X2</td>
<td>X1, X2</td>
</tr>
<tr>
<td>X1*X2</td>
<td>X1, X2, X1*X2</td>
</tr>
<tr>
<td>X1:X2</td>
<td>X1*X2 only</td>
</tr>
<tr>
<td>-X2</td>
<td>Do not include X2</td>
</tr>
<tr>
<td>X1*X2 + X3</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1 + X2 + X3 + X1:X2</td>
<td>X1, X2, X3, X1*X2</td>
</tr>
<tr>
<td>X1X2X3 - X1:X2:X3</td>
<td>X1, X2, X3, X1X2, X1X3, X2*X3</td>
</tr>
<tr>
<td>X1*(X2 + X3)</td>
<td>X1, X2, X3, X1X2, X1X3</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

See Also

`fitrm`

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)
replacedata

Class: dataset

Replace dataset variables

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

B = replacedata(A,X)
B = replacedata(A,X,vars)
B = replacedata(A,fun)
B = replacedata(A,fun,vars)

Description

B = replacedata(A,X) creates a dataset array B with the same variables as the dataset array A, but with the data for those variables replaced by the data in the array X. replacedata creates each variable in B using one or more columns from X, in order. X must have as many columns as the total number of columns in all of the variables in A, and as many rows as A has observations.

B = replacedata(A,X,vars) creates a dataset array B with the same variables as the dataset array A, but with the data for the variables specified in vars replaced by the data in the array X. The remaining variables in B are copies of the corresponding variables in A. vars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. Each variable in B has as many columns as the corresponding variable in A. X must have as many columns as the total number of columns in all the variables specified in vars.

B = replacedata(A,fun) or B = replacedata(A,fun,vars) creates a dataset array B by applying the function fun to the values in A's variables. replacedata first horizontally concatenates A's variables into a single array array, then applies the function fun.
The specified variables in A must have types and sizes compatible with the concatenation. fun is a function handle that accepts a single input array and returns an array with the same number of rows and columns as the input.

Examples

data = dataset({rand(3,3),'Var1','Var2','Var3'})

% Use ZSCORE to normalize each variable in a dataset array separately, by explicitly extracting and transforming the data, and then replacing it.
X = double(data);
X = zscore(X);
data = replacedata(data,X)

% Equivalently, provide a handle to ZSCORE.
data = replacedata(data,@zscore)

% Use ZSCORE to normalize each observation in a dataset array separately by creating an anonymous function.
data = replacedata(data,@(x) zscore(x,[],2))

See Also
dataset
replaceWithMissing

Class: dataset

Insert missing data indicators into a dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

`ds2 = replaceWithMissing(ds,Name,Value)`

Description

`ds2 = replaceWithMissing(ds,Name,Value)` replaces specified values in a dataset array with standard missing data indicators using options specified by one or more `Name,Value` pair arguments. Use `replaceWithMissing` to specify:

- Which numeric missing value indicators to replace with `NaN`.
- Which character missing value indicators to replace with `' '`.
- Which categorical levels to replace with `undefined`.

Input Arguments

`ds`

dataset array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NumericValues

Vector of numeric values that `replaceWithMissing` replaces with `NaN`.

CategoricalLevels

Character vector or cell array of character vectors naming the categorical levels that `replaceWithMissing` replaces with `<undefined>`.

Strings

Character vector or cell array of character vectors containing the text that `replaceWithMissing` replaces with `' '`.

DataVars

Specified set of variables in `ds` for which `replaceWithMissing` replaces values. You can specify a positive integer or vector of positive integers indicating the variable column numbers, a variable name or a cell array of variables names, or a logical vector indicating which variables to replace missing values in.

Default: All variables in `ds`.

Output Arguments

ds2

dataset array that has the specified missing value indicators, in the specified variables of `ds`, replaced with standard missing value indicators.

Examples

Replace Nonstandard Missing Value Indicators

Replace nonstandard missing value indicators with standard missing value indicators.
Replace numeric missing values coded 99 with NaN, and character missing values coded '. ' with ''.

\[ds = \text{replaceWithMissing}(ds,'\text{NumericValues}',99,'\text{Strings}','. '); \]

See Also

dataset|ismissing

Topics

“Clean Messy and Missing Data” on page 2-118

“Dataset Arrays” on page 2-137
reset

Class: qrandstream
Reset state

Syntax
reset(q)

Description
reset(q) resets the state of the quasi-random number stream q of the qrandstream on page 32-5257 class back to its initial state, 1. Subsequent points drawn from the stream will be the same as those drawn from a new stream. The command is equivalent to q.State = 1.

Examples
Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =
 Halton quasi-random stream in 3 dimensions
 Point set properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none

nextIdx = q.State
nextIdx =
 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
nextIdx = q.State
nextIdx =

5

X2 = qrand(q,4)
X2 =

0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694

nextIdx = q.State
nextIdx =
9

Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
1

X = qrand(q,4)
X =

0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166

See Also
qrand | qrandstream
residuals

Class: GeneralizedLinearMixedModel

Residuals of fitted generalized linear mixed-effects model

Syntax

\[r = \text{residuals}(\text{glme}) \]
\[r = \text{residuals}(\text{glme}, \text{Name,Value}) \]

Description

\[r = \text{residuals}(\text{glme}) \] returns the raw conditional residuals from a fitted generalized linear mixed-effects model \(\text{glme} \).

\[r = \text{residuals}(\text{glme}, \text{Name,Value}) \] returns the residuals using additional options specified by one or more Name,Value pair arguments. For example, you can specify to return Pearson residuals for the model.

Input Arguments

\(\text{glme} \) — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Conditional — Indicator for conditional residuals
true (default) | false

Indicator for conditional residuals, specified as the comma-separated pair consisting of 'Conditional' and one of the following.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>Contributions from both fixed effects and random effects (conditional)</td>
</tr>
<tr>
<td>false</td>
<td>Contribution from only fixed effects (marginal)</td>
</tr>
</tbody>
</table>

Conditional residuals include contributions from both fixed- and random-effects predictors. Marginal residuals include contribution from only fixed effects. To obtain marginal residual values, residuals computes the conditional mean of the response with the empirical Bayes predictor vector of random effects, \(\hat{b} \), set to 0.

Example: 'Conditional',false

ResidualType — Residual type
'raw' (default) | 'Pearson'

Residual type, specified as the comma-separated pair consisting of 'ResidualType' and one of the following.

<table>
<thead>
<tr>
<th>Residual Type</th>
<th>Conditional</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>'raw'</td>
<td>(r_{ci} = y_i - g^{-1}(x_i^T \hat{\beta} + z_i^T \hat{\delta} + \delta_i))</td>
<td>(r_{mi} = y_i - g^{-1}(x_i^T \hat{\beta} + \delta_i))</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>(r_{ci}^{pearson} = \frac{r_{ci}}{\sqrt{\frac{\sigma^2}{w_i}v_i(\mu_i(\hat{\beta}, \delta))}})</td>
<td>(r_{mi}^{pearson} = \frac{r_{mi}}{\sqrt{\frac{\sigma^2}{w_i}v_i(\mu_i(\hat{\beta}, 0))}})</td>
</tr>
</tbody>
</table>

In each of these equations:
- \(y_i \) is the \(i \)th element of the \(n \)-by-1 response vector, \(y \), where \(i = 1, ..., n \).
- \(g^{-1} \) is the inverse link function for the model.
- \(x_i^T \) is the \(i \)th row of the fixed-effects design matrix \(X \).
• z_i^T is the ith row of the random-effects design matrix Z.
• δ_i is the ith offset value.
• σ^2 is the dispersion parameter.
• w_i is the ith observation weight.
• v_i is the variance term for the ith observation.
• μ_i is the mean of the response for the ith observation.
• $\hat{\beta}$ and \hat{b} are estimated values of β and b.

Raw residuals from a generalized linear mixed-effects model have nonconstant variance. Pearson residuals are expected to have an approximately constant variance, and are generally used for analysis.

Example: 'ResidualType','Pearson'

Output Arguments

r — Residuals

n-by-1 vector

Residuals of the fitted generalized linear mixed-effects model `glme` returned as an n-by-1 vector, where n is the number of observations.

Examples

Plot Residuals Versus Fitted Values

Load the sample data.

```matlab
clear all
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories
implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij}) \]

This corresponds to the generalized linear mixed-effects model

\[\log(\mu_{ij}) = \beta_0 + \beta_1 \text{newprocess}_{ij} + \beta_2 \text{time_dev}_{ij} + \beta_3 \text{temp_dev}_{ij} + \beta_4 \text{supplier_C}_{ij} + \beta_5 \text{supplier_B}_{ij} + b_i, \]

where

- \(\text{defects}_{ij} \) is the number of defects observed in the batch produced by factory \(i \) during batch \(j \).
- \(\mu_{ij} \) is the mean number of defects corresponding to factory \(i \) (where \(i = 1, 2, ..., 20 \)) during batch \(j \) (where \(j = 1, 2, ..., 5 \)).
• newprocess_{ij}, time_dev_{ij}, and temp_dev_{ij} are the measurements for each variable that correspond to factory \(i \) during batch \(j \). For example, newprocess_{ij} indicates whether the batch produced by factory \(i \) during batch \(j \) used the new process.

• supplier_C_{ij} and supplier_B_{ij} are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory \(i \) during batch \(j \).

• \(b_i \sim N(0, \sigma_b^2) \) is a random-effects intercept for each factory \(i \) that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

r = residuals(glme,'ResidualType','Pearson');
mufit = fitted(glme);
```

Display the first ten rows of the Pearson residuals.

```matlab
r(1:10)
ans = 10×1
0.4530
0.4339
0.3833
-0.2653
0.2811
-0.0935
-0.2984
-0.2509
1.5547
-0.3027
```

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among the residuals (heteroscedasticity).

```matlab
figure
scatter(mufit,r)
```
The plot does not show a systematic dependence on the fitted values, so there are no signs of nonconstant variance among the residuals.

See Also
GeneralizedLinearMixedModel | designMatrix | fitted | response
residuals

Class: LinearMixedModel

Residuals of fitted linear mixed-effects model

Syntax

R = residuals(lme)
R = residuals(lme,Name,Value)

Description

R = residuals(lme) returns the raw conditional residuals from a fitted linear mixed-effects model lme.

R = residuals(lme,Name,Value) returns the residuals from the linear mixed-effects model lme with additional options specified by one or more Name,Value pair arguments.

For example, you can specify Pearson or standardized residuals, or residuals with contributions from only fixed effects.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or fitlmematrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Conditional — Indicator for conditional residuals

True (default) | False

Indicator for conditional residuals, specified as the comma-separated pair consisting of 'Conditional' and one of the following.

True

Contribution from both fixed effects and random effects (conditional)

False

Contribution from only fixed effects (marginal)

Example: 'Conditional,'False'

ResidualType — Residual type

'Raw' (default) | 'Pearson' | 'Standardized'

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the following.

<table>
<thead>
<tr>
<th>Residual Type</th>
<th>Conditional</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Raw'</td>
<td>$r^C_i = \left[y - X\hat{\beta} - Z\hat{b} \right]_i$</td>
<td>$r^M_i = \left[y - X\hat{\beta} \right]_i$</td>
</tr>
<tr>
<td>'Pearson'</td>
<td>$pr^C_i = \frac{r^C_i}{\sqrt{\text{Var}_{y,b}(y - X\hat{\beta})}}$</td>
<td>$pr^M_i = \frac{r^M_i}{\sqrt{\text{Var}_{y}(y - X\hat{\beta})}}$</td>
</tr>
<tr>
<td>'Standardized'</td>
<td>$st^C_i = \frac{r^C_i}{\sqrt{\text{Var}(r^C)}_{ii}}$</td>
<td>$st^M_i = \frac{r^M_i}{\sqrt{\text{Var}(r^M)}_{ii}}$</td>
</tr>
</tbody>
</table>

For more information on the conditional and marginal residuals and residual variances, see Definitions at the end of this page.

Example: 'ResidualType','Standardized'
Output Arguments

R — Residuals

n-by-1 vector

Residuals of the fitted linear mixed-effects model `lme` returned as an *n*-by-1 vector, where *n* is the number of observations.

Examples

Plot Residuals vs. Fitted Values

Load the sample data.

```matlab
load(fullfile(matlabroot,'examples','stats','weight.mat'));
```

`weight` contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define `Subject` and `Program` as categorical variables.

```matlab
tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
```

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

```matlab
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');
```

Compute the fitted values and raw residuals.

```matlab
F = fitted(lme);
R = residuals(lme);
```

Plot the residuals versus the fitted values.
Now, plot the residuals versus the fitted values, grouped by program.

```matlab
plot(F,R,'bx')
xlabel('Fitted Values')
ylabel('Residuals')
```

Now, plot the residuals versus the fitted values, grouped by program.
The residuals seem to behave similarly across levels of the program as expected.

Compute Conditional and Marginal Pearson Residuals

Load the sample data.

```matlab
load carbig
```

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and model year in a table.

```matlab
tbl = table(MPG,Acceleration,Horsepower,Cylinders,Model_Year);
```
Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and the cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year.

\[
lme = \text{fitlme}(\text{tbl},'MPG \sim \text{Acceleration} + \text{Horsepower} + \text{Cylinders} + (\text{Acceleration}|\text{Model_Year}));
\]

Compute the conditional Pearson residuals and display the first five residuals.

\[
PR = \text{residuals}(lme,'\text{ResidualType}','\text{Pearson'});
\]

\[
PR(1:5)
\]

\[
\begin{array}{c}
-0.0533 \\
0.0652 \\
0.3655 \\
-0.0106 \\
-0.3340 \\
\end{array}
\]

Compute the marginal Pearson residuals and display the first five residuals.

\[
PRM = \text{residuals}(lme,'\text{ResidualType}','\text{Pearson'},'\text{Conditional}',false);
\]

\[
PRM(1:5)
\]

\[
\begin{array}{c}
-0.1250 \\
0.0130 \\
0.3242 \\
-0.0861 \\
-0.3006 \\
\end{array}
\]

Examine Residuals

Load the sample data.

\[
\text{load carbig}
\]

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and model year in a table.
Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration, horsepower, and the cylinders, and potentially correlated random effects for intercept and acceleration grouped by model year.

```matlab
lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + Cylinders + (Acceleration|Model_Year)');
```

Draw a histogram of the raw residuals with a normal fit.

```matlab
r = residuals(lme);
histfit(r)
```

Normal distribution seems to be a good fit for the residuals.
Compute the conditional Pearson and standardized residuals and create box plots of all three types of residuals.

```matlab
pr = residuals(lme,'ResidualType','Pearson');
st = residuals(lme,'ResidualType','Standardized');
X = [r pr st];
figure();
boxplot(X)
```

Red plus signs show the observations with residuals above or below $q^3 + 1.5(q^3 - q_1)$ and $q_1 - 1.5(q^3 - q_1)$, where q_1 and q^3 are the 25th and 75th percentiles, respectively.
Find the observations with residuals that are 2.5 standard deviations above and below the mean.

\[
\text{find}(r > \text{nanmean}(r) + 2.5\times\text{nanstd}(r))
\]

\[
\text{ans} = 7\times1
\]

62
252
255
330
337
341
396

\[
\text{find}(r < \text{nanmean}(r) - 2.5\times\text{nanstd}(r))
\]

\[
\text{ans} = 3\times1
\]

119
324
375

Definitions

Conditional and Marginal Residuals

Conditional residuals include contributions from both fixed and random effects, whereas marginal residuals include contribution from only fixed effects.

Suppose the linear mixed-effects model \(lme\) has an \(n\)-by-\(p\) fixed-effects design matrix \(X\) and an \(n\)-by-\(q\) random-effects design matrix \(Z\). Also, suppose the \(p\)-by-1 estimated fixed-effects vector is \(\hat{\beta}\), and the \(q\)-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is \(\hat{b}\). The fitted conditional response is

\[
\hat{y}_{\text{Cond}} = X\hat{\beta} + Z\hat{b},
\]
and the fitted marginal response is

\[\hat{y}_{Mar} = X \hat{\beta}, \]

residuals can return three types of residuals: raw, Pearson, and standardized. For any type, you can compute the conditional or the marginal residuals. For example, the conditional raw residual is

\[r_{Cond} = y - X \hat{\beta} - Z \hat{\beta}, \]

and the marginal raw residual is

\[r_{Mar} = y - X \hat{\beta}. \]

For more information on other types of residuals, see the ResidualType name-value pair argument.

See Also

LinearMixedModel, fitted, plotResiduals, response
response

Class: GeneralizedLinearMixedModel

Response vector of generalized linear mixed-effects model

Syntax

\[y = \text{response}(\text{glme}) \]
\[[y, \text{binomialsize}] = \text{response}(\text{glme}) \]

Description

\(y = \text{response}(\text{glme}) \) returns the response vector \(y \) used to fit the generalized linear mixed effects model \(\text{glme} \).

\([y, \text{binomialsize}] = \text{response}(\text{glme}) \) also returns the binomial size associated with each element of \(y \) if the conditional distribution of response given the random effects is binomial.

Input Arguments

\(\text{glme} \) — Generalized linear mixed-effects model

GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Output Arguments

\(y \) — Response values

\(n \)-by-1 vector

Response values, specified as an \(n \)-by-1 vector, where \(n \) is the number of observations.
For an observation i with prior weights w_i^p and binomial size n_i (when applicable), the response values y_i can have the following values.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Permitted Values</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>$\left{0, \frac{1}{w_i^p n_i}, \frac{2}{w_i^p n_i},...,1\right}$</td>
<td>w_i^p and n_i are integer values > 0</td>
</tr>
<tr>
<td>Poisson</td>
<td>$\left{0, \frac{1}{w_i^p}, \frac{2}{w_i^p},...,\right}$</td>
<td>w_i^p is an integer value > 0</td>
</tr>
<tr>
<td>Gamma</td>
<td>$(0,\infty)$</td>
<td>$w_i^p \geq 0$</td>
</tr>
<tr>
<td>InverseGaussian</td>
<td>$(0,\infty)$</td>
<td>$w_i^p \geq 0$</td>
</tr>
<tr>
<td>normal</td>
<td>$(-\infty,\infty)$</td>
<td>$w_i^p \geq 0$</td>
</tr>
</tbody>
</table>

You can access the prior weights property w_i^p using dot notation. For example, to access the prior weights property for a model glme:

```matlab
glme.ObservationInfo.Weights
```

binomialsizet — Binomial size vector

Binomial size associated with each element of y, returned as an n-by-1 vector, where n is the number of observations. response only returns binomialsizet if the conditional distribution of response given the random effects is binomial. binomialsizet is empty for other distributions.

Examples

Plot Response Versus Fitted Values

Load the sample data.

```matlab
load mfr
```

This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:

- Flag to indicate whether the batch used the new process (newprocess)
- Processing time for each batch, in hours (time)
- Temperature of the batch, in degrees Celsius (temp)
- Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
- Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

\[
\text{defects}_{ij} \sim \text{Poisson}(\mu_{ij})
\]

This corresponds to the generalized linear mixed-effects model

\[
\log(\mu_{ij}) = \beta_0 + \beta_1\text{newprocess}_{ij} + \beta_2\text{time}_\text{dev}_{ij} + \beta_3\text{temp}_\text{dev}_{ij} + \beta_4\text{supplier}_C_{ij} + \beta_5\text{supplier}_B_{ij} + b_i,
\]

where

- \(\text{defects}_{ij}\) is the number of defects observed in the batch produced by factory \(i\) during batch \(j\).
• μ_{ij} is the mean number of defects corresponding to factory i (where $i = 1, 2, \ldots, 20$) during batch j (where $j = 1, 2, \ldots, 5$).

• newprocess$_{ij}$, time_dev$_{ij}$, and temp_dev$_{ij}$ are the measurements for each variable that correspond to factory i during batch j. For example, newprocess$_{ij}$ indicates whether the batch produced by factory i during batch j used the new process.

• supplier_C$_{ij}$ and supplier_B$_{ij}$ are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory i during batch j.

• $b_i \sim N(0, \sigma^2_b)$ is a random-effects intercept for each factory i that accounts for factory-specific variation in quality.

```matlab
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
```

Extract the observed response values for the model, then use fitted to generate the fitted conditional mean values.

```matlab
y = response(glme); % Observed response values
yfit = fitted(glme); % Fitted response values
```

Create a scatterplot of the observed response values versus fitted values. Add a reference line to improve the visualization.

```matlab
figure
scatter(yfit,y)
xlim([0,12])
ylim([0,12])
refline(1,0)
title('Response versus Fitted Values')
xlabel('Fitted Values')
ylabel('Response')
```
The plot shows a positive correlation between the fitted values and the observed response values.

References

See Also

GeneralizedLinearMixedModel | fitted | residuals
response

Class: LinearMixedModel

Response vector of the linear mixed-effects model

Syntax

\[y = \text{response}(\text{lme}) \]

Description

\[y = \text{response}(\text{lme}) \] returns the response vector \(y \) used to fit the linear mixed-effects model \(\text{lme} \).

Input Arguments

\(\text{lme} \rightarrow \text{Linear mixed-effects model} \)

LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using \text{fitlme} or \text{fitlmematrix}.

Output Arguments

\(y \rightarrow \text{Response values} \)

\(n \)-by-1 vector

Response values, specified as an \(n \)-by-1 vector, where \(n \) is the number of observations.

Data Types: \text{single} | \text{double}
Examples

Plot Response versus Fitted Values

Load the sample data.

load(fullfile(matlabroot,'examples','stats','weight.mat'));

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4 exercise programs, and their weight loss is recorded over two-week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and the response.

F = fitted(lme);
y = response(lme);

Plot the response versus the fitted values.

plot(F,y,'bs')
xlabel('Fitted Values')
ylabel('Response')
See Also
LinearMixedModel | fitted | residuals
resubEdge

Class: ClassificationDiscriminant

Classification edge by resubstitution

Syntax

degree = resubEdge(obj)

Description

degree = resubEdge(obj) returns the classification edge obtained by obj on its training data.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments

degree

Classification edge obtained by resubstituting the training data into the calculation of degree.

Examples
Estimate the Resubstitution Edge of Discriminant Analysis Classifiers

Estimate the quality of a discriminant analysis classifier for Fisher's iris data by resubstitution.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Train a discriminant analysis classifier.

```matlab
Mdl = fitcdiscr(meas,species);
```

Compute the resubstitution edge.

```matlab
redge = resubEdge(Mdl)
redge = 0.9454
```

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class prior probabilities. If you supply additional weights, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high value of margin indicates a more reliable prediction than a low value.
Score

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.

See Also

ClassificationDiscriminant | edge | fitcdiscr | resubMargin

Topics

“Discriminant Analysis Classification” on page 20-2
resubEdge

Class: ClassificationECOC

Classification edge by resubstitution for multiclass, error-correcting output codes model

Syntax

\[
\begin{align*}
e &= \text{resubEdge}(\text{Mdl}) \\
e &= \text{resubEdge}(\text{Mdl}, \text{Name,Value})
\end{align*}
\]

Description

\[
e = \text{resubEdge}(\text{Mdl}) \text{ returns the classification edge on page 32-5716 (e) for the trained, multiclass, error-correcting output codes (ECOC) model } \text{Mdl} \text{ using the training data stored in } \text{Mdl.X} \text{ and corresponding class labels stored in } \text{Mdl.Y}.
\]

\[
e = \text{resubEdge}(\text{Mdl}, \text{Name,Value}) \text{ computes the resubstitution classification edge with additional options specified by one or more Name,Value pair arguments.}
\]

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

\[
\text{Mdl} \quad \text{— Multiclass ECOC model}
\]

ClassificationECOC model

Multiclass ECOC model, specified as a ClassificationECOC model returned by fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.

32-5711
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

BinaryLoss — Binary learner loss function

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \(y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j \) is the score for observation \(j \), and \(g(y_j,s_j) \) is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j,s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/[2\log(2)])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty,\infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty,\infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty,\infty))</td>
<td>(\max(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty,\infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty,\infty))</td>
<td>(\log[1 + \exp(-y_j s_j)]/[2\log(2)])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j (2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle 'BinaryLoss',@customFunction.

`customFunction` has this form:

\[
\text{bLoss} = \text{customFunction}(\text{M},\text{s})
\]

where:

- \(\text{M} \) is the \(K \)-by-\(L \) coding matrix stored in \(\text{Mdl.CodingMatrix} \).
- \(\text{s} \) is the \(1 \)-by-\(L \) row vector of classification scores.
• **bLoss** is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.

• \(K \) is the number of classes.

• \(L \) is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

• SVMs or either linear or kernel classification models of SVM learners, then **BinaryLoss** is 'hinge'

• Ensembles trained by AdaboostM1 or GentleBoost, then **BinaryLoss** is 'exponential'

• Ensembles trained by LogitBoost, then **BinaryLoss** is 'binodeviance'

• Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in fitcecoc), then **BinaryLoss** is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the **BinaryLoss** property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

Decoding — Decoding scheme

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

Options — Estimation options

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.
To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel', 1).

Verbose — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. *Verbose* controls the number of diagnostic messages that the software displays in the Command Window.

If *Verbose* is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

Output Arguments

e — Classification edge

numeric scalar

Classification edge, returned as a scalar. *e* represents the (weighted) mean of the classification margins on page 32-5717.

Examples

Estimate the Resubstitution Edge of ECOC Models

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.
t = templateSVM('Standardize',1);
classOrder = unique(Y)

classOrder = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t during training. Mdl is a ClassificationECOC model.

Estimate the resubstitution edge.

e = resubEdge(Mdl)

e = 0.4961

The mean of the training sample margins is 0.4961.

Select ECOC Model Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare training sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set. Define two data sets:

- `fullX` contains all four predictors.
- `partX` contains the sepal measurements.

load fisheriris
X = meas;
fullX = X;
partX = X(:,1:2);
Y = species;

Train ECOC models using SVM binary learners for each predictor set. It is good practice to define the class order. Specify to standardize the predictors using an SVM template, and to compute posterior probabilities.
t = templateSVM('Standardize',1);
classOrder = unique(Y)

classOrder = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,
 'FitPosterior',1);
PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,
 'FitPosterior',1);

The default SVM score is distance from the decision boundary. If you specify to compute posterior probabilities, then the software uses posterior probabilities as scores.

Estimate the training sample edge for each classifier. The quadratic loss function operates on scores in the domain [0,1]. Specify to use quadratic loss when aggregating the binary learners for both models.

fullEdge = resubEdge(FullMdl,'BinaryLoss','quadratic')
fullEdge = 0.9896

partEdge = resubEdge(PartMdl,'BinaryLoss','quadratic')
partEdge = 0.5058

The edge for the classifier trained on the complete data set is greater, suggesting that the classifier trained using every predictor has a better in-sample fit.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- m_{kj} is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
- s_j is the score of binary learner j for an observation.
- g is the binary loss function.
- \hat{k} is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j).
$$

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

$$
\hat{k} = \arg\min_k \frac{\sum_{j=1}^L |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^L |m_{kj}|}.
$$
Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where y_j is a class label for a particular binary learner (in the set $\{-1,1,0\}$), s_j is the score for observation j, and $g(y_j, s_j)$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\frac{\log[1 + \exp(-2y_js_j)]}{2\log(2)}$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_js_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$\frac{1 - \text{sign}(y_js_j)}{2}$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0, 1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_js_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\frac{\log[1 + \exp(-y_js_j)]}{2\log(2)}$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$\frac{[1 - y_j(2s_j - 1)]^2}{2}$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the `loss` and `predict` object functions), which measures how well an ECOC classifier performs as a whole.

Tip

To compare margins or edges of several classifiers, use template objects to specify a common score transform function among the classifiers when you train them using `fitcecoc`.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using *statset* and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | edge | fitcecoc | predict | resbuMargin | resubPredict

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
resubEdge

Classification edge by resubstitution

Syntax

edge = resubEdge(ens)
edge = resubEdge(ens,Name,Value)

Description

dedge = resubEdge(ens) returns the classification edge obtained by ens on its training data.

dedge = resubEdge(ens,Name,Value) calculates edge with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

dens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubEdge uses only these learners for calculating edge.
Default: 1:NumTrained

mode

Character vector or string scalar representing the meaning of the output edge:

- 'ensemble' — edge is a scalar value, the loss for the entire ensemble.
- 'individual' — edge is a vector with one element per trained learner.
- 'cumulative' — edge is a vector in which element J is obtained by using learners 1:J from the input list of learners.

Default: 'ensemble'

Output Arguments

dedge

Classification edge obtained by ens by resubstituting the training data into the calculation of edge. Classification edge is classification margin averaged over the entire data. edge can be a scalar or vector, depending on the setting of the mode name-value pair.

Examples

Find Classification Edge by Resubstitution of Training Data

Find the resubstitution edge for an ensemble that classifies the Fisher iris data.

Load the sample data set.
load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Find the resubstitution edge.
edge = resubEdge(ens)
Definitions

Edge
The edge is the weighted mean value of the classification margin. The weights are the class probabilities in \texttt{ens.Prior}.

Margin
The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix \texttt{ens.X}.

Score (ensemble)
For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- \texttt{AdaBoostM1} scores range from \(-\infty\) to \(\infty\).
- \texttt{Bag} scores range from 0 to 1.

See Also
\texttt{resubEdge} | \texttt{resubLoss} | \texttt{resubMargin} | \texttt{resubPredict}
resubEdge

Edge of k-nearest neighbor classifier by resubstitution

Syntax

E = resubEdge(mdl)

Description

E = resubEdge(mdl) returns the classification edge for mdl with the data used to train mdl.

The classification edge (E) is a scalar value that represents the mean of the classification margins on page 32-5724.

Examples

Resubstitution Edge Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where $k = 5$.

Load the Fisher iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Create a classifier for five nearest neighbors.

```matlab
mdl = fitcknn(X,Y,'NumNeighbors',5);
```

Examine the resubstitution edge of the classifier.

```matlab
E = resubEdge(mdl)
```
E = 0.9253

E is the mean of the training sample margins.

Input Arguments

`mdl` — *k*-nearest neighbor classifier model
ClassificationKNN object

`k`-nearest neighbor classifier model, specified as a ClassificationKNN object.

Definitions

Margin

The classification margin for each observation is the difference between the classification score for the true class and the maximal classification score for the false classes.

The classification margins form a column vector with the same number of rows as in the training data.

Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors with that classification divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page 32-4943.

See Also

ClassificationKNN | fitcknn | resubLoss | resubMargin | resubPredict

Topics

“Examine Quality of KNN Classifier” on page 18-37
“Classification Using Nearest Neighbors” on page 18-16
Introduced in R2012a
resubEdge

Class: ClassificationNaiveBayes

Classification edge for naive Bayes classifiers by resubstitution

Syntax

e = resubEdge(Mdl)

Description

e = resubEdge(Mdl) returns the resubstitution classification edge on page 32-5728 (e) for the naive Bayes classifier Mdl using the training data stored in Mdl.X and corresponding class labels stored in Mdl.Y.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Output Arguments

e — Classification edge
scalar

Classification edge on page 32-5728, returned as a scalar. If you passed in weights when training the classifier, then e is the weighted classification edge. The software normalizes the weights so that they sum to the prior probability of their respective class.
Examples

Estimate the Resubstitution Edge of Naive Bayes Classifiers

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;   % Predictors
Y = species; % Response
rng(1);

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});
```Mdl```

is a trained ClassificationNaiveBayes classifier.

Estimate the resubstitution edge.

```matlab
e = resubEdge(Mdl)
e = 0.8944
```The mean of the training sample margins is approximately 0.9, which indicates that the classifier classifies in-sample observations with high confidence.

Select Naive Bayes Classifier Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare training sample edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set. Define two data sets:

- `fullX` contains all predictors.
- `partX` contains the last two predictors.

```matlab
load fisheriris
X = meas; % Predictors
```
Y = species; % Response
fullX = X;
partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set.

FullMdl = fitcnb(fullX,Y);
PartMdl = fitcnb(partX,Y);

Estimate the training sample edge for each classifier.

fullEdge = resubEdge(FullMdl)
fullEdge = 0.8944
partEdge = resubEdge(PartMdl)
partEdge = 0.9169

The edge for the classifier trained on predictors 3 and 4 is greater, suggesting that the classifier trained using only those predictors has a better in-sample fit.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their respective class. The software uses the normalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score for the true class and maximal score for the false classes. Provided that they are on the same scale, margins serve as a classification confidence measure, i.e., among multiple classifiers, those that yield larger margins are better.
Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is $k$ for a given observation $(x_1,\ldots,x_P)$ is

$$
\hat{P}(Y = k | x_1,\ldots,x_P) = \frac{P(X_1,\ldots,X_P | y = k)\pi(Y = k)}{P(X_1,\ldots,X_P)},
$$

where:

- $P(X_1,\ldots,X_P | y = k)$ is the conditional joint density of the predictors given they are in class $k$. `Mdl.DistributionNames` stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. `Mdl.Prior` stores the prior distribution.
- $P(X_1,\ldots,X_P)$ is the joint density of the predictors. The classes are discrete, so

$$
P(X_1,\ldots,X_P) = \sum_{k=1}^{K} P(X_1,\ldots,X_P | y = k)\pi(Y = k).
$$

Prior Probability

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

Score

The naive Bayes score is the class posterior probability given the observation.

See Also

`ClassificationNaiveBayes` | `CompactClassificationNaiveBayes` | `edge` | `fitcnb` | `loss` | `margin` | `predict` | `resubEdge` | `resubLoss` | `resubLoss` | `resubMargin`
Topics
“Naive Bayes Classification” on page 21-2
**resubEdge**

Find classification edge for support vector machine (SVM) classifier by resubstitution

**Syntax**

```
e = resubEdge(SVMModel)
```

**Description**

```
e = resubEdge(SVMModel) returns the resubstitution “Classification Edge” on page 32-5733 (e) for the support vector machine (SVM) classifier SVMModel using the training data stored in SVMModel.X and the corresponding class labels stored in SVMModel.Y.
```

The classification edge is a scalar value that represents the weighted mean of the classification margins on page 32-5733.

**Examples**

**Estimate Resubstitution Edge of SVM Classifiers**

Load the ionosphere data set.

```
load ionosphere
```

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

```
SVMMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});
```

SVMMModel is a trained ClassificationSVM classifier.

Estimate the resubstitution edge. This is the mean of the training sample margins.

```
e = resubEdge(SVMMModel)
e = 5.0998
```
Select SVM Classifier Features by Comparing In-Sample Edges

Perform feature selection by comparing training sample edges from multiple models. Based solely on this comparison, the classifier with the highest edge is the best classifier.

Load the ionosphere data set. Define two data sets:

- fullX contains all predictors (except the removed column of 0s).
- partX contains the last 20 predictors.

```matlab
load ionosphere
fullX = X;
partX = X(:,end-20:end);
```

Train SVM classifiers for each predictor set.

```matlab
FullSVMModel = fitcsvm(fullX,Y);
PartSVMModel = fitcsvm(partX,Y);
```

Estimate the training sample edge for each classifier.

```matlab
fullEdge = resubEdge(FullSVMModel)
fullEdge = 3.3653
```

```matlab
partEdge = resubEdge(PartSVMModel)
partEdge = 2.0471
```

The edge for the classifier trained on the complete data set is greater, suggesting that the classifier trained with all the predictors has a better in-sample fit.

**Input Arguments**

`SVMModel` — Full, trained SVM classifier

ClassificationSVM classifier

Full, trained SVM classifier, specified as a `ClassificationSVM` model trained with `fitcsvm`. 
Definitions

Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

\( x \) is an observation. If the true label of \( x \) is the positive class, then \( y \) is 1, and –1 otherwise. \( f(x) \) is the positive-class classification score for the observation \( x \). The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

The SVM classification score for classifying observation \( x \) is the signed distance from \( x \) to the decision boundary ranging from \(-\infty\) to \(+\infty\). A positive score for a class indicates that \( x \) is predicted to be in that class. A negative score indicates otherwise.
The positive class classification score $f(x)$ is the trained SVM classification function. $f(x)$ is also the numerical, predicted response for $x$, or the score for predicting $x$ into the positive class.

$$f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b,$$

where $(\alpha_1, \ldots, \alpha_n, b)$ are the estimated SVM parameters, $G(x_j, x)$ is the dot product in the predictor space between $x$ and the support vectors, and the sum includes the training set observations. The negative class classification score for $x$, or the score for predicting $x$ into the negative class, is $-f(x)$.

If $G(x_j, x) = x_j^\prime x$ (the linear kernel), then the score function reduces to

$$f(x) = (x / s)^\prime \beta + b.$$

$s$ is the kernel scale and $\beta$ is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

**Algorithms**

For binary classification, the software defines the margin for observation $j$, $m_j$, as

$$m_j = 2y_j f(x_j),$$

where $y_j \in \{-1,1\}$, and $f(x_j)$ is the predicted score of observation $j$ for the positive class. However, $m_j = y_j f(x_j)$ is commonly used to define the margin.

**References**

See Also
ClassificationSVM | CompactClassificationSVM | edge | fitcsvm | resubLoss | resubMargin

Introduced in R2014a
resubEdge

Class: ClassificationTree

Classification edge by resubstitution

Syntax

edge = resubEdge(tree)

Description

dedge = resubEdge(tree) returns the classification edge obtained by tree on its training data.

Input Arguments

tree

A classification tree created using fitctree.

Output Arguments

edge

Classification edge obtained by resubstituting the training data into the calculation of edge.

Examples

Estimate the quality of a classification tree for the Fisher iris data by resubstitution.
load fisheriris

```
tree = fitctree(meas,species);
redge = resubEdge(tree)
```

```
redge =
0.9384
```

**Definitions**

**Edge**

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in `tree.Prior`.

**Margin**

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix `X`.

**Score (tree)**

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor `X` as `true` when `X < 0.15` or `X > 0.95`, and `X` is false otherwise.

Generate 100 random points and classify them:

```
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```
Prune the tree:

```matlab
tree1 = prune(tree,'Level',1);
view(tree1,'Mode','Graph')
```
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```matlab
 [~,score] = predict(tree1,X(1:10));
 [score X(1:10,:)]
```
Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (.95,1) instead of the expected 5 observations.

See Also

edge | fitctree | resubLoss | resubMargin | resubPredict
resubLoss

**Class:** ClassificationDiscriminant

Classification error by resubstitution

**Syntax**

\[ L = \text{resubLoss}(\text{obj}) \]
\[ L = \text{resubLoss}(\text{obj},\text{Name},\text{Value}) \]

**Description**

\[ L = \text{resubLoss}(\text{obj}) \] returns the resubstitution loss, meaning the loss computed for the data that \text{fitcdiscr} used to create \text{obj}.

\[ L = \text{resubLoss}(\text{obj},\text{Name},\text{Value}) \] returns loss statistics with additional options specified by one or more \text{Name},\text{Value} pair arguments.

**Input Arguments**

\text{obj}

Discriminant analysis classifier, produced using \text{fitcdiscr}.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \text{Name,Value} arguments. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \text{Name1,Value1,...,NameN,ValueN}.

\text{LossFun} — Loss function

'\text{LossFun}' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle
Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using the corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. Discriminant analysis models return posterior probabilities as classification scores by default (see predict).

- Specify your own function using function handle notation.

Suppose that \( n \) be the number of observations in \( X \) and \( K \) be the number of distinct classes (numel(obj.ClassNames)). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name (\( \text{lossfun} \)).
- \( C \) is an \( n \)-by-\( K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \( \text{obj.ClassNames} \).

Construct \( C \) by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to \( 0 \).
• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in obj.ClassNames. S is a matrix of classification scores, similar to the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

For more details on loss functions, see “Classification Loss” on page 32-5744.

Data Types: char | string | function_handle

Output Arguments

L

Classification error, a scalar. The meaning of the error depends on the values in weights and lossfun. See “Classification Loss” on page 32-5744.

Examples

Compute the resubstituted classification error for the Fisher iris data:

load fisheriris
obj = fitcdiscr(meas,species);
L = resubLoss(obj)

L =
  0.0200
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- \( L \) is the weighted average classification loss.
- \( n \) is the sample size.
- For binary classification:
  - \( y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
  - \( f(X_j) \) is the raw classification score for observation (row) \( j \) of the predictor data \( X \).
  - \( m_j = y_j f(X_j) \) is the classification score for classifying observation \( j \) into the class corresponding to \( y_j \). Positive values of \( m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \( K \geq 3 \)):
  - \( y_j^* \) is a vector of \( K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \( y_j \). For example, if the true class of the second observation is the third class and \( K = 4 \), then \( y_2^* = [0 \ 0 \ 1 \ 0]' \). The order of the classes corresponds to the order in the ClassNames property of the input model.
  - \( f(X_j) \) is the length \( K \) vector of class scores for observation \( j \) of the predictor data \( X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
  - \( m_j = y_j^* f(X_j) \). Therefore, \( m_j \) is the scalar classification score that the model predicts for the true, observed class.
- The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,
\[ \sum_{j=1}^{n} w_j = 1. \]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log \left{ 1 + \exp \left[ -2m_j \right] \right}. ]</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[ L = \sum_{j=1}^{n} w_j \exp(-m_j). ]</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[ L = \sum_{j=1}^{n} w_j I{ \hat{y}_j \neq y_j }. ] [ \text{It is the weighted fraction of misclassified observations where} \ \hat{y}_j \ \text{is the class label corresponding to the class with the maximal posterior probability.} \ I{x} \ \text{is the indicator function.} ]</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[ L = \sum_{j=1}^{n} w_j \max{0, 1 - m_j}. ]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log \left( 1 + \exp(-m_j) \right). ]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>weighted minimal cost using this procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for observations $j = 1,\ldots,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Estimate the 1-by-$K$ vector of expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>classification costs for observation $j$:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j)' C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>posterior probabilities for binary and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiclass classification. $C$ is the cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matrix that the input model stores in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. For observation $j$, predict the class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>label corresponding to the minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}<em>j = \min</em>{j=1,\ldots,K} (\gamma_j)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Using $C$, identify the cost incurred ($c_j$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>$L = \sum_{j=1}^{n} w_j (1-m_j)^2$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over $m$. Some functions are normalized to pass through [0,1].
Posterior Probability

The posterior probability that a point \( z \) belongs to class \( j \) is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean \( \mu_j \) and covariance \( \Sigma_j \) at a point \( z \) is

\[
P(x | k) = \frac{1}{(2\pi|\Sigma_k|)^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right),
\]

where \( |\Sigma_k| \) is the determinant of \( \Sigma_k \), and \( \Sigma_k^{-1} \) is the inverse matrix.
Let $P(k)$ represent the prior probability of class $k$. Then the posterior probability that an observation $x$ is of class $k$ is

$$
\hat{P}(k | x) = \frac{P(x | k) P(k)}{P(x)},
$$

where $P(x)$ is a normalization constant, the sum over $k$ of $P(x|k)P(k)$.

**Prior Probability**

The prior probability is one of three choices:

- 'uniform' — The prior probability of class $k$ is one over the total number of classes.
- 'empirical' — The prior probability of class $k$ is the number of training samples of class $k$ divided by the total number of training samples.
- Custom — The prior probability of class $k$ is the $k$th element of the prior vector. See `fitcdiscr`.

After creating a classification model (Mdl) you can set the prior using dot notation:

```matlab
Mdl.Prior = v;
```

where $v$ is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

**Cost**

The matrix of expected costs per observation is defined in “Cost” on page 20-8.

**See Also**

ClassificationDiscriminant | fitcdiscr | loss

**Topics**

“Discriminant Analysis Classification” on page 20-2
resubLoss

Class: ClassificationECOC

Classification loss by resubstitution for multiclass, error-correcting output codes model

Syntax

L = resubLoss(Mdl)
L = resubLoss(Mdl,Name,Value)

Description

L = resubLoss(Mdl) returns classification loss (L) for the trained, multiclass, error-correcting output codes (ECOC) model Mdl using the training data stored in Mdl.X and corresponding class labels stored in Mdl.Y.

L = resubLoss(Mdl,Name,Value) returns the classification loss with additional options specified by one or more Name, Value pair arguments.

For example, specify the loss function, decoding scheme, or verbosity level.

Input Arguments

Mdl — Multiclass ECOC model
ClassificationECOC model

Multiclass ECOC model, specified as a ClassificationECOC model returned by fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**BinaryLoss — Binary learner loss function**

`'hamming'` | `'linear'` | `'logit'` | `'exponential'` | `'binodeviance'` | `'hinge'` | `'quadratic'` | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where $y_j$ is a class label for a particular binary learner (in the set {-1,1,0}), $s_j$ is the score for observation $j$, and $g(y_j,s_j)$ is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0, 1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>$[1 - y_j(2 s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, `customFunction`, specify its function handle 'BinaryLoss', @customFunction.

    customFunction has this form:

    ```matlab
 bLoss = customFunction(M,s)
    ```

    where:

    - M is the $K$-by-$L$ coding matrix stored in `Mdl.CodingMatrix`.
    - s is the 1-by-$L$ row vector of classification scores.
• **bLoss** is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.

• **$K$** is the number of classes.

• **$L$** is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

• SVMs or either linear or kernel classification models of SVM learners, then **BinaryLoss** is 'hinge'

• Ensembles trained by **AdaboostM1** or **GentleBoost**, then **BinaryLoss** is 'exponential'

• Ensembles trained by **LogitBoost**, then **BinaryLoss** is 'binodeviance'

• Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in **fitcecoc**), then **BinaryLoss** is 'quadratic'

Otherwise, the default value for 'BinaryLoss' is 'hamming'. To check the default value, use dot notation to display the **BinaryLoss** property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

**LossFun — Loss function**

'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'classiferror' or a function handle.
You can:

- Specify the built-in function 'classiferror', then the loss function is classification error on page 32-5755, in other words, the proportion of misclassified observations.
- Specify your own function using function handle notation.

Suppose that \( n = \text{size}(X,1) \) is the sample size and \( k \) is the number of classes. Your function must have the signature \( \text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost}) \), where:

- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name (\( \text{lossfun} \)).
- \( C \) is an \( n \)-by-\( k \) logical matrix with rows indicating to which class the corresponding observation belongs. The column order corresponds to the class order in \( \text{Mdl.ClassNames} \).

Construct \( C \) by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \) for each row. Set all other elements of row \( p \) to 0.

- \( S \) is an \( n \)-by-\( k \) numeric matrix of negated loss values for classes. Each row corresponds to an observation. The column order corresponds to the class order in \( \text{CVMdl.ClassNames} \). \( S \) is similar to the output argument \( \text{NegLoss} \) of \( \text{resubPredict} \).

- \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes its elements to sum to 1.

- \( \text{Cost} \) is a \( k \)-by-\( k \) numeric matrix of misclassification costs. For example, \( \text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

Data Types: char | string | function_handle

**Options — Estimation options**

\[
[] \text{ (default)} | \text{structure array returned by statset}
\]

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by \text{statset}.

To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
• Specify 'Options', statset('UseParallel',1).

**Verbose — Verbosity level**

| Default | 1 |

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. `Verbose` controls the number of diagnostic messages that the software displays in the Command Window.

If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: `single` | `double`

### Output Arguments

**L — Classification loss**

Scalar

Classification loss, returned as a scalar. `L` is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller loss values.

### Examples

**Determine the Resubstitution Loss of ECOC Models**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.
t = templateSVM('Standardize',1);
classOrder = unique(Y)

classOrder = 3x1 cell array
    {'setosa'}
    {'versicolor'}
    {'virginica'}

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t during training. Mdl is a ClassificationECOC model.

Estimate the resubstitution loss (i.e., the in-sample classification error).
L = resubLoss(Mdl)
L = 0.0267

The ECOC model misclassifies 2.67% of the training sample irises.

Determine the ECOC Model Quality Using a Custom Resubstitution Loss

Suppose that it is interesting to know how well a model classifies a particular class. This example shows how to pass such a custom loss function to resubLoss.

Load Fisher's iris data set.
load fisheriris
X = meas;
Y = categorical(species);
n = numel(Y);              % Sample size
classOrder = unique(Y)    % Class order

classOrder = 3x1 categorical array
    setosa
    versicolor
    virginica

K = numel(classOrder);    % Number of classes
Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

\[
t = \text{templateSVM('Standardize',1)}; \\
\text{Mdl} = \text{fitcecoc(X,Y,'Learners',t,'ClassNames',\text{classOrder});}
\]

\(t\) is an SVM template object. The software uses default values for empty options in \(t\) during training. \(\text{Mdl}\) is a \text{ClassificationECOC} model.

Compute the negated losses for the training observations.

\[
\text{rng(1); } \% \text{ For reproducibility } \\
[~,\text{negLoss}] = \text{resubPredict(Mdl)};
\]

Create a function that takes the minimal loss for each observation, and then averages the minimal losses across all observations.

\[
\text{lossfun} = @(C,S,\sim,\sim)\text{mean}(-\text{negLoss},[],2));
\]

Compute the custom loss for the training data.

\[
\text{resubLoss(Mdl,'LossFun',lossfun)}
\]

\[
\text{ans} = 0.0065
\]

The average, minimal, binary loss in the training data is 0.0065.

**Definitions**

**Classification Error**

The classification error is a binary classification error measure that has the form

\[
L = \frac{\sum_{j=1}^{n} w_j e_j}{\sum_{j=1}^{n} w_j},
\]

\(n\)
where:

- \( w_j \) is the weight for observation \( j \). The software renormalizes the weights to sum to 1.
- \( e_j = 1 \) if the predicted class of observation \( j \) differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- \( m_{kj} \) is element \((k,j)\) of the coding design matrix \( M \) (that is, the code corresponding to class \( k \) of binary learner \( j \)).
- \( s_j \) is the score of binary learner \( j \) for an observation.
- \( g \) is the binary loss function.
- \( \hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^L m_{kj} g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^L m_{kj} g(m_{kj}, s_j)}{\sum_{j=1}^L m_{kj}}.
\]
Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \( y_j \) is a class label for a particular binary learner (in the set \{-1,1,0\}), \( s_j \) is the score for observation \( j \), and \( g(y_j,s_j) \).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>( g(y_j,s_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>(( -\infty, \infty ))</td>
<td>( \log(1 + \exp(-2y_js_j))/[2\log(2)] )</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>(( -\infty, \infty ))</td>
<td>( \exp(-y_js_j)/2 )</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or (( -\infty, \infty ))</td>
<td>( [1 - \text{sign}(y_js_j)]/2 )</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>(( -\infty, \infty ))</td>
<td>( \max(0,1 - y_js_j)/2 )</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>(( -\infty, \infty ))</td>
<td>( (1 - y_js_j)/2 )</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>(( -\infty, \infty ))</td>
<td>( \log(1 + \exp(-y_js_j))/[2\log(2)] )</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>( [1 - y_j(2s_j - 1)]^2/2 )</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**References**


Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

See Also
ClassificationECOC | fitcecoc | loss | predict | resubPredict

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
**resubLoss**

Classification error by resubstitution

**Syntax**

```matlab
L = resubLoss(ens)
L = resubLoss(ens,Name,Value)
```

**Description**

$L = \text{resubLoss}(\text{ens})$ returns the resubstitution loss, meaning the loss computed for the data that `fitcensemble` used to create `ens`.

$L = \text{resubLoss}(\text{ens},\text{Name},\text{Value})$ calculates loss with additional options specified by one or more `Name`, `Value` pair arguments. You can specify several name-value pair arguments in any order as `Name1`, `Value1`, ..., `NameN`, `ValueN`.

**Input Arguments**

- **ens**
  A classification ensemble created with `fitcensemble`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name`, `Value` arguments.

- **learners**
  Indices of weak learners in the ensemble ranging from 1 to `NumTrained`. `resubLoss` uses only these learners for calculating loss.
**Default:** 1:NumTrained

**lossfun**

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost</td>
</tr>
<tr>
<td></td>
<td>(for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities.

- Bagged and subspace ensembles return posterior probabilities by default (ens.Method is 'Bag' or 'Subspace').
- If the ensemble method is 'AdaBoostM1', 'AdaBoostM2', GentleBoost, or 'LogitBoost', then, to use posterior probabilities as classification scores, you must specify the double-logit score transform by entering
  
  ```matlab```
 ens.ScoreTransform = 'doublelogit';
  ```matlab```
- For all other ensemble methods, the software does not support posterior probabilities as classification scores.
- Specify your own function using function handle notation.

Suppose that \( n \) be the number of observations in \( X \) and \( K \) be the number of distinct classes (numel(ens.ClassNames), ens is the input model). Your function must have this signature

```matlab```
lossvalue = lossfun(C,S,W,Cost)
```matlab```
where:

- The output argument `lossvalue` is a scalar.
- You choose the function name (`lossfun`).
- `C` is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in `ens.ClassNames`.
  Construct `C` by setting `C(p,q) = 1` if observation `p` is in class `q`, for each row. Set all other elements of row `p` to 0.
- `S` is an n-by-K numeric matrix of classification scores. The column order corresponds to the class order in `ens.ClassNames`. `S` is a matrix of classification scores, similar to the output of `predict`.
- `W` is an n-by-1 numeric vector of observation weights. If you pass `W`, the software normalizes them to sum to 1.
- `Cost` is a K-by-K numeric matrix of misclassification costs. For example, `Cost = ones(K) - eye(K)` specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using `'LossFun',@lossfun`.

For more details on loss functions, see “Classification Loss” on page 32-5762.

Default: 'classiferror'

**mode**

Character vector or string scalar representing the meaning of the output L:

- 'ensemble' — L is a scalar value, the loss for the entire ensemble.
- 'individual' — L is a vector with one element per trained learner.
- 'cumulative' — L is a vector in which element `J` is obtained by using learners `1:J` from the input list of learners.

Default: 'ensemble'
Output Arguments

L

Classification loss on page 32-5762, by default the fraction of misclassified data. L can be a vector, and can mean different things, depending on the name-value pair settings.

Examples

Estimate Classification Error for Training Observations

Load Fisher's iris data set.

load fisheriris

Train a classification ensemble of 100 decision trees using AdaBoostM2. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the resubstitution classification error.

loss = resubLoss(ens)

loss = 0.0333

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.
• $L$ is the weighted average classification loss.
• $n$ is the sample size.
• For binary classification:
  • $y_j$ is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
  • $f(X_j)$ is the raw classification score for observation (row) $j$ of the predictor data $X$.
  • $m_j = y_j f(X_j)$ is the classification score for classifying observation $j$ into the class corresponding to $y_j$. Positive values of $m_j$ indicate correct classification and do not contribute much to the average loss. Negative values of $m_j$ indicate incorrect classification and contribute significantly to the average loss.
• For algorithms that support multiclass classification (that is, $K \geq 3$):
  • $y_j^*$ is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class $y_j$. For example, if the true class of the second observation is the third class and $K = 4$, then $y_2^* = [0 0 1 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
  • $f(X_j)$ is the length $K$ vector of class scores for observation $j$ of the predictor data $X$. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
  • $m_j = y_j^* f(X_j)$. Therefore, $m_j$ is the scalar classification score that the model predicts for the true, observed class.
• The weight for observation $j$ is $w_j$. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

$$\sum_{j=1}^{n} w_j = 1.$$ 

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} \log \left[ 1 + \exp[-2m_j] \right]$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j)$.</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observations where $\hat{y}_j$ is the class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>label corresponding to the class with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximal posterior probability. $I{x}$ is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}$.</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log\left(1 + \exp(-m_j)\right)$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,\ldots,n$.</td>
</tr>
</tbody>
</table>
|                    |                  | **1** Estimate the 1-by-$K$ vector of expected classification costs for observation $j$:
|                    |                  | $\gamma_j = f(X_j)C$.                                                   |
|                    |                  | $f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. $C$ is the cost matrix that the input model stores in the Cost property. |
|                    |                  | **2** For observation $j$, predict the class label corresponding to the minimum expected classification cost:
|                    |                  | $\hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j)$.                          |
| Quadratic loss     | 'quadratic'      | **3** Using $C$, identify the cost incurred ($c_j$) for making the prediction. |
|                    |                  | The weighted, average, minimum cost loss is
|                    |                  | $L = \sum_{j=1}^{n} w_j c_j$.                                           |
|                    |                  | $L = \sum_{j=1}^{n} w_j (1 - m_j)^2$.                                   |

This figure compares the loss functions (except 'mincost') for one observation over $m$. Some functions are normalized to pass through [0,1].
See Also
resubEdge | resubLoss | resubMargin | resubPredict
resubLoss
Loss of \( k \)-nearest neighbor classifier by resubstitution

Syntax

\[
L = \text{resubLoss}(\text{mdl}) \\
L = \text{resubLoss}(\text{mdl},'\text{LossFun}',\text{lossfun})
\]

Description

\[ L = \text{resubLoss}(\text{mdl}) \] returns the classification loss on page 32-5769 by resubstitution, which is the loss computed for the data used by \text{fitcknn} to create \text{mdl}.

The classification loss \( (L) \) is a numeric scalar, whose interpretation depends on the loss function and the observation weights in \text{mdl}.

\[ L = \text{resubLoss}(\text{mdl},'\text{LossFun}',\text{lossfun}) \] returns the resubstitution loss for the loss function \text{lossfun}, specified as a name-value pair argument.

Examples

Loss Calculation

Create a \( k \)-nearest neighbor classifier for the Fisher iris data, where \( k = 5 \).

Load the Fisher iris data set.

load \text{fisheriris}

Create a classifier for five nearest neighbors.

\text{mdl} = \text{fitcknn}(\text{meas},\text{species},'\text{NumNeighbors}',5);

Examine the resubstitution loss of the classifier.
L = resubLoss(mdl)

L = 0.0333

The classifier predicts incorrect classifications for 1/30 of its training data.

**Input Arguments**

**mdl** — *k*-nearest neighbor classifier model
ClassificationKNN object

*k*-nearest neighbor classifier model, specified as a ClassificationKNN object.

**lossfun** — Loss function
'binodeviance' (default) | 'classiferror' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle.

- The following table lists the available loss functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. By default, *k*-nearest neighbor models return posterior probabilities as classification scores (see `predict`).
• You can specify a function handle for a custom loss function using @ (for example, @lossfun). Let \( n \) be the number of observations in \( X \) and \( K \) be the number of distinct classes (\( \text{numel(mdl.ClassNames)} \)). Your custom loss function must have this form:

```
function lossvalue = lossfun(C,S,W,Cost)
```

• \( C \) is an \( n \)-by-\( K \) logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in \( \text{mdl.ClassNames} \). Construct \( C \) by setting \( C(p,q) = 1 \), if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to 0.

• \( S \) is an \( n \)-by-\( K \) numeric matrix of classification scores. The column order corresponds to the class order in \( \text{mdl.ClassNames} \). The argument \( S \) is a matrix of classification scores, similar to the output of \text{predict}.

• \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes the weights to sum to 1.

• \( \text{Cost} \) is a \( K \)-by-\( K \) numeric matrix of misclassification costs. For example, \( \text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification and 1 for misclassification.

• The output argument \( \text{lossvalue} \) is a scalar.

For more details on loss functions, see “Classification Loss” on page 32-3690.

Data Types: char | string | function_handle

## Algorithms

### Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• \( L \) is the weighted average classification loss.
• \( n \) is the sample size.
• For binary classification:
• \( y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.

• \( f(X_j) \) is the raw classification score for observation (row) \( j \) of the predictor data \( X \).

• \( m_j = y_j f(X_j) \) is the classification score for classifying observation \( j \) into the class corresponding to \( y_j \). Positive values of \( m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute significantly to the average loss.

• For algorithms that support multiclass classification (that is, \( K \geq 3 \)):

  • \( y_j^* \) is a vector of \( K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \( y_j \). For example, if the true class of the second observation is the third class and \( K = 4 \), then \( y^*_2 = [0 \ 0 \ 1 \ 0] \). The order of the classes corresponds to the order in the ClassNames property of the input model.

  • \( f(X_j) \) is the length \( K \) vector of class scores for observation \( j \) of the predictor data \( X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.

  • \( m_j = y_j^* f(X_j) \). Therefore, \( m_j \) is the scalar classification score that the model predicts for the true, observed class.

• The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>( L = \sum_{j=1}^{n} w_j \log{1 + \exp[-2m_j]}. )</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>( L = \sum_{j=1}^{n} w_j \exp(-m_j). )</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where $\hat{y}_j$ is the class label corresponding to the class with the maximal posterior probability. $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0,1 - m_j}$.</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j))$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td></td>
</tr>
</tbody>
</table>

Minimal cost. The software computes the weighted minimal cost using this procedure for observations \( j = 1, \ldots, n \).

1. Estimate the 1-by-\( K \) vector of expected classification costs for observation \( j \):

\[
\gamma_j = f(X_j) C.
\]

\( f(X_j) \) is the column vector of class posterior probabilities for binary and multiclass classification. \( C \) is the cost matrix that the input model stores in the \texttt{Cost} property.

2. For observation \( j \), predict the class label corresponding to the minimum expected classification cost:

\[
\hat{y}_j = \min_{j=1,\ldots,K} \gamma_j.
\]

3. Using \( C \), identify the cost incurred \( c_j \) for making the prediction.

The weighted, average, minimum cost loss is

\[
L = \sum_{j=1}^{n} w_j c_j.
\]

Quadratic loss | 'quadratic' | \( L = \sum_{j=1}^{n} w_j (1-m_j)^2 \). |

This figure compares the loss functions (except 'mincost') for one observation over \( m \). Some functions are normalized to pass through \([0,1]\).
True Misclassification Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument when you run fitcknn. The value $\text{Cost}(i,j)$ is the cost of classifying an observation into class $j$ if its true class is $i$. By default, $\text{Cost}(i,j) = 1$ if $i \neq j$, and $\text{Cost}(i,j) = 0$ if $i = j$. In other words, the cost is 0 for correct classification and 1 for incorrect classification.
Expected Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation. The third output of resubPredict is the expected misclassification cost per observation.

Suppose you have $N_{obs}$ observations that you classified with a trained classifier $mdl$, and you have $K$ classes. The command

\[
[label, score, cost] = \text{resubPredict}(mdl)
\]

returns a matrix $\text{cost}$ of size $N_{obs}$-by-$K$, among other outputs. Each row of the $\text{cost}$ matrix contains the expected (average) cost of classifying the observation into each of the $K$ classes. $\text{cost}(n,j)$ is

\[
\sum_{i=1}^{K} \hat{P}(i \mid X(n))C(j \mid i),
\]

where

- $K$ is the number of classes.
- $\hat{P}(i \mid X(n))$ is the posterior probability on page 32-5896 of class $i$ for observation $X(n)$.
- $C(j \mid i)$ is the true misclassification cost of classifying an observation as $j$ when its true class is $i$.

See Also
ClassificationKNN | fitcknn | resubEdge | resubMargin | resubPredict

Topics
“Examine Quality of KNN Classifier” on page 18-37
“Predict Classification Using KNN Classifier” on page 18-38
“Modify KNN Classifier” on page 18-38
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
resubLoss

Class: ClassificationNaiveBayes

Classification loss for naive Bayes classifiers by resubstitution

Syntax

L = resubLoss(Mdl)
L = resubLoss(Mdl,Name,Value)

Description

L = resubLoss(Mdl) returns the in-sample minimum misclassification cost loss (L), which is a scalar representing how well the trained naive Bayes classifier Mdl classifies the predictor data stored in Mdl.X as compared to the true class labels stored in Mdl.Y.

L = resubLoss(Mdl,Name,Value) returns the in-sample classification loss with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
**LossFun — Loss function**

'`classiferror`' (default) | '`binodeviance`' | '`exponential`' | '`hinge`' | '`logit`' | '`mincost`' | '`quadratic`' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'`mincost`' is appropriate for classification scores that are posterior probabilities. Naive Bayes models return posterior probabilities as classification scores by default (see `predict`).

- Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes (numel(Mdl.ClassNames), Mdl is the input model). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument `lossvalue` is a scalar.
- You choose the function name (`lossfun`).
- C is an n-by-K logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in `Mdl.ClassNames`.

32-5776
Construct C by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to 0.

- \( S \) is an \( n \)-by-\( K \) numeric matrix of classification scores. The column order corresponds to the class order in \( \text{Mdl.ClassNames} \). \( S \) is a matrix of classification scores, similar to the output of predict.
- \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes them to sum to 1.
- \( \text{Cost} \) is a \( K \)-by-\( K \) numeric matrix of misclassification costs. For example, \( \text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@\text{lossfun}.

For more details on loss functions, see “Classification Loss” on page 32-5779.

Data Types: char | string | function_handle

### Output Arguments

**L — Classification loss**

scalar

Classification loss, returned as a scalar. \( L \) is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller loss values.

### Examples

**Determine the Resubstitution Loss of Naive Bayes Classifiers**

Load Fisher's iris data set.

```
load fisheriris
X = meas; % Predictors
Y = species; % Response
```

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the default resubstitution loss, which is the in-sample minimum misclassification cost.
L = resubLoss(Mdl)
L = 0.0400

The average, in-sample cost of classification is 0.04.

**Determine Resubstitution Classification Error of Naive Bayes Classifiers**

Load Fisher's iris data set.

load fisheriris
X = meas;   % Predictors
Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the in-sample proportion of misclassified observations.
L = resubLoss(Mdl,'LossFun','classiferror')
L = 0.0400

The naive Bayes classifier misclassifies 4% of the training observations.
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

- \( L \) is the weighted average classification loss.
- \( n \) is the sample size.
- For binary classification:
  - \( y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
  - \( f(X_j) \) is the raw classification score for observation (row) \( j \) of the predictor data \( X \).
  - \( m_j = y_j f(X_j) \) is the classification score for classifying observation \( j \) into the class corresponding to \( y_j \). Positive values of \( m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \( K \geq 3 \)):
  - \( y_j^* \) is a vector of \( K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \( y_j \). For example, if the true class of the second observation is the third class and \( K = 4 \), then \( y_j^* = [0 0 1 0]' \). The order of the classes corresponds to the order in the ClassNames property of the input model.
  - \( f(X_j) \) is the length \( K \) vector of class scores for observation \( j \) of the predictor data \( X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
  - \( m_j = y_j^* f(X_j) \). Therefore, \( m_j \) is the scalar classification score that the model predicts for the true, observed class.
  - The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,
Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>( L = \sum_{j=1}^{n} w_j \log \left { 1 + \exp \left[ -2m_j \right] \right }. )</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>( L = \sum_{j=1}^{n} w_j \exp(-m_j). )</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>( L = \sum_{j=1}^{n} w_j I { \hat{y}_j \neq y_j }. )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where ( \hat{y}_j ) is the class label corresponding to the class with the maximal posterior probability. ( I(x) ) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>( L = \sum_{j=1}^{n} w_j \max {0,1-m_j }. )</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>( L = \sum_{j=1}^{n} w_j \log \left( 1 + \exp(-m_j) \right). )</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations ( j = 1, \ldots, n ).</td>
</tr>
</tbody>
</table>
|                    |                  | 1 Estimate the 1-by-\( K \) vector of expected classification costs for observation \( j \):  
|                    |                  | \( \gamma_j = f(X_j)C \).  
|                    |                  | \( f(X_j) \) is the column vector of class posterior probabilities for binary and multiclass classification. \( C \) is the cost matrix that the input model stores in the \texttt{Cost} property. |
|                    |                  | 2 For observation \( j \), predict the class label corresponding to the minimum expected classification cost:  
|                    |                  | \( \hat{y}_j = \min_{j=1,\ldots,K} (\gamma_j) \). |
|                    |                  | 3 Using \( C \), identify the cost incurred \( (c_j) \) for making the prediction.  
|                    |                  | The weighted, average, minimum cost loss is  
|                    |                  | \( L = \sum_{j=1}^{n} w_j c_j \). |
| Quadratic loss     | 'quadratic'      | \( L = \sum_{j=1}^{n} w_j (1-m_j)^2 \). |

This figure compares the loss functions (except 'mincost') for one observation over \( m \). Some functions are normalized to pass through [0,1].

32-5781
Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is \( k \) for a given observation \((x_1,\ldots,x_p)\) is

\[
\hat{P}(Y = k | x_1,\ldots,x_p) = \frac{P(X_1,\ldots,X_p | y = k)\pi(Y = k)}{P(X_1,\ldots,X_p)},
\]

where:
• $P(X_1,\ldots,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class $k$. Mdl.DistributionNames stores the distribution names of the predictors.

• $\pi(Y = k)$ is the class prior probability distribution. Mdl.Prior stores the prior distribution.

• $P(X_1,\ldots,X_P)$ is the joint density of the predictors. The classes are discrete, so

$$P(X_1,\ldots,X_P) = \sum_{k=1}^{K} P(X_1,\ldots,X_P \mid y = k)\pi(Y = k).$$

**Prior Probability**

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

**References**


**See Also**

ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | loss | predict | resubPredict

**Topics**

“Naive Bayes Classification” on page 21-2
resubLoss

Find classification loss for support vector machine (SVM) classifier by resubstitution

Syntax

L = resubLoss(SVMModel)
L = resubLoss(SVMModel,'LossFun',lossFun)

Description

L = resubLoss(SVMModel) returns the classification loss on page 32-5787 by resubstitution (L), the in-sample classification loss, for the support vector machine (SVM) classifier SVMModel using the training data stored in SVMModel.X and the corresponding class labels stored in SVMModel.Y.

The classification loss (L) is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller classification loss values.

L = resubLoss(SVMModel,'LossFun',lossFun) returns the classification loss by resubstitution using the loss function supplied in LossFun.

Examples

Determine Resubstitution Loss of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMMModel is a trained ClassificationSVM classifier.
Estimate the resubstitution loss (that is, the in-sample classification error).

\[
L = \text{resubLoss}(\text{SVMModel})
\]

\[
L = 0.0570
\]

The SVM classifier misclassifies 5.7% of the training sample radar returns.

**Determine Resubstitution Hinge Loss of SVM Classifiers**

Load the ionosphere data set.

```matlab
load ionosphere
```

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

```matlab
SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);
```

SVMModel is a trained ClassificationSVM classifier.

Estimate the in-sample hinge loss.

```matlab
L = \text{resubLoss}(\text{SVMModel},'LossFun','hinge')
```

\[
L = 0.1603
\]

The hinge loss is 0.1603. Classifiers with hinge losses close to 0 are preferred.

**Input Arguments**

- **SVMModel** — Full, trained SVM classifier
  
  ClassificationSVM classifier
  
  Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

- **lossFun** — Loss function
  
  'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle
Loss function, specified as a built-in loss function name or a function handle.

- This table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'mincost' is appropriate for classification scores that are posterior probabilities. You can specify to use posterior probabilities as classification scores for SVM models by setting 'FitPosterior',true when you cross-validate the model using fitcsvm.

- Specify your own function by using function handle notation.

Suppose that \( n \) is the number of observations in \( X \), and \( K \) is the number of distinct classes (numel(SVMModel.ClassNames)) used to create the input model (SVMModel). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

where:

- The output argument lossvalue is a scalar.
- You choose the function name (lossfun).
- \( C \) is an \( n \)-by-\( K \) logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in SVMModel.ClassNames.

Construct \( C \) by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to 0.
• S is an n-by-K numeric matrix of classification scores, similar to the output of predict. The column order corresponds to the class order in SVMModel.ClassNames.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the weights to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) – eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 32-5787.

Example: 'LossFun','binodeviance'

Data Types: char | string | function_handle

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.

• n is the sample size.

• For binary classification:
  • yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive class, respectively.
  • f(Xj) is the raw classification score for observation (row) j of the predictor data X.
  • m_j = y_jf(X_j) is the classification score for classifying observation j into the class corresponding to y_j. Positive values of m_j indicate correct classification and do not contribute much to the average loss. Negative values of m_j indicate incorrect classification and contribute significantly to the average loss.
• For algorithms that support multiclass classification (that is, $K \geq 3$):
  
  • $y_j^*$ is a vector of $K - 1$ zeros, with 1 in the position corresponding to the true, observed class $y_j$. For example, if the true class of the second observation is the third class and $K = 4$, then $y_2^* = [0 0 1 0]'$. The order of the classes corresponds to the order in the ClassNames property of the input model.
  
  • $f(X_j)$ is the length $K$ vector of class scores for observation $j$ of the predictor data $X$. The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
  
  • $m_j = y_j^* f(X_j)$. Therefore, $m_j$ is the scalar classification score that the model predicts for the true, observed class.
  
  • The weight for observation $j$ is $w_j$. The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

  $\sum_{j=1}^{n} w_j = 1.$

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>$L = \sum_{j=1}^{n} w_j \log{1 + \exp[-2m_j]}.$</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>$L = \sum_{j=1}^{n} w_j \exp(-m_j)$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>$L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the weighted fraction of misclassified observations where $\hat{y}_j$ is the class label corresponding to the class with the maximal posterior probability. $I{x}$ is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>$L = \sum_{j=1}^{n} w_j \max{0, 1 - m_j}$.</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>$L = \sum_{j=1}^{n} w_j \log(1 + \exp(-m_j))$.</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Minimal cost        | 'mincost'        | Minimal cost. The software computes the weighted minimal cost using this procedure for observations \( j = 1, \ldots, n \).
|                     |                  | \( 1 \) Estimate the 1-by-\( K \) vector of expected classification costs for observation \( j \):
|                     |                  | \[
\gamma_j = f(X_j)\, C.
\]
|                     |                  | \( f(X_j) \) is the column vector of class posterior probabilities for binary and multiclass classification. \( C \) is the cost matrix that the input model stores in the Cost property.
|                     |                  | \( 2 \) For observation \( j \), predict the class label corresponding to the minimum expected classification cost:
|                     |                  | \[
\hat{y}_j = \min_{j=1,\ldots,K} \left( \gamma_j \right).
\]
|                     |                  | \( 3 \) Using \( C \), identify the cost incurred \( (c_j) \) for making the prediction.
|                     |                  | The weighted, average, minimum cost loss is
|                     |                  | \[
L = \sum_{j=1}^{n} w_j c_j.
\]
| Quadratic loss      | 'quadratic'      | \[
L = \sum_{j=1}^{n} w_j \left( 1-m_j \right)^2.
\]

This figure compares the loss functions (except 'mincost') for one observation over \( m \). Some functions are normalized to pass through [0,1].
Classification Score

The SVM classification score for classifying observation $x$ is the signed distance from $x$ to the decision boundary ranging from $-\infty$ to $+\infty$. A positive score for a class indicates that $x$ is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score $f(x)$ is the trained SVM classification function.

$f(x)$ is also the numerical, predicted response for $x$, or the score for predicting $x$ into the positive class.
\[ f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b, \]

where \((\alpha_1, \ldots, \alpha_n, b)\) are the estimated SVM parameters, \(G(x_j, x)\) is the dot product in the predictor space between \(x\) and the support vectors, and the sum includes the training set observations. The negative class classification score for \(x\), or the score for predicting \(x\) into the negative class, is \(-f(x)\).

If \(G(x_j, x) = x_j'x\) (the linear kernel), then the score function reduces to

\[ f(x) = (x/s)'\beta + b. \]

\(s\) is the kernel scale and \(\beta\) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

References


See Also

ClassificationSVM | fitcsvm | loss | resubPredict

Introduced in R2014a
resubLoss

Class: ClassificationTree

Classification error by resubstitution

Syntax

L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'Subtrees',subtreevector)
[L,se] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)
[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description

L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that fitctree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of classification errors for the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of standard errors of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector) returns the best pruning level as defined in the TreeSize name-value pair. By default,
bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

\[ [L,...] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector},\text{Name},\text{Value}) \]
returns loss statistics with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Input Arguments**

tree

A classification tree constructed by fitctree.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**LossFun — Loss function**

'\text{classiferror}' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'mincost'</td>
<td>Minimal expected misclassification cost (for classification scores that are posterior probabilities)</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
</tr>
</tbody>
</table>

'Mincost' is appropriate for classification scores that are posterior probabilities. Classification trees return posterior probabilities as classification scores by default (see predict).

- Specify your own function using function handle notation.

Suppose that \( n \) be the number of observations in \( X \) and \( K \) be the number of distinct classes \( \text{numel(tree.ClassNames)} \). Your function must have this signature

\[
\text{lossvalue} = \text{lossfun}(C,S,W,Cost)
\]

where:

- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name \( \text{lossfun} \).
- \( C \) is an \( n \)-by-\( K \) logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order in \( \text{tree.ClassNames} \).

Construct \( C \) by setting \( C(p,q) = 1 \) if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to \( 0 \).

- \( S \) is an \( n \)-by-\( K \) numeric matrix of classification scores. The column order corresponds to the class order in \( \text{tree.ClassNames} \). \( S \) is a matrix of classification scores, similar to the output of predict.
- \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes them to sum to 1.
- \( \text{Cost} \) is a \( K \)-by-\( K \) numeric matrix of misclassification costs. For example, \( \text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun', @lossfun.

For more details on loss functions, see “Classification Loss” on page 32-5801.

Data Types: char | string | function_handle
Name,Value arguments associated with pruning subtrees:

**Subtrees — Pruning level**
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most \( \text{max(} \text{tree.PruneList}) \). 0 indicates the full, unpruned tree and \( \text{max(} \text{tree.PruneList}) \) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then resubLoss operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0:max(tree.PruneList).

resubLoss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

**TreeSize — Tree size**
'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following values:

- 'se' — loss returns the highest pruning level with loss within one standard deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).
- 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.
Output Arguments

L
Classification loss on page 32-5801, a vector the length of Subtrees. The meaning of the error depends on the values in Weights and LossFun.

se
Standard error of loss, a vector the length of Subtrees.

NLeaf
Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of Subtrees.

bestlevel
A scalar whose value depends on TreeSize:

- TreeSize = 'se' — loss returns the highest pruning level with loss within one standard deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).
- TreeSize = 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

Examples

Compute the In-Sample Classification Error

Compute the resubstitution classification error for the ionosphere data.

load ionosphere
tree = fitctree(X,Y);
L = resubLoss(tree)
L = 0.0114
Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.

```matlab
load fisheriris
n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');
```
The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level) excluding the highest level.

```
m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
```

```
trnLoss = 3×1
0.0267
```
• The full, unpruned tree misclassifies about 2.7% of the training observations.
• The tree pruned to level 1 misclassifies about 5.3% of the training observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.

Examine the validation sample classification error at each level excluding the highest level.

\[ \text{valLoss} = \text{loss}(\text{Mdl}, \text{meas(idxVal,:)}, \text{species(idxVal)}, 'SubTrees', 0:m) \]

display:

\[ \begin{array}{c}
0.0369 \\
0.0237 \\
0.3067 \\
0.3067 \\
\end{array} \]

• The full, unpruned tree misclassifies about 3.7% of the validation observations.
• The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 1.

\[ \text{pruneMdl} = \text{prune}(\text{Mdl}, 'Level', 1); \]
\[ \text{view(pruneMdl,'Mode','graph')} \]
Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.
- \( L \) is the weighted average classification loss.
- \( n \) is the sample size.
- For binary classification:
  - \( y_j \) is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
  - \( f(X_j) \) is the raw classification score for observation (row) \( j \) of the predictor data \( X \).
  - \( m_j = y_j f(X_j) \) is the classification score for classifying observation \( j \) into the class corresponding to \( y_j \). Positive values of \( m_j \) indicate correct classification and do not contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute significantly to the average loss.
- For algorithms that support multiclass classification (that is, \( K \geq 3 \)):
  - \( y_j^* \) is a vector of \( K - 1 \) zeros, with 1 in the position corresponding to the true, observed class \( y_j \). For example, if the true class of the second observation is the third class and \( K = 4 \), then \( y_j^*_2 = [0 0 1 0]' \). The order of the classes corresponds to the order in the ClassNames property of the input model.
  - \( f(X_j) \) is the length \( K \) vector of class scores for observation \( j \) of the predictor data \( X \). The order of the scores corresponds to the order of the classes in the ClassNames property of the input model.
  - \( m_j = y_j^* f(X_j) \). Therefore, \( m_j \) is the scalar classification score that the model predicts for the true, observed class.
  - The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

Given this scenario, the following table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>( L = \sum_{j=1}^{n} w_j \log\left(1 + \exp\left[-2m_j\right]\right) ).</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[ L = \sum_{j=1}^{n} w_j \exp(-m_j). ]</td>
</tr>
<tr>
<td>Classification error</td>
<td>'classiferror'</td>
<td>[ L = \sum_{j=1}^{n} w_j I{\hat{y}_j \neq y_j}. ] It is the weighted fraction of misclassified observations where ( \hat{y}_j ) is the class label corresponding to the class with the maximal posterior probability. ( I{x} ) is the indicator function.</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>'hinge'</td>
<td>[ L = \sum_{j=1}^{n} w_j \max{0,1-m_j}. ]</td>
</tr>
<tr>
<td>Logit loss</td>
<td>'logit'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log\left(1 + \exp(-m_j)\right). ]</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Value of LossFun</td>
<td>Equation</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>Minimal cost. The software computes the weighted minimal cost using this procedure for observations $j = 1,...,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>1</strong> Estimate the 1-by-$K$ vector of expected classification costs for observation $j$:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j) \cdot C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class posterior probabilities for binary and multiclass classification. $C$ is the cost matrix that the input model stores in the Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>2</strong> For observation $j$, predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}<em>j = \min</em>{j=1,...,K} (\gamma_j)$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>3</strong> Using $C$, identify the cost incurred ($c_j$) for making the prediction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>$L = \sum_{j=1}^{n} w_j (1-m_j)^2$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except 'mincost') for one observation over $m$. Some functions are normalized to pass through $[0,1]$.  

32-5804
**True Misclassification Cost**

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the `Cost` name-value pair when you create the classifier using the `fitctree` method. $\text{Cost}(i,j)$ is the cost of classifying an observation into class $j$ if its true class is $i$. By default, $\text{Cost}(i,j)=1$ if $i \neq j$, and $\text{Cost}(i,j)=0$ if $i=j$. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.
Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the K classes. CE(n,k) is

\[ CE(n,k) = \sum_{i=1}^{K} \hat{P}(i \mid Xnew(n))C(k \mid i), \]

where

- K is the number of classes.

- \( \hat{P}(i \mid Xnew(n)) \) is the posterior probability of class i for observation Xnew(n).

- \( C(k \mid i) \) is the true misclassification cost of classifying an observation as k when its true class is i.

See Also

fitctree | loss | resubEdge | resubMargin | resubPredict
resubLoss

Regression error by resubstitution

Syntax

L = resubLoss(ens)
L = resubLoss(ens,Name,Value)

Description

L = resubLoss(ens) returns the resubstitution loss, meaning the mean squared error computed for the data that fitrensemble used to create ens.

L = resubLoss(ens,Name,Value) calculates loss with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubLoss uses only these learners for calculating loss.
**Default**: `1:NumTrained`

**lossfun**

Function handle for loss function, or `'mse'`, meaning mean squared error. If you pass a function handle `fun`, `resubLoss` calls it as

FUN(Y,Yfit,W)

where `Y`, `Yfit`, and `W` are numeric vectors of the same length. `Y` is the observed response, `Yfit` is the predicted response, and `W` is the observation weights.

**Default**: `'mse'`

**mode**

Character vector or string scalar representing the meaning of the output `L`:

- `'ensemble'` — `L` is a scalar value, the loss for the entire ensemble.
- `'individual'` — `L` is a vector with one element per trained learner.
- `'cumulative'` — `L` is a vector in which element `J` is obtained by using learners `1:J` from the input list of learners.

**Default**: `'ensemble'`

**Output Arguments**

**L**

Loss, by default the mean squared error. `L` can be a vector, and can mean different things, depending on the name-value pair settings.

**Examples**

**Estimate Resubstitution Loss**

Find the mean-squared difference between resubstitution predictions and training data.

Load the `carsmall` data set and select horsepower and vehicle weight as predictors.
load carsmall
X = [Horsepower Weight];

Train an ensemble of regression trees, and find the mean-squared difference of predictions from the training data.

ens = fitrensemble(X,MPG);
MSE = resubLoss(ens)

MSE = 0.5836

See Also
loss | resubLoss | resubPredict
resubLoss

Class: RegressionGP

Resubstitution loss for a trained Gaussian process regression model

Syntax

L = resubLoss(gprMdl)
L = resubLoss(gprMdl,Name,Value)

Description

L = resubLoss(gprMdl) returns the resubstitution mean squared error for the Gaussian process regression (GPR) model, gprMdl.

L = resubLoss(gprMdl,Name,Value) returns the resubstitution loss for the GPR model, gprMdl, with additional options specified by one or more Name,Value pair arguments. For example, you can specify a custom loss function or the observation weights.

Input Arguments

gprMdl — Gaussian process regression model
RegressionGP object

Gaussian process regression model, specified as a RegressionGP object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
lossfun — Loss function
'mse' (default) | function handle

Loss function for the trained GPR model, specified as 'mse' or a function handle. 'mse' stands for the mean squared error.

If you pass a function handle, say fun, resubLoss calls it as: fun(Y,Ypred,W), where Y, Ypred, and W are numeric vectors of length n, and n is the number of observations in the training data. Y is the observed response, Ypred is the predicted response, and W is the observation weights.

Example: 'lossfun',Fct calls the loss function Fct.

Data Types: char | string | function_handle

weights — Observation weights
vector of 1s (default) | n-by-1 vector

Observation weights, specified as an n-by-1 vector, where n is the number of observations in the training data. By default, weight of each observation is 1.

Data Types: double | single

Output Arguments

L — Resubstitution error
scalar value

Resubstitution error for the GPR model, returned as a scalar value.

Examples

Compute the Resubstitution Loss

The dataset has 506 observations. The first 13 columns contain the predictor values and the last column contains the response values. The goal is to predict the median value of owner-occupied homes in the Boston suburb area as a function of 13 predictors.

Load the data and define the response vector and predictor matrix.

```matlab
load('housing.data');
X = housing(:,1:13);
y = housing(:,end);
```

Fit a GPR model using subset of regressors ('sr') approximation method with Matern 3/2 ('Matern32') kernel function. Predict using the fully independent conditional ('fic') method.

```matlab
gprMdl = fitrgp(X,y,'KernelFunction','Matern32',... 'FitMethod','sr','PredictMethod','fic');
```

Compute the resubstitution predictions.

```matlab
ypred = resubPredict(gprMdl);
```

Plot the predicted response values along with the actual response values.

```matlab
plot(y,'r'); % Plot original response values
hold on;
plot(ypred,'b--'); % Plot predicted response values
ylabel('y');
legend('Actual response','Predicted response','Location','SouthWest');
axis([0 510 -10 55]);
hold off
```
Compute the resubstitution loss.

\[ L = \text{resubLoss}(gprMdl) \]

\[ L = 4.8478 \]

Manually compute the regression loss.

\[ n = \text{length}(y); \]
\[ L = (y-\text{ypred})' * (y-\text{ypred}) / n \]

\[ L = 4.8478 \]
Compute Custom Resubstitution Loss

Load the sample data and store in a table.

```matlab
load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
'VariableNames',{'meas1','meas2','meas3','meas4','species'});
```

Fit a GPR model using the first measurement as the response and the other variables as the predictors.

```matlab
mdl = fitrgp(tbl,'meas1');
```

Predict the responses using the trained model.

```matlab
ypred = predict(mdl,tbl);
```

Compute the mean absolute error.

```matlab
n = height(tbl);
y = tbl.meas1;
fun = @(y,ypred,w) sum(abs(y-ypred))/n;
L = resubLoss(mdl,'lossfun',fun)
L = 0.2345
```

Alternatives

To compute the regression error for new data, use `loss`.

References


See Also

RegressionGP | fitrgp | loss | resubPredict
Introduced in R2015b
resubLoss

Class: RegressionSVM

Resubstitution loss for support vector machine regression model

Syntax

L = resubLoss(mdl)
L = resubLoss(mdl,Name,Value)

Description

L = resubLoss(mdl) returns the resubstitution loss for the support vector machine (SVM) regression model mdl, using the training data stored in mdl.X and corresponding response values stored in mdl.Y.

L = resubLoss(mdl,Name,Value) returns the resubstitution loss with additional options specified by one or more Name,Value pair arguments. For example, you can specify the loss function or observation weights.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
**LossFun — Loss function**

' mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and ' mse', 'epsiloninsensitive', or a function handle.

- The following table lists the available loss functions. Specify one using its corresponding value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>' mse'</td>
<td>&quot;Mean Squared Error&quot; on page 32-5819</td>
</tr>
<tr>
<td>'epsiloninsensitive'</td>
<td>&quot;Epsilon-Insensitive Loss Function&quot; on page 32-5820</td>
</tr>
</tbody>
</table>

- Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size. Your function must have the signature lossvalue = lossfun(Y,Yfit,W), where:

- The output argument lossvalue is a numeric value.
- You choose the function name (lossfun).
- Y is an n-by-1 numeric vector of observed response values.
- Yfit is an n-by-1 numeric vector of predicted response values, calculated using the corresponding predictor values in X (similar to the output of predict).
- W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun', @lossfun.

Example: 'LossFun', 'epsiloninsensitive'

Data Types: char | string | function_handle

**Weights — Observation weights**

ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector. Weights must be the same length as the number of rows in X. The software weighs the observations in each row of X using the corresponding weight value in Weights.

Data Types: single | double

32-5817
Output Arguments

L — Resubstitution loss
scalar value

Resubstitution loss, returned as a scalar value.

The resubstitution loss is the loss calculated between the response training data and the model’s predicted response values based on the input training data.

Resubstitution loss can be an overly optimistic estimate of the predictive error on new data. If the resubstitution loss is high, the model’s predictions are not likely to be very good. However, having a low resubstitution loss does not guarantee good predictions for new data.

To better assess the predictive accuracy of your model, cross validate the model using crossval.

Examples

Resubstitution Loss for SVM Regression Model

This example shows how to train an SVM regression model, then calculate the resubstitution loss using mean square error (MSE) and epsilon-insensitive loss.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'.

Read the data into a table.

```matlab
rng default % for reproducibility
Tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
```

The sample data contains 4177 observations. All of the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model to the data, using a Gaussian kernel function with an automatic kernel scale. Standardize the data.
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);

Calculate the resubstitution loss using mean square error (MSE).

mse_loss = resubLoss(mdl)

mse_loss =

4.0603

Calculate the epsilon-insensitive loss.

eps_loss = resubLoss(mdl,'LossFun','epsiloninsensitive')

eps_loss =

1.1027

Definitions

Mean Squared Error

The weighted mean squared error is calculated as follows:

\[
\text{mse} = \frac{\sum_{j=1}^{n} w_j (f(x_j) - y_j)^2}{\sum_{j=1}^{n} w_j},
\]

where:

- \( n \) is the number of rows of data
- \( x_j \) is the \( j \)th row of data
- \( y_j \) is the true response to \( x_j \)
- \( f(x_j) \) is the response prediction of the SVM regression model \( mdl \) to \( x_j \)
- \( w \) is the vector of weights.
The weights in \( w \) are all equal to one by default. You can specify different values for weights using the 'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all weights, such that the normalized weights add to one.

**Epsilon-Insensitive Loss Function**

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (\( \varepsilon \)) of the function value. It is formally described as:

\[
Loss_\varepsilon = \begin{cases} 
0, & \text{if } |y - f(x)| \leq \varepsilon \\
|y - f(x)| - \varepsilon , & \text{otherwise.}
\end{cases}
\]

The mean epsilon-insensitive loss is calculated as follows:

\[
Loss = \frac{\sum_{j=1}^{n} w_j \max(0, |y_j - f(x_j)| - \varepsilon)}{\sum_{j=1}^{n} w_j},
\]

**References**


See Also
RegressionSVM | fitrsvm | loss | resubPredict

Introduced in R2015b
resubLoss

Class: RegressionTree

Regression error by resubstitution

Syntax

\[
L = \text{resubLoss}(\text{tree})
\]
\[
L = \text{resubLoss}(\text{tree},\text{Name},\text{Value})
\]
\[
L = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
\[
[L,se] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
\[
[L,se,NLeaf] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
\[
[L,se,NLeaf,bestlevel] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
\[
[L,...] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector},\text{Name},\text{Value})
\]

Description

\[
L = \text{resubLoss}(\text{tree})
\]
returns the resubstitution loss, meaning the loss computed for the data that \text{fitrtree} used to create \text{tree}.

\[
L = \text{resubLoss}(\text{tree},\text{Name},\text{Value})
\]
returns the loss with additional options specified by one or more \text{Name},\text{Value} pair arguments. You can specify several name-value pair arguments in any order as \text{Name1},\text{Value1},...\text{NameN},\text{ValueN}.

\[
L = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
returns a vector of mean squared errors for the trees in the pruning sequence \text{subtreevector}.

\[
[L,se] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
returns the vector of standard errors of the classification errors.

\[
[L,se,NLeaf] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
returns the vector of numbers of leaf nodes in the trees of the pruning sequence.

\[
[L,se,NLeaf,bestlevel] = \text{resubLoss}(\text{tree},'\text{Subtrees}',\text{subtreevector})
\]
returns the best pruning level as defined in the \text{TreeSize} name-value pair. By default,
bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

\[ [L, \ldots] = \text{resubLoss}(\text{tree}, 'Subtrees', \text{subtreevector}, \text{Name,Value}) \]
returns loss statistics with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Input Arguments**

- **tree** — Regression tree
  RegressionTree model object

  A regression tree (RegressionTree model object) constructed using fitrtree.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

- **LossFun** — Loss function
  'mse' (default) | function handle

  Loss function, specified as a function handle or 'mse' meaning mean squared error.

  You can write your own loss function in the syntax described in “Loss Functions” on page 32-5829.

  Data Types: char | string | function_handle

- **Name,Value** arguments associated with pruning subtrees:

  - **Subtrees** — Pruning level
    0 (default) | vector of nonnegative integers | 'all'

    Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

32-5823
If you specify a vector, then all elements must be at least 0 and at most \( \max(\text{tree.PruneList}) \). 0 indicates the full, unpruned tree and \( \max(\text{tree.PruneList}) \) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then \text{resubLoss} operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0:\( \max(\text{tree.PruneList}) \).

\text{resubLoss} prunes \text{tree} to each level indicated in \text{Subtrees}, and then estimates the corresponding output arguments. The size of \text{Subtrees} determines the size of some output arguments.

To invoke \text{Subtrees}, the properties \text{PruneList} and \text{PruneAlpha} of \text{tree} must be nonempty. In other words, grow \text{tree} by setting 'Prune','on', or by pruning \text{tree} using \text{prune}.

Example: 'Subtrees','all'

Data Types: single | double | char | string

\textbf{TreeSize — Tree size}

'se' (default) | 'min'

Tree size, specified as one of the following:

- 'se' — loss returns the highest pruning level with loss within one standard deviation of the minimum (L + se, where L and se relate to the smallest value in \text{Subtrees}).
- 'min' — loss returns the element of \text{Subtrees} with smallest loss, usually the smallest element of \text{Subtrees}.

\textbf{Output Arguments}

\textbf{L — Regression loss}

numeric vector of positive values

Regression loss (mean squared error), a vector the length of \text{Subtrees}. The meaning of the error depends on the values in \text{Weights} and \text{LossFun}.

\textbf{se — Standard error of loss}

numeric vector of positive values

Standard error of loss, a vector the length of \text{Subtrees}.
**NLeaf — Number of leaves**
numeric vector of nonnegative integers

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of Subtrees.

**bestlevel — Optimal pruning level**
nonnegative numeric scalar

A scalar whose value depends on TreeSize:

- **TreeSize = 'se'** — loss returns the highest pruning level with loss within one standard deviation of the minimum ($L + \text{se}$, where $L$ and $\text{se}$ relate to the smallest value in Subtrees).
- **TreeSize = 'min'** — loss returns the element of Subtrees with smallest loss, usually the smallest element of Subtrees.

**Examples**

**Compute the In-Sample MSE**

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

```matlab
load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

Compute the resubstitution MSE.

resubLoss(Mdl)

ans = 4.8952
```
Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
Y = MPG;
```

Partition the data into training (50%) and validation (50%) sets.

```matlab
n = size(X,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false; % Validation set logical indices
```

Grow a regression tree using the training set.

```matlab
Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));
```

View the regression tree.

```matlab
view(Mdl,'Mode','graph');
```
The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 7 is just the root node (i.e., no splits).

Examine the training sample MSE for each subtree (or pruning level) excluding the highest level.

```matlab
m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
```

```
trnLoss = 7×1
```

32-5827
• The MSE for the full, unpruned tree is about 6 units.
• The MSE for the tree pruned to level 1 is about 6.3 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

valLoss = loss(Mdl,X(idxVal,:),Y(idxVal),'SubTrees',0:m)

valLoss = 7×1
    32.1205
    31.5035
    32.0541
    30.8183
    26.3535
    30.0137
    38.4695

• The MSE for the full, unpruned tree (level 0) is about 32.1 units.
• The MSE for the tree pruned to level 4 is about 26.4 units.
• The MSE for the tree pruned to level 5 is about 30.0 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 4.

pruneMdl = prune(Mdl,'Level',4);
view(pruneMdl,'Mode','graph')
Definitions

Loss Functions

The built-in loss function is 'mse', meaning mean squared error.

To write your own loss function, create a function file of the form
function loss = lossfun(Y,Yfit,W)

• N is the number of rows of tree.X.
• Y is an N-element vector representing the observed response.
• Yfit is an N-element vector representing the predicted responses.
• W is an N-element vector representing the observation weights.
• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

See Also
fitrtree | loss | resubPredict
resubMargin

Class: ClassificationDiscriminant

Classification margins by resubstitution

Syntax

M = resubMargin(obj)

Description

M = resubMargin(obj) returns resubstitution classification margins for obj.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments

M

Numeric column-vector of length size(obj.X,1) containing the classification margins.

Examples

Estimate Resubstitution Margins for Discriminant Analysis Classifiers

Find the margins for a discriminant analysis classifier for Fisher's iris data by resubstitution. Examine several entries.
Load Fisher's iris data set.

`load fisheriris`

Train a discriminant analysis classifier.

`Mdl = fitcdiscr(meas,species);`

Compute the resubstitution margins, and display several of them.

```matlab
m = resubMargin(Mdl);
m(1:25:end)
```

```
ans = 6×1
1.0000
1.0000
0.9998
0.9998
1.0000
0.9946
```

### Definitions

#### Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix `X`. A high value of margin indicates a more reliable prediction than a low value.

#### Score

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page 20-7.
See Also
ClassificationDiscriminant | fitcdiscr | margin

Topics
“Discriminant Analysis Classification” on page 20-2
resubMargin

Class: ClassificationECOC

Classification margins by resubstitution for multiclass, error-correcting output codes model

Syntax

m = margin(Mdl)
m = margin(Mdl,Name,Value)

Description

m = margin(Mdl) returns the classification margins on page 32-5841 (m) for the trained, multiclass, error-correcting output codes (ECOC) model Mdl using the training data stored in Mdl.X and corresponding class labels stored in Mdl.Y.

m = margin(Mdl,Name,Value) returns the classification margins with additional options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — Multiclass ECOC model
ClassificationECOC model

Multiclass ECOC model, specified as a ClassificationECOC model returned by fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**BinaryLoss — Binary learner loss function**

'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic' | function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where $y_j$ is a class label for a particular binary learner (in the set $\{-1,1,0\}$), $s_j$ is the score for observation $j$, and $g(y_j,s_j)$ is the binary loss formula.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j,s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty,\infty)$</td>
<td>$\exp(-y_j s_j)/2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty,\infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)]/2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty,\infty)$</td>
<td>$\max(0,1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty,\infty)$</td>
<td>$(1 - y_j s_j)/2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty,\infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)]/[2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j (2s_j - 1)]^2/2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$. Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, customFunction, specify its function handle 'BinaryLoss',@customFunction.

  customFunction has this form:

  ```
 bLoss = customFunction(M,s)
  ```

  where:
  - $M$ is the K-by-L coding matrix stored in Mdl.CodingMatrix.
  - $s$ is the 1-by-L row vector of classification scores.
• **bLoss** is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.

• $K$ is the number of classes.

• $L$ is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function” on page 32-4978.

By default, if all binary learners are:

• SVMs or either linear or kernel classification models of SVM learners, then **BinaryLoss** is 'hinge'

• Ensembles trained by AdaboostM1 or GentleBoost, then **BinaryLoss** is 'exponential'

• Ensembles trained by LogitBoost, then **BinaryLoss** is 'binodeviance'

• Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set 'FitPosterior',1 in fitcecoc), then **BinaryLoss** is 'quadratic'

Otherwise, the default value for **BinaryLoss** is 'hamming'. To check the default value, use dot notation to display the **BinaryLoss** property of the trained model at the command line.

Example: 'BinaryLoss','binodeviance'

Data Types: char | string | function_handle

**Decoding — Decoding scheme**

'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of **Decoding** and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.

Example: 'Decoding','lossbased'

**Options — Estimation options**

[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of **Options** and a structure array returned by statset.
To invoke parallel computing:

- You need a Parallel Computing Toolbox license.
- Specify 'Options', statset('UseParallel',1).

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. **Verbose** controls the number of diagnostic messages that the software displays in the Command Window.

If **Verbose** is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose', 1

Data Types: single | double

**Output Arguments**

**m — Classification margins**

numeric column vector

Classification margins, returned as a numeric column vector.

**m** has the same length as **Mdl.Y**. The software estimates each entry of **m** using the trained ECOC model **Mdl**, the corresponding row of **Mdl.X**, and the true class label **Mdl.Y**.

**Examples**

**Estimate In-Sample Classification Margins of ECOC Models**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```
Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```matlab
t = templateSVM('Standardize',1);
classOrder = unique(Y)
```

```matlab
classOrder = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }
```

```matlab
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
```

`t` is an SVM template object. The software uses default values for empty options in `t` during training. `Mdl` is a `ClassificationECOC` model.

Estimate the in-sample classification margins. Display the distribution of the margins using a boxplot.

```matlab
m = resubMargin(Mdl);
figure;
boxplot(m);
title 'In-Sample Margins'
```
An observation margin is the positive-class, negated loss minus the maximum negative-class, negated loss. Classifiers that yield relatively large margins are desirable.

**Select ECOC Model Features by Examining In-Sample Margins**

The classifier margins measure, for each observation, the difference between the positive-class, negated loss score and the maximal negative-class, negated loss. One way to perform feature selection is to compare in-sample margins from multiple models. Based solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set. Define two data sets:
• fullX contains all four predictors.
• partX contains the sepal measurements.

load fisheriris
X = meas;
fullX = X;
partX = X(:,1:2);
Y = species;

Train ECOC models using SVM binary learners for each predictor set. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template, and to compute posterior probabilities.

t = templateSVM('Standardize',1);
classOrder = unique(Y);
FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,...
    'FitPosterior',1);
PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,...
    'FitPosterior',1);

classOrder =
    3x1 cell array
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Estimate the in-sample margins for each classifier. For each model, display the distribution of the margins using a boxplot.

fullMargins = resubMargin(FullMdl);
partMargins = resubMargin(PartMdl);

figure;
boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'});
title('Boxplots of In-Sample Margins')
The margin distribution of CMdl is situated higher, and with less variability than the margin distribution of PCMdl.

**Definitions**

**Classification Margin**

The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
Binary Loss

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- \( \hat{k} \) is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j).
\]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[
\hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}.
\]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where $y_j$ is a class label for a particular binary learner (in the set \{-1,1,0\}), $s_j$ is the score for observation $j$, and $g(y_j, s_j)$. 

---

32-5842
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>$g(y_j, s_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-2y_j s_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>$(-\infty, \infty)$</td>
<td>$\exp(-y_j s_j) / 2$</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>$[0,1]$ or $(-\infty, \infty)$</td>
<td>$[1 - \text{sign}(y_j s_j)] / 2$</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>$(-\infty, \infty)$</td>
<td>$\max(0, 1 - y_j s_j) / 2$</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>$(-\infty, \infty)$</td>
<td>$(1 - y_j s_j) / 2$</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>$(-\infty, \infty)$</td>
<td>$\log[1 + \exp(-y_j s_j)] / [2\log(2)]$</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>$[0,1]$</td>
<td>$[1 - y_j(2s_j - 1)]^2 / 2$</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when $y_j = 0$, and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.

**Tip**

To compare margins or edges of several classifiers, use template objects to specify a common score transform function among the classifiers when you train them using fitcecoc.

**References**


**Extended Capabilities**

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options', statset('UseParallel', true)

For more information, see the 'Options' name-value pair argument.

**See Also**
ClassificationECOC | fitcecoc | margin | predict | resubEdge | resubPredict

**Topics**
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
resubMargin
Classification margins by resubstitution

Syntax

margin = resubMargin(ens)
margin = resubMargin(ens,Name,Value)

Description

margin = resubMargin(ens) returns the classification margin obtained by ens on its training data.

margin = resubMargin(ens,Name,Value) calculates margins with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens
A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners
Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubMargin uses only these learners for calculating margin.

Default: 1:NumTrained
Output Arguments

margin

A numeric column-vector of length size(ens.X,1) containing the classification margins.

Examples

Compute Resubstitution Margins for Classification Ensemble

Find the resubstitution margins for an ensemble that classifies the Fisher iris data.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

\[
t = \text{templateTree('MaxNumSplits',1)}; % \text{Weak learner template tree object}\n\]
\[
\text{ens} = \text{fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t)};\n\]

Find the resubstitution margins.

\[
\text{margin} = \text{resubMargin(ens)};\n\]
\[
[\text{min(margin)} \text{ mean(margin)} \text{ max(margin)}]\n\]
\[
\text{ans} = 1\times3\n\]
\[
-0.5674 \quad 3.2486 \quad 4.6245\n\]

Definitions

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix ens.X.
Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from $0$ to $1$.

See Also
resubEdge | resubLoss | resubMargin | resubPredict
resubMargin
Margin of $k$-nearest neighbor classifier by resubstitution

Syntax

$m = \text{resubMargin}(\text{mdl})$

Description

$m = \text{resubMargin}(\text{mdl})$ returns the classification margins on page 32-5849 ($m$) of the data used to train $\text{mdl}$.

$m$ is returned as a numeric vector of length $\text{size}(\text{mdl}.X,1)$, where $\text{mdl}.X$ is the training data for $\text{mdl}$. Each entry in $m$ represents the margin for the corresponding row of $\text{mdl}.X$ and the corresponding true class label in $\text{mdl}.Y$.

Examples

Resubstitution Margin Calculation

Create a $k$-nearest neighbor classifier for the Fisher iris data, where $k = 5$.

Load the Fisher iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Create a classifier for five nearest neighbors.

```matlab
mdl = fitcknn(X,Y,'NumNeighbors',5);
```

Examine some statistics of the resubstitution margin of the classifier.
m = resubMargin(mdl);
[\text{\text{max}(m)} \ \text{\text{min}(m)} \ \text{\text{mean}(m)}]

\begin{verbatim}
ans = 1x3
1.0000  -0.6000   0.9253
\end{verbatim}

The mean margin is over 0.9, indicating fairly high classification accuracy for resubstitution. For a more reliable assessment of model accuracy, consider cross-validation, such as kfoldLoss.

**Input Arguments**

mdl — k-nearest neighbor classifier model  
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

**Definitions**

**Margin**

The classification margin for each observation is the difference between the classification score for the true class and the maximal classification score for the false classes.

**Score**

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors with that classification divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page 32-4943.

**See Also**

ClassificationKNN | fitcknn | resubEdge | resubLoss | resubPredict
Topics
“Examine Quality of KNN Classifier” on page 18-37
“Classification Using Nearest Neighbors” on page 18-16

Introduced in R2012a
resubMargin

Class: ClassificationNaiveBayes

Classification margins for naive Bayes classifiers by resubstitution

Syntax

m = resubMargin(Mdl)

Description

m = resubMargin(Mdl) returns the resubstitution classification margins on page 32-5855 (m) for the naive Bayes classifier Mdl using the training data stored in Mdl.X and corresponding class labels stored in Mdl.Y.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Output Arguments

m — Classification margins
numeric vector

Classification margins on page 32-5855, returned as a numeric vector.

m has the same length equal to size(Mdl.X,1). Each entry of m is the classification margin of the corresponding observation (row) of Mdl.X and element of Mdl.Y.
Examples

**Estimate In-Sample Classification Margins of Naive Bayes Classifiers**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
```

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});
```

*Mdl* is a `ClassificationNaiveBayes` classifier.

Estimate the in-sample classification margins. Display the distribution of the margins using a boxplot.

```matlab
m = resubMargin(Mdl);
figure;
boxplot(m);
h = gca;
iqr = quantile(m,0.75) - quantile(m,0.25);
h.YLim = median(m) + iqr*[-4 4];
title 'Boxplot of the Margins';
```
An observation margin is the observed (true) class score minus the maximum false class score among all scores in the respective class. Classifiers that yield relatively large margins are desirable.

**Select Naive Bayes Classifier Features by Examining In-Sample Margins**

The classifier margins measure, for each observation, the difference between the true class observed score and the maximal false class score for a particular class. One way to perform feature selection is to compare in-sample margins from multiple models. Based solely on this criterion, the model with the highest margins is the best model.
Load Fisher's iris data set. Define two data sets:

- **fullX** contains all predictors (except the removed column of 0s).
- **partX** contains the last 20 predictors.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
fullX = X;
partX = X(:,3:4);
```

Train naive Bayes classifiers for each predictor set.

```matlab
FullMdl = fitcnb(fullX,Y);
PartMdl = fitcnb(partX,Y);
```

Estimate the in-sample margins for each classifier. Compute confidence intervals for each sample.

```matlab
fullM = resubMargin(FullMdl);
partM = resubMargin(PartMdl);
n = size(X,1);
fullMCI = mean(fullM) + 2*[-std(fullM)/n std(fullM)/n]
partMCI = mean(partM) + 2*[-std(partM)/n std(partM)/n]
```

```
fullMCI = 1×2
0.8898 0.8991

partMCI = 1×2
0.9129 0.9209
```

The confidence intervals are tight, and mutually exclusive. The margin confidence interval of the classifier trained using just predictors 3 and 4 has higher values than that of the full model. Therefore, the model trained on two predictors has better in-sample performance.
Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their respective class. The software uses the normalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the score for the true class and maximal score for the false classes. Provided that they are on the same scale, margins serve as a classification confidence measure, i.e., among multiple classifiers, those that yield larger margins are better.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is $k$ for a given observation $(x_1,\ldots,x_P)$ is

$$
\hat{P}(Y = k \mid x_1,\ldots,x_P) = \frac{P(X_1,\ldots,X_P \mid y = k)\pi(Y = k)}{P(X_1,\ldots,X_P)},
$$

where:

- $P(X_1,\ldots,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class $k$. `Mdl.DistributionNames` stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. `Mdl.Prior` stores the prior distribution.
\[
P(X_1,\ldots,X_P) \text{ is the joint density of the predictors. The classes are discrete, so}
\]
\[
P(X_1,\ldots,X_P) = \sum_{k=1}^{K} P(X_1,\ldots,X_P \mid y = k) \pi(Y = k).
\]

**Prior Probability**

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

**Score**

The naive Bayes score is the class posterior probability given the observation.

**See Also**

ClassificationSVM | CompactClassificationSVM | fitcsvm | margin | resubEdge | resubLoss
resubMargin

Find classification margins for support vector machine (SVM) classifier by resubstitution

Syntax

m = resubMargin(SVMModel)

Description

m = resubMargin(SVMModel) returns the resubstitution classification margins on page 32-3978 (m) for the support vector machine (SVM) classifier SVMModel using the training data stored in SVMModel.X and the corresponding class labels stored in SVMModel.Y.

m is returned as a numeric vector with the same length as Y. The software estimates each entry of m using the trained SVM classifier SVMModel, the corresponding row of X, and the true class label Y.

Examples

Estimate In-Sample Classification Margins of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Estimate the in-sample classification margins.

m = resubMargin(SVMModel);

m(10:20)
An observation margin is the observed (true) class score minus the maximum false class score among all scores in the respective class. Classifiers that yield relatively large margins are preferred.

**Select SVM Classifier Features by Examining In-Sample Margins**

Perform feature selection by comparing in-sample margins from multiple models. Based solely on this comparison, the model with the highest margins is the best model.

Load the ionosphere data set. Define two data sets:

- fullX contains all predictors (except the removed column of 0s).
- partX contains the last 20 predictors.

```matlab
load ionosphere
fullX = X;
partX = X(:,end-20:end);
```

Train SVM classifiers for each predictor set.

```matlab
FullSVMModel = fitcsvm(fullX,Y);
PartSVMModel = fitcsvm(partX,Y);
```

Estimate the in-sample margins for each classifier.

```matlab
fullMargins = resubMargin(FullSVMModel);
partMargins = resubMargin(PartSVMModel);
```
n = size(X,1);
p = sum(fullMargins < partMargins)/n

p = 0.2222

Approximately 22% of the margins from the full model are less than those from the model with fewer predictors. This suggests that the model trained with all the predictors is better.

**Input Arguments**

**SVMModel** — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

**Definitions**

**Classification Edge**

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes them to sum to the prior probabilities in the respective classes. The software uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose the classifier that yields the highest edge.

**Classification Margin**

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as
\[ m = 2yf(x). \]

\( x \) is an observation. If the true label of \( x \) is the positive class, then \( y \) is 1, and -1 otherwise. \( f(x) \) is the positive-class classification score for the observation \( x \). The classification margin is commonly defined as \( m = yf(x) \).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

**Classification Score**

The SVM classification score for classifying observation \( x \) is the signed distance from \( x \) to the decision boundary ranging from \(-\infty \) to \(+\infty \). A positive score for a class indicates that \( x \) is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score \( f(x) \) is the trained SVM classification function.

\( f(x) \) is also the numerical, predicted response for \( x \), or the score for predicting \( x \) into the positive class.

\[ f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b, \]

where \( (\alpha_1, \ldots, \alpha_n, b) \) are the estimated SVM parameters, \( G(x_j, x) \) is the dot product in the predictor space between \( x \) and the support vectors, and the sum includes the training set observations. The negative class classification score for \( x \), or the score for predicting \( x \) into the negative class, is \(-f(x)\).

If \( G(x_j, x) = x_j^\top x \) (the linear kernel), then the score function reduces to

\[ f(x) = (x / s)^\top \beta + b. \]

\( s \) is the kernel scale and \( \beta \) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.
Algorithms

For binary classification, the software defines the margin for observation $j$, $m_j$, as

$$m_j = 2y_j f(x_j),$$

where $y_j \in \{-1,1\}$, and $f(x_j)$ is the predicted score of observation $j$ for the positive class. However, $m_j = y_j f(x_j)$ is commonly used to define the margin.

References


See Also

ClassificationSVM | CompactClassificationSVM | fitcsvm | margin | resubEdge | resubLoss

Introduced in R2014a
resubMargin

Class: ClassificationTree
Classification margins by resubstitution

Syntax

M = resubMargin(tree)

Description

M = resubMargin(tree) returns resubstitution classification margins for tree.

Input Arguments

tree
A classification tree created by fitctree.

Output Arguments

M
A numeric column-vector of length size(tree.X,1) containing the classification margins.

Examples

Find the margins for a classification tree for the Fisher iris data by resubstitution. Examine several entries:

load fisheriris
tree = fitctree(meas,species);
M = resubMargin(tree);
M(1:25:end)

ans =
    1.0000
    1.0000
    1.0000
    1.0000
    0.9565
    0.9565

Definitions

Margin

Classification margin is the difference between classification score for the true class and maximal classification score for the false classes. A high value of margin indicates a more reliable prediction than a low value.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor $X$ as true when $X < 0.15$ or $X > 0.95$, and $X$ is false otherwise.

Generate 100 random points and classify them:

```matlab
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','Graph')
```
Prune the tree:

tree1 = prune(tree,'Level',1);
view(tree1,'Mode','Graph')
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore, the score for observations that are greater than .15 should be about .05/.85=.06 for true, and about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

```
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
```
Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected 0.06) is due to a statistical fluctuation: there are 8 observations in X in the range (0.95, 1) instead of the expected 5 observations.

See Also
fitctree | margin | resubEdge | resubLoss | resubPredict
resubPredict

**Class:** ClassificationDiscriminant

Predict resubstitution response of classifier

**Syntax**

```matlab
label = resubPredict(obj)
[label,posterior] = resubPredict(obj)
[label,posterior,cost] = resubPredict(obj)
```

**Description**

`label = resubPredict(obj)` returns the labels `obj` predicts for the data `obj.X`. `label` is the predictions of `obj` on the data that `fitcdiscr` used to create `obj`.

`[label,posterior] = resubPredict(obj)` returns the posterior class probabilities for the predictions.

`[label,posterior,cost] = resubPredict(obj)` returns the predicted misclassification costs per class for the resubstituted data.

**Input Arguments**

`obj`

Discriminant analysis classifier, produced using `fitcdiscr`. 
Output Arguments

**label**

Response `obj` predicts for the training data. `label` is the same data type as the training response data `obj.Y`. The predicted class labels are those with minimal expected misclassification cost; see “Prediction Using Discriminant Analysis Models” on page 20-7.

**posterior**

N-by-K matrix of posterior probabilities for classes `obj` predicts, where N is the number of observations and K is the number of classes.

**cost**

N-by-K matrix of predicted misclassification costs. Each cost is the average misclassification cost with respect to the posterior probability.

Examples

Find the total number of misclassifications of the Fisher iris data for a discriminant analysis classifier:

```
load fisheriris
obj = fitcdiscr(meas,species);
Ypredict = resubPredict(obj); % the predictions
Ysame = strcmp(Ypredict,species); % true when ==
sum(~Ysame) % how many are different?
```

ans =

3

Definitions

**Posterior Probability**

`posterior(i,k)` is the posterior probability of class k for observation i. For the mathematical definition, see “Posterior Probability” on page 20-7.
See Also
ClassificationDiscriminant | fitcdiscr | predict

Topics
“Discriminant Analysis Classification” on page 20-2
**resubPredict**

**Class:** ClassificationECOC

Predict resubstitution responses for multiclass, error-correcting output codes model

**Syntax**

```matlab
label = resubPredict(Mdl)
label = resubPredict(Mdl,Name,Value)
[label,NegLoss,PBScore] = resubPredict(__)
[label,NegLoss,PBScore,Posterior] = resubPredict(__)
```

**Description**

`label = resubPredict(Mdl)` returns a vector of predicted class labels for the predictor data (stored in `Mdl.X`) based on the trained, multiclass, error-correcting output codes model `Mdl`.

The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

`label = resubPredict(Mdl,Name,Value)` returns predicted class labels with additional options specified by one or more `Name,Value` pair arguments.

For example, specify the posterior probability estimation method, decoding scheme, or verbosity level.

```matlab
[label,NegLoss,PBScore] = resubPredict(__) additionally returns negated average binary loss on page 32-5884 per class (`NegLoss`) for observations, and positive-class scores (`PBScore`) for the observations classified by each binary learner.
```

```matlab
[label,NegLoss,PBScore,Posterior] = resubPredict(__) additionally returns posterior class probability estimates for observations (`Posterior`).
```

To obtain posterior class probabilities, you must set `'FitPosterior',1` when training the ECOC model using `fitcecoc`. Otherwise, `resubPredict` throws an error.
Input Arguments

**Mdl — Multiclass ECOC model**
*ClassificationECOC* model

Multiclass ECOC model, specified as a `ClassificationECOC` model returned by `fitcecoc`.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**BinaryLoss — Binary learner loss function**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>g(y_j, s_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>(−∞, ∞)</td>
<td>(\log[1 + \exp(-2y_js_j)]/) [2\log(2)]</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>(−∞, ∞)</td>
<td>(\exp(-y_js_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>[0,1] or (−∞, ∞)</td>
<td>(1 - \text{sign}(y_js_j)/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>(−∞, ∞)</td>
<td>(\max(0,1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>(−∞, ∞)</td>
<td>(1 - y_js_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>(−∞, ∞)</td>
<td>(\log[1 + \exp(-y_js_j)]/) [2\log(2)]</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>[0,1]</td>
<td>(1 - y_j(2s_j - 1))^2/2</td>
</tr>
</tbody>
</table>

Binary learner loss function, specified as the comma-separated pair consisting of `'BinaryLoss'` and a built-in loss function name or function handle.

- This table contains names and descriptions of the built-in functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_js_j)\) is the binary loss formula.
The software normalizes binary losses such that the loss is 0.5 when \( y_j = 0 \). Also, the software calculates the mean binary loss for each class.

- For a custom binary loss function, for example, \texttt{customFunction}, specify its function handle 'BinaryLoss',@\texttt{customFunction}.

\texttt{customFunction} has this form:

\[
bLoss = \texttt{customFunction}(M,s)
\]

where:

- \( M \) is the \( K \)-by-\( L \) coding matrix stored in \texttt{Mdl.CodingMatrix}.
- \( s \) is the 1-by-\( L \) row vector of classification scores.
- \( bLoss \) is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.
- \( K \) is the number of classes.
- \( L \) is the number of binary learners.

For an example of passing a custom binary loss function, see "Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function" on page 32-4978.

By default, if all binary learners are:

- SVMs or either linear or kernel classification models of SVM learners, then \texttt{BinaryLoss} is 'hinge'
- Ensembles trained by \texttt{AdaboostM1} or \texttt{GentleBoost}, then \texttt{BinaryLoss} is 'exponential'
- Ensembles trained by \texttt{LogitBoost}, then \texttt{BinaryLoss} is 'binodeviance'
- Linear or kernel classification models of logistic regression learners, or you specify to predict class posterior probabilities (that is, set '\texttt{FitPosterior}',1 in \texttt{fitcecoc}), then \texttt{BinaryLoss} is 'quadratic'

Otherwise, the default value for '\texttt{BinaryLoss}' is 'hamming'. To check the default value, use dot notation to display the \texttt{BinaryLoss} property of the trained model at the command line.

Example: '\texttt{BinaryLoss}','binodeviance'

Data Types: char | string | function_handle
Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on page 32-4986.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl' (the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.
Example: 'NumKLInitializations',5
Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset.

To invoke parallel computing:
• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of 'PosteriorMethod' and 'kl' or 'qp.'
• If `PosteriorMethod` is 'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 32-4988.

• If `PosteriorMethod` is 'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on page 32-4990.

• If you do not request the fourth output argument (`Posterior`), then the software ignores the value of `PosteriorMethod`.

Example: 'PosteriorMethod','qp'

**Verbose** — Verbosity level

| 0 (default) | 1 |

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. `Verbose` controls the number of diagnostic messages that the software displays in the Command Window.

If `Verbose` is 0, then the software does not display diagnostic messages. Otherwise, the software displays diagnostic messages.

Example: 'Verbose',1

Data Types: `single` | `double`

**Output Arguments**

**label** — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

`label` is the same data type as the `Mdl.ClassNames`, and has length equal to the number of rows of `Mdl.X`. 
The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

**NegLoss — Negated average binary losses**
numeric matrix

Negated, average binary losses on page 32-5884, returned as a numeric matrix. NegLoss is an n-by-K matrix, where n is the number of observations (size(Mdl.X,1)) and K is the number of unique classes (size(Mdl.ClassNames,1)).

**PBScore — Positive-class scores**
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is an n-by-L matrix, where n is the number of observations (size(Mdl.X,1)) and L is the number of binary learners (size(Mdl.CodingMatrix,2)).

**Posterior — Posterior class probabilities**
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K matrix, where n is the number of observations (size(Mdl.X,1)) and K is the number of unique classes (size(Mdl.ClassNames,1)).

You must set 'FitPosterior',1 when training the ECOC model using fitcecoc to request Posterior. Otherwise, the software throws an error.

**Examples**

**Predict Labels of Training Data Using ECOC Models**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas;
Y = categorical(species);
n = numel(Y); % Sample size
classOrder = unique(Y);
```
Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t during training. Mdl is a ClassificationECOC model.

Predict the labels of the training data. Print a random subset of true and predicted labels.

labels = resubPredict(Mdl);
rng(1);
idx = randsample(n,10);
table(Y(idx),labels(idx),'VariableNames',{'TrueLabels','PredictedLabels'})

ans =

10x2 table

<table>
<thead>
<tr>
<th>TrueLabels</th>
<th>PredictedLabels</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>virginica</td>
<td>virginica</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
</tr>
</tbody>
</table>

Mdl correctly labeled the observations with indices idx.

**Predict Resubstitution Labels of ECOC Models Using a Custom Binary Loss Function**

Load Fisher's iris data set.
load fisheriris
X = meas;
Y = categorical(species);
n = numel(Y);           % Sample size
classOrder = unique(Y); % Class order
K = numel(classOrder);  % Number of classes

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the predictors and define the class order. Specify to standardize the predictors using an SVM template.

```
t = templateSVM('Standardize',1);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
```

`t` is an SVM template object. The software uses default values for empty options in `t` during training. `Mdl` is a `ClassificationECOC` model.

SVM scores are signed distances from the observation to the decision boundary. Therefore, the domain is $(-\infty, \infty)$. Create a custom binary loss function that:

- Maps the coding design matrix ($M$) and positive-class classification scores ($s$) for each learner to the binary loss for each observation
- Uses linear loss
- Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Or, you can specify an anonymous binary loss function.

```
customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;
```

Predict resubstitution labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 observations.

```
[label,NegLoss] = resubPredict(Mdl,'BinaryLoss',customBL);
```

```
rng(1); % For reproducibility
idx = randsample(n,10);
classOrder
```

```
table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...
 {'TrueLabel','PredictedLabel','NegLoss'})
```

```
classOrder =
```
3x1 categorical array

setosa
versicolor
virginica

ans =

10x3 table

<table>
<thead>
<tr>
<th>TrueLabel</th>
<th>PredictedLabel</th>
<th>NegLoss</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.12376</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
<td>-1.0171</td>
</tr>
<tr>
<td>virginica</td>
<td>virginica</td>
<td>-1.9088</td>
</tr>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.43846</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
<td>-1.0735</td>
</tr>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.26658</td>
</tr>
<tr>
<td>versicolor</td>
<td>versicolor</td>
<td>-1.1237</td>
</tr>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.35211</td>
</tr>
<tr>
<td>setosa</td>
<td>versicolor</td>
<td>0.23342</td>
</tr>
</tbody>
</table>

The column order corresponds to the elements of classOrder. The software predicts the label based on the maximum negated loss. The results seem to indicate that the median of the linear losses might not perform as well as other losses.

**Estimate Posterior Probabilities Using ECOC Classifiers**

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility
```

Create an SVM template, and specify the Gaussian kernel. It is good practice to standardize the predictors.
t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior probabilities (which are returned by predict or resubPredict) using the 'FitPosterior' name-value pair argument. Display diagnostic messages during the training using the 'Verbose' name-value pair argument. It is good practice to specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary learner, but you can adjust options for each binary learner by passing in a cell vector of templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic messages during the computation of labels and class posterior probabilities using the 'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);
Mdl.BinaryLoss

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

ans =

'quadratic'

The software assigns an observation to the class that yields the smallest average binary loss. Since all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

3x1 cell array

    {'setosa'    }
    {'versicolor'}
    {'virginica' }

ans =

10x3 table

   TrueLabel     PredLabel     Posterior
    ______________________________    ________________________    ________________________
     'virginica'    'virginica'    0.0039321     0.0039869       0.99208
     'virginica'    'virginica'    0.017067      0.018263        0.96467
     'virginica'    'virginica'    0.014948      0.015856        0.9692
     'versicolor'   'versicolor'    2.2197e-14       0.87317       0.12683
     'setosa'       'setosa'            0.999    0.00025091    0.00074639
     'versicolor'   'virginica'     2.2195e-14      0.059429       0.94057
     'versicolor'   'versicolor'    2.2194e-14       0.97001       0.029986
     'setosa'       'setosa'            0.999    0.00024997    0.00074741
     'versicolor'   'versicolor'    0.0085646       0.98259       0.008849
The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each instance in the grid.

```matlab
xMax = max(X);
xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));
x2Pts = linspace(xMin(2),xMax(2));
[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

 [~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);
```

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

```matlab
figure;
contourf(x1Grid,x2Grid,...
 reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));

h = colorbar;
h.YLabel.String = 'Maximum posterior';
h.YLabel.FontSize = 15;
hold on
gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);
gh(2).LineWidth = 2;
gh(3).LineWidth = 2;

title 'Iris Petal Measurements and Maximum Posterior';
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
axis tight
legend(gh,'Location','NorthWest')
hold off
```
Estimate Posterior Probabilities Using Parallel Computing

Train an error-correcting output codes, multiclass model and estimate posterior probabilities using parallel computing.

Load the `arrhythmia` data set.

```matlab
load arrhythmia
Y = categorical(Y);
tabulate(Y)
n = numel(Y);
K = numel(unique(Y));
```
Few classes are not represented in the data, and many other classes have low relative frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak, classification tree learners.

```matlab
t = templateEnsemble('GentleBoost',50,'Tree');
```

`t` is a template object. Most of the options are empty ([]). The software uses default values for all empty options during training.

Since there are many classes, specify a sparse random coding design.

```matlab
rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');
```

Train an ECOC model using parallel computing. Specify to fit posterior probabilities.

```matlab
pool = parpool; % Invokes workers
options = statset('UseParallel',1);
Mdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
 'FitPosterior',1);
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

`Mdl` is a `ClassificationECOC` model. You can access its properties using dot notation. The pool invokes four workers. The number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified as not having arrythmia (class 1) given the data.
[~,~,~,posterior] = resubPredict(Mdl);
idx = randsample(n,10,1);
table(idx,Y(idx),posterior(idx,1),...
    'VariableNames',{'ObservationIndex','TrueLabel','PosteriorNoArrythmia'})

ans =

<table>
<thead>
<tr>
<th>ObservationIndex</th>
<th>TrueLabel</th>
<th>PosteriorNoArrythmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>1</td>
<td>0.91522</td>
</tr>
<tr>
<td>248</td>
<td>1</td>
<td>0.95376</td>
</tr>
<tr>
<td>398</td>
<td>10</td>
<td>0.032369</td>
</tr>
<tr>
<td>207</td>
<td>1</td>
<td>0.97965</td>
</tr>
<tr>
<td>340</td>
<td>1</td>
<td>0.93628</td>
</tr>
<tr>
<td>206</td>
<td>1</td>
<td>0.97795</td>
</tr>
<tr>
<td>345</td>
<td>10</td>
<td>0.015643</td>
</tr>
<tr>
<td>296</td>
<td>2</td>
<td>0.14796</td>
</tr>
<tr>
<td>391</td>
<td>1</td>
<td>0.96494</td>
</tr>
<tr>
<td>406</td>
<td>1</td>
<td>0.94867</td>
</tr>
</tbody>
</table>

**Definitions**

**Binary Loss**

A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.

Suppose the following:

- $m_{kj}$ is element $(k,j)$ of the coding design matrix $M$ (that is, the code corresponding to class $k$ of binary learner $j$).
- $s_j$ is the score of binary learner $j$ for an observation.
- $g$ is the binary loss function.
- $\hat{k}$ is the predicted class for the observation.

In loss-based decoding [Escalera et al.] on page 18-222, the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,
\[ \hat{k} = \arg\min_k \sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j). \]

In loss-weighted decoding [Escalera et al.] on page 18-222, the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,

\[ \hat{k} = \arg\min_k \frac{\sum_{j=1}^{L} |m_{kj}| g(m_{kj}, s_j)}{\sum_{j=1}^{L} |m_{kj}|}. \]

Allwein et al. on page 18-221 suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where \(y_j\) is a class label for a particular binary learner (in the set \{-1,1,0\}), \(s_j\) is the score for observation \(j\), and \(g(y_j, s_j)\).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Score Domain</th>
<th>(g(y_j, s_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
<td>((-\infty, \infty))</td>
<td>(\log[1 + \exp(-2y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
<td>((-\infty, \infty))</td>
<td>(\exp(-y_j s_j)/2)</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming</td>
<td>([0,1]) or ((-\infty, \infty))</td>
<td>([1 - \text{sign}(y_j s_j)]/2)</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
<td>((-\infty, \infty))</td>
<td>(\max(0,1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear</td>
<td>((-\infty, \infty))</td>
<td>((1 - y_j s_j)/2)</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
<td>((-\infty, \infty))</td>
<td>(\log[1 + \exp(-y_j s_j)]/\left[2\log(2)\right])</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic</td>
<td>([0,1])</td>
<td>([1 - y_j(2s_j - 1)]^2/2)</td>
</tr>
</tbody>
</table>

The software normalizes binary losses such that the loss is 0.5 when \(y_j = 0\), and aggregates using the average of the binary learners [Allwein et al.] on page 18-221.

Do not confuse the binary loss with the overall classification loss (specified by the 'LossFun' name-value pair argument of the loss and predict object functions), which measures how well an ECOC classifier performs as a whole.


Algorithms

- The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
  - $m_{kj}$ is the element $(k,j)$ of the coding design matrix $M$.
  - $I$ is the indicator function.
  - $\hat{p}_k$ is the class posterior probability estimate for class $k$ of an observation, $k = 1, \ldots, K$.
  - $r_j$ is the positive-class posterior probability for binary learner $j$. That is, $r_j$ is the probability that binary learner $j$ classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is

$$ \Delta(r, r) = \sum_{j=1}^{L} w_j \left[ r_j \log \frac{r_j}{r_j} + (1 - r_j) \log \frac{1 - r_j}{1 - r_j} \right], $$

where $w_j = \sum_S w_i$ is the weight for binary learner $j$.

- $S_j$ is the set of observation indices on which binary learner $j$ is trained.
- $w_i$ is the weight of observation $i$.

The software minimizes the divergence iteratively. The first step is to choose initial values $\hat{p}_k^{(0)}; k = 1, \ldots, K$ for the class posterior probabilities.

- If you do not specify 'NumKLIterations', then the software uses both sets of deterministic initial values described next, and uses the one that minimizes $\Delta$. 
\[ \hat{p}_k^{(0)} = \frac{1}{K}; \quad k = 1, \ldots, K. \]

\[ \hat{p}_k^{(0)}; \quad k = 1, \ldots, K \] is the solution of the system

\[ M_{01} \hat{p}^{(0)} = r, \]

where \( M_{01} \) is \( M \) with all \( m_{kj} = -1 \) replaced with 0, and \( r \) is a vector of positive-class posterior probabilities returned by the \( L \) binary learners [Dietterich et al.] on page 18-222. The software uses \texttt{lsqnonneg} to solve the system.

- If you specify \texttt{'NumKLIterations'}, \( c \), where \( c \) is a natural number, then the software does the following to choose \( \hat{p}_k^{(0)}; \quad k = 1, \ldots, K \), and uses the one that minimizes \( \Delta \).

- The software chooses both sets of deterministic initial values as described previously.

- The software randomly generates \( c \) vectors of length \( K \) using \texttt{rand}, and then normalizes each vector to sum to 1.

At iteration \( t \), the software completes these steps:

1. Compute

\[ \hat{r}_j^{(t)} = \frac{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1)}{\sum_{k=1}^{K} \hat{p}_k^{(t)} I(m_{kj} = +1 \cup m_{kj} = -1)}. \]

2. Estimate the next class posterior probability using

\[ \hat{p}_k^{(t+1)} = \hat{p}_k^{(t)} \frac{\sum_{j=1}^{L} w_j \left[ r_j I(m_{kj} = +1) + (1 - r_j) I(m_{kj} = -1) \right]}{\sum_{j=1}^{L} w_j \left[ \hat{r}_j^{(t)} I(m_{kj} = +1) + (1 - \hat{r}_j^{(t)}) I(m_{kj} = -1) \right]}. \]

3. Normalize \( \hat{p}_k^{(t+1)}; \quad k = 1, \ldots, K \) so that they sum to 1.
Check for convergence.

For more details, see [Hastie et al.] on page 18-222 and [Zadrozny] on page 18-224.

**Posterior Estimation Using Quadratic Programming**

Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:

1. Estimate the positive-class posterior probabilities, \( r_j \), for binary learners \( j = 1,\ldots,L \).
2. Using the relationship between \( r_j \) and \( \hat{p}_k \) [Wu et al.] on page 18-224, minimize

\[
\sum_{j=1}^{L} \left[ -r_j \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = -1) + (1 - r_j) \sum_{k=1}^{K} \hat{p}_k I(m_{kj} = +1) \right]^2
\]

with respect to \( \hat{p}_k \) and the restrictions

\[
0 \leq \hat{p}_k \leq 1
\]

\[
\sum_k \hat{p}_k = 1.
\]

The software performs minimization using quadprog.

**References**


**Extended Capabilities**

**Automatic Parallel Support**

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

**See Also**

ClassificationECOC | fitcecoc | predict | quadprog | statset
Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 30-2
“Reproducibility in Parallel Statistical Computations” on page 30-15
resubPredict

Predict ensemble response by resubstitution

Syntax

label = resubPredict(ens)
[label,score] = resubPredict(ens)
[label,score] = resubPredict(ens,Name,Value)

Description

label = resubPredict(ens) returns the labels ens predicts for the data ens.X.
label is the predictions of ens on the data that fitensemble used to create ens.

[label,score] = resubPredict(ens) also returns scores for all classes.

[label,score] = resubPredict(ens,Name,Value) finds resubstitution predictions
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

dates

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
learners

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NumTrained

Output Arguments

label

The response ens predicts for the training data. label is the same data type as the training response data ens.Y, and has the same number of entries as the number of rows in ens.X.

score

An N-by-K matrix, where N is the number of rows in ens.X, and K is the number of classes in ens. High score value indicates that an observation likely comes from this class.

Examples

Find Number of Ensemble Misclassifications

Find the total number of misclassifications of the fisheriris data for a classification ensemble.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
t = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Find the total number of misclassifications.

Ypredict = resubPredict(ens); % The predictions
Ysame = strcmp(Ypredict,species); % True when Ypredict and species are equal
sum(~Ysame) % Number of different predictions
Definitions

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from 0 to 1.

See Also
resubEdge | resubLoss | resubMargin | resubPredict
**resubPredict**

Predict resubstitution response of \( k \)-nearest neighbor classifier

**Syntax**

```matlab
label = resubPredict(mdl)
[label,score] = resubPredict(mdl)
[label,score,cost] = resubPredict(mdl)
```

**Description**

`label = resubPredict(mdl)` returns the labels that `mdl` predicts for the training data `mdl.X`. The output `label` contains the predictions of `mdl` on the data used by `fitcknn` to create `mdl`.

`[label,score] = resubPredict(mdl)` also returns the posterior class probabilities for the predictions.

`[label,score,cost] = resubPredict(mdl)` also returns the misclassification costs.

**Examples**

**Predict Labels for Training Data**

Examine the quality of a classifier by its resubstitution predictions.

Load the Fisher iris data set.

```matlab
load fisheriris
X = meas;
Y = species;
```

Create a classifier for five nearest neighbors.

```matlab
mdl = fitcknn(X,Y,'NumNeighbors',5);
```
Generate the resubstitution predictions.

\[
\text{label} = \text{resubPredict(mdl)};
\]

Calculate the number of differences between the predictions \text{label} and the original data \text{Y}.

\[
\text{mydiff} = \text{not(strcmp(Y,label))}; \quad \% \text{mydiff}(i) = 1 \text{ means they differ}
\]

\[
\text{sum(mydiff)} \quad \% \text{Number of differences}
\]

\[
\text{ans} = 5
\]

A value of 1 in \text{mydiff} indicates that the observed label differs from the corresponding predicted label. This example has five misclassifications.

**Input Arguments**

\text{mdl} — \text{k-nearest neighbor classifier model}
ClassificationKNN object

\text{k-nearest neighbor classifier model, specified as a ClassificationKNN object.}

**Output Arguments**

\text{label} — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels for the observations (rows) in the training data \text{X}, returned as a categorical array, character array, logical vector, numeric vector, or cell array of character vectors. \text{label} has length equal to the number of rows in \text{X}. The label is the class with minimal expected cost. See “Predicted Class Label” on page 32-5896.

\text{score} — Predicted class scores or posterior probabilities
numeric matrix

Predicted class scores or posterior probabilities, returned as a numeric matrix of size \text{n-by-K}. \text{n} is the number of observations (rows) in the training data \text{X}, and \text{K} is the number of classes (in \text{mdl.ClassNames}). \text{score}(i,j) is the posterior probability that observation \text{i} in \text{X} is of class \text{j} in \text{mdl.ClassNames}. See “Posterior Probability” on page 32-5896.
**cost — Expected classification costs**

numeric matrix

Expected classification costs, returned as a numeric matrix of size $n$-by-$K$. $n$ is the number of observations (rows) in the training data $X$, and $K$ is the number of classes (in `mdl.ClassNames`). $cost(i,j)$ is the cost of classifying row $i$ of $X$ as class $j$ in `mdl.ClassNames`. See “Expected Cost” on page 32-5897.

**Tips**

- If you standardize the predictor data, that is, `mdl.Mu` and `mdl.Sigma` are not empty ([]), then `resubPredict` standardizes the predictor data before predicting labels.

**Algorithms**

**Predicted Class Label**

`resubPredict` classifies by minimizing the expected classification cost:

$$
\hat{y} = \arg\min_{y=1,...,K} \sum_{j=1}^{K} \hat{P}(j|x)C(y|j),
$$

where

- $\hat{y}$ is the predicted classification.
- $K$ is the number of classes.
- $\hat{P}(j|x)$ is the posterior probability of class $j$ for observation $x$.
- $C(y|j)$ is the cost of classifying an observation as $y$ when its true class is $j$.

**Posterior Probability**

Consider a vector (single query point) $x_{new}$ and a model `mdl`. 
- \( k \) is the number of nearest neighbors used in prediction, \( \text{mdl.NumNeighbors} \).
- \( \text{nbd(mdl,xnew)} \) specifies the \( k \) nearest neighbors to \( x_{\text{new}} \) in \( \text{mdl.X} \).
- \( \text{Y(nbd)} \) specifies the classifications of the points in \( \text{nbd(mdl,xnew)} \), namely \( \text{mdl.Y(nbd)} \).
- \( \text{W(nbd)} \) specifies the weights of the points in \( \text{nbd(mdl,xnew)} \).
- \( \text{prior} \) specifies the priors of the classes in \( \text{mdl.Y} \).

If the model contains a vector of prior probabilities, then the observation weights \( W \) are normalized by class to sum to the priors. This process might involve a calculation for the point \( x_{\text{new}} \), because weights can depend on the distance from \( x_{\text{new}} \) to the points in \( \text{mdl.X} \).

The posterior probability \( p(j|x_{\text{new}}) \) is

\[
p(j | x_{\text{new}}) = \frac{\sum_{i \in \text{nbd}} W(i) 1_{Y(X(i)) = j}}{\sum_{i \in \text{nbd}} W(i)}.
\]

Here, \( 1_{Y(X(i)) = j} \) is 1 when \( \text{mdl.Y(i)} = j \), and 0 otherwise.

**True Misclassification Cost**

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument when you run \( \text{fitcknn} \). The value \( \text{Cost}(i,j) \) is the cost of classifying an observation into class \( j \) if its true class is \( i \). By default, \( \text{Cost}(i,j) = 1 \) if \( i \neq j \), and \( \text{Cost}(i,j) = 0 \) if \( i = j \). In other words, the cost is 0 for correct classification and 1 for incorrect classification.

**Expected Cost**

Two costs are associated with KNN classification: the true misclassification cost per class and the expected misclassification cost per observation. The third output of \( \text{resubPredict} \) is the expected misclassification cost per observation.
Suppose you have \( N_{obs} \) observations that you classified with a trained classifier \( mdl \), and you have \( K \) classes. The command

\[
[label, score, cost] = \text{resubPredict}(mdl)
\]

returns a matrix \( cost \) of size \( N_{obs} \)-by-\( K \), among other outputs. Each row of the \( cost \) matrix contains the expected (average) cost of classifying the observation into each of the \( K \) classes. \( cost(n,j) \) is

\[
\sum_{i=1}^{K} \hat{P}(i | X(n))C(j | i),
\]

where

- \( K \) is the number of classes.
- \( \hat{P}(i | X(n)) \) is the posterior probability on page 32-5896 of class \( i \) for observation \( X(n) \).
- \( C(j | i) \) is the true misclassification cost of classifying an observation as \( j \) when its true class is \( i \).

**See Also**

ClassificationKNN | fitcknn | predict | resubEdge | resubLoss | resubMargin

*Introduced in R2012a*
resubPredict

Class: ClassificationNaiveBayes

Predict naive Bayes classifier resubstitution response

Syntax

label = resubPredict(Mdl)
[label,Posterior,Cost] = predict(Mdl)

Description

label = resubPredict(Mdl) returns a vector of predicted class labels (label) for the trained naive Bayes classifier Mdl using the predictor data Mdl.X.

[label,Posterior,Cost] = predict(Mdl) additionally returns posterior probabilities on page 32-5904 (Posterior) and predicted (expected) misclassification costs on page 32-5903 (Cost) corresponding to the observations (rows) in Mdl.X.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes model trained by fitcnb.

Output Arguments

label — Predicted class labels
categorical vector | character array | logical vector | numeric vector | cell array of character vectors
Predicted class labels, returned as a categorical vector, character array, logical or numeric vector, or cell array of character vectors.

label:

- Is the same data type as the observed class labels (Y) that trained Mdl. (The software treats string arrays as cell arrays of character vectors.)
- Has length equal to the number of rows of X.
- Is the class yielding the lowest expected misclassification cost (Cost).

**Posterior — Class posterior probabilities**

numeric matrix

Class posterior probabilities on page 32-5904, returned as a numeric matrix. Posterior has rows equal to the number of rows of Mdl.X and columns equal to the number of distinct classes in the training data (size(Mdl.ClassNames,1)).

Posterior(j,k) is the predicted posterior probability of class k (i.e., in class Mdl.ClassNames(k)) given the observation in row j of Mdl.X.

Data Types: double

**Cost — Expected misclassification costs**

numeric matrix

Expected misclassification costs on page 32-5903, returned as a numeric matrix. Cost has rows equal to the number of rows of Mdl.X and columns equal to the number of distinct classes in the training data (size(Mdl.ClassNames,1)).

Cost(j,k) is the expected misclassification cost of the observation in row j of Mdl.X being predicted into class k (i.e., in class Mdl.ClassNames(k)).

**Examples**

**Label Training Sample Observations for Naive Bayes**

Load Fisher's iris data set.
Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```matlab
Mdl = fitcnb(X,Y,...
 'ClassNames',{'setosa','versicolor','virginica'});
```

Mdl is a `ClassificationNaiveBayes` classifier.

Predict the training sample labels. Display the results for the 10 observations.

```matlab
label = resubPredict(Mdl);
rng(1); % For reproducibility
idx = randsample(size(X,1),10);
table(Y(idx),label(idx),'VariableNames',
 {'TrueLabel','PredictedLabel'})
```

```
ans=10×2 table
 TrueLabel PredictedLabel
 ______________ ______________
 'setosa' 'setosa'
 'versicolor' 'versicolor'
 'virginica' 'virginica'
 'setosa' 'setosa'
 'versicolor' 'versicolor'
 'versicolor' 'setosa'
 'setosa' 'versicolor'
 'setosa' 'versicolor'
 'setosa' 'versosa'
 'setosa' 'setosa'
```

**Estimate In-Sample Posterior Probabilities of Naive Bayes Classifiers**

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas; % Predictors
Y = species; % Response
```
Train a naive Bayes classifier. It is good practice to specify the class order. Assume that each predictor is conditionally, normally distributed given its label.

```
Mdl = fitcnb(X,Y,...
 'ClassNames',{'setosa','versicolor','virginica'});
```

Mdl is a `ClassificationNaiveBayes` classifier.

Estimate posterior probabilities and expected misclassification costs for the training data. Display the results for 10 observations.

```
[label,Posterior,MisclassCost] = resubPredict(Mdl);
rng(1); % For reproducibility
idx = randsample(size(X,1),10);
Mdl.ClassNames
ans = 3x1 cell array
 {'setosa' }
 {'versicolor'}
 {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),'VariableNames',
 {'TrueLabel','PredictedLabel','PosteriorProbability'});
```

```
ans = 10×3 table
 TrueLabel PredictedLabel PosteriorProbability
 ______________ ______________ ___
 'setosa' 'setosa' 1 3.8821e-16 5.5878e-24
 'versicolor' 'versicolor' 1.2516e-54 1 4.5001e-06
 'virginica' 'virginica' 5.5646e-188 0.00058232 0.99942
 'setosa' 'setosa' 1 4.5352e-20 3.1301e-27
 'versicolor' 'versicolor' 5.0002e-69 0.99989 0.00010716
 'setosa' 'setosa' 1 2.9813e-18 2.1524e-25
 'versicolor' 'versicolor' 7.9205e-100 0.94293 0.057072
 'setosa' 'setosa' 1 1.799e-19 6.0606e-27
 'setosa' 'setosa' 1 1.5426e-17 1.2744e-24
```

```
MisclassCost(idx,:)
ans = 10×3
```

32-5902
The order of the columns of Posterior and MisclassCost corresponds to the order of the classes in Mdl.ClassNames.

Definitions

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong class.

There are two types of misclassification costs: true and expected. Let $K$ be the number of classes.

- **True misclassification cost** — A $K$-by-$K$ matrix, where element $(i,j)$ indicates the misclassification cost of predicting an observation into class $j$ if its true class is $i$. The software stores the misclassification cost in the property Mdl.Cost, and used in computations. By default, $\text{Mdl.Cost}(i,j) = 1$ if $i \neq j$, and $\text{Mdl.Cost}(i,j) = 0$ if $i = j$. In other words, the cost is 0 for correct classification, and 1 for any incorrect classification.

- **Expected misclassification cost** — A $K$-dimensional vector, where element $k$ is the weighted average misclassification cost of classifying an observation into class $k$, weighted by the class posterior probabilities. In other words,

$$ c_k = \sum_{j=1}^{K} \hat{P}(Y = j \mid x_1, \ldots, x_P) \text{Cost}_{jk}. $$
the software classifies observations to the class corresponding with the lowest expected misclassification cost.

**Posterior Probability**

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For naive Bayes, the posterior probability that a classification is $k$ for a given observation $(x_1,\ldots,x_P)$ is

$$
\hat{P}(Y = k \mid x_1,\ldots,x_P) = \frac{P(X_1,\ldots,X_P \mid y = k) \pi(Y = k)}{P(X_1,\ldots,X_P)},
$$

where:

- $P(X_1,\ldots,X_P \mid y = k)$ is the conditional joint density of the predictors given they are in class $k$. Mdl.DistributionNames stores the distribution names of the predictors.
- $\pi(Y = k)$ is the class prior probability distribution. Mdl.Prior stores the prior distribution.
- $P(X_1,\ldots,X_P)$ is the joint density of the predictors. The classes are discrete, so

$$
P(X_1,\ldots,X_P) = \sum_{k=1}^{K} P(X_1,\ldots,X_P \mid y = k)\pi(Y = k).
$$

**Prior Probability**

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

**References**

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb | loss | predict

Topics
“Naive Bayes Classification” on page 21-2
“Grouping Variables” on page 2-57
resubPredict

Predict resubstitution responses for support vector machine (SVM) classifier

Syntax

label = resubPredict(SVMModel)
[label,Score] = resubPredict(SVMModel)

Description

label = resubPredict(SVMModel) returns a vector of predicted class labels (label) for the trained support vector machine (SVM) classifier SVMModel using the predictor data SVMModel.X.

[label,Score] = resubPredict(SVMModel) additionally returns class likelihood measures, either scores or posterior probabilities.

Examples

Label Training Sample Observations for SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Predict the training sample labels and scores. Display the results for the first 10 observations.
[label, score] = resubPredict(SVMModel);
table(Y(1:10), label(1:10), score(1:10, 2), 'VariableNames',
    {'TrueLabel', 'PredictedLabel', 'Score'});

ans=10×3 table
    TrueLabel    PredictedLabel     Score
    _______    ______________    _______
    'g'            'g'           1.4861
    'b'            'b'          -1.0004
    'g'            'g'           1.8685
    'b'            'b'          -2.6458
    'g'            'g'           1.2805
    'b'            'b'          -1.4617
    'g'            'g'           2.1672
    'b'            'b'          -5.7085
    'g'            'g'           2.4797
    'b'            'b'          -2.7811

**Estimate In-Sample Posterior Probabilities of SVM Classifiers**

Load the *ionosphere* data set.

load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMMModel = fitcsvm(X, Y, 'ClassNames', {'b', 'g'}, 'Standardize', true);

SVMMModel is a *ClassificationSVM* classifier.

Fit the optimal score-to-posterior-probability transformation function.

rng(1); % For reproducibility
ScoreSVMMModel = fitPosterior(SVMMModel)

ScoreSVMMModel =
    ClassificationSVM
    ResponseName: 'Y'
    CategoricalPredictors: []
    ClassNames: {'b'  'g'}
    ScoreTransform: '@(S)sigmoid(S,-9.481802e-01,-1.218745e-01)'}
Because the classes are inseparable, the score transformation function (\texttt{ScoreSVMModel.ScoreTransform}) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display the results for the first 10 observations.

```plaintext
[label,scores] = resubPredict(SVMModel);
[~,postProbs] = resubPredict(ScoreSVMModel);
table(Y(1:10),label(1:10),scores(1:10,2),postProbs(1:10,2),'
VariableNames',
 {'TrueLabel','PredictedLabel','Score','PosteriorProbability'})
```

```
ans=10×4 table
 TrueLabel PredictedLabel Score PosteriorProbability
 ________ ______________ _______ ____________________
 'g' 'g' 1.4861 0.82215
 'b' 'b' -1.0004 0.30436
 'g' 'g' 1.8685 0.86916
 'b' 'b' -2.6458 0.084183
 'g' 'g' 1.2805 0.79184
 'b' 'b' -1.4617 0.22028
 'g' 'g' 2.1672 0.89814
 'b' 'b' -5.7085 0.0050122
 'g' 'g' 2.4797 0.92223
 'b' 'b' -2.7811 0.074805
```
Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with \texttt{fitcsvm}.

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.

The predicted class labels have the following:

• Same data type as the observed class labels (SVMModel.Y)
• Length equal to the number of rows in SVMModel.X

For one-class learning, label contains the one class represented in SVMModel.Y.

Score — Predicted class scores or posterior probabilities
numeric column vector | numeric matrix

Predicted class scores on page 32-5910 or posterior probabilities on page 32-5911, returned as a numeric column vector or numeric matrix.

• For one-class learning, Score is a column vector with the same number of rows as SVMModel.X. The elements are the positive class scores for the corresponding observations. You cannot obtain posterior probabilities for one-class learning.

• For two-class learning, Score is a two-column matrix with the same number of rows as SVMModel.X.

• If you fit the optimal score-to-posterior-probability transformation function using fitPosterior or fitSVMPosterior, then Score contains class posterior probabilities. That is, if the value of SVMModel.ScoreTransform is not none, then the first and second columns of Score contain the negative class
(SVMModel.ClassNames{1}) and positive class (SVMModel.ClassNames{2})
posterior probabilities for the corresponding observations, respectively.

- Otherwise, the first column contains the negative class scores and the second
  column contains the positive class scores for the corresponding observations.

If SVMModel.KernelParameters.Function is 'linear', then the classification score
for the observation \( x \) is

\[
f(x) = (x / s)\beta + b.
\]

SVMModel stores \( \beta, b, \) and \( s \) in the properties Beta, Bias, and
KernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the
predictor data that were applied during training. Specifically, if you specify
'Standardize',true when using fitcsvm, then you must standardize the predictor
data manually by using the mean SVMModel.Mu and standard deviation
SVMModel.Sigma, and then divide the result by the kernel scale in
SVMModel.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required
transformation before estimation.

If SVMModel.KernelParameters.Function is not 'linear', then Beta is empty([]).

**Definitions**

**Classification Score**

The SVM classification score for classifying observation \( x \) is the signed distance from \( x \) to
the decision boundary ranging from \( -\infty \) to \( +\infty \). A positive score for a class indicates that \( x \)
is predicted to be in that class. A negative score indicates otherwise.

The positive class classification score \( f(x) \) is the trained SVM classification function.

\( f(x) \) is also the numerical, predicted response for \( x \), or the score for predicting \( x \) into the
positive class.
\[ f(x) = \sum_{j=1}^{n} \alpha_j y_j G(x_j, x) + b, \]

where \((\alpha_1, \ldots, \alpha_n, b)\) are the estimated SVM parameters, \(G(x_j, x)\) is the dot product in the predictor space between \(x\) and the support vectors, and the sum includes the training set observations. The negative class classification score for \(x\), or the score for predicting \(x\) into the negative class, is \(-f(x)\).

If \(G(x_j, x) = x_j'x\) (the linear kernel), then the score function reduces to

\[ f(x) = (x/s)'\beta + b. \]

\(s\) is the kernel scale and \(\beta\) is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 18-183.

**Posterior Probability**

The posterior probability is the probability that an observation belongs in a particular class, given the data.

For SVM, the posterior probability is a function of the score \(P(s)\) that observation \(j\) is in class \(k = \{-1, 1\}\).

- For separable classes, the posterior probability is the step function

\[
P(s_j) = \begin{cases} 
0; & s < \max_{y_k=-1} s_k \\
\pi; & \max_{y_k=-1} s_k \leq s_j \leq \min_{y_k=+1} s_k \\
1; & s_j > \min_{y_k=+1} s_k
\end{cases}
\]

where:

- \(s_j\) is the score of observation \(j\).
- \(+1\) and \(-1\) denote the positive and negative classes, respectively.
• $\pi$ is the prior probability that an observation is in the positive class.
• For inseparable classes, the posterior probability is the sigmoid function

$$P(s_j) = \frac{1}{1 + \exp(As_j + B)},$$

where the parameters $A$ and $B$ are the slope and intercept parameters, respectively.

**Prior Probability**

The prior probability of a class is the believed relative frequency with which observations from that class occur in a population.

**Tips**

If you are using a linear SVM model for classification and the model has many support vectors, then using `resubPredict` for the prediction method can be slow. To efficiently classify observations based on a linear SVM model, remove the support vectors from the model object by using `discardSupportVectors`.

**Algorithms**

• By default and irrespective of the model kernel function, MATLAB uses the dual representation of the score function to classify observations based on trained SVM models, specifically

$$\hat{f}(x) = \sum_{j=1}^{n} \hat{\alpha}_j y_j G(x, x_j) + \hat{b}.$$  

This prediction method requires the trained support vectors and $\alpha$ coefficients (see the `SupportVectors` and `Alpha` properties of the SVM model).

• By default, the software computes optimal posterior probabilities using Platt’s method [1]:

1. Perform 10-fold cross-validation.
2 Fit the sigmoid function parameters to the scores returned from the cross-validation.

3 Estimate the posterior probabilities by entering the cross-validation scores into the fitted sigmoid function.

- The software incorporates prior probabilities in the SVM objective function during training.
- For SVM, `predict` and `resubPredict` classify observations into the class yielding the largest score (the largest posterior probability). The software accounts for misclassification costs by applying the average-cost correction before training the classifier. That is, given the class prior vector $P$, misclassification cost matrix $C$, and observation weight vector $w$, the software defines a new vector of observation weights ($W$) such that

$$ W_j = w_j P_j \sum_{k=1}^{K} C_{jk}. $$

References


See Also

- ClassificationSVM
- CompactClassificationSVM
- `fitPosterior`
- fitSVMPosterior
- `fitcsvm`
- predict

Introduced in R2014a
resubPredict

Class: ClassificationTree

Predict resubstitution response of tree

Syntax

label = resubPredict(tree)
[label,posterior] = resubPredict(tree)
[label,posterior,node] = resubPredict(tree)
[label,posterior,node,cnum] = resubPredict(tree)
[label,...] = resubPredict(tree,Name,Value)

Description

label = resubPredict(tree) returns the labels tree predicts for the data tree.X. label is the predictions of tree on the data that fitctree used to create tree.

[label,posterior] = resubPredict(tree) returns the posterior class probabilities for the predictions.

[label,posterior,node] = resubPredict(tree) returns the node numbers of tree for the resubstituted data.

[label,posterior,node,cnum] = resubPredict(tree) returns the predicted class numbers for the predictions.

[label,...] = resubPredict(tree,Name,Value) returns resubstitution predictions with additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A classification tree constructed by fitctree.
**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1**, **Value1**, ..., **NameN**, **ValueN**.

**Subtrees — Pruning level**

0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of **Subtrees** and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most \( \text{max}(\text{tree.PrunedList}) \). 0 indicates the full, unpruned tree and \( \text{max}(\text{tree.PrunedList}) \) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then resubPredict operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0:max(tree.PrunedList).

resubPredict prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting **Prune**, 'on', or by pruning tree using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

**Output Arguments**

**label**

The response tree predicts for the training data. **label** is the same data type as the training response data tree.Y.

If the Subtrees name-value argument contains \( m > 1 \) entries, **label** has \( m \) columns, each of which represents the predictions of the corresponding subtree. Otherwise, **label** is a vector.
**posterior**
Matrix or array of posterior probabilities for classes `tree` predicts.

If the `Subtrees` name-value argument is a scalar or is missing, `posterior` is an \( n \times k \) matrix, where \( n \) is the number of rows in the training data `tree.X`, and \( k \) is the number of classes.

If `Subtrees` contains \( m > 1 \) entries, `posterior` is an \( n \times k \times m \) array, where the matrix for each \( m \) gives posterior probabilities for the corresponding subtree.

**node**
The node numbers of `tree` where each data row resolves.

If the `Subtrees` name-value argument is a scalar or is missing, `node` is a numeric column vector with \( n \) rows, the same number of rows as `tree.X`.

If `Subtrees` contains \( m > 1 \) entries, `node` is a \( n \times m \) matrix. Each column represents the node predictions of the corresponding subtree.

**cnum**
The class numbers that `tree` predicts for the resubstituted data.

If the `Subtrees` name-value argument is a scalar or is missing, `cnum` is a numeric column vector with \( n \) rows, the same number of rows as `tree.X`.

If `Subtrees` contains \( m > 1 \) entries, `cnum` is a \( n \times m \) matrix. Each column represents the class predictions of the corresponding subtree.

**Examples**

**Compute Number of Misclassified Observations**
Find the total number of misclassifications of the Fisher iris data for a classification tree.

```matlab
load fisheriris
tree = fitctree(meas,species);
Ypredict = resubPredict(tree); % The predictions
```
Ysame = strcmp(Ypredict,species); % True when ==
sum(~Ysame) % How many are different?
ans = 3

**Compare In-Sample Posterior Probabilities for Each Subtree**

Load Fisher's iris data set. Partition the data into training (50%)
load fisheriris

Grow a classification tree using the all petal measurements.

Mdl = fitctree(meas(:,3:4),species);
n = size(meas,1); % Sample size
K = numel(Mdl.ClassNames); % Number of classes

View the classification tree.
view(Mdl,'Mode','graph');
The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 4 is just the root node (i.e., no splits).

Estimate the posterior probabilities for each class using the subtrees pruned to levels 1 and 3.

\[
[~,\text{Posterior}] = \text{resubPredict}(\text{Mdl},'\text{SubTrees}',[1 3]);
\]

\text{Posterior} is an n-by- K-by- 2 array of posterior probabilities. Rows of \text{Posterior} correspond to observations, columns correspond to the classes with order \text{Mdl.ClassNames}, and pages correspond to pruning level.
Display the class posterior probabilities for iris 125 using each subtree.

Posterior(125,:,:)

ans =
ans(:,:,1) =
     0     0.0217    0.9783

ans(:,:,2) =
     0     0.5000    0.5000

The decision stump (page 2 of Posterior) has trouble predicting whether iris 125 is versicolor or virginica.

**Definitions**

**Posterior Probability**

The posterior probability of the classification at a node is the number of training sequences that lead to that node with this classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor $X$ as true when $X<0.15$ or $X>0.95$, and $X$ is false otherwise.

1. Generate 100 random points and classify them:

```matlab
rng(0) % For reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = fitctree(X,Y);
view(tree,'Mode','graph')
```
Prune the tree:

```matlab
treel = prune(tree,'Level',1);
view(treel,'Mode','graph')
```
The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations between .15 and .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore the score for observations that are greater than .15 should be about \( \frac{.05}{.85} = .06 \) for true, and about \( \frac{.8}{.85} = .94 \) for false.

3. Compute the prediction scores for the first 10 rows of \( X \):

\[
[~,\text{score}] = \text{predict}(\text{tree1}, X(1:10));
\]

\[
[\text{score} \ X(1:10,:)]
\]

\[
\text{ans} = 10 \times 3
\]
Indeed, every value of X (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.94 and 0.06.

See Also
fitctree | predict | resubEdge | resubLoss | resubMargin
resubPredict

Predict response of ensemble by resubstitution

Syntax

Yfit = resubPredict(ens)
Yfit = resubPredict(ens,Name,Value)

Description

Yfit = resubPredict(ens) returns the response ens predicts for the data ens.X. Yfit is the predictions of ens on the data that fitrensemble used to create ens.

Yfit = resubPredict(ens,Name,Value) predicts responses with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens
A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

learners
Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NumTrained
Output Arguments

\textbf{Yfit}

A vector of predicted responses to the training data, with \texttt{ens.X} elements.

Examples

\textbf{Find Mean-Squared Error of Resubstitution Predictions}

Find the resubstitution predictions of mileage from the \texttt{carsmall} data, and look at their mean-squared difference from the training data.

Load the \texttt{carsmall} data set and select horsepower and vehicle weight as predictors.

\begin{verbatim}
load carsmall
X = [Horsepower Weight];
end
\end{verbatim}

Train an ensemble of regression trees.

\begin{verbatim}
ens = fitrensemble(X,MPG,{'Method','LSBoost','Learners','Tree'});
end
\end{verbatim}

Find the resubstitution predictions of \texttt{MPG}.

\begin{verbatim}
Yfit = resubPredict(ens);
end
\end{verbatim}

Calculate the mean-squared difference of the resubstitution predictions from the training data.

\begin{verbatim}
MSE = mean((Yfit - ens.Y).^2)
MSE = 0.5836
\end{verbatim}

Confirm that the result is the same as the result of \texttt{resubLoss}.

\begin{verbatim}
resubLoss(ens)
an = 0.5836
\end{verbatim}
See Also
predict | resubLoss | resubPredict
resubPredict

Class: RegressionGP

Resubstitution prediction from a trained Gaussian process regression model

Syntax

ypred = resubPredict(gprMdl)
[ypred,ysd] = resubPredict(gprMdl)
[ypred,ysd,yint] = predict(gprMdl)
[ypred,ysd,yint] = predict(gprMdl,Name,Value)

Description

ypred = resubPredict(gprMdl) returns the predicted responses, ypred, for the trained Gaussian process regression (GPR) model, gprMdl.

[ypred,ysd] = resubPredict(gprMdl) also returns the estimated standard deviations of the predicted responses corresponding to the rows of gprMdl.X.

[ypred,ysd,yint] = predict(gprMdl) also returns the 95% prediction intervals, yint, for the true responses corresponding to each row of training data, gprMdl.X.

[ypred,ysd,yint] = predict(gprMdl,Name,Value) returns the prediction intervals with additional options, specified by one or more Name,Value pair arguments. For example, you can specify the confidence level of the prediction interval.

Input Arguments

gprMdl — Gaussian process regression model
RegressionGP object

Gaussian process regression model, specified as a RegressionGP object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

**Alpha — Confidence level**

0.05 (default) | scalar value in the range from 0 to 1

Confidence level for the prediction intervals, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range from 0 to 1.

Example: 'Alpha', 0.01 specifies 99% prediction intervals.

Data Types: single | double

Output Arguments

**ypred — Predicted response values**

*n*-by-1 vector

Predicted response values, returned as an *n*-by-1 vector, where *n* is the number of observations in the training data.

**ysd — Standard deviation of the predicted response values**

*n*-by-1 vector

Standard deviation of the predicted response values corresponding to the rows of *gprMdl.X*, returned as an *n*-by-1 vector. *ysd(i)*, *i* = 1, 2, ..., *n*, contains the estimated standard deviation of the new response corresponding to the predictor values at the *i*<sup>th</sup> observation in the training data.

**yint — Prediction intervals for the true response values**

*n*-by-2 matrix

Prediction intervals for the true response values corresponding to the rows of *gprMdl.X*, returned as an *n*-by-2 matrix, where *n* is the number of observations in the training data. The first column of *yint* contains the lower limits and the second column contains the upper limits of the prediction intervals.
Examples

Plot Predicted Response and Prediction Intervals


The dataset has 506 observations. The first 13 columns contain the predictor values and the last column contains the response values. The goal is to predict the median value of owner-occupied homes in the Boston suburb area as a function of 13 predictors.

Load the data and define the response vector and predictor matrix.

```matlab
load('housing.data');
X = housing(:,1:13);
y = housing(:,end);
```

Train a GPR model using subset of regressors ('sr') approximation method with Matern 3/2 ('Matern32') kernel function. Predict using the fully independent conditional ('fic') method.

```matlab
gprMdl = fitrgp(X,y,'KernelFunction','Matern32',... 'FitMethod','sr','PredictMethod','fic');
```

Predict the responses using the trained GPR model. Compute the 99% prediction intervals.

```matlab
[y_pred,~,yint] = resubPredict(gprMdl,'Alpha',0.01);
```

Plot the actual response values along with predictions from the GPR model.

```matlab
figure;
ax = gca;
ax.XLim = [-8 8];
ax.YLim = [0.85 0.85];
h1 = patch(ax,[yint(:,1) yint(:,2)-yint(:,1)],-8,... 'FaceColor',[0.85 0.85 0.85],'EdgeColor',[0.85 0.85 0.85]);
hold on;
h1(1).FaceColor = 'none'; % remove color from bottom area
h1(1).EdgeColor = 'none';
h2 = plot(y,'r'); % Plot original response values
h3 = plot(y_pred,'b--'); % Plot predicted response values
legend([h2 h3 h1(2)],'Actual response','Predicted response',... 'Prediction intervals','Location','South');
axis([0 510 -7 65]);
hold off

The gray area shows the 99% prediction intervals.

Tips

- You can choose the prediction method while training the GPR model using the `PredictMethod` name-value pair argument in `fitrgp`. The default prediction method is 'exact' for $n \leq 10000$, where n is the number of observations in the training data, and 'bcd' (block coordinate descent), otherwise.
• Computation of standard deviations, \(ysd \), and prediction intervals, \(yint \), is not supported when \(\text{PredictMethod} \) is 'bcd'.

Alternatives

To compute the predicted responses for new data, use `predict`.

References

See Also

`RegressionGP` | `fitrgp` | `predict` | `resubLoss`

Introduced in R2015b
resubPredict

Class: RegressionSVM

Predict resubstitution response of support vector machine regression model

Syntax

yfit = resubPredict(mdl)

Description

yfit = resubPredict(mdl) returns a vector of predicted response values, yfit, for the trained support vector machine (SVM) regression model mdl using the predictor data stored in mdl.X.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Output Arguments

yfit — Predicted response
vector of numeric values

Predicted responses, returned as a vector of numeric values. The length of yfit is equal to the number of observations in the training data, mdl.NumObservations.

Examples

Resubstitution Predictions for SVM Regression Model

This example shows how to train an SVM regression model, then use the model to generate predicted response values from the training data.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data and save it in your current directory with the name 'abalone.data'. Read the data into a table.

```matlab
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility
```

The sample data contains 4177 observations. All of the predictor variables are continuous except for sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I' (for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age, using physical measurements.

Train an SVM regression model to the data, using a Gaussian kernel function with an automatic kernel scale. Standardize the data.

```matlab
mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);
```

Use the trained model to predict response values based on the original data.

```matlab
yfit = resubPredict(mdl);
```

Display the first ten predicted responses alongside the actual response values.

```matlab
[mdl.Y(1:10),yfit(1:10)]
```

ans =

```
15.0000    8.1836
7.0000    8.3545
9.0000    10.9383
10.0000    9.3446
7.0000    6.4042
8.0000    7.7910
20.0000    13.8275
16.0000   11.7959
```
The left column shows the actual response and the right column shows the corresponding predicted response.

References

See Also
RegressionSVM | fitrsvm | predict | resubLoss

Introduced in R2015b
resubPredict

Class: RegressionTree

Predict resubstitution response of tree

Syntax

Yfit = resubPredict(tree)
[Yfit,node] = resubPredict(tree)
[Yfit,node] = resubPredict(tree,Name,Value)

Description

Yfit = resubPredict(tree) returns the responses tree predicts for the data tree.X. Yfit is the predictions of tree on the data that fitrtree used to create tree.

[Yfit,node] = resubPredict(tree) returns the node numbers of tree for the resubstituted data.

[Yfit,node] = resubPredict(tree,Name,Value) predicts with additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A regression tree constructed using fitrtree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Subtrees — Pruning level

0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most \(\text{max(tree.PruneList)} \). 0 indicates the full, unpruned tree and \(\text{max(tree.PruneList)} \) indicates the completely pruned tree (i.e., just the root node).

If you specify 'all', then resubPredict operates on all subtrees (i.e., the entire pruning sequence). This specification is equivalent to using 0: \(\text{max(tree.PruneList)} \).

resubPredict prunes tree to each level indicated in Subtrees, and then estimates the corresponding output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree using prune.

Example: 'Subtrees','all'

Data Types: single | double | char | string

Output Arguments

Yfit

The response tree predicts for the training data.

If the Subtrees name-value argument is a scalar or is missing, label is the same data type as the training response data tree.Y.

If Subtrees contains \(m \geq 1 \) entries, label has \(m \) columns, each of which represents the predictions of the corresponding subtree.

node

The tree node numbers where tree sends each data row.
If the `Subtrees` name-value argument is a scalar or is missing, `node` is a numeric column vector with \(n \) rows, the same number of rows as `tree.X`.

If `Subtrees` contains \(m > 1 \) entries, `node` is a \(n \)-by-\(m \) matrix. Each column represents the node predictions of the corresponding subtree.

Examples

Compute the In-Sample MSE

Load the `carsmall` data set. Consider Displacement, Horsepower, and Weight as predictors of the response MPG.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

Grow a regression tree using all observations.

```matlab
Mdl = fitrtree(X,MPG);
```

Compute the resubstitution MSE.

```matlab
Yfit = resubPredict(Mdl);
mean((Yfit - Mdl.Y).^2)
```

```matlab
ans = 4.8952
```

You can get the same result using `resubLoss`.

```matlab
resubLoss(Mdl)
```

```matlab
ans = 4.8952
```

Estimate In-Sample Responses For Each Subtree

Load the `carsmall` data set. Consider Weight as a predictor of the response MPG.

```matlab
load carsmall
idxNaN = isnan(MPG + Weight);
```
X = Weight(~idxNaN);
Y = MPG(~idxNaN);
n = numel(X);

Grow a regression tree using all observations.
Mdl = fitrtree(X,Y);

Compute resubstitution fitted values for the subtrees at several pruning levels.

m = max(Mdl.PruneList);
pruneLevels = 1:4:m; % Pruning levels to consider
z = numel(pruneLevels);
Yfit = resubPredict(Mdl,'SubTrees',pruneLevels);

Yfit is an n-by-z matrix of fitted values in which the rows correspond to observations and the columns correspond to a subtree.

Plot several columns of Yfit and Y against X.

figure;
sortDat = sortrows([X Y Yfit],1); % Sort all data with respect to X
plot(repmat(sortDat(:,1),1,size(Yfit,2) + 1),sortDat(:,2:end))... % Vectorize for efficiency
lev = cellstr(num2str((pruneLevels)','Level %d MPG'));
legend([['Observed MPG'; lev]]
title 'In-Sample Fitted Responses'
xlabel 'Weight (lbs)';
ylabel 'MPG';
h = findobj(gcf);
set(h(4:end), 'LineWidth', 3) % Widen all lines
The values of Y_{fit} for lower pruning levels tend to follow the data more closely than higher levels. Higher pruning levels tend to be flat for large X intervals.

See Also

`fitrtree` | `predict` | `resubLoss`
resume

Resume a Bayesian optimization

Syntax

```matlab
newresults = resume(results,Name,Value)
```

Description

newresults = resume(results,Name,Value) resumes the optimization that produced results with additional options specified by one or more Name,Value pair arguments.

Examples

Resume a Bayesian Optimization

This example shows how to resume a Bayesian optimization. The optimization is for a deterministic function known as Rosenbrock's function, which is a well-known test case for nonlinear optimization. The function has a global minimum value of 0 at the point [1,1].

Create two real variables bounded by -5 and 5.

```matlab
x1 = optimizableVariable('x1',[-5,5]);
x2 = optimizableVariable('x2',[-5,5]);
vars = [x1,x2];
```

Create the objective function.

```matlab
function f = rosenbrocks(x)

f = 100*(x.x2 - x.x1^2)^2 + (1 - x.x1)^2;
```
fun = @rosenbrocks;

For reproducibility, set the random seed, and set the acquisition function to 'expected-improvement-plus' in the optimization.

rng default
results = bayesopt(fun,vars,'Verbose',0,...
 'AcquisitionFunctionName','expected-improvement-plus');
View the best point found and the best modeled objective.

```matlab
results.XAtMinObjective
results.MinEstimatedObjective
```

```matlab
an =

table

1x2

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2421</td>
<td>1.5299</td>
</tr>
</tbody>
</table>
```
ans =
-9.5402

The best point is somewhat close to the optimum, but the function model is inaccurate. Resume the optimization for 30 more points (a total of 60 points), this time telling the optimizer that the objective function is deterministic.

newresults = resume(results,'IsObjectiveDeterministic',true,'MaxObjectiveEvaluations',30);
newresults.XAtMinObjective
newresults.MinEstimatedObjective

ans =
1x2 table
x1 x2
______ ______
1.0516 1.1007

ans =
-0.0227
The objective function model is much closer to the true function this time. The best point is closer to the true optimum.

Input Arguments

results — Bayesian optimization results

BayesianOptimization object

Bayesian optimization results, specified as a `BayesianOptimization` object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

You can use any name-value pair accepted by bayesopt except for those beginning with Initial. See the bayesopt "Input Arguments" on page 32-157.

Note The MaxObjectiveEvaluations and MaxTime name-value pairs mean additional time or evaluations, above the numbers stored in results. So, for example, the default number of evaluations is 30 in addition to the original specification.

Additionally, you can use the following name-value pair.

Example: resume(results,'MaxObjectiveEvaluations',60)

VariableDescriptions — Modify variable

OptimizableVariable object

Modify variable, specified as an OptimizableVariable object.

You can change only the following properties of a variable in an optimization.

- Range of real or integer variables. For example,

```matlab
xvar = optimizableVariable('x',[-10,10]);
% Modify the range:
xvar.Range = [1,5];
```

- Type between 'integer' and 'real'. For example,

```matlab
xvar.Type = 'integer';
```

- Transform of real or integer variables between 'log' and 'none'. For example,

```matlab
xvar.Transform = 'log';
```
Output Arguments

newresults — Optimization results
BayesianOptimization object

Optimization results, returned as a BayesianOptimization object.

See Also
BayesianOptimization | bayesopt

Introduced in R2016b
resume

Resume training ensemble

Syntax

ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description

ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the same training options fitcensemble used to create ens.

Note You cannot resume training when ens is a Subspace ensemble created with 'AllPredictorCombinations' number of learners.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble, created with fitcensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

nprint
Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the
command line the number of weak learners trained so far. Useful when you train
ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1
The classification ensemble ens, augmented with additional training.

Examples

Train Classification Ensemble for Additional Cycles

Train a classification ensemble for three cycles, and compare the resubstitution error
obtained after training the ensemble for more cycles.

Load the ionosphere data set.
```
load ionosphere
```

Train a classification ensemble for three cycles and examine the resubstitution error.
```
ens = fitcensemble(X,Y,'Method','GentleBoost','NumLearningCycles',3);
L = resubLoss(ens)
```
```
L = 0.0114
```

Train for three more cycles and examine the new resubstitution error.
```
ens1 = resume(ens,3);
L = resubLoss(ens1)
```
```
L = 0
```
The resubstitution error is much lower in the new ensemble than the original.

See Also
fitcensemble
resume
Resume training learners on cross-validation folds

Syntax

en1 = resume(ens,nlearn)
en1 = resume(ens,nlearn,Name,Value)

Description

en1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume uses the same training options fitcensemble used to create ens.
en1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens
A cross-validated classification ensemble. ens is the result of either:
• The fitcensemble function with a cross-validation name-value pair. The names are 'crossval','kfold','holdout','leaveout', or 'cvpartition'.
• The crossval method applied to a classification ensemble.
nlearn
A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

nprint

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The cross-validated classification ensemble ens, augmented with additional training.

Examples

Train Partitioned Classification Ensemble for More Cycles

Train a partitioned classification ensemble for 10 cycles, and compare the classification loss obtained after training the ensemble for more cycles.

Load the ionosphere data set.

```matlab
load ionosphere
```

Train a partitioned classification ensemble for 10 cycles and examine the error.

```matlab
t = templateTree('MaxNumSplits',1); % Weak learner template tree object
cvens = fitcensemble(X,Y,'Method','GentleBoost','NumLearningCycles',10,'Learners',t,'crossval','on');
rng(10,'twister') % For reproducibility
L = kfoldLoss(cvens)
```

```matlab
L = 0.0940
```

Train for 10 more cycles and examine the new error.

```matlab
cvens = resume(cvens,10);
L = kfoldLoss(cvens)
```

```matlab
L = 0.0940
```
L = 0.0712

The cross-validation error is lower in the ensemble after training for 10 more cycles.

See Also
kfoldEdge | kfoldLoss | kfoldMargin | kfoldPredict
resume

Resume training support vector machine (SVM) classifier

Syntax

UpdatedSVMModel = resume(SVMModel,numIter)
UpdatedSVMModel = resume(SVMModel,numIter,Name,Value)

Description

UpdatedSVMModel = resume(SVMModel,numIter) returns an updated support vector machine (SVM) classifier UpdatedSVMModel by training the SVM classifier SVMModel for numIter more iterations. Like SVMModel, the updated SVM classifier is a ClassificationSVM classifier.

resume continues applying the training options set when SVMModel was trained with fitcsvm.

UpdatedSVMModel = resume(SVMModel,numIter,Name,Value) returns UpdatedSVMModel with additional options specified by one or more name-value pair arguments. For example, you can specify the verbosity level.

Examples

Resume Training SVM Classifier

Train an SVM classifier and intentionally cause the solver to fail to converge onto a solution. Then resume training the classifier without having to restart the entire learning process.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility
Train an SVM classifier. Specify that the optimization routine uses at most 50 iterations.

```matlab
SVMModel = fitcsvm(X,Y,'IterationLimit',50);
DidConverge = SVMModel.ConvergenceInfo.Converged
DidConverge = logical
  0

Reason = SVMModel.ConvergenceInfo.ReasonForConvergence
Reason = 'NoConvergence'

DidConverge = 0 indicates that the optimization routine did not converge onto a solution. Reason states the reason why the routine did not converge. Therefore, SVMModel is a partially trained SVM classifier.

Resume training the SVM classifier for another 1500 iterations.

```matlab
UpdatedSVMModel = resume(SVMModel,1500);
DidConverge = UpdatedSVMModel.ConvergenceInfo.Converged
DidConverge = logical
 1

Reason = UpdatedSVMModel.ConvergenceInfo.ReasonForConvergence
Reason = 'DeltaGradient'

DidConverge indicates that the optimization routine converged onto a solution. Reason indicates that the gradient difference (DeltaGradient) reached its tolerance level (DeltaGradientTolerance). Therefore, SVMModel is a fully trained SVM classifier.

Monitor Training of SVM Classifier

Train an SVM classifier and intentionally cause the solver to fail to converge onto a solution. Then resume training the classifier without having to restart the entire learning process. Compare values of the resubstitution loss for the partially trained classifier and the fully trained classifier.
Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Specify that the optimization routine uses at most 100 iterations. Monitor the algorithm specifying that the software prints diagnostic information every 50 iterations.

SVMMModel = fitcsvm(X,Y,'IterationLimit',100,'Verbose',1,'NumPrint',50);

|===|
| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective | Constraint |
| | | | Gap | Gradient | Violation | Supp. Vec. | | Violation |
|===|
| 0 |active| 351 | 9.971591e-01 | 2.000000e+00 | 1.000000e+00 | 0 | 0.000000e+00 | 0.000000e+00 |
| 50 |active| 351 | 8.064425e-01 | 3.736929e+00 | 2.161317e+00 | 60 | -3.628863e+01 | 2.498002e-16 |

SVM optimization did not converge to the required tolerance.

The software prints an iterative display to the Command Window. The printout indicates that the optimization routine has not converged onto a solution.

Estimate the resubstitution loss of the partially trained SVM classifier.

partialLoss = resubLoss(SVMMModel)

partialLoss = 0.1054

The training sample misclassification error is approximately 12%.

Resume training the classifier for another 1500 iterations. Specify that the software print diagnostic information every 250 iterations.

UpdatedSVMMModel = resume(SVMMModel,1500,'NumPrint',250)

|===|
| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective | Constraint |
| | | | Gap | Gradient | Violation | Supp. Vec. | | Violation |
|===|
| 250 |active| 351 | 1.441556e-01 | 1.701201e+00 | 1.015454e+00 | 100 | -7.671009e+01 | 4.857226e-17 |
| 500 |active| 351 | 3.277736e-03 | 9.155364e-02 | 4.830095e-02 | 103 | -7.819815e+01 | 1.110223e-16 |
| 750 |active| 351 | 3.928360e-04 | 1.367091e-02 | 9.155316e-03 | 103 | -7.820938e+01 | 5.234528e-16 |
| 1000 |active| 351 | 4.802547e-05 | 1.551900e-03 | 7.765843e-04 | 103 | -7.820959e+01 | 2.602085e-16 |
| 1044 |active| 351 | 3.602828e-05 | 9.382457e-04 | 5.182592e-04 | 103 | -7.820959e+01 | 4.623038e-16 |

Exiting Active Set upon convergence due to DeltaGradient.
UpdatedSVMModel = ClassificationSVM
 ResponseName: 'Y'
 CategoricalPredictors: []
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NumObservations: 351
 Alpha: [103x1 double]
 Bias: -3.8828
 KernelParameters: [1x1 struct]
 BoxConstraints: [351x1 double]
 ConvergenceInfo: [1x1 struct]
 IsSupportVector: [351x1 logical]
 Solver: 'SMO'

Properties, Methods

The software resumes at iteration 1000 and uses the same verbosity level as the one set when you trained the model using fitcsvm. The printout indicates that the algorithm converged. Therefore, UpdatedSVMModel is a fully trained ClassificationSVM classifier.

updatedLoss = resubLoss(UpdatedSVMModel)

updatedLoss = 0.0769

The training sample misclassification error of the fully trained classifier is approximately 8%.

Input Arguments

SVMMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

numIter — Number of iterations
positive integer
Number of iterations to continue training the SVM classifier, specified as a positive integer.

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: `resume(SVMModel,500,'Verbose',2)` trains SVMModel for 500 more iterations and specifies displaying diagnostic messages and saving convergence criteria at every iteration.

Verbose — Verbosity level

0 | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. Verbose controls the amount of optimization information displayed in the Command Window and saved as a structure to SVMModel.ConvergenceInfo.History.

This table summarizes the verbosity level values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display or save convergence information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages and saves convergence criteria every <code>numprint</code> iterations, where <code>numprint</code> is the value of the 'NumPrint' name-value pair argument.</td>
</tr>
<tr>
<td>2</td>
<td>The software displays diagnostic messages and saves convergence criteria at every iteration.</td>
</tr>
</tbody>
</table>

By default, Verbose is the value that `fitcsvm` uses to train SVMModel.

Example: 'Verbose',1

Data Types: single

NumPrint — Number of iterations between diagnostic message printouts

nonnegative integer
Number of iterations between diagnostic message printouts, specified as the comma-separated pair consisting of 'NumPrint' and a nonnegative integer.

If you set 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization diagnostic messages from SMO [1] and ISDA [2] every numprint iterations in the Command Window.

By default, NumPrint is the value that fitcsvm uses to train SVMModel.

Example: 'NumPrint',500

Data Types: single

Tips

If optimization does not converge and the solver is 'SMO' or 'ISDA', then try to resume training the SVM classifier.

References

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
ClassificationSVM | fitcsvm

Introduced in R2014a
resume

Resume training ensemble

Syntax

ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description

ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the same training options fitrensemble used to create ens.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A regression ensemble, created with fitrensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
nprint

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The regression ensemble ens, augmented with additional training.

Examples

Train Regression Ensemble for Additional Cycles

Train a regression ensemble for 50 cycles, and compare the resubstitution error obtained after training the ensemble for more cycles.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train a regression ensemble for 50 cycles and examine the resubstitution error.

ens = fitrensemble(X,MPG,'NumLearningCycles',50);
L = resubLoss(ens)
L = 0.5563

Train for 50 more cycles and examine the new resubstitution error.

ens = resume(ens,50);
L = resubLoss(ens)
L = 0.3463
The resubstitution error is lower in the new ensemble than in the original.

See Also

`fitrensemble`
resume
Resume training ensemble

Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume uses the same training options fitrensemble used to create ens.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or more Name,Value pair arguments.

Input Arguments
ens
A cross-validated regression ensemble. ens is the result of either:

• The fitrensemble function with a cross-validation name-value pair. The names are 'crossval','kfold','holdout','leaveout', or 'cvpartition'.
• The crossval method applied to a regression ensemble.

nlearn
A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

nprint

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The cross-validated regression ensemble ens, augmented with additional training.

Examples

Cross-Validate Regression Ensemble Augmented with Additional Training

Examine the cross-validation error after training a regression ensemble for more cycles.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

```matlab
load carsmall
X = [Displacement Horsepower Weight];
```

Train a regression ensemble for 50 cycles.

```matlab
ens = fitrensemble(X,MPG,'NumLearningCycles',50);
```

Cross-validate the ensemble and examine the cross-validation error.

```matlab
rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)
```

```
L = 27.9435
```
Train for 50 more cycles and examine the new cross-validation error.

cvens = resume(cvens,50);
L = kfoldLoss(cvens)

L = 28.7077

The additional training did not improve the cross-validation error.

See Also
fitrensemble | kfoldLoss
resume

Class: RegressionSVM

Resume training support vector machine regression model

Syntax

updatedMdl = resume(mdl,numIter)
updatedMdl = resume(mdl,numIter,Name,Value)

Description

updatedMdl = resume(mdl,numIter) returns an updated support vector machine (SVM) regression model, updatedMdl, by training the model for an additional number of iterations as specified by numIter.

resume applies the same training options to updatedMdl that you set when using fitrsvm to train mdl.

updatedMdl = resume(mdl,numIter,Name,Value) returns an updated SVM regression model with additional options specified by one or more Name,Value pair arguments.

Input Arguments

dl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model trained using fitrsvm.

dnumIter — Number of iterations
positive integer value
Number of iterations to continue training the SVM regression model, specified as a positive integer value.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

`Verbose` — Verbosity level

0 | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of `'Verbose'` and either 0, 1, or 2. `Verbose` controls the amount of optimization information that the software displays to the Command Window and is saved in the model as `mdl.ModelParameters.VerbosityLevel`.

By default, `Verbose` is the value that `fitrsvm` used to train `mdl`.

Example: `'Verbose',1`

Data Types: single | double

`NumPrint` — Number of iterations between diagnostic message printouts

nonnegative integer value

Number of iterations between diagnostic message printouts, specified as the comma-separated pair consisting of `'NumPrint'` and a nonnegative integer.

If you set `'Verbose',1` and `'NumPrint',numprint`, then the software displays optimization diagnostic messages to the Command Window every `numprint` number of iterations.

By default, `NumPrint` is the value that `fitrsvm` used to train `mdl`.

Example: `'NumPrint',500`

Data Types: single | double
Output Arguments

updatedMdl — Updated SVM regression model
RegressionSVM model

Updated SVM regression model, returned as a RegressionSVM model.

Examples

Resume Training an SVM Regression Model

This example shows how to resume training an SVM regression model that failed to converge without restarting the entire learning process.

Load the carsmall data set.

```matlab
load carsmall
rng default  % for reproducibility
```

Specify Acceleration, Cylinders, Displacement, Horsepower, and Weight as the predictor variables (X) and MPG as the response variable (Y).

```matlab
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;
```

Train a linear SVM regression model. For illustration purposes, set the iteration limit to 50. Standardize the data.

```matlab
mdl = fitrsvm(X,Y,'IterationLimit',50,'Standardize',true);
```

Check to confirm whether the model converged.

```matlab
mdl.ConvergenceInfo.Converged
ans =
    0
```

The returned value of 0 indicates that the model did not converge.

Resume training the model for up to an additional 100 iterations.
updatedMdl = resume(mdl,100);

Check to confirm whether the updated model converged.

updatedMdl.ConvergenceInfo.Converged

ans =

1

The returned value of 1 indicates that the updated model did converge.

Check the reason for convergence and the total number of iterations required.

updatedMdl.ConvergenceInfo.ReasonForConvergence
updatedMdl.NumIterations

ans =

FeasibilityGap

ans =

97

The model converged because the feasibility gap reached its tolerance value after 97 iterations.

Tips

If optimization has not converged and 'Solver' is set to 'SMO' or 'ISDA', then try to resume training the SVM regression model.

See Also
RegressionSVM | fitrsvm

Introduced in R2015b
rica

Feature extraction by using reconstruction ICA

Syntax

```plaintext
Mdl = rica(X,q)
Mdl = rica(X,q,Name,Value)
```

Description

`Mdl = rica(X,q)` returns a reconstruction independent component analysis (RICA) model object that contains the results from applying RICA to the table or matrix of predictor data `X` containing `p` variables. `q` is the number of features to extract from `X`, therefore `rica` learns a `p`-by-`q` matrix of transformation weights. For undercomplete or overcomplete feature representations, `q` can be less than or greater than the number of predictor variables, respectively.

- To access the learned transformation weights, use `Mdl.TransformWeights`.
- To transform `X` to the new set of features by using the learned transformation, pass `Mdl` and `X` to `transform`.

`Mdl = rica(X,q,Name,Value)` uses additional options specified by one or more `Name,Value` pair arguments. For example, you can standardize the predictor data or specify the value of the penalty coefficient in the reconstruction term of the objective function.

Examples

Create Reconstruction ICA Object

Create a `ReconstructionICA` object by using the `rica` function.

Load the `caltech101` image patches.
data = load('caltech101patches');
size(data.X)
ans = 1x2
 100000 363

There are 100,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
q = 100;
Mdl = rica(data.X,q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

Mdl =
 ReconstructionICA
 ModelParameters: [1x1 struct]
 NumPredictors: 363
 NumLearnedFeatures: 100
 Mu: []
 Sigma: []
 FitInfo: [1x1 struct]
 TransformWeights: [363x100 double]
 InitialTransformWeights: []
 NonGaussianityIndicator: [100x1 double]

Properties, Methods

rica issues a warning because it stopped due to reaching the iteration limit, instead of
reaching a step-size limit or a gradient-size limit. You can still use the learned features in
the returned object by calling the transform function.

Input Arguments

X — Predictor data
decimal matrix | table
Predictor data, specified as an n-by-p numeric matrix or table. Rows correspond to individual observations and columns correspond to individual predictor variables. If X is a table, then all of its variables must be numeric vectors.

Data Types: `single` | `double` | `table`

q — Number of features to extract
positive integer

Number of features to extract from the predictor data, specified as a positive integer.

dica stores a p-by-q transform weight matrix in Mdl.TransformWeights. Therefore, setting very large values for q can result in greater memory consumption and increased computation time.

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `Mdl = rica(X,q,'IterationLimit',200,'Standardize',true)` runs rica with optimization iterations limited to 200 and standardized predictor data.

IterationLimit — Maximum number of iterations
1000 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

Example: `'IterationLimit',1e6`

Data Types: `single` | `double`

VerbosityLevel — Verbosity level
0 (default) | nonnegative integer

Verbosity level for monitoring algorithm convergence, specified as the comma-separated pair consisting of 'VerbosityLevel' and a value in this table.
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>rica does not display convergence information at the command line.</td>
</tr>
<tr>
<td>Positive integer</td>
<td>rica displays convergence information at the command line.</td>
</tr>
</tbody>
</table>

Convergence Information

<table>
<thead>
<tr>
<th>Heading</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUN VALUE</td>
<td>Objective function value.</td>
</tr>
<tr>
<td>NORM GRAD</td>
<td>Norm of the gradient of the objective function.</td>
</tr>
<tr>
<td>NORM STEP</td>
<td>Norm of the iterative step, meaning the distance between the previous point and the current point.</td>
</tr>
<tr>
<td>CURV</td>
<td>OK means the weak Wolfe condition is satisfied. This condition is a combination of sufficient decrease of the objective function and a curvature condition.</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Inner product of the step times the gradient difference, divided by the inner product of the gradient difference with itself. The gradient difference is the gradient at the current point minus the gradient at the previous point. Gives diagnostic information on the objective function curvature.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Step direction multiplier, which differs from 1 when the algorithm performed a line search.</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>YES means the algorithm found an acceptable step to take.</td>
</tr>
</tbody>
</table>

Example: 'VerbosityLevel',1
Data Types: single | double

Lambda — Regularization coefficient value

1 (default) | positive numeric scalar

Regularization coefficient value for the transform weight matrix, specified as the comma-separated pair consisting of 'Lambda' and a positive numeric scalar. If you specify 0, then there is no regularization term in the objective function.

Example: 'Lambda',0.1
Data Types: single | double
Standardize — Flag to standardize predictor data

Flag to standardize the predictor data, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If Standardize is true, then:

- **rica** centers and scales each column of the predictor data (X) by the column mean and standard deviation, respectively.
- **rica** extracts new features by using the standardized predictor matrix, and stores the predictor variable means and standard deviations in properties Mu and Sigma of Mdl.

Example: 'Standardize',true

Data Types: logical

ContrastFcn — Contrast function

'logcosh' (default) | 'exp' | 'sqrt'

Contrast function, specified as 'logcosh', 'exp', or 'sqrt'. The contrast function is a smooth function that is similar to an absolute value function. The rica objective function contains a term

$$
\sum_{j=1}^{q} \frac{1}{n} \sum_{i=1}^{n} g(w_j^{T}\bar{x}_i),
$$

where g represents the contrast function, the w_j are the variables over which the optimization takes place, and the \bar{x}_i are data.

The three available contrast functions are:

-
 'logcosh' — $g = \frac{1}{2} \log(\cosh(2x))$

-
 'exp' — $g = -\exp\left(-\frac{x^2}{2}\right)$

-
 'sqrt' — $g = \sqrt{x^2 + 10^{-8}}$
Example: 'ContrastFcn','exp'

InitialTransformWeights — Transformation weights that initialize optimization

`randn(p,q)` (default) | numeric matrix

Transformation weights that initialize optimization, specified as the comma-separated pair consisting of 'InitialTransformWeights' and a p-by-q numeric matrix. p must be the number of columns or variables in X and q is the value of q.

Tip You can continue optimizing a previously returned transform weight matrix by passing it as an initial value in another call to `rica`. The output model object `Mdl` stores a learned transform weight matrix in the `TransformWeights` property.

Example: 'InitialTransformWeights',Mdl.TransformWeights

Data Types: single | double

NonGaussianityIndicator — Non-Gaussianity of sources

`ones(q,1)` (default) | length-q vector of ±1

Non-Gaussianity of sources, specified as a length-q vector of ±1.

- `NonGaussianityIndicator(k) = 1` means `rica` models the kth source as super-Gaussian, with a sharp peak at 0.
- `NonGaussianityIndicator(k) = -1` means `rica` models the kth source as sub-Gaussian.

Data Types: single | double

GradientTolerance — Relative convergence tolerance on gradient norm

1e-6 (default) | positive numeric scalar

Relative convergence tolerance on gradient norm, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive numeric scalar. This gradient is the gradient of the objective function.

Example: 'GradientTolerance',1e-4

Data Types: single | double

StepTolerance — Absolute convergence tolerance on step size

1e-6 (default) | positive numeric scalar
Absolute convergence tolerance on the step size, specified as the comma-separated pair consisting of 'StepTolerance' and a positive numeric scalar.

Example: 'StepTolerance',1e-4

Data Types: single | double

Output Arguments

Mdl — Learned reconstruction ICA model
 ReconstructionICA model object

Learned reconstruction ICA model, returned as a ReconstructionICA model object.

To access properties of Mdl, use dot notation. For example:

- To access the learned transform weights, use Mdl.TransformWeights.
- To access the structure of fitting information, use Mdl.FitInfo.

Algorithms

The rica function creates a linear transformation of input features to output features. The transformation is based on optimizing a nonlinear objective function that roughly balances statistical independence of the output features versus the ability to reconstruct the input data using the output features.

For details, see “Reconstruction ICA Algorithm” on page 15-162.

See Also

ReconstructionICA | sparsefilt | transform

Topics

“Feature Extraction Workflow” on page 15-165
“Extract Mixed Signals” on page 15-201
“Feature Extraction” on page 15-159
Introduced in R2017a
ridge

Ridge regression

Syntax

\[
b = \text{ridge}(y,X,k) \\
b = \text{ridge}(y,X,k,\text{scaled})
\]

Description

\[
b = \text{ridge}(y,X,k)
\]

returns a vector \(b \) of coefficient estimates for a multilinear ridge regression of the responses in \(y \) on the predictors in \(X \). \(X \) is an \(n \)-by-\(p \) matrix of \(p \) predictors at each of \(n \) observations. \(y \) is an \(n \)-by-1 vector of observed responses. \(k \) is a vector of ridge parameters. If \(k \) has \(m \) elements, \(b \) is \(p \)-by-\(m \). By default, \(b \) is computed after centering and scaling the predictors to have mean 0 and standard deviation 1. The model does not include a constant term, and \(X \) should not contain a column of 1s.

\[
b = \text{ridge}(y,X,k,\text{scaled})
\]

uses the \(\{0,1\} \)-valued flag \(\text{scaled} \) to determine if the coefficient estimates in \(b \) are restored to the scale of the original data. \(\text{ridge}(y,X,k,0) \) performs this additional transformation. In this case, \(b \) contains \(p+1 \) coefficients for each value of \(k \), with the first row corresponding to a constant term in the model. \(\text{ridge}(y,X,k,1) \) is the same as \(\text{ridge}(y,X,k) \). In this case, \(b \) contains \(p \) coefficients, without a coefficient for a constant term.

The relationship between \(b_0 = \text{ridge}(y,X,k,0) \) and \(b_1 = \text{ridge}(y,X,k,1) \) is given by

\[
m = \text{mean}(X); \\
s = \text{std}(X,0,1)'; \\
b1_scaled = b1./s; \\
b0 = [\text{mean}(y)-m*b1_scaled; b1_scaled]
\]

This can be seen by replacing the \(x_i \) (\(i = 1, ..., n \)) in the multilinear model \(y = b_0 + b_1 x_1 + ... + b_n x_n \) with the z-scores \(z_i = (x_i - \mu_i)/\sigma_i \), and replacing \(y \) with \(y - \mu_y \).
In general, b_1 is more useful for producing plots in which the coefficients are to be displayed on the same scale, such as a ridge trace (a plot of the regression coefficients as a function of the ridge parameter). b_0 is more useful for making predictions.

Coefficient estimates for multiple linear regression models rely on the independence of the model terms. When terms are correlated and the columns of the design matrix X have an approximate linear dependence, the matrix $(X^T X)^{-1}$ becomes close to singular. As a result, the least-squares estimate

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

becomes highly sensitive to random errors in the observed response y, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

$$\hat{\beta} = (X^T X + kI)^{-1} X^T y$$

where k is the ridge parameter and I is the identity matrix. Small positive values of k improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of ridge estimates often result in a smaller mean square error when compared to least-squares estimates.

Examples

Ridge Regression

Load the sample data.

```matlab
load acetylene
```

`acetylene` has observations for the predictor variables x_1, x_2, x_3, and the response variable y.

Plot the predictor variables against each other:

```matlab
subplot(1,3,1)
plot(x1,x2,'.
plot(x1,x2,'.
```
Note the correlation between x_1 and the other two predictor variables.

Compute coefficient estimates for a multilinear model with interaction terms, for a range of ridge parameters using `ridge` and `x2fx`.

```matlab
xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square

subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square
```
\(X = [x_1 \ x_2 \ x_3]; \)
\(D = \text{xf2x}(X,'interaction'); \)
\(D(:,1) = []; \% \text{No constant term} \)
\(k = 0:1e-5:5e-3; \)
\(b = \text{ridge}(y,D,k); \)

Plot the ridge trace.

\begin{verbatim}
figure
plot(k,b,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('x1','x2','x3','x1x2','x1x3','x2x3')
\end{verbatim}
The estimates stabilize to the right of the plot. Note that the coefficient of the x_2x_3 interaction term changes sign at a value of the ridge parameter $\approx 5 \times 10^{-4}$.

References

See Also
regress | stepwise

Introduced before R2006a
risk

Class: classregtree

(Removed) Node risks

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

r = risk(t)
r = risk(t,nodes)

Description

r = risk(t) returns an n-element vector r of the risk of the nodes in the tree t, where n is the number of nodes. The risk r(i) for node i is the node error e(i) (computed by nodeerr) weighted by the node probability p(i) (computed by nodeprob).

r = risk(t,nodes) takes a vector nodes of node numbers and returns the risk values for the specified nodes.

References

See Also

classregtree | nodeerr | nodeprob
robustcov

Robust multivariate covariance and mean estimate

Syntax

sig = robustcov(x)
[sig,mu] = robustcov(x)
[sig,mu,mah] = robustcov(x)
[sig,mu,mah,outliers] = robustcov(x)
[sig,mu,mah,outliers,s] = robustcov(x)
[___] = robustcov(x,Name,Value)

Description

sig = robustcov(x) returns the robust covariance estimate sig of the multivariate data contained in x.

[sig,mu] = robustcov(x) also returns an estimate of the robust Minimum Covariance Determinant (MCD) mean, mu.

[sig,mu,mah] = robustcov(x) also returns the robust distances mah, computed as the Mahalanobis distances of the observations using the robust estimates of the mean and covariance.

[sig,mu,mah,outliers] = robustcov(x) also returns the indices of the observations retained as outliers in the sample data, outliers.

[sig,mu,mah,outliers,s] = robustcov(x) also returns a structure s that contains information about the estimate.

[___] = robustcov(x,Name,Value) returns any of the arguments shown in the previous syntaxes, using additional options specified by one or more Name,Value pair arguments. For example, you can specify which robust estimator to use or the start method to use for the attractors.
Examples

Detect Outliers Using Distance-Distance Plots

Use a Gaussian copula to generate random data points from a bivariate distribution.

```matlab
rng default
rho = [1,0.05;0.05,1];
u = copularnd('Gaussian',rho,50);
```

Modify 5 randomly selected observations to be outliers.

```matlab
noise = randperm(50,5);
u(noise,1) = u(noise,1)*5;
```

Calculate the robust covariance matrices using the three available methods: Fast-MCD, Orthogonalized Gnanadesikan-Kettenring (OGK), and Olive-Hawkins.

```matlab
[Sfmc, Mfmc, dfmc, Outfmc] = robustcov(u);
[Sogk, Mogk, dogk, Outogk] = robustcov(u,'Method','ogk');
[Soh, Moh, doh, Outoh] = robustcov(u,'Method','olivehawkins');
```

Calculate the classical distance values for the sample data using the Mahalanobis measure.

```matlab
d_classical = pdist2(u, mean(u),'mahal');
p = size(u,2);
chi2quantile = sqrt(chi2inv(0.975,p));
```

Create DD Plots for each robust covariance calculation method.

```matlab
figure
subplot(2,2,1)
plot(d_classical, dfmc, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outfmc), dfmc(Outfmc), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, FMCD method')
hold off
```
```matlab
subplot(2,2,2)
plot(d_classical, dogk, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outogk), dogk(Outogk), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, OGK method')
hold off

subplot(2,2,3)
plot(d_classical, doh, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outoh), doh(Outoh), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, Olive-Hawkins method')
hold off
```
In a DD plot, the data points tend to cluster in a straight line that passes through the origin. Points that are far removed from this line are generally considered outliers. In each of the previous plots, the red '+' symbol indicates the data points that robustcov considers to be outliers.

Evaluate Data for Multivariate Normal Distribution

This example shows how to use robustcov to evaluate sample data for multivariate normal or other elliptically-contoured (EC) distributions.
Generate random sample data from a multivariate normal distribution. Calculate the Mahalanobis distances for the robust covariance estimates (using the Olive-Hawkins method) and the classical covariance estimates.

```matlab
rng('default')
x1 = mvnrnd(zeros(1,3),eye(3),200);
[~, ~, d1] = robustcov(x1,'Method','olivehawkins');
d_classical1 = pdist2(x1,mean(x1),'mahalanobis');
```

Generate random sample data from an elliptically-contoured (EC) distribution. Calculate the Mahalanobis distances for the robust covariance estimates (using the Olive-Hawkins method) and the classical covariance estimates.

```matlab
mu1 = [0 0 0];
sig1 = eye(3);
mu2 = [0 0 0];
sig2 = 25*eye(3);
x2 = [mvnrnd(mu1,sig1,120);mvnrnd(mu2,sig2,80)];
[~, ~, d2] = robustcov(x2, 'Method','olivehawkins');
d_classical2 = pdist2(x2, mean(x2), 'mahalanobis');
```

Generate random sample data from a multivariate lognormal distribution, which is neither multivariate normal nor elliptically-contoured. Calculate the Mahalanobis distances for the robust covariance estimates (using the Olive-Hawkins method) and the classical covariance estimates.

```matlab
x3 = exp(x1);
[~, ~, d3] = robustcov(x3, 'Method','olivehawkins');
d_classical3 = pdist2(x3, mean(x3), 'mahalanobis');
```

Create a D-D Plot for each of the three sets of sample data to compare.

```matlab
figure
subplot(2,2,1)
plot(d_classical1,d1, 'o')
line([0 4.5], [0, 4.5])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, Multivariate Normal')

subplot(2,2,2)
plot(d_classical2, d2, 'o')
line([0 18], [0, 18])
xlabel('Mahalanobis Distance')
```
ylabel('Robust Distance')
title('DD Plot, Elliptically-Contoured')

subplot(2,2,3)
plot(d_classical3, d3, 'o')
line([0 18], [0, 18])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, 200 Lognormal cases')

For data with a multivariate normal distribution (as shown in the upper left), the plotted points follow a straight, 45-degree line extending from the origin. For data with an elliptically-contoured distribution (as shown in the upper right), the plotted points follow
a straight line, but are not at a 45-degree angle to the origin. For the lognormal distribution (as shown in the lower left), the plotted points do not follow a straight line.

It is difficult to identify any pattern in the lognormal distribution plot because most of the points are in the lower left of the plot. Use a weighted DD plot to magnify this corner and reveal features that are obscured when large robust distances exist.

```matlab
d3_weighted = d3(d3 < sqrt(chi2inv(0.975,3)));  
d_classical_weighted = d_classical3(d3 < sqrt(chi2inv(0.975,3)));
```

Add a fourth subplot to the figure to show the results of the weighting process on the lognormally distributed data.

```matlab
subplot(2,2,4)  
plot(d_classical_weighted, d3_weighted, 'o')  
line([0 3], [0, 3])  
xlabel('Mahalanobis Distance')  
ylabel('Robust Distance')  
title('Weighted DD Plot, 200 Lognormal cases')
```
The scale on this plot indicates that it represents a magnified view of the original DD plot for the lognormal data. This view more clearly shows the lack of pattern to the plot, which indicates that the data is neither multivariate normal nor elliptically contoured.

Compute Robust Covariance and Plot the Outliers

Use a Gaussian copula to generate random data points from a bivariate distribution.

```matlab
gng default
rho = [1,0.05;0.05,1];
u = copularnd('Gaussian',rho,50);
```
Modify 5 randomly selected observations to be outliers.

\[
\text{noise} = \text{randperm}(50, 5);
\text{u(noise,1)} = \text{u(noise,1)}*5;
\]

Visualize the bivariate data using a scatter plot.

```matlab
gfigure
scatter(u(:,1),u(:,2))
```

Most of the data points appear on the left side of the plot. However, some of the data points appear further to the right. These points are possible outliers that could affect the covariance matrix calculation.

Compare the classical and robust covariance matrices.
c = cov(u)
c = 2×2

0.5523 0.0000
0.0000 0.0913

rc = robustcov(u)
rc = 2×2

0.1117 0.0364
0.0364 0.1695

The classical and robust covariance matrices differ because the outliers present in the sample data influence the results.

Identify and plot the data points that robustcov considers outliers.

[sig, mu, mah, outliers] = robustcov(u);
figure
gscatter(u(:,1), u(:,2), outliers, 'br', 'ox')
legend({'Not outliers', 'Outliers'})
`robustcov` identifies the data points on the right side of the plot as potential outliers, and treats them accordingly when calculating the robust covariance matrix.

Input Arguments

- **x** — **Sample data**
 - matrix of numeric values

 Sample data used to estimate the robust covariance matrix, specified as a matrix of numeric values. `x` is an `n`-by-`p` matrix where each row is an observation and each column is a variable.
robustcov removes any rows with missing predictor values when calculating the robust covariance matrix.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Method','ogk','NumOGKIterations',1 specifies the robust estimator as the Orthogonalized Gnanadesikan-Kettenring method and sets the number of orthogonalization iterations to 1.

For All Estimators

Method — Robust estimator

'fmcd' (default) | 'ogk' | 'olivehawkins'

Robust estimator, specified as one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'fmcd'</td>
<td>FAST-MCD (Minimum Covariance Determinant) on page 32-6001 method</td>
</tr>
<tr>
<td>'ogk'</td>
<td>Orthogonalized Gnanadesikan-Kettenring (OGK) on page 32-6002 estimate</td>
</tr>
<tr>
<td>'olivehawkins'</td>
<td>Concentration algorithm on page 32-6002 techniques, a family of fast, consistent and highly outlier-resistant methods</td>
</tr>
</tbody>
</table>

Example: 'Method','ogk'

For ‘FMCD’ and ‘OliveHawkins’ Estimators Only

OutlierFraction — Outlier fraction

0.5 (default) | numeric value in the range [0,0.5]

Outlier fraction, specified as the comma-separated pair consisting of 'OutlierFraction' and a numeric value in the range [0,0.5]. The value 1 -
OutlierFraction specifies the fraction of observations over which to minimize the covariance determinant.

The algorithm chooses a subsample of size \(h = \text{ceiling}(n + p + 1) / 2 \), where \(n \) is the number of observations and \(p \) is the number of dimensions. OutlierFraction is the value for which the maximum possible breakdown is achieved, and controls the size of the subsets \(h \) over which the covariance determinant is minimized. The algorithm then chooses \(h \) to approximately equal \((1 - \text{OutlierFraction}) \times n\) observations per subset.

Example: 'OutlierFraction', 0.25
Data Types: single | double

NumTrials — Number of trials

positive integer value

Number of trials, specified as the comma-separated pair consisting of 'NumTrials' and a positive integer value.

If 'Method' is 'fmcd', then NumTrials is the number of random subsamples of size \((p + 1)\) drawn from the sample data as starting points in the algorithm. \(p \) is the number of dimensions in the sample data. In this case, the default value for NumTrials is 500.

If 'Method' is 'olivehawkins', then NumTrials is the number of trial fits, or attractors, to be used. In this case, the default value for NumTrials is 2. This option is only useful for non-deterministic starts.

Example: 'NumTrials', 300
Data Types: single | double

For the FMCD Method Only

BiasCorrection — Flag to apply small-sample correction factor

1 (default) | 0

Flag to apply small-sample correction factor, specified as the comma-separated pair consisting of 'BiasCorrection' and either 1 or 0. A 1 value indicates that robustcov corrects for bias in the covariance estimate for small samples. A 0 value indicates that robustcov does not apply this correction.

Example: 'BiasCorrection', 0
Data Types: logical
For the OGK Method Only

NumOGKIterations — Number of orthogonalization iterations

2 (default) | positive integer value

Number of orthogonalization iterations, specified as the comma-separated pair consisting of 'NumOGKIterations' and a positive integer value. Generally, this value is set to 1 or 2, and further steps are unlikely to improve the estimation.

Example: 'NumIter',1

Data Types: single | double

UnivariateEstimator — Function for computing univariate robust estimates

'tauscale' (default) | 'qn'

Function for computing univariate robust estimates, specified as the comma-separated pair consisting of 'UnivariateEstimator' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'tauscale'</td>
<td>Use the “tau-scale” estimate of Yohai and Zamar, which is a truncated standard deviation and a weighted mean.</td>
</tr>
<tr>
<td>'qn'</td>
<td>Use the Qn scale estimate of Croux and Rousseuw.</td>
</tr>
</tbody>
</table>

Example: 'UnivariateEstimator','qn'

For the OliveHawkins method only

ReweightingMethod — Method for reweighting

'rfch' (default) | 'rmvn'

Method for reweighting in the efficiency step, specified as the comma-separated pair consisting of 'ReweightingMethod' and one of the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'rfch'</td>
<td>Uses two reweighting steps. This is a standard method of reweighting to improve efficiency.</td>
</tr>
</tbody>
</table>
Name | Value
--- | ---
'rmvn' | Reweighted multivariate normal. Uses two reweighting steps that can be useful for estimating the true covariance matrix under a variety of outlier configurations when the clean data are multivariate normal.

Example: 'ReweightingMethod','rmvn'

NumConcentrationSteps — Number of concentration steps
10 (default) | positive integer value

Number of concentration steps, specified as the comma-separated pair consisting of 'NumConcentrationSteps' and a positive integer value.

Example: 'NumConcentrationSteps',8

Data Types: single | double

StartMethod — Start method for each attractor
'classical' (default) | 'medianball' | 'elemental' | function handle | cell array

Start method for each attractor, specified as the comma-separated pair consisting of 'Start' and one of the following.

Name	Value
'classical' | Use the classical estimator as the start. This is the DGK attractor which, used on its own, is known as the DGK estimator.

'medianball' | Use the Median Ball as the start. The Median Ball is \((\text{med}(x), \text{eye}(p))\). So 50% of cases furthest in Euclidean distance from the sample median are trimmed for computing the MB start. This is the MB attractor which, used on its own, is known as the MB estimator.
The attractor is generated by concentration where the start is a randomly selected elemental start: the classical estimator applied to a randomly selected “elemental set” of \(p + 1 \) cases. This “elemental” attractor is computationally efficient, but suffers from theoretical drawbacks, as it is inconsistent and zero breakdown.

By default, the attractor is chosen as follows: If one of the attractors is 'medianball', then any attractor whose location estimate has greater Euclidean distance from \(\text{median}(X) \) than half the data (in other words, is outside the median ball) is not used. Then the final attractor is chosen based on the MCD criterion.

You can also specify a function handle for a function that returns two output arguments used for computing the initial location and scatter estimates.

You can also specify a cell array containing any combination of the options given in the previous table and function handles. The number of attractors used is equal to the length of the cell array. This option allows more control over the algorithm and the ability to specify a custom number of attractors and starts.

Example: 'StartMethod','medianball'

Output Arguments

\(\textit{sig} \) — Robust covariance matrix estimates

numeric matrix

Robust covariance matrix estimates, returned as a \(p \)-by-\(p \) numeric matrix. \(p \) is the number of predictors contained in the sample data.

\(\textit{mu} \) — Robust mean estimates

array of numeric values

Robust mean estimates, returned as a 1-by-\(p \) array of numeric values. \(p \) is the number of predictors contained in the sample data.
mah — Robust distances
array of numeric values

Robust distances, returned as a 1-by-\(n \) array of numeric values. \texttt{robustcov} removes any rows of \(x \) that contain missing data, so the number of rows of \(\text{mah} \) might be smaller than the number of rows in \(x \).

outliers — Indices of outliers
array of logical values

Indices of observations retained as outliers in the sample data \(x \), returned as a 1-by-\(n \) array of logical values. A 0 value indicates that the observation is not an outlier. A 1 value indicates that the observation is an outlier.

\texttt{robustcov} removes any rows of \(x \) that contain missing data, so the number of rows of \(\text{outliers} \) might be smaller than the number of rows in \(x \).

s — Structure containing estimate information
structure

Structure containing estimate information, returned as a structure.

Algorithms

Minimum Covariance Determinant Estimate

Minimum covariance determinant (MCD) is the fastest estimator of multivariate location and scatter that is both consistent and robust. However, an exact evaluation of the MCD is impractical because it is computationally expensive to evaluate all possible subsets of the sample data. \texttt{robustcov} uses the FAST-MCD method to implement MCD [3]

The FAST-MCD method selects \(h \) observations out of \(n \) (where \(n/2 < h \leq n \)) whose classical covariance matrix has the lowest possible determinant. The MCD mean is the mean of the \(h \) selected observations.

The MCD covariance is the covariance matrix of the \(h \) selected points, multiplied by a consistency factor to obtain consistency at the multivariate normal distribution, and by a correction factor to correct for bias at small sample sizes.
Orthogonalized Gnanadesikan-Kettenring Estimate

Orthogonalized Gnanadesikan-Kettenring (OGK) estimate is a positive definite estimate of the scatter starting from the Gnanadesikan and Kettering (GK) estimator, a pairwise robust scatter matrix that may be non-positive definite [1]. The estimate uses a form of principal components called an orthogonalization iteration on the pairwise scatter matrix, replacing its eigenvalues, which could be negative, with robust variances. This procedure can be iterated for improved results, and convergence is usually obtained after 2 or 3 iterations.

Olive Hawkins Estimate

The Olive-Hawkins estimate uses the “concentration algorithm” techniques proposed by Olive and Hawkins. This is a family of fast, consistent, and highly outlier-resistant methods. The estimate is a robust root n-consistent estimator of covariance for elliptically contoured distributions with fourth moments. This estimate is obtained by first generating trial estimates, or starts, and then using the concentration technique from each trial fit to obtain attractors.

Suppose \((T_0, C_0)\) is a start, then at the next iteration the classical mean and covariance estimators are computed from the approximately \(n/2\) cases (where \(n\) is the number of observations) with the smallest Mahalanobis distances based on the estimates from the previous iteration. This iteration can be continued for a fixed number of steps \(k\), with the estimate at the last step, \(k\), being the attractor. The final estimate is chosen based on a given criterion.

By default, two attractors are used. The first attractor is the Devlin-Gnanadesikan-Kettering (DGK) attractor, where the start used is the classical estimator. The second attractor is the Median Ball (MB) attractor, where the start used is \((\text{median}(x), \text{eye}(p))\), in other words the half set of data closest to \(\text{median}(x)\) in Euclidean distance. The MB attractor is used if the location estimator of the DGK attractor is outside of the median ball, and the attractor with the smallest determinant is used otherwise. The final mean estimate is the mean estimate of the chosen attractor, and the final covariance estimate is the covariance estimate of the chosen attractor, multiplied by a scaling factor to make the estimate consistent at the normal distribution.

References

See Also

cov

Introduced in R2016a
robustdemo

Interactive robust regression

Syntax

robustdemo
robustdemo(x,y)

Description

robustdemo shows the difference between ordinary least squares and robust regression for data with a single predictor. With no input arguments, robustdemo displays a scatter plot of a sample of roughly linear data with one outlier. The bottom of the figure displays equations of lines fitted to the data using ordinary least squares and robust methods, together with estimates of the root mean squared errors.

Use the right mouse button to click on a point and view its least-squares leverage and robust weight.

Use the left mouse button to click-and-drag a point. The displays will update.

robustdemo(x,y) uses x and y data vectors you supply, in place of the sample data supplied with the function.

Examples

The following steps show you how to use robustdemo.

1. **Start the example.** To begin using robustdemo with the built-in data, simply type the function name:

 robustdemo
The resulting figure shows a scatter plot with two fitted lines. The red line is the fit using ordinary least-squares regression. The green line is the fit using robust regression. At the bottom of the figure are the equations for the fitted lines, together with the estimated root mean squared errors for each fit.

2 **View leverages and robust weights.** Right-click on any data point to see its least-squares leverage and robust weight:
In the built-in data, the right-most point has a relatively high leverage of 0.35. The point exerts a large influence on the least-squares fit, but its small robust weight shows that it is effectively excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse button, click and hold on any data point and drag it to a new location. When you release the mouse button, the displays update:
Bringing the right-most data point closer to the least-squares line makes the two fitted lines nearly identical. The adjusted right-most data point has significant weight in the robust fit.

See Also

leverage | robustfit

Introduced before R2006a
robustfit

Robust regression

Syntax

```matlab
b = robustfit(X,y)
b = robustfit(X,y,wfun,tune)
b = robustfit(X,y,wfun,tune,const)
[b,stats] = robustfit(...)
```

Description

`b = robustfit(X,y)` returns a \((p+1)\)-by-1 vector `b` of coefficient estimates for a robust multilinear regression of the responses in `y` on the predictors in `X`. `X` is an \(n\)-by-\(p\) matrix of \(p\) predictors at each of \(n\) observations. `y` is an \(n\)-by-1 vector of observed responses. By default, the algorithm uses iteratively reweighted least squares with a bisquare weighting function.

Note By default, `robustfit` adds a first column of 1s to `X`, corresponding to a constant term in the model. Do not enter a column of 1s directly into `X`. You can change the default behavior of `robustfit` using the input `const`, below.

`robustfit` treats NaNs in `X` or `y` as missing values, and removes them.

`b = robustfit(X,y,wfun,tune)` specifies a weighting function `wfun`. `tune` is a tuning constant that is divided into the residual vector before computing weights.

The weighting function `wfun` can be any one of the following:

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td>(w = \text{abs}(r) < \text{pi}) \cdot \sin(r) \div r)</td>
<td>1.339</td>
</tr>
</tbody>
</table>
Weight Function

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bisquare' (default)</td>
<td>$w = (\text{abs}(r)<1) .* (1 - r.^2).^2$</td>
<td>4.685</td>
</tr>
<tr>
<td>'cauchy'</td>
<td>$w = 1 ./ (1 + r.^2)$</td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td>$w = 1 ./ (1 + \text{abs}(r))$</td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td>$w = 1 ./ \text{max}(1, \text{abs}(r))$</td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td>$w = \text{tanh}(r) ./ r$</td>
<td>1.205</td>
</tr>
<tr>
<td>'ols'</td>
<td>Ordinary least squares (no weighting function)</td>
<td>None</td>
</tr>
<tr>
<td>'talwar'</td>
<td>$w = 1 * (\text{abs}(r)<1)$</td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td>$w = \exp(-(r.^2))$</td>
<td>2.985</td>
</tr>
</tbody>
</table>

If `tune` is unspecified, the default value in the table is used. Default tuning constants give coefficient estimates that are approximately 95% as statistically efficient as the ordinary least-squares estimates, provided the response has a normal distribution with no outliers. Decreasing the tuning constant increases the downweight assigned to large residuals; increasing the tuning constant decreases the downweight assigned to large residuals.

The value r in the weight functions is

$$r = \text{resid} / (\text{tune} \times s \times \text{sqrt}(1-h))$$

where `resid` is the vector of residuals from the previous iteration, h is the vector of leverage values from a least-squares fit, and s is an estimate of the standard deviation of the error term given by

$$s = \text{MAD} / 0.6745$$

Here MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are p columns in X, the smallest p absolute deviations are excluded when computing the median.

You can write your own weight function. The function must take a vector of scaled residuals as input and produce a vector of weights as output. In this case, `wfun` is specified using a function handle `@` (as in `@myfun`), and the input `tune` is required.

```matlab
b = robustfit(X,y,wfun,tune,const)
```
controls whether or not the model will include a constant term. `const` is 'on' to include the constant term (the default), or
'off' to omit it. When \texttt{const} is 'on', \texttt{robustfit} adds a first column of 1s to \texttt{X} and \texttt{b} becomes a \((p + 1)\)-by-1 vector. When \texttt{const} is 'off', \texttt{robustfit} does not alter \texttt{X}, then \texttt{b} is a \(p\)-by-1 vector.

\texttt{[b,stats] = robustfit(\ldots)} returns the structure \texttt{stats}, whose fields contain diagnostic statistics from the regression. The fields of \texttt{stats} are:

- \texttt{ols_s} — Sigma estimate (RMSE) from ordinary least squares
- \texttt{robust_s} — Robust estimate of sigma
- \texttt{mad_s} — Estimate of sigma computed using the median absolute deviation of the residuals from their median; used for scaling residuals during iterative fitting
- \texttt{s} — Final estimate of sigma, the larger of \texttt{robust_s} and a weighted average of \texttt{ols_s} and \texttt{robust_s}
- \texttt{resid} — Residual
- \texttt{rstud} — Studentized residual (see \texttt{regress} for more information)
- \texttt{se} — Standard error of coefficient estimates
- \texttt{covb} — Estimated covariance matrix for coefficient estimates
- \texttt{coeffcorr} — Estimated correlation of coefficient estimates
- \texttt{t} — Ratio of \texttt{b} to \texttt{se}
- \texttt{p} — \(p\)-values for \texttt{t}
- \texttt{w} — Vector of weights for robust fit
- \texttt{R} — \(R\) factor in \(QR\) decomposition of \(X\)
- \texttt{dfe} — Degrees of freedom for error
- \texttt{h} — Vector of leverage values for least-squares fit

The \texttt{robustfit} function estimates the variance-covariance matrix of the coefficient estimates using \texttt{inv(X'\times X)\times stats.s^2}. Standard errors and correlations are derived from this estimate.

\section*{Examples}

\subsection*{Compare Robust and Least-Squares Regression}

Generate data with the trend \(y = 10 - 2 \times x\), then change one value to simulate an outlier.
x = (1:10)';
rng default; % For reproducibility
y = 10 - 2*x + randn(10,1);
y(10) = 0;

Fit a straight line using ordinary least squares regression.

bls = regress(y,[ones(10,1) x])
bls = 2×1
 7.8518
 -1.3644

Now use robust regression to estimate a straight-line fit.

brob = robustfit(x,y)
brob = 2×1
 8.4504
 -1.5278

Create scatter plot of the data together with the fits.

scatter(x,y,'filled'); grid on; hold on
plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);
plot(x,brob(1)+brob(2)*x,'g','LineWidth',2)
legend('Data','Ordinary Least Squares','Robust Regression')
The robust fit is less influenced by the outlier than the least-squares fit.

References

See Also
regress | robustdemo

Introduced before R2006a
rotatefactors

Rotate factor loadings

Syntax

B = rotatefactors(A)
B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
B = rotatefactors(A,'Method','procrustes','Target',target)
B = rotatefactors(A,'Method','pattern','Target',target)
B = rotatefactors(A,'Method','promax')
[B,T] = rotatefactors(A,...)

Description

B = rotatefactors(A) rotates the d-by-m loadings matrix A to maximize the varimax criterion, and returns the result in B. Rows of A and B correspond to variables and columns correspond to factors, for example, the (i,j)th element of A is the coefficient for the i th variable on the j th factor. The matrix A usually contains principal component coefficients created with pca or pcacov, or factor loadings estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma) rotates A to maximize the orthomax criterion with the coefficient gamma, i.e., B is the orthogonal rotation of A that maximizes

\[\text{sum}(D \times \text{sum}(B.\text{^}4,1) - \text{GAMMA} \times \text{sum}(B.\text{^}2,1).\text{^}2) \]

The default value of 1 for gamma corresponds to varimax rotation. Other possibilities include gamma = 0, m/2, and d(m - 1)/(d + m - 2), corresponding to quartimax, equamax, and parsimax. You can also supply 'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 'parsimax', then additional parameters are

- 'Normalize' — Flag indicating whether the loadings matrix should be row-normalized for rotation. If 'on' (the default), rows of A are normalized prior to
rotation to have unit Euclidean norm, and unnormalized after rotation. If 'off', the raw loadings are rotated and returned.

- 'Reltol' — Relative convergence tolerance in the iterative algorithm used to find T. The default is \(\text{sqrt}(\text{eps}) \).
- 'Maxit' — Iteration limit in the iterative algorithm used to find T. The default is 250.

\[
B = \text{rotatefactors}(A, 'Method', 'procrustes', 'Target', target)
\]
performs an oblique procrustes rotation of \(A \) to the \(d \)-by-\(m \) target loadings matrix \(target \).

\[
B = \text{rotatefactors}(A, 'Method', 'pattern', 'Target', target)
\]
performs an oblique rotation of the loadings matrix \(A \) to the \(d \)-by-\(m \) target pattern matrix \(target \), and returns the result in \(B \). \(target \) defines the "restricted" elements of \(B \), i.e., elements of \(B \) corresponding to zero elements of \(target \) are constrained to have small magnitude, while elements of \(B \) corresponding to nonzero elements of \(target \) are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', the type of rotation. If 'Type' is 'orthogonal', the rotation is orthogonal, and the factors remain uncorrelated. If 'Type' is 'oblique' (the default), the rotation is oblique, and the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on \(target \). If \(A \) has \(m \) columns, then for orthogonal rotation, the \(j \)th column of \(target \) must contain at least \(m - j \) zeros. For oblique rotation, each column of \(target \) must contain at least \(m - 1 \) zeros.

\[
B = \text{rotatefactors}(A, 'Method', 'promax')
\]
rotates \(A \) to maximize the promax criterion, equivalent to an oblique Procrustes rotation with a target created by an orthomax rotation. Use the four orthomax parameters to control the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating promax target matrix. 'Power' must be 1 or greater. The default is 4.

\[
[B, T] = \text{rotatefactors}(A, ...)
\]
returns the rotation matrix \(T \) used to create \(B \), that is, \(B = A*T \). You can find the correlation matrix of the rotated factors by using \(\text{inv}(T'*T) \). For orthogonal rotation, this is the identity matrix, while for oblique rotation, it has unit diagonal elements but nonzero off-diagonal elements.
Examples

rng('default') % for reproducibility
X = randn(100,10);

% Default (normalized varimax) rotation:
% first three principal components.
LPC = pca(X);
[L1,T] = rotatefactors(LPC(:,1:3));

% Equamax rotation:
% first three principal components.
[L2,T] = rotatefactors(LPC(:,1:3),
 'method','equamax');

% Promax rotation:
% first three factors.
LFA = factoran(X,3,'Rotate','none');
[L3,T] = rotatefactors(LFA(:,1:3),
 'method','promax',
 'power',2);

% Pattern rotation:
% first three factors.
Tgt = [1 1 1 1 1 1 1 1 1 1; ...
 0 0 0 0 0 0 0 0 0 0; ...
 1 0 1 0 1 1 1 1 1 1];
[L4,T] = rotatefactors(LFA(:,1:3),
 'method','pattern',
 'target',Tgt);
inv(T'*T) % Correlation matrix of the rotated factors
ans =
 1.0000 -0.9593 -0.7098
 -0.9593 1.0000 0.5938
 -0.7098 0.5938 1.0000

References

See Also
biplot | factoran | pca | pcacov | procrustes

Introduced before R2006a
rowexch

Row exchange

Syntax

dRE = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns,model)
[dRE,X] = rowexch(...,param1,val1,param2,val2,...)

Description

dRE = rowexch(nfactors,nruns) uses a row-exchange algorithm to generate a D-optimal design dRE with nruns runs (the rows of dRE) for a linear additive model with nfactors factors (the columns of dRE). The model includes a constant term.

[dRE,X] = rowexch(nfactors,nruns) also returns the associated design matrix X, whose columns are the model terms evaluated at each treatment (row) of dRE.

[dRE,X] = rowexch(nfactors,nruns,model) uses the linear regression model specified in model. model is one of the following:

- 'linear' — Constant and linear terms. This is the default.
- 'interaction' — Constant, linear, and interaction terms
- 'quadratic' — Constant, linear, interaction, and squared terms
- 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n-1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.
Alternatively, *model* can be a matrix specifying polynomial terms of arbitrary order. In this case, *model* should have one column for each factor and one row for each term in the model. The entries in any row of *model* are powers for the factors in the columns. For example, if a model has factors X_1, X_2, and X_3, then a row $[0 \ 1 \ 2]$ in *model* specifies the term $(X_1.\ ^0) \cdot (X_2.\ ^1) \cdot (X_3.\ ^2)$. A row of all zeros in *model* specifies a constant term, which can be omitted.

$$[dRE,X] = \text{rowexch}(\ldots,\text{param1},\text{val1},\text{param2},\text{val2},\ldots)$$

specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
</table>
| 'bounds' | Lower and upper bounds for each factor, specified as a 2-by-
| | nfactors matrix. Alternatively, this value can be a cell array
| | containing nfactors elements, each element specifying the vector
| | of allowable values for the corresponding factor. |
| 'categorical' | Indices of categorical predictors. |
| 'display' | Either 'on' or 'off' to control display of the iteration counter. The default is 'on'. |
| 'excludefun' | Handle to a function that excludes undesirable runs. If the function is f, it must support the syntax $b = f(S)$, where S is a matrix of treatments with nfactors columns and b is a vector of Boolean values with the same number of rows as S. $b(i)$ is true if the ith row S should be excluded. |
| 'init' | Initial design as an nruns-by-nfactors matrix. The default is a randomly selected set of points. |
| 'levels' | Vector of number of levels for each factor. |
| 'maxiter' | Maximum number of iterations. The default is 10. |
Parameter | Value
--- | ---
options | A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with statset. This option requires Parallel Computing Toolbox. Option fields are:
 - UseParallel — Set to true to compute in parallel. Default is false.
 - UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
 - Streams — A RandStream object or cell array of such objects. If you do not specify Streams, rowexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
 - You have an open Parallel pool
 - UseParallel is true
 - UseSubstreams is false
 In that case, use a cell array the same size as the Parallel pool.
'tries' | Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1.

Examples

Suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \epsilon \]

Use rowexch to generate a D-optimal design with seven runs:

```matlab
nfactors = 3;
nruns = 7;
```
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =
 -1 -1 1
 1 -1 1
 1 -1 -1
 1 1 1
 -1 -1 -1
 -1 1 -1
 -1 1 1
X =
 1 -1 -1 1 1 -1 -1
 1 1 -1 1 -1 1 -1
 1 1 -1 -1 -1 -1 1
 1 1 1 1 1 1 1
 1 -1 -1 1 1 1 1
 1 -1 1 -1 -1 1 -1
 -1 1 1 -1 1 -1
 -1 1 -1 -1 1 1 1

Columns of the design matrix X are the model terms evaluated at each row of the design dRE. The terms appear in order from left to right: constant term, linear terms (1, 2, 3), interaction terms (12, 13, 23). Use X to fit the model, as described in “Linear Regression” on page 11-11, to response data measured at the design points in dRE.

Algorithms

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally changing an initial design matrix X to increase $D = |X^TX|$ at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each algorithm multiple times and select the best result for your final design. Both functions have a 'tries' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from a design matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically generates a C appropriate for a specified model, operating in two steps by calling the candgen and candexch functions in sequence. Provide your own C by calling candexch directly. In either case, if C is large, its static presence in memory can affect computation.
Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
candexch | candgen | cordexch

Introduced before R2006a
rsmdemo

Interactive response surface demonstration

Syntax

rsmdemo

Description

rsmdemo opens a group of three graphical user interfaces for interactively investigating response surface methodology (RSM), nonlinear fitting, and the design of experiments.

The interfaces allow you to collect and model data from a simulated chemical reaction. Experimental predictors are concentrations of three reactants (hydrogen, \(n\)-Pentane, and isopentane) and the response is the reaction rate. The reaction rate is simulated by a Hougen-Watson model (Bates and Watts, [2] on page C-2, pp. 271–272):

\[
rate = \frac{\beta_1 x_2 - x_3 / \beta_5}{1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_3}
\]

where rate is the reaction rate, \(x_1\), \(x_2\), and \(x_3\) are the concentrations of hydrogen, \(n\)-pentane, and isopentane, respectively, and \(\beta_1\), \(\beta_2\), \(\beta_3\), \(\beta_4\), \(\beta_5\) are fixed parameters. Random errors are used to perturb the reaction rate for each combination of reactants.

Collect data using one of two methods:

1. Manually set reactant concentrations in the Reaction Simulator interface by editing the text boxes or by adjusting the associated sliders.
When you click Run, the concentrations and simulated reaction rate are recorded on the Trial and Error Data interface.

You are allowed up to 13 independent experimental runs for data collection.

Use a designed experiment to set reactant concentrations in the Experimental Data interface by clicking the Do Experiment button.
A 13-run D-optimal design for a full quadratic model is generated by the `cordexch` function, and the concentrations and simulated reaction rates are recorded on the same interface.

Once data is collected, scatter plots of reaction rates vs. individual predictors are generated by selecting one of the following from the `Plot` pop-up menu below the recorded data:

![Figure 3: Experimental Data](image-url)
• **Hydrogen vs. Rate**
• **n-Pentane vs. Rate**
• **Isopentane vs. Rate**

Fit a response surface model to the data by clicking the **Analyze** button below the trial-and-error data or the **Response Surface** button below the experimental data. Both buttons load the data into the Response Surface Tool `rstool`. By default, trial-and-error data is fit with a linear additive model and experimental data is fit with a full quadratic model, but the models can be adjusted in the Response Surface Tool.

For experimental data, you have the additional option of fitting a Hougen-Watson model. Click the **Nonlinear Model** button to load the data and the model in `hougen` into the Nonlinear Fitting Tool `nlintool`.

See Also
cordexch | hougen | nlintool | rstool

Introduced before R2006a
rstool

Interactive response surface modeling

Syntax

```plaintext
rstool
rstool(X,Y,model)
rstool(x,y,model,alpha)
rstool(x,y,model,alpha,xname,yname)
```

Description

rstool opens a graphical user interface for interactively investigating one-dimensional contours of multidimensional response surface models.
By default, the interface opens with the data from hald.mat and a fitted response surface with constant, linear, and interaction terms.

A sequence of plots is displayed, each showing a contour of the response surface against a single predictor, with all other predictors held fixed. rstool plots a 95% simultaneous confidence band for the fitted response surface as two red curves. Predictor values are displayed in the text boxes on the horizontal axis and are marked by vertical dashed blue lines in the plots. Predictor values are changed by editing the text boxes or by dragging the dashed blue lines. When you change the value of a predictor, all plots update to show the new point in predictor space.

The pop-up menu at the lower left of the interface allows you to choose among the following models:

- **Linear** — Constant and linear terms (the default)
- **Pure Quadratic** — Constant, linear, and squared terms
- **Interactions** — Constant, linear, and interaction terms
• **Full Quadratic** — Constant, linear, interaction, and squared terms

Click **Export** to open the following dialog box:

![Export to Workspace dialog box](image)

The dialog allows you to save information about the fit to MATLAB workspace variables with valid names.

`rstool(X,Y,model)` opens the interface with the predictor data in `X`, the response data in `Y`, and the fitted model `model`. Distinct predictor variables should appear in different columns of `X`. `Y` can be a vector, corresponding to a single response, or a matrix, with columns corresponding to multiple responses. `Y` must have as many elements (or rows, if it is a matrix) as `X` has rows.

The optional input `model` can be any one of the following:

- `'linear'` — Constant and linear terms (the default)
- `'purequadratic'` — Constant, linear, and squared terms
- `'interaction'` — Constant, linear, and interaction terms
- `'quadratic'` — Constant, linear, interaction, and squared terms

To specify a polynomial model of arbitrary order, or a model without a constant term, use a matrix for `model` as described in `x2fx`.

`rstool(x,y,model,alpha)` uses $100(1-\alpha)\%$ global confidence intervals for new observations in the plots.

`rstool(x,y,model,alpha,xname,yname)` labels the axes using `xname` and `yname`. To label each subplot differently, `xname` and `yname` can be string arrays or cell arrays of character vectors.
Examples

The following uses `rstool` to visualize a quadratic response surface model of the 3-D chemical reaction data in `reaction.mat`:

```matlab
load reaction
alpha = 0.01; % Significance level
rstool(reactants,rate,'quadratic',alpha,xn,yn)
```

The `rstool` interface is used by `rsmdemo` to visualize the results of simulated experiments with data like that in `reaction.mat`. As described in “Response Surface Designs” on page 27-9, `rsmdemo` uses a response surface model to generate simulated data at combinations of predictors specified by either the user or by a designed experiment.
See Also
nlintool | rsmdemo | x2fx

Introduced before R2006a
runstest

Run test for randomness

Syntax

h = runstest(x)
h = runstest(x,v)
h = runstest(x,'ud')
h = runstest(___,Name,Value)
[h,p,stats] = runstest(___)

Description

h = runstest(x) returns a test decision for the null hypothesis that the values in the
data vector x come in random order, against the alternative that they do not. The test is
based on the number of runs of consecutive values above or below the mean of x. The
result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0
otherwise.

h = runstest(x,v) returns a test decision based on the number of runs of consecutive
values above or below the specified reference value v. Values exactly equal to v are
discarded.

h = runstest(x,'ud') returns a test decision based on the number of runs up or
down. Too few runs indicate a trend, while too many runs indicate an oscillation. Values
exactly equal to the preceding value are discarded.

h = runstest(___,Name,Value) returns a test decision using additional options
specified by one or more name-value pair arguments. For example, you can change the
significance level of the test, specify the algorithm used to calculate the p-value, or
conduct a one-sided test.

[h,p,stats] = runstest(___) also returns the p-value of the test p, and a structure
stats containing additional data about the test.
Examples

Test Data for Randomness Using Sample Median

Generate a vector of 40 random numbers from a standard normal distribution.

```matlab
rng default;  % for reproducibility
x = randn(40,1);
```

Test whether the values in `x` appear in random order, using the sample median as the reference value.

```matlab
[h,p] = runstest(x,median(x))
```

```matlab
h = 0
p = 0.8762
```

The returned value of `h = 0` indicates that `runstest` does not reject the null hypothesis that the values in `x` are in random order at the default 5% significance level.

Input Arguments

- **x** — Data vector
 vector of scalar values

 Data vector, specified as a vector of scalar values. `runstest` treats `NaN` values in `x` as missing values, and ignores them.

 Data Types: `single` | `double`

- **v** — Reference value
 mean of `x` (default) | scalar value

 Reference value, specified as a scalar value. If you specify a value for `v`, then `runstest` performs the hypothesis test based on the number of runs of consecutive values above or below `v`. `runstest` discards values exactly equal to `v`.

 Data Types: `single` | `double`
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Alpha', 0.01, 'Method', 'Approximate', 'Tail', 'right' specifies a right-tailed test with 1% significance level, which returns the approximate p-value.

Alpha — Significance level

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha', 0.01

Data Types: single | double

Method — Method used to compute p-value

'exact' | 'approximate'

Method used to compute p-value, specified as the comma-separated pair consisting of 'Method' and either 'exact' to use an exact algorithm, or 'approximate' to use a normal approximation. The default is 'exact' for runs above/below, and for runs up/down when the length of x is less than or equal to 50. If runstest tests for runs up/down and the length of x is greater than 50, then the default is 'approximate', and the 'exact' method is not available.

Example: 'Method', 'approximate'

Tail — Type of alternative hypothesis

'both' (default) | 'right' | 'left'

Type of alternative hypothesis, specified as the comma-separated pair consisting of 'Tail' and one of the following.

- 'both' Two-tailed test (sequence is not random)
- 'right' Right-tailed test (like values separate for runs above/below, direction alternates for runs up/down)
'left' Left-tailed test (like values cluster for runs above/below, values trend
 for runs up/down)

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result

1 | 0

Hypothesis test result, returned as 1 or 0.

- If h = 1, then `runstest` rejects the null hypothesis at the Alpha significance level.
- If h = 0, then `runstest` fails to reject the null hypothesis at the Alpha significance level.

The result in `runstest` is based on the number of runs of consecutive values above or
below the mean of x. Too few runs indicate a tendency for high and low values to cluster.
Too many runs indicate a tendency for high and low values to alternate.

`runstest` uses a test statistic which is the difference between the number of runs and its
mean, divided by its standard deviation. The test statistic is approximately normally
distributed when the null hypothesis is true.

p — p-value

scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

p is computed from either the test statistic or the exact distribution of the number of
runs, depending on the value specified for the 'Method' name-value pair argument.

stats — Test data

structure

Test data, returned as a structure with the following fields.

- nruns — The number of runs
• n1 — The number of values above v
• n0 — The number of values below v
• z — The test statistic

See Also
signrank | signtest

Introduced before R2006a
sampsizepwr

Sample size and power of test

sampsizepwr computes the sample size, power, or alternative parameter value for a hypothesis test, given the other two values. For example, you can compute the sample size required to obtain a particular power for a hypothesis test, given the parameter value of the alternative hypothesis.

Syntax

nout = sampsizepwr(testtype,p0,p1)
nout = sampsizepwr(testtype,p0,p1,pwr)
pwroute = sampsizepwr(testtype,p0,p1,[],n)
p1out = sampsizepwr(testtype,p0,[],pwr,n)
___ = sampsizepwr(testtype,p0,p1,pwr,n,Name,Value)

Description

nout = sampsizepwr(testtype,p0,p1) returns the sample size, nout, required for a two-sided test of the type specified by testtype to have a power (probability of rejecting the null hypothesis when the alternative hypothesis is true) of 0.90 when the significance level (probability of rejecting the null hypothesis when the null hypothesis is true) is 0.05. p0 specifies parameter values under the null hypothesis. p1 specifies the value, or an array of values, of the single parameter being tested under the alternative hypothesis.

nout = sampsizepwr(testtype,p0,p1,pwr) returns the sample size, nout, that corresponds to the specified power, pwr, and the parameter value under the alternative hypothesis, p1.

pwroute = sampsizepwr(testtype,p0,p1,[],n) returns the power achieved for a sample size of n when the true parameter value is p1.

p1out = sampsizepwr(testtype,p0,[],pwr,n) returns the parameter value detectable with the specified sample size, n, and the specified power, pwr.
___ = sampsizepwr(testtype,p0,p1,pwr,n,Name,Value) returns any of the previous arguments using one or more name-value pair arguments. For example, you can change the significance level of the test, or specify a right- or left-tailed test. The name-value pairs can appear in any order but must begin in the sixth argument position.

Examples

Compute Sample Size for Selected Power Value

A company runs a manufacturing process that fills empty bottles with 100 mL of liquid. To monitor quality, the company randomly selects several bottles and measures the volume of liquid inside.

Determine the sample size the company must use if it wants to detect a difference between 100 mL and 102 mL with a power of 0.80. Assume that prior evidence indicates a standard deviation of 5 mL.

nout = sampsizepwr('t',[100 5],102,0.80)

nout = 52

The company must test 52 bottles to detect the difference between a mean volume of 100 mL and 102 mL with a power of 0.80.

Generate a power curve to visualize how the sample size affects the power of the test.

nn = 1:100;
pwrout = sampsizepwr('t',[100 5],102,[],nn);

figure;
plot(nn,pwrout,'b-',nout,0.8,'ro')
title('Power versus Sample Size')
xlabel('Sample Size')
ylabel('Power')
An employee wants to buy a house near her office. She decides to eliminate from consideration any house that has a mean morning commute time greater than 20 minutes. The null hypothesis for this right-sided test is $H_0: \mu = 20$, and the alternative hypothesis is $H_A: \mu > 20$. The selected significance level is 0.05.
To determine the mean commute time, the employee takes a test drive from the house to her office during rush hour every morning for one week, so her total sample size is 5. She assumes that the standard deviation, \(\sigma \), is equal to 5.

The employee decides that a true mean commute time of 25 minutes is too different from her targeted 20-minute limit, so she wants to detect a significant departure if the true mean is 25 minutes. Find the probability of incorrectly concluding that the mean commute time is no greater than 20 minutes.

Compute the power of the test, and then subtract the power from 1 to obtain \(\beta \).

```matlab
power = sampsizepwr('t',[20 5],25,[],5,'Tail','right');
beta = 1 - power
beta = 0.4203
```

The \(\beta \) value indicates a probability of 0.4203 that the employee concludes incorrectly that the morning commute is not greater than 20 minutes.

The employee decides that this risk is too high, and she wants no more than a 0.01 probability of reaching an incorrect conclusion. Calculate the number of test drives the employee must take to obtain a power of 0.99.

```matlab
nout = sampsizepwr('t',[20 5],25,0.99,[],'Tail','right')
nout = 18
```

The results indicate that she must take 18 test drives from a candidate house to achieve this power level.

The employee decides that she only has time to take 10 test drives. She also accepts a 0.05 probability of making an incorrect conclusion. Calculate the smallest true parameter value that produces a detectable difference in mean commute time.

```matlab
p1out = sampsizepwr('t',[20 5],[],0.95,10,'Tail','right')
p1out = 25.6532
```

Given the employee's target power level and sample size, her test detects a significant difference from a mean commute time of at least 25.6532 minutes.
Compute Sample Size for a Binomial Test

Compute the sample size, n, required to distinguish $p = 0.30$ from $p = 0.36$, using a binomial test with a power of 0.8.

$n_{approx} = \text{sampsizepwr}(\text{'}p\text{',0.30,0.36,0.8})$

Warning: Values $N>200$ are approximate. Plotting the power as a function of N may reveal lower N values that have the required power.

$n_{approx} = 485$

The result indicates that a power of 0.8 requires a sample size of 485. However, this result is approximate.

Make a plot to see if any smaller n values provide the required power of 0.8.

$nn = 1:500$;
$pwrout = \text{sampsizepwr}('p',0.3,0.36,[],nn);$;
$nexact = \text{min}(nn(pwrout>=0.8))$

$n_{exact} = 462$

figure
plot(nn,pwrout,'b-',[napprox nexact],pwrout([napprox nexact]),'ro')
grid on
The result indicates that a sample size of 462 also provides a power of 0.8 for this test.

Compute Power for a Two-Sample t-Test

A farmer wants to test the impact of two different types of fertilizer on the yield of his bean crops. He currently uses Fertilizer A, but believes that Fertilizer B might improve crop yield. Because Fertilizer B is more expensive than Fertilizer A, the farmer wants to limit the number of plans he treats with Fertilizer B in this experiment.

The farmer uses a 2:1 ratio of plants in each treatment group. He tests 10 plants with Fertilizer A, and 5 plants with Fertilizer B. The mean yield using Fertilizer A is 1.4 kg per
plant, with a standard deviation of 0.2. The mean yield using Fertilizer B is 1.7 kg per plant. The significance level of the test is 0.05.

Compute the power of the test.

\[
pwr = \text{sampsizepwr('t2',[1.4 0.2],1.7,[],5,'Ratio',2)}
\]

\[
pwr = 0.7165
\]

The farmer wants to increase the power of the test to 0.90. Calculate how many plants he must treat with each type of fertilizer.

\[
n = \text{sampsizepwr('t2',[1.4 0.2],1.7,0.9,[])}
\]

\[
n = 11
\]

To increase the power of the test to 0.90, the farmer must test 11 plants with each type of fertilizer.

The farmer wants to reduce the number of plants he must treat with Fertilizer B, but keep the power of the test at 0.90. but maintain the initial 2:1 ratio of plants in each treatment group

Using a 2:1 ratio of plants in each treatment group, calculate how many plants the farmer must test to obtain a power of 0.90. Use the mean and standard deviation values obtained in the previous test.

\[
[n1out,n2out] = \text{sampsizepwr('t2',[1.4,0.2],1.7,0.9,[],'Ratio',2)}
\]

\[
n1out = 8
\]

\[
n2out = 16
\]

To obtain a power of 0.90, the farmer must treat 16 plants with Fertilizer A and 8 plants with Fertilizer B.

Input Arguments

- **testtype** — Test type
 - 'z' | 't' | 't2' | 'var' | 'p'
 - Test type, specified as one of the following.
• 'z' — z-test for normally distributed data with known standard deviation.
• 't' — t-test for normally distributed data with unknown standard deviation.
• 't2' — Two-sample pooled t-test for normally distributed data with unknown standard deviation and equal variances.
• 'var' — Chi-square test of variance for normally distributed data.
• 'p' — Test of the \(p \) parameter (success probability) for a binomial distribution. The 'p' test is a discrete test for which increasing the sample size does not always increase the power. For \(n \) values larger than 200, there may exist values smaller than the returned \(n \) value that also produce the specified power.

p0 — Parameter value under null hypothesis
scalar value | two-element array of scalar values

Parameter value under the null hypothesis, specified as a scalar value or a two-element array of scalar values.

- If `testtype` is 'z' or 't', then `p0` is a two-element array \([\mu_0, \sigma_0]\) of the mean and standard deviation, respectively, under the null hypothesis.
- If `testtype` is 't2', then `p0` is a two-element array \([\mu_0, \sigma_0]\) of the mean and standard deviation, respectively, of the first sample under the null and alternative hypotheses.
- If `testtype` is 'var', then `p0` is the variance under the null hypothesis.
- If `testtype` is 'p', then `p0` is the value of \(p \) under the null hypothesis.

Data Types: single | double

p1 — Parameter value under alternative hypothesis
scalar value | array of scalar values | []

Parameter value under the alternative hypothesis, specified as a scalar value or as an array of scalar values.

- If `testtype` is 'z' or 't', then `p1` is the value of the mean under the alternative hypothesis.
- If `testtype` is 't2', then `p1` is the value of the mean of the second sample under the alternative hypothesis.
- If `testtype` is 'var', then `p1` is the variance under the alternative hypothesis.
- If `testtype` is 'p', then `p1` is the value of \(p \) under the alternative hypothesis.
If you specify \(p1 \) as an array, then \(\text{sampsizepwr} \) returns an array for \(nout \) or \(\text{pwrout} \) that is the same length as \(p1 \).

To return the alternative parameter value, \(p1out \), specify \(p1 \) using empty brackets ([]), as shown in the syntax description on page 32-6037.

Data Types: single | double

\(\text{pwr} \) — Power of the test
0.90 (default) | scalar value in the range (0,1) | array of scalar values in the range (0,1) | []

Power of the test, specified as a scalar value in the range (0,1) or as an array of scalar values in the range (0,1). The power of a test is the probability of rejecting the null hypothesis when the alternative hypothesis is true, given a particular significance level.

If you specify \(\text{pwr} \) as an array, then \(\text{sampsizepwr} \) returns an array for \(nout \) or \(\text{p1out} \) that is the same length as \(\text{pwr} \).

To return a power value, \(\text{pwrout} \), specify \(\text{pwr} \) using empty brackets ([]), as shown in the syntax description on page 32-6037.

Data Types: single | double

\(n \) — Sample size
positive integer value | array of positive integer values

Sample size, specified as a positive integer value or as an array of positive integer values.

If \(\text{testtype} \) is 't2', then \(\text{sampsizepwr} \) assumes that the two sample sizes are equal. For unequal sample sizes, specify \(n \) as the smaller of the two sample sizes, and use the 'Ratio' name-value pair argument to indicate the sample size ratio. For example, if the smaller sample size is 5 and the larger sample size is 10, specify \(n \) as 5, and the 'Ratio' name-value pair as 2.

If you specify \(n \) as an array, then \(\text{sampsizepwr} \) returns an array for \(\text{pwrout} \) or \(\text{p1out} \) that is the same length as \(n \).

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \(\text{Name,Value} \) arguments. \(\text{Name} \) is the argument name and \(\text{Value} \) is the corresponding value. \(\text{Name} \) must appear inside single quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'Tail','right' specifies a right-tailed test with a 0.01
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance value of the test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

Ratio — Sample size ratio
1 (default) | scalar value greater than or equal to 1

Sample size ratio for a two-sample t-test, specified as the comma-separated pair
consisting of 'Ratio' and a scalar value greater than or equal to 1. The value of Ratio
is equal to n2/n1, where n2 is the larger sample size, and n1 is the smaller sample size.

To return the power, pwrout, or alternative parameter value, p1out, specify the smaller
of the two sample sizes for n, and use 'Ratio' to indicate the sample size ratio.

Example: 'Ratio',2

Tail — Test type
'both' (default) | 'right' | 'left'

Test type, specified as the comma-separated pair consisting of 'Tail' and one of the
following:

• 'both' — Two-sided test for an alternative not equal to p0
• 'right' — One-sided test for an alternative larger than p0
• 'left' — One-sided test for an alternative smaller than p0

Example: 'Tail','right'
Output Arguments

nout — Sample size

positive integer value | array of positive integer values

Sample size, returned as a positive integer value or as an array of positive integer values.

If `testtype` is `t2`, and you use the 'Ratio' name-value pair argument to specify the ratio of the two unequal sample sizes, then `nout` returns the smaller of the two sample sizes.

Alternatively, to return both sample sizes, specify this argument as `[n1out,n2out]`. In this case, `sampsizepwr` returns the smaller sample size as `n1out`, and the larger sample size as `n2out`.

If you specify `pwr` or `p1` as an array, then `sampsizepwr` returns an array for `nout` that is the same length as `pwr` or `p1`.

pwrout — Power

scalar value in the range (0,1) | array of scalar values in the range (0,1)

Power achieved by the test, returned as a scalar value in the range (0,1) or as an array of scalar values in the range (0,1).

If you specify `n` or `p1` as an array, then `sampsizepwr` returns an array for `pwrout` that is the same length as `n` or `p1`.

p1out — Parameter value for the alternative hypothesis

scalar value | array of scalar values

Parameter value for the alternative hypothesis, returned as a scalar value or as an array of scalar values.

When computing `p1out` for the 'p' test, if no alternative can be rejected for a given null hypothesis and significance level, the function displays a warning message and returns `NaN`.

See Also

`binocdf` | `ttest` | `ttest2` | `vartest` | `ztest`
Introduced in R2006b
saveCompactModel

Save model object in file for code generation

To generate C/C++ code for the object functions (predict, random, knnsearch, or rangesearch) of machine learning models, use saveCompactModel, loadCompactModel, and codegen. After training a machine learning model, save the model by using saveCompactModel. Define an entry-point function that loads the model by using loadCompactModel and calls an object function. Then use codegen or the MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow for the object functions of machine learning models. Use saveCompactModel for the highlighted step.

Syntax

saveCompactModel(Mdl,filename)

Description

saveCompactModel(Mdl,filename) prepares a classification model, regression model, or nearest neighbor searcher (Mdl) for code generation by reducing its memory footprint and then saving it in the MATLAB formatted binary file (MAT-file) named filename. You can pass filename to loadCompactModel to reconstruct the model object from the filename file.

Examples
Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using `saveCompactModel`. Define an entry-point function that loads the model by using `loadCompactModel` and calls the `predict` function of the trained model. Then use `codegen` to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning models at the command line. For more details, see “Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10. You can also generate code using the MATLAB Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20 for details. To learn about the code generation for finding nearest neighbors using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on page 31-15.

Train Model

Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for two classes only.

```matlab
load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);
```

Train a support vector machine (SVM) classification model using the processed data set.

```matlab
Mdl = fitcsvm(X,Y);
```

`Mdl` is a `ClassificationSVM` model.

Save Model

Save the SVM classification model to the file `SVMIris.mat` by using `saveCompactModel`.

```matlab
saveCompactModel(Mdl,'SVMIris');
```

Define Entry-Point Function

Define an entry-point function named `classifyIrises` that does the following:

- Accept iris flower measurements with columns corresponding to `meas`, and return predicted labels.
• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

```matlab
function label = classifyIrises(X) %#codegen
%CLASSIFYIRISES Classify iris species using SVM Model
% CLASSIFYIRISES classifies the iris flower measurements in X using the
% compact SVM model in the file SVMIris.mat, and then returns class
% labels in label.
CompactMdl = loadCompactModel('SVMIris');
label = predict(CompactMdl,X);
end
```

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during code generation.

Note: If you click the button located in the upper-right section of this example and open this example in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function file.

Generate Code

Generate code for the entry-point function using codegen. Because C and C++ are statically typed languages, you must determine the properties of all variables in the entry-point function at compile time. Pass X as the value of the -args option to specify that the generated code must accept an input that has the same data type and array size as the training data X. If the number of observations is unknown at compile time, you can also specify the input as variable-size by using coder.typeof. For details, see “Specify Variable-Size Arguments for Code Generation” on page 31-57 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

```bash
codegen classifyIrises -args {X}
```

codegen generates the MEX function classifyIrises_mex with a platform-dependent extension.

Verify Generated Code

Compare the labels classified using predict, classifyIrises, and classifyIrises_mex.
label1 = predict(Mdl,X);
label2 = classifyIrises(X);
label3 = classifyIrises_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
 1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three ways are the same.

Input Arguments

Mdl — Machine learning model
full model object | compact model object

Machine learning model, specified as a full or compact model object, as given in the following tables of supported models.
Classification Model Object

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Model Object</th>
<th>Compact Model Object</th>
<th>Training Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary decision tree for classification</td>
<td>ClassificationTree</td>
<td>CompactClassificationTree</td>
<td>fitctree</td>
</tr>
<tr>
<td>Discriminant analysis classification</td>
<td>ClassificationDiscriminant</td>
<td>CompactClassificationDiscriminant</td>
<td>fitcdiscr</td>
</tr>
<tr>
<td>Ensemble classifier</td>
<td>ClassificationEnsemble,</td>
<td>CompactClassificationEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>k-nearest neighbor classification</td>
<td>ClassificationKNN</td>
<td>N/A</td>
<td>fitcknn</td>
</tr>
<tr>
<td>Linear model for binary classification of</td>
<td>ClassificationLinear</td>
<td>N/A</td>
<td>fitclinear</td>
</tr>
<tr>
<td>high-dimensional data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiclass model for support vector</td>
<td>ClassificationECOC</td>
<td>CompactClassificationECOC</td>
<td>fitcecoc</td>
</tr>
<tr>
<td>machines (SVM) or other classifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM for one-class and binary classification</td>
<td>ClassificationSVM</td>
<td>CompactClassificationSVM</td>
<td>fitcsvm</td>
</tr>
</tbody>
</table>

- If `Mdl` is a full classification model object, then `saveCompactModel` saves its corresponding compact model object.
- A `ClassificationKNN` model object is a full object that does not have a corresponding compact object. `saveCompactModel` saves a compact version that does not include cross-validation parameters and hyperparameters.
- A `ClassificationLinear` model object is a full object that does not have a corresponding compact object. `saveCompactModel` saves the model as it is.
Regression Model Object

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Model Object</th>
<th>Compact Model Object</th>
<th>Training Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble regression</td>
<td>RegressionEnsemble, RegressionBaggedEnsemble</td>
<td>CompactRegressionEnsemble</td>
<td>fitrensemble</td>
</tr>
<tr>
<td>Gaussian process regression</td>
<td>RegressionGP</td>
<td>CompactRegressionGP</td>
<td>fitrgp</td>
</tr>
<tr>
<td>Generalized linear model</td>
<td>GeneralizedLinearModel</td>
<td>CompactGeneralizedLinearModel</td>
<td>fitglm, stepwiseglm</td>
</tr>
<tr>
<td>Linear regression model</td>
<td>LinearModel</td>
<td>CompactLinearModel</td>
<td>fitlm, stepwiselm</td>
</tr>
</tbody>
</table>
| Linear regression for high-dimensional data | RegressionLinear
| | | N/A | fitrlinear |
| Regression tree | RegressionTree | CompactRegressionTree | fittree |
| SVM regression | RegressionSVM | CompactRegressionSVM | fitrsvm |

- If Mdl is a full regression model object, then saveCompactModel saves its corresponding compact model object.
- A RegressionLinear model object is a full object that does not have a corresponding compact object. saveCompactModel saves the model as it is.

Nearest Neighbor Searcher Object

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Object</th>
<th>Training Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaustive nearest neighbor searcher</td>
<td>ExhaustiveSearcher</td>
<td>ExhaustiveSearcher, createns</td>
</tr>
<tr>
<td>Nearest neighbor searcher using Kd-tree</td>
<td>KDTreeSearcher</td>
<td>KDTreeSearcher, createns</td>
</tr>
</tbody>
</table>

- A nearest neighbor searcher object is a full object that does not have a corresponding compact object. saveCompactModel saves the model as it is.
filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

If the filename file exists, then `saveCompactModel` overwrites the file.

The extension of the filename file must be `.mat`. If filename has no extension, then `saveCompactModel` appends `.mat`.

If filename does not include a full path, then `saveCompactModel` saves the file to the current folder.

Example: 'SVMMdl'

Data Types: `char` | `string`

Algorithms

`saveCompactModel` reduces the memory footprint of full classification or regression models (`Mdl`) by removing properties that are not required for prediction. That is, before saving the model, `saveCompactModel` applies the appropriate compact method to `Mdl`.

Alternative Functionality

- Use a coder configurer created by `learnerCoderConfigurer` for SVM models to generate C/C++ code. After training an SVM model, create a coder configurer of the model. Use the object functions and properties of the configurer to configure code generation options and to generate code for the `predict` and `update` functions of the model. If you generate code using a coder configurer, you can update model parameters in the generated code without having to regenerate the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on page 31-90.

See Also

`codegen` | `loadCompactModel`
Topics
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 31-10
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 31-20
“Code Generation for Nearest Neighbor Searcher” on page 31-15
“Specify Variable-Size Arguments for Code Generation” on page 31-57
“Code Generation Support, Usage Notes, and Limitations” on page 31-49

Introduced in R2016b
scatterhist

Scatter plot with marginal histograms

Syntax

scatterhist(x,y)
scatterhist(x,y,Name,Value)

h = scatterhist(__)

Description

scatterhist(x,y) creates a 2-D scatter plot of the data in vectors x and y, and displays the marginal distributions of x and y as univariate histograms on the horizontal and vertical axes of the scatter plot, respectively.

scatterhist(x,y,Name,Value) creates the plot using additional options specified by one or more name-value pair arguments. For example, you can specify a grouping variable or change the display options.

h = scatterhist(__) returns a vector of three axis handles for the scatter plot, the histogram along the horizontal axis, and the histogram along the vertical axis, respectively, using any of the input arguments in the previous syntaxes.

Examples

Create a Scatterhist Plot

Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);

Create a scatter plot and two marginal histograms to visualize the relationship between
sepal length and sepal width.

scatterhist(x,y)

Display a data tip for a bin in a histogram. A data tip appears when you hover over a bin
in a histogram.
The data tip displays the probability density function estimate of the selected bin and the lower and upper values for the bin edges.

Plot Grouped Data

Load the sample data. Create data vector \(x \) from the first column of the data matrix, which contains sepal length measurements from three species of iris flowers. Create data vector \(y \) from the second column of the data matrix, which contains sepal width measurements from the same flowers.
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);

Create a scatter plot and six kernel density plots to visualize the relationship between sepal length and sepal width, grouped by species.

scatterhist(x,y,'Group',species,'Kernel','on')

The plot shows that the relationship between sepal length and width varies depending on the flower species.
Customize the Plot Display

Load the sample data. Create data vector \(x \) from the first column of the data matrix, which contains sepal length measurements from three different species of iris flowers. Create data vector \(y \) from the second column of the data matrix, which contains sepal width measurements from the same flowers.

```matlab
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);
```

Create a scatter plot and six kernel density plots to visualize the relationship between sepal length and sepal width as measured on three species of iris flowers, grouped by species. Customize the appearance of the plots.

```matlab
scatterhist(x,y,'Group',species,'Kernel','on','Location','SouthEast',... 'Direction','out','Color','kbr','LineStyle',{'-','-.',':'},... 'LineWidth',[2,2,2],'Marker','+od','MarkerSize',[4,5,6]);
```
Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from three species of iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.

```matlab
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);
```
Use axis handles to replace the marginal histograms with box plots.

```matlab
h = scatterhist(x,y,'Group',species);
hold on;
clr = get(h(1),'colororder');
boxplot(h(2),x,species,'orientation','horizontal',...
    'label',{'',''''},'color',clr);
boxplot(h(3),y,species,'orientation','horizontal',...
    'label',{'',''''},'color',clr);
set(h(2:3),'XTickLabel','');
view(h(3),[270,90]);  % Rotate the Y plot
axis(h(1),'auto');  % Sync axes
hold off;
```
Create a scatterhist Plot in a Specified Parent Container

Load the sample data. Create data vector \(x \) from the first column of the data matrix, which contains sepal length measurements from iris flowers. Create data vector \(y \) from the second column of the data matrix, which contains sepal width measurements from the same flowers.

```matlab
load fisheriris
x = meas(:,1);
y = meas(:,2);
```
Create a new figure and define two uipanel objects to divide the figure into two parts. In the upper half of the figure, plot the sample data using \texttt{scatterhist}. Include marginal kernel density plots grouped by species. In the lower half of the figure, plot a histogram of the sepal length measurements contained in \(x \).

\begin{verbatim}
figure
hp1 = uipanel('position',[0 .5 1 .5]);
hp2 = uipanel('position',[0 0 1 .5]);
scatterhist(x,y,'Group',species,'Kernel','on','Parent',hp1);
axes('Parent',hp2);
hist(x);
\end{verbatim}
Input Arguments

x — Sample data

vector

Sample data, specified as a vector. The data vectors *x* and *y* must be the same length.

If *x* or *y* contain NaN values, then `scatterhist`:

- Removes rows with NaN values in either *x* or *y* from both data vectors when generating the scatter plot
- Removes rows with NaN values only from the corresponding *x* or *y* data vector when generating the marginal histograms

Data Types: `single` | `double`

y — Sample data

vector

Sample data, specified as a vector. The data vectors *x* and *y* must be the same length.

If *x* or *y* contain NaN values, then `scatterhist`:

- Removes rows with NaN values in either *x* or *y* from both data vectors when generating the scatter plot
- Removes rows with NaN values only from the corresponding *x* or *y* data vector when generating the marginal histograms

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name`, `Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `Location', 'SouthEast', 'Direction', 'out'` specifies a plot with histograms located below and to the right of the scatter plot, with the bars directed away from the scatter plot.
NBins — Number of bins for histograms
positive integer value | vector

Number of bins for histograms, specified as the comma-separated pair consisting of 'NBins' and a positive integer value greater than or equal to 2, or vector of two such values. If the number of bins is specified as a positive integer value, that value is the number of bins for both the x and y histograms. If the number of bins is specified by a vector, the first value is the number of bins for the x data, and the second value is the number of bins for the y data. By default, the number of bins is computed based on the sample standard deviation using Scott’s rule.

Example: 'NBins',[5,7]

Data Types: single | double

Location — Location of marginal histograms
'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the marginal histograms in the figure, specified as the comma-separated pair consisting of 'Location' and one of the following.

'SouthWest' Plot the histograms below and to the left of the scatter plot.
'SouthEast' Plot the histograms below and to the right of the scatter plot.
'NorthEast' Plot the histograms above and to the right of the scatter plot.
'NorthWest' Plot the histograms above and to the left of the scatter plot.

Example: 'Location','SouthEast'

Direction — Direction of marginal histograms
'in' (default) | 'out'

Direction of the marginal histograms, specified as the comma-separated pair consisting of 'Direction' and one of the following.

'in' Plot the histograms with the bars directed toward the scatter plot.
'out' Plot the histograms with the bars directed away from the scatter plot.
Example: 'Direction', 'out'

Group — Grouping variable
categorical array | logical or numeric vector | character array | string array | cell array of character vectors

Grouping variable, specified as the comma-separated pair consisting of 'Group' and a categorical array, logical or numeric vector, character array, string array, or cell array of character vectors. Each unique value in a grouping variable defines a group.

For example, if `Gender` is a cell array of character vectors with values 'Male' and 'Female', you can use `Gender` as a grouping variable to plot your data by gender.

Example: 'Group', Gender

Data Types: categorical | single | double | logical | char | string | cell

PlotGroup — Grouped plot indicator
'on' | 'off'

Grouped plot indicator, specified as the comma-separated pair consisting of 'PlotGroup' and one of the following.

'on' Display grouped histograms or grouped kernel density plots. This is the default if a Group parameter is specified.

'off' Display histograms or kernel density plots of the whole data set. This is the default if a Group parameter is not specified.

Example: 'PlotGroup', 'off'

Style — Histogram display style
'stears' | 'bar'

Histogram display style, specified as the comma-separated pair consisting of 'PlotGroup' and one of the following.

'stears' Display a stairstep plot that shows the outline of the histogram without filling the bars. This is the default if you specify a grouping variable that contains more than one group.
'bar' Display a histogram bar plot. This is the default if you specify a grouping variable that contains only one group or if PlotGroup is specified as 'off'.

Example: 'Style','bar'

Kernel — Kernel density plot indicator
'off' (default) | 'on' | 'overlay'

Kernel density plot indicator, specified as the comma-separated pair consisting of 'Kernel' and one of the following.

'off' Display the marginal distributions as histograms.
'on' Display the marginal distributions as kernel density plots.
'overlay' Display the marginal distributions as kernel density plots overlaid onto histograms, similar to histfit.

Example: 'Kernel','overlay'

Bandwidth — Bandwidth of kernel smoothing window

Bandwidth of kernel smoothing window, specified as the comma-separated pair consisting of 'Bandwidth' and a matrix of size 2-by-K, where K is the number of unique groups. The first row of the matrix gives the bandwidth of each group in x, and the second row gives the bandwidth of each group in y. By default, scatterhist finds the optimal bandwidth for estimating normal densities. Specifying a different bandwidth value changes the smoothing characteristics of the resulting kernel density plot. The value specified is a scaling factor for the normal distribution used to generate the kernel density plot.

Example: 'Bandwidth',[.5,.2,.1;.15,.25,.35]

Data Types: single | double

Legend — Legend visibility indicator

'on' | 'off'

Legend visibility indicator, specified as the comma-separated pair consisting of 'Legend' and one of the following.
'on' Set legend visible. This is the default if a Group parameter is specified.
'off' Set legend invisible. This is the default if a Group parameter is not specified.

Example: 'Legend','on'

Parent — Parent container of the plot
uipanel container object | figure container object

Parent container for the plot, specified as a uipanel container object or figure container object. You can create panel container objects using uipanel or figure, respectively.

For example, if h1 is a panel container object, specify the parent container of the plot as follows.

Example: 'Parent',h1

LineStyle — Style of kernel density plot line
valid line style | string array or cell array of line styles

Style of kernel density plot line, specified as the comma-separated pair consisting of 'LineStyle' and a valid line style or a string array or cell array of valid line styles. See plot for valid line styles. The default is a solid line. Use a string array or cell array to specify different line styles for each group. When the total number of groups exceeds the number of specified values, scatterhist cycles through the specified values.

Example: 'LineStyle',

Data Types: char | string | cell

LineWidth — Width of kernel density plot line
0.5 (default) | nonnegative scalar value | vector

Width of kernel density plot line, specified as the comma-separated pair consisting of 'LineWidth' and a nonnegative scalar value or vector of nonnegative scalar values. The specified value is the size of the kernel density plot line measured in points. The default size is 0.5 points. Use a vector to specify different line widths for each group. When the total number of groups is greater than the number of specified values, scatterhist cycles through the specified values.

Example: 'LineWidth',[0.5,1,2]

Data Types: single | double
Color — Marker color for each scatter plot group
character vector or string scalar of color names | matrix of RGB values

Marker color for each scatter plot group, specified as the comma-separated pair consisting of 'Color' and a character vector or string scalar of color names, or a three-column matrix of RGB values in the range [0,1]. See ColorSpec for predefined colors and their RGB equivalents. If colors are specified using a matrix, each row of the matrix represents a group, and the three columns represent the R value, G value, and B value, respectively. When the total number of groups exceeds the number of specified colors, scatterhist cycles through the specified colors.

Example: 'Color','kcm'
Example: 'Color',[.5,0,1;0,.5,.5]

Data Types: single | double | char | string

Marker — Marker symbol for each scatterplot group
'o' (default) | character vector | string scalar

Marker symbol for each scatter plot group, specified as the comma-separated pair consisting of 'Marker' and a character vector or string scalar of one or more valid marker symbols. See plot for valid symbols. The default is 'o', a circle. When the total number of groups exceeds the number of specified symbols, scatterhist cycles through the specified symbols.

Example: 'Marker', '+do'

Data Types: char | string

MarkerSize — Marker size for each scatter plot group
6 (default) | nonnegative scalar value | vector

Marker size for each scatter plot group, specified as the comma-separated pair consisting of 'MarkerSize' and a nonnegative scalar value or a vector of nonnegative scalar values, measured in points. When the total number of groups exceeds the number of specified values, scatterhist cycles through the specified values.

Example: 'MarkerSize',10

Data Types: single | double
Output Arguments

h — Axes handles
vector

Axes handles for the three plots, returned as a vector. The vector contains the handles for
the scatter plot, the histogram along the horizontal axis, and the histogram along the
vertical axis, respectively.

Alternative Functionality

Alternatively, you can create a ScatterHistogramChart object by using the
scatterhistogram function.

• Explore the data interactively in the object by panning, zooming, and using data tips.
 Unlike the scatterhist function, scatterhistogram updates the marginal
 histograms based on the data within the current scatter plot limits.
• Control the appearance and behavior of the scatter histogram chart by changing the
 ScatterHistogramChart properties.

See Also

gscatter | histogram | scatterhistogram

Topics

“Grouping Variables” on page 2-57

Introduced in R2007a
scramble

Class: qrandset
Scramble quasi-random point set

Syntax

\[
\text{ps} = \text{scramble}(p, \text{type}) \\
\text{ps} = \text{scramble}(p, \text{'clear'}) \\
\text{ps} = \text{scramble}(p)
\]

Description

\(\text{ps} = \text{scramble}(p, \text{type})\) returns a scrambled copy \(\text{ps}\) of the point set \(p\) of the \text{qrandset} on page 32-5254 class, created using the scramble type specified in the character vector or string scalar \text{type}. Point sets from different subclasses of \text{qrandset} support different scramble types, as indicated in the following table.

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Scramble Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>haltonset on page 32-2925</td>
<td>'RR2' — A permutation of the radical inverse coefficients derived by applying a reverse-radix operation to all of the possible coefficient values. The scramble is described in [1].</td>
</tr>
<tr>
<td>sobolset on page 32-6175</td>
<td>'MatousekAffineOwen' — A random linear scramble combined with a random digital shift. The scramble is described in [2].</td>
</tr>
</tbody>
</table>

\(\text{ps} = \text{scramble}(p, \text{'clear'})\) removes all scramble settings from \(p\) and returns the result in \(\text{ps}\).

\(\text{ps} = \text{scramble}(p)\) removes all scramble settings from \(p\) and then adds them back in the order they were originally applied. This typically results in a different point set because of the randomness of the scrambling algorithms.
Examples

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```matlab
p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =
    Halton point set in 3 dimensions (8.918019e+013 points)
    Properties:
        Skip : 1000
        Leap : 100
        ScrambleMethod : none
```

Use scramble to apply reverse-radix scrambling:

```matlab
p = scramble(p,'RR2')
p =
    Halton point set in 3 dimensions (8.918019e+013 points)
    Properties:
        Skip : 1000
        Leap : 100
        ScrambleMethod : RR2
```

Use net to generate the first four points:

```matlab
X0 = net(p,4)
X0 =
    0.0928    0.6950    0.0029
    0.6958    0.2958    0.8269
    0.3013    0.6497    0.4141
    0.9087    0.7883    0.2166
```

Use parenthesis indexing to generate every third point, up to the 11th point:

```matlab
X = p(1:3:11,:) 
X =
    0.0928    0.6950    0.0029
    0.9087    0.7883    0.2166
    0.3843    0.9840    0.9878
    0.6831    0.7357    0.7923
```
References

See Also
haltonset | sobolset
ScrambleMethod property

Class: qrandset

Settings that control scrambling

Description

The ScrambleMethod property contains a structure that defines which scrambles to apply to the sequence. The structure consists of two fields:

- **Type**: A character vector containing the name of the scramble.
- **Options**: A cell array of parameter values for the scramble.

Different point sets support different scramble types as outlined in the help for each point set class. An error occurs if you set an invalid scramble type for a given point set.

The ScrambleMethod property also accepts an empty matrix as a value. This will clear all scrambling and set the property to contain a (0x0) structure.

The scramble method provides an alternative, easier way to set scrambles.

Examples

Apply a random linear scramble combined with a random digital shift to a sobolset point set class:

```
P = sobolset(5);
P = scramble(P, 'MatousekAffineOwen');
P.ScrambleMethod
```

See Also

scramble | sobolset
segment

Piecewise distribution segments containing input values

Syntax

\[s = \text{segment}(pd,x) \]
\[s = \text{segment}(pd,\[]\,p) \]

Description

\[s = \text{segment}(pd,x) \] returns a vector \(s \) of positive integers indicating which segment in the piecewise distribution \(pd \) contains each quantile value in \(x \).

The values 1, 2, and 3 in \(s \) indicate the lower tail, center, and upper tail segments in \(pd \), respectively. If \(pd \) does not include a lower tail segment, then 1 and 2 indicate the center and upper tail segments, respectively.

\[s = \text{segment}(pd,\[]\,p) \] returns a vector \(s \) of positive integers indicating which segment in the piecewise distribution \(pd \) contains each cumulative probability value in \(p \).

Examples

Find Segment in paretotails Object

Generate a sample data set and create a paretotails object by fitting a piecewise distribution with Pareto tails to the generated data. Find the segment containing the specified quantile values by using the object function segment.

Generate a sample data set containing 20% outliers.

\[\text{rng('default'); \ % For reproducibility} \]
\[\text{left_tail} = -\text{exprnd}(1,100,1); \]
\[\text{right_tail} = \text{exprnd}(5,100,1); \]
center = randn(800,1);
\[x = [\text{left_tail;}\text{center;}\text{right_tail}]; \]

Create a `paretotails` object by fitting a piecewise distribution to \(x \). Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the empirical distribution for the middle 80\% of the data set and generalized Pareto distributions (GPDs) for the lower and upper 10\% of the data set.

\[\text{pd} = \text{paretotails}(x,0.1,0.9) \]

\[\text{pd} = \]

Piecewise distribution with 3 segments

- \(-\infty < x < -1.33251\) \((0 < p < 0.1)\): lower tail, \(\text{GPD}(-0.0063504,0.567017) \)
- \(-1.33251 < x < 1.80149\) \((0.1 < p < 0.9)\): interpolated empirical cdf
- \(1.80149 < x < \infty\) \((0.9 < p < 1)\): upper tail, \(\text{GPD}(0.24874,3.00974) \)

Find the segment containing the specified points by using the `segment` function.

\[\text{xpts} = -3:3; \]
\[s = \text{segment(pd,xpts)} \]

\[s = 1x7 \]

\[\begin{array}{ccccccc}
1 & 1 & 2 & 2 & 2 & 3 & 3 \\
\end{array} \]

1, 2, and 3 indicate the lower tail, center, and upper tail segments in `pd`, respectively.

Draw the scatter plot of the points (\(\text{xpts} \)) grouped by their segments over the cumulative distribution function (cdf) plot. Plot the cdf of `pd`.

\[\text{xgrid} = \text{linspace} \left(\text{icdf(pd,0.01)}, \text{icdf(pd,0.99)} \right) \];
\[\text{ygrid} = \text{cdf(pd,xgrid)} \];
\[\text{plot(xgrid,ygrid)} \]

Superimpose the scatter plot of \(\text{xpts} \) by using `gscatter`.

\[\text{hold\ on} \]
\[\text{gscatter} \left(\text{xpts} , \text{cdf(pd,xpts)},s \right) \]
\[\text{legend}('\text{cdf}','\text{Lower tail}','\text{Center}','\text{Upper tail}') \]
\[\text{hold\ off} \]
Find Segment Containing Boundary Points

Generate a sample data set and create a `paretotails` object by fitting a piecewise distribution with Pareto tails to the generated data. Find the segment containing the boundary points by using the object function `segment`.

Generate a sample data set containing 20% outliers.

```matlab
rng('default'); % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
```
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a *paretotails* object by fitting a piecewise distribution to \(x \). Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the empirical distribution for the middle 80\% of the data set and generalized Pareto distributions (GPDs) for the lower and upper 10\% of the data set.

\[
\text{pd} = \text{paretotails}(x,0.1,0.9)
\]

\[
\text{pd} = \\
\text{Piecewise distribution with 3 segments} \\
-\text{Inf} < x < -1.33251 \quad (0 < p < 0.1): \text{lower tail, GPD(-0.0063504,0.567017)} \\
-1.33251 < x < 1.80149 \quad (0.1 < p < 0.9): \text{interpolated empirical cdf} \\
1.80149 < x < \text{Inf} \quad (0.9 < p < 1): \text{upper tail, GPD(0.24874,3.00974)}
\]

Return the boundary values between the piecewise segments by using the *boundary* function.

\[
[p,q] = \text{boundary(pd)}
\]

\[
p = 2\times1 \\
\begin{array}{c}
0.1000 \\
0.9000 \\
\end{array}
\]

\[
q = 2\times1 \\
\begin{array}{c}
-1.3325 \\
1.8015 \\
\end{array}
\]

The values in \(p \) are the cumulative probabilities at the boundaries, and the values in \(q \) are the corresponding quantiles.

Find the segment containing the boundary points by using the quantile values.

\[
s1 = \text{segment(pd,q)}
\]

\[
s1 = 2\times1 \\
\begin{array}{c}
2 \\
3 \\
\end{array}
\]
1, 2, and 3 indicate the lower tail, center, and upper tail segments in pd, respectively. The output s1 implies that the first boundary between the lower tail segment and the center segment belongs to the center segment, and the second boundary between the center segment and the upper tail segment belongs to the upper tail segment.

You can also use the cumulative probability values to find the corresponding segments.

```matlab
s2 = segment(pd,[],[0;p;1])
```

```plaintext
s2 = 4×1
    1
    2
    3
    3
```

Input Arguments

pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a `paretotails` object.

x — Quantile
numeric vector

Quantile values, specified as a numeric vector.

Data Types: `single` | `double`

p — Cumulative probability
numeric vector of range `[0,1]` values

Cumulative probability values, specified as a numeric vector of range `[0,1]` values.

Data Types: `single` | `double`

See Also

`boundary` | `lowerparams` | `nsegments` | `paretotails` | `upperparams`
Topics

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

Introduced in R2007a
selectModels

Class: ClassificationLinear

Choose subset of regularized, binary linear classification models

Syntax

```matlab
SubMdl = selectModels(Mdl,idx)
```

Description

`SubMdl = selectModels(Mdl,idx)` returns a subset of trained, binary linear classification models from a set of binary linear classification models (`Mdl`) trained using various regularization strengths. The indices (`idx`) correspond to the regularization strengths in `Mdl.Lambda`, and specify which models to return.

Input Arguments

- **Mdl** — Binary linear classification models trained using various regularization strengths
 ClassificationLinear model object

 Binary linear classification models trained using various regularization strengths, specified as a `ClassificationLinear` model object. You can create a `ClassificationLinear` model object using `fitclinear`.

 Although `Mdl` is one model object, if `numel(Mdl.Lambda) = L ≥ 2`, then you can think of `Mdl` as `L` trained models.

- **idx** — Indices corresponding to regularization strengths
 numeric vector of positive integers

 Indices corresponding to regularization strengths, specified as a numeric vector of positive integers. Values of `idx` must be in the interval `[1, L]`, where `L = numel(Mdl.Lambda)`.
Output Arguments

SubMdl — Subset of binary linear classification models trained using various regularization strengths
ClassificationLinear model object

Subset of binary linear classification models trained using various regularization strengths, returned as a ClassificationLinear model object.

Examples

Find Good Lasso Penalty Using Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 32-3701.

```matlab
load nlpdata
Ystats = Y == 'stats';
X = X';

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);
```

Create a set of 11 logarithmically-spaced regularization strengths from 10^{-6} through $10^{-0.5}$.

```matlab
Lambda = logspace(-6,-0.5,11);
```
Train binary, linear classification models that use each of the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to $1e^{-8}$.

```matlab
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
                   'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
                   'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
```

CVMdl =
```
classreg.learning.partition.ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
    ResponseName: 'Y'
    NumObservations: 31572
    KFold: 1
    Partition: [1x1 cvpartition]
    ClassNames: [0 1]
    ScoreTransform: 'none'
```

Properties, Methods

Extract the trained linear classification model.

```matlab
Mdl = CVMdl.Trained{1}
```

Mdl =
```
ClassificationLinear
    ResponseName: 'Y'
    ClassNames: [0 1]
    ScoreTransform: 'logit'
    Beta: [34023x11 double]
    Bias: [1x11 double]
    Lambda: [1x11 double]
    Learner: 'logistic'
```

Properties, Methods

`Mdl` is a `ClassificationLinear` model object. Because `Lambda` is a sequence of regularization strengths, you can think of `Mdl` as 11 models, one for each regularization strength in `Lambda`.

Estimate the test-sample classification error.
ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For each regularization strength, train a linear classification model using the entire data set and the same options as when you cross-validated the models. Determine the number of nonzero coefficients per model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
 'Learner','logistic','Solver','sparsa','Regularization','lasso',...
 'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
 log10(Lambda),log10(numNZCoeff + 1));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
Choose the index of the regularization strength that balances predictor variable sparsity and low classification error. In this case, a value between 10^{-4} to 10^{-1} should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate labels for new observations, pass MdlFinal and the new data to predict.
Tip

One way to build several predictive, binary linear classification models is:

1. Hold out a portion of the data for testing.
2. Train a binary, linear classification model using `fitclinear`. Specify a grid of regularization strengths using the 'Lambda' name-value pair argument and supply the training data. `fitclinear` returns one `ClassificationLinear` model object, but it contains a model for each regularization strength.
3. To determine the quality of each regularized model, pass the returned model object and the held-out data to, for example, `loss`.
4. Identify the indices (idx) of a satisfactory subset of regularized models, and then pass the returned model and the indices to `selectModels`. `selectModels` returns one `ClassificationLinear` model object, but it contains `numel(idx)` regularized models.
5. To predict class labels for new data, pass the data and the subset of regularized models to `predict`.

See Also

`ClassificationLinear` | `fitclinear` | `loss` | `predict`

Introduced in R2016a
selectModels

Choose subset of regularized linear classification models

Syntax

SubMdl = selectModels(Mdl,idx)

Description

SubMdl = selectModels(Mdl,idx) returns a subset of trained ECOC models composed of binary linear classification models from a set of multiclass ECOC models (Mdl) trained using various regularization strengths. The indices (idx) correspond to the regularization strengths in Mdl.BinaryLearners{1}.Lambda, and specify which models to return.

Input Arguments

Mdl — Multiclass ECOC model composed of linear classification models, trained using various regularization strengths
CompactClassificationECOC model object

Multiclass ECOC model composed of linear classification models, trained using various regularization strengths, specified as a CompactClassificationECOC model object.

When creating Mdl, you must:

• Use fitcecoc
• Specify linear-classification-model binary learners (see Learners)
• Specify the same regularization strengths for each linear-classification-model binary learner

Although Mdl is one model object, if numel(Mdl.BinaryLearners{1}.Lambda) = L ≥ 2, then you can think of Mdl as L trained models.
idx — Indices corresponding to regularization strengths
numeric vector of positive integers

Indices corresponding to regularization strengths, specified as a numeric vector of positive integers. Values of idx must be in the interval \([1, L]\), where \(L = \text{numel}(Mdl.BinaryLearners{1}.Lambda)\).

Data Types: double | single

Output Arguments

SubMdl — Subset of ECOC models composed of binary linear classification models, trained using various regularization strengths
CompactClassificationECOC model object

Subset of ECOC models composed of binary linear classification models, trained using various regularization strengths, returned as a CompactClassificationECOC model object.

Examples

Select Best Regularized Models

Load the NLP data set.

load nlpdata

\(X\) is a sparse matrix of predictor data, and \(Y\) is a categorical vector of class labels.

Create a set of 11 logarithmically-spaced regularization strengths from \(10^{-8}\) through \(10^{-1}\).

\[
\text{Lambda} = \logspace(-8,-1,11);
\]

Create a linear-classification-model template that specifies optimizing the objective function using SpaRSA, and use lasso penalties with the strengths specified in Lambda.

\[
t = \text{templateLinear('Solver','sparsa','Regularization','lasso',... 'Lambda',Lambda)};
\]
Hold out 30% of the data for testing. Identify the test-sample indices.

```matlab
rng(1); % For reproducibility
cvp = cvpartition(Y,'Holdout',0.30);
idxTest = test(cvp);
```

Train an ECOC model composed of linear classification models. For quicker execution time, orient the predictor data so that individual observations correspond to columns.

```matlab
X = X';
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','CVPartition',cvp);
Mdl = CVMdl.Trained{1};
umel(Mdl.BinaryLearners{1}.Lambda)
```

```matlab
ans = 11
```

`Mdl` is a `CompactClassificationECOC` model object. Because `Lambda` is an 11-dimensional vector of regularization strengths, you can think of `Mdl` as eleven trained models, one for each regularization strength.

Estimate the test-sample misclassification rates for each regularized model.

```matlab
ce = loss(Mdl,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');
```

Plot the misclassification rates with respect to regularization strength on the log scale.

```matlab
figure;
plot(log10(Lambda),log10(ce),'-o')
ylabel('log_{10} misclassification rates')
xlabel('log_{10} Lambda')
 [~,minCEIdx] = min(ce);
minLambda = Lambda(minCEIdx);
hold on
plot(log10(minLambda),log10(ce(minCEIdx)),'ro');
hold off
```
Several values of Λ yield similarly small classification error values. Higher values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Select the four models with the regularization strengths that occur around where the classification error starts increasing.

```matlab
idx = 7:10;
MdlFinal = selectModels(Mdl,idx)
```

```
MdlFinal = 
    classreg.learning.classif.CompactClassificationECOC
    ResponseName: 'Y'
    ClassNames: [comm    dsp    ecoder    fixedpoint    hdlcoder    phased    physmod    simulink    stats    supportpkg    symbolic    vision    xpc
    ScoreTransform: 'none'
```
BinaryLearners: {78×1 cell}
 CodingMatrix: [13×78 double]

Properties, Methods

LambdaFinal = MdlFinal.BinaryLearners{1}.Lambda

MdlFinal is a CompactClassificationECOC model object. You can think of it as three models trained using the four regularization strengths in LambdaFinal.

Tip

One way to build several predictive ECOC models composed of binary linear classification models is:

1 Create a binary-linear-classification-model template and specify a grid of regularization strengths using the 'Lambda' name-value pair argument.
2 Hold out a portion of the data for testing.
3 Train an ECOC model using fitcecoc. Specify the template using the 'Learners' name-value pair argument and supply the training data. fitcecoc returns one CompactClassificationECOC model object containing ClassificationLinear binary learners, but all binary learners contain a model for each regularization strength.
4 To determine the quality of each regularized model, pass the returned model object and the held-out data to, for example, loss.
5 Identify the indices (idx) of a satisfactory subset of regularized models, and then pass the returned model and the indices to selectModels. selectModels returns one CompactClassificationECOC model object, but it contains numel(idx) regularized models.
6 To predict class labels for new data, pass the data and the subset of regularized models to predict.

See Also
ClassificationLinear | ClassificationLinearECOC | fitcecoc | loss | predict | templateLinear
Introduced in R2016a
selectModels

Class: RegressionLinear

Select fitted regularized linear regression models

Syntax

SubMdl = selectModels(Mdl,idx)

Description

SubMdl = selectModels(Mdl,idx) returns a subset of trained linear regression models from a set of linear regression models (Mdl) trained using various regularization strengths. The indices idx correspond to the regularization strengths in Mdl.Lambda, and specify which models to return.

Input Arguments

Mdl — Linear regression models trained using various regularization strengths
RegressionLinear model object

Linear regression models trained using various regularization strengths, specified as a RegressionLinear model object. You can create a RegressionLinear model object using fitrlinear.

Although Mdl is one model object, if numel(Mdl.Lambda) = L ≥ 2, then you can think of Mdl as L trained models.

idx — Indices corresponding to regularization strengths
numeric vector of positive integers

Indices corresponding to regularization strengths, specified as a numeric vector of positive integers. Values of idx must be in the interval [1,L], where L = numel(Mdl.Lambda).
Data Types: double | single

Output Arguments

SubMdl — Subset of linear regression models trained using various regularization strengths
RegressionLinear model object

Subset of linear regression models trained using various regularization strengths, returned as a RegressionLinear model object.

Examples

Find Good Lasso Penalty Using Regression Loss

Simulate 10000 observations from this model

\[
y = x_{100} + 2x_{200} + e.
\]

- \(X = \{x_1, ..., x_{100}\} \) is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
- \(e \) is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from \(10^{-4} \) through \(10^{-1} \).

Lambda = logspace(-4,-1,15);

Hold out 30% of the data for testing. Identify the test-sample indices.
cvp = cvpartition(numel(Y),'Holdout',0.30);
idxTest = test(cvp);

Train a linear regression model using lasso penalties with the strengths in Lambda. Specify the regularization strengths, optimizing the objective function using SpaRSA, and the data partition. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

X = X';
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
 'Solver','sparsa','Regularization','lasso','CVPartition',cvp);
Mdl1 = CVMdl.Trained{1};
numel(Mdl1.Lambda)

ans = 15

Mdl1 is a RegressionLinear model. Because Lambda is a 15-dimensional vector of regularization strengths, you can think of Mdl1 as 15 trained models, one for each regularization strength.

Estimate the test-sample mean squared error for each regularized model.

mse = loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression model. Retrain the model using the entire data set and all options used previously, except the data-partition specification. Determine the number of nonzero coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
 'Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
 log10(Lambda),log10(numNZCoeff));
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
Select the index or indices of \texttt{Lambda} that balance minimal classification error and predictor-variable sparsity (for example, \texttt{Lambda(11)}).

\begin{verbatim}
idx = 11;
MdlFinal = selectModels(Mdl,idx);
\end{verbatim}

\texttt{MdlFinal} is a trained \texttt{RegressionLinear} model object that uses \texttt{Lambda(11)} as a regularization strength.

\section*{Tip}

One way to build several predictive linear regression models is:
Hold out a portion of the data for testing.

Train a linear regression model using \texttt{fitrlinear}. Specify a grid of regularization strengths using the '\texttt{Lambda}' name-value pair argument and supply the training data. \texttt{fitrlinear} returns one \texttt{RegressionLinear} model object, but it contains a model for each regularization strength.

To determine the quality of each regularized model, pass the returned model object and the held-out data to, for example, \texttt{loss}.

Identify the indices (\texttt{idx}) of a satisfactory subset of regularized models, and then pass the returned model and the indices to \texttt{selectModels}. \texttt{selectModels} returns one \texttt{RegressionLinear} model object, but it contains \texttt{numel(idx)} regularized models.

To predict class labels for new data, pass the data and the subset of regularized models to \texttt{predict}.

\textbf{See Also}
\texttt{RegressionLinear} | \texttt{fitrlinear} | \texttt{loss} | \texttt{predict}

\textit{Introduced in R2016a}
sequentialfs

Sequential feature selection

Syntax

\[
\begin{align*}
 \text{inmodel} &= \text{sequentialfs}(\text{fun}, \text{X}, \text{y}) \\
 \text{inmodel} &= \text{sequentialfs}(\text{fun}, \text{X}, \text{Y}, \text{Z}, \ldots) \\
 [\text{inmodel}, \text{history}] &= \text{sequentialfs}(\text{fun}, \text{X}, \ldots) \\
 [] &= \text{sequentialfs}(\ldots, \text{param1}, \text{val1}, \text{param2}, \text{val2}, \ldots)
\end{align*}
\]

Description

\text{inmodel} = \text{sequentialfs}(\text{fun}, \text{X}, \text{y}) \text{ selects a subset of features from the data matrix X that best predict the data in y by sequentially selecting features until there is no improvement in prediction. Rows of X correspond to observations; columns correspond to variables or features. y is a column vector of response values or class labels for each observation in X. X and y must have the same number of rows. fun is a function handle to a function that defines the criterion used to select features and to determine when to stop. The output inmodel is a logical vector indicating which features are finally chosen.}

Starting from an empty feature set, \text{sequentialfs} creates candidate feature subsets by sequentially adding each of the features not yet selected. For each candidate feature subset, \text{sequentialfs} performs 10-fold cross-validation by repeatedly calling \text{fun} with different training subsets of X and y, XTRAIN and ytrain, and test subsets of X and y, XTEST and ytest, as follows:

\[
criterion = \text{fun}(\text{XTRAIN}, \text{ytrain}, \text{XTEST}, \text{ytest})
\]

XTRAIN and ytrain contain the same subset of rows of X and Y, while XTEST and ytest contain the complementary subset of rows. XTRAIN and XTEST contain the data taken from the columns of X that correspond to the current candidate feature set.

Each time it is called, \text{fun} must return a scalar value criterion. Typically, \text{fun} uses XTRAIN and ytrain to train or fit a model, then predicts values for XTEST using that model, and finally returns some measure of distance, or loss, of those predicted values from ytest. In the cross-validation calculation for a given candidate feature set,
sequentialfs sums the values returned by fun and divides that sum by the total number of test observations. It then uses that mean value to evaluate each candidate feature subset.

Typical loss measures include sum of squared errors for regression models (sequentialfs computes the mean-squared error in this case), and the number of misclassified observations for classification models (sequentialfs computes the misclassification rate in this case).

Note sequentialfs divides the sum of the values returned by fun across all test sets by the total number of test observations. Accordingly, fun should not divide its output value by the number of test observations.

After computing the mean criterion values for each candidate feature subset, sequentialfs chooses the candidate feature subset that minimizes the mean criterion value. This process continues until adding more features does not decrease the criterion.

inmodel = sequentialfs(fun,X,Y,Z,...) allows any number of input variables X, Y, Z, ... sequentialfs chooses features (columns) only from X, but otherwise imposes no interpretation on X, Y, Z, ... All data inputs, whether column vectors or matrices, must have the same number of rows. sequentialfs calls fun with training and test subsets of X, Y, Z, ... as follows:

```
criterion = fun(XTRAIN,YTRAIN,ZTRAIN,..., XTEST,YTEST,ZTEST,...)
```

sequentialfs creates XTRAIN, YTRAIN, ZTRAIN, ..., XTEST, YTEST, ZTEST, ... by selecting subsets of the rows of X, Y, Z, ... fun must return a scalar value criterion, but may compute that value in any way. Elements of the logical vector inmodel correspond to columns of X and indicate which features are finally chosen.

```
[inmodel,history] = sequentialfs(fun,X,...) returns information on which feature is chosen at each step. history is a scalar structure with the following fields:

• Crit — A vector containing the criterion values computed at each step.
• In — A logical matrix in which row i indicates the features selected at step i.
```

[] = sequentialfs(...,param1,val1,param2,val2,...) specifies optional parameter name/value pairs from the following table.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cv'</td>
<td>The validation method used to compute the criterion for each candidate feature subset.</td>
</tr>
<tr>
<td></td>
<td>• When the value is a positive integer k, <code>sequentialfs</code> uses k-fold cross-validation without stratification.</td>
</tr>
<tr>
<td></td>
<td>• When the value is an object of the <code>cvpartition</code> class, other forms of cross-validation can be specified.</td>
</tr>
<tr>
<td></td>
<td>• When the value is 'resubstitution', the original data are passed to <code>fun</code> as both the training and test data to compute the criterion.</td>
</tr>
<tr>
<td></td>
<td>• When the value is 'none', <code>sequentialfs</code> calls <code>fun</code> as <code>criterion = fun(X,Y,Z,...)</code>, without separating test and training sets.</td>
</tr>
<tr>
<td></td>
<td>The default value is 10, that is, 10-fold cross-validation without stratification.</td>
</tr>
<tr>
<td></td>
<td>So-called wrapper methods use a function <code>fun</code> that implements a learning algorithm. These methods usually apply cross-validation to select features. So-called filter methods use a function <code>fun</code> that measures characteristics of the data (such as correlation) to select features.</td>
</tr>
<tr>
<td>'mcreps'</td>
<td>A positive integer indicating the number of Monte-Carlo repetitions for cross-validation. The default value is 1. The value must be 1 if the value of 'cv' is 'resubstitution' or 'none'.</td>
</tr>
<tr>
<td>'direction'</td>
<td>The direction of the sequential search. The default is 'forward'. A value of 'backward' specifies an initial candidate set including all features and an algorithm that removes features sequentially until the criterion increases.</td>
</tr>
<tr>
<td>'keepin'</td>
<td>A logical vector or a vector of column numbers specifying features that must be included. The default is empty.</td>
</tr>
<tr>
<td>'keepout'</td>
<td>A logical vector or a vector of column numbers specifying features that must be excluded. The default is empty.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>'nfeatures'</td>
<td>The number of features at which sequentialfs should stop. inmodel includes exactly this many features. The default value is empty, indicating that sequentialfs should stop when a local minimum of the criterion is found. A nonempty value overrides values of 'MaxIter' and 'TolFun' in 'options'.</td>
</tr>
<tr>
<td>'nullmodel'</td>
<td>A logical value, indicating whether or not the null model (containing no features from X) should be included in feature selection and in the history output. The default is false.</td>
</tr>
<tr>
<td>'options'</td>
<td>Options structure for the iterative sequential search algorithm, as created by statset. This option requires Parallel Computing Toolbox. sequentialfs uses the following statset parameters:</td>
</tr>
<tr>
<td></td>
<td>• Display — Amount of information displayed by the algorithm. The default is 'off'.</td>
</tr>
<tr>
<td></td>
<td>• MaxIter — Maximum number of iterations allowed. The default is Inf.</td>
</tr>
<tr>
<td></td>
<td>• TolFun — Termination tolerance for the objective function value. The default is 1e-6 if 'direction' is 'forward'; 0 if 'direction' is 'backward'.</td>
</tr>
<tr>
<td></td>
<td>• TolTypeFun — Use absolute or relative objective function tolerances. The default is 'rel'.</td>
</tr>
<tr>
<td></td>
<td>• UseParallel — Set to true to compute in parallel. Default is false.</td>
</tr>
<tr>
<td></td>
<td>• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.</td>
</tr>
<tr>
<td></td>
<td>• Streams — A RandStream object or cell array consisting of one such object. If you do not specify Streams, sequentialfs uses the default stream.</td>
</tr>
</tbody>
</table>
Examples

Perform sequential feature selection for classification of noisy features:

```matlab
load fisheriris;
X = randn(150,10);
X(:,[1 3 5 7 ])= meas;
y = species;

c = cvpartition(y,'k',10);
opts = statset('display','iter');
fun = @(XT,yT,Xt,yt)...
    (sum(~strcmp(yt,classify(Xt,XT,yT,'quadratic'))));

[fs,history] = sequentialfs(fun,X,y,'cv',c,'options',opts)

Start forward sequential feature selection:
Initial columns included: none
Columns that cannot be included: none
Step 1, added column 7, criterion value 0.04
Step 2, added column 5, criterion value 0.0266667
Final columns included:  5 7

fs =
    0 0 0 0 1 0 1 0 0 0
history =
    In: [2x10 logical]
    Crit: [0.0400 0.0267]

history.In
ans =
    0 0 0 0 0 0 1 0 0 0
    0 0 0 0 1 0 1 0 0 0
```

ExtendedCapabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also
crossval | cvpartition | relieff | statset | stepwisefit

Topics
“Feature Selection” on page 15-70

Introduced in R2008a
set

Class: dataset

Set and display properties

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

set(A)
set(A,PropertyName)
A = set(A,PropertyName,PropertyValue,...)
B = set(A,PropertyName,value)

Description

set(A) displays all properties of the dataset array A and their possible values.

set(A,PropertyName) displays possible values for the property specified by PropertyName.

A = set(A,PropertyName,PropertyValue,...) sets property name/value pairs.

B = set(A,PropertyName,value) returns a dataset array B that is a copy of A, but with the property 'PropertyName' set to the value value.

Note Using set(A,'PropertyName',value) without assigning to a variable does not modify A's properties. Use A = set(A,'PropertyName',value) to modify A.
Examples

Create a dataset array from Fisher's iris data and add a description:

```matlab
load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs),'%-d'));
iris = dataset({nominal(species),'species'},
    {meas,'SL','SW','PL','PW'},
    'ObsNames',NameObs);
iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)
    Description: 'Fisher's Iris Data'
    Units: {}
    DimNames: {'Observations' 'Variables'}
    UserData: []
    ObsNames: {150x1 cell}
    VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}
```

See Also

`get` | `summary`
setDefaultYfit

Class: CompactTreeBagger

Set default value for predict

Syntax

B = setDefaultYfit(B,Yfit)

Description

B = setDefaultYfit(B,Yfit) sets the default prediction for ensemble B to Yfit. The default prediction must be specified as a character vector or string scalar for classification or as a numeric scalar for regression. This setting controls what predicted value CompactTreeBagger returns when no prediction is possible, for example when the predict method needs to predict for an observation which has only false values in the matrix supplied through 'UseInstanceForTree' argument.

See Also

predict
setdiff

Class: dataset

Set difference for dataset array observations

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

C = setdiff(A,B)
C = setdiff(A,B,vars)
C = setxor(A,B,vars,setOrder)
[C,iA] = setxor(__)

Description

C = setdiff(A,B) for dataset arrays A and B returns the set of observations that are in A but not B, with repetitions removed. The observations in the dataset array C are sorted.

C = setdiff(A,B,vars) returns the set of observations that are in A but not B, considering only the variables specified in vars, with repetitions removed. The observations in the dataset array C are sorted by these variables. The values for variables not specified in vars for each observation in C are taken from the corresponding observation in A. If there are multiple observations in A that correspond to an observation in C, those values are taken from the first occurrence.

C = setxor(A,B,vars,setOrder) returns the observations in C in the order specified by setOrder.

[C,iA] = setxor(__) also returns the index vector iA such that C = A(iA,:). If there are repeated observations in A, then setxor returns the index of the first occurrence. You can use any of the previous input arguments.
Input Arguments

A, B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers containing variable column numbers. vars indicates the variables that setdiff considers.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

- `'sorted'` Observations in C are in sorted order (default).
- `'stable'` Observations in C are in the same order that they appear in A.

Output Arguments

C

Dataset array with the observations that are in A but not B, with repetitions removed. C is in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations from A that are in C. The vector iA contains the index to the first occurrence of any repeated observations in A.

Examples
Set Difference of Two Dataset Arrays

Create a scalar structure array, and then convert it into two dataset arrays.

```matlab
S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));

The intersection of A and B is the second observation, with last name BROWN.

Return the set difference of A and B.

[C,iA] = setdiff(A,B)

C =
    Name    Gender  SystolicBP  DiastolicBP
  'CLARK'    'M'      124        93

iA = 1

The first observation in A is not present in B.

See Also
dataset | intersect | ismember | setxor | sortrows | union | unique
Topics
“Dataset Arrays” on page 2-137
setlabels

Assign labels to levels of nominal or ordinal arrays

**Note** The nominal and ordinal array data types might be removed in a future release. To represent ordered and unordered discrete, nonnumeric data, use the “Categorical Arrays” (MATLAB) data type instead.

**Syntax**

```
B = setlabels(A,labels)
B = setlabels(A,labels,levels)
```

**Description**

```
B = setlabels(A,labels) returns a nominal or ordinal array object of the same type as A, but with levels labeled in the order specified by labels.
B = setlabels(A,labels,levels) labels only the levels specified in levels.
```

**Input Arguments**

- **A** — Nominal or ordinal array
  
  nominal array | ordinal array

  Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or ordinal.

- **labels** — Labels to assign
  
  string array | cell array of character vectors | 2-D character matrix

  Labels to assign to levels, specified as a string array, cell array of character vectors, or 2-D character matrix.

  Data Types: char | string | cell
levels — Levels to assign labels
string array | cell array of character vectors | 2-D character matrix

Level to assign labels to, specified as a string array, cell array of character vectors, or 2-D character matrix.

Data Types: char | string | cell

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

See Also

getlabels | nominal | ordinal

Topics

“Change Category Labels” on page 2-9

Introduced in R2007a
**setxor**

**Class:** dataset

Set exclusive or for dataset array observations

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

```matlab
C = setxor(A,B)
C = setxor(A,B,vars)
C = setxor(A,B,vars,setOrder)
[C,iA,iB] = setxor(___)
```

**Description**

`C = setxor(A,B)` for dataset arrays `A` and `B` returns the set of observations that are not in the intersection of the two arrays, with repetitions removed. The observations in the dataset array `C` are sorted.

`C = setxor(A,B,vars)` returns the set of observations that are not in the intersection of the two arrays, considering only the variables specified in `vars`, with repetitions removed. The observations in the dataset array `C` are sorted by these variables. The values for variables not specified in `vars` for each observation in `C` are taken from the corresponding observation in `A` or `B`. If there are multiple observations in `A` or `B` that correspond to an observation in `C`, those values are taken from the first occurrence.

`C = setxor(A,B,vars,setOrder)` returns the observations in `C` in the order specified by `setOrder`.

`[C,iA,iB] = setxor(___)` also returns index vectors `iA` and `iB` such that `C` is a sorted combination of the values `A(iA,:)` and `B(iB,:)`. If there are repeated
observations in A or B, then setxor returns the index of the first occurrence. You can use any of the previous input arguments.

**Input Arguments**

**A, B**

Input dataset arrays.

**vars**

String array or cell array of character vectors containing variable names, or a vector of integers containing variable column numbers. vars indicates the variables in A and B that setxor considers.

Specify vars as [] to use its default value of all variables.

**setOrder**

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

- 'sorted' Observations in C are in sorted order (default).
- 'stable' Observations in C are in the same order that they appear in A, then B.

**Output Arguments**

**C**

Dataset array with the observations not in the intersection of A and B, with repetitions removed. C is in sorted order (by default), or the order specified by setOrder.

**iA**

Index vector, indicating the observations from A that are in C. The vector iA contains the index to the first occurrence of any repeated observations in A.
**iB**

Index vector, indicating the observations from B that are in C. The vector iB contains the index to the first occurrence of any repeated observations in B.

**Examples**

**Symmetric Difference of Two Dataset Arrays**

Create a scalar structure array, and then convert it into two dataset arrays.

```matlab
S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;
```

```matlab
A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));
```

The intersection of A and B is the second observation, with last name **BROWN**.

Return the symmetric difference of A and B.

```matlab
[C, iA, iB] = setxor(A,B);
```

```
C =

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>SystolicBP</th>
<th>DiastolicBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARK</td>
<td>M</td>
<td>124</td>
<td>93</td>
</tr>
<tr>
<td>MARTIN</td>
<td>M</td>
<td>130</td>
<td>92</td>
</tr>
</tbody>
</table>
```
\[ [iA \ iB] \]
\[ \text{ans} = 1 \times 2 \]
\[
1 \\
2
\]

The symmetric difference contains the first observation from A, and the second observation from B.

**See Also**
dataset | intersect | ismember | setdiff | sortrows | union | unique

**Topics**
“Dataset Arrays” on page 2-137
shrink

Prune ensemble

Syntax

cmp = shrink(ens)
cmp = shrink(ens,Name,Value)

Description

cmp = shrink(ens) returns a compact shrunken version of ens, a regularized ensemble. cmp retains only learners with weights above a threshold.

cmp = shrink(ens,Name,Value) returns an ensemble with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

lambda

Vector of nonnegative regularization parameter values for lasso. If ens.Regularization is nonempty (populate it with regularize), shrink regularizes

32-6119
ens using lambda. If ens contains a Regularization structure, you cannot pass lambda.

**Default:** []

**threshold**

Lower cutoff on weights for weak learners, a numeric nonnegative scalar. shrink creates cmp from those learners with weights above threshold.

**Default:** 0

**weightcolumn**

Column index of ens.Regularization.TrainedWeights, a positive integer. shrink creates cmp with learner weights from this column.

**Default:** 1

### Output Arguments

**cmp**

A regression ensemble of class CompactRegressionEnsemble. Use cmp for making predictions exactly as you use ens, with the `predict` method.

shrink orders the members of cmp from largest to smallest.

### Examples

**Shrink Bagged Regression Ensemble**

Shrink a 300-member bagged regression ensemble, and view the number of members of the resulting ensemble.

Generate sample data.

```matlab
rng(10,'twister') % For reproducibility
X = rand(2000,20);
```
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;

Shrink a 300-member bagged regression ensemble using 0.1 for the parameter lambda.

bag = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',300,'Learners','Tree');
cmp = shrink(bag,'lambda',0.1);

View the number of members of the resulting ensemble.

cmp.NumTrained
ans = 87

See Also

cvshrink | predict | regularize

Topics

“Ensemble Regularization” on page 18-86
signrank

Wilcoxon signed rank test

Syntax

\[

p = \text{signrank}(x) \\
p = \text{signrank}(x,y) \\
p = \text{signrank}(x,y,\text{Name},\text{Value}) \\
[p,h] = \text{signrank}(\_\_) \\
[p,h,\text{stats}] = \text{signrank}(\_\_) \\
[\_\_] = \text{signrank}(x,m) \\
[\_\_] = \text{signrank}(x,m,\text{Name},\text{Value})
\]

Description

\[ p = \text{signrank}(x) \] returns the p-value of a two-sided Wilcoxon signed rank test on page 32-6130.

\text{signrank} tests the null hypothesis that data in the vector \( x \) come from a distribution whose median is zero at the 5\% significance level. The test assumes that the data in \( x \) come from a continuous distribution symmetric about its median.

\[ p = \text{signrank}(x,y) \] returns the p-value of a paired, two-sided test for the null hypothesis that \( x - y \) comes from a distribution with zero median.

\[ p = \text{signrank}(x,y,\text{Name},\text{Value}) \] returns the p-value for the sign test with additional options specified by one or more \text{Name},\text{Value} pair arguments.

\[ [p,h] = \text{signrank}(\_\_) \] also returns a logical value indicating the test decision. \( h = 1 \) indicates a rejection of the null hypothesis, and \( h = 0 \) indicates a failure to reject the null hypothesis at the 5\% significance level. You can use any of the input arguments in the previous syntaxes.

\[ [p,h,\text{stats}] = \text{signrank}(\_\_) \] also returns the structure \text{stats} with information about the test statistic.
[___] = signrank(x,m) returns any of the output arguments in the previous syntaxes for the null hypothesis that the data in x are observations from a distribution with median m.

[___] = signrank(x,m,Name,Value) returns any of the output arguments in the previous syntaxes for the signed rank test with additional options specified by one or more Name,Value pair arguments.

**Examples**

**Test for Zero Median of a Single Population**

Test the hypothesis of zero median.

Generate the sample data.

```
rng('default') % for reproducibility
x = randn(1,25) + 1.30;
```

Test the hypothesis that the data in x has zero median.

```
[p,h] = signrank(x)
p = 3.2229e-05
h = logical
 1
```

At the default 5% significance level, the value $h = 1$ indicates that the test rejects the null hypothesis of zero median.

**Test the Median of Differences of Paired Samples**

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.
rng('default') % for reproducibility  
x = lognrnd(2,.25,10,1);  
y = x + trnd(2,10,1);  

Test the hypothesis that \(x - y\) has zero median.  

\[ [p,h] = \text{signrank}(x,y) \]

\[ p = 0.3223 \]

\[ h = \text{logical} 0 \]

The results indicate that the test fails to reject the null hypothesis of zero median in the difference at the default 5% significance level.

**Signed Rank Test for Large Samples**

Conduct a one-sided test on a large sample using approximation.

Load the sample data.

\[ \text{load(fullfile(matlabroot,'examples','stats','gradespaired.mat'))} \]

Test the null hypothesis that the median of the grade differences of students before and after participating in a tutoring program is 0 against the alternate that it is less than 0.

\[ [p,h,stats] = \text{signrank}(\text{gradespaired}(:,1),...\text{gradespaired}(:,2),'tail','left') \]

\[ p = 0.0047 \]

\[ h = \text{logical} 1 \]

\[ \text{stats} = \text{struct with fields:} \]

\[ \text{zval: -2.5982} \]

\[ \text{signedrank: 2.0175e+03} \]
Because the sample size is greater than 15, `signrank` uses an approximate method to calculate the \( P \)-value and also returns the value of the \( z \)-statistic. The value \( h = 1 \) indicates that the test rejects the null hypothesis that there is no difference between the grade medians at the 5% significance level. There is enough statistical evidence to conclude that the median grade before the tutoring program is less than the median grade after the tutoring program.

Repeat the test using the exact method.

```
[p,h,stats] = signrank(gradespaired(:,1),gradespaired(:,2),...
 'tail','left','method','exact')
```

\[
p = 0.0045
\]

\[
h = \text{logical}
\]

\[
1
\]

\[
stats = \text{struct with fields:}
\]

\[
\text{signedrank: 2.0175e+03}
\]

The results obtained using the approximate method are consistent with the exact method.

**Two-Sided Test for the Median of a Single Population**

Load the sample data.

```
load mileage
```

The data contains the mileages per gallon for three different types of cars in columns 1 to 3.

Test the hypothesis that the median mileage for the type of cars in the second column differs from 33.

```
[p,h,stats] = signrank(mileage(:,2),33)
```

\[
p = 0.0313
\]
h = logical
1

stats = struct with fields:
signedrank: 21

At the 5% significance level, the results indicate that the median mileage for the second type of cars differs from 33. Note that \texttt{signrank} uses an exact method to calculate the \( P \)-value for small samples and does not return the \( z \)-statistic.

**Right-Sided Test for the Median of a Single Population**

Use the name-value pair arguments in \texttt{signrank}.

Load the sample data.

\texttt{load mileage}

The data contains the mileage per gallon for three different types of cars in columns 1 to 3.

Test the hypothesis that the median mileage for the type of cars in the second row are larger than 33.

\[ [p,h,stats] = \texttt{signrank(mileage(:,2),33,'tail','right')} \]

\( p = 0.0156 \)

\( h = \text{logical} \)

1

stats = struct with fields:
signedrank: 21

Repeat the same test at the 1% significance level using the approximate method.

\[ [p,h,stats] = \texttt{signrank(mileage(:,2),33,'tail','right',...}
\text{'alpha',0.01,'method','approximate'}) \]
p = 0.0180
h = logical
  0

stats = struct with fields:
    zval: 2.0966
    signedrank: 21

This result, h = 0, indicates that the null hypothesis cannot be rejected at the 1% significance level.

**Input Arguments**

**x — Sample data**
vector

Sample data, specified as a vector.
Data Types: single | double

**y — Sample data**
vector

Sample data, specified as a vector. y must be the same length as x.
Data Types: single | double

**m — Hypothesized value of the median**
scalar

Hypothesized value of the median, specified as a scalar.
Example: `signrank(x,10)`
Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a right-tailed signed rank test with 1% significance level, which returns the approximate p-value.

**alpha — Significance level**  
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range 0 to 1. Significance level of h is 100 * alpha%.

Example: 'alpha', 0.01  
Data Types: double | single

**method — Computation method of p**  
'exact' | 'approximate'

Computation method of p, specified as the comma-separated pair consisting of 'method' and one of the following:

| 'exact' | Exact computation of the p-value, p. Default value for 15 or fewer observations in x, x - m, or x - y when method is unspecified. |
| 'approximate' | Normal approximation while computing the p-value, p. Default value for more than 15 observations in x, x - m, or x - y when 'method' is unspecified because the exact method can be slow on large samples. |

Example: 'method','exact'

**tail — Type of test**  
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:
| 'both'   | Two-sided hypothesis test, which is the default test type.  
|          | • For a one-sample test, the alternate hypothesis states that the data in \( x \) come from a continuous distribution with median different than 0 or \( m \).  
|          | • For a two-sample test, the alternate hypothesis states that the data in \( x - y \) come from a distribution with median different than 0.  
| 'right'  | Right-tailed hypothesis test.  
|          | • For a one-sample test, the alternate hypothesis states that the data in \( x \) come from a continuous distribution with median greater than 0 or \( m \).  
|          | • For a two-sample test, the alternate hypothesis states the data in \( x - y \) come from a distribution with median greater than 0.  
| 'left'   | Left-tailed hypothesis test.  
|          | • For a one-sample test, the alternate hypothesis states that the data in \( x \) come from a continuous distribution with median less than 0 or \( m \).  
|          | • For a two-sample test, the alternate hypothesis states the data in \( x - y \) come from a distribution with median less than 0.  

Example: 'tail','left'

## Output Arguments

**p — p-value of the test**  
nonnegative scalar  

\( p \)-value of the test, returned as a nonnegative scalar from 0 to 1. \( p \) is the probability of observing a test statistic as or more extreme than the observed value under the null hypothesis. `signrank` computes the two-sided \( p \)-value by doubling the most significant one-sided value.

**h — Result of the hypothesis test**  
1 | 0  

Result of the hypothesis test, returned as a logical value.  

- If \( h = 1 \), this indicates the rejection of the null hypothesis at the \( 100 \cdot \alpha \% \) significance level.
• If \( h = 0 \), this indicates a failure to reject the null hypothesis at the \( 100 \times \alpha \% \) significance level.

**stats — Test statistics**

structure

Test statistics, returned as a structure. The test statistics stored in `stats` are:

• `signrank`: Value of the sign rank test statistic.
• `zval`: Value of the \( z \)-statistic on page 32-6130 (computed when 'method' is 'approximate').

**Definitions**

**Wilcoxon Signed Rank Test**

The Wilcoxon signed rank test is a nonparametric test for two populations when the observations are paired. In this case, the test statistic, \( W \), is the sum of the ranks of positive differences between the observations in the two samples (that is, \( x - y \)). When you use the test for one sample, then \( W \) is the sum of the ranks of positive differences between the observations and the hypothesized median value \( M_0 \) (which is 0 when you use `signrank(x)` and \( m \) when you use `signrank(x,m)`).

**z-Statistic**

For large samples, or when method is approximate, the `signrank` function calculates the \( p \)-value using the \( z \)-statistic, given by

\[
z = \frac{(W - n(n + 1)/4)}{\sqrt{n(n+1)(2n+1)-\text{tieadj}}/24},
\]

where \( n \) is the sample size of the difference \( x - y \) or \( x - m \). For the two-sample case, `signrank` uses `[tie_rank,tieadj] = tiedrank(abs(diffxy),0,0,epsdiff)` to obtain the tie adjustment value `tieadj`. 
Algorithms

signrank treats NaNs in x and y as missing values and ignores them.

For the two-sample case, signrank uses a tolerance based on the values epsdiff = eps(x) + eps(y). The signrank function treats any pair of values with difference d(i) = x(i) - y(i) that differ by no more than the sum of their two eps values (abs(d(i)) < epsdiff(i)) as ties.

References


See Also
ranksum | signtest | ttest | ztest

Introduced before R2006a
signtest

Sign test

Syntax

\[
p = \text{signtest}(x) \\
p = \text{signtest}(x,y) \\
p = \text{signtest}(x,y,\text{Name,Value}) \\
[p,h] = \text{signtest}(\_\_\_) \\
[p,h,\text{stats}] = \text{signtest}(\_\_\_) \\
[\_\_] = \text{signtest}(x,m) \\
[\_\_] = \text{signtest}(x,m,\text{Name,Value})
\]

Description

\( p = \text{signtest}(x) \) returns the \( p \)-value for a two-sided sign test on page 32-6140.

\( \text{signtest} \) tests the hypothesis that data in \( x \) has a continuous distribution with zero median against the alternative that the distribution does not have zero median at the 5% significance level.

\( p = \text{signtest}(x,y) \) returns the \( p \)-value of a two-sided sign test on page 32-6140. Here, \( \text{signtest} \) tests for the hypothesis that the data in \( x - y \) has a distribution with zero median against the alternative that the distribution does not have zero median. Note that a hypothesis of zero median for \( x - y \) is not equivalent to a hypothesis of equal median for \( x \) and \( y \).

\( p = \text{signtest}(x,y,\text{Name,Value}) \) returns the \( p \)-value for the sign test with additional options specified by one or more \( \text{Name,Value} \) pair arguments.

\([p,h] = \text{signtest}(\_\_\_) \) also returns a logical value indicating the test decision. The value \( h = 1 \) indicates a rejection of the null hypothesis, and \( h = 0 \) indicates a failure to reject the null hypothesis at the 5% significance level. You can use any of the input arguments in the previous syntaxes.
[p,h,stats] = signtest(__) also returns the structure stats containing information about the test statistic.

[___] = signtest(x,m) returns any of the output arguments in the previous syntaxes for the test whether the data in x are observations from a distribution with median m against the alternative that the median is different from m.

[___] = signtest(x,m,Name,Value) returns any of the output arguments in the previous syntaxes for the sign test with additional options specified by one or more Name,Value pair arguments.

**Examples**

**Test for Zero Median of a Single Population**

Test the hypothesis of zero median.

Generate the sample data.

```matlab
rng('default') % for reproducibility
x = randn(1,25);
```

The sampling distribution of x is symmetric with zero median.

Test the null hypothesis that x comes from a distribution with a median different from zero median.

```matlab
[p,h,stats] = signtest(x,0)
p = 0.1078
h = logical
 0

stats = struct with fields:
 zval: NaN
 sign: 17
```
At the default 5% significance level, the result \( h = 0 \) indicates that \( \text{signtest} \) fails to reject to the null hypothesis of zero median. \( \text{signtest} \) calculates the \( p \)-value using the exact method, hence it does not calculate \( z\text{val} \) and returns it as a \( \text{NaN} \).

**Test for Zero Median for the Difference of Paired Samples**

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.

```matlab
rng('default') % for reproducibility
before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
```

The sampling distribution of the difference between \( \text{before} \) and \( \text{after} \) is symmetric with zero median.

Test the null hypothesis that the difference of \( \text{before} \) and \( \text{after} \) has zero median.

```matlab
[p,h] = signrank(before,after)
p = 0.7539
h = logical
0
```

At the default 5% significance level, the value \( h = 0 \) indicates that \( \text{signrank} \) fails to reject to the null hypothesis of zero median in the difference.

**Medians of Paired Samples**

Test the hypothesis of zero median for the difference between two paired samples using the exact and approximate methods.

Generate the sample data.

```matlab
rng('default') % for reproducibility
x = lognrnd(2,.25,15,1);
```
\begin{verbatim}
y = x + trnd(2,15,1);
display([x y])

8.4521    7.8047
11.6869   11.4094
 4.2009    5.1133
 9.1664   12.1655
 8.0020   10.0300
 5.3285    6.0153
 6.6300    5.1235
 8.0499    8.6737
18.0763   19.2164
14.7665   15.3380
 5.2726    8.4187
15.7798   16.2093
 8.8583    7.8894
 7.2735    7.4783
 8.8347    7.8894

Test the hypothesis that $x - y$ has zero median.

[p,h,stats] = signtest(x,y)

p = 0.3018
h = logical
 0

stats = struct with fields:
  zval: NaN
  sign: 5

At the default 5% significance level, the value $h = 0$ indicates that the test fails to reject the null hypothesis of zero median in the difference.

Repeat the test using the approximate method.

[p,h,stats] = signtest(x,y,'Method','approximate')

p = 0.3017
h = logical
 0
\end{verbatim}
The approximate $p$-value, which `signtest` obtains using the z-statistic, is really close to the exact $p$-value.

### Test for Large Samples

Perform a left-sided sign test for large samples.

Load the sample data.

```matlab
load gradespaired
```

Test the null hypothesis that the median of the grade differences before and after the tutoring program is 0 against the alternate that it is less than 0.

```matlab
[p,h,stats] = signtest(gradespaired(:,1),gradespaired(:,2),'Tail','left')
p = 0.0013
h = logical
 1
```

```matlab
stats = struct with fields:
 zval: -3.0110
 sign: 37
```

Because the sample size is large (greater than 100), `signtest` uses an approximate method to calculate the $p$-value and also returns the value of the $z$-statistic. The test rejects the null hypothesis that there is no difference between the grade medians at the 5% significance level.
Test for Median of a Single Population

Test the hypothesis that the population median is different from a specified value.

Load the sample data.

load lawdata

The data set has 15 observations for variables gpa and lsat.

Test the hypothesis that the median lsat score is higher than 570.

[p,h,stats] = signtest(lsat,570,'Tail','right')

p = 0.0176
h = logical
  1

stats = struct with fields:
    zval: NaN
    sign: 12

Both the $p$-value, 0.0176, and $h = 1$ indicate that at the 5% significance level the test concludes in favor of the alternate hypothesis.

Input Arguments

x — Sample data
    vector

Sample data, specified as a vector.

Data Types: single | double

y — Sample data
    vector

Sample data, specified as a vector. y must be the same length as x.
Data Types: single | double

**m** — Hypothesized value of the median
scalar

Hypothesized value of the median, specified as a scalar.
Example: `signtest(x,35)`
Data Types: single | double

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Alpha',0.01,'Method','approximate','Tail','right'` specifies a right-tailed sign test with 1% significance level, which returns the approximate p-value.

**Alpha** — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the hypothesis test, specified as the comma-separated pair consisting of `'Alpha'` and a scalar value in the range 0 to 1. The default value of `Alpha` is 0.05. Significance level of h is 100 * `Alpha`%.
Example: `'Alpha', 0.01`
Data Types: double | single

**Method** — p-value computation method
`'exact' | 'approximate'`

p-value computation method, specified as the comma-separated pair consisting of `'Method'` and one of the following:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'exact'</code></td>
<td>Exact computation of the p-value, p.</td>
</tr>
<tr>
<td><code>'approximate'</code></td>
<td>Normal approximation for computing the p-value, p.</td>
</tr>
</tbody>
</table>

The default computation method is `'exact'`, if there are fewer than 100 observations and `'approximate'` if there are 100 observations or more.
Example: 'Method','exact'

**Tail — Type of test**

<table>
<thead>
<tr>
<th>'both' (default)</th>
<th>'right'</th>
<th>'left'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-sided hypothesis test, which is the default test type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median different than zero (or ( m )).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a two-sample test, the alternate hypothesis states that the data in x-y come from a distribution with median different than zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right-tailed hypothesis test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median greater than zero (or ( m )).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a two-sample test, the alternative hypothesis states the data in x-y come from a distribution with median greater than zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-tailed hypothesis test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median less than zero (or ( m )).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For a two-sample test, the alternative hypothesis states the data in x-y come from a distribution with median less than zero.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: 'Tail','left'

**Output Arguments**

\( p \) — \( p \)-value of the test  
nonnegative scalar

\( p \)-value of the test, returned as a nonnegative scalar from 0 to 1. \( p \) is the probability of observing a test statistic as or more extreme than the observed value under the null hypothesis. \texttt{signtest} computes the two-sided \( p \)-value by doubling the most significant one-sided value.
h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

- If $h = 1$, this indicates rejection of the null hypothesis at the $100 \times \text{Alpha}\%$ significance level.
- If $h = 0$, this indicates a failure to reject the null hypothesis at the $100 \times \text{Alpha}\%$ significance level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

- sign: Value of the sign test statistic.
- zval: Value of the z-statistic on page 32-6140 (computed only for large samples).

Definitions

Sign Test

The sign test is a nonparametric test for the median of a population or median of the difference of two populations.

For example, for tests on a single population median:

- If the test is two-sided, then the test statistic, $S$, is the minimum of the number of observations that are smaller or larger than the hypothesized median value, $M_0$.
- If the test is right-sided, then $S$ is the number of observations that are larger than the hypothesized median value $M_0$.
- If the test is left-sided, then $S$ is the number of observations that are smaller than the hypothesized median value $M_0$.

z-Statistic

For a large sample, signtest uses the z-statistic to approximate the $p$-value.
The `signtest` test statistic is the number of elements that are greater than 0 (for `signtest(x)` or `signtest(x-y)`), or m (for `signtest(x,m)`). Hence, the z-statistic of the sign test, with the continuity correction, is:

\[ z = \frac{S - E(S)}{\sqrt{V(S)}} = \frac{(S - (0.5)n - 0.5 \text{sign}(npos - nneg))}{\sqrt{(0.5)(0.5)n}}, \]

where `npos` and `nneg` are the number of positive and negative differences from the hypothesized median value, respectively.

### Algorithms

For a one-sample test, `signtest` omits values in `x` that are zero or `NaN`.

For a two-sample test, `signtest` omits values in `x - y` that are zero or `NaN`.

### References


### See Also

`ranksum` | `signrank` | `ttest` | `ztest`
silhouette

Silhouette plot

**Syntax**

```
silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,metric)
[...] = silhouette(X,clust,distfun,p1,p2,...)
```

**Description**

`silhouette(X,clust)` plots cluster silhouettes for the `n`-by-`p` data matrix `X`, with clusters defined by `clust`. Rows of `X` correspond to points, columns correspond to coordinates. `clust` can be a categorical variable, numeric vector, character matrix, string array, or cell array of character vectors containing a cluster name for each point. `silhouette` treats NaNs and empty values in `clust` as missing values, and ignores the corresponding rows of `X`. By default, `silhouette` uses the squared Euclidean distance between points in `X`.

`s = silhouette(X,clust)` returns the silhouette values in the `n`-by-1 vector `s`, but does not plot the cluster silhouettes.

`[s,h] = silhouette(X,clust)` plots the silhouettes, and returns the silhouette values in the `n`-by-1 vector `s`, and the figure handle in `h`.

`[...] = silhouette(X,clust,metric)` plots the silhouettes using the inter-point distance function specified in `metric`. Choices for `metric` are given in the following table.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Euclidean'</td>
<td>Euclidean distance</td>
</tr>
<tr>
<td>'sqEuclidean'</td>
<td>Squared Euclidean distance (default)</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'cityblock'</td>
<td>Sum of absolute differences</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between points (treated as vectors)</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample correlation between points (treated as sequences of values)</td>
</tr>
<tr>
<td>'Hamming'</td>
<td>Percentage of coordinates that differ</td>
</tr>
<tr>
<td>'Jaccard'</td>
<td>Percentage of nonzero coordinates that differ</td>
</tr>
<tr>
<td>Vector</td>
<td>A numeric distance matrix in upper triangular vector form, such as is created by pdist. X is not used in this case, and can safely be set to [].</td>
</tr>
</tbody>
</table>

For more information on each metric, see “Distance Metrics” on page 18-16.

\[ \text{[...]} = \text{silhouette}(X, \text{clust}, \text{distfun}, p1, p2, \ldots) \]

accepts a function handle \text{distfun} to a metric of the form

\[ d = \text{distfun}(X0, X, p1, p2, \ldots) \]

where \( X0 \) is a 1-by-\( p \) point, \( X \) is an \( n \)-by-\( p \) matrix of points, and \( p1, p2, \ldots \) are optional additional arguments. The function \text{distfun} returns an \( n \)-by-1 vector \( d \) of distances between \( X0 \) and each point (row) in \( X \). The arguments \( p1, p2, \ldots \) are passed directly to the function \text{distfun}.

**Examples**

**Create Silhouette Plot**

Create a silhouette plot from clustered data.

Generate random sample data.

```matlab
rng default % For reproducibility
X = [randn(10,2)+ones(10,2);randn(10,2)-ones(10,2)];
```

Cluster the data in \( X \) using \text{kmeans}.

```matlab
cidx = kmeans(X,2);
```
Create a silhouette plot from the clustered data.

```
silhouette(X,cidx)
```

**Compute Silhouette Values**

Compute the silhouette values from clustered data.

Generate random sample data.

```matlab
rng default % For reproducibility
X = [randn(10,2)+ones(10,2);randn(10,2)-ones(10,2)];
```
Use \texttt{kmeans} to cluster the data in \texttt{X} based on the sum of absolute differences in distance:

\begin{verbatim}
cidx = kmeans(X,2,'distance','cityblock');
\end{verbatim}

Compute the silhouette values from the clustered data. Specify \texttt{metric} as 'cityblock' to indicate that the \texttt{kmeans} clustering is based on the sum of absolute differences.

\begin{verbatim}
s = silhouette(X,cidx,'cityblock')
\end{verbatim}

\begin{verbatim}
s = 20\times1
0.0816
0.5848
0.1906
0.2781
0.3954
0.4050
0.0897
0.5416
0.6203
0.6664
\end{verbatim}

**Definitions**

**Silhouette Value**

The silhouette value for each point is a measure of how similar that point is to points in its own cluster, when compared to points in other clusters. The silhouette value for the \textit{i}th point, \( S_i \), is defined as

\[ S_i = \frac{(b_i - a_i)}{\max(a_i, b_i)} \]

where \( a_i \) is the average distance from the \textit{i}th point to the other points in the same cluster as \( i \), and \( b_i \) is the minimum average distance from the \textit{i}th point to points in a different cluster, minimized over clusters.

The silhouette value ranges from -1 to +1. A high silhouette value indicates that \( i \) is well-matched to its own cluster, and poorly-matched to neighboring clusters. If most points have a high silhouette value, then the clustering solution is appropriate. If many points
have a low or negative silhouette value, then the clustering solution may have either too many or too few clusters. The silhouette clustering evaluation criterion can be used with any distance metric.

References


See Also
dendrogram | evalclusters | kmeans | linkage | pdist

Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
**SilhouetteEvaluation**

**Package:** clustering.evaluation  
**Superclasses:** Silhouette criterion clustering evaluation object

**Description**

SilhouetteEvaluation is an object consisting of sample data, clustering data, and silhouette criterion values used to evaluate the optimal number of data clusters. Create a silhouette criterion clustering evaluation object using evalclusters.

**Construction**

```matlab
eva = evalclusters(x,clust,'Silhouette') creates a silhouette criterion clustering evaluation object.
```

```matlab
eva = evalclusters(x,clust,'Silhouette',Name,Value) creates a silhouette criterion clustering evaluation object using additional options specified by one or more name-value pair arguments.
```

**Input Arguments**

- **x** — **Input data**
  matrix

  Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of variables.

  Data Types: `single` | `double`

- **clust** — **Clustering algorithm**
  'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

  Clustering algorithm, specified as one of the following.
'kmeans' Cluster the data in \( x \) using the kmeans clustering algorithm, with 'EmptyAction' set to 'singleton' and 'Replicates' set to 5.

'linkage' Cluster the data in \( x \) using the clusterdata agglomerative clustering algorithm, with 'Linkage' set to 'ward'.

'gmdistribution' Cluster the data in \( x \) using the gmdistribution Gaussian mixture distribution algorithm, with 'SharedCov' set to true and 'Replicates' set to 5.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a clustering algorithm using a function handle (MATLAB). The function must be of the form \( C = \text{clustfun}(\text{DATA}, K) \), where \( \text{DATA} \) is the data to be clustered, and \( K \) is the number of clusters. The output of \( \text{clustfun} \) must be one of the following:

- A vector of integers representing the cluster index for each observation in \( \text{DATA} \). There must be \( K \) unique values in this vector.
- A numeric \( n \)-by-\( K \) matrix of score for \( n \) observations and \( K \) classes. In this case, the cluster index for each observation is determined by taking the largest score value in each row.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also specify \( \text{clust} \) as a \( n \)-by-\( K \) matrix containing the proposed clustering solutions. \( n \) is the number of observations in the sample data, and \( K \) is the number of proposed clustering solutions. Column \( j \) contains the cluster indices for each of the \( N \) points in the \( j \)th clustering solution.

Data Types: single | double | char | string | function_handle

Specify optional comma-separated pairs of \( \text{Name,Value} \) arguments. \( \text{Name} \) is the argument name and \( \text{Value} \) is the corresponding value. \( \text{Name} \) must appear inside quotes. You can specify several name and value pair arguments in any order as \( \text{Name}_1,\text{Value}_1,...,\text{Name}_N,\text{Value}_N \).

Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5 clusters using the city block distance metric.

**ClusterPriors — Prior probabilities for each cluster**
'empirical' (default) | 'equal'

32-6148
Prior probabilities for each cluster, specified as the comma-separated pair consisting of 'ClusterPriors' and one of the following.

'empirical' Compute the overall silhouette value for the clustering solution by averaging the silhouette values for all points. Each cluster contributes to the overall silhouette value proportionally to its size.

'equal' Compute the overall silhouette value for the clustering solution by averaging the silhouette values for all points within each cluster, and then averaging those values across all clusters. Each cluster contributes equally to the overall silhouette value, regardless of its size.

Example: 'ClusterPriors','empirical'

Distance — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | vector | function | ...

Distance metric used for computing the criterion values, specified as the comma-separated pair consisting of 'Distance' and one of the following.

'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance. This option is not valid for the kmeans clustering algorithm.
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points (treated as vectors)
'correlation' One minus the sample correlation between points (treated as sequences of values)
'Hamming' Percentage of coordinates that differ. This option is only valid for the Silhouette criterion.
'Jaccard' Percentage of nonzero coordinates that differ. This option is only valid for the Silhouette criterion.

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric using a function handle (MATLAB). The distance function must be of the form \( d2 = \text{distfun}(\text{XI}, \text{XJ}) \), where \( \text{XI} \) is a 1-by-\( n \) vector corresponding to a single row of the input matrix \( X \), and \( \text{XJ} \) is an \( m_2 \)-by-\( n \) matrix.
corresponding to multiple rows of $X$. \texttt{distfun} must return an $m_2$-by-1 vector of distances $d2$, whose $k$th element is the distance between $X_I$ and $X_J(k,:)$.

\textbf{Distance} only accepts a function handle if the clustering algorithm \texttt{clust} accepts a function handle as the distance metric. For example, the \texttt{kmeans} clustering algorithm does not accept a function handle as the distance metric. Therefore, if you use the \texttt{kmeans} algorithm and then specify a function handle for \texttt{Distance}, the software errors.

- If \texttt{criterion} is 'silhouette', you can also specify \texttt{Distance} as the output vector created by the function \texttt{pdist}.
- When \texttt{clust} is 'kmeans' or 'gmdistribution', \texttt{evalclusters} uses the distance metric specified for \texttt{Distance} to cluster the data.
- If \texttt{clust} is 'linkage', and \texttt{Distance} is either 'sqEuclidean' or 'Euclidean', then the clustering algorithm uses the Euclidean distance and Ward linkage.
- If \texttt{clust} is 'linkage' and \texttt{Distance} is any other metric, then the clustering algorithm uses the specified distance metric and average linkage.
- In all other cases, the distance metric specified for \texttt{Distance} must match the distance metric used in the clustering algorithm to obtain meaningful results.

Example: 'Distance', 'Euclidean'

Data Types: \texttt{single} | \texttt{double} | \texttt{char} | \texttt{string} | \texttt{function_handle}

\textbf{KList} — List of number of clusters to evaluate

\texttt{vector}

List of number of clusters to evaluate, specified as the comma-separated pair consisting of \texttt{'KList'} and a vector of positive integer values. You must specify \texttt{KList} when \texttt{clust} is a clustering algorithm name or a function handle. When \texttt{criterion} is 'gap', \texttt{clust} must be a character vector, a string scalar, or a function handle, and you must specify \texttt{KList}.

Example: 'KList',[1:6]

Data Types: \texttt{single} | \texttt{double}
Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering algorithm name or function handle. If the clustering solutions are provided in the input, ClusteringFunction is empty.

ClusterPriors

Prior probabilities for each cluster, stored as valid prior probability name.

ClusterSilhouettes

Silhouette values corresponding to each proposed number of clusters in InspectedK, stored as a cell array of vectors.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK, stored as a vector of numerical values.

Distance

Distance metric used for clustering data, stored as a valid distance metric name.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing equals true, then the corresponding value in the data matrix x is not used in the clustering solution.
**NumObservations**

Number of observations in the data matrix $X$, minus the number of missing (NaN) values in $X$, stored as a positive integer value.

**OptimalK**

Optimal number of clusters, stored as a positive integer value.

**OptimalY**

Optimal clustering solution corresponding to OptimalK, stored as a column vector of positive integer values. If the clustering solutions are provided in the input, OptimalY is empty.

**X**

Data used for clustering, stored as a matrix of numerical values.

**Methods**

**Inherited Methods**

- **addK**  
  Evaluate additional numbers of clusters
- **plot**  
  Plot clustering evaluation object criterion values
- **compact**  
  Compact clustering evaluation object

**Examples**

**Evaluate the Clustering Solution Using Silhouette Criterion**

Evaluate the optimal number of clusters using the silhouette clustering evaluation criterion.

Generate sample data containing random numbers from three multivariate distributions with different parameter values.
rng('default');  % For reproducibility
mu1 = [2 2];
sigma1 = [0.9 -0.0255; -0.0255 0.9];
mu2 = [5 5];
sigma2 = [0.5 0 ; 0 0.3];
mu3 = [-2, -2];
sigma3 = [1 0 ; 0 0.9];
N = 200;
X = [mvnrnd(mu1,sigma1,N);...
mvnrnd(mu2,sigma2,N);...
mvnrnd(mu3,sigma3,N)];

Evaluate the optimal number of clusters using the silhouette criterion. Cluster the data using kmeans.
E = evalclusters(X,'kmeans','silhouette','klist',[1:6])
E =
   SilhouetteEvaluation with properties:
      NumObservations: 600
        InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 0.8055 0.8551 0.7155 0.6071 0.6232]
     OptimalK: 3

The OptimalK value indicates that, based on the silhouette criterion, the optimal number of clusters is three.

Plot the silhouette criterion values for each number of clusters tested.
figure;
plot(E)
The plot shows that the highest silhouette value occurs at three clusters, suggesting that the optimal number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.

```matlab
figure;
gscatter(X(:,1),X(:,2),E.OptimalY,'rgb','xod')
```
The plot shows three distinct clusters within the data: Cluster 1 is in the lower-left corner, cluster 2 is in the upper-right corner, and cluster 3 is near the center of the plot.

**Definitions**

**Silhouette Value**

The silhouette value for each point is a measure of how similar that point is to points in its own cluster, when compared to points in other clusters. The silhouette value for the ith point, $S_i$, is defined as
Si = \frac{(b_i - a_i)}{\max(a_i, b_i)}

where \(a_i\) is the average distance from the \(i\)th point to the other points in the same cluster as \(i\), and \(b_i\) is the minimum average distance from the \(i\)th point to points in a different cluster, minimized over clusters.

The silhouette value ranges from -1 to +1. A high silhouette value indicates that \(i\) is well-matched to its own cluster, and poorly-matched to neighboring clusters. If most points have a high silhouette value, then the clustering solution is appropriate. If many points have a low or negative silhouette value, then the clustering solution may have either too many or too few clusters. The silhouette clustering evaluation criterion can be used with any distance metric.

References


See Also

CalinskiHarabaszEvaluation | DaviesBouldinEvaluation | GapEvaluation | evalclusters | silhouette

Topics

Class Attributes (MATLAB)
Property Attributes (MATLAB)
single

**Class:** dataset

Convert dataset variables to single array

---

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

---

**Syntax**

B = single(A)
B = single(A,vars)

---

**Description**

B = single(A) returns the contents of the dataset A, converted to one single array. The classes of the variables in the dataset must support the conversion.

B = single(A,vars) returns the contents of the dataset variables specified by vars. 
vars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

---

**See Also**

dataset | double | replacedata
**size**

**Class:** dataset

Size of dataset array

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

\[
\begin{align*}
D &= \text{SIZE}(A) \\
[\text{NOBS}, \text{NVARS}] &= \text{SIZE}(A) \\
[M_1, M_2, M_3, \ldots, M_N] &= \text{SIZE}(A) \\
M &= \text{size}(A, \text{dim})
\end{align*}
\]

**Description**

\(D = \text{SIZE}(A)\) returns the two-element row vector \(D = [\text{NOBS}, \text{NVARS}]\) containing the number of observations and number of variables in the dataset \(A\). A dataset array always has two dimensions.

\([\text{NOBS}, \text{NVARS}] = \text{SIZE}(A)\) returns the numbers of observations and variables in the dataset \(A\) as separate output variables.

\([M_1, M_2, M_3, \ldots, M_N] = \text{SIZE}(A)\), for \(N > 2\), returns \(M_1 = \text{NOBS}, M_2 = \text{NVARS},\) and \(M_3, \ldots, M_N = 1\).

\(M = \text{size}(A, \text{dim})\) returns the length of the dimension specified by the scalar \(\text{dim}\):

- \(M = \text{size}(A,1)\) returns \(\text{NOBS}\)
- \(M = \text{size}(A,2)\) returns \(\text{NVARS}\)
- \(M = \text{size}(A,k)\) returns 1 for \(k > 2\)
See Also
length | ndims | numel
**size**

**Class:** qrandset

Number of dimensions in matrix

**Syntax**

\[
d = \text{size}(p) \\
[m,n] = \text{size}(p) \\
m = \text{size}(p,\text{dim})
\]

**Description**

\(d = \text{size}(p)\) returns the two-element row vector \(d = [m,n]\) containing the number of points in the point set and the number of dimensions the points are in, for the point set \(p\). These correspond to the number of rows and columns in the matrix that would be produced by the expression \(p(:, :)\).

\([m,n] = \text{size}(p)\) returns the number of points and dimensions for \(p\) as separate output variables.

\(m = \text{size}(p,\text{dim})\) returns the length of the dimension specified by the scalar \(\text{dim}\). For example, \(\text{size}(p,1)\) returns the number of rows (points in the point set). If \(\text{dim}\) is greater than 2, \(m\) will be 1.

**Examples**

The commands

\[
P = \text{ sobolset}(12); \\
d = \text{size}(P)
\]

return

\(d = [9.0072e+015 12]\)
The command

\[ [m, n] = \text{size}(P) \]

returns

\[ m = 9.0072e+015 \]
\[ n = 12 \]

The command

\[ m2 = \text{size}(P, 2) \]

returns

\[ m2 = 12 \]

See Also

\text{length} | \text{ndims} | \text{qrandset}
slicesample

Slice sampler

Syntax

\[
\text{rnd} = \text{slicesample}(\text{initial}, \text{nsamples}, 'pdf', \text{pdf}) \\
\text{rnd} = \text{slicesample}(\text{initial}, \text{nsamples}, 'logpdf', \text{logpdf}) \\
[\text{rnd}, \text{neval}] = \text{slicesample}(\text{initial}, ...) \\
[\text{rnd}, \text{neval}] = \text{slicesample}(\text{initial}, ..., \text{Name, Value})
\]

Description

\[
\text{rnd} = \text{slicesample}(\text{initial}, \text{nsamples}, 'pdf', \text{pdf}) \text{ generates } \text{nsamples random} \\
\text{samples using the slice sampling method (see “Algorithms” on page 32-6167). pdf gives} \\
\text{the target probability density function (pdf). initial is a row vector or scalar containing} \\
\text{the initial value of the random sample sequences.}
\]

\[
\text{rnd} = \text{slicesample}(\text{initial}, \text{nsamples}, 'logpdf', \text{logpdf}) \text{ generates samples} \\
\text{using the logarithm of the pdf.}
\]

\[
[\text{rnd}, \text{neval}] = \text{slicesample}(\text{initial}, ...) \text{ returns the average number of function} \\
\text{evaluations that occurred in the slice sampling.}
\]

\[
[\text{rnd}, \text{neval}] = \text{slicesample}(\text{initial}, ..., \text{Name, Value}) \text{ generates random} \\
\text{samples with additional options specified by one or more Name, Value pair arguments.}
\]

Input Arguments

initial

Initial point, a scalar or row vector. Set initial so pdf(initial) is a strictly positive scalar. length(initial) is the number of dimensions of each sample.
**nsamples**

Positive integer, the number of samples that `slicesample` generates.

**pdf**

Handle to a function that generates the probability density function, specified with @. `pdf` can be unnormalized, meaning it need not integrate to 1.

**logpdf**

Handle to a function that generates the logarithm of the probability density function, specified with @. `logpdf` can be the logarithm of an unnormalized `pdf`.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**burnin**

Nonnegative integer, the number of samples to generate and discard before generating the samples to return. The slice sampling algorithm is a Markov chain whose stationary distribution is proportional to that of the `pdf` argument. Set `burnin` to a high enough value that you believe the Markov chain approximately reaches stationarity after `burnin` samples.

**Default:** 0

**thin**

Positive integer, where `slicesample` discards every `thin - 1` samples and returns the next. The slice sampling algorithm is a Markov chain, so the samples are serially correlated. To reduce the serial correlation, choose a larger value of `thin`.

**Default:** 1
width

Width of the interval around the current sample, a scalar or vector of positive values. \texttt{slicesample} begins with this interval and searches for an appropriate region containing the points of pdf that evaluate to a large enough value.

- If \texttt{width} is a scalar and the samples have multiple dimensions, \texttt{slicesample} uses \texttt{width} for each dimension.
- If \texttt{width} is a vector, it should have the same length as \texttt{initial}.

\textbf{Default:} 10

\section*{Output Arguments}

\textbf{rnd}

\texttt{nsamples-by-length(initial)} matrix, where each row is one sample.

\textbf{neval}

Scalar, the mean number of function evaluations per sample. \texttt{neval} includes the \texttt{burnin} and \texttt{thin} evaluations, not just the evaluations of samples returned in \texttt{rnd}. Therefore the total number of function evaluations is

\texttt{neval*(nsamples*thin + burnin)}.

\section*{Examples}

\subsection*{Generate Random Samples From a Multimodal Density}

This example shows how to generate random samples from a multimodal density using \texttt{slicesample}.

Define a function proportional to a multimodal density.

\begin{verbatim}
rng default  \% For reproducibility
f = @(x) exp(-x.^2/2).*(1 + (sin(3*x)).^2).*...  
(1 + (cos(5*x).^2));
area = integral(f,-5,5);
\end{verbatim}
Generate 2000 samples from the density, using a burn-in period of 1000, and keeping one in five samples.

\[ N = 2000; \]
\[ x = \text{slicesample}(1,N, 'pdf', f, 'thin', 5, 'burnin', 1000); \]

Plot a histogram of the sample.

\[
[\text{binheight}, \text{bincenter}] = \text{hist}(x, 50); \\
h = \text{bar}(\text{bincenter}, \text{binheight}, 'hist'); \\
h.\text{FaceColor} = [0.8, 0.8, 1];
\]

Scale the density to have the same area as the histogram, and superimpose it on the histogram.
The samples seem to fit the theoretical distribution well, so the burnin value seems adequate.
Tips

- There are no definitive suggestions for choosing appropriate values for burnin, thin, or width. Choose starting values of burnin and thin, and increase them, if necessary, to give the requisite independence and marginal distributions. See Neal [1] for details of the effect of adjusting width.

Algorithms

At each point in the sequence of random samples, slicesample selects the next point by “slicing” the density to form a neighborhood around the previous point where the density is above some value. Consequently, the sample points are not independent. Nearby points in the sequence tend to be closer together than they would be from a sample of independent values. For many purposes, the entire set of points can be used as a sample from the target distribution. However, when this type of serial correlation is a problem, the burnin and thin parameters can help reduce that correlation.

slicesample uses the slice sampling algorithm of Neal [1]. For numerical stability, it converts a pdf function into a logpdf function. The algorithm to resize the support region for each level, called “stepping-out” and “stepping-in,” was suggested by Neal.

References


See Also
mhsample | rand | randsample

Topics
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-12

Introduced in R2006a
**skewness**

Skewness

**Syntax**

\[ y = \text{skewness}(X) \]
\[ y = \text{skewness}(X,\text{flag}) \]
\[ y = \text{skewness}(X,\text{flag},'all') \]
\[ y = \text{skewness}(X,\text{flag},\text{dim}) \]
\[ y = \text{skewness}(X,\text{flag},\text{vecdim}) \]

**Description**

\( y = \text{skewness}(X) \) returns the sample skewness of \( X \). For vectors, \( \text{skewness}(x) \) is the skewness of the elements of \( x \). For matrices, \( \text{skewness}(X) \) is a row vector containing the sample skewness of each column. For N-dimensional arrays, \( \text{skewness} \) operates along the first nonsingleton dimension of \( X \).

\( y = \text{skewness}(X,\text{flag}) \) specifies whether to correct for bias (\( \text{flag} = 0 \)) or not (\( \text{flag} = 1 \), the default). When \( X \) represents a sample from a population, the skewness of \( X \) is biased; that is, it will tend to differ from the population skewness by a systematic amount that depends on the size of the sample. You can set \( \text{flag} = 0 \) to correct for this systematic bias.

\( y = \text{skewness}(X,\text{flag},'all') \) returns the skewness of all elements of \( X \).

\( y = \text{skewness}(X,\text{flag},\text{dim}) \) takes the skewness along the operating dimension \( \text{dim} \) of \( X \).

\( y = \text{skewness}(X,\text{flag},\text{vecdim}) \) returns the skewness over the dimensions specified in the vector \( \text{vecdim} \). Each element of \( \text{vecdim} \) represents a dimension of the input array \( X \). The output \( y \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \( X \) and \( y \). For example, if \( X \) is a 2-by-3-by-4 array, then \( \text{skewness}(X,1,[1\ 2]) \) returns a 1-by-1-by-4 array. Each element of the output array is the biased skewness of the elements on the corresponding page of \( X \).
Examples

Find Skewness of Matrix

Set the random seed for reproducibility of the results.

```matlab
rng('default')
```

Generate a matrix with 5 rows and 4 columns.

```matlab
X = randn(5,4)
```

```
X = 5×4
 0.5377 -1.3077 -1.3499 -0.2050
 1.8339 -0.4336 3.0349 -0.1241
 -2.2588 0.3426 0.7254 1.4897
 0.8622 3.5784 -0.0631 1.4090
 0.3188 2.7694 0.7147 1.4172
```

Find the sample skewness of X.

```matlab
y = skewness(X)
```

```
y = 1×4
 -0.9362 0.2333 0.4363 -0.4075
```

y is a row vector containing the sample skewness of each column in X.

Find Skewness Along Vector of Dimensions

Find the skewness over multiple dimensions by using the 'all' and `vecdim` input arguments.

Set the random seed for reproducibility of the results.

```matlab
rng('default')
```
Create a 4-by-3-by-2 array of random numbers.

\[
X = \text{randn([4 3 2])}
\]

\[
X = \\
X(:,:,1) = \\
0.5377 0.3188 3.5784 \\
1.8339 -1.3077 2.7694 \\
-2.2588 -0.4336 -1.3499 \\
0.8622 0.3426 3.0349 \\
X(:,:,2) = \\
0.7254 -0.1241 0.6715 \\
-0.0631 1.4897 -1.2075 \\
0.7147 1.4090 0.7172 \\
-0.2050 1.4172 1.6302
\]

Find the biased skewness of \( X \).

\[
yall = \text{skewness}(X,1,'all')
\]

\[
yall = 0.0916
\]

\( yall \) is the biased skewness of the entire input data set \( X \).

Find the biased skewness of each page of \( X \) by specifying the first and second dimensions.

\[
ypage = \text{skewness}(X,1,[1 2])
\]

\[
ypage = \\
ypage(:,:,1) = \\
0.1070 \\
ypage(:,:,2) = \\
-0.6263
\]

For example, \( ypage(1,1,2) \) is the biased skewness of the elements in \( X(:,:,2) \).
Find the biased skewness of the elements in each \( X(:,i,:) \) slice by specifying the first and third dimensions.

\[
ycol = \text{skewness}(X,1,[1 3])
\]

\[
ycol = 1\times3
\]

\[
-1.0755 \quad -0.3108 \quad -0.2209
\]

For example, \( ycol(3) \) is the biased skewness of the elements in \( X(:,3,:) \).

**Tips**

- `skewness` treats NaNs as missing values and removes them.

**Algorithms**

Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as

\[
s = \frac{E(x - \mu)^3}{\sigma^3}
\]

where \( \mu \) is the mean of \( x \), \( \sigma \) is the standard deviation of \( x \), and \( E(t) \) represents the expected value of the quantity \( t \). `skewness` computes a sample version of this population value.

When you set `flag` to 1, the following equation applies:
When you set `flag` to 0, the following equation applies:

\[ s_0 = \frac{\sqrt{n(n-1)}}{n-2} s_1 \]

This bias-corrected formula requires that \( X \) contain at least three elements.

**Extended Capabilities**

**Tall Arrays**
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

- The following syntaxes are not supported.
  - \( y = \text{skewness}(X, \text{flag}, 'all') \)
  - \( y = \text{skewness}(X, \text{flag}, \text{vecdim}) \)

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The following syntaxes do not support code generation.
  - \( y = \text{skewness}(X, \text{flag}, 'all') \)
• \( y = \text{skewness}(X, \text{flag}, \text{vecdim}) \)

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• The following syntaxes do not support GPU arrays as input arguments.
  • \( y = \text{skewness}(X, \text{flag}, '\text{all}') \)
  • \( y = \text{skewness}(X, \text{flag}, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
kurtosis | mean | moment | std | var

**Introduced before R2006a**
**Skip property**

**Class:** qrandset

Number of initial points to omit from sequence

**Description**

The `Skip` property of a point set contains a positive integer which specifies the number of initial points in the sequence to omit from the point set. The default `Skip` value is 0.

Initial points of a sequence sometimes exhibit undesirable properties, for example the first point is often \((0,0,0,\ldots)\) and this may “unbalance” the sequence since its counterpart, \((1,1,1,\ldots)\), never appears. Another common reason is that initial points often exhibit correlations among different dimensions which disappear later in the sequence.

**Examples**

Examine the difference between skipping and not skipping points:

% No skipping produces the standard Sobol sequence.
P = sobolset(5);
P(1:3,:)

% Skip the first point of the sequence. The point set now
% starts at the second point of the basic Sobol sequence.
P.Skip = 1;
P(1:3,:)  

**See Also**

Leap | net | qrandset | subsref
sobolset class

Superclasses:
Sobol quasi-random point sets

Description
sobolset is a quasi-random point set class that produces points from the Sobol sequence. The Sobol sequence is a base-2 digital sequence that fills space in a highly uniform manner.

Construction
sobolset  Construct Sobol quasi-random point set

Methods

Inherited Methods
Methods in the following table are inherited from qrandset on page 32-5254.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disp</td>
<td>Display qrandset object</td>
</tr>
<tr>
<td>end</td>
<td>Last index in indexing expression for point set</td>
</tr>
<tr>
<td>length</td>
<td>Length of point set</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in matrix</td>
</tr>
<tr>
<td>net</td>
<td>Generate quasi-random point set</td>
</tr>
<tr>
<td>scramble</td>
<td>Scramble quasi-random point set</td>
</tr>
<tr>
<td>size</td>
<td>Number of dimensions in matrix</td>
</tr>
<tr>
<td>subsref</td>
<td>Subscripted reference for qrandset</td>
</tr>
</tbody>
</table>
Properties

PointOrder  Point generation method

Inherited Properties

Properties in the following table are inherited from qrandset on page 32-5254.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Number of dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leap</td>
<td>Interval between points</td>
</tr>
<tr>
<td>ScrambleMethod</td>
<td>Settings that control scrambling</td>
</tr>
<tr>
<td>Skip</td>
<td>Number of initial points to omit from sequence</td>
</tr>
<tr>
<td>Type</td>
<td>Name of sequence on which point set P is based</td>
</tr>
</tbody>
</table>

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

References


See Also
haltonset

Topics
“Quasi-Random Point Sets” on page 7-17
**sobolset**

**Class:** sobolset

Construct Sobol quasi-random point set

**Syntax**

\[
p = \text{sobolset}(d)
\]

\[
p = \text{sobolset}(d, \text{prop1}, \text{val1}, \text{prop2}, \text{val2}, ...)
\]

**Description**

\[
p = \text{sobolset}(d)
\] constructs a \(d\)-dimensional point set \(p\) of the sobolset on page 32-6175 class, with default property settings.

\[
p = \text{sobolset}(d, \text{prop1}, \text{val1}, \text{prop2}, \text{val2}, ...)
\] specifies property name/value pairs used to construct \(p\).

The object \(p\) returned by \text{sobolset} encapsulates properties of a specified quasi-random sequence. The point set is finite, with a length determined by the Skip and Leap properties and by limits on the size of point set indices (maximum value of \(2^{53}\)). Values of the point set are not generated and stored in memory until you access \(p\) using \text{net} or parenthesis indexing.

**Examples**

Generate a 3-D Sobol point set, skip the first 1000 values, and then retain every 101st point:

\[
p = \text{sobolset}(3, \text{'Skip'}, 1e3, \text{'Leap'}, 1e2)
\]

\[
p = \text{Sobol point set in 3 dimensions (8.918019e+013 points)}
\] Properties:

- \text{Skip} : 1000
- \text{Leap} : 100
ScrambleMethod : none
PointOrder : standard

Use scramble to apply a random linear scramble combined with a random digital shift:

```matlab
p = scramble(p,'MatousekAffineOwen')
p =
 Sobol point set in 3 dimensions (8.918019e+013 points)
Properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : MatousekAffineOwen
 PointOrder : standard
```

Use net to generate the first four points:

```matlab
X0 = net(p,4)
X0 =
 0.7601 0.5919 0.9529
 0.1795 0.0856 0.0491
 0.5488 0.0785 0.8483
 0.3882 0.8771 0.8755
```

Use parenthesis indexing to generate every third point, up to the 11th point:

```matlab
X = p(1:3:11,:)
X =
 0.7601 0.5919 0.9529
 0.3882 0.8771 0.8755
 0.6905 0.4951 0.8464
 0.1955 0.5679 0.3192
```

References


**See Also**
haltonset | net | scramble

**Introduced in R2008a**
sortClasses

**Package:** mlearnlib.graphics.chart

Sort classes of confusion matrix chart

**Syntax**

```
sortClasses(cm,order)
```

**Description**

`sortClasses(cm,order)` sorts the classes of the confusion matrix chart `cm` in the order specified by `order`. You can sort the classes in their natural order, by the values along the diagonal of the confusion matrix, or in fixed order that you specify.

**Examples**

**Sort Classes by Precision or Recall**

Create a confusion matrix chart and sort the classes of the chart according to the class-wise true positive rate (recall) or the class-wise positive predictive value (precision).

Load and inspect the `arrhythmia` data set.

```
load arrhythmia
isLabels = unique(Y);
nLabels = numel(isLabels)
```

```
nLabels = 13
```

```
tabulate(categorical(Y))
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.32%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.32%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.53%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.66%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.06%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.87%</td>
</tr>
</tbody>
</table>

The data contains 16 distinct labels that describe various degrees of arrhythmia, but the response (Y) includes only 13 distinct labels.

Train a classification tree and predict the resubstitution response of the tree.

```matlab
Mdl = fitctree(X,Y);
predictedY = resubPredict(Mdl);
```

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY. Specify 'RowSummary' as 'row-normalized' to display the true positive rates and false positive rates in the row summary. Also, specify 'ColumnSummary' as 'column-normalized' to display the positive predictive values and false discovery rates in the column summary.

```matlab
fig = figure;
cm = confusionchart(Y,predictedY,'RowSummary','row-normalized','ColumnSummary','column-normalized');
% Resize the container of the confusion chart so percentages appear in the row summary
fig_Position = fig.Position;
fig_Position(3) = fig_Position(3)*1.5;
fig.Position = fig_Position;
```
To sort the confusion matrix according to the true positive rate, normalize the cell values across each row by setting the Normalization property to 'row-normalized' and then use sortClasses. After sorting, reset the Normalization property back to 'absolute' to display the total number of observations in each cell.

```matlab
cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';
```
To sort the confusion matrix according to the positive predictive value, normalize the cell values across each column by setting the Normalization property to 'column-normalized' and then use sortClasses. After sorting, reset the Normalization property back to 'absolute' to display the total number of observations in each cell.

```matlab
cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';
```
Sort Classes in Fixed Order

Create a confusion matrix chart and sort the classes of the chart in a fixed order.

Load Fisher's iris data set.

```matlab
load fisheriris
X = meas([51:150,1:50],:);
Y = species([51:150,1:50],:);
```

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of character vectors that contains the corresponding iris species.

Train a k-nearest neighbor (KNN) classifier, where the number of nearest neighbors in the predictors (k) is 5. A good practice is to standardize numeric predictor data.

```matlab
Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);
```

Predict the labels of the training data.
predictedY = resubPredict(Mdl);

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY.

cm = confusionchart(Y,predictedY);

By default, confusionchart sorts the classes into their natural order as defined by sort. In this example, the class labels are character vectors, so confusionchart sorts the classes alphabetically. Reorder the classes of the confusion matrix chart in a fixed order:

sortClasses(cm,["versicolor","setosa","virginica"])
Input Arguments

**cm — Confusion matrix chart**
ConfusionMatrixChart object

Confusion matrix chart, specified as a ConfusionMatrixChart object. To create a confusion matrix chart, use `confusionchart`.

**order — Order to sort classes in**
'auto' | 'ascending-diagonal' | 'descending-diagonal' | array

Order to sort the classes of the confusion matrix chart in, specified as one of these values:
• `'auto'` — Sorts the classes into their natural order as defined by the `sort` function. For example, if the class labels of the confusion matrix chart are a string vector, then sort alphabetically. If the class labels are an ordinal categorical vector, then use the order of the class labels.

• `'ascending-diagonal'` — Sort the classes so that the values along the diagonal of the confusion matrix increase from top left to bottom right.

• `'descending-diagonal'` — Sort the classes so that the values along the diagonal of the confusion matrix decrease from top left to bottom right.

• Array — Sort the classes in a unique order specified by a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. The array must be a permutation of the `ClassLabels` property of the confusion matrix chart.

Example: `sortClasses(cm,'ascending-diagonal')`
Example: `sortClasses(cm,['owl','cat','toad'])`

**See Also**

**Functions**
categorical | confusionchart

**Properties**
ConfusionMatrixChart Properties

**Introduced in R2018b**
sortrows

Class: dataset

Sort rows of dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

B = sortrows(A)
B = sortrows(A,vars)
B = sortrows(A,'obsnames')
B = sortrows(A,vars,mode)
[B,idx] = sortrows(A)

Description

B = sortrows(A) returns a copy of the dataset array A, with the observations sorted in ascending order by all of the variables in A. The observations in B are sorted first by the first variable, next by the second variable, and so on. Each variable in A must be a valid input to sort, or, if a variable has multiple columns, to the MATLAB sortrows function or to its own sortrows method.

B = sortrows(A,vars) sorts the observations in A by the variables specified by vars. vars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector.

B = sortrows(A,'obsnames') sorts the observations in A by observation name.

B = sortrows(A,vars,mode) sorts in the direction specified by mode. When mode is 'ascend' (the default) or 'descend', sortrows sorts A by the variables specified by vars in ascending or descending order, respectively. mode can also be a string array or
cell array containing 'ascend' or 'descend', to specify a different sorting direction for each variable in vars. Specify [] for vars to sort using all variables.

[B,idx] = sortrows(A) also returns an index vector idx such that B = A(idx,:).

Examples

Sort the data in hospital.mat by age and then by last name:

load hospital
hospital(1:5,1:3)
ans =
    LastName       Sex       Age
    YPL-320    'SMITH'        Male      38
    GLI-532    'JOHNSON'      Male      43
    PNI-258    'WILLIAMS'     Female    38
    MIJ-579    'JONES'        Female    40
    XLK-030    'BROWN'        Female    49

hospital = sortrows(hospital,{'Age','LastName'});
hospital(1:5,1:3)
ans =
    LastName       Sex       Age
    REV-997    'ALEXANDER'    Male      25
    FZR-250    'HALL'         Male      25
    LIM-480    'HILL'         Female    25
    XUE-826    'JACKSON'      Male      25
    SCQ-914    'JAMES'        Male      25

Sort the data in hospital by gender in ascending order, and age in descending order.

hospital = sortrows(hospital,{'Sex','Age'},{'ascend','descend'});
hospital(1:5,1:3)
ans =
    LastName        Sex       Age
    XLK-030    'BROWN'         Female    49
    GGU-691    'HUGHES'        Female    49
    KKL-155    'ADAMS'         Female    48
    HQO-561    'BRYANT'        Female    48
    BKD-785    'CLARK'         Female    48

hospital(end-4:end,1:3)
ans =

<table>
<thead>
<tr>
<th></th>
<th>LastName</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNL-702</td>
<td>'MOORE'</td>
<td>Male</td>
<td>28</td>
</tr>
<tr>
<td>REV-997</td>
<td>'ALEXANDER'</td>
<td>Male</td>
<td>25</td>
</tr>
<tr>
<td>FZR-250</td>
<td>'HALL'</td>
<td>Male</td>
<td>25</td>
</tr>
<tr>
<td>XUE-826</td>
<td>'JACKSON'</td>
<td>Male</td>
<td>25</td>
</tr>
<tr>
<td>SCQ-914</td>
<td>'JAMES'</td>
<td>Male</td>
<td>25</td>
</tr>
</tbody>
</table>

See Also

dataset | unique

Topics

“Sort Observations in Dataset Arrays” on page 2-100
“Dataset Arrays” on page 2-137
**sparsefilt**

Feature extraction by using sparse filtering

**Syntax**

Mdl = sparsefilt(X,q)
Mdl = sparsefilt(X,q,Name,Value)

**Description**

Mdl = sparsefilt(X,q) returns a sparse filtering model object that contains the results from applying sparse filtering to the table or matrix of predictor data X containing p variables. q is the number of features to extract from X, therefore sparsefilt learns a p-by-q matrix of transformation weights. For undercomplete or overcomplete feature representations, q can be less than or greater than the number of predictor variables, respectively.

- To access the learned transformation weights, use Mdl.TransformWeights.
- To transform X to the new set of features by using the learned transformation, pass Mdl and X to transform.

Mdl = sparsefilt(X,q,Name,Value) uses additional options specified by one or more Name,Value pair arguments. For example, you can standardize the predictor data or apply $L^2$ regularization.

**Examples**

**Create Sparse Filter**

Create a SparseFiltering object by using the sparsefilt function.

Load the caltech101 image patches.
data = load('caltech101patches');
size(data.X)

ans = 1x2

100000            363

There are 100,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
Q = 100;
obj = sparsefilt(data.X,Q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

obj = SparseFiltering
  ModelParameters: [1x1 struct]
  NumPredictors: 363
  NumLearnedFeatures: 100
    Mu: []
    Sigma: []
  FitInfo: [1x1 struct]
    TransformWeights: [363x100 double]
    InitialTransformWeights: []

Properties, Methods

sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of reaching a step-size limit or a gradient-size limit. You can still use the learned features in the returned object by calling the transform function.

**Restart sparsefilt**

Continue optimizing a sparse filter.

Load the caltech101 image patches.
data = load('caltech101patches');
size(data.X)
ans = 1x2
100000   363

There are 100,000 image patches, each containing 363 features.

Extract 100 features from the data and use an iteration limit of 20.

rng default % For reproducibility
q = 100;
Mdl = sparsefilt(data.X,q,'IterationLimit',20);

Warning: Solver LBFGS was not able to converge to a solution.

View the resulting transformation matrix as image patches.

wts = Mdl.TransformWeights;
W = reshape(wts,[11,11,3,q]);
[dx,dy,~,~] = size(W);
for f = 1:q
    Wvec = W(:,:,,:,f);
    Wvec = Wvec(:);
    Wvec = (Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
    W(:,:,,:,f) = reshape(Wvec,dx,dy,3);
end
m = ceil(sqrt(q));
n = m;
img = zeros(m*dx,n*dy,3);
f = 1;
for i = 1:m
    for j = 1:n
        if (f <= q)
            img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = W(:,:,,:,f);
            f = f+1;
        end
    end
end
imshow(img,'InitialMagnification',300);
The image patches appear noisy. To clean up the noise, try more iterations. Restart the optimization from where it stopped for another 40 iterations.

```matlab
Mdl = sparsefilt(data.X,q,'IterationLimit',40,'InitialTransformWeights',wts);
```

Warning: Solver LBFGS was not able to converge to a solution.

View the updated transformation matrix as image patches.

```matlab
wts = Mdl.TransformWeights;
W = reshape(wts,[11,11,3,q]);
[dx,dy,~,~] = size(W);
for f = 1:q
 Wvec = W(:,:,f);
```
Wvec = Wvec(:);
Wvec = (Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
W(:, :, :, f) = reshape(Wvec, dx, dy, 3);
end
m = ceil(sqrt(q));
n = m;
img = zeros(m*dx, n*dy, 3);
f = 1;
for i = 1:m
    for j = 1:n
        if (f <= q)
            img((i-1)*dx+1:i*dx, (j-1)*dy+1:j*dy, :) = W(:, :, :, f);
            f = f+1;
        end
    end
end
imshow(img, 'InitialMagnification', 300);
These images are much less noisy.

**Input Arguments**

\( X \) — **Predictor data**  
numeric matrix | table

Predictor data, specified as an \( n \)-by-\( p \) numeric matrix or table. Rows correspond to individual observations and columns correspond to individual predictor variables. If \( X \) is a table, then all of its variables must be numeric vectors.
Data Types: single | double | table

q — Number of features to extract
positive integer

Number of features to extract from the predictor data, specified as a positive integer.

sparsefilt stores a p-by-q transform weight matrix in Mdl.TransformWeights. Therefore, setting very large values for q can result in greater memory consumption and increased computation time.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Standardize',true,'Lambda',1 standardizes the predictor data and applies a penalty of 1 to the transform weight matrix.

IterationLimit — Maximum number of iterations
1000 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

Example: 'IterationLimit',1e6

Data Types: single | double

VerbosityLevel — Verbosity level
0 (default) | nonnegative integer

Verbosity level for monitoring algorithm convergence, specified as the comma-separated pair consisting of 'VerbosityLevel' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sparsefilt does not display convergence information at the command line.</td>
</tr>
</tbody>
</table>
Value | Description
--- | ---
Positive integer | sparsefilt displays convergence information at the command line.

**Convergence Information**

<table>
<thead>
<tr>
<th>Heading</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUN VALUE</td>
<td>Objective function value.</td>
</tr>
<tr>
<td>NORM GRAD</td>
<td>Norm of the gradient of the objective function.</td>
</tr>
<tr>
<td>NORM STEP</td>
<td>Norm of the iterative step, meaning the distance between the previous point and the current point.</td>
</tr>
<tr>
<td>CURV</td>
<td>OK means the weak Wolfe condition is satisfied. This condition is a combination of sufficient decrease of the objective function and a curvature condition.</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Inner product of the step times the gradient difference, divided by the inner product of the gradient difference with itself. The gradient difference is the gradient at the current point minus the gradient at the previous point. Gives diagnostic information on the objective function curvature.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Step direction multiplier, which differs from 1 when the algorithm performed a line search.</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>YES means the algorithm found an acceptable step to take.</td>
</tr>
</tbody>
</table>

Example: 'VerbosityLevel',1

Data Types: single | double

**Lambda — \( L^2 \) regularization coefficient value**

\( 0 \) (default) | positive numeric scalar

\( L^2 \) regularization coefficient value for the transform weight matrix, specified as the comma-separated pair consisting of 'Lambda' and a positive numeric scalar. If you specify \( 0 \), the default, then there is no regularization term in the objective function.

Example: 'Lambda',0.1

Data Types: single | double

**Standardize — Flag to standardize predictor data**

false (default) | true
Flag to standardize the predictor data, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If Standardize is true, then:

• sparsefilt centers and scales each column of the predictor data ($X$) by the column mean and standard deviation, respectively.

• sparsefilt extracts new features by using the standardized predictor matrix, and stores the predictor variable means and standard deviations in properties $\text{Mu}$ and $\text{Sigma}$ of Mdl.

Example: 'Standardize',true

Data Types: logical

InitialTransformWeights — Transformation weights that initialize optimization

randn($p,q$) (default) | numeric matrix

Transformation weights that initialize optimization, specified as the comma-separated pair consisting of 'InitialTransformWeights' and a $p$-by-$q$ numeric matrix. $p$ must be the number of columns or variables in $X$ and $q$ is the value of $q$.

Tip You can continue optimizing a previously returned transform weight matrix by passing it as an initial value in another call to sparsefilt. The output model object Mdl stores a learned transform weight matrix in the TransformWeights property.

Example: 'InitialTransformWeights',Mdl.TransformWeights

Data Types: single | double

GradientTolerance — Relative convergence tolerance on gradient norm

1e-6 (default) | positive numeric scalar

Relative convergence tolerance on gradient norm, specified as the comma-separated pair consisting of 'GradientTolerance' and a positive numeric scalar. This gradient is the gradient of the objective function.

Example: 'GradientTolerance',1e-4

Data Types: single | double
StepTolerance — Absolute convergence tolerance on step size
1e-6 (default) | positive numeric scalar

Absolute convergence tolerance on the step size, specified as the comma-separated pair consisting of 'StepTolerance' and a positive numeric scalar.
Example: 'StepTolerance',1e-4
Data Types: single | double

Output Arguments
Mdl — Learned sparse filtering model
SparseFiltering model object

Learned sparse filtering model, returned as a SparseFiltering model object.

To access properties of Mdl, use dot notation. For example:
- To access the learned transform weights, use Mdl.TransformWeights.
- To access the fitting information structure, use Mdl.FitInfo.

To find sparse filtering coefficients for new data, use the transform function.

Algorithms

The sparsefilt function creates a nonlinear transformation of input features to output features. The transformation is based on optimizing an objective function that encourages the representation of each example by as few output features as possible while at the same time keeping the output features equally active across examples.

For details, see “Sparse Filtering Algorithm” on page 15-159.

See Also
SparseFiltering | rica | transform

Topics
“Feature Extraction Workflow” on page 15-165
“Feature Extraction” on page 15-159

 Introduced in R2017a
SparseFiltering

Feature extraction by sparse filtering

Description

SparseFiltering uses sparse filtering to learn a transformation that maps input predictors to new predictors.

Creation

Create a SparseFiltering object using the sparsefilt function.

Properties

FitInfo — Fitting history
structure

This property is read-only.

Fitting history, returned as a structure with two fields:

- Iteration — Iteration numbers from 0 through the final iteration.
- Objective — Objective function value at each corresponding iteration. Iteration 0 corresponds to the initial values, before any fitting.

Data Types: struct

InitialTransformWeights — Initial feature transformation weights
p-by-q matrix

This property is read-only.

Initial feature transformation weights, returned as a p-by-q matrix, where p is the number of predictors passed in X and q is the number of features that you want. These weights
are the initial weights passed to the creation function. The data type is single when the training data \( X \) is single.

Data Types: single | double

**ModelParameters — Parameters used for training model**
structure

This property is read-only.

Parameters used for training the model, returned as a structure. The structure contains a subset of the fields that corresponds to the `sparsefilt` name-value pairs that were in effect during model creation:

- `IterationLimit`
- `VerbosityLevel`
- `Lambda`
- `Standardize`
- `GradientTolerance`
- `StepTolerance`

For details, see the `sparsefilt` name-value pairs in the documentation.

Data Types: struct

**Mu — Predictor means when standardizing**
p-by-1 vector

This property is read-only.

Predictor means when standardizing, returned as a p-by-1 vector. This property is nonempty when the `Standardize` name-value pair is `true` at model creation. The value is the vector of predictor means in the training data. The data type is single when the training data \( X \) is single.

Data Types: single | double

**NumLearnedFeatures — Number of output features**
positive integer

This property is read-only.
Number of output features, returned as a positive integer. This value is the q argument passed to the creation function, which is the requested number of features to learn.

Data Types: double

**NumPredictors — Number of input predictors**

positive integer

This property is read-only.

Number of input predictors, returned as a positive integer. This value is the number of predictors passed in X to the creation function.

Data Types: double

**Sigma — Predictor standard deviations when standardizing**

p-by-1 vector

This property is read-only.

Predictor standard deviations when standardizing, returned as a p-by-1 vector. This property is nonempty when the Standardize name-value pair is true at model creation. The value is the vector of predictor standard deviations in the training data. The data type is single when the training data X is single.

Data Types: single | double

**TransformWeights — Feature transformation weights**

p-by-q matrix

This property is read-only.

Feature transformation weights, returned as a p-by-q matrix, where p is the number of predictors passed in X and q is the number of features that you want. The data type is single when the training data X is single.

Data Types: single | double

**Object Functions**

transform    Transform predictors into extracted features
Examples

Create Sparse Filter

Create a SparseFiltering object by using the sparsefilt function.

Load the caltech101 image patches.

data = load('caltech101patches');
size(data.X)

ans = 1x2

100000         363

There are 100,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
Q = 100;
obj = sparsefilt(data.X,Q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

obj =
    SparseFiltering
        ModelParameters: [1x1 struct]
            NumPredictors: 363
            NumLearnedFeatures: 100
            Mu: []
            Sigma: []
        FitInfo: [1x1 struct]
            TransformWeights: [363x100 double]
            InitialTransformWeights: []

Properties, Methods

sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of reaching a step-size limit or a gradient-size limit. You can still use the learned features in the returned object by calling the transform function.
See Also
ReconstructionICA | rica | sparsefilt | transform

Topics
“Feature Extraction Workflow” on page 15-165
“Feature Extraction” on page 15-159

Introduced in R2017a
squareform

Format distance matrix

Syntax

\[
\begin{align*}
\text{ZOut} &= \text{squareform}(\text{yIn}) \\
y\text{Out} &= \text{squareform}(\text{ZIn}) \\
\text{ZOut} &= \text{squareform}(\text{yIn}, \text{'tomatrix'}) \\
y\text{Out} &= \text{squareform}(\text{ZIn}, \text{'tovector'})
\end{align*}
\]

Description

\[
\begin{align*}
\text{ZOut} &= \text{squareform}(\text{yIn}) \text{ converts } \text{yIn}, \text{ a pairwise distance vector of length } m(m-1)/2 \text{ for } m \text{ observations, into } \text{ZOut}, \text{ an } m\text{-by-}m \text{ symmetric matrix with zeros along the diagonal.}
\end{align*}
\]

The pairwise distances in \( y\text{In} \) are arranged in the order (2,1), (3,1), ..., (\( m,1 \)), (3,2), ..., (\( m,2 \)), ..., (\( m,m-1 \)). The pairwise distance between the \( i \)th and \( j \)th observations is in \( \text{ZOut}(i,j) \) and \( y\text{In}((i-1)*(m-i/2)+j-i) \) for \( i \leq j \).

\[
\begin{align*}
y\text{Out} &= \text{squareform}(\text{ZIn}) \text{ converts } \text{ZIn}, \text{ a square, symmetric matrix with zeros along the diagonal, into } y\text{Out}, \text{ a vector containing the } \text{ZIn} \text{ elements below the diagonal.}
\end{align*}
\]

\[
\begin{align*}
\text{ZOut} &= \text{squareform}(\text{yIn}, \text{'tomatrix'}) \text{ forces squareform to treat } y\text{In} \text{ as a vector and converts } y\text{In} \text{ into a matrix.}
\end{align*}
\]

\[
\begin{align*}
y\text{Out} &= \text{squareform}(\text{ZIn}, \text{'tovector'}) \text{ forces squareform to treat } \text{ZIn} \text{ as a matrix and converts } \text{ZIn} \text{ into a vector. If } \text{ZIn} \text{ is a scalar (1-by-1), then } \text{ZIn} \text{ must be zero.}
\end{align*}
\]

The previous two syntaxes are useful when the input argument is a scalar. If you do not specify either 'tomatrix' or 'tovector', then the default is 'tomatrix'.

Examples
**Compute Euclidean Distance and Convert Distance Vector to Matrix**

Compute the Euclidean distance between pairs of observations, and convert the distance vector to a matrix using `squareform`.

Create a matrix with three observations and two variables.

```matlab
rng('default') % For reproducibility
X = rand(3,2);
```

Compute the Euclidean distance.

```matlab
D = pdist(X)
```

```
D = 1×3
 0.2954 1.0670 0.9448
```

The pairwise distances are arranged in the order (2,1), (3,1), (3,2). You can easily locate the distance between observations \(i\) and \(j\) by using `squareform`.

```matlab
Z = squareform(D)
```

```
Z = 3×3
 0 0.2954 1.0670
 0.2954 0 0.9448
 1.0670 0.9448 0
```

`squareform` returns a symmetric matrix where \(Z(i,j)\) corresponds to the pairwise distance between observations \(i\) and \(j\). For example, you can find the distance between observations 2 and 3.

```matlab
Z(2,3)
```

```
ans = 0.9448
```

Pass \(Z\) to the `squareform` function to reproduce the output of the `pdist` function.

```matlab
y = squareform(Z)
```

```
y = 1×3
```

32-6209
The outputs $y$ from `squareform` and $D$ from `pdist` are the same.

**Input Arguments**

$yIn$ — Input distance vector
numeric vector | logical vector

Input distance vector, specified as a numeric or logical vector of length $m(m-1)/2$, where $m$ is the number of observations.

The pairwise distances in $yIn$ are arranged in the order $(2,1)$, $(3,1)$, ..., $(m,1)$, $(3,2)$, ..., $(m,2)$, ..., $(m,m-1)$, i.e., the lower-left triangle of the $m$-by-$m$ distance matrix in column order. The pairwise distance between observations $i$ and $j$ is in $yIn((i-1)*(m-i/2)+j-i)$ for $i \leq j$.

You can create $yIn$ by using the `pdist` function. $m$ is the number of observations in the input data of `pdist`.

Data Types: `single` | `double` | `logical`

$ZIn$ — Input distance matrix
numeric matrix | logical matrix

Input distance matrix, specified as a numeric or logical matrix. $ZIn$ is an $m$-by-$m$ symmetric matrix with zeros along the diagonal, where $m$ is the number of observations. $ZIn(i,j)$ denotes the distance between the $i$th and $j$th observations.

Data Types: `single` | `double` | `logical`

**Output Arguments**

$yOut$ — Distance vector
numeric vector | logical vector

Distance vector, returned as a numeric or logical vector of length $m(m-1)/2$, where $m$ is the number of observations.
The pairwise distances in yOut are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m−1), i.e., the lower-left triangle of the m-by-m distance matrix in column order. The pairwise distance between observations $i$ and $j$ is in $yOut((i-1)*(m-i/2)+j-i)$ for $i\leq j$.

$yOut$ has the same format as the output from the $pdist$ function.

**ZOut — Distance matrix**

numeric matrix | logical matrix

Distance matrix, returned as a numeric or logical matrix. ZOut is an $m$-by-$m$ symmetric matrix with zeros along the diagonal, where $m$ is the number of observations. ZOut($i,j$) denotes the distance between the $i$th and $j$th observations.

**Tips**

- You can use squareform to format a vector or matrix that is similar to a distance vector or matrix, such as the correlation coefficient matrix ($corrcoef$).

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations: The conversion direction 'tomatrix' or 'tovector' must be a compile-time constant. For example, to specify the conversion direction as 'tovector', include coder.Constant('tovector') in the -args value of codegen.

**See Also**

pdist

Introduced before R2006a
stack

**Class:** dataset

Stack data from multiple variables into single variable

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

\[
B = \text{stack}(A, \text{datavars})
\]

\[
[B, iA] = \text{stack}(A, \text{datavars})
\]

\[
B = \text{stack}(A, \text{datavars}, Parameter, value)
\]

**Description**

\( B = \text{stack}(A, \text{datavars}) \) stacks multiple variables in dataset array \( A \) into a single variable in \( B \). In general, \( B \) contains fewer variables but more observations than \( A \).

\( \text{datavars} \) specifies a group of \( m \) data variables in \( A \). \text{stack} creates a single data variable in \( B \) by interleaving their values, and if \( A \) has \( n \) observations, then \( B \) has \( m \)-by-\( n \) observations. In other words, \text{stack} takes the \( m \) data values from each observation in \( A \) and stacks them up to create \( m \) observations in \( B \). \text{datavars} is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. \text{stack} also creates a grouping variable in \( B \) to indicate which of the \( m \) data variables in \( A \) each observation in \( B \) corresponds to.

\text{stack} assigns values for the "per-variable properties (e.g., Units and VarDescription)" for the new data variable in \( B \) from the corresponding property values for the first variable listed in \text{datavars}.

\text{stack} copies the remaining variables from \( A \) to \( B \) without stacking, by replicating each of their values \( m \) times. These variables are typically grouping variables. Because their
values are constant across each group of \( m \) observations in \( B \), they identify which observation in \( A \) an observation in \( B \) came from.

\[
[B, iA] = \text{stack}(A, \text{datavars})
\]

returns an index vector \( iA \) indicating the correspondence between observations in \( B \) and those in \( A \). \text{stack} creates \( B(j,:) \) using \( A(iA(j), \text{datavars}) \).

For more information on grouping variables, see “Grouping Variables” on page 2-57.

## Input Arguments

\( B = \text{stack}(A, \text{datavars}, \text{Parameter}, \text{value}) \) uses the following parameter name/value pairs to control how \text{stack} converts variables in \( A \) to variables in \( B \):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ConstVars'</td>
<td>Variables in ( A ) to copy to ( B ) without stacking. \text{ConstVars} is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. The default is all variables in ( A ) not specified in \text{datavars}.</td>
</tr>
<tr>
<td>'NewDataVarName'</td>
<td>A name for the data variable to be created in ( B ). The default is a concatenation of the names of the ( m ) variables that are stacked up.</td>
</tr>
<tr>
<td>'IndVarName'</td>
<td>A name for the grouping variable to create in ( B ) to indicate the source of each value in the new data variable. The default is based on the 'NewDataVarName' parameter.</td>
</tr>
</tbody>
</table>

You can also specify multiple groups of data variables in \( A \), each of which becomes a variable in \( B \). All groups must contain the same number of variables. Use a string array or cell array of character vectors to contain multiple parameter values for \text{datavars} or to contain multiple values for 'NewDataVarName'.

32-6213
Examples

Combine several variables for estimated influenza rates into a single variable. Then unstack the estimated influenza rates by date.

load flu

% FLU has a 'Date' variable, and 10 variables for estimated influenza rates % (in 9 different regions, estimated from Google searches, plus a % nationwide estimate from the CDC). Combine those 10 variables into an % array that has a single data variable, 'FluRate', and an indicator % variable, 'Region', that says which region each estimate is from. [flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
   'IndVarName','Region')

% The second observation in FLU is for 10/16/2005. Find the observations % in FLU2 that correspond to that date. flu(2,:)
flu2(iflu==2,:)

% Use the 'Date' variable from that array to split 'FluRate' into 52 % separate variables, each containing the estimated influenza rates for % each unique date. The new array has one observation for each region. In % effect, this is the original array FLU "on its side". dateNames = cellstr(datestr(flu.Date,'mmm DD YYYY'));
[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...
   'NewDataVarNames',dateNames)

% Since observations in FLU3 represent regions, IFLU2 indicates the first % occurrence in FLU2 of each region. flu2(iflu2,:)

See Also
dataset.join | dataset.unstack

Topics
"Grouping Variables" on page 2-57
State property

Class: qrandstream

Current state of the stream

Description

The State property of a quasi-random stream contains the index into the associated point set of the next point to draw in the stream. Getting and resetting the State property allows you to return a stream to a previous state. The initial value of State is 1.

Examples

Q = qrandstream('sobol', 5);
s = Q.State;
u1 = qrand(Q, 10)
Q.State = s;
u2 = qrand(Q, 10) % contains exactly the same values as u1

See Also

qrand
**statget**

Access values in statistics options structure

**Syntax**

val = statget(options, param)
val = statget(options, param, default)

**Description**

val = statget(options, param) returns the value of the parameter specified by param in the statistics options structure options. The input param is a character vector or a string scalar of the parameter name. If the parameter is undefined in options, statget returns []. You need to type only enough leading characters to define the parameter name uniquely. statget ignores case for parameter names. For available options, see Inputs.

val = statget(options, param, default) returns default if the specified parameter is undefined in the optimization options structure options.

**Input Arguments**

**DerivStep**

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics and Machine Learning Toolbox function using the options structure.

**Display**

Amount of information displayed by the algorithm.

- 'off' — Displays no information.
- 'final' — Displays the final output.
• 'iter' — Displays iterative output to the command window for some functions; otherwise displays the final output.

**FunValCheck**

Check for invalid values, such as NaN or Inf, from the objective function.

• 'off'
• 'on'

**GradObj**

Flags whether the objective function returns a gradient vector as a second output.

• 'off'
• 'on'

**Jacobian**

Flags whether the objective function returns a Jacobian as a second output.

• 'off'
• 'on'

**MaxFunEvals**

Maximum number of objective function evaluations allowed. Positive integer.

**MaxIter**

Maximum number of iterations allowed. Positive integer.

**OutputFcn**

The solver calls all output functions after each iteration.

• Function handle specified using @
• a cell array with function handles
• an empty array (default)
Robust

Invoke robust fitting option.

- 'off'
- 'on'

RobustWgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output.

- 'bisquare'
- 'andrews'
- 'cauchy'
- 'fair'
- 'huber'
- 'logistic'
- 'talwar'
- 'welsch'

Streams

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams option is accepted by some functions to govern what stream(s) to use in generating random numbers within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be empty. If 'UseParallel' is true and 'UseSubstreams' is false, then the Streams argument must either be empty, or its length must match the number of processors used in the computation: equal to the parpool size if a parpool is open, a scalar otherwise.

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive scalar.
**TolTypeFun**

Use TolFun for absolute or relative objective function tolerances.

- 'abs'
- 'rel'

**TolTypeX**

Use TolX for absolute or relative parameter tolerances.

- 'abs'
- 'rel'

**TolX**

Termination tolerance for the parameters. Positive scalar.

**Tune**

The tuning constant used in robust fitting to normalize the residuals before applying the weight function. The default value depends upon the weight function. This parameter is necessary if you specify the weight function as a function handle. Positive scalar.

**UseParallel**

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT parpool is in effect. Valid values are false (the default), for serial computation, and true, for parallel computation.

**UseSubstreams**

Flag indicating whether the random number generator in eligible functions should use Substream property of the RandStream class. false (default) or true. When true, high level iterations within the function will set the Substream property to the value of the iteration. This behavior helps to generate reproducible random number streams in parallel and/or serial mode computation.
WgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output.

• 'bisquare'
• 'andrews'
• 'cauchy'
• 'fair'
• 'huber'
• 'logistic'
• 'talwar'
• 'welsch'

Examples

This statement returns the value of the Display statistics options parameter from the structure called my_options.

val = statget(my_options,'Display')

Return the value of the Display statistics options parameter from the structure called my_options (as in the previous example). If the Display parameter is undefined, statget returns the value 'final'.

optnew = statget(my_options,'Display','final');

See Also
statset

Introduced before R2006a
statset

Create statistics options structure

Syntax

statset
statset(statfun)
options = statset(...)
options = statset(fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,newopts)

Description

statset with no input arguments and no output arguments displays all fields of a statistics options structure and their possible values.

statset(statfun) displays fields and default values used by the Statistics and Machine Learning Toolbox function statfun. Specify statfun using a character vector, a string scalar, or a function handle.

options = statset(...) creates a statistics options structure options. With no input arguments, all fields of the options structure are an empty array ([]). With a specified statfun, function-specific fields are default values and the remaining fields are []. Function-specific fields set to [] indicate that the function is to use its default value for that parameter. For available options, see Inputs.

options = statset(fieldname1,val1,fieldname2,val2,...) creates an options structure in which the named fields have the specified values. Any unspecified values are []. Use character vectors or string scalars for field names. For named values, you must input the complete character vector or string scalar for the value. If you provide an invalid character vector or string scalar for a value, statset uses the default.

options = statset(oldopts,fieldname1,val1,fieldname2,val2,...) creates a copy of oldopts with the named parameters changed to the specified values.
options = statset(oldopts,newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite corresponding parameters in oldopts.

**Input Arguments**

**DerivStep**

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics and Machine Learning Toolbox function using the options structure.

**Display**

Amount of information displayed by the algorithm.

- 'off' — Displays no information.
- 'final' — Displays the final output.
- 'iter' — Displays iterative output to the command window for some functions; otherwise displays the final output.

**FunValCheck**

Check for invalid values, such as NaN or Inf, from the objective function.

- 'off'
- 'on'

**GradObj**

Flags whether the objective function returns a gradient vector as a second output.

- 'off'
- 'on'

**Jacobian**

Flags whether the objective function returns a Jacobian as a second output.

- 'off'
• 'on'

**MaxFunEvals**

Maximum number of objective function evaluations allowed. Positive integer.

**MaxIter**

Maximum number of iterations allowed. Positive integer.

**OutputFcn**

The solver calls all output functions after each iteration.

- Function handle specified using @
- a cell array with function handles
- an empty array (default)

**Robust**

Invoke robust fitting option.

- 'off'
- 'on'

Robust will be removed in a future software release. Use RobustWgtFun for robust fitting.

**RobustWgtFun**

Weight function for robust fitting. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. If you use a function handle, give a Tune constant. See “Robust Options” on page 32-6226.

**Streams**

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams option is accepted by some functions to govern what stream(s) to use in generating random numbers within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be empty. If 'UseParallel' is true and 'UseSubstreams' is false, then the Streams argument must either be empty, or its
length must match the number of processors used in the computation: equal to the `parpool` size if a `parpool` is open, a scalar otherwise.

**TolBnd**

Parameter bound tolerance. Positive scalar.

**TolFun**

Termination tolerance for the objective function value. Positive scalar.

**TolTypeFun**

Use `TolFun` for absolute or relative objective function tolerances.

- `'abs'`
- `'rel'`

**TolTypeX**

Use `TolX` for absolute or relative parameter tolerances.

- `'abs'`
- `'rel'`

**TolX**

Termination tolerance for the parameters. Positive scalar.

**Tune**

Tuning constant used in robust fitting to normalize the residuals before applying the weight function. The default value depends upon the weight function. This parameter is necessary if you specify the weight function as a function handle. Positive scalar. See “Robust Options” on page 32-6226.

**UseParallel**

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT parpool is in effect. Valid values are `false` (the default), for serial computation, and `true`, for parallel computation.
**UseSubstreams**

Flag indicating whether the random number generator in eligible functions should use `Substream` property of the `RandStream` class. `false` (default) or `true`. When `true`, high level iterations within the function will set the `Substream` property to the value of the iteration. This behavior helps to generate reproducible random number streams in parallel and/or serial mode computation.

**WgtFun**

Weight function for robust fitting. Valid only when `Robust` is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. See “Robust Options” on page 32-6226.

`WgtFun` will be removed in a future software release. Use `RobustWgtFun` instead.

**Examples**

Suppose you want to change the default parameter values for the function `evfit`, which fits an extreme value distribution to data. The defaults parameter values are:

```matlab
statset('evfit')
ans =
 Display: 'off'
 MaxFunEvals: []
 MaxIter: []
 TolBnd: []
 TolFun: []
 TolTypeFun: []
 TolX: 1.0000e-06
 TolTypeX: []
 GradObj: []
 Jacobian: []
 DerivStep: []
 FunValCheck: []
 Robust: []
 RobustWgtFun: []
 WgtFun: []
 Tune: []
 UseParallel: []
 UseSubstreams: []
```
The only parameters that `evfit` uses are `Display` and `TolX`. To create an options structure with the value of `TolX` set to `1e-8`, enter:

```matlab
options = statset('TolX',1e-8)
% Pass options to evfit:
mu = 1;
sigma = 1;
data = evrnd(mu,sigma,1,100);

paramhat = evfit(data,[],[],[],options)
```

### Definitions

#### Robust Options

<table>
<thead>
<tr>
<th>Weight Function</th>
<th>Equation</th>
<th>Default Tuning Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>'andrews'</td>
<td>$w = (\text{abs}(r)&lt;\pi) \times \sin(r) ./ r$</td>
<td>1.339</td>
</tr>
<tr>
<td>'bisquare'</td>
<td>$w = (\text{abs}(r)&lt;1) \times (1 - r.^2).^2$</td>
<td>4.685</td>
</tr>
<tr>
<td>'cauchy'</td>
<td>$w = 1 ./ (1 + r.^2)$</td>
<td>2.385</td>
</tr>
<tr>
<td>'fair'</td>
<td>$w = 1 ./ (1 + \text{abs}(r))$</td>
<td>1.400</td>
</tr>
<tr>
<td>'huber'</td>
<td>$w = 1 ./ \max(1, \text{abs}(r))$</td>
<td>1.345</td>
</tr>
<tr>
<td>'logistic'</td>
<td>$w = \tanh(r) ./ r$</td>
<td>1.205</td>
</tr>
<tr>
<td>'talwar'</td>
<td>$w = 1 \times (\text{abs}(r)&lt;1)$</td>
<td>2.795</td>
</tr>
<tr>
<td>'welsch'</td>
<td>$w = \exp(-(r.^2))$</td>
<td>2.985</td>
</tr>
<tr>
<td>[]</td>
<td>No robust fitting</td>
<td>—</td>
</tr>
</tbody>
</table>

### See Also

`statget`
Introduced before R2006a
**std**

**Package:** prob

Standard deviation of probability distribution

**Syntax**

\[ s = \text{std}(pd) \]

**Description**

\[ s = \text{std}(pd) \] returns the standard deviation \( s \) of the probability distribution \( pd \).

**Examples**

**Standard Deviation of a Fitted Distribution**

Load the sample data. Create a vector containing the first column of students' exam grade data.

```matlab
load examgrades
x = grades(:,1);
```

Fit a normal distribution object to the data.

```matlab
pd = fitdist(x,'Normal')
```

```matlab
pd =
 NormalDistribution
 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]
```

Compute the standard deviation of the fitted distribution.
For a normal distribution, the standard deviation is equal to the parameter \( \sigma \).

**Standard Deviation of a Skewed Distribution**

Create a Weibull probability distribution object

```matlab
pd = makedist('Weibull','a',5,'b',2)
pd =
 WeibullDistribution
 Weibull distribution
 A = 5
 B = 2
```

Compute the standard deviation of the distribution.

```matlab
s = std(pd)
s = 2.3163
```

**Standard Deviation of a Triangular Distribution**

Create a triangular distribution object.

```matlab
pd = makedist('Triangular','a',-3,'b',1,'c',3)
pd =
 TriangularDistribution
 A = -3, B = 1, C = 3
```

Compute the standard deviation of the distribution.

```matlab
s = std(pd)
s = 1.2472
```
Standard Deviation of a Kernel Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.

```matlab
load examgrades;
x = grades(:,1);
```

Create a probability distribution object by fitting a kernel distribution to the data.

```matlab
pd = fitdist(x,'Kernel')
pd =
 KernelDistribution
 Kernel = normal
 Bandwidth = 3.61677
 Support = unbounded
```

Compute the standard deviation of the fitted distribution.

```matlab
s = std(pd)
s = 9.4069
```

Input Arguments

(pd — Probability distribution

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
</tbody>
</table>
Function or App | Description
--- | ---
Distribution Fitter | Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.

Output Arguments

s — Standard deviation
defined as a nonnegative scalar value.

Standard deviation of the probability distribution, returned as a nonnegative scalar value.

See Also

Distribution Fitter | fitdist | makedist | mean | var

Topics

“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced in R2013a
step

Class: GeneralizedLinearModel

Improve generalized linear regression model by adding or removing terms

Syntax

mdl1 = step(mdl)
mdl1 = step(mdl,Name,Value)

Description

mdl1 = step(mdl) returns an improved generalized linear model based on mdl, with
one predictor added or removed.

mdl1 = step(mdl,Name,Value) improves a generalized linear model with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to the
data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

**Criterion** — Criterion to add or remove terms
'Deviance' (default) | 'sse' | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

- 'Deviance' — p-value for F or chi-squared test of the change in the deviance by
  adding or removing the term. F-test is for testing a single model. Chi-squared test is
  for comparing two different models.
- 'sse' — p-value for an F-test of the change in the sum of squared error by adding or
  removing the term.
- 'aic' — Change in the value of Akaike information criterion (AIC).
- 'bic' — Change in the value of Bayesian information criterion (BIC).
- 'rsquared' — Increase in the value of $R^2$.
- 'adjrsquared' — Increase in the value of adjusted $R^2$.

Example: 'Criterion','bic'

**Lower** — Model specification describing terms that cannot be removed from
model
'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as
the comma-separated pair consisting of 'Lower' and one of the options for modelspec
naming the model.

Example: 'Lower','linear'

**NSteps** — Number of steps to take
no limit (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.

Data Types: single | double

**PEnter** — Improvement measure for adding term
scalar value
Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.05</td>
<td>If the p-value of F or chi-squared statistic is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>If the increase in the R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>If the increase in the adjusted R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PEnter', 0.075

**PRemove — Improvement measure for removing term**

scalar value

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'PRemove' and a scalar value.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.10</td>
<td>If the p-value of F or chi-squared statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the p-value of the F statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
</tbody>
</table>

At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PRemove', 0.05

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix
Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of 'Upper' and one of the options for modelspec naming the model.

Example: 'Upper','quadratic'

**Verbose — Control for display of information**

1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

- 0 — Suppress all display.
- 1 — Display the action taken at each step.
- 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

**Output Arguments**

mdl1 — Improved generalized linear model

*GeneralizedLinearModel* object

Improved generalized linear model, returned as a *GeneralizedLinearModel* object. To overwrite mdl, set mdl1 equal to mdl.

**Examples**

**Add Predictors One at a Time**

Fit a Poisson regression model using random data and a single predictor, then step in other predictors.

Generate artificial data with 20 predictors, using three of the predictors for the responses.

```matlab
rng('default') % for reproducibility
X = randn(100,20);
```
\[
\begin{align*}
\mu &= \exp(X(:,[5, 10, 15])\cdot[.4; .2; .3] + 1); \\
y &= \text{poissrnd}(\mu);
\end{align*}
\]

Construct a generalized linear model using \(X(:, 1)\) as the only predictor.

```matlab
mdl = fitglm(X, y,...
'y ~ x1', 'Distribution', 'poisson')
```

\[
\begin{align*}
\text{mdl} = \\
\text{Generalized linear regression model:} \\
\log(y) & \sim 1 + x1 \\
\text{Distribution} &= \text{Poisson}
\end{align*}
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.1278</td>
<td>0.0574</td>
<td>19.618</td>
<td>1.0904e-85</td>
</tr>
<tr>
<td>x1</td>
<td>0.0612</td>
<td>0.0485</td>
<td>1.2642</td>
<td>0.20617</td>
</tr>
</tbody>
</table>

100 observations, 98 error degrees of freedom 
Dispersion: 1 
Chi^2-statistic vs. constant model: 1.59, p-value = 0.208

Add a variable to the model using \textit{step}.

```matlab
mdl1 = step(mdl)
```

1. Adding x5, Deviance = 134.2976, Chi2Stat = 50.80176, PValue = 1.021821e-12

\[
\begin{align*}
\text{mdl1} = \\
\text{Generalized linear regression model:} \\
\log(y) & \sim 1 + x1 + x5 \\
\text{Distribution} &= \text{Poisson}
\end{align*}
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0418</td>
<td>0.0623</td>
<td>16.712</td>
<td>1.07e-62</td>
</tr>
<tr>
<td>x1</td>
<td>0.0189</td>
<td>0.0499</td>
<td>0.3767</td>
<td>0.70639</td>
</tr>
<tr>
<td>x5</td>
<td>0.4788</td>
<td>0.0678</td>
<td>7.0542</td>
<td>1.7357e-12</td>
</tr>
</tbody>
</table>
100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 52.4, p-value = 4.21e-12

Add another variable to the model using **step**.

```matlab
mdl1 = step(mdl1)
```

2. Adding x15, Deviance = 105.9973, Chi2Stat = 28.30027, PValue = 1.038814e-07

```matlab
mdl1 =
 Generalized linear regression model:
 log(y) ~ 1 + x1 + x5 + x15
 Distribution = Poisson
```

**Estimated Coefficients:**

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0459</td>
<td>0.0627</td>
<td>16.681</td>
</tr>
<tr>
<td>x1</td>
<td>0.026907</td>
<td>0.05003</td>
<td>0.53782</td>
</tr>
<tr>
<td>x5</td>
<td>0.3983</td>
<td>0.068376</td>
<td>5.8251</td>
</tr>
<tr>
<td>x15</td>
<td>0.28949</td>
<td>0.053992</td>
<td>5.3618</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 80.7, p-value = 2.18e-17

**Tips**

- Use `addTerms` or `removeTerms` to control exactly which terms enter or leave the model.

**Algorithms**

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using `modelspec`, and then compares the explanatory power of incrementally larger and smaller models.
MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, `stepwiselm` uses the p-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1. Fit the initial model.
2. Examine a set of available terms not in the model. If any of these terms have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p-value and repeat this step; otherwise, go to step 3.
3. If any of the available terms in the model have p-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest p-value and go to step 2; otherwise, end.

At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove X1 or X2^2 if X1:X2^2 stays in the model.

The default for `stepwiseglm` is 'Deviance' and it follows a similar procedure for adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

**Alternatives**

Use `stepwiseglm` to select a model from a starting model, continuing until no single step is beneficial.

Use `addTerms` or `removeTerms` to add or remove particular terms.

**See Also**

`GeneralizedLinearModel` | `addTerms` | `removeTerms` | `stepwiseglm`

**Topics**

“Plots to Understand Predictor Effects and How to Modify a Model” on page 12-30
“Generalized Linear Models” on page 12-12
step

**Class:** LinearModel

Improve linear regression model by adding or removing terms

**Syntax**

mdl1 = step(mdl)
mdl1 = step(mdl,Name,Value)

**Description**

mdl1 = step(mdl) returns an improved linear model based on mdl, with one predictor added or removed.

**Note** You can use step only if mdl.Robust = []. This holds when you create mdl with fitlm having the RobustOpts name-value pair set to the default 'off'.

mdl1 = step(mdl,Name,Value) returns an improved linear model using additional options specified by one or more Name,Value pair arguments. For example, you can specify the criterion to use to add or remove terms.

**Input Arguments**

mdl — Full, fitted linear regression model
LinearModel object

Full, fitted linear regression model, specified as a LinearModel object constructed using fitlm or stepwiselm.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**Criterion** — Criterion for selecting terms to add or remove
'SSE' (default)

Criterion for selecting terms to add or remove, specified as the comma-separated pair consisting of 'Criterion' and one of the following.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>PEnter</th>
<th>PRemove</th>
<th>Compared Against</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>&lt; 0.1</td>
<td>p-value for F test</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>&lt; 0.01</td>
<td>Change in AIC</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>&lt; 0.01</td>
<td>Change in BIC</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>&gt; 0.05</td>
<td>Increase in R-squared</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>&gt; -0.05</td>
<td>Increase in adjusted R-squared</td>
</tr>
</tbody>
</table>

Example: 'Criterion','BIC'

**Lower** — Model specification describing terms that cannot be removed from model
'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as the comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the model.

Example: 'Lower','linear'

**NSteps** — Number of steps to take
no limit (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps' and a positive integer.

Data Types: single | double

**PEnter** — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>If the increase in the R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>If the increase in the adjusted R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>

For more information on the criteria, see `Criterion` name-value pair argument.

Example: `'PEnter', 0.075`

**PRemove — Improvement measure for removing term**

scalar value

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'PRemove' and a scalar value.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the p-value of the F statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Default value</td>
<td>Decision</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
</tbody>
</table>

At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PRemove', 0.05

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of 'Upper' and one of the options for modelspec naming the model.

Example: 'Upper', 'quadratic'

**Verbose — Control for display of information**

1 (default) | 0 | 2
Control for display of information, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

- 0 — Suppress all display.
- 1 — Display the action taken at each step.
- 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

Output Arguments

**mdl1 — Improved linear regression model**

LinearModel object

Improved linear regression model, returned as a LinearModel object. To overwrite mdl, set mdl1 equal to mdl.

Examples

**Modify a Linear Regression Model Using step**

Fit a linear model to car data. Use step to evaluate whether a quadratic model improves the fit quality.

Load carsmall data, and create a table using weight and model year predictors with MPG response.

```matlab
load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
```

Make a linear model of MPG as a function of Year and Weight.

```matlab
mdl = fitlm(tbl,'MPG ~ Year + Weight')
```

mdl =

    Linear regression model:
            MPG ~ 1 + Weight + Year
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>40.11</td>
<td>1.5418</td>
<td>26.016</td>
<td>1.2024e-43</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.0066475</td>
<td>0.00042802</td>
<td>-15.531</td>
<td>3.3639e-27</td>
</tr>
<tr>
<td>Year_76</td>
<td>1.9291</td>
<td>0.74761</td>
<td>2.5804</td>
<td>0.011488</td>
</tr>
<tr>
<td>Year_82</td>
<td>7.9093</td>
<td>0.84975</td>
<td>9.3078</td>
<td>7.8681e-15</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 90
Root Mean Squared Error: 2.92
R-squared: 0.873, Adjusted R-Squared 0.868
F-statistic vs. constant model: 206, p-value = 3.83e-40

Use step to adjust the model to potentially include full quadratic terms.

mdl1 = step(mdl,'upper','quadratic')

1. Adding Weight^2, FStat = 9.9164, pValue = 0.0022303

mdl1 =
Linear regression model:
MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>54.206</td>
<td>4.7117</td>
<td>11.505</td>
<td>2.6648e-19</td>
</tr>
<tr>
<td>Weight</td>
<td>-0.016404</td>
<td>0.0031249</td>
<td>-5.2493</td>
<td>1.0283e-06</td>
</tr>
<tr>
<td>Year_76</td>
<td>2.0887</td>
<td>0.71491</td>
<td>2.9215</td>
<td>0.0044137</td>
</tr>
<tr>
<td>Year_82</td>
<td>8.1864</td>
<td>0.81531</td>
<td>10.041</td>
<td>2.6364e-16</td>
</tr>
<tr>
<td>Weight^2</td>
<td>1.5573e-06</td>
<td>4.9454e-07</td>
<td>3.149</td>
<td>0.0022303</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41
Algorithms

Stepwise Regression

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using `modelspec`, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, `stepwiselm` uses the $p$-value of an $F$-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1. Fit the initial model.
2. Examine a set of available terms not in the model. If any of these terms have $p$-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest $p$-value and repeat this step; otherwise, go to step 3.
3. If any of the available terms in the model have $p$-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest $p$-value and go to step 2; otherwise, end.

At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term $X1:X2^2$ unless both $X1$ and $X2^2$ are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove $X1$ or $X2^2$ if $X1:X2^2$ stays in the model.

The default for `stepwiseglm` is 'Deviance' and it follows a similar procedure for adding or removing terms.
There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

**Alternatives**

Use `stepwiselm` to select a model from a starting model, continuing until no single step is beneficial.

Use `addTerms` or `removeTerms` to add or remove particular terms.

**See Also**

*LinearModel* | *addTerms* | *removeTerms* | *stepwiselm*

**Topics**

“Linear Regression Workflow” on page 11-43
“Change Models” on page 11-36
“Linear Regression” on page 11-11
stepwise

Interactive stepwise regression

Syntax

stepwise
stepwise(X,y)
stepwise(X,y,inmodel,ponent,premove)

Description

stepwise uses the sample data in hald.mat to display a graphical user interface for performing stepwise regression of the response values in heat on the predictive terms in ingredients.
The upper left of the interface displays estimates of the coefficients for all potential terms, with horizontal bars indicating 90% (colored) and 95% (grey) confidence intervals. The red color indicates that, initially, the terms are not in the model. Values displayed in the table are those that would result if the terms were added to the model.

The middle portion of the interface displays summary statistics for the entire model. These statistics are updated with each step.

The lower portion of the interface, Model History, displays the RMSE for the model. The plot tracks the RMSE from step to step, so you can compare the optimality of different
models. Hover over the blue dots in the history to see which terms were in the model at a particular step. Click on a blue dot in the history to open a copy of the interface initialized with the terms in the model at that step.

Initial models, as well as entrance/exit tolerances for the \( p \)-values of \( F \)-statistics, are specified using additional input arguments to `stepwise`. Defaults are an initial model with no terms, an entrance tolerance of 0.05, and an exit tolerance of 0.10.

To center and scale the input data (compute \( z \)-scores) to improve conditioning of the underlying least-squares problem, select Scale Inputs from the Stepwise menu.

You proceed through a stepwise regression in one of two ways:

1. Click Next Step to select the recommended next step. The recommended next step either adds the most significant term or removes the least significant term. When the regression reaches a local minimum of RMSE, the recommended next step is “Move no terms.” You can perform all of the recommended steps at once by clicking All Steps.

2. Clicking a line in the plot or in the table to toggle the state of the corresponding term. Clicking a red line, corresponding to a term not currently in the model, adds the term to the model and changes the line to blue. Clicking a blue line, corresponding to a term currently in the model, removes the term from the model and changes the line to red.

To call `addedvarplot` and produce an added variable plot from the `stepwise` interface, select Added Variable Plot from the Stepwise menu. A list of terms is displayed. Select the term you want to add, and then click OK.

Click Export to display a dialog box that allows you to select information from the interface to save to the MATLAB workspace. Check the information you want to export and, optionally, change the names of the workspace variables to be created. Click OK to export the information.

`stepwise(X,y)` displays the interface using the \( p \) predictive terms in the \( n \)-by-\( p \) matrix \( X \) and the response values in the \( n \)-by-1 vector \( y \). Distinct predictive terms should appear in different columns of \( X \).

**Note** `stepwise` automatically includes a constant term in all models. Do not enter a column of 1s directly into \( X \).
**stepwise** treats NaN values in either X or y as missing values, and ignores them.

**stepwise(X,y,inmodel,penter,premove)** additionally specifies the initial model (inmodel) and the entrance (penter) and exit (premove) tolerances for the p-values of F-statistics. inmodel is either a logical vector with length equal to the number of columns of X, or a vector of indices, with values ranging from 1 to the number of columns in X. The value of penter must be less than or equal to the value of premove.

**Algorithms**

Stepwise regression is a systematic method for adding and removing terms from a multilinear model based on their statistical significance in a regression. The method begins with an initial model and then compares the explanatory power of incrementally larger and smaller models. At each step, the p value of an F-statistic is computed to test models with and without a potential term. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model. The method proceeds as follows:

1. Fit the initial model.
2. If any terms not in the model have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p value and repeat this step; otherwise, go to step 3.
3. If any terms in the model have p-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest p value and go to step 2; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.

**See Also**

addedvarplot | regress | stepwisefit
Introduced before R2006a
GeneralizedLinearModel.stepwise

Class: GeneralizedLinearModel

Create generalized linear regression model by stepwise regression

Note GeneralizedLinearModel.stepwise will be removed in a future release. Use stepwiseglm instead.

Syntax

mdl = GeneralizedLinearModel.stepwise(tbl,modelspec)
mdl = GeneralizedLinearModel.stepwise(X,y,modelspec)
mdl = GeneralizedLinearModel.stepwise(...,modelspec,Name,Value)

Description

mdl = GeneralizedLinearModel.stepwise(tbl,modelspec) creates a
generalized linear model of a table or dataset array tbl, using stepwise regression to add
or remove predictors. modelspec is the starting model for the stepwise procedure.

mdl = GeneralizedLinearModel.stepwise(X,y,modelspec) creates a
generalized linear model of the responses y to a data matrix X, using stepwise regression
to add or remove predictors.

mdl = GeneralizedLinearModel.stepwise(...,modelspec,Name,Value)
creates a generalized linear model with additional options specified by one or more
Name,Value pair arguments.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the ResponseVar name-value pair argument. To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.

**X — Predictor variables**

*matrix*

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables. Each column of X represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in X.

Data Types: single | double | logical

**y — Response variable**

*vector*

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in y is the response for the corresponding row of X.

Data Types: single | double | logical

**modelspec — Starting model**

character vector or string scalar specifying the model | t-by-(p+1) terms matrix | character vector or string scalar of the form 'Y ~ terms'

Starting model, specified as one of the following:

- Character vector or string scalar specifying the type of model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>Value</td>
<td>Model Type</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree $i$ in the first predictor, degree $j$ in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

- $t$-by-$(p+1)$ matrix, namely terms matrix on page 32-6266, specifying terms to include in model, where $t$ is the number of terms and $p$ is the number of predictor variables, and plus one is for the response variable.
- Character vector or string scalar representing a formula on page 32-6269 in the form
  \[
  Y \sim \text{terms},
  \]
  where the terms are in “Wilkinson Notation” on page 32-6270.

### Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

**BinomialSize — Number of trials for binomial distribution**

1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated pair consisting of a scalar value or a vector of the same length as the response.
This is the parameter \( n \) for the fitted binomial distribution. `BinomialSize` applies only when the `Distribution` parameter is 'binomial'.

If `BinomialSize` is a scalar value, that means all observations have the same number of trials.

As an alternative to `BinomialSize`, you can specify the response as a two-column vector with counts in column 1 and `BinomialSize` in column 2.

Data Types: `single` | `double`

**CategoricalVars — Categorical variable list**

string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array `tbl`, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array `tbl`, then, by default, `GeneralizedLinearModel.stepwise` treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix `X`, then the default value of 'CategoricalVars' is an empty matrix `[]`. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: `single` | `double` | `logical` | `string` | `cell`

**Criterion — Criterion to add or remove terms**

'Deviance' (default) | 'sse' | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion' and one of the following:

- **'Deviance'** — \( p \)-value for \( F \) or chi-squared test of the change in the deviance by adding or removing the term. \( F \)-test is for testing a single model. Chi-squared test is for comparing two different models.
- 'sse' — $p$-value for an $F$-test of the change in the sum of squared error by adding or removing the term.
- 'aic' — Change in the value of Akaike information criterion (AIC).
- 'bic' — Change in the value of Bayesian information criterion (BIC).
- 'rsquared' — Increase in the value of $R^2$.
- 'adjrsquared' — Increase in the value of adjusted $R^2$.

Example: 'Criterion','bic'

**DispersionFlag — Indicator to compute dispersion parameter**

false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified as the comma-separated pair consisting of 'DispersionFlag' and one of the following.

<table>
<thead>
<tr>
<th>true</th>
<th>Estimate a dispersion parameter when computing standard errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>Default. Use the theoretical value when computing standard errors</td>
</tr>
</tbody>
</table>

The fitting function always estimates the dispersion for other distributions.

Example: 'DispersionFlag',true

**Distribution — Distribution of the response variable**

'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

<table>
<thead>
<tr>
<th>'normal'</th>
<th>Normal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binomial'</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>'poisson'</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>'gamma'</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>Inverse Gaussian distribution</td>
</tr>
</tbody>
</table>

Example: 'Distribution','gamma'
Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Intercept — Indicator for constant term
ture (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.
Example: 'Intercept',false

Link — Link function
canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-separated pair consisting of 'Link' and one of the following.

<table>
<thead>
<tr>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'identity'</td>
<td>$f(\mu) = \mu$</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'log'</td>
<td>$f(\mu) = \log(\mu)$</td>
<td>$\mu = \exp(Xb)$</td>
</tr>
<tr>
<td>'logit'</td>
<td>$f(\mu) = \log(\mu/(1-\mu))$</td>
<td>$\mu = \exp(Xb) / (1 + \exp(Xb))$</td>
</tr>
<tr>
<td>'probit'</td>
<td>$f(\mu) = \Phi^{-1}(\mu)$</td>
<td>$\mu = \Phi(Xb)$</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>$f(\mu) = \log(-\log(1 - \mu))$</td>
<td>$\mu = 1 - \exp(-\exp(Xb))$</td>
</tr>
<tr>
<td>Link Function Name</td>
<td>Link Function</td>
<td>Mean (Inverse) Function</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>$f(\mu) = 1/\mu$</td>
<td>$\mu = 1/(Xb)$</td>
</tr>
<tr>
<td>p (a number)</td>
<td>$f(\mu) = \mu^p$</td>
<td>$\mu = Xb^{1/p}$</td>
</tr>
<tr>
<td>S (a structure)</td>
<td>$f(\mu) = S\cdot\text{Link}(\mu)$</td>
<td>$\mu = S\cdot\text{Inverse}(Xb)$</td>
</tr>
</tbody>
</table>

S (a structure) with three fields. Each field holds a function handle that accepts a vector of inputs and returns a vector of the same size:

- S.Link — The link function
- S.Inverse — The inverse link function
- S.Derivative — The derivative of the link function

The link function defines the relationship $f(\mu) = X*\mathbf{b}$ between the mean response $\mu$ and the linear combination of predictors $X*\mathbf{b}$.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

Data Types: char | string | single | double | struct

**Lower** — Model specification describing terms that cannot be removed from model

'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as the comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the model.

Example: 'Lower','linear'

**Offset** — Offset variable

[ ] (default) | vector | character vector | string scalar
Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and a vector or name of a variable with the same length as the response.

`fitglm` and `stepwiseglm` use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

\[ \mu \sim \text{Offset} + \text{(terms involving real predictors)} \]

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor A. By using the log link function and by specifying \( \log(A) \) as an offset, you can force the model to satisfy this theoretical constraint.

Data Types: `single` | `double` | `char` | `string`

**PEnter** — Improvement measure for adding term

scalar value

Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.05</td>
<td>If the p-value of F or chi-squared statistic is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>
Criterion | Default value | Decision
--- | --- | ---
'R_squared' | 0.1 | If the increase in the R-squared of the model is larger than P_Enter, add the term to the model.

'AdjR_squared' | 0 | If the increase in the adjusted R-squared of the model is larger than P_Enter, add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'P_Enter', 0.075

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.
Example: 'PredictorVars', [2, 3]
Example: 'PredictorVars', logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**P_Remove — Improvement measure for removing term**

scalar value

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'P_Remove' and a scalar value.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.10</td>
<td>If the $p$-value of $F$ or chi-squared statistic is larger than $PRemove$, remove the term from the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the $p$-value of the $F$ statistic is larger than $PRemove$, remove the term from the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than $PRemove$, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than $PRemove$, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than $PRemove$, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than $PRemove$, remove the term from the model.</td>
</tr>
</tbody>
</table>

At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PRemove', 0.05

**ResponseVar — Response variable**
last column in tbl (default) | character vector or string scalar containing variable name | logical or numeric index vector
Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array tbl, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char | string

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of 'Upper' and one of the options for modelspec naming the model.

Example: 'Upper','quadratic'

**VarNames — Names of variables**

{'}x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of X first, and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames',{''Horsepower','Acceleration','Model_Year','MPG'}

Data Types: string | cell

**Weights — Observation weights**

ones(n,1) (default) | n-by-1 vector of nonnegative scalar values
Observation weights, specified as the comma-separated pair consisting of 'Weights' and an \( n \)-by-1 vector of nonnegative scalar values, where \( n \) is the number of observations.

Data Types: single \| double

### Output Arguments

**mdl** — Generalized linear model

GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, **mdl**, see the GeneralizedLinearModel class page.

### Examples

#### Create a Generalized Linear Model Stepwise

Create response data using just three of 20 predictors, and create a generalized linear model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors, plus a constant.

```matlab
rng default % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);
```

Fit a generalized linear model using the Poisson distribution.

```matlab
mdl = stepwiseglm(X,y,...
 'constant','upper','linear','Distribution','poisson')
```

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

32-6265
mdl =
Generalized linear regression model:
  log(y) ~ 1 + x5 + x10 + x15
  Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0115</td>
<td>0.064275</td>
<td>15.737</td>
<td>8.4217e-56</td>
</tr>
<tr>
<td>x5</td>
<td>0.39508</td>
<td>0.066665</td>
<td>5.9263</td>
<td>3.0977e-09</td>
</tr>
<tr>
<td>x10</td>
<td>0.18863</td>
<td>0.05534</td>
<td>3.4085</td>
<td>0.0006532</td>
</tr>
<tr>
<td>x15</td>
<td>0.29295</td>
<td>0.053269</td>
<td>5.4995</td>
<td>3.8089e-08</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

Definitions

Terms Matrix

A terms matrix is a $t$-by-$(p + 1)$ matrix specifying terms in a model, where $t$ is the number of terms, $p$ is the number of predictor variables, and plus one is for the response variable.

The value of $T(i,j)$ is the exponent of variable $j$ in term $i$. Suppose there are three predictor variables $A$, $B$, and $C$:

- $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$ % Constant term or intercept
- $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ % $B$; equivalently, $A^0 * B^1 * C^0$
- $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$ % $A*C$
- $\begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$ % $A^2$
- $\begin{bmatrix} 0 & 1 & 2 & 0 \end{bmatrix}$ % $B*(C^2)$

The $0$ at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then $0$ must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.
Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
```

Redefine the table.

```matlab
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```

- If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

```matlab
load carsmall
X = [Acceleration,Weight];
```
Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

\[
T = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 2 & 0
\end{bmatrix}
\]

Fit a linear model.

\[
mdl = \text{fitlm}(X,\text{MPG},T)
\]

\[
mdl =
\]

Linear regression model:
\[
y ~ 1 + x1*x2 + x2^2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[
T = \begin{bmatrix}
0 & 0 & 0; \\
1 & 0 & 0; \\
0 & 1 & 0; \\
1 & 1 & 0
\end{bmatrix}
\]

\[
mdl = \text{stepwiselm}(X,\text{MPG},[0 0 0],'upper',T)
\]
1. Adding \( x^2 \), \( F_{\text{Stat}} = 259.3087 \), \( p\text{Value} = 1.643351 \times 10^{-28} \)

\[
\text{mdl} = \text{Linear regression model:}
\]
\[
y \sim 1 + x^2
\]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>( x^2 )</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of \texttt{fitlm} in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form \('Y \sim terms'\)

where

- \( Y \) is the response name.
- \( terms \) contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
  - ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
  - () groups terms
**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'\textit{Y ~ A + B + C}' means a three-variable linear model with intercept.

'\textit{Y ~ A + B + C - 1}' is a three-variable linear model without intercept.

'\textit{Y ~ A + B + C + B^2}' is a three-variable model with intercept and a $B^2$ term.

'\textit{Y ~ A + B^2 + C}' is the same as the previous example because $B^2$ includes a $B$ term.

'\textit{Y ~ A + B + C + A:B}' includes an $A*B$ term.

'\textit{Y ~ A*B + C}' is the same as the previous example because $A*B = A + B + A:B$.

'\textit{Y ~ A*B*C - A:B:C}' has all interactions among $A$, $B$, and $C$, except the three-way interaction.

'\textit{Y ~ A*(B + C + D)}' has all linear terms, plus products of $A$ with each of the other variables.

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>$A^k$, where $k$ is a positive integer</td>
<td>$A$, $A^2$, ..., $A^k$</td>
</tr>
<tr>
<td>$A + B$</td>
<td>$A$, $B$</td>
</tr>
<tr>
<td>$A*B$</td>
<td>$A$, $B$, $A*B$</td>
</tr>
<tr>
<td>$A:B$</td>
<td>$A*B$ only</td>
</tr>
<tr>
<td>-$B$</td>
<td>Do not include $B$</td>
</tr>
<tr>
<td>$A*B + C$</td>
<td>$A$, $B$, $C$, $A*B$</td>
</tr>
<tr>
<td>$A + B + C + A:B$</td>
<td>$A$, $B$, $C$, $A*B$</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.
Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

### Canonical Link Functions for Generalized Linear Models

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td>( f(\mu) = \mu )</td>
<td>( \mu = Xb )</td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>( f(\mu) = \log(\mu/(1-\mu)) )</td>
<td>( \mu = \exp(Xb) / (1 + \exp(Xb)) )</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td>( f(\mu) = \log(\mu) )</td>
<td>( \mu = \exp(Xb) )</td>
</tr>
<tr>
<td>'gamma'</td>
<td>-1</td>
<td>( f(\mu) = 1/\mu )</td>
<td>( \mu = 1/(Xb) )</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>-2</td>
<td>( f(\mu) = 1/\mu^2 )</td>
<td>( \mu = (Xb)^{-1/2} )</td>
</tr>
</tbody>
</table>

### Tips

- The generalized linear model `mdl` is a standard linear model unless you specify otherwise with the `Distribution` name-value pair.
- For other methods such as `devianceTest`, or properties of the `GeneralizedLinearModel` object, see `GeneralizedLinearModel`.

### Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using `modelspec`, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, `stepwiselm` uses the p-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1. Fit the initial model.
2. Examine a set of available terms not in the model. If any of these terms have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p-value and repeat this step; otherwise, go to step 3.
3. If any of the available terms in the model have p-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest p-value and go to step 2; otherwise, end.

At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term $X_1\cdot X_2^2$ unless both $X_1$ and $X_2^2$ are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove $X_1$ or $X_2^2$ if $X_1\cdot X_2^2$ stays in the model.

The default for `stepwiseglm` is 'Deviance' and it follows a similar procedure for adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

**Alternatives**

You can also create a stepwise generalized linear model using `stepwiseglm`.

32-6272
Use `fitglm` to create a model with a fixed specification. Use `step`, `addTerms`, or `removeTerms` to adjust a fitted model.

**References**


**See Also**

GeneralizedLinearModel | fitglm | stepwiseglm

**Topics**

“Compare large and small stepwise models” on page 11-126
“Generalized Linear Models” on page 12-12
**LinearModel.stepwise**

**Class:** LinearModel

Create linear regression model by stepwise regression

**Note** LinearModel.stepwise will be removed in a future release. Use stepwiselm instead.

**Syntax**

\[
\text{mdl} = \text{LinearModel.stepwise}(\text{tbl}, \text{modelspec}) \\
\text{mdl} = \text{LinearModel.stepwise}(\text{X}, \text{y}, \text{modelspec}) \\
\text{mdl} = \text{LinearModel.stepwise}(\_, \text{modelspec}, \text{Name}, \text{Value})
\]

**Description**

\[
\text{mdl} = \text{LinearModel.stepwise}(\text{tbl}, \text{modelspec}) \text{ returns a linear model of a table or dataset array } \text{tbl}, \text{ using stepwise regression to add or remove predictors. } \text{modelspec} \text{ is the starting model for the stepwise procedure.}
\]

\[
\text{mdl} = \text{LinearModel.stepwise}(\text{X}, \text{y}, \text{modelspec}) \text{ creates a linear model of the responses } \text{y} \text{ to a data matrix } \text{X}, \text{ using stepwise regression to add or remove predictors. } \text{modelspec} \text{ is the starting model for the stepwise procedure.}
\]

\[
\text{mdl} = \text{LinearModel.stepwise}(\_, \text{modelspec}, \text{Name}, \text{Value}) \text{ creates a linear model for any of the inputs in the previous syntaxes, with additional options specified by one or more } \text{Name}, \text{Value} \text{ pair arguments.}
\]

For example, you can specify the categorical variables, the smallest or largest set of terms to use in the model, the maximum number of steps to take, or the criterion LinearModel.stepwise uses to add or remove terms.
Input Arguments

**tbl — Input data**

table | dataset array

Input data, specified as a table or dataset array. When `modelspec` is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

**X — Predictor variables**

matrix

Predictor variables, specified as an $n$-by-$p$ matrix, where $n$ is the number of observations and $p$ is the number of predictor variables. Each column of $X$ represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in $X$.

Data Types: `single` | `double` | `logical`

**y — Response variable**

vector

Response variable, specified as an $n$-by-1 vector, where $n$ is the number of observations. Each entry in $y$ is the response for the corresponding row of $X$.

Data Types: `single` | `double` | `logical`

**modelspec — Starting model**

character vector or string scalar specifying the model | $t$-by-$(p+1)$ terms matrix | character vector or string scalar of the form `'Y ~ terms'`

Starting model for the stepwise regression, specified as one of the following:
• Character vector or string scalar specifying the type of starting model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms, and all</td>
</tr>
<tr>
<td></td>
<td>products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and</td>
</tr>
<tr>
<td></td>
<td>squared terms.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree ( i ) in the first</td>
</tr>
<tr>
<td></td>
<td>predictor, degree ( j ) in the second predictor, etc. Use numerals 0</td>
</tr>
<tr>
<td></td>
<td>through 9. For example, 'poly2111' has a constant plus all linear and</td>
</tr>
<tr>
<td></td>
<td>product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

If you want to specify the smallest or largest set of terms in the model, use the Lower and Upper name-value pair arguments.

• \( t \)-by-(\( p \)+1) matrix, namely a terms matrix on page 32-6285, specifying terms to include in model, where \( t \) is the number of terms and \( p \) is the number of predictor variables, and plus one is for the response variable.

• Character vector or string scalar representing a formula on page 32-6288 in the form

\[
Y \sim terms',
\]

where the terms are in “Wilkinson Notation” on page 32-6289.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array `tbl`, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array `tbl`, then, by default, `LinearModel.stepwise` treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix `X`, then the default value of 'CategoricalVars' is an empty matrix `[]`. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

Criterion — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion' and one of the following:

- 'sse' — p-value for an F-test of the change in the sum of squared error by adding or removing the term.
- 'aic' — Change in the value of Akaike information criterion (AIC).
- 'bic' — Change in the value of Bayesian information criterion (BIC).
- 'rsquared' — Increase in the value of $R^2$.
- 'adjrsquared' — Increase in the value of adjusted $R^2$.

Example: 'Criterion','bic'

Exclude — Observations to exclude
logical or numeric index vector
Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

**Intercept — Indicator for constant term**

true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**Lower — Model specification describing terms that cannot be removed from model**

'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as the comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the model.

Example: 'Lower','linear'

**NSteps — Number of steps to take**

no limit (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps' and a positive integer.

Data Types: single | double

**PEnter — Improvement measure for adding term**

scalar value
Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>If the increase in the R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>If the increase in the adjusted R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PEnter', 0.075

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.
The default is all variables in $X$, or all variables in $tbl$ except for $ResponseVar$.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**PRemove — Improvement measure for removing term**

scalar value

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'PRemove' and a scalar value.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the $p$-value of the F statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
</tbody>
</table>
At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see `Criterion` name-value pair argument.

Example: `PRemove',0.05`

**ResponseVar — Response variable**

last column in `tbl` (default) | character vector or string scalar containing variable name |
logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of `ResponseVar` and either a character vector or string scalar containing the variable name in the table or dataset array `tbl`, or a logical or numeric index vector indicating which column is the response variable. You typically need to use `ResponseVar` when fitting a table or dataset array `tbl`.

For example, you can specify the fourth variable, say `yield`, as the response out of six variables, in one of the following ways.

Example: `'ResponseVar','yield'`
Example: `'ResponseVar',[4]`
Example: `'ResponseVar',logical([0 0 0 1 0 0])`

Data Types: `single` | `double` | `logical` | `char` | `string`

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of `Upper` and one of the options for `modelspec` naming the model.

Example: `'Upper','quadratic'`

**VarNames — Names of variables**

`{'x1','x2',...,'xn','y'}` (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of `VarNames` and a string array or cell array of character vectors including the names for the columns of `X` first, and the name for the response variable `y` last.
'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames', {'Horsepower', 'Acceleration', 'Model_Year', 'MPG'}

Data Types: string | cell

**Verbose — Control for display of information**

1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

- 0 — Suppress all display.
- 1 — Display the action taken at each step.
- 2 — Also display the actions evaluated at each step.

Example: 'Verbose', 2

**Weights — Observation weights**

`ones(n,1)` (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

**Output Arguments**

**mdl — Linear model**

`LinearModel` object

Linear model representing a least-squares fit of the response to the data, returned as a `LinearModel` object.

For the properties and methods of the linear model object, `mdl`, see the `LinearModel` class page.
Examples

Fit a Linear Model Using Stepwise Regression

Load the sample data.

```matlab
load hald
```

`hald` contains hardening data for 13 different concrete compositions. `heat` is the heat of hardening after 180 days. `ingredients` is the percentage of each different ingredient in the cement sample.

Fit a linear model to the data. Set the criterion value to enter the model as 0.06.

```matlab
mdl = stepwiselm(ingredients,heat,'PEnter',0.06)
```

1. Adding `x4`, FStat = 22.7985, pValue = 0.000576232
2. Adding `x1`, FStat = 108.2239, pValue = 1.105281e-06
3. Adding `x2`, FStat = 5.0259, pValue = 0.051687
4. Removing `x4`, FStat = 1.8633, pValue = 0.2054

```matlab
mdl =
```

```
Linear regression model:
y ~ 1 + x1 + x2
```

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>52.577</td>
<td>2.2862</td>
<td>22.998</td>
<td>5.4566e-10</td>
</tr>
<tr>
<td>x1</td>
<td>1.4683</td>
<td>0.1213</td>
<td>12.105</td>
<td>2.6922e-07</td>
</tr>
<tr>
<td>x2</td>
<td>0.66225</td>
<td>0.045855</td>
<td>14.442</td>
<td>5.029e-08</td>
</tr>
</tbody>
</table>

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979, Adjusted R-Squared 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

By default, the starting model is the constant model. `stepwiselm` performs forward selection and `x4`, `x1`, and `x2`, respectively, as the corresponding P-values are less than the PEnter value of 0.06. `stepwiselm` later uses backward elimination and eliminates
x4 from the model because, once x2 is in the model, the \( p \)-value of x4 is higher than the default value of \( PR_{\text{Remove}} \), 0.1.

**Stepwise Regression Using Specified Model Formula and Variables**

Perform stepwise regression using variables stored in a dataset array. Specify the starting model using Wilkinson notation, and identify the response and predictor variables using optional arguments.

Load the sample data.

```matlab
load hospital
```

The hospital dataset array includes the gender, age, weight, and smoking status of patients.

Fit a linear model with a starting model of a constant term and Smoker as the predictor variable. Specify the response variable, Weight, and categorical predictor variables, Sex, Age, and Smoker.

```matlab
mdl = stepwiselm(hospital,'Weight~1+Smoker',... 'ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},... 'CategoricalVar',{'Sex','Smoker'})
```

1. Adding Sex, FStat = 770.0158, pValue = 6.262758e-48
2. Removing Smoker, FStat = 0.21224, pValue = 0.64605

```matlab
mdl =
Linear regression model:
 Weight ~ 1 + Sex

Estimated Coefficients:
 Estimate SE tStat pValue
(Intercept) 130.47 1.1995 108.77 5.2762e-104
Sex_Male 50.06 1.7496 28.612 2.2464e-49
```

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 8.73
R-squared: 0.893, Adjusted R-Squared 0.892
F-statistic vs. constant model: 819, p-value = 2.25e-49

At each step, stepwiselm searches for terms to add and remove. At first step, stepwise algorithm adds Sex to the model with a $P$-value of 6.26e-48. Then, removes Smoker from the model, since given Sex in the model, the variable Smoker becomes redundant. stepwiselm only includes Sex in the final linear model. The weight of the patients do not seem to differ significantly according to age or the status of smoking.

Definitions

Terms Matrix

A terms matrix is a $t$-by-$(p + 1)$ matrix specifying terms in a model, where $t$ is the number of terms, $p$ is the number of predictor variables, and plus one is for the response variable.

The value of $T(i, j)$ is the exponent of variable $j$ in term $i$. Suppose there are three predictor variables $A$, $B$, and $C$:

- $[0 0 0 0]$ % Constant term or intercept
- $[0 1 0 0]$ % $B$; equivalently, $A^0 * B^1 * C^0$
- $[1 0 1 0]$ % $A*C$
- $[2 0 0 0]$ % $A^2$
- $[0 1 2 0]$ % $B*(C^2)$

The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ... hospital.Age,hospital.Smoker,'VariableNames', ... {'Sex','BloodPressure','Age','Smoker'});
```
Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

\[ T = \begin{bmatrix} 0 & 0 & 0 & 0; 1 & 0 & 0 & 0; 0 & 1 & 0 & 0; 0 & 0 & 0 & 1 \end{bmatrix} \]

\( T = \)

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Redefine the table.

dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

\[ T = \begin{bmatrix} 0 & 0 & 0 & 0; 0 & 1 & 0 & 0; 0 & 0 & 1 & 0; 0 & 0 & 0 & 1 \end{bmatrix} \]

\( T = \)

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

\[ T = \begin{bmatrix} 0 & 0 & 0; 1 & 0; 0 & 1 & 0; 1 & 0; 0 & 2 & 0 \end{bmatrix} \]
Fit a linear model.

mdl = fitlm(X, MPG, T)

mdl = 

Linear regression model:
  y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = stepwiselm(X, MPG, [0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl = 

Linear regression model:
  y ~ 1 + x2
Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form 'Y ~ terms'

where

- Y is the response name.
- terms contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
  - ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
  - ( ) groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.

'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.

'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.

'Y ~ A + B + C + A:B' includes an A*B term.

'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.

'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.

'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

**Tips**

- You cannot use robust regression with stepwise regression. Check your data for outliers before using `LinearModel.stepwise`. 
• For other methods or properties of the LinearModel object, see LinearModel.

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, stepwiselm uses the p-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1. Fit the initial model.
2. Examine a set of available terms not in the model. If any of these terms have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p-value and repeat this step; otherwise, go to step 3.
3. If any of the available terms in the model have p-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest p-value and go to step 2; otherwise, end.

At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove X1 or X2^2 if X1:X2^2 stays in the model.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for adding or removing terms.
There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

### Alternatives

You can also construct a stepwise linear model using `stepwiselm`.

You can construct a model using `fitlm`, then manually adjust the model using `step`, `addTerms`, or `removeTerms`. Use `fitlm` for robust regression. You cannot use robust regression and stepwise regression together.

### References


### See Also

- `LinearModel`
- `fitlm`
- `step`

### Topics

- “Compare large and small stepwise models” on page 11-126
- “Linear Regression” on page 11-11
- “Stepwise Regression” on page 11-126
stepwiseglm

Create generalized linear regression model by stepwise regression

Syntax

mdl = stepwiseglm(tbl,modelspec)
mdl = stepwiseglm(X,y,modelspec)
mdl = stepwiseglm(...,modelspec,Name,Value)

Description

mdl = stepwiseglm(tbl,modelspec) creates a generalized linear model of a table or
dataset array tbl, using stepwise regression to add or remove predictors. modelspec is
the starting model for the stepwise procedure.

mdl = stepwiseglm(X,y,modelspec) creates a generalized linear model of the
responses y to a data matrix X, using stepwise regression to add or remove predictors.

mdl = stepwiseglm(...,modelspec,Name,Value) creates a generalized linear
model with additional options specified by one or more Name,Value pair arguments.

Examples

Generalized Linear Model Using Stepwise Algorithm

Create response data using just three of 20 predictors, and create a generalized linear
model using stepwise algorithm to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors,
plus a constant.

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = stepwiseglm(X,y,...
    'constant', 'upper', 'linear', 'Distribution', 'poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl =
Generalized linear regression model:
    log(y) ~ 1 + x5 + x10 + x15
    Distribution = Poisson

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0115</td>
<td>0.064275</td>
<td>15.737</td>
<td>8.4217e-56</td>
</tr>
<tr>
<td>x5</td>
<td>0.39508</td>
<td>0.066665</td>
<td>5.9263</td>
<td>3.0977e-09</td>
</tr>
<tr>
<td>x10</td>
<td>0.18863</td>
<td>0.05534</td>
<td>3.4085</td>
<td>0.0006532</td>
</tr>
<tr>
<td>x15</td>
<td>0.29295</td>
<td>0.053269</td>
<td>5.4995</td>
<td>3.8089e-08</td>
</tr>
</tbody>
</table>

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

The starting model is the constant model. stepwiseglm by default uses deviance of the model as the criterion. It first adds x5 into the model, as the $P$-value for the test statistic, deviance (the differences in the deviances of the two models), is less than the default threshold value 0.05. Then, it adds x15 because given x5 is in the model, when x15 is added, the $P$-value for chi-squared test is smaller than 0.05. It then adds x10 because given x5 and x15 are in the model, when x10 is added, the $P$-value for the chi-square test statistic is again less than 0.05.
Input Arguments

tbl — Input data
table | dataset array
Input data, specified as a table or dataset array. When modelspec is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the ResponseVar name-value pair argument. To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.

X — Predictor variables
matrix
Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the number of predictor variables. Each column of X represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector
Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in y is the response for the corresponding row of X.

Data Types: single | double | logical

modelspec — Starting model
character vector or string scalar specifying the model | t-by-(p+1) terms matrix | character vector or string scalar of the form 'Y ~ terms'
Starting model for stepwiseglm, specified as one of the following:
• Character vector or string scalar specifying the type of the starting model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Starting Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms for each predictor, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms for each predictor.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms for each predictor.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree $i$ in the first predictor, degree $j$ in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear* and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

If you want to specify the smallest or largest set of terms in the model that stepwiseglm fits, use the Lower and Upper name-value pair arguments.

• $t$-by-$(p+1)$ matrix, namely terms matrix on page 32-6305, specifying terms to include in model, where $t$ is the number of terms and $p$ is the number of predictor variables, and plus one is for the response variable.

• Character vector or string scalar representing a formula on page 32-6308 in the form

$$Y \sim \text{terms},$$

where the terms are in “Wilkinson Notation” on page 32-6309.

Data Types: char | string | single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:
'Criterion','aic','Distribution','poisson','Upper','interactions'
specifies Akaike Information Criterion as the criterion to add or remove variables to the model, Poisson distribution as the distribution of the response variable, and a model with all possible interactions as the largest model to consider as the fit.

BinomialSize — Number of trials for binomial distribution
1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated pair consisting of a scalar value or a vector of the same length as the response. This is the parameter \( n \) for the fitted binomial distribution. BinomialSize applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector with counts in column 1 and BinomialSize in column 2.

Data Types: single | double

CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array tbl, then, by default, stepwiseglm treats all categorical values, logical values, character arrays, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix \( X \), then the default value of 'CategoricalVars' is an empty matrix [ ]. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars', logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

**Criterion — Criterion to add or remove terms**

'CategoricalVars', logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion' and one of the following:

- 'Deviance' — p-value for F or chi-squared test of the change in the deviance by adding or removing the term. F-test is for testing a single model. Chi-squared test is for comparing two different models.
- 'sse' — p-value for an F-test of the change in the sum of squared error by adding or removing the term.
- 'aic' — Change in the value of Akaike information criterion (AIC).
- 'bic' — Change in the value of Bayesian information criterion (BIC).
- 'rsquared' — Increase in the value of $R^2$.
- 'adjrsquared' — Increase in the value of adjusted $R^2$.

Example: 'Criterion','bic'

**DispersionFlag — Indicator to compute dispersion parameter**

false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified as the comma-separated pair consisting of 'DispersionFlag' and one of the following.

<table>
<thead>
<tr>
<th>true</th>
<th>Estimate a dispersion parameter when computing standard errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>Default. Use the theoretical value when computing standard errors</td>
</tr>
</tbody>
</table>

The fitting function always estimates the dispersion for other distributions.

Example: 'DispersionFlag',true

**Distribution — Distribution of the response variable**

'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'
Distribution of the response variable, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

<table>
<thead>
<tr>
<th>'normal'</th>
<th>Normal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binomial'</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>'poisson'</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>'gamma'</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>'inverse gaussian'</td>
<td>Inverse Gaussian distribution</td>
</tr>
</tbody>
</table>

Example: 'Distribution','gamma'

**Exclude — Observations to exclude**

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

**Intercept — Indicator for constant term**

true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**Link — Link function**

canonical link function (default) | scalar value | structure
Link function to use in place of the canonical link function, specified as the comma-separated pair consisting of 'Link' and one of the following.

<table>
<thead>
<tr>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'identity'</td>
<td>$f(\mu) = \mu$</td>
<td>$\mu = Xb$</td>
</tr>
<tr>
<td>'log'</td>
<td>$f(\mu) = \log(\mu)$</td>
<td>$\mu = \exp(Xb)$</td>
</tr>
<tr>
<td>'logit'</td>
<td>$f(\mu) = \log(\mu/(1-\mu))$</td>
<td>$\mu = \exp(Xb) / (1 + \exp(Xb))$</td>
</tr>
<tr>
<td>'probit'</td>
<td>$f(\mu) = \Phi^{-1}(\mu)$</td>
<td>$\mu = \Phi(Xb)$</td>
</tr>
<tr>
<td>'comploglog'</td>
<td>$f(\mu) = \log(-\log(1 - \mu))$</td>
<td>$\mu = 1 - \exp(-\exp(Xb))$</td>
</tr>
<tr>
<td>'reciprocal'</td>
<td>$f(\mu) = 1/\mu$</td>
<td>$\mu = 1/(Xb)$</td>
</tr>
<tr>
<td>p (a number)</td>
<td>$f(\mu) = \mu^p$</td>
<td>$\mu = Xb^{1/p}$</td>
</tr>
<tr>
<td>S (a structure)</td>
<td>$f(\mu) = S.Link(\mu)$</td>
<td>$\mu = S.Inverse(Xb)$</td>
</tr>
</tbody>
</table>

The link function defines the relationship $f(\mu) = X*b$ between the mean response $\mu$ and the linear combination of predictors $X*b$.

For more information on the canonical link functions, see Definitions.

Example: 'Link', 'probit'

Data Types: char | string | single | double | struct

**Lower** — Model specification describing terms that cannot be removed from model
'constant' (default) | character vector | string scalar | terms matrix
Model specification describing terms that cannot be removed from the model, specified as the comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the model.

Example: 'Lower','linear'

**Offset — Offset variable**

[ ] (default) | vector | character vector | string scalar

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and a vector or name of a variable with the same length as the response.

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

\[ \mu \sim \text{Offset} + \text{(terms involving real predictors)} \]

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor A. By using the log link function and by specifying \( \log(A) \) as an offset, you can force the model to satisfy this theoretical constraint.

Data Types: single | double | char | string

**PEnter — Improvement measure for adding term**

Scalar value

Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.05</td>
<td>If the p-value of F or chi-squared statistic is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Default value</td>
<td>Decision</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>If the increase in the R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>If the increase in the adjusted R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PEnter', 0.075

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars', [2, 3]
Example: 'PredictorVars', logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**PRemove — Improvement measure for removing term scalar value**

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'PRemove' and a scalar value.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Deviance'</td>
<td>0.10</td>
<td>If the p-value of F or chi-squared statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the p-value of the F statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
</tbody>
</table>
At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see **Criterion** name-value pair argument.

Example: 'PRemove',0.05

**ResponseVar — Response variable**

last column in `tbl` (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array `tbl`, or a logical or numeric index vector indicating which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array `tbl`.

For example, you can specify the fourth variable, say `yield`, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char | string

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of 'Upper' and one of the options for `modelspec` naming the model.

Example: 'Upper','quadratic'

**VarNames — Names of variables**

{'}x1','x2','...','xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of `X` first, and the name for the response variable `y` last.
'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames', {'Horsepower', 'Acceleration', 'Model_Year', 'MPG'}

Data Types: string | cell

Verbose — Control for display of information
1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of 'Verbose' and one of the following:

- 0 — Suppress all display.
- 1 — Display the action taken at each step.
- 2 — Also display the actions evaluated at each step.

Example: 'Verbose', 2

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

Output Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the GeneralizedLinearModel class page.
Definitions

Terms Matrix

A terms matrix is a \( t \)-by-(\( p + 1 \)) matrix specifying terms in a model, where \( t \) is the number of terms, \( p \) is the number of predictor variables, and plus one is for the response variable.

The value of \( T(i,j) \) is the exponent of variable \( j \) in term \( i \). Suppose there are three predictor variables \( A \), \( B \), and \( C \):

\[
\begin{align*}
[0 \ 0 \ 0 \ 0] & \text{ % Constant term or intercept} \\
[0 \ 1 \ 0 \ 0] & \text{ % B; equivalently, } A^0 * B^1 * C^0 \\
[1 \ 0 \ 1 \ 0] & \text{ % A*C} \\
[2 \ 0 \ 0 \ 0] & \text{ % A^2} \\
[0 \ 1 \ 2 \ 0] & \text{ % B*(C^2)}
\end{align*}
\]

The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ...
hospital.Age,hospital.Smoker,'VariableNames', ...
{[Sex',BloodPressure','Age','Smoker']});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

\[
T = [0 \ 0 \ 0 \ 0;1 \ 0 \ 0 \ 0;0 \ 0 \ 1 \ 0;0 \ 0 \ 0 \ 1]
\]

```matlab
T =

0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
```

Redefine the table.
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

0     0     0     0
0     1     0     0
0     0     1     0
0     0     0     1

• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

0     0     0
1     0     0
0     1     0
1     1     0
0     2     0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =
Linear regression model:
\[ y \sim 1 + x_1 x_2 + x_2^2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.95261</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[ T = [0, 0, 0; 1, 0, 0; 0, 1, 0; 1, 1, 0]; \]
\[ mdl = \text{stepwiselm}(X, MPG, [0 0 0], 'upper', T) \]

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

\[ mdl = \]

Linear regression model:
\[ y \sim 1 + x_2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of \text{fitlm} in the previous step.
Formula

A formula for model specification is a character vector or string scalar of the form 'Y ~ terms'

where

- Y is the response name.
- terms contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
  - : defines an interaction, a product of terms
  - * defines an interaction and all lower-order terms
  - ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
  - () groups terms

Note Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.
Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
<tr>
<td>A*B + C</td>
<td>A, B, C, A*B</td>
</tr>
<tr>
<td>A + B + C + A:B</td>
<td>A, B, C, A*B</td>
</tr>
</tbody>
</table>

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

Canonical Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link Function Name</th>
<th>Link Function</th>
<th>Mean (Inverse) Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normal'</td>
<td>'identity'</td>
<td>f(μ) = μ</td>
<td>μ = Xb</td>
</tr>
<tr>
<td>'binomial'</td>
<td>'logit'</td>
<td>f(μ) = log(μ/(1-μ))</td>
<td>μ = exp(Xb) / (1 + exp(Xb))</td>
</tr>
<tr>
<td>'poisson'</td>
<td>'log'</td>
<td>f(μ) = log(μ)</td>
<td>μ = exp(Xb)</td>
</tr>
<tr>
<td>'gamma'</td>
<td>-1</td>
<td>f(μ) = 1/μ</td>
<td>μ = 1/(Xb)</td>
</tr>
<tr>
<td>'inverse'</td>
<td>-2</td>
<td>f(μ) = 1/μ^2</td>
<td>μ = (Xb)^{-1/2}</td>
</tr>
</tbody>
</table>
Tips

- The generalized linear model mdl is a standard linear model unless you specify otherwise with the Distribution name-value pair.
- For other methods such as devianceTest, or properties of the GeneralizedLinearModel object, see GeneralizedLinearModel.
- After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, stepwiselm uses the p-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1. Fit the initial model.
2. Examine a set of available terms not in the model. If any of these terms have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p-value and repeat this step; otherwise, go to step 3.
3. If any of the available terms in the model have p-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest p-value and go to step 2; otherwise, end.
At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term $X_1: X_2^2$ unless both $X_1$ and $X_2^2$ are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove $X_1$ or $X_2^2$ if $X_1: X_2^2$ stays in the model.

The default for `stepwiseglm` is 'Deviance' and it follows a similar procedure for adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

Alternatives

Use `fitglm` to create a model with a fixed specification. Use `step`, `addTerms`, or `removeTerms` to adjust a fitted model.

References


See Also
GeneralizedLinearModel | fitglm | predict

Topics
“Compare large and small stepwise models” on page 11-126
“Generalized Linear Models” on page 12-12

Introduced in R2013b
stepwiselm

Create linear regression model using stepwise regression

Syntax

mdl = stepwiselm(tbl,modelspec)
mdl = stepwiselm(X,y,modelspec)
mdl = stepwiselm(___,Name,Value)

Description

mdl = stepwiselm(tbl,modelspec) returns a linear model for the variables in the
table or dataset array tbl using stepwise regression to add or remove predictors.
stepwiselm uses forward and backward stepwise regression to determine a final model.
At each step, the function searches for terms to add to or remove from the model based
on the value of the 'Criterion' argument. modelspec is the starting model for the
stepwise procedure.

mdl = stepwiselm(X,y,modelspec) creates a linear model of the responses y to the
predictor variables in the data matrix X, using stepwise regression to add or remove
predictors. modelspec is the starting model for the stepwise procedure.

mdl = stepwiselm(___,Name,Value) creates a linear model for any of the inputs in
the previous syntaxes, with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the categorical variables, the smallest or largest set of terms
to use in the model, the maximum number of steps to take, or the criterion stepwiselm
uses to add or remove terms.

Examples
Fit a Linear Model Using Stepwise Regression

Load the sample data.

load hald

hald contains hardening data for 13 different concrete compositions. heat is the heat of hardening after 180 days. ingredients is the percentage of each different ingredient in the cement sample.

Fit a linear model to the data. Set the criterion value to enter the model as 0.06.

mdl = stepwiselm(ingredients,heat,'PEnter',0.06)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232
2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06
3. Adding x2, FStat = 5.0259, pValue = 0.051687
4. Removing x4, FStat = 1.8633, pValue = 0.2054

mdl =
Linear regression model:
  y ~ 1 + x1 + x2

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>52.577</td>
<td>2.2862</td>
<td>22.998</td>
<td>5.4566e-10</td>
</tr>
<tr>
<td>x1</td>
<td>1.4683</td>
<td>0.1213</td>
<td>12.105</td>
<td>2.6922e-07</td>
</tr>
<tr>
<td>x2</td>
<td>0.66225</td>
<td>0.045855</td>
<td>14.442</td>
<td>5.029e-08</td>
</tr>
</tbody>
</table>

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979, Adjusted R-Squared 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

By default, the starting model is the constant model. stepwiselm performs forward selection and x4, x1, and x2, respectively, as the corresponding P-values are less than the PEnter value of 0.06. stepwiselm later uses backward elimination and eliminates x4 from the model because, once x2 is in the model, the P-value of x4 is higher than the default value of PRemove, 0.1.
Stepwise Regression Using Specified Model Formula and Variables

Perform stepwise regression using variables stored in a dataset array. Specify the starting model using Wilkinson notation, and identify the response and predictor variables using optional arguments.

Load the sample data.

```matlab
load hospital
```

The hospital dataset array includes the gender, age, weight, and smoking status of patients.

Fit a linear model with a starting model of a constant term and `Smoker` as the predictor variable. Specify the response variable, `Weight`, and categorical predictor variables, `Sex`, `Age`, and `Smoker`.

```matlab
mdl = stepwiselm(hospital,'Weight~1+Smoker','ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},... 'CategoricalVar',{'Sex','Smoker'})
```

1. Adding `Sex`, FStat = 770.0158, pValue = 6.262758e-48
2. Removing `Smoker`, FStat = 0.21224, pValue = 0.64605

```matlab
mdl =
Linear regression model:
 Weight ~ 1 + Sex

Estimated Coefficients:
 Estimate SE tStat pValue
--
 (Intercept) 130.47 1.1995 108.77 5.2762e-104
 Sex_Male 50.06 1.7496 28.612 2.2464e-49
```

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 8.73
R-squared: 0.893,    Adjusted R-Squared 0.892
F-statistic vs. constant model: 819, p-value = 2.25e-49

At each step, `stepwiselm` searches for terms to add and remove. At first step, stepwise algorithm adds `Sex` to the model with a P-value of 6.26e-48. Then, removes Smoker from...
the model, since given Sex in the model, the variable Smoker becomes redundant. `stepwiselm` only includes Sex in the final linear model. The weight of the patients do not seem to differ significantly according to age or the status of smoking.

**Input Arguments**

`tbl` — Input data

*table | dataset array*

Input data, specified as a table or dataset array. When `modelspec` is a formula, it specifies the variables to be used as the predictors and response. Otherwise, if you do not specify the predictor and response variables, the last variable is the response variable and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or categorical (see “Grouping Variables” on page 2-57). The response must be numeric or logical.

To set a different column as the response variable, use the `ResponseVar` name-value pair argument. To use a subset of the columns as predictors, use the `PredictorVars` name-value pair argument.

`X` — Predictor variables

*matrix*

Predictor variables, specified as an $n$-by-$p$ matrix, where $n$ is the number of observations and $p$ is the number of predictor variables. Each column of `X` represents one variable, and each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a column of 1s in `X`.

Data Types: `single` | `double` | `logical`

`y` — Response variable

*vector*

Response variable, specified as an $n$-by-1 vector, where $n$ is the number of observations. Each entry in `y` is the response for the corresponding row of `X`.

Data Types: `single` | `double` | `logical`
modelspec — Starting model

character vector or string scalar specifying the model | \( t \)-by-(\( p \)+1) terms matrix | character vector or string scalar of the form '\( Y \sim \) terms'

Starting model for the stepwise regression, specified as one of the following:

- Character vector or string scalar specifying the type of starting model.

<table>
<thead>
<tr>
<th>Value</th>
<th>Starting Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>'constant'</td>
<td>Model contains only a constant (intercept) term.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Model contains an intercept and linear terms for each predictor.</td>
</tr>
<tr>
<td>'interactions'</td>
<td>Model contains an intercept, linear terms for each predictor, and all products of pairs of distinct predictors (no squared terms).</td>
</tr>
<tr>
<td>'purequadratic'</td>
<td>Model contains an intercept, linear terms, and squared terms for each predictor.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Model contains an intercept, linear terms, interactions, and squared terms for each predictor.</td>
</tr>
<tr>
<td>'polyijk'</td>
<td>Model is a polynomial with all terms up to degree ( i ) in the first predictor, degree ( j ) in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear* and product terms, and also contains terms with predictor 1 squared.</td>
</tr>
</tbody>
</table>

If you want to specify the smallest or largest set of terms in the model that \texttt{stepwiselm} fits, use the \texttt{Lower} and \texttt{Upper} name-value pair arguments.

- \( t \)-by-(\( p \)+1) matrix, namely a terms matrix on page 32-6324, specifying terms to include in model, where \( t \) is the number of terms and \( p \) is the number of predictor variables, and plus one is for the response variable.

- Character vector or string scalar representing a formula on page 32-6327 in the form

  \[
  Y ~ terms,
  \]

  where the terms are in “Wilkinson Notation” on page 32-6328.

\textbf{Note} All the terms \texttt{stepwiselm} returns are linear in the coefficients.
Data Types: char | string | single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Criterion','aic','Upper',interactions,'Verbose',1 instructs stepwiselm to use the Akaike information criterion, display the action it takes at each step, and include at most the interaction terms in the model.

**CategoricalVars — Categorical variable list**

string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars' and either a string array or cell array of character vectors containing categorical variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are categorical.

- If data is in a table or dataset array tbl, then, by default, stepwiselm treats all categorical values, logical values, character vectors, string arrays, and cell arrays of character vectors as categorical variables.
- If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix[]. That is, no variable is categorical unless you specify it as categorical.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either of the following examples.

Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**Criterion — Criterion to add or remove terms**

'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion' and one of the following:
• 'sse' — \( p \)-value for an \( F \)-test of the change in the sum of squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).

• 'bic' — Change in the value of Bayesian information criterion (BIC).

• 'rsquared' — Increase in the value of \( R^2 \).

• 'adjrsquared' — Increase in the value of adjusted \( R^2 \).

Example: 'Criterion','bic'

**Exclude — Observations to exclude**

logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.

Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

**Intercept — Indicator for constant term**

true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a formula or matrix.

Example: 'Intercept',false

**Lower — Model specification describing terms that cannot be removed from model**

'constant' (default) | character vector | string scalar | terms matrix
Model specification describing terms that cannot be removed from the model, specified as the comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the model.

Example: 'Lower','linear'

**NSteps — Number of steps to take**

no limit (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps' and a positive integer.

Data Types: single | double

**PEnter — Improvement measure for adding term**

scalar value

Improvement measure for adding a term, specified as the comma-separated pair consisting of 'PEnter' and a scalar value. The default values are below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.05</td>
<td>If the SSE of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0</td>
<td>If the change in the AIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0</td>
<td>If the change in the BIC of the model is smaller than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.1</td>
<td>If the increase in the R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
<tr>
<td>Criterion</td>
<td>Default value</td>
<td>Decision</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>0</td>
<td>If the increase in the adjusted R-squared of the model is larger than PEnter, add the term to the model.</td>
</tr>
</tbody>
</table>

For more information on the criteria, see Criterion name-value pair argument.

Example: 'PEnter', 0.075

**PredictorVars — Predictor variables**

string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of 'PredictorVars' and either a string array or cell array of character vectors of the variable names in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of the following examples.

Example: 'PredictorVars', [2, 3]
Example: 'PredictorVars', logical([0 1 1 0 0 0])

Data Types: single | double | logical | string | cell

**PRemove — Improvement measure for removing term**

scalar value

Improvement measure for removing a term, specified as the comma-separated pair consisting of 'PRemove' and a scalar value.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Default value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'SSE'</td>
<td>0.10</td>
<td>If the p-value of the F statistic is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AIC'</td>
<td>0.01</td>
<td>If the change in the AIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'BIC'</td>
<td>0.01</td>
<td>If the change in the BIC of the model is larger than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'Rsquared'</td>
<td>0.05</td>
<td>If the increase in the R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
<tr>
<td>'AdjRsquared'</td>
<td>-0.05</td>
<td>If the increase in the adjusted R-squared value of the model is smaller than PRemove, remove the term from the model.</td>
</tr>
</tbody>
</table>

At each step, stepwise algorithm also checks whether any term is redundant (linearly dependent) with other terms in the current model. When any term is linearly dependent with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see `Criterion` name-value pair argument.

Example: 'PRemove', 0.05

**ResponseVar — Response variable**

last column in `tbl` (default) | character vector or string scalar containing variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of 'ResponseVar' and either a character vector or string scalar containing the variable name in the table or dataset array `tbl`, or a logical or numeric index vector indicating
which column is the response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array `tbl`.

For example, you can specify the fourth variable, say `yield`, as the response out of six variables, in one of the following ways.

Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 1 0 0])

Data Types: `single` | `double` | `logical` | `char` | `string`

**Upper — Model specification describing largest set of terms in fit**

'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated pair consisting of 'Upper' and one of the options for `modelspec` naming the model.

Example: 'Upper','quadratic'

**VarNames — Names of variables**

{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string array or cell array of character vectors including the names for the columns of `X` first, and the name for the response variable `y` last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the predictor variables, and miles per gallon (MPG) is the response variable, then you can name the variables as follows.

Example: 'VarNames',{ 'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: `string` | `cell`

**Verbose — Control for display of information**

1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of 'Verbose' and one of the following:
• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Also display the actions evaluated at each step.

Example: 'Verbose', 2

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

Data Types: single | double

Output Arguments

mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a LinearModel object.

For the properties and methods of the linear model object, mdl, see the LinearModel class page.

Definitions

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i, j) is the exponent of variable j in term i. Suppose there are three predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[1 0 1 0] % A*C
The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a table or dataset array, then 0 must represent the response variable depending on the position of the response variable. The following example illustrates this using a table.

Load the sample data and define a table.

```matlab
load hospital
dsa = table(hospital.Sex,hospital.BloodPressure(:,1), ... hospital.Age,hospital.Smoker,'VariableNames', ... {'Sex','BloodPressure','Age','Smoker'});
```

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the table, so the second column of the terms matrix must be a column of 0s for the response variable.

```matlab
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
```

Redefine the table.

```matlab
dsa = table(hospital.BloodPressure(:,1),hospital.Sex, ... hospital.Age,hospital.Smoker,'VariableNames', ... {'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the table. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms matrix.

```matlab
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```
• If you have the predictor and response variables in a matrix and column vector, then you must include 0 for the response variable at the end of each term. The following example illustrates this.

Load the sample data and define the matrix of predictors.

```matlab
load carsmall
X = [Acceleration,Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to the data. This model includes the main effect and two-way interaction terms for the variables, Acceleration and Weight, and a second-order term for the variable, Weight.

```matlab
T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]
```

Fit a linear model.

```matlab
mdl = fitlm(X,MPG,T)
```

```matlab
mdl =
```

Linear regression model:

\[ y ~ 1 + x1*x2 + x2^2 \]

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>48.906</td>
<td>12.589</td>
<td>3.8847</td>
<td>0.00019665</td>
</tr>
<tr>
<td>x1</td>
<td>0.54418</td>
<td>0.57125</td>
<td>0.9526</td>
<td>0.34337</td>
</tr>
<tr>
<td>x2</td>
<td>-0.012781</td>
<td>0.0060312</td>
<td>-2.1192</td>
<td>0.036857</td>
</tr>
<tr>
<td>x1:x2</td>
<td>-0.00010892</td>
<td>0.00017925</td>
<td>-0.6076</td>
<td>0.545</td>
</tr>
<tr>
<td>x2^2</td>
<td>9.7518e-07</td>
<td>7.5389e-07</td>
<td>1.2935</td>
<td>0.19917</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26
Only the intercept and x2 term, which correspond to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

\[
T = \begin{bmatrix}
0 & 0 & 0; & 1 & 0 & 0; & 0 & 1 & 0; & 1 & 1 & 0
\end{bmatrix};
\]

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:
  \( y \sim 1 + x2 \)

Estimated Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>tStat</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>49.238</td>
<td>1.6411</td>
<td>30.002</td>
<td>2.7015e-49</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0086119</td>
<td>0.0005348</td>
<td>-16.103</td>
<td>1.6434e-28</td>
</tr>
</tbody>
</table>

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the previous step.

**Formula**

A formula for model specification is a character vector or string scalar of the form \( Y \sim terms \)

where

- \( Y \) is the response name.
- \( terms \) contains
  - Variable names
  - + means include the next variable
  - - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
• () groups terms

**Note** Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other variables.

**Wilkinson Notation**

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

<table>
<thead>
<tr>
<th>Wilkinson Notation</th>
<th>Factors in Standard Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant (intercept) term</td>
</tr>
<tr>
<td>A^k, where k is a positive integer</td>
<td>A, A^2, ..., A^k</td>
</tr>
<tr>
<td>A + B</td>
<td>A, B</td>
</tr>
<tr>
<td>A*B</td>
<td>A, B, A*B</td>
</tr>
<tr>
<td>A:B</td>
<td>A*B only</td>
</tr>
<tr>
<td>-B</td>
<td>Do not include B</td>
</tr>
</tbody>
</table>
Wilkinson Notation | Factors in Standard Notation
---|---
A*B + C | A, B, C, A*B
A + B + C + A:B | A, B, C, A*B

Statistics and Machine Learning Toolbox notation always includes a constant term unless you explicitly remove the term using -1.

**Tips**

- You cannot use robust regression with stepwise regression. Check your data for outliers before using `stepwiselm`.
- For other methods such as `anova`, or properties of the `LinearModel` object, see `LinearModel`.
- After training a model, you can generate C/C++ code that predicts responses for new data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 31-2.

**Algorithms**

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using `modelspec`, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, `stepwiselm` uses the p-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.
Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 Examine a set of available terms not in the model. If any of these terms have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p-value and repeat this step; otherwise, go to step 3.
3 If any of the available terms in the model have p-values greater than an exit tolerance (that is, the hypothesis of a zero coefficient cannot be rejected), remove the one with the largest p-value and go to step 2; otherwise, end.

At any stage, the function will not add a higher-order term if the model does not also include all lower-order terms that are subsets of it. For example, it will not try to add the term \( X_1X_2^2 \) unless both \( X_1 \) and \( X_2^2 \) are already in the model. Similarly, the function will not remove lower-order terms that are subsets of higher-order terms that remain in the model. For example, it will not examine to remove \( X_1 \) or \( X_2^2 \) if \( X_1X_2^2 \) stays in the model.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method might build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but might not be globally optimal.

**Alternative Functionality**

You can construct a model using fitlm, and then manually adjust the model using step, addTerms, or removeTerms.
See Also
LinearModel | fitlm | step

Topics
“Compare large and small stepwise models” on page 11-126
“Linear Regression” on page 11-11
“Stepwise Regression” on page 11-126

Introduced in R2013b
**stepwisefit**

Stepwise regression

**Syntax**

\[ b = \text{stepwisefit}(X,y) \]

\[ [b,se,pval,inmodel,stats,nextstep,history] = \text{stepwisefit}(...) \]

\[ [... = \text{stepwisefit}(X,y,param1,val1,param2,val2,...) \]

**Description**

\[ b = \text{stepwisefit}(X,y) \] uses a stepwise method to perform a multilinear regression of the response values in the \( n \)-by-1 vector \( y \) on the \( p \) predictive terms in the \( n \)-by-\( p \) matrix \( X \). Distinct predictive terms should appear in different columns of \( X \).

\( b \) is a \( p \)-by-1 vector of estimated coefficients for all of the terms in \( X \). The \text{stepwisefit} function calculates the coefficient estimate values in \( b \) as follows:

- If a term is not in the final model, then the corresponding coefficient estimate in \( b \) results from adding only that term to the predictors in the final model.
- If a term is in the final model, then the coefficient estimate in \( b \) for that term is a result of the final model, that is stepwise does not consider the terms it excluded from the model while computing these values.

**Note** \text{stepwisefit} automatically includes a constant term in all models. Do not enter a column of 1s directly into \( X \).

\text{stepwisefit} treats NaN values in either \( X \) or \( y \) as missing values, and ignores them.

\[ [b,se,pval,inmodel,stats,nextstep,history] = \text{stepwisefit}(...) \] returns the following additional information:

- \( se \) — A vector of standard errors for \( b \)
- `pval` — A vector of $p$-values for testing whether elements of $\mathbf{b}$ are 0
- `inmodel` — A logical vector, with length equal to the number of columns in $\mathbf{X}$, specifying which terms are in the final model
- `stats` — A structure of additional statistics with the following fields. All statistics pertain to the final model except where noted.
  - `source` — The character vector 'stepwisefit'
  - `dfe` — Degrees of freedom for error
  - `df0` — Degrees of freedom for the regression
  - `SStotal` — Total sum of squares of the response
  - `SSresid` — Sum of squares of the residuals
  - `fstat` — $F$-statistic for testing the final model vs. no model (mean only)
  - `pval` — $p$ value of the $F$-statistic
  - `rmse` — Root mean square error
  - `xr` — Residuals for predictors not in the final model, after removing the part of them explained by predictors in the model
  - `yr` — Residuals for the response using predictors in the final model
  - `B` — Coefficients for terms in final model, with values for a term not in the model set to the value that would be obtained by adding that term to the model
  - `SE` — Standard errors for coefficient estimates
  - `TSTAT` — $t$ statistics for coefficient estimates
  - `PVAL` — $p$-values for coefficient estimates
  - `intercept` — Estimated intercept
  - `wasnan` — Indicates which rows in the data contained NaN values
- `nextstep` — The recommended next step—either the index of the next term to move in or out of the model, or 0 if no further steps are recommended
- `history` — Structure containing information on steps taken, with the following fields:
  - `B` — Matrix of regression coefficients, where each column is one step, and each row is one coefficient.
  - `rmse` — Root mean square errors for the model at each step.
  - `df0` — Degrees of freedom for the regression at each step.
  - `in` — Logical array indicating which predictors are in the model at each step, where each row is one step, and each column is one predictor.
... = stepwisefit(X,y,param1,val1,param2,val2,...) specifies one or more of the name/value pairs described in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'inmodel'</td>
<td>A logical vector specifying terms to include in the initial fit. The default is to specify no terms.</td>
</tr>
<tr>
<td>'penter'</td>
<td>The maximum p value for a term to be added. The default is 0.05.</td>
</tr>
<tr>
<td>'premove'</td>
<td>The minimum p value for a term to be removed. The default is the maximum of the value of 'penter' and 0.10.</td>
</tr>
<tr>
<td>'display'</td>
<td>'on' displays information about each step in the command window. This is the default. 'off' omits the display.</td>
</tr>
<tr>
<td>'maxiter'</td>
<td>The maximum number of steps in the regression. The default is Inf.</td>
</tr>
<tr>
<td>'keep'</td>
<td>A logical vector specifying terms to keep in their initial state. The default is to specify no terms.</td>
</tr>
<tr>
<td>'scale'</td>
<td>'on' centers and scales each column of X (computes z-scores) before fitting. 'off' does not scale the terms. This is the default.</td>
</tr>
</tbody>
</table>

**Examples**

Load the data in hald.mat, which contains observations of the heat of reaction of various cement mixtures:

```matlab
load hald
whos
Name Size Bytes Class Attributes
Description 22x58 2552 char
hald 13x5 520 double
heat 13x1 104 double
ingredients 13x4 416 double
```

The response (heat) depends on the quantities of the four predictors (the columns of ingredients).
Use `stepwisefit` to carry out the stepwise regression algorithm, beginning with no terms in the model and using entrance/exit tolerances of 0.05/0.10 on the \(p\)-values:

```matlab
stepwisefit(ingredients,heat,...
 'penter',0.05,'premove',0.10);
```

Initial columns included: none
Step 1, added column 4, \(p\)=0.000576232
Step 2, added column 1, \(p\)=1.10528e-006

Final columns included: 1 4

<table>
<thead>
<tr>
<th>Coeff</th>
<th>Std.Err.</th>
<th>Status</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4400</td>
<td>0.1384</td>
<td>In</td>
<td>1.1053e-006</td>
</tr>
<tr>
<td>0.4161</td>
<td>0.1856</td>
<td>Out</td>
<td>0.0517</td>
</tr>
<tr>
<td>-0.4100</td>
<td>0.1992</td>
<td>Out</td>
<td>0.0697</td>
</tr>
<tr>
<td>-0.6140</td>
<td>0.0486</td>
<td>In</td>
<td>1.8149e-007</td>
</tr>
</tbody>
</table>

`stepwisefit` automatically includes an intercept term in the model, so you do not add it explicitly to `ingredients` as you would for `regress`. For terms not in the model, coefficient estimates and their standard errors are those that result by adding the corresponding term to the final model.

The `inmodel` parameter is used to specify terms in an initial model:

```matlab
initialModel = ...
 [false true false false]; % Force in 2nd term
stepwisefit(ingredients,heat,...
 'inmodel',initialModel,...
 'penter',.05,'premove',0.10);
```

Initial columns included: 2
Step 1, added column 1, \(p\)=2.69221e-007

Final columns included: 1 2

<table>
<thead>
<tr>
<th>Coeff</th>
<th>Std.Err.</th>
<th>Status</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4683</td>
<td>0.1213</td>
<td>In</td>
<td>2.6922e-007</td>
</tr>
<tr>
<td>0.6623</td>
<td>0.0459</td>
<td>In</td>
<td>5.0290e-008</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.1847</td>
<td>Out</td>
<td>0.2089</td>
</tr>
<tr>
<td>-0.2365</td>
<td>0.1733</td>
<td>Out</td>
<td>0.2054</td>
</tr>
</tbody>
</table>

The preceding two models, built from different initial models, use different subsets of the predictive terms. Terms 2 and 4, swapped in the two models, are highly correlated:

```matlab
term2 = ingredients(:,2);
term4 = ingredients(:,4);
R = corrcoef(term2,term4)
R =
 1.0000 -0.9730
 -0.9730 1.0000
```
To compare the models, use the stats output of \texttt{stepwisefit}:

\begin{verbatim}
[betahat1,se1,pval1,inmodel1,stats1] = ...
    stepwisefit(ingredients,heat,...
              'penter',.05,'premove',0.10,...
              'display','off');
[betahat2,se2,pval2,inmodel2,stats2] = ...
    stepwisefit(ingredients,heat,...
              'inmodel',initialModel,...
              'penter',.05,'premove',0.10,...
              'display','off');
RMSE1 = stats1.rmse
RMSE1 =
    2.7343
RMSE2 = stats2.rmse
RMSE2 =
    2.4063
\end{verbatim}

The second model has a lower Root Mean Square Error (RMSE).

**Algorithms**

Stepwise regression is a systematic method for adding and removing terms from a multilinear model based on their statistical significance in a regression. The method begins with an initial model and then compares the explanatory power of incrementally larger and smaller models. At each step, the p value of an F-statistic is computed to test models with and without a potential term. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model. The method proceeds as follows:

1. Fit the initial model.
2. If any terms not in the model have p-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest p value and repeat this step; otherwise, go to step 3.
3. If any terms in the model have p-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest p value and go to step 2; otherwise, end.
Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.

References


See Also

addedvarplot | regress | stepwise

Introduced before R2006a
subsasgn

Class: classregtree

(Removed) Subscripted reference for classregtree object

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

**Description**

Subscript assignment is not allowed for a classregtree object.

**See Also**
classregtree
The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A = subsasgn(A,S,B) is called for the syntax A(i,j)=B, A{i,j}=B, or A.var=B when A is a dataset array. S is a structure array with the fields:

- type: '()', '{}', or '.' specifying the subscript type.
- subs: Cell array or character vector containing the actual subscripts.

A(i,j) = B assigns the contents of the dataset array B to a subset of the observations and variables in the dataset array A. i and j are one of the following types:

- positive integers
- vectors of positive integers
- observation/variable names
- cell arrays containing one or more observation/variable names
- logical vectors

The assignment does not use observation names, variable names, or any other properties of B to modify properties of A; however properties of A are extended with default values if the assignment expands the number of observations or variables in A. Elements of B are assigned into A by position, not by matching names.

A{i,j} = B assigns the value B into an element of the dataset array A. i and J are positive integers, or logical vectors. Cell indexing cannot assign into multiple dataset
elements, that is, the subscripts i and j must each refer to only a single observation or variable. B is cast to the type of the target variable if necessary. If the dataset element already exists, A{1,j} may also be followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, assignments such as A{1,'CellVar'} = B assign into the contents of the target dataset element in the same way that {}-indexing of an ordinary cell array does.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or array, an assignment such as A{1,'ArrayVar'} = B assigns into the second and following dimensions of the target dataset element, i.e., the assignment adds a leading singleton dimension to B to account for the observation dimension of the dataset variable.

A.var = B or A.(varname) = B assigns B to a dataset variable. var is a variable name literal, or varname is a character variable containing a variable name. If the dataset variable already exists, the assignment completely replaces that variable. To assign into an element of the variable, A.var or A.(varname) may be followed by further subscripting as supported by the variable. In particular, A.var(obsnames,...) = B and A.var{obsnames,...} = B (when supported by var) provide assignment into a dataset variable using observation names.

A.properties.propertyname = P assigns to a dataset property. propertyname is one of the following:

- 'ObsNames'
- 'VarNames'
- 'Description'
- 'Units'
- 'DimNames'
- 'UserData'
- 'VarDescription'

To assign into an element of the property, A.properties.propertyname may also be followed by further subscripting as supported by the property.

You cannot assign multiple values into dataset variables or properties using assignments such as [A.CellVar{1:2}] = B, [A.StructVar(1:2).field] = B, or [A.Properties.ObsNames{1:2}] = B. Use multiple assignments of the form A.CellVar{1} = B instead.
Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell array, then the contents of that variable for a single observation consists of multiple cells, and you cannot assign to all of them using the syntax \( A\{1,'CellVar'\} = B \). Use multiple assignments of the form \([A.CellVar\{1,1\}] = B\) instead.

**See Also**

dataset | set | subsref
**subsref**

**Class:** classregtree

(Removed) Subscripted reference for classregtree object

---

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

**Syntax**

B = subsref(T,S)

**Description**

B = subsref(T,S) is called for the syntax T(X) when T is a classregtree object. S is a structure array with the fields:

- **type**: Character vector containing '()', '{}', or '.' specifying the subscript type.
- **subs**: Cell array or character vector containing the actual subscripts.

[..] = T(... ) invokes the eval method for the tree T.

**See Also**

classregtree | eval
subsref

Class: dataset

Subscripted reference for dataset array

**Note**  The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

\[ B = \text{subsref}(A,S) \]

**Description**

\[ B = \text{subsref}(A,S) \] is called for the syntax \[ A(i,j) \], \[ A\{i,j\} \], or \[ A.var \] when \( A \) is a dataset array. \( S \) is a structure array with the fields:

- **type**  
  Character vector containing \ '( )' ', '{ }', or '.' specifying the subscript type.
- **subs**  
  Cell array or character vector containing the actual subscripts.

\[ B = A(i,j) \] returns a dataset array that contains a subset of the observations and variables in the dataset array \( A \). \( i \) and \( j \) are one of the following types:

- positive integers
- vectors of positive integers
- observation/variable names
- cell arrays containing one or more observation/variable names
- logical vectors

\( B \) contains the same property values as \( A \), subsetted for observations or variables where appropriate.
B = A{i,j} returns an element of a dataset variable. i and j are positive integers, or logical vectors. Cell indexing cannot return multiple dataset elements, that is, the subscripts i and j must each refer to only a single observation or variable. A{i,j} may also be followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, expressions such as A{1,'CellVar'} return the contents of the referenced dataset element in the same way that {}-indexing on an ordinary cell array does. If the dataset variable is a single column of cells, the contents of a single cell is returned. If the dataset variable has multiple columns or is n-D, multiple outputs containing the contents of multiple cells are returned.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or an array, expressions such as A{1,'ArrayVar'} return A.ArrayVar(1,:,...) with the leading singleton dimension squeezed out.

B = A.var or A.(varname) returns a dataset variable. var is a variable name literal, or varname is a character variable containing a variable name. A.var or A.(varname) may also be followed by further subscripting as supported by the variable. In particular, A.var(obsnames,...) and A.var{obsnames,...} (when supported by var) provide subscripting into a dataset variable using observation names.

P = A.Properties.propertyname returns a dataset property. propertyname is one of the following:

- 'ObsNames'
- 'VarNames'
- 'Description'
- 'Units'
- 'DimNames'
- 'UserData'
- 'VarDescription'

A.properties.propertyname may also be followed by further subscripting as supported by the property.

**Limitations**

Subscripting expressions such as A.CellVar{1:2}, A.StructVar(1:2).field, or A.Properties.ObsNames{1:2} are valid, but result in subsref returning multiple
outputs in the form of a comma-separated list. If you explicitly assign to output arguments on the left-hand side of an assignment, for example, \([\text{cellval1}, \text{cellval2}] = A.\text{CellVar}\{1:2\}\), those variables will receive the corresponding values. However, if there are no output arguments, only the first output in the comma-separated list is returned.

Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell array, then subscripting expressions such as \(A\{1, 'CellVar'\}\) result in \text{subsref} returning the contents of multiple cells. You should explicitly assign to output arguments on the left-hand side of an assignment, for example, \([\text{cellval1}, \text{cellval2}] = A\{1, 'CellVar'\}\).

**See Also**

dataset | set | subsasgn
**subsref**

**Class:** qrandset

Subscripted reference for qrandset

**Syntax**

\[ x = p(i,j) \]
\[ x = \text{subsref}(p,s) \]

**Description**

\[ x = p(i,j) \] returns a matrix that contains a subset of the points from the point set \( p \). The indices in \( i \) select points from the set and the indices in \( j \) select columns from those points. \( i \) and \( j \) are vector of positive integers or logical vectors. A colon used as a subscript, as in \( p(i,:) \), indicates the entire row (or column).

\[ x = \text{subsref}(p,s) \] is called for the syntax \( p(i), p{i}, \) or \( p.i \). \( s \) is a structure array with the fields:

- **type** Character vector containing '(' , '{' , or '.' specifying the subscript type.
- **subs** Cell array or character vector containing the actual subscripts.

**Examples**

<table>
<thead>
<tr>
<th>Command</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p = \text{sobolset}(5); )</td>
<td>The fifth point</td>
</tr>
<tr>
<td>( x = p(1:10,:) )</td>
<td>All columns of the first 10 points</td>
</tr>
<tr>
<td>( x = p(\text{end},1) )</td>
<td>The first column of the last point</td>
</tr>
<tr>
<td>( x = p([1,4,5], :) )</td>
<td>Points 1, 4, and 5</td>
</tr>
</tbody>
</table>
See Also
qrandset
summary

Class: dataset

Print summary of dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

summary(A)
s = summary(A)

Description

summary(A) prints a summary of a dataset array and the variables that it contains.

s = summary(A) returns a scalar structure s that contains a summary of the dataset A and the variables that A contains. For more information on the fields in s, see Outputs.

Summary information depends on the type of the variables in the data set:

• For numerical variables, summary computes a five-number summary of the data, giving the minimum, the first quartile, the median, the third quartile, and the maximum.
• For logical variables, summary counts the number of trues and false s in the data.
• For categorical variables, summary counts the number of data at each level.

Output Arguments

The following list describes the fields in the structure s:
- **Description** — A character array containing the dataset description.
- **Variables** — A structure array with one element for each dataset variable in A. Each element has the following fields:
  - **Name** — A character vector containing the name of the variable.
  - **Description** — A character vector containing the variable's description.
  - **Units** — A character vector containing the variable's units.
  - **Size** — A numeric vector containing the size of the variable.
  - **Class** — A character vector containing the class of the variable.
  - **Data** — A scalar structure containing the following fields.

For numeric variables:
- **Probabilities** — A numeric vector containing the probabilities \([0.0 \ 0.25 \ 0.50 \ 0.75 \ 1.0]\) and NaN (if any are present in the corresponding dataset variable).
- **Quantiles** — A numeric vector containing the values that correspond to 'Probabilities' for the corresponding dataset variable, and a count of NaNs (if any are present).

For logical variables:
- **Values** — The logical vector \([true \ false]\).
- **Counts** — A numeric vector of counts for each logical value.

For categorical variables:
- **Levels** — A cell array containing the labels for each level of the corresponding dataset variable.
- **Counts** — A numeric vector of counts for each level.

'Data' is empty if variable is not numeric, categorical, or logical. If a dataset variable has more than one column, then the corresponding 'Quantiles' or 'Counts' field is a matrix or an array.

**Examples**

Summarize Fisher's iris data:
load fisheriris
species = nominal(species);
data = dataset(species, meas);
summary(data)
species: [150x1 nominal]
   setosa   versicolor   virginica
   50       50           50
meas: [150x4 double]
    min       4.3000         2         1    0.1000
   1st Q     5.1000    2.8000    1.6000    0.3000
   median    5.8000         3    4.3500    1.3000
   3rd Q     6.4000    3.3000    5.1000    1.8000
   max       7.9000    4.4000    6.9000    2.5000

Summarize the data in hospital.mat:
load hospital
summary(hospital)

Dataset array created from the data file hospital.dat.

The first column of the file ("id") is used for observation names. Other columns ("sex" and "smoke") have been converted from their original coded values into categorical and logical variables. Two sets of columns ("sys" and "dia", "trial1" through "trial4") have been combined into single variables with multivariate observations. Column headers have been replaced with more descriptive variable names. Units have been added where appropriate.

LastName: [100x1 cell array of character vectors]
Sex: [100x1 nominal]
  Female      Male
   53        47

Age: [100x1 double, Units = Yrs]
    min      1st Q    median      3rd Q      max
   25       32         39        44        50

Weight: [100x1 double, Units = Lbs]
    min      1st Q    median      3rd Q      max
  111      130.5000  142.5000   180.5000   202

Smoker: [100x1 logical]
true     false
  34         66

BloodPressure: [100x2 double, Units = mm Hg]
Systolic/Diastolic

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>109</td>
</tr>
<tr>
<td>1st Q</td>
<td>117.5</td>
</tr>
<tr>
<td>median</td>
<td>122</td>
</tr>
<tr>
<td>3rd Q</td>
<td>127.5</td>
</tr>
<tr>
<td>max</td>
<td>138</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>

Trials: [100x1 cell, Units = Counts]
From zero to four measurement trials performed

**See Also**
get | grpstats | set
struct2dataset

Convert structure array to dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

ds = struct2dataset(S)
ds = struct2dataset(S,Name,Value)

Description

ds = struct2dataset(S) converts a structure array to a dataset array.

ds = struct2dataset(S,Name,Value) performs the conversion using additional options specified by one or more Name,Value pair arguments.

Examples

Convert Scalar Structure Array to Dataset Array

Convert a scalar structure array to a dataset array using the default options.

Create a structure array to convert.

S.Name = {'CLARK';'BROWN';'MARTIN'};
S.Gender = {'M';'F';'M'};
S.SystolicBP = [124;122;130];
S.DiastolicBP = [93;80;92];
S
S = struct with fields:
    Name: {3x1 cell}
    Gender: {3x1 cell}
    SystolicBP: [3x1 double]
    DiastolicBP: [3x1 double]

The scalar structure array has four fields, each with three rows.

Convert the structure array to a dataset array.

ds = struct2dataset(S)

ds =
    Name    Gender    SystolicBP  DiastolicBP
    'CLARK' 'M'       124         93
    'BROWN' 'F'       122         80
    'MARTIN' 'M'      130         92

The structure field names in S become the variable names in the output dataset array. The size of ds is 3-by-4.

**Convert Nonscalar Structure Array to Dataset Array**

Convert a nonscalar structure array to a dataset array, using one of the structure fields for observation names.

Create a nonscalar structure array to convert.

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

S

S = 3x1 struct array with fields:
    Name
    Gender
    SystolicBP
    DiastolicBP

This is a 3-by-1 structure array with 4 fields.

Convert the structure array to a dataset array, using the Name field for observation names.

ds = struct2dataset(S,'ReadObsNames','Name')

ds =

<table>
<thead>
<tr>
<th>Gender</th>
<th>SystolicBP</th>
<th>DiastolicBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARK</td>
<td>'M'</td>
<td>124</td>
</tr>
<tr>
<td>BROWN</td>
<td>'F'</td>
<td>122</td>
</tr>
<tr>
<td>MARTIN</td>
<td>'M'</td>
<td>130</td>
</tr>
</tbody>
</table>

The size of ds is 3-by-3 because the structure field Name is used for observation names, and not as a dataset array variable.

ds.Properties.DimNames

ans = 1x2 cell array
    {'Name'}    {'Variables'}

nds.Properties.ObsNames

ans = 3x1 cell array
    {'CLARK' }  
    {'BROWN' }  
    {'MARTIN'}  

32-6354
**Input Arguments**

*S — Input structure array*

structure array

Input structure array to convert to a dataset array, specified as a scalar structure array with *N* fields, each with *M* rows, or a nonscalar *M*-by-1 structure array with *N* fields.

Data Types: struct

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `ReadObsNames,'myField'` specifies that the structure field, `myField`, contains observation names.

**ReadObsNames — Name of structure field containing observation names for dataset array**

false (default) | character vector | string scalar

Name of structure field containing observation names for the output dataset array, specified as the comma-separated pair consisting of `'ReadObsNames'` and a character vector or string scalar containing a field name from the input structure array, *S*. When you specify a field name, `struct2dataset` uses that field to create observation names, and sets `ds.Properties.DimNames` equal to `{ReadObsNames,'Variables'}`.

For example, to specify that observation names are in the structure field, `Names`, use

Example: `'ReadObsNames','Names'`

By default, or if `ReadObsNames` is equal to `false`, `struct2dataset` does not create observation names unless you specify names using the name-value pair argument `ObsNames`.

**ObsNames — Observation names for dataset array**

string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of `'ObsNames'` and a string array or cell array of character vectors containing
observation names. The names do not need to be valid MATLAB identifiers, but they must be unique.

**AsScalar — Indicator for how to treat scalar structure**

`false` | `true`

Indicator for how to treat a scalar input structure array, specified as the comma-separated pair consisting of `'AsScalar'` and either `true` or `false`. The default value is `true` if `S` is a scalar structure array, and `false` otherwise.

By default, `struct2dataset` converts a scalar structure array with `N` fields, each with `M` rows, into an `M`-by-`N` dataset array.

If instead you set `AsScalar` equal to `false` for a scalar input structure array, then `struct2dataset` converts `S` to a dataset array with `N` observations.

**Output Arguments**

**ds — Output dataset array**

`dataset array`

Output dataset array, returned by default with `M` observations and `N` variables.

- If `S` is a scalar structure array with `N` fields, each with `M` rows, then `ds` is an `M`-by-`N` dataset array.
- If `S` is a nonscalar `M`-by-1 structure array with `N` fields, then `ds` is an `M`-by-`N` dataset array.
- If `S` is a scalar structure array with `N` fields, each with `M` rows, and `AsScalar` is set equal to `false`, then `ds` is a dataset array with `N` observations.

**See Also**

`cell2dataset` | `dataset` | `dataset2struct`

**Topics**

“Create a Dataset Array from Workspace Variables” on page 2-69
“Create a Dataset Array from a File” on page 2-75
“Dataset Arrays” on page 2-137
Introduced in R2012b
**surfht**

Interactive contour plot

**Syntax**

`surfht(z)`  
`surfht(x,y,z)`

**Description**

`surfht(z)` creates an interactive contour plot of the data in matrix `z`. `surfht` treats the values in `z` as the height above the plane.

`surfht(x,y,z)` creates an interactive contour plot of the data in matrix `z`, using the x-axis values contained in `x` and the y-axis values contained in `y`.

**Examples**

**Create an Interactive Contour Plot**

This example shows how to use `surfht` to create an interactive contour plot.

Create a grid of the `(x,y)` domain from (-2,-2) to (2,2) using `meshgrid`.

```matlab
[x,y] = meshgrid(-2:0.2:2,-2:0.2:2);
```

Evaluate the function `z(x,y) = x × exp(-x² - y²)` over this domain.

```matlab
z = x.*exp(-x.^2 - y.^2);
```

Open an interactive contour plot. Since `meshgrid` creates a grid of the `x` and `y` values, open the plot using the first row of `x` and the first column of `y`.

```matlab
surfht(x(1,:),y(:,1),z)
```
The figure shows a contour plot of the $z$ values along the specified $x$- and $y$-axes. Click the plot to evaluate $z$ at the $(x,y)$ coordinates indicated by the intersecting white lines.
For example, at $x = 0.71041$ and $y = 0.025723$, the value of $z$ is $0.41827$.

Alternatively, enter values in the fields labeled X Value and Y Value to evaluate $z$ at the specified coordinates. For example, evaluate $z$ at $x = 0.5$ and $y = 1$. 
The value of $z$ is 0.1397.

**Input Arguments**

$z$ — $z$-axis values for contour plot  
numeric matrix

$z$-axis values for contour plot, specified as a numeric matrix.
surfht treats the values in z as the height above the plane. By default, the x-axis values of the plot are the column indices of z, and the y-axis values of the plot are the row indices of z. To change the x- and y-axis values, specify x and y, respectively.

Data Types: single | double

x — x-axis values for contour plot
column indices of z (default) | numeric vector

x-axis values for contour plot, specified as a numeric vector. The length of x must match the number of columns in z.

Data Types: single | double

y — y-axis values for contour plot
row indices of z (default) | numeric vector

y-axis values for contour plot, specified as a numeric vector. The length of y must match the number of rows in z.

Data Types: single | double

Tips

• The intersection of the vertical and horizontal reference lines on the interactive plot defines the current x value and y value.
• Drag the dotted white reference lines to watch the interpolated z value (at the top of the plot) update simultaneously.
• Alternatively, obtain a specific interpolated z value by typing the x value and y value into editable text fields on the x-axis and y-axis, respectively.

See Also
contour | meshgrid | surf

Introduced before R2006a
surrcutcategories

Class: classregtree

(Removed) Categories used for surrogate splits in decision tree

Note classregtree has been removed. Use fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

C = surrcutcategories(T)
C = surrcutcategories(T,J)

Description

C = surrcutcategories(T) returns an n-element cell array C of the categories used
for surrogate splits in the decision tree T, where n is the number of nodes in the tree. For
each node K, C{K} is a cell array. The length of C{K} is equal to the number of surrogate
predictors found at this node. Every element of C{K} is either an empty character vector
for a continuous surrogate predictor or a two-element cell array with categories for a
categorical surrogate predictor. The first element of this two-element cell array lists
categories assigned to the left child by this surrogate split and the second element of this
two-element cell array lists categories assigned to the right child by this surrogate split.
The order of the surrogate split variables at each node is matched to the order of
variables returned by surrcutvar. The optimal-split variable at this node is not included.
For non-branch (leaf) nodes, C contains an empty cell.

C = surrcutcategories(T,J) takes an array J of node numbers and returns the
categories for the specified nodes.

See Also

classregtree | cutcategories | surrcutpoint | surrcuttype | surrcutvar
surrcutflip

Class: classregtree

(Removed) Numeric cutpoint assignments used for surrogate splits in decision tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

V = surrcutflip(T)
V = surrcutflip(T,J)

Description

V = surrcutflip(T) returns an n-element cell array V of the numeric cut assignments used for surrogate splits in the decision tree T, where n is the number of nodes in the tree. For each node K, V{K} is a numeric vector. The length of V{K} is equal to the number of surrogate predictors found at this node. Every element of V{K} is either zero for a categorical surrogate predictor or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if Z>=C and the cut assignment for this surrogate split is -1. Similarly, the right child is chosen if Z>=C and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty array.

V = surrcutflip(T,J) takes an array J of node numbers and returns the cutpoint assignments for the specified nodes.
See Also

classregtree | cutpoint | surrcutcategories | surrcutpoint | surrcuttype | surrcutvar
surrcutpoint

Class: classregtree

(Removed) Cutpoints used for surrogate splits in decision tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

V = surrcutpoint(T)
V = surrcutpoint(T,J)

Description

V = surrcutpoint(T) returns an n-element cell array V of the numeric values used for surrogate splits in the decision tree T, where n is the number of nodes in the tree. For each node K, V{K} is a numeric vector. The length of V{K} is equal to the number of surrogate predictors found at this node. Every element of V{K} is either either NaN for a categorical surrogate predictor or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a continuous predictor variable Z, the left child is chosen if Z<C and surrcutflip for this surrogate split is -1. Similarly, the right child is chosen if Z>=C and surrcutflip for this surrogate split is +1, or if Z<C and surrcutflip for this surrogate split is -1. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty cell.

V = surrcutpoint(T,J) takes an array J of node numbers and returns the cutpoint assignments for the specified nodes.
See Also
classregtree | cutpoint | surrcutcategories | surrcutflip | surrcuttype | surrcutvar
surrcuttype

Class: classregtree

(Removed) Types of surrogate splits used at branches in decision tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

C = surrcuttype(T)
C = surrcuttype(T,J)

Description

C = surrcuttype(T) returns an n-element cell array C indicating types of surrogate splits at each node in the tree T, where n is the number of nodes in the tree. For each node K, C{K} is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, C contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z and cutpoint V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.

C = surrcuttype(T,J) takes an array J of node numbers and returns the cut types for the specified nodes.

See Also
classregtree | cuttype | numnodes | surrcutvar
surrcutvar

Class: classregtree

(Removed) Variables used for surrogate splits in decision tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

V = surrcutvar(T)
V = surrcutvar(T,J)
[V,NUM] = surrcutvar(...)

Description

V = surrcutvar(T) returns an n-element cell array V of the names of the variables used for surrogate splits in each node of the tree T, where n is the number of nodes in the tree. Every element of V is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty cell.

V = surrcutvar(T,J) takes an array J of node numbers and returns the cut types for the specified nodes.

[V,NUM] = surrcutvar(...) also returns a cell array NUM with indices for each variable.

See Also
children|classregtree|cutvar|numnodes
**surrvarassoc**

**Class:** classregtree

(Removed) Predictive measure of association for surrogate splits in decision tree

---

**Note** classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

---

**Syntax**

\[
A = \text{surrvarassoc}(T)
\]
\[
A = \text{surrvarassoc}(T,J)
\]

**Description**

\[
A = \text{surrvarassoc}(T)
\]
returns an \( n \)-element cell array \( A \) of the predictive measures of association for surrogate splits in the decision tree \( T \), where \( n \) is the number of nodes in the tree. For each node \( K \), \( A\{K\} \) is a numeric vector. The length of \( A\{K\} \) is equal to the number of surrogate predictors found at this node. Every element of \( A\{K\} \) gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, \( V \) contains an empty cell.

\[
A = \text{surrvarassoc}(T,J)
\]
takes an array \( J \) of node numbers and returns the predictive measure of association for the specified nodes.

**See Also**

classregtree | surrcutcategories | surrcutflip | surrcutpoint | surrcuttype | surrcutvar
svmclassify

(Removed) Classify using support vector machine (SVM)

**Note** svmclassify has been removed. Use fitcsvm, ClassificationSVM, and CompactClassificationSVM instead. For more information, see “Compatibility Considerations”.

**Syntax**

```matlab
Group = svmclassify(SVMStruct,Sample)
Group = svmclassify(SVMStruct,Sample,'Showplot',true)
```

**Description**

`Group = svmclassify(SVMStruct,Sample)` classifies each row of the data in `Sample`, a matrix of data, using the information in a support vector machine classifier structure `SVMStruct`, created using the `svmtrain` function. Like the training data used to create `SVMStruct`, `Sample` is a matrix where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. Therefore, `Sample` must have the same number of columns as the training data. This is because the number of columns defines the number of features. `Group` indicates the group to which each row of `Sample` has been assigned.

`Group = svmclassify(SVMStruct,Sample,'Showplot',true)` plots the `Sample` data in the figure created using the `Showplot` property with the `svmtrain` function. This plot appears only when the data is two-dimensional.

**Input Arguments**

**SVMStruct**

Support vector machine classifier structure created using the `svmtrain` function.
Sample

A matrix where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. Therefore, Sample must have the same number of columns as the training data. This is because the number of columns defines the dimensionality of the data space.

Showplot

Describes whether to display a plot of the classification. Displays only for 2-D problems. Follow with a Boolean argument: true to display the plot, false to give no display.

Output Arguments

Group

Column vector with the same number of rows as Sample. Each entry (row) in Group represents the class of the corresponding row of Sample.

Algorithms

The svmclassify function uses results from svmtrain to classify vectors \( x \) according to the following equation:

\[
c = \sum_{i} \alpha_i k(s_i, x) + b,
\]

where \( s_i \) are the support vectors, \( \alpha_i \) are the weights, \( b \) is the bias, and \( k \) is a kernel function. In the case of a linear kernel, \( k \) is the dot product. If \( c \geq 0 \), then \( x \) is classified as a member of the first group, otherwise it is classified as a member of the second group.

Compatibility Considerations

svmclassify has been removed

Errors starting in R2018a
svmtrain and svmclassify have been removed. Instead, use the fitcsvm function to train a binary SVM classifier, and use the object function predict of ClassificationSVM to predict labels. Several differences between these functions require updates to your code.

The fitcsvm function was introduced in R2014a as a new way to train an SVM classifier for one-class or two-class learning. fitcsvm returns a trained SVM classifier as a ClassificationSVM object. ClassificationSVM is an object for accessing and performing operations on the training data and storing configurations of trained models. The new features include the functionality of svmtrain and svmclassify while providing several advantages over these functions, as described here.

- The new functionality
  - Supports computation of soft classification scores
  - Supports fitting posterior probabilities
  - Has improved training speed, especially on big data with well-separated classes, by providing shrinkage
  - Allows a warm restart by accepting an initial α value
  - Allows training to resume after the maximum number of iterations is exceeded
  - Supports robust learning in the presence of outliers
- ClassificationSVM is built on the same framework as ClassificationTree, ClassificationDiscriminant, and ClassificationKNN. Therefore, the syntax, options, and object functions resemble those in the existing objects, including:
  - Cross-validation
  - Hyperparameter optimization
  - Resubstitution statistics
  - Generalization statistics
  - Weighted classification

For all object functions and properties of the new objects, see the ClassificationSVM and CompactClassificationSVM object pages.

This table shows some typical usages of svmclassify and how to update your code to use predict instead.
## Removed Functionality

<table>
<thead>
<tr>
<th>Removed Functionality</th>
<th>Recommended Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMStruct = svmtrain(X,Y);</td>
<td>SVMModel = fitcsvm(X,Y);</td>
</tr>
<tr>
<td>label = svmclassify(SVMStruct,Xnew);</td>
<td>label = predict(SVMModel,Xnew);</td>
</tr>
<tr>
<td>SVMStruct = svmtrain(X,Y,'showplot',true); % X has two columns</td>
<td>SVMModel = fitcsvm(X,Y); % X has two columns</td>
</tr>
<tr>
<td>label = svmclassify(SVMStruct,Xnew,'showplot',true);</td>
<td>gscatter(X(:,1),X(:,2),Y,'rg','+*')</td>
</tr>
<tr>
<td>label = svmclassify(SVMStruct,Xnew,'showplot',true);</td>
<td>hold on</td>
</tr>
<tr>
<td>gscatter(Xnew(:,1),Xnew(:,2),label,'mc','+*')</td>
<td>label = predict(SVMModel,Xnew);</td>
</tr>
<tr>
<td>sv = SVMModel.SupportVectors;</td>
<td>gscatter(X(:,1),X(:,2),Y,'rg','+*')</td>
</tr>
<tr>
<td>plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)</td>
<td>sv = SVMModel.SupportVectors;</td>
</tr>
<tr>
<td>h = 0.02; % Mesh grid step size</td>
<td>plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)</td>
</tr>
<tr>
<td>[X1,X2] = meshgrid(min([X(:,1);Xnew(:,1)]):h:max([X(:,1);Xnew(:,1)]),min([X(:,2);Xnew(:,2)]):h:max([X(:,2);Xnew(:,2)]));</td>
<td>h = 0.02; % Mesh grid step size</td>
</tr>
<tr>
<td>[~,score] = predict(SVMModel,[X1(:,1),X2(:,1)]);</td>
<td>[~,score] = predict(SVMModel,[X1(:,1),X2(:,1)]);</td>
</tr>
<tr>
<td>scoreGrid = reshape(score(:,1),size(X1,1),size(X2,2));</td>
<td>scoreGrid = reshape(score(:,1),size(X1,1),size(X2,2));</td>
</tr>
<tr>
<td>contour(X1,X2,scoreGrid,[0,0])</td>
<td>contour(X1,X2,scoreGrid,[0,0])</td>
</tr>
<tr>
<td>hold off</td>
<td>For details, see “Train SVM Classifier” on page 32-1962.</td>
</tr>
</tbody>
</table>

## References


See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | svmtrain

Topics
“Support Vector Machines for Binary Classification” on page 18-183

Introduced in R2013a
**svmtrain**

(Removed) Train support vector machine classifier

**Note** svmtrain has been removed. Use fitcsvm, ClassificationSVM, and CompactClassificationSVM instead. For more information, see “Compatibility Considerations”.

**Syntax**

```matlab
SVMStruct = svmtrain(Training,Group)
SVMStruct = svmtrain(Training,Group,Name,Value)
```

**Description**

`SVMStruct = svmtrain(Training,Group)` returns a structure, `SVMStruct`, containing information about the trained support vector machine (SVM) classifier.

`SVMStruct = svmtrain(Training,Group,Name,Value)` returns a structure with additional options specified by one or more `Name,Value` pair arguments.

**Input Arguments**

**Training**

Matrix of training data, where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. `svmtrain` treats NaNs or empty character vectors in `Training` as missing values and ignores the corresponding rows of `Group`.

**Group**

Grouping variable, which can be a categorical, numeric, or logical vector, a cell array of character vectors, or a character matrix with each row representing a class label. Each element of `Group` specifies the group of the corresponding row of `Training`. Group
should divide Training into two groups. Group has the same number of elements as there are rows in Training. svmtrain treats each NaN, empty character vector, or 'undefined' in Group as a missing value, and ignores the corresponding row of Training.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

**autoscale**

Boolean specifying whether svmtrain automatically centers the data points at their mean, and scales them to have unit standard deviation, before training.

**Default:** true

**boxconstraint**

Value of the box constraint C for the soft margin. C can be a scalar, or a vector of the same length as the training data.

If C is a scalar, it is automatically rescaled by \( N/(2*N1) \) for the data points of group one and by \( N/(2*N2) \) for the data points of group two, where N1 is the number of elements in group one, N2 is the number of elements in group two, and \( N = N1 + N2 \). This rescaling is done to take into account unbalanced groups, that is cases where N1 and N2 have very different values.

If C is an array, then each array element is taken as a box constraint for the data point with the same index.

**Default:** 1

**kernelcachelimit**

Value that specifies the size of the kernel matrix cache for the SMO training method. The algorithm keeps a matrix with up to \( kernelcachelimit \times kernelcachelimit \) double-precision, floating-point numbers in memory.

**Default:** 5000
**kernel_function**

Kernel function `svmtrain` uses to map the training data into kernel space. The default kernel function is the dot product. The kernel function can be one of the following character vectors or a function handle:

- `'linear'` — Linear kernel, meaning dot product.
- `'quadratic'` — Quadratic kernel.
- `'polynomial'` — Polynomial kernel (default order 3). Specify another order with the `polyorder` name-value pair.
- `'rbf'` — Gaussian Radial Basis Function kernel with a default scaling factor, sigma, of 1. Specify another value for sigma with the `rbf_sigma` name-value pair.
- `'mlp'` — Multilayer Perceptron kernel with default scale `[1 -1]`. Specify another scale with the `mlp_params` name-value pair.
- `@kfun` — Function handle to a kernel function. A kernel function must be of the form

  ```matlab
 function K = kfun(U, V)

 The returned value, K, is a matrix of size M-by-N, where U and V have M and N rows respectively.

 If kfun has extra parameters, include the extra parameters via an anonymous function. For example, suppose that your kernel function is:

  ```matlab
  function k = kfun(u,v,p1,p2)
  k = tanh(p1*(u*v')+p2);
  
  Set values for p1 and p2, and then use an anonymous function:
  
  ```matlab
 @(u,v) kfun(u,v,p1,p2)

 Default: `'linear'`

kktviolationlevel

Value that specifies the fraction of variables allowed to violate the Karush-Kuhn-Tucker (KKT) conditions for the SMO training method. Set any value in [0,1). For example, if you set `kktviolationlevel` to 0.05, then 5% of the variables are allowed to violate the KKT conditions.
Tip Set this option to a positive value to help the algorithm converge if it is fluctuating near a good solution.

For more information on KKT conditions, see Cristianini and Shawe-Taylor [4].

Default: 0

method

Method used to find the separating hyperplane. Options are:

- 'QP' — Quadratic programming (requires an Optimization Toolbox license). The classifier is a 2-norm soft-margin support vector machine. Give quadratic programming options with the options name-value pair, and create options with optimset.
- 'SMO' — Sequential Minimal Optimization. Give SMO options with the options name-value pair, and create options with statset.
- 'LS' — Least squares.

Default: SMO

mlp_params

Parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel requires two parameters, [P1 P2]. The kernel \(K = \tanh(P1*U*V' + P2) \), where \(P1 > 0 \) and \(P2 < 0 \).

Default: [1 -1]

options

Options structure for training.

- When you set 'method' to 'SMO' (default), create the options structure using statset. Options are:
Display

Character vector that specifies the level of information about the optimization iterations that is displayed as the algorithm runs. Choices are:

- off (default) — Reports nothing.
- iter — Reports every 500 iterations.
- final — Reports only when the algorithm finishes.

MaxIter

Integer that specifies the maximum number of iterations of the main loop. If this limit is exceeded before the algorithm converges, then the algorithm stops and returns an error. Default is 15000.

The other name-value pairs that relate specifically to the 'SMO' method are kernelcachelimil, kktviolationlevel, and tolkkt.

- When you set method to 'QP', create the options structure using optimset. For details of applicable option choices, see quadprog options. SVM uses a convex quadratic program, so you can choose the 'interior-point-convex' quadprog algorithm. In limited testing, the 'interior-point-convex' algorithm was the best quadprog option for svmtrain, in both speed and memory utilization.

polyorder

Order of the polynomial kernel.

Default: 3

rbf_sigma

Scaling factor (sigma) in the radial basis function kernel.

Default: 1

showplot

Boolean indicating whether to plot the grouped data and separating line. Creates a plot only when the data has two columns (features).

Default: false
tolkkt

Value that specifies the tolerance with which the Karush-Kuhn-Tucker (KKT) conditions are checked for the SMO training method. For a definition of KKT conditions, see “Karush-Kuhn-Tucker (KKT) Conditions” on page 32-6382.

Default: 1e-3

Output Arguments

SVMStruct

Structure containing information about the trained SVM classifier in the following fields:

- **SupportVectors** — Matrix of data points with each row corresponding to a support vector in the normalized data space. This matrix is a subset of the *Training* input data matrix, after normalization has been applied according to the 'AutoScale' argument.

- **Alpha** — Vector of weights for the support vectors. The sign of the weight is positive for support vectors belonging to the first group, and negative for the second group.

- **Bias** — Intercept of the hyperplane that separates the two groups in the normalized data space (according to the 'AutoScale' argument).

- **KernelFunction** — Handle to the function that maps the training data into kernel space.

- **KernelFunctionArgs** — Cell array of any additional arguments required by the kernel function.

- **GroupNames** — Categorical, numeric, or logical vector, a cell array of character vectors, or a character matrix with each row representing a class label. Specifies the group identifiers for the support vectors. It has the same number of elements as there are rows in **SupportVectors**. Each element specifies the group to which the corresponding row in **SupportVectors** belongs.

- **SupportVectorIndices** — Vector of indices that specify the rows in *Training*, the training data, that were selected as support vectors after the data was normalized, according to the AutoScale argument.

- **ScaleData** — Field containing normalization factors. When 'AutoScale' is set to false, it is empty. When AutoScale is set to true, it is a structure containing two fields:
shift — Row vector of values. Each value is the negative of the mean across an observation in Training, the training data.

scaleFactor — Row vector of values. Each value is 1 divided by the standard deviation of an observation in Training, the training data.

Both svmtrain and svmclassify apply the scaling in ScaleData.

FigureHandles — Vector of figure handles created by svmtrain when using the 'Showplot' argument.

Definitions

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are analogous to the condition that the gradient must be zero at a minimum, modified to take constraints into account. The difference is that the KKT conditions hold for constrained problems. The KKT conditions use the auxiliary Lagrangian function:

\[
L(x, \lambda) = f(x) + \sum \lambda_{g,i} g_i(x) + \sum \lambda_{h,i} h_i(x).
\]

Here \(f(x) \) is the objective function, \(g(x) \) is a vector of constraint functions \(g(x) \leq 0 \), and \(h(x) \) is a vector of constraint functions \(h(x) = 0 \). The vector \(\lambda \), which is the concatenation of \(\lambda_g \) and \(\lambda_h \), is the Lagrange multiplier vector. Its length is the total number of constraints.

The KKT conditions are:

\[
\nabla_x L(x, \lambda) = 0 \\
\lambda_{g,i} g_i(x) = 0 \ \forall i \\
g(x) \leq 0 \\
h(x) = 0 \\
\lambda_{g,i} \geq 0.
\]

For more information, see Karush-Kuhn-Tucker conditions.
Tips

- To classify new data, use the result of training, SVMStruct, with the svmclassify function.

Algorithms

The svmtrain function uses an optimization method to identify support vectors s_i, weights α_i, and bias b that are used to classify vectors x according to the following equation:

$$ c = \sum \alpha_i k(s_i, x) + b, $$

where k is a kernel function. In the case of a linear kernel, k is the dot product. If $c \geq 0$, then x is classified as a member of the first group, otherwise it is classified as a member of the second group.

Memory Usage and Out of Memory Error

When you set 'Method' to 'QP', the svmtrain function operates on a data set containing N elements, and it creates an $(N+1)$-by-$(N+1)$ matrix to find the separating hyperplane. This matrix needs at least $8 \times (n+1)^2$ bytes of contiguous memory. If this size of contiguous memory is not available, the software displays an “out of memory” error message.

When you set 'Method' to 'SMO' (default), memory consumption is controlled by the kernelcachelim option. The SMO algorithm stores only a submatrix of the kernel matrix, limited by the size specified by the kernelcachelim option. However, if the number of data points exceeds the size specified by the kernelcachelim option, the SMO algorithm slows down because it has to recalculate the kernel matrix elements.

When using svmtrain on large data sets, and you run out of memory or the optimization step is very time consuming, try either of the following:

- Use a smaller number of samples and use cross-validation to test the performance of the classifier.
- Set 'Method' to 'SMO', and set the kernelcachelim option as large as your system permits.
Compatibility Considerations

svmtrain has been removed

Errors starting in R2018a

svmtrain and svmclassify have been removed. Instead, use the fitcsvm function to train a binary SVM classifier, and use the object function predict of ClassificationSVM to predict labels. Several differences between these functions require updates to your code.

The fitcsvm function was introduced in R2014a as a new way to train an SVM classifier for one-class or two-class learning. fitcsvm returns a trained SVM classifier as a ClassificationSVM object. ClassificationSVM is an object for accessing and performing operations on the training data and storing configurations of trained models. The new features include the functionality of svmtrain and svmclassify while providing several advantages over these functions, as described here.

- The new functionality
 - Supports computation of soft classification scores
 - Supports fitting posterior probabilities
 - Has improved training speed, especially on big data with well-separated classes, by providing shrinkage
 - Allows a warm restart by accepting an initial α value
 - Allows training to resume after the maximum number of iterations is exceeded
 - Supports robust learning in the presence of outliers

- ClassificationSVM is built on the same framework as ClassificationTree, ClassificationDiscriminant, and ClassificationKNN. Therefore, the syntax, options, and object functions resemble those in the existing objects, including:
 - Cross-validation
 - Hyperparameter optimization
 - Resubstitution statistics
 - Generalization statistics
 - Weighted classification

For all object functions and properties of the new objects, see the ClassificationSVM and CompactClassificationSVM object pages.
This table shows some typical usages of `svmtrain` and how to update your code to use `fitcsvm` instead.

<table>
<thead>
<tr>
<th>Removed Functionality</th>
<th>Recommended Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMStruct = svmtrain(X,Y); label = svmclassify(SVMStruct,Xnew);</td>
<td>SVMModel = fitcsvm(X,Y); label = predict(SVMModel,Xnew);</td>
</tr>
<tr>
<td>SVMStruct = svmtrain(X,Y,'showplot',true); % X has two columns</td>
<td>SVMModel = fitcsvm(X,Y); % X has two columns</td>
</tr>
<tr>
<td>gscatter(X(:,1),X(:,2),Y) hold on</td>
<td>gscatter(X(:,1),X(:,2),Y) hold on</td>
</tr>
<tr>
<td>sv = SVMModel.SupportVectors; plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)</td>
<td>sv = SVMModel.SupportVectors; plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)</td>
</tr>
<tr>
<td>h = 0.02; % Mesh grid step size</td>
<td>h = 0.02; % Mesh grid step size</td>
</tr>
<tr>
<td>[X1,X2] = meshgrid(min(X(:,1)):h:max(X(:,1)),min(X(:,2)):h:max(X(:,2)));</td>
<td>[X1,X2] = meshgrid(min(X(:,1)):h:max(X(:,1)),min(X(:,2)):h:max(X(:,2)));</td>
</tr>
<tr>
<td>[~,score] = predict(SVMModel,[X1(:),X2(:)]);</td>
<td>[~,score] = predict(SVMModel,[X1(:),X2(:)]);</td>
</tr>
<tr>
<td>scoreGrid = reshape(score(:,1),size(X1,1),size(X2,2));</td>
<td>scoreGrid = reshape(score(:,1),size(X1,1),size(X2,2));</td>
</tr>
<tr>
<td>contour(X1,X2,scoreGrid,[0,0]) hold off</td>
<td>contour(X1,X2,scoreGrid,[0,0]) hold off</td>
</tr>
</tbody>
</table>

For details, see “Train SVM Classifier” on page 32-1962.

This table shows the name-value pair arguments of `svmtrain` and the corresponding arguments of `fitcsvm`. The default values and detailed usages can differ. For details, see the name-value pair argument descriptions of `fitcsvm`.

<table>
<thead>
<tr>
<th>Name-Value Pair Arguments of <code>svmtrain</code></th>
<th>Name-Value Pair Arguments of <code>fitcsvm</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>'autoscale'</td>
<td>'Standardize'</td>
</tr>
<tr>
<td>'boxconstraint'</td>
<td>'BoxConstraint'</td>
</tr>
<tr>
<td>'kernelcachelimt'</td>
<td>'CacheSize'</td>
</tr>
<tr>
<td>Name-Value Pair Arguments of <code>svmtrain</code></td>
<td>Name-Value Pair Arguments of <code>fitcsvm</code></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>'kernel_function'</td>
<td>'KernelFunction'</td>
</tr>
<tr>
<td>'kktviolationlevel'</td>
<td>Not supported. To control convergence options, use these name-value pair arguments: 'DeltaGradientTolerance', 'GapTolerance', 'IterationLimit', 'KKT_Tolerance', and 'ShrinkagePeriod'.</td>
</tr>
<tr>
<td>'method'</td>
<td>'Solver' — <code>fitcsvm</code> supports three optimization routines: 'ISDA' (Iterative Single Data Algorithm), 'L1QP' (L1 soft-margin minimization by quadratic programming), and 'SMO' (Sequential Minimal Optimization). 'LS' (least squares) is not supported.</td>
</tr>
<tr>
<td>'mlp_params'</td>
<td>'KernelFunction' — Define a function for the multilayer perceptron kernel and specify the function by using 'KernelFunction'. For details, see “Train SVM Classifier Using Custom Kernel” on page 18-196.</td>
</tr>
<tr>
<td>'options'</td>
<td>'IterationLimit', 'Verbose'</td>
</tr>
<tr>
<td>'polyorder'</td>
<td>'PolynomialOrder'</td>
</tr>
<tr>
<td>'rbf_sigma'</td>
<td>'KernelScale' — Specify 'auto' to have <code>fitcsvm</code> select an appropriate scale factor using a heuristic procedure.</td>
</tr>
<tr>
<td>'showplot'</td>
<td>Use gscatter, contour, and predict as shown in the previous table.</td>
</tr>
<tr>
<td>'tolkkt'</td>
<td>'DeltaGradientTolerance'</td>
</tr>
</tbody>
</table>

References

See Also
ClassificationSVM | CompactClassificationSVM | classify | fitcsvm | svmclassify

Topics
“Support Vector Machines for Binary Classification” on page 18-183
“Grouping Variables” on page 2-57

Introduced in R2013a
table2dataset

Convert table to dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

\[\text{ds} = \text{table2dataset}(t) \]

Description

\[\text{ds} = \text{table2dataset}(t) \] converts a table to a dataset array.

Examples

Convert a Table to a Dataset Array

Load the sample data, which contains nutritional information for 77 cereals.

```matlab
load cereal;
```

Create a table containing the calorie, protein, fat, and name data for the first five cereals. Label the variables.

```matlab
Calories = Calories(1:5);
Protein = Protein(1:5);
Fat = Fat(1:5);
Name = Name(1:5);

cereal = table(Calories,Protein,Fat,'RowNames',Name)
```

```
cereal=5×3 table
      Calories    Protein    Fat
    ______    ______    ______
    32        62        12
    32        62        12
    32        62        12
    32        62        12
    32        62        12
```
Convert the table to a dataset array.

ds = table2dataset(cereal)

ds =

<table>
<thead>
<tr>
<th></th>
<th>Calories</th>
<th>Protein</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Bran</td>
<td>70</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>100% Natural Bran</td>
<td>120</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>All-Bran</td>
<td>70</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>All-Bran with Extra Fiber</td>
<td>50</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Almond Delight</td>
<td>110</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Input Arguments

t — Input table
table

Input table to convert to a dataset array, specified as a table. Each variable in t becomes a variable in the output dataset array ds.

Data Types: table

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned as a dataset array containing the variables from the input table t.
See Also

dataset | table

Topics

"Dataset Arrays" on page 2-137
"Tables" (MATLAB)

Introduced in R2013b
tabulate

Frequency table

Syntax

```matlab
tbl = tabulate(x)
tabulate(x)
```

Description

`tbl = tabulate(x)` creates a frequency table of data in vector `x`. Information in `tbl` is arranged as follows:

- 1st column — The unique values of `x`
- 2nd column — The number of instances of each value
- 3rd column — The percentage of each value

If `x` is a numeric array, `tbl` is a numeric matrix. If the elements of `x` are positive integers, `tbl` includes 0 counts for integers between 1 and `max(x)` that do not appear in `x`.

If `x` is a categorical variable, character array, string array or cell array of character vectors, `tbl` is a cell array.

`tabulate(x)` with no output arguments displays the table in the command window.

Examples

```matlab
tabulate([1 2 4 4 3 4])
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16.67%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>16.67%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>16.67%</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>50.00%</td>
</tr>
</tbody>
</table>
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
pareto

Topics
“Grouping Variables” on page 2-57

Introduced before R2006a
tblread

Read tabular data from file

Syntax

```
[data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread(filename)
[data,varnames,casenames] = tblread(filename,delimiter)
```

Description

`[data,varnames,casenames] = tblread` displays the File Open dialog box for interactive selection of a tabular data file. The file format has variable names in the first row, case names in the first column and data starting in the (2, 2) position. Outputs are:

- **data** — Numeric matrix with a value for each variable-case pair
- **varnames** — Character matrix containing the variable names in the first row of the file
- **casenames** — Character matrix containing the names of each case in the first column of the file

`[data,varnames,casenames] = tblread(filename)` allows command line specification of the name of a file in the current folder, or the complete path name of any file, using the character vector or string scalar `filename`.

`[data,varnames,casenames] = tblread(filename,delimiter)` reads from the file using `delimiter` as the delimiting character. Accepted values for `delimiter` are:

- `' '` or 'space'
- `'\t' or 'tab'
- `'',' or 'comma'
- `';' or 'semi'
- `'|' or 'bar'`
The default value of delimiter is 'space'.

Examples

```matlab
[data,varnames,casenames] = tblread('sat.dat')
data =
   470  530
   520  480

varnames =
   Male
   Female

casenames =
   Verbal
   Quantitative
```

See Also
caseread | readtable | tblwrite | tdfread

Introduced before R2006a
tblwrite

Write tabular data to file

Syntax

\[
\text{tblwrite}(\text{data}, \text{varnames}, \text{casenames}) \\
\text{tblwrite}(\text{data}, \text{varnames}, \text{casenames}, \text{filename}) \\
\text{tblwrite}(\text{data}, \text{varnames}, \text{casenames}, \text{filename}, \text{delimiter})
\]

Description

\text{tblwrite}(\text{data}, \text{varnames}, \text{casenames})\) displays the File Open dialog box for interactive specification of the tabular data output file. The file format has variable names in the first row, case names in the first column and \text{data} starting in the (2,2) position.

\text{varnames} is a character matrix or string array containing the variable names. \text{casenames} is a character matrix or string array containing the names of each case in the first column. \text{data} is a character matrix or string array with a value for each variable-case pair.

\text{tblwrite}(\text{data}, \text{varnames}, \text{casenames}, \text{filename})\) specifies a file in the current folder, or the complete path name of any file in the character vector or string scalar \text{filename}.

\text{ tblwrite}(\text{data}, \text{varnames}, \text{casenames}, \text{filename}, \text{delimiter})\) writes to the file using \text{delimiter} as the delimiting character. The following table lists the accepted values for \text{delimiter} and their equivalent names.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>' '</td>
<td>'space'</td>
</tr>
<tr>
<td>'\t'</td>
<td>'tab'</td>
</tr>
<tr>
<td>','</td>
<td>'comma'</td>
</tr>
<tr>
<td>';'</td>
<td>'semi'</td>
</tr>
</tbody>
</table>
The default value of `delimiter` is 'space'.

Examples

Continuing the example from `tblread`:

```matlab
tblwrite(data,varnames,casenames,'sattest.dat')
type sattest.dat
```

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal</td>
<td>470</td>
<td>530</td>
</tr>
<tr>
<td>Quantitative</td>
<td>520</td>
<td>480</td>
</tr>
</tbody>
</table>

See Also

`casewrite` | `tblread` | `writetable`

Introduced before R2006a
tcdf

Student's t cumulative distribution function

Syntax

$p = \text{tcdf}(x,\nu)$
$p = \text{tcdf}(x,\nu,\text{'upper'})$

Description

$p = \text{tcdf}(x,\nu)$ returns the cumulative distribution function (cdf) of the Student's t distribution at each of the values in x using the corresponding degrees of freedom in ν. x and ν can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

$p = \text{tcdf}(x,\nu,\text{'upper'})$ returns the complement of the Student's t cdf at each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

Examples

Compute Student's t cdf

mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
rng default % For reproducibility
x = normrnd(mu,sigma,n,1); % Random sample from population

xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar - mu)/(s/sqrt(n))
t = 1.0589
p = 1 - tcdf(t, n-1) % Probability of larger t-statistic
p = 0.1461

This probability is the same as the p value returned by a t test of the null hypothesis that the sample comes from a normal population with mean μ

[h, ptest] = ttest(x, mu, 0.05, 'right')
h = 0
ptest = 0.1461

Definitions

Student’s t cdf

The cumulative distribution function (cdf) of Student’s t distribution is

$$p = F(x | \nu) = \int_{-\infty}^{x} \frac{1}{\sqrt{\nu \pi}} \Gamma\left(\frac{\nu + 1}{2}\right) \frac{1}{1 + \left(\frac{t^2}{\nu}\right)^{\frac{\nu+1}{2}}} dt$$

where ν is the degrees of freedom and $\Gamma(\cdot)$ is the Gamma function. The result p is the probability that a single observation from the t distribution with ν degrees of freedom will fall in the interval $[-\infty, x]$.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf | tinv | tpdf | trnd | tstat

Topics
“Student's t Distribution” on page B-158

Introduced before R2006a
tdfread

Read tab-delimited file

Syntax

tdfread
tdfread(filename)
tdfread(filename,delimiter)
s = tdfread(filename,...)

Description

tdfread displays the File Open dialog box for interactive selection of a data file, then reads data from the file. The file should have variable names separated by tabs in the first row, and data values separated by tabs in the remaining rows. tdfread creates variables in the workspace, one for each column of the file. The variable names are taken from the first row of the file. If a column of the file contains only numeric data in the second and following rows, tdfread creates a double variable. Otherwise, tdfread creates a char variable. After all values are imported, tdfread displays information about the imported values using the format of the tdfread command.

tdfread(filename) allows command line specification of the name of a file in the current folder, or the complete path name of any file, using filename.

tdfread(filename,delimiter) indicates that the character specified by delimiter separates columns in the file. Accepted values for delimiter are:

• ' ' or 'space'
• '	' or 'tab'
• ',' or 'comma'
• ';' or 'semi'
• '|' or 'bar'

The default delimiter is 'tab'.
s = tdfread(filename,...) returns a scalar structure s whose fields each contain a variable.

Examples

The following displays the contents of the file sat2.dat:

type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480

The following creates the variables Gender, Score, and Test from the file sat2.dat and displays the contents of the MATLAB workspace:

tdfread('sat2.dat','','

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>4x6</td>
<td>48</td>
<td>char</td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>4x1</td>
<td>32</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>4x12</td>
<td>96</td>
<td>char</td>
<td></td>
</tr>
</tbody>
</table>

See Also
caseread | dlmread | readtable | tblread | textscan

Introduced before R2006a
ClassificationDiscriminant.template

Class: ClassificationDiscriminant

Discriminant analysis classifier template for ensemble (to be removed)

Note ClassificationDiscriminant.template will be removed in a future release. Use templateDiscriminant instead.

Syntax

t = ClassificationDiscriminant.template()
t = ClassificationDiscriminant.template(Name,Value)

Description

t = ClassificationDiscriminant.template() returns a learner template suitable to use in the fitcensemble function.

t = ClassificationDiscriminant.template(Name,Value) creates a template with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Delta — Linear coefficient threshold

0 (default) | nonnegative scalar value
Linear coefficient threshold, specified as the comma-separated pair consisting of 'Delta' and a nonnegative scalar value. If a coefficient of Mdl has magnitude smaller than Delta, Mdl sets this coefficient to 0, and you can eliminate the corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

DiscrimType — Discriminant type

'linear' (default) | 'quadratic' | 'diaglinear' | 'diagquadratic' | 'pseudolinear' | 'pseudoquadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType' and a character vector in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Predictor Covariance Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>'linear'</td>
<td>Regularized linear discriminant analysis (LDA)</td>
<td>• All classes have the same covariance matrix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $\hat{\Sigma}_\gamma = (1-\gamma)\hat{\Sigma} + \gamma \text{diag}(\hat{\Sigma})$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\Sigma}$ is the empirical, pooled covariance matrix and γ is the amount of regularization.</td>
</tr>
<tr>
<td>'diaglinear'</td>
<td>LDA</td>
<td>All classes have the same, diagonal covariance matrix.</td>
</tr>
<tr>
<td>'pseudolinear'</td>
<td>LDA</td>
<td>All classes have the same covariance matrix. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic discriminant analysis (QDA)</td>
<td>The covariance matrices can vary among classes.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Predictor Covariance Treatment</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>'diagquadratic'</td>
<td>QDA</td>
<td>The covariance matrices are diagonal and can vary among classes.</td>
</tr>
<tr>
<td>'pseudoquadratic'</td>
<td>QDA</td>
<td>The covariance matrices can vary among classes. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
</tbody>
</table>

Note To use regularization, you must specify 'linear'. To specify the amount of regularization, use the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

FillCoeffs — Coeffs property flag

'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs property in the classifier object. This can be computationally intensive, especially when cross-validating. The default is 'on', unless you specify a cross-validation name-value pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

Gamma — Amount of regularization

scalar value in the interval [0,1]

Amount of regularization to apply when estimating the covariance matrix of the predictors, specified as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma provides finer control over the covariance matrix structure than DiscrimType.

- If you specify 0, then the software does not use regularization to adjust the covariance matrix. That is, the software estimates and uses the unrestricted, empirical covariance matrix.
• For linear discriminant analysis, if the empirical covariance matrix is singular, then
the software automatically applies the minimal regularization required to invert the
covariance matrix. You can display the chosen regularization amount by entering
\texttt{Mdl.Gamma} at the command line.

• For quadratic discriminant analysis, if at least one class has an empirical
covariance matrix that is singular, then the software throws an error.

• If you specify a value in the interval (0,1), then you must implement linear
discriminant analysis, otherwise the software throws an error. Consequently, the
software sets \texttt{DiscrimType} to 'linear'.

• If you specify 1, then the software uses maximum regularization for covariance matrix
estimation. That is, the software restricts the covariance matrix to be diagonal.
Alternatively, you can set \texttt{DiscrimType} to 'diagLinear' or 'diagQuadratic' for
diagonal covariance matrices.

Example: 'Gamma', 1

Data Types: single | double

\textbf{SaveMemory — Flag to save covariance matrix}

\verbatim
'on'
\endverbatim

Flag to save covariance matrix, specified as the comma-separated pair consisting of
'\texttt{SaveMemory}' and either 'on' or 'off'. If you specify 'on', then \texttt{fitcdiscr} does not
store the full covariance matrix, but instead stores enough information to compute the
matrix. The \texttt{predict} method computes the full covariance matrix for prediction, and
does not store the matrix. If you specify 'off', then \texttt{fitcdiscr} computes and stores the
full covariance matrix in \texttt{Mdl}.

Specify \texttt{SaveMemory} as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory', 'on'

\section*{Output Arguments}

\textbf{t — Discriminant analysis classification template}

classification template object

Discriminant analysis classification template suitable to use in the \texttt{fitcensemble}
function, returned as a classification template object. In an ensemble, \texttt{t} specifies how to
create the discriminant analysis classifier.
Examples

Discriminant Analysis Template for Nondefault Options

Create a nondefault discriminant analysis template for use in `fitensemble`.

Create a template for pseudolinear discriminant analysis.

```matlab
t = ClassificationDiscriminant.template('discrimType','pseudoLinear')
t =
Fit template for classification Discriminant.

    DiscrimType: 'pseudoLinear'
    Gamma: []
    Delta: []
    FillCoeffs: []
    SaveMemory: []
    Version: 1
    Method: 'Discriminant'
    Type: 'classification'
```

You can use `t` for ensemble learning.

See Also

`ClassificationDiscriminant` | `fitensemble` | `templateDiscriminant`
ClassificationKNN.template

k-nearest neighbor classifier template for ensemble (to be removed)

Note ClassificationKNN.template will be removed in a future release. Use templateKNN instead.

Syntax

```matlab
t = ClassificationKNN.template()
t = ClassificationKNN.template(Name,Value)
```

Description

`t = ClassificationKNN.template()` returns a learner template suitable to use in the `fitcensemble` function.

`t = ClassificationKNN.template(Name,Value)` creates a template with additional options specified by one or more `Name,Value` pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

BreakTies — Tie-breaking algorithm

- `'smallest'` (default)
- `'nearest'`
- `'random'`
Tie-breaking algorithm used by the predict method if multiple classes have the same smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one of the following:

- 'smallest' — Use the smallest index among tied groups.
- 'nearest' — Use the class with the nearest neighbor among tied groups.
- 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the K nearest neighbors.

Example: 'BreakTies','nearest'

BucketSize — Maximum data points in node

50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only when NSMethod is 'kdtree'.

Example: 'BucketSize',40

Data Types: single | double

Cov — Covariance matrix

`nancov(X)` (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix of scalar values representing the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

Distance — Distance metric

'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | 'hamming' | function handle | ...

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a valid distance metric name or function handle. The allowable distance metric names depend on your choice of a neighbor-searcher method (see NSMethod).
<table>
<thead>
<tr>
<th>NSMethod</th>
<th>Distance Metric Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>exhaustive</td>
<td>Any distance metric of ExhaustiveSearcher</td>
</tr>
<tr>
<td>kdtree</td>
<td>'cityblock', 'chebychev', 'euclidean', or 'minkowski'</td>
</tr>
</tbody>
</table>

This table includes valid distance metrics of ExhaustiveSearcher.

<table>
<thead>
<tr>
<th>Distance Metric Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between observations (treated as vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.</td>
</tr>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is the sample covariance matrix of X, as computed by <code>nancov(X)</code>. To specify a different value for C, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'Exponent' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between X and a query point is scaled, meaning divided by a scale value S. The default value of S is the standard deviation computed from X, $S = \text{nanstd}(X)$. To specify another value for S, use the Scale name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
</tbody>
</table>
Distance Metric Names | Description
--- | ---
@distfun | Distance function handle. *distfun* has the form

```matlab
function D2 = distfun(ZI,ZJ)
% calculation of distance
...
```

where

- ZI is a 1-by-N vector containing one row of X or Y.
- ZJ is an M2-by-N matrix containing multiple rows of X or Y.
- D2 is an M2-by-1 vector of distances, and D2(k) is the distance between observations ZI and ZJ(k,:).

If you specify `CategoricalPredictors` as 'all', then the default distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

Data Types: char | function_handle

DistanceWeight — Distance weighting function

'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of 'DistanceWeight' and either a function handle or one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'equal'</td>
<td>No weighting</td>
</tr>
<tr>
<td>'inverse'</td>
<td>Weight is 1/distance</td>
</tr>
<tr>
<td>'squaredinverse'</td>
<td>Weight is 1/distance^2</td>
</tr>
<tr>
<td>@fcn</td>
<td>fcn is a function that accepts a matrix of nonnegative distances, and returns a matrix the same size containing nonnegative distance weights. For example, 'squaredinverse' is equivalent to @(d)d.^(-2).</td>
</tr>
</tbody>
</table>

Example: 'DistanceWeight','inverse'
Data Types: `char` | `function_handle`

Exponent — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.

Example: 'Exponent', 3
Data Types: `single` | `double`

IncludeTies — Tie inclusion flag
false (default) | `true`

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical value indicating whether `predict` includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is `true`, `predict` includes all these neighbors. Otherwise, `predict` uses exactly K neighbors.

Example: 'IncludeTies', `true`
Data Types: `logical`

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod' and 'kdtree' or 'exhaustive'.

- 'kdtree' — Creates and uses a kd-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
 - 'euclidean'
 - 'cityblock'
 - 'minkowski'
 - 'chebychev'
- 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point `xnew`, the software computes the distance values from all points in `X` to `xnew` to find nearest neighbors.
The default is 'kdtree' when \(X \) has 10 or fewer columns, \(X \) is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

NumNeighbors — Number of nearest neighbors to find

1 (default) | positive integer value

Number of nearest neighbors in \(X \) to find for classifying each point when predicting, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer value.

Example: 'NumNeighbors',3

Data Types: single | double

Scale — Distance scale
nanstd(\(X \)) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing nonnegative scalar values with length equal to the number of columns in \(X \). Each coordinate difference between \(X \) and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

Output Arguments

t — Classification template
classification template object

\(K \)-nearest neighbor classification template suitable to use in the fitcensemble function. In an ensemble, \(t \) specifies how to create the KNN classifier.

Examples
KNN template for nondefault options

Create a nondefault k-nearest neighbor template for use in `fitcensemble`.

Create a template for 5-nearest neighbor search.

```
t = ClassificationKNN.template('NumNeighbors',5)
t = 
Fit template for classification KNN.
    NumNeighbors: 5
    NSMethod: ''
    Distance: ''
    BucketSize: ''
    IncludeTies: []
    DistanceWeight: []
    BreakTies: []
    Exponent: []
    Cov: []
    Scale: []
    StandardizeData: []
    Version: 1
    Method: 'KNN'
    Type: 'classification'
```

You can use `t` for ensemble learning.

See Also

`ClassificationKNN` | `fitcensemble`

Topics

“Random Subspace Classification” on page 18-133
ClassificationTree.template

Class: ClassificationTree

Create classification template (to be removed)

Note ClassificationTree.template will be removed in a future release. Use templateTree instead.

Syntax

t = ClassificationTree.template
t = ClassificationTree.template(Name,Value)

Description

t = ClassificationTree.template returns a learner template suitable to use in the fitcensemble function.

 t = ClassificationTree.template(Name,Value) creates a template with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
AlgorithmForCategorical

Algorithm to find the best split on a categorical predictor for data with $K = 3$ or more classes. The available algorithms are:

'Exact' For a categorical predictor with C categories, consider all $2^{C-1} - 1$ combinations.

'PullLeft' Start with all C categories on the right branch. Consider moving each category to the left branch as it achieves the minimum impurity for the K classes among the remaining categories. Out of this sequence, choose the split that has the lowest impurity.

'PCA' Compute a score for each category using the inner product between the first principal component of a weighted covariance matrix (of the centered class probability matrix) and the vector of class probabilities for that category. Sort the scores in ascending order, and consider all $C - 1$ splits.

'OVAbyClass' Start with all C categories on the right branch. For each class, order the categories based on their probability for that class. For the first class, consider moving each category to the left branch in order, recording the impurity criterion at each move. Repeat for the remaining classes. Out of this sequence, choose the split that has the minimum impurity.

Default: ClassificationTree selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For two classes, ClassificationTree always performs the exact search.
MaxCat

ClassificationTree splits a categorical predictor using the exact search algorithm if the predictor has at most MaxCat levels in the split node. Otherwise, ClassificationTree finds the best categorical split using one of the inexact algorithms.

Specify MaxCat as a numeric nonnegative scalar value. Passing a small value can lead to long computation time and memory overload.

Default: 10

MergeLeaves

Character vector that specifies whether to merge leaves after the tree is grown. Values are 'on' or 'off'.

When 'on', ClassificationTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', ClassificationTree does not merge leaves.

Default: 'off'

MinLeaf

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, ClassificationTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 1 for bagging

MinParent

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, ClassificationTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Number of training observations for boosting, 2 for bagging

NVarToSample

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.
Default: 'all' for boosting, square root of number of predictors for bagging

Prune

When 'on', ClassificationTree grows the classification tree and computes the optimal sequence of pruned subtrees. When 'off' ClassificationTree grows the tree without pruning.

Default: 'off'

PruneCriterion

Character vector with the pruning criterion, either 'error' or 'impurity'.

Default: 'error'

SplitCriterion

Criterion for choosing a split. One of 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Default: 'gdi'

Surrogate

Character vector describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.

- When 'on', ClassificationTree finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, ClassificationTree finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', ClassificationTree finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'
Output Arguments

t

Classification tree template suitable to use in the fitcensemble function. In an ensemble, t specifies how to grow the classification trees.

Examples

Construct a Classification Template with Surrogate Splits

Create a classification template with surrogate splits, and train an ensemble for the Fisher iris model with the template.

```matlab
   t = ClassificationTree.template('surrogate','on');
   load fisheriris
   ens = fitensemble(meas,species,'AdaBoostM2',100,t);
```

How well does the ensemble classify the training data? This can be an underestimate of the loss on new data, but is nonetheless interesting.

```matlab
   loss = resubLoss(ens)
```

```matlab
   loss = 0.0333
```

References

See Also

ClassificationTree | fitcensemble | fitctree | templateTree
RegressionTree.template

Class: RegressionTree
Create regression template (to be removed)

Note RegressionTree.template will be removed in a future release. Use templateTree instead.

Syntax

t = RegressionTree.template
t = RegressionTree.template(Name,Value)

Description

t = RegressionTree.template returns a learner template suitable to use in the fitrensemble function.

t = RegressionTree.template(Name,Value) creates a template with additional options specified by one or more Name,Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
MergeLeaves

Character vector that specifies whether to merge leaves after the tree is grown. Values are 'on' or 'off'.

When 'on', RegressionTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', RegressionTree does not merge leaves.

Default: 'off'

MinLeaf

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 5 for bagging

MinParent

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Number of training observations for boosting, 10 for bagging

NVarToSample

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all' for boosting, one third of the number of predictors for bagging

Prune

When 'on', RegressionTree grows the regression tree and computes the optimal sequence of pruned subtrees. When 'off' RegressionTree grows the tree without pruning.

Default: 'off'
Surrogate

Character vector describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.

- When 'on', `RegressionTree` finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, `RegressionTree` finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', `RegressionTree` finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

Output Arguments

t

Regression tree template suitable to use in the `fitrensemble` function. In an ensemble, t specifies how to grow the regression trees.

Examples

Create a Regression Template

Create a regression template with surrogate splits, and train an ensemble for the `carsmall` data with the template.

```matlab
load carsmall
t = RegressionTree.template('surrogate','on');
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;
ens = fitrensemble(X,Y,'Learners',t);
```
See Also
RegressionTree | fitrensemble | fitrtree
templateDiscriminant

Discriminant analysis classifier template

Syntax

t = templateDiscriminant()
t = templateDiscriminant(Name,Value)

Description

t = templateDiscriminant() returns a discriminant analysis learner template suitable for training ensembles or error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during training.

Specify t as a learner in fitcensemble or fitcecoc.

If you display t in the Command Window, then all options appear empty ([]), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create a Discriminant Analysis Template for Ensemble Learning

Create a nondefault discriminant analysis template for use in fitcensemble.
Load Fisher's iris data set.

load fisheriris

Create a template for pseudolinear discriminant analysis.

t = templateDiscriminant('DiscrimType','pseudoLinear')

t =
Fit template for classification Discriminant.

 DiscrimType: 'pseudoLinear'
 Gamma: []
 Delta: []
 FillCoeffs: []
 SaveMemory: []
 Version: 1
 Method: 'Discriminant'
 Type: 'classification'

All properties of the template object are empty except for DiscrimType, Method, and Type. When trained on, the software fills in the empty properties with their respective default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitcensemble(meas,species,'Method','Subspace','Learners',t);

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L = 0.0400

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'DiscrimType','pseudoLinear','SaveMemory','on'` specifies a template for pseudolinear discriminant analysis that does not store the full covariance matrix.

Delta — Linear coefficient threshold

0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of `'Delta'` and a nonnegative scalar value. If a coefficient of `Mdl` has magnitude smaller than `Delta`, `Mdl` sets this coefficient to 0, and you can eliminate the corresponding predictor from the model. Set `Delta` to a higher value to eliminate more predictors.

`Delta` must be 0 for quadratic discriminant models.

Data Types: `single` | `double`

DiscrimType — Discriminant type

'linear' (default) | 'quadratic' | 'diaglinear' | 'diagquadratic' | 'pseudolinear' | 'pseudoquadratic'

Discriminant type, specified as the comma-separated pair consisting of `'DiscrimType'` and a character vector or string scalar in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Predictor Covariance Treatment</th>
</tr>
</thead>
</table>
| 'linear' | Regularized linear discriminant analysis (LDA) | • All classes have the same covariance matrix.
• $\hat{\Sigma}_\gamma = (1-\gamma)\hat{\Sigma} + \gamma \text{diag}(\hat{\Sigma})$.
$\hat{\Sigma}$ is the empirical, pooled covariance matrix and γ is the amount of regularization. |
<p>| 'diaglinear' | LDA | All classes have the same, diagonal covariance matrix. |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Predictor Covariance Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pseudolinear'</td>
<td>LDA</td>
<td>All classes have the same covariance matrix. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
<tr>
<td>'quadratic'</td>
<td>Quadratic discriminant analysis (QDA)</td>
<td>The covariance matrices can vary among classes.</td>
</tr>
<tr>
<td>'diagquadratic'</td>
<td>QDA</td>
<td>The covariance matrices are diagonal and can vary among classes.</td>
</tr>
<tr>
<td>'pseudoquadratic'</td>
<td>QDA</td>
<td>The covariance matrices can vary among classes. The software inverts the covariance matrix using the pseudo inverse.</td>
</tr>
</tbody>
</table>

Note To use regularization, you must specify 'linear'. To specify the amount of regularization, use the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

FillCoeffs — Coefs property flag

'on' | 'off'

Coefs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coefs property in the classifier object. This can be computationally intensive, especially when cross-validating. The default is 'on', unless you specify a cross-validation name-value pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

Gamma — Amount of regularization

scalar value in the interval [0,1]
Amount of regularization to apply when estimating the covariance matrix of the predictors, specified as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma provides finer control over the covariance matrix structure than DiscrimType.

- If you specify 0, then the software does not use regularization to adjust the covariance matrix. That is, the software estimates and uses the unrestricted, empirical covariance matrix.
- For linear discriminant analysis, if the empirical covariance matrix is singular, then the software automatically applies the minimal regularization required to invert the covariance matrix. You can display the chosen regularization amount by entering Mdl.Gamma at the command line.
- For quadratic discriminant analysis, if at least one class has an empirical covariance matrix that is singular, then the software throws an error.
- If you specify a value in the interval (0,1), then you must implement linear discriminant analysis, otherwise the software throws an error. Consequently, the software sets DiscrimType to 'linear'.
- If you specify 1, then the software uses maximum regularization for covariance matrix estimation. That is, the software restricts the covariance matrix to be diagonal. Alternatively, you can set DiscrimType to 'diagLinear' or 'diagQuadratic' for diagonal covariance matrices.

Example: 'Gamma',1

Data Types: single | double

SaveMemory — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of 'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does not store the full covariance matrix, but instead stores enough information to compute the matrix. The predict method computes the full covariance matrix for prediction, and does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the full covariance matrix in Mdl.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory', 'on'
Output Arguments

\textbf{t} — Discriminant analysis classification template
template object

Discriminant analysis classification template suitable for training ensembles or error-correcting output code (ECOC) multiclass models, returned as a template object. Pass \textit{t} to \texttt{fitcensemble} or \texttt{fitcecoc} to specify how to create the discriminant analysis classifier for the ensemble or ECOC model, respectively.

If you display \textit{t} to the Command Window, then all unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

See Also

\texttt{ClassificationDiscriminant} | \texttt{fitcecoc} | \texttt{fitcensemble} | \texttt{predict}

Introduced in R2014a
templateECOC

Error-correcting output codes learner template

Syntax

t = templateECOC()
t = templateECOC(Name,Value)

Description

t = templateECOC() returns an error-correcting output codes (ECOC) classification learner template.

If you specify a default template, then the software uses default values for all input arguments during training.

t = templateECOC(Name,Value) returns a template with additional options specified by one or more name-value pair arguments.

For example, you can specify a coding design, whether to fit posterior probabilities, or the types of binary learners.

If you display t in the Command Window, then all options appear empty ([]), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create a Default ECOC Classification Learner Template

Use templateECOC to create a default ECOC template.

t = templateECOC()
t =
Fit template for classification ECOC.

 BinaryLearners: ''
 Coding: ''
 FitPosterior: []
 Options: []
 VerbosityLevel: []
 NumConcurrent: []
 Version: 1
 Method: 'ECOC'
 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you pass t to testckfold, the software fills in the empty properties with their respective default values. For example, the software fills the BinaryLearners property with 'SVM'. For details on other default values, see fitcecoc.

t is a plan for an ECOC learner. When you create it, no computation occurs. You can pass t to testckfold to specify a plan for an ECOC classification model to statistically compare with another model.

Statistically Compare Performance of Two ECOC Classification Models

One way to select predictors or features is to train two models where one that uses a subset of the predictors that trained the other. Statistically compare the predictive performances of the models. If there is sufficient evidence that model trained on fewer predictors performs better than the model trained using more of the predictors, then you can proceed with a more efficient model.

Load Fisher's iris data set. Plot all 2-dimensional combinations of predictors.

```matlab
load fisheriris
d = size(meas,2); % Number of predictors
pairs = combnk(1:d,2);

figure;
for j = 1:size(pairs,1);
    subplot(3,2,j);
    gscatter(meas(:,pairs(j,1)),meas(:,pairs(j,2)),species);
```

32-6430
Based on the scatterplot, \textit{meas(:,3)} and \textit{meas(:,4)} seem like they separate the groups well.

Create an ECOC template. Specify to use a one-versus-all coding design.

\[
t = \text{templateECOC}('Coding','onevsall');
\]
By default, the ECOC model uses linear SVM binary learners. You can choose other supported algorithms by specifying them using the 'Learners' name-value pair argument.

Test whether an ECOC model that is just trained using predictors 3 and 4 performs at most as well as an ECOC model that is trained using all predictors. Rejecting this null hypothesis means that the ECOC model trained using predictors 3 and 4 performs better than the ECOC model trained using all predictors. Suppose C_1 represents the classification error of the ECOC model trained using predictors 3 and 4 and C_2 represents the classification error of the ECOC model trained using all predictors, then the test is:

\[
H_0: C_1 \geq C_2 \\
H_1: C_1 < C_2
\]

By default, testckfold conducts a 5-by-2 k-fold F test, which is not appropriate as a one-tailed test. Specify to conduct a 5-by-2 k-fold t test.

rng(1); % For reproducibility
[h,pValue] = testckfold(t,t,meas(:,pairs(1,:)),meas,species,...
 'Alternative','greater','Test','5x2t')

h = logical
0

pValue = 0.8940

The $h = 0$ indicates that there is not enough evidence to suggest that the model trained using predictors 3 and 4 is more accurate than the model trained using all predictors.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name, Value** arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

Example:
'Coding', 'ternarycomplete', 'FitPosterior', true, 'Learners', 'tree'
specifies a ternary complete coding design, to transform scores to posterior probabilities, and to grow classification trees for all binary learners.

Coding — Coding design

'onevsone' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' |
'onevsall' | 'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and a numeric matrix or a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Number of Binary Learners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allpairs' and 'onevsone'</td>
<td>$K(K - 1)/2$</td>
<td>For each binary learner, one class is positive, another is negative, and the software ignores the rest. This design exhausts all combinations of class pair assignments.</td>
</tr>
<tr>
<td>'binarycomplete'</td>
<td>$2^{(K-1)} - 1$</td>
<td>This design partitions the classes into all binary combinations, and does not ignore any classes. For each binary learner, all class assignments are -1 and 1 with at least one positive and negative class in the assignment.</td>
</tr>
<tr>
<td>Value</td>
<td>Number of Binary Learners</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>'denserandom'</td>
<td>Random, but approximately $10 \log_2 K$</td>
<td>For each binary learner, the software randomly assigns classes into positive or negative classes, with at least one of each type. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
<tr>
<td>'onevsall'</td>
<td>K</td>
<td>For each binary learner, one class is positive and the rest are negative. This design exhausts all combinations of positive class assignments.</td>
</tr>
<tr>
<td>'ordinal'</td>
<td>$K-1$</td>
<td>For the first binary learner, the first class is negative, and the rest positive. For the second binary learner, the first two classes are negative, the rest positive, and so on.</td>
</tr>
<tr>
<td>'sparserandom'</td>
<td>Random, but approximately $15 \log_2 K$</td>
<td>For each binary learner, the software randomly assigns classes as positive or negative with probability 0.25 for each, and ignores classes with probability 0.5. For more details, see “Random Coding Design Matrices” on page 32-1795.</td>
</tr>
</tbody>
</table>
This design partitions the classes into all ternary combinations. All class assignments are 0, -1, and 1 with at least one positive and one negative class in the assignment.

You can also specify a coding design using a custom coding matrix. The custom coding matrix is a K-by-L matrix. Each row corresponds to a class and each column corresponds to a binary learner. The class order (rows) corresponds to the order in ClassNames. Compose the matrix by following these guidelines:

- Every element of the custom coding matrix must be -1, 0, or 1, and the value must correspond to a dichotomous class assignment. This table describes the meaning of Coding(i,j), that is, the class that learner j assigns to observations in class i.

<table>
<thead>
<tr>
<th>Value</th>
<th>Number of Binary Learners</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Number of Binary Learners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ternarycomplete'</td>
<td>(\frac{3^K - 2^{(K+1)} + 1}{2})</td>
<td>This design partitions the classes into all ternary combinations. All class assignments are 0, -1, and 1 with at least one positive and one negative class in the assignment.</td>
</tr>
</tbody>
</table>

You can also specify a coding design using a custom coding matrix. The custom coding matrix is a K-by-L matrix. Each row corresponds to a class and each column corresponds to a binary learner. The class order (rows) corresponds to the order in ClassNames. Compose the matrix by following these guidelines:

- Every element of the custom coding matrix must be -1, 0, or 1, and the value must correspond to a dichotomous class assignment. This table describes the meaning of Coding(i,j), that is, the class that learner j assigns to observations in class i.

<table>
<thead>
<tr>
<th>Value</th>
<th>Dichotomous Class Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Learner j assigns observations in class i to a negative class.</td>
</tr>
<tr>
<td>0</td>
<td>Before training, learner j removes observations in class i from the data set.</td>
</tr>
<tr>
<td>1</td>
<td>Learner j assigns observations in class 1 to a positive class.</td>
</tr>
</tbody>
</table>

- Every column must contain at least one -1 or 1.
- For all column indices i,j such that i ≠ j, Coding(:,i) cannot equal Coding(:,j) and Coding(:,i) cannot equal -Coding(:,j).
- All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding Design Matrices” on page 32-1793.

Example: 'Coding','ternarycomplete'

Data Types: char | string | double | single | int16 | int32 | int64 | int8

32-6435
FitPosterior — Flag indicating whether to transform scores to posterior probabilities

false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the comma-separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If `FitPosterior` is true, then the software transforms binary-learner classification scores to posterior probabilities. You can obtain posterior probabilities by using `kfoldPredict`, `predict`, or `resubPredict`.

`fitcecoc` does not support fitting posterior probabilities if:

- The ensemble method is `AdaBoostM2`, `LPBoost`, `RUSBoost`, `RobustBoost`, or `TotalBoost`.
- The binary learners (`Learners`) are linear or kernel classification models that implement SVM. To obtain posterior probabilities for linear or kernel classification models, implement logistic regression instead.

Example: 'FitPosterior',true

Data Types: logical

Learners — Binary learner templates

'svm' (default) | 'discriminant' | 'kernel' | 'knn' | 'linear' | 'naivebayes' | 'tree' | template object | cell vector of template objects

Binary learner templates, specified as the comma-separated pair consisting of `'Learners'` and a character vector, string scalar, template object, or cell vector of template objects. Specifically, you can specify binary classifiers such as SVM, and the ensembles that use `GentleBoost`, `LogitBoost`, and `RobustBoost`, to solve multiclass problems. However, `fitcecoc` also supports multiclass models as binary classifiers.

- If `Learners` is a character vector or string scalar, then the software trains each binary learner using the default values of the specified algorithm. This table summarizes the available algorithms.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'discriminant'</td>
<td>Discriminant analysis. For default options, see <code>templateDiscriminant</code>.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>'kernel'</td>
<td>Kernel classification model. For default options, see templateKernel.</td>
</tr>
<tr>
<td>'knn'</td>
<td>k-nearest neighbors. For default options, see templateKNN.</td>
</tr>
<tr>
<td>'linear'</td>
<td>Linear classification model. For default options, see templateLinear.</td>
</tr>
<tr>
<td>'naivebayes'</td>
<td>Naive Bayes. For default options, see templateNaiveBayes.</td>
</tr>
<tr>
<td>'svm'</td>
<td>SVM. For default options, see templateSVM.</td>
</tr>
<tr>
<td>'tree'</td>
<td>Classification trees. For default options, see templateTree.</td>
</tr>
</tbody>
</table>

- If `Learners` is a template object, then each binary learner trains according to the stored options. You can create a template object using:

 - `templateDiscriminant`, for discriminant analysis.
 - `templateEnsemble`, for ensemble learning. You must at least specify the learning method (`Method`), the number of learners (`NLearn`), and the type of learner (`Learners`). You cannot use the AdaBoostM2 ensemble method for binary learning.
 - `templateKernel`, for kernel classification.
 - `templateKNN`, for k-nearest neighbors.
 - `templateLinear`, for linear classification.
 - `templateNaiveBayes`, for naive Bayes.
 - `templateSVM`, for SVM.
 - `templateTree`, for classification trees.

- If `Learners` is a cell vector of template objects, then:

 - Cell j corresponds to binary learner j (in other words, column j of the coding design matrix), and the cell vector must have length L. L is the number of columns in the coding design matrix. For details, see Coding.
 - To use one of the built-in loss functions for prediction, then all binary learners must return a score in the same range. For example, you cannot include default SVM binary learners with default naive Bayes binary learners. The former returns a
score in the range \((-\infty, \infty)\), and the latter returns a posterior probability as a score. Otherwise, you must provide a custom loss as a function handle to functions such as `predict` and `loss`.

• You cannot specify linear classification model learner templates with any other template.
• Similarly, you cannot specify kernel classification model learner templates with any other template.

By default, the software trains learners using default SVM templates.

Example: 'Learners','tree'

Output Arguments

\(t \) — ECOC classification template

template object

ECOC classification template, returned as a template object. Pass \(t \) to `testckfold` to specify how to create an ECOC classifier whose predictive performance you want to compare with another classifier.

If you display \(t \) to the Command Window, then all, unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

See Also

ClassificationECOC | `designecoc` | `fitcecoc` | `predict` | `templateDiscriminant` | `templateEnsemble` | `templateKNN` | `templateSVM` | `templateTree` | `testckfold`

Introduced in R2015a
templateEnsemble

Ensemble learning template

Syntax

t = templateEnsemble(Method,NLearn,Learners)
t = templateEnsemble(Method,NLearn,Learners,Name,Value)

Description

t = templateEnsemble(Method,NLearn,Learners) returns an ensemble learning template that specifies to use the ensemble-aggregation method Method, NLearn learning cycles, and weak learners Learners.

All other options of the template (t) specific to ensemble learning appear empty, but the software uses their corresponding default values during training.

t = templateEnsemble(Method,NLearn,Learners,Name,Value) returns an ensemble template with additional options specified by one or more name-value pair arguments.

For example, you can specify the number of predictors in each random subspace learner, learning rate for shrinkage, or the target classification error for RobustBoost.

If you display t in the Command Window, then all options appear empty ([]), except those options that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create an Ensemble Learning Template

Use templateEnsemble to specify an ensemble learning template. You must specify the ensemble method, the number of learning cycles, and the type of weak learners. For this
example, specify the AdaBoostM1 method, 100 learners, and classification tree weak learners.

t = templateEnsemble('AdaBoostM1', 100, 'tree')

t =
Fit template for classification AdaBoostM1.

 Type: 'classification'
 Method: 'AdaBoostM1'
 LearnerTemplates: 'Tree'
 NLearn: 100
 LearnRate: []

All properties of the template object are empty except for Method, Type, LearnerTemplates, and NLearn. When trained on, the software fills in the empty properties with their respective default values. For example, the software fills the LearnRate property with 1.

t is a plan for an ensemble learner, and no computation takes place when you specify it. You can pass t to fitcecoc to specify ensemble binary learners for ECOC multiclass learning.

Create an Ensemble Template for ECOC Multiclass Learning

Create an ensemble template for use in fitcecoc.

Load the arrhythmia data set.

load arrhythmia
tabulate(categorical(Y));

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
</tbody>
</table>
rng(1); % For reproducibility

Some classes have small relative frequencies in the data.

Create a template for a GentleBoost ensemble of classification trees, and specify to use 100 learners and a shrinkage of 0.1. By default, boosting grows stumps (i.e., one node having a set of leaves). Since there are classes with small frequencies, the trees must be leafy enough to be sensitive to the minority classes. Specify the minimum number of leaf node observations to 3.

tTree = templateTree('MinLeafSize',20);
t = templateEnsemble('AdaBoostM1',100,tTree,'LearnRate',0.1);

All properties of the template objects are empty except for Method and Type, and the corresponding properties of the name-value pair argument values in the function calls. When you pass t to the training function, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model. Train using the default one-versus-one coding design.

Mdl = fitcecoc(X,Y,'Learners',t);

- Mdl is a ClassificationECOC multiclass model.
- Mdl.BinaryLearners is a 78-by-1 cell array of CompactClassificationEnsemble models.
- Mdl.BinaryLearners{j}.Trained is a 100-by-1 cell array of CompactClassificationTree models, for j = 1,...,78.

You can verify that one of the binary learners contains a weak learner that isn't a stump by using view.

view(Mdl.BinaryLearners{1}.Trained{1},'Mode','graph')
Display the in-sample (resubstitution) misclassification error.

\[L = \text{resubLoss}(\text{Mdl}, 'LossFun', 'classiferror') \]

\[L = 0.0597 \]
Input Arguments

Method — Ensemble-aggregation method

'AdaBoostM1' | 'LogitBoost' | 'GentleBoost' | 'RUSBoost' | 'Subspace' | 'Bag' | 'AdaBoostM2' | 'LSBoost' | ...

Ensemble-aggregation method, specified as one of the method names in this list.

- For classification with two classes:
 - 'AdaBoostM1'
 - 'LogitBoost'
 - 'GentleBoost'
 - 'RobustBoost' (requires Optimization Toolbox)
 - 'LPBoost' (requires Optimization Toolbox)
 - 'TotalBoost' (requires Optimization Toolbox)
 - 'RUSBoost'
 - 'Subspace'
 - 'Bag'

- For classification with three or more classes:
 - 'AdaBoostM2'
 - 'LPBoost' (requires Optimization Toolbox)
 - 'TotalBoost' (requires Optimization Toolbox)
 - 'RUSBoost'
 - 'Subspace'
 - 'Bag'

- For regression:
 - 'LSBoost'
 - 'Bag'

Because you can specify 'Bag' for classification and regression problems, specify the problem type using the Type name-value pair argument.
NLearn — Number of ensemble learning cycles

positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as a positive integer or 'AllPredictorCombinations'.

- If you specify a positive integer, then, at every learning cycle, the software trains one weak learner for every template object in Learners. Consequently, the software trains NLearn*numel(Learners) learners.
- If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one learner only in Learners. With these settings, the software trains learners for all possible combinations of predictors taken NPredToSample at a time. Consequently, the software trains \(\binom{\text{size}(X,2)}{\text{NPredToSample}} \) learners.

For more details, see “Tips” on page 32-6450.

Data Types: single | double | char | string

Learners — Weak learners to use in ensemble

weak-learner name | weak-learner template object | cell vector of weak-learner template objects

Weak learners to use in the ensemble, specified as a weak-learner name, weak-learner template object, or cell array of weak-learner template objects.

<table>
<thead>
<tr>
<th>Weak Learner</th>
<th>Weak-Learner Name</th>
<th>Template Object Creation Function</th>
<th>Method Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminant analysis</td>
<td>'Discriminant'</td>
<td>templateDiscriminant</td>
<td>Recommended for 'Subspace'</td>
</tr>
<tr>
<td>k nearest neighbors</td>
<td>'KNN'</td>
<td>templateKNN</td>
<td>For 'Subspace' only</td>
</tr>
<tr>
<td>Decision tree</td>
<td>'Tree'</td>
<td>templateTree</td>
<td>All methods except 'Subspace'</td>
</tr>
</tbody>
</table>

For more details, see NLearn and “Tips” on page 32-6450.

Example: For an ensemble composed of two types of classification trees, supply \{t1 t2\}, where t1 and t2 are classification tree templates.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'LearningRate', 0.05, 'NPrint', 5 specifies to use 0.05 as the learning rate and to display a message to the command line every time it trains 5 learners.

General Ensemble Options

NPrint — Printout frequency
'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive integer or 'off'.

To track the number of weak learners or folds that the software trained so far, specify a positive integer. That is, if you specify the positive integer \(m \) and:

- Do not specify any cross-validation option of the fitting function (for example, CrossVal), then the software displays a message to the command line every time it completes training \(m \) weak learners.
- A cross-validation option, then the software displays a message to the command line every time it finishes training \(m \) folds.

If you specify 'off', then the software does not display a message when it completes training weak learners.

Tip When training an ensemble of many weak learners on a large data set, specify a positive integer for NPrint.

Example: 'NPrint', 5

Data Types: single | double | char | string

Type — Supervised learning type
'classification' | 'regression'
Supervised learning type, specified as the comma-separated pair consisting of 'Type' and 'classification' or 'regression'.

- If Method is 'bag', then the supervised learning type is ambiguous. Therefore, specify Type when bagging.
- Otherwise, the value of Method determines the supervised learning type.

Example: 'Type','classification'

Sampling Options for Boosting Methods and Bagging

FResample — Fraction of training set to resample

1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as the comma-separated pair consisting of 'FResample' and a positive scalar in (0,1].

To use 'FResample', specify 'bag' for Method or set Resample to 'on'.

Example: 'FResample',0.75

Data Types: single | double

Replace — Flag indicating to sample with replacement

'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of 'Replace' and 'off' or 'on'.

- For 'on', the software samples the training observations with replacement.
- For 'off', the software samples the training observations without replacement. If you set Resample to 'on', then the software samples training observations assuming uniform weights. If you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.

Example: 'Replace','off'

Resample — Flag indicating to resample

'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and 'off' or 'on'.
• If Method is any boosting method, then:
 • 'Resample','on' specifies to sample training observations using updated weights as the multinomial sampling probabilities.
 • 'Resample','off' specifies to reweight observations at every learning iteration. This setting is the default.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the training observations (see FResample) with or without replacement (see Replace).

AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost, and LSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1
Data Types: single | double

RUSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of a numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a popular choice. Training an ensemble using shrinkage requires more learning iterations, but often achieves better accuracy.

Example: 'LearnRate',0.1
Data Types: single | double
RatioToSmallest — Sampling proportion with respect to lowest-represented class

positive numeric scalar | numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values with length equal to the number of distinct classes in the training data.

Suppose that there are \(K \) classes in the training data and the lowest-represented class has \(m \) observations in the training data.

- If you specify the positive numeric scalar \(s \), then the software samples \(s \times m \) observations from each class, that is, it uses the same sampling proportion for each class. For more details, see “Algorithms” on page 32-6452.
- If you specify the numeric vector \([s_1, s_2, \ldots, s_K]\), then the software samples \(s_i \times m \) observations from class \(i \), \(i = 1, \ldots, K \). The elements of RatioToSmallest correspond to the order of the class names specified using the ClassNames name-value pair argument of the fitting function (see “Tips” on page 32-6450).

The default value is \(\text{ones}(K,1) \), which specifies to sample \(m \) observations from each class.

Example: 'RatioToSmallest',[2,1]

Data Types: single | double

LPBoost and TotalBoost Method Options

MarginPrecision — Margin precision to control convergence speed

0.1 (default) | numeric scalar in \([0,1]\)

Margin precision to control convergence speed, specified as the comma-separated pair consisting of 'MarginPrecision' and a numeric scalar in the interval \([0,1]\). MarginPrecision affects the number of boosting iterations required for convergence.

Tip To train an ensemble using many learners, specify a small value for MarginPrecision. For training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5

Data Types: single | double
RobustBoost Method Options

RobustErrorGoal — Target classification error
0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal' and a nonnegative numeric scalar. The upper bound on possible values depends on the values of RobustMarginSigma and RobustMaxMargin. However, the upper bound cannot exceed 1.

Tip For a particular training set, usually there is an optimal range for RobustErrorGoal. If you set it too low or too high, then the software can produce a model with poor classification accuracy. Try cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05
Data Types: single | double

RobustMarginSigma — Classification margin distribution spread
0.1 (default) | positive numeric scalar

Classification margin distribution spread over the training data, specified as the comma-separated pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying RobustMarginSigma, consult the literature on RobustBoost, for example, [19].

Example: 'RobustMarginSigma',0.5
Data Types: single | double

RobustMaxMargin — Maximal classification margin
0 (default) | nonnegative numeric scalar

Maximal classification margin in the training data, specified as the comma-separated pair consisting of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of observations in the training data having classification margins below RobustMaxMargin.

Example: 'RobustMaxMargin',1
Data Types: single | double
Random Subspace Method Options

NPredToSample — Number of predictors to sample

1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the number of predictor variables (size(X,2) or size(Tbl,2)).

Data Types: single | double

Output Arguments

t — Classification template for ensemble learning

classification template object

Classification template for ensemble learning, returned as a template object. You can pass t to, for example, fitcecoc to specify how to create the ensemble learning classifier for the ECOC model.

If you display t in the Command Window, then all, unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

Tips

- **NLearn** can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive power requires from a few hundred to a few thousand weak learners. However, you do not have to train an ensemble for that many cycles at once. You can start by growing a few dozen learners, inspect the ensemble performance and then, if necessary, train more weak learners using **resume** for classification problems, or **resume** for regression problems.

- Ensemble performance depends on the ensemble setting and the setting of the weak learners. That is, if you specify weak learners with default parameters, then the ensemble can perform. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak learners using templates, and to choose values that minimize generalization error.
• If you specify to resample using Resample, then it is good practice to resample to entire data set. That is, use the default setting of 1 for FResample.

• In classification problems (that is, Type is 'classification'):

 • If the ensemble-aggregation method (Method) is 'bag' and:
 • The misclassification cost is highly imbalanced, then, for in-bag samples, the software oversamples unique observations from the class that has a large penalty.
 • The class prior probabilities are highly skewed, the software oversamples unique observations from the class that has a large prior probability.

 For smaller sample sizes, these combinations can result in a very low relative frequency of out-of-bag observations from the class that has a large penalty or prior probability. Consequently, the estimated out-of-bag error is highly variable and it might be difficult to interpret. To avoid large estimated out-of-bag error variances, particularly for small sample sizes, set a more balanced misclassification cost matrix using the Cost name-value pair argument of the fitting function, or a less skewed prior probability vector using Prior name-value pair argument of the fitting function.

 • Because the order of some input and output arguments correspond to the distinct classes in the training data, it is good practice to specify the class order using the ClassNames name-value pair argument of the fitting function.

 • To quickly determine the class order, remove all observations from the training data that are unclassified (that is, have a missing label), obtain and display an array of all the distinct classes, and then specify the array for ClassNames. For example, suppose the response variable (Y) is a cell array of labels. This code specifies the class order in the variable classNames.

 Ycat = categorical(Y);
 classNames = categories(Ycat)

 categorical assigns <undefined> to unclassified observations and categories excludes <undefined> from its output. Therefore, if you use this code for cell arrays of labels or similar code for categorical arrays, then you do not have to remove observations with missing labels to obtain a list of the distinct classes.

 • To specify that order should be from lowest-represented label to most-represented, then quickly determine the class order (as in the previous bullet), but arrange the classes in the list by frequency before passing the list to
ClassNames. Following from the previous example, this code specifies the class order from lowest- to most-represented in classNamesLH.

```matlab
Ycat = categorical(Y);
classNames = categories(Ycat);
freq = countcats(Ycat);
 [~,idx] = sort(freq);
classNamesLH = classNames(idx);
```

Algorithms

- For details of ensemble-aggregation algorithms, see “Ensemble Algorithms” on page 18-50.
- If you specify Method to be a boosting algorithm and Learners to be decision trees, then the software grows stumps by default. A decision stump is one root node connected to two terminal, leaf nodes. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and MinParentSize name-value pair arguments using templateTree.
- The software generates in-bag samples by oversampling classes with large misclassification costs and undersampling classes with small misclassification costs. Consequently, out-of-bag samples have fewer observations from classes with large misclassification costs and more observations from classes with small misclassification costs. If you train a classification ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag observations per class might be very low. Therefore, the estimated out-of-bag error might have a large variance and might be difficult to interpret. The same phenomenon can occur for classes with large prior probabilities.
- For the RUSBoost ensemble-aggregation method (Method), the name-value pair argument RatioToSmallest specifies the sampling proportion for each class with respect to the lowest-represented class. For example, suppose that there are 2 classes in the training data, A and B. A have 100 observations and B have 10 observations. Also, suppose that the lowest-represented class has m observations in the training data.
 - If you set 'RatioToSmallest', 2, then $s \times m = 2 \times 10 = 20$. Consequently, the software trains every learner using 20 observations from class A and 20 observations from class B. If you set 'RatioToSmallest', [2 2], then you will obtain the same result.
• If you set 'RatioToSmallest',[2,1], then $s1 \times m = 2 \times 10 = 20$ and $s2 \times m = 1 \times 10 = 10$. Consequently, the software trains every learner using 20 observations from class A and 10 observations from class B.

• For ensembles of decision trees, and for dual-core systems and above, fitcensemble and fitrensemble parallelize training using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://software.intel.com/en-us/intel-tbb.

See Also
ClassificationECOC | ClassificationEnsemble | fitcecoc | fitcensemble |
fitrensemble | templateDiscriminant | templateKNN | templateTree

Topics
“Supervised Learning Workflow and Algorithms” on page 18-2
“Framework for Ensemble Learning” on page 18-40

Introduced in R2014b
templateKernel

Kernel model template

templateKernel creates a template suitable for fitting a Gaussian kernel classification model for nonlinear classification.

The template specifies the binary learner model, number of dimensions of expanded space, kernel scale, box constraint, and regularization strength, among other parameters. After creating the template, train the model by passing the template and data to fitcecoc.

Syntax

t = templateKernel()
t = templateKernel(Name,Value)

Description

t = templateKernel() returns a kernel model template.

If you create a default template, then the software uses default values for all input arguments during training.

If you display t in the Command Window, then some properties of t appear empty ([]). During training, the software uses default values for the empty properties.
Create Default Kernel Model Template

Create a default kernel model template and use it to train an error-correcting output codes (ECOC) multiclass model.

Load Fisher's iris data set.

```matlab
classreg.util.load_dataset('fisheriris');
```

Create a default kernel model template.

```matlab
t = templateKernel();
```

During training, the software fills in the empty properties with their respective default values.

Specify `t` as a binary learner for an ECOC multiclass model.

```matlab
Mdl = fitcecoc(meas,species,'Learners',t);
```

Specify `t` as a binary learner for an ECOC multiclass model.

```matlab
Mdl = classreg.learning.classif.CompactClassificationECOC
```

ResponseName: 'Y'
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
BinaryLearners: {3x1 cell}
CodingMatrix: [3x3 double]

Properties, Methods

Mdl is a CompactClassificationECOC multiclass classifier.

Specify Kernel Model Template Options

Create a kernel model template with additional options to implement logistic regression with a kernel scale parameter selected by a heuristic procedure.

t = templateKernel('Learner','logistic','KernelScale','auto')

```
t = 
Fit template for classification Kernel.

    BetaTolerance: []
    BlockSize: []
    BoxConstraint: []
    Epsilon: []
    NumExpansionDimensions: []
    GradientTolerance: []
    HessianHistorySize: []
    IterationLimit: []
    KernelScale: 'auto'
    Lambda: []
    Learner: 'logistic'
    LossFunction: []
    Stream: []
    VerbosityLevel: []
    Version: 1
    Method: 'Kernel'
    Type: 'classification'
```
Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Learner','logistic','NumExpansionDimensions', 2^15,'KernelScale','auto' specifies to implement logistic regression after mapping the predictor data to the 2^15 dimensional space using feature expansion with a kernel scale parameter selected by a heuristic procedure.

Kernel Classification Options

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'logistic'.

In the following table, \(f(x) = T(x)\beta + b \).

- \(x \) is an observation (row vector) from \(p \) predictor variables.
- \(T(\cdot) \) is a transformation of an observation (row vector) for feature expansion. \(T(x) \) maps \(x \) in \(\mathbb{R}^p \) to a high-dimensional space (\(\mathbb{R}^m \)).
- \(\beta \) is a vector of \(m \) coefficients.
- \(b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response Range</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>(y \in {-1,1}; 1) for the positive class and (-1) otherwise</td>
<td>Hinge: (\ell[y,f(x)] = \max[0,1+yf(x)])</td>
</tr>
</tbody>
</table>

32-6457
<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response Range</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Same as 'svm'</td>
<td>Deviance (logistic): [\ell[y, f(x)] = \log \left[1 + \exp \left[-yf(x) \right] \right]]</td>
</tr>
</tbody>
</table>

Example: 'Learner', 'logistic'

NumExpansionDimensions — Number of dimensions of expanded space

'auto' (default) | positive integer

Number of dimensions of the expanded space, specified as the comma-separated pair consisting of 'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the `templateKernel` function selects the number of dimensions using \[2^{\text{ceil}(\min(\log_2(p)+5,15))}\], where \(p\) is the number of predictors.

For details, see “Random Feature Expansion” on page 32-6462.

Example: 'NumExpansionDimensions', 2^15

Data Types: char | string | single | double

KernelScale — Kernel scale parameter

1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. The software obtains a random basis for random feature expansion by using the kernel scale parameter. For details, see “Random Feature Expansion” on page 32-6462.

If you specify 'auto', then the software selects an appropriate kernel scale parameter using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed by using `rng` before training.

Example: 'KernelScale', 'auto'

Data Types: char | string | single | double

BoxConstraint — Box constraint

1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar.
This argument is valid only when 'Learner' is 'svm' (default) and you do not specify a value for the regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda' because the box constraint (C) and the regularization term strength (\(\lambda\)) are related by \(C = 1/(\lambda n)\), where \(n\) is the number of observations.

Example: 'BoxConstraint',100
Data Types: single | double

Lambda — Regularization term strength

'auto' (default) | nonnegative scalar

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto' or a nonnegative scalar.

For 'auto', the value of 'Lambda' is 1/n, where \(n\) is the number of observations.

You can specify either 'BoxConstraint' or 'Lambda' because the box constraint (C) and the regularization term strength (\(\lambda\)) are related by \(C = 1/(\lambda n)\).

Example: 'Lambda',0.01
Data Types: char | string | single | double

Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e–5 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = \begin{bmatrix} \beta_t^\prime & b_t \end{bmatrix}\), that is, the vector of the coefficients and the bias term at optimization iteration \(t\). If \(\left\| \frac{B_t - B_{t-1}}{B_t} \right\|_2 < \text{BetaTolerance}\), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

Example: 'BetaTolerance',1e–6
Data Types: single | double
GradientTolerance — Absolute gradient tolerance

1e–6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.

Let ∇L_t be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If $\|\nabla L_t\|_\infty = \max |\nabla L_t| < \text{GradientTolerance}$, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

Example: 'GradientTolerance',1e-5

Data Types: single | double

IterationLimit — Maximum number of optimization iterations

positive integer

Maximum number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize name-value pair argument. Otherwise, the default value is 100.

Example: 'IterationLimit',500

Data Types: single | double

Other Kernel Classification Options

BlockSize — Maximum amount of allocated memory

4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair consisting of 'BlockSize' and a positive scalar.

If templateKernel requires more memory than the value of 'BlockSize' to hold the transformed predictor data, then the software uses a block-wise strategy. For details about the block-wise strategy, see “Algorithms” on page 32-7146.

Example: 'BlockSize',1e4
Data Types: single | double

RandomStream — Random number stream

`global stream (default) | random stream object`

Random number stream for reproducibility of data transformation, specified as the comma-separated pair consisting of 'RandomStream' and a random stream object. For details, see “Random Feature Expansion” on page 32-6462.

Use 'RandomStream' to reproduce the random basis functions that templateKernel uses to transform the predictor data to a high-dimensional space. For details, see “Managing the Global Stream” (MATLAB) and “Creating and Controlling a Random Number Stream” (MATLAB).

Example: 'RandomStream',RandStream('mlfg6331_64')

HessianHistorySize — Size of history buffer for Hessian approximation

15 (default) | positive integer

Size of the history buffer for Hessian approximation, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration, templateKernel composes the Hessian approximation by using statistics from the latest HessianHistorySize iterations.

Example: 'HessianHistorySize',10

Data Types: single | double

Verbose — Verbosity level

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1. Verbose controls the display of diagnostic information at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>templateKernel does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td>templateKernel displays the value of the objective function, gradient magnitude, and other diagnostic information.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: single | double
Output Arguments

t — Kernel model template
template object

Kernel model template, returned as a template object. To train a kernel classification model for multiclass problems, pass t to fitcecoc.

If you display t in the Command Window, then some properties appear empty ([]). The software replaces the empty properties with their corresponding default values during training.

Definitions

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel classification algorithm to use for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into two classes after mapping features into a high-dimensional space. Nonlinear features that are not linearly separable in a low-dimensional space can be separable in the expanded high-dimensional space. All the calculations for hyperplane classification use only dot products. You can obtain a nonlinear classification model by replacing the dot product \(x_1 x_2' \) with the nonlinear kernel function \(G(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \), where \(x_i \) is the \(i \)th observation (row vector) and \(\phi(x_i) \) is a transformation that maps \(x_i \) to a high-dimensional space (called the “kernel trick”). However, evaluating \(G(x_1, x_2) \) (Gram matrix) for each pair of observations is computationally expensive for a large data set (large \(n \)).

The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

\[
G(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle = T(x_1)T(x_2)',
\]
where $T(x)$ maps x in \mathbb{R}^p to a high-dimensional space (\mathbb{R}^m). The Random Kitchen Sink scheme uses the random transformation

$$T(x) = m^{-1/2} \exp(iZx'),$$

where $Z \in \mathbb{R}^{mxp}$ is a sample drawn from $N(0, \sigma^{-2})$ and σ^2 is a kernel scale. This scheme requires $O(mp)$ computation and storage. The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces the computation cost to $O(m\log p)$ and reduces storage to $O(m)$.

The templateKernel function uses the Fastfood scheme for random feature expansion and uses linear classification to train a Gaussian kernel classification model. Unlike solvers in the templateSVM function, which require computation of the n-by-n Gram matrix, the solver in templateKernel only needs to form a matrix of size n-by-m, with m typically much less than n for big data.

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating observations, and aids in preventing overfitting (regularization). Increasing the box constraint can lead to longer training times.

The box constraint (C) and the regularization term strength (λ) are related by $C = 1/(\lambda n)$, where n is the number of observations.

Algorithms

templateKernel minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge (L_2) regularization. To find the type of LBFGS solver used for training, type `FitInfo.Solver` in the Command Window.

- 'LBFGS-fast' — LBFGS solver.
- 'LBFGS-blockwise' — LBFGS solver with a block-wise strategy. If templateKernel requires more memory than the value of BlockSize to hold the transformed predictor data, then it uses a block-wise strategy.
• 'LBFGS-tall' — LBFGS solver with a block-wise strategy for tall arrays.

When templateKernel uses a block-wise strategy, templateKernel implements LBFGS by distributing the calculation of the loss and gradient among different parts of the data at each iteration. Also, templateKernel refines the initial estimates of the linear coefficients and the bias term by fitting the model locally to parts of the data and combining the coefficients by averaging. If you specify 'Verbose',1, then templateKernel displays diagnostic information for each data pass and stores the information in the History field of FitInfo.

When templateKernel does not use a block-wise strategy, the initial estimates are zeros. If you specify 'Verbose',1, then templateKernel displays diagnostic information for each iteration and stores the information in the History field of FitInfo.

References

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations when you train a model by passing a kernel model template and tall arrays to fitcecoc:
• The default values for these name-value pair arguments are different when you work with tall arrays.

 • 'Verbose' — Default value is 1.
 • 'BetaTolerance' — Default value is relaxed to 1e–3.
 • 'GradientTolerance' — Default value is relaxed to 1e–5.
 • 'IterationLimit' — Default value is relaxed to 20.

• If 'KernelScale' is 'auto', then templateKernel uses the random stream controlled by tallrng for subsampling. For reproducibility, you must set a random number seed for both the global stream and the random stream controlled by tallrng.

• If 'Lambda' is 'auto', then templateKernel might take an extra pass through the data to calculate the number of observations.

• templateKernel uses a block-wise strategy. For details, see “Algorithms” on page 32-6463.

For more information, see “Tall Arrays” (MATLAB).

See Also
fitcecoc | fitckernel

Introduced in R2018b
templateKNN

k-nearest neighbor classifier template

Syntax

t = templateKNN()
t = templateKNN(Name,Value)

Description

t = templateKNN() returns a k-nearest neighbor (KNN) learner template suitable for training ensembles or error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during training.

Specify t as a learner in fitcensemble or fitcecoc.

$t = templateKNN(Name,Value)$ creates a template with additional options specified by one or more name-value pair arguments.

For example, you can specify the nearest neighbor search method, the number of nearest neighbors to find, or the distance metric.

If you display t in the Command Window, then all options appear empty ([]), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create a k-Nearest Neighbor Template for Ensemble

Create a nondefault k-nearest neighbor template for use in fitcensemble.
Load Fisher's iris data set.

```matlab
load fisheriris
```

Create a template for a 5-nearest neighbor search, and specify to standardize the predictors.

```matlab
t = templateKNN('NumNeighbors',5,'Standardize',1)
t =
```

```matlab
Fit template for classification KNN.
```

```matlab
    NumNeighbors: 5
    NSMethod: '
    Distance: '
    BucketSize: '
    IncludeTies: []
    DistanceWeight: []
    BreakTies: []
    Exponent: []
    Cov: []
    Scale: []
    StandardizeData: 1
    Version: 1
    Method: 'KNN'
    Type: 'classification'
```

All properties of the template object are empty except for `NumNeighbors`, `Method`, `StandardizeData`, and `Type`. When you specify `t` as a learner, the software fills in the empty properties with their respective default values.

Specify `t` as a weak learner for a classification ensemble.

```matlab
Mdl = fitcensemble(meas,species,'Method','Subspace','Learners',t);
```

Display the in-sample (resubstitution) misclassification error.

```matlab
L = resubLoss(Mdl)
```

```matlab
L = 0.0600
```
Create a \textit{k}-Nearest Neighbor Template for ECOC Multiclass Learning

Create a nondefault \textit{k}-nearest neighbor template for use in \texttt{fitcecoc}.

Load Fisher’s iris data set.

\begin{verbatim}
load fisheriris
\end{verbatim}

Create a template for a 5-nearest neighbor search, and specify to standardize the predictors.

\begin{verbatim}
t = templateKNN('NumNeighbors',5,'Standardize',1)
\end{verbatim}

\begin{verbatim}
t = fit template for classification KNN.
\end{verbatim}

\begin{verbatim}
NumNeighbors: 5
NSMethod: '
Distance: '
BucketSize: '
IncludeTies: []
DistanceWeight: []
BreakTies: []
Exponent: []
Cov: []
Scale: []
StandardizeData: 1
Version: 1
Method: 'KNN'
Type: 'classification'
\end{verbatim}

All properties of the template object are empty except for \texttt{NumNeighbors}, \texttt{Method}, \texttt{StandardizeData}, and \texttt{Type}. When you specify \texttt{t} as a learner, the software fills in the empty properties with their respective default values.

Specify \texttt{t} as a binary learner for an ECOC multiclass model.

\begin{verbatim}
Mdl = fitcecoc(meas,species,'Learners',t);
\end{verbatim}

By default, the software trains \texttt{Mdl} using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

\begin{verbatim}
L = resubLoss(Mdl,'LossFun','classiferror')
\end{verbatim}
Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'NumNeighbors',4,'Distance','minkowski' specifies a 4-nearest neighbor classifier template using the Minkowski distance measure.

BreakTies — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the K nearest neighbors.

Example: 'BreakTies','nearest'

BucketSize — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-separated pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only when NSMethod is 'kdtree'.

Example: 'BucketSize',40

Data Types: single | double
Cov — Covariance matrix

`nancov(X)` (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite matrix of scalar values representing the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: `single` | `double`

Distance — Distance metric

'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | 'hamming' | function handle | ...

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a valid distance metric name or function handle. The allowable distance metric names depend on your choice of a neighbor-searcher method (see NSMethod).

<table>
<thead>
<tr>
<th>NSMethod</th>
<th>Distance Metric Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>exhaustive</td>
<td>Any distance metric of ExhaustiveSearcher</td>
</tr>
<tr>
<td>kdtree</td>
<td>'cityblock', 'chebychev', 'euclidean', or 'minkowski'</td>
</tr>
</tbody>
</table>

This table includes valid distance metrics of ExhaustiveSearcher.

<table>
<thead>
<tr>
<th>Distance Metric Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'cityblock'</td>
<td>City block distance.</td>
</tr>
<tr>
<td>'chebychev'</td>
<td>Chebychev distance (maximum coordinate difference).</td>
</tr>
<tr>
<td>'correlation'</td>
<td>One minus the sample linear correlation between</td>
</tr>
<tr>
<td></td>
<td>observations (treated as sequences of values).</td>
</tr>
<tr>
<td>'cosine'</td>
<td>One minus the cosine of the included angle between</td>
</tr>
<tr>
<td></td>
<td>observations (treated as vectors).</td>
</tr>
<tr>
<td>'euclidean'</td>
<td>Euclidean distance.</td>
</tr>
<tr>
<td>'hamming'</td>
<td>Hamming distance, percentage of coordinates that differ.</td>
</tr>
<tr>
<td>'jaccard'</td>
<td>One minus the Jaccard coefficient, the percentage of</td>
</tr>
<tr>
<td></td>
<td>nonzero coordinates that differ.</td>
</tr>
</tbody>
</table>
Distance Metric Names

<table>
<thead>
<tr>
<th>Distance Metric Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mahalanobis'</td>
<td>Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is the sample covariance matrix of X, as computed by <code>nancov(X)</code>. To specify a different value for C, use the 'Cov' name-value pair argument.</td>
</tr>
<tr>
<td>'minkowski'</td>
<td>Minkowski distance. The default exponent is 2. To specify a different exponent, use the 'Exponent' name-value pair argument.</td>
</tr>
<tr>
<td>'seuclidean'</td>
<td>Standardized Euclidean distance. Each coordinate difference between X and a query point is scaled, meaning divided by a scale value S. The default value of S is the standard deviation computed from X, $S = nanstd(X)$. To specify another value for S, use the Scale name-value pair argument.</td>
</tr>
<tr>
<td>'spearman'</td>
<td>One minus the sample Spearman's rank correlation between observations (treated as sequences of values).</td>
</tr>
<tr>
<td>@distfun</td>
<td>Distance function handle. <code>distfun</code> has the form</td>
</tr>
</tbody>
</table>

```matlab
function D2 = distfun(ZI,ZJ)
% calculation of distance
...
```

where

- ZI is a 1-by-N vector containing one row of X or Y.
- ZJ is an $M2$-by-N matrix containing multiple rows of X or Y.
- $D2$ is an $M2$-by-1 vector of distances, and $D2(k)$ is the distance between observations ZI and $ZJ(k,:)$. |

If you specify `CategoricalPredictors` as 'all', then the default distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 18-16.

Example: 'Distance','minkowski'

Data Types: char | string | function_handle
DistanceWeight — Distance weighting function

'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of 'DistanceWeight' and either a function handle or one of the values in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'equal'</td>
<td>No weighting</td>
</tr>
<tr>
<td>'inverse'</td>
<td>Weight is 1/distance</td>
</tr>
<tr>
<td>'squaredinverse'</td>
<td>Weight is 1/distance²</td>
</tr>
</tbody>
</table>
| @fcn | fcn is a function that accepts a matrix of nonnegative distances, and returns a matrix the same size containing nonnegative distance weights. For example, 'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight', 'inverse'
Data Types: char | string | function_handle

Exponent — Minkowski distance exponent

2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.

Example: 'Exponent', 3
Data Types: single | double

IncludeTies — Tie inclusion flag

false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical value indicating whether `predict` includes all the neighbors whose distance values are equal to the Kth smallest distance. If `IncludeTies` is true, `predict` includes all these neighbors. Otherwise, `predict` uses exactly K neighbors.

Example: 'IncludeTies', true
Data Types: logical
NSMethod — Nearest neighbor search method

'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod' and 'kdtree' or 'exhaustive'.

- 'kdtree' — Creates and uses a kd-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
 - 'euclidean'
 - 'cityblock'
 - 'minkowski'
 - 'chebychev'
- 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point \(x_{\text{new}} \), the software computes the distance values from all points in \(X \) to \(x_{\text{new}} \) to find nearest neighbors.

The default is 'kdtree' when \(X \) has 10 or fewer columns, \(X \) is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

NumNeighbors — Number of nearest neighbors to find

1 (default) | positive integer value

Number of nearest neighbors in \(X \) to find for classifying each point when predicting, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer value.

Example: 'NumNeighbors',3

Data Types: single | double

Scale — Distance scale

nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing nonnegative scalar values with length equal to the number of columns in \(X \). Each coordinate difference between \(X \) and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

32-6473
Data Types: single | double

Standardize — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If you set 'Standardize', true, then the software centers and scales each column of the predictor data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all predictors are categorical.

You cannot simultaneously specify 'Standardize', 1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.

Example: 'Standardize', true

Data Types: logical

Output Arguments

t — kNN classification template
template object

kNN classification template suitable for training ensembles or error-correcting output code (ECOC) multiclass models, returned as a template object. Pass t to fitensemble or fitcecoc to specify how to create the KNN classifier for the ensemble or ECOC model, respectively.

If you display t to the Command Window, then all, unspecified options appear empty ({}). However, the software replaces empty options with their corresponding default values during training.

See Also
ClassificationKNN | ExhaustiveSearcher | fitcecoc | fitensemble
Topics
“Random Subspace Classification” on page 18-133

Introduced in R2014a
templateLinear

Linear classification learner template

templateLinear creates a template suitable for fitting a linear classification model to high-dimensional data for multiclass problems.

The template specifies the binary learner model, regularization type and strength, and solver, among other things. After creating the template, train the model by passing the template and data to fitcecoc.

Syntax

t = templateLinear()
t = templateLinear(Name,Value)

Description

t = templateLinear() returns a linear classification learner template.

If you specify a default template, then the software uses default values for all input arguments during training.

If you specify a template with additional options specified by one or more name-value pair arguments. For example, you can specify to implement logistic regression, specify the regularization type or strength, or specify the solver to use for objective-function minimization.

If you display t in the Command Window, then all options appear empty ([]) except options that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples
Train Multiclass Linear Classification Model

Train an ECOC model composed of multiple binary, linear classification models.

Load the NLP data set.

```matlab
load nlpdata
```

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more than two classes in the data.

Create a default linear-classification-model template.

```matlab
t = templateLinear();
```

To adjust the default values, see the “Name-Value Pair Arguments” on page 32-6478 on `templateLinear` page.

Train an ECOC model composed of multiple binary, linear classification models that can identify the product given the frequency distribution of words on a documentation web page. For faster training time, transpose the predictor data, and specify that observations correspond to columns.

```matlab
X = X';
rng(1); % For reproducibility
Mdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns')
```

```matlab
Mdl = 
    classreg.learning.classif.CompactClassificationECOC
    ResponseName: 'Y'
    ClassNames: [1x13 categorical]
    ScoreTransform: 'none'
    BinaryLearners: {78x1 cell}
    CodingMatrix: [13x78 double]
```

Alternatively, you can train an ECOC model composed of default linear classification models using 'Learners','Linear'.

To conserve memory, `fitcecoc` returns trained ECOC models composed of linear classification learners in `CompactClassificationECOC` model objects.
Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Learner','logistic','Regularization','lasso','CrossVal','on' specifies to implement logistic regression with a lasso penalty, and to implement 10-fold cross-validation.

Linear Classification Options

Lambda — Regularization term strength

'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto', a nonnegative scalar, or a vector of nonnegative values.

- For 'auto', Lambda = 1/n.
 - If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the number of in-fold observations.
 - Otherwise, n is the training sample size.
- For a vector of nonnegative values, the software sequentially optimizes the objective function for each distinct value in Lambda in ascending order.
 - If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', then the software does not use the previous coefficient estimates as a warm start on page 32-1916 for the next optimization iteration. Otherwise, the software uses warm starts.
 - If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when the software optimizes using subsequent values in Lambda.

Returns coefficient estimates for all optimization iterations.

Example: 'Lambda',10.^(-(10:-2:2))
Data Types: char | string | double | single

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'logistic'.

In this table, \(f(x) = x\beta + b \).

- \(\beta \) is a vector of \(p \) coefficients.
- \(x \) is an observation from \(p \) predictor variables.
- \(b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response Range</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>(y \in {-1,1}; 1) for the positive class and -1 otherwise</td>
<td>Hinge: (\ell[y, f(x)] = \max[0,1 - yf(x)])</td>
</tr>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Same as 'svm'</td>
<td>Deviance (logistic): (\ell[y, f(x)] = \log(1 + \exp[-yf(x)]))</td>
</tr>
</tbody>
</table>

Example: 'Learner', 'logistic'

Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization' and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss function (see Learner) and the regularization term in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso'</td>
<td>Lasso (L1) penalty: (\lambda \sum_{j=1}^{p}</td>
</tr>
</tbody>
</table>
To specify the regularization term strength, which is λ in the expressions, use Lambda.

The software excludes the bias term (β_0) from the regularization penalty.

If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the default is 'ridge'.

Tip

- For predictor variable selection, specify 'lasso'.
- For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'

Solver — Objective function minimization technique

'sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character vectors

Objective function minimization technique, specified as the comma-separated pair consisting of 'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors with values from this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sgd'</td>
<td>Stochastic gradient descent (SGD) [5][3]</td>
<td></td>
</tr>
<tr>
<td>'asgd'</td>
<td>Average stochastic gradient descent (ASGD) [8]</td>
<td></td>
</tr>
<tr>
<td>'dual'</td>
<td>Dual SGD for SVM [2][7]</td>
<td>Regularization must be 'ridge' and Learner must be 'svm'.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Restrictions</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>'bfgs'</td>
<td>Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (BFGS) [4]</td>
<td>Inefficient if X is very high-dimensional.</td>
</tr>
<tr>
<td>'lbfgs'</td>
<td>Limited-memory BFGS (LBFGS) [4]</td>
<td>Regularization must be 'ridge'.</td>
</tr>
<tr>
<td>'sparsa'</td>
<td>Sparse Reconstruction by Separable Approximation (SpaRSA) [6]</td>
<td>Regularization must be 'lasso'.</td>
</tr>
</tbody>
</table>

If you specify:

- A ridge penalty (see Regularization) and the predictor data set contains 100 or fewer predictor variables, then the default solver is 'bfgs'.
- An SVM model (see Learner), a ridge penalty, and the predictor data set contains more than 100 predictor variables, then the default solver is 'dual'.
- A lasso penalty and the predictor data set contains 100 or fewer predictor variables, then the default solver is 'sparsa'.

Otherwise, the default solver is 'sgd'.

For more details on which solver to choose, see “Tips” on page 32-6492.

Example: 'Solver',{'sgd','lbfgs'}

Beta — Initial linear coefficient estimates

Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta' and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor variables in X and L is the number of regularization-strength values (for more details, see Lambda).

- If you specify a p-dimensional vector, then the software optimizes the objective function L times using this process.
 1. The software optimizes using Beta as the initial value and the minimum value of Lambda as the regularization strength.
The software optimizes again using the resulting estimate from the previous optimization as a warm start on page 32-1916, and the next smallest value in Lambda as the regularization strength.

The software implements step 2 until it exhausts all values in Lambda.

- If you specify a p-by-L matrix, then the software optimizes the objective function L times. At iteration j, the software uses $\text{Beta}(:,j)$ as the initial value and, after it sorts Lambda in ascending order, uses $\lambda(j)$ as the regularization strength.

If you set 'Solver','dual', then the software ignores Beta.

Data Types: single | double

Bias — Initial intercept estimate

numeric scalar | numeric vector

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values (for more details, see Lambda).

- If you specify a scalar, then the software optimizes the objective function L times using this process.

 1 The software optimizes using Bias as the initial value and the minimum value of Lambda as the regularization strength.

 2 The software implements step 2 until it exhausts all values in Lambda.

 3 The software optimizes the objective function L times. At iteration j, the software uses $\text{Bias}(j)$ as the initial value and, after it sorts Lambda in ascending order, uses $\lambda(j)$ as the regularization strength.

- By default:
 - If Learner is 'logistic', then let g_j be 1 if $Y(j)$ is the positive class, and -1 otherwise. Bias is the weighted average of the g for training or, for cross-validation, in-fold observations.
 - If Learner is 'svm', then Bias is 0.

Data Types: single | double
FitBias — Linear model intercept inclusion flag

true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of 'FitBias' and true or false.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>The software includes the bias term b in the linear model, and then estimates it.</td>
</tr>
<tr>
<td>false</td>
<td>The software sets $b = 0$ during estimation.</td>
</tr>
</tbody>
</table>

Example: 'FitBias',false

Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization

false (default) | true

Flag to fit the linear model intercept after optimization, specified as the comma-separated pair consisting of 'PostFitBias' and true or false.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>The software estimates the bias term b and the coefficients β during optimization.</td>
</tr>
</tbody>
</table>
| true | To estimate b, the software:
1. Estimates β and b using the model
2. Estimates classification scores
3. Refits b by placing the threshold on the classification scores that attains maximum accuracy |

If you specify true, then FitBias must be true.

Example: 'PostFitBias',true

Data Types: logical

Verbose — Verbosity level

0 (default) | 1
Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1. Verbose controls the display of diagnostic information at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>templateLinear</code> does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td><code>templateLinear</code> periodically displays the value of the objective function, gradient magnitude, and other diagnostic information.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: `single` | `double`

SGD and ASGD Solver Options

BatchSize — Mini-batch size

positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive integer. At each iteration, the software estimates the gradient using BatchSize observations from the training data.

- If the predictor data is a numeric matrix, then the default value is 10.
- If the predictor data is a sparse matrix, then the default value is max([10, ceil(sqrt(ff))]), where ff = numel(X)/nnz(X), that is, the fullness factor of X.

Example: 'BatchSize',100

Data Types: `single` | `double`

LearnRate — Learning rate

positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive scalar. LearnRate specifies how many steps to take per iteration. At each iteration, the gradient specifies the direction and magnitude of each step.

- If Regularization is 'ridge', then LearnRate specifies the initial learning rate \(y_0 \). The software determines the learning rate for iteration \(t \), \(y_t \), using
\[\gamma_t = \frac{\gamma_0}{(1 + \lambda \gamma_t)^c}. \]

- \(\lambda \) is the value of Lambda.
- If Solver is 'sgd', then \(c = 1 \).
- If Solver is 'asgd', then \(c = 0.75 [7] \).
- If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is \(\frac{1}{\sqrt{1+\max((\sum(X.^2, obsDim)))}} \), where obsDim is 1 if the observations compose the columns of the predictor data \(X \), and 2 otherwise.

Example: 'LearnRate', 0.01
Data Types: single | double

OptimizeLearnRate — Flag to decrease learning rate

true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, over-stepping the minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or false.

If OptimizeLearnRate is 'true', then:

1. For the few optimization iterations, the software starts optimization using LearnRate as the learning rate.
2. If the value of the objective function increases, then the software restarts and uses half of the current value of the learning rate.
3. The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate', true
Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs

10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair consisting of 'TruncationPeriod' and a positive integer.
After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after processing \(k = \text{TruncationPeriod} \) mini-batches, the software truncates the estimated coefficient \(j \) using

\[
\hat{\beta}_j^+ = \begin{cases}
\hat{\beta}_j - u_t & \text{if } \hat{\beta}_j > u_t, \\
0 & \text{if } |\hat{\beta}_j| \leq u_t, \\
\hat{\beta}_j + u_t & \text{if } \hat{\beta}_j < -u_t.
\end{cases}
\]

- For SGD, \(\hat{\beta}_j \) is the estimate of coefficient \(j \) after processing \(k \) mini-batches. \(u_t = k \gamma_t \lambda. \) \(\gamma_t \) is the learning rate at iteration \(t. \) \(\lambda \) is the value of \(\text{Lambda}. \)
- For ASGD, \(\hat{\beta}_j \) is the averaged estimate coefficient \(j \) after processing \(k \) mini-batches. \(u_t = k \lambda. \)

If Regularization is 'ridge', then the software ignores TruncationPeriod.

Example: 'TruncationPeriod',100

Data Types: single | double

SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches
positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of 'BatchLimit' and a positive integer. When the software processes BatchLimit batches, it terminates optimization.

- By default:
 - The software passes through the data PassLimit times.
 - If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the 'BatchSize' name-value pair argument.
- If you specify 'BatchLimit' and 'PassLimit', then the software chooses the argument that results in processing the fewest observations.
• If you specify 'BatchLimit' but not 'PassLimit', then the software processes enough batches to complete up to one entire pass through the data.

Example: 'BatchLimit',100

Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term

1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let $B_t = [\beta_t' ~ b_t]$, that is, the vector of the coefficients and the bias term at optimization iteration t. If $\left\| \frac{B_t - B_{t-1}}{B_t} \right\|_2 < \text{BetaTolerance}$, then optimization terminates.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6

Data Types: single | double

NumCheckConvergence — Number of batches to process before next convergence check

positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.

To specify the batch size, see BatchSize.

The software checks for convergence about 10 times per pass through the entire data set by default.

Example: 'NumCheckConvergence',100

Data Types: single | double

PassLimit — Maximal number of passes

1 (default) | positive integer
Maximal number of passes through the data, specified as the comma-separated pair consisting of 'PassLimit' and a positive integer.

The software processes all observations when it completes one pass through the data.

When the software passes through the data PassLimit times, it terminates optimization.

If you specify 'BatchLimit' and PassLimit, then the software chooses the argument that results in processing the fewest observations.

Example: 'PassLimit',5
Data Types: single | double

Dual SGD Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = [\beta_t' \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\frac{||B_t - B_{t-1}||_2}{B_t} < \text{BetaTolerance} \), then optimization terminates.

If you also specify DeltaGradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: 'BetaTolerance',1e-6
Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance
1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001 violators, specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.
• If the magnitude of the KKT violators is less than \(\text{DeltaGradientTolerance} \), then the software terminates optimization.

• If the software converges for the last solver specified in \text{Solver}, then optimization terminates. Otherwise, the software uses the next solver specified in \text{Solver}.

Example: '\text{DeltaGapTolerance}',1e-2

Data Types: \text{double} | \text{single}

\text{NumCheckConvergence} — Number of passes through entire data set to process before next convergence check

\text{5} (default) | \text{positive integer}

Number of passes through entire data set to process before next convergence check, specified as the comma-separated pair consisting of \text{NumCheckConvergence} and a positive integer.

Example: '\text{NumCheckConvergence}',100

Data Types: \text{single} | \text{double}

\text{PassLimit} — Maximal number of passes

\text{10} (default) | \text{positive integer}

Maximal number of passes through the data, specified as the comma-separated pair consisting of \text{PassLimit} and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data \text{PassLimit} times, it terminates optimization.

Example: '\text{PassLimit}',5

Data Types: \text{single} | \text{double}

\text{BFGS, LBFGS, and SpaRSA Convergence Controls}

\text{BetaTolerance} — Relative tolerance on linear coefficients and bias term

\text{1e-4} (default) | \text{nonnegative scalar}

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of \text{BetaTolerance} and a nonnegative scalar.
Let $B_t = \begin{bmatrix} \beta_t' & b_t \end{bmatrix}$, that is, the vector of the coefficients and the bias term at optimization iteration t. If $\left\| \frac{B_t - B_{t-1}}{B_t} \right\|_2 < \text{BetaTolerance}$, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: ‘BetaTolerance’,1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance

1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of ‘GradientTolerance’ and a nonnegative scalar.

Let ∇L_t be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If $\|\nabla L_t\|_\infty = \max |\nabla L_t| < \text{GradientTolerance}$, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates. Otherwise, the software uses the next solver specified in Solver.

Example: ‘GradientTolerance’,1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation

15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of ‘HessianHistorySize’ and a positive integer. That is, at each iteration,
the software composes the Hessian using statistics from the latest
HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.
Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximal number of optimization iterations
1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer. IterationLimit applies to
these values of Solver: 'bfgs', 'lbfgs', and 'sparsa'.
Example: 'IterationLimit',500
Data Types: single | double

Output Arguments

t — Linear classification model learner template

template object

Linear classification model learner template, returned as a template object. To train a
linear classification model using high-dimensional data for multiclass problems, pass `t` to
`fitcecoc`.

If you display `t` to the Command Window, then all, unspecified options appear empty ([]).
However, the software replaces empty options with their corresponding default values
during training.

Definitions

Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an
optimization routine for quicker convergence.
Tips

- It is a best practice to orient your predictor matrix so that observations correspond to columns and to specify 'ObservationsIn','columns'. As a result, you can experience a significant reduction in optimization-execution time.
- For better optimization accuracy if the predictor data is high-dimensional and Regularization is 'ridge', set any of these combinations for Solver:
 - 'sgd'
 - 'asgd'
 - 'dual' if Learner is 'svm'
 - {'sgd','lbfgs'}
 - {'asgd','lbfgs'}
 - {'dual','lbfgs'} if Learner is 'svm'

Other combinations can result in poor optimization accuracy.
- For better optimization accuracy if the predictor data is moderate- through low-dimensional and Regularization is 'ridge', set Solver to 'bfgs'.
- If Regularization is 'lasso', set any of these combinations for Solver:
 - 'sgd'
 - 'asgd'
 - 'sparsa'
 - {'sgd','sparsa'}
 - {'asgd','sparsa'}

- When choosing between SGD and ASGD, consider that:
 - SGD takes less time per iteration, but requires more iterations to converge.
 - ASGD requires fewer iterations to converge, but takes more time per iteration.
- If the predictor data has few observations, but many predictor variables, then:
 - Specify 'PostFitBias',true.
 - For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for example, 5 or 10. This setting often results in better accuracy.
 - For SGD and ASGD solvers, BatchSize affects the rate of convergence.
• If `BatchSize` is too small, then the software achieves the minimum in many iterations, but computes the gradient per iteration quickly.
• If `BatchSize` is too large, then the software achieves the minimum in fewer iterations, but computes the gradient per iteration slowly.
• Large learning rate (see `LearnRate`) speed-up convergence to the minimum, but can lead to divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the minimum, but can lead to slow termination.
• If `Regularization` is 'lasso', then experiment with various values of `TruncationPeriod`. For example, set `TruncationPeriod` to 1, 10, and then 100.
• For efficiency, the software does not standardize predictor data. To standardize the predictor data (`X`), enter

```matlab
X = bsxfun(@rdivide,bsxfun(@minus,X,mean(X,2)),std(X,0,2));
```

The code requires that you orient the predictors and observations as the rows and columns of `X`, respectively. Also, for memory-usage economy, the code replaces the original predictor data the standardized data.

References

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations when you train a model by passing a linear model template and tall arrays to `fitcecoc`:

- The default values for these name-value pair arguments are different when you work with tall arrays.
 - 'Lambda' — Can be 'auto' (default) or a scalar
 - 'Regularization' — Supports only 'ridge'
 - 'Solver' — Supports only 'lbfgs'
 - 'FitBias' — Supports only true
 - 'Verbose' — Default value is 1
 - 'BetaTolerance' — Default value is relaxed to 1e–3
 - 'GradientTolerance' — Default value is relaxed to 1e–3
 - 'IterationLimit' — Default value is relaxed to 20

- When `fitcecoc` uses a `templateLinear` object with tall arrays, the only available solver is LBFGS. The software implements LBFGS by distributing the calculation of the loss and gradient among different parts of the tall array at each iteration. If you do not specify initial values for Beta and Bias, the software refines the initial estimates of the parameters by fitting the model locally to parts of the data and combining the coefficients by averaging.

For more information, see “Tall Arrays” (MATLAB).

See Also

`fitcecoc` | `fitclinear` | `fitrlinear`
Introduced in R2016a
templateNaiveBayes

Naive Bayes classifier template

Syntax

t = templateNaiveBayes()
t = templateNaiveBayes(Name,Value)

Description

t = templateNaiveBayes() returns a naive Bayes on page 32-6502 template suitable for training error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during training.

Specify t as a learner in fitcecoc.

t = templateNaiveBayes(Name,Value) returns a template with additional options specified by one or more name-value pair arguments. All properties of t are empty, except those you specify using Name,Value pair arguments.

For example, you can specify distributions for the predictors.

If you display t in the Command Window, then all options appear empty ([]), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create a Default Naive Bayes Template

Use templateNaiveBayes to specify a default naive Bayes template.


```matlab

t = templateNaiveBayes()

```

Fit template for classification NaiveBayes.

```
DistributionNames: [1x0 double]

Kernel: []
Support: []
Width: []
Version: 1
Method: 'NaiveBayes'
Type: 'classification'
```

All properties of the template object are empty except for Method and Type. When you pass `t` to the training function, the software fills in the empty properties with their respective default values. For example, the software fills the DistributionNames property with a 1-by-`D` cell array of character vectors with 'normal' in each cell, where `D` is the number of predictors. For details on other default values, see `fitcnb`.

`t` is a plan for a naive Bayes learner, and no computation occurs when you specify it. You can pass `t` to `fitcecoc` to specify naive Bayes binary learners for ECOC multiclass learning.

Create a Naive Bayes Template for ECOC Multiclass Learning

Create a nondefault naive Bayes template for use in `fitcecoc`.

Load Fisher's iris data set.

```matlab
load fisheriris
```

Create a template for naive Bayes binary classifiers, and specify kernel distributions for all predictors.

```matlab
t = templateNaiveBayes('DistributionNames','kernel')
```

```
t = Fit template for classification NaiveBayes.

DistributionNames: 'kernel'
  Kernel: []
```

32-6497
All properties of the template object are empty except for `DistributionNames`, `Method`, and `Type`. When you pass `t` to the training function, the software fills in the empty properties with their respective default values.

Specify `t` as a binary learner for an ECOC multiclass model.

```matlab
Mdl = fitcecoc(meas,species,'Learners',t);
```

By default, the software trains `Mdl` using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

```matlab
L = resubLoss(Mdl,'LossFun','classiferror')
```

$L = 0.0333$

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments.

- `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes.
- You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'DistributionNames','mn'` specifies to treat all predictors as token counts for a multinomial model.

DistributionNames — Data distributions

- `'kernel'` | `'mn'` | `'mvmn'` | `'normal'` | `string array` | `cell array of character vectors`

Data distributions `fitcnb` uses to model the data, specified as the comma-separated pair consisting of `'DistributionNames'` and a character vector or string scalar, a string array, or a cell array of character vectors with values from this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'kernel'</td>
<td>Kernel smoothing density estimate.</td>
</tr>
<tr>
<td>'mn'</td>
<td>Multinomial distribution. If you specify mn, then all features are components of a multinomial distribution. Therefore, you cannot include 'mn' as an element of a string array or a cell array of character vectors. For details, see “Algorithms” on page 32-1957.</td>
</tr>
<tr>
<td>'mvmn'</td>
<td>Multivariate multinomial distribution. For details, see “Algorithms” on page 32-1957.</td>
</tr>
<tr>
<td>'normal'</td>
<td>Normal (Gaussian) distribution.</td>
</tr>
</tbody>
</table>

If you specify a character vector or string scalar, then the software models all the features using that distribution. If you specify a 1-by-P string array or cell array of character vectors, then the software models feature j using the distribution in element j of the array.

By default, the software sets all predictors specified as categorical predictors (using the CategoricalPredictors name-value pair argument) to 'mvmn'. Otherwise, the default distribution is 'normal'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify Kernel, Support, or Width.

Example: 'DistributionNames','mn'
Example: 'DistributionNames',{ 'kernel','normal','kernel'}

Kernel — Kernel smoother type

'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | string array | cell array of character vectors

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and a character vector or string scalar, a string array, or a cell array of character vectors.

This table summarizes the available options for setting the kernel smoothing density region. Let \(I\{u\} \) denote the indicator function.
<table>
<thead>
<tr>
<th>Value</th>
<th>Kernel</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>'box'</td>
<td>Box (uniform)</td>
<td>(f(x) = 0.5I{</td>
</tr>
<tr>
<td>'epanechnikov'</td>
<td>Epanechnikov</td>
<td>(f(x) = 0.75(1-x^2)I{</td>
</tr>
<tr>
<td>'normal'</td>
<td>Gaussian</td>
<td>(f(x) = \frac{1}{\sqrt{2\pi}}\exp(-0.5x^2))</td>
</tr>
<tr>
<td>'triangle'</td>
<td>Triangular</td>
<td>(f(x) = (1-</td>
</tr>
</tbody>
</table>

If you specify a 1-by-\(P\) string array or cell array, with each element of the array containing any value in the table, then the software trains the classifier using the kernel smoother type in element \(j\) for feature \(j\) in \(X\). The software ignores elements of \(Kernel\) not corresponding to a predictor whose distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify \(Kernel\), \(Support\), or \(Width\).

Example: 'Kernel', {'epanechnikov', 'normal'}

Support — Kernel smoothing density support

'unbounded' (default) | 'positive' | string array | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of 'Support' and 'positive', 'unbounded', a string array, a cell array, or a numeric row vector. The software applies the kernel smoothing density to the specified region.

This table summarizes the available options for setting the kernel smoothing density region.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-by-2 numeric row vector</td>
<td>For example, ([L, U]), where (L) and (U) are the finite lower and upper bounds, respectively, for the density support.</td>
</tr>
<tr>
<td>'positive'</td>
<td>The density support is all positive real values.</td>
</tr>
<tr>
<td>'unbounded'</td>
<td>The density support is all real values.</td>
</tr>
</tbody>
</table>

If you specify a 1-by-\(P\) string array or cell array, with each element in the string array containing any text value in the table and each element in the cell array containing any
value in the table, then the software trains the classifier using the kernel support in element \(j \) for feature \(j \) in \(X \). The software ignores elements of \(\text{Kernel} \) not corresponding to a predictor whose distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify \(\text{Kernel} \), \(\text{Support} \), or \(\text{Width} \).

Example: 'KSSupport',\{[-10,20],'unbounded'\}

Data Types: char | string | cell | double

Width — Kernel smoothing window width

matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of 'Width' and a matrix of numeric values, numeric column vector, numeric row vector, or scalar.

Suppose there are \(K \) class levels and \(P \) predictors. This table summarizes the available options for setting the kernel smoothing window width.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)-by-(P) matrix of numeric values</td>
<td>Element ((k,j)) specifies the width for predictor (j) in class (k).</td>
</tr>
<tr>
<td>(K)-by-1 numeric column vector</td>
<td>Element (k) specifies the width for all predictors in class (k).</td>
</tr>
<tr>
<td>1-by-(P) numeric row vector</td>
<td>Element (j) specifies the width in all class levels for predictor (j).</td>
</tr>
<tr>
<td>scalar</td>
<td>Specifies the bandwidth for all features in all classes.</td>
</tr>
</tbody>
</table>

By default, the software selects a default width automatically for each combination of predictor and class by using a value that is optimal for a Gaussian distribution. If you specify \(\text{Width} \) and it contains NaNs, then the software selects widths for the elements containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally specify \(\text{Kernel} \), \(\text{Support} \), or \(\text{Width} \).

Example: 'Width',[NaN NaN]

Data Types: double | struct
Output Arguments

t — Naive Bayes classification template

template object

Naive Bayes classification template suitable for training error-correcting output code (ECOC) multiclass models, returned as a template object. Pass `t` to `fitcecoc` to specify how to create the naive Bayes classifier for the ECOC model.

If you display `t` to the Command Window, then all, unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

Definitions

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally independent, given the class. Though the assumption is usually violated in practice, naive Bayes classifiers tend to yield posterior distributions that are robust to biased class density estimates, particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum a posteriori decision rule). Explicitly, the algorithm:

1. Estimates the densities of the predictors within each class.
2. Models posterior probabilities according to Bayes rule. That is, for all \(k = 1,...,K \),

\[
\hat{P}(Y = k | X_1,\ldots,X_p) = \frac{\pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)}{\sum_{k=1}^{K} \pi(Y = k) \prod_{j=1}^{P} P(X_j | Y = k)},
\]

where:
- Y is the random variable corresponding to the class index of an observation.
- X_1,\ldots,X_p are the random predictors of an observation.
- $\pi(Y = k)$ is the prior probability that a class index is k.

3 Classifies an observation by estimating the posterior probability for each class, and then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability

$$\hat{P}(Y = k | X_1,\ldots,X_p) \propto \pi(Y = k)P_{mn}(X_1,\ldots,X_p | Y = k),$$

where $P_{mn}(X_1,\ldots,X_p | Y = k)$ is the probability mass function of a multinomial distribution.

Algorithms

- If you specify 'DistributionNames','mn' when training Mdl using fitcnb, then the software fits a multinomial distribution using the bag-of-tokens model on page 32-1956. The software stores the probability that token j appears in class k in the property DistributionParameters{k,j}. Using additive smoothing [2], the estimated probability is

$$P(token.j | class.k) = \frac{1 + c_{j|k}}{P + c_k},$$

where:

- $c_{j|k} = \sum_{i:y_i = class.k} x_{ij} w_i$; which is the weighted number of occurrences of token j in class k.
- n_k is the number of observations in class k.
- w_i is the weight for observation i. The software normalizes weights within a class such that they sum to the prior probability for that class.
\[c_k = \sum_{j=1}^{P} c_{jk} \] which is the total weighted number of occurrences of all tokens in class \(k \).

- If you specify 'DistributionNames', 'mvmn' when training \(Mdl \) using \(\text{fitcnb} \), then:

1. For each predictor, the software collects a list of the unique levels, stores the sorted list in \(\text{CategoricalLevels} \), and considers each level a bin. Each predictor/class combination is a separate, independent multinomial random variable.

2. For predictor \(j \) in class \(k \), the software counts instances of each categorical level using the list stored in \(\text{CategoricalLevels} \{ j \} \).

3. The software stores the probability that predictor \(j \), in class \(k \), has level \(L \) in the property \(\text{DistributionParameters} \{ k, j \} \), for all levels in \(\text{CategoricalLevels} \{ j \} \). Using additive smoothing [2], the estimated probability is

\[
P(\text{predictor } j = L \mid \text{class } k) = \frac{1 + m_{jk}(L)}{m_j + m_k},
\]

where:

- \(m_{jk}(L) = \sum_{i:y_i \in \text{class } k} I(x_{ij} = L)w_i \); which is the weighted number of observations for which predictor \(j \) equals \(L \) in class \(k \).
- \(n_k \) is the number of observations in class \(k \).
- \(I\{x_{ij} = L\} = 1 \) if \(x_{ij} = L \), 0 otherwise.
- \(w_i \) is the weight for observation \(i \). The software normalizes weights within a class such that they sum to the prior probability for that class.
- \(m_j \) is the number of distinct levels in predictor \(j \).
• m_k is the weighted number of observations in class k.

References

See Also

ClassificationECOC | ClassificationNaiveBayes | fitcecoc | fitcnb

Introduced in R2014b
templateSVM

Support vector machine template

Syntax

t = templateSVM()
t = templateSVM(Name,Value)

Description

t = templateSVM() returns a support vector machine (SVM) learner template suitable for training error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during training.

Specify t as a binary learner, or one in a set of binary learners, in fitcecoc to train an ECOC multiclass classifier.

t = templateSVM(Name,Value) returns a template with additional options specified by one or more name-value pair arguments.

For example, you can specify the box constraint, the kernel function, or whether to standardize the predictors.

If you display t in the Command Window, then all options appear empty ([]), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.

Examples

Create a Default Support Vector Machine Template

Use templateSVM to specify a default SVM template.
t = templateSVM()

t =
Fit template for classification SVM.

 Alpha: [0x1 double]
 BoxConstraint: []
 CacheSize: []
 CachingMethod: '
 ClipAlphas: []
 DeltaGradientTolerance: []
 Epsilon: []
 GapTolerance: []
 KKTolerance: []
 IterationLimit: []
 KernelFunction: '
 KernelScale: []
 KernelOffset: []
 KernelPolynomialOrder: []
 NumPrint: []
 Num: []
 OutlierFraction: []
 RemoveDuplicates: []
 ShrinkagePeriod: []
 Solver: '
 StandardizeData: []
 SaveSupportVectors: []
 VerbosityLevel: []
 Version: 2
 Method: 'SVM'
 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you pass t to the training function, the software fills in the empty properties with their respective default values. For example, the software fills the KernelFunction property with 'linear'. For details on other default values, see fitcsvm.

t is a plan for an SVM learner, and no computation occurs when you specify it. You can pass t to fitcecoc to specify SVM binary learners for ECOC multiclass learning. However, by default, fitcecoc uses default SVM binary learners.
Create an SVM Template for ECOC Multiclass Learning

Create a nondefault SVM template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

Create a template for SVM binary classifiers, and specify to use a Gaussian kernel function.

t = templateSVM('KernelFunction','gaussian')

Fit template for classification SVM.

Alpha: [0x1 double]
BoxConstraint: []
CacheSize: []
CachingMethod: ''
ClipAlphas: []
DeltaGradientTolerance: []
Epsilon: []
GapTolerance: []
KKTThreshold: []
IterationLimit: []
KernelFunction: 'gaussian'
KernelScale: []
KernelOffset: []
KernelPolynomialOrder: []
NumPrint: []
Nu: []
OutlierFraction: []
RemoveDuplicates: []
ShrinkagePeriod: []
Solver: ''
StandardizeData: []
SaveSupportVectors: []
VerbosityLevel: []
Version: 2
Method: 'SVM'
Type: 'classification'
All properties of the template object are empty except for DistributionNames, Method, and Type. When trained on, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

```matlab
Mdl = fitcecoc(meas,species,'Learners',t);
```

Mdl is a ClassificationECOC multiclass classifier. By default, the software trains Mdl using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

```matlab
L = resubLoss(Mdl,'LossFun','classiferror')
```

L = 0.0200

Retain and Discard Support Vectors of SVM Binary Learners

By default, fitcecoc empties the Alpha, SupportVectorLabels, and SupportVectors properties of the linear, SVM binary learners stored in the BinaryLearners property of the trained ECOC model. You can retain the support vectors and related values, and then discard them from the model.

Load Fisher's iris data set.

```matlab
load fisheriris
```

```matlab
rng(1); % For reproducibility
```

Train an ECOC model using the entire data set. Specify retaining the support vectors by passing in the appropriate SVM template.

```matlab
t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(meas,species,'Learners',t);
```

Mdl is a trained ClassificationECOC model. By default, fitcecoc uses linear, SVM binary learners. It implements a one-versus-one coding design, which requires three binary learners for three-class learning.

Access the estimated α values using dot notation.
alpha = cell(3,1);
alpha{1} = MdlSV.BinaryLearners{1}.Alpha;
alpha{2} = MdlSV.BinaryLearners{2}.Alpha;
alpha{3} = MdlSV.BinaryLearners{3}.Alpha;
alpha

alpha =

3x1 cell array
{ 3x1 double}
{ 3x1 double}
{23x1 double}

alpha is a 3-by-1 cell array that stores the estimated values of \(\alpha \).

Discard the support vectors and related values from the ECOC model.

Mdl = discardSupportVectors(MdlSV);

Mdl is similar to MdlSV, except that the Alpha, SupportVectorLabels, and SupportVectors of all linear SVM binary learners are empty ([]).

areAllEmpty = @(x)isempty([x.Alpha x.SupportVectors x.SupportVectorLabels]);
cellfun(areAllEmpty,Mdl.BinaryLearners)

ans =

3x1 logical array
1
1
1

Compare the sizes of the two ECOC models.

vars = whos('MdlSV','Mdl');
100*(1 - vars(1).bytes-vars(2).bytes)

ans =
Mdl is about 5% smaller than MdlSV.

Reduce your memory footprint by compacting Mdl, and then clearing MdlSV and Mdl from the workspace.

```matlab
CMdl = compact(Mdl);
clear MdlSV Mdl;
```

Predict the label for a random row of the training data using the more efficient SVM model.

```matlab
idx = randsample(size(meas,1),1)
predictedLabel = predict(CMdl,meas(idx,:))
trueLabel = species(idx)
```

idx =

63

predictedLabel =

1x1 cell array

{\'versicolor\'}

trueLabel =

1x1 cell array
{'versicolor'}

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'BoxConstraint',
0.1,'KernelFunction','gaussian','Standardize',1 specifies a box constraint of 0.1, to use the Gaussian (RBF) kernel, and to standardize the predictors.

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint on page 32-2000, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

For more details on the relationships and algorithmic behavior of BoxConstraint, Cost, Prior, Standardize, and Weights, see “Algorithms” on page 32-2005.

Example: 'BoxConstraint',100

Data Types: double | single

CacheSize — Cache size
1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n Gram matrix on page 32-2000.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of memory for training the model.
Example: 'CacheSize','maximal'
Data Types: double | single | char | string

ClipAlphas — Flag to clip alpha coefficients

true (default) | false

Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas' and either true or false.

Suppose that the alpha coefficient for observation j is α_j and the box constraint of observation j is C_j, $j = 1, ..., n$, where n is the training sample size.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>At each iteration, if α_j is near 0 or near C_j, then MATLAB sets α_j to 0 or to C_j, respectively.</td>
</tr>
<tr>
<td>false</td>
<td>MATLAB does not change the alpha coefficients during optimization.</td>
</tr>
</tbody>
</table>

MATLAB stores the final values of α in the Alpha property of the trained SVM model object.

ClipAlphas can affect SMO and ISDA convergence.
Example: 'ClipAlphas',false
Data Types: logical

DeltaGradientTolerance — Tolerance for gradient difference

nonnegative scalar

Tolerance for the gradient difference between upper and lower violators obtained by Sequential Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA), specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the gradient difference to check for optimization convergence.

The default values are:

- $1e-3$ if the solver is SMO (for example, you set 'Solver','SMO')
- If the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'DeltaGradientTolerance',1e-2
Data Types: double | single

GapTolerance — Feasibility gap tolerance

0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to check for optimization convergence.

Example: 'GapTolerance',1e-2
Data Types: double | single

IterationLimit — Maximal number of numerical optimization iterations

1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully converges. Mdl.ConvergenceInfo contains convergence information.

Example: 'IterationLimit',1e8
Data Types: double | single

KernelFunction — Kernel function

'linear' (default) | 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the elements of the Gram matrix on page 32-2000, specified as the comma-separated pair consisting of 'KernelFunction' and a kernel function name. Suppose \(G(x_j,x_k) \) is element \((j,k)\) of the Gram matrix, where \(x_j \) and \(x_k \) are \(p \)-dimensional vectors representing observations \(j \) and \(k \) in \(X \). This table describes supported kernel function names and their functional forms.
### Kernel Function Name	Description	Formula
'gaussian' or 'rbf' | Gaussian or Radial Basis Function (RBF) kernel, default for one-class learning | \[G(x_j, x_k) = \exp\left(-\|x_j - x_k\|^2\right) \]
'linear' | Linear kernel, default for two-class learning | \[G(x_j, x_k) = x_j'x_k \]
'polynomial' | Polynomial kernel. Use 'PolynomialOrder', \(q \) to specify a polynomial kernel of order \(q \). | \[G(x_j, x_k) = (1 + x_j'x_k)^q \]

You can set your own kernel function, for example, `kernel`, by setting 'KernelFunction','kernel'. The value kernel must have this form.

function \(G = \text{kernel}(U,V) \)

where:

- \(U \) is an \(m \)-by-\(p \) matrix. Columns correspond to predictor variables, and rows correspond to observations.
- \(V \) is an \(n \)-by-\(p \) matrix. Columns correspond to predictor variables, and rows correspond to observations.
- \(G \) is an \(m \)-by-\(n \) Gram matrix on page 32-2000 of the rows of \(U \) and \(V \).

`kernel.m` must be on the MATLAB path.

It is a good practice to avoid using generic names for kernel functions. For example, call a sigmoid kernel function 'mysigmoid' rather than 'sigmoid'.

Example: 'KernelFunction','gaussian'

Data Types: char | string

KernelOffset — Kernel offset parameter

nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a nonnegative scalar.

The software adds `KernelOffset` to each element of the Gram matrix.
The defaults are:

- 0 if the solver is SMO (that is, you set 'Solver','SMO')
- 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0

Data Types: double | single

KernelScale — Kernel scale parameter

1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. The software divides all elements of the predictor matrix X by the value of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram matrix.

- If you specify 'auto', then the software selects an appropriate scale factor using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed using rng before training.
- If you specify KernelScale and your own kernel function, for example, 'KernelFunction','kernel', then the software throws an error. You must apply scaling within kernel.

Example: 'KernelScale','auto'

Data Types: double | single | char | string

KKT tolerance — Karush-Kuhn-Tucker complementarity conditions violation tolerance

nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions on page 32-2001 violation tolerance, specified as the comma-separated pair consisting of 'KKT tolerance' and a nonnegative scalar.

If KKT tolerance is 0, then the software does not use the KKT complementarity conditions violation tolerance to check for optimization convergence.

The default values are:
• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KKTTolerance',1e-2

Data Types: double | single

NumPrint — Number of iterations between optimization diagnostic message output

1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-separated pair consisting of 'NumPrint' and a nonnegative integer.

If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization diagnostic messages from SMO and ISDA every numprint iterations in the Command Window.

Example: 'NumPrint',500

Data Types: double | single

OutlierFraction — Expected proportion of outliers in training data

0 (default) | numeric scalar in the interval [0,1)

Expected proportion of outliers in the training data, specified as the comma-separated pair consisting of 'OutlierFraction' and a numeric scalar in the interval [0,1).

Suppose that you set 'OutlierFraction',outlierfraction, where outlierfraction is a value greater than 0.

• For two-class learning, the software implements robust learning. In other words, the software attempts to remove 100*outlierfraction% of the observations when the optimization algorithm converges. The removed observations correspond to gradients that are large in magnitude.
• For one-class learning, the software finds an appropriate bias term such that outlierfraction of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01

Data Types: double | single

PolynomialOrder — Polynomial kernel function order

3 (default) | positive integer
Polynomial kernel function order, specified as the comma-separated pair consisting of 'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software throws an error.

Example: 'PolynomialOrder',2
Data Types: double | single

SaveSupportVectors — Store support vectors, their labels, and the estimated \(\alpha \) coefficients
true | false

Store support vectors, their labels, and the estimated \(\alpha \) coefficients as properties of the resulting model, specified as the comma-separated pair consisting of 'SaveSupportVectors' and true or false.

If SaveSupportVectors is true, the resulting model stores the support vectors in the SupportVectors property, their labels in the SupportVectorLabels property, and the estimated \(\alpha \) coefficients in the Alpha property of the compact, SVM learners.

If SaveSupportVectors is false and KernelFunction is 'linear', the resulting model does not store the support vectors and the related estimates.

To reduce memory consumption by compact SVM models, specify SaveSupportVectors.

For linear, SVM binary learners in an ECOC model, the default value is false. Otherwise, the default value is true.

Example: 'SaveSupportVectors',true
Data Types: logical

ShrinkagePeriod — Number of iterations between reductions of active set
0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.

Example: 'ShrinkagePeriod',1000
Data Types: double | single
Solver — Optimization routine

'SISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in this table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ISDA'</td>
<td>Iterative Single Data Algorithm (see [30])</td>
</tr>
<tr>
<td>'L1QP'</td>
<td>Uses quadprog to implement L_1 soft-margin minimization by quadratic programming. This option requires an Optimization Toolbox license. For more details, see “Quadratic Programming Definition” (Optimization Toolbox).</td>
</tr>
<tr>
<td>'SMO'</td>
<td>Sequential Minimal Optimization (see [17])</td>
</tr>
</tbody>
</table>

The default value is 'ISDA' for two-class learning or if you set 'OutlierFraction' to a positive value, and 'SMO' otherwise.

Example: 'Solver', 'ISDA'

Standardize — Flag to standardize predictor data

false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of 'Standardize' and true (1) or false (0).

If you set 'Standardize', true:

- The software centers and scales each column of the predictor data (X) by the weighted column mean and standard deviation, respectively (for details on weighted standardizing, see “Algorithms” on page 32-2005). MATLAB does not standardize the data contained in the dummy variable columns generated for categorical predictors.
- The software trains the classifier using the standardized predictor matrix, but stores the unstandardized data in the classifier property X.

Example: 'Standardize', true

Data Types: logical

Verbose — Verbosity level

0 (default) | 1 | 2
Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The value of Verbose controls the amount of optimization information that the software displays in the Command Window and saves the information as a structure to Mdl.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display or save convergence information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages and saves convergence criteria every numprint iterations, where numprint is the value of the name-value pair argument 'NumPrint'.</td>
</tr>
<tr>
<td>2</td>
<td>The software displays diagnostic messages and saves convergence criteria at every iteration.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: double | single

Output Arguments

t — SVM classification template

template object

SVM classification template suitable for training error-correcting output code (ECOC) multiclass models, returned as a template object. Pass t to fitcecoc to specify how to create the SVM classifier for the ECOC model.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

Tip

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather than Alpha, in the model display.
To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM template that specifies storing support vectors to fitcecoc. For example, enter:

```matlab
t = templateSVM('SaveSupportVectors','on')
Mdl = fitcecoc(X,Y,'Learners',t);
```

You can remove the support vectors and related values by passing the resulting ClassificationECOC model to discardSupportVectors.

References

See Also

ClassificationECOC | ClassificationSVM | fitcecoc | fitcsvm

Introduced in R2014b
templateTree

Create decision tree template

Syntax

\[
\text{t} = \text{templateTree} \\
\text{t} = \text{templateTree}('Name',\text{Value})
\]

Description

\(\text{t} = \text{templateTree} \) returns a default decision tree learner template suitable for training ensembles or error-correcting output code (ECOC) multiclass models. Specify \(\text{t} \) as a learner using:

- \(\text{fitcensemble} \) for classification ensembles
- \(\text{fitrensemble} \) for regression ensembles
- \(\text{fitcecoc} \) for ECOC model classification

If you specify a default decision tree template, then the software uses default values for all input arguments during training. It is good practice to specify the type of decision tree, e.g., for a classification tree template, specify 'Type','classification'. If you specify the type of decision tree and display \(\text{t} \) in the Command Window, then all options except Type appear empty (\[]\).

\(\text{t} = \text{templateTree}('Name',\text{Value}) \) creates a template with additional options specified by one or more name-value pair arguments.

For example, you can specify the algorithm used to find the best split on a categorical predictor, the split criterion, or the number of predictors selected for each split.

If you display \(\text{t} \) in the Command Window, then all options appear empty (\[]\), except those that you specify using name-value pair arguments. During training, the software uses default values for empty options.
Examples

Create a Classification Template with Surrogate Splits

Create a decision tree template with surrogate splits, and use the template to train an ensemble using sample data.

Load Fisher's iris data set.

load fisheriris

Create a decision tree template of tree stumps with surrogate splits.

\[
t = \text{templateTree}('\text{Surrogate}','on','\text{MaxNumSplits}',1)
\]

Options for the template object are empty except for Surrogate and MaxNumSplits. When you pass \(t \) to the training function, the software fills in the empty options with their respective default values.

Specify \(t \) as a weak learner for a classification ensemble.

\[
\text{Mdl} = \text{fitcensemble}(\text{meas},\text{species},'\text{Method}','\text{AdaBoostM2}','\text{Learners}',t)
\]

\[
\text{Mdl} = \text{classreg.learning.classif.ClassificationEnsemble}
\]

ResponseName: 'Y'
CategoricalPredictors: []
ClassNames: {
'setosa' 'versicolor' 'virginica'
}
ScoreTransform: 'none'
NumObservations: 150
NumTrained: 100
Method: 'AdaBoostM2'
LearnerNames: {'Tree'}
ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
FitInfo: [100x1 double]
FitInfoDescription: {2x1 cell}
Properties, Methods

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)
L = 0.0333

Train Regression Ensemble

Create a regression ensemble that predicts the fuel economy of a car given the number of cylinders, volume displaced by the cylinders, horsepower, and weight. Then, train another ensemble using fewer predictors. Compare the in-sample predictive accuracies of the ensembles.

Load the carsmall data set. Store the variables to be used in training in a table.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

Train a regression ensemble.

Mdl1 = fitrensemble(Tbl,'MPG');

Mdl1 is a RegressionEnsemble model. Some notable characteristics of Mdl1 are:

• The ensemble-aggregation algorithm is 'LSBoost'.
• Because the ensemble-aggregation method is a boosting algorithm, regression trees that allow a maximum of 10 splits compose the ensemble.
• One hundred trees compose the ensemble.

Because MPG is a variable in the MATLAB® Workspace, you can obtain the same result by entering

Mdl1 = fitrensemble(Tbl,MPG);

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car with a 200-cubic inch displacement, 150 horsepower, and weighing 3000 lbs.
pMPG = predict(Mdl1,[4 200 150 3000])
pMPG = 25.6467

Train a new ensemble using all predictors inTbl except Displacement.

```matlab
formula = 'MPG ~ Cylinders + Horsepower + Weight';
Mdl2 = fitrensemble(Tbl,formula);
```

Compare the resubstitution MSEs between Mdl1 and Mdl2.

```matlab
mse1 = resubLoss(Mdl1)
mse1 = 0.3096

mse2 = resubLoss(Mdl2)
mse2 = 0.5861
```

The in-sample MSE for the ensemble that trains on all predictors is lower.

Find the Optimal Number of Splits and Trees for an Ensemble

You can control the depth of the trees in an ensemble of decision trees. You can also control the tree depth in an ECOC model containing decision tree binary learners using the MaxNumSplits, MinLeafSize, or MinParentSize name-value pair parameters.

- When bagging decision trees, `fitrensemble` grows deep decision trees by default. You can grow shallower trees to reduce model complexity or computation time.
- When boosting decision trees, `fitrensemble` grows shallow trees by default. You can grow deeper trees for better accuracy.

Load the carsmall data set. Specify the variables Acceleration, Displacement, Horsepower, and Weight as predictors, and MPG as the response.

```matlab
load carsmall
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;
```

The default values of the tree depth controllers for boosting regression trees are:
• 1 for `MaxNumSplits`. This option grows stumps.
• 5 for `MinLeafSize`
• 10 for `MinParentSize`

To search for the optimal number of splits:

1. Train a set of ensembles. Exponentially increase the maximum number of splits for subsequent ensembles from stump to at most $n - 1$ splits, where n is the training sample size. Also, decrease the learning rate for each ensemble from 1 to 0.1.
2. Cross validate the ensembles.
3. Estimate the cross-validated mean-squared error (MSE) for each ensemble.
4. Compare the cross-validated MSEs. The ensemble with the lowest one performs the best, and indicates the optimal maximum number of splits, number of trees, and learning rate for the data set.

Grow and cross validate a deep regression tree and a stump. Specify to use surrogate splits because the data contain missing values. These serve as benchmarks.

```matlab
MdlDeep = fitrtree(X,Y,'CrossVal','on','MergeLeaves','off',... 'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(X,Y,'MaxNumSplits',1,'CrossVal','on','Surrogate','on');
```

Train the boosting ensembles using 150 regression trees. Cross validate the ensemble using 5-fold cross validation. Vary the maximum number of splits using the values in the sequence $\{2^0, 2^1, ..., 2^m\}$, where m is such that 2^m is no greater than $n - 1$, where n is the training sample size. For each variant, adjust the learning rate to each value in the set $\{0.1, 0.25, 0.5, 1\}$.

```matlab
n = size(X,1);
m = floor(log2(n - 1));
lr = [0.1 0.25 0.5 1];
maxNumSplits = 2.^(0:m);
numTrees = 150;
Mdl = cell(numel(maxNumSplits),numel(lr));
rng(1); % For reproducibility
for k = 1:numel(lr);
    for j = 1:numel(maxNumSplits);
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitrensemble(X,Y,'Method','LSBoost',... 'NumLearningCycles',numTrees,'Learners',t,... 'KFold',5,'LearnRate',lr(k));
```
Compute the cross-validated MSE for each ensemble.

\[
\text{kflAll} = @(x)\text{kfoldLoss}(x,'Mode','cumulative');
\]
\[
\text{errorCell} = \text{cellfun(kflAll,Mdl,'Uniform',false);
}\]
\[
\text{error} = \text{reshape}([\text{cell2mat(errorCell)},[\text{numTrees numel(maxNumSplits)}\text{ numel(lr)\text{]}\text{]};
\text{errorDeep} = \text{kfoldLoss(MdlDeep});
\text{errorStump} = \text{kfoldLoss(MdlStump});
\]

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases for a few of the ensembles, the deep tree, and the stump. Plot the curves with respect to learning rate in the same plot, and plot separate plots for varying tree complexities. Choose a subset of tree complexity levels.

\[
\text{mnsPlot} = [1 \text{ round(numel(maxNumSplits)/2) numel(maxNumSplits)}];
\]
\[
\text{figure;}
\text{for } k = 1:3;
\quad \text{subplot}(2,2,k);
\quad \text{plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);
\quad \text{axis tight;}
\quad \text{hold on;}
\quad \text{h = gca;}
\quad \text{plot(h.XLim,[errorDeep errorDeep],'-b','LineWidth',2);
\quad \text{plot(h.XLim,[errorStump errorStump],'-r','LineWidth',2);
\quad \text{plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k');
\quad \text{h.YLim} = [10 50];
\quad \text{xlabel 'Number of trees';}
\quad \text{ylabel 'Cross-validated MSE';
\quad \text{title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));
\quad \text{hold off;}
\quad \end{for}
\]
\[
\text{hL = legend([cellstr(num2str(lr,'Learning Rate = %0.2f'));...
\quad 'Deep Tree';'Stump';'Min. MSE']);
\]
\[
\text{hL.Position(1) = 0.6;}
\]
Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE overall.

```
[minErr, minErrIdxLin] = min(error(:));
[idxNumTrees, idxMNS, idxLR] = ind2sub(size(error), minErrIdxLin);

fprintf('
Min. MSE = %0.5f', minErr)
Min. MSE = 18.42979

fprintf('
Optimal Parameter Values:
Num. Trees = %d', idxNumTrees);
```

32-6528
Optimal Parameter Values:
Num. Trees = 1

\[
\text{fprintf('\nMaxNumSplits = \%d\nLearning Rate = \%0.2f\n',...}
\text{maxNumSplits(idxMNS),lr(idxLR))}
\]

MaxNumSplits = 4
Learning Rate = 1.00

For a different approach to optimizing this ensemble, see “Optimize a Boosted Regression Ensemble” on page 10-78.

Unbiased Estimates of Predictor Importance Using Parallel Computing

This example requires a Parallel Computing Toolbox™ license.

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
  Model_Year,Weight,MPG);
rng('default'); % For reproducibility
```

Display the number of categories represented in the categorical variables.

```matlab
numCylinders = numel(categories(Cylinders))
numMfg = numel(categories(Mfg))
numModelYear = numel(categories(Model_Year))
```

```matlab
numCylinders =
3

numMfg =
```
Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 500 regression trees using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits.

```matlab
t = templateTree('PredictorSelection','curvature','Surrogate','on');
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',500,...
    'Learners',t);
```

Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations in parallel. Compare the estimates using a bar graph.

```matlab
options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);
figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
In this case, **Model Year** is the most important predictor, followed by **Cylinders**. Compare these results to the results in “Estimate Importance of Predictors” on page 32-4539.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name, Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes.
You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Surrogate','on','NumVariablesToSample','all' specifies a template with surrogate splits, and uses all available predictors at each split.

For Classification Trees and Regression Trees

MaxNumSplits — Maximal number of decision splits
positive integer

Maximal number of decision splits (or branch nodes) per tree, specified as the comma-separated pair consisting of 'MaxNumSplits' and a positive integer. templateTree splits MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see “Algorithms” on page 32-6538.

For bagged decision trees and decision tree binary learners in ECOC models, the default is $n - 1$, where n is the number of observations in the training sample. For boosted decision trees, the default is 1.

Example: 'MaxNumSplits',5
Data Types: single | double

MergeLeaves — Leaf merge flag
'off' | 'on'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and either 'on' or 'off'.

When 'on', the decision tree merges leaves that originate from the same parent node, and that provide a sum of risk values greater or equal to the risk associated with the parent node. When 'off', the decision tree does not merge leaves.

For ensembles models, the default is 'off'. For decision tree binary learners in ECOC models, the default is 'on'.

Example: 'MergeLeaves','on'

MinLeafSize — Minimum observations per leaf
positive integer value

Minimum observations per leaf, specified as the comma-separated pair consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least MinLeafSize
observations per tree leaf. If you supply both MinParentSize and MinLeafSize, the decision tree uses the setting that gives larger leaves: \(\text{MinParentSize} = \max(\text{MinParentSize}, 2\times \text{MinLeafSize}) \).

For boosted and bagged decision trees, the defaults are 1 for classification and 5 for regression. For decision tree binary learners in ECOC models, the default is 1.

Example: 'MinLeafSize', 2

MinParentSize — Minimum observations per branch node
positive integer value

Minimum observations per branch node, specified as the comma-separated pair consisting of 'MinParentSize' and a positive integer value. Each branch node in the tree has at least MinParentSize observations. If you supply both MinParentSize and MinLeafSize, the decision tree uses the setting that gives larger leaves: \(\text{MinParentSize} = \max(\text{MinParentSize}, 2\times \text{MinLeafSize}) \).

For boosted and bagged decision trees, the defaults are 2 for classification and 10 for regression. For decision tree binary learners in ECOC models, the default is 10.

Example: 'MinParentSize', 4

NumVariablesToSample — Number of predictors to select at random for each split
positive integer value | 'all'

Number of predictors to select at random for each split, specified as the comma-separated pair consisting of 'NumVariablesToSample' and a positive integer value. Alternatively, you can specify 'all' to use all available predictors.

For boosted decision trees and decision tree binary learners in ECOC models models, the default is 'all'. The default for bagged decision trees is the square root of the number of predictors for classification, or one third of predictors for regression.

Example: 'NumVariablesToSample', 3

Data Types: single | double | char | string

PredictorSelection — Algorithm used to select the best split predictor
'allsplit' (default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-separated pair consisting of 'PredictorSelection' and a value in this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'allsplits'</td>
<td>Standard CART — Selects the split predictor that maximizes the split-criterion gain over all possible splits of all predictors [1].</td>
</tr>
<tr>
<td>'curvature'</td>
<td>Curvature test — Selects the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response [3][4]. Training speed is similar to standard CART.</td>
</tr>
<tr>
<td>'interaction-curvature'</td>
<td>Interaction test — Chooses the split predictor that minimizes the p-value of chi-square tests of independence between each predictor and the response, and that minimizes the p-value of a chi-square test of independence between each pair of predictors and response [3]. Training speed can be slower than standard CART.</td>
</tr>
</tbody>
</table>

For 'curvature' and 'interaction-curvature', if all tests yield p-values greater than 0.05, then MATLAB stops splitting nodes.

Tip

- The curvature and interaction tests are not recommended for boosting decision trees. To train an ensemble of boosted trees that has greater accuracy, use standard CART instead.
- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [4]. If the predictor data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than other variables, then consider specifying the curvature or interaction test.
 - If there are predictors that have relatively fewer distinct values than other predictors, for example, if the predictor data set is heterogeneous.
 - If an analysis of predictor importance is your goal. For more on predictor importance estimation, see `oobPermutedPredictorImportance` for classification problems, and `oobPermutedPredictorImportance` for regression problems.
 - Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such trees are less likely to identify important variables in the presence of many irrelevant predictors than the application of the interaction test. Therefore, to account
for predictor interactions and identify importance variables in the presence of many irrelevant variables, specify the interaction test [3].

- Prediction speed is unaffected by the value of 'PredictorSelection'.

Example: 'PredictorSelection','curvature'

Prune — Flag to estimate optimal sequence of pruned subtrees

'off' (default) | 'on'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then the software trains the classification tree learners without pruning them, but estimates the optimal sequence of pruned subtrees for each learner in the ensemble or decision tree binary learner in ECOC models. Otherwise, the software trains the classification tree learners without estimating the optimal sequence of pruned subtrees.

For ensembles, the default is 'off'.

For decision tree binary learners in ECOC models, then the default is 'on'.

Example: 'Prune','on'

PruneCriterion — Pruning criterion

'error' | 'impurity' | 'mse'

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and a pruning criterion valid for the tree type.

- For classification trees, you can specify 'error' (default) or 'impurity'.
- For regression, you can only specify 'mse'(default).

Example: 'PruneCriterion','impurity'

SplitCriterion — Split criterion

'gdi' | 'twoing' | 'deviance' | 'mse'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and a split criterion valid for the tree type.
• For classification trees:
 • `gdi` for Gini's diversity index (default)
 • `twoing` for the twoing rule
 • `deviance` for maximum deviance reduction (also known as cross entropy)
• For regression trees:
 • `mse` for mean squared error (default)

Example: `SplitCriterion`, 'deviance'

Surrogate — Surrogate decision splits

`'off'` (default) | `'on'` | `'all'` | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and one of 'off', 'on', 'all', or a positive integer value.

• When `'off'`, the decision tree does not find surrogate splits at the branch nodes.
• When `'on'`, the decision tree finds at most 10 surrogate splits at each branch node.
• When set to `'all'`, the decision tree finds all surrogate splits at each branch node.
 The `'all'` setting can consume considerable time and memory.
• When set to a positive integer value, the decision tree finds at most the specified number of surrogate splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values. This setting also lets you compute measures of predictive association between predictors.

Example: `Surrogate`, 'on'

Data Types: `single` | `double` | `char` | `string`

For Classification Trees Only

AlgorithmForCategorical — Algorithm for best categorical predictor split

`'Exact'` | `'PullLeft'` | `'PCA'` | `'OVAbyClass'`

Algorithm to find the best split on a categorical predictor for data with C categories for data and K ≥ 3 classes, specified as the comma-separated pair consisting of 'AlgorithmForCategorical' and one of the following.

'Exact' Consider all $2^{C-1} - 1$ combinations.
Start with all C categories on the right branch. Consider moving each category to the left branch as it achieves the minimum impurity for the K classes among the remaining categories. From this sequence, choose the split that has the lowest impurity.

Compute a score for each category using the inner product between the first principal component of a weighted covariance matrix (of the centered class probability matrix) and the vector of class probabilities for that category. Sort the scores in ascending order, and consider all $C - 1$ splits.

Start with all C categories on the right branch. For each class, order the categories based on their probability for that class. For the first class, consider moving each category to the left branch in order, recording the impurity criterion at each move. Repeat for the remaining classes. From this sequence, choose the split that has the minimum impurity.

ClassificationTree selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For two classes, ClassificationTree always performs the exact search. Use the 'AlgorithmForCategorical' name-value pair argument to specify a particular algorithm.

Example: 'AlgorithmForCategorical','PCA'

MaxNumCategories — Maximum category levels in split node
10 (default) | nonnegative scalar value

Maximum category levels in the split node, specified as the comma-separated pair consisting of 'MaxNumCategories' and a nonnegative scalar value. ClassificationTree splits a categorical predictor using the exact search algorithm if the predictor has at most MaxNumCategories levels in the split node. Otherwise,
ClassificationTree finds the best categorical split using one of the inexact algorithms. Note that passing a small value can increase computation time and memory overload.

Example: 'MaxNumCategories',8

For Regression Trees Only

QuadraticErrorTolerance — Quadratic error tolerance
1e-6 (default) | nonnegative scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of 'QuadraticErrorTolerance' and a nonnegative scalar value. RegressionTree stops splitting nodes when the quadratic error per node drops below QuadraticErrorTolerance*QED, where QED is the quadratic error for the entire data computed before the decision tree is grown. QED = NORM(Y - YBAR), where YBAR is estimated as the average of the input array Y.

Example: 'QuadraticErrorTolerance',1e-4

Output Arguments

t — Decision tree template for classification or regression
 template object

Decision tree template for classification or regression suitable for training ensembles or error-correcting output code (ECOC) multiclass models, returned as a template object. Pass t to fitcensemble, or fitrensemble, or fitcecoc to specify how to create the decision tree for the classification ensemble, regression ensemble, or ECOC model, respectively.

If you display t in the Command Window, then all unspecified options appear empty ([]). However, the software replaces empty options with their corresponding default values during training.

Algorithms

- To accommodate MaxNumSplits, the software splits all nodes in the current layer, and then counts the number of branch nodes. A layer is the set of nodes that are
equidistant from the root node. If the number of branch nodes exceeds \texttt{MaxNumSplits}, then the software follows this procedure.

1. Determine how many branch nodes in the current layer need to be unsplit so that there would be at most \texttt{MaxNumSplits} branch nodes.
2. Sort the branch nodes by their impurity gains.
3. Unsplit the desired number of least successful branches.
4. Return the decision tree grown so far.

This procedure aims at producing maximally balanced trees.

- The software splits branch nodes layer by layer until at least one of these events occurs.
 - There are \texttt{MaxNumSplits} + 1 branch nodes.
 - A proposed split causes the number of observations in at least one branch node to be fewer than \texttt{MinParentSize}.
 - A proposed split causes the number of observations in at least one leaf node to be fewer than \texttt{MinLeafSize}.
 - The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see \texttt{PruneCriterion}), does not improve for all proposed splits in a layer). A special case of this event is when all nodes are pure (i.e., all observations in the node have the same class).
 - For values 'curvature' or 'interaction-curvature' of \texttt{PredictorSelection}, all tests yield p-values greater than 0.05.

\texttt{MaxNumSplits} and \texttt{MinLeafSize} do not affect splitting at their default values. Therefore, if you set 'MaxNumSplits', then splitting might stop due to the value of \texttt{MinParentSize} before \texttt{MaxNumSplits} splits occur.

- For details on selecting split predictors and node-splitting algorithms when growing decision trees, see “Algorithms” on page 32-2087 for classification trees and “Algorithms” on page 32-2563 for regression trees.

References

See Also

ClassificationTree | RegressionTree | fitcecoc | fitcensemble | fitctree | fitrensemble

Introduced in R2014a
test

Class: classregtree

(Removed) Error rate

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

cost = test(t,'resubstitution')
cost = test(t,'test',X,y)
cost = test(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = test(...)
[...] = test(...,param1,val1,param2,val2,...)

Description

cost = test(t,'resubstitution') computes the cost of the tree t using a resubstitution method. t is a decision tree as created by classregtree. The cost of the tree is the sum over all terminal nodes of the estimated probability of a node times the cost of a node. If t is a classification tree, the cost of a node is the sum of the misclassification costs of the observations in that node. If t is a regression tree, the cost of a node is the average squared error over the observations in that node. cost is a vector of cost values for each subtree in the optimal pruning sequence for t. The resubstitution cost is based on the same sample that was used to create the original tree, so it under estimates the likely cost of applying the tree to new data.

cost = test(t,'test',X,y) uses the matrix of predictors X and the response vector y as a test sample, applies the decision tree t to that sample, and returns a vector cost of cost values computed for the test sample. X and y should not be the same as the learning sample, that is, the sample that was used to fit the tree t.

cost = test(t,'crossvalidate',X,y) uses 10-fold cross-validation to compute the cost vector. X and y should be the learning sample, that is, the sample that was used to fit
the tree t. The function partitions the sample into 10 subsamples, chosen randomly but with roughly equal size. For classification trees, the subsamples also have roughly the same class proportions. For each subsample, test fits a tree to the remaining data and uses it to predict the subsample. It pools the information from all subsamples to compute the cost for the whole sample.

[cost, secost, ntnodes, bestlevel] = test(...) also returns the vector secost containing the standard error of each cost value, the vector ntnodes containing the number of terminal nodes for each subtree, and the scalar bestlevel containing the estimated best level of pruning. A bestlevel of 0 means no pruning. The best level is the one that produces the smallest tree that is within one standard error of the minimum-cost subtree.

[...] = test(..., param1, val1, param2, val2,...) specifies optional parameter name/value pairs for methods other than 'resubstitution', chosen from the following:

- 'weights' — Observation weights.
- 'nsamples' — The number of cross-validation samples (default is 10).
- 'treesize' — Either 'se' (default) to choose the smallest tree whose cost is within one standard error of the minimum cost, or 'min' to choose the minimal cost tree.

References

See Also
classregtree | eval | prune | view
test

Class: cvpartition

Test indices for cross-validation

Syntax

idx = test(c)
didx = test(c,i)

Description

idx = test(c) returns the logical vector idx of test indices for an object c of the cvpartition on page 32-1169 class of type 'holdout' or 'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the test set.

If c.Type is 'resubstitution', idx specifies all observations.

idx = test(c,i) returns the logical vector idx of test indices for repetition i of an object c of the cvpartition on page 32-1169 class of type 'kfold' or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the test set in fold i.

If c.Type is 'leaveout', idx specifies the observation left out at repetition i.

Examples

Identify the test indices in the first fold of a partition of 10 observations for 3-fold cross-validation:

c = cvpartition(10,'kfold',3)
c =
K-fold cross validation partition
 N: 10
NumTestSets: 3
TrainSize: 7 6 7
TestSize: 3 4 3

test(c,1)
an =
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0

See Also
 cvpartition | training
testcholdout

Compare predictive accuracies of two classification models

testcholdout statistically assesses the accuracies of two classification models. The function first compares their predicted labels against the true labels, and then it detects whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or whether one classification model performs better than another. testcholdout can conduct several McNemar test on page 32-6559 variations, including the asymptotic test, the exact-conditional test, and the mid-p-value test. For cost-sensitive assessment on page 32-6556, available tests include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio test.

Syntax

h = testcholdout(YHat1,YHat2,Y)
h = testcholdout(YHat1,YHat2,Y,Name,Value)
[h,p,e1,e2] = testcholdout(__)

Description

h = testcholdout(YHat1,YHat2,Y) returns the test decision, by conducting the mid-p-value McNemar test on page 32-6559, from testing the null hypothesis that the predicted class labels YHat1 and YHat2 have equal accuracy for predicting the true class labels Y. The alternative hypothesis is that the labels have unequal accuracy.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to not reject the null hypothesis at 5% level.

h = testcholdout(YHat1,YHat2,Y,Name,Value) returns the result of the hypothesis test with additional options specified by one or more Name,Value pair arguments. For example, you can specify the type of alternative hypothesis, specify the type of test, or supply a cost matrix.
\[h, p, e1, e2 = \text{testcholdout}(___) \] returns the \(p \)-value for the hypothesis test \(p \) and the respective classification loss on page 32-6562 of each set of predicted class labels \(e1 \) and \(e2 \) using any of the input arguments in the previous syntaxes.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

```matlab
load ionosphere;
```

Create a partition that evenly splits the data into training and testing sets.

```matlab
rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5); % For reproducibility
idxTrain = training(CVP);          % Training-set indices
idxTest = test(CVP);               % Test-set indices
```

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM model, specify to use the radial basis function kernel and a heuristic procedure to determine the kernel scale.

```matlab
MdlSVM = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...
    'KernelFunction','RBF','KernelScale','auto');
MdlBag = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','Bag');
```

\(\text{MdlSVM} \) is a trained `ClassificationSVM` model. \(\text{MdlBag} \) is a trained `ClassificationBaggedEnsemble` model.

Label the test-set observations using the trained models.

```matlab
YhatSVM = predict(MdlSVM,X(idxTest,:));
YhatBag = predict(MdlBag,X(idxTest,:));
```

\(\text{YhatSVM} \) and \(\text{YhatBag} \) are vectors continuing the predicted class labels of the respective models.
Test whether the two models have equal predictive accuracies.

\[h = \text{testcholdout}(\text{YhatSVM}, \text{YhatBag}, \text{Y(idxTest)}) \]

\[h = \text{logical} \]

\[h = 0 \] indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter to make the algorithm more complex. Conduct a statistical test to assess whether the simpler model has better accuracy in held-out data than the more complex model.

Load the `ionosphere` data set.

```matlab
load ionosphere;
```

Create a partition that evenly splits the data into training and testing sets.

```matlab
rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5); % For reproducibility
idxTrain = training(CVP);           % Training-set indices
idxTest = test(CVP);                % Test-set indices
```

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary classification) and one that uses the radial basis function kernel. Use the default kernel scale of 1.

```matlab
MdlLinear = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);
MdlRBF = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,'...
  'KernelFunction','RBF');
```

MdlLinear and MdlRBF are trained `ClassificationSVM` models.

Label the test-set observations using the trained models.

```matlab
YhatLinear = predict(MdlLinear,X(idxTest,:));
YhatRBF = predict(MdlRBF,X(idxTest,:));
```
$Y_{\text{hatLinear}}$ and Y_{hatRBF} are vectors continuing the predicted class labels of the respective models.

Test the null hypothesis that the simpler model (MdlLinear) is at most as accurate as the more complex model (MdlRBF). Because the test-set size is large, conduct the asymptotic McNemar test, and compare the results with the mid-p-value test (the cost-insensitive testing default). Request to return p-values and misclassification rates.

```matlab
Asymp = zeros(4,1); % Preallocation
MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),... 'Alternative','greater','Test','asymptotic');
[MidP(1),MidP(2),MidP(3),MidP(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),... 'Alternative','greater');
table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})
```

```
ans=4×2 table
          Asymp       MidP
     ________    __________
         h          1           1
         p  7.2801e-09    2.7649e-10
         e1       0.13714       0.13714
         e2       0.33143       0.33143
```

The p-value is close to zero for both tests, which indicates strong evidence to reject the null hypothesis that the simpler model is less accurate than the more complex model. No matter what test you specify, `testcholdout` returns the same type of misclassification measure for both models.

Conduct Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or if the false-positive and false-negative costs are imbalanced, you can statistically compare the predictive performance of two classification models by including a cost matrix in the analysis.

Load the `arrhythmia` data set. Determine the class representations in the data.
load arrhythmia;
Y = categorical(Y);
tabulate(Y);

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>245</td>
<td>54.20%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>9.73%</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3.32%</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2.88%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>5.53%</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.66%</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.44%</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.99%</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>11.06%</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0.88%</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.11%</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>4.87%</td>
</tr>
</tbody>
</table>

There are 16 classes, however some are not represented in the data set (for example, class 13). Most observations are classified as not having arrhythmia (class 1). The data set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those observations with unknown arrhythmia status (class 16) from the data set.

idx = (Y ~= '16');
Y = Y(idx);
X = X(idx,:);
Y(Y ~= '1') = 'WithArrhythmia';
Y(Y == '1') = 'NoArrhythmia';
Y = removecats(Y);

Create a partition that evenly splits the data into training and test sets.

rng(1); % For reproducibility
CVP = cvpartition(Y,'holdout',0.5); % Training-set indices
idxTrain = training(CVP); % Test-set indices
idxTest = test(CVP);

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifying a patient with arrhythmia into the "no arrhythmia" class is five times worse than misclassifying a patient without arrhythmia.
Classifying correctly incurs no cost. The rows indicate the true class and the columns indicate predicted class. When you conduct a cost-sensitive analysis, a good practice is to specify the order of the classes.

Cost = [0 1; 5 0];
ClassNames = {'NoArrhythmia','WithArrhythmia'};

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1 and another that uses LogitBoost. Because there are missing values in the data set, specify to use surrogate splits. Train the models using the cost matrix.

```matlab
cla = templateTree('Surrogate','on');
numTrees = 50;
MdlAda = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1','NumLearningCycles',numTrees,'Learners',cla,'Cost',Cost,'ClassNames',ClassNames);
MdlLogit = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','LogitBoost','NumLearningCycles',numTrees,'Learners',cla,'Cost',Cost,'ClassNames',ClassNames);
```

MdlAda and MdlLogit are trained ClassificationEnsemble models.

Label the test-set observations using the trained models.

```matlab
YhatAda = predict(MdlAda,X(idxTest,:));
YhatLogit = predict(MdlLogit,X(idxTest,:));
```

YhatLinear and YhatRBF are vectors containing the predicted class labels of the respective models.

Test whether the AdaBoostM1 ensemble (MdlAda) and the LogitBoost ensemble (MdlLogit) have equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return p-values and misclassification costs.

```matlab
[h,p,e1,e2] = testcholdout(YhatAda,YhatLogit,Y(idxTest),'Cost',Cost)
```

h = logical
0

p = 0.1944

e1 = 0.5953
\[e_2 = 0.4698 \]

\[h = 0 \] indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

Input Arguments

YHat1 — Predicted class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Predicted class labels of the first classification model, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

If `YHat1` is a character array, then each element must correspond to one row of the array.

`YHat1`, `YHat2`, and `Y` must have equal lengths.

It is a best practice for `YHat1`, `YHat2`, and `Y` to share the same data type.

Data Types: categorical | char | string | logical | single | double | cell

YHat2 — Predicted class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Predicted class labels of the second classification model, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

If `YHat2` is a character array, then each element must correspond to one row of the array.

`YHat1`, `YHat2`, and `Y` must have equal lengths.

It is a best practice for `YHat1`, `YHat2`, and `Y` to share the same data type.

Data Types: categorical | char | string | logical | single | double | cell

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors
True class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

If \(Y\) is a character array, then each element must correspond to one row of the array.

\(YHat1\), \(YHat2\), and \(Y\) must have equal lengths.

It is a best practice for \(YHat1\), \(YHat2\), and \(Y\) to share the same data type.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as

\[Name1,Value1,...,NameN,ValueN\]

Example: \['Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]\] specifies to test whether the first set of first predicted class labels is more accurate than the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying observations with the true label \(\text{ClassNames}{1}\) twice as much as for misclassifying observations with the true label \(\text{ClassNames}{2}\).

Alpha — Hypothesis test significance level

\(0.05\) (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of **'Alpha'** and a scalar value in the interval (0,1).

Example: \['Alpha',0.1\]

Data Types: single | double

Alternative — Alternative hypothesis to assess

\['unequal' (default) | 'greater' | 'less'\]

Alternative hypothesis to assess, specified as the comma-separated pair consisting of **'Alternative'** and one of the values listed in the table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Alternative hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unequal' (default)</td>
<td>For predicting (Y), (YHat1) and (YHat2) have unequal accuracies.</td>
</tr>
<tr>
<td>Value</td>
<td>Alternative hypothesis</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>'greater'</td>
<td>For predicting Y, YHat1 is more accurate than YHat2.</td>
</tr>
<tr>
<td>'less'</td>
<td>For predicting Y, YHat1 is less accurate than YHat2.</td>
</tr>
</tbody>
</table>

Example: 'Alternative', 'greater'

ClassNames — Class names
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. You must set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

- Specify the order of any input argument dimension that corresponds to class order. For example, use ClassNames to specify the order of the dimensions of Cost.
- Select a subset of classes for testing. For example, suppose that the set of all distinct class names in Y is {'a', 'b', 'c'}. To train and test models using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default is the set of all distinct class names in Y.

Example: 'ClassNames',{'b','g'}

Data Types: single | double | logical | char | string | cell | categorical

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure array.

- If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a point into class j if its true class is i. That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of Cost, additionally specify the ClassNames name-value pair argument.
• If you specify the structure S, then S must have two fields:
 • S.ClassNames, which contains the class names as a variable of the same data type as Y. You can use this field to specify the order of the classes.
 • S.ClassificationCosts, which contains the cost matrix, with rows and columns ordered as in S.ClassNames.

If you specify Cost, then testcholdout cannot conduct one-sided, exact, or mid-p tests. You must also specify 'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing options, see the CostTest name-value pair argument.

A best practice is to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2; 1 0 2; 2 2 0]

Data Types: single | double | struct

CostTest — Cost-sensitive test type

'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest' and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost name-value pair argument, testcholdout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

<table>
<thead>
<tr>
<th>Value</th>
<th>Asymptotic test type</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>'chisquare'</td>
<td>Chi-square test</td>
<td>Optimization Toolbox license to implement quadprog</td>
</tr>
<tr>
<td>'likelihood'</td>
<td>Likelihood ratio test</td>
<td>None</td>
</tr>
</tbody>
</table>

For more details, see “Cost-Sensitive Testing” on page 32-6556.

Example: 'CostTest','chisquare'

Test — Test to conduct

'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and 'asymptotic','exact', and 'midp'. This table summarizes the available options for cost-insensitive testing.
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'asymptotic'</td>
<td>Asymptotic McNemar test</td>
</tr>
<tr>
<td>'exact'</td>
<td>Exact-conditional McNemar test</td>
</tr>
<tr>
<td>'midp' (default)</td>
<td>Mid-p-value McNemar test</td>
</tr>
</tbody>
</table>

For more details, see “McNemar Tests” on page 32-6559.

For cost-sensitive testing, **Test** must be 'asymptotic'. When you specify the Cost name-value pair argument, and choose a cost-sensitive test using the CostTest name-value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Note NaNs, <undefined> values, empty character vectors (''), empty strings ('"'), and <missing> values indicate missing data values. **testcholdout**:

- Treats missing values in `YHat1` and `YHat2` as misclassified observations.
- Removes missing values in `Y` and the corresponding values of `YHat1` and `YHat2`

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

- `h = 1` indicates the rejection of the null hypothesis at the `Alpha` significance level.
- `h = 0` indicates failure to reject the null hypothesis at the `Alpha` significance level.

Data Types: logical

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. `p` is the probability that a random test statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.
testcholdout estimates p using the distribution of the test statistic, which varies with the type of test. For details on test statistics derived from the available variants of the McNemar test, see “McNemar Tests” on page 32-6559. For details on test statistics derived from cost-sensitive tests, see “Cost-Sensitive Testing” on page 32-6556.

e1 — Classification loss
scalar

Classification loss on page 32-6562 that summarizes the accuracy of the first set of class labels (YHat1) predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted average of the misclassification costs, in which the weights are the respective estimated proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss on page 32-6562 that summarizes the accuracy of the second set of class labels (YHat2) predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted average of the costs of misclassification, in which the weights are the respective estimated proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. By conducting a cost-sensitive analysis, you can account for the cost imbalance when you train the classification models and when you statistically compare them.
If the cost of misclassification is imbalanced, then the misclassification rate tends to be a poorly performing classification loss. Use misclassification cost instead to compare classification models.

Misclassification costs are often imbalanced in applications. For example, consider classifying subjects based on a set of predictors into two categories: healthy and sick. Misclassifying a sick subject as healthy poses a danger to the subject's life. However, misclassifying a healthy subject as sick typically causes some inconvenience, but does not pose significant danger. In this situation, you assign misclassification costs such that misclassifying a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

- \(n_{ijk} \) and \(\hat{\pi}_{ijk} \) are the number and estimated proportion of test-sample observations with the following characteristics. \(k \) is the true class, \(i \) is the label assigned by the first classification model, and \(j \) is the label assigned by the second classification model. The unknown true value of \(\hat{\pi}_{ijk} \) is \(\pi_{ijk} \). The test-set sample size is \(\sum_{i,j,k} n_{ijk} = n_{test} \).

 Additionally, \(\sum_{i,j,k} \pi_{ijk} = \sum_{i,j,k} \hat{\pi}_{ijk} = 1 \).

- \(c_{ij} \) is the relative cost of assigning label \(j \) to an observation with true class \(i \). \(c_{ii} = 0 \), \(c_{ij} \geq 0 \), and, for at least one \((i,j)\) pair, \(c_{ij} > 0 \).

- All subscripts take on integer values from 1 through \(K \), which is the number of classes.

- The expected difference in the misclassification costs of the two classification models is

 \[
 \delta = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} (c_{ki} - c_{kj}) \pi_{ijk}.
 \]

- The hypothesis test is

 \[
 H_0 : \delta = 0 \\
 H_1 : \delta \neq 0.
 \]

The available cost-sensitive tests are appropriate for two-tailed testing.
Available asymptotic tests that address imbalanced costs are a chi-square test and a likelihood ratio test.

- **Chi-square test** — The chi-square test statistic is based on the Pearson and Neyman chi-square test statistics, but with a Laplace correction factor to account for any $n_{ijk} = 0$. The test statistic is

$$t^*_\chi^2 = \sum_{i \neq j} \sum_k \frac{\left(n_{ijk} + 1 - \left(n_{\text{test}} + K^3\right)\hat{\pi}_{ijk}^{(1)}\right)^2}{n_{ijk} + 1}.$$

If $1 - F_{\chi^2} \left(t^*_\chi^2; 1\right) < \alpha$, then reject H_0.

- $\hat{\pi}_{ijk}^{(1)}$ are estimated by minimizing $t^*_\chi^2$ under the constraint that $\delta = 0$.

- $F_{\chi^2} (x; 1)$ is the χ^2 cdf with one degree of freedom evaluated at x.

- **Likelihood ratio test** — The likelihood ratio test is based on N_{ijk}, which are binomial random variables with sample size n_{test} and success probability π_{ijk}. The random variables represent the random number of observations with: true class k, label i assigned by the first classification model, and label j assigned by the second classification model. Jointly, the distribution of the random variables is multinomial. The test statistic is

$$t^*_\text{LRT} = 2\log \frac{P \left(\bigcap_{i,j,k} N_{ijk} = n_{ijk}; n_{\text{test}}, \pi_{ijk} = \hat{\pi}_{ijk}^{(2)} \right)}{P \left(\bigcap_{i,j,k} N_{ijk} = n_{ijk}; n_{\text{test}}, \pi_{ijk} = \hat{\pi}_{ijk}^{(3)} \right)}.$$

If $1 - F_{\chi^2} \left(t^*_\text{LRT}; 1\right) < \alpha$, then reject H_0.

- $\hat{\pi}_{ijk}^{(2)} = \frac{n_{ijk}}{n_{\text{test}}}$ is the unrestricted MLE of π_{ijk}.

32-6558
\[
p_{ijk}^{(3)} = \frac{n_{ijk}}{\text{solution of } \theta + \lambda(c_{ki} - c_{kj})}
\]

is the MLE under the null hypothesis that \(\delta = 0 \). \(\lambda \) is the solution to
\[
\sum_{i,j,k} \frac{n_{ijk}(c_{ki} - c_{kj})}{n_{\text{test}} + \lambda(c_{ki} - c_{kj})} = 0.
\]

\[
F_{\chi^2}(x;1) \text{ is the } \chi^2 \text{ cdf with one degree of freedom evaluated at } x.
\]

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1. Partition the data into training and test sets.
2. Train both classification models using the training set.
3. Predict class labels using the test set.
4. Summarize the results in a two-by-two table similar to this figure.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
</tr>
<tr>
<td>Incorrect</td>
<td>(n_{21})</td>
<td>(n_{22})</td>
</tr>
<tr>
<td>(n_{\cdot1})</td>
<td>(n_{\cdot2})</td>
<td>(n_{\text{test}})</td>
</tr>
</tbody>
</table>
\(n_{ij} \) are the number of concordant pairs, that is, the number of observations that both models classify the same way (correctly or incorrectly). \(n_{ij}, i \neq j \), are the number of discordant pairs, that is, the number of observations that models classify differently (correctly or incorrectly).

The misclassification rates for Models 1 and 2 are \(\hat{\pi}_2 = n_{2*}/n \) and \(\hat{\pi}_2 = n_{*2}/n \), respectively. A two-sided test for comparing the accuracy of the two models is

\[
H_0 : \pi_{21} = \pi_{22} \\
H_1 : \pi_{21} \neq \pi_{22}.
\]

The null hypothesis suggests that the population exhibits marginal homogeneity, which reduces the null hypothesis to \(H_0 : \pi_{12} = \pi_{21} \). Also, under the null hypothesis, \(N_{12} \sim \text{Binomial}(n_{12} + n_{21}, 0.5) \) [1].

These facts are the basis for the available McNemar test variants: the asymptotic, exact-conditional, and mid-p-value McNemar tests. The definitions that follow summarize the available variants.

- **Asymptotic** — The asymptotic McNemar test statistics and rejection regions (for significance level \(\alpha \)) are:

 - For one-sided tests, the test statistic is
 \[
 t_{a1}^* = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}}
 \]
 If \(1 - \Phi\left(|t_1^*|\right) < \alpha \), where \(\Phi \) is the standard Gaussian cdf, then reject \(H_0 \).
 - For two-sided tests, the test statistic is
 \[
 t_{a2}^* = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}.
 \]
 If \(1 - F_{\chi^2}(t_2^*; m) < \alpha \), where \(F_{\chi^2}(x;m) \) is the \(\chi_m^2 \) cdf evaluated at \(x \), then reject \(H_0 \).
The asymptotic test requires large-sample theory, specifically, the Gaussian approximation to the binomial distribution.

- The total number of discordant pairs, $n_d = n_{12} + n_{21}$, must be greater than 10 ([1], Ch. 10.1.4).
- In general, asymptotic tests do not guarantee nominal coverage. The observed probability of falsely rejecting the null hypothesis can exceed α, as suggested in simulation studies in [18]. However, the asymptotic McNemar test performs well in terms of statistical power.
- Exact-Conditional — The exact-conditional McNemar test statistics and rejection regions (for significance level α) are ([36], [38]):
 - For one-sided tests, the test statistic is
 $$ t_1^* = n_{12}.$$
 If $F_{Bin}(t_1^*; n_d, 0.5) < \alpha$, where $F_{Bin}(x; n, p)$ is the binomial cdf with sample size n and success probability p evaluated at x, then reject H_0.
 - For two-sided tests, the test statistic is
 $$ t_2^* = \min(n_{12}, n_{21}).$$
 If $F_{Bin}(t_2^*; n_d, 0.5) < \alpha / 2$, then reject H_0.

The exact-conditional test always attains nominal coverage. Simulation studies in [18] suggest that the test is conservative, and then show that the test lacks statistical power compared to other variants. For small or highly discrete test samples, consider using the mid-p-value test ([1], Ch. 3.6.3).

- Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions (for significance level α) are ([32]):
 - For one-sided tests, the test statistic is
 $$ t_1^* = n_{12}.$$
If $F_{\text{Bin}}(t^*_1 - 1; n_{12} + n_{21}, 0.5) + 0.5f_{\text{Bin}}(t^*_1; n_{12} + n_{21}, 0.5) < \alpha$, where $F_{\text{Bin}}(x; n, p)$ and $f_{\text{Bin}}(x; n, p)$ are the binomial cdf and pdf, respectively, with sample size n and success probability p evaluated at x, then reject H_0.

- For two-sided tests, the test statistic is

$$t^*_2 = \min(n_{12}, n_{21}).$$

If $F_{\text{Bin}}(t^*_2 - 1; n_{12} + n_{21} - 1, 0.5) + 0.5f_{\text{Bin}}(t^*_2; n_{12} + n_{21}, 0.5) < \alpha / 2$, then reject H_0.

The mid-p-value test addresses the over-conservative behavior of the exact-conditional test. The simulation studies in [18] demonstrate that this test attains nominal coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. Two classification losses are the misclassification rate and cost.

testcholdout returns the classification losses (see e_1 and e_2) under the alternative hypothesis (that is, the unrestricted classification losses). n_{ijk} is the number of test-sample observations with: true class k, label i assigned by the first classification model, and label j assigned by the second classification model. The corresponding estimated proportion is

$$\hat{\pi}_{ijk} = \frac{n_{ijk}}{n_{test}}. \text{ The test-set sample size is } \sum_{i,j,k} n_{ijk} = n_{test}. \text{ The indices are taken from } 1 \text{ through } K, \text{ the number of classes.}$$

- The misclassification rate, or classification error, is a scalar in the interval $[0,1]$ representing the proportion of misclassified observations. That is, the misclassification rate for the first classification model is

$$e_1 = \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{i \neq k} \hat{\pi}_{ijk}.$$

For the misclassification rate of the second classification model (e_2), switch the indices i and j in the formula.
Classification accuracy decreases as the misclassification rate increases to 1.

- The misclassification cost is a nonnegative scalar that is a measure of classification quality relative to the values of the specified cost matrix. Its interpretation depends on the specified costs of misclassification. The misclassification cost is the weighted average of the costs of misclassification (specified in a cost matrix, C) in which the weights are the respective estimated proportions of misclassified observations. The misclassification cost for the first classification model is

$$e_1 = \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{i \neq k} \hat{p}_{ijk} c_{ki},$$

where c_{kj} is the cost of classifying an observation into class j if its true class is k. For the misclassification cost of the second classification model (e_2), switch the indices i and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as the misclassification cost increases.

Tips

- It is a good practice to obtain predicted class labels by passing any trained classification model and new predictor data to the `predict` method. For example, for predicted labels from an SVM model, see `predict`.

- Cost-sensitive tests perform numerical optimization, which requires additional computational resources. The likelihood ratio test conducts numerical optimization indirectly by finding the root of a Lagrange multiplier in an interval. For some data sets, if the root lies close to the boundaries of the interval, then the method can fail. Therefore, if you have an Optimization Toolbox license, consider conducting the cost-sensitive chi-square test instead. For more details, see `CostTest` and “Cost-Sensitive Testing” on page 32-6556.

References

See Also

testckfold

Topics

“Hypothesis Tests”

Introduced in R2015a
testckfold

Compare accuracies of two classification models by repeated cross validation

testckfold statistically assesses the accuracies of two classification models by repeatedly cross validating the two models, determining the differences in the classification loss, and then formulating the test statistic by combining the classification loss differences. This type of test is particularly appropriate when sample size is limited.

You can assess whether the accuracies of the classification models are different, or whether one classification model performs better than another. Available tests include a 5-by-2 paired t test, a 5-by-2 paired F test, and a 10-by-10 repeated cross-validation t test. For more details, see “Repeated Cross-Validation Tests” on page 32-6587. To speed up computations, testckfold supports parallel computing (requires a Parallel Computing Toolbox license).

Syntax

$h = \text{testckfold}(C1,C2,X1,X2)$
$h = \text{testckfold}(C1,C2,X1,X2,Y)$
$h = \text{testckfold}(\text{___},\text{Name},\text{Value})$
$[h,p,e1,e2] = \text{testckfold}(\text{___})$

Description

$h = \text{testckfold}(C1,C2,X1,X2)$ returns the test decision that results from conducting a 5-by-2 paired F cross-validation test. The null hypothesis is the classification models $C1$ and $C2$ have equal accuracy in predicting the true class labels using the predictor and response data in the tables $X1$ and $X2$. $h = 1$ indicates to reject the null hypothesis at the 5% significance level.

testckfold conducts the cross-validation test by applying $C1$ and $C2$ to all predictor variables in $X1$ and $X2$, respectively. The true class labels in $X1$ and $X2$ must be the same. The response variable names in $X1$, $X2$, $C1$.ResponseName, and $C2$.ResponseName must be the same.

For examples of ways to compare models, see “Tips” on page 32-6591.
h = testckfold(C1,C2,X1,X2,Y) applies the full classification model or classification templates C1 and C2 to all predictor variables in the tables or matrices of data X1 and X2, respectively. Y is the table variable name corresponding to the true class labels, or an array of true class labels.

h = testckfold(___,Name,Value) uses any of the input arguments in the previous syntaxes and additional options specified by one or more Name,Value pair arguments. For example, you can specify the type of alternative hypothesis, the type of test, or the use of parallel computing.

[h,p,e1,e2] = testckfold(___) also returns the p-value for the hypothesis test (p) and the respective classification losses on page 32-6590 for each cross-validation run and fold (e1 and e2).

Examples

Compare Classification Tree Predictor-Selection Algorithms

At each node, fitctree chooses the best predictor to split using an exhaustive search by default. Alternatively, you can choose to split the predictor that shows the most evidence of dependence with the response by conducting curvature tests. This example statistically compares classification trees grown via exhaustive search for the best splits and grown by conducting curvature tests with interaction.

Load the census1994 data set.

load census1994.mat
rng(1) % For reproducibility

Grow a default classification tree using the training set, adultdata, which is a table. The response-variable name is 'salary'.

C1 = fitctree(adultdata,'salary')

C1 =
 ClassificationTree
 PredictorNames: {1x14 cell}
 ResponseName: 'salary'
 CategoricalPredictors: [2 4 6 7 8 9 10 14]
 ClassNames: [<=50K >50K]
C1 is a full ClassificationTree model. Its ResponseName property is 'salary'. C1 uses an exhaustive search to find the best predictor to split on based on maximal splitting gain.

Grow another classification tree using the same data set, but specify to find the best predictor to split using the curvature test with interaction.

$$C2 = \text{fitctree}(\text{adultdata}, 'salary', 'PredictorSelection', 'interaction-curvature')$$

C2 is also a full ClassificationTree model with ResponseName equal to 'salary'.

Conduct a 5-by-2 paired F test to compare the accuracies of the two models using the training set. Because the response-variable names in the data sets and the ResponseName properties are all equal, and the response data in both sets are equal, you can omit supplying the response data.

$$h = \text{testckfold}(C1, C2, \text{adultdata}, \text{adultdata})$$

$$h = \text{logical}$$

$$h = 0$$ indicates to not reject the null hypothesis that C1 and C2 have the same accuracies at 5% level.
Compare Accuracies of Two Different Classification Models

Conduct a statistical test comparing the misclassification rates of the two models using a 5-by-2 paired F test.

Load Fisher's iris data set.

```matlab
load fisheriris;
```

Create a naive Bayes template and a classification tree template using default options.

```matlab
C1 = templateNaiveBayes;
C2 = templateTree;
```

$C1$ and $C2$ are template objects corresponding to the naive Bayes and classification tree algorithms, respectively.

Test whether the two models have equal predictive accuracies. Use the same predictor data for each model. `testckfold` conducts a 5-by-2, two-sided, paired F test by default.

```matlab
rng(1); % For reproducibility
h = testckfold(C1,C2,meas,meas,species)
```

$h = 0$ indicates to not reject the null hypothesis that the two models have equal predictive accuracies.

Compare Classification Accuracies of Simple and Complex Models

Conduct a statistical test to assess whether a simpler model has better accuracy than a more complex model using a 10-by-10 repeated cross-validation t test.

Load Fisher's iris data set. Create a cost matrix that penalizes misclassifying a setosa iris twice as much as misclassifying a virginica iris as a versicolor.
load fisheriris;
tabulate(species)

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
<td>33.33%</td>
</tr>
<tr>
<td>versicolor</td>
<td>50</td>
<td>33.33%</td>
</tr>
<tr>
<td>virginica</td>
<td>50</td>
<td>33.33%</td>
</tr>
</tbody>
</table>

Cost = [0 2 2; 2 0 1; 2 1 0];
ClassNames = {setosa' 'versicolor' 'virginica'};...
% Specifies the order of the rows and columns in Cost

The empirical distribution of the classes is uniform, and the classification cost is slightly imbalanced.

Create two ECOC templates: one that uses linear SVM binary learners and one that uses SVM binary learners equipped with the RBF kernel.

tSVMLinear = templateSVM('Standardize',true); % Linear SVM by default
tSVMRBF = templateSVM('KernelFunction','RBF','Standardize',true);
C1 = templateECOC('Learners',tSVMLinear);
C2 = templateECOC('Learners',tSVMRBF);

C1 and C2 are ECOC template objects. C1 is prepared for linear SVM. C2 is prepared for SVM with an RBF kernel training.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more complex model (C2) in terms of classification costs. Conduct the 10-by-10 repeated cross-validation test. Request to return p-values and misclassification costs.

rng(1); % For reproducibility
[h,p,e1,e2] = testckfold(C1,C2,meas,meas,species,...
 'Alternative','greater','Test','10x10t','Cost',Cost,...
 'ClassNames',ClassNames)

h = logical
 0

p = 0.1077

e1 = 10×10

 0 0 0 0.0667 0 0.0667 0.1333 0 0.1333 0
 0.0667 0.0667 0 0 0 0 0.0667 0 0.0667 0.0667
The p-value is slightly greater than 0.10, which indicates to retain the null hypothesis that
the simpler model is at most as accurate as the more complex model. This result is
consistent for any significance level (Alpha) that is at most 0.10.

e1 and e2 are 10-by-10 matrices containing misclassification costs. Row r corresponds to
run r of the repeated cross validation. Column k corresponds to test-set fold k within a
particular cross-validation run. For example, element (2,4) of e2 is 0.1333. This value
means that in cross-validation run 2, when the test set is fold 4, the estimated test-set
misclassification cost is 0.1333.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the accuracy between the two
models.

Load the ionosphere data set.
load ionosphere;

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire set of predictors. Inspect the importance measure for each predictor.

t = templateTree('MaxNumSplits',1); % Weak-learner template tree object
C = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);
predImp = predictorImportance(C);

figure;
bar(predImp);
h = gca;
h.XTick = 1:2:h.XLim(2);
title('Predictor Importances');
xlabel('Predictor');
ylabel('Importance measure');
Identify the top five predictors in terms of their importance.

```
 [~,idxSort] = sort(predImp,'descend');
 idx5 = idxSort(1:5);
```

Test whether the two models have equal predictive accuracies. Specify the reduced data set and then the full predictor data. Use parallel computing to speed up computations.

```
s = RandStream('mlfg6331_64');
 Options = statset('UseParallel',true,'Streams',s,'UseSubstreams',true);

[h,p,e1,e2] = testckfold(C,C,X(:,idx5),X,Y,'Options',Options)
```

Starting parallel pool (parpool) using the 'local' profile ... connected to 12 workers.
h = logical
 0

p = 0.4161

e1 = 5×2
 0.0686 0.0795
 0.0800 0.0625
 0.0914 0.0568
 0.0400 0.0739
 0.0914 0.0966

e2 = 5×2
 0.0914 0.0625
 0.1257 0.0682
 0.0971 0.0625
 0.0800 0.0909
 0.0914 0.1193

testckfold treats trained classification models as templates, and so it ignores all fitted parameters in C. That is, testckfold cross validates C using only the specified options and the predictor data to estimate the out-of-fold classification losses.

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive accuracies. This result favors the simpler ensemble.

Input Arguments

C1 — Classification model template or trained classification model
classification model template object | trained classification model object

Classification model template or trained classification model, specified as any classification model template object or trained classification model object described in these tables.
<table>
<thead>
<tr>
<th>Template Type</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification tree</td>
<td>templateTree</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>templateDiscriminant</td>
</tr>
<tr>
<td>Ensemble (boosting, bagging, and random subspace)</td>
<td>templateEnsemble</td>
</tr>
<tr>
<td>Error-correcting output codes (ECOC), multiclass classification model</td>
<td>templateECOC</td>
</tr>
<tr>
<td>kNN</td>
<td>templateKNN</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>templateNaiveBayes</td>
</tr>
<tr>
<td>Support Vector Machine (SVM)</td>
<td>templateSVM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trained Model Type</th>
<th>Model Object</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification tree</td>
<td>ClassificationTree</td>
<td>fitctree</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>ClassificationDiscriminant</td>
<td>fitcdiscr</td>
</tr>
<tr>
<td>Ensemble of bagged classification models</td>
<td>ClassificationBaggedEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>Ensemble of classification models</td>
<td>ClassificationEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>ECOC model</td>
<td>ClassificationECOC</td>
<td>fitcecoc</td>
</tr>
<tr>
<td>kNN</td>
<td>ClassificationKNN</td>
<td>fitcknn</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>ClassificationNaiveBayes</td>
<td>fitcnnb</td>
</tr>
<tr>
<td>SVM</td>
<td>ClassificationSVM</td>
<td>fitcsvm</td>
</tr>
</tbody>
</table>

For efficiency, supply a classification model template object instead of a trained classification model object.

C2 — Classification model template or trained model

classification model template object | trained classification model object

Classification model template or trained classification model, specified as any classification model template object or trained classification model object described in these tables.
<table>
<thead>
<tr>
<th>Template Type</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification tree</td>
<td>templateTree</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>templateDiscriminant</td>
</tr>
<tr>
<td>Ensemble (boosting, bagging, and random subspace)</td>
<td>templateEnsemble</td>
</tr>
<tr>
<td>Error-correcting output codes (ECOC), multiclass classification model</td>
<td>templateECOC</td>
</tr>
<tr>
<td>kNN</td>
<td>templateKNN</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>templateNaiveBayes</td>
</tr>
<tr>
<td>Support Vector Machine (SVM)</td>
<td>templateSVM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trained Model Type</th>
<th>Model Object</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification tree</td>
<td>ClassificationTree</td>
<td>fitctree</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>ClassificationDiscriminant</td>
<td>fitcdiscr</td>
</tr>
<tr>
<td>Ensemble of bagged classification models</td>
<td>ClassificationBaggedEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>Ensemble of classification models</td>
<td>ClassificationEnsemble</td>
<td>fitcensemble</td>
</tr>
<tr>
<td>ECOC model</td>
<td>ClassificationECOC</td>
<td>fitceccoc</td>
</tr>
<tr>
<td>kNN</td>
<td>ClassificationKNN</td>
<td>fitcknn</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>ClassificationNaiveBayes</td>
<td>fitcnb</td>
</tr>
<tr>
<td>SVM</td>
<td>ClassificationSVM</td>
<td>fitcsvm</td>
</tr>
</tbody>
</table>

For efficiency, supply a classification model template object instead of a trained classification model object.

X1 — Data used to apply to first full classification model or template
numeric matrix | table

Data used to apply to the first full classification model or template, C1, specified as a numeric matrix or table.

Each row of X1 corresponds to one observation, and each column corresponds to one variable. `testckfold` does not support multi-column variables and cell arrays other than cell arrays of character vectors.
X1 and X2 must be of the same data type, and X1, X2, Y must have the same number of observations.

If you specify Y as an array, then testckfold treats all columns of X1 as separate predictor variables.

Data Types: double | single | table

X2 — Data used to apply to second full classification model or template
numeric matrix | table

Data used to apply to the second full classification model or template, C2, specified as a numeric matrix or table.

Each row of X2 corresponds to one observation, and each column corresponds to one variable. testckfold does not support multi-column variables and cell arrays other than cell arrays of character vectors.

X1 and X2 must be of the same data type, and X1, X2, Y must have the same number of observations.

If you specify Y as an array, then testckfold treats all columns of X2 as separate predictor variables.

Data Types: double | single | table

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors | character vector | string scalar

True class labels, specified as a categorical, character, or string array, a logical or numeric vector, a cell array of character vectors, or a character vector or string scalar.

- For a character vector or string scalar, X1 and X2 must be tables, their response variables must have the same name and values, and Y must be the common variable name. For example, if X1.Labels and X2.Labels are the response variables, then Y is 'Labels' and X1.Labels and X2.Labels must be equivalent.
- For all other supported data types, Y is an array of true class labels.
 - If Y is a character array, then each element must correspond to one row of the array.
 - X1, X2, Y must have the same number of observations (rows).
• If both of these statements are true, then you can omit supplying Y.
 • X1 and X2 are tables containing the same response variable (values and name).
 • C1 and C2 are full classification models containing ResponseName properties specifying the response variable names in X1 and X2.

Consequently, testckfold uses the common response variable in the tables. For example, if the response variables in the tables are X1.Labels and X2.Labels, and the values of C1.ResponseName and C2.ResponseName are 'Labels', then you do not have to supply Y.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:
'Alternative','greater','Test','10x10t','Options',statsset('UseParallel',true) specifies to test whether the first set of first predicted class labels is more accurate than the second set, to conduct the 10-by-10 t test, and to use parallel computing for cross validation.

Alpha — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

Alternative — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of 'Alternative' and one of the values listed in the table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Alternative Hypothesis Description</th>
<th>Supported Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>'unequal' (default)</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 and C2 applied to X2 have unequal accuracies.</td>
<td>'5x2F', '5x2t', and '10x10t'</td>
</tr>
<tr>
<td>'greater'</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 is more accurate than C2 applied to X2.</td>
<td>'5x2t' and '10x10t'</td>
</tr>
<tr>
<td>'less'</td>
<td>For predicting Y, the set of predictions resulting from C1 applied to X1 is less accurate than C2 applied to X2.</td>
<td>'5x2t' and '10x10t'</td>
</tr>
</tbody>
</table>

For details on supported tests, see Test.

Example: 'Alternative', 'greater'

X1CategoricalPredictors — Flag identifying categorical predictors

[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the first test-set predictor data (X1), specified as the comma-separated pair consisting of 'X1CategoricalPredictors' and one of the following:

- A numeric vector with indices from 1 through p, where p is the number of columns of X1.
- A logical vector of length p, where a true entry means that the corresponding column of X1 is a categorical variable.
- 'all', meaning all predictors are categorical.

Specification of X1CategoricalPredictors is appropriate if:

- At least one predictor is categorical and C1 is a classification tree, an ensemble of classification trees, an ECOC model, or a naive Bayes classification model.
- All predictors are categorical and C1 is a kNN classification model.

If you specify X1CategoricalPredictors for any other case, then testckfold throws an error. For example, the function cannot train SVM learners using categorical predictors.
The default is [], which indicates that there are no categorical predictors.

Example: 'X1CategoricalPredictors','all'

Data Types: single | double | logical | char | string

X2CategoricalPredictors — Flag identifying categorical predictors

[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the second test-set predictor data (X2), specified as the comma-separated pair consisting of 'X2CategoricalPredictors' and one of the following:

- A numeric vector with indices from 1 through p, where p is the number of columns of X2.
- A logical vector of length p, where a true entry means that the corresponding column of X2 is a categorical variable.
- 'all', meaning all predictors are categorical.

Specification of X2CategoricalPredictors is appropriate if:

- At least one predictor is categorical and C2 is a classification tree, an ensemble of classification trees, an ECOC model, or a naive Bayes classification model.
- All predictors are categorical and C2 is a kNN classification model.

If you specify X2CategoricalPredictors for any other case, then testckfold throws an error. For example, the function cannot train SVM learners using categorical predictors.

The default is [], which indicates that there are no categorical predictors.

Example: 'X2CategoricalPredictors','all'

Data Types: single | double | logical | char | string

ClassNames — Class names

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. You must set ClassNames using the data type of Y.
If `ClassNames` is a character array, then each element must correspond to one row of the array.

Use `ClassNames` to:

- Specify the order of any input argument dimension that corresponds to class order. For example, use `ClassNames` to specify the order of the dimensions of `Cost`.
- Select a subset of classes for testing. For example, suppose that the set of all distinct class names in `Y` is `{'a','b','c'}`. To train and test models using observations from classes 'a' and 'c' only, specify `ClassNames',{'a','c'}`.

The default is the set of all distinct class names in `Y`.

Example: 'ClassNames',{'b','g'}

Data Types: `single` | `double` | `logical` | `char` | `string` | `cell` | `categorical`

Cost — Classification cost

square matrix | structure array

Classification cost, specified as the comma-separated pair consisting of `'Cost'` and a square matrix or structure array.

- If you specify the square matrix `Cost`, then `Cost(i,j)` is the cost of classifying a point into class `j` if its true class is `i`. That is, the rows correspond to the true class and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of `Cost`, additionally specify the `ClassNames` name-value pair argument.
- If you specify the structure `S`, then `S` must have two fields:
 - `S.ClassNames`, which contains the class names as a variable of the same data type as `Y`. You can use this field to specify the order of the classes.
 - `S.ClassificationCosts`, which contains the cost matrix, with rows and columns ordered as in `S.ClassNames`.

For cost-sensitive testing use, `testcholdout`.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is `Cost(i,j) = 1` if `i ~= j`, and `Cost(i,j) = 0` if `i = j`.

Example: `'Cost',[0 1 2; 1 0 2; 2 2 0]`
Data Types: double | single | struct

LossFun — Loss function

'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'classiferror', 'binodeviance', 'exponential', 'hinge', or a function handle.

- The following table lists the available loss functions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential loss</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge loss</td>
</tr>
</tbody>
</table>

- Specify your own function using function handle notation.

Suppose that \(n = \text{size}(X,1) \) is the sample size and there are \(K \) unique classes. Your function must have the signature \(\text{lossvalue} = \text{lossfun}(C,S,W,Cost) \), where:

- The output argument \(\text{lossvalue} \) is a scalar.
- \(\text{lossfun} \) is the name of your function.
- \(C \) is an \(n \)-by-\(K \) logical matrix with rows indicating which class the corresponding observation belongs to. The column order corresponds to the class order in the ClassNames name-value pair argument.

Construct \(C \) by setting \(C(p,q) = 1 \) if observation \(p \) is in class \(q \), for each row. Set all other elements of row \(p \) to 0.

- \(S \) is an \(n \)-by-\(K \) numeric matrix of classification scores. The column order corresponds to the class order in the ClassNames name-value pair argument. \(S \) is a matrix of classification scores.
- \(W \) is an \(n \)-by-1 numeric vector of observation weights. If you pass \(W \), the software normalizes the weights to sum to 1.
- \(\text{Cost} \) is a \(K \)-by-\(K \) numeric matrix of classification costs. For example, \(\text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification and a cost of 1 for misclassification.
Specify your function using 'LossFun', @lossfun.

Options — Parallel computing options

| [] (default) | structure array returned by statset |

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a structure array returned by statset. These options require Parallel Computing Toolbox. testckfold uses 'Streams', 'UseParallel', and 'UseSubstreams' fields.

This table summarizes the available options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Streams'</td>
<td>A RandStream object or cell array of such objects. If you do not specify Streams, the software uses the default stream or streams. If you specify Streams, use a single object except when the following are true:</td>
</tr>
<tr>
<td></td>
<td>• You have an open parallel pool.</td>
</tr>
<tr>
<td></td>
<td>• UseParallel is true.</td>
</tr>
<tr>
<td></td>
<td>• UseSubstreams is false.</td>
</tr>
<tr>
<td></td>
<td>In that case, use a cell array of the same size as the parallel pool. If a parallel pool is not open, then the software tries to open one (depending on your preferences), and Streams must supply a single random number stream.</td>
</tr>
<tr>
<td>'UseParallel'</td>
<td>If you have Parallel Computing Toolbox, then you can invoke a pool of workers by setting 'UseParallel', true.</td>
</tr>
<tr>
<td>'UseSubstreams'</td>
<td>Set to true to compute in parallel using the stream specified by 'Streams'. Default is false. For example, set Streams to a type allowing substreams, such as 'mlfg6331_64' or 'mrg32k3a'.</td>
</tr>
</tbody>
</table>
A best practice to ensure more predictable results is to use `parpool` and explicitly create a parallel pool before you invoke parallel computing using `testckfold`.

Example: 'Options', statset('UseParallel', true)

Data Types: struct

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and 'empirical', 'uniform', a numeric vector, or a structure.

This table summarizes the available options for setting prior probabilities.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to $1/K$, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Specify the order using the <code>ClassNames</code> name-value pair argument. The software normalizes the elements such that they sum to 1.</td>
</tr>
<tr>
<td>structure</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• S.ClassProbs contains a vector of corresponding prior probabilities. The software normalizes the elements such that they sum to 1.</td>
</tr>
</tbody>
</table>

Example: 'Prior', struct('ClassNames',
{(setosa,'versicolor')},'ClassProbs',[1,2])

Data Types: char | string | single | double | struct
Test — Test to conduct

'5x2F' (default) | '5x2t' | '10x10t'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and one of the following: '5x2F', '5x2t', '10x10t'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Supported Alternative Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>'5x2F' (default)</td>
<td>5-by-2 paired F test. Appropriate for two-sided testing only.</td>
<td>'unequal'</td>
</tr>
<tr>
<td>'5x2t'</td>
<td>5-by-2 paired t test</td>
<td>'unequal', 'less', 'greater'</td>
</tr>
<tr>
<td>'10x10t'</td>
<td>10-by-10 repeated cross validation t test</td>
<td>'unequal', 'less', 'greater'</td>
</tr>
</tbody>
</table>

For details on the available tests, see “Repeated Cross-Validation Tests” on page 32-6587. For details on supported alternative hypotheses, see Alternative.

Example: 'Test','10x10t'

Verbose — Verbosity level

0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. Verbosity controls the amount of diagnostic information that the software displays in the Command Window during training of each cross-validation fold.

This table summarizes the available verbosity level options.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The software does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td>The software displays diagnostic messages every time it implements a new cross validation run.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>The software displays diagnostic messages every time it implements a new cross validation run, and every time it trains on a particular fold.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: double | single

Weights — Observation weights

`ones(size(X,1),1) (default)` | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector.

The size of Weights must equal the number of rows of X. The software weighs the observations in each row of X with the corresponding weight in Weights.

The software normalizes Weights to sum up to the value of the prior probability in the respective class.

Data Types: double | single

Notes:

- `testckfold` treats trained classification models as templates. Therefore, it ignores all fitted parameters in the model. That is, `testckfold` cross validates using only the options specified in the model and the predictor data.

- The repeated cross-validation tests depend on the assumption that the test statistics are asymptotically normal under the null hypothesis. Highly imbalanced cost matrices (for example, `Cost = [0 100; 1 0]`) and highly discrete response distributions (that is, most of the observations are in a small number of classes) might violate the asymptotic normality assumption. For cost-sensitive testing, use `testcholdout`.

- NaNs, `<undefined>` values, empty character vectors (''), empty strings (""), and `<missing>` values indicate missing data values.

- For the treatment of missing values in X1 and X2, see the appropriate classification model training function reference page: `fitctree`, `fitcdiscr`, `fitcensemble`, `fitcecoc`, `fitcknn`, `fitcnb`, or `fitcsvm.`
testckfold removes missing values in \(Y \) and the corresponding rows of \(X1 \) and \(X2 \).

Output Arguments

\(h \) — Hypothesis test result

| 1 | 0 |

Hypothesis test result, returned as a logical value.

- \(h = 1 \) indicates the rejection of the null hypothesis at the \texttt{Alpha} significance level.
- \(h = 0 \) indicates failure to reject the null hypothesis at the \texttt{Alpha} significance level.

Data Types: logical

\(p \) — \(p \)-value

Scalar in the interval \([0,1]\)

\(p \)-value of the test, returned as a scalar in the interval \([0,1]\). \(p \) is the probability that a random test statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.

\texttt{testckfold} estimates \(p \) using the distribution of the test statistic, which varies with the type of test. For details on test statistics, see “Repeated Cross-Validation Tests” on page 32-6587.

\(e1 \) — Classification losses

Numeric matrix

Classification losses on page 32-6590, returned as a numeric matrix. The rows of \(e1 \) correspond to the cross-validation run and the columns correspond to the test fold.

\texttt{testckfold} applies the first test-set predictor data (\(X1 \)) to the first classification model (\(C1 \)) to estimate the first set of class labels.

\(e1 \) summarizes the accuracy of the first set of class labels predicting the true class labels (\(Y \)) for each cross-validation run and fold. The meaning of the elements of \(e1 \) depends on the type of classification loss.
e2 — Classification losses
numeric matrix

Classification losses on page 32-6590, returned as a numeric matrix. The rows of e2 correspond to the cross-validation run and the columns correspond to the test fold.

testckfold applies the second test-set predictor data (X2) to the second classification model (C2) to estimate the second set of class labels.

e2 summarizes the accuracy of the second set of class labels predicting the true class labels (Y) for each cross-validation run and fold. The meaning of the elements of e2 depends on the type of classification loss.

Definitions

Repeated Cross-Validation Tests

Repeated cross-validation tests form the test statistic for comparing the accuracies of two classification models by combining the classification loss differences resulting from repeatedly cross validating the data. Repeated cross-validation tests are useful when sample size is limited.

To conduct an R-by-K test:

1. Randomly divide (stratified by class) the predictor data sets and true class labels into K sets, R times. Each division is called a run and each set within a run is called a fold. Each run contains the complete, but divided, data sets.

2. For runs $r = 1$ through R, repeat these steps for $k = 1$ through K:

 a. Reserve fold k as a test set, and train the two classification models using their respective predictor data sets on the remaining $K - 1$ folds.

 b. Predict class labels using the trained models and their respective fold k predictor data sets.

 c. Estimate the classification loss by comparing the two sets of estimated labels to the true labels. Denote e_{crk} as the classification loss when the test set is fold k in run r of classification model c.

 d. Compute the difference between the classification losses of the two models:
\[\hat{\delta}_{rk} = e_{1rk} - e_{2rk}. \]

At the end of a run, there are \(K \) classification losses per classification model.

3. Combine the results of step 2. For each \(r = 1 \) through \(R \):

- Estimate the within-fold averages of the differences and their average:

\[\bar{\delta}_r = \frac{1}{K} \sum_{k=1}^{K} \hat{\delta}_{kr}. \]

- Estimate the overall average of the differences:

\[\bar{\delta} = \frac{1}{KR} \sum_{r=1}^{R} \sum_{k=1}^{K} \hat{\delta}_{rk}. \]

- Estimate the within-fold variances of the differences:

\[s_r^2 = \frac{1}{K} \sum_{k=1}^{K} \left(\hat{\delta}_{rk} - \bar{\delta}_r \right)^2. \]

- Estimate the average of the within-fold differences:

\[s^2 = \frac{1}{R} \sum_{r=1}^{R} s_r^2. \]

- Estimate the overall sample variance of the differences:

\[S^2 = \frac{1}{KR-1} \sum_{r=1}^{R} \sum_{k=1}^{K} \left(\hat{\delta}_{rk} - \bar{\delta} \right)^2. \]

Compute the test statistic. All supported tests described here assume that, under \(H_0 \), the estimated differences are independent and approximately normally distributed, with mean 0 and a finite, common standard deviation. However, these tests violate the independence assumption, and so the test-statistic distributions are approximate.

- For \(R = 2 \), the test is a paired test. The two supported tests are a paired \(t \) and \(F \) test.

 - The test statistic for the paired \(t \) test is

\[t_{\text{paired}}^* = \frac{\hat{\delta}_{11}}{\sqrt{s^2}}. \]
\(t_{\text{paired}}^* \) has a \(t \)-distribution with \(R \) degrees of freedom under the null hypothesis.

To reduce the effects of correlation between the estimated differences, the quantity \(\hat{\delta}_{11} \) occupies the numerator rather than \(\bar{\delta} \).

5-by-2 paired \(t \) tests can be slightly conservative [4].

• The test statistic for the paired \(F \) test is

\[
F_{\text{paired}}^* = \frac{1}{R K} \sum_{r=1}^{R} \sum_{k=1}^{K} (\hat{\delta}_{rk})^2
\]

\(F_{\text{paired}}^* \) has an \(F \) distribution with \(R K \) and \(R \) degrees of freedom.

A 5-by-2 paired \(F \) test has comparable power to the 5-by-2 \(t \) test, but is more conservative [1].

• For \(R > 2 \), the test is a repeated cross-validation test. The test statistic is

\[
t_{\text{CV}}^* = \frac{\bar{\delta}}{S/\sqrt{\nu + 1}}.
\]

\(t_{\text{CV}}^* \) has a \(t \) distribution with \(\nu \) degrees of freedom. If the differences were truly independent, then \(\nu = R K - 1 \). In this case, the degrees of freedom parameter must be optimized.

For a 10-by-10 repeated cross-validation \(t \) test, the optimal degrees of freedom between 8 and 11 ([2] and [3]). \texttt{testckfold} uses \(\nu = 10 \).

The advantage of repeated cross validation tests over paired tests is that the results are more repeatable [3]. The disadvantage is that they require high computational resources.
Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. In general, for a fixed cost matrix, classification accuracy decreases as classification loss increases.

`testckfold` returns the classification losses (see `e1` and `e2`) under the alternative hypothesis (that is, the unrestricted classification losses). In the definitions that follow:

- The classification losses focus on the first classification model. The classification losses for the second model are similar.
- `n_{test}` is the test-set sample size.
- `I(x)` is the indicator function. If `x` is a true statement, then `I(x) = 1`. Otherwise, `I(x) = 0`.
- \(\hat{p}_{1j} \) is the predicted class assignment of classification model 1 for observation \(j \).
- \(y_j \) is the true class label of observation \(j \).
- Binomial deviance has the form

\[
e_1 = \frac{\sum_{j=1}^{n_{test}} w_j \log \left(1 + \exp \left(-2y_j f(X_j) \right) \right)}{\sum_{j=1}^{n_{test}} w_j}
\]

where:

- \(y_j = 1 \) for the positive class and \(-1\) for the negative class.
- \(f(X_j) \) is the classification score.

The binomial deviance has connections to the maximization of the binomial likelihood function. For details on binomial deviance, see [5].

- Exponential loss is similar to binomial deviance and has the form
\[e_1 = \frac{\sum_{j=1}^{n_{\text{test}}} w_j \exp(-y_j f(X_j))}{\sum_{j=1}^{n_{\text{test}}} w_j}. \]

\(y_j \) and \(f(X_j) \) take the same forms here as in the binomial deviance formula.

- Hinge loss has the form

\[e_1 = \frac{\sum_{j=1}^{n} w_j \max\{0,1 - y_j f(X_j)\}}{\sum_{j=1}^{n} w_j}, \]

\(y_j \) and \(f(X_j) \) take the same forms here as in the binomial deviance formula.

Hinge loss linearly penalizes for misclassified observations and is related to the SVM objective function used for optimization. For more details on hinge loss, see [5].

- Misclassification rate, or classification error, is a scalar in the interval \([0,1]\) representing the proportion of misclassified observations. That is, the misclassification rate for the first classification model is

\[e_1 = \frac{\sum_{j=1}^{n_{\text{test}}} w_j I(p_{1j} \neq y_j)}{\sum_{j=1}^{n_{\text{test}}} w_j}. \]

Tips

- Examples of ways to compare models include:
• Compare the accuracies of a simple classification model and a more complex model by passing the same set of predictor data.

• Compare the accuracies of two different models using two different sets of predictors.

• Perform various types of feature selection. For example, you can compare the accuracy of a model trained using a set of predictors to the accuracy of one trained on a subset or different set of predictors. You can arbitrarily choose the set of predictors, or use a feature selection technique like PCA or sequential feature selection (see pca and sequentialfs).

• If both of these statements are true, then you can omit supplying Y.

• X1 and X2 are tables containing the response variable and use the same response variable name.

• C1 and C2 are full classification models containing equal ResponseName properties (e.g. strcmp(C1.ResponseName,C2.ResponseName) = 1).

Consequently, testckfold uses the common response variable in the tables.

• One way to perform cost-insensitive feature selection is:

1 Create a classification model template that characterizes the first classification model (C1).

2 Create a classification model template that characterizes the second classification model (C2).

3 Specify two predictor data sets. For example, specify X1 as the full predictor set and X2 as a reduced set.

4 Enter testckfold(C1,C2,X1,X2,Y,'Alternative','less'). If testckfold returns 1, then there is enough evidence to suggest that the classification model that uses fewer predictors performs better than the model that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between the accuracies of the two models. To perform this assessment, remove the 'Alternative','less' specification in step 4. testckfold conducts a two-sided test, and h = 0 indicates that there is not enough evidence to suggest a difference in the accuracy of the two models.

• The tests are appropriate for the misclassification rate classification loss on page 32-6590, but you can specify other loss functions (see LossFun). The key assumptions are that the estimated classification losses are independent and normally distributed.
with mean 0 and finite common variance under the two-sided null hypothesis. Classification losses other than the misclassification rate can violate this assumption.

- Highly discrete data, imbalanced classes, and highly imbalanced cost matrices can violate the normality assumption of classification loss differences.

Algorithms

If you specify to conduct the 10-by-10 repeated cross-validation \(t \) test using 'Test', '10x10t', then \texttt{testckfold} uses 10 degrees of freedom for the \(t \) distribution to find the critical region and estimate the \(p \)-value. For more details, see [2] and [3].

Alternatives

Use \texttt{testcholdout}:

- For test sets with larger sample sizes
- To implement variants of the McNemar test to compare two classification model accuracies
- For cost-sensitive testing using a chi-square or likelihood ratio test. The chi-square test uses \texttt{quadprog}, which requires an Optimization Toolbox license.

References

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

See Also

templateDiscriminant | templateECOC | templateEnsemble | templateKNN | templateNaiveBayes | templateSVM | templateTree | testcholdout

Topics

“Hypothesis Tests”

Introduced in R2015a
TestSize property

Class: cvpartition

Size of each test set

Description

Value is a vector in partitions of type 'kfold' and 'leaveout'. Value is a scalar in partitions of type 'holdout' and 'resubstitution'.
tiedrank

Rank adjusted for ties

Syntax

```matlab
[R,TIEADJ] = tiedrank(X)
[R,TIEADJ] = tiedrank(X,1)
[R,TIEADJ] = tiedrank(X,0,1)
```

Description

[R,TIEADJ] = tiedrank(X) computes the ranks of the values in the vector X. If any X values are tied, tiedrank computes their average rank. The return value TIEADJ is an adjustment for ties required by the nonparametric tests signrank and ranksum, and for the computation of Spearman’s rank correlation.

[R,TIEADJ] = tiedrank(X,1) computes the ranks of the values in the vector X. TIEADJ is a vector of three adjustments for ties required in the computation of Kendall’s tau. tiedrank(X,0) is the same as tiedrank(X).

[R,TIEADJ] = tiedrank(X,0,1) computes the ranks from each end, so that the smallest and largest values get rank 1, the next smallest and largest get rank 2, etc. These ranks are used in the Ansari-Bradley test.

Examples

Counting from smallest to largest, the two 20 values are 2nd and 3rd, so they both get rank 2.5 (average of 2 and 3):

```matlab
tiedrank([10 20 30 40 20])
an =
   1.0000    2.5000    4.0000    5.0000    2.5000```
Algorithms

`tiedrank` treats NaNs in `X` as missing values and ignores them. The rank of NaNs in the output argument `R` is NaN.

See Also

`ansaribradley` | `corr` | `partialcorr` | `ranksum` | `signrank`

Introduced before R2006a
**tinv**

Student's $t$ inverse cumulative distribution function

**Syntax**

$x = \text{tinv}(p, \nu)$

**Description**

$x = \text{tinv}(p, \nu)$ returns the inverse of Student's $t$ cdf using the degrees of freedom in $\nu$ for the corresponding probabilities in $p$. $p$ and $\nu$ can be vectors, matrices, or multidimensional arrays that are the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The values in $p$ must lie on the interval $[0 1]$.

The $t$ inverse function in terms of the $t$ cdf is

$$x = F^{-1}(p \mid \nu) = \{x : F(x \mid \nu) = p\}$$

where

$$p = F(x \mid \nu) = \int_{-\infty}^{x} \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{\sqrt{1 + \frac{t^2}{\nu}}} \frac{1}{\left(\frac{t^2}{\nu} + 1\right)^{\frac{\nu + 1}{2}}} dt$$

The result, $x$, is the solution of the cdf integral with parameter $\nu$, where you supply the desired probability $p$.

**Examples**
Compute Student's t icdf

What is the 99th percentile of the Student's t distribution for one to six degrees of freedom?

percentile = tinv(0.99,1:6)

percentile = 1×6


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
icdf | tcdf | tpdf | trnd | tstat

Topics
“Student's t Distribution” on page B-158

Introduced before R2006a
tpdf

Student's $t$ probability density function

Syntax

$y = \text{tpdf}(x, \nu)$

Description

$y = \text{tpdf}(x, \nu)$ returns the probability density function (pdf) of the Student's $t$ distribution at each of the values in $x$ using the corresponding degrees of freedom in $\nu$. $x$ and $\nu$ can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

Examples

Compute Student's $t$ pdf

The mode of the Student's $t$ distribution is at $x = 0$. This example shows that the value of the function at the mode is an increasing function of the degrees of freedom.

$\text{tpdf}(0, 1:6)$

ans = 1x6

0.3183  0.3536  0.3676  0.3750  0.3796  0.3827

The $t$ distribution converges to the standard normal distribution as the degrees of freedom approaches infinity. How good is the approximation for $\nu$ equal to 30?

difference = $\text{tpdf}(-2.5:2.5, 30) - \text{normpdf}(-2.5:2.5)$

32-6600
difference = 1×6

0.0035   -0.0006   -0.0042   -0.0042   -0.0006    0.0035

Definitions

Student's t pdf

The probability density function (pdf) of the Student's t distribution is

\[
y = f(x \mid \nu) = \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu\pi}} \frac{1}{\left(1 + \frac{x^2}{\nu}\right)^{\frac{\nu+1}{2}}}
\]

where \( \nu \) is the degrees of freedom and \( \Gamma( \cdot ) \) is the Gamma function. The result \( y \) is the probability of observing a particular value of \( x \) from a Student's t distribution with \( \nu \) degrees of freedom.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

32-6601
See Also
pdf | tcdf | tinv | trnd | tstat

Topics
“Student's t Distribution” on page B-158

Introduced before R2006a
**training**

**Class:** cvpartition

Training indices for cross-validation

**Syntax**

```matlab
idx = training(c)
idx = training(c,i)
```

**Description**

`idx = training(c)` returns the logical vector `idx` of training indices for an object `c` of the `cvpartition` class of type 'holdout' or 'resubstitution'.

If `c.Type` is 'holdout', `idx` specifies the observations in the training set.

If `c.Type` is 'resubstitution', `idx` specifies all observations.

`idx = training(c,i)` returns the logical vector `idx` of training indices for repetition `i` of an object `c` of the `cvpartition` class of type 'kfold' or 'leaveout'.

If `c.Type` is 'kfold', `idx` specifies the observations in the training set in fold `i`.

If `c.Type` is 'leaveout', `idx` specifies the observations left in at repetition `i`.

**Examples**

Identify the training indices in the first fold of a partition of 10 observations for 3-fold cross-validation:

```matlab
c = cvpartition(10,'kfold',3)
c = K-fold cross validation partition
```
N: 10
NumTestSets: 3
TrainSize: 7 6 7
TestSize: 3 4 3

training(c,1)
an =
  0
  0
  1
  1
  1
  1
  1
  1
  0
  1

See Also

  cvpartition | test
TrainSize property

Class: cvpartition

Size of each training set

Description

Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and 'resubstitution'.

See Also

type
transform

Transform predictors into extracted features

Syntax

\[ z = \text{transform}(\text{Mdl}, x) \]

Description

\[ z = \text{transform}(\text{Mdl}, x) \] transforms the data \( x \) into the features \( z \) via the model \( \text{Mdl} \).

Examples

Transform Data to Learned Features

Create a feature transformation model with 100 features from the \textit{caltech101patches} data.

```matlab
rng default % For reproducibility
data = load('caltech101patches');
q = 100;
X = data.X;
Mdl = sparsefilt(X,q)
```

Warning: Solver LBFGS was not able to converge to a solution.

\[ Mdl = \text{SparseFiltering} \]

\begin{verbatim}
   ModelParameters: [1x1 struct]
   NumPredictors: 363
   NumLearnedFeatures: 100
   Mu: []
   Sigma: []
   FitInfo: [1x1 struct]
   TransformWeights: [363x100 double]
\end{verbatim}
sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of reaching a step-size limit or a gradient-size limit. You can still use the learned features in the returned object by calling the transform function.

Transform the first five rows of the input data X to the new feature space.

```matlab
y = transform(Mdl,X(1:5,:));
size(y)
ans =
 5 100
```

**Input Arguments**

**Mdl — Feature extraction model**
SparseFiltering object | ReconstructionICA object

Feature extraction model, specified as a SparseFiltering object or as a ReconstructionICA object. Create Mdl by using the sparsefilt function or the rica function.

**x — Predictor data**
matrix with p columns | table of numeric values with p columns

Predictor data, specified as a matrix with p columns or as a table of numeric values with p columns. Here, p is the number of predictors in the model, which is Mdl.NumPredictors. Each row of the input matrix or table represents one data point to transform.

Data Types: single | double | table
Output Arguments

z — Transformed data
n-by-q matrix

Transformed data, returned as an n-by-q matrix. Here, n is the number of rows in the input data \( x \), and q is the number of features, which is \( Mdl.NumLearnedFeatures \).

Algorithms

transform converts data to predicted features by using the learned weight matrix \( W \) to map input predictors to output features.

- For rica, input data \( X \) maps linearly to output features \( XW \). See “Reconstruction ICA Algorithm” on page 15-162.
- For sparsefilt, input data maps nonlinearly to output features \( \hat{F}(X,W) \). See “Sparse Filtering Algorithm” on page 15-159.

**Caution** The result of transform for sparse filtering depends on the number of data points. In particular, the result of applying transform to each row of a matrix separately differs from the result of applying transform to the entire matrix at once.

See Also

ReconstructionICA | SparseFiltering | rica | sparsefilt

Topics

“Feature Extraction Workflow” on page 15-165
“Feature Extraction” on page 15-159

Introduced in R2017a
**TreeBagger class**

Bag of decision trees

**Description**

TreeBagger bags an ensemble of decision trees for either classification or regression. Bagging stands for bootstrap aggregation. Every tree in the ensemble is grown on an independently drawn bootstrap replica of input data. Observations not included in this replica are "out of bag" for this tree.

TreeBagger relies on the ClassificationTree and RegressionTree functionality for growing individual trees. In particular, ClassificationTree and RegressionTree accepts the number of features selected at random for each decision split as an optional input argument. That is, TreeBagger implements the random forest algorithm [1].

For regression problems, TreeBagger supports mean and quantile regression (that is, quantile regression forest [2]).

- To predict mean responses or estimate the mean-squared error given data, pass a TreeBagger model and the data to predict or error, respectively. To perform similar operations for out-of-bag observations, use oobPredict or oobError.
- To estimate quantiles of the response distribution or the quantile error given data, pass a TreeBagger model and the data to quantilePredict or quantileError, respectively. To perform similar operations for out-of-bag observations, use oobQuantilePredict or oobError.

**Construction**

TreeBagger Create bag of decision trees
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>append</td>
<td>Append new trees to ensemble</td>
</tr>
<tr>
<td>compact</td>
<td>Compact ensemble of decision trees</td>
</tr>
<tr>
<td>error</td>
<td>Error (misclassification probability or MSE)</td>
</tr>
<tr>
<td>fillprox</td>
<td>Proximity matrix for training data</td>
</tr>
<tr>
<td>growTrees</td>
<td>Train additional trees and add to ensemble</td>
</tr>
<tr>
<td>margin</td>
<td>Classification margin</td>
</tr>
<tr>
<td>mdsprox</td>
<td>Multidimensional scaling of proximity matrix</td>
</tr>
<tr>
<td>meanMargin</td>
<td>Mean classification margin</td>
</tr>
<tr>
<td>oobError</td>
<td>Out-of-bag error</td>
</tr>
<tr>
<td>oobMargin</td>
<td>Out-of-bag margins</td>
</tr>
<tr>
<td>oobMeanMargin</td>
<td>Out-of-bag mean margins</td>
</tr>
<tr>
<td>oobPredict</td>
<td>Ensemble predictions for out-of-bag observations</td>
</tr>
<tr>
<td>oobQuantileError</td>
<td>Out-of-bag quantile loss of bag of regression trees</td>
</tr>
<tr>
<td>oobQuantilePredict</td>
<td>Quantile predictions for out-of-bag observations from bag of regression trees</td>
</tr>
<tr>
<td>predict</td>
<td>Predict responses using ensemble of bagged decision trees</td>
</tr>
<tr>
<td>quantileError</td>
<td>Quantile loss using bag of regression trees</td>
</tr>
<tr>
<td>quantilePredict</td>
<td>Predict response quantile using bag of regression trees</td>
</tr>
</tbody>
</table>

### Properties

**ClassNames**

A cell array containing the class names for the response variable Y. This property is empty for regression trees.

**ComputeOOBPrediction**

A logical flag specifying whether out-of-bag predictions for training observations should be computed. The default is `false`.

If this flag is `true`, the following properties are available:
• OOBIndices
• OOBInstanceWeight

If this flag is true, the following methods can be called:

• oobError
• oobMargin
• oobMeanMargin

**ComputeOOBPredictorImportance**

A logical flag specifying whether out-of-bag estimates of variable importance should be computed. The default is false. If this flag is true, then ComputeOOBPrediction is true as well.

If this flag is true, the following properties are available:

• OOBPermutedPredictorDeltaError
• OOBPermutedPredictorDeltaMeanMargin
• OOBPermutedPredictorCountRaiseMargin

**Cost**

Square matrix, where \( \text{Cost}(i, j) \) is the cost of classifying a point into class \( j \) if its true class is \( i \) (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of \( \text{Cost} \) corresponds to the order of the classes in \( \text{ClassNames} \). The number of rows and columns in \( \text{Cost} \) is the number of unique classes in the response.

This property is:

• read-only
• empty ([ ]) for ensembles of regression trees

**DefaultYfit**

Default value returned by predict and oobPredict. The DefaultYfit property controls what predicted value is returned when no prediction is possible. For example, when oobPredict needs to predict for an observation that is in-bag for all trees in the ensemble.
• For classification, you can set this property to either '' or 'MostPopular'. If you choose 'MostPopular' (the default), the property value becomes the name of the most probably class in the training data. If you choose '', the in-bag observations are excluded from computation of the out-of-bag error and margin.

• For regression, you can set this property to any numeric scalar. The default value is the mean of the response for the training data. If you set this property to NaN, the in-bag observations are excluded from computation of the out-of-bag error and margin.

**DeltaCriterionDecisionSplit**

A numeric array of size 1-by-Nvars of changes in the split criterion summed over splits on each variable, averaged across the entire ensemble of grown trees.

**InBagFraction**

Fraction of observations that are randomly selected with replacement for each bootstrap replica. The size of each replica is Nobs×InBagFraction, where Nobs is the number of observations in the training set. The default value is 1.

**MergeLeaves**

A logical flag specifying whether decision tree leaves with the same parent are merged for splits that do not decrease the total risk. The default value is false.

**Method**

Method used by trees. The possible values are 'classification' for classification ensembles, and 'regression' for regression ensembles.

**MinLeafSize**

Minimum number of observations per tree leaf. By default, MinLeafSize is 1 for classification and 5 for regression. For decision tree training, the MinParent value is set equal to 2*MinLeafSize.

**NumTrees**

Scalar value equal to the number of decision trees in the ensemble.

**NumPredictorSplit**

A numeric array of size 1-by-Nvars, where every element gives a number of splits on this predictor summed over all trees.
**NumPredictorsToSample**

Number of predictor or feature variables to select at random for each decision split. By default, NumPredictorsToSample is equal to the square root of the total number of variables for classification, and one third of the total number of variables for regression.

**OOBIndices**

Logical array of size Nobs-by-NumTrees, where Nobs is the number of observations in the training data and NumTrees is the number of trees in the ensemble. A true value for the (i,j) element indicates that observation i is out-of-bag for tree j. In other words, observation i was not selected for the training data used to grow tree j.

**OOBInstanceWeight**

Numeric array of size Nobs-by-1 containing the number of trees used for computing the out-of-bag response for each observation. Nobs is the number of observations in the training data used to create the ensemble.

**OOBPermutedPredictorCountRaiseMargin**

A numeric array of size 1-by-Nvars containing a measure of variable importance for each predictor variable (feature). For any variable, the measure is the difference between the number of raised margins and the number of lowered margins if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. This property is empty for regression trees.

**OOBPermutedPredictorDeltaError**

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the increase in prediction error if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble.

**OOBPermutedPredictorDeltaMeanMargin**

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the decrease in the classification margin if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided
by the standard deviation over the entire ensemble. This property is empty for regression trees.

**OutlierMeasure**

A numeric array of size Nobs-by-1, where Nobs is the number of observations in the training data, containing outlier measures for each observation.

**Prior**

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds to the order of the classes in ClassNames.

This property is:

- read-only
- empty ([] ) for ensembles of regression trees

**Proximity**

A numeric matrix of size Nobs-by-Nobs, where Nobs is the number of observations in the training data, containing measures of the proximity between observations. For any two observations, their proximity is defined as the fraction of trees for which these observations land on the same leaf. This is a symmetric matrix with 1s on the diagonal and off-diagonal elements ranging from 0 to 1.

**Prune**

The Prune property is true if decision trees are pruned and false if they are not. Pruning decision trees is not recommended for ensembles. The default value is false.

**SampleWithReplacement**

A logical flag specifying if data are sampled for each decision tree with replacement. This property is true if TreeBagger samples data with replacement and false otherwise. Default value is true.

**TreeArguments**

Cell array of arguments for fitctree or fitrtree. These arguments are used by TreeBagger when growing new trees for the ensemble.
**Trees**

A cell array of size NumTrees-by-1 containing the trees in the ensemble.

**SurrogateAssociation**

A matrix of size Nvars-by-Nvars with predictive measures of variable association, averaged across the entire ensemble of grown trees. If you grew the ensemble setting 'surrogate' to 'on', this matrix for each tree is filled with predictive measures of association averaged over the surrogate splits. If you grew the ensemble setting 'surrogate' to 'off' (default), SurrogateAssociation is diagonal.

**PredictorNames**

A cell array containing the names of the predictor variables (features). TreeBagger takes these names from the optional 'names' parameter. The default names are 'x1', 'x2', etc.

**W**

Numeric vector of weights of length Nobs, where Nobs is the number of observations (rows) in the training data. TreeBagger uses these weights for growing every decision tree in the ensemble. The default W is ones(Nobs,1).

**X**

A table or numeric matrix of size Nobs-by-Nvars, where Nobs is the number of observations (rows) and Nvars is the number of variables (columns) in the training data. If you train the ensemble using a table of predictor values, then X is a table. If you train the ensemble using a matrix of predictor values, then X is a matrix. This property contains the predictor (or feature) values.

**Y**

A size Nobs array of response data. Elements of Y correspond to the rows of X. For classification, Y is the set of true class labels. Labels can be any grouping variable on page 2-57, that is, a numeric or logical vector, character matrix, string array, cell array of character vectors, or categorical vector. TreeBagger converts labels to a cell array of character vectors for classification. For regression, Y is a numeric vector.
**Examples**

**Train Ensemble of Bagged Classification Trees**

Load Fisher's iris data set.

```matlab
load fisheriris
```

Train an ensemble of bagged classification trees using the entire data set. Specify 50 weak learners. Store which observations are out of bag for each tree.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(50,meas,species,'OOBPrediction','On',... 'Method','classification')
```

```matlab
Mdl = TreeBagger
Ensemble with 50 bagged decision trees:
 Training X: [150x4]
 Training Y: [150x1]
 Method: classification
 NumPredictors: 4
 NumPredictorsToSample: 2
 MinLeafSize: 1
 InBagFraction: 1
 SampleWithReplacement: 1
 ComputeOOBPrediction: 1
 ComputeOOBPredictorImportance: 0
 Proximity: []
 ClassNames: 'setosa' 'versicolor' 'virginica'

Properties, Methods
```

`Mdl` is a `TreeBagger` ensemble.

`Mdl.Trees` stores a 50-by-1 cell vector of the trained classification trees (`CompactClassificationTree` model objects) that compose the ensemble.

Plot a graph of the first trained classification tree.

```matlab
view(Mdl.Trees{1},'Mode','graph')
```
By default, `TreeBagger` grows deep trees.

`Mdl.OOBIndices` stores the out-of-bag indices as a matrix of logical values.

Plot the out-of-bag error over the number of grown classification trees.

```matlab
figure;
oobErrorBaggedEnsemble = oobError(Mdl);
plot(oobErrorBaggedEnsemble)
xlabel 'Number of grown trees';
ylabel 'Out-of-bag classification error';
```
The out-of-bag error decreases with the number of grown trees.

To label out-of-bag observations, pass `Mdl` to `oobPredict`.

**Train Ensemble of Bagged Regression Trees**

Load the `carsmall` data set. Consider a model that predicts the fuel economy of a car given its engine displacement.

```matlab
load carsmall
```
Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

```matlab
rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');
```

*Mdl* is a TreeBagger ensemble.

Using a trained bag of regression trees, you can estimate conditional mean responses or perform quantile regression to predict conditional quantiles.

For ten equally-spaced engine displacements between the minimum and maximum in-sample displacement, predict conditional mean responses and conditional quartiles.

```matlab
predX = linspace(min(Displacement),max(Displacement),10)';
mpgMean = predict(Mdl,predX);
mpgQuartiles = quantilePredict(Mdl,predX,'Quantile',[0.25,0.5,0.75]);
```

Plot the observations, and estimated mean responses and quartiles in the same figure.

```matlab
figure;
plot(Displacement,MPG,'o');
hold on
plot(predX,mpgMean);
plot(predX,mpgQuartiles);
ylabel('Fuel economy');
xlabel('Engine displacement');
legend('Data','Mean Response','First quartile','Median','Third quartile');
```
**Unbiased Predictor Importance Estimates**

Load the `carsmall` data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider `Cylinders`, `Mfg`, and `Model_Year` as categorical variables.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
```
Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))
numCylinders = 3
numMfg = numel(categories(Mfg))
numMfg = 28
numModelYear = numel(categories(Model_Year))
numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 200 regression trees using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits. Store the out-of-bag information for predictor importance estimation.

Mdl = TreeBagger(200,X,'MPG','Method','regression','Surrogate','on',...
    'PredictorSelection','curvature','OOBPredictorImportance','on');

TreeBagger stores predictor importance estimates in the property OOBPermutedPredictorDeltaError. Compare the estimates using a bar graph.

imp = Mdl.OOBPermutedPredictorDeltaError;
figure;
bar(imp);
title('Curvature Test');
ylabel('Predictor importance estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
In this case, `Model_Year` is the most important predictor, followed by `Weight`.

Compare the `imp` to predictor importance estimates computed from a random forest that grows trees using standard CART.

```matlab
MdlCART = TreeBagger(200,X,'MPG','Method','regression','Surrogate','on','OOBPredictorImportance','on');
impCART = MdlCART.OOBPermutedPredictorDeltaError;
```

```matlab
figure;
bar(impCART);
title('Standard CART');
ylabel('Predictor importance estimates');
```
In this case, **Weight**, a continuous predictor, is the most important. The next two most importance predictor are **Model_Year** followed closely by **Horsepower**, which is a continuous predictor.
Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB Object-Oriented Programming documentation.

Tip

For a TreeBagger model object B, the Trees property stores a cell vector of B.NumTrees CompactClassificationTree or CompactRegressionTree model objects. For a textual or graphical display of tree t in the cell vector, enter

\texttt{view(B.Trees\{t\})}

References


See Also

CompactTreeBagger | TreeBagger | compact | error | oobError | oobPredict | plotPartialDependence | predict | view | view

Topics

“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
“Framework for Ensemble Learning” on page 18-40
“Decision Trees” on page 19-2
“Grouping Variables” on page 2-57
TreeBagger

**Class:** TreeBagger

Create bag of decision trees

Individual decision trees tend to overfit. Bootstrap-aggregated (bagged) decision trees combine the results of many decision trees, which reduces the effects of overfitting and improves generalization. TreeBagger grows the decision trees in the ensemble using bootstrap samples of the data. Also, TreeBagger selects a random subset of predictors to use at each decision split as in the random forest algorithm [1].

By default, TreeBagger bags classification trees. To bag regression trees instead, specify 'Method','regression'.

For regression problems, TreeBagger supports mean and quantile regression (that is, quantile regression forest [5]).

**Syntax**

Mdl = TreeBagger(NumTrees,Tbl,ResponseVarName)
Mdl = TreeBagger(NumTrees,Tbl(formula)
Mdl = TreeBagger(NumTrees,Tbl,Y)
B = TreeBagger(NumTrees,X,Y)
B = TreeBagger(NumTrees,X,Y,Name,Value)

**Description**

Mdl = TreeBagger(NumTrees,Tbl,ResponseVarName) returns a ensemble of NumTrees bagged classification trees trained using the sample data in the table Tbl. ResponseVarName is the name of the response variable in Tbl.

Mdl = TreeBagger(NumTrees,Tbl,formula) returns an ensemble of bagged classification trees trained using the sample data in the table Tbl. formula is an explanatory model of the response and a subset of predictor variables in Tbl used to fit Mdl. Specify Formula using Wilkinson notation. For more information, see “Wilkinson Notation” on page 11-116.
Mdl = TreeBagger(NumTrees,Tbl,Y) returns an ensemble of classification trees using the predictor variables in table Tbl and class labels in vector Y.

Y is an array of response data. Elements of Y correspond to the rows of Tbl. For classification, Y is the set of true class labels. Labels can be any grouping variable on page 2-57, that is, a numeric or logical vector, character matrix, string array, cell array of character vectors, or categorical vector. TreeBagger converts labels to a cell array of character vectors. For regression, Y is a numeric vector. To grow regression trees, you must specify the name-value pair 'Method', 'regression'.

B = TreeBagger(NumTrees,X,Y) creates an ensemble B of NumTrees decision trees for predicting response Y as a function of predictors in the numeric matrix of training data, X. Each row in X represents an observation and each column represents a predictor or feature.

B = TreeBagger(NumTrees,X,Y,Name,Value) specifies optional parameter name-value pairs:

| 'InBagFraction' | Fraction of input data to sample with replacement from the input data for growing each new tree. Default value is 1. |

**'Cost'**

Square matrix $C$, where $C(i,j)$ is the cost of classifying a point into class $j$ if its true class is $i$ (i.e., the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns of $C$ corresponds to the order of the classes in the `ClassNames` property of the trained `TreeBagger` model $B$.

Alternatively, $cost$ can be a structure $S$ having two fields:

- $S.ClassNames$ containing the group names as a categorical variable, character array, string array, or cell array of character vectors
- $S.ClassificationCosts$ containing the cost matrix $C$

The default value is $C(i,j) = 1$ if $i \neq j$, and $C(i,j) = 0$ if $i = j$.

If $Cost$ is highly skewed, then, for in-bag samples, the software oversamples unique observations from the class that has a large penalty. For smaller sample sizes, this might cause a very low relative frequency of out-of-bag observations from the class that has a large penalty. Therefore, the estimated out-of-bag error is highly variable, and might be difficult to interpret.

**'SampleWithReplacement'**

'on' to sample with replacement or 'off' to sample without replacement. If you sample without replacement, you need to set 'InBagFraction' to a value less than one. Default is 'on'.

**'OOBPrediction'**

'on' to store info on what observations are out of bag for each tree. This info can be used by `oobPrediction` to compute the predicted class probabilities for each tree in the ensemble. Default is 'off'.

**'OOB Predictor Importance'**

'on' to store out-of-bag estimates of feature importance in the ensemble. Default is 'off'. Specifying 'on' also sets the 'OOBPrediction' value to 'on'. If an analysis of predictor importance is your goal, then also specify 'PredictorSelection', 'curvature' or 'PredictorSelection', 'interaction-curvature'. For more details, see `fitctree` or `fitrtree`.  

32-6627
<table>
<thead>
<tr>
<th>'Method'</th>
<th>Either 'classification' or 'regression'. Regression requires a numeric Y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'NumPredictorsToSample'</td>
<td>Number of variables to select at random for each decision split. Default is the square root of the number of variables for classification and one third of the number of variables for regression. Valid values are 'all' or a positive integer. Setting this argument to any valid value but 'all' invokes Breiman's random forest algorithm [1].</td>
</tr>
<tr>
<td>'NumPrint'</td>
<td>Number of training cycles (grown trees) after which TreeBagger displays a diagnostic message showing training progress. Default is no diagnostic messages.</td>
</tr>
<tr>
<td>'MinLeafSize'</td>
<td>Minimum number of observations per tree leaf. Default is 1 for classification and 5 for regression.</td>
</tr>
</tbody>
</table>
'Options'

A structure that specifies options that govern the computation when growing the ensemble of decision trees. One option requests that the computation of decision trees on multiple bootstrap replicates uses multiple processors, if the Parallel Computing Toolbox is available. Two options specify the random number streams to use in selecting bootstrap replicates. You can create this argument with a call to `statset`. You can retrieve values of the individual fields with a call to `statget`. Applicable `statset` parameters are:

- 'UseParallel' — If true and if a parpool of the Parallel Computing Toolbox is open, compute decision trees drawn on separate bootstrap replicates in parallel. If the Parallel Computing Toolbox is not installed, or a parpool is not open, computation occurs in serial mode. Default is false, or serial computation.

- 'UseSubstreams' — If true select each bootstrap replicate using a separate Substream of the random number generator (aka Stream). This option is available only with RandStream types that support Substreams: 'mlfg6331_64' or 'mrg32k3a'. Default is false, do not use a different Substream to compute each bootstrap replicate.

- Streams — A RandStream object or cell array of such objects. If you do not specify Streams, `TreeBagger` uses the default stream or streams. If you choose to specify Streams, use a single object except in the case

  - You have an open Parallel pool
  - UseParallel is true
  - UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
Prior probabilities for each class. Specify as one of:

- A character vector or string scalar:
  - 'Empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, they are used to compute the class probabilities. This is the default.
  - 'Uniform' sets all class probabilities equal.
- A vector (one scalar value for each class). The order of the elements Prior corresponds to the order of the classes in the ClassNames property of the trained TreeBagger model B.
- A structure S with two fields:
  - S.ClassNames containing the class names as a categorical variable, character array, string array, or cell array of character vectors
  - S.ClassProbs containing a vector of corresponding probabilities

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

If Prior is highly skewed, then, for in-bag samples, the software oversamples unique observations from the class that has a large prior probability. For smaller sample sizes, this might cause a very low relative frequency of out-of-bag observations from the class that has a large prior probability. Therefore, the estimated out-of-bag error is highly variable, and might be difficult to interpret.
### 'PredictorNames'

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames' and a string array or cell array of unique character vectors. The functionality of 'PredictorNames' depends on the way you supply the training data.

- If you supply X and Y, then you can use 'PredictorNames' to give the predictor variables in X names.
  - The order of the names in PredictorNames must correspond to the column order of X. That is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
  - By default, PredictorNames is {'x1','x2',...}.
- If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to use in training. That is, TreeBagger uses the predictor variables in PredictorNames and the response only in training.
  - PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include the name of the response variable.
  - By default, PredictorNames contains the names of all predictor variables.
  - It's good practice to specify the predictors for training using one of 'PredictorNames' or formula only.
<table>
<thead>
<tr>
<th>'CategoricalPredictors'</th>
<th>Categorical predictors list, specified as the comma-separated pair consisting of 'CategoricalPredictors' and one of the following.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A numeric vector with indices from 1 to p, where p is the number of columns of X.</td>
<td></td>
</tr>
<tr>
<td>• A logical vector of length p, where a true entry means that the corresponding column of X is a categorical variable.</td>
<td></td>
</tr>
<tr>
<td>• A string array or cell array of character vectors, where each element in the array is the name of a predictor variable. The names must match entries in PredictorNames values.</td>
<td></td>
</tr>
<tr>
<td>• A character matrix, where each row of the matrix is a name of a predictor variable. The names must match entries in PredictorNames values. Pad the names with extra blanks so each row of the character matrix has the same length.</td>
<td></td>
</tr>
<tr>
<td>• 'all', meaning all predictors are categorical.</td>
<td></td>
</tr>
</tbody>
</table>

| 'ChunkSize' | Chunk size, specified as the comma-separated pair consisting of 'ChunkSize' and a positive integer. The chunk size specifies the number of observations in each chunk of data. The default value is 50000. |

**Note** This option only applies when using TreeBagger on tall arrays. See “Extended Capabilities” on page 32-0 for more information.

In addition to the optional arguments above, TreeBagger accepts these optional fitctree and fitrtree arguments.

<table>
<thead>
<tr>
<th>Supported fitctree arguments</th>
<th>Supported fitrtree arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlgorithmForCategorical</td>
<td>MaxNumSplits</td>
</tr>
<tr>
<td>MaxNumCategories</td>
<td>MergeLeaves</td>
</tr>
<tr>
<td>MaxNumSplits</td>
<td>PredictorSelection</td>
</tr>
<tr>
<td>MergeLeaves</td>
<td>Prune</td>
</tr>
<tr>
<td>PredictorSelection</td>
<td>PruneCriterion</td>
</tr>
<tr>
<td>Prune</td>
<td>QuadraticErrorTolerance</td>
</tr>
</tbody>
</table>
Examples

Train Ensemble of Bagged Classification Trees

Load Fisher's iris data set.

load fisheriris

Train an ensemble of bagged classification trees using the entire data set. Specify 50 weak learners. Store which observations are out of bag for each tree.

rng(1); % For reproducibility
Mdl = TreeBagger(50,meas,species,'OOBPrediction','On',... 'Method','classification')

Mdl =
TreeBagger
Ensemble with 50 bagged decision trees:
    Training X:          [150x4]
    Training Y:          [150x1]
    Method:               classification
    NumPredictors:       4
    NumPredictorsToSample: 2
    MinLeafSize:         1
    InBagFraction:       1
    SampleWithReplacement: 1
    ComputeOOBPrediction: 1
    ComputeOOB PredictorImportance: 0
    Proximity:          []
    ClassNames:        'setosa'    'versicolor'     'virginica'

Properties, Methods
Mdl is a TreeBagger ensemble.

Mdl.Trees stores a 50-by-1 cell vector of the trained classification trees (CompactClassificationTree model objects) that compose the ensemble.

Plot a graph of the first trained classification tree.

view(Mdl.Trees{1}, 'Mode', 'graph')

By default, TreeBagger grows deep trees.

Mdl.OOBIndices stores the out-of-bag indices as a matrix of logical values.
Plot the out-of-bag error over the number of grown classification trees.

```matlab
figure; oobErrorBaggedEnsemble = oobError(Mdl); plot(oobErrorBaggedEnsemble) xlabel 'Number of grown trees'; ylabel 'Out-of-bag classification error';
```

The out-of-bag error decreases with the number of grown trees.

To label out-of-bag observations, pass `Mdl` to `oobPredict`. 
Train Ensemble of Bagged Regression Trees

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');

Mdl is a TreeBagger ensemble.

Using a trained bag of regression trees, you can estimate conditional mean responses or perform quantile regression to predict conditional quantiles.

For ten equally-spaced engine displacements between the minimum and maximum in-sample displacement, predict conditional mean responses and conditional quartiles.

predX = linspace(min(Displacement),max(Displacement),10)';
mpgMean = predict(Mdl,predX);
mpgQuartiles = quantilePredict(Mdl,predX,'Quantile',[0.25,0.5,0.75]);

Plot the observations, and estimated mean responses and quartiles in the same figure.

figure;
plot(Displacement,MPG,'o');
hold on
plot(predX,mpgMean);
plot(predX,mpgQuartiles);
ylabel('Fuel economy');
xlabel('Engine displacement');
legend('Data','Mean Response','First quartile','Median','Third quartile');
Unbiased Predictor Importance Estimates

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

```matlab
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
```
Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))

numCylinders = 3

numMfg = numel(categories(Mfg))

numMfg = 28

numModelYear = numel(categories(Model_Year))

numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART predictor-splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 200 regression trees using the entire data set. To grow unbiased trees, specify usage of the curvature test for splitting predictors. Because there are missing values in the data, specify usage of surrogate splits. Store the out-of-bag information for predictor importance estimation.

Mdl = TreeBagger(200,X,'MPG','Method','regression','Surrogate','on',... 'PredictorSelection','curvature','OOBPredictorImportance','on');

TreeBagger stores predictor importance estimates in the property OOBPermutedPredictorDeltaError. Compare the estimates using a bar graph.

imp = Mdl.OOBPermutedPredictorDeltaError;

figure;
bar(imp);
title('Curvature Test');
ylabel('Predictor importance estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
In this case, `Model_Year` is the most important predictor, followed by `Weight`.

Compare the `imp` to predictor importance estimates computed from a random forest that grows trees using standard CART.

```matlab
MdlCART = TreeBagger(200,X,'MPG','Method','regression','Surrogate','on',... 'OOBPredictorImportance','on');

impCART = MdlCART.OOBPermutedPredictorDeltaError;

figure;
bar(impCART);
title('Standard CART');
ylabel('Predictor importance estimates');
```
In this case, Weight, a continuous predictor, is the most important. The next two most importance predictor are Model_Year followed closely by Horsepower, which is a continuous predictor.
Tips

- Avoid large estimated out-of-bag error variances by setting a more balanced misclassification cost matrix or a less skewed prior probability vector.
- The Trees property of B stores a cell array of B.NumTrees CompactClassificationTree or CompactRegressionTree model objects. For a textual or graphical display of tree t in the cell array, enter

\[
\text{view}(B.\text{Trees}(t))
\]

- Standard CART tends to select split predictors containing many distinct values, e.g., continuous variables, over those containing few distinct values, e.g., categorical variables [4]. Consider specifying the curvature or interaction test if any of the following are true:

  - If there are predictors that have relatively fewer distinct values than other predictors, for example, if the predictor data set is heterogeneous.
  - If an analysis of predictor importance is your goal. TreeBagger stores predictor importance estimates in the OOBPermutedPredictorDeltaError property of Mdl.

For more information on predictor selection, see PredictorSelection for classification trees or PredictorSelection for regression trees.

Algorithms

- TreeBagger generates in-bag samples by oversampling classes with large misclassification costs and undersampling classes with small misclassification costs. Consequently, out-of-bag samples have fewer observations from classes with large misclassification costs and more observations from classes with small misclassification costs. If you train a classification ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag observations per class might be very low. Therefore, the estimated out-of-bag error might have a large variance and might be difficult to interpret. The same phenomenon can occur for classes with large prior probabilities.

- For details on selecting split predictors and node-splitting algorithms when growing decision trees, see “Algorithms” on page 32-2087 for classification trees and “Algorithms” on page 32-2087 for regression trees.
References


Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with the limitations:

- Supported syntaxes for tall X, Y, Tbl are:
  - B = TreeBagger(NumTrees,Tbl,Y)
  - B = TreeBagger(NumTrees,X,Y)
  - B = TreeBagger(___,'Name',Value)

- For tall arrays, TreeBagger supports classification. Regression is not supported.

- Supported name-value pairs are:
  - 'NumPredictorsToSample' — Default value is the square root of the number of variables for classification.
  - 'MinLeafSize' — Default value is 1 if the number of observations is less than 50,000. If the number of observations is 50,000 or greater, then the default value is \( \max(1, \min(5, \text{floor}(0.01 \times \text{NobsChunk}))) \), where NobsChunk is the number of observations in a chunk.
• 'ChunkSize' (only for tall arrays) — Default value is 50000.

In addition, TreeBagger supports these optional arguments of fitctree:

• 'AlgorithmForCategorical'
• 'CategoricalPredictors'
• 'MaxNumCategories'
• 'MergeLeaves'
• 'PredictorNames'
• 'PredictorSelection'
• 'Prune'
• 'PruneCriterion'
• 'Surrogate'
• 'MaxNumSplits'
• 'SplitCriterion'

• For tall data, TreeBagger returns a CompactTreeBagger object that contains most of the same properties as a full TreeBagger object. The main difference is that the compact object is more memory efficient. The compact object does not include properties that include the data, or that include an array of the same size as the data.

• Supported CompactTreeBagger methods are:
  • combine
  • error
  • margin
  • meanMargin
  • predict
  • setDefaultYfit

  The error, margin, meanMargin, and predict methods do not support the name-value pairs 'Trees', 'TreeWeights', or 'UseInstanceForTree'. The error and meanMargin methods additionally do not support 'Weights'.

• TreeBagger creates a random forest by generating trees on disjoint chunks of the data. When more data is available than is required to create the random forest, the data is subsampled. For a similar example, see Random Forests for Big Data (Genuer, Poggi, Tuleau-Malot, Villa-Vialaneix 2015).
Depending on how the data is stored, it is possible that some chunks of data contain observations from only a few classes out of all the classes. In this case, TreeBagger might produce inferior results compared to the case where each chunk of data contains observations from most of the classes.

For more information, see “Tall Arrays” (MATLAB).

### Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel' field of the options structure to true using statset and specify the 'Options' name-value pair argument in the call to this function.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.

### See Also
TreeBagger | compact | error | fitctree | fitrtree | oobError | oobPredict | predict | statset | view | view

### Topics
“Bootstrap Aggregation (Bagging) of Regression Trees” on page 18-139
“Bootstrap Aggregation (Bagging) of Classification Trees” on page 18-152
“Framework for Ensemble Learning” on page 18-40
“Decision Trees” on page 19-2
“Grouping Variables” on page 2-57

### Introduced in R2009a
trimmean

Mean, excluding outliers

Syntax

m = trimmean(X,percent)
m = trimmean(X,percent,flag)
m = trimmean(__,'all')
m = trimmean(__,dim)
m = trimmean(__,vecdim)

Description

m = trimmean(X,percent) calculates the trimmed mean of the values in X. For a vector input, m is the mean of X, excluding the highest and lowest k data values, where k=n*(percent/100)/2 and where n is the number of values in X. For a matrix input, m is a row vector containing the trimmed mean of each column of X. For n-dimensional arrays, trimmean operates along the first nonsingleton dimension. percent is a scalar between 0 and 100.

m = trimmean(X,percent,flag) controls how to trim when k is not an integer. flag can be chosen from the following:

'round' Round k to the nearest integer (round to a smaller integer if k is a half integer). This is the default.
'floor' Round k down to the next smaller integer.
'weighted' If k=i+f where i is the integer part and f is the fraction, compute a weighted mean with weight (1–f) for the (i+1)th and (n–i)th values, and full weight for the values between them.

m = trimmean(__,'all') returns the trimmed mean of all the values in X for either of the first two syntaxes.
m = trimmean(___,dim) returns the trimmed mean along the operating dimension dim of X for either of the first two syntaxes.

m = trimmean(___,vecdim) returns the trimmed mean over the dimensions specified in the vector vecdim for either of the first two syntaxes. Each element of vecdim represents a dimension of the input array X. The output m has length 1 in the specified dimensions. The other dimension lengths are the same for X and m. For example, if X is a 2-by-3-by-4 array, then trimmean(X,10,[1 2]) returns a 1-by-1-by-4 array. Each value of the output array is the mean of the middle 90% of the values on the corresponding page of X.

Note You can specify only one of these input arguments: 'all', dim, or vecdim.

Examples

Efficiency of the Trimmed Mean

Generate a 100-by-100 matrix of random numbers from the standard normal distribution. This represents 100 samples, each containing 100 data points.

rng default;  % For reproducibility
x = normrnd(0,1,100,100);

Compute the sample mean and the 10% trimmed mean for each column of the data matrix.

m = mean(x);
trim = trimmean(x,10);

Compute the efficiency of the 10% trimmed mean relative to the sample mean for the data.

sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2

efficiency = 0.9663
Trimmed Mean for Distributions with Outliers

Generate random data from the $t$ location-scale distribution, which tends to have outliers.

```matlab
rng default; % For reproducibility
x = trnd(1,40,1);
```

Visualize the distribution using a normal probability plot.

```matlab
probplot(x)
```

Although the distribution is symmetric around zero, there are several outliers which will affect the mean. The trimmed mean is closer to zero, which is more representative of the data.
mean = mean(x)
mean = 2.7991

tmean = trimmean(x,25)
tmean = 0.8797

Trimmed Mean Along Vector of Dimensions

Calculate the trimmed mean over multiple dimensions by using the 'all' and vecdim input arguments.

Create a 5-by-4-by-2 array with some outlier values.

\[ X = \text{reshape}(1:40,[5 4 2]); \]
\[ X([3 37]) = -100 \]

\[
X = \\
X(:,:,1) = \\
1  6  11  16 \\
2  7  12  17 \\
-100  8  13  18 \\
4  9  14  19 \\
5 10  15  20 \\
X(:,:,2) = \\
21  26  31  36 \\
22  27  32 -100 \\
23  28  33  38 \\
24  29  34  39 \\
25  30  35  40 \\
\]

Find the 10% trimmed mean of \( X \).

\[ \text{mall} = \text{trimmean}(X,10,'all') \]
\[ \text{mall} = 19.4722 \]
mall is the mean of the middle 90% of values in X.

Find the 10% trimmed mean for each page of X.

\[ m_{\text{page}} = \text{trimmean}(X,10,[1~2]) \]

\[ m_{\text{page}} = \\
m_{\text{page}}(:,:,1) = \\
10.3889 \\
\]

\[ m_{\text{page}}(:,:,2) = \\
29.6111 \\
\]

For example, \( m_{\text{page}}(1,1,2) \) is the mean of the middle 90% of the values in \( X(:,:,2) \).

**Tips**

The trimmed mean is a robust estimate of the location of a sample. If there are outliers in the data, the trimmed mean is a more representative estimate of the center of the body of the data than the mean. However, if the data is all from the same probability distribution, then the trimmed mean is less efficient than the sample mean as an estimator of the location of the data.

**Extended Capabilities**

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- The following syntaxes do not support GPU arrays as input arguments.
• \( m = \text{trimmean}(\__, \text{'all'}) \)
• \( m = \text{trimmean}(\__, \text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

geomean | harmmean | mean | median

*Introduced before R2006a*
**trnd**

Student's $t$ random numbers

**Syntax**

\[ r = \text{trnd}(\text{nu}) \]
\[ r = \text{trnd}(\text{nu},m,n,...) \]
\[ r = \text{trnd}(\text{nu},[m,n,...]) \]

**Description**

$r = \text{trnd}(\text{nu})$ generates random numbers from Student's $t$ distribution with \( \text{nu} \) degrees of freedom. \( \text{nu} \) can be a vector, a matrix, or a multidimensional array. The size of \( r \) is equal to the size of \( \text{nu} \).

$r = \text{trnd}(\text{nu},m,n,...)$ or $r = \text{trnd}(\text{nu},[m,n,...])$ generates an \( m \)-by-\( n \)-by-... array. The \( \text{nu} \) parameter can be a scalar or an array of the same size as \( r \).

**Examples**

**Generate Student's $t$ Distribution Random Numbers**

\[ r1 = \text{trnd}([1,6]) \]
\[ r1 = 1 \times 6 \]
\[
\begin{array}{cccccc}
0.2108 & 7.8450 & -11.0511 & 0.4134 & 4.3293 & -0.8323 \\
\end{array}
\]

\[ r2 = \text{trnd}(1:6, [1 6]) \]
\[ r2 = 1 \times 6 \]
\[
\begin{array}{cccccc}
8.9290 & -0.1908 & 0.3496 & -0.7658 & 1.3234 & -1.2808 \\
\end{array}
\]
r3 = trnd(3,2,6)
r3 = 2×6

1.3157    0.7010    0.1591   -1.3840    4.1354    0.2442
0.9789   -2.4700   -1.8884   -0.0116   -0.9496   -0.2340

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also
random | tcdf | tinv | tpdf | tstat

Topics
“Student's t Distribution” on page B-158

Introduced before R2006a
**truncate**

**Package:** prob

Truncate probability distribution object

**Syntax**

```matlab
 t = truncate(pd,lower,upper)
```

**Description**

`t = truncate(pd,lower,upper)` returns a probability distribution `t`, which is the probability distribution `pd` truncated to the specified interval with lower limit, `lower`, and upper limit, `upper`.

**Examples**

**Truncate a Probability Distribution**

Create a standard normal probability distribution object.

```matlab
pd = makedist('Normal')
```

```matlab
pd =
 NormalDistribution
 Normal distribution
 mu = 0
 sigma = 1
```

Truncate the distribution to have a lower limit of -2 and an upper limit of 2.

```matlab
t = truncate(pd,-2,2)
```
t =
    NormalDistribution

    Normal distribution
    mu = 0
    sigma = 1
    Truncated to the interval [-2, 2]

Plot the pdf of the original and truncated distributions for a visual comparison.

x = -3:.1:3;
figure;
plot(x,pdf(pd,x),'Color','red','LineWidth',2)
hold on;
plot(x,pdf(t,x),'Color','blue','LineWidth',2,'LineStyle',':')
legend({'Normal','Truncated'},'Location','NE')
hold off;
Generate Random Numbers from a Truncated Distribution

Create a standard normal probability distribution object.

\[
pd = \text{makedist('Normal')}\]

\[
pd =
\begin{align*}
\text{NormalDistribution} \\
\text{Normal distribution} \\
\mu &= 0
\end{align*}
\]
\[ \sigma = 1 \]

Truncate the distribution by restricting it to positive values. Set the lower limit to 0 and the upper limit to infinity.

\[ t = \text{truncate}(pd, 0, \infty) \]

\[ t = \text{NormalDistribution} \]

Normal distribution
\[ \mu = 0 \]
\[ \sigma = 1 \]
Truncated to the interval \([0, \infty]\)

Generate random numbers from the truncated distribution and visualize with a histogram.

\[ r = \text{random}(t, 10000, 1); \]
\[ \text{histogram}(r, 100) \]
Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a probability
distribution object with specified parameter values using makedist.

Alternatively, for fittable distributions, create a probability distribution object by fitting it
to data using fitdist or the Distribution Fitter app.
lower — Lower truncation limit
scalar value

Lower truncation limit, specified as a scalar value.
Data Types: single | double

upper — Upper truncation limit
scalar value

Upper truncation limit, specified as a scalar value.
Data Types: single | double

Output Arguments

t — Truncated distribution
probability distribution object

Truncated distribution, returned as a probability distribution object. The probability distribution function (pdf) of t is 0 outside the truncation interval. Inside the truncation interval, the pdf of t is equal to the pdf of pd, but divided by the probability assigned to that interval by pd.

See Also
Distribution Fitter | fitdist | makedist

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced in R2013a
tsne

t-Distributed Stochastic Neighbor Embedding

Syntax

Y = tsne(X)
Y = tsne(X,Name,Value)
[Y,loss] = tsne(__)

Description

Y = tsne(X) returns a matrix of two-dimensional embeddings of the high-dimensional rows of X.

Y = tsne(X,Name,Value) modifies the embeddings using options specified by one or more name-value pair arguments.

[Y,loss] = tsne(__), for any input arguments, also returns the Kullback-Leibler divergence between the joint distributions that model the data X and the embedding Y.

Examples

Visualize Fisher Iris Data

The Fisher iris data set has four-dimensional measurements of irises, and corresponding classification into species. Visualize this data by reducing the dimension using tsne.

load fisheriris
rng default % for reproducibility
Y = tsne(meas);
gscatter(Y(:,1),Y(:,2),species)
Compare Distance Metrics

Use various distance metrics to try to obtain a better separation between species in the Fisher iris data.

load fisheriris

rng('default') % for reproducibility
Y = tsne(meas,'Algorithm','exact','Distance','mahalanobis');
subplot(2,2,1)
gscatter(Y(:,1),Y(:,2),species)
title('Mahalanobis')

rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','cosine');
subplot(2,2,2)
gscatter(Y(:,1),Y(:,2),species)
title('Cosine')

rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','chebychev');
subplot(2,2,3)
gscatter(Y(:,1),Y(:,2),species)
title('Chebychev')

rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','euclidean');
subplot(2,2,4)
gscatter(Y(:,1),Y(:,2),species)
title('Euclidean')
In this case, the cosine, Chebychev, and Euclidean distance metrics give reasonably good separation of clusters. But the Mahalanobis distance metric does not give a good separation.

**Plot Results with NaN Input Data**

t

For example, change a few random entries in the Fisher iris data to NaN.
load fisheriris
rng default % for reproducibility
meas(rand(size(meas)) < 0.05) = NaN;

Embed the four-dimensional data into two dimensions using tsne.
Y = tsne(meas,'Algorithm','exact');

Warning: Rows with NaN missing values in X or 'InitialY' values are removed.

Determine how many rows were eliminated from the embedding.
length(species)-length(Y)
ans = 22

Prepare to plot the result by locating the rows of meas that have no NaN values.
goodrows = not(any(isnan(meas),2));

Plot the results using only the rows of species that correspond to rows of meas with no NaN values.
gscatter(Y(:,1),Y(:,2),species(goodrows))
**Compare t-SNE Loss**

Find both 2-D and 3-D embeddings of the Fisher iris data, and compare the loss for each embedding. It is likely that the loss is lower for a 3-D embedding, because this embedding has more freedom to match the original data.

```matlab
load fisheriris
rng default % for reproducibility
[Y,loss] = tsne(meas,'Algorithm','exact');
rng default % for fair comparison
```
[Y2, loss2] = tsne(meas, 'Algorithm', 'exact', 'NumDimensions', 3);
fprintf('2-D embedding has loss %g, and 3-D embedding has loss %g.\n', loss, loss2)

2-D embedding has loss 0.122669, and 3-D embedding has loss 0.0985112.

As expected, the 3-D embedding has lower loss.

View the embeddings. Use RGB colors [1 0 0], [0 1 0], and [0 0 1].

For the 3-D plot, convert the species to numeric values using the \texttt{categorical} command, then convert the numeric values to RGB colors using the \texttt{sparse} function as follows. If \( v \) is a vector of positive integers 1, 2, or 3, corresponding to the species data, then the command
\[
\texttt{sparse(1:numel(v), v, ones(size(v)))}
\]

is a sparse matrix whose rows are the RGB colors of the species.

\[
\texttt{gscatter(Y(:,1), Y(:,2), species, eye(3))}
\]
\[
\texttt{title('2-D Embedding')}
\]
```matlab
figure
v = double(categorical(species));
c = full(sparse(1:numel(v),v,ones(size(v)),numel(v),3));
scatter3(Y2(:,1),Y2(:,2),Y2(:,3),15,c,'filled')
title('3-D Embedding')
view(-50,8)
```
Input Arguments

X — Data points
n-by-m matrix

Data points, specified as an n-by-m matrix, where each row is one m-dimensional point.

tse removes rows of X that contain any NaN values before creating an embedding. See “Plot Results with NaN Input Data” on page 32-6662.

Data Types: single | double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: Y = tsne(X, 'Algorithm', 'Exact', 'NumPCAComponents', 50)

Algorithm Control

Algorithm — tsne algorithm
'barneshut' (default) | 'exact'

tsne algorithm, specified as 'barneshut' or 'exact'. The 'exact' algorithm optimizes the Kullback-Leibler divergence of distributions between the original space and the embedded space. The 'barneshut' algorithm performs an approximate optimization that is faster and uses less memory when the number of data rows is large.

Note For the 'barneshut' algorithm, tsne uses knnsearch to find the nearest neighbors.

Example: 'exact'

Distance — Distance metric
'euclidean' (default) | 'seuclidean' | 'cityblock' | 'chebychev' | 'minkowski' | 'mahalanobis' | 'cosine' | 'correlation' | 'spearman' | 'hamming' | 'jaccard' | function handle

Distance metric, specified by one of the following. For definitions of the distance metrics, see pdist.

- 'euclidean' — Euclidean distance.
- 'seuclidean' — Standardized Euclidean distance. Each coordinate difference between rows in X and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from S = nanstd(X).
- 'cityblock' — City block distance.
- 'chebychev' — Chebychev distance, which is the maximum coordinate difference.
- 'minkowski' — Minkowski distance with exponent 2. This is the same as Euclidean distance.
• 'mahalanobis' — Mahalanobis distance, computed using the positive definite covariance matrix `nancov(X)`.
• 'cosine' — 1 minus the cosine of the included angle between observations (treated as vectors).
• 'correlation' — One minus the sample linear correlation between observations (treated as sequences of values).
• 'spearman' — One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
• 'hamming' — Hamming distance, which is the percentage of coordinates that differ.
• 'jaccard' — One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
• custom distance function — A distance function specified using @ (for example, @distfun). For details, see “Definitions” on page 32-6673.

In all cases, `tsne` uses squared pairwise distances to calculate the Gaussian kernel in the joint distribution of `X`.

Example: 'mahalanobis'

**Exaggeration — Size of natural clusters in data**

4 (default) | scalar value 1 or greater

Size of natural clusters in data, specified as a scalar value 1 or greater.

A large exaggeration makes `tsne` learn larger joint probabilities of `Y` and creates relatively more space between clusters in `Y`. `tsne` uses exaggeration in the first 99 optimization iterations.

If the value of Kullback-Leibler divergence increases in the early stage of the optimization, try reducing the exaggeration. See “tsne Settings” on page 15-145.

Example: 10

Data Types: `single` | `double`

**NumDimensions — Dimension of the output Y**

2 (default) | positive integer

Dimension of the output `Y`, specified as a positive integer. Generally, set `NumDimensions` to 2 or 3.

Example: 3
Data Types: single | double

**NumPCAComp|onents** — PCA dimension reduction
0 (default) | nonnegative integer

PCA dimension reduction, specified as a nonnegative integer. Before `tsne` embeds the high-dimensional data, it first reduces the dimensionality of the data to `NumPCAComp|onents` using the `pca` function. When `NumPCAComp|onents` is 0, `tsne` does not use PCA.

Example: 50

Data Types: single | double

**Perplexity** — Effective number of local neighbors of each point
30 (default) | positive scalar

Effective number of local neighbors of each point, specified as a positive scalar. See “t-SNE Algorithm” on page 15-129.

Larger perplexity causes `tsne` to use more points as nearest neighbors. Use a larger value of `Perplexity` for a large dataset. Typical `Perplexity` values are from 5 to 50. In the Barnes-Hut algorithm, `tsne` uses `min(3*Perplexity,N-1)` as the number of nearest neighbors. See “`tsne` Settings” on page 15-145.

Example: 10

Data Types: single | double

**Standardize** — Normalize input data
false (default) | true

Normalize input data, specified as false or true. When true, `tsne` centers and scales X by dividing the columns by their standard deviations.

When features in X are on different scales, set 'Standardize' to true. Do this because the learning process is based on nearest neighbors, so features with large scales can override the contribution of features with small scales.

Example: true

Data Types: logical
Optimization Control

**InitialY — Initial embedded points**

Initial embedded points, specified as an n-by-NumDimensions real matrix, where n is the number of rows of X. The tsne optimization algorithm uses these points as initial values.

Data Types: single | double

**LearnRate — Learning rate for optimization process**

Learning rate for optimization process, specified as a positive scalar. Typically, set values from 100 through 1000.

When LearnRate is too small, tsne can converge to a poor local minimum. When LearnRate is too large, the optimization can initially have the Kullback-Leibler divergence increase rather than decrease. See “tsne Settings” on page 15-145.

Example: 1000

Data Types: single | double

**NumPrint — Iterative display frequency**

Iterative display frequency, specified as a positive integer. When the Verbose name-value pair is not 0, tsne returns iterative display after every NumPrint iterations. If the Options name-value pair contains a nonempty 'OutputFcn' entry, then output functions run after every NumPrint iterations.

Example: 20

Data Types: single | double

**Options — Optimization options**

Optimization options, specified as a structure containing the fields 'MaxIter', 'OutputFcn', and 'TolFun'. Create 'Options' using statset or struct.

- 'MaxIter' — Positive integer specifying the maximum number of optimization iterations. Default: 1000.
• 'OutputFcn' — Function handle or cell array of function handles specifying one or more functions to call after every NumPrint optimization iterations. For syntax details, see “t-SNE Output Function” on page 15-136. Default: [].

• 'TolFun' — Stopping criterion for the optimization. The optimization exits when the norm of the gradient of the Kullback-Leibler divergence is less than 'TolFun'. Default: 1e-10.

Example: options = statset('MaxIter',500)
Data Types: struct

**Theta — Barnes-Hut tradeoff parameter**

0.5 (default) | scalar from 0 through 1

Barnes-Hut tradeoff parameter, specified as a scalar from 0 through 1. Higher values give a faster but less accurate optimization. Applies only when Algorithm is 'barneshut'.

Example: 0.1
Data Types: single | double

**Verbose — Iterative display**

0 (default) | 1 | 2

Iterative display, specified as 0, 1, or 2. When Verbose is not 0, tsne prints a summary table of the Kullback-Leibler divergence and the norm of its gradient every NumPrint iterations.

When Verbose is 2, tsne also prints the variances of Gaussian kernels. tsne uses these kernels in its computation of the joint probability of X. If you see a large difference in the scales of the minimum and maximum variances, you can sometimes get more suitable results by rescaling X.

Example: 2
Data Types: single | double

**Output Arguments**

**Y — Embedded points**
n-by-NumDimensions matrix
Embedded points, returned as an n-by-NumDimensions matrix. Each row represents one embedded point. n is the number of rows of data X that do not contain any NaN entries. See “Plot Results with NaN Input Data” on page 32-6662.

**loss — Kullback-Leibler divergence**
nonnegative scalar

Kullback-Leibler divergence between modeled input and output distributions, returned as a nonnegative scalar. For details, see “t-SNE Algorithm” on page 15-129.

## Definitions

### Custom Distance Function

The syntax of a custom distance function is as follows.

```matlab
function D2 = distfun(ZI,ZJ)
```

*tsne* passes ZI and ZJ to your function, and your function computes the distance.

- ZI is a 1-by-n vector containing a single row from X or Y.
- ZJ is an m-by-n matrix containing multiple rows of X or Y.

Your function returns D2, which is an m-by-1 vector of distances. The jth element of D2 is the distance between the observations ZI and ZJ(j,:).

**Tip** If your data are not sparse, then usually the built-in distance functions are faster than a function handle.

## Algorithms

*tsne* constructs a set of embedded points in a low-dimensional space whose relative similarities mimic those of the original high-dimensional points. The embedded points show the clustering in the original data.

Roughly, the algorithm models the original points as coming from a Gaussian distribution, and the embedded points as coming from a Student’s t distribution. The algorithm tries to
minimize the Kullback-Leibler divergence between these two distributions by moving the embedded points.

For details, see “t-SNE” on page 15-128.

See Also
gscatter | knnsearch | pca | pdist | statset

Topics
“Visualize High-Dimensional Data Using t-SNE” on page 15-140
“t-SNE Custom Output Function” on page 15-137
“tsne Settings” on page 15-145
“t-SNE” on page 15-128
“Dimensionality Reduction and Feature Extraction”

Introduced in R2017a
tstat

Student's $t$ mean and variance

Syntax

$[m,v] = \text{tstat}(\text{nu})$

Description

$[m,v] = \text{tstat}(\text{nu})$ returns the mean of and variance for Student's $t$ distribution using the degrees of freedom in $\text{nu}$. $\text{nu}$ can a vectors, matrix, or multidimensional array. The returned values for $m$ and $v$ are the same size as $\text{nu}$.

Examples

Compute Student's $t$ Mean and Variance

Compute the mean and variance for Student's $t$ distributions with degrees of freedom $nu$ equal to 1 through 30.

$\text{nu} = \text{reshape}(1:30,6,5);$  
$[m,v] = \text{tstat}(\text{nu})$

$m = 6 \times 5$

$$
\begin{bmatrix}
\text{NaN} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

$v = 6 \times 5$

$$
\begin{bmatrix}
32-6675
\end{bmatrix}
$$
Note that the variance does not exist for one and two degrees of freedom.

**Definitions**

**Student’s $t$ Mean and Variance**

The mean of the Student’s $t$ distribution is

\[
\text{mean} = 0
\]

for degrees of freedom $\nu$ greater than 1. If $\nu$ equals 1, then the mean is undefined.

The variance of the Student’s $t$ distribution is

\[
\text{var} = \frac{\nu}{\nu - 2}
\]

for degrees of freedom $\nu$ greater than 2. If $\nu$ is less than or equal to 2, then the variance is undefined.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
tcdf | tinv | tpdf | trnd

Topics
“Student's t Distribution” on page B-158

Introduced before R2006a
**ttest**

One-sample and paired-sample t-test

**Syntax**

\[ h = \text{ttest}(x) \]

\[ h = \text{ttest}(x,y) \]

\[ h = \text{ttest}(x,y,\text{Name},\text{Value}) \]

\[ h = \text{ttest}(x,m) \]

\[ h = \text{ttest}(x,m,\text{Name},\text{Value}) \]

\[ [h,p] = \text{ttest}(__) \]

\[ [h,p,ci,stats] = \text{ttest}(__) \]

**Description**

\( h = \text{ttest}(x) \) returns a test decision for the null hypothesis that the data in \( x \) comes from a normal distribution with mean equal to zero and unknown variance, using the one-sample \( t \)-test on page 32-6685. The alternative hypothesis is that the population distribution does not have a mean equal to zero. The result \( h \) is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

\( h = \text{ttest}(x,y) \) returns a test decision for the null hypothesis that the data in \( x - y \) comes from a normal distribution with mean equal to zero and unknown variance, using the paired-sample \( t \)-test.

\( h = \text{ttest}(x,y,\text{Name},\text{Value}) \) returns a test decision for the paired-sample \( t \)-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

\( h = \text{ttest}(x,m) \) returns a test decision for the null hypothesis that the data in \( x \) comes from a normal distribution with mean \( m \) and unknown variance. The alternative hypothesis is that the mean is not \( m \).
h = ttest(x,m,Name,Value) returns a test decision for the one-sample t-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

[h,p] = ttest(___) also returns the p-value, p, of the test, using any of the input arguments from the previous syntax groups.

[h,p,ci,stats] = ttest(___) also returns the confidence interval ci for the mean of x, or of x − y for the paired t-test, and the structure stats containing information about the test statistic.

Examples

t-Test for Mean Equal to Zero

Load the sample data. Create a vector containing the third column of the stock returns data.

load stockreturns
x = stocks(:,3);

Test the null hypothesis that the sample data comes from a population with mean equal to zero.

[h,p,ci,stats] = ttest(x)

h = 1
p = 0.0106
ci = 2×1
    -0.7357
    -0.0997

stats = struct with fields:
    tstat: -2.6065
    df: 99
    sd: 1.6027
The returned value \( h = 1 \) indicates that \texttt{ttest} rejects the null hypothesis at the 5% significance level.

**t-Test at Different Significance Level**

Load the sample data. Create a vector containing the third column of the stock returns data.

```matlab
load stockreturns
x = stocks(:,3);
```

Test the null hypothesis that the sample data are from a population with mean equal to zero at the 1% significance level.

```matlab
h = ttest(x,0,'Alpha',0.01)
```

\( h = 0 \)

The returned value \( h = 0 \) indicates that \texttt{ttest} does not reject the null hypothesis at the 1% significance level.

**Paired-Sample t-Test**

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students’ grades on two exams.

```matlab
load examgrades
x = grades(:,1);
y = grades(:,2);
```

Test the null hypothesis that the pairwise difference between data vectors \( x \) and \( y \) has a mean equal to zero.

```matlab
[h,p] = ttest(x,y)
```

\( h = 0 \)

\( p = 0.9805 \)
The returned value of $h = 0$ indicates that \texttt{ttest} does not reject the null hypothesis at the default 5% significance level.

**Paired-Sample t-Test at Different Significance Level**

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.

```matlab
load examgrades
x = grades(:,1);
y = grades(:,2);
```

Test the null hypothesis that the pairwise difference between data vectors $x$ and $y$ has a mean equal to zero at the 1% significance level.

```matlab
[h,p] = ttest(x,y,'Alpha',0.01)
```

$h = 0$

$p = 0.9805$

The returned value of $h = 0$ indicates that \texttt{ttest} does not reject the null hypothesis at the 1% significance level.

**t-Test for a Hypothesized Mean**

Load the sample data. Create a vector containing the first column of the students' exam grades data.

```matlab
load examgrades
x = grades(:,1);
```

Test the null hypothesis that sample data comes from a distribution with mean $m = 75$.

```matlab
h = ttest(x,75)
```

$h = 0$

The returned value of $h = 0$ indicates that \texttt{ttest} does not reject the null hypothesis at the 5% significance level.
**One-Sided t-Test**

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

```matlab
load examgrades
x = grades(:,1);
```

Test the null hypothesis that the data comes from a population with mean equal to 65, against the alternative that the mean is greater than 65.

```matlab
h = ttest(x,65,'Tail','right')
```

$h = 1$

The returned value of $h = 1$ indicates that `ttest` rejects the null hypothesis at the 5% significance level, in favor of the alternate hypothesis that the data comes from a population with a mean greater than 65.

**Input Arguments**

- **x** — Sample data
  - vector | matrix | multidimensional array
  
  Sample data, specified as a vector, matrix, or multidimensional array on page 32-6685. `ttest` performs a separate $t$-test along each column and returns a vector of results. If `y` sample data is specified, `x` and `y` must be the same size.
  
  Data Types: `single` | `double`

- **y** — Sample data
  - vector | matrix | multidimensional array
  
  Sample data, specified as a vector, matrix, or multidimensional array on page 32-6685. If `y` sample data is specified, `x` and `y` must be the same size.
  
  Data Types: `single` | `double`
**m — Hypothesized population mean**
0 (default) | scalar value

Hypothesized population mean, specified as a scalar value.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail', 'right', 'Alpha', 0.01 conducts a right-tailed hypothesis test at the 1% significance level.

**Alpha — Significance level**
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha', 0.01

Data Types: single | double

**Dim — Dimension**
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column means, while 'Dim', 2 tests the row means.

Example: 'Dim', 2

Data Types: single | double

**Tail — Type of alternative hypothesis**
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
Test the alternative hypothesis that the population mean is not \( m \).

Test the alternative hypothesis that the population mean is greater than \( m \).

Test the alternative hypothesis that the population mean is less than \( m \).

Example: 'Tail','right'

### Output Arguments

<table>
<thead>
<tr>
<th>'both'</th>
<th>Test the alternative hypothesis that the population mean is not ( m ).</th>
</tr>
</thead>
<tbody>
<tr>
<td>'right'</td>
<td>Test the alternative hypothesis that the population mean is greater than ( m ).</td>
</tr>
<tr>
<td>'left'</td>
<td>Test the alternative hypothesis that the population mean is less than ( m ).</td>
</tr>
</tbody>
</table>

**h — Hypothesis test result**

\[ 1 \mid 0 \]

Hypothesis test result, returned as 1 or 0.

- If \( h = 1 \), this indicates the rejection of the null hypothesis at the \( \text{Alpha} \) significance level.
- If \( h = 0 \), this indicates a failure to reject the null hypothesis at the \( \text{Alpha} \) significance level.

**p — p-value**

Scalar value in the range \([0,1]\)

\( p \)-value of the test, returned as a scalar value in the range \([0,1]\). \( p \) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \( p \) cast doubt on the validity of the null hypothesis.

**ci — Confidence interval**

Vector

Confidence interval for the true population mean, returned as a two-element vector containing the lower and upper boundaries of the \( 100 \times (1 - \text{Alpha}) \)% confidence interval.

**stats — Test statistics**

Structure

Test statistics, returned as a structure containing the following:

- \( \text{tstat} \) — Value of the test statistic.
• df — Degrees of freedom of the test.
• sd — Estimated population standard deviation. For a paired t-test, sd is the standard deviation of x − y.

Definitions

One-Sample t-Test

The one-sample t-test is a parametric test of the location parameter when the population standard deviation is unknown.

The test statistic is

\[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}}, \]

where \( \bar{x} \) is the sample mean, \( \mu \) is the hypothesized population mean, \( s \) is the sample standard deviation, and \( n \) is the sample size. Under the null hypothesis, the test statistic has Student’s t distribution with \( n - 1 \) degrees of freedom.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if \( x \) is a 1-by-3-by-4 array, then \( x \) is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \( x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \( x \).

Tips

• Use \texttt{sampsizepwr} to calculate:
• The sample size that corresponds to specified power and parameter values;
• The power achieved for a particular sample size, given the true parameter value;
• The parameter value detectable with the specified sample size and power.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
sampsizepwr | ttest2 | ztest

Introduced before R2006a
ttest2

Two-sample t-test

Syntax

h = ttest2(x,y)
h = ttest2(x,y,Name,Value)
[h,p] = ttest2(__)
[h,p,ci,stats] = ttest2(__)

Description

h = ttest2(x,y) returns a test decision for the null hypothesis that the data in vectors x and y comes from independent random samples from normal distributions with equal means and equal but unknown variances, using the two-sample t-test on page 32-6692. The alternative hypothesis is that the data in x and y comes from populations with unequal means. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = ttest2(x,y,Name,Value) returns a test decision for the two-sample t-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct the test without assuming equal variances.

[h,p] = ttest2(__) also returns the p-value, p, of the test, using any of the input arguments in the previous syntaxes.

[h,p,ci,stats] = ttest2(__) also returns the confidence interval on the difference of the population means, ci, and the structure stats containing information about the test statistic.

Examples
Two-Sample t-Test for Equal Means

Load the data set. Create vectors containing the first and second columns of the data matrix to represent students’ grades on two exams.

```matlab
load examgrades
x = grades(:,1);
y = grades(:,2);
```

Test the null hypothesis that the two data samples are from populations with equal means.

```matlab
[h,p,ci,stats] = ttest2(x,y)
```

```
 h = 0
 p = 0.9867
 ci = 2x1
 -1.9438
 1.9771
```

```
stats = struct with fields:
 tstat: 0.0167
 df: 238
 sd: 7.7084
```

The returned value of \( h = 0 \) indicates that \texttt{ttest2} does not reject the null hypothesis at the default 5% significance level.

**t-Test for Equal Means Without Assuming Equal Variances**

Load the data set. Create vectors containing the first and second columns of the data matrix to represent students’ grades on two exams.

```matlab
load examgrades
x = grades(:,1);
y = grades(:,2);
```
Test the null hypothesis that the two data vectors are from populations with equal means, without assuming that the populations also have equal variances.

\[ [h,p] = \text{ttest2}(x,y,'Vartype','unequal') \]

\[ h = 0 \]

\[ p = 0.9867 \]

The returned value of \( h = 0 \) indicates that \text{ttest2} does not reject the null hypothesis at the default 5% significance level even if equal variances are not assumed.

### Input Arguments

**x — Sample data**  
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. \text{ttest2} treats NaN values as missing data and ignores them.

- If \( x \) and \( y \) are specified as vectors, they do not need to be the same length.
- If \( x \) and \( y \) are specified as matrices, they must have the same number of columns. \text{ttest2} performs a separate t-test along each column and returns a vector of results.
- If \( x \) and \( y \) are specified as multidimensional arrays, they must have the same size along all but the first nonsingleton dimension. \text{ttest2} works along the first nonsingleton dimension.

**y — Sample data**  
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. \text{ttest2} treats NaN values as missing data and ignores them.

- If \( x \) and \( y \) are specified as vectors, they do not need to be the same length.
- If \( x \) and \( y \) are specified as matrices, they must have the same number of columns. \text{ttest2} performs a separate t-test along each column and returns a vector of results.
- If \( x \) and \( y \) are specified as multidimensional arrays, they must have the same size along all but the first nonsingleton dimension. \text{ttest2} works along the first nonsingleton dimension.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01,'Vartype','unequal' specifies a right-tailed test at the 1% significance level, and does not assume that x and y have equal population variances.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2
Data Types: single | double

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

<table>
<thead>
<tr>
<th>'both'</th>
<th>Test the alternative hypothesis that the population means are not equal.</th>
</tr>
</thead>
</table>
Right' | Test the alternative hypothesis that the population mean of x is greater than the population mean of y.

'left' | Test the alternative hypothesis that the population mean of x is less than the population mean of y.

Example: 'Tail','right'

Vartype — Variance type
'equal' (default) | 'unequal'

Variance type, specified as the comma-separated pair consisting of 'Vartype' and one of the following.

'equal' | Conduct test using the assumption that x and y are from normal distributions with unknown but equal variances.

'unequal' | Conduct test using the assumption that x and y are from normal distributions with unknown and unequal variances. This is called the Behrens-Fisher problem. ttest2 uses Satterthwaite’s approximation for the effective degrees of freedom.

Vartype must be a single variance type, even when x is a matrix or a multidimensional array.

Example: 'Vartype','unequal'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

- If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]
p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

**ci — Confidence interval**

vector

Confidence interval for the difference in population means of x and y, returned as a two-element vector containing the lower and upper boundaries of the 100 × (1 - Alpha)% confidence interval.

**stats — Test statistics**

structure

Test statistics for the two-sample t-test, returned as a structure containing the following:

- tstat — Value of the test statistic.
- df — Degrees of freedom of the test.
- sd — Pooled estimate of the population standard deviation (for the equal variance case) or a vector containing the unpooled estimates of the population standard deviations (for the unequal variance case).

**Definitions**

**Two-Sample t-test**

The two-sample t-test is a parametric test that compares the location parameter of two independent data samples.

The test statistic is

\[ t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}} \]

where \( \bar{x} \) and \( \bar{y} \) are the sample means, \( s_x \) and \( s_y \) are the sample standard deviations, and \( n \) and \( m \) are the sample sizes.
In the case where it is assumed that the two data samples are from populations with equal variances, the test statistic under the null hypothesis has Student's \( t \) distribution with \( n + m - 2 \) degrees of freedom, and the sample standard deviations are replaced by the pooled standard deviation

\[
s = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}}.
\]

In the case where it is not assumed that the two data samples are from populations with equal variances, the test statistic under the null hypothesis has an approximate Student's \( t \) distribution with a number of degrees of freedom given by Satterthwaite's approximation. This test is sometimes called Welch's \( t \)-test.

**Multidimensional Array**

A multidimensional array has more than two dimensions. For example, if \( x \) is a 1-by-3-by-4 array, then \( x \) is a three-dimensional array.

**First Nonsingleton Dimension**

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \( x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \( x \).

**Tips**

- Use `sampsizepwr` to calculate:
  - The sample size that corresponds to specified power and parameter values;
  - The power achieved for a particular sample size, given the true parameter value;
  - The parameter value detectable with the specified sample size and power.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
sampsizepwr | ttest | ztest

Introduced before R2006a
type

Class: classregtree

(Removed) Tree type

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

ttype = type(t)

Description

ttype = type(t) returns the type of the tree t. ttype is 'regression' for regression trees and 'classification' for classification trees.

References


See Also

classregtree
Type property

Class: cvpartition

Type of partition

Description

The type of validation partition. It is 'kfold', 'holdout', 'leaveout', or 'resubstitution'.

See Also

trainsize
Type property

Class: qrandset

Name of sequence on which point set P is based

Description

P.Type returns a character vector that contains the name of the sequence on which the point set P is based, for example 'Sobol'. You cannot change the Type property for a point set.
BetaDistribution

Beta probability distribution object

Description

A BetaDistribution object consist of parameters, a model description, and sample data for a beta probability distribution.

The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval (0,1). A more general version of the distribution assigns parameters to the endpoints of the interval.

The beta distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>First shape parameter</td>
<td>$a &gt; 0$</td>
</tr>
<tr>
<td>b</td>
<td>Second shape parameter</td>
<td>$b &gt; 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a BetaDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

a — First shape parameter
positive scalar value
First shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

\( b \) — Second shape parameter
positive scalar value

Second shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

**Distribution Characteristics**

\( \text{IsTruncated} \) — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \( \text{IsTruncated} \) equals 0, the distribution is not truncated. If \( \text{IsTruncated} \) equals 1, the distribution is truncated.

Data Types: logical

\( \text{NumParameters} \) — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

\( \text{ParameterCovariance} \) — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \( p \)-by-\( p \) matrix, where \( p \) is the number of parameters in the distribution. The \( (i,j) \) element is the covariance between the estimates of the \( i \)th parameter and the \( j \)th parameter. The \( (i,i) \) element is the estimated variance of the \( i \)th parameter. If parameter \( i \) is fixed rather than estimated by fitting the distribution to data, then the \( (i,i) \) elements of the covariance matrix are 0.
Data Types: double

**ParameterIsFixed — Logical flag for fixed parameters**
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

**ParameterValues — Distribution parameter values**
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

**Truncation — Truncation interval**
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

**Other Object Properties**

**DistributionName — Probability distribution name**
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char
**InputData — Data used for distribution fitting**
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

**ParameterNames — Distribution parameter names**
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

**Object Functions**
- **cdf**: Cumulative distribution function
- **icdf**: Inverse cumulative distribution function
- **iqr**: Interquartile range
- **mean**: Mean of probability distribution
- **median**: Median of probability distribution
- **negloglik**: Negative loglikelihood of probability distribution
- **paramci**: Confidence intervals for probability distribution parameters
pdf Probability density function
profilik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

**Examples**

**Create a Beta Distribution Object Using Default Parameters**

Create a beta distribution object using the default parameter values.

```matlab
d = makedist('Beta')
d =
 BetaDistribution
 Beta distribution
 a = 1
 b = 1
```

**Create a Beta Distribution Object Using Specified Parameters**

Create a beta distribution object by specifying the parameter values.

```matlab
d = makedist('Beta','a',2,'b',4)
d =
 BetaDistribution
 Beta distribution
 a = 2
 b = 4
```

Compute the mean of the distribution.

```matlab
m = mean(d)
m = 0.3333
```
See Also

Distribution Fitter | fitdist | makedist

Topics

“Beta Distribution” on page B-4

Introduced in R2013a
BinomialDistribution

Binomial probability distribution object

Description

A BinomialDistribution object consists of parameters, a model description, and sample data for a binomial probability distribution.

The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:

- Only two outcomes are possible for each of \( n \) trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

The binomial distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N )</td>
<td>Number of trials</td>
<td>positive integer</td>
</tr>
<tr>
<td>( p )</td>
<td>Probability of success</td>
<td>( 0 \leq p \leq 1 )</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a BinomialDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

\( N \) — Number of trials
positive integer value

Number of trials for the binomial distribution, specified as a positive integer value.

Data Types: single | double

\( p \) — Probability of success
positive scalar value in the range \([0,1]\)

Probability of success of any individual trial for the binomial distribution, specified as a positive scalar value in the range \([0,1]\).

Data Types: single | double

Distribution Characteristics

\( \text{IsTruncated} \) — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \( \text{IsTruncated} \) equals 0, the distribution is not truncated. If \( \text{IsTruncated} \) equals 1, the distribution is truncated.

Data Types: logical

\( \text{NumParameters} \) — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double
ParameterCovariance — Covariance matrix of the parameter estimates

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

**DistributionName — Probability distribution name**
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

**InputData — Data used for distribution fitting**
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

**ParameterNames — Distribution parameter names**
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char
Object Functions

- cdf: Cumulative distribution function
- icdf: Inverse cumulative distribution function
- iqr: Interquartile range
- mean: Mean of probability distribution
- median: Median of probability distribution
- negloglik: Negative loglikelihood of probability distribution
- paramci: Confidence intervals for probability distribution parameters
- pdf: Probability density function
- proflik: Profile likelihood function for probability distribution
- random: Random numbers
- std: Standard deviation of probability distribution
- truncate: Truncate probability distribution object
- var: Variance of probability distribution

Examples

Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

```matlab
pd = makedist('NegativeBinomial')
```

```
pd =
 NegativeBinomialDistribution

 Negative Binomial distribution
 R = 1
 P = 0.5
```

Create a Binomial Distribution Object Using Specified Parameters

Create a binomial distribution object by specifying the parameter values.

```matlab
pd = makedist('Binomial','N',30,'p',0.25)
```

```
pd =
 BinomialDistribution
```
Binomial distribution
   N =  30
   p = 0.25

Compute the mean of the distribution.

m = mean(pd)

m = 7.5000

See Also
Distribution Fitter | fitdist | makedist

Topics
“Binomial Distribution” on page B-9
“Bernoulli Distribution” on page B-2

Introduced in R2013a
**BirnbaumSaundersDistribution**

Birnbaum-Saunders probability distribution object

### Description

A BirnbaumSaundersDistribution object consists of parameters, a model description, and sample data for a Birnbaum-Saunders probability distribution.

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the growth of a prominent flaw. In materials science, Miner's Rule suggests that the damage occurring after \( n \) cycles, at a stress level with an expected lifetime of \( N \) cycles, is proportional to \( n / N \). Whenever Miner's Rule applies, the Birnbaum-Saunders model is a reasonable choice for a lifetime distribution model.

The Birnbaum-Saunders distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>scale parameter</td>
<td>( \beta &gt; 0 )</td>
</tr>
<tr>
<td>gamma</td>
<td>shape parameter</td>
<td>( \gamma &gt; 0 )</td>
</tr>
</tbody>
</table>

### Creation

There are several ways to create a BirnbaumSaundersDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the **Distribution Fitter** app.
Properties

Distribution Parameters

**beta** — Scale parameter
positive scalar value

Scale parameter of the Birnbaum-Saunders distribution, specified as a positive scalar value.

Data Types: `single` | `double`

**gamma** — Shape parameter
positive scalar value

Shape parameter of the Birnbaum-Saunders distribution, specified as a positive scalar value.

Data Types: `single` | `double`

Distribution Characteristics

**IsTruncated** — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: `logical`

**NumParameters** — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: `double`
**ParameterCovariance** — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \( p \)-by-\( p \) matrix, where \( p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i\)th parameter and the \(j\)th parameter. The \((i,i)\) element is the estimated variance of the \(i\)th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

**ParameterIsFixed** — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

**ParameterValues** — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

**Truncation** — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Birnbaum-Saunders Distribution Object Using Default Parameters

Create a Birnbaum-Saunders distribution object using the default parameter values.

```
pd = makedist('BirnbaumSaunders')
```

```
pd =
BirnbaumSaundersDistribution

 Birnbaum-Saunders distribution
 beta = 1
 gamma = 1
```

Create a Birnbaum-Saunders Distribution Object Using Specified Parameter Values

Create a Birnbaum-Saunders distribution object by specifying the parameter values.

```
pd = makedist('BirnbaumSaunders','beta',2,'gamma',5)
```

```
pd =
BirnbaumSaundersDistribution
```
Birnbaum-Saunders distribution

\[
\begin{align*}
\text{beta} &= 2 \\
\text{gamma} &= 5
\end{align*}
\]

Compute the mean of the distribution.

\[
m = \text{mean}(pd)
\]

\[
m = 27
\]

See Also

Distribution Fitter | fitdist | makedist

Topics

“Birnbaum-Saunders Distribution” on page B-13

Introduced in R2013a
BurrDistribution

Burr probability distribution object

Description

A BurrDistribution object consists of parameters, a model description, and sample data for a Burr probability distribution.

The Burr distribution is a three-parameter family of distributions on the positive real line. It can fit a wide range of empirical data, and is used in various fields such as finance, hydrology, and reliability to model a variety of data types.

The Burr distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Scale parameter</td>
<td>$\alpha &gt; 0$</td>
</tr>
<tr>
<td>c</td>
<td>First shape parameter</td>
<td>$c &gt; 0$</td>
</tr>
<tr>
<td>k</td>
<td>Second shape parameter</td>
<td>$k &gt; 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a BurrDistribution probability distribution object.

- Create a distribution with specified parameter values using `makedist`.
- Fit a distribution to data using `fitdist`.
- Interactively fit a distribution to data using the `Distribution Fitter` app.
Properties

Distribution Parameters

**alpha — Scale parameter**
positive scalar value

Scale parameter of the Burr distribution, specified as a positive scalar value.

Data Types: single | double

**c — First shape parameter**
positive scalar value

First shape parameter of the Burr distribution, specified as a positive scalar value.

Data Types: single | double

**k — Second shape parameter**
positive scalar value

Second shape parameter of the Burr distribution, specified as a positive scalar value.

Data Types: single | double

Distribution Characteristics

**IsTruncated — Logical flag for truncated distribution**
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

**NumParameters — Number of parameters**
positive integer value

This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

**ParameterCovariance — Covariance matrix of the parameter estimates**

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

**ParameterIsFixed — Logical flag for fixed parameters**

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

**ParameterValue — Distribution parameter values**

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

**Truncation — Truncation interval**

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

**Other Object Properties**

**DistributionName — Probability distribution name**
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

**InputData — Data used for distribution fitting**
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

**ParameterNames — Distribution parameter names**
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Object Functions

- **cdf**: Cumulative distribution function
- **icdf**: Inverse cumulative distribution function
- **iqr**: Interquartile range
- **mean**: Mean of probability distribution
- **median**: Median of probability distribution
- **negloglik**: Negative loglikelihood of probability distribution
- **paramci**: Confidence intervals for probability distribution parameters
- **pdf**: Probability density function
- **proflik**: Profile likelihood function for probability distribution
- **random**: Random numbers
- **std**: Standard deviation of probability distribution
- **truncate**: Truncate probability distribution object
- **var**: Variance of probability distribution

Examples

Create a Burr Distribution Object Using Default Parameters

Create a Burr distribution object using the default parameter values.

```matlab
pd = makedist('Burr')
```

```matlab
pd =
 BurrDistribution

 Burr distribution
 alpha = 1
 c = 1
 k = 1
```

Create a Burr Distribution Object Using Specified Parameters

Create a Burr distribution object by specifying parameter values.

```matlab
pd = makedist('Burr','alpha',1,'c',2,'k',5)
```
pd = BurrDistribution

Burr distribution
    alpha = 1
    c = 2
    k = 5

Compute the mean of the distribution.

m = mean(pd)

m = 0.4295

See Also
Distribution Fitter | fitdist | makedist

Topics
“Burr Type XII Distribution” on page B-15

Introduced in R2013a
ExponentialDistribution

Exponential probability distribution object

Description

An ExponentialDistribution object consists of parameters, a model description, and sample data for an exponential probability distribution.

The exponential distribution is used to model events that occur randomly over time, and its main application area is studies of lifetimes. It is a special case of the gamma distribution with the shape parameter $\alpha = 1$.

The exponential distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu$</td>
<td>Mean</td>
<td>$\mu &gt; 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a ExponentialDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameter

$\mu$ — Mean

positive scalar value
Mean of the exponential distribution, specified as a positive scalar value.

Data Types: single | double

**Distribution Characteristics**

**IsTruncated** — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

**NumParameters** — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

**ParameterCovariance** — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the i\textsuperscript{th} parameter and the j\textsuperscript{th} parameter. The (i,i) element is the estimated variance of the i\textsuperscript{th} parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

**ParameterIsFixed** — Logical flag for fixed parameters

array of logical values

This property is read-only.
Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValue — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:
- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: `struct`

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: `char`

**ParameterNames — Distribution parameter names**
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: `char`

**Object Functions**

- `cdf`: Cumulative distribution function
- `icdf`: Inverse cumulative distribution function
- `iqr`: Interquartile range
- `mean`: Mean of probability distribution
- `median`: Median of probability distribution
- `negloglik`: Negative loglikelihood of probability distribution
- `paramci`: Confidence intervals for probability distribution parameters
- `pdf`: Probability density function
- `proflik`: Profile likelihood function for probability distribution
- `random`: Random numbers
- `std`: Standard deviation of probability distribution
- `truncate`: Truncate probability distribution object
- `var`: Variance of probability distribution
Examples

Create an Exponential Distribution Object Using Default Parameters

Create an exponential distribution object using the default parameter values.

```matlab
d = makedist('Exponential')
d =
 ExponentialDistribution
 Exponential distribution
 mu = 1
```

Create an Exponential Distribution Object Using Specified Parameters

Create an exponential distribution object by specifying the parameter values.

```matlab
d = makedist('Exponential','mu',2)
d =
 ExponentialDistribution
 Exponential distribution
 mu = 2
```

Compute the variance of the distribution.

```matlab
v = var(d)
v = 4
```

See Also

Distribution Fitter | fitdist | makedist

Topics

“Exponential Distribution” on page B-32
Introduced in R2013a
**ExtremeValueDistribution**

Extreme value probability distribution object

**Description**

An ExtremeValueDistribution object consists of parameters, a model description, and sample data for an extreme value probability distribution.

The extreme value distribution is appropriate for modeling the smallest value from a distribution whose tails decay exponentially fast, for example, the normal distribution. It can also model the largest value from a distribution, such as the normal or exponential distributions, by using the negative of the original values.

The extreme value distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Location parameter</td>
<td>$-\infty &lt; \mu &lt; \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>$\sigma \geq 0$</td>
</tr>
</tbody>
</table>

**Creation**

There are several ways to create a ExtremeValueDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the **Distribution Fitter** app.
Properties

Distribution Parameters

**mu — Location parameter**
scalar value

Location parameter of the extreme value distribution, specified as a scalar value.
Data Types: single | double

**sigma — Scale parameter**
nonnegative scalar value

Scale parameter of the extreme value distribution, specified as a nonnegative scalar value.
Data Types: single | double

Distribution Characteristics

**IsTruncated — Logical flag for truncated distribution**
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: logical

**NumParameters — Number of parameters**
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double
**ParameterCovariance** — Covariance matrix of the parameter estimates

Matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a $p$-by-$p$ matrix, where $p$ is the number of parameters in the distribution. The $(i,j)$ element is the covariance between the estimates of the $i$th parameter and the $j$th parameter. The $(i,i)$ element is the estimated variance of the $i$th parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the $(i,i)$ elements of the covariance matrix are 0.

Data Types: double

**ParameterIsFixed** — Logical flag for fixed parameters

Array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

**ParameterValues** — Distribution parameter values

Vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

**Truncation** — Truncation interval

Vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

**DistributionName — Probability distribution name**
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

**InputData — Data used for distribution fitting**
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:
- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.
Data Types: char

**ParameterNames — Distribution parameter names**

cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char
Object Functions

- cdf: Cumulative distribution function
- icdf: Inverse cumulative distribution function
- iqr: Interquartile range
- mean: Mean of probability distribution
- median: Median of probability distribution
- negloglik: Negative loglikelihood of probability distribution
- paramci: Confidence intervals for probability distribution parameters
- pdf: Probability density function
- proflik: Profile likelihood function for probability distribution
- random: Random numbers
- std: Standard deviation of probability distribution
- truncate: Truncate probability distribution object
- var: Variance of probability distribution

Examples

Create an Extreme Value Distribution Object Using Default Parameters

Create an extreme value distribution object using the default parameter values.

```matlab
pd = makedist('ExtremeValue')
```

```
pd =
 ExtremeValueDistribution

 Extreme Value distribution
 mu = 0
 sigma = 1
```

Create an Extreme Value Distribution Object Using Specified Parameters

Create an extreme value distribution object by specifying the parameter values.

```matlab
pd = makedist('ExtremeValue','mu',-1,'sigma',2)
```

```
pd =
 ExtremeValueDistribution
```
Extreme Value distribution
  mu = -1
  sigma =  2

Compute the standard deviation for the distribution.

s = std(pd)

s = 2.5651

See Also
Distribution Fitter | fitdist | makedist

Topics
“Extreme Value Distribution” on page B-36

Introduced in R2013a
**GammaDistribution**

Gamma probability distribution object

**Description**

A `GammaDistribution` object consists of parameters, a model description, and sample data for a gamma probability distribution.

The gamma distribution is a two-parameter family of distributions used to model sums of exponentially distributed random variables. The chi-square and the exponential distributions, which are special cases of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Shape parameter</td>
<td>$a &gt; 0$</td>
</tr>
<tr>
<td>b</td>
<td>Scale parameter</td>
<td>$b &gt; 0$</td>
</tr>
</tbody>
</table>

**Creation**

There are several ways to create a `GammaDistribution` probability distribution object.

- Create a distribution with specified parameter values using `makedist`.
- Fit a distribution to data using `fitdist`.
- Interactively fit a distribution to data using the **Distribution Fitter** app.
Properties

Distribution Parameters

**a — Shape parameter**
positive scalar value

Shape parameter for the gamma distribution, specified as a positive scalar value.
Data Types: single | double

**b — Scale parameter**
nonnegative scalar value

Scale parameter for the gamma distribution, specified as a nonnegative scalar value.
Data Types: single | double

Distribution Characteristics

**IsTruncated — Logical flag for truncated distribution**
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

**NumParameters — Number of parameters**
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

**ParameterCovariance — Covariance matrix of the parameter estimates**
matrix of scalar values
This property is read-only.

Covariance matrix of the parameter estimates, specified as a $p$-by-$p$ matrix, where $p$ is the number of parameters in the distribution. The $(i,j)$ element is the covariance between the estimates of the $i$th parameter and the $j$th parameter. The $(i,i)$ element is the estimated variance of the $i$th parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the $(i,i)$ elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValue — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name

character vector
This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

**InputData — Data used for distribution fitting**
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

**ParameterDescription — Distribution parameter descriptions**
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

**ParameterNames — Distribution parameter names**
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

**Object Functions**

cdf | Cumulative distribution function
icdf | Inverse cumulative distribution function
Examples

Create a Gamma Distribution Object Using Default Parameters

Create a gamma distribution object using the default parameter values.

```matlab
pd = makedist('Gamma')
```

```matlab
pd =
 GammaDistribution

 Gamma distribution
 a = 1
 b = 1
```

Create a Gamma Distribution Object Using Specified Parameters

Create a gamma distribution object by specifying the parameter values.

```matlab
pd = makedist('Gamma','a',2,'b',4)
```

```matlab
pd =
 GammaDistribution

 Gamma distribution
a = 2
b = 4

Compute the mean of the distribution.

m = mean(pd)
m = 8

See Also
Distribution Fitter | fitdist | makedist

Topics
“Gamma Distribution” on page B-45

Introduced in R2013a
GeneralizedExtremeValueDistribution

Generalized extreme value probability distribution object

Description

A GeneralizedExtremeValueDistribution object consists of parameters, a model description, and sample data for a generalized extreme value probability distribution.

The generalized extreme value distribution is often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. It combines three simpler distributions into a single form, allowing a continuous range of possible shapes that include all three of the simpler distributions.

The three distribution types correspond to the limiting distribution of block maxima from different classes of underlying distributions:

- Type 1 — Distributions whose tails decrease exponentially, such as the normal distribution
- Type 2 — Distributions whose tails decrease as a polynomial, such as Student’s t distribution
- Type 3 — Distributions whose tails are finite, such as the beta distribution

The generalized extreme value distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Shape parameter</td>
<td>$-\infty \leq k \leq \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>$\sigma \geq 0$</td>
</tr>
<tr>
<td>mu</td>
<td>Location parameter</td>
<td>$-\infty \leq \mu \leq \infty$</td>
</tr>
</tbody>
</table>
Creation

There are several ways to create a GeneralizedExtremeValueDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

\(k \) — Shape parameter

Scalar value

Shape parameter of the generalized extreme value distribution, specified as a scalar value.

Data Types: single | double

\(\sigma \) — Scale parameter

Nonnegative scalar value

Scale parameter of the generalized extreme value distribution, specified as a nonnegative scalar value.

Data Types: single | double

\(\mu \) — Location parameter

Scalar value

Location parameter of the generalized extreme value distribution, specified as a scalar value.

Data Types: single | double
Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

Definition: Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

This property is read-only.

Data Types: logical

NumParameters — Number of parameters

Definition: Number of parameters for the probability distribution, specified as a positive integer value.

This property is read-only.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

Definition: Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the i-th parameter and the j-th parameter. The (i,i) element is the estimated variance of the i-th parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

This property is read-only.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

Definition: Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

This property is read-only.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.
Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflk Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
Examples

Create a Generalized Extreme Value Distribution Object Using Default Parameters

Create a generalized extreme value distribution object using the default parameter values.

```matlab
pd = makedist('GeneralizedExtremeValue')
```

```matlab
dp =
    GeneralizedExtremeValueDistribution

    Generalized Extreme Value distribution
    k = 0
    sigma = 1
    mu = 0
```

Create a Generalized Extreme Value Distribution Object Using Specified Parameters

Create a generalized extreme value distribution object by specifying values for the parameters.

```matlab
pd = makedist('GeneralizedExtremeValue','k',0,'sigma',2,'mu',1)
```

```matlab
dp =
    GeneralizedExtremeValueDistribution

    Generalized Extreme Value distribution
    k = 0
    sigma = 2
    mu = 1
```

Compute the mean of the distribution.

```matlab
m = mean(pd)
```

```matlab
m = 2.1544
```
See Also
Distribution Fitter | fitdist | makedist

Topics
“Generalized Extreme Value Distribution” on page B-50

Introduced in R2013a
GeneralizedParetoDistribution

Generalized Pareto probability distribution object

Description

A `GeneralizedParetoDistribution` object consists of parameters, a model description, and sample data for a generalized Pareto probability distribution.

The generalized Pareto distribution is used to model the tails of another distribution. It allows a continuous range of possible shapes that include both the exponential and Pareto distributions as special cases. It has three basic forms, each corresponding to a limiting distribution of exceedence data from a different class of underlying distributions.

- Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto shape parameter of zero.
- Distributions whose tails decrease polynomially, such as the Student’s t, lead to a positive shape parameter.
- Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Shape parameter</td>
<td>$-\infty < k < \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>$\sigma \geq 0$</td>
</tr>
<tr>
<td>theta</td>
<td>Location parameter</td>
<td>$-\infty < \theta < \infty$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a `GeneralizedParetoDistribution` probability distribution object.
• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

k — Shape parameter
scalar value

Shape parameter for the generalized Pareto distribution, specified as a scalar value.

Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter for the generalized Pareto distribution, specified as a nonnegative scalar value.

Data Types: single | double

theta — Location parameter
scalar value

Location parameter for the generalized Pareto distribution, specified as a scalar value.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i\)th parameter and the \(j\)th parameter. The \((i,i)\) element is the estimated variance of the \(i\)th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double
Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char
ParameterNames — Distribution parameter names

cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Generalized Pareto Distribution Object Using Default Parameters

Create a generalized Pareto distribution object using the default parameter values.

pd = makedist('GeneralizedPareto')

pd =
 GeneralizedParetoDistribution

 Generalized Pareto distribution
 k = 1
 sigma = 1
 theta = 1
Create a Generalized Pareto Distribution Object Using Specified Parameters

Create a generalized Pareto distribution object by specifying parameter values.

```matlab
pd = makedist('GeneralizedPareto','k',0,'sigma',2,'theta',1)
```

pd =

```
Generalized ParetoDistribution
Generalized Pareto distribution
  k = 0
  sigma = 2
  theta = 1
```

Compute the mean of the distribution.

```matlab
m = mean(pd)
```

m = 3

See Also
Distribution Fitter | fitdist | makedist

Topics
“Generalized Pareto Distribution” on page B-55
“Nonparametric and Empirical Probability Distributions” on page 5-39

Introduced in R2013a
HalfNormalDistribution

Half-normal probability distribution object

Description

A HalfNormalDistribution object consists of parameters, a model description, and sample data for a half-normal probability distribution.

The half-normal distribution is a special case of the folded normal and truncated normal distribution. Applications of the half-normal distribution include modeling measurement data and lifetime data.

The half-normal distribution uses the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Location</td>
<td>$-\infty < \mu < \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale</td>
<td>$\sigma \geq 0$</td>
</tr>
</tbody>
</table>

For more information about the half-normal distribution, see “Half-Normal Distribution” on page B-69.

Creation

There are several ways to create a HalfNormalDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

mu — Location parameter
scalar value
Location parameter of the half-normal distribution, specified as a scalar value. The mu parameter is also the lower limit of the half-normal distribution.

The Statistics and Machine Learning Toolbox implementation of the half-normal distribution assumes a fixed value for the location parameter μ. You can specify a value for the μ parameter when creating a HalfNormalDistribution object.

Data Types: single | double

sigma — Scale parameter
nonnegative scalar value
Scale parameter of the half-normal distribution, specified as a nonnegative scalar value.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value
This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions

cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names

cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions

- `cdf` Cumulative distribution function
- `icdf` Inverse cumulative distribution function
- `iqr` Interquartile range
- `mean` Mean of probability distribution
- `median` Median of probability distribution
- `negloglik` Negative loglikelihood of probability distribution
- `paramci` Confidence intervals for probability distribution parameters
- `pdf` Probability density function
- `proflik` Profile likelihood function for probability distribution
- `random` Random numbers
- `std` Standard deviation of probability distribution
- `truncate` Truncate probability distribution object
- `var` Variance of probability distribution

Examples

Create a Half-Normal Distribution Object Using Default Parameters

```matlab
pd = makedist('HalfNormal')
```

```matlab
pd =
    HalfNormalDistribution

    Half Normal distribution
    mu = 0
    sigma = 1
```

Create a Half-Normal Distribution Object Using Specified Parameters

Create a half-normal distribution object. Specify `mu` equal to 0 and `sigma` equal to 1.5.

```matlab
pd = makedist('HalfNormal','mu',0,'sigma',1.5)
```
pd =
 HalfNormalDistribution

 Half Normal distribution
 mu = 0
 sigma = 1.5

Compute the mean and standard deviation of the distribution.

m = mean(pd)
m = 1.1968
s = std(pd)
s = 0.9042

Fit a Half-Normal Distribution Object

Generate 100 random numbers from a standard normal distribution and compute their absolute value.

rng default % For reproducibility
x = abs(random(makedist('Normal'),100,1));

Fit a half-normal distribution object to the sample data.

pd = fitdist(x,'HalfNormal')

pd =
 HalfNormalDistribution

 Half Normal distribution
 mu = 0
 sigma = 1.1631 [1.02184, 1.35006]

Calculate the mean of the fitted half-normal distribution using the probability distribution object.

m = mean(pd)
m = 0.9280

Calculate the mean of the half-normal distribution by substituting the fitted mu and sigma parameter values into the formula

\[\text{mean} = \mu + \sigma \sqrt{\frac{2}{\pi}}. \]

\[
\text{mcalc} = \text{pd.mu} + \text{pd.sigma} \cdot (\sqrt{2/\pi})
\]

\[
\text{mcalc} = 0.9280
\]

References

See Also

Distribution Fitter | *fitdist* | *makedist*

Topics

“Half-Normal Distribution” on page B-69

Introduced in R2016a
InverseGaussianDistribution

Inverse Gaussian probability distribution object

Description

An InverseGaussianDistribution object consists of parameters, a model description, and sample data for an inverse Gaussian probability distribution.

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively skewed data. Inverse Gaussian distributions have many similarities to standard Gaussian (normal) distributions, which lead to applications in inferential statistics.

The inverse Gaussian distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Scale parameter</td>
<td>$\mu > 0$</td>
</tr>
<tr>
<td>lambda</td>
<td>Shape parameter</td>
<td>$\lambda > 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a InverseGaussianDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

\(\mu \) — Scale parameter

positive scalar value

Scale parameter for the inverse Gaussian distribution, specified as a positive scalar value.

Data Types: single | double

\(\lambda \) — Shape parameter

positive scalar value

Shape parameter for the inverse Gaussian distribution, specified as a positive scalar value.

Data Types: single | double

Distribution Characteristics

\(\text{IsTruncated} \) — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \(\text{IsTruncated} \) equals 0, the distribution is not truncated. If \(\text{IsTruncated} \) equals 1, the distribution is truncated.

Data Types: logical

\(\text{NumParameters} \) — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double
ParameterCovariance — Covariance matrix of the parameter estimates

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i\)th parameter and the \(j\)th parameter. The \((i,i)\) element is the estimated variance of the \(i\)th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create an Inverse Gaussian Distribution Object Using Default Parameters

Create an inverse Gaussian distribution object using the default parameter values.

```matlab
pd = makedist('InverseGaussian')
```

```matlab
d = makedist('InverseGaussian')
d =
    InverseGaussianDistribution
    Inverse Gaussian distribution
    mu = 1
    lambda = 1
```

Create an Inverse Gaussian Distribution Object Using Specified Parameters

Create an inverse Gaussian distribution object by specifying parameter values.

```matlab
pd = makedist('InverseGaussian','mu',2,'lambda',4)
```

```matlab
d = makedist('InverseGaussian','mu',2,'lambda',4)
d =
    InverseGaussianDistribution
```
Inverse Gaussian distribution
mu = 2
lambda = 4

Compute the standard deviation of the distribution.

\[s = \text{std}(pd) \]
\[s = 1.4142 \]

See Also
Distribution Fitter | fitdist | makedist

Topics
“Inverse Gaussian Distribution” on page B-78

Introduced in R2013a
KernelDistribution

Kernel probability distribution object

Description

A KernelDistribution object consists of parameters, a model description, and sample data for a nonparametric kernel-smoothing distribution.

The kernel distribution is a nonparametric estimation of the probability density function (pdf) of a random variable.

The kernel distribution uses the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Kernel function type</td>
<td>normal, box, triangle, epanechnikov</td>
</tr>
<tr>
<td>BandWidth</td>
<td>Kernel smoothing parameter</td>
<td>BandWidth > 0</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a KernelDistribution probability distribution object.

- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

Kernel — Kernel smoother type

'normal' | 'box' | 'triangle' | 'epanechnikov'

Kernel function type, specified as a valid kernel function type name.
BandWidth — Bandwidth of kernel smoothing window

positive scalar value

Bandwidth of the kernel smoothing window, specified as a positive scalar value.

Data Types: `single` | `double`

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: `logical`

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: `single` | `double`

Other Object Properties

DistributionName — Probability distribution name

character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: `char`

InputData — Data used for distribution fitting

structure
This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: **struct**

Object Functions

- `cdf` Cumulative distribution function
- `icdf` Inverse cumulative distribution function
- `iqr` Interquartile range
- `mean` Mean of probability distribution
- `median` Median of probability distribution
- `negloglik` Negative loglikelihood of probability distribution
- `pdf` Probability density function
- `random` Random numbers
- `std` Standard deviation of probability distribution
- `truncate` Truncate probability distribution object
- `var` Variance of probability distribution

Examples

Fit a Kernel Distribution Object to Data

Load the sample data. Visualize the patient weight data using a histogram.

```matlab
load hospital
histogram(hospital.Weight)
```
The histogram shows that the data has two modes, one for female patients and one for male patients.

Create a probability distribution object by fitting a kernel distribution to the patient weight data.

```matlab
pd_kernel = fitdist(hospital.Weight,'Kernel')
```

```
pd_kernel =  
    KernelDistribution
          
    Kernel = normal
    Bandwidth = 14.3792
```
Support = unbounded

For comparison, create another probability distribution object by fitting a normal distribution to the patient weight data.

```
pd_normal = fitdist(hospital.Weight,'Normal')
```

```
pd_normal =
    NormalDistribution

    Normal distribution
    mu = 154  [148.728, 159.272]
    sigma = 26.5714  [23.3299, 30.8674]
```

Define the x values and compute the pdf of each distribution.

```
x = 50:1:250;
pdf_kernel = pdf(pd_kernel,x);
pdf_normal = pdf(pd_normal,x);
```

Plot the pdf of each distribution.

```
plot(x,pdf_kernel,'Color','b','LineWidth',2);
hold on;
plot(x,pdf_normal,'Color','r','LineStyle',':','LineWidth',2);
legend('Kernel Distribution','Normal Distribution','Location','SouthEast');
hold off;
```
Fitting a kernel distribution instead of a unimodal distribution such as the normal reveals the separate modes for the female and male patients.

See Also
Distribution Fitter | fitdist

Topics
“Fit Kernel Distribution Object to Data” on page 5-48
“Fit Probability Distribution Objects to Grouped Data” on page 5-119
“Compare Multiple Distribution Fits” on page 5-112
“Kernel Distribution” on page B-81
“Nonparametric and Empirical Probability Distributions” on page 5-39

Introduced in R2013a
LogisticDistribution

Logistic probability distribution object

Description

A LogisticDistribution object consists of parameters, a model description, and sample data for a logistic probability distribution.

The logistic distribution is used for growth models and in logistic regression. It has longer tails and a higher kurtosis than the normal distribution.

The logistic distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean</td>
<td>$-\infty < \mu < \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>$\sigma \geq 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a LogisticDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

mu — Mean

scalar value
Mean of the logistic distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the logistic distribution, specified as a nonnegative scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char
InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: **struct**

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: **char**

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: **char**

Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
Examples

Create a Logistic Distribution Object Using Default Parameters

Create a logistic distribution object using the default parameter values.

```matlab
pd = makedist('Logistic')
pd = LogisticDistribution
    Logistic distribution
    mu = 0
    sigma = 1
```

Create a Logistic Distribution Object Using Specified Parameters

Create a logistic distribution object by specifying parameter values.

```matlab
pd = makedist('Logistic','mu',2,'sigma',4)
pd = LogisticDistribution
    Logistic distribution
    mu = 2
    sigma = 4
```

Compute the standard deviation of the distribution.

```matlab
s = std(pd)
s = 7.2552
```
See Also
Distribution Fitter | fitdist | makedist

Topics
“Compare Multiple Distribution Fits” on page 5-112
“Logistic Distribution” on page B-91

Introduced in R2013a
LoglogisticDistribution

Loglogistic probability distribution object

Description

A LoglogisticDistribution object consists of parameters, a model description, and sample data for a loglogistic probability distribution.

The loglogistic distribution is closely related to the logistic distribution. If \(x \) is distributed loglogistically with parameters \(\mu \) and \(\sigma \), then \(\log(x) \) is distributed logistically with mean and standard deviation. This distribution is often used in survival analysis to model events that experience an initial rate increase, followed by a rate decrease.

The loglogistic distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean of logarithmic values</td>
<td>(\mu > 0)</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter of logarithmic values</td>
<td>(\sigma > 0)</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a LoglogisticDistribution probability distribution object.

- Create a distribution with specified parameter values using `makedist`.
- Fit a distribution to data using `fitdist`.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

\(\mu \) — Mean of logarithmic values
positive scalar value

Mean of logarithmic values for the loglogistic distribution, specified as a positive scalar value.
Data Types: single | double

\(\sigma \) — Scale parameter of logarithmic values
positive scalar value

Scale parameter of logarithmic values for the loglogistic distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

\texttt{IsTruncated} — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \texttt{IsTruncated} equals 0, the distribution is not truncated. If \texttt{IsTruncated} equals 1, the distribution is truncated.
Data Types: logical

\texttt{NumParameters} — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double
ParameterCovariance — Covariance matrix of the parameter estimates

Matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

Array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

Vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

Vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

DistributionName — Probability distribution name

character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting

structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions

cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names

cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Loglogistic Distribution Object Using Default Parameters

Create a loglogistic distribution object using the default parameter values.

```matlab
pd = makedist('Loglogistic')
pd =
    LoglogisticDistribution
    Log-Logistic distribution
        mu = 0
        sigma = 1
```

Create a Loglogistic Distribution Object Using Specified Parameters

Create a loglogistic distribution object by specifying the parameter values.

```matlab
pd = makedist('Loglogistic','mu',5,'sigma',2)
pd =
    LoglogisticDistribution
```
Log-Logistic distribution
 mu = 5
 sigma = 2

Generate random numbers from the loglogistic distribution and compute their log values.

rng(19) % for reproducibility
x = random(pd,10000,1);
logx = log(x);

Compute the mean of the log values.

m = mean(logx)

m = 4.9828

The mean of the log of x is equal to the mu parameter of x, since x has a loglogistic distribution.

Plot logx.

histogram(logx,50)
The plot shows that the log values of x have a logistic distribution.

See Also
- Distribution Fitter
- fitdist
- makedist

Topics
- “Loglogistic Distribution” on page B-93

Introduced in R2013a
LognormalDistribution

Lognormal probability distribution object

Description

A LognormalDistribution object consists of parameters, a model description, and sample data for a lognormal probability distribution.

The lognormal distribution is a probability distribution whose logarithm has a normal distribution. It is sometimes called the Galton distribution. The lognormal distribution is applicable when the quantity of interest must be positive, since log(x) exists only when x is positive.

The lognormal distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean of logarithmic values</td>
<td>$-\infty < \mu < \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Standard deviation of</td>
<td>$\sigma \geq 0$</td>
</tr>
<tr>
<td></td>
<td>logarithmic values</td>
<td></td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a LognormalDistribution probability distribution object.

- Create a distribution with specified parameter values using `makedist`.
- Fit a distribution to data using `fitdist`.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

\(\mu \) — Mean of logarithmic values

Scalar value

Mean of logarithmic values for the lognormal distribution, specified as a scalar value.

Data Types: single | double

\(\sigma \) — Standard deviation of logarithmic values

Nonnegative scalar value

Standard deviation of logarithmic values for the lognormal distribution, specified as a nonnegative scalar value.

You can specify \(\sigma \) to be zero when you create an object by using \texttt{makedist}. Some object functions support an object \texttt{pd} with zero standard deviation. For example, \texttt{random(pd)} always returns \(\exp(\mu) \).

Data Types: single | double

Distribution Characteristics

\(\text{IsTruncated} \) — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \(\text{IsTruncated} \) equals 0, the distribution is not truncated. If \(\text{IsTruncated} \) equals 1, the distribution is truncated.

Data Types: logical

\(\text{NumParameters} \) — Number of parameters

Positive integer value

This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i\)th parameter and the \(j\)th parameter. The \((i,i)\) element is the estimated variance of the \(i\)th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValue — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
 cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
- cdf: Cumulative distribution function
- icdf: Inverse cumulative distribution function
- iqr: Interquartile range
- mean: Mean of probability distribution
- median: Median of probability distribution
- negloglik: Negative loglikelihood of probability distribution
- paramci: Confidence intervals for probability distribution parameters
- pdf: Probability density function
- proflik: Profile likelihood function for probability distribution
- random: Random numbers
- std: Standard deviation of probability distribution
- truncate: Truncate probability distribution object
- var: Variance of probability distribution

Examples

Create a Lognormal Distribution Object Using Default Parameters

Create a lognormal distribution object using the default parameter values.

```matlab
pd = makedist('Lognormal')
```

```matlab
pd =
  LognormalDistribution
  Lognormal distribution
    mu = 0
    sigma = 1
```

Create a Lognormal Distribution Object Using Specified Parameters

Create a lognormal distribution object by specifying the parameter values.

```matlab
pd = makedist('Lognormal','mu',5,'sigma',2)
```
pd = LognormalDistribution
 Lognormal distribution
 mu = 5
 sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)
ans = 1.0966e+03

The mean of the lognormal distribution is not equal to the mu parameter.

Generate random numbers from the lognormal distribution and compute their log values.

 rng(47); % for reproducibility
 x = random(pd,10000,1);
 logx = log(x);

Compute the mean of the log values.

 m = mean(logx)
 m = 5.0156

The mean of the log of x is equal to the mu parameter of x, since x has a lognormal distribution.

Plot logx.

 histogram(logx,50)
The plot shows that the log values of x are normally distributed with a mean equal to 5 and a standard deviation equal to 2.

See Also

Distribution Fitter | fitdist | makedist

Topics

“Lognormal Distribution” on page B-95
Introduced in R2013a
MultinomialDistribution
Multinomial probability distribution object

Description
A MultinomialDistribution object consists of parameters and a model description for a multinomial probability distribution.

The multinomial distribution is a generalization of the binomial distribution. While the binomial distribution gives the probability of the number of “successes” in n independent trials of a two-outcome process, the multinomial distribution gives the probability of each combination of outcomes in n independent trials of a k-outcome process. The probability of each outcome in any one trial is given by the fixed probabilities p_1, \ldots, p_k.

The multinomial distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilities</td>
<td>Outcome probabilities</td>
<td>$0 \leq \text{probabilities}(i) \leq 1; \sum_{\text{all}(i)} \text{probabilities}(i) = 1$</td>
</tr>
</tbody>
</table>

Creation
Create a MultinomialDistribution probability distribution with specified parameter values object using makedist.

Properties

Distribution Parameter

Probabilities — outcome probabilities
vector of scalar values in the range $[0,1]$
Outcome probabilities for the multinomial distribution, stored as a vector of scalar values in the range \([0,1]\). The values in probabilities must sum to 1.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

\[0 \mid 1\]

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>icdf</td>
<td>Inverse cumulative distribution function</td>
</tr>
<tr>
<td>iqr</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of probability distribution</td>
</tr>
<tr>
<td>median</td>
<td>Median of probability distribution</td>
</tr>
<tr>
<td>pdf</td>
<td>Probability density function</td>
</tr>
<tr>
<td>random</td>
<td>Random numbers</td>
</tr>
<tr>
<td>std</td>
<td>Standard deviation of probability distribution</td>
</tr>
</tbody>
</table>
Examples

Create a Multinomial Distribution Object Using Default Parameters

Create a multinomial distribution object using the default parameter values.

```matlab
d = makedist('Multinomial')
d =
    MultinomialDistribution
    Probabilities:
     0.5000    0.5000
```

Create a Multinomial Distribution Object Using Specified Parameters

Create a multinomial distribution object for a distribution with three possible outcomes. Outcome 1 has a probability of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6.

```matlab
d = makedist('Multinomial','probabilities',[1/2 1/3 1/6])
d =
    MultinomialDistribution
    Probabilities:
     0.5000    0.3333    0.1667
```

Generate a random outcome from the distribution.

```matlab
rng('default'); % for reproducibility
r = random(d)
r = 2
```
The result of this trial is outcome 2. By default, the number of trials in each experiment, n, equals 1.

Generate random outcomes from the distribution when the number of trials in each experiment, n, equals 1, and the experiment is repeated ten times.

```matlab
rng('default'); % for reproducibility
r = random(pd,10,1)
```

```
r = 10×1
   2
   3
   1
   3
   2
   1
   1
   2
   3
   3
```

Each element in the array is the outcome of an individual experiment that contains one trial.

Generate random outcomes from the distribution when the number of trials in each experiment, n, equals 5, and the experiment is repeated ten times.

```matlab
rng('default'); % for reproducibility
r = random(pd,10,5)
```

```
r = 10×5
   2   1   2   2   1
   3   3   1   1   1
   1   3   3   1   2
   3   1   3   1   2
   2   2   2   1   1
   1   1   2   2   1
   1   1   2   2   1
   2   3   1   1   2
   3   2   2   3   2
```

32-6798
Each element in the resulting matrix is the outcome of one trial. The columns correspond to the five trials in each experiment, and the rows correspond to the ten experiments. For example, in the first experiment (corresponding to the first row), 2 of the 5 trials resulted in outcome 1, and 3 of the 5 trials resulted in outcome 2.

See Also

makedist

Topics

“Multinomial Probability Distribution Objects” on page 5-123
“Multinomial Probability Distribution Functions” on page 5-127
“Multinomial Distribution” on page B-99

Introduced in R2013a
NakagamiDistribution

Nakagami probability distribution object

Description

A NakagamiDistribution object consists of parameters, a model description, and sample data for a Nakagami probability distribution.

The Nakagami distribution is commonly used in communication theory to model scattered signals that reach a receiver using multiple paths.

The Nakagami distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Shape parameter</td>
<td>(\mu > 0)</td>
</tr>
<tr>
<td>omega</td>
<td>Scale parameter</td>
<td>(\omega > 0)</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a NakagamiDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

\(\text{mu} \) — Shape parameter

positive scalar value
Shape parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

\textbf{omega — Scale parameter}
positive scalar value

Scale parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

\section*{Distribution Characteristics}

\textbf{IsTruncated — Logical flag for truncated distribution}
\[0 | 1 \]

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If \texttt{IsTruncated} equals 0, the distribution is not truncated. If \texttt{IsTruncated} equals 1, the distribution is truncated.
Data Types: logical

\textbf{NumParameters — Number of parameters}
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

\textbf{ParameterCovariance — Covariance matrix of the parameter estimates}
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i\)th parameter and the \(j\)th parameter. The \((i,i)\) element is the estimated variance of the \(i\)th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the `ParameterNames` array is not fixed. If 1, the corresponding parameter in the `ParameterNames` array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char
InputData — Data used for distribution fitting

structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: **struct**

ParameterDescription — Distribution parameter descriptions

cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: **char**

ParameterNames — Distribution parameter names

cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: **char**

Object Functions

- **cdf**: Cumulative distribution function
- **icdf**: Inverse cumulative distribution function
- **iqr**: Interquartile range
- **mean**: Mean of probability distribution
- **median**: Median of probability distribution
- **negloglik**: Negative loglikelihood of probability distribution
- **paramci**: Confidence intervals for probability distribution parameters
Examples

Create a Nakagami Distribution Object Using Default Parameters

Create a Nakagami distribution object using the default parameter values.

```matlab
pd = makedist('Nakagami')
pd =
    NakagamiDistribution
    Nakagami distribution
        mu = 1
        omega = 1
```

Create a Nakagami Distribution Object Using Specified Parameters

Create a Nakagami distribution object by specifying parameter values.

```matlab
pd = makedist('Nakagami','mu',5,'omega',2)
pd =
    NakagamiDistribution
    Nakagami distribution
        mu = 5
        omega = 2
```

Compute the mean of the distribution.

```matlab
m = mean(pd)
m = 1.3794
```
See Also
Distribution Fitter | fitdist | makedist

Topics
“Nakagami Distribution” on page B-114

Introduced in R2013a
NegativeBinomialDistribution

Negative binomial distribution object

Description

A NegativeBinomialDistribution object consists of parameters, a model description, and sample data for a negative binomial probability distribution.

The negative binomial distribution models the number of failures x before a specified number of successes, R, is reached in a series of independent, identical trials. This distribution can also model count data, in which case R does not need to be an integer value.

The negative binomial distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Number of successes</td>
<td>$r > 0$</td>
</tr>
<tr>
<td>p</td>
<td>Probability of success</td>
<td>$0 < p \leq 1$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a NegativeBinomialDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

R — Number of successes
positive scalar value

Number of successes for the negative binomial distribution, specified as a positive scalar value.

Data Types: single | double

p — Probability of success
positive scalar value in the range (0,1]

Probability of success of any individual trial for the negative binomial distribution, specified as a positive scalar value in the range (0,1].

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double
ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j)\) element is the covariance between the estimates of the \(i \)th parameter and the \(j \)th parameter. The \((i,i)\) element is the estimated variance of the \(i \)th parameter. If parameter \(i \) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double
Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

```matlab
pd = makedist('NegativeBinomial')
```

```matlab
pd =
  NegativeBinomialDistribution

  Negative Binomial distribution
    R =  1
    P = 0.5
```

Create a Negative Binomial Distribution Object Using Specified Parameters

Create a negative binomial distribution object by specifying the parameter values.

```matlab
pd = makedist('NegativeBinomial','R',5,'p',.1)
```

```matlab
pd =
  NegativeBinomialDistribution
```
Negative Binomial distribution
R = 5
P = 0.1

Compute the mean of the distribution.

\[m = \text{mean}(pd) \]

\[m = 45 \]

See Also

Distribution Fitter | fitdist | makedist

Topics

“Negative Binomial Distribution” on page B-116

Introduced in R2013a
NormalDistribution

Normal probability distribution object

Description

A NormalDistribution object consists of parameters, a model description, and sample data for a normal probability distribution.

The normal distribution, sometimes called the Gaussian distribution, is a two-parameter family of curves. The usual justification for using the normal distribution for modeling is the Central Limit theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

The normal distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean</td>
<td>(-\infty < \mu < \infty)</td>
</tr>
<tr>
<td>sigma</td>
<td>Standard deviation</td>
<td>(\sigma \geq 0)</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a NormalDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

mu — Mean
scalar value

Mean of the normal distribution, specified as a scalar value.

Data Types: `single | double`

sigma — Standard deviation
nonnegative scalar value

Standard deviation of the normal distribution, specified as a nonnegative scalar value.

You can specify `sigma` to be zero when you create an object by using `makedist`. Some object functions support an object `pd` with zero standard deviation. For example, `random(pd)` always returns `mu`, and `cdf(pd,x)` returns either 0 or 1. The output is 0 if `x` is smaller than `mu`, and 1 otherwise. `mean`, `std`, and `var` return the mean, standard deviation, and variance of `pd`, respectively.

Data Types: `single | double`

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: `logical`

NumParameters — Number of parameters
positive integer value

This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a \(p \)-by-\(p \) matrix, where \(p \) is the number of parameters in the distribution. The \((i,j) \) element is the covariance between the estimates of the \(i \)th parameter and the \(j \)th parameter. The \((i,i) \) element is the estimated variance of the \(i \)th parameter. If parameter \(i \) is fixed rather than estimated by fitting the distribution to data, then the \((i,i) \) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Normal Distribution Object Using Default Parameters

Create a normal distribution object using the default parameter values.

```
pd = makedist('Normal')
```

```
pd =
    NormalDistribution
    Normal distribution
        mu = 0
        sigma = 1
```

Create a Normal Distribution Object Using Specified Parameters

Create a normal distribution object by specifying the parameter values.

```
pd = makedist('Normal','mu',75,'sigma',10)
```
pd =
 NormalDistribution

 Normal distribution
 mu = 75
 sigma = 10

Compute the interquartile range of the distribution.

r = iqr(pd)
r = 13.4898

Fit a Normal Distribution Object

Load the sample data. Create a vector containing the first column of students' exam grades data.

load examgrades;
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =
 NormalDistribution

 Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]

See Also

Distribution Fitter | fitdist | makedist

Topics

“Compare Multiple Distribution Fits” on page 5-112
“Normal Distribution” on page B-130
Introduced in R2013a
PiecewiseLinearDistribution

Piecewise linear probability distribution object

Description

A *PiecewiseLinearDistribution* object consists of a model description for a piecewise linear probability distribution.

The piecewise linear distribution is a nonparametric probability distribution created using a piecewise linear representation of the cumulative distribution function (cdf). The options specified for the piecewise linear distribution specify the form of the cdf. The probability density function (pdf) is a step function.

The piecewise linear distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Vector of x values at which the cdf changes slope</td>
</tr>
<tr>
<td>Fx</td>
<td>Vector of cdf values that correspond to each value in x</td>
</tr>
</tbody>
</table>

Creation

Create a *PiecewiseLinearDistribution* probability distribution with specified parameter values object using `makedist`.

Properties

Distribution Parameters

x — *Data values*

vector of scalar values
Data values at which the cumulative distribution function (cdf) changes slope, specified as a vector of scalar values.

Data Types: single | double

Fx — cdf value

vector of scalar values

cdf value at each value in x, specified as a vector of scalar values.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterValue — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double
Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char
Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Piecewise Linear Distribution Object Using Default Parameters

Create a piecewise linear distribution object using the default parameter values.

pd = makedist('PiecewiseLinear')

pd =
 PiecewiseLinearDistribution

F(0) = 0
F(1) = 1

Create a Piecewise Linear Distribution Object Using Specified Parameters

Load the sample data. Visualize the patient weight data using a histogram.

load hospital
histogram(hospital.Weight)
The histogram shows that the data has two modes, one for female patients and one for male patients.

Compute the empirical cumulative distribution function (ecdf) for the data.

\[[f, x] = \text{ecdf}(\text{hospital.Weight}); \]

Construct a piecewise linear approximation to the ecdf and plot both functions.

\[f = f(1:5:end); \quad \% \text{keep a less dense grid of points} \]
\[x = x(1:5:end); \]

\[\text{figure; } \]
\[\text{ecdf(hospital.Weight)} \]
Create a piecewise linear probability distribution object using the piecewise approximation of the ecdf.

```matlab
hold on
plot(x,f,'ro','MarkerFace','r') % overlay grid
plot(x,f,'k') % show interpolation
```

```matlab
pd = makedist('PiecewiseLinear','x',x,'Fx',f)
```

```matlab
d = makedist('PiecewiseLinear','x',x,'Fx',f)
d =
    PiecewiseLinearDistribution
F(111) = 0
F(118) = 0.05
```
\[F(124) = 0.13 \]
\[F(130) = 0.25 \]
\[F(135) = 0.37 \]
\[F(142) = 0.5 \]
\[F(163) = 0.55 \]
\[F(171) = 0.61 \]
\[F(178) = 0.7 \]
\[F(183) = 0.82 \]
\[F(189) = 0.94 \]
\[F(202) = 1 \]

Generate 100 random numbers from the distribution.

\[rw = \text{random}(pd,100,1); \]

Plot the random numbers to visually compare their distribution to the original data.

\[\text{figure;} \]
\[\text{histogram}(rw) \]
The random numbers generated from the piecewise linear distribution have the same bimodal distribution as the original data.

See Also

makedist

Topics

“Nonparametric and Empirical Probability Distributions” on page 5-39
“Piecewise Linear Distribution” on page B-135
Introduced in R2013a
PoissonDistribution

Poisson probability distribution object

Description

A `PoissonDistribution` object consists of parameters, a model description, and sample data for a Poisson probability distribution.

The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

The Poisson distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda</td>
<td>Mean</td>
<td>$\lambda \geq 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a `PoissonDistribution` probability distribution object.

- Create a distribution with specified parameter values using `makedist`.
- Fit a distribution to data using `fitdist`.
- Interactively fit a distribution to data using the **Distribution Fitter** app.

Properties

Distribution Parameter

λ — Mean

nonnegative scalar value
Mean of the Poisson distribution, stored as a nonnegative scalar value.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If **IsTruncated** equals 0, the distribution is not truncated. If **IsTruncated** equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the i-th parameter and the j-th parameter. The (i,i) element is the estimated variance of the i-th parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.
Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:
• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

32-6831
Examples

Create a Poisson Distribution Object Using Default Parameters

Create a Poisson distribution object using the default parameter values.

```matlab
pd = makedist('Poisson')
pd =
    PoissonDistribution
    Poisson distribution
    lambda = 1
```

Create a Poisson Distribution Object Using Specified Parameters

Create a Poisson distribution object by specifying the parameter values.

```matlab
pd = makedist('Poisson','lambda',5)
pd =
    PoissonDistribution
    Poisson distribution
    lambda = 5
```

Compute the variance of the distribution.

```matlab
v = var(pd)
v = 5
```

For the Poisson distribution, both the mean and variance are equal to the parameter lambda.

See Also
Distribution Fitter | fitdist | makedist
Topics
“Poisson Distribution” on page B-137

Introduced in R2013a
RayleighDistribution

Rayleigh probability distribution object

Description

A RayleighDistribution object consists of parameters, a model description, and sample data for a normal probability distribution.

The Rayleigh distribution is a special case of the Weibull distribution. It is often used in communication theory to model scattered signals that reach a receiver by multiple paths.

The Rayleigh distribution uses the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Defining parameter</td>
<td>$b > 0$</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a RayleighDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameter

b — Defining parameter

positive scalar value

Defining parameter for the Rayleigh distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the i-th parameter and the j-th parameter. The (i,i) element is the estimated variance of the i-th parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.
Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the `ParameterNames` array is not fixed. If 1, the corresponding parameter in the `ParameterNames` array is fixed.

Data Types: `logical`

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: `single` | `double`

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: `single` | `double`

Other Object Properties

DistributionName — Probability distribution name

character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: `char`

InputData — Data used for distribution fitting

structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:
• **data**: Data vector used for distribution fitting.
• **cens**: Censoring vector, or empty if none.
• **freq**: Frequency vector, or empty if none.

Data Types: **struct**

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: **char**

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: **char**

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
Examples

Create a Rayleigh Distribution Object Using Default Parameters

Create a Rayleigh distribution object using the default parameter values.

```matlab
d = makedist('Rayleigh')
d = RayleighDistribution
    Rayleigh distribution
    B = 1
```

Create a Rayleigh Distribution Object Using Specified Parameters

Create a Rayleigh distribution object by specifying the parameter values.

```matlab
d = makedist('Rayleigh','b',3)
d = RayleighDistribution
    Rayleigh distribution
    B = 3
```

Compute the mean of the distribution.

```matlab
m = mean(d)
m = 3.7599
```

See Also

- Distribution Fitter | fitdist | makedist

Topics

“Rayleigh Distribution” on page B-140
Introduced in R2013a
RicianDistribution
Rician probability distribution object

Description
A RicianDistribution object consists of parameters, a model description, and sample data for a Rician probability distribution.

The Rician distribution is used in communications theory to model scattered signals that reach a receiver using multiple paths.

The Rician distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Noncentrality parameter</td>
<td>s ≥ 0</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>σ > 0</td>
</tr>
</tbody>
</table>

Creation
There are several ways to create a RicianDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

s — Noncentrality parameter
nonnegative scalar value
Noncentrality parameter of the Rician distribution, specified as a nonnegative scalar value.
Data Types: single | double

sigma — scale parameter
positive scalar value

Scale parameter for the Rician distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the \(i \)th parameter. If parameter \(i \) is fixed rather than estimated by fitting the distribution to data, then the \((i,i)\) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name

character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

- **cdf**: Cumulative distribution function
- **icdf**: Inverse cumulative distribution function
- **iqr**: Interquartile range
- **mean**: Mean of probability distribution
- **median**: Median of probability distribution
- **negloglik**: Negative loglikelihood of probability distribution
Examples

Create a Rician Distribution Object Using Default Parameters

Create a Rician distribution object using the default parameter values.

```matlab
pd = makedist('Rician')
```

```matlab
pd =
    RicianDistribution

    Rician distribution
    s = 1
    sigma = 1
```

Create a Rician Distribution Object Using Specified Parameters

Create a Rician distribution object by specifying the parameter values.

```matlab
pd = makedist('Rician','s',0,'sigma',2)
```

```matlab
pd =
    RicianDistribution

    Rician distribution
    s = 0
    sigma = 2
```

Compute the mean of the distribution.

```matlab
m = mean(pd)
```
m = 2.5066

See Also
Distribution Fitter | fitdist | makedist

Topics
“Rician Distribution” on page B-143

Introduced in R2013a
StableDistribution

Stable probability distribution object

Description

StableDistribution is an object consisting of parameters, a model description, and sample data for a stable probability distribution.

The stable distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>First shape parameter</td>
<td>0 < α ≤ 2</td>
</tr>
<tr>
<td>beta</td>
<td>Second shape parameter</td>
<td>-1 ≤ β ≤ 1</td>
</tr>
<tr>
<td>gam</td>
<td>Scale parameter</td>
<td>0 < γ < ∞</td>
</tr>
<tr>
<td>delta</td>
<td>Location parameter</td>
<td>-∞ < δ < ∞</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a StableDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

alpha — First shape parameter
scalar value in the range (0, 2]
First shape parameter of the stable distribution, specified as a scalar value in the range (0,2].
Data Types: single | double

beta — Second shape parameter
scalar value in the range [-1,1]

Second shape parameter of the stable distribution, specified as a scalar value in the range [-1,1].
Data Types: single | double

gam — Scale parameter
scalar value in the range (0,∞)

Scale parameter of the stable distribution, specified as a scalar value in the range (0,∞).
Data Types: single | double

delta — Location parameter
scalar value

Location parameter of the stable distribution, specified as a scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValues — Distribution parameter values

vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Stable Distribution Object Using Default Parameters

Create a stable distribution object using the default parameter values.

pd = makedist('Stable')

pd =
 StableDistribution

 Stable distribution
 alpha = 2
 beta = 0
 gam = 1
 delta = 0
Create a Stable Distribution Object Using Specified Parameters

Create a stable distribution object by specifying the parameter values alpha = 0.5, beta = 0, gam = 1, and delta = 0.

```matlab
pd = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
```

Calculate the mean of the distribution.

```matlab
m = mean(pd)
```

m = NaN

The mean of the stable distribution is undefined for values of alpha less than or equal to 1.

See Also
Distribution Fitter | fitdist | makedist

Topics
“Stable Distribution” on page B-145

Introduced in R2016a
tLocationScaleDistribution

t Location-Scale probability distribution object

Description

A tLocationScaleDistribution object consists of parameters, a model description, and sample data for a t location-scale probability distribution.

The t location-scale distribution is useful for modeling data distributions with heavier tails (more prone to outliers) than the normal distribution. It approaches the normal distribution as \(\nu \) approaches infinity, and smaller values of \(\nu \) yield heavier tails.

The t location-scale distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Location parameter</td>
<td>(-\infty < \mu < \infty)</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>(\sigma > 0)</td>
</tr>
<tr>
<td>nu</td>
<td>Shape parameter</td>
<td>(\nu > 0)</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a tLocationScaleDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.
Properties

Distribution Parameters

mu — Location parameter
scalar value

Location parameter of the t location-scale distribution, specified as a scalar value.

Data Types: single | double

sigma — Scale parameter
positive scalar value

Scale parameter of the t location-scale distribution, specified as a positive scalar value.

Data Types: single | double

nu — Degrees of freedom
positive scalar value

Degrees of freedom of the t location-scale distribution, specified as a positive scalar value.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If `IsTruncated` equals 0, the distribution is not truncated. If `IsTruncated` equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.
Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates

Matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.

Data Types: double

ParameterIsFixed — Logical flag for fixed parameters

Array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValue — Distribution parameter values

Vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval

Vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions

cdf
Cumulative distribution function

icdf
Inverse cumulative distribution function

iqr
Interquartile range

mean
Mean of probability distribution

median
Median of probability distribution

negloglik
Negative loglikelihood of probability distribution

paramci
Confidence intervals for probability distribution parameters

pdf
Probability density function

proflik
Profile likelihood function for probability distribution

random
Random numbers

std
Standard deviation of probability distribution

truncate
Truncate probability distribution object

var
Variance of probability distribution

Examples

Create a \(t \) Location-Scale Distribution Object Using Default Parameters

Create a \(t \) location scale distribution object using the default parameter values.

```matlab
pd = makedist('tLocationScale')
pd =
tLocationScaleDistribution
t Location-Scale distribution
    mu = 0
    sigma = 1
    nu = 5
```

Create a \(t \) Location-Scale Distribution Object Using Specified Parameters

Create a \(t \) location-scale distribution object by specifying the parameter values.
pd = makedist('tLocationScale','mu',-2,'sigma',1,'nu',20)

pd =
 tLocationScaleDistribution
 t Location-Scale distribution
 mu = -2
 sigma = 1
 nu = 20

Compute the interquartile range of the distribution.

r = iqr(pd)

r = 1.3739

See Also
Distribution Fitter | fitdist | makedist

Topics
“Represent Cauchy Distribution Using t Location-Scale” on page 5-134
“t Location-Scale Distribution” on page B-166

Introduced in R2013a
TriangularDistribution

Triangular probability distribution object

Description

A TriangularDistribution object consists of parameters and a model description for a triangular probability distribution.

The triangular distribution is frequently used in simulations when limited sample data is available. The lower and upper limits represent the smallest and largest values, and the location of the peak represents an estimate of the mode.

The triangular distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Lower limit</td>
<td>$a \leq b$</td>
</tr>
<tr>
<td>b</td>
<td>Peak location</td>
<td>$a \leq b \leq c$</td>
</tr>
<tr>
<td>c</td>
<td>Upper limit</td>
<td>$c \geq b$</td>
</tr>
</tbody>
</table>

Creation

Create a TriangularDistribution probability distribution with specified parameter values object using makedist.

Properties

Distribution Parameters

a — Lower limit
scalar value
Lower limit for the triangular distribution, specified as a scalar value.

Data Types: single | double

b — Peak location

scalar value

Location of the peak for the triangular distribution, specified as a scalar value greater than or equal to \(a \).

Data Types: single | double

c — Upper limit

scalar value

Upper limit for the triangular distribution, specified as a scalar value greater than or equal to \(b \).

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution

\(0 \ | 1 \)

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters

positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double
ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.
Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

- `cdf` Cumulative distribution function
- `icdf` Inverse cumulative distribution function
- `iqr` Interquartile range
- `mean` Mean of probability distribution
- `median` Median of probability distribution
- `pdf` Probability density function
- `random` Random numbers
- `std` Standard deviation of probability distribution
- `truncate` Truncate probability distribution object
- `var` Variance of probability distribution

Examples

Create a Triangular Distribution Object Using Default Parameters

Create a triangular distribution object using the default parameter values.

```matlab
pd = makedist('Triangular')
```

```matlab
d = makedist('Triangular')

A = 0, B = 0.5, C = 1
```

Create a Triangular Distribution Object Using Specified Parameters

Create a triangular distribution object by specifying parameter values.

```matlab
pd = makedist('Triangular','a',-2,'b',1,'c',5)
```

```matlab
d = makedist('Triangular','a',-2,'b',1,'c',5)

A = -2, B = 1, C = 5
```
A = -2, B = 1, C = 5

Compute the mean of the distribution.

m = mean(pd)

m =

1.3333

See Also
makedist

Topics
“Generate Random Numbers Using the Triangular Distribution” on page 5-63
“Triangular Distribution” on page B-169
“Nonparametric and Empirical Probability Distributions” on page 5-39

Introduced in R2013a
UniformDistribution

Uniform probability distribution object

Description

A UniformDistribution object consists of parameters and a model description for a uniform probability distribution.

The uniform distribution has a constant probability density function between its two parameters, lower (the minimum) and upper (the maximum). This distribution is appropriate for representing round-off errors in values tabulated to a particular number of decimal places.

The uniform distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>Lower parameter</td>
<td>$-\infty < lower < upper$</td>
</tr>
<tr>
<td>upper</td>
<td>Upper parameter</td>
<td>$lower < upper < \infty$</td>
</tr>
</tbody>
</table>

Creation

Create a UniformDistribution probability distribution with specified parameter values object using makedist.

Properties

Distribution Parameters

lower — Lower parameter
scalar value

Lower parameter for the uniform distribution, specified as a scalar value.
Data Types: single | double

upper — Upper parameter
scalar value

Upper parameter for the uniform distribution, specified as a scalar value greater than lower.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterValue — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values
This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Uniform Distribution Object Using Default Parameters

Create a uniform distribution object using the default parameter values.

```matlab
pd = makedist('Uniform')
```

```matlab
pd =
    UniformDistribution

    Uniform distribution
    Lower = 0
    Upper = 1
```

Create a Uniform Distribution Object Using Specified Parameters

Create a uniform distribution object by specifying parameter values.

```matlab
pd = makedist('Uniform','Lower',-4,'Upper',2)
```

```matlab
pd =
    UniformDistribution

    Uniform distribution
    Lower = -4
    Upper =  2
```

Compute the interquartile range of the distribution

```matlab
r = iqr(pd)
```
$r = 3$

See Also
makedist

Topics
“Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130
“Uniform Distribution (Continuous)” on page B-175

Introduced in R2013a
WeibullDistribution

Weibull probability distribution object

Description

A WeibullDistribution object consists of parameters, a model description, and sample data for a Weibull probability distribution.

The Weibull distribution is used in reliability and lifetime modeling, and to model the breaking strength of materials.

The Weibull distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Scale parameter</td>
<td>(a > 0)</td>
</tr>
<tr>
<td>b</td>
<td>Shape parameter</td>
<td>(b > 0)</td>
</tr>
</tbody>
</table>

Creation

There are several ways to create a WeibullDistribution probability distribution object.

- Create a distribution with specified parameter values using makedist.
- Fit a distribution to data using fitdist.
- Interactively fit a distribution to data using the Distribution Fitter app.

Properties

Distribution Parameters

- \(a\) — Scale parameter
 - positive scalar value
Scale parameter of the Weibull distribution, specified as a positive scalar value.

Data Types: single | double

b — Shape parameter
positive scalar value

Shape parameter of the Weibull distribution, specified as a positive scalar value.

Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.

Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.

Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed.

Data Types: logical

ParameterValue — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector.

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector containing the lower and upper truncation boundaries.

Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.

Data Types: char
InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

- **data**: Data vector used for distribution fitting.
- **cens**: Censoring vector, or empty if none.
- **freq**: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains a short description of one distribution parameter.

Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.

Data Types: char

Object Functions

- **cdf**: Cumulative distribution function
- **icdf**: Inverse cumulative distribution function
- **iqr**: Interquartile range
- **mean**: Mean of probability distribution
- **median**: Median of probability distribution
- **negloglik**: Negative loglikelihood of probability distribution
- **paramci**: Confidence intervals for probability distribution parameters
pdf Probability density function
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Weibull Distribution Object Using Default Parameters

Create a Weibull distribution object using the default parameter values.

\[
\text{pd} = \text{makedist(}'\text{Weibull}'\text{)}
\]

\[
\text{pd} = \\
\quad \text{WeibullDistribution}
\]

\[
\text{Weibull distribution}
\quad A = 1
\quad B = 1
\]

Create a Weibull Distribution Object Using Specified Parameter Values

Create a Weibull distribution object by specifying the parameter values.

\[
\text{pd} = \text{makedist(}'\text{Weibull}','a',2,'b',5\text{)}
\]

\[
\text{pd} = \\
\quad \text{WeibullDistribution}
\]

\[
\text{Weibull distribution}
\quad A = 2
\quad B = 5
\]

Compute the mean of the distribution.

\[
\text{m} = \text{mean(pd)}
\]

\[
\text{m} = 1.8363
\]
See Also

Distribution Fitter | fitdist | makedist

Topics

“Fit Probability Distribution Objects to Grouped Data” on page 5-119
“Compare Multiple Distribution Fits” on page 5-112
“Estimate Parameters of a Three-Parameter Weibull Distribution” on page B-186
“Weibull Distribution” on page B-184

Introduced in R2013a
union

Class: dataset

Set union for dataset array observations

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

```matlab
C = union(A,B)
C = union(A,B,vars)
C = union(A,B,vars,setOrder)
[C,iA,iB] = union( ___ )
```

Description

`C = union(A,B)` for dataset arrays `A` and `B` returns the combined set of observations from the two arrays, with repetitions removed. The observations in the dataset array `C` are sorted.

`C = union(A,B,vars)` returns the combined set of observations from the two arrays, with repetitions of unique combinations of the variables specified in `vars` removed. The observations in the dataset array `C` are sorted by those variables.

The values for variables not specified in `vars` for each observation in `C` are taken from the corresponding observation in `A` or `B`, or from `A` if there are common observations in both `A` and `B`. If there are multiple observations in `A` or `B` that correspond to an observation in `C`, those values are taken from the first occurrence.

`C = union(A,B,vars,setOrder)` returns the observations in `C` in the order specified by `setOrder`.

`[C,iA,iB] = union(___)` also returns index vectors `iA` and `iB` such that `C` is a sorted combination of the values `A(iA,:)` and `B(iB,:)`. If there are common observations in `A`
and B, then `union` returns only the index from A, in `iA`. If there are repeated observations in A or B, then the index of the first occurrence is returned. You can use any of the previous input arguments.

Input Arguments

A, B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers containing variable column numbers. `vars` indicates the variables for which `union` removes repetitions of unique combinations of the variables.

Specify `vars` as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of `setOrder` are:

- `'sorted'` Observations in C are in sorted order (default).
- `'stable'` Observations in C are in the same order that they appear in A, then B.

Output Arguments

C

Dataset array with the combined observations of A and B, with repetitions removed. C is in sorted order (by default), or the order specified by `setOrder`.

iA

Index vector, indicating the observations in A that contribute to the union. `iA` contains the index to the first occurrence of any repeated observations in A.
iB

Index vector, indicating the observations in B that contribute to the union. If there are common observations in A and B, then union returns only the index from A, in iA. iB contains the index to the first occurrence of any repeated observations in B.

Examples

Union of Two Dataset Arrays

Load sample data.

```matlab
A = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
B = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);
[length(A) length(B)]
ans =
14     8
```

The first dataset array, A, has 14 observations. The second dataset array, B, has 8 observations.

Return the union.

```matlab
C = union(A,B);
length(C)
ans =
21
```

The union of the two dataset arrays has 21 observations, indicating that there was one observation replicated in A and B.

See Also
dataset | intersect | ismember | setdiff | setxor | sortrows | unique
Topics
“Create a Dataset Array from a File” on page 2-75
“Merge Dataset Arrays” on page 2-104
“Dataset Arrays” on page 2-137
unique

Class: dataset

Unique observations in dataset array

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

```matlab
C = unique(A)
[C,ia,ic] = unique(A)
C = unique(A,vars)
[C,ia,ic] = unique(A,vars)
[...] = unique(A,vars,occurrence)
[...] = unique(...,'R2012a')
[...] = unique(...,'legacy')
[...] = unique(A,vars,setOrder)
```

Description

Note The behavior of dataset.unique is consistent with the MATLAB function unique. For a demonstration of using the 'legacy' flag to preserve the behavior from R2012b and prior in your existing code, see the documentation for unique.

C = unique(A) returns a copy of the dataset A that contains only the sorted unique observations. A must contain only variables whose class has a unique method, including:

- numeric
- character
- logical
• categorical
• string
• cell arrays of character vectors

For a variable with multiple columns, its class's `unique` method must support the 'rows' flag.

```matlab
[C,ia,ic] = unique(A) also returns index vectors ia and ic such that C = A(ia,:) and A = C(ic,:).
```

```matlab
C = unique(A,vars) returns a dataset that contains only one observation for each unique combination of values for the variables in A specified in vars. vars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. C includes all variables from A. The values in C for the variables not specified in vars are taken from the last occurrence among observations in A with each unique combination of values for the variables specified in vars.

```matlab
[C,ia,ic] = unique(A,vars) also returns index vectors ia and ic such that C = A(ia,:) and A(:,vars) = C(ic,vars).
```

```matlab
[...] = unique(A,vars,occurrence) specifies which index is returned in ia in the case of repeated observations in A. The default value is occurrence='first', which returns the index of the first occurrence of each repeated observation in A. occurrence='last' returns the index of the last occurrence of each repeated observation in A. The values in C for variables not specified in vars are taken from the observations A(ia,:). Specify vars as [] to use the default value of all variables.

```matlab
[...] = unique(...,'R2012a') adopts the future behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, vars, or occurrence.
```

```matlab
[...] = unique(...,'legacy') preserves the current behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, vars, or occurrence.
```

```matlab
[...] = unique(A,vars,setOrder) returns the observations of C in a specific order. setOrder='sorted' returns the values of C in sorted order. setOrder='stable' returns the values of C in the same order as A. If there are repeated observations in A, then ia returns the index of the first occurrence of each repeated observation. Specify vars as [] to use the default value of all variables.
See Also
dataset | set | subsasgn
Units property

Class: dataset

Units of variables in data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A cell array of character vectors giving the units of the variables in the data set. This property may be empty, but if not empty, the number of character vectors must equal the number of variables. Any individual character vector may be empty for a variable that does not have units defined. The default is an empty cell array.
unidcdf

Discrete uniform cumulative distribution function

Syntax

\[ p = \text{unidcdf}(x,N) \]
\[ p = \text{unidcdf}(x,N,'upper') \]

Description

\( p = \text{unidcdf}(x,N) \) returns the discrete uniform cdf at each value in \( x \) using the corresponding maximum observable value in \( N \). \( x \) and \( N \) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The maximum observable values in \( N \) must be positive integers.

\( p = \text{unidcdf}(x,N,'upper') \) returns the complement of the discrete uniform cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The discrete uniform cdf is

\[ p = F(x \mid N) = \frac{\text{floor}(x)}{N} I_{(1,\ldots,N)}(x) \]

The result, \( p \), is the probability that a single observation from the discrete uniform distribution with maximum \( N \) will be a positive integer less than or equal to \( x \). The values \( x \) do not need to be integers.

Examples
Compute Discrete Uniform Distribution cdf

What is the probability of drawing a number 20 or less from a hat with the numbers from 1 to 50 inside?

probability = unidcdf(20,50)

probability = 0.4000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cdf|mle|unidinv|unidpdf|unidrnd|unidstat

Topics
“Uniform Distribution (Discrete)” on page B-181

Introduced before R2006a
**unidinv**

Discrete uniform inverse cumulative distribution function

**Syntax**

\[ X = \text{unidinv}(P,N) \]

**Description**

\( X = \text{unidinv}(P,N) \) returns the smallest positive integer \( X \) such that the discrete uniform cdf evaluated at \( X \) is equal to or exceeds \( P \). You can think of \( P \) as the probability of drawing a number as large as \( X \) out of a hat with the numbers 1 through \( N \) inside.

\( P \) and \( N \) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \( X \). A scalar input for \( N \) or \( P \) is expanded to a constant array with the same dimensions as the other input. The values in \( P \) must lie on the interval \([0 1]\) and the values in \( N \) must be positive integers.

**Examples**

\[ x = \text{unidinv}(0.7,20) \]
\[ x = \]
\[ 14 \]

\[ y = \text{unidinv}(0.7 + \text{eps},20) \]
\[ y = \]
\[ 15 \]

A small change in the first parameter produces a large jump in output. The cdf and its inverse are both step functions. The example shows what happens at a step.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
icdf | unidcdf | unidpdf | unidrnd | unidstat

Topics
“Uniform Distribution (Discrete)” on page B-181

Introduced before R2006a
unidpdf

Discrete uniform probability density function

Syntax

\[ Y = \text{unidpdf}(X,N) \]

Description

\[ Y = \text{unidpdf}(X,N) \] computes the discrete uniform pdf at each of the values in \( X \) using the corresponding maximum observable value in \( N \). \( X \) and \( N \) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \( N \) must be positive integers.

The discrete uniform pdf is

\[ y = f(x | N) = \frac{1}{N} I_{\{1, \ldots, N\}}(x) \]

You can think of \( y \) as the probability of observing any one number between 1 and \( n \).

Examples

For fixed \( n \), the uniform discrete pdf is a constant.

\[ y = \text{unidpdf}(1:6,10) \]
\[ y = \begin{bmatrix} 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.1000 \end{bmatrix} \]

Now fix \( x \), and vary \( n \).

\[ \text{likelihood} = \text{unidpdf}(5,4:9) \]
\[ \text{likelihood} = \begin{bmatrix} 0 & 0.2000 & 0.1667 & 0.1429 & 0.1250 & 0.1111 \end{bmatrix} \]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
pdf | unidcdf | unidinv | unidrnd | unidstat

Topics
“Uniform Distribution (Discrete)” on page B-181

Introduced before R2006a
unidrnd

Discrete uniform random numbers

Syntax

R = unidrnd(N)
R = unidrnd(N,m,n,...)
R = unidrnd(N,[m,n,...])

Description

R = unidrnd(N) generates random numbers for the discrete uniform distribution with maximum N. The parameters in N must be positive integers. N can be a vector, a matrix, or a multidimensional array. The size of R is the size of N. The discrete uniform distribution arises from experiments equivalent to drawing a number from one to N out of a hat.

R = unidrnd(N,m,n,...) or R = unidrnd(N,[m,n,...]) generates an m-by-n-by-... array. The N parameter can be a scalar or an array of the same size as R.

Examples

In the Massachusetts lottery, a player chooses a four-digit number. Generate random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6)-1
numbers =
  4564  185  8214  4447  6154  7919
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
random | unidcdf | unidinv | unidpdf | unidstat

Topics
“Uniform Distribution (Discrete)” on page B-181

Introduced before R2006a
unidstat

Discrete uniform mean and variance

Syntax

[M,V] = unidstat(N)

Description

[M,V] = unidstat(N) returns the mean and variance of the discrete uniform distribution with minimum value 1 and maximum value N.

The mean of the discrete uniform distribution with parameter N is \((N + 1)/2\). The variance is \((N^2 - 1)/12\).

Examples

[m,v] = unidstat(1:6)
m =
  1.0000  1.5000  2.0000  2.5000  3.0000  3.5000
v =
  0  0.2500  0.6667  1.2500  2.0000  2.9167

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
unidcdf | unidinv | unidpdf | unidrnd

**Topics**
“Uniform Distribution (Discrete)” on page B-181

**Introduced before R2006a**
unifcdf

Continuous uniform cumulative distribution function

Syntax

\[ p = \text{unifcdf}(x,a,b) \]
\[ p = \text{unifcdf}(x,a,b,'upper') \]

Description

\[ p = \text{unifcdf}(x,a,b) \] returns the uniform cdf at each value in \( x \) using the corresponding lower endpoint (minimum), \( a \) and upper endpoint (maximum), \( b \). \( x, a, \) and \( b \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

\[ p = \text{unifcdf}(x,a,b,'upper') \] returns the complement of the uniform cdf at each value in \( x \), using an algorithm that more accurately computes the extreme upper tail probabilities.

The uniform cdf is

\[ p = F(x \mid a, b) = \frac{x-a}{b-a} I_{[a,b]}(x) \]

The standard uniform distribution has \( a = 0 \) and \( b = 1 \).

Examples

**Compute Uniform Distribution cdf**

What is the probability that an observation from a standard uniform distribution will be less than 0.75?
probability = unifcdf(0.75)
probability = 0.7500

What is the probability that an observation from a uniform distribution with \(a = -1\) and \(b = 1\) will be less than 0.75?

probability = unifcdf(0.75,-1,1)
probability = 0.8750

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**See Also**
cdf | unifinv | unifit | unifpdf | unifrnd | unifstat

**Topics**
“Uniform Distribution (Continuous)” on page B-175

**Introduced before R2006a**
unifinv

Continuous uniform inverse cumulative distribution function

Syntax

\[ X = \text{unifinv}(P,A,B) \]

Description

\[ X = \text{unifinv}(P,A,B) \]
computes the inverse of the uniform cdf with parameters \( A \) and \( B \)
(the minimum and maximum values, respectively) at the corresponding probabilities in \( P \).

\( P, A, \) and \( B \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The inverse of the uniform cdf is

\[
x = F^{-1}(p | a,b) = a + p(a-b)I_{[0,1]}(p)
\]

The standard uniform distribution has \( A = 0 \) and \( B = 1 \).

Examples

What is the median of the standard uniform distribution?

```matlab
median_value = unifinv(0.5)
median_value =
 0.5000
```

What is the 99th percentile of the uniform distribution between -1 and 1?

```matlab
percentile = unifinv(0.99,-1,1)
percentile =
 0.9800
```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
icdf | unifcdf | unifit | unifpdf | unifrnd | unifstat

Topics
“Uniform Distribution (Continuous)” on page B-175

Introduced before R2006a
unifit

Continuous uniform parameter estimates

Syntax

[ahat,bhat] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data,alpha)

Description

[ahat,bhat] = unifit(data) returns the maximum likelihood estimates (MLEs) of the parameters of the uniform distribution given the data in data.

[ahat,bhat,ACI,BCI] = unifit(data) also returns 95% confidence intervals, ACI and BCI, which are matrices with two rows. The first row contains the lower bound of the interval for each column of the matrix data. The second row contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(data,alpha) enables you to control of the confidence level alpha. For example, if alpha = 0.01 then ACI and BCI are 99% confidence intervals.

Examples

r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =
  10.0154  10.0060
bhat =
  11.9989  11.9743
aci =
  9.9551  9.9461
  10.0154  10.0060
bci =
See Also
mle | unifcdf | unifinv | unifpdf | unifrnd | unifstat

Topics
“Uniform Distribution (Continuous)” on page B-175

Introduced before R2006a
**unifpdf**

Continuous uniform probability density function

**Syntax**

\[ Y = \text{unifpdf}(X,A,B) \]

**Description**

\[ Y = \text{unifpdf}(X,A,B) \] computes the continuous uniform pdf at each of the values in \( X \) using the corresponding lower endpoint (minimum), \( A \) and upper endpoint (maximum), \( B \). \( X, A, \) and \( B \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \( B \) must be greater than those in \( A \).

The continuous uniform distribution pdf is

\[
y = f(x | a, b) = \frac{1}{b-a} I_{[a,b]}(x)
\]

The standard uniform distribution has \( A = 0 \) and \( B = 1 \).

**Examples**

For fixed \( a \) and \( b \), the uniform pdf is constant.

\[
x = 0.1:0.1:0.6;
y = \text{unifpdf}(x)
y = \\
1 1 1 1 1 1 1
\]

What if \( x \) is not between \( a \) and \( b \)?
\[ y = \text{unifpdf}(-1,0,1) \]

\[ y = 0 \]

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**See Also**
pdf | unifcdf | unifinv | unifit | unifrnd | unifstat

**Topics**
“Uniform Distribution (Continuous)” on page B-175

**Introduced before R2006a**
unifrnd

Continuous uniform random numbers

Syntax

\[
R = \text{unifrnd}(A,B) \\
R = \text{unifrnd}(A,B,m,n,...) \\
R = \text{unifrnd}(A,B,[m,n,...])
\]

Description

R = \text{unifrnd}(A,B) returns an array R of random numbers generated from the continuous uniform distributions with lower and upper endpoints specified by A and B, respectively. If A and B are arrays, R(i,j) is generated from the distribution specified by the corresponding elements of A and B. If either A or B is a scalar, it is expanded to the size of the other input.

R = \text{unifrnd}(A,B,m,n,...) or R = \text{unifrnd}(A,B,[m,n,...]) returns an m-by-n-by-... array. If A and B are scalars, all elements of R are generated from the same distribution. If either A or B is an array, they must be m-by-n-by-... .

Examples

Generate one random number each from the continuous uniform distributions on the intervals (0,1), (0,2), ..., (0,5):

\[
a = 0; \ b = 1:5; \\
r1 = \text{unifrnd}(a,b) \\
r1 = \\
0.8147 \ 1.8116 \ 0.3810 \ 3.6535 \ 3.1618
\]

Generate five random numbers each from the same distributions:

\[
B = \text{repmat}(b,5,1); \\
R = \text{unifrnd}(a,B)
\]
Generate five random numbers from the continuous uniform distribution on (0,2):

```matlab
r2 = unifrnd(a,b(2),1,5)
r2 =
 1.4121 0.0637 0.5538 0.0923 0.1943
```

### Extended Capabilities

#### C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

#### GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

#### See Also

- `rand`
- `random`
- `unifcdf`
- `unifinv`
- `unifit`
- `unifpdf`
- `unifstat`
Topics
“Uniform Distribution (Continuous)” on page B-175

Introduced before R2006a
unifstat

Continuous uniform mean and variance

Syntax

\[ [M,V] = \text{unifstat}(A,B) \]

Description

\[ [M,V] = \text{unifstat}(A,B) \] returns the mean of and variance for the continuous uniform distribution using the corresponding lower endpoint (minimum), A and upper endpoint (maximum), B. Vector or matrix inputs for A and B must have the same size, which is also the size of M and V. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters \( a \) and \( b \) is \( (a + b)/2 \), and the variance is \( (a - b)^2/12 \).

Examples

\[
a = 1:6;
b = 2.*a;
[m,v] = \text{unifstat}(a,b)
\]

\[
m =
1.5000
3.0000
4.5000
6.0000
7.5000
9.0000
\]

\[
v =
0.0833
0.3333
0.7500
1.3333
2.0833
3.0000
\]
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
unifcdf | unifinv | unifit | unifpdf | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-175

Introduced before R2006a
**unstack**

**Class:** dataset

Unstack data from single variable into multiple variables

**Note** The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

**Syntax**

```matlab
A = unstack(B,datavar,indvar)
[A,iB] = unstack(B,datavar,indvar)
A = unstack(B,datavar,indvar,'Parameter',value)
```

**Description**

`A = unstack(B,datavar,indvar)` unstacks a single variable in dataset array `B` into multiple variables in `A`. In general `A` contains more variables, but fewer observations, than `B`.

`datavar` specifies the data variable in `B` to unstack. `indvar` specifies an indicator variable in `B` that determines which variable in `A` each value in `datavar` is unstacked into. `unstack` treats the remaining variables in `B` as grouping variables. Each unique combination of their values defines a group of observations in `B` that will be unstacked into a single observation in `A`.

`unstack` creates `m` data variables in `A`, where `m` is the number of group levels in `indvar`. The values in `indvar` indicate which of those `m` variables receive which values from `datavar`. The `j`-th data variable in `A` contains the values from `datavar` that correspond to observations whose `indvar` value was the `j`-th of the `m` possible levels. Elements of those `m` variables for which no corresponding data value in `B` exists contain a default value.
datavar is a positive integer, a character vector, a string scalar, or a logical vector containing a single true value. indvar is a positive integer, a variable name, or a logical vector containing a single true value.

\[ [A, iB] = \text{unstack}(B, \text{datavar}, \text{indvar}) \]

returns an index vector \( iB \) indicating the correspondence between observations in \( A \) and those in \( B \). For each observation in \( A \), \( iB \) contains the index of the first in the corresponding group of observations in \( B \).

For more information on grouping variables, see “Grouping Variables” on page 2-57.

**Input Arguments**

\( A = \text{unstack}(B, \text{datavar}, \text{indvar}, 'Parameter', value) \)

uses the following parameter name/value pairs to control how unstack converts variables in \( B \) to variables in \( A \):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'GroupVars'</td>
<td>Grouping variables in ( B ) that define groups of observations. groupvars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. The default is all variables in ( B ) not listed in datavar or indvar.</td>
</tr>
<tr>
<td>'NewDataVarNames'</td>
<td>A string array or cell array of character vectors containing names for the data variables unstack should create in ( A ). Default is the group names of the grouping variable specified in indvar.</td>
</tr>
<tr>
<td>'AggregationFun'</td>
<td>A function handle that accepts a subset of values from datavar and returns a single value. stack applies this function to observations from the same group that have the same value of indvar. The function must aggregate the data values into a single value, and in such cases it is not possible to recover ( B ) from ( A ) using stack. The default is @sum for numeric data variables. For non-numeric variables, there is no default, and you must specify 'AggregationFun' if multiple observations in the same group have the same values of indvar.</td>
</tr>
</tbody>
</table>
Variables in B to copy to A without unstacking. The values for these variables in A are taken from the first observation in each group in B, so these variables should typically be constant within each group. ConstVars is a positive integer, a vector of positive integers, a character vector, a string array, a cell array of character vectors, or a logical vector. The default is no variables.

You can also specify more than one data variable in B, each of which becomes a set of $m$ variables in A. In this case, specify datavar as a vector of positive integers, a string array or cell array containing variable names, or a logical vector. You may specify only one variable with indvar. The names of each set of data variables in A are the name of the corresponding data variable in B concatenated with the names specified in 'NewDataVarNames'. The function specified in 'AggregationFun' must return a value with a single row.

**Examples**

Combine several variables for estimated influenza rates into a single variable. Then unstack the estimated influenza rates by date.

```matlab
load flu

% FLU has a 'Date' variable, and 10 variables for estimated influenza rates
% (in 9 different regions, estimated from Google searches, plus a
% nationwide estimate from the CDC). Combine those 10 variables into an
% array that has a single data variable, 'FluRate', and an indicator
% variable, 'Region', that says which region each estimate is from.
[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
'IndVarName','Region')

% The second observation in FLU is for 10/16/2005. Find the observations
% in FLU2 that correspond to that date.
flu(2,:)
flu2(iflu==2,:)

% Use the 'Date' variable from that array to split 'FluRate' into 52
% separate variables, each containing the estimated influenza rates for
% each unique date. The new array has one observation for each region. In
% effect, this is the original array FLU "on its side".
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
```
[flu3, iflu2] = unstack(flu2, 'FluRate', 'Date', ...
    'NewDataVarNames', dateNames)

% Since observations in FLU3 represent regions, IFLU2 indicates the first
% occurrence in FLU2 of each region.
flu2(iflu2, :)

See Also
dataset.join | dataset.stack

Topics
“Grouping Variables” on page 2-57
update

**Package:** classreg.learning.classif

Update support vector machine (SVM) model parameters for code generation

Generate C/C++ code for the `predict` and `update` functions of a machine learning model by using a coder configurer object. Create this object by using `learnerCoderConfigurer` and its object function `generateCode`. Then you can use the `update` function to update model parameters in the generated code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when you retrain a model with new data or settings.

This flow chart shows the code generation workflow using a coder configurer. Use `update` for the highlighted step.

If you do not generate code, then you do not need to use the `update` function. When you retrain a model in MATLAB, the returned model already includes modified parameters.

**Syntax**

`updatedMdl = update(Mdl,params)`

**Description**

`updatedMdl = update(Mdl,params)` returns an updated version of `Mdl` that contains new parameters in `params`. 
After retraining a model, use the `validatedUpdateInputs` function to detect modified parameters in the retrained model and validate whether the modified parameter values satisfy the coder attributes of the parameters. Use the output of `validatedUpdateInputs`, the validated parameters, as the input `params` to update model parameters.

**Examples**

**Update Model Parameters in Generated Code**

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.

**Train Model**

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

`Mdl` is a `ClassificationSVM` object.

**Create Coder Configurer**

Create a coder configurer for the `ClassificationSVM` model by using `learnerCoderConfigurer`. Specify the predictor data `X`. The `learnerCoderConfigurer` function uses the input `X` to configure the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
```

`configurer` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.
Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of $X$ so that the generated code accepts any number of observations. Modify the `SizeVector` and `VariableDimensions` attributes. The `SizeVector` attribute specifies the upper bound of the predictor data size, and the `VariableDimensions` attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];
```

The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is $\infty$ and the size is variable, meaning that $X$ can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. $X$ contains 34 predictors, so the value of the `SizeVector` attribute must be 34 and the value of the `VariableDimensions` attribute must be `false`.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of `SupportVectors` so that you can update the support vectors in the generated code.

```matlab
configurer.SupportVectors.SizeVector = [250 34];
```

SizeVector attribute for `Alpha` has been modified to satisfy configuration constraints.
SizeVector attribute for `SupportVectorLabels` has been modified to satisfy configuration constraints.

```matlab
configurer.SupportVectors.VariableDimensions = [true false];
```

VariableDimensions attribute for `Alpha` has been modified to satisfy configuration constraints.
VariableDimensions attribute for `SupportVectorLabels` has been modified to satisfy configuration constraints.

If you modify the coder attributes of `SupportVectors`, then the software modifies the coder attributes of `Alpha` and `SupportVectorLabels` to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires
subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.

**Generate Code**

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `ClassificationSVM` model with default settings.

```
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
generateCode generates these files for code generation.

```
generateCode generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions of the `ClassificationSVM` model (`Mdl`), respectively. Then `generateCode` creates a MEX function named `ClassificationSVMModel` for the two entry-point functions in the `codegen\mex\ClassificationSVMModel` folder and copies the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the `predict` function of `Mdl` and the `predict` function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

```
[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
```

Compare `label` and `label_mex` by using `isequal`.

```
isqual(label,label_mex)
ans = logical
   1
```
isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.

```matlab
find(abs(score-score_mex) > 1e-8)
ans =
0×1 empty double column vector
```

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

```matlab
retrainedMdl = fitcsvm(X,Y);
```

Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.

```matlab
params = validatedUpdateInputs(configurer,retrainedMdl);
```

Update parameters in the generated code.

```matlab
ClassificationSVMModel('update',params)
```

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the updated MEX function.

```matlab
labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)
ans = logical
1
```
```matlab
find(abs(score-score_mex) > 1e-8)
ans =
    0×1 empty double column vector
```

The comparison confirms that `labels` and `labels_mex` are equal, and the score values are equal within the tolerance.

Input Arguments

Mdl — Machine learning model

compact model object

Machine learning model, specified as a compact model object, as given in this table of supported models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Compact Model Object</th>
<th>Training Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td>CompactClassificationSVM</td>
<td>fitcsvm</td>
</tr>
<tr>
<td>SVM regression</td>
<td>CompactRegressionSVM</td>
<td>fitrsvm</td>
</tr>
</tbody>
</table>

For the code generation usage notes and limitations of a machine learning model, see the Code Generation section of the model object page.

params — Parameters to update

structure

Parameters to update in the machine learning model, specified as a structure with a field for each parameter to update.

The set of parameters that you can update varies depending on the machine learning model, as described in this table.
<table>
<thead>
<tr>
<th>Model</th>
<th>Compact Model Object (Mdl)</th>
<th>Parameters to Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td>CompactClassificationSVM</td>
<td>• If you train an SVM classification model (Mdl) with a linear kernel function and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>discard support vectors by using discardSupportVectors, then params can include Beta,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bias, Cost, Mu, Prior, Scale (kernel scale parameter in KernelParameters), and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Otherwise, params can include Alpha, Bias, Cost, Mu, Prior, Scale (kernel scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parameter in KernelParameters), Sigma, SupportVectorLabels, and SupportVectors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If Mdl is a one-class SVM classification model, then params cannot include Cost or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prior.</td>
</tr>
<tr>
<td>SVM regression</td>
<td>CompactRegressionSVM</td>
<td>• If you train an SVM regression model (Mdl) with a linear kernel function and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>discard support vectors by using discardSupportVectors, then params can include Beta,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bias, Mu, Scale (kernel scale parameter in KernelParameters), and Sigma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Otherwise, params can include Alpha, Bias, Mu, Scale (kernel scale parameter in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KernelParameters), Sigma, and SupportVectors.</td>
</tr>
</tbody>
</table>

You can create params by using the validatedUpdateInputs function. This function detects modified parameters in the retrained model, validates whether the modified parameter values satisfy the coder attributes of the parameters, and returns the parameters to update as a structure.
Output Arguments

updatedMdl — Updated machine learning model
compact model object

Updated machine learning model, returned as a compact model object that is the same type of object as Mdl. The output updatedMdl is an updated version of the input Mdl that contains new parameters in params.

Tips

- If you modify any of the name-value pair arguments listed in this table when you retrain a model, you must generate C/C++ code again. You cannot use update to update the parameters determined by these name-value pair arguments.

<table>
<thead>
<tr>
<th>Model</th>
<th>Training Function</th>
<th>Arguments Not Supported for Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td>fitcsvm</td>
<td>'ClassNames' 'KernelFunction' 'PolynomialOrder' 'ScoreTransform'</td>
</tr>
<tr>
<td>SVM regression</td>
<td>fitrsvm</td>
<td>'KernelFunction' 'PolynomialOrder' 'ResponseTransform'</td>
</tr>
</tbody>
</table>

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Create a coder configurer by using learnerCoderConfigurer and then generate code for predict and update by using the object function generateCode.
• For the code generation usage notes and limitations of the machine learning model \texttt{Mdl}, see the Code Generation section of the model object page.

For more information, see “Introduction to Code Generation” on page 31-2.

\section*{See Also}
genenerateCode | learnerCoderConfigurer | validatedUpdateInputs

\section*{Topics}
“Introduction to Code Generation” on page 31-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90

\textit{Introduced in R2018b}
upperparams

Upper Pareto tail parameters

Syntax

params = upperparams(pd)

Description

params = upperparams(pd) returns the two-element vector params, which includes the shape and scale parameters of the generalized Pareto distribution (GPD) in the upper tail of pd.

upperparams does not return the location parameter of the GPD. The location parameter is the quantile value corresponding to the upper tail cumulative probability. Use the boundary function to return the location parameter.

Examples

Parameters of Upper Pareto Tail

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data by using paretotails. Find the distribution parameters of the upper Pareto tail by using the object function upperparams.

Generate a sample data set containing 20% outliers.

rng('default'); % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the tails using the lower and upper tail cumulative probabilities so that a
fitted object consists of the empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of the data set.

```matlab
pd = paretotails(x,0.1,0.9)
pd =
Piecewise distribution with 3 segments
  -Inf < x < -1.33251  (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
  -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
  1.80149 < x < Inf  (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)
```

Return the shape and scale parameters of the fitted GPD of the upper tail by using the `upperparams` function.

```matlab
params = upperparams(pd)
params = 1×2
       0.2487    3.0097
```

You can also get the upper Pareto tail parameters by using the `UpperParameters` property. Access the `UpperParameters` property by using dot notation.

```matlab
pd.UpperParameters
ans = 1×2
       0.2487    3.0097
```

The location parameter of the GPD is equal to the quantile value of the upper tail cumulative probability. Return the location parameter by using the `boundary` function.

```matlab
[p,q] = boundary(pd)
p = 2×1
     0.1000
     0.9000
q = 2×1
   -1.3325
```
The values in \(p \) are the cumulative probabilities at the boundaries, and the values in \(q \) are the corresponding quantiles. \(q(1) \) is the location parameter of the GPD of the upper tail.

Use the `lowerparams` function or the `LowerParameters` property to get the lower Pareto tail parameters.

Input Arguments

`pd` — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a `paretotails` object.

See Also

`boundary` | `gpfit` | `lowerparams` | `nsegments` | `paretotails` | `segment`

Topics

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-58
“Nonparametric and Empirical Probability Distributions” on page 5-39
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”
“Generalized Pareto Distribution” on page B-55

Introduced in R2007a
UserData property

Class: dataset

Variable containing additional information associated with data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

Any variable containing additional information to be associated with the data set. The default is an empty array.
validatedUpdateInputs

Package: classreg.learning.coder.config.svm

Validate and extract machine learning model parameters to update

Generate C/C++ code for the `predict` and `update` functions of a machine learning model by using a coder configurer object. Create this object by using `learnerCoderConfigurer` and its object function `generateCode`. After retraining the model with new data or settings, you can update model parameters in the generated code without having to regenerate the code. Use `validatedUpdateInputs` to validate and extract the model parameters to update. This function helps you identify potential problems before you update the model parameters in the generated code. You can use the output of `validatedUpdateInputs`, the validated parameters, as an input argument of the `update` function to update model parameters.

This flow chart shows the code generation workflow using a coder configurer. Use `validatedUpdateInputs` for the highlighted step.

![Flow Chart](image)

Syntax

```matlab
params = validatedUpdateInputs(configurer,retrainedMdl)
```

Description

`params = validatedUpdateInputs(configurer,retrainedMdl)` returns the validated machine learning model parameters to update. `validatedUpdateInputs`
detects the modified model parameters in `retrainedMdl` and validates whether they satisfy the coder attributes stored in `configurer`.

Examples

Update Model Parameters in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.

Train Model

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50 observations.

```matlab
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
```

`Mdl` is a `ClassificationSVM` object.

Create Coder Configurer

Create a coder configurer for the `ClassificationSVM` model by using `learnerCoderConfigurer`. Specify the predictor data `X`. The `learnerCoderConfigurer` function uses the input `X` to configure the coder attributes of the `predict` function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.

```matlab
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
```

`configurer` is a `ClassificationSVMCoderConfigurer` object, which is a coder configurer of a `ClassificationSVM` object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example
specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of observations. Modify the `SizeVector` and `VariableDimensions` attributes. The `SizeVector` attribute specifies the upper bound of the predictor data size, and the `VariableDimensions` attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

```matlab
configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];
```

The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the `SizeVector` attribute must be 34 and the value of the `VariableDimensions` attribute must be `false`.

If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of `SupportVectors` so that you can update the support vectors in the generated code.

```matlab
configurer.SupportVectors.SizeVector = [250 34];
```

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

```matlab
configurer.SupportVectors.VariableDimensions = [true false];
```

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of `SupportVectors`, then the software modifies the coder attributes of `Alpha` and `SupportVectorLabels` to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.
Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use `mex -setup` to view and change the default compiler. For more details, see “Change Default Compiler” (MATLAB).

Use `generateCode` to generate code for the `predict` and `update` functions of the `ClassificationSVM` model with default settings.

```matlab
generateCode(configurer)
```

These files do not exist in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'

`generateCode` generates these files for code generation.

`generateCode` generates the MATLAB files required to generate code, including the two entry-point functions `predict.m` and `update.m` for the `predict` and `update` functions of the `ClassificationSVM` model (`Mdl`), respectively. Then `generateCode` creates a MEX function named `ClassificationSVMModel` for the two entry-point functions in the `codegen/mex/ClassificationSVMModel` folder and copies the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the `predict` function of `Mdl` and the `predict` function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.

```matlab
[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
```

Compare `label` and `label_mex` by using `isequal`.

```matlab
isequal(label,label_mex)
```

```matlab
ans = logical
   1
```

`isequal` returns logical 1 (`true`) if all the inputs are equal. The comparison confirms that the `predict` function of `Mdl` and the `predict` function in the MEX function return the same labels.
score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.

find(abs(score-score_mex) > 1e-8)

ans =

0×1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e−8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the updated MEX function.

labels = predict(retrainedMdl,X);
label_mex = ClassificationSVMModel('predict',X);
isequal(labels,label_mex)

ans = logical
 1

find(abs(score-score_mex) > 1e-8)

ans =

0×1 empty double column vector
The comparison confirms that `labels` and `labels_mex` are equal, and the score values are equal within the tolerance.

Input Arguments

configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using `learnerCoderConfigurer`.

This table shows coder configurer objects corresponding to the supported machine learning models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Coder Configurer Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine (SVM) classification</td>
<td>ClassificationSVMCoderConfigurer</td>
</tr>
<tr>
<td>SVM regression</td>
<td>RegressionSVMCoderConfigurer</td>
</tr>
</tbody>
</table>

retrainedMdl — Retrained machine learning model
code model object | compact code model object

Retrained machine learning model, specified as a full or compact model object, as given in this table of supported models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Model Object</th>
<th>Compact Model Object</th>
<th>Training Function</th>
<th>Arguments Not Supported for Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM classification</td>
<td>ClassificationSVM</td>
<td>CompactClassificationSVM</td>
<td>fitcsvm</td>
<td>'ClassNames', 'KernelFunction', 'PolynomialOrder', 'ScoreTransform'</td>
</tr>
<tr>
<td>Model</td>
<td>Full Model Object</td>
<td>Compact Model Object</td>
<td>Training Function</td>
<td>Arguments Not Supported for Update</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SVM regression</td>
<td>RegressionSVM</td>
<td>CompactRegressionSVM</td>
<td>fitrsvm</td>
<td>'KernelFunction' 'PolynomialOrder' 'ResponseTransform'</td>
</tr>
</tbody>
</table>

validatedUpdateInputs returns an error message if you modify any of the name-value pair arguments listed in this table when you retrain the model retrainedMdl. To update the model parameters determined by these name-value pair arguments, you must generate C/C++ code again. You cannot use update to update the parameters.

validatedUpdateInputs displays a warning message if the machine learning model parameters in configurer and retrainedMdl are identical.

Output Arguments

params — Validated parameters to update

structure

Validated parameters to update in the machine learning model, specified as a structure with a field for each parameter extracted from retrainedMdl.

The model parameters in params include all parameters listed in the UpdateInputs property of configurer, which is the list of tunable model parameters.

You can use params as an input argument of update to update model parameters.

See Also

generateCode | learnerCoderConfigurer | update

Topics

“Introduction to Code Generation” on page 31-2

“Code Generation for Prediction and Update Using Coder Configurer” on page 31-90
Introduced in R2018b
var

Package: prob

Variance of probability distribution

Syntax

\[v = \text{var}(pd) \]

Description

\[v = \text{var}(pd) \] returns the variance \(v \) of the probability distribution \(pd \).

Examples

Variance of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

```matlab
load examgrades
x = grades(:,1);
```

Fit a normal distribution object to the data.

```matlab
pd = fitdist(x,'Normal')
```

```matlab
pd =
    NormalDistribution

    Normal distribution
    mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]
```

Compute the variance of the fitted distribution.
\[v = \text{var}(pd) \]
\[v = 76.0419 \]

For a normal distribution, the variance is equal to the square of the parameter \(\sigma \).

Variance of a Skewed Distribution

Create a Weibull probability distribution object.

\[pd = \text{makedist('Weibull','a',5,'b',2)} \]
\[pd = \]
\[\text{WeibullDistribution} \]
\[\text{Weibull distribution} \]
\[A = 5 \]
\[B = 2 \]

Compute the variance of the distribution.

\[v = \text{var}(pd) \]
\[v = 5.3650 \]

Variance of a Triangular Distribution

Create a triangular distribution object.

\[pd = \text{makedist('Triangular','a','-3','b',1,'c',3)} \]
\[pd = \]
\[\text{TriangularDistribution} \]
\[A = -3, B = 1, C = 3 \]

Compute the variance of the distribution.

\[v = \text{var}(pd) \]
\[v = 1.5556 \]
Variance of a Kernel Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

```matlab
load examgrades;
x = grades(:,1);
```

Fit a kernel distribution object to the data.

```matlab
pd = fitdist(x,'Kernel')
```

```
pd = 
    KernelDistribution
        Kernel = normal
        Bandwidth = 3.61677
        Support = unbounded
```

Compute the variance of the fitted distribution.

```matlab
v = var(pd)
v = 88.4893
```

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of the following.

<table>
<thead>
<tr>
<th>Function or App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makedist</td>
<td>Create a probability distribution object using specified parameter values.</td>
</tr>
<tr>
<td>fitdist</td>
<td>Fit a probability distribution object to sample data.</td>
</tr>
<tr>
<td>Function or App</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Distribution Fitter</td>
<td>Fit a probability distribution to sample data using the interactive Distribution Fitter app and export the fitted object to the workspace.</td>
</tr>
</tbody>
</table>

Output Arguments

- **v — Variance**
 nonnegative scalar value

Variance of the probability distribution, returned as a nonnegative scalar value.

See Also

- **Distribution Fitter** | **fitdist** | **makedist** | **mean** | **std**

Topics

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16

Introduced in R2013a
VarDescription property

Class: dataset

Cell array of character vectors giving descriptions of variables in data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A cell array of character vectors giving the descriptions of the variables in the data set. This property may be empty, but if not empty, the number of character vectors must equal the number of variables. Any individual character vector may be empty for a variable that does not have a description defined. The default is an empty cell array.
varimportance

Class: classregtree

(Removed) Compute embedded estimates of input feature importance

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

imp = varimportance(t)

Description

imp = varimportance(t) computes estimates of input feature importance for tree t by summing changes in the risk due to splits on every feature. The returned vector imp has one element for each input variable in the data used to train this tree. At each node, the risk is estimated as node impurity if impurity was used to split nodes and node error otherwise. This risk is weighted by the node probability. Variable importance associated with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

See Also

risk

32-6935
VarNames property

Class: dataset

Cell array giving names of variables in data set

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Description

A cell array of nonempty, distinct character vectors giving the names of the variables in the data set. The number of character vectors must equal the number of variables. The default is the cell array of names for the variables used to create the data set.
vartest

Chi-square variance test

Syntax

h = vartest(x,v)
h = vartest(x,v,Name,Value)
[h,p] = vartest(____)
[h,p,ci,stats] = vartest(____)

Description

h = vartest(x,v) returns a test decision for the null hypothesis that the data in vector x comes from a normal distribution with variance v, using the chi-square variance test on page 32-6941. The alternative hypothesis is that x comes from a normal distribution with a different variance. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = vartest(x,v,Name,Value) performs the chi-square variance test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

[h,p] = vartest(____) also returns the p-value of the test, p, using any of the input arguments in the previous syntaxes.

[h,p,ci,stats] = vartest(____) also returns the confidence interval for the true variance, ci, and the structure stats containing information about the test statistic.

Examples

Chi-Squared Test for Specified Variance

Load the sample data. Create a vector containing the first column of the students' exam grades matrix.
load examgrades
x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25.

[h,p,ci,stats] = vartest(x,25)

h = 1
p = 0

CI = 59.8936
 99.7688

stats = struct with fields:
 chisqstat: 361.9597
 df: 119

The returned value \(h = 1 \) indicates that \texttt{vartest} rejects the null hypothesis at the default 5% significance level. \(\text{CI} \) shows the lower and upper boundaries of the 95% confidence interval for the true variance, and suggests that the true variance is greater than 25.

Chi-Squared Test Using One-Sided Hypothesis

Load the sample data. Create a vector containing the first column of the students' exam grades matrix.

load examgrades
x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25, against the alternative hypothesis that the variance is greater than 25.

[h,p] = vartest(x,25,'Tail','right')

h = 1
p = 2.4269e-26
The returned value of \(h = 1 \) indicates that \texttt{vartest} rejects the null hypothesis at the default 5\% significance level, in favor of the alternative hypothesis that the variance is greater than 25.

Input Arguments

\(x \) — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. For matrices, \texttt{vartest} performs separate tests along each column of \(x \), and returns a row vector of results. For multidimensional arrays on page 32-6942, \texttt{vartest} works along the first nonsingleton dimension on page 32-6942 of \(x \).

Data Types: single | double

\(v \) — Hypothesized variance
nonnegative scalar value

Hypothesized variance, specified as a nonnegative scalar value.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

Example: \texttt{'Tail','right','Alpha',0.01} specifies a right-tailed hypothesis test at the 1\% significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of \texttt{'Alpha'} and a scalar value in the range (0,1).

Example: \texttt{'Alpha',0.01}
Data Types: `single` | `double`

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the data in each column for equality to the hypothesized variance, while 'Dim',2 tests the data in each row.

Example: 'Dim',2

Data Types: `single` | `double`

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

<table>
<thead>
<tr>
<th>'both'</th>
<th>Test the alternative hypothesis that the population variance is not v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'right'</td>
<td>Test the alternative hypothesis that the population variance is greater than v.</td>
</tr>
<tr>
<td>'left'</td>
<td>Test the alternative hypothesis that the population variance is less than v.</td>
</tr>
</tbody>
</table>

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

- If $h = 1$, this indicates the rejection of the null hypothesis at the α significance level.
- If $h = 0$, this indicates a failure to reject the null hypothesis at the α significance level.
p — p-value

Scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. *p* is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of *p* cast doubt on the validity of the null hypothesis.

ci — Confidence interval

Vector

Confidence interval for the true variance, returned as a two-element vector containing the lower and upper boundaries of the 100 × (1 - *Alpha)% confidence interval.

stats — Test statistics

Structure

Test statistics for the chi-square variance test, returned as a structure containing:

- `chisqstat` — Value of the test statistic.
- `df` — Degrees of freedom of the test.

Definitions

Chi-Square Variance Test

The chi-square variance test is used to test whether the variance of a population is equal to a hypothesized value.

The test statistic is

\[T = (n - 1) \left(\frac{s}{\sigma_0} \right)^2, \]

where *n* is the sample size, *s* is the sample standard deviation, and \(\sigma_0 \) is the hypothesized standard deviation. The denominator is the ratio of the sample standard deviation to the hypothesized standard deviation. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis. The test statistic *T* has a chi-square distribution with \(n - 1 \) degrees of freedom under the null hypothesis.
Multidimensional Array

A multidimensional array has more than two dimensions. For example, if \(x \) is a 1-by-3-by-4 array, then \(x \) is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \(x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \(x \).

Tips

- Use \texttt{sampsizepwr} to calculate:
 - The sample size that corresponds to specified power and parameter values;
 - The power achieved for a particular sample size, given the true parameter value;
 - The parameter value detectable with the specified sample size and power.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

\texttt{sampsizepwr} | \texttt{vartest2} | \texttt{vartestn}

Introduced before R2006a
vartest2

Two-sample F-test for equal variances

Syntax

h = vartest2(x,y)
h = vartest2(x,y,Name,Value)
[h,p] = vartest2(__)
[h,p,ci,stats] = vartest2(__)

Description

h = vartest2(x,y) returns a test decision for the null hypothesis that the data in vectors x and y comes from normal distributions with the same variance, using the two-sample F-test on page 32-6948. The alternative hypothesis is that they come from normal distributions with different variances. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = vartest2(x,y,Name,Value) returns a test decision for the two-sample F-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

[h,p] = vartest2(__) also returns the p-value of the test, p, using any of the input arguments in the previous syntaxes.

[h,p,ci,stats] = vartest2(__) also returns the confidence interval for the true variance ratio, ci, and the structure stats containing information about the test statistic.

Examples
Test for Equal Variances

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.

```matlab
load examgrades;
x = grades(:,1);
y = grades(:,2);
```

Test the null hypothesis that the data in `x` and `y` comes from distributions with the same variance.

```matlab
[h,p,ci,stats] = vartest2(x,y)
```

```
<table>
<thead>
<tr>
<th>h</th>
<th>p</th>
<th>ci</th>
<th>stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0019</td>
<td>[1.2383, 2.5494]</td>
<td>struct with fields:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fstat: 1.7768</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>df1: 119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>df2: 119</td>
</tr>
</tbody>
</table>
```

The returned result `h = 1` indicates that `vartest2` rejects the null hypothesis at the default 5% significance level. `ci` contains the lower and upper boundaries of the 95% confidence interval for the true variance ratio. `stats` contains the value of the test statistic for the F-test and the numerator and denominator degrees of freedom.

One-Sided Hypothesis Test

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
load examgrades;
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the data in x and y comes from distributions with the same variance, against the alternative that the population variance of x is greater than that of y.

vartest2(x,y,'Tail','right')

ans = 1

The returned result h = 1 indicates that vartest2 rejects the null hypothesis at the default 5% significance level, in favor of the alternative hypothesis that the population variance of x is greater than that of y.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

- If x and y are vectors, they do not need to be the same length.
- If x and y are matrices, they must have the same number of columns, but do not need to have the same number of rows. vartest2 performs separate tests along each column and returns a vector of the results.
- If x and y are multidimensional arrays, they must have the same number of dimensions, and the same size along all but the first nonsingleton dimension.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

- If x and y are vectors, they do not need to be the same length.
• If \(x \) and \(y \) are matrices, they must have the same number of columns, but do not need to have the same number of rows. \(\text{var} \text{test2} \) performs separate tests along each column and returns a vector of the results.

• If \(x \) and \(y \) are multidimensional arrays, they must have the same number of dimensions, and the same size along all but the first nonsingleton dimension on page 32-6948.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of \(\text{Name,Value} \) arguments. \(\text{Name} \) is the argument name and \(\text{Value} \) is the corresponding value. \(\text{Name} \) must appear inside quotes. You can specify several name and value pair arguments in any order as \(\text{Name1,Value1,...,NameN,ValueN}. \)

Example: \(\text{'Tail','right','Alpha',0.01} \) specifies a right-tailed hypothesis test at the 1\% significance level.

Alpha — Significance level

\(0.05 \) (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of \(\text{'Alpha'} \) and a scalar value in the range \((0,1)\).

Example: \(\text{'Alpha',0.01} \)

Data Types: single | double

Dim — Dimension

first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair consisting of \(\text{'Dim'} \) and a positive integer value. For example, specifying \(\text{'Dim',1} \) tests the data in each column for variance equality, while \(\text{'Dim',2} \) tests the data in each row.

Example: \(\text{'Dim',2} \)

Data Types: single | double

Tail — Type of alternative hypothesis

\(\text{'both'} \) (default) | \(\text{'right'} \) | \(\text{'left'} \)
Type of alternative hypothesis to evaluate using the F-test, specified as the comma-separated pair consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population variances are not equal.

'right' Test the alternative hypothesis that the population variance of x is greater than that of y.

'left' Test the alternative hypothesis that the population variance of x is less than that of y.

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result

1 | 0

Hypothesis test result, returned as 1 or 0.

- If $h = 1$, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If $h = 0$, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value

scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval

vector

Confidence interval for the true ratio of the population variances, returned as a two-element vector containing the lower and upper boundaries of the $100 \times (1 - \text{Alpha})\%$ confidence interval.
Test statistics for the hypothesis test, returned as a structure containing:

- **fstat** — Value of the test statistic.
- **df1** — Numerator degrees of freedom of the test.
- **df2** — Denominator degrees of freedom of the test.

Definitions

Two-Sample F-Test

The two-sample F-test is used to test if the variances of two populations are equal.

The test statistic is

\[F = \frac{s_1^2}{s_2^2}, \]

where \(s_1 \) and \(s_2 \) are the sample standard deviations. The test statistic is a ratio of the two sample variances. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis. Under the null hypothesis, the test statistic \(F \) has a \(F \)-distribution with numerator degrees of freedom equal to \(N_1 - 1 \) and denominator degrees of freedom equal to \(N_2 - 1 \), where \(N_1 \) and \(N_2 \) are the sample sizes of the two data sets.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if \(x \) is a 1-by-3-by-4 array, then \(x \) is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \(x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \(x \).
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
vartest | vartestn

Introduced before R2006a
vartestn

Multiple-sample tests for equal variances

Syntax

vartestn(x)
vartestn(x,Name,Value)

vartestn(x,group)
vartestn(x,group,Name,Value)

p = vartestn(__)
[p,stats] = vartestn(__)

Description

vartestn(x) returns a summary table of statistics and a box plot for a Bartlett test of the null hypothesis that the columns of data vector x come from normal distributions with the same variance. The alternative hypothesis is that not all columns of data have the same variance.

vartestn(x,Name,Value) returns a summary table of statistics and a box plot for a test of unequal variances with additional options specified by one or more name-value pair arguments. For example, you can specify a different type of hypothesis test or change the display settings for the test results.

vartestn(x,group) returns a summary table of statistics and a box plot for a Bartlett test of the null hypothesis that the data in each categorical group comes from normal distributions with the same variance. The alternative hypothesis is that not all groups have the same variance.

vartestn(x,group,Name,Value) returns a summary table of statistics and a box plot for a test of unequal variances with additional options specified by one or more name-value pair arguments. For example, you can specify a different type of hypothesis test or change the display settings for the test results.
p = vartestn(___) also returns the p-value of the test, p, using any of the input arguments in the previous syntaxes.

[p,stats] = vartestn(___) also returns the structure stats containing information about the test statistic.

Examples

Test Data for Equal Variances

Load the sample data.

load examgrades

Test the null hypothesis that the variances are equal across the five columns of data in the students’ exam grades matrix, grades.

vartestn(grades)
<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>75.0083</td>
<td>8.7202</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>74.9917</td>
<td>6.54204</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>74.9917</td>
<td>7.43091</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>75.0333</td>
<td>8.60128</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>74.9917</td>
<td>5.25884</td>
</tr>
<tr>
<td>Pooled</td>
<td>600</td>
<td>75.0033</td>
<td>7.42558</td>
</tr>
</tbody>
</table>

Bartlett's statistic 38.7332
Degrees of freedom 4
p-value 0
The low p-value, $p = 0$, indicates that `vartestn` rejects the null hypothesis that the variances are equal across all five columns, in favor of the alternative hypothesis that at least one column has a different variance.

Test Grouped Data for Equal Variances

Load the sample data.

```matlab
load carsmall
```
Test the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

```
vartestn(MPG,Model_Year)
```

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>29</td>
<td>17.6897</td>
<td>5.33923</td>
</tr>
<tr>
<td>76</td>
<td>34</td>
<td>21.5735</td>
<td>5.8893</td>
</tr>
<tr>
<td>82</td>
<td>31</td>
<td>31.7097</td>
<td>5.39255</td>
</tr>
<tr>
<td>Pooled</td>
<td>94</td>
<td>23.7181</td>
<td>5.562</td>
</tr>
</tbody>
</table>

Bartlett's statistic 0.36619
Degrees of freedom 2
p-value 0.83269
The high p-value, $p = 0.83269$, indicates that `vartestn` does not reject the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

Test for Equal Variances Using Levene’s Test

Load the sample data.

```matlab
load carsmall
```
Use Levene’s test to test the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

\[p = \text{vartestn}(\text{MPG}, \text{Model-Year}, '\text{TestType}', '\text{LeveneAbsolute}') \]

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>29</td>
<td>17.6897</td>
<td>5.33923</td>
</tr>
<tr>
<td>76</td>
<td>34</td>
<td>21.5735</td>
<td>5.8893</td>
</tr>
<tr>
<td>82</td>
<td>31</td>
<td>31.7097</td>
<td>5.39255</td>
</tr>
<tr>
<td>Pooled</td>
<td>94</td>
<td>23.7181</td>
<td>5.562</td>
</tr>
</tbody>
</table>

Levene’s statistic (absolute) 0.46126
Degrees of freedom 2, 91
p-value 0.63195
The high p-value, $p = 0.63195$, indicates that `vartestn` does not reject the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

Test for Equal Variances Using the Brown-Forsythe Test

Load the sample data.

```matlab
test vartestn
load examgrades
```
Test the null hypothesis that the variances are equal across the five columns of data in the students' exam grades matrix, \(\text{grades} \), using the Brown-Forsythe test. Suppress the display of the summary table of statistics and the box plot.

\[
[p, \text{stats}] = \text{vartestn}(\text{grades}, 'TestType', 'BrownForsythe', 'Display', 'off')
\]

\(p = 1.3121 \times 10^{-6} \)

\[
\text{stats} = \text{struct with fields:}
\begin{align*}
\text{fstat} & : 8.4160 \\
\text{df} & : [4 \ 595]
\end{align*}
\]

The small \(P \)-value, \(p = 1.3121 \times 10^{-6} \), indicates that \text{vartestn} rejects the null hypothesis that the variances are equal across all five columns, in favor of the alternative hypothesis that at least one column has a different variance.

Input Arguments

- **x** — Sample data

 matrix | column vector

 Sample data, specified as a matrix or column vector. If a grouping variable \(\text{group} \) is specified, then \(x \) must be a column vector. If a grouping variable is not specified, \(x \) must be a matrix. In either case, \text{vartestn} treats NaN values as missing values and ignores them.

 Data Types: single | double

- **group** — Grouping variable

 categorical array | logical or numeric vector | character array | string array | cell array of character vectors

 Grouping variable, specified as a categorical array, logical or numeric vector, character array, string array, or cell array of character vectors with one row for each element of \(x \). Each unique value in a grouping variable defines a group. \text{vartestn} treats NaN values as missing values and ignores them.

 For example, if \text{Gender} is a cell array of character vectors with values 'Male' and 'Female', you can use \text{Gender} as a grouping variable to test your data by gender.
Example: Gender

Data Types: categorical | single | double | logical | string | cell | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'TestType','BrownForsythe','Display','off' specifies a Brown-Forsythe test and omits the plot of the results.

Display — Display settings for test results

'on' (default) | 'off'

Display settings for test results, specified as the comma-separated pair consisting of 'Display' and one of the following.

'on' Display a box plot and table of summary statistics.

'off' Do not display a box plot and table of summary statistics.

Example: 'display','off'

TestType — Type of hypothesis test

'Bartlett' (default) | 'LeveneQuadratic' | 'LeveneAbsolute' | 'BrownForsythe' | 'OBrien'

Type of hypothesis test to perform, specified as the comma-separated pair consisting of 'TestType' and one of the following.

'Bartlett' Bartlett’s test.

'LeveneQuadratic' Levene’s test computed by performing ANOVA on the squared deviations of the data values from their group means.

'LeveneAbsolute' Levene’s test computed by performing ANOVA on the absolute deviations of the data values from their group means.

'BrownForsythe' Brown-Forsythe test computed by performing ANOVA on the absolute deviations of the data values from the group medians.
'OBrien' O'Brien's modification of Levene's test with \(W = 0.5 \).

Example: 'TestType','OBrien'

Output Arguments

\(p \) — \(p \)-value
scalar value in the range [0,1]

\(p \)-value of the test, returned as a scalar value in the range [0,1]. \(p \) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p \) cast doubt on the validity of the null hypothesis.

\(\text{stats} \) — Test statistics
structure

Test statistics for the hypothesis test, returned as a structure containing:

- \(\text{chistat} \): Value of the test statistic.
- \(\text{df} \): Degrees of freedom of the test.

Definitions

Bartlett's Test

Bartlett's test is used to test whether multiple data samples have equal variances, against the alternative that at least two of the data samples do not have equal variances.

The test statistic is

\[
T = \frac{(N-k)\ln s_p^2 - \sum_{i=1}^{k} (N_i - 1)\ln s_i^2}{1 + \left(1/(3(k-1))\right)\left(\sum_{i=1}^{k} 1/(N_i - 1) - 1/(N-k)\right)},
\]
where s_i^2 is the variance of the ith group, N is the total sample size, N_i is the sample size of the ith group, k is the number of groups, and s_p^2 is the pooled variance. The pooled variance is defined as

$$s_p^2 = \frac{\sum_{i=1}^{k} (N_i - 1)s_i^2}{(N - k)}.$$

The test statistic has a chi-square distribution with $k - 1$ degrees of freedom under the null hypothesis.

Bartlett’s test is sensitive to departures from normality. If your data comes from a nonnormal distribution, Levene’s test could provide a more accurate result.

Levene, Brown-Forsythe, and O’Brien Tests

The Levene, Brown-Forsythe, and O’Brien tests are used to test if multiple data samples have equal variances, against the alternative that at least two of the data samples do not have equal variances.

The test statistic is

$$W = \frac{(N - k) \sum_{i=1}^{k} N_i (\bar{Z}_i - \bar{Z}_\cdot)^2}{(k - 1) \sum_{i=1}^{k} \sum_{j=1}^{N_i} (Z_{ij} - \bar{Z}_i)^2},$$

where N_i is the sample size of the ith group, and k is the number of groups. Depending on the type of test specified with the `TestType` name-value pair arguments, Z_{ij} can have one of four definitions:

- If you specify `LeveneAbsolute`, `vartestn` uses $Z_{ij} = |Y_{ij} - \bar{Y}_i|$, where \bar{Y}_i is the mean of the ith subgroup.

- If you specify `LeveneQuadratic`, `vartestn` uses $Z_{ij}^2 = (Y_{ij} - \bar{Y}_i)^2$, where \bar{Y}_i is the mean of the ith subgroup.
If you specify BrownForsythe, \texttt{vartestn} uses \(Z_{ij} = |Y_{ij} - \bar{Y}_i| \), where \(\bar{Y}_i \) is the median of the \(i \)th subgroup.

If you specify \texttt{OBrien}, \texttt{vartestn} uses

\[
Z_{ij} = \frac{(0.5 + n_i - 2) n_i (y_{ij} - \bar{y}_i)^2 - 0.5(n_i - 1)\sigma_i^2}{(n_i - 1)(n_i - 2)},
\]

where \(n_i \) is the size of the \(i \)th group, \(\sigma_i^2 \) is its sample variance.

In all cases, the test statistic has an \(F \)-distribution with \(k - 1 \) numerator degrees of freedom, and \(N - k \) denominator degrees of freedom.

The Levene, Brown-Forsythe, and O’Brien tests are less sensitive to departures from normality than Bartlett’s test, so they are useful alternatives if you suspect the samples come from nonnormal distributions.

See Also

\texttt{anova1} | \texttt{vartest} | \texttt{vartest2}

Introduced before R2006a
vertcat

Class: dataset

Vertical concatenation for dataset arrays

Note The dataset data type might be removed in a future release. To work with heterogeneous data, use the MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax

```matlab
ds = vertcat(ds1, ds2, ...)
```

Description

`ds = vertcat(ds1, ds2, ...)` vertically concatenates the dataset arrays `ds1`, `ds2`, Observation names, when present, must be unique across datasets. `vertcat` fills in default observation names for the output when some of the inputs have names and some do not.

Variable names for all dataset arrays must be identical except for order. `vertcat` concatenates by matching variable names. `vertcat` assigns values for the "per-variable" properties (e.g., Units and VarDescription) in `ds` from the corresponding property values in `ds1`.

See Also

cat | horzcat
view

Class: classregtree

(Removed) Plot tree

Note classregtree has been removed. Use fitctree, fitrtree, ClassificationTree, or RegressionTree instead.

Syntax

view(t)
view(t,param1,val1,param2,val2,...)

Description

view(t) displays the decision tree t as computed by classregtree in a figure window. Each branch in the tree is labeled with its decision rule, and each terminal node is labeled with the predicted value for that node. Click any node to get more information about it. The information displayed is specified by the Click to display pop-up menu at the top of the figure.

view(t,param1,val1,param2,val2,...) specifies optional parameter name/value pairs:

• 'names' — A cell array of names for the predictor variables, in the order in which they appear in the matrix X from which the tree was created. (See classregtree.)
• 'prunelevel' — Initial pruning level to display.

For each branch node, the left child node corresponds to the points that satisfy the condition, and the right child node corresponds to the points that do not satisfy the condition.
References

See Also

classregtree | eval | prune | test
compact

Class: clustering.evaluation.ClusterCriterion
Package: clustering.evaluation

Compact clustering evaluation object

Syntax

c = compact(eva)

Description

c = compact(eva) returns a compact clustering evaluation object, which contains a subset of information about the clustering solution in eva. Compacting a clustering evaluation object reduces the memory requirements of the object, which is useful when clustering a large data set.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a clustering evaluation object using evalclusters.

Output Arguments

c — Compact clustering evaluation object
clustering evaluation object

Compact clustering evaluation object, returned as a clustering evaluation object. The compact object includes the clustering evaluation results. In the compact object, the
properties for the input data \(X \), optimal clustering solution \(\text{OptimalY} \), and the list of excluded data \(\text{Missing} \) are empty.

Examples

Create a Compact Clustering Evaluation Object

Create a compact clustering evaluation object from a full clustering evaluation object.

Load the sample data.

```matlab
load fisheriris;
```

The data contains length and width measurements from the sepals and petals of three species of iris flowers.

Create a clustering evaluation object. Cluster the data using \text{kmeans}, and evaluate the optimal number of clusters using the gap criterion.

```matlab
rng('default');  % For reproducibility
eva = evalclusters(meas,'kmeans','Gap','KList',1:6)
```

Create a compact clustering evaluation object from \(\text{eva} \).

```matlab
c = compact(eva)
c = 
```

```matlab
GapEvaluation with properties:

    NumObservations: 150
    InspectedK: [1 2 3 4 5 6]
    CriterionValues: [0.0720 0.5928 0.8762 1.0114 1.0534 1.0720]
    OptimalK: 5
```
OptimalK: 5

The displayed output of the compact object c is the same as the original object eva, but some properties not shown in the display are different. For example, in the compact object, the properties x, OptimalY, and Missing are empty.

Display the optimal clustering solution OptimalY for c.

c.OptimalY
ans =
 []

See Also

evalclusters
view

View tree

Syntax

view(tree)
view(tree,Name,Value)

Description

view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A classification tree or compact classification tree created by fitctree or compact.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Mode

Value describing the display of tree, either 'graph' or 'text'. 'graph' opens a user interface displaying tree, and containing controls for querying the tree. 'text' sends output to the Command Window describing tree.

Default: 'text'
Examples

View Trained Classification Tree

View textual and graphical displays of a trained classification tree.

Load Fisher's iris data set.

load fisheriris

Train a classification tree using all measurements.

Mdl = fitctree(meas,species);

View textual display of the trained classification tree.

view(Mdl)

Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica

View graphical display of the trained classification tree.

view(Mdl,'Mode','graph');
View Tree from Bag of Trees

Load Fisher's iris data set.

load fisheriris

Grow a bag of 100 classification trees using all measurements.

rng(1) % For reproducibility
Mdl = TreeBagger(100,meas,species);
Alternatively, you can use fitcensemble to grow a bag of classification trees.

Mdl is a TreeBagger model object. Mdl.Trees stores the bag of 100 trained classification trees in a 100-by-1 cell array. That is, each cell in Mdl.Trees contains a CompactClassificationTree model object.

View a graph of the 10th classification tree in the bag.

Tree10 = Mdl.Trees{10};
view(Tree10,'Mode','graph');

By default, the software grows deep trees for bags of trees.
View Tree from Boosted Ensemble

Load Fisher's iris data set.

load fisheriris

Boost an ensemble of 100 classification trees using all measurements. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Mdl is a ClassificationEnsemble model object. Mdl.Trained stores the ensemble of 100 trained classification trees in a 100-by-1 cell array. That is, each cell in Mdl.Trained contains a CompactClassificationTree model object.

View a graph of the 10th classification tree in the ensemble.

Tree10 = Mdl.Trained{10};
view(Tree10,'Mode','graph');
The graph shows a tree stump because you specified stumps as the weak learners for the ensemble. However, this behavior is not the default for `fitcensemble`. By default, `fitcensemble` grows shallow trees for boosted ensembles of trees. That is, 'Learners' is `templateTree('MaxNumSplits',10)).

Tip

To view tree \(t \) from an ensemble of trees, enter one of these lines of code
view(Ens.Trained{t})
view(Bag.Trees{t})

- Ens is a full ensemble returned by fitcensemble or a compact ensemble returned by compact.
- Bag is a full bag of trees returned by TreeBagger or a compact bag of trees returned by compact.

To save tree in the Command Window, get a figure handle by using the findall and setdiff functions, and then save tree using the function saveas.

```matlab
before = findall(groot,'Type','figure'); % Find all figures
view(Mdl,'Mode','graph')
after = findall(groot,'Type','figure');
h = setdiff(after,before); % Get the figure handle of the tree viewer
saveas(h,'a.png')
```

See Also
ClassificationTree | fitctree
view

View tree

Syntax

view(tree)
view(tree,Name,Value)

Description

view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A regression tree or compact regression tree created by fitrtree or compact.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Mode

Display of tree, either 'graph' or 'text'. 'graph' opens a GUI displaying tree, and containing controls for querying the tree. 'text' sends output to the Command Window describing tree.

Default: 'text'
Examples

View Trained Regression Tree

View textual and graphical displays of a trained regression tree.

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).

```matlab
load carsmall
X = [Weight Cylinders];
Y = MPG;
Train a regression tree using all measurements.
Mdl = fitrtree(X,Y);
View textual display of the trained regression tree.
view(Mdl)
```

```
Decision tree for regression
1   if x1<3085.5 then node 2 elseif x1>=3085.5 then node 3 else 23.7181
2   if x1<2371 then node 4 elseif x1>=2371 then node 5 else 28.7931
3   if x2<7 then node 6 elseif x2>=7 then node 7 else 15.5417
4   if x1<2162 then node 8 elseif x1>=2162 then node 9 else 32.0741
5   if x2<5 then node 10 elseif x2>=5 then node 11 else 25.9355
6   fit = 19.2778
7   if x1<4381 then node 12 elseif x1>=4381 then node 13 else 14.2963
8   if x1<1951 then node 14 elseif x1>=1951 then node 15 else 33.3056
9   fit = 29.6111
10  if x1<2827.5 then node 16 elseif x1>=2827.5 then node 17 else 27.2143
11  if x1<3013.5 then node 18 elseif x1>=3013.5 then node 19 else 23.25
12  if x1<3533.5 then node 20 elseif x1>=3533.5 then node 21 else 14.8696
13  fit = 11
14  fit = 29.375
15  if x1<2142.5 then node 22 elseif x1>=2142.5 then node 23 else 34.4286
16  if x1<2385 then node 24 elseif x1>=2385 then node 25 else 27.6389
17  fit = 24.6667
18  fit = 21.5
19  fit = 30.25
20  fit = 16.6
21  if x1<4378 then node 26 elseif x1>=4378 then node 27 else 14.3889
```
22 if x1<2080 then node 28 elseif x1>=2080 then node 29 else 34.8333
23 fit = 32
24 fit = 24.5
25 if x1<2412.5 then node 30 elseif x1>=2412.5 then node 31 else 28.0313
26 if x1<4365 then node 32 elseif x1>=4365 then node 33 else 14.2647
27 fit = 16.5
28 fit = 34.125
29 fit = 36.25
30 fit = 34
31 if x1<2447 then node 34 elseif x1>=2447 then node 35 else 27.6333
32 if x1<4122.5 then node 36 elseif x1>=4122.5 then node 37 else 14.5313
33 fit = 10
34 fit = 24
35 if x1<2573.5 then node 38 elseif x1>=2573.5 then node 39 else 27.8929
36 if x1<3860 then node 40 elseif x1>=3860 then node 41 else 14.15
37 fit = 15.1667
38 fit = 27.125
39 if x1<2580 then node 42 elseif x1>=2580 then node 43 else 28.2
40 fit = 14.5
41 fit = 13.625
42 fit = 31
43 fit = 27.8889

View graphical display of the trained regression tree.

view(Mdl,'Mode','graph');
View Tree from Bag of Trees

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;
Grow a bag of 100 regression trees using all measurements.

```matlab
rng(1) % For reproducibility
Mdl = TreeBagger(100,X,Y);
```

Alternatively, you can use `fitrensemble` to grow a bag of regression trees.

`Mdl` is a `TreeBagger` model object. `Mdl.Trees` stores the bag of 100 trained regression trees in a 100-by-1 cell array. That is, each cell in `Mdl.Trees` contains a `CompactRegressionTree` model object.

View a graph of the 10th regression tree in the bag.

```matlab
Tree10 = Mdl.Trees{10};
view(Tree10,'Mode','graph');
```
By default, the software grows deep trees for bags of trees.

View Tree from Boosted Ensemble

Load the *carsmall* data set. Consider a model that explains a car's fuel economy (MPG) using its weight (Weight) and number of cylinders (Cylinders).
load carsmall
X = [Weight Cylinders];
Y = MPG;

Boost an ensemble of 100 regression trees using all measurements.

Mdl = fitrensemble(X,Y,'Method','LSBoost');

Mdl is a RegressionEnsemble model object. Mdl.Trained stores the ensemble of 100 trained regression trees in a 100-by-1 cell array. That is, each cell in Mdl.Trained contains a CompactRegressionTree model object.

View a graph of the 10th regression tree in the ensemble.

Tree10 = Mdl.Trained{10};
view(Tree10,'Mode','graph');
By default, `fitrensemble` grows shallow trees for boosted ensembles of trees. That is, 'Learners' is `templateTree('MaxNumSplits',10)`.

Tip

To view tree t from an ensemble of trees, enter one of these lines of code
view(Ens.Trained{t})
view(Bag.Trees{t})

- Ens is a full ensemble returned by fitrensemble or a compact ensemble returned by compact.
- Bag is a full bag of trees returned by TreeBagger or a compact bag of trees returned by compact.

To save tree in the Command Window, get a figure handle by using the findall and setdiff functions, and then save tree using the function saveas.

before = findall(groot,'Type','figure'); % Find all figures
view(Mdl,'Mode','graph')
after = findall(groot,'Type','figure');
h = setdiff(after,before); % Get the figure handle of the tree viewer
saveas(h,'a.png')

See Also
RegressionTree | fitrtree
wblcdf

Weibull cumulative distribution function

Syntax

p = wblcdf(x,a,b)
[p,plo,pup] = wblcdf(x,a,b,pcov,alpha)
[p,plo,pup] = wblcdf(___,'upper')

Description

p = wblcdf(x,a,b) returns the cdf of the Weibull distribution with scale parameter a and shape parameter b, at each value in x. x, a, and b can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for a and b are both 1. The parameters a and b must be positive.

[p,plo,pup] = wblcdf(x,a,b,pcov,alpha) returns confidence bounds for p when the input parameters a and b are estimates. pcov is the 2-by-2 covariance matrix of the estimated parameters. alpha has a default value of 0.05, and specifies 100(1 - alpha)% confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[p,plo,pup] = wblcdf(___,'upper') returns the complement of the Weibull cdf for each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities. You can use 'upper' with any of the previous syntaxes.

The function wblcdf computes confidence bounds for p using a normal approximation to the distribution of the estimate

\[\hat{b} (\log x - \log \hat{a}) \]

and then transforms those bounds to the scale of the output p. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The Weibull cdf is

\[
p = F(x | a, b) = \int_0^x b a^{-b} t^{b-1} e^{-\left(\frac{t}{a}\right)^b} dt = 1 - e^{-\left(\frac{x}{a}\right)^b} I_{(0,\infty)}(x)
\]

Examples

Weibull Distribution cdf

What is the probability that a value from a Weibull distribution with parameters \(a = 0.15\) and \(b = 0.8\) is less than 0.5?

\[
\text{probability} = \text{wblcdf}(0.5, 0.15, 0.8)
\]

\[
\text{probability} = 0.9272
\]

How sensitive is this result to small changes in the parameters?

\[
[A, B] = \text{meshgrid}(0.1:0.05:0.2, 0.2:0.05:0.3);
\]

\[
\text{probability} = \text{wblcdf}(0.5, A, B)
\]

\[
\text{probability} = 3\times3
\]

\[
\begin{array}{ccc}
0.7484 & 0.7198 & 0.6991 \\
0.7758 & 0.7411 & 0.7156 \\
0.8022 & 0.7619 & 0.7319
\end{array}
\]

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.
See Also

cdf | wblfit | wblinv | wbllike | wblpdf | wblplot | wblrnd | wblstat

Topics

“Weibull Distribution” on page B-184

Introduced before R2006a
wblfit

Weibull parameter estimates

Syntax

parmhat = wblfit(data)
[parmhat,parmci] = wblfit(data)
[parmhat,parmci] = wblfit(data,alpha)
[...] = wblfit(data,alpha,censoring)
[...] = wblfit(data,alpha,censoring,freq)
[...] = wblfit(...,options)

Description

parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat, of the parameters of the Weibull distribution given the values in the vector data, which must be positive. parmhat is a two-element row vector: parmhat(1) estimates the Weibull parameter \(a \), and parmhat(2) estimates the Weibull parameter \(b \), in the pdf

\[
y = f(x \mid a, b) = ba^{-b}x^{b-1}e^{-\left(\frac{x}{a}\right)^b}I_{(0,\infty)}(x)
\]

[parmhat,parmci] = wblfit(data) returns 95% confidence intervals for the estimates of \(a \) and \(b \) in the 2-by-2 matrix parmci. The first row contains the lower bounds of the confidence intervals for the parameters, and the second row contains the upper bounds of the confidence intervals.

[[parmhat,parmci] = wblfit(data,alpha) returns 100(1 - alpha)% confidence intervals for the parameter estimates.

[...] = wblfit(data,alpha,censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = wblfit(data,alpha,censoring,freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the
corresponding elements in data, but can contain any non-negative values. Pass in [] for alpha, censoring, or freq to use their default values.

$$[...] = \text{wblfit}(...,\text{options})$$ accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The Weibull fit function accepts an options structure that can be created using the function statset. Enter statset ('wblfit') to see the names and default values of the parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.

Examples

data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)
parmhat =
 0.5861 0.8567
parmci =
 0.4606 0.7360
 0.7459 0.9973

See Also
mle | wblcdf | wblinv | wbllike | wblpdf | wblplot | wblrnd | wblstat

Topics
“Weibull Distribution” on page B-184

Introduced before R2006a
wblinv

Weibull inverse cumulative distribution function

Syntax

\[
X = \text{wblinv} (P,A,B)
\]

\[
[X,XLO,XUP] = \text{wblinv} (P,A,B,\text{PCOV},\alpha)
\]

Description

\(X = \text{wblinv} (P,A,B)\) returns the inverse cumulative distribution function (cdf) for a Weibull distribution with scale parameter \(A\) and shape parameter \(B\), evaluated at the values in \(P\). \(P\), \(A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for \(A\) and \(B\) are both 1.

\([X,XLO,XUP] = \text{wblinv} (P,A,B,\text{PCOV},\alpha)\) returns confidence bounds for \(X\) when the input parameters \(A\) and \(B\) are estimates. \(\text{PCOV}\) is a 2-by-2 matrix containing the covariance matrix of the estimated parameters. \(\alpha\) has a default value of 0.05, and specifies \(100(1 - \alpha)\)% confidence bounds. \(XLO\) and \(XUP\) are arrays of the same size as \(X\) containing the lower and upper confidence bounds.

The function \(\text{wblinv}\) computes confidence bounds for \(X\) using a normal approximation to the distribution of the estimate

\[
\log a + \frac{\log q}{b}
\]

where \(q\) is the \(P\)th quantile from a Weibull distribution with scale and shape parameters both equal to 1. The computed bounds give approximately the desired confidence level when you estimate \(\mu\), \(\sigma\), and \(\text{PCOV}\) from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The inverse of the Weibull cdf is
\[x = F^{-1}(p | a, b) = -a \left[\ln(1 - p) \right]^{1/b} I_{[0,1]}(p) \]

Examples

The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with parameters \(a = 200\) and \(b = 6\).

Find the median lifetime of the bulbs:

```matlab
life = wblinv(0.5, 200, 6)
life =
188.1486
```

Generate 100 random values from this distribution, and estimate the 90th percentile (with confidence bounds) from the random sample:

```matlab
x = wblrnd(200, 6, 100, 1);
p = wblfit(x)
[nlogl,pcov] = wbllike(p,x)
[q90,q90lo,q90up] = wblinv(0.9,p(1),p(2),pcov)
p =
204.8918    6.3920

nlogl =
496.8915

pcov =
11.3392    0.5233
0.5233    0.2573

q90 =
233.4489
```
q90lo =
226.0092

q90up =
241.1335

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | wblcdf | wblfit | wbllike | wblpdf | wblplot | wblrnd | wblstat

Topics
“Weibull Distribution” on page B-184

Introduced before R2006a
wbllike

Weibull negative log-likelihood

Syntax

def wbllike(params, data)

[logL, AVAR] = wbllike(params, data)

[...] = wbllike(params, data, censoring)

[...] = wbllike(params, data, censoring, freq)

Description

nlogL = wbllike(params, data) returns the Weibull log-likelihood. params(1) is the scale parameter, A, and params(2) is the shape parameter, B.

[logL, AVAR] = wbllike(params, data) also returns AVAR, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the asymptotic variances of their respective parameters.

[...] = wbllike(params, data, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = wbllike(params, data, censoring, freq) accepts a frequency vector, freq, of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

The Weibull negative log-likelihood for uncensored data is

\[(-\log L) = -\log \prod_{i=1}^{n} f(a, b | x_i) = -\sum_{i=1}^{n} \log f(a, b | x_i) \]

where \(f \) is the Weibull pdf.
wbllike is a utility function for maximum likelihood estimation.

Examples

This example continues the example from **wbllfit**.

```matlab
r = wblrnd(0.5,0.8,100,1);
[logL, AVAR] = wbllike(wblfit(r),r)
logL =
   47.3349
AVAR =
   0.0048   0.0014
   0.0014   0.0040
```

References

See Also

`wblcdf` | `wblfit` | `wblinv` | `wblpdf` | `wblplot` | `wblrnd` | `wblstat`

Topics

“Weibull Distribution” on page B-184

Introduced before R2006a
wblpdf

Weibull probability density function

Syntax

\[Y = \text{wblpdf}(X,A,B) \]

Description

\(Y = \text{wblpdf}(X,A,B) \) computes the Weibull pdf at each of the values in \(X \) using the corresponding scale parameter, \(A \) and shape parameter, \(B \). \(X, A, \) and \(B \) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The parameters in \(A \) and \(B \) must be positive.

The Weibull pdf is

\[
 f(x \mid a, b) = \frac{b}{a} \left(\frac{x}{a} \right)^{b-1} e^{-(x/a)^b}.
\]

Some references refer to the Weibull distribution with a single parameter. This corresponds to \(\text{wblpdf} \) with \(A = 1 \).

Examples

The exponential distribution is a special case of the Weibull distribution.

\[
\begin{align*}
\text{lambda} &= 1:6; \\
y &= \text{wblpdf}(0.1:0.1:0.6,\text{lambda},1) \\
y &= \begin{bmatrix} 0.9048 & 0.4524 & 0.3016 & 0.2262 & 0.1810 & 0.1508 \end{bmatrix} \\
y_1 &= \text{exppdf}(0.1:0.1:0.6,\text{lambda}) \\
y_1 &= \begin{bmatrix} 0.9048 & 0.4524 & 0.3016 & 0.2262 & 0.1810 & 0.1508 \end{bmatrix}
\end{align*}
\]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pdf | wblcdf | wblfit | wblinv | wbllike | wblplot | wblrnd | wblstat

Topics
“Weibull Distribution” on page B-184

Introduced before R2006a
wblplot

Weibull probability plot

Syntax

wblplot(x)
wblplot(ax,x)
h = wblplot(___)

Description

wblplot(x) creates a Weibull probability plot comparing the distribution of the data in x to the Weibull distribution.

wblplot plots each data point in x using plus sign ('+') markers and draws two reference lines that represent the theoretical distribution. A solid reference line connects the first and third quartiles of the data, and a dashed reference line extends the solid line to the ends of the data. If the sample data has a Weibull distribution, then the data points appear along the reference line. A distribution other than Weibull introduces curvature in the data plot.

wblplot(ax,x) adds a Weibull probability plot into the axes specified by ax.

h = wblplot(___) returns graphics handles corresponding to the plotted lines, using any of the input arguments in the previous syntaxes.

Examples

Create Weibull Probability Plot

Generate a vector r containing 50 random numbers from the Weibull distribution with the scale parameter 1.2 and the shape parameter 1.5.
rng('default') % For reproducibility
r = wblrnd(1.2,1.5,50,1);

Create a Weibull probability plot to visually determine if the data comes from a Weibull distribution.

wblplot(r)

The plot indicates that the data likely comes from a Weibull distribution.

Test for Weibull Distribution

Generate two sample data sets, one from a Weibull distribution and another from a lognormal distribution. Perform the Lilliefors test to assess whether each data set is from
a Weibull distribution. Confirm the test decision by performing a visual comparison using a Weibull probability plot (wblplot).

Generate samples from a Weibull distribution.

```matlab
rng('default')
data1 = wblrnd(0.5,2,[500,1]);
```

Perform the Lilliefors test by using the lillietest. To test data for a Weibull distribution, test if the logarithm of the data has an extreme value distribution.

```matlab
h1 = lillietest(log(data1),'Distribution','extreme value')
h1 = 0
```

The returned value of `h1 = 0` indicates that lillietest fails to reject the null hypothesis at the default 5% significance level. Confirm the test decision using a Weibull probability plot.

```matlab
wblplot(data1)
```
The plot indicates that the data follows a Weibull distribution.

Generate samples from a lognormal distribution.

\[
data2 = \text{lognrnd}(5, 2, [500, 1]);
\]

Perform the Lilliefors test.

\[
h2 = \text{lillietest}(\log(data2), 'Distribution', 'extreme value')
\]

\[
h2 = 1
\]

The returned value of \(h2 = 1 \) indicates that \text{lillietest} rejects the null hypothesis at the default 5% significance level. Confirm the test decision using a Weibull probability plot.
wblplot(data2)

The plot indicates that the data does not follow a Weibull distribution.

Input Arguments

x — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. wblplot displays each value in x using the symbol '+'. If x is a matrix, then wblplot displays a separate line for each column of x.
Data Types: single | double

ax — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. wblplot adds an additional plot into the axes specified by ax. For details, see Axes Properties and UIAxes Properties.

Use gca to return the current axes for the current figure.

Output Arguments

h — Graphics handles for line objects
vector of Line graphics handles

Graphics handles for line objects, returned as a vector of Line graphics handles. Graphics handles are unique identifiers that you can use to query and modify the properties of a specific line on the plot. For each column of x, wblplot returns three handles:

- The line representing the data points. wblplot represents each data point in x using plus sign ('+') markers.
- The line joining the first and third quartiles of each column of x, represented as a solid line.
- The extrapolation of the quartile line, extended to the minimum and maximum values of x, represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see “Access Property Values” (MATLAB). For information on the Line properties that you can set, see Primitive Line.

Algorithms

wblplot matches the quantiles of sample data to the quantiles of a Weibull distribution. The sample data is sorted, scaled logarithmically, and plotted on the x-axis. The y-axis represents the quantiles of the Weibull distribution, converted into probability values. Therefore, the y-axis scaling is not linear.
Where the x-axis value is the \(i \)th sorted value from a sample of size \(N \), the y-axis value is the midpoint between evaluation points of the empirical cumulative distribution function of the data. The midpoint is equal to \(\frac{(i - 0.5)}{N} \).

`wblplot` superimposes a reference line to assess the linearity of the plot. The line goes through the first and third quartiles of the data.

Alternative Functionality

You can use the `probplot` function to create a probability plot. The `probplot` function enables you to indicate censored data and specify the distribution for a probability plot.

See Also

`ecdf` | `normplot` | `probplot` | `wblcdf` | `wblfit` | `wblrnd`

Topics

“Distribution Plots” on page 4-9
“Hypothesis Testing” on page 8-6
“Weibull Distribution” on page B-184

Introduced before R2006a
wblrnd

Weibull random numbers

Syntax

\[
R = \text{wblrnd}(A, B)
\]

\[
R = \text{wblrnd}(A, B, m, n, \ldots)
\]

\[
R = \text{wblrnd}(A, B, [m, n, \ldots])
\]

Description

\(R = \text{wblrnd}(A, B) \) generates random numbers for the Weibull distribution with scale parameter, \(A \) and shape parameter, \(B \). The input arguments \(A \) and \(B \) can be either scalars or matrices. \(A \) and \(B \), can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other input.

\(R = \text{wblrnd}(A, B, m, n, \ldots) \) or \(R = \text{wblrnd}(A, B, [m, n, \ldots]) \) generates an \(m \)-by-\(n \)-by-\(\ldots \) array. The \(A, B \) parameters can each be scalars or arrays of the same size as \(R \).

Devroye [1] refers to the Weibull distribution with a single parameter; this is \text{wblrnd} with \(A = 1 \).

Examples

\[
n1 = \text{wblrnd}(0.5:0.5:2, 0.5:0.5:2)
n1 =
0.0178 0.0860 2.5216 0.9124
\]

\[
n2 = \text{wblrnd}(1/2, 1/2, [1 6])
n2 =
0.0046 1.7214 2.2108 0.0367 0.0531 0.0917
\]
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the following is true:

- The output is nonscalar.
- An input parameter is invalid for the distribution.

See Also

random | wblcdf | wblfit | wblinv | wbllike | wblpdf | wblplot | wblstat

Topics

“Weibull Distribution” on page B-184

Introduced before R2006a
wblstat

Weibull mean and variance

Syntax

[M,V] = wblstat(A,B)

Description

[M,V] = wblstat(A,B) returns the mean of and variance for the Weibull distribution with scale parameter, A and shape parameter, B. Vector or matrix inputs for A and B must have the same size, which is also the size of M and V. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input.

The mean of the Weibull distribution with parameters \(a\) and \(b\) is

\[
a \left[\Gamma \left(1 + b^{-1} \right) \right]
\]

and the variance is

\[
a^2 \left[\Gamma \left(1 + 2b^{-1} \right) - \Gamma \left(1 + b^{-1} \right)^2 \right]
\]

Examples

[m,v] = wblstat(1:4,1:4)

\[
\begin{array}{cccc}
1 & 1.7725 & 2.6789 & 3.6256 \\
\end{array}
\]

v =

\[
\begin{array}{cccc}
1 & 0.8584 & 0.9480 & 1.0346 \\
\end{array}
\]

wblstat(0.5,0.7)
ans =
0.6329

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wblcdf | wblfit | wblinv | wbllike | wblpdf | wblplot | wblrnd

Topics
“Weibull Distribution” on page B-184

Introduced before R2006a
wishrnd

Wishart random numbers

Syntax

```matlab
W = wishrnd(Sigma,df)
W = wishrnd(Sigma,df,D)
[W,D] = wishrnd(Sigma,df)
```

Description

`W = wishrnd(Sigma,df)` generates a random matrix `W` having the Wishart distribution with covariance matrix `Sigma` and with `df` degrees of freedom. The inverse of `W` has the Inverse Wishart distribution with parameters `Tau = inv(Sigma)` and `df` degrees of freedom.

`W = wishrnd(Sigma,df,D)` expects `D` to be the Cholesky factor of `Sigma`. If you call `wishrnd` multiple times using the same value of `Sigma`, it's more efficient to supply `D` instead of computing it each time.

`[W,D] = wishrnd(Sigma,df)` returns `D` so you can provide it as input in future calls to `wishrnd`.

This function defines the parameter `Sigma` so that the mean of the output matrix is `Sigma*df`

See Also

iwishrnd

Topics

“Wishart Distribution” on page B-189

Introduced before R2006a
xptread

Create table from data stored in SAS XPORT format file

Syntax

```matlab
data = xptread
data = xptread(filename)
[data,missing] = xptread(filename)
xptread(...,'ReadObsNames',true)
```

Description

`data = xptread` displays a dialog box for selecting a file, then reads data from the file into a table. The file must be in the SAS XPORT format.

`data = xptread(filename)` retrieves data from a SAS XPORT format file `filename`. For example, to open a SAS XPORT file named `sample.xpt`, type `data = xptread('sample.xpt')` at the command prompt.

`[data,missing] = xptread(filename)` returns a nominal array, `missing`, that contains the missing data type information from the XPORT format file.

The XPORT format allows for 28 missing data types, represented in the file by an upper case letter or the characters '.','_'. If the XPORT file contains missing values, `xptread` converts them to NaN values in the output table, `data`. However, if you need the specific missing types, you can recover this information by specifying a second output, `missing`. The entries in `missing` are one of the 28 missing data type values from the XPORT format file ('.','_','A',...,'Z'), or are undefined for values that are not present at all in the XPORT format file. The outputs `missing` and `data` are the same size.

`xptread(...,'ReadObsNames',true)` treats the first variable in the file as observation names. The default value is false.

`xptread` only supports single data sets per file. `xptread` does not support compressed files.
See Also

table

Introduced in R2009b
x2fx

Convert predictor matrix to design matrix

Syntax

D = x2fx(X, model)
D = x2fx(X, model, categ)
D = x2fx(X, model, categ, catlevels)

Description

D = x2fx(X, model) converts a matrix of predictors X to a design matrix D for regression analysis. Distinct predictor variables should appear in different columns of X.

The optional input model controls the regression model. By default, x2fx returns the design matrix for a linear additive model with a constant term. model is one of the following:

- 'linear' — Constant and linear terms. This is the default.
- 'interaction' — Constant, linear, and interaction terms
- 'quadratic' — Constant, linear, interaction, and squared terms
- 'purequadratic' — Constant, linear, and squared terms

If X has n columns, the order of the columns of D for a full quadratic model is:

1. The constant term
2. The linear terms (the columns of X, in order 1, 2, ..., n)
3. The interaction terms (pairwise products of the columns of X, in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n-1, n))
4. The squared terms (in order 1, 2, ..., n)

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each column in X and one row for each term.
in the model. The entries in any row of model are powers for the corresponding columns of X. For example, if X has columns X1, X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).(X2.^1).(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.

D = x2fx(X,model,categ) treats columns with numbers listed in the vector categ as categorical variables. Terms involving categorical variables produce dummy variable columns in D. Dummy variables are computed under the assumption that possible categorical levels are completely enumerated by the unique values that appear in the corresponding column of X.

D = x2fx(X,model,categ,catlevels) accepts a vector catlevels the same length as categ, specifying the number of levels in each categorical variable. In this case, values in the corresponding column of X must be integers in the range from 1 to the specified number of levels. Not all of the levels need to appear in X.

Examples

Example 1

The following converts 2 predictors X1 and X2 (the columns of X) into a design matrix for a full quadratic model with terms constant, X1, X2, X1.*X2, X1.^2, and X2.^2.

X = [1 10
 2 20
 3 10
 4 20
 5 15
 6 15] ;

D = x2fx(X,'quadratic')
D =
 1 1 10 10 1 100
 1 2 20 40 4 400
 1 3 10 30 9 100
 1 4 20 80 16 400
 1 5 15 75 25 225
 1 6 15 90 36 225
Example 2

The following converts 2 predictors X_1 and X_2 (the columns of X) into a design matrix for a quadratic model with terms constant, X_1, X_2, $X_1 \cdot X_2$, and $X_1 \cdot X_2$.

```matlab
X = [1 10
    2 20
    3 10
    4 20
    5 15
    6 15];
model = [0 0
         1 0
         0 1
         1 1
         2 0];

D = x2fx(X,model)
D =
    1 1 10 10 1
    1 2 20 40 4
    1 3 10 30 9
    1 4 20 80 16
    1 5 15 75 25
    1 6 15 90 36
```

See Also

candexch | candgen | cordexch | regstats | rowexch | rstool

Introduced before R2006a
zscore

Standardized z-scores

Syntax

\[
Z = \text{zscore}(X) \\
Z = \text{zscore}(X,\text{flag}) \\
Z = \text{zscore}(X,\text{flag},'\text{all}') \\
Z = \text{zscore}(X,\text{flag},\text{dim}) \\
Z = \text{zscore}(X,\text{flag},\text{vecdim}) \\
[Z,\mu,\sigma] = \text{zscore}(__)
\]

Description

\(Z = \text{zscore}(X)\) returns the z-score for each element of \(X\) such that columns of \(X\) are centered to have mean 0 and scaled to have standard deviation 1. \(Z\) is the same size as \(X\).

- If \(X\) is a vector, then \(Z\) is a vector of z-scores.
- If \(X\) is a matrix, then \(Z\) is a matrix of the same size as \(X\), and each column of \(Z\) has mean 0 and standard deviation 1.
- For multidimensional arrays, z-scores in \(Z\) are computed along the first nonsingleton dimension of \(X\).

\(Z = \text{zscore}(X,\text{flag})\) scales \(X\) using the standard deviation indicated by \(\text{flag}\).

- If \(\text{flag}\) is 0 (default), then \(\text{zscore}\) scales \(X\) using the sample standard deviation on page 32-7026, with \(n - 1\) in the denominator of the standard deviation formula. \(\text{zscore}(X,0)\) is the same as \(\text{zscore}(X)\).
- If \(\text{flag}\) is 1, then \(\text{zscore}\) scales \(X\) using the population standard deviation on page 32-7027, with \(n\) in the denominator of standard deviation formula.

\(Z = \text{zscore}(X,\text{flag},'\text{all}')\) standardizes \(X\) by using the mean and standard deviation of all the values in \(X\).
Z = zscore(X,flag,dim) standardizes X along the operating dimension dim. For example, for a matrix X, if dim = 1, then zscore uses the means and standard deviations along the columns of X, if dim = 2, then zscore uses the means and standard deviations along the rows of X.

Z = zscore(X,flag,vecdim) standardizes X over the dimensions specified by the vector vecdim. For example, if X is a matrix, then zscore(X,0,[1 2]) is equivalent to zscore(X,0,'all') because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.

[Z,mu,sigma] = zscore(___) also returns the means and standard deviations used for centering and scaling, mu and sigma, respectively. You can use any of the input arguments in the previous syntaxes.

Examples

Z-Scores of Two Data Vectors

Compute and plot the z-scores of two data vectors, and then compare the results.

Load the sample data.
load lawdata

Two variables load into the workspace: gpa and lsat.

Plot both variables on the same axes.
plot([gpa,lsat])
legend('gpa','lsat','Location','East')
It is difficult to compare these two measures because they are on a very different scale.

Plot the z-scores of gpa and lsat on the same axes.

```matlab
Zgpa = zscore(gpa);
Zlsat = zscore(lsat);
plot([Zgpa, Zlsat])
legend('gpa z-scores','lsat z-scores','Location','Northeast')
```
Now, you can see the relative performance of individuals with respect to both their gpa and lsat results. For example, the third individual’s gpa and lsat results are both one standard deviation below the sample mean. The eleventh individual’s gpa is around the sample mean but has an lsat score almost 1.25 standard deviations above the sample average.

Check the mean and standard deviation of the z-scores you created.

```
mean([Zgpa, Zlsat])
```

```
ans = 1×2
10^{-14} ×
```
-0.1088 0.0357

\texttt{std([Zgpa,Zlsat])}

\texttt{ans = 1x2}

1 1

By definition, \(z\)-scores of \texttt{gpa} and \texttt{lsat} have mean 0 and standard deviation 1.

\textbf{Z-Scores for a Population vs. Sample}

Load the sample data.

\texttt{load lawdata}

Two variables load into the workspace: \texttt{gpa} and \texttt{lsat}.

Compute the \(z\)-scores of \texttt{gpa} using the population formula for standard deviation.

\texttt{Z1 = zscore(gpa,1); % population formula}
\texttt{Z0 = zscore(gpa,0); % sample formula}
\texttt{disp([Z1 Z0])}

\begin{verbatim}
 1.2554 1.2128
 0.8728 0.8432
 -1.2100 -1.1690
 -0.2749 -0.2656
 1.4679 1.4181
 -0.1049 -0.1013
 -0.4024 -0.3888
 1.4254 1.3771
 1.1279 1.0896
 0.1502 0.1451
 0.1077 0.1040
 -1.5076 -1.4565
 -1.4226 -1.3743
 -0.9125 -0.8815
 -0.5724 -0.5530
\end{verbatim}
For a sample from a population, the population standard deviation formula with \(n \) in the denominator corresponds to the maximum likelihood estimate of the population standard deviation, and might be biased. The sample standard deviation formula, on the other hand, is the unbiased estimator of the population standard deviation for a sample.

Z-Scores of a Data Matrix

Compute \(z \)-scores using the mean and standard deviation computed along the columns or rows of a data matrix.

Load the sample data.

```matlab
load flu
```

The dataset array `flu` is loaded in the workplace. `flu` has 52 observations on 11 variables. The first variable contains dates (in weeks). The other variables contain the flu estimates for different regions in the U.S.

Convert the dataset array to a data matrix.

```matlab
flu2 = double(flu(:,2:end));
```

The new data matrix, `flu2`, is a 52-by-10 double data matrix. The rows correspond to the weeks and the columns correspond to the U.S. regions in the data set array `flu`.

Standardize the flu estimate for each region (the columns of `flu2`).

```matlab
Z1 = zscore(flu2,[ ],1);
```

You can see the \(z \)-scores in the variable editor by double-clicking on the matrix `Z1` created in the workspace.

Standardize the flu estimate for each week (the rows of `flu2`).

```matlab
Z2 = zscore(flu2,[ ],2);
```
Z-Scores of Multidimensional Array

Find the z-scores of a multidimensional array by specifying to standardize the data along different dimensions. Compare the results when using the 'all', dim, and vecdim input arguments.

Create a 3-by-4-by-2 array.

\[
X = \text{reshape}(1:24,[3 4 2])
\]

\[
X = \\
X(:,:,1) = \\
1 4 7 10 \\
2 5 8 11 \\
3 6 9 12 \\
X(:,:,2) = \\
13 16 19 22 \\
14 17 20 23 \\
15 18 21 24 \\
\]

Standardize \(X \) by using the mean and standard deviation of all the values in \(X \).

\[
Z\text{all} = \text{zscore}(X,0,'all')
\]

\[
Z\text{all} = \\
Z\text{all}(:,:,1) = \\
-1.6263 -1.2021 -0.7778 -0.3536 \\
-1.4849 -1.0607 -0.6364 -0.2121 \\
-1.3435 -0.9192 -0.4950 -0.0707 \\
Z\text{all}((:,:,2) = \\
0.0707 0.4950 0.9192 1.3435 \\
0.2121 0.6364 1.0607 1.4849 \\
0.3536 0.7778 1.2021 1.6263 \\
\]
The resulting multidimensional array of z-scores has mean 0 and standard deviation 1. For example, compute the mean and standard deviation of Z_{all}.

\[
m_{Zall} = \text{mean}(Zall(:,:,:), 'all')
\]
\[
m_{Zall} = -9.2519e-18
\]
\[
s_{Zall} = \text{std}(Zall(:,:,:), 0, 'all')
\]
\[
s_{Zall} = 1.0000
\]

Now standardize X along the second dimension.

\[
Z_{dim} = \text{zscore}(X, 0, 2)
\]

\[
Z_{dim} = \\
Z_{dim}(:,:,1) = \\
\begin{array}{ccccc}
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
\end{array}
\]

\[
Z_{dim}(:,:,2) = \\
\begin{array}{ccccc}
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
-1.1619 & -0.3873 & 0.3873 & 1.1619 \\
\end{array}
\]

The elements in each row of each page of Z_{dim} have mean 0 and standard deviation 1. For example, compute the mean and standard deviation of the first row of the second page of Z_{dim}.

\[
m_{Zdim} = \text{mean}(Zdim(1,:,2), 'all')
\]
\[
m_{Zdim} = 0
\]
\[
s_{Zdim} = \text{std}(Zdim(1,:,2), 0, 'all')
\]
\[
s_{Zdim} = 1
\]

Finally, standardize X based on the second and third dimensions.

\[
Z_{vecdim} = \text{zscore}(X, 0, [2 3])
\]
Zvecdim =
Zvecdim(:,:,1) =
 -1.4289 -1.0206 -0.6124 -0.2041
 -1.4289 -1.0206 -0.6124 -0.2041
 -1.4289 -1.0206 -0.6124 -0.2041
Zvecdim(:,:,2) =
 0.2041 0.6124 1.0206 1.4289
 0.2041 0.6124 1.0206 1.4289
 0.2041 0.6124 1.0206 1.4289

The elements in each Zvecdim(i,:,:), slice have mean 0 and standard deviation 1. For example, compute the mean and standard deviation of the elements in Zvecdim(1,:,:).

mZvecdim = mean(Zvecdim(1,:,:),'all')
mZvecdim = 2.7756e-17
sZvecdim = std(Zvecdim(1,:,:),0,'all')
sZvecdim = 1

Z-Scores, Mean, and Standard Deviation

Return the mean and standard deviation used to compute the Z-scores.

Load the sample data.
load lawdata

Two variables load into the workspace: gpa and lsat.

Return the Z-scores, mean, and standard deviation of gpa.
[Z,gpamean,gpastdev] = zscore(gpa)

Z = 15×1
1.2128
0.8432
-1.1690
-0.2656
1.4181
-0.1013
-0.3888
1.3771
1.0896
0.1451
⋮
gpamean = 3.0947
gpastdev = 0.2435

Input Arguments

X — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

Data Types: double | single

flag — Indicator for the standard deviation
0 (default) | 1

Indicator for the standard deviation used to compute the z-scores, specified as 0 or 1.

- If flag is 0 (default), then zscore scales X using the sample standard deviation on page 32-7026. zscore(X,0) is the same as zscore(X).
- If flag is 1, then zscore scales X using the population standard deviation on page 32-7027.

dim — Dimension
positive integer scalar

Dimension along which to calculate the z-scores of X, specified as a positive integer scalar. If you do not specify a value, then the default value is the first array dimension whose size does not equal 1.
For example, for a matrix X, if $\text{dim} = 1$, then zscore uses the means and standard deviations along the columns of X, and if $\text{dim} = 2$, then zscore uses the means and standard deviations along the rows of X.

vecdim — Vector of dimensions

positive integer vector

Vector of dimensions along which to calculate the z-scores of X, specified as a positive integer vector. Each element of vecdim represents a dimension of the input array X. The output Z has the same dimensions as X, but the mean μ and standard deviation σ each have length 1 in the operating dimensions. The other dimension lengths are the same for X, μ, and σ.

For example, if X is a 2-by-3-by-3 array, then $\text{zscore}(X,0,[1,2])$ uses the means and standard deviations along the pages of X to standardize the values of X.

Data Types: single | double

Output Arguments

Z — z-scores

vector | matrix | multidimensional array

z-scores, returned as a vector, matrix, or multidimensional array. Z has the same dimensions as X.

The values of Z depend on whether you specify 'all', dim, or vecdim. If you do not specify any of these input arguments, then the following conditions apply:

- If X is a vector, then Z is a vector of z-scores with mean 0 and variance 1.
- If X is an array, then zscore standardizes along the first nonsingleton dimension of X.

For an example that demonstrates the differences in Z when you use 'all', dim, and vecdim, see “Z-Scores of Multidimensional Array” on page 32-7019.

μ — Mean

scalar | vector | matrix | multidimensional array

Mean of X used to compute the z-scores, returned as a scalar, vector, matrix, or multidimensional array. μ has length 1 in the specified operating dimensions. The other dimension lengths are the same for X and μ.
For example, if \(X \) is a 2-by-3-by-3 array and \(\text{vecdim} \) is \([1 2]\), then \(\mu \) is a 1-by-1-by-3 array of means. Each value in \(\mu \) corresponds to the mean of a page in \(X \).

\[\begin{align*}
\text{Page 3} \\
\text{Page 2} \\
\text{Page 1}
\end{align*} \]

\(\text{sigma} \) — Standard deviation

scalar | vector | matrix | multidimensional array

Standard deviation of \(X \) used to compute the \(z \)-scores, returned as a scalar, vector, matrix, or multidimensional array. \(\text{sigma} \) has length 1 in the specified operating dimensions. The other dimension lengths are the same for \(X \) and \(\text{sigma} \).

For example, if \(X \) is a 2-by-3-by-3 array and \(\text{vecdim} \) is \([1 2]\), then \(\text{sigma} \) is a 1-by-1-by-3 array of standard deviations. Each value in \(\text{sigma} \) corresponds to the standard deviation of a page in \(X \).

\[\begin{align*}
\text{Page 3} \\
\text{Page 2} \\
\text{Page 1}
\end{align*} \]
Definitions

Z-Score

For a random variable X with mean μ and standard deviation σ, the z-score of a value x is

$$z = \frac{(x - \mu)}{\sigma}.$$

For sample data with mean \bar{X} and standard deviation S, the z-score of a data point x is

$$z = \frac{(x - \bar{X})}{S}.$$

z-scores measure the distance of a data point from the mean in terms of the standard deviation. This is also called standardization of data. The standardized data set has mean 0 and standard deviation 1, and retains the shape properties of the original data set (same skewness and kurtosis).

You can use z-scores to put data on the same scale before further analysis. This lets you to compare two or more data sets with different units.

Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-by-4 array, then X is a three-dimensional array.

First Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of X.

Sample Standard Deviation

The sample standard deviation S is given by
\[S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n - 1}}. \]

\(S \) is the square root of an unbiased estimator of the variance of the population from which \(X \) is drawn, as long as \(X \) consists of independent, identically distributed samples. \(\bar{X} \) is the sample mean.

Notice that the denominator in this variance formula is \(n - 1 \).

Population Standard Deviation

If the data is the entire population of values, then you can use the *population standard deviation*,

\[\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}. \]

If \(X \) is a random sample from a population, then the mean \(\mu \) is estimated by the sample mean, and \(\sigma \) is the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is \(n \).

Algorithms

zscore returns NaNs for any sample containing NaNs.

zscore returns 0s for any sample that is constant (all values are the same). For example, if \(X \) is a vector of the same numeric value, then \(Z \) is a vector of 0s.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• The following syntaxes are not supported.
 • \(Z = \text{zscore}(X,\text{flag},'all') \)
 • \(Z = \text{zscore}(X,\text{flag},\text{vecdim}) \)

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The following syntaxes do not support code generation.
 • \(Z = \text{zscore}(X,\text{flag},'all') \)
 • \(Z = \text{zscore}(X,\text{flag},\text{vecdim}) \)

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following syntaxes do not support GPU arrays as input arguments.
 • \(Z = \text{zscore}(X,\text{flag},'all') \)
 • \(Z = \text{zscore}(X,\text{flag},\text{vecdim}) \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
mean | std

Introduced before R2006a
ztest

z-test

Syntax

h = ztest(x,m,sigma)
h = ztest(x,m,sigma,Name,Value)
[h,p] = ztest(__)
[h,p,ci,zval] = ztest(__)

Description

h = ztest(x,m,sigma) returns a test decision for the null hypothesis that the data in the vector x comes from a normal distribution with mean m and a standard deviation sigma, using the z-test on page 32-7034. The alternative hypothesis is that the mean is not m. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h= ztest(x,m,sigma,Name,Value) returns a test decision for the z-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.

[h,p] = ztest(__) also returns the p-value of the test, using any of the input arguments from previous syntaxes.

[h,p,ci,zval] = ztest(__) also returns the confidence interval of the population mean, ci, and the value of the test statistic, zval.

Examples

z-Test for a Hypothesized Mean

Load the sample data. Create a vector containing the first column of the students' exam grades data.
Test the null hypothesis that the data comes from a normal distribution with mean $m = 75$ and standard deviation $\sigma = 10$.

$$[h, p, ci, zval] = \text{ztest}(x, 75, 10)$$

$h = 0$
$p = 0.9927$
$ci = 2\times1$

\[
\begin{array}{c}
73.2191 \\
76.7975
\end{array}
\]

$zval = 0.0091$

The returned value of $h = 0$ indicates that ztest does not reject the null hypothesis at the default 5% significance level.

One-Sided z-Test

Load the sample data. Create a vector containing the first column of the students' exam grades data.

```matlab
load examgrades
x = grades(:,1);
```

Test the null hypothesis that the data comes from a normal distribution with mean $m = 65$ and standard deviation $\sigma = 10$, against the alternative that the mean is greater than 65.

$$[h, p] = \text{ztest}(x, 65, 10, 'Tail', 'right')$$

$h = 1$
$p = 2.8596e-28$
The returned value of \(h = 1 \) indicates that \texttt{ztest} rejects the null hypothesis at the default 5% significance level, in favor of the alternative hypothesis that the population mean is greater than 65.

Input Arguments

\texttt{x} — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

- If \(x \) is specified as a vector, \texttt{ztest} returns a single value for each output argument.
- If \(x \) is specified as a matrix, \texttt{ztest} performs a separate \(z \)-test along each column of \(x \) and returns a vector of results.
- If \(x \) is specified as a multidimensional array on page 32-7035, \texttt{ztest} works along the first nonsingleton dimension on page 32-7035 of \(x \).

In all cases, \texttt{ztest} treats \texttt{NaN} values as missing data and ignores them.

Data Types: \texttt{single} | \texttt{double}

\texttt{m} — Hypothesized mean
scalar value

Hypothesized mean, specified as a scalar value.

Data Types: \texttt{single} | \texttt{double}

\texttt{sigma} — Population standard deviation
scalar value

Population standard deviation, specified as a scalar value.

Data Types: \texttt{single} | \texttt{double}

Name-Value Pair Arguments

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the
1% significance level.

Alpha — Significance level

0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

Dim — Dimension

first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-
separated pair consisting of 'Dim' and a positive integer value. For example, specifying
'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

Tail — Type of alternative hypothesis

'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

<table>
<thead>
<tr>
<th>'both'</th>
<th>Test the alternative hypothesis that the population mean is not equal to m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'right'</td>
<td>Test the alternative hypothesis that the population mean is greater than m.</td>
</tr>
<tr>
<td>'left'</td>
<td>Test the alternative hypothesis that the population mean is less than m.</td>
</tr>
</tbody>
</table>

Example: 'Tail','right'
Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

- If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true population mean, returned as a two-element vector containing the lower and upper boundaries of the 100 × (1 − Alpha)% confidence interval.

zval — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

Definitions

z-Test

The z-test is a parametric hypothesis test used to determine whether a sample data set comes from a population with a particular mean. The test assumes that the sample data comes from a population with a normal distribution and a known standard deviation.

The test statistic is
\[z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}, \]

where \(\bar{x} \) is the sample mean, \(\mu \) is the population mean, \(\sigma \) is the population standard deviation, and \(n \) is the sample size. Under the null hypothesis, the test statistic has a standard normal distribution.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if \(x \) is a 1-by-3-by-4 array, then \(x \) is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For example, if \(x \) is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \(x \).

Tips

- Use `sampsizewr` to calculate:
 - The sample size that corresponds to specified power and parameter values;
 - The power achieved for a particular sample size, given the true parameter value;
 - The parameter value detectable with the specified sample size and power.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also
sampsizepwr | ttest | ttest2

Introduced before R2006a
hmcSampler

Hamiltonian Monte Carlo (HMC) sampler

Syntax

```matlab
hmc = hmcSampler(logpdf,startpoint)
hmc = hmcSampler(___,Name,Value)
```

Description

`hmc = hmcSampler(logpdf,startpoint)` creates a Hamiltonian Monte Carlo (HMC) sampler, returned as a `HamiltonianSampler` object. `logpdf` is a function handle that evaluates the logarithm of the probability density of the equilibrium distribution and its gradient. The column vector `startpoint` is the initial point from which to start HMC sampling.

After you create the sampler, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics using the methods of the `HamiltonianSampler` class. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.

`hmc = hmcSampler(___,Name,Value)` specifies additional options using one or more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Examples

Create Hamiltonian Monte Carlo Sampler

Create a Hamiltonian Monte Carlo (HMC) sampler to sample from a normal distribution.

First, save a function `normalDistGrad` on the MATLAB® path that returns the multivariate normal log probability density and its gradient (`normalDistGrad` is defined...
at the end of this example). Then, call the function with arguments to define the logpdf input argument to the hmcSampler function.

```matlab
means = [1;-3];
standevs = [1;2];
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```

Choose a starting point for the HMC sampler.

```matlab
startpoint = randn(2,1);
```

Create the HMC sampler and display its properties.

```matlab
smp = hmcSampler(logpdf,startpoint);
smp
```

```matlab
smp =
    HamiltonianSampler with properties:

    StepSize: 0.1000
    NumSteps: 50
    MassVector: [2x1 double]
    JitterMethod: 'jitter-both'
    StepSizeTuningMethod: 'dual-averaging'
    MassVectorTuningMethod: 'iterative-sampling'
    LogPDF: @(theta)normalDistGrad(theta,means,standevs)
    VariableNames: {2x1 cell}
    StartPoint: [2x1 double]
```

The `normalDistGrad` function returns the logarithm of the multivariate normal probability density with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same length as startpoint. The second output argument is the corresponding gradient.

```matlab
function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
    Z = (X - Mu)./Sigma;
    lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
    glpdf = -Z./Sigma;
end
```
Input Arguments

logpdf — Logarithm of target density and its gradient
function handle

Logarithm of target density and its gradient, specified as a function handle.

`logpdf` must return two output arguments: `[lpdf,glpdf] = logpdf(X)`. Here, `lpdf` is the base-e log probability density (up to an additive constant), `glpdf` is the gradient of the log density, and the point `X` is a column vector with the same number of elements as `startpoint`.

The input argument `X` to `logpdf` must be unconstrained, meaning that every element of `X` can be any real number. Transform any constrained sampling parameters into unconstrained variables before using the HMC sampler.

If the `'UseNumericalGradient'` value is set to true, then `logpdf` does not need to return the gradient as the second output. Using a numerical gradient can be easier since `logpdf` does not need to compute the gradient, but it can make sampling slower.

Data Types: `function_handle`

startpoint — Initial point to start sampling from
numeric column vector

Initial point to start sampling from, specified as a numeric column vector.

Data Types: `single` | `double`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'VariableNames',
{"Intercept","Beta"},'MassVectorTuningMethod','hessian' specifies sampling variable names and the mass vector tuning method to be 'hessian'.

StepSize — Step size of Hamiltonian dynamics
0.1 (default) | positive scalar
Step size of Hamiltonian dynamics, specified as the comma-separated pair consisting of 'StepSize' and a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. This argument controls the step size of that leapfrog integration.

You can automatically tune the step size using tuneSampler.
Example: 'StepSize',0.2
Data Types: single | double

NumSteps — Number of steps of Hamiltonian dynamics
50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as the comma-separated pair consisting of 'NumSteps' and a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. This argument controls the number of steps of that leapfrog integration.

You can automatically tune the number of steps using tuneSampler.
Example: 'NumSteps',20
Data Types: single | double

MassVector — Mass vector of momentum variables
ones(size(startpoint,1),1) (default) | numeric column vector

Mass vector of momentum variables, specified as the comma-separated pair consisting of 'MassVector' and a numeric column vector with positive values and the same length as startpoint.

The “masses” of the momentum variables associated with the variables of interest control the Hamiltonian dynamics in each Markov chain proposal.

You can automatically tune the mass vector using tuneSampler.
Example: 'MassVector',rand(3,1)
Data Types: single | double
JitterMethod — Method for jittering step size and number of steps
'jitter-both' (default) | 'jitter-numsteps' | 'none'

Method for jittering the step size and the number of steps, specified as the comma-separated pair consisting of 'JitterMethod' and one of the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'jitter-both'</td>
<td>Randomly jitter the step size and number of steps for each leapfrog trajectory.</td>
</tr>
<tr>
<td>'jitter-numsteps'</td>
<td>Jitter only the number of steps of each leapfrog trajectory.</td>
</tr>
<tr>
<td>'none'</td>
<td>Perform no jittering.</td>
</tr>
</tbody>
</table>

With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve the stability of the leapfrog integration of the Hamiltonian dynamics.

Example: 'JitterMethod','jitter-both'

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as the comma-separated pair consisting of 'StepSizeTuningMethod' and 'dual-averaging' or 'none'.

If the 'StepSizeTuningMethod' value is set to 'dual-averaging', then tuneSampler tunes the leapfrog step size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the simulation length. The simulation length equals the step size multiplied by the number of steps. To set the target acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the tuneSampler method.

Example: 'StepSizeTuningMethod','none'

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of 'MassVectorTuningMethod' and one of the following values.
To perform the tuning, use the `tuneSampler` method.

Example: `MassVectorTuningMethod', 'hessian`

CheckGradient — Flag for checking analytical gradient

true (or 1) (default) | false (or 0)

Flag for checking the analytical gradient, specified as the comma-separated pair consisting of 'CheckGradient' and either true (or 1) or false (or 0).

If 'CheckGradient' is true, then the sampler calculates the numerical gradient at the startpoint and compares it to the analytical gradient returned by `logpdf`.

Example: `CheckGradient',true`

VariableNames — Sampling variable names

{'x1', 'x2', ...} (default) | string array | cell array of character vectors

Sampling variable names, specified as the comma-separated pair consisting of 'VariableNames' and a string array or a cell array of character vectors. Elements of the array must be unique. The length of the array must be the same as the length of `startpoint`.

Supply a 'VariableNames' value to label the components of the vector you want to sample using the HMC sampler.

Example: 'VariableNames', {'Intercept', 'Beta'}

Data Types: string | cell

UseNumericalGradient — Flag for using numerical gradient

false (or 0) (default) | true (or 1)
Flag for using numerical gradient, specified as the comma-separated pair consisting of 'UseNumericalGradient' and either true (or 1) or false (or 0).

If you set the 'UseNumericalGradient' value to true, then the HMC sampler numerically estimates the gradient from the log density returned by logpdf. In this case, the logpdf function does not need to return the gradient of the log density as the second output. Using a numerical gradient makes HMC sampling slower.

Example: 'UseNumericalGradient',true

Output Arguments

hmc — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, returned as a HamiltonianSampler object.

See Also

Functions
mhsample | slicesample

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-12

Introduced in R2017a
HamiltonianSampler class

Hamiltonian Monte Carlo (HMC) sampler

Description

A Hamiltonian Monte Carlo (HMC) sampler is a gradient-based Markov Chain Monte Carlo sampler that you can use to generate samples from a probability density $P(x)$. HMC sampling requires specification of $\log P(x)$ and its gradient.

The parameter vector x must be unconstrained, meaning that every element of x can be any real number. To sample constrained parameters, transform these parameters into unconstrained variables before using the HMC sampler.

After creating a sampler, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics using the methods of this class. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.

Construction

$hmc = hmcSampler(logpdf, startpoint)$ creates a Hamiltonian Monte Carlo (HMC) sampler, returned as a HamiltonianSampler object. $logpdf$ is a function handle that evaluates the logarithm of the probability density of the equilibrium distribution and its gradient. The column vector $startpoint$ is the initial point from which to start HMC sampling.

$hmc = hmcSampler(__,Name,Value)$ specifies additional options using one or more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

$logpdf — Logarithm of target density and its gradient
function handle
Logarithm of target density and its gradient, specified as a function handle.

`logpdf` must return two output arguments: `[lpdf,glpdf] = logpdf(X)`. Here, `lpdf` is the base-e log probability density (up to an additive constant), `glpdf` is the gradient of the log density, and the point `X` is a column vector with the same number of elements as `startpoint`.

The input argument `X` to `logpdf` must be unconstrained, meaning that every element of `X` can be any real number. Transform any constrained sampling parameters into unconstrained variables before using the HMC sampler.

If the `UseNumericalGradient` value is set to `true`, then `logpdf` does not need to return the gradient as the second output. Using a numerical gradient can be easier since `logpdf` does not need to compute the gradient, but it can make sampling slower.

Data Types: `function_handle`

`startpoint` — Initial point to start sampling from
numeric column vector

Initial point to start sampling from, specified as a numeric column vector.

Data Types: `single` | `double`

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'VariableNames','Intercept','Beta','MassVectorTuningMethod','hessian'` specifies sampling variable names and the mass vector tuning method to be `'hessian'`.

`StepSize` — Step size of Hamiltonian dynamics
`0.1` (default) | positive scalar

Step size of Hamiltonian dynamics, specified as the comma-separated pair consisting of `StepSize` and a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. This argument controls the step size of that leapfrog integration.
You can automatically tune the step size using `tuneSampler`.

Example: 'StepSize', 0.2

NumSteps — Number of steps of Hamiltonian dynamics

50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as the comma-separated pair consisting of 'NumSteps' and a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. This argument controls the number of steps of that leapfrog integration.

You can automatically tune the number of steps using `tuneSampler`.

Example: 'NumSteps', 20

MassVector — Mass vector of momentum variables

`ones(size(startpoint,1),1)` (default) | numeric column vector

Mass vector of momentum variables, specified as the comma-separated pair consisting of 'MassVector' and a numeric column vector with positive values and the same length as `startpoint`.

The “masses” of the momentum variables associated with the variables of interest control the Hamiltonian dynamics in each Markov chain proposal.

You can automatically tune the mass vector using `tuneSampler`.

Example: 'MassVector', `rand(3,1)`

JitterMethod — Method for jittering step size and number of steps

'jitter-both' (default) | 'jitter-numsteps' | 'none'

Method for jittering the step size and number of steps, specified as the comma-separated pair consisting of 'JitterMethod' and one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'jitter-both'</td>
<td>Randomly jitter the step size and number of steps for each leapfrog trajectory.</td>
</tr>
</tbody>
</table>
With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve the stability of the leapfrog integration of the Hamiltonian dynamics.

Example: 'JitterMethod','jitter-both'

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as the comma-separated pair consisting of 'StepSizeTuningMethod' and 'dual-averaging' or 'none'.

If the 'StepSizeTuningMethod' value is set to 'dual-averaging', then tuneSampler tunes the leapfrog step size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the simulation length. The simulation length equals the step size multiplied by the number of steps. To set the target acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the tuneSampler method.

Example: 'StepSizeTuningMethod','none'

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of 'MassVectorTuningMethod' and one of the following values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'iterative-sampling'</td>
<td>Tune the MassVector via successive approximations by drawing samples using a sequence of mass vector estimates.</td>
</tr>
<tr>
<td>'hessian'</td>
<td>Set the MassVector equal to the negative diagonal Hessian of the logpdf at the startpoint.</td>
</tr>
<tr>
<td>'none'</td>
<td>Perform no tuning of the MassVector.</td>
</tr>
</tbody>
</table>
To perform the tuning, use the `tuneSampler` method.

Example: 'MassVectorTuningMethod','hessian'

CheckGradient — Flag for checking analytical gradient

true (or 1) (default) | false (or 0)

Flag for checking the analytical gradient, specified as the comma-separated pair consisting of 'CheckGradient' and either true (or 1) or false (or 0).

If 'CheckGradient' is true, then the sampler calculates the numerical gradient at the startpoint and compares it to the analytical gradient returned by `logpdf`.

Example: 'CheckGradient',true

VariableNames — Sampling variable names

{'}x1','x2',...} (default) | string array | cell array of character vectors

Sampling variable names, specified as the comma-separated pair consisting of 'VariableNames' and a string array or cell array of character vectors. Elements of the array must be unique. The length of the array must be the same as the length of startpoint.

Supply a 'VariableNames' value to label the components of the vector you want to sample using the HMC sampler.

Example: 'VariableNames',{'Intercept','Beta'}

UseNumericalGradient — Flag for using numerical gradient

false (or 0) (default) | true (or 1)

Flag for using numerical gradient, specified as the comma-separated pair consisting of 'UseNumericalGradient' and either true (or 1) or false (or 0).

If you set the 'UseNumericalGradient' value to true, then the HMC sampler numerically estimates the gradient from the log density returned by `logpdf`. In this case, the `logpdf` function does not need to return the gradient of the log density as the second output. Using a numerical gradient makes HMC sampling slower.

Example: 'UseNumericalGradient',true
Properties

StepSize — Step size of Hamiltonian dynamics
0.1 (default) | positive scalar

Step size of Hamiltonian dynamics, specified as a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. The value of this property controls the step size of that leapfrog integration.

NumSteps — Number of steps of Hamiltonian dynamics
50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics using leapfrog integration. The value of this property controls the number of steps of that leapfrog integration.

MassVector — Mass vector of momentum variables
ones(size(startpoint,1),1) (default) | numeric column vector

Mass vector of momentum variables, specified as a numeric column vector with positive values and the same length as startpoint.

The “masses” of the momentum variables associated with the variables of interest control the Hamiltonian dynamics in each Markov chain proposal.

JitterMethod — Method for jittering step size and number of steps
'jitter-both' (default) | 'jitter-numsteps' | 'none'

Method for jittering the step size and the number of steps, specified as one of the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'jitter-both'</td>
<td>Randomly jitter the step size and number of steps of each leapfrog trajectory.</td>
</tr>
<tr>
<td>'jitter-numsteps'</td>
<td>Jitter only the number of steps of each leapfrog trajectory.</td>
</tr>
</tbody>
</table>
Value | Description
---|---
'none' | Perform no jittering.

With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve the stability of the leapfrog integration of the Hamiltonian dynamics.

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as 'dual-averaging' or 'none'.

If `StepSizeTuningMethod` equals 'dual-averaging', then `tuneSampler` tunes the leapfrog step size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the simulation length. The simulation length equals the step size multiplied by the number of steps. To set the target acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the `tuneSampler` method.

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as one of the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'iterative-sampling'</td>
<td>Tune the MassVector via successive approximations by drawing samples using a sequence of mass vector estimates.</td>
</tr>
<tr>
<td>'hessian'</td>
<td>Set the MassVector equal to the negative diagonal Hessian of the logpdf at the startpoint.</td>
</tr>
<tr>
<td>'none'</td>
<td>Perform no tuning of the MassVector.</td>
</tr>
</tbody>
</table>

To perform the tuning, use the `tuneSampler` method.

LogPDF — Logarithm of target density and its gradient
function handle

Logarithm of target density and its gradient, specified as a function handle.

`LogPDF` returns two output arguments: `[lpdf, glpdf] = LogPDF(X)`. Here, `lpdf` is the base-e log probability density (up to an additive constant) and `glpdf` is the gradient of
the log density at the point X. The input argument X must be a column vector with the same number of elements as the `StartPoint` property.

If you set the 'UseNumericalGradient' value to true when creating the sampler, then `LogPDF` returns the numerical gradient in `glpdf`.

`StartPoint` — Initial point to start sampling from
numeric column vector

Initial point to start sampling from, specified as a numeric column vector.

`VariableNames` — Sampling variable names
{'x1','x2',...} (default) | cell array of unique character vectors

Sampling variable names, specified as a cell array of unique character vectors.

Methods

- `estimateMAP` Estimate maximum of log probability density
- `tuneSampler` Tune Hamiltonian Monte Carlo (HMC) sampler
- `drawSamples` Generate Markov chain using Hamiltonian Monte Carlo (HMC)
- `diagnostics` Markov Chain Monte Carlo diagnostics

Examples

Create Hamiltonian Monte Carlo Sampler

Create a Hamiltonian Monte Carlo (HMC) sampler to sample from a normal distribution.

First, save a function `normalDistGrad` on the MATLAB® path that returns the multivariate normal log probability density and its gradient (`normalDistGrad` is defined at the end of this example). Then, call the function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

```matlab
means = [1;-3];
standevs = [1;2];
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```
Choose a starting point for the HMC sampler.

\[
\text{startpoint} = \text{randn}(2,1);
\]

Create the HMC sampler and display its properties.

\[
\text{smp} = \text{hmcSampler(logpdf,startpoint)}; \quad \text{smp}
\]

\[
\text{smp} =
\begin{align*}
\text{HamiltonianSampler with properties:} \\
\text{StepSize: } 0.1000 \\
\text{NumSteps: } 50 \\
\text{MassVector: } [2 \times 1 \text{ double}] \\
\text{JitterMethod: 'jitter-both'} \\
\text{StepSizeTuningMethod: 'dual-averaging'} \\
\text{MassVectorTuningMethod: 'iterative-sampling'} \\
\text{LogPDF: @(theta)normalDistGrad(theta,means,standevs)} \\
\text{VariableNames: } \{2 \times 1 \text{ cell}\} \\
\text{StartPoint: } [2 \times 1 \text{ double}]
\end{align*}
\]

The \text{normalDistGrad} function returns the logarithm of the multivariate normal probability density with means in \text{Mu} and standard deviations in \text{Sigma}, specified as scalars or columns vectors the same length as \text{startpoint}. The second output argument is the corresponding gradient.

\[
\text{function} \quad [\text{lpdf,glpdf}] = \text{normalDistGrad(X,Mu,Sigma)} \\
\text{\quad Z} = (X - \text{Mu})./\text{Sigma}; \\
\text{\quad lpdf} = \text{sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2))}; \\
\text{\quad glpdf} = -Z./\text{Sigma}; \\
\text{end}
\]

\section*{See Also}

\textbf{Functions}

\text{hmcSampler} | \text{mhsample} | \text{slicesample}

\textbf{Topics}

“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33
Introduced in R2017a
estimateMAP

Class: HamiltonianSampler

Estimate maximum of log probability density

Syntax

\[xhat = \text{estimateMAP}(smp) \]
\[[xhat,fitinfo] = \text{estimateMAP}(smp) \]
\[[xhat,fitinfo] = \text{estimateMAP}(_,_,\text{Name},\text{Value}) \]

Description

\[xhat = \text{estimateMAP}(smp) \] returns the maximum-a-posteriori (MAP) estimate of the log probability density of the Monte Carlo sampler \(smp \).

\[[xhat,fitinfo] = \text{estimateMAP}(smp) \] returns additional fitting information in \(fitinfo \).

\[[xhat,fitinfo] = \text{estimateMAP}(_,_,\text{Name},\text{Value}) \] specifies additional options using one or more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

\(smp \) — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

estimateMAP estimates the maximum of the log probability density specified in \(smp.\text{LogPDF} \).

Use the hmcSampler function to create a sampler.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'IterationLimit',100,'StepTolerance',1e-5 estimates the MAP point using an iteration limit of 100 and a step size convergence tolerance of 1e-5.

StartPoint — Initial point to start optimization from

smp.StartPoint (default) | numeric column vector

Initial point to start optimization from, specified as a numeric column vector with the same number of elements as the StartPoint property of the sampler smp.

Example: 'StartPoint',randn(size(smp.StartPoint))

IterationLimit — Maximum number of optimization iterations

1000 (default) | positive integer

Maximum number of optimization iterations, specified as a positive integer.

Example: 'IterationLimit',100

VerbosityLevel — Verbosity level of Command Window output

0 (default) | positive integer

Verbosity level of Command Window output during function maximization, specified as 0 or a positive integer.

- With the value set to 0, estimateMAP displays no details on the optimization.
- With the value set to a positive integer, estimateMAP displays convergence information at each iteration.
Convergence Information

<table>
<thead>
<tr>
<th>Heading</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUN VALUE</td>
<td>Objective function value.</td>
</tr>
<tr>
<td>NORM GRAD</td>
<td>Norm of the gradient of the objective function.</td>
</tr>
<tr>
<td>NORM STEP</td>
<td>Norm of the iterative step, meaning the distance between the previous point and the current point.</td>
</tr>
<tr>
<td>CURV</td>
<td>OK means the weak Wolfe condition is satisfied. This condition is a combination of sufficient decrease of the objective function and a curvature condition.</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Inner product of the step times the gradient difference, divided by the inner product of the gradient difference with itself. The gradient difference is the gradient at the current point minus the gradient at the previous point. Gives diagnostic information on the objective function curvature.</td>
</tr>
<tr>
<td>ALPHA</td>
<td>Step direction multiplier, which differs from 1 when the algorithm performed a line search.</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>YES means the algorithm found an acceptable step to take.</td>
</tr>
</tbody>
</table>

Example: 'VerbosityLevel', 1

GradientTolerance — Relative gradient convergence tolerance

1e-6 (default) | positive scalar

Relative gradient convergence tolerance, specified as a positive scalar.

Let \(\tau = \max(1, \min(\text{abs}(f), \text{infnormg0})) \), where \(f \) is the current objective function value and \(\text{infnormg0} \) is the initial gradient norm. If the norm of the objective function gradient is smaller than \(\tau \) times the 'GradientTolerance' value, then the maximization is considered to have converged to a local optimum.

Example: 'GradientTolerance', 1e-4

StepTolerance — Step size convergence tolerance

1e-6 (default) | positive scalar

Step size convergence tolerance, specified as a positive scalar.

If the proposed step size is smaller than the 'StepTolerance' value, then the maximization is considered to have converged to a local optimum.
Output Arguments

\textbf{xhat} — MAP point estimate

numeric vector

MAP point estimate, returned as a numeric vector of the same size as \texttt{smp.StartPoint}.

\textbf{fitinfo} — Fitting information

structure

Fitting information for the MAP computation, returned as a structure with these fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>Iteration indices from 0 through the final iteration.</td>
</tr>
<tr>
<td>Objective</td>
<td>Negative log probability density at each iteration. The MAP point is computed by minimizing the negative log probability density. You can check that the final values are all similar, indicating that the function optimization has converged to a local optimum.</td>
</tr>
<tr>
<td>Gradient</td>
<td>Gradient of the negative log probability density at the final iteration.</td>
</tr>
</tbody>
</table>

Data Types: struct

Examples

\textbf{Estimate MAP Point of HMC Sampler}

Create a Hamiltonian Monte Carlo sampler for a normal distribution and estimate the maximum-a-posteriori (MAP) point of the log probability density.
First, save a function `normalDistGrad` on the MATLAB® path that returns the multivariate normal log probability density and its gradient (`normalDistGrad` is defined at the end of this example). Then, call the function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

```matlab
means = [1;-1];
standevs = [1;0.3];
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```

Choose a starting point and create the HMC sampler.

```matlab
startpoint = zeros(2,1);
smp = hmcSampler(logpdf,startpoint);
```

Estimate the MAP point (the point where the probability density has its maximum). Show more information during optimization by setting the `'VerbosityLevel'` value to 1.

```matlab
[xhat,fitinfo] = estimateMAP(smp,'VerbosityLevel',1);
```

```
\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{ITER} & \text{FUN VALUE} & \text{NORM GRAD} & \text{NORM STEP} & \text{CURV} & \text{GAMMA} & \text{ALPHA} \\
\hline
0 & 6.689460e+00 & 1.111e+01 & 0.000e+00 & & 9.000e-03 & 0.000e+00 \\
1 & 4.671622e+00 & 8.889e+00 & 2.008e-01 & OK & 9.006e-02 & 2.000e+00 \\
2 & 9.759850e-01 & 8.268e-01 & 8.215e-01 & OK & 9.027e-02 & 1.000e+00 \\
3 & 9.158025e-01 & 7.496e-01 & 7.748e-02 & OK & 5.910e-01 & 1.000e+00 \\
4 & 6.339508e-01 & 3.104e-02 & 7.472e-01 & OK & 9.796e-01 & 1.000e+00 \\
5 & 6.339043e-01 & 3.668e-05 & 3.762e-03 & OK & 9.599e-02 & 1.000e+00 \\
6 & 6.339043e-01 & 2.488e-08 & 3.333e-06 & OK & 9.015e-02 & 1.000e+00 \\
\hline
\end{array}
\]

Infinity norm of the final gradient = 2.488e-08
Two norm of the final step = 3.333e-06, TolX = 1.000e-06
Relative infinity norm of the final gradient = 2.488e-08, TolFun = 1.000e-06
EXIT: Local minimum found.
```

To further check that the optimization has converged to a local minimum, plot the `fitinfo.Objective` field. This field contains the values of the negative log density at each iteration of the function optimization. The final values are all very similar, so the optimization has converged.

```matlab
fitinfo
```

```
fitinfo = struct with fields:
    Iteration: [7x1 double]
```

32-7058
Display the MAP estimate. It is indeed equal to the `means` variable, which is the exact maximum.

`xhat`
xhat = 2×1

1.0000
-1.0000

means

means = 2×1

1
-1

The normalDistGrad function returns the logarithm of the multivariate normal probability density with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same length as startpoint. The second output argument is the corresponding gradient.

```matlab
function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end
```

Tips

- First create a Hamiltonian Monte Carlo sampler using the hmcSampler function, and then use estimateMAP to estimate the MAP point.
- After creating an HMC sampler, you can tune the sampler, draw samples, and check convergence diagnostics using the other methods of the HamiltonianSampler class. Using the MAP estimate as a starting point in the tuneSampler and drawSamles methods can lead to more efficient tuning and sampling. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.
Algorithms

- `estimateMAP` uses a limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton optimizer to search for the maximum of the log probability density. See Nocedal and Wright [1].

References

See Also

Functions
hmcSampler

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33

Introduced in R2017a
tuneSampler

Class: HamiltonianSampler

Tune Hamiltonian Monte Carlo (HMC) sampler

Syntax

tunedSmp = tuneSampler(smp)
[tunedSmp,tuningInfo] = tuneSampler(smp)
[tunedSmp,tuningInfo] = tuneSampler(___,Name,Value)

Description

tunedSmp = tuneSampler(smp) returns a tuned Hamiltonian Monte Carlo (HMC) sampler.

First, tuneSampler tunes the mass vector of the HMC sampler smp. Then, it tunes the step size and number of steps of the leapfrog integrations to achieve a certain target acceptance ratio.

You can use the tuned sampler to create Markov chains using the drawSamples method.

[tunedSmp,tuningInfo] = tuneSampler(smp) returns additional tuning information in tuningInfo.

[tunedSmp,tuningInfo] = tuneSampler(___,Name,Value) specifies additional options using one or more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler to tune, specified as a HamiltonianSampler object.
Use the `hmcSampler` function to create a sampler.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'StepSizeTuningMethod','dual-averaging','MassVectorTuningMethod','hessian'` tunes an HMC sampler using the specified methods for tuning the step size and mass vector of the sampler.

StartPoint — Initial point to start tuning from

`smp.StartPoint (default) | numeric column vector`

Initial point to start tuning from, specified as a numeric column vector with the same number of elements as the `StartPoint` property of the sampler `smp`.

Example: `'StartPoint',randn(size(smp.StartPoint))`

StepSizeTuningMethod — Method for tuning sampler step size

`smp.StepSizeTuningMethod (default) | 'dual-averaging' | 'none'`

Method for tuning sampler step size, specified as the comma-separated pair consisting of `'StepSizeTuningMethod'` and `'dual-averaging'` or `'none'`.

If `'StepSizeTuningMethod'` is set to `'dual-averaging'`, then `tuneSampler` tunes the leapfrog step size of the HMC sampler to achieve a target acceptance ratio for a fixed value of the simulation length. The simulation length equals the step size multiplied by the number of steps. To specify the target acceptance ratio, set the `'TargetAcceptanceRatio'` value.

To change the simulation length, set `smp.StepSize = a` and `smp.NumSteps = b`, for some values of `a` and `b`. This gives a simulation length of `a*b`.

Example: `'StepSizeTuningMethod','none'`

MassVectorTuningMethod — Method for tuning sampler mass vector

`smp.MassVectorTuningMethod (default) | 'iterative-sampling' | 'hessian' | 'none'`
Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of 'MassVectorTuningMethod' and one of the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'iterative-sampling'</td>
<td>Tune the MassVector via successive approximations by drawing samples using a sequence of mass vector estimates.</td>
</tr>
<tr>
<td>'hessian'</td>
<td>Set the MassVector equal to the negative diagonal Hessian of the logpdf at the startpoint.</td>
</tr>
<tr>
<td>'none'</td>
<td>Perform no tuning of the MassVector.</td>
</tr>
</tbody>
</table>

Example: 'MassVectorTuningMethod','hessian'

NumStepSizeTuningIterations — Number of step size tuning iterations

100 (default) | positive integer

Number of step size tuning iterations, specified as a positive integer.

If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.

Example: 'NumStepSizeTuningIterations',50

TargetAcceptanceRatio — Target acceptance ratio

0.65 (default) | scalar from 0 through 1

Target acceptance ratio of the Markov chain, specified as a scalar from 0 through 1.

tuneSampler tunes the step size and number of steps of the leapfrog integration to achieve the specified target acceptance ratio for a fixed value of the simulation length. The simulation length is the leapfrog integration step size multiplied by the number of integration steps.

If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.

To change the simulation length, set smp.StepSize = a and smp.NumSteps = b, for some values of a and b. This gives a simulation length of a*b.

Example: 'TargetAcceptanceRatio',0.55
NumStepsLimit — Maximum number of leapfrog steps

2000 (default) | positive integer

Maximum number of leapfrog steps allowed during step size tuning, specified as a positive integer.

If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.

Example: 'NumStepsLimit',1000

VerbosityLevel — Verbosity level of Command Window output

0 (default) | nonnegative integer

Verbosity level of Command Window output during sampler tuning, specified as a nonnegative integer.

- With the value set to 0, tuneSampler displays no details of the tuning.
- With the value set to 1, tuneSampler displays details of the step size tuning.
- With the value set to 2 or larger, tuneSampler displays details of the step size and mass vector tuning.

<table>
<thead>
<tr>
<th>Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITER</td>
<td>Iteration number.</td>
</tr>
<tr>
<td>LOG PDF</td>
<td>Log probability density at the current iteration.</td>
</tr>
<tr>
<td>STEP SIZE</td>
<td>Leapfrog integration step size at the current iteration.</td>
</tr>
<tr>
<td>NUM STEPS</td>
<td>Number of leapfrog integration steps at the current iteration.</td>
</tr>
<tr>
<td>ACC RATIO</td>
<td>Acceptance ratio, that is, the fraction of proposals which are accepted.</td>
</tr>
</tbody>
</table>
DIVERGENT
Number of times the sampler failed to generate a valid proposal due to the leapfrog iterations generating NaNs or Infs. `tuneSampler` searches for a good value of the integration step size. While doing so, the algorithm can encounter regions of instability and report nonzero values in the DIVERGENT column. This behavior is normal and is not a problem in itself.

Example: 'VerbosityLevel',1

NumPrint — Verbose output frequency
100 (default) | positive integer

Verbose output frequency, specified as a positive integer.

If the 'VerbosityLevel' value is a positive integer, `tuneSampler` outputs tuning details every 'NumPrint' iterations.

Example: 'NumPrint',50

Output Arguments

tunedSmp — Tuned Hamiltonian Monte Carlo sampler

HamiltonianSampler object

Tuned Hamiltonian Monte Carlo sampler, returned as a HamiltonianSampler object.

tuningInfo — Tuning information

structure

Tuning information, returned as a structure with these fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MassVector</td>
<td>Tuned mass vector</td>
</tr>
<tr>
<td>StepSize</td>
<td>Tuned leapfrog step size</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>NumSteps</td>
<td>Tuned value of the number of leapfrog integration steps</td>
</tr>
<tr>
<td>MassVectorTuningInfo</td>
<td>Structure with additional information on the mass vector tuning</td>
</tr>
<tr>
<td>StepSizeTuningInfo</td>
<td>Structure with additional information on the step size tuning</td>
</tr>
</tbody>
</table>

If you tune the mass vector using the 'iterative-sampling' method, then `MassVectorTuningInfo` has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MassVector</td>
<td>Tuned mass vector</td>
</tr>
<tr>
<td>IterativeSamplingMassVectorProfile</td>
<td>P-by-K matrix of mass vectors used during the K iterations, where P is the number of sampling variables</td>
</tr>
<tr>
<td>IterativeSamplingNumSamples</td>
<td>K-by-1 vector of the number of samples drawn for each of the K iterations</td>
</tr>
</tbody>
</table>

If you tune the mass vector using the 'hessian' method, then `MassVectorTuningInfo` has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MassVector</td>
<td>Tuned mass vector</td>
</tr>
<tr>
<td>NegativeDiagonalHessian</td>
<td>Negative diagonal Hessian of <code>logpdf</code> at the tuning start point. If some elements are negative, this field can be different from the <code>MassVector</code> field.</td>
</tr>
<tr>
<td>HessianPoint</td>
<td>Point at which the Hessian is evaluated</td>
</tr>
</tbody>
</table>

If the `MassVectorTuningMethod` value is 'none', then `MassVectorTuningInfo` is empty.

If you tune the step size using the 'dual-averaging' method, then `StepSizeTuningInfo` has the following fields.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StepSize</td>
<td>Tuned step size</td>
</tr>
<tr>
<td>NumSteps</td>
<td>Tuned value of the number of steps</td>
</tr>
<tr>
<td>StepSizeProfile</td>
<td>Column vector containing the step sizes at each tuning iteration</td>
</tr>
<tr>
<td>AcceptanceRatio</td>
<td>Final acceptance ratio achieved during tuning</td>
</tr>
</tbody>
</table>

If the step size is not tuned, then StepSizeTuningInfo is empty.

Data Types: struct

Examples

Tune Hamiltonian Monte Carlo Sampler

Tune the parameters of a Hamiltonian Monte Carlo (HMC) sampler.

Define the number of parameters to sample and their means.

```
NumParams = 9;
means = [1:NumParams]';
standevs = 1;
```

First, save a function `normalDistGrad` on the MATLAB® path that returns the multivariate normal log probability density and its gradient (`normalDistGrad` is defined at the end of this example). Then, call the function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

```
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```

Choose a starting point and create the HMC sampler.

```
startpoint = randn(NumParams,1);
smp = hmcSampler(logpdf,startpoint);
```

It is important to select good values for the sampler parameters to get efficient sampling. The best way to find good values is to automatically tune the MassVector, StepSize, and NumSteps parameters using `tuneSampler`. The method:
1. Tunes the MassVector of the sampler.

2. Tunes StepSize and NumSteps for a fixed simulation length to achieve a certain acceptance ratio. The default target acceptance ratio of 0.65 is good in most cases.

```matlab
[smp,info] = tuneSampler(smp,'NumStepSizeTuningIterations',50,'VerbosityLevel',1,'NumPrint',10);
```

- Tuning mass vector using method: iterative-sampling
 - Finished mass vector tuning iteration 1 of 5.
 - Finished mass vector tuning iteration 2 of 5.
 - Finished mass vector tuning iteration 3 of 5.
 - Finished mass vector tuning iteration 4 of 5.
 - Finished mass vector tuning iteration 5 of 5.

- Tuning step size using method: dual-averaging. Target acceptance ratio = 0.65

 - Initial step size for dual-averaging = 2

<table>
<thead>
<tr>
<th>ITER</th>
<th>LOG PDF</th>
<th>STEP SIZE</th>
<th>NUM STEPS</th>
<th>ACC RATIO</th>
<th>DIVERGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-1.710457e+01</td>
<td>1.193e+00</td>
<td>4</td>
<td>5.000e-01</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>-9.152514e+00</td>
<td>9.527e-01</td>
<td>5</td>
<td>5.500e-01</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>-1.068923e+01</td>
<td>8.856e-01</td>
<td>6</td>
<td>5.333e-01</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>-1.290816e+01</td>
<td>8.506e-01</td>
<td>6</td>
<td>5.750e-01</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>-1.770386e+01</td>
<td>8.581e-01</td>
<td>6</td>
<td>6.000e-01</td>
<td>0</td>
</tr>
</tbody>
</table>

Plot the evolution of the step size during tuning to ensure that the step size tuning has converged. Display the achieved acceptance ratio.

```matlab
figure;
plot(info.StepSizeTuningInfo.StepSizeProfile);
xlabel('Iteration');
ylabel('Step Size');
```
accratio = info.StepSizeTuningInfo.AcceptanceRatio

accratio = 0.6000

The `normalDistGrad` function returns the logarithm of the multivariate normal probability density with means in `Mu` and standard deviations in `Sigma`, specified as scalars or columns vectors the same length as `startpoint`. The second output argument is the corresponding gradient.

```matlab
function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
    Z = (X - Mu)./Sigma;
    lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
```
$glpdf = -Z./\Sigma;$
end

Tips

- After creating an HMC sampler using the `hmcSampler` function, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics using the methods of the `HamiltonianSampler` class. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.

See Also

- **Functions**
 - `hmcSampler`

- **Classes**
 - `HamiltonianSampler`

- **Topics**
 - “Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33

- **Introduced in R2017a**
drawSamples

Class: HamiltonianSampler

Generate Markov chain using Hamiltonian Monte Carlo (HMC)

Syntax

```matlab
chain = drawSamples(smp)
[chain,endpoint,accratio] = drawSamples(smp)
[chain,endpoint,accratio] = drawSamples(___,Name,Value)
```

Description

`chain = drawSamples(smp)` generates a Markov chain by drawing samples using the Hamiltonian Monte Carlo sampler `smp`.

`[chain,endpoint,accratio] = drawSamples(smp)` also returns the final state of the Markov chain in `endpoint` and the fraction of accepted proposals in `accratio`.

`[chain,endpoint,accratio] = drawSamples(___,Name,Value)` specifies additional options using one or more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

- **smp** — Hamiltonian Monte Carlo sampler
 HamiltonianSampler object

 Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

 `drawSamples` draws samples from the target log probability density in `smp.LogPDF`. Use the `hmcSampler` function to create a sampler.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Burnin',500,'NumSamples',2000 generates a Markov chain by discarding 500 burn-in samples and then drawing 2000 samples.

Burnin — Number of burn-in samples to discard
1000 (default) | positive integer

Number of burn-in samples to discard from the beginning of the Markov chain, specified as a positive integer.

Example: 'Burnin',500

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw from the Markov chain using the HMC sampler, specified as a positive integer.

The drawSamples method generates this number of samples after the burn-in period.

Example: 'NumSamples',2000

ThinSize — Markov chain thinning size
1 (default) | positive integer

Markov chain thinning size, specified as a positive integer.

Only one out of the 'ThinSize' number of samples are kept. The rest of the samples are discarded.

Example: 'ThinSize',5

StartPoint — Initial point to start sampling from
smp.StartPoint (default) | numeric column vector

Initial point to start sampling from, specified as a numeric column vector with the same number of elements as the StartPoint property of the sampler smp.
Example: 'StartPoint', randn(5,1)

VerbosityLevel — Verbosity level of Command Window output

0 (default) | positive integer

Verbosity level of Command Window output during sampling, specified as 0 or a positive integer.

With the value set to 0, `drawSamples` displays no details during sampling.

With the value set to a positive integer, `drawSamples` displays details of the sampling. To set the output frequency, use the 'NumPrint' name-value pair argument.

drawSamples displays the output as a table with these columns.

<table>
<thead>
<tr>
<th>Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITER</td>
<td>Iteration number</td>
</tr>
<tr>
<td>LOG PDF</td>
<td>Log probability density at the current iteration</td>
</tr>
<tr>
<td>STEP SIZE</td>
<td>Leapfrog integration step size at the current iteration. If the step size is jittered, it can vary between iterations.</td>
</tr>
<tr>
<td>NUM STEPS</td>
<td>Number of leapfrog integration steps at the current iteration. If the number of steps is jittered, it can vary between iterations</td>
</tr>
<tr>
<td>ACC RATIO</td>
<td>Acceptance ratio, that is, the fraction of proposals that are accepted. The acceptance ratio is calculated from the beginning of sampling, including the burn-in period.</td>
</tr>
<tr>
<td>Heading</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>DIVERGENT</td>
<td>Number of times the sampler failed to generate a valid proposal due to the leapfrog iterations generating NaNs or Infs. When drawing samples, a nonzero value in the DIVERGENT column indicates that the chosen step size is above the stability threshold for some region of state space. To fix this issue, try to set the StepSize to a smaller value, draw new samples, and check that all values in the DIVERGENT column equal 0.</td>
</tr>
</tbody>
</table>

Example: 'VerbosityLevel',1

NumPrint — Verbose output frequency

100 (default) | positive integer

Verbose output frequency, specified as a positive integer.

If the 'VerbosityLevel' value is a positive integer, then drawSamples outputs sampling details every 'NumPrint' iterations.

Example: 'NumPrint',200

Output Arguments

chain — Markov chain generated using Hamiltonian Monte Carlo

numeric matrix

Markov chain generated using Hamiltonian Monte Carlo, returned as a numeric matrix.

Each row of chain is a sample, and each column represents one sampling variable.

endpoint — Final state of Markov chain

text numeric column vector

Final state of the Markov chain, returned as a numeric column vector of the same length as smp.StartPoint.
accratio — Acceptance ratio

numeric scalar

Acceptance ratio of the Markov chain proposals, returned as a numeric scalar. The acceptance ratio is calculated from the beginning of sampling, including the burn-in period.

Examples

Draw Samples Using HMC Sampler

Create MCMC chains for a multivariate normal distribution using a Hamiltonian Monte Carlo (HMC) sampler.

Define the number of parameters to sample and their means.

```matlab
NumParams = 100;
means = randn(NumParams,1);
standevs = 0.1;
```

First, save a function `normalDistGrad` on the MATLAB® path that returns the multivariate normal log probability density and its gradient (`normalDistGrad` is defined at the end of this example). Then, call the function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

```matlab
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```

Choose a starting point of the sampler. Create the HMC sampler and tune its parameters.

```matlab
startpoint = randn(NumParams,1);
smp = hmcSampler(logpdf,startpoint);
smp = tuneSampler(smp);
```

Draw samples from the posterior density, using a few independent chains. Choose different, randomly distributed starting points for each chain. Specify the number of burn-in samples to discard from the beginning of the Markov chain and the number of samples to generate after the burn-in. Set the 'VerbosityLevel' to print details during sampling for the first chain.

```matlab
NumChains = 4;
chains     = cell(NumChains,1);
```
Burnin = 500;
NumSamples = 2000;
for c = 1:NumChains
 if c == 1
 showOutput = 1;
 else
 showOutput = 0;
 end
 chains{c} = drawSamples(smp,'Burnin',Burnin,'NumSamples',NumSamples,...
 'Start',randn(size(startpoint)),'VerbosityLevel',showOutput,'NumPrint',500);
end

|==|
| ITER | LOG PDF | STEP SIZE | NUM STEPS | ACC RATIO | DIVERGENT |
|==|
500	8.017202e+01	5.303e-01	4	8.820e-01	0
1000	7.756258e+01	5.303e-01	8	8.500e-01	0
1500	9.227175e+01	5.303e-01	2	8.547e-01	0
2000	8.073805e+01	3.128e-02	6	8.610e-01	0
2500	9.672952e+01	5.161e-01	2	8.600e-01	0

After obtaining a random sample, investigate issues such as convergence and mixing to determine whether the samples represent a reasonable set of random realizations from the target distribution. To examine the output, plot the trace plots of the samples for the first few variables using the first chain.

A number of burn-in samples have been removed to reduce the effect of the sampling starting point. Furthermore, the trace plots look like high-frequency noise, without any visible long-range correlation between the samples. This indicates that the chain is well mixed.

for p = 1:3
 subplot(3,1,p);
 plot(chains{1}(:,p));
 ylabel(smp.VariableNames(p))
 axis tight
end
xlabel('Iteration')
The `normalDistGrad` function returns the logarithm of the multivariate normal probability density with means in `Mu` and standard deviations in `Sigma`, specified as scalars or columns vectors the same length as the startpoint. The second output argument is the corresponding gradient.

```matlab
function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
    Z = (X - Mu)./Sigma;
    lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
    glpdf = -Z./Sigma;
end
```
Tips

- After creating an HMC sampler using the hmcSampler function, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics using the methods of the HamiltonianSampler class. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.

See Also

Functions
hmcSampler

Classes
HamiltonianSampler

Topics
Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33

Introduced in R2017a
diagnostics

Class: HamiltonianSampler

Markov Chain Monte Carlo diagnostics

Syntax

tbl = diagnostics(smp,chains)
tbl = diagnostics(smp,chains,'MaxLag',maxlag)

Description

tbl = diagnostics(smp,chains) returns Markov Chain Monte Carlo diagnostics for the chains in chains.

tbl = diagnostics(smp,chains,'MaxLag',maxlag) specifies the maximum number of autocorrelation lags to use for computing effective sample sizes.

Input Arguments

smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

Use the hmcSampler function to create a sampler.

chains — MCMC chains
matrix | cell array

MCMC chains, specified as one of the following:

- A matrix, where each row is a sample and each column a parameter.
- A cell array of matrices, where the chain chains{i} is a matrix where each row is a sample and each column a parameter.
The number of parameters (that is, matrix columns) must equal the number of elements of the `StartPoint` property of the `smp` sampler.

maxlag — Maximum number of autocorrelation lags

100 (default) | positive integer

Maximum number of autocorrelation lags for computing effective sample sizes, specified as a positive integer.

The effective sample size calculation uses lags of 1, 2, ..., maxlag for each chain in `chains` that has more than maxlag samples.

For chains with maxlag or fewer samples, the calculation uses $N_i - 1$ lags, where N_i is the number of samples of chain i.

Example: 'MaxLag', 50

Output Arguments

tbl — MCMC diagnostics

table

MCMC diagnostics, computed using all the chains in `chains` and returned as a table with these columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Variable name</td>
</tr>
<tr>
<td>Mean</td>
<td>Posterior mean estimate</td>
</tr>
<tr>
<td>MCSE</td>
<td>Estimate of the Monte Carlo standard error (the standard deviation of the posterior mean estimate)</td>
</tr>
<tr>
<td>SD</td>
<td>Estimate of the posterior standard deviation</td>
</tr>
<tr>
<td>Q5</td>
<td>Estimate of the 5th quantile of the marginal posterior distribution</td>
</tr>
<tr>
<td>Q95</td>
<td>Estimate of the 95th quantile of the marginal posterior distribution</td>
</tr>
</tbody>
</table>
Examples

Compute Markov Chain Monte Carlo Diagnostics

Create MCMC chains using a Hamiltonian Monte Carlo (HMC) sampler and compute MCMC diagnostics.

First, save a function on the MATLAB® path that returns the multivariate normal log probability density and its gradient. In this example, that function is called `normalDistGrad` and is defined at the end of the example. Then, call this function with arguments to define the `logpdf` input argument to the `hmcSampler` function.

```matlab
code
means = [1;-2;2];
standevs = [1;2;0.5];
logpdf = @(theta)normalDistGrad(theta,means,standevs);
```

Choose a starting point. Create the HMC sampler and tune its parameters.

```matlab
code
startpoint = randn(3,1);
smp = hmcSampler(logpdf,startpoint);
smp = tuneSampler(smp);
```

Draw samples from the posterior density, using a few independent chains. Choose different, randomly distributed starting points for each chain. Specify the number of burn-in samples to discard from the beginning of the Markov chain and the number of samples to generate after the burn-in.
NumChains = 4;
chains = cell(NumChains,1);
Burnin = 500;
NumSamples = 1000;
for c = 1:NumChains
 chains{c} = drawSamples(smp,'Burnin',Burnin,'NumSamples',NumSamples,...
 'Start',randn(size(startpoint)));
end

Compute MCMC diagnostics and display the results. Compare the true means in means with the column titled Mean in the MCMCdiagnostics table. The true posterior means are within a few Monte Carlo standard errors (MCSEs) of the estimated posterior means. The HMC sampler has accurately recovered the true means. Similarly, the estimated standard deviations in the column SD are very near the true standard deviations in standev.

MCMCdiagnostics = diagnostics(smp,chains)

<table>
<thead>
<tr>
<th>Name</th>
<th>Mean</th>
<th>MCSE</th>
<th>SD</th>
<th>Q5</th>
<th>Q95</th>
<th>ESS</th>
<th>RHat</th>
</tr>
</thead>
<tbody>
<tr>
<td>'x1'</td>
<td>1.0038</td>
<td>0.016474</td>
<td>0.96164</td>
<td>-0.58601</td>
<td>2.563</td>
<td>3407.4</td>
<td>1</td>
</tr>
<tr>
<td>'x2'</td>
<td>-2.0435</td>
<td>0.034933</td>
<td>1.999</td>
<td>-5.3476</td>
<td>1.1851</td>
<td>3274.5</td>
<td>1</td>
</tr>
<tr>
<td>'x3'</td>
<td>1.9957</td>
<td>0.008209</td>
<td>0.49693</td>
<td>1.2036</td>
<td>2.8249</td>
<td>3664.5</td>
<td>1</td>
</tr>
</tbody>
</table>

means

means = 3×1
 1
 -2
 2

standevs

standevs = 3×1
 1.0000
 2.0000
 0.5000
The `normalDistGrad` function returns the logarithm of the multivariate normal probability density with means in `Mu` and standard deviations in `Sigma`, specified as scalars or columns vectors the same length as the `startpoint`. The second output argument is the corresponding gradient.

```matlab
function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end
```

Tips

- After creating an HMC sampler using the `hmcSampler` function, you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence diagnostics using the methods of the `HamiltonianSampler` class. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-33.

See Also

- **Functions**
 - `hmcSampler`

- **Classes**
 - `HamiltonianSampler`

- **Topics**
 - “Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-33

- **Introduced in R2017a**
Classification Learner

Train models to classify data using supervised machine learning

Description
The Classification Learner app trains models to classify data. Using this app, you can explore supervised machine learning using various classifiers. You can explore your data, select features, specify validation schemes, train models, and assess results. You can perform automated training to search for the best classification model type, including decision trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, and ensemble classification.

You can perform supervised machine learning by supplying a known set of input data (observations or examples) and known responses to the data (e.g., labels or classes). You use the data to train a model that generates predictions for the response to new data. To use the model with new data, or to learn about programmatic classification, you can export the model to the workspace or generate MATLAB code to recreate the trained model.

Tip To get started, in the Classifier list, try All Quick-To-Train to train a selection of models. See “Automated Classifier Training” on page 23-12.

Required Products

- MATLAB
- Statistics and Machine Learning Toolbox

Note: Classification Learner does not provide data import from file, code generation, or parallel model training in MATLAB Online.

Open the Classification Learner App

- MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
- MATLAB command prompt: Enter classificationLearner.
Examples

- “Train Classification Models in Classification Learner App” on page 23-11
- “Select Data and Validation for Classification Problem” on page 23-20
- “Automated Classifier Training” on page 23-12
- “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
- “Choose Classifier Options” on page 23-26
- “Assess Classifier Performance in Classification Learner” on page 23-55
- “Export Classification Model to Predict New Data” on page 23-62

See Also

Apps
Regression Learner

Functions
fitcdiscr | fitcecoc | fitcensemble | fitcknn | fitcsvm | fitctree | fitglm

Topics
“Train Classification Models in Classification Learner App” on page 23-11
“Select Data and Validation for Classification Problem” on page 23-20
“Automated Classifier Training” on page 23-12
“Feature Selection and Feature Transformation Using Classification Learner App” on page 23-48
“Choose Classifier Options” on page 23-26
“Assess Classifier Performance in Classification Learner” on page 23-55
“Export Classification Model to Predict New Data” on page 23-62

Introduced in R2015a
Regression Learner

Train regression models to predict data using supervised machine learning

Description

The **Regression Learner** app trains regression models to predict data. Using this app, you can explore your data, select features, specify validation schemes, train models, and assess results. You can perform automated training to search for the best regression model type, including linear regression models, regression trees, Gaussian process regression models, support vector machines, and ensembles of regression trees.

Perform supervised machine learning by supplying a known set of observations of input data (predictors) and known responses. Use the observations to train a model that generates predicted responses for new input data. To use the model with new data, or to learn about programmatic regression, you can export the model to the workspace or generate MATLAB code to recreate the trained model.

Required Products

- MATLAB
- Statistics and Machine Learning Toolbox

Note: Regression Learner does not provide data import from file, code generation, or parallel model training in MATLAB Online.

Open the Regression Learner App

- MATLAB Toolstrip: On the **Apps** tab, under **Machine Learning**, click the app icon.
- MATLAB command prompt: Enter `regressionLearner`.

Examples

- Train Regression Models in Regression Learner App on page 24-2
See Also

Apps
Classification Learner

Functions
fitlm|fitrensemble|fitrgp|fitrsvm|fitrtree|stepwiselm

Topics
Train Regression Models in Regression Learner App on page 24-2
Select Data and Validation for Regression Problem on page 24-10
Automated Regression Model Training on page 24-3
Choose Regression Model Options on page 24-15
Feature Selection and Feature Transformation on page 24-32
Assess Model Performance in Regression Learner on page 24-36
Export Regression Model to Predict New Data on page 24-44
Train Regression Trees Using Regression Learner App on page 24-48

Introduced in R2017a
Distribution Fitter

Fit probability distributions to data

Description
The Distribution Fitter app interactively fits probability distributions to data imported from the MATLAB workspace. You can choose from 22 built-in probability distributions or create your own custom distribution. The app displays plots of the fitted distribution superimposed on a histogram of the data. Available plots include probability density function (pdf), cumulative distribution function (cdf), probability plots, and survivor functions. You can export the fitted parameter values to the workspace as a probability distribution object, and use object functions to perform further analyses. For more information on working with these objects, see “Working with Probability Distributions” on page 5-3. For the programmatic work flow of the Distribution Fitter app, see distributionFitter.

Required Products
- MATLAB
- Statistics and Machine Learning Toolbox

Note: Distribution Fitter does not provide printing, custom distribution defining, or code generating functionality in MATLAB Online.

Open the Distribution Fitter App

- MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app icon.
- MATLAB command prompt: Enter distributionFitter.

Examples
- “Fit a Distribution Using the Distribution Fitter App” on page 5-95
Parameters

Data

Data — Data to import from the workspace
list of variables | valid MATLAB expression

Specify the data to import by selecting a variable from the drop-down list. If the variable is a matrix, the app imports the first column of the matrix by default. To select a different column or row of the matrix, click Select Column or Row. Alternatively, you can enter any valid MATLAB expression in the field.

Censoring — Variable containing censoring data
list of variables

Specify the censoring data by selecting a variable from the drop-down list. If the variable is a matrix, the app imports the first column of the matrix by default. To select a different column or row of the matrix, click Select Column or Row. This parameter is optional.

Frequency — Variable containing frequency data
list of variables

Specify the frequency data by selecting a variable from the drop-down list. If the variable is a matrix, the app imports the first column of the matrix by default. To select a different column or row of the matrix, click Select Column or Row. This parameter is optional.

Data set name — Data set name
character vector

Specify a name for the data set as a character vector, or accept the default name.

Manage data sets — Manage previously imported data sets
list of data sets

Manage previously imported data sets. Click the data set of interest, then click the buttons below this pane to view the data (View), set the bin rules (Set Bin Rules), rename the data set (Rename), or delete the data set (Delete).

Data preview — Preview plot of data
histogram plot

Display a preview plot of the variable selected from the Data drop-down menu.
New fit

Fit name — Name of fit
character vector

Specify a name for the fit or accept the default name.

Data — Data set to fit
list of data sets

Specify the data to fit by selecting a data set from the drop-down list.

Distribution — Distribution to fit
Normal (default) | Exponential | Weibull | Non-parametric | ...

Specify the distribution to fit by selecting a distribution name from the drop-down list.

Exclusion rule — Data exclusion rule
list of exclusion rules

Specify a rule to exclude some data values by selecting an exclusion rule from the drop-down list. To populate this drop-down list, you must first define exclusion rules by clicking Exlude in the main window of the app. This parameter is optional.

Manage fits

Plot — Flag to plot fitted distribution
checked (default) | unchecked

Specify which fit or fits to plot in the main window by selecting the Plot check box next to each fit. Clear the Plot check box to remove a fit from the plot.

Confounds — Flag to plot confidence bounds
unchecked (default) | checked

If you select Plot for a particular fit, you can select Confounds to display the confidence bounds for that fit on the plot in the main window. Clearing the Confounds check box removes the confidence intervals from the plot. The Distribution Fitter app displays confidence bounds only if the Display Type in the main window is set to Cumulative probability (CDF), Quantile (inverse CDF), Survivor function, or Cumulative hazard.
Evaluate

Fit — Fit to evaluate
list of fits

Select one or more fits from the list to evaluate.

Function — Available functions to fit
Density (PDF) (default) | Cumulative probability (CDF) | Quantile (inverse CDF) | Survivor function | Cumulative hazard | Hazard rate

Specify the type of probability function to evaluate from the drop-down list. Available probability functions include the probability density function (pdf), cumulative distribution function (cdf), quantile (inverse cdf), survival function, cumulative hazard, and hazard rate.

At x = — Values at which to evaluate function
numeric vector

Specify a numeric vector of values at which to evaluate the function. If you specify Function as Quantile (inverse CDF), this field name changes to At p = and you enter a vector of probability values.

Compute confidence bounds — Flag to compute confidence bounds
unchecked (default) | checked

Select Compute confidence bounds to compute the confidence bounds for the selected fit. This check box is enabled only if you specify Function as Cumulative probability (CDF), Quantile (inverse CDF), Survivor function, or Cumulative hazard. This parameter is optional.

Level — Level for confidence bounds
95% (default) | numeric value

Specify the level at which to compute the confidence bounds. This check box is enabled only if you specify Function as Cumulative probability (CDF), Quantile (inverse CDF), Survivor function, or Cumulative hazard.

Plot function — Flag to plot function
unchecked (default) | checked

Select Plot function to display a plot of the distribution function, evaluated at the points that you enter in the At x = field, in a new window. This parameter is optional.
Exclude

Exclusion rule name — Name of exclusion rule
character vector

Specify a name for the exclusion rule as a character vector.

Exclude sections — Define data exclusion rules numerically
numeric value

Specify lower and upper limits for the data numerically.

Exclude graphically — Define data exclusion rules graphically
list of variables

Specify lower and upper limits for the data by selecting a variable from the **Select data** drop-down list and clicking **Exclude graphically**. An interactive plot opens in a new window, where you can add lower or upper limits by clicking and dragging a boundary on the plot.

Existing exclusion rules — List of existing exclusion rules
list of exclusion rules

Select an existing exclusion rule from the list. You can copy, view, rename, or delete exclusion rules by clicking the appropriate button.

Programmatic Use

distributionFitter opens the Distribution Fitter app, or brings focus to the app if it is already open.

distributionFitter(y) opens the Distribution Fitter app populated with the data specified by the vector y.

distributionFitter(y,cens) uses the vector cens to specify whether the observation y(j) is censored, (cens(j)==1), or observed exactly, (cens(j)==0). If cens is omitted or empty, then no y values are censored.
distributionFitter(y, cens, freq) uses the vector freq to specify the frequency of each element contained in y. If freq is omitted or empty, then all values in y have a frequency of 1.

distributionFitter(y, cens, freq, dsname) creates a data set with the name dsname using the data vector, y, censoring indicator, cens, and frequency vector, freq. Specify dsname as a character vector or string scalar, for example, 'mydata'.

See Also

Functions
distributionFitter | fitdist | makedist

Topics
“Fit a Distribution Using the Distribution Fitter App” on page 5-95
“Model Data Using the Distribution Fitter App” on page 5-68
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

Introduced before R2006a
plotPartialDependence

Package:

Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots

Syntax

plotPartialDependence(Mdl,Vars)
plotPartialDependence(Mdl,Vars,X)
plotPartialDependence(___,Name,Value)
ax = plotPartialDependence(___)

Description

plotPartialDependence(Mdl,Vars) creates a PDP between features listed in Vars and responses predicted by using predictor data and a trained regression model in Mdl.

plotPartialDependence(Mdl,Vars,X) creates a PDP by using new predictor data in X.

plotPartialDependence(___,Name,Value) uses additional options specified by one or more name-value pair arguments in addition to any of the arguments in the previous syntaces. For example, if you specify 'Conditional','absolute', the plotPartialDependence function creates a figure including a PDP, a scatter plot of the selected feature and predicted responses, and an ICE plot for each observation.

ax = plotPartialDependence(___) returns the axes of the plot using any of the input arguments combinations in the previous syntaces.

Examples
Create Partial Dependence Plot

Train a regression tree using the `carsmall` data set, and create a PDP that shows the relationship between a feature and the predicted responses in the trained regression tree.

Load the `carsmall` data set.

```matlab
load carsmall
```

Specify `Weight`, `Cylinders`, and `Horsepower` as the predictor variables (X), and `MPG` as the response variable (Y).

```matlab
X = [Weight,Cylinders,Horsepower];
Y = MPG;
```

Construct a regression tree using `X` and `Y`.

```matlab
Mdl = fitrtree(X,Y);
```

View a graphical display of the trained regression tree.

```matlab
view(Mdl,'Mode','graph')
```
Create a PDP of the first predictor variable, Weight.

plotPartialDependence(Mdl,1)
The blue line represents averaged partial relationships between Weight (labeled as x_1) and MPG (labeled as Y) in the trained regression tree Mdl.

The regression tree viewer shows that the first decision is whether x_1 is smaller than 3085.5. The PDP also shows a large change near $x_1 = 3085.5$. The tree viewer visualizes each decision at each node based on predictor variables. You can find several nodes split based on the values of x_1, but it is not easy to figure out the dependence of Y on x_1. However, the PDP plots averaged predicted responses against x_1, so you can clearly see the partial dependence of Y on x_1.

The labels x_1 and Y are the default values of the predictor names and the response name. You can modify these names by specifying the name-value pair arguments.
'PredictorNames' and 'ResponseName' when you train Mdl using fitrtree. You can also modify axis labels by using the xlabel and ylabel functions.

Create Individual Conditional Expectation Plots

Train a Gaussian process regression model using generated sample data where a response variable includes interactions between predictor variables. Then, create ICE plots that show the relationship between a feature and the predicted responses for each observation.

Generate sample predictor data x1 and x2.

```matlab
rng('default') % For reproducibility
n = 200;
x1 = rand(n,1)*2-1;
x2 = rand(n,1)*2-1;
```

Generate response values that include interactions between x1 and x2.

```matlab
Y = x1-2*x1.*(x2>0)+0.1*rand(n,1);
```

Construct a Gaussian process regression model using [x1 x2] and Y.

```matlab
Mdl = fitrgp([x1 x2],Y);
```

Create a figure including a PDP (red line) for the first predictor x1, a scatter plot (black circle markers) of x1 and predicted responses, and a set of ICE plots (gray lines) by specifying 'Conditional' as 'centered'.

```matlab
plotPartialDependence(Mdl,1,'Conditional','centered')
```
When 'Conditional' is 'centered', plotPartialDependence offsets plots so that all plots start from zero, which is helpful in examining the cumulative effect of the selected feature.

A PDP finds averaged relationships, so it does not reveal hidden dependencies especially when responses include interactions between features. However, the ICE plots clearly show two different dependencies of responses on $x1$.
Compare Importance of Predictor Variables

Train a regression ensemble using the carsmall data set, and create a PDP plot and ICE plots for each predictor variable using a new data set, carbig. Then, compare the figures to analyze the importance of predictor variables. Also, compare the results with the estimates of predictor importance returned by the predictorImportance function.

Load the carsmall data set.

```
load carsmall
```

Specify Weight, Cylinders, Horsepower, and Model_Year as the predictor variables (X), and MPG as the response variable (Y).

```
X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;
```

Train a regression ensemble using X and Y.

```
Mdl = fitrensemble(X,Y, ... 
  'PredictorNames',{'Weight','Cylinders','Horsepower','Model Year'}, ... 
  'ResponseName','MPG');
```

Compare the importance of predictor variables by using the plotPartialDependence and predictorImportance functions. The plotPartialDependence function visualizes the relationships between a selected predictor and predicted responses. predictorImportance summarizes the importance of a predictor with a single value.

Create a figure including a PDP plot (red line) and ICE plots (gray lines) for each predictor by using plotPartialDependence and specifying 'Conditional','absolute'. Each figure also includes a scatter plot (black circle markers) of the selected predictor and predicted responses. Also, load the carbig data set and use it as new predictor data, Xnew. When you provide Xnew, the plotPartialDependence function uses Xnew instead of the predictor data in Mdl.

```
load carbig
Xnew = [Weight,Cylinders,Horsepower,Model_Year];

f = figure;
f.Position = [100 100 1.75*f.Position(3:4)]; % Enlarge figure for visibility.
for i = 1 : 4
  subplot(2,2,i)
  plotPartialDependence(Mdl,i,Xnew,'Conditional','absolute')
end
```
Compute estimates of predictor importance by using `predictorImportance`. This function sums changes in the mean-squared error (MSE) due to splits on every predictor, and then divides the sum by the number of branch nodes.

```matlab
imp = predictorImportance(Mdl);
figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
```
ax = gca;
ax.XTickLabel = Mdl.PredictorNames;

The variable Weight has the most impact on MPG according to predictor importance. The PDP of Weight also shows that MPG has high partial dependence on Weight. The variable Cylinders has the least impact on MPG according to predictor importance. The PDP of Cylinders also shows that MPG does not change much depending on Cylinders.
Extract Partial Dependence Estimates from Plots

Train a support vector machine (SVM) regression model using the carsmall data set, and create a PDP for two predictor variables. Then, extract partial dependence estimates from the output of plotPartialDependence.

Load the carsmall data set.

```
load carsmall
```

Specify Weight, Cylinders, and Horsepower as the predictor variables (Tbl).

```
Tbl = table(Weight,Cylinders,Horsepower);
```

Construct a support vector machine (SVM) regression model using Tbl and the response variable MPG. Use a Gaussian kernel function with an automatic kernel scale.

```
Mdl = fitrsvm(Tbl,MPG,'ResponseName','MPG', ... 
    'KernelFunction','gaussian','KernelScale','auto');
```

Create a PDP that visualizes partial dependence of predicted responses (MPG) on the predictor variables Weight and Horsepower. Use the QueryPoints name-value pair argument to specify the points to compute partial dependence.

```
pt1 = linspace(min(Weight),max(Weight),50)';
pt2 = linspace(min(Horsepower),max(Horsepower),50)';
ax = plotPartialDependence(Mdl,{'Weight','Horsepower'},'QueryPoints',[pt1 pt2]);
view(140,30) % Modify the viewing angle
The PDP shows an interaction effect between Weight and Horsepower.

Extract the estimated partial dependence of MPG on Weight and Horsepower. The XData, YData, and ZData values of ax.Children are x-axis values (the first selected predictor values), y-axis values (the second selected predictor values), and z-axis values (the corresponding partial dependence values), respectively.

```matlab
xval = ax.Children.XData;
yval = ax.Children.YData;
zval = ax.Children.ZData;
```

If you specify 'Conditional' as 'absolute', plotPartialDependence creates a figure including a PDP, a scatter plot, and a set of ICE plots. ax.Children(1) and ax.Children(2) correspond to the PDP and scatter plot, respectively. The remaining
elements of ax.Children correspond to the ICE plots. The XData and YData values of ax.Children(i) are x-axis values (the selected predictor values) and y-axis values (the corresponding partial dependence values), respectively.

Input Arguments

**Md1 — Trained regression model**

full regression model object | compact regression model object

Trained regression model, specified as a full or compact regression model object described in the following table.

<table>
<thead>
<tr>
<th>Trained Model Type Description</th>
<th>Regression Model Object</th>
<th>Returned By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap aggregation for ensemble of decision trees</td>
<td>TreeBagger, CompactTreeBagger</td>
<td>TreeBagger, compact</td>
</tr>
<tr>
<td>Ensemble of regression models</td>
<td>RegressionEnsemble, RegressionBaggedEnsemble, CompactRegressionEnsemble</td>
<td>fitrensemble, compact</td>
</tr>
<tr>
<td>Gaussian process regression</td>
<td>RegressionGP, CompactRegressionGP</td>
<td>fitrgp, compact</td>
</tr>
<tr>
<td>Generalized linear mixed-effect model</td>
<td>GeneralizedLinearMixedModel</td>
<td>fitglme</td>
</tr>
<tr>
<td>Generalized linear model</td>
<td>GeneralizedLinearModel, CompactGeneralizedLinearModel</td>
<td>fitglm, stepwiseglm, compact</td>
</tr>
<tr>
<td>Linear mixed-effect model</td>
<td>LinearMixedModel</td>
<td>fitlme, fitlmematrix</td>
</tr>
<tr>
<td>Linear regression</td>
<td>LinearModel, CompactLinearModel</td>
<td>fitlm, stepwiselm, compact</td>
</tr>
<tr>
<td>Linear regression for high-dimensional data</td>
<td>RegressionLinear</td>
<td>fitrlinear</td>
</tr>
<tr>
<td>Trained Model Type</td>
<td>Regression Model Object</td>
<td>Returned By</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Nonlinear regression</td>
<td>NonLinearModel</td>
<td>fitnlm</td>
</tr>
<tr>
<td>Regression tree</td>
<td>RegressionTree, CompactRegressionTree</td>
<td>fitrtree, compact</td>
</tr>
<tr>
<td>Support vector machine regression</td>
<td>RegressionSVM, CompactRegressionSVM</td>
<td>fitrsvm, compact</td>
</tr>
</tbody>
</table>

If Mdl is a compact regression model object, you must provide X.

plotPartialDependence does not support a trained model object with a sparse matrix. If you train Mdl by using fitrlinear, use a full numeric matrix for predictor data where rows correspond to individual observations.

**Vars — Features to visualize**

vector of positive integers | character vector | string scalar | string array | cell array of character vectors

Features to visualize, specified as a vector of positive integers, character vector or string scalar, string array, or cell array of character vectors. You can choose one or two features, as shown in the following tables.

**One Feature**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive integer</td>
<td>Index value corresponding to the column of the predictor data to visualize.</td>
</tr>
<tr>
<td>character vector or string scalar</td>
<td>Name of a predictor variable to visualize. The name must match the entry in Mdl.PredictorNames.</td>
</tr>
</tbody>
</table>

**Two Features**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector of two positive integers</td>
<td>Index values corresponding to the columns of the predictor data to visualize.</td>
</tr>
<tr>
<td>string array or cell array of character vectors</td>
<td>Names of the predictor variables to visualize. Each element in the array is the name of a predictor variable. The names must match the entries in Mdl.PredictorNames.</td>
</tr>
</tbody>
</table>

Example: \{'x1', 'x3'\}
Data Types: single | double | char | string | cell

X — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table. Each row of X corresponds to one observation, and each column corresponds to one variable.

- If Mdl is a full regression model object, plotPartialDependence uses the predictor data in Mdl. If you provide X, then plotPartialDependence does not use the predictor data in Mdl and uses X only.
- If Mdl is a compact regression model object, you must provide X.

X must be consistent with the predictor data that trained Mdl, stored in either Mdl.X or Mdl.Variables.

- If you trained Mdl using a numeric matrix, then X must be a numeric matrix. The variables making up the columns of X must have the same number and order as the predictor variables that trained Mdl.
- If you trained Mdl using a table (for example, Tbl), then X must be a table. All predictor variables in X must have the same variable names and data types as the names and types in Tbl. However, the column order of X does not need to correspond to the column order of Tbl.
- plotPartialDependence does not support a sparse matrix.

Data Types: single | double | table

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: plotPartialDependence(Mdl,Vars,X,'NumObservationsToSample',100,'UseParallel',true) creates a PDP by using 100 sampled observations in X and executing for-loop iterations in parallel.

Conditional — Plot type
'none' (default) | 'absolute' | 'centered'
Plot type, specified as the comma-separated pair consisting of 'Conditional' and 'none', 'absolute', or 'centered'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'none'</td>
<td>plotPartialDependence creates a PDP.</td>
</tr>
<tr>
<td></td>
<td>• If you select one numeric feature in Vars, plotPartialDependence computes partial dependence at values between the minimum and maximum of the selected feature and creates a PDP with a solid blue line.</td>
</tr>
<tr>
<td></td>
<td>• If you select one categorical feature in Vars, plotPartialDependence computes predicted responses at all categorical values and plots partial dependence with blue circle markers connected with a dotted line.</td>
</tr>
<tr>
<td></td>
<td>• If you select two features in Vars, plotPartialDependence creates a surface plot.</td>
</tr>
<tr>
<td>'absolute'</td>
<td>plotPartialDependence creates a figure including the following three types of plots:</td>
</tr>
<tr>
<td></td>
<td>• PDP with a solid red line</td>
</tr>
<tr>
<td></td>
<td>• Scatter plot of the selected feature and predicted responses with black circle markers</td>
</tr>
<tr>
<td></td>
<td>• ICE plot for each observation with a solid gray line</td>
</tr>
<tr>
<td></td>
<td>This value is valid when you select only one feature.</td>
</tr>
<tr>
<td>'centered'</td>
<td>plotPartialDependence creates a figure including the same three types of plots as 'absolute'. plotPartialDependence offsets plots so that all plots start from zero.</td>
</tr>
<tr>
<td></td>
<td>This value is valid when you select only one feature.</td>
</tr>
</tbody>
</table>

For details, see “Partial Dependence Plot” on page 32-7111 and “Individual Conditional Expectation Plots” on page 32-7112.

Example: 'Conditional', 'absolute'

NumObservationsToSample — Number of observations to sample
number of total observations (default) | positive integer

Number of observations to sample, specified as the comma-separated pair consisting of 'NumObservationsToSample' and a positive integer. The default value is the number
of total observations in either Mdl or X. If you specify a value larger than the number of total observations, then plotPartialDependence uses all observations.

plotPartialDependence samples observations without replacement by using the function datasample and uses the sampled observations to compute partial dependence. If you specify 'Conditional' as either 'absolute' or 'centered', plotPartialDependence creates a figure including an ICE plot for each sampled observation.

Example: 'NumObservationsToSample',100

Data Types: single | double

ParentAxisHandle — Axes in which to plot
gca (default) | axes object

Axes in which to plot, specified as the comma-separated pair consisting of 'ParentAxisHandle' and an axes object. If you do not specify the axes and if the current axes are Cartesian, then plotPartialDependence uses the current axes (gca). If axes do not exist, plotPartialDependence plots in a new figure.

Example: 'ParentAxisHandle',ax

QueryPoints — Points to compute partial dependence
numeric column vector | numeric two column matrix | cell array of two numeric column vectors

Points to compute partial dependence, specified as the comma-separated pair consisting of 'QueryPoints' and a numeric column vector, a numeric two-column matrix, or a cell array of two numeric column vectors.

The default value is a numeric column vector or a numeric two-column matrix, depending on the number of selected features, where a column contains 100 evenly spaced points between the minimum and maximum values of the selected feature.

• If you select one feature in Vars, use a numeric column vector.
• If you select two features in Vars:
  • Use a numeric two-column matrix to specify the same number of points for each feature.
  • Use a cell array of two numeric column vectors to specify a different number of points for each feature.
The default values for a categorical feature are all categorical values in the selected feature. You cannot modify 'QueryPoints' for a categorical feature. If you select one numeric feature and one categorical feature, you can specify 'QueryPoints' for a numeric feature by using a cell array consisting of a numeric column vector and an empty array.

Example: '
QueryPoints',{pt,[]}

Data Types: single | double | cell

**UseParallel — Flag to run in parallel**

false (default) | true

Flag to run in parallel, specified as the comma-separated pair consisting of 'UseParallel' and true or false. If you specify 'UseParallel' as true, `plotPartialDependence` executes for-loop iterations in parallel by using `parfor` when predicting responses for each observation and averaging them.

Example: 'UseParallel',true

Data Types: logical

### Output Arguments

**ax — Axes of the plot**

axes object

Axes of the plot, returned as an axes object. For details on how to modify the appearance of the axes and extract data from plots, see “Axes Appearance” (MATLAB) and “Extract Partial Dependence Estimates from Plots” on page 32-7103.

### Definitions

**Partial Dependence Plot**

A partial dependence plot (PDP) visualizes relationships between features and predicted responses in a trained regression model. `plotPartialDependence` creates either a line plot or a surface plot of predicted responses against a single feature or a pair of features, respectively, by marginalizing over the other variables.
Consider a PDP for a subset \( X^S \) of the whole feature set \( X = \{x_1, x_2, \ldots, x_m\} \). A subset \( X^S \) includes either one feature or two features: \( X^S = \{x_{S1}\} \) or \( X^S = \{x_{S1}, x_{S2}\} \). Let \( X^C \) be the complementary set of \( X^S \) in \( X \). A predicted response \( f(X) \) depends on all features in \( X \):

\[
f(X) = f(X^S, X^C).
\]

The partial dependence of predicted responses on \( X^S \) is defined by the expectation of predicted responses with respect to \( X^C \):

\[
f^S(X^S) = E_C \left[ f(X^S, X^C) \right] = \int f(X^S, X^C) p_C(X^C) dX^C,
\]

where \( p_C(X^C) \) is the marginal probability of \( X^C \), that is, \( p_C(X^C) = \int p(X^S, X^C) dX^S \). Assuming that each observation is equally likely, and the dependence between \( X^S \) and \( X^C \) and the interactions of \( X^S \) and \( X^C \) in responses are not strong, \texttt{plotPartialDependence} estimates the partial dependence by using observed predictor data as follows:

\[
f^S(X^S) \approx \frac{1}{N} \sum_{i=1}^{N} f(X^S, X_i^C),
\]

(32-1)

where \( N \) is the number of observations and \( X_i = (X^S_i, X_i^C) \) is the \( i \)th observation.

\texttt{plotPartialDependence} creates a PDP by using “Equation 32-1”. Input a trained model \((f(\cdot))\) and select features \((X^S)\) to visualize by using the input arguments \texttt{Mdl} and \texttt{Vars}, respectively. \texttt{plotPartialDependence} computes partial dependence at 100 evenly spaced points of \( X^S \) or the points that you specify by using the 'QueryPoints' name-value pair argument. You can specify the number \((N)\) of observations to sample from given predictor data by using the 'NumObservationsToSample' name-value pair argument.

**Individual Conditional Expectation Plots**

An individual conditional expectation (ICE) plot[2], as an extension of a PDP, visualizes the relationship between a feature and the predicted responses for each observation. While a PDP visualizes the averaged relationship between features and predicted responses, a set of ICE plots disaggregates the averaged information and visualizes an individual dependence for each observation.

\texttt{plotPartialDependence} creates an ICE plot for each observation. A set of ICE plots is useful to investigate heterogeneities of partial dependence originating from different
observations. plotPartialDependence can also create ICE plots with any predictor data provided through the input argument X. You can use this feature to explore predicted response space.

Consider an ICE plot for a selected feature $x_S$ with a given observation $X_i^C$, where $X^S = \{x_S\}$, $X^C$ is the complementary set of $X^S$ in the whole feature set $X$, and $X_i = (X_i^S, X_i^C)$ is the $i$th observation. The ICE plot corresponds to the summand of the summation in "Equation 32-1":

$$f^{S_i}(X^S) = f(X^S, X_i^C).$$

plotPartialDependence plots $f^{S_i}(X^S)$ for each observation $i$ when you specify 'Conditional' as 'absolute'. If you specify 'Conditional' as 'centered', plotPartialDependence draws all plots after removing level effects due to different observations:

$$f^{S_i,\text{centered}}(X^S) = f(X^S, X_i^C) - f(\min(X^S), X_i^C).$$

This subtraction ensures that each plot starts from zero, so that you can examine the cumulative effect of $X^S$ and the interactions between $X^S$ and $X^C$.

**Weighted Traversal Algorithm**

The weighted traversal algorithm[1] is a method to estimate partial dependence for a tree-based regression model. The estimated partial dependence is the weighted average of response values corresponding to the leaf nodes visited during the tree traversal.

Let $X^S$ be a subset of the whole feature set $X$ and $X^C$ be the complementary set of $X^S$ in $X$. For each $X^S$ value to compute partial dependence, the algorithm traverses a tree from the root (beginning) node down to leaf (terminal) nodes and finds the weights of leaf nodes. The traversal starts by assigning a weight value of one at the root node. If a node splits by $X^S$, the algorithm traverses to the appropriate child node depending on the $X^S$ value. The weight of the child node becomes the same value as its parent node. If a node splits by $X^C$, the algorithm traverses to both child nodes. The weight of each child node becomes a value of its parent node multiplied by the fraction of observations corresponding to each child node. After completing the tree traversal, the algorithm computes the weighted average by using the assigned weights.
For an ensemble of regression trees, the estimated partial dependence is an average of the weighted averages over the individual regression trees.

**Algorithms**

`plotPartialDependence` uses a `predict` function to predict responses. `plotPartialDependence` chooses the proper `predict` function according to `Mdl` and runs `predict` with its default settings. For details about each `predict` function, see the `predict` function in the following table. If `Mdl` is a tree-based model and 'Conditional' is 'none', then `plotPartialDependence` uses the weighted traversal algorithm instead of the `predict` function. For details, see “Weighted Traversal Algorithm” on page 32-7113.

<table>
<thead>
<tr>
<th>Trained Model Type</th>
<th>Regression Model Object</th>
<th>Function to Predict Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap aggregation for ensemble of decision trees</td>
<td>CompactTreeBagger</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Bootstrap aggregation for ensemble of decision trees</td>
<td>TreeBagger</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Ensemble of regression models</td>
<td>RegressionEnsemble, RegressionBaggedEnsemble, CompactRegressionEnsemble</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Gaussian process regression</td>
<td>RegressionGP, CompactRegressionGP</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Generalized linear mixed-effect model</td>
<td>GeneralizedLinearMixedModel</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Generalized linear model</td>
<td>GeneralizedLinearModel, CompactGeneralizedLinearModel</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Linear mixed-effect model</td>
<td>LinearMixedModel</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Linear regression</td>
<td>LinearModel, CompactLinearModel</td>
<td><code>predict</code></td>
</tr>
<tr>
<td>Trained Model Type</td>
<td>Regression Model Object</td>
<td>Function to Predict Responses</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Linear regression for high-dimensional data</td>
<td>RegressionLinear</td>
<td>predict</td>
</tr>
<tr>
<td>Nonlinear regression</td>
<td>NonLinearModel</td>
<td>predict</td>
</tr>
<tr>
<td>Regression tree</td>
<td>RegressionTree, CompactRegressionTree</td>
<td>predict</td>
</tr>
<tr>
<td>Support vector machine regression</td>
<td>RegressionSVM, CompactRegressionSVM</td>
<td>predict</td>
</tr>
</tbody>
</table>

**References**


**Extended Capabilities**

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

Set the 'UseParallel',true name-value pair argument in the call to this function.
See Also
:oobPermutedPredictorImportance | predictorImportance |
predictorImportance | relieff | sequentialfs

Introduced in R2017b
fitckernel

Fit Gaussian kernel classification model using random feature expansion

fitckernel trains or cross-validates a binary Gaussian kernel classification model for nonlinear classification. fitckernel is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.

fitckernel maps data in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional space by minimizing the regularized objective function. Obtaining the linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model in the low-dimensional space. Available linear classification models include regularized support vector machine (SVM) and logistic regression models.

To train a nonlinear SVM model for binary classification of in-memory data, see fitcsvm.

Syntax

Mdl = fitckernel(X,Y)
Mdl = fitckernel(X,Y,Name,Value)
[Mdl,FitInfo] = fitckernel(__)
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel(__)

Description

Mdl = fitckernel(X,Y) returns a binary Gaussian kernel classification model trained using the predictor data in X and the corresponding class labels in Y. The fitckernel function maps the predictors in a low-dimensional space into a high-dimensional space, then fits a binary SVM model to the transformed predictors and class labels. This linear model is equivalent to the Gaussian kernel classification model in the low-dimensional space.

Mdl = fitckernel(X,Y,Name,Value) returns a kernel classification model with additional options specified by one or more name-value pair arguments. For example, you can implement logistic regression, specify the number of dimensions of the expanded space, or specify to cross-validate.
[Mdl, FitInfo] = fitckernel(___) also returns the fit information in the structure array FitInfo using any of the input arguments in the previous syntaxes. You cannot request FitInfo for cross-validated models.

[Mdl, FitInfo, HyperparameterOptimizationResults] = fitckernel(___) also returns the hyperparameter optimization results HyperparameterOptimizationResults when you optimize hyperparameters by using the 'OptimizeHyperparameters' name-value pair argument.

**Examples**

**Train Kernel Classification Model**

Train a binary kernel classification model using SVM.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2×1 cell array
 {'b'}
 {'g'}
```

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or good ('g'). Extract a fit summary to determine how well the optimization algorithm fits the model to the data.

```matlab
rng('default') % For reproducibility
[Mdl, FitInfo] = fitckernel(X,Y)
```

```matlab
Mdl = ClassificationKernel
 ResponseName: 'Y'
```
ClassNames: {'b' 'g'}
Learner: 'svm'
NumExpansionDimensions: 2048
KernelScale: 1
    Lambda: 0.0028
    BoxConstraint: 1

Properties, Methods

FitInfo = struct with fields:
    Solver: 'LBFGS-fast'
    LossFunction: 'hinge'
    Lambda: 0.0028
    BetaTolerance: 1.0000e-04
    GradientTolerance: 1.0000e-06
    ObjectiveValue: 0.2604
    GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
    FitTime: 0.0662
    History: []

Mdl is a ClassificationKernel model. To inspect the in-sample classification error, you can pass Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the predict function to predict class labels for new observations. You can also pass Mdl and the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine whether optimization termination measurements are satisfactory.

For better accuracy, you can increase the maximum number of optimization iterations ('IterationLimit') and decrease the tolerance values ('BetaTolerance' and 'GradientTolerance') by using the name-value pair arguments. Doing so can improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.
Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere
rng('default') % For reproducibility

Cross-validate a binary kernel classification model. By default, the software uses 10-fold cross-validation.

CVMdl = fitckernel(X,Y,'CrossVal','on')

CVMdl =
    classreg.learning.partition.ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
    ResponseName: 'Y'
    NumObservations: 351
    KFold: 10
    Partition: [1x1 cvpartition]
    ClassNames: {'b'  'g'}
    ScoreTransform: 'none'

Properties, Methods

numel(CVMdl.Trained)
ans = 10

CVMdl is a ClassificationPartitionedKernel model. Because fitckernel implements 10-fold cross-validation, CVMdl contains 10 ClassificationKernel models that the software trains on training-fold (in-fold) observations.

Estimate the cross-validated classification error.

kfoldLoss(CVMdl)
ans = 0.0940

The classification error rate is approximately 9%.
Optimize Kernel Classifier

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair argument.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. Specify 'OptimizeHyperparameters' as 'auto' so that fitckernel finds optimal values of the 'KernelScale' and 'Lambda' name-value pair arguments. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

rng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
Min objective vs. Number of function evaluations

- Min observed objective
- Estimated min objective
Objective function model

Estimated objective function value

Lambda

Kernel Scale

- Observed points
- Model mean
- Next point
- Model minimum feasible
<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval result</th>
<th>Objective</th>
<th>Objective runtime</th>
<th>BestSoFar (observed)</th>
<th>BestSoFar (estim.)</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>0.35897</td>
<td>5.5023</td>
<td>0.35897</td>
<td>0.35897</td>
<td>64.836</td>
</tr>
<tr>
<td>2</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.69792</td>
<td>0.35897</td>
<td>0.35897</td>
<td>3.56335</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>0.39061</td>
<td>0.54966</td>
<td>0.35897</td>
<td>0.36053</td>
<td>0.0022147</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.36631</td>
<td>0.35897</td>
<td>0.35897</td>
<td>5.1259</td>
</tr>
<tr>
<td>5</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.57411</td>
<td>0.35897</td>
<td>0.35897</td>
<td>0.24853</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>0.35897</td>
<td>0.36631</td>
<td>0.35897</td>
<td>0.35897</td>
<td>8.0346</td>
</tr>
<tr>
<td>7</td>
<td>Best</td>
<td>0.10826</td>
<td>0.39189</td>
<td>0.10826</td>
<td>0.10833</td>
<td>7.9902</td>
</tr>
<tr>
<td>8</td>
<td>Best</td>
<td>0.062678</td>
<td>0.39601</td>
<td>0.062678</td>
<td>0.062536</td>
<td>8.0346</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.20988</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>10</td>
<td>Best</td>
<td>0.062678</td>
<td>0.41026</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>11</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.41447</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>12</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.42989</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>13</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.44419</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>14</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.47647</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>15</td>
<td>Best</td>
<td>0.062678</td>
<td>0.47932</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>16</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.49371</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>17</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.51347</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>18</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.54966</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>19</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.55937</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>20</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.59646</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>21</td>
<td>Accept</td>
<td>0.062678</td>
<td>0.62941</td>
<td>0.062678</td>
<td>0.062536</td>
<td>7.9902</td>
</tr>
<tr>
<td>22</td>
<td>Best</td>
<td>0.054131</td>
<td>0.45781</td>
<td>0.054131</td>
<td>0.054176</td>
<td>5.1719</td>
</tr>
<tr>
<td>23</td>
<td>Best</td>
<td>0.054131</td>
<td>0.89524</td>
<td>0.054131</td>
<td>0.054176</td>
<td>1.4618</td>
</tr>
<tr>
<td>24</td>
<td>Best</td>
<td>0.042735</td>
<td>0.50047</td>
<td>0.042735</td>
<td>0.042763</td>
<td>1.4618</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.4215</td>
<td>0.042735</td>
<td>0.042775</td>
<td>1.4618</td>
</tr>
<tr>
<td>26</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.82075</td>
<td>0.042735</td>
<td>0.042789</td>
<td>1.4618</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.55937</td>
<td>0.042735</td>
<td>0.042789</td>
<td>1.4618</td>
</tr>
<tr>
<td>28</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.75133</td>
<td>0.042735</td>
<td>0.042789</td>
<td>1.4618</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.42989</td>
<td>0.042735</td>
<td>0.042789</td>
<td>1.4618</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>0.042735</td>
<td>0.62941</td>
<td>0.042735</td>
<td>0.042789</td>
<td>1.4618</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 43.8186 seconds.
Total objective function evaluation time: 19.9761

Best observed feasible point:

<table>
<thead>
<tr>
<th>KernelScale</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9463</td>
<td>1.0169e-05</td>
</tr>
</tbody>
</table>

Observed objective function value = 0.042735
Estimated objective function value = 0.042792
Function evaluation time = 0.50047

Best estimated feasible point (according to models):

<table>
<thead>
<tr>
<th>KernelScale</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5043</td>
<td>0.0001237</td>
</tr>
</tbody>
</table>

Estimated objective function value = 0.042792
Estimated function evaluation time = 0.76494

Mdl = ClassificationKernel
ResponseName: 'Y'
ClassNames: {'b' 'g'}
Learner: 'svm'
NumExpansionDimensions: 2048
KernelScale: 3.5043
   Lambda: 1.2370e-04
BoxConstraint: 23.0320

Properties, Methods

FitInfo = struct with fields:
   Solver: 'LBFGS-fast'
   LossFunction: 'hinge'
   Lambda: 1.2370e-04
   BetaTolerance: 1.0000e-04
   GradientTolerance: 1.0000e-06
   ObjectiveValue: 0.0426
   GradientMagnitude: 0.0028
   RelativeChangeInBeta: 8.9154e-05
   FitTime: 0.1259
For big data, the optimization procedure can take a long time. If the data set is too large to run the optimization procedure, you can try to optimize the parameters using only partial data. Use the `datasample` function and specify 'Replace','false' to sample data without replacement.

**Input Arguments**

**X — Predictor data**  
numeric matrix

Predictor data, specified as an $n$-by-$p$ numeric matrix, where $n$ is the number of observations and $p$ is the number of predictors.
The length of \( Y \) and the number of observations in \( X \) must be equal.

Data Types: \texttt{single} | \texttt{double}

**\( Y \) — Class labels**

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- fitckernel supports only binary classification. Either \( Y \) must contain exactly two distinct classes, or you must specify two classes for training by using the \texttt{ClassNames} name-value pair argument.
- If \( Y \) is a character array, then each element must correspond to one row of the array.
- The length of \( Y \) and the number of observations in \( X \) must be equal.
- A good practice is to specify the class order by using the \texttt{ClassNames} name-value pair argument.

Data Types: \texttt{categorical} | \texttt{char} | \texttt{string} | \texttt{logical} | \texttt{single} | \texttt{double} | \texttt{cell}

**Note** fitckernel removes missing observations, that is, observations with any of these characteristics:

- \texttt{NaN}, empty character vector (""), empty string (""), \texttt{<missing>}, and \texttt{<undefined>} elements in the response (\( Y \))
- At least one \texttt{NaN} value in a predictor observation (row in \( X \))
- \texttt{NaN} value or 0 weight ("Weights")

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of \texttt{Name,Value} arguments. \texttt{Name} is the argument name and \texttt{Value} is the corresponding value. \texttt{Name} must appear inside quotes. You can specify several name and value pair arguments in any order as \texttt{Name1,Value1,...,NameN,ValueN}.

**Note** You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-
validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: Mdl = fitckernel(X,Y,'Learner','logistic','NumExpansionDimensions',2^15,'KernelScale','auto') implements logistic regression after mapping the predictor data to the 2^15 dimensional space using feature expansion with a kernel scale parameter selected by a heuristic procedure.

Kernel Classification Options

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'logistic'.

In the following table, \( f(x) = T(x)\beta + b \).

- \( x \) is an observation (row vector) from \( p \) predictor variables.
- \( T(\cdot) \) is a transformation of an observation (row vector) for feature expansion. \( T(x) \) maps \( x \) in \( \mathbb{R}^P \) to a high-dimensional space (\( \mathbb{R}^m \)).
- \( \beta \) is a vector of \( m \) coefficients.
- \( b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response Range</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>( y \in {-1,1}; 1 ) for the positive class and -1 otherwise</td>
<td>Hinge: ( \ell[y, f(x)] = \max[0,1 - yf(x)] )</td>
</tr>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Same as 'svm'</td>
<td>Deviance (logistic): ( \ell[y, f(x)] = \log[1 + \exp(-yf(x))] )</td>
</tr>
</tbody>
</table>

Example: 'Learner','logistic'

NumExpansionDimensions — Number of dimensions of expanded space
'auto' (default) | positive integer
Number of dimensions of the expanded space, specified as the comma-separated pair consisting of 'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the fitckernel function selects the number of dimensions using $2.\,^\text{ceil}(\min(\log_2(p)+5,15))$, where $p$ is the number of predictors.

For details, see “Random Feature Expansion” on page 32-7145.

Example: 'NumExpansionDimensions',2^15

Data Types: char | string | single | double

KernelScale — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. The software obtains a random basis for random feature expansion by using the kernel scale parameter. For details, see “Random Feature Expansion” on page 32-7145.

If you specify 'auto', then the software selects an appropriate kernel scale parameter using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed by using rng before training.

Example: 'KernelScale','auto'

Data Types: char | string | single | double

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar.

This argument is valid only when 'Learner' is 'svm'(default) and you do not specify a value for the regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda' because the box constraint ($C$) and the regularization term strength ($\lambda$) are related by $C = 1/(\lambda n)$, where $n$ is the number of observations.

Example: 'BoxConstraint',100

Data Types: single | double

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar
Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto' or a nonnegative scalar.

For 'auto', the value of 'Lambda' is \(1/n\), where \(n\) is the number of observations.

You can specify either 'BoxConstraint' or 'Lambda' because the box constraint \((C)\) and the regularization term strength \((\lambda)\) are related by \(C = 1/(\lambda n)\).

Example: 'Lambda',0.01

Data Types: char | string | single | double

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of 'CrossVal' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or Leaveout name-value pair argument. You can use only one cross-validation name-value pair argument at a time to create a cross-validated model.

Example: 'CrossVal','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)
Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1. Randomly select and reserve \( p \times 100\% \) of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Holdout', 0.1

Data Types: double | single

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', \( k \), then the software completes these steps:

1. Randomly partition the data into \( k \) sets.
2. For each set, reserve the set as validation data, and train the model using the other \( k - 1 \) sets.
3. Store the \( k \) compact, trained models in the cells of a \( k \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'KFold', 5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the \( n \) observations (where \( n \) is the number of observations excluding missing observations), the software completes these steps:
Reserve the observation as validation data, and train the model using the other \( n - 1 \) observations.

Store the \( n \) compact, trained models in the cells of an \( n \)-by-1 cell vector in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: CVPartition, Holdout, KFold, or Leaveout.

Example: 'Leaveout', 'on'

**Convergence Controls**

**BetaTolerance** — Relative tolerance on linear coefficients and bias term

1e–5 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \( B_t = [\beta_t' \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \( t \). If \( \|B_t - B_{t-1}\|_2 < \text{BetaTolerance} \), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

Example: 'BetaTolerance', 1e–6

Data Types: single | double

**GradientTolerance** — Absolute gradient tolerance

1e–6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.

Let \( \nabla L_t \) be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration \( t \). If \( \|\nabla L_t\|_\infty = \max |\nabla L_t| < \text{GradientTolerance} \), then optimization terminates.
If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.
Example: 'GradientTolerance',1e–5
Data Types: single | double

**IterationLimit — Maximum number of optimization iterations**

positive integer

Maximum number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize name-value pair argument. Otherwise, the default value is 100.
Example: 'IterationLimit',500
Data Types: single | double

**Other Kernel Classification Options**

**BlockSize — Maximum amount of allocated memory**

4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair consisting of 'BlockSize' and a positive scalar.

If fitckernel requires more memory than the value of 'BlockSize' to hold the transformed predictor data, then the software uses a block-wise strategy. For details about the block-wise strategy, see “Algorithms” on page 32-7146.
Example: 'BlockSize',1e4
Data Types: single | double

**RandomStream — Random number stream**

global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as the comma-separated pair consisting of 'RandomStream' and a random stream object. For details, see “Random Feature Expansion” on page 32-7145.

Use 'RandomStream' to reproduce the random basis functions that fitckernel uses to transform the predictor data to a high-dimensional space. For details, see “Managing the
Global Stream (MATLAB) and “Creating and Controlling a Random Number Stream” (MATLAB).

Example: 'RandomStream',RandStream('mlfg6331_64')

**HessianHistorySize — Size of history buffer for Hessian approximation**

15 (default) | positive integer

Size of the history buffer for Hessian approximation, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration, fitckernel composes the Hessian approximation by using statistics from the latest HessianHistorySize iterations.

Example: 'HessianHistorySize',10

Data Types: single | double

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1. Verbose controls the display of diagnostic information at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fitckernel does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td>fitckernel displays and stores the value of the objective function, gradient magnitude, and other diagnostic information. FitInfo.History contains the diagnostic information.</td>
</tr>
</tbody>
</table>

Example: 'Verbose',1

Data Types: single | double

**Other Classification Options**

**ClassNames — Names of classes to use for training**

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Names of classes to use for training, specified as the comma-separated pair consisting of 'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. ClassNames must have the same data type as Y.
If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Order the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order. For example, use ClassNames to specify the order of the dimensions of Cost or the column order of classification scores returned by predict.
• Select a subset of classes for training. For example, suppose that the set of all distinct class names in Y is {'a','b','c'}. To train the model using observations from classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.

Example: 'ClassNames',{'b','g'}

Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost

square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix or structure.

• If you specify the square matrix cost ('Cost',cost), then cost(i,j) is the cost of classifying a point into class j if its true class is i. That is, the rows correspond to the true class, and the columns correspond to the predicted class. To specify the class order for the corresponding rows and columns of cost, use the ClassNames name-value pair argument.
• If you specify the structure S ('Cost',S), then it must have two fields:
  • S.ClassNames, which contains the class names as a variable of the same data type as Y
  • S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as in S.ClassNames

The default value for Cost is ones(K) – eye(K), where K is the number of distinct classes.
fitckernel uses Cost to adjust the prior class probabilities specified in Prior. Then, fitckernel uses the adjusted prior probabilities for training and resets the cost matrix to its default.

Example: 'Cost',[0 2; 1 0]

Data Types: single | double | struct

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and 'empirical', 'uniform', a numeric vector, or a structure array.

This table summarizes the available options for setting prior probabilities.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'empirical'</td>
<td>The class prior probabilities are the class relative frequencies in Y.</td>
</tr>
<tr>
<td>'uniform'</td>
<td>All class prior probabilities are equal to 1/K, where K is the number of classes.</td>
</tr>
<tr>
<td>numeric vector</td>
<td>Each element is a class prior probability. Order the elements according to their order in Y. If you specify the order using the 'ClassNames' name-value pair argument, then order the elements accordingly.</td>
</tr>
<tr>
<td>structure array</td>
<td>A structure S with two fields:</td>
</tr>
<tr>
<td></td>
<td>• S.ClassNames contains the class names as a variable of the same type as Y.</td>
</tr>
<tr>
<td></td>
<td>• S.ClassProbs contains a vector of corresponding prior probabilities.</td>
</tr>
</tbody>
</table>

fitckernel normalizes the prior probabilities in Prior to sum to 1.

Example: 'Prior',struct('ClassNames',
{{'setosa','versicolor'}},'ClassProbs',1:2)

Data Types: char | string | double | single | struct
ScoreTransform — Score transformation

'ScoreTransform', specified as the comma-separated pair consisting of 'ScoreTransform' and a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>$1/(1 + e^{-2x})$</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>$\log(x / (1-x))$</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>$1/(1 + e^{-x})$</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>x (no transformation)</td>
</tr>
</tbody>
</table>
| 'sign'              | -1 for $x < 0$
|                     | 0 for $x = 0$
|                     | 1 for $x > 0$                                                               |
| 'symmetric'         | $2x - 1$                                                                    |
| 'symmetricismax'    | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1 |
| 'symmetriclogit'    | $2/(1 + e^{-x}) - 1$                                                        |

For a MATLAB function or a function you define, use its function handle for score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Example: 'ScoreTransform','logit'

Data Types: char | string | function_handle

Weights — Observation weights

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a positive numeric vector of length $n$, where $n$ is the number of observations in $X$. The
fitckernel function weighs the observations in X with the corresponding values in Weights.

The default value is ones(n,1).

fitckernel normalizes Weights to sum up to the value of the prior probability in the respective class.

Example: 'Weights',w

Data Types: single | double

**Hyperparameter Optimization Options**

*OptimizeHyperparameters — Parameters to optimize*

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of these values:

- 'none' — Do not optimize.
- 'auto' — Use {'KernelScale','Lambda'}.
- 'all' — Optimize all eligible parameters.
- Cell array of eligible parameter names.
- Cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitckernel by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair argument.

*Note* 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitckernel are:

- KernelScale — fitckernel searches among positive values, by default log-scaled in the range [1e-3,1e3].
- **Lambda** — `fitckernel` searches among positive values, by default log-scaled in the range \([1e^{-3}, 1e3]/n\), where \(n\) is the number of observations.
- **Learner** — `fitckernel` searches among 'svm' and 'logistic'.
- **NumExpansionDimensions** — `fitckernel` searches among positive integers, by default log-scaled in the range \([100, 10000]\).

Set nondefault parameters by passing a vector of `optimizableVariable` objects that have nondefault values. For example:

```matlab
load fisheriris
params = hyperparameters('fitckernel', meas, species);
params(2).Range = [1e-4, 1e6];
```

Pass `params` as the value of 'OptimizeHyperparameters'.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is \(\log(1 + \text{cross-validation loss})\) for regression and the misclassification rate for classification. To control the iterative display, set the `Verbose` field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the `ShowPlots` field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize Kernel Classifier” on page 32-7120.

Example: 'OptimizeHyperparameters', 'auto'

**HyperparameterOptimizationOptions — Options for optimization**

`structure`

Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the `OptimizeHyperparameters` name-value pair argument. All fields in the structure are optional.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer        | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.  
|                  | • 'gridsearch' — Use grid search with NumGridDivisions values per dimension.  
|                  | • 'randomsearch' — Search at random among MaxObjectiveEvaluations points.  
|                  | 'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults).  
| AcquisitionFunctionName | • 'expected-improvement-per-second-plus'  
|                  | • 'expected-improvement'  
|                  | • 'expected-improvement-plus'  
|                  | • 'expected-improvement-per-second'  
|                  | • 'lower-confidence-bound'  
|                  | • 'probability-of-improvement'  
|                  | For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4.  
| MaxObjectiveEvaluations | Maximum number of objective function evaluations.  

30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the bayesopt Verbose name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If false, the optimizer uses a single partition for the optimization. true usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, true requires at least twice as many function evaluations.</td>
<td>false</td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A cvpartition object, as created by cvpartition.</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0,1) representing the holdout fraction.</td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
</tr>
</tbody>
</table>

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments

**Mdl** — Trained kernel classification model
ClassificationKernel model object | ClassificationPartitionedKernel cross-validated model object

Trained kernel classification model, returned as a ClassificationKernel model object or ClassificationPartitionedKernel cross-validated model object.
If you set any of the name-value pair arguments `CrossVal`, `CVPartition`, `Holdout`, `KFold`, or `Leaveout`, then `Mdl` is a `ClassificationPartitionedKernel` cross-validated classifier. Otherwise, `Mdl` is a `ClassificationKernel` classifier.

To reference properties of `Mdl`, use dot notation. For example, enter `Mdl.NumExpansionDimensions` in the Command Window to display the number of dimensions of the expanded space.

**Note** Unlike other classification models, and for economical memory usage, a `ClassificationKernel` model object does not store the training data or training process details (for example, convergence history).

**FitInfo — Optimization details**

structure array

Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Solver</code></td>
<td>Objective function minimization technique: 'LBFGS-fast', 'LBFGS-blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 32-7146.</td>
</tr>
<tr>
<td><code>LossFunction</code></td>
<td>Loss function. Either 'hinge' or 'logit' depending on the type of linear classification model. See <code>Learner</code>.</td>
</tr>
<tr>
<td><code>Lambda</code></td>
<td>Regularization term strength. See <code>Lambda</code>.</td>
</tr>
<tr>
<td><code>BetaTolerance</code></td>
<td>Relative tolerance on the linear coefficients and the bias term. See <code>BetaTolerance</code>.</td>
</tr>
<tr>
<td><code>GradientTolerance</code></td>
<td>Absolute gradient tolerance. See <code>GradientTolerance</code>.</td>
</tr>
<tr>
<td><code>ObjectiveValue</code></td>
<td>Value of the objective function when optimization terminates. The classification loss plus the regularization term compose the objective function.</td>
</tr>
<tr>
<td><code>GradientMagnitude</code></td>
<td>Infinite norm of the gradient vector of the objective function when optimization terminates. See <code>GradientTolerance</code>.</td>
</tr>
</tbody>
</table>
To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.ObjectiveValue` in the Command Window.

A good practice is to examine `FitInfo` to assess whether convergence is satisfactory.

**HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters**

BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or a table of hyperparameters and associated values. The output is nonempty when the value of 'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field value of the 'HyperparameterOptimizationOptions' name-value pair argument:

<table>
<thead>
<tr>
<th>Value of Optimizer Field</th>
<th>Value of HyperparameterOptimizationResults</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bayesopt' (default)</td>
<td>Object of class BayesianOptimization</td>
</tr>
<tr>
<td>'gridsearch' or 'randomsearch'</td>
<td>Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)</td>
</tr>
</tbody>
</table>

**Limitations**

- `fitckernel` does not accept initial conditions for the vector of coefficients beta ($\beta$) and bias term ($b$) used to determine the decision function, $f(x) = T(x)\beta + b$. 

• `fitckernel` does not support standardization and cross-validation options.
• `fitckernel` does not accept table inputs.

Definitions

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel classification algorithm to use for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into two classes after mapping features into a high-dimensional space. Nonlinear features that are not linearly separable in a low-dimensional space can be separable in the expanded high-dimensional space. All the calculations for hyperplane classification use only dot products. You can obtain a nonlinear classification model by replacing the dot product \( x_1 x_2 \) with the nonlinear kernel function \( G(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle \), where \( x_i \) is the \( i \)th observation (row vector) and \( \varphi(x_i) \) is a transformation that maps \( x_i \) to a high-dimensional space (called the “kernel trick”). However, evaluating \( G(x_1, x_2) \) (Gram matrix) for each pair of observations is computationally expensive for a large data set (large \( n \)).

The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

\[
G(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle = T(x_1)T(x_2)',
\]

where \( T(x) \) maps \( x \) in \( \mathbb{R}^p \) to a high-dimensional space (\( \mathbb{R}^m \)). The Random Kitchen Sink scheme uses the random transformation

\[
T(x) = m^{-1/2} \exp(iZx)',
\]

where \( Z \in \mathbb{R}^{mxp} \) is a sample drawn from \( N(0, \sigma^{-2}) \) and \( \sigma^2 \) is a kernel scale. This scheme requires \( O(mp) \) computation and storage. The Fastfood scheme introduces another
random basis \( V \) instead of \( Z \) using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces the computation cost to \( O(m \log p) \) and reduces storage to \( O(m) \).

The `fitckernel` function uses the Fastfood scheme for random feature expansion and uses linear classification to train a Gaussian kernel classification model. Unlike solvers in the `fitcsvm` function, which require computation of the \( n \)-by-\( n \) Gram matrix, the solver in `fitckernel` only needs to form a matrix of size \( n \)-by-\( m \), with \( m \) typically much less than \( n \) for big data.

**Box Constraint**

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating observations, and aids in preventing overfitting (regularization). Increasing the box constraint can lead to longer training times.

The box constraint \( (C) \) and the regularization term strength \( (\lambda) \) are related by \( C = 1/(\lambda n) \), where \( n \) is the number of observations.

**Algorithms**

`fitckernel` minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge \( (L_2) \) regularization. To find the type of LBFGS solver used for training, type `FitInfo.Solver` in the Command Window.

- `'LBFGS-fast'` — LBFGS solver.
- `'LBFGS-blockwise'` — LBFGS solver with a block-wise strategy. If `fitckernel` requires more memory than the value of `BlockSize` to hold the transformed predictor data, then it uses a block-wise strategy.
- `'LBFGS-tall'` — LBFGS solver with a block-wise strategy for tall arrays.

When `fitckernel` uses a block-wise strategy, `fitckernel` implements LBFGS by distributing the calculation of the loss and gradient among different parts of the data at each iteration. Also, `fitckernel` refines the initial estimates of the linear coefficients and the bias term by fitting the model locally to parts of the data and combining the coefficients by averaging. If you specify `'Verbose',1`, then `fitckernel` displays diagnostic information for each data pass and stores the information in the `History` field of `FitInfo`. 

32-7146
When `fitckernel` does not use a block-wise strategy, the initial estimates are zeros. If you specify `'Verbose',1`, then `fitckernel` displays diagnostic information for each iteration and stores the information in the `History` field of `FitInfo`.

**References**


**Extended Capabilities**

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

- The default values for these name-value pair arguments are different when you work with tall arrays.
  - `'BetaTolerance'` — Default value is relaxed to 1e–3.
  - `'GradientTolerance'` — Default value is relaxed to 1e–5.
  - `'IterationLimit'` — Default value is relaxed to 20.
  - `'Verbose'` — Default value is 1.
- If `'KernelScale'` is 'auto', then `fitckernel` uses the random stream controlled by `tallrng` for subsampling. For reproducibility, you must set a random number seed for both the global stream and the random stream controlled by `tallrng`.  

32-7147
• If 'Lambda' is 'auto', then `fitckernel` might take an extra pass through the data to calculate the number of observations in X.
• `fitckernel` uses a block-wise strategy. For details, see “Algorithms” on page 32-7146.
• The cross-validation name-value pair arguments, which include 'CrossVal', 'CVPartition', 'Holdout', 'KFold', and 'Leaveout', are not supported.
• The 'HyperparameterOptimizationOptions' name-value pair argument supports only 'Holdout' for cross-validation. For example, you can specify `fitckernel(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).`

For more information, see “Tall Arrays” (MATLAB).

**Automatic Parallel Support**
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

To perform parallel hyperparameter optimization, use the 'HyperparameterOptions', struct('UseParallel',true) name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

**See Also**
ClassificationKernel | bayesopt | bestPoint | fitclinear | fitcsvm | predict | resume | templateKernel

**Topics**
“Train SVM Classifiers Using a Gaussian Kernel” on page 18-192
“Bayesian Optimization with Tall Arrays” on page 29-52

**Introduced in R2017b**
ClassificationKernel

Gaussian kernel classification model using random feature expansion

Description

ClassificationKernel is a trained model object for a binary Gaussian kernel classification model using random feature expansion. ClassificationKernel is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.

Unlike other classification models, and for economical memory usage, ClassificationKernel model objects do not store the training data. However, they do store information such as the number of dimensions of the expanded space, the kernel scale parameter, prior-class probabilities, and the regularization strength.

You can use trained ClassificationKernel models to continue training using the training data and to predict labels or classification scores for new data. For details, see resume and predict.

Creation

Create a ClassificationKernel object using the fitckernel function. This function maps data in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional space by minimizing the regularized objective function. The linear model in the high-dimensional space is equivalent to the model with a Gaussian kernel in the low-dimensional space. Available linear classification models include regularized support vector machine (SVM) and logistic regression models.

Properties

Kernel Classification Properties

Learner — Linear classification model type
'logistic' | 'svm'
Linear classification model type, specified as 'logistic' or 'svm'.

In the following table, $f(x) = T(x)\beta + b$.

- $x$ is an observation (row vector) from $p$ predictor variables.
- $T(\cdot)$ is a transformation of an observation (row vector) for feature expansion. $T(x)$ maps $x$ in $\mathbb{R}^p$ to a high-dimensional space ($\mathbb{R}^m$).
- $\beta$ is a vector of $m$ coefficients.
- $b$ is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss Function</th>
<th>FittedLoss Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'logistic'</td>
<td>Logistic regression</td>
<td>Deviance (logistic): $\ell[y, f(x)] = \log(1 + \exp[-yf(x)])$</td>
<td>'logit'</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine</td>
<td>Hinge: $\ell[y, f(x)] = \max[0, 1 - yf(x)]$</td>
<td>'hinge'</td>
</tr>
</tbody>
</table>

**NumExpansionDimensions — Number of dimensions of expanded space**

positive integer

Number of dimensions of the expanded space, specified as a positive integer.

Data Types: single | double

**KernelScale — Kernel scale parameter**

positive scalar

Kernel scale parameter, specified as a positive scalar.

Data Types: char | single | double

**BoxConstraint — Box constraint**

positive scalar

Box constraint, specified as a positive scalar.

Data Types: double | single
**Lambda — Regularization term strength**  
nonnegative scalar  

Regularization term strength, specified as a nonnegative scalar.  
Data Types: single | double

**FittedLoss — Loss function used to fit linear model**  
'hinge' | 'logit'  

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss Function</th>
<th>Learner Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hinge'</td>
<td>Support vector</td>
<td>Hinge:</td>
<td>'svm'</td>
</tr>
<tr>
<td></td>
<td>machine</td>
<td>$\ell[y,f(x)] = \max[0,1 - yf(x)]$</td>
<td></td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic regression</td>
<td>Deviance (logistic):</td>
<td>'logistic'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\ell[y,f(x)] = \log[1 + \exp[-yf(x)]]$</td>
<td></td>
</tr>
</tbody>
</table>

**Regularization — Complexity penalty type**  
'ridge (L2)'  

Complexity penalty type, which is always 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss function (see **FittedLoss**) and the regularization term, ridge ($L_2$) penalty.

The ridge ($L_2$) penalty is

$$\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2$$

where $\lambda$ specifies the regularization term strength (see Lambda). The software excludes the bias term ($\beta_0$) from the regularization penalty.

**Other Classification Properties**

**CategoricalPredictors — Indices of categorical predictors**  
[]
Indices of categorical predictors, whose value is always empty ([]) because a ClassificationKernel model does not support categorical predictors.

**ClassNames — Unique class labels**
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y. (The software treats string arrays as cell arrays of character vectors.) ClassNames also determines the class order.

Data Types: categorical | char | logical | single | double | cell

**Cost — Misclassification costs**
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

Data Types: double

**ModelParameters — Parameters used for training model**
structure

Parameters used for training the ClassificationKernel model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.

Data Types: struct

**PredictorNames — Predictor names**
cell array of character vectors
Predictor names in order of their appearance in the predictor data `X`, specified as a cell array of character vectors. The length of `PredictorNames` is equal to the number of columns in `X`.

Data Types: `cell`

**ExpandedPredictorNames — Expanded predictor names**
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

Because a `ClassificationKernel` model does not support categorical predictors, `ExpandedPredictorNames` and `PredictorNames` are equal.

Data Types: `cell`

**Prior — Prior class probabilities**
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. `Prior` has as many elements as classes in `ClassNames`, and the order of the elements corresponds to the elements of `ClassNames`.

Data Types: `double`

**ScoreTransform — Score transformation function to apply to predicted scores**

`'doublelogit'` | `'invlogit'` | `'ismax'` | `'logit'` | `'none'` | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function handle.

For kernel classification models and before the score transformation, the predicted classification score for the observation `x` (row vector) is $f(x) = T(x)\beta + b$.

- $T(\cdot)$ is a transformation of an observation for feature expansion.
- $\beta$ is the estimated column vector of coefficients.
- $b$ is the estimated scalar bias.

To change the score transformation function to `function`, for example, use dot notation.
For a built-in function, enter this code and replace `function` with a value from the table.

```matlab
Mdl.ScoreTransform = 'function';
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'doublelogit'</td>
<td>(1/(1 + e^{-2x}))</td>
</tr>
<tr>
<td>'invlogit'</td>
<td>(\log(x / (1-x)))</td>
</tr>
<tr>
<td>'ismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0</td>
</tr>
<tr>
<td>'logit'</td>
<td>(1/(1 + e^{-x}))</td>
</tr>
<tr>
<td>'none' or 'identity'</td>
<td>(x) (no transformation)</td>
</tr>
<tr>
<td>'sign'</td>
<td>-1 for (x &lt; 0) 0 for (x = 0) 1 for (x &gt; 0)</td>
</tr>
<tr>
<td>'symmetric'</td>
<td>(2x - 1)</td>
</tr>
<tr>
<td>'symmetricismax'</td>
<td>Sets the score for the class with the largest score to 1, and sets the scores for all other classes to -1</td>
</tr>
<tr>
<td>'symmetriclogit'</td>
<td>(2/(1 + e^{-x}) - 1)</td>
</tr>
</tbody>
</table>

For a MATLAB function, or a function that you define, enter its function handle.

```matlab
Mdl.ScoreTransform = @function;
```

`function` must accept a matrix of the original scores for each class, and then return a matrix of the same size representing the transformed scores for each class.

Data Types: `char` | `function_handle`

**ResponseName — Response variable name**

character vector

Response variable name, specified as a character vector.

Data Types: `char`
Object Functions

- `edge`: Classification edge for Gaussian kernel classification model
- `loss`: Classification loss for Gaussian kernel classification model
- `margin`: Classification margins for Gaussian kernel classification model
- `predict`: Predict labels for Gaussian kernel classification model
- `resume`: Resume training of Gaussian kernel classification model

Examples

Train Kernel Classification Model

Train a binary kernel classification model using SVM.

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell array
 { 'b' }
 { 'g' }
```

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or good ('g'). Extract a fit summary to determine how well the optimization algorithm fits the model to the data.

```matlab
rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)
```

Mdl =
    ClassificationKernel
    ResponseName: 'Y'
    ClassNames: {'b'  'g'}
    Learner: 'svm'
NumExpansionDimensions: 2048
  KernelScale: 1
    Lambda: 0.0028
  BoxConstraint: 1

Properties, Methods

FitInfo = struct with fields:
  Solver: 'LBFGS-fast'
  LossFunction: 'hinge'
    Lambda: 0.0028
  BetaTolerance: 1.0000e-04
  GradientTolerance: 1.0000e-06
  ObjectiveValue: 0.2604
  GradientMagnitude: 0.0028
  RelativeChangeInBeta: 8.2512e-05
  FitTime: 0.0662
  History: []

Mdl is a ClassificationKernel model. To inspect the in-sample classification error, you can pass Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the predict function to predict class labels for new observations. You can also pass Mdl and the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine whether optimization termination measurements are satisfactory.

For better accuracy, you can increase the maximum number of optimization iterations ('IterationLimit') and decrease the tolerance values ('BetaTolerance' and 'GradientTolerance') by using the name-value pair arguments. Doing so can improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.

Predict Class Labels and Resume Training

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').
load ionosphere

Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or good ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);

<p>|=================================================================================================================|</p>
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>1.000000e+00</td>
<td>0.000000e+00</td>
<td>2.811388e-01</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>7.585395e-01</td>
<td>4.000000e+00</td>
<td>3.594306e-01</td>
<td>1.000000e+00</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>7.160994e-01</td>
<td>1.000000e+00</td>
<td>2.028470e-01</td>
<td>6.923988e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>6.825272e-01</td>
<td>1.000000e+00</td>
<td>2.846975e-01</td>
<td>1.000000e+00</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>6.699435e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-01</td>
<td>1.000000e+00</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>5</td>
<td>6.535619e-01</td>
<td>1.000000e+00</td>
<td>1.325304e-01</td>
<td>2.388909e-01</td>
</tr>
<tr>
<td>=================================================================================================================</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mdl is a ClassificationKernel model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

label = predict(Mdl,XTest);
ConfusionTest = confusionmat(YTest,label)

ConfusionTest = 2×2

0  25
0  45

L = loss(Mdl,XTest,YTest)
$L = 0.3594$

Md1 misclassifies all bad radar returns as good returns.

Continue training by using `resume`. This function continues training with the same options used for training Md1.

```matlab
UpdatedMdl = resume(Mdl,XTrain,YTrain);
```

<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
<th>sum(beta~=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>6.535619e-01</td>
<td>0.000000e+00</td>
<td>2.669039e-01</td>
<td>1</td>
<td>2048</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>6.132547e-01</td>
<td>1.000000e+00</td>
<td>6.355537e-03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>5.938316e-01</td>
<td>4.000000e+00</td>
<td>3.202847e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>4.169274e-01</td>
<td>1.000000e+00</td>
<td>1.530249e-01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>3.679212e-01</td>
<td>5.000000e-01</td>
<td>2.740214e-01</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>5</td>
<td>3.332261e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>6</td>
<td>3.235335e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>7</td>
<td>3.112331e-01</td>
<td>1.000000e+00</td>
<td>6.049822e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>8</td>
<td>2.972144e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>9</td>
<td>2.837450e-01</td>
<td>1.000000e+00</td>
<td>8.185053e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>10</td>
<td>2.797642e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>11</td>
<td>2.771280e-01</td>
<td>1.000000e+00</td>
<td>2.846975e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>12</td>
<td>2.741570e-01</td>
<td>1.000000e+00</td>
<td>3.914591e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>13</td>
<td>2.725701e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-01</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>14</td>
<td>2.667147e-01</td>
<td>1.000000e+00</td>
<td>3.914591e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>15</td>
<td>2.621152e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>16</td>
<td>2.601652e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>17</td>
<td>2.589052e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>18</td>
<td>2.583185e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>19</td>
<td>2.556482e-01</td>
<td>1.000000e+00</td>
<td>9.252669e-02</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>20</td>
<td>2.542643e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-02</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>21</td>
<td>2.532117e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-01</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>22</td>
<td>2.529890e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>23</td>
<td>2.523232e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>24</td>
<td>2.506736e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>25</td>
<td>2.501995e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>26</td>
<td>2.488242e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>27</td>
<td>2.485295e-01</td>
<td>5.000000e-01</td>
<td>3.202847e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Solver</td>
<td>Pass</td>
<td>Iteration</td>
<td>Objective</td>
<td>Step</td>
<td>Gradient magnitude</td>
<td>Relative change in Beta</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>28</td>
<td>2.482244e-01</td>
<td>1.000000e+00</td>
<td>4.270463e-02</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>29</td>
<td>2.479714e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>30</td>
<td>2.477316e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>31</td>
<td>2.476178e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>32</td>
<td>2.474874e-01</td>
<td>2.500000e-01</td>
<td>3.202847e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>33</td>
<td>2.473980e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>34</td>
<td>2.472935e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>35</td>
<td>2.471418e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>36</td>
<td>2.469862e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>37</td>
<td>2.466941e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>38</td>
<td>2.466660e-01</td>
<td>5.000000e-01</td>
<td>1.423488e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>39</td>
<td>2.465605e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>40</td>
<td>2.465362e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>41</td>
<td>2.463528e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>42</td>
<td>2.463207e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>43</td>
<td>2.462585e-01</td>
<td>5.000000e-01</td>
<td>7.117438e-02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>44</td>
<td>2.461742e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>45</td>
<td>2.461434e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>46</td>
<td>2.461115e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>47</td>
<td>2.460814e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>48</td>
<td>2.460533e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>49</td>
<td>2.460111e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>50</td>
<td>2.459414e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>51</td>
<td>2.458809e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>52</td>
<td>2.458479e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>53</td>
<td>2.458146e-01</td>
<td>1.000000e+00</td>
<td>1.455008e-03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>54</td>
<td>2.457878e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>55</td>
<td>2.457519e-01</td>
<td>1.000000e+00</td>
<td>2.491103e-02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>56</td>
<td>2.457420e-01</td>
<td>1.000000e+00</td>
<td>7.473310e-02</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>57</td>
<td>2.457212e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>58</td>
<td>2.457089e-01</td>
<td>1.000000e+00</td>
<td>4.270463e-02</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>59</td>
<td>2.457047e-01</td>
<td>5.000000e-01</td>
<td>1.423488e-02</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>60</td>
<td>2.456991e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>61</td>
<td>2.456898e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>62</td>
<td>2.456792e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

32-7159
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>64</td>
<td>2.456603e-01</td>
<td>1.000000e+00</td>
<td>1.403782e-03</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>65</td>
<td>2.456482e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>66</td>
<td>2.456358e-01</td>
<td>1.000000e+00</td>
<td>1.403782e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>67</td>
<td>2.456124e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>68</td>
<td>2.455980e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>69</td>
<td>2.455780e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>70</td>
<td>2.455633e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>71</td>
<td>2.455449e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>72</td>
<td>2.455261e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>73</td>
<td>2.455142e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>74</td>
<td>2.455075e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>75</td>
<td>2.455008e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>76</td>
<td>2.454943e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>77</td>
<td>2.454870e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>4</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>78</td>
<td>2.454865e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>79</td>
<td>2.454775e-01</td>
<td>1.000000e+00</td>
<td>5.693950e-02</td>
<td>8</td>
</tr>
</tbody>
</table>

32-7160
Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

```
UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionmat(YTest,UpdatedLabel)
```

```
UpdatedConfusionTest = 2x2

 23 2
 7 38
```

```
UpdatedL = loss(UpdatedMdl,XTest,YTest)
```

```
UpdatedL = 0.1284
```

The classification error decreases after `resume` updates the classification model with more iterations.

**See Also**

`ClassificationLinear | fitckernel | fitclinear`
Introduced in R2017b
edge

Classification edge for Gaussian kernel classification model

Syntax

e = edge(Mdl,X,Y)
e = edge(Mdl,X,Y,'Weights',weights)

Description

e = edge(Mdl,X,Y) returns the classification edge on page 32-7166 for the binary Gaussian kernel classification model Mdl using the predictor data in X and the corresponding class labels in Y.

e = edge(Mdl,X,Y,'Weights',weights) returns the weighted classification edges for the observation weights supplied in weights.

Examples

Estimate Test-Set Edge

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Estimate the training-set edge and the test-set edge.

eTrain = edge(Mdl,X(trainingInds,:),Y(trainingInds))
eTrain = 2.1703

eTest = edge(Mdl,X(testInds,:),Y(testInds))
eTest = 1.5643

**Feature Selection Using Test-Set Edges**

Perform feature selection by comparing test-set edges from multiple models. Based solely on this criterion, the classifier with the highest edge is the best classifier.

Load the *ionosphere* data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);  
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);  
YTrain = Y(trainingInds);

d-testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);  
YTest = Y(testInds);

Randomly choose half of the predictor variables.

p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Train two binary kernel classification models: one that uses all of the predictors, and one that uses half of the predictors.
Mdl = fitckernel(XTrain,YTrain);
PMdl = fitckernel(XTrain(:,idxPart),YTrain);

Mdl and PMdl are ClassificationKernel models.

Estimate the test-set edge for each classifier.

cfullEdge = edge(Mdl,XTest,YTest)
cfullEdge = 1.6335
cpartEdge = edge(PMdl,XTest(:,idxPart),YTest)
cpartEdge = 2.0205

Based on the test-set edges, the classifier that uses half of the predictors is the better model.

**Input Arguments**

**Mdl** — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can create a ClassificationKernel model object using fitckernel.

**X** — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors used to train Mdl.

The length of Y and the number of observations in X must be equal.

Data Types: single | double

**Y** — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.
- The data type of $Y$ must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in $Y$ must be a subset of Mdl.ClassNames.
- If $Y$ is a character array, then each element must correspond to one row of the array.
- The length of $Y$ and the number of observations in $X$ must be equal.

Data Types: categorical | char | string | logical | single | double | cell

weights — Observation weights

positive numeric vector

Observation weights, specified as a positive numeric vector of length $n$, where $n$ is the number of observations in $X$. If you supply weights, edge computes the weighted classification edge on page 32-7166.

The default value is ones($n$,1).

edge normalizes weights to sum up to the value of the prior probability in the respective class.

Data Types: double | single

Output Arguments

e — Classification edge

numeric scalar

Classification edge on page 32-7166, returned as a numeric scalar.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.
**Classification Margin**

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2yf(x). \]

\(x\) is an observation. If the true label of \(x\) is the positive class, then \(y\) is 1, and -1 otherwise. \(f(x)\) is the positive-class classification score for the observation \(x\). The classification margin is commonly defined as \(m = yf(x)\).

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

**Classification Score**

For kernel classification models, the raw classification score for classifying the observation \(x\), a row vector, into the positive class is defined by

\[ f(x) = T(x)\beta + b. \]

- \(T(\cdot)\) is a transformation of an observation for feature expansion.
- \(\beta\) is the estimated column vector of coefficients.
- \(b\) is the estimated scalar bias.

The raw classification score for classifying \(x\) into the negative class is \(-f(x)\). The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
ClassificationKernel | fitckernel | margin | predict

Introduced in R2017b
loss

Classification loss for Gaussian kernel classification model

Syntax

L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name,Value)

Description

L = loss(Mdl,X,Y) returns the classification loss for the binary Gaussian kernel classification model Mdl using the predictor data in X and the corresponding class labels in Y.

L = loss(Mdl,X,Y,Name,Value) uses additional options specified by one or more name-value pair arguments. For example, you can specify a classification loss function and observation weights. Then, loss returns the weighted classification loss using the specified loss function.

Examples

Estimate Test-Set Classification Loss

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set
Train a binary kernel classification model using the training set.

\[
\text{Mdl} = \text{fitckernel}(X(\text{trainingInds},:),Y(\text{trainingInds}));
\]

Estimate the training-set classification error and the test-set classification error.

\[
\text{ceTrain} = \text{loss}(\text{Mdl},X(\text{trainingInds},:),Y(\text{trainingInds}))
\]

\[
\text{ceTrain} = 0.0067
\]

\[
\text{ceTest} = \text{loss}(\text{Mdl},X(\text{testInds},:),Y(\text{testInds}))
\]

\[
\text{ceTest} = 0.1140
\]

**Specify Custom Classification Loss**

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```
load ionosphere
```

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

```
rng('default') % For reproducibility
 Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
 testInds = test(Partition); % Indices for the test set
```

Train a binary kernel classification model using the training set.

```
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));
```

Create an anonymous function that measures linear loss, that is,

\[
L = \frac{\sum_j -w_j y_j f_j}{\sum_j w_j}.
\]
\( \omega_j \) is the weight for observation \( j \), \( y_j \) is response \( j \) (-1 for the negative class, and 1 otherwise), and \( f_j \) is the raw classification score of observation \( j \).

\[
\text{linearloss} = @(C,S,W,Cost) \frac{\sum(-W.*\sum(S.*C,2))}{\sum(W)};
\]

Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

Estimate the training-set classification loss and the test-set classification loss using the linear loss function.

\[
ceTrain = \text{loss}(Mdl,X(\text{trainingInds},:),Y(\text{trainingInds}),'LossFun',\text{linearloss})
\]

\( ceTrain = -1.0851 \)

\[
ceTest = \text{loss}(Mdl,X(\text{testInds},:),Y(\text{testInds}),'LossFun',\text{linearloss})
\]

\( ceTest = -0.7821 \)

### Input Arguments

**Mdl** — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can create a ClassificationKernel model object using fitckernel.

**X** — Predictor data

\( n \)-by-\( p \) numeric matrix

Predictor data, specified as an \( n \)-by-\( p \) numeric matrix, where \( n \) is the number of observations and \( p \) is the number of predictors used to train \( Mdl \).

The length of \( Y \) and the number of observations in \( X \) must be equal.

Data Types: single | double

**Y** — Class labels

categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors
Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- The data type of \( Y \) must be the same as the data type of \( \text{Mdl.ClassNames} \). (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in \( Y \) must be a subset of \( \text{Mdl.ClassNames} \).
- If \( Y \) is a character array, then each element must correspond to one row of the array.
- The length of \( Y \) and the number of observations in \( X \) must be equal.

Data Types: categorical | char | string | logical | single | double | cell

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: \( L = \text{loss(Mdl,X,Y,'LossFun','quadratic','Weights',weights)} \) returns the weighted classification loss using the quadratic loss function.

**LossFun — Loss function**

- 'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of **'LossFun'** and a built-in loss function name or a function handle.

- This table lists the available loss functions. Specify one using its corresponding value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'binodeviance'</td>
<td>Binomial deviance</td>
</tr>
<tr>
<td>'classiferror'</td>
<td>Classification error</td>
</tr>
<tr>
<td>'exponential'</td>
<td>Exponential</td>
</tr>
<tr>
<td>'hinge'</td>
<td>Hinge</td>
</tr>
<tr>
<td>'logit'</td>
<td>Logistic</td>
</tr>
</tbody>
</table>

32-7172
'mincost' is appropriate for classification scores that are posterior probabilities. For kernel classification models, logistic regression learners return posterior probabilities as classification scores by default, but SVM learners do not (see predict).

- Specify your own function by using function handle notation.

Let \( n \) be the number of observations in \( X \) and \( K \) be the number of distinct classes (\( \text{numel}(\text{Mdl.ClassNames}) \), where \( \text{Mdl} \) is the input model). Your function must have this signature:

\[
\text{lossvalue} = \text{lossfun}(C,S,W,\text{Cost})
\]

- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name (\( \text{lossfun} \)).
- \( C \) is an \( n \)-by-\( K \) logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in \( \text{Mdl.ClassNames} \).
  Construct \( C \) by setting \( C(p,q) = 1 \), if observation \( p \) is in class \( q \), for each row. Set all other elements of row \( p \) to 0.
- \( S \) is an \( n \)-by-\( K \) numeric matrix of classification scores. The column order corresponds to the class order in \( \text{Mdl.ClassNames} \). \( S \) is a matrix of classification scores, similar to the output of \text{predict}.
- \( W \) is an \( n \)-by-1 numeric vector of observation weights. If you pass \( W \), the software normalizes the weights to sum to 1.
- \( \text{Cost} \) is a \( K \)-by-\( K \) numeric matrix of misclassification costs. For example, \( \text{Cost} = \text{ones}(K) - \text{eye}(K) \) specifies a cost of 0 for correct classification, and 1 for misclassification.

Example: 'LossFun',@\text{lossfun}

Data Types: char | string | function_handle

**Weights — Observation weights**

positive numeric vector
Observation weights, specified as the comma-separated pair consisting of 'Weights' and a positive numeric vector of length $n$, where $n$ is the number of observations in $X$. If you supply weights, loss computes the weighted classification loss on page 32-7174.

The default value is ones($n$,1).

loss normalizes weights to sum up to the value of the prior probability in the respective class.

Data Types: double | single

Output Arguments

$L$ — Classification loss
numeric scalar

Classification loss on page 32-7174, returned as a numeric scalar. The interpretation of $L$ depends on Weights and LossFun.

Definitions

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.

Suppose the following:

- $L$ is the weighted average classification loss.
- $n$ is the sample size.
- $y_j$ is the observed class label. The software codes it as -1 or 1, indicating the negative or positive class, respectively.
- $f(X_j)$ is the raw classification score for the transformed observation (row) $j$ of the predictor data $X$ using feature expansion.
- $m_j = y_j f(X_j)$ is the classification score for classifying observation $j$ into the class corresponding to $y_j$. Positive values of $m_j$ indicate correct classification and do not
contribute much to the average loss. Negative values of \( m_j \) indicate incorrect classification and contribute to the average loss.

- The weight for observation \( j \) is \( w_j \). The software normalizes the observation weights so that they sum to the corresponding prior class probability. The software also normalizes the prior probabilities so that they sum to 1. Therefore,

\[
\sum_{j=1}^{n} w_j = 1.
\]

This table describes the supported loss functions that you can specify by using the 'LossFun' name-value pair argument.

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial deviance</td>
<td>'binodeviance'</td>
<td>[ L = \sum_{j=1}^{n} w_j \log {1 + \exp[-2m_j]}. ]</td>
</tr>
<tr>
<td>Exponential loss</td>
<td>'exponential'</td>
<td>[ L = \sum_{j=1}^{n} w_j \exp(-m_j). ]</td>
</tr>
</tbody>
</table>
| Classification error     | 'classiferror'   | \[ L = \sum_{j=1}^{n} w_j I\{\hat{y}_j \neq y_j\}. \]  
  
  The classification error is the weighted fraction of misclassified observations where \( \hat{y}_j \) is the class label corresponding to the class with the maximal posterior probability. \( I\{x\} \) is the indicator function. |
<p>| Hinge loss               | 'hinge'          | [ L = \sum_{j=1}^{n} w_j \max {0,1-m_j}. ]  |
| Logit loss               | 'logit'          | [ L = \sum_{j=1}^{n} w_j \log {1 + \exp(-m_j)}. ]  |</p>
<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Value of LossFun</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal cost</td>
<td>'mincost'</td>
<td>The software computes the weighted minimal cost using this procedure for observations $j = 1,...,n$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimate the 1-by-$K$ vector of expected classification costs for observation $j$:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma_j = f(X_j) C$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(X_j)$ is the column vector of class posterior probabilities. $C$ is the cost matrix that the input model stores in the Cost property.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For observation $j$, predict the class label corresponding to the minimum expected classification cost:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{y}<em>j = \min</em>{j=1,...,K} \gamma_j$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using $C$, identify the cost incurred ($c_j$) for making the prediction.</td>
</tr>
<tr>
<td>Quadratic loss</td>
<td>'quadratic'</td>
<td>The weighted, average, minimum cost loss is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = \frac{1}{n} \sum_{j=1}^{n} w_j c_j$.</td>
</tr>
</tbody>
</table>

This figure compares the loss functions (except minimal cost) for one observation over $m$. Some functions are normalized to pass through [0,1].
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).
See Also
ClassificationKernel | fitckernel | predict

Introduced in R2017b
margin
Classification margins for Gaussian kernel classification model

Syntax
m = margin(Mdl,X,Y)

Description
m = margin(Mdl,X,Y) returns the classification margins on page 32-7184 for the binary Gaussian kernel classification model Mdl using the predictor data in X and the corresponding class labels in Y.

Examples

Estimate Test-Set Margins
Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 30% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.30);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Estimate the training-set margins and test-set margins.
mTrain = margin(Mdl,X(trainingInds,:),Y(trainingInds));
mTest = margin(Mdl,X(testInds,:),Y(testInds));

Plot both sets of margins using box plots.

boxplot([mTrain; mTest],[zeros(size(mTrain,1),1); ones(size(mTest,1),1)], ...  
'Labels',{"Training set","Test set"});
title('Training-Set and Test-Set Margins')

The margin distribution of the training set is situated higher than the margin distribution of the test set.
Feature Selection Using Test-Set Margins

Perform feature selection by comparing test-set margins from multiple models. Based solely on this criterion, the classifier with the larger margins is the better classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Randomly choose 10% of the predictor variables.

p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Train two binary kernel classification models: one that uses all of the predictors, and one that uses the random 10%.

Mdl = fitckernel(XTrain,YTrain);
PMdl = fitckernel(XTrain(:,idxPart),YTrain);

Mdl and PMdl are ClassificationKernel models.

Estimate the test-set margins for each classifier.

fullMargins = margin(Mdl,XTest,YTest);
partMargins = margin(PMdl,XTest(:,idxPart),YTest);

Plot the distribution of the margin sets using box plots.

boxplot([fullMargins partMargins], ...
    'Labels',{'All Predictors','10% of the Predictors'});
title('Test-Set Margins')
The margin distribution of PMdl is situated higher than the margin distribution of Mdl. Therefore, the PMdl model is the better classifier.

**Input Arguments**

Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can create a ClassificationKernel model object using fitckernel.
**X — Predictor data**
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors used to train Mdl.

The length of Y and the number of observations in X must be equal.

Data Types: single | double

**Y — Class labels**
categorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

- The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)
- The distinct classes in Y must be a subset of Mdl.ClassNames.
- If Y is a character array, then each element must correspond to one row of the array.
- The length of Y and the number of observations in X must be equal.

Data Types: categorical | char | string | logical | single | double | cell

**Output Arguments**

**m — Classification margins**
numeric column vector

Classification margins on page 32-7184, returned as an n-by-1 numeric column vector, where n is the number of observations in X.
Definitions

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

\[ m = 2y f(x). \]

$x$ is an observation. If the true label of $x$ is the positive class, then $y$ is 1, and -1 otherwise. $f(x)$ is the positive-class classification score for the observation $x$. The classification margin is commonly defined as $m = yf(x)$.

If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.

Classification Score

For kernel classification models, the raw classification score for classifying the observation $x$, a row vector, into the positive class is defined by

\[ f(x) = T(x)\beta + b. \]

- $T(\cdot)$ is a transformation of an observation for feature expansion.
- $\beta$ is the estimated column vector of coefficients.
- $b$ is the estimated scalar bias.

The raw classification score for classifying $x$ into the negative class is $-f(x)$. The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
ClassificationKernel | edge | fitckernel | predict

Introduced in R2017b
**predict**

Predict labels for Gaussian kernel classification model

**Syntax**

Label = predict(Mdl,X)
[Label,Score] = predict(Mdl,X)

**Description**

Label = predict(Mdl,X) returns predicted class labels for each observation in the predictor data X based on the binary Gaussian kernel classification model Mdl.

[Label,Score] = predict(Mdl,X) also returns classification scores on page 32-7191 for both classes.

**Examples**

**Predict Training Set Labels**

Predict the training set labels using a binary kernel classification model, and display the confusion matrix for the resulting classification.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or good ('g').

rng('default') % For reproducibility
Mdl = fitckernel(X,Y);

Mdl is a ClassificationKernel model.
Predict the training set, or resubstitution, labels.

\[
\text{label} = \text{predict}(\text{Mdl}, X);
\]

Construct a confusion matrix.

\[
\text{ConfusionTrain} = \text{confusionmat}(Y, \text{label})
\]

\[
\text{ConfusionTrain} = 2 \times 2
\]

\[
\begin{array}{cc}
224 & 1 \\
1 & 125
\end{array}
\]

The model misclassifies one radar return for each class.

**Predict Test Set Labels**

Predict the test set labels using a binary kernel classification model, and display the confusion matrix for the resulting classification.

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad (‘b’) or good (‘g’).

```matlab
load ionosphere
```

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

```matlab
rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set
```

Train a binary kernel classification model using the training set. A good practice is to define the class order.

```matlab
Mdl = fitckernel(X(trainingInds,:), Y(trainingInds), 'ClassNames', {'b', 'g'});
```

Predict the training-set labels and the test set labels.

```matlab
labelTrain = predict(Mdl, X(trainingInds,:));
labelTest = predict(Mdl, X(testInds,:));
```
Construct a confusion matrix for the training set.

```matlab
ConfusionTrain = confusionmat(Y(trainingInds),labelTrain)
ConfusionTrain = 2×2
 190 1
 1 107
```

The model misclassifies only one radar return for each class.

Construct a confusion matrix for the test set.

```matlab
ConfusionTest = confusionmat(Y(testInds),labelTest)
ConfusionTest = 2×2
 17 1
 5 29
```

The model misclassifies one bad radar return as being a good return, and five good radar returns as being bad returns.

**Estimate Posterior Class Probabilities**

Estimate posterior class probabilities for a test set, and determine the quality of the model by plotting a receiver operating characteristic (ROC) curve. Kernel classification models return posterior probabilities for logistic regression learners only.

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
```

Partition the data set into training and test sets. Specify a 30% holdout sample for the test set.

```matlab
rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.30);
```
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model. Fit logistic regression learners.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds), ... 
    'ClassNames',{'b','g'},'Learner','logistic');

Predict the posterior class probabilities for the test set.

[~,posterior] = predict(Mdl,X(testInds,:));

Because Mdl has one regularization strength, the output posterior is a matrix with two columns and rows equal to the number of test-set observations. Column i contains posterior probabilities of Mdl.ClassNames(i) given a particular observation.

Obtain false and true positive rates, and estimate the area under the curve (AUC). Specify that the second class is the positive class.

[fpr,tpr,~,auc] = perfcurve(Y(testInds),posterior(:,2),Mdl.ClassNames(2));
auc

auc = 0.9042

The AUC is close to 1, which indicates that the model predicts labels well.

Plot an ROC curve.

figure;
plot(fpr,tpr)
h = gca;
h.XLim(1) = -0.1;
h.YLim(2) = 1.1;
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve')
Input Arguments

**Mdl** — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can create a ClassificationKernel model object using fitckernel.

**X** — Predictor data
$n$-by-$p$ numeric matrix
Predictor data, specified as an \( n \times p \) numeric matrix, where \( n \) is the number of observations and \( p \) is the number of predictors used to train \( \text{Mdl} \).

Data Types: \text{single} | \text{double}

Output Arguments

\textbf{Label — Predicted class labels}

categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell array of character vectors.

\text{Label} has \( n \) rows, where \( n \) is the number of observations in \( X \), and has the same data type as the observed class labels (\( Y \)) used to train \( \text{Mdl} \). (The software treats string arrays as cell arrays of character vectors.)

\text{predict} classifies observations into the class yielding the highest score.

\textbf{Score — Classification scores}

numeric array

Classification scores on page 32-7191, returned as an \( n \times 2 \) numeric array, where \( n \) is the number of observations in \( X \). \( \text{Score}(i,j) \) is the score for classifying observation \( i \) into class \( j \). \( \text{Mdl.ClassNames} \) stores the order of the classes.

If \( \text{Mdl.Learner} \) is 'logistic', then classification scores are posterior probabilities.

Definitions

\textbf{Classification Score}

For kernel classification models, the raw classification score for classifying the observation \( x \), a row vector, into the positive class is defined by

\[ f(x) = T(x)\beta + b. \]
• $T(\cdot)$ is a transformation of an observation for feature expansion.
• $\beta$ is the estimated column vector of coefficients.
• $b$ is the estimated scalar bias.

The raw classification score for classifying $x$ into the negative class is $-f(x)$. The software classifies observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).

**Extended Capabilities**

**Tall Arrays**
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

**See Also**
ClassificationKernel | confusionmat | fitckernel | perfcurve | resume

*Introduced in R2017b*
resume

Resume training of Gaussian kernel classification model

Syntax

UpdatedMdl = resume(Mdl,X,Y)
UpdatedMdl = resume(Mdl,X,Y,Name,Value)
[UpdatedMdl,FitInfo] = resume(___)

Description

UpdatedMdl = resume(Mdl,X,Y) continues training with the same options used to train Mdl, including the training data (predictor data in X and class labels in Y) and the feature expansion. The training starts at the current estimated parameters in Mdl. The function returns a new binary Gaussian kernel classification model UpdatedMdl.

UpdatedMdl = resume(Mdl,X,Y,Name,Value) returns a new binary Gaussian kernel classification model with additional options specified by one or more name-value pair arguments. For example, you can modify convergence control options, such as convergence tolerances and the maximum number of additional optimization iterations.

[UpdatedMdl,FitInfo] = resume(__) also returns the fit information in the structure array FitInfo using any of the previous input arguments in the syntaxes.

Examples

Predict Class Labels and Resume Training

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

load ionosphere
Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

```matlab
rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);

% Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);
```

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or good ('g').

```matlab
Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
```

<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>1.000000e+00</td>
<td>0.000000e+00</td>
<td>2.811388e-01</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>7.585395e-01</td>
<td>4.000000e+00</td>
<td>3.594306e-01</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>7.160994e-01</td>
<td>1.000000e+00</td>
<td>2.028470e-01</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>6.825272e-01</td>
<td>1.000000e+00</td>
<td>2.846975e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>6.699435e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>5</td>
<td>6.535619e-01</td>
<td>1.000000e+00</td>
<td>2.669039e-01</td>
<td>4</td>
</tr>
</tbody>
</table>

Mdl is a `ClassificationKernel` model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

```matlab
label = predict(Mdl,XTest);
ConfusionTest = confusionmat(YTest,label)
```

```
ConfusionTest = 2x2

 0 25
 0 45
```

```matlab
L = loss(Mdl,XTest,YTest)
```

```
L = 0.3594
```
Mdl misclassifies all bad radar returns as good returns.

Continue training by using `resume`. This function continues training with the same options used for training Mdl.

```
UpdatedMdl = resume(Mdl,XTrain,YTrain);
```
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>30</td>
<td>2.477316e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>31</td>
<td>2.476178e-01</td>
<td>2.500000e-01</td>
<td>3.202847e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>32</td>
<td>2.474874e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>33</td>
<td>2.473980e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>34</td>
<td>2.472935e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>35</td>
<td>2.471418e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>36</td>
<td>2.469862e-01</td>
<td>1.000000e+00</td>
<td>2.846975e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>37</td>
<td>2.469598e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>38</td>
<td>2.466941e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>39</td>
<td>2.466660e-01</td>
<td>5.000000e-01</td>
<td>1.423488e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>40</td>
<td>2.465605e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>41</td>
<td>2.465362e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>42</td>
<td>2.463528e-01</td>
<td>1.000000e+00</td>
<td>2.389759e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>43</td>
<td>2.463207e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>44</td>
<td>2.462585e-01</td>
<td>5.000000e-01</td>
<td>2.321693e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>45</td>
<td>2.461742e-01</td>
<td>1.000000e+00</td>
<td>2.321693e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>46</td>
<td>2.461434e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>47</td>
<td>2.461115e-01</td>
<td>1.000000e+00</td>
<td>2.321693e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>48</td>
<td>2.460814e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>49</td>
<td>2.460533e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>50</td>
<td>2.460111e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>51</td>
<td>2.459414e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>52</td>
<td>2.458809e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>53</td>
<td>2.458479e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>54</td>
<td>2.458146e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>55</td>
<td>2.457878e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>56</td>
<td>2.457519e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>57</td>
<td>2.457420e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>58</td>
<td>2.457212e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>59</td>
<td>2.457089e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>60</td>
<td>2.457047e-01</td>
<td>5.000000e-01</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>61</td>
<td>2.456941e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>62</td>
<td>2.456814e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>63</td>
<td>2.456582e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>64</td>
<td>2.456358e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>65</td>
<td>2.456126e-01</td>
<td>1.000000e+00</td>
<td>3.738286e-03</td>
<td></td>
</tr>
</tbody>
</table>

32-7196
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change in Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>66</td>
<td>2.456358e-01</td>
<td>1.000000e+00</td>
<td>1.476262e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>67</td>
<td>2.456124e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>68</td>
<td>2.455980e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-03</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>69</td>
<td>2.455780e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>70</td>
<td>2.455633e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>71</td>
<td>2.455449e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>72</td>
<td>2.455261e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>73</td>
<td>2.455142e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>74</td>
<td>2.455075e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>75</td>
<td>2.455008e-01</td>
<td>1.000000e+00</td>
<td>3.914591e-02</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>76</td>
<td>2.454943e-01</td>
<td>1.000000e+00</td>
<td>2.491103e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>77</td>
<td>2.454870e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>4</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>78</td>
<td>2.454865e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>79</td>
<td>2.454775e-01</td>
<td>1.000000e+00</td>
<td>5.693950e-02</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>80</td>
<td>2.454686e-01</td>
<td>1.000000e+00</td>
<td>1.183730e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>81</td>
<td>2.454612e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>82</td>
<td>2.454506e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>83</td>
<td>2.454436e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>84</td>
<td>2.454378e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>85</td>
<td>2.454249e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>86</td>
<td>2.454101e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>87</td>
<td>2.453963e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>88</td>
<td>2.453866e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>89</td>
<td>2.453214e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>90</td>
<td>2.453168e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>91</td>
<td>2.453124e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>92</td>
<td>2.453055e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>93</td>
<td>2.453005e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>94</td>
<td>2.452938e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>95</td>
<td>2.452871e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>96</td>
<td>2.452814e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>97</td>
<td>2.452790e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>98</td>
<td>2.452738e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>99</td>
<td>2.452714e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>100</td>
<td>2.452688e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>102</td>
<td>2.453155e-01</td>
<td>5.000000e-01</td>
<td>4.626335e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>103</td>
<td>2.453136e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>104</td>
<td>2.453119e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>105</td>
<td>2.453093e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>106</td>
<td>2.453090e-01</td>
<td>1.000000e+00</td>
<td>2.846975e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>107</td>
<td>2.453048e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>108</td>
<td>2.453040e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>109</td>
<td>2.452977e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>110</td>
<td>2.452934e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>111</td>
<td>2.452886e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>112</td>
<td>2.452854e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>113</td>
<td>2.452836e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>114</td>
<td>2.452817e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-03</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>115</td>
<td>2.452741e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
</tr>
<tr>
<td></td>
<td>LBFGS</td>
<td>1</td>
<td>116</td>
<td>2.452691e-01</td>
<td>1.000000e+00</td>
<td>2.135231e-02</td>
</tr>
<tr>
<td>=================================================================================================================</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

```matlab
UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionmat(YTest,UpdatedLabel)

UpdatedConfusionTest = 2×2

23 2
7 38
```

```matlab
UpdatedL = loss(UpdatedMdl,XTest,YTest)

UpdatedL = 0.1284
```

The classification error decreases after `resume` updates the classification model with more iterations.

---

**Resume Training with Modified Convergence Control Training Options**

Load the `ionosphere` data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').

```matlab
load ionosphere
```
Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Train a binary kernel classification model with relaxed convergence control training options by using the name-value pair arguments 'BetaTolerance' and 'GradientTolerance'.

[Mdl,FitInfo] = fitckernel(XTrain,YTrain,'Verbose',1, ...  
'BetaTolerance',1e-1,'GradientTolerance',1e-1);

Mdl is a ClassificationKernel model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

label = predict(Mdl,XTest);
ConfusionTest = confusionmat(YTest,label)

ConfusionTest = 2x2

0 25
0 45

L = loss(Mdl,XTest,YTest)
L = 0.3594
Mdl misclassifies all bad radar returns as good returns.

Continue training by using `resume` with modified convergence control training options.

```matlab
[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,XTrain,YTrain,...
'BetaTolerance',1e-2,'GradientTolerance',1e-2);
```

<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>6.825272e-01</td>
<td>0.000000e+00</td>
<td>2.846975e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>6.692805e-01</td>
<td>2.000000e+00</td>
<td>2.846975e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>6.466824e-01</td>
<td>1.000000e+00</td>
<td>2.348754e-01</td>
<td>4</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>5.441382e-01</td>
<td>2.000000e+00</td>
<td>1.743772e-01</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>5.222333e-01</td>
<td>1.000000e+00</td>
<td>3.309609e-01</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>5</td>
<td>3.776579e-01</td>
<td>1.000000e+00</td>
<td>1.103203e-01</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>6</td>
<td>3.523520e-01</td>
<td>1.000000e+00</td>
<td>5.338078e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>7</td>
<td>3.422319e-01</td>
<td>5.000000e-01</td>
<td>3.202847e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>8</td>
<td>3.341895e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>9</td>
<td>3.199302e-01</td>
<td>1.000000e+00</td>
<td>4.982206e-02</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>10</td>
<td>3.017904e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>11</td>
<td>2.853480e-01</td>
<td>1.000000e+00</td>
<td>3.558719e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>12</td>
<td>2.753979e-01</td>
<td>1.000000e+00</td>
<td>3.914591e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>13</td>
<td>2.647492e-01</td>
<td>1.000000e+00</td>
<td>3.914591e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>14</td>
<td>2.639242e-01</td>
<td>1.000000e+00</td>
<td>1.423488e-02</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>15</td>
<td>2.617385e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>16</td>
<td>2.598600e-01</td>
<td>1.000000e+00</td>
<td>7.117438e-02</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>17</td>
<td>2.594176e-01</td>
<td>1.000000e+00</td>
<td>1.067616e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>18</td>
<td>2.579350e-01</td>
<td>1.000000e+00</td>
<td>3.202847e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>19</td>
<td>2.570669e-01</td>
<td>1.000000e+00</td>
<td>1.779359e-02</td>
<td>4</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>20</td>
<td>2.552954e-01</td>
<td>1.000000e+00</td>
<td>1.769408e-03</td>
<td>1</td>
</tr>
</tbody>
</table>

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.

```matlab
UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionmat(YTest,UpdatedLabel)
```

```matlab
UpdatedConfusionTest = 2×2
 24 1
 7 38
```
UpdatedL = loss(UpdatedMdl,XTest,YTest)

UpdatedL = 0.1140

The classification error decreases after `resume` updates the classification model with smaller convergence tolerances.

Display the outputs `FitInfo` and `UpdatedFitInfo`.

**FitInfo**

FitInfo = struct with fields:
   Solver: 'LBFGS-fast'
   LossFunction: 'hinge'
   Lambda: 0.0036
   BetaTolerance: 0.1000
   GradientTolerance: 0.1000
   ObjectiveValue: 0.6825
   GradientMagnitude: 0.0285
   RelativeChangeInBeta: 0.2389
   FitTime: 0.0179
   History: [1x1 struct]

**UpdatedFitInfo**

UpdatedFitInfo = struct with fields:
   Solver: 'LBFGS-fast'
   LossFunction: 'hinge'
   Lambda: 0.0036
   BetaTolerance: 0.0100
   GradientTolerance: 0.0100
   ObjectiveValue: 0.2553
   GradientMagnitude: 0.0018
   RelativeChangeInBeta: 0.0190
   FitTime: 0.0436
   History: [1x1 struct]

Both trainings terminate because the software satisfies the absolute gradient tolerance.

Plot the gradient magnitude versus the number of iterations by using `UpdatedFitInfo.History.GradientMagnitude`. Note that the `History` field of `UpdatedFitInfo` includes the information in the `History` field of `FitInfo`. 
semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-')
ax = gca;
ax.XTick = 1:25;
ax.XTickLabel = UpdatedFitInfo.History.IterationNumber;
grid on
xlabel('Number of Iterations')
ylabel('Gradient Magnitude')

The first training terminates after three iterations because the gradient magnitude becomes less than $1e^{-1}$. The second training terminates after 20 iterations because the gradient magnitude becomes less than $1e^{-2}$. 
Input Arguments

Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can create a ClassificationKernel model object using fitckernel.

X — Predictor data used to train Mdl
n-by-p numeric matrix

Predictor data used to train Mdl, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors.

Data Types: single | double

Y — Class labels used to train Mdl
categorical array | character array | string array | logical vector | vector of numeric values | cell array of character vectors

Class labels used to train Mdl, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.

Data Types: categorical | char | string | logical | single | double | cell

Note resume should run only on the same training data (X and Y) and the same observation weights used to train Mdl. The resume function uses the same training options used to train Mdl, including feature expansion.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: UpdatedMdl = resume(Mdl,X,Y,'GradientTolerance',1e-5) resumes training with the same options used to train Mdl, except the absolute gradient tolerance.

Weights — Observation weights used to train Mdl
positive numeric vector
Observation weights used to train \( Mdl \), specified as the comma-separated pair consisting of 'Weights' and a positive numeric vector of length \( n \), where \( n \) is the number of observations in \( X \). The `resume` function weighs the observations in \( X \) with the corresponding values in \( Weights \).

The default value is \( \text{ones}(n,1) \).

`resume` normalizes \( Weights \) to sum up to the value of the prior probability in the respective class.

Example: 'Weights', \( w \)

Data Types: single | double

**BetaTolerance — Relative tolerance on linear coefficients and bias term**

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \( B_t = [\beta_t \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \( t \). If \( \left\| B_t - B_{t-1} \right\|_2 < \text{BetaTolerance} \), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same BetaTolerance value used to train \( Mdl \).

Example: 'BetaTolerance', 1e-6

Data Types: single | double

**GradientTolerance — Absolute gradient tolerance**

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.
Let $\nabla L_t$ be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration $t$. If $\|\nabla L_t\|_\infty = \max|\nabla L_t| < \text{GradientTolerance}$, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same GradientTolerance value used to train Mdl.

Example: 'GradientTolerance', 1e-5

Data Types: single | double

**IterationLimit — Maximum number of additional optimization iterations**

positive integer

Maximum number of additional optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory (Mdl.ModelParametersBlockSize), which you specify by using the name-value pair argument when training Mdl. Otherwise, the default value is 100.

Note that the default value is not the value used to train Mdl.

Example: 'IterationLimit', 500

Data Types: single | double

**Output Arguments**

**UpdatedMdl — Updated kernel classification model**

ClassificationKernel model object

Updated kernel classification model, returned as a ClassificationKernel model object.

**FitInfo — Optimization details**

structure array
Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solver</td>
<td>Objective function minimization technique: 'LBFGS-fast', 'LBFGS-blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 32-7146 of fitckernel.</td>
</tr>
<tr>
<td>LossFunction</td>
<td>Loss function. Either 'hinge' or 'logit' depending on the type of linear classification model. See Learner of fitckernel.</td>
</tr>
<tr>
<td>Lambda</td>
<td>Regularization term strength. See Lambda of fitckernel.</td>
</tr>
<tr>
<td>BetaTolerance</td>
<td>Relative tolerance on the linear coefficients and the bias term. See BetaTolerance.</td>
</tr>
<tr>
<td>GradientTolerance</td>
<td>Absolute gradient tolerance. See GradientTolerance.</td>
</tr>
<tr>
<td>ObjectiveValue</td>
<td>Value of the objective function when optimization terminates. The classification loss plus the regularization term compose the objective function.</td>
</tr>
<tr>
<td>GradientMagnitude</td>
<td>Infinite norm of the gradient vector of the objective function when optimization terminates. See GradientTolerance.</td>
</tr>
<tr>
<td>RelativeChangeInBeta</td>
<td>Relative changes in the linear coefficients and the bias term when optimization terminates. See BetaTolerance.</td>
</tr>
<tr>
<td>FitTime</td>
<td>Elapsed, wall-clock time (in seconds) required to fit the model to the data.</td>
</tr>
<tr>
<td>History</td>
<td>History of optimization information. This field also includes the optimization information from training Mdl. This field is empty ([[]]) if you specify 'Verbose', 0 when training Mdl. For details, see Verbose and “Algorithms” on page 32-7146 of fitckernel.</td>
</tr>
</tbody>
</table>

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter FitInfo.ObjectiveValue in the Command Window.

A good practice is to examine FitInfo to assess whether convergence is satisfactory.
Definitions

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel classification algorithm to use for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into two classes after mapping features into a high-dimensional space. Nonlinear features that are not linearly separable in a low-dimensional space can be separable in the expanded high-dimensional space. All the calculations for hyperplane classification use only dot products. You can obtain a nonlinear classification model by replacing the dot product $x_1 x_2^\prime$ with the nonlinear kernel function $G(x_1,x_2) = \langle \phi(x_1), \phi(x_2) \rangle$, where $x_i$ is the $i$th observation (row vector) and $\phi(x_i)$ is a transformation that maps $x_i$ to a high-dimensional space (called the “kernel trick”). However, evaluating $G(x_1,x_2)$ (Gram matrix) for each pair of observations is computationally expensive for a large data set (large $n$).

The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

$$G(x_1,x_2) = \langle \phi(x_1), \phi(x_2) \rangle = T(x_1)T(x_2)^\prime,$$

where $T(x)$ maps $x$ in $\mathbb{R}^P$ to a high-dimensional space ($\mathbb{R}^m$). The Random Kitchen Sink scheme uses the random transformation

$$T(x) = m^{-1/2} \exp(iZx)^\prime,$$

where $Z \in \mathbb{R}^{mxp}$ is a sample drawn from $N(0,\sigma^{-2})$ and $\sigma^2$ is a kernel scale. This scheme requires $O(mp)$ computation and storage. The Fastfood scheme introduces another random basis $V$ instead of $Z$ using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces the computation cost to $O(m \log p)$ and reduces storage to $O(m)$.  

32-7207
The `fitckernel` function uses the Fastfood scheme for random feature expansion and uses linear classification to train a Gaussian kernel classification model. Unlike solvers in the `fitcsvm` function, which require computation of the \( n \times n \) Gram matrix, the solver in `fitckernel` only needs to form a matrix of size \( n \times m \), with \( m \) typically much less than \( n \) for big data.

**References**


**Extended Capabilities**

**Tall Arrays**

Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:
- The default value for the 'IterationLimit' name-value pair argument is relaxed to 20 when working with tall arrays.
- `resume` uses a block-wise strategy. For details, see “Algorithms” on page 32-7146 of `fitckernel`.

For more information, see “Tall Arrays” (MATLAB).

**See Also**

`ClassificationKernel` | `fitckernel` | `predict`
Introduced in R2017b
**fitrkernel**

Fit Gaussian kernel regression model using random feature expansion

fitrkernel trains or cross-validates a Gaussian kernel regression model for nonlinear regression. fitrkernel is more practical to use for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.

fitrkernel maps data in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional space by minimizing the regularized objective function. Obtaining the linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model in the low-dimensional space. Available linear regression models include regularized support vector machine (SVM) and least-squares regression models.

To train a nonlinear SVM regression model on in-memory data, see fitrsvm.

**Syntax**

Mdl = fitrkernel(X,Y)
Mdl = fitrkernel(X,Y,Name,Value)
[Mdl,FitInfo] = fitrkernel(__)
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel(__)

**Description**

Mdl = fitrkernel(X,Y) returns a compact Gaussian kernel regression model trained using the predictor data in X and the corresponding responses in Y.

Mdl = fitrkernel(X,Y,Name,Value) returns a kernel regression model with additional options specified by one or more name-value pair arguments. For example, you can implement least-squares regression, specify the number of dimension of the expanded space, or specify cross-validation options.

[Mdl,FitInfo] = fitrkernel(__) also returns the fit information in the structure array FitInfo using any of the input arguments in the previous syntaxes. You cannot request FitInfo for cross-validated models.
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel(____)
also returns the hyperparameter optimization results when you optimize hyperparameters
by using the 'OptimizeHyperparameters' name-value pair argument.

Examples

Train Gaussian Kernel Regression Model

Train a kernel regression model for a tall array by using SVM.

Create a datastore that references the folder location with the data. The data can be
contained in a single file, a collection of files, or an entire folder. Treat 'NA' values as
missing data so that datastore replaces them with NaN values. Select a subset of the
variables to use. Create a tall table on top of the datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...  
    'SelectedVariableNames',varnames);
t = tall(ds);

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime
as the response variable (Y). Select the observations for which ArrTime is later than
DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);  % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Standardize the predictor variables.

Z = zscore(X); % Standardize the data

Train a default Gaussian kernel regression model with the standardized predictors.
Extract a fit summary to determine how well the optimization algorithm fits the model to
the data.

[Mdl,FitInfo] = fitrkernel(Z,Y)

Found 6 chunks.
<p>| Solver | Iteration / | Objective | Gradient | Beta relative |</p>
<table>
<thead>
<tr>
<th>Solver</th>
<th>Iteration / Data Pass</th>
<th>Objective magnitude</th>
<th>Gradient magnitude</th>
<th>Beta relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>14 / 21</td>
<td>3.1369958e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>15 / 22</td>
<td>3.1358048e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>16 / 23</td>
<td>3.1346151e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>17 / 24</td>
<td>3.1334252e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>18 / 25</td>
<td>3.1322354e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>19 / 26</td>
<td>3.1310455e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>20 / 27</td>
<td>3.1298557e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>21 / 28</td>
<td>3.1286658e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>22 / 29</td>
<td>3.1274760e+01</td>
<td>1.478355e-02</td>
<td>8.78271e-02</td>
</tr>
</tbody>
</table>

Mdl = RegressionKernel
    PredictorNames: {'x1' 'x2'}
    ResponseName: 'Y'
    Learner: 'svm'
    NumExpansionDimensions: 64
    KernelScale: 1
    Lambda: 8.5385e-06
BoxConstraint: 1  
Epsilon: 5.9303

Properties, Methods

FitInfo = struct with fields:
    Solver: 'LBFGS-tall'
    LossFunction: 'epsiloninsensitive'
    Lambda: 8.5385e-06
    BetaTolerance: 1.0000e-03
    GradientTolerance: 1.0000e-05
    ObjectiveValue: 30.6315
    GradientMagnitude: 0.0068
    RelativeChangeInBeta: 0.0161
    FitTime: 77.1910
    History: [1×1 struct]

Mdl is a RegressionKernel model. To inspect the regression error, you can pass Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the predict function to predict responses for new observations. You can also pass Mdl and the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine whether optimization termination measurements are satisfactory.

For improved accuracy, you can increase the maximum number of optimization iterations ('IterationLimit') and decrease the tolerance values ('BetaTolerance' and 'GradientTolerance') by using the name-value pair arguments of fitrkernel. Doing so can improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.

Cross-Validate Kernel Regression Model

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);

Standardize the predictor variables.
Z = zscore(X);

Cross-validate a kernel regression model using 5-fold cross-validation.
Mdl = fitrkernel(Z,Y,'Kfold',5)

Mdl =
    classreg.learning.partition.RegressionPartitionedKernel
    CrossValidatedModel: 'Kernel'
    ResponseName: 'Y'
    NumObservations: 392
    KFold: 5
    Partition: [1x1 cvpartition]
    ResponseTransform: 'none'

Properties, Methods

numel(Mdl.Trained)
ans = 5

Mdl is a RegressionPartitionedKernel model. Because fitrkernel implements five-fold cross-validation, Mdl contains five RegressionKernel models that the software trains on training-fold (in-fold) observations.

Examine the cross-validation loss (mean squared error) for each fold.
kfoldLoss(Mdl,'mode','individual')
ans = 5x1
**Optimize Kernel Regression**

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair argument.

Load the carbig data set.

```matlab
load carbig
```

Specify the predictor variables (X) and the response variable (Y).

```matlab
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;
```

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before passing data to fitrkernel can speed up training and reduce memory usage.

```matlab
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
```

Standardize the predictor variables.

```matlab
Z = zscore(X);
```

Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. Specify 'OptimizeHyperparameters' as 'auto' so that fitrkernel finds the optimal values of the 'KernelScale', 'Lambda', and 'Epsilon' name-value pair arguments. For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition function.

```matlab
rng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel(Z,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
```
Min objective vs. Number of function evaluations

<table>
<thead>
<tr>
<th>Iter</th>
<th>Eval</th>
<th>Objective</th>
<th>Objective</th>
<th>BestSoFar</th>
<th>BestSoFar</th>
<th>KernelScale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>result</td>
<td>runtime</td>
<td>(observed)</td>
<td>(estim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Best</td>
<td>4.8295</td>
<td>5.3313</td>
<td>4.8295</td>
<td>4.8295</td>
<td>0.011518</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>4.1488</td>
<td>0.31098</td>
<td>4.1488</td>
<td>4.1855</td>
<td>477.57</td>
</tr>
<tr>
<td>3</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.19631</td>
<td>4.1488</td>
<td>4.1747</td>
<td>0.0080478</td>
</tr>
<tr>
<td>4</td>
<td>Accept</td>
<td>4.1506</td>
<td>0.17756</td>
<td>4.1488</td>
<td>4.1488</td>
<td>0.10935</td>
</tr>
<tr>
<td>5</td>
<td>Best</td>
<td>4.1446</td>
<td>0.26321</td>
<td>4.1446</td>
<td>4.1446</td>
<td>326.29</td>
</tr>
<tr>
<td>6</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.17935</td>
<td>4.1446</td>
<td>4.1447</td>
<td>0.052426</td>
</tr>
<tr>
<td>7</td>
<td>Accept</td>
<td>4.1501</td>
<td>0.1607</td>
<td>4.1446</td>
<td>4.1461</td>
<td>0.052426</td>
</tr>
<tr>
<td>8</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.14217</td>
<td>4.1446</td>
<td>4.1447</td>
<td>990.71</td>
</tr>
<tr>
<td>9</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.14291</td>
<td>4.1446</td>
<td>4.1465</td>
<td>415.85</td>
</tr>
<tr>
<td>10</td>
<td>Accept</td>
<td>4.1454</td>
<td>0.13256</td>
<td>4.1446</td>
<td>4.1455</td>
<td>972.49</td>
</tr>
<tr>
<td>Iter</td>
<td>Eval result</td>
<td>Objective</td>
<td>Objective runtime</td>
<td>BestSoFar (observed)</td>
<td>BestSoFar (estim.)</td>
<td>KernelScale</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>21</td>
<td>Best</td>
<td>3.7172</td>
<td>0.1653</td>
<td>3.7172</td>
<td>3.7174</td>
<td>818.08</td>
</tr>
<tr>
<td>22</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.12828</td>
<td>3.7172</td>
<td>3.7177</td>
<td>0.006272</td>
</tr>
<tr>
<td>23</td>
<td>Accept</td>
<td>4.0567</td>
<td>0.13549</td>
<td>3.7172</td>
<td>3.7176</td>
<td>940.43</td>
</tr>
<tr>
<td>24</td>
<td>Best</td>
<td>2.8979</td>
<td>0.30111</td>
<td>2.8979</td>
<td>2.8979</td>
<td>37.141</td>
</tr>
<tr>
<td>25</td>
<td>Accept</td>
<td>4.1521</td>
<td>0.13746</td>
<td>2.8979</td>
<td>2.898</td>
<td>13.817</td>
</tr>
<tr>
<td>26</td>
<td>Best</td>
<td>2.795</td>
<td>0.28299</td>
<td>2.795</td>
<td>2.7953</td>
<td>20.022</td>
</tr>
<tr>
<td>27</td>
<td>Accept</td>
<td>2.8284</td>
<td>0.30791</td>
<td>2.795</td>
<td>2.7956</td>
<td>17.252</td>
</tr>
<tr>
<td>28</td>
<td>Best</td>
<td>2.7896</td>
<td>0.29593</td>
<td>2.7896</td>
<td>2.7898</td>
<td>11.432</td>
</tr>
<tr>
<td>29</td>
<td>Accept</td>
<td>2.8194</td>
<td>0.61993</td>
<td>2.7896</td>
<td>2.7899</td>
<td>8.5133</td>
</tr>
<tr>
<td>30</td>
<td>Accept</td>
<td>2.8061</td>
<td>0.29593</td>
<td>2.7896</td>
<td>2.7968</td>
<td>15.823</td>
</tr>
</tbody>
</table>

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 36.7332 seconds.
Total objective function evaluation time: 11.1668

Best observed feasible point:
KernelScale  Lambda  Epsilon
11.432  7.621e-06  2.094

Observed objective function value = 2.7896
Estimated objective function value = 2.7968
Function evaluation time = 0.29376

Best estimated feasible point (according to models):
KernelScale  Lambda  Epsilon
Estimated objective function value = 2.7968
Estimated function evaluation time = 0.29839

Mdl =
RegressionKernel
    ResponseName: 'Y'
    Learner: 'svm'
    NumExpansionDimensions: 256
    KernelScale: 15.8229
    Lambda: 6.1956e-06
    BoxConstraint: 411.7488
    Epsilon: 2.0085

Properties, Methods

FitInfo = struct with fields:
    Solver: 'LBFGS-fast'
    LossFunction: 'epsiloninsensitive'
    Lambda: 6.1956e-06
    BetaTolerance: 1.0000e-04
    GradientTolerance: 1.0000e-06
    ObjectiveValue: 1.3582
    GradientMagnitude: 0.0051
    RelativeChangeInBeta: 5.3944e-05
    FitTime: 0.0521
    History: []

HyperparameterOptimizationResults =
BayesianOptimization with properties:

  ObjectiveFcn: @createObjFcn/inMemoryObjFcn
  VariableDescriptions: [5×1 optimizableVariable]
  Options: [1×1 struct]
  MinObjective: 2.7896
  XAtMinObjective: [1×3 table]
  MinEstimatedObjective: 2.7968
  XAtMinEstimatedObjective: [1×3 table]
  NumObjectiveEvaluations: 30
For big data, the optimization procedure can take a long time. If the data set is too large to run the optimization procedure, you can try to optimize the parameters using only partial data. Use the `datasample` function and specify 'Replace', 'false' to sample data without replacement.

### Input Arguments

**X — Predictor data**

numeric matrix

Predictor data to which the regression model is fit, specified as an \( n \)-by-\( p \) numeric matrix, where \( n \) is the number of observations and \( p \) is the number of predictor variables.

The length of \( Y \) and the number of observations in \( X \) must be equal.

Data Types: `single` | `double`

**Y — Response data**

numeric vector

Response data, specified as an \( n \)-dimensional numeric vector. The length of \( Y \) and the number of observations in \( X \) must be equal.

Data Types: `single` | `double`
**Note** `fitrkernel` removes missing observations, that is, observations with any of these characteristics:

- NaN elements in the response (Y)
- At least one NaN value in a predictor observation (row in X)
- NaN value or 0 weight ('Weights')

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

**Note** You cannot use any cross-validation name-value pair argument along with the 'OptimizeHyperparameters' name-value pair argument. You can modify the cross-validation for 'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions' name-value pair argument.

Example: `Mdl = fitrkernel(X,Y,'Learner','leastsquares','NumExpansionDimensions',2^15,'KernelScale','auto')` implements least-squares regression after mapping the predictor data to the $2^{15}$ dimensional space using feature expansion with a kernel scale parameter selected by a heuristic procedure.

**Kernel Regression Options**

**BoxConstraint — Box constraint**

1 (default) | positive scalar

Box constraint on page 32-7236, specified as the comma-separated pair consisting of 'BoxConstraint' and a positive scalar.

This argument is valid only when 'Learner' is 'svm'(default) and you do not specify a value for the regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda' because the box constraint ($C$) and the regularization term strength ($\lambda$) are related by $C = 1/(\lambda n)$, where $n$ is the number of observations (rows in X).
Example: 'BoxConstraint',100  
Data Types: single | double

**Epsilon — Half width of epsilon-insensitive band**

'auto' (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of 'Epsilon' and 'auto' or a nonnegative scalar value.

For 'auto', the fitrkernel function determines the value of Epsilon as \( \frac{iqr(Y)}{13.49} \), which is an estimate of a tenth of the standard deviation using the interquartile range of the response variable Y. If \( iqr(Y) \) is equal to zero, then fitrkernel sets the value of Epsilon to 0.1.

'Epsilon' is valid only when Learner is svm.

Example: 'Epsilon',0.3  
Data Types: single | double

**NumExpansionDimensions — Number of dimensions of expanded space**

'auto' (default) | positive integer

Number of dimensions of the expanded space, specified as the comma-separated pair consisting of 'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the fitrkernel function selects the number of dimensions using \( 2.\text{^}\text{ceil(min(log2(p)+5,15))} \), where \( p \) is the number of predictors.

Example: 'NumExpansionDimensions',2^15  
Data Types: char | string | single | double

**KernelScale — Kernel scale parameter**

1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and 'auto' or a positive scalar. MATLAB obtains the random basis for random feature expansion by using the kernel scale parameter. For details, see “Random Feature Expansion” on page 32-7235.

If you specify 'auto', then MATLAB selects an appropriate kernel scale parameter using a heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another. Therefore, to reproduce results, set a random number seed by using rng before training.
Example: 'KernelScale','auto'
Data Types: char | string | single | double

**Lambda — Regularization term strength**

'auto' (default) | nonnegative scalar

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and 'auto' or a nonnegative scalar.

For 'auto', the value of 'Lambda' is $1/n$, where $n$ is the number of observations (rows in $X$).

You can specify either 'BoxConstraint' or 'Lambda' because the box constraint ($C$) and the regularization term strength ($\lambda$) are related by $C = 1/(\lambda n)$.

Example: 'Lambda',0.01
Data Types: char | string | single | double

**Learner — Linear regression model type**

'svm' (default) | 'leastsquares'

Linear regression model type, specified as the comma-separated pair consisting of 'Learner' and 'svm' or 'leastsquares'.

In the following table, $f(x) = T(x)\beta + b$.

- $x$ is an observation (row vector) from $p$ predictor variables.
- $T(\cdot)$ is a transformation of an observation (row vector) for feature expansion. $T(x)$ maps $x$ in $\mathbb{R}^p$ to a high-dimensional space ($\mathbb{R}^m$).
- $\beta$ is a vector of $m$ coefficients.
- $b$ is the scalar bias.
<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Response range</th>
<th>Loss function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'leastsquares'</td>
<td>Linear regression via ordinary least squares</td>
<td>$y \in (-\infty, \infty)$</td>
<td>Mean squared error (MSE): $\ell[y, f(x)] = \frac{1}{2}[y - f(x)]^2$</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine regression</td>
<td>Same as 'leastsquares'</td>
<td>Epsilon-insensitive: $\ell[y, f(x)] = \max[0,</td>
</tr>
</tbody>
</table>

Example: 'Learner', 'leastsquares'

**Verbose — Verbosity level**

0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1. **Verbose** controls the amount of diagnostic information **fitrkernel** displays at the command line.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><strong>fitrkernel</strong> does not display diagnostic information.</td>
</tr>
<tr>
<td>1</td>
<td><strong>fitrkernel</strong> displays and stores the value of the objective function, gradient magnitude, and other diagnostic information. <strong>FitInfo.History</strong> contains the diagnostic information.</td>
</tr>
</tbody>
</table>

Example: 'Verbose', 1

Data Types: single | double

**BlockSize — Maximum amount of allocated memory**

4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair consisting of 'BlockSize' and a positive scalar.

If **fitrkernel** requires more memory than the value of **BlockSize** to hold the transformed predictor data, then MATLAB uses a block-wise strategy. For details about the block-wise strategy, see “Algorithms” on page 32-7237.

Example: 'BlockSize', 1e4

Data Types: single | double
RandomStream — Random number stream

Global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as the comma-separated pair consisting of 'RandomStream' and a random stream object. For details, see “Random Feature Expansion” on page 32-7235.

Use 'RandomStream' to reproduce the random basis functions that fitrkernel uses to transform the data in X to a high-dimensional space. For details, see “Managing the Global Stream” (MATLAB) and “Creating and Controlling a Random Number Stream” (MATLAB).

Example: 'RandomStream', RandStream('mlfg6331_64')

ResponseTransform — Response transformation

'none' (default) | function handle

Response transformation, specified as the comma-separated pair consisting of 'ResponseTransform' and either 'none' or a function handle. The default is 'none', which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its function handle. The function handle must accept a vector (the original response values) and return a vector of the same size (the transformed response values).

Example: Suppose you create a function handle that applies an exponential transformation to an input vector by using myfunction = @(y)exp(y). Then, you can specify the response transformation as 'ResponseTransform', myfunction.

Data Types: char | string | function_handle

Weights — Observation weights

ones(n,1)/n (default) | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric vector of positive values. fitrkernel weighs the observations in X with the corresponding values in Weights. The size of Weights must equal n, the number of observations (rows in X).

fitrkernel normalizes Weights to sum to 1.

Data Types: double | single
Cross-Validation Options

**CrossVal — Cross-validation flag**

'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or Leaveout name-value pair argument. You can use only one cross-validation name-value pair argument at a time to create a cross-validated model.

Example: 'Crossval','on'

**CVPartition — Cross-validation partition**

[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and a cvpartition partition object as created by cvpartition. The partition object specifies the type of cross-validation and the indexing for the training and validation sets.

To create a cross-validated model, you can use one of these four name-value pair arguments only: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by using 'CVPartition', cvp.

**Holdout — Fraction of data for holdout validation**

scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout', p, then the software completes these steps:

1. Randomly select and reserve p*100% of the data as validation data, and train the model using the rest of the data.
2. Store the compact, trained model in the Trained property of the cross-validated model.
To create a cross-validated model, you can use one of these four name-value pair arguments only: **CVPartition**, **Holdout**, **KFold**, or **Leaveout**.

Example: 'Holdout',0.1

Data Types: double | single

**KFold — Number of folds**

10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting of 'KFold' and a positive integer value greater than 1. If you specify 'KFold', k, then the software completes these steps.

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in the cells of a k-by-1 cell vector in the *Trained* property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: **CVPartition**, **Holdout**, **KFold**, or **Leaveout**.

Example: 'KFold',5

Data Types: single | double

**Leaveout — Leave-one-out cross-validation flag**

'on' (default) | 'off'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout' and 'on' or 'off'. If you specify 'Leaveout', 'on', then, for each of the n observations (where n is the number of observations excluding missing observations), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other n – 1 observations.
2 Store the n compact, trained models in the cells of an n-by-1 cell vector in the *Trained* property of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only: **CVPartition**, **Holdout**, **KFold**, or **Leaveout**.
Example: 'Leaveout','on'

**Convergence Controls**

**BetaTolerance** — Relative tolerance on linear coefficients and bias term

1e-5 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \( B_t = [\beta_t \ b_t] \), that is, the vector of the coefficients and the bias term at optimization iteration \( t \). If \( \| B_t - B_{t-1} \|_2 < \text{BetaTolerance} \), then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies either stopping criterion.

Example: 'BetaTolerance',1e-6

Data Types: single | double

**GradientTolerance** — Absolute gradient tolerance

1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.

Let \( \nabla L_t \) be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration \( t \). If \( \| \nabla L_t \|_\infty = \max |\nabla L_t| < \text{GradientTolerance} \), then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either stopping criterion.

Example: 'GradientTolerance',1e-5

Data Types: single | double

**HessianHistorySize** — Size of history buffer for Hessian approximation

15 (default) | positive integer
Size of the history buffer for Hessian approximation, specified as the comma-separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration, fitrkernel composes the Hessian by using statistics from the latest HessianHistorySize iterations.

Example: 'HessianHistorySize',10

Data Types: single | double

**IterationLimit — Maximum number of optimization iterations**

A positive integer

Maximum number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by BlockSize. Otherwise, the default value is 100.

Example: 'IterationLimit',500

Data Types: single | double

**Hyperparameter Optimization Options**

**OptimizeHyperparameters — Parameters to optimize**

'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of 'OptimizeHyperparameters' and one of these values:

- 'none' — Do not optimize.
- 'auto' — Use {'KernelScale','Lambda','Epsilon'}.
- 'all' — Optimize all eligible parameters.
- Cell array of eligible parameter names.
- Cell array of eligible parameter names.
- Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrkernel by varying the parameters. To control the cross-validation type and other aspects of the optimization, use the HyperparameterOptimizationOptions name-value pair argument.
Note 'OptimizeHyperparameters' values override any values you set using other name-value pair arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes the 'auto' values to apply.

The eligible parameters for fitrkernel are:

- **Epsilon** — fitrkernel searches among positive values, by default log-scaled in the range $[\text{1e-3}, \text{1e2}]^{\text{iqr}(Y)/1.349}$.
- **KernelScale** — fitrkernel searches among positive values, by default log-scaled in the range $[\text{1e-3}, \text{1e3}]$.
- **Lambda** — fitrkernel searches among positive values, by default log-scaled in the range $[\text{1e-3}, \text{1e3}]/n$, where $n$ is the number of observations.
- **Learner** — fitrkernel searches among 'svm' and 'leastsquares'.
- **NumExpansionDimensions** — fitrkernel searches among positive integers, by default log-scaled in the range $[100, 10000]$.

Set nondefault parameters by passing a vector of optimizableVariable objects that have nondefault values. For example:

load carsmall
params = hyperparameters('fitrkernel',[Horsepower,Weight],MPG);
params(2).Range = [1e-4,1e6];

Pass params as the value of 'OptimizeHyperparameters'.

By default, iterative display appears at the command line, and plots appear according to the number of hyperparameters in the optimization. For the optimization and plots, the objective function is $\log(1 + \text{cross-validation loss})$ for regression and the misclassification rate for classification. To control the iterative display, set the **Verbose** field of the 'HyperparameterOptimizationOptions' name-value pair argument. To control the plots, set the **ShowPlots** field of the 'HyperparameterOptimizationOptions' name-value pair argument.

For an example, see “Optimize Kernel Regression” on page 32-7215.

Example: 'OptimizeHyperparameters','auto'

**HyperparameterOptimizationOptions — Options for optimization**
structure
Options for optimization, specified as the comma-separated pair consisting of 'HyperparameterOptimizationOptions' and a structure. This argument modifies the effect of the OptimizeHyperparameters name-value pair argument. All fields in the structure are optional.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
</table>
| Optimizer        | • 'bayesopt' — Use Bayesian optimization. Internally, this setting calls bayesopt.  
• 'gridsearch' — Use grid search with NumGridDivisions values per dimension.  
• 'randomsearch' — Search at random among MaxObjectiveEvaluations points.  
'gridsearch' searches in a random order, using uniform sampling without replacement from the grid. After optimization, you can get a table in grid order by using the command sortrows(Mdl.HyperparameterOptimizationResults). | 'bayesopt'       |
| AcquisitionFunctionName | • 'expected-improvement-per-second-plus'  
• 'expected-improvement'  
• 'expected-improvement-plus'  
• 'expected-improvement-per-second'  
• 'lower-confidence-bound'  
• 'probability-of-improvement'  
For details, see the bayesopt AcquisitionFunctionName name-value pair argument, or “Acquisition Function Types” on page 10-4. | 'expected-improvement-per-second-plus' |
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxObjectiveEvaluations</td>
<td>Maximum number of objective function evaluations.</td>
<td>30 for 'bayesopt' or 'randomsearch', and the entire grid for 'gridsearch'</td>
</tr>
<tr>
<td>MaxTime</td>
<td>Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc. Run time can exceed MaxTime because MaxTime does not interrupt function evaluations.</td>
<td>Inf</td>
</tr>
<tr>
<td>NumGridDivisions</td>
<td>For 'gridsearch', the number of values in each dimension. The value can be a vector of positive integers giving the number of values for each dimension, or a scalar that applies to all dimensions. This field is ignored for categorical variables.</td>
<td>10</td>
</tr>
<tr>
<td>ShowPlots</td>
<td>Logical value indicating whether to show plots. If true, this field plots the best objective function value against the iteration number. If there are one or two optimization parameters, and if Optimizer is 'bayesopt', then ShowPlots also plots a model of the objective function against the parameters.</td>
<td>true</td>
</tr>
<tr>
<td>SaveIntermediateResults</td>
<td>Logical value indicating whether to save results when Optimizer is 'bayesopt'. If true, this field overwrites a workspace variable named 'BayesoptResults' at each iteration. The variable is a BayesianOptimization object.</td>
<td>false</td>
</tr>
<tr>
<td>Field Name</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Verbose</td>
<td>Display to the command line.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0 — No iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 — Iterative display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 — Iterative display with extra information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For details, see the <code>bayesopt</code> <code>Verbose</code> name-value pair argument.</td>
<td></td>
</tr>
<tr>
<td>UseParallel</td>
<td>Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox. For details, see “Parallel Bayesian Optimization” on page 10-9.</td>
<td>false</td>
</tr>
<tr>
<td>Repartition</td>
<td>Logical value indicating whether to repartition the cross-validation at every iteration. If <code>false</code>, the optimizer uses a single partition for the optimization.</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td><code>true</code> usually gives the most robust results because this setting takes partitioning noise into account. However, for good results, <code>true</code> requires at least twice as many function evaluations.</td>
<td></td>
</tr>
</tbody>
</table>

Use no more than one of the following three field names.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVPartition</td>
<td>A <code>cvpartition</code> object, as created by <code>cvpartition</code>.</td>
<td>'Kfold',5 if you do not specify any cross-validation field</td>
</tr>
<tr>
<td>Holdout</td>
<td>A scalar in the range (0, 1) representing the holdout fraction.</td>
<td></td>
</tr>
<tr>
<td>Kfold</td>
<td>An integer greater than 1.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

'HyperparameterOptimizationOptions', struct('MaxObjectiveEvaluations', 60)

Data Types: `struct`
Output Arguments

Mdl — Trained kernel regression model
RegressionKernel model object | RegressionPartitionedKernel cross-validated model object

Trained kernel regression model, returned as a RegressionKernel model object or RegressionPartitionedKernel cross-validated model object.

If you set any of the name-value pair arguments CrossVal, CVPartition, Holdout, KFold, or Leaveout, then Mdl is a RegressionPartitionedKernel cross-validated model. Otherwise, Mdl is a RegressionKernel model.

To reference properties of Mdl, use dot notation. For example, enter Mdl.NumExpansionDimensions in the Command Window to display the number of dimensions of the expanded space.

**Note** Unlike other regression models, and for economical memory usage, a RegressionKernel model object does not store the training data or training process details (for example, convergence history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solver</td>
<td>Objective function minimization technique: 'LBFGS-fast', 'LBFGS-blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 32-7237.</td>
</tr>
<tr>
<td>LossFunction</td>
<td>Loss function. Either mean squared error (MSE) or epsilon-insensitive, depending on the type of linear regression model. See Learner.</td>
</tr>
<tr>
<td>Lambda</td>
<td>Regularization term strength. See Lambda.</td>
</tr>
<tr>
<td>BetaTolerance</td>
<td>Relative tolerance on the linear coefficients and the bias term. See BetaTolerance.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GradientTolerance</td>
<td>Absolute gradient tolerance. See GradientTolerance.</td>
</tr>
<tr>
<td>ObjectiveValue</td>
<td>Value of the objective function when optimization terminates. The regression loss plus the regularization term compose the objective function.</td>
</tr>
<tr>
<td>GradientMagnitude</td>
<td>Infinite norm of the gradient vector of the objective function when optimization terminates. See GradientTolerance.</td>
</tr>
<tr>
<td>RelativeChangeInBeta</td>
<td>Relative changes in the linear coefficients and the bias term when optimization terminates. See BetaTolerance.</td>
</tr>
<tr>
<td>FitTime</td>
<td>Elapsed, wall-clock time (in seconds) required to fit the model to the data.</td>
</tr>
<tr>
<td>History</td>
<td>History of optimization information. This field also includes the optimization information from training Mdl. This field is empty ([{}]) if you specify 'Verbose', 0. For details, see Verbose and “Algorithms” on page 32-7237.</td>
</tr>
</tbody>
</table>

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.ObjectiveValue` in the Command Window.

Examine the information provided by `FitInfo` to assess whether convergence is satisfactory.

**HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters**

`BayesianOptimization` object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a `BayesianOptimization` object or a table of hyperparameters and associated values. The output is nonempty when the value of 'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field value of the 'HyperparameterOptimizationOptions' name-value pair argument:

<table>
<thead>
<tr>
<th>Value of Optimizer Field</th>
<th>Value of HyperparameterOptimizationResults</th>
</tr>
</thead>
<tbody>
<tr>
<td>'bayesopt' (default)</td>
<td>Object of class <code>BayesianOptimization</code></td>
</tr>
<tr>
<td>Value of Optimizer Field</td>
<td>Value of HyperparameterOptimizationResults</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>'gridsearch' or 'randomsearch'</td>
<td>Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst)</td>
</tr>
</tbody>
</table>

**Limitations**

- `fitrkernel` does not accept initial conditions for the linear coefficients beta ($\beta$) and bias term ($b$) used to determine the decision function, $f(x) = T(x)\beta + b$.
- `fitrkernel` does not support standardization and cross-validation options.
- `fitrkernel` does not accept table inputs.

**Definitions**

**Random Feature Expansion**

Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.

The kernel regression algorithm searches for an optimal function that deviates from each response data point ($y_i$) by values no greater than the epsilon margin ($\varepsilon$) after mapping the predictor data into a high-dimensional space.

Some regression problems cannot be described adequately using a linear model. In such cases, obtain a nonlinear regression model by replacing the dot product $x_1 x_2'$ with a nonlinear kernel function $G(x_1, x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle$, where $x_i$ is the $i$th observation (row vector) and $\varphi(x_i)$ is a transformation that maps $x_i$ to a high-dimensional space (called the “kernel trick”). However, evaluating $G(x_1, x_2)$, the Gram matrix, for each pair of observations is computationally expensive for a large data set (large $n$).
The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

\[ G(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle = T(x_1)T(x_2)', \]

where \( T(x) \) maps \( x \) in \( \mathbb{R}^p \) to a high-dimensional space (\( \mathbb{R}^m \)). The Random Kitchen Sink[1] scheme uses the random transformation

\[ T(x) = m^{-1/2} \exp(iZx)', \]

where \( Z \in \mathbb{R}^{mxp} \) is a sample drawn from \( N(0, \sigma^{-2}) \) and \( \sigma^2 \) is a kernel scale. This scheme requires \( O(mp) \) computation and storage. The Fastfood[2] scheme introduces another random basis \( V \) instead of \( Z \) using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces computation cost to \( O(m \log p) \) and reduces storage to \( O(m) \).

You can specify values for \( m \) and \( \sigma^2 \), using the NumExpansionDimensions and KernelScale name-value pair arguments of fitrkernel, respectively.

The fitrkernel function uses the Fastfood scheme for random feature expansion and uses linear regression to train a Gaussian kernel regression model. Unlike solvers in the fitrsvm function, which require computation of the \( n \)-by-\( n \) Gram matrix, the solver in fitrkernel only needs to form a matrix of size \( n \)-by-\( m \), with \( m \) typically much less than \( n \) for big data.

**Box Constraint**

A box constraint is a parameter that controls the maximum penalty imposed on observations that lie outside the epsilon margin (\( \varepsilon \)), and helps to prevent overfitting (regularization). Increasing the box constraint can lead to longer training times.

The box constraint (\( C \)) and the regularization term strength (\( \lambda \)) are related by \( C = 1/(\lambda n) \), where \( n \) is the number of observations.
Algorithms

fitrkernel minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge ($L_2$) regularization. To find the type of LBFGS solver used for training, type FitInfo.Solver in the Command Window.

- 'LBFGS-fast' — LBFGS solver.
- 'LBFGS-blockwise' — LBFGS solver with a block-wise strategy. If fitrkernel requires more memory than the value of BlockSize to hold the transformed predictor data, then it uses a block-wise strategy.
- 'LBFGS-tall' — LBFGS solver with a block-wise strategy for tall arrays.

When fitrkernel uses a block-wise strategy, fitrkernel implements LBFGS by distributing the calculation of the loss and gradient among different parts of the data at each iteration. Also, fitrkernel refines the initial estimates of the linear coefficients and the bias term by fitting the model locally to parts of the data and combining the coefficients by averaging. If you specify 'Verbose',1, then fitrkernel displays diagnostic information for each data pass and stores the information in the History field of FitInfo.

When fitrkernel does not use a block-wise strategy, the initial estimates are zeros. If you specify 'Verbose',1, then fitrkernel displays diagnostic information for each iteration and stores the information in the History field of FitInfo.

References


Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

- The default values for these name-value pair arguments are different when you work with tall arrays.
  - 'BetaTolerance' — Default value is relaxed to 1e-3.
  - 'GradientTolerance' — Default value is relaxed to 1e-5.
  - 'IterationLimit' — Default value is relaxed to 20.
  - 'Verbose' — Default value is 1.
- If 'KernelScale' is 'auto', then fitrkernel uses the random stream controlled by tallrng for subsampling. For reproducibility, you must set a random number seed for both the global stream and the random stream controlled by tallrng.
- If 'Lambda' is 'auto', then fitrkernel might take an extra pass through the data to calculate the number of observations in X.
- fitrkernel uses a block-wise strategy. For details, see “Algorithms” on page 32-7237.
- The cross-validation name-value pair arguments, which include 'CrossVal', 'CVPartition', 'Holdout', 'KFold', and 'Leaveout', are not supported.
- The 'HyperparameterOptimizationOptions' name-value pair argument supports only 'Holdout' for cross-validation. For example, you can specify fitrkernel(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2)).

For more information, see “Tall Arrays” (MATLAB).

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.
To perform parallel hyperparameter optimization, use the `HyperparameterOptions`, `struct('UseParallel',true)` name-value pair argument in the call to this function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization” on page 10-9.

**See Also**
RegressionKernel | RegressionPartitionedKernel | bayesopt | bestPoint | fitrlinear | fitrsvm | loss | predict | resume

**Topics**
“Understanding Support Vector Machine Regression” on page 25-2

**Introduced in R2018a**
RegressionKernel

Gaussian kernel regression model using random feature expansion

Description

RegressionKernel is a trained model object for Gaussian kernel regression using random feature expansion. RegressionKernel is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.

Unlike other regression models, and for economical memory usage, RegressionKernel model objects do not store the training data. However, they do store information such as the dimension of the expanded space, the kernel scale parameter, and the regularization strength.

You can use trained RegressionKernel models to continue training using the training data, predict responses for new data, and compute the mean squared error or epsilon-insensitive loss. For details, see resume, predict, and loss.

Creation

Create a RegressionKernel object using the fitrkernel function. This function maps data in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional space by minimizing the regularized objective function. Obtaining the linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model in the low-dimensional space. Available linear regression models include regularized support vector machines (SVM) and least-squares regression models.

Properties

Kernel Regression Properties

Epsilon — Half width of epsilon-insensitive band

nonnegative scalar
Half the width of the epsilon-insensitive band, specified as a nonnegative scalar.

If Learner is not 'svm', then Epsilon is an empty array ([]).

Data Types: single | double

**Learner — Linear regression model type**

'svm' (default) | 'leastsquares'

Linear regression model type, specified as 'leastsquares' or 'svm'.

In the following table, \( f(x) = T(x)\beta + b \).

- \( x \) is an observation (row vector) from \( p \) predictor variables.
- \( T(\cdot) \) is a transformation of an observation (row vector) for feature expansion. \( T(x) \) maps \( x \) in \( \mathbb{R}^p \) to a high-dimensional space (\( \mathbb{R}^m \)).
- \( \beta \) is a vector of \( m \) coefficients.
- \( b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss function</th>
<th>FittedLoss Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'leastsquares'</td>
<td>Linear regression via ordinary least squares</td>
<td>Mean squared error (MSE): ( \ell[y, f(x)] = \frac{1}{2} [y - f(x)]^2 )</td>
<td>'mse'</td>
</tr>
<tr>
<td>'svm'</td>
<td>Support vector machine regression</td>
<td>Epsilon-insensitive: ( \ell[y, f(x)] = \max[0, y - f(x) - \varepsilon] )</td>
<td>'epsiloninsensitive'</td>
</tr>
</tbody>
</table>

**NumExpansionDimensions — Number of dimensions of expanded space**

Positive integer

Number of dimensions of the expanded space, specified as a positive integer.

Data Types: single | double

**KernelScale — Kernel scale parameter**

Positive scalar
Kernel scale parameter, specified as a positive scalar.
Data Types: single | double

**BoxConstraint — Box constraint**
positive scalar

Box constraint, specified as a positive scalar.
Data Types: double | single

**Lambda — Regularization term strength**
nonnegative scalar

Regularization term strength, specified as a nonnegative scalar.
Data Types: single | double

**FittedLoss — Loss function used to fit linear model**
'epsiloninsensitive' | 'mse'

Loss function used to fit the linear model, specified as 'epsiloninsensitive' or 'mse'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Algorithm</th>
<th>Loss function</th>
<th>Learner Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Support vector machine regression</td>
<td>Epsilon-insensitive: ( \ell[y, f(x)] = \max{0,</td>
<td>'svm'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( y - f(x) - \epsilon } )</td>
<td></td>
</tr>
<tr>
<td>'mse'</td>
<td>Linear regression via ordinary least squares</td>
<td>Mean squared error (MSE): ( \ell[y, f(x)] = \frac{1}{2}</td>
<td>'leastsquares'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y - f(x))^2 } )</td>
<td></td>
</tr>
</tbody>
</table>

**Regularization — Complexity penalty type**
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss function (see FittedLoss) and a regularization value from this table.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'lasso (L1)'</td>
<td>Lasso ((L_1)) penalty: (\lambda \sum_{j=1}^{p}</td>
</tr>
<tr>
<td>'ridge (L2)'</td>
<td>Ridge ((L_2)) penalty: (\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2)</td>
</tr>
</tbody>
</table>

\(\lambda\) specifies the regularization term strength (see Lambda).

The software excludes the bias term \((\beta_0)\) from the regularization penalty.

**Other Regression Properties**

**CategoricalPredictors — Indices of categorical predictors**

[]

Indices of categorical predictors, whose value is always empty ([ ]) because a RegressionKernel model does not support categorical predictors.

**ModelParameters — Parameters used for training model**

structure

Parameters used for training the RegressionKernel model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.

Data Types: struct

**PredictorNames — Predictor names**

cell array of character vectors

Predictor names in order of their appearance in the predictor data \(X\), specified as a cell array of character vectors. The length of PredictorNames is equal to the number of columns in \(X\).

Data Types: cell
**ExpandedPredictorNames — Expanded predictor names**
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors. Because a RegressionKernel model does not support categorical predictors, ExpandedPredictorNames and PredictorNames are equal.

Data Types: cell

**ResponseName — Response variable name**
character vector

Response variable name, specified as a character vector.

Data Types: char

**ResponseTransform — Response transformation function to apply to predicted responses**
'none' | function handle

Response transformation function to apply to predicted responses, specified as 'none' or a function handle.

For kernel regression models and before the response transformation, the predicted response for the observation \( x \) (row vector) is \( f(x) = T(x)\beta + b \).

- \( T(\cdot) \) is a transformation of an observation for feature expansion.
- \( \beta \) corresponds to Mdl.Beta.
- \( b \) corresponds to Mdl.Bias.

For a MATLAB function or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: char | function_handle
Object Functions

- loss: Regression loss for Gaussian kernel regression model
- predict: Predict responses for Gaussian kernel regression model
- resume: Resume training of Gaussian kernel regression model

Examples

Train Gaussian Kernel Regression Model

Train a kernel regression model for a tall array by using SVM.

Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that datastore replaces them with NaN values. Select a subset of the variables to use. Create a tall table on top of the datastore.

```matlab
varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',
 'SelectedVariableNames',varnames);
t = tall(ds);
```

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime as the response variable (Y). Select the observations for which ArrTime is later than DepTime.

```matlab
daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime); % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data
```

Standardize the predictor variables.

```matlab
Z = zscore(X); % Standardize the data
```

Train a default Gaussian kernel regression model with the standardized predictors. Extract a fit summary to determine how well the optimization algorithm fits the model to the data.

```matlab
[Mdl,FitInfo] = fitrkernel(Z,Y)
```

Found 6 chunks.
<table>
<thead>
<tr>
<th>Solver</th>
<th>Iteration / Data Pass</th>
<th>Objective</th>
<th>Gradient magnitude</th>
<th>Beta relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>0 / 1</td>
<td>4.335200e+01</td>
<td>9.821993e-02</td>
<td>NaN</td>
</tr>
<tr>
<td>LBFGS</td>
<td>0 / 2</td>
<td>3.693870e+01</td>
<td>1.566041e-02</td>
<td>9.988238e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1 / 3</td>
<td>3.692143e+01</td>
<td>3.030550e-02</td>
<td>1.352488e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>2 / 4</td>
<td>3.689521e+01</td>
<td>2.919252e-02</td>
<td>1.137336e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>2 / 5</td>
<td>3.686922e+01</td>
<td>2.801905e-02</td>
<td>2.277224e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>2 / 6</td>
<td>3.681793e+01</td>
<td>2.615365e-02</td>
<td>4.564688e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>2 / 7</td>
<td>3.671782e+01</td>
<td>2.765966e-02</td>
<td>9.170612e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>2 / 8</td>
<td>3.652813e+01</td>
<td>1.868733e-02</td>
<td>1.850839e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>3 / 9</td>
<td>3.442961e+01</td>
<td>3.260732e-02</td>
<td>2.030226e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>4 / 10</td>
<td>3.473328e+01</td>
<td>8.506865e-02</td>
<td>3.309396e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>4 / 11</td>
<td>3.378744e+01</td>
<td>5.473648e-02</td>
<td>1.428247e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>5 / 12</td>
<td>3.329728e+01</td>
<td>3.922448e-02</td>
<td>1.026073e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>6 / 13</td>
<td>3.309615e+01</td>
<td>1.551459e-02</td>
<td>6.118966e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>7 / 14</td>
<td>3.300400e+01</td>
<td>1.759430e-02</td>
<td>1.918912e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>8 / 15</td>
<td>3.277892e+01</td>
<td>3.153200e-02</td>
<td>4.781893e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>9 / 16</td>
<td>3.255352e+01</td>
<td>3.45953e-02</td>
<td>4.200697e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>10 / 17</td>
<td>3.207945e+01</td>
<td>6.192847e-02</td>
<td>2.161540e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>11 / 18</td>
<td>3.171391e+01</td>
<td>3.185452e-02</td>
<td>1.204747e-01</td>
</tr>
<tr>
<td>LBFGS</td>
<td>12 / 19</td>
<td>3.155433e+01</td>
<td>1.83853e-02</td>
<td>5.837098e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>13 / 20</td>
<td>3.149625e+01</td>
<td>1.132499e-02</td>
<td>2.169556e-02</td>
</tr>
</tbody>
</table>

Mdl = RegressionKernel
    PredictorNames: {'x1'  'x2'}
    ResponseName: 'Y'
    Learner: 'svm'
    NumExpansionDimensions: 64
    KernelScale: 1
Properties, Methods

FitInfo = struct with fields:
    Solver: 'LBFGS-tall'
    LossFunction: 'epsiloninsensitive'
    Lambda: 8.5385e-06
    BetaTolerance: 1.0000e-03
    GradientTolerance: 1.0000e-05
    ObjectiveValue: 30.6315
    GradientMagnitude: 0.0068
    RelativeChangeInBeta: 0.0161
    FitTime: 77.1910
    History: [1×1 struct]

Mdl is a RegressionKernel model. To inspect the regression error, you can pass Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the predict function to predict responses for new observations. You can also pass Mdl and the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine whether optimization termination measurements are satisfactory.

For improved accuracy, you can increase the maximum number of optimization iterations ('IterationLimit') and decrease the tolerance values ('BetaTolerance' and 'GradientTolerance') by using the name-value pair arguments of fitrkernel. Doing so can improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.

**Estimate Sample Loss and Resume Training**

Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.
Load the \texttt{carbig} data set.

\texttt{load carbig}

Specify the predictor variables (\textit{X}) and the response variable (\textit{Y}).

\begin{verbatim}
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;
\end{verbatim}

Delete rows of \textit{X} and \textit{Y} where either array has \texttt{NaN} values. Removing rows with \texttt{NaN} values before passing data to \texttt{fitrkernel} can speed up training and reduce memory usage.

\begin{verbatim}
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
\end{verbatim}

Reserve 10\% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

\begin{verbatim}
rng(10) % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices
\end{verbatim}

Standardize the training data and train a kernel regression model. Set the iteration limit to 5 and specify \texttt{'Verbose',1} to display diagnostic information.

\begin{verbatim}
Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)
\end{verbatim}

\begin{verbatim}
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>5.691016e+00</td>
<td>0.000000e+00</td>
<td>5.852758e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>5.086537e+00</td>
<td>8.000000e+00</td>
<td>5.220869e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>3.862301e+00</td>
<td>5.000000e-01</td>
<td>3.796034e-01</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>3.460613e+00</td>
<td>1.000000e+00</td>
<td>3.257790e-01</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>3.136228e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-02</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}
Mdl = RegressionKernel
    ResponseName: 'Y'
    Learner: 'svm'
    NumExpansionDimensions: 256
    KernelScale: 1
    Lambda: 0.0028
    BoxConstraint: 1
    Epsilon: 0.8617

Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns. Estimate the epsilon-insensitive error for the test set.

\[
X_{test} = X(idxTest,:);
Z_{test} = (X_{test} - tr_{mu})/tr_{sigma}; \quad \% \text{Standardize the test data}
Y_{test} = Y(idxTest);
\]

\[
L = \text{loss}(Mdl,Z_{test},Y_{test},'LossFun','epsiloninsensitive')
\]

\[
L = 2.0674
\]

Continue training the model by using \textit{resume}. This function continues training with the same options used for training Mdl.

\[
\text{UpdatedMdl} = \text{resume}(Mdl,Z_{train},Y_{train});
\]
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>6</td>
<td>2.738163e+00</td>
<td>1.000000e+00</td>
<td>5.949008e-02</td>
<td>9.476263e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>7</td>
<td>2.719146e+00</td>
<td>1.000000e+00</td>
<td>1.699717e-02</td>
<td>1.849972e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>8</td>
<td>2.705941e+00</td>
<td>1.000000e+00</td>
<td>3.116147e-02</td>
<td>4.152590e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>9</td>
<td>2.701162e+00</td>
<td>1.000000e+00</td>
<td>5.665722e-03</td>
<td>9.401466e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>10</td>
<td>2.695341e+00</td>
<td>5.000000e-01</td>
<td>3.116147e-02</td>
<td>4.968046e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>11</td>
<td>2.691277e+00</td>
<td>1.000000e+00</td>
<td>8.498584e-03</td>
<td>1.017446e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>12</td>
<td>2.689972e+00</td>
<td>1.000000e+00</td>
<td>1.983003e-02</td>
<td>9.938921e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>13</td>
<td>2.688979e+00</td>
<td>1.000000e+00</td>
<td>1.416431e-02</td>
<td>6.606316e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>14</td>
<td>2.687787e+00</td>
<td>1.000000e+00</td>
<td>1.621956e-02</td>
<td>1.169701e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>15</td>
<td>2.686539e+00</td>
<td>1.000000e+00</td>
<td>1.699717e-02</td>
<td>1.133144e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>16</td>
<td>2.685356e+00</td>
<td>1.000000e+00</td>
<td>1.133144e-02</td>
<td>2.104248e-02</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>17</td>
<td>2.685021e+00</td>
<td>5.000000e-01</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>18</td>
<td>2.684002e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>19</td>
<td>2.683507e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>20</td>
<td>2.683343e+00</td>
<td>5.000000e-01</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>21</td>
<td>2.682897e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>22</td>
<td>2.682682e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>23</td>
<td>2.682485e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>24</td>
<td>2.682326e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>25</td>
<td>2.682356e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>26</td>
<td>2.682194e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>27</td>
<td>2.681925e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>28</td>
<td>2.681692e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>29</td>
<td>2.681625e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>30</td>
<td>2.681594e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>31</td>
<td>2.681581e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>32</td>
<td>2.681579e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>33</td>
<td>2.681553e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>34</td>
<td>2.681541e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>35</td>
<td>2.681499e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>36</td>
<td>2.681493e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>37</td>
<td>2.681473e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>38</td>
<td>2.681469e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>39</td>
<td>2.681432e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-03</td>
<td>6.175231e-03</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>40</td>
<td>2.681423e+00</td>
<td>2.500000e-01</td>
<td>1.133144e-02</td>
<td>6.175231e-03</td>
</tr>
</tbody>
</table>
Estimate the epsilon-insensitive error for the test set using the updated model.

\[
\text{UpdatedL} = \text{loss(UpdatedMdl,Ztest,Ytest,}'\text{LossFun}',\text{''epsiloninsensitive''})}
\]

UpdatedL = 1.8933

The regression error decreases by a factor of about 0.08 after `resume` updates the regression model with more iterations.

**See Also**
RegressionLinear | fitrkernel | fitrlinear

**Introduced in R2018a**
loss

Regression loss for Gaussian kernel regression model

Syntax

L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name,Value)

Description

L = loss(Mdl,X,Y) returns the mean squared error (MSE) for the Gaussian kernel regression model Mdl using the predictor data in X and the corresponding responses in Y.

L = loss(Mdl,X,Y,Name,Value) uses additional options specified by one or more name-value pair arguments. For example, you can specify a regression loss function and observation weights. Then, loss returns the weighted regression loss using the specified loss function.

Examples

Calculate Sample Loss for Gaussian Kernel Regression Model

Train a Gaussian kernel regression model for a tall array, then calculate the resubstitution mean squared error and epsilon-insensitive error.

Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that datastore replaces them with NaN values. Select a subset of the variables to use. Create a tall table on top of the datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);
Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime as the response variable (Y). Select the observations for which ArrTime is later than DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime); % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Standardize the predictor variables.

Z = zscore(X); % Standardize the data

Train a default Gaussian kernel regression model with the standardized predictors. Set 'Verbose',0 to suppress diagnostic messages.

[Mdl,FitInfo] = fitrkernel(Z,Y,'Verbose',0)

Mdl = 
   RegressionKernel
       PredictorNames: {'x1'  'x2'}
       ResponseName: 'Y'
       Learner: 'svm'
       NumExpansionDimensions: 64
       KernelScale: 1
       Lambda: 8.5385e-06
       BoxConstraint: 1
       Epsilon: 5.9303

Properties, Methods

FitInfo = struct with fields:
       Solver: 'LBFGS-tall'
       LossFunction: 'epsiloninsensitive'
       Lambda: 8.5385e-06
       BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
       ObjectiveValue: 31.2279
       GradientMagnitude: 0.0182
       RelativeChangeInBeta: 0.0465
       FitTime: 68.4420

loss
Md1 is a trained RegressionKernel model, and the structure array FitInfo contains optimization details.

Determine how well the trained model generalizes to new predictor values by estimating the resubstitution mean squared error and epsilon-insensitive error.

\[
\text{lossMSE} = \text{loss}(\text{Md1}, Z, Y) \quad \% \text{Resubstitution mean squared error}
\]

\[
\text{lossMSE} =
\]

\[
\begin{array}{cccc}
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
: & : & : & : \\
: & : & : & : \\
\end{array}
\]

Preview deferred. Learn more.

\[
\text{lossEI} = \text{loss}(\text{Md1}, Z, Y, '\text{LossFun}', '\text{epsiloninsensitive}') \quad \% \text{Resubstitution epsilon-insensitive error}
\]

\[
\text{lossEI} =
\]

\[
\begin{array}{cccc}
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
? & ? & ? & \ldots \\
: & : & : & : \\
: & : & : & : \\
\end{array}
\]

Preview deferred. Learn more.

Evaluate the tall arrays and bring the results into memory by using \texttt{gather}.

\[
[\text{lossMSE}, \text{lossEI}] = \text{gather}(\text{lossMSE}, \text{lossEI})
\]

\begin{verbatim}
Evaluating tall expression using the Parallel Pool 'local':
  - Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.4 sec
\end{verbatim}

\[
\text{lossMSE} = 2.8508e+03
\]
Specify Custom Regression Loss

Specify a custom regression loss (Huber loss) for a Gaussian kernel regression model.

Load the carbig data set.

```matlab
load carbig
```

Specify the predictor variables (X) and the response variable (Y).

```matlab
X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;
```

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before passing data to fitrkernel can speed up training and reduce memory usage.

```matlab
R = rmmissing([X Y]);
X = R(:,1:4);
Y = R(:,end);
```

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

```matlab
rng(10) % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices
```

Standardize the training data and train the regression kernel model.

```matlab
Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain)
```

```matlab
Mdl =
 RegressionKernel
```

```matlab
lossEI = 28.1095
```
Properties, Methods

Mdl is a RegressionKernel model.

Create an anonymous function that measures Huber loss ($\delta = 1$), that is,

$$L = \frac{1}{\sum w_j} \sum_{j=1}^{n} w_j \ell_j,$$

where

$$\ell_j = \begin{cases} 
0.5\hat{e}_j^2; & |\hat{e}_j| \leq 1 \\
|\hat{e}_j| - 0.5; & |\hat{e}_j| > 1 
\end{cases}$$

$\hat{e}_j$ is the residual for observation $j$. Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

```matlab
huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
 ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);
```

Estimate the training set regression loss using the Huber loss function.

```matlab
eTrain = loss(Mdl,Ztrain,Ytrain,'LossFun',huberloss)
eTrain = 1.7210
```

Standardize the test data using the same mean and standard deviation of the training data columns. Estimate the test set regression loss using the Huber loss function.
Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

eTest = loss(Mdl,Ztest,Ytest,'LossFun',huberloss)
eTest = 1.3062

**Input Arguments**

**Mdl — Kernel regression model**
RegressionKernel model object

Kernel regression model, specified as a RegressionKernel model object. You can create a RegressionKernel model object using fitrkernel.

**X — Predictor data**
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors. p must be equal to the number of predictors used to train Mdl.

Data Types: single | double

**Y — Response data**
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y and the number of observations in X must be equal.

Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: \( L = \) loss(Mdl,X,Y,'LossFun','epsiloninsensitive','Weights',weights) returns the weighted regression loss using the epsilon-insensitive loss function.

**LossFun — Loss function**
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss function name or a function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar. Also, in the table, \( f(x) = T(x)\beta + b \).
  - \( x \) is an observation (row vector) from \( p \) predictor variables.
  - \( T(\cdot) \) is a transformation of an observation (row vector) for feature expansion. \( T(x) \) maps \( x \) in \( \mathbb{R}^p \) to a high-dimensional space (\( \mathbb{R}^m \)).
  - \( \beta \) is a vector of \( m \) coefficients.
  - \( b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Epsilon-insensitive loss: ( \ell[y, f(x)] = \max[0,</td>
</tr>
<tr>
<td>'mse'</td>
<td>MSE: ( \ell[y, f(x)] = (y - f(x))^2 )</td>
</tr>
</tbody>
</table>

'epsiloninsensitive' is appropriate for SVM learners only.

- Specify your own function by using function handle notation.

Let \( n \) be the number of observations in \( X \). Your function must have this signature:

\[
\text{lossvalue} = \text{lossfun}(Y,\text{Yhat},W)
\]

- The output argument \( \text{lossvalue} \) is a scalar.
- You choose the function name (\text{lossfun}).
- \( Y \) is an \( n \)-dimensional vector of observed responses. \text{loss} passes the input argument \( Y \) in for \( Y \).
• **Yhat** is an $n$-dimensional vector of predicted responses, which is similar to the output of `predict`.

• **W** is an $n$-by-1 numeric vector of observation weights.

Specify your function using `'LossFun'`, `@lossfun`.

Data Types: char | string | function_handle

**Weights** — Observation weights

`ones(n,1)/n` (default) | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of `'Weights'` and a numeric vector of positive values. `loss` weights the observations in $X$ with the corresponding values in `Weights`. The size of `Weights` must equal $n$, the number of observations (rows in $X$). If you supply the observation weights, `loss` computes the weighted regression loss, that is, the “Weighted Mean Squared Error” on page 32-7259 or “Epsilon-Insensitive Loss Function” on page 32-7260.

`loss` normalizes `Weights` to sum to 1.

Data Types: double | single

**Output Arguments**

**L** — Regression loss

numeric scalar

Regression loss, returned as a numeric scalar. The interpretation of $L$ depends on `Weights` and `LossFun`. For example, if you use the default observation weights and specify `'epsiloninsensitive'` as the loss function, then $L$ is the epsilon-insensitive loss.

**Definitions**

**Weighted Mean Squared Error**

The weighted mean squared error is calculated as follows:
\[
\text{mse} = \frac{\sum_{j=1}^{n} w_j (f(x_j) - y_j)^2}{\sum_{j=1}^{n} w_j},
\]

where:

- \( n \) is the number of observations.
- \( x_j \) is the \( j \)th observation (row of predictor data).
- \( y_j \) is the observed response to \( x_j \).
- \( f(x_j) \) is the response prediction of the Gaussian kernel regression model \( \text{Mdl} \) to \( x_j \).
- \( w \) is the vector of observation weights.

Each observation weight in \( w \) is equal to \( \text{ones}(n,1)/n \) by default. You can specify different values for the observation weights by using the 'Weights' name-value pair argument. \text{loss} normalizes \text{Weights} to sum to 1.

**Epsilon-Insensitive Loss Function**

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (\( \varepsilon \)) of the function value. The function is formally described as:

\[
\text{Loss}_{\varepsilon} = \begin{cases} 
0, & \text{if } |y - f(x)| \leq \varepsilon \\
|y - f(x)| - \varepsilon, & \text{otherwise.}
\end{cases}
\]

The mean epsilon-insensitive loss is calculated as follows:

\[
\text{Loss} = \frac{\sum_{j=1}^{n} w_j \max(0,|y_j - f(x_j)| - \varepsilon)}{\sum_{j=1}^{n} w_j},
\]

where:
• $n$ is the number of observations.
• $x_j$ is the $j$th observation (row of predictor data).
• $y_j$ is the observed response to $x_j$.
• $f(x_j)$ is the response prediction of the Gaussian kernel regression model $Mdl$ to $x_j$.
• $w$ is the vector of observation weights.

Each observation weight in $w$ is equal to $\text{ones}(n,1)/n$ by default. You can specify different values for the observation weights by using the 'Weights' name-value pair argument. loss normalizes Weights to sum to 1.

### Extended Capabilities

#### Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

### See Also

RegressionKernel | fitrkernel | predict | resume

Introduced in R2018a

32-7261
**predict**

Predict responses for Gaussian kernel regression model

**Syntax**

\[ Y\text{Fit} = \text{predict}(\text{Mdl},X) \]

**Description**

\[ Y\text{Fit} = \text{predict}(\text{Mdl},X) \] returns predicted responses for each observation in the predictor data \( X \) based on the binary Gaussian kernel regression model \( \text{Mdl} \).

**Examples**

**Predict Test Set Responses**

Predict the test set responses using a Gaussian kernel regression model for the `carbig` data set.

Load the `carbig` data set.

```matlab
load carbig
```

Specify the predictor variables (\( X \)) and the response variable (\( Y \)).

```matlab
X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;
```

Delete rows of \( X \) and \( Y \) where either array has NaN values. Removing rows with NaN values before passing data to `fitrkernel` can speed up training and reduce memory usage.

```matlab
R = rmmissing([X Y]);
X = R(:,1:4);
Y = R(:,end);
```
Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

```matlab
rng(10) % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices

Standardize the training data and train the regression kernel model.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain)

Mdl = RegressionKernel
 ResponseName: 'Y'
 Learner: 'svm'
 NumExpansionDimensions: 128
 KernelScale: 1
 Lambda: 0.0028
 BoxConstraint: 1
 Epsilon: 0.8617

Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns. Predict responses for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

YFit = predict(Mdl,Ztest);

Create a table containing the first 10 observed response values and predicted response values.
```matlab
table(Ytest(1:10),YFit(1:10),'VariableNames',...
    {'ObservedValue','PredictedValue'})
```

```
ans=10×2 table
    ObservedValue    PredictedValue
       18           17.616
       14           25.799
       24           24.141
       25           25.018
       14           13.637
       14           14.557
       18           18.584
       27           26.096
       21           25.031
       13           13.324
```

Estimate the test set regression loss using the mean squared error loss function.
```
L = loss(Mdl,Ztest,Ytest)
```

```
L = 9.2664
```

Input Arguments

Mdl — Kernel regression model
RegressionKernel model object

Kernel regression model, specified as a RegressionKernel model object. You can create a RegressionKernel model object using `fittker`.

X — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors. p must be equal to the number of predictors used to train Mdl.

Data Types: `single` | `double`
Output Arguments

YFit — Predicted responses
numeric vector

Predicted responses, returned as a numeric vector.

YFit is an n-by-1 vector of the same data type as the response data (Y) used to train Mdl, where n is the number of observations in X.

Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays” (MATLAB).

See Also
RegressionKernel | fitrkernel | loss | resume

Introduced in R2018a
resume
Resume training of Gaussian kernel regression model

Syntax

UpdatedMdl = resume(Mdl,X,Y)
UpdatedMdl = resume(Mdl,X,Y,Name,Value)
[UpdatedMdl,FitInfo] = resume(__)

Description

UpdatedMdl = resume(Mdl,X,Y) continues training with the same options used to train Mdl, including the training data (predictor data in X and response data in Y) and the feature expansion. The training starts at the current estimated parameters in Mdl. The function returns a new Gaussian kernel regression model UpdatedMdl.

UpdatedMdl = resume(Mdl,X,Y,Name,Value) returns a new kernel regression model with additional options specified by one or more name-value pair arguments. For example, you can modify convergence control options, such as convergence tolerances and the maximum number of additional optimization iterations.

[UpdatedMdl,FitInfo] = resume(__) also returns the fit information in the structure array FitInfo using any of the input arguments in the previous syntaxes.

Examples

Estimate Sample Loss and Resume Training

Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.

Load the carbig data set.
load carbig
Specify the predictor variables (X) and the response variable (Y).

$$X = \{\text{Acceleration}, \text{Cylinders}, \text{Displacement}, \text{Horsepower}, \text{Weight}\} ;$$
$$Y = \text{MPG} ;$$

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before passing data to fitrkernel can speed up training and reduce memory usage.

$$R = \text{rmmissing}([X \ Y]) ; \quad \text{% Data with missing entries removed}$$
$$X = R(:,1:5) ;$$
$$Y = R(:,\text{end}) ;$$

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

rng(10) \quad \text{% For reproducibility}$$
$$N = \text{length}(Y) ;$$
$$\text{cvp} = \text{cvpartition}(N, '\text{Holdout}', 0.1) ;$$
$$\text{idxTrn} = \text{training}(\text{cvp}) ; \quad \text{% Training set indices}$$
$$\text{idxTest} = \text{test}(\text{cvp}) ; \quad \text{% Test set indices}$$

Standardize the training data and train a kernel regression model. Set the iteration limit to 5 and specify 'Verbose',1 to display diagnostic information.

$$\text{Xtrain} = X(\text{idxTrn},:) ;$$
$$\text{Ytrain} = Y(\text{idxTrn}) ;$$
$$[\text{Ztrain}, \text{tr} _ \text{mu}, \text{tr} _ \text{sigma}] = \text{zscore}(\text{Xtrain}) ; \quad \text{% Standardize the training data}$$
$$\text{tr} _ \text{sigma}(\text{tr} _ \text{sigma}==0) = 1 ;$$
$$\text{Md}l = \text{fitrkernel}(\text{Ztrain}, \text{Ytrain}, '\text{IterationLimit}', 5, '\text{Verbose}', 1)$$

<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Ratio change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>0</td>
<td>5.691016e+00</td>
<td>0.000000e+00</td>
<td>5.852758e-02</td>
<td></td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>1</td>
<td>5.086537e+00</td>
<td>8.000000e+00</td>
<td>5.220869e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>2</td>
<td>3.862301e+00</td>
<td>5.000000e-01</td>
<td>3.796034e-01</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>3</td>
<td>3.460613e+00</td>
<td>1.000000e+00</td>
<td>3.257790e-01</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>4</td>
<td>3.136228e+00</td>
<td>1.000000e+00</td>
<td>2.832861e-02</td>
<td>8</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>5</td>
<td>3.063978e+00</td>
<td>1.000000e+00</td>
<td>1.475038e-02</td>
<td>3</td>
</tr>
</tbody>
</table>

Md\l =

RegressionKernel

32-7267
ResponseName: 'Y'
Learner: 'svm'
NumExpansionDimensions: 256
KernelScale: 1
Lambda: 0.0028
BoxConstraint: 1
Epsilon: 0.8617

Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns. Estimate the epsilon-insensitive error for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674

Continue training the model by using resume. This function continues training with the same options used for training Mdl.

UpdatedMdl = resume(Mdl,Ztrain,Ytrain);
<table>
<thead>
<tr>
<th>Solver</th>
<th>Pass</th>
<th>Iteration</th>
<th>Objective</th>
<th>Step</th>
<th>Gradient magnitude</th>
<th>Relative change in Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>11</td>
<td>2.691277e+00</td>
<td>1.000000e+00</td>
<td>8.498584e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>12</td>
<td>2.689972e+00</td>
<td>1.000000e+00</td>
<td>1.983003e-02</td>
<td>9</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>13</td>
<td>2.688979e+00</td>
<td>1.000000e+00</td>
<td>1.983003e-02</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>14</td>
<td>2.687787e+00</td>
<td>1.000000e+00</td>
<td>1.983003e-02</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>15</td>
<td>2.686539e+00</td>
<td>1.000000e+00</td>
<td>1.621956e-03</td>
<td>7</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>16</td>
<td>2.685356e+00</td>
<td>1.000000e+00</td>
<td>1.621956e-03</td>
<td>6</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>17</td>
<td>2.685021e+00</td>
<td>1.000000e+00</td>
<td>1.621956e-03</td>
<td>5</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>18</td>
<td>2.684002e+00</td>
<td>1.000000e+00</td>
<td>7.089542e-03</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>19</td>
<td>2.683507e+00</td>
<td>1.000000e+00</td>
<td>7.089542e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>20</td>
<td>2.683343e+00</td>
<td>5.000000e-01</td>
<td>1.133144e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>21</td>
<td>2.682897e+00</td>
<td>1.000000e+00</td>
<td>7.172867e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>22</td>
<td>2.682682e+00</td>
<td>1.000000e+00</td>
<td>2.587726e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>23</td>
<td>2.682485e+00</td>
<td>1.000000e+00</td>
<td>2.587726e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>24</td>
<td>2.682326e+00</td>
<td>1.000000e+00</td>
<td>2.587726e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>25</td>
<td>2.681914e+00</td>
<td>1.000000e+00</td>
<td>1.169701e-02</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>26</td>
<td>2.681867e+00</td>
<td>1.000000e+00</td>
<td>9.549119e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>27</td>
<td>2.681725e+00</td>
<td>1.000000e+00</td>
<td>9.549119e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>28</td>
<td>2.681692e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>29</td>
<td>2.681625e+00</td>
<td>1.000000e+00</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>30</td>
<td>2.681594e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>31</td>
<td>2.681581e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>32</td>
<td>2.681579e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>33</td>
<td>2.681553e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>34</td>
<td>2.681541e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>35</td>
<td>2.681499e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>36</td>
<td>2.681493e+00</td>
<td>5.000000e-01</td>
<td>1.314940e-03</td>
<td>1</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>37</td>
<td>2.681473e+00</td>
<td>1.000000e+00</td>
<td>9.869233e-03</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>38</td>
<td>2.681469e+00</td>
<td>1.000000e+00</td>
<td>9.869233e-03</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>39</td>
<td>2.681432e+00</td>
<td>1.000000e+00</td>
<td>9.869233e-03</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>40</td>
<td>2.681423e+00</td>
<td>2.500000e-01</td>
<td>1.133144e-02</td>
<td>2</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>41</td>
<td>2.681416e+00</td>
<td>1.000000e+00</td>
<td>8.498584e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>42</td>
<td>2.681413e+00</td>
<td>5.000000e-01</td>
<td>5.665722e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>43</td>
<td>2.681403e+00</td>
<td>1.000000e+00</td>
<td>5.665722e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>44</td>
<td>2.681392e+00</td>
<td>1.000000e+00</td>
<td>5.665722e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>45</td>
<td>2.681383e+00</td>
<td>1.000000e+00</td>
<td>5.665722e-03</td>
<td>3</td>
</tr>
<tr>
<td>LBFGS</td>
<td>1</td>
<td>46</td>
<td>2.681374e+00</td>
<td>1.000000e+00</td>
<td>5.665722e-03</td>
<td>3</td>
</tr>
</tbody>
</table>

resume
32-7269
LBFGS	1	47	2.681353e+00	1.000000e+00	2.832861e-03	3.160871e-04	256
LBFGS	1	48	2.681334e+00	5.000000e-01	8.498584e-03	1.045502e-03	256
LBFGS	1	49	2.681314e+00	1.000000e+00	7.832861e-04	1.505118e-03	256
LBFGS	1	50	2.681306e+00	1.000000e+00	2.832861e-03	4.756894e-04	256
LBFGS	1	51	2.681301e+00	1.000000e+00	1.133144e-02	3.664873e-04	256
LBFGS	1	52	2.681288e+00	2.500000e-01	1.699717e-02	2.357176e-04	256
LBFGS	1	53	2.681287e+00	1.000000e+00	5.665722e-03	2.046663e-04	256
LBFGS	1	54	2.681282e+00	1.000000e+00	2.832861e-03	2.546349e-04	256
LBFGS	1	55	2.681278e+00	2.500000e-01	1.307940e-03	1.966786e-04	256
LBFGS	1	56	2.681276e+00	5.000000e-01	1.416431e-02	1.147324e-04	256
LBFGS	1	57	2.681274e+00	5.000000e-01	1.18892e-03	1.147324e-04	256
LBFGS	1	58	2.681271e+00	5.000000e-01	1.132045e-03	5.441369e-05	256
LBFGS	1	59	2.681269e+00	1.000000e+00	2.832861e-03	2.546349e-04	256
LBFGS	1	60	2.681268e+00	1.000000e+00	2.832861e-03	2.546349e-04	256

Estimate the epsilon-insensitive error for the test set using the updated model.

\[
\text{UpdatedL} = \text{loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')} \]

\[
\text{UpdatedL} = 1.8933
\]

The regression error decreases by a factor of about \(0.08\) after \textit{resume} updates the regression model with more iterations.

Resume Training with Modified Convergence Control Training Options

Load the \textit{carbig} data set.

\[
\text{load carbig}
\]

Specify the predictor variables (\(X\)) and the response variable (\(Y\)).

\[
X = \text{[Acceleration,Cylinders,Displacement,Horsepower,Weight]};
\]

\[
Y = \text{MPG};
\]

Delete rows of \(X\) and \(Y\) where either array has NaN values. Removing rows with NaN values before passing data to \textit{fitrkernel} can speed up training and reduce memory usage.

\[
R = \text{rmmissing([X Y])}; \quad \% \text{Data with missing entries removed}
\]

\[
X = R(:,1:5);
\]

\[
Y = R(:,end);
\]
Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

rng(10) % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp); % Test set indices

Standardize the training data and train a kernel regression model with relaxed convergence control training options by using the name-value pair arguments 'BetaTolerance' and 'GradientTolerance'. Specify 'Verbose',1 to display diagnostic information.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
[Mdl,FitInfo] = fitrkernel(Ztrain,Ytrain,'Verbose',1, ...
 'BetaTolerance',2e-2,'GradientTolerance',2e-2);

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns. Estimate the epsilon-insensitive error for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Continue training the model by using \texttt{resume} with modified convergence control options.

\begin{verbatim}
[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,Ztrain,Ytrain, ...
 'BetaTolerance',2e-3,'GradientTolerance',2e-3);
\end{verbatim}

Estimate the epsilon-insensitive error for the test set using the updated model.

\begin{verbatim}
UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
\end{verbatim}

UpdatedL = 1.8891

The regression error decreases after \texttt{resume} updates the regression model with smaller convergence tolerances.

Display the outputs \texttt{FitInfo} and \texttt{UpdatedFitInfo}.

\texttt{FitInfo} = \texttt{struct with fields:}
\begin{verbatim}
 Solver: 'LBFGS-fast'
 LossFunction: 'epsiloninsensitive'
 Lambda: 0.0028
 BetaTolerance: 0.0200
 GradientTolerance: 0.0200
\end{verbatim}
ObjectiveValue: 3.0640
GradientMagnitude: 0.0148
RelativeChangeInBeta: 0.0331
FitTime: 0.0165
History: [1x1 struct]

UpdatedFitInfo

updatedFitInfo = struct with fields:
 Solver: 'LBFGS-fast'
 LossFunction: 'epsiloninsensitive'
 Lambda: 0.0028
 BetaTolerance: 0.0020
 GradientTolerance: 0.0020
 ObjectiveValue: 2.6878
 GradientMagnitude: 0.0016
 RelativeChangeInBeta: 0.0071
 FitTime: 0.0208
 History: [1x1 struct]

Both trainings terminate because the software satisfies the absolute gradient tolerance.

Plot the gradient magnitude versus the number of iterations by using
UpdatedFitInfo.History.GradientMagnitude. Note that the History field of
UpdatedFitInfo includes the information in the History field of FitInfo.

semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-')
ax = gca;
ax.XTick = 1:21;
ax.XTickLabel = UpdatedFitInfo.History.IterationNumber;
grid on
xlabel('Number of Iterations')
ylabel('Gradient Magnitude')
The first training terminates after five iterations because the gradient magnitude becomes less than $2e^{-2}$. The second training terminates after 14 iterations because the gradient magnitude becomes less than $2e^{-3}$.

Input Arguments

Mdl — Kernel regression model
RegressionKernel model object

Kernel regression model, specified as a RegressionKernel model object. You can create a RegressionKernel model object using `fitrkernel`.
X — Predictor data used to train Mdl
n-by-p numeric matrix

Predictor data used to train Mdl, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors.

Data Types: single | double

Y — Response data used to train Mdl
numeric vector

Response data used to train Mdl, specified as a numeric vector.

Data Types: double | single

Note resume should run only on the same training data (X and Y) and the same observation weights (Weights) used to train Mdl. The resume function uses the same training options, such as feature expansion, used to train Mdl.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: UpdatedMdl = resume(Mdl,X,Y,'BetaTolerance',1e-3) resumes training with the same options used to train Mdl, except the relative tolerance on the linear coefficients and the bias term.

Weights — Observation weights used to train Mdl
positive numeric vector

Observation weights used to train Mdl, specified as the comma-separated pair consisting of 'Weights' and a positive numeric vector of length n, where n is the number of observations in X. The resume function weighs the observations in X with the corresponding values in Weights.

The default value is ones(n,1)/n.

resume normalizes Weights to sum to 1.
Example: 'Weights', w
Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let \(B_t = \begin{bmatrix} \beta_t' & b_t \end{bmatrix} \), that is, the vector of the coefficients and the bias term at optimization iteration \(t \). If \(\frac{1}{B_t} \left\| B_t - B_{t-1} \right\|_2 < \text{BetaTolerance} \), then optimization terminates.

If you also specify **GradientTolerance**, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same **BetaTolerance** value used to train Mdl.

Example: 'BetaTolerance', 1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance

Absolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance' and a nonnegative scalar.

Let \(\nabla L_t \) be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration \(t \). If \(\| \nabla L_t \|_{\infty} = \max |\nabla L_t| < \text{GradientTolerance} \), then optimization terminates.

If you also specify **BetaTolerance**, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same **GradientTolerance** value used to train Mdl.

Example: 'GradientTolerance', 1e-5
Data Types: single | double
IterationLimit — Maximum number of additional optimization iterations
positive integer

Maximum number of additional optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory (Mdl.ModelParametersBlockSize), which you specify by using the 'BlockSize' name-value pair argument when training Mdl with fitrkernel. Otherwise, the default value is 100.

Note that the default value is not the value used to train Mdl.

Example: 'IterationLimit',500

Data Types: single | double

Output Arguments

UpdatedMdl — Updated kernel regression model
RegressionKernel model object

Updated kernel regression model, returned as a RegressionKernel model object.

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solver</td>
<td>Objective function minimization technique: 'LBFGS-fast', 'LBFGS-blockwise', or 'LBFGS-tall'. For details, see the “Algorithms” on page 32-7237 section of fitrkernel.</td>
</tr>
<tr>
<td>LossFunction</td>
<td>Loss function. Either mean squared error (MSE) or epsilon-insensitive, depending on the type of linear regression model. See Learner of fitrkernel.</td>
</tr>
<tr>
<td>Lambda</td>
<td>Regularization term strength. See Lambda of fitrkernel.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>BetaTolerance</td>
<td>Relative tolerance on the linear coefficients and the bias term. See BetaTolerance.</td>
</tr>
<tr>
<td>GradientTolerance</td>
<td>Absolute gradient tolerance. See GradientTolerance.</td>
</tr>
<tr>
<td>ObjectiveValue</td>
<td>Value of the objective function when optimization terminates. The regression loss plus the regularization term compose the objective function.</td>
</tr>
<tr>
<td>GradientMagnitude</td>
<td>Infinite norm of the gradient vector of the objective function when optimization terminates. See GradientTolerance.</td>
</tr>
<tr>
<td>RelativeChangeInBeta</td>
<td>Relative changes in the linear coefficients and the bias term when optimization terminates. See BetaTolerance.</td>
</tr>
<tr>
<td>FitTime</td>
<td>Elapsed, wall-clock time (in seconds) required to fit the model to the data.</td>
</tr>
<tr>
<td>History</td>
<td>History of optimization information. This field also includes the optimization information from training Mdl. This field is empty ([]) if you specify 'Verbose', 0 when training Mdl. For details, see Verbose and the “Algorithms” on page 32-7237 section of fitrkernel.</td>
</tr>
</tbody>
</table>

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.ObjectiveValue` in the Command Window.

Examine the information provided by `FitInfo` to assess whether convergence is satisfactory.

Definitions

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.
The kernel regression algorithm searches for an optimal function that deviates from each response data point \((y_i) \) by values no greater than the epsilon margin \((\varepsilon) \) after mapping the predictor data into a high-dimensional space.

Some regression problems cannot be described adequately using a linear model. In such cases, obtain a nonlinear regression model by replacing the dot product \(x_1 x_2 \) with a nonlinear kernel function \(G(x_1,x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle \), where \(x_i \) is the \(i \)th observation (row vector) and \(\varphi(x_i) \) is a transformation that maps \(x_i \) to a high-dimensional space (called the "kernel trick"). However, evaluating \(G(x_1,x_2) \), the Gram matrix, for each pair of observations is computationally expensive for a large data set (large \(n \)).

The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

\[
G(x_1,x_2) = \langle \varphi(x_1), \varphi(x_2) \rangle = T(x_1)T(x_2)',
\]

where \(T(x) \) maps \(x \) in \(\mathbb{R}^p \) to a high-dimensional space (\(\mathbb{R}^m \)). The Random Kitchen Sink[1] scheme uses the random transformation

\[
T(x) = m^{-1/2} \exp(iZx')',
\]

where \(Z \in \mathbb{R}^{m \times p} \) is a sample drawn from \(N(0,\sigma^{-2}) \) and \(\sigma^2 \) is a kernel scale. This scheme requires \(O(mp) \) computation and storage. The Fastfood[2] scheme introduces another random basis \(V \) instead of \(Z \) using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces computation cost to \(O(m \log p) \) and reduces storage to \(O(m) \).

You can specify values for \(m \) and \(\sigma^2 \), using the NumExpansionDimensions and KernelScale name-value pair arguments of fitrkernel, respectively.

The fitrkernel function uses the Fastfood scheme for random feature expansion and uses linear regression to train a Gaussian kernel regression model. Unlike solvers in the fitrsvm function, which require computation of the \(n \)-by-\(n \) Gram matrix, the solver in fitrkernel only needs to form a matrix of size \(n \)-by-\(m \), with \(m \) typically much less than \(n \) for big data.
Extended Capabilities

Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

- The default value for the 'IterationLimit' name-value pair argument is relaxed to 20 when you work with tall arrays.
- `resume` uses a block-wise strategy. For details, see the “Algorithms” on page 32-7237 section of `fitrkernel`.

For more information, see “Tall Arrays” (MATLAB).

See Also
RegressionKernel | `fitrkernel` | `loss` | `predict`

Introduced in R2018a
RegressionPartitionedKernel

Cross-validated kernel model for regression

Description

RegressionPartitionedKernel is a set of kernel regression models trained on cross-validated folds. To obtain a cross-validated, kernel regression model, use fitrkernel and specify one of the cross-validation options. You can estimate the predictive quality of the model, or how well the linear regression model generalizes, using one or more of these “kfold” methods: kfoldPredict and kfoldLoss.

Every “kfold” method uses models trained on training-fold observations to predict the response for validation-fold observations. For example, suppose that you cross-validate using five folds. In this case, the software randomly assigns each observation into five groups of equal size (roughly). The training fold contains four of the groups (that is, roughly 4/5 of the data) and the validation fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1. The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the last four groups and reserves the observations in the first group for validation.
2. The software trains the second model (stored in CVMdl.Trained{2}) using the observations in the first group and the last three groups. The software reserves the observations in the second group for validation.
3. The software proceeds in a similar fashion for the third through the fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1 using the first model, group 2 for the second model, and so on. In short, the software estimates a response for every observation using the model trained without that observation.

Note RegressionPartitionedKernel model objects do not store the predictor data set.
Creation

Create a `RegressionPartitionedKernel` object using the `fitrkernel` function. Use one of the 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout' name-value pair arguments in the call to `fitrkernel`. For details, see the `fitrkernel` function reference page.

Properties

Cross-Validation Properties

- **CrossValidatedModel** — Cross-validated model name
 character vector

 This property is read-only.

 Cross-validated model name, specified as a character vector.

 For example, 'Kernel' specifies a cross-validated kernel model.

 Data Types: char

- **KFold** — Number of cross-validated folds
 positive integer scalar

 This property is read-only.

 Number of cross-validated folds, specified as a positive integer scalar.

 Data Types: double

- **ModelParameters** — Cross-validation parameter values
 object

 This property is read-only.

 Cross-validation parameter values, specified as an object. The parameter values correspond to the name-value pair argument values used to cross-validate the kernel regression model. `ModelParameters` does not contain estimated parameters.
NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.

Data Types: double

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a cvpartition model.

Trained — Kernel regression models trained on cross-validation folds
cell array of RegressionKernel models

This property is read-only.

Kernel regression models trained on cross-validation folds, specified as a cell array of RegressionKernel models. Trained has k cells, where k is the number of folds.

Data Types: cell

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. W has NumObservations elements.

The software normalizes the weights used for training so that $\text{nansum}(W)$ is 1.

Data Types: single | double

Y — Observed response values
numeric vector

This property is read-only.
Observed response values used to cross-validate the model, specified as a numeric vector. Y has NumObservations elements.

Each row of Y represents the observed response of the corresponding observation in the predictor data.

Data Types: single | double

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
[
]

This property is read-only.

Categorical predictor indices, specified as an empty numeric value. In general, CategoricalPredictors contains index values corresponding to the columns of the predictor data that contain categorical predictors. Because RegressionKernel models can only be trained on numeric predictor data, this property is empty ([]).

PredictorNames — Predictor names
{'x1','x2',...}

This property is read-only.

Predictor names in order of their appearance in predictor data (X), specified as a cell array of character vectors of the form {'x1','x2',...}. The length of PredictorNames is equal to the number of columns in X.

Data Types: cell

ResponseName — Response variable name
'Y'

This property is read-only.

Response variable name, specified as 'Y'. Because RegressionKernel models cannot be trained using tabular data, this property is always 'Y'.

Data Types: char

ResponseTransform — Response transformation function
'none' | function handle
Response transformation function, specified as 'none' or a function handle. `ResponseTransform` describes how the software transforms raw response values predicted by the model.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can enter `Mdl.ResponseTransform = @function`, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: char | string | function_handle

Object Functions

- `kfoldLoss`: Regression loss for cross-validated kernel regression model
- `kfoldPredict`: Predict responses for observations in cross-validated kernel regression model

Examples

Create Cross-Validated Kernel Regression Model

Simulate sample data.

```matlab
rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);
```

Cross-validate a kernel regression model.

```matlab
CVMdl = fitrkernel(x,y,'Kfold',5);
```

`CVMdl` is a `RegressionPartitionedKernel` cross-validated model. Because `fitrkernel` implements 10-fold cross-validation by default, `CVMdl.Trained` contains a cell vector of 10 `RegressionKernel` models. Display the trained property.

```matlab
CVMdl.Trained
```

ans = 5x1 cell array
{1x1 RegressionKernel}

32-7285
Each cell contains a kernel regression model trained on nine folds, then tested on the remaining fold.

Predict responses for observations in the validation folds and estimate the generalization error by passing `CVMdl` to `kfoldPredict` and `kfoldLoss`, respectively.

```matlab
yHat = kfoldPredict(CVMdl);
L = kfoldLoss(CVMdl)
```

```
L = 0.1887
```

`kfoldLoss` computes the average mean squared error for all the folds by default. The estimated mean squared error is 0.1887.

See Also

`RegressionKernel` | `fitrkernel`

Introduced in R2018b
kfoldLoss

Regression loss for cross-validated kernel regression model

Syntax

L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description

L = kfoldLoss(CVMdl) returns the regression loss obtained by the cross-validated kernel regression model CVMdl. For every fold, kfoldLoss computes the regression loss for observations in the validation fold, using a model trained on observations in the training fold.

L = kfoldLoss(CVMdl,Name,Value) returns the mean squared error (MSE) with additional options specified by one or more name-value pair arguments. For example, you can specify the regression-loss function or which folds to use for loss calculation.

Examples

Compute Loss for Cross-Validated Kernel Regression Models

Simulate sample data:

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);

Cross-validate a kernel regression model.

CVMdl = fitrkernel(x,y,'Kfold',5);
f itrkern el imple ments 5-fold cross-validation. CVMdl is a
RegressionPartitionedKernel model. It contains the property Trained, which is a
5-by-1 cell array holding 5 RegressionKernel models that the software trained using
the training set.

Compute the epsilon-insensitive loss for each fold for observations that fitrkernel did
not use in training the folds.

L = kfoldLoss(CVMdl,'LossFun','epsiloninsensitive','Mode','individual')

L = 5×1

 0.2812
 0.3223
 0.3073
 0.3117
 0.2576

Input Arguments

CVMdl — Cross-validated kernel regression model
RegressionPartitionedKernel model object

Cross-validated kernel regression model, specified as a
RegressionPartitionedKernel model object. You can create a
RegressionPartitionedKernel model using fitrkernel and specifying any of the
cross-validation name-value pair arguments, for example, CrossVal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'LossFun','epsiloninsensitive','Mode','individual' specifies
kfoldLoss to return the epsilon-insensitive loss for each fold.

Folds — Fold indices to use for response prediction
1:CVMdl.KFold (default) | numeric vector of positive integers
Fold indices to use for response prediction, specified as the comma-separated pair consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1 through CVMdl.KFold.

Example: 'Folds',[1 4 10]

Data Types: single | double

LossFun — Loss function

'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in, loss-function name or function handle.

- The following table lists the available loss functions. Specify one using its corresponding character vector or string scalar. Also, in the table, \(f(x) = x\beta + b \).
 - \(\beta \) is a vector of \(p \) coefficients.
 - \(x \) is an observation from \(p \) predictor variables.
 - \(b \) is the scalar bias.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'epsiloninsensitive'</td>
<td>Epsilon-insensitive loss: (\ell[y, f(x)] = \max[0,</td>
</tr>
<tr>
<td>'mse'</td>
<td>MSE: (\ell[y, f(x)] = (y - f(x))^2)</td>
</tr>
</tbody>
</table>

'epsiloninsensitive' is appropriate for SVM learners only.

- Specify your own function using function handle notation.

 Assume that \(n \) is the number of observations in \(X \). Your function must have this signature

 \[
 \text{lossvalue} = \text{lossfun}(Y, \text{Yhat}, W)
 \]

 where:
 - The output argument lossvalue is a scalar.
 - You specify the function name (lossfun).
• \(Y \) is an \(n \)-dimensional vector of observed responses. \texttt{kfoldLoss} passes the input argument \(Y \) in for \(Y \).
• \(\hat{Y} \) is an \(n \)-dimensional vector of predicted responses, which is similar to the output of \texttt{predict}.
• \(W \) is an \(n \)-by-1 numeric vector of observation weights.

Data Types: char | string | function_handle

Mode — Loss aggregation level

'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average' or 'individual'.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Returns losses averaged over all folds</td>
</tr>
<tr>
<td>'individual'</td>
<td>Returns losses for each fold</td>
</tr>
</tbody>
</table>

Example: 'Mode','individual'

Output Arguments

\(L \) — Cross-validated regression losses

numeric scalar | numeric vector

Cross-validated regression losses, returned as a numeric scalar or vector. The interpretation of \(L \) depends on \texttt{LossFun}.

• If \texttt{Mode} is 'average', then \(L \) is a scalar.
• Otherwise, \(L \) is a \(k \)-by-1 vector, where \(k \) is the number of folds. \(L(j) \) is the average regression loss over fold \(j \).

To estimate \(L \), \texttt{kfoldLoss} uses the data that created \texttt{CVMdl}.

See Also

RegressionKernel | RegressionPartitionedKernel | \texttt{fitrkernel} | \texttt{kfoldPredict}
Introduced in R2018b
kfoldPredict

Predict responses for observations in cross-validated kernel regression model

Syntax

YHat = kfoldPredict(CVMdl)

Description

YHat = kfoldPredict(CVMdl) returns cross-validated predicted responses by the cross-validated kernel regression model CVMdl. That is, for every fold, kfoldPredict predicts the responses for observations that it holds out in validation fold while it trains using all other observations in the training fold.

Examples

Predict Responses from Cross-Validated Kernel Regression Models

Simulate sample data:

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);

Cross-validate a kernel regression model.

CVMdl = fitrkernel(x,y,'CrossVal','on');

By default, fitrkernel implements 10-fold cross-validation. CVMdl is a RegressionPartitionedKernel model. It contains the property Trained, which is a 10-by-1 cell array holding 10 RegressionKernel models that the software trained using the training set.

Predict responses for observations that fitrkernel did not use in training the folds.
yHat = kfoldPredict(CVMdl);

yHat is a numeric vector. Display the first five predicted responses.

yHat(1:5)

ans = 5×1
 1.0767
 1.0744
 1.0758
 1.0779
 1.0798

Input Arguments

CVMdl — Cross-validated kernel regression model
RegressionPartitionedKernel model object

Cross-validated kernel regression model, specified as a
RegressionPartitionedKernel model object. You can create a
RegressionPartitionedKernel model using fitrkernel and specifying any of the
one of the cross-validation name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the
kernel regression model (see X input argument on fitrkernel page).

Output Arguments

YHat — Cross-validated predicted responses
numeric vector

Cross-validated predicted responses, returned as an n-by-1 numeric array, where n is the
number of observations in the predictor data used to create CVMdl (see X input argument
on fitrkernel page).
See Also
RegressionKernel | RegressionPartitionedKernel | fitrkernel | kfoldLoss

Introduced in R2018b
Sample Data Sets
Sample Data Sets

Statistics and Machine Learning Toolbox software includes the sample data sets in the following table.

To load a data set into the MATLAB workspace, type:

load filename

where filename is one of the files listed in the table.

Data sets contain individual data variables, description variables with references, and dataset arrays encapsulating the data set and its description, as appropriate.

<table>
<thead>
<tr>
<th>File</th>
<th>Description of Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetylene.mat</td>
<td>Chemical reaction data with correlated predictors</td>
</tr>
<tr>
<td>arrhythmia.mat</td>
<td>Cardiac arrhythmia data from the UCI machine learning repository</td>
</tr>
<tr>
<td>carbig.mat</td>
<td>Measurements of cars, 1970-1982</td>
</tr>
<tr>
<td>census1994.mat</td>
<td>Adult data from the UCI machine learning repository</td>
</tr>
<tr>
<td>cereal.mat</td>
<td>Breakfast cereal ingredients</td>
</tr>
<tr>
<td>cities.mat</td>
<td>Quality of life ratings for U.S. metropolitan areas</td>
</tr>
<tr>
<td>discrim.mat</td>
<td>A version of cities.mat used for discriminant analysis</td>
</tr>
<tr>
<td>examgrades.mat</td>
<td>Exam grades on a scale of 0-100</td>
</tr>
<tr>
<td>fisheriris.mat</td>
<td>Fisher's 1936 iris data</td>
</tr>
<tr>
<td>flu.mat</td>
<td>Google Flu Trends estimated ILI (influenza-like illness) percentage for various regions of the US, and CDC weighted ILI percentage based on sentinel provider reports</td>
</tr>
<tr>
<td>gas.mat</td>
<td>Gasoline prices around the state of Massachusetts in 1993</td>
</tr>
<tr>
<td>hald.mat</td>
<td>Heat of cement vs. mix of ingredients</td>
</tr>
<tr>
<td>hogg.mat</td>
<td>Bacteria counts in different shipments of milk</td>
</tr>
<tr>
<td>hospital.mat</td>
<td>Simulated hospital data</td>
</tr>
<tr>
<td>File</td>
<td>Description of Data Set</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>humanactivity.mat</td>
<td>Human activity recognition data of five activities: sitting, standing, walking, running, and dancing</td>
</tr>
<tr>
<td>imports-85.mat</td>
<td>1985 Auto Imports Database from the UCI repository</td>
</tr>
<tr>
<td>ionosphere.mat</td>
<td>Ionosphere dataset from the UCI machine learning repository</td>
</tr>
<tr>
<td>kmeansdata.mat</td>
<td>Four-dimensional clustered data</td>
</tr>
<tr>
<td>lawdata.mat</td>
<td>Grade point average and LSAT scores from 15 law schools</td>
</tr>
<tr>
<td>mileage.mat</td>
<td>Mileage data for three car models from two factories</td>
</tr>
<tr>
<td>moore.mat</td>
<td>Biochemical oxygen demand on five predictors</td>
</tr>
<tr>
<td>morse.mat</td>
<td>Recognition of Morse code distinctions by non-coders</td>
</tr>
<tr>
<td>nlpdata.mat</td>
<td>Natural language processing data extracted from the MathWorks® documentation.</td>
</tr>
<tr>
<td>ovariancancer.mat</td>
<td>Grouped observations on 4000 predictors</td>
</tr>
<tr>
<td>parts.mat</td>
<td>Dimensional run-out on 36 circular parts</td>
</tr>
<tr>
<td>polydata.mat</td>
<td>Sample data for polynomial fitting</td>
</tr>
<tr>
<td>popcorn.mat</td>
<td>Popcorn yield by popper type and brand</td>
</tr>
<tr>
<td>reaction.mat</td>
<td>Reaction kinetics for Hougen-Watson model</td>
</tr>
<tr>
<td>sat.dat</td>
<td>Scholastic Aptitude Test averages by gender and test (table)</td>
</tr>
<tr>
<td>sat2.dat</td>
<td>Scholastic Aptitude Test averages by gender and test (csv)</td>
</tr>
<tr>
<td>spectra.mat</td>
<td>NIR spectra and octane numbers of 60 gasoline samples</td>
</tr>
<tr>
<td>stockreturns.mat</td>
<td>Simulated stock returns</td>
</tr>
</tbody>
</table>

Sample Data Sets
Distribution Reference
Bernoulli Distribution

In this section...

“Overview” on page B-2
“Parameters” on page B-2
“Probability Mass Function” on page B-2
“Mean and Variance” on page B-2
“Relationship to Other Distributions” on page B-3

Overview

The Bernoulli distribution is a discrete probability distribution with the only two possible values for the random variable. Each instance of an event with a Bernoulli distribution is called a Bernoulli trial.

Parameters

The Bernoulli distribution uses the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Probability of success</td>
<td>$0 \leq p \leq 1$</td>
</tr>
</tbody>
</table>

Probability Mass Function

The probability mass function (pmf) is

$$f(x \mid p) = \begin{cases} 1 - p & , \ x = 0, \\ p & , \ x = 1 . \end{cases}$$

Mean and Variance

The mean is

$$\text{mean} = p .$$
The variance is

\[\text{var} = p(1 - p). \]

Relationship to Other Distributions

The Bernoulli distribution is a special case of the binomial distribution on page B-9, with the number of trials \(n = 1 \). The geometric distribution on page B-61 models the number of Bernoulli trials before the first success (or first failure).

See Also

BinomialDistribution

More About

- “Binomial Distribution” on page B-9
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Beta Distribution

Overview

The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval (0 1). A more general version of the function assigns parameters to the endpoints of the interval.

Statistics and Machine Learning Toolbox provides several ways to work with the beta distribution. You can use the following approaches to estimate parameters from sample data, compute the pdf, cdf, and icdf, generate random numbers, and more.

- Fit a probability distribution object to sample data, or create a probability distribution object with specified parameter values. See Using BetaDistribution Objects for more information.
- Work with data input from matrices, tables, and dataset arrays using probability distribution functions. See “Supported Distributions” on page 5-16 for a list of beta distribution functions.
- Interactively fit, explore, and generate random numbers from the distribution using an app or user interface.

For more information on each of these options, see “Working with Probability Distributions” on page 5-3.

Parameters

The beta distribution uses the following parameters.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>First shape parameter</td>
<td>$a > 0$</td>
</tr>
<tr>
<td>b</td>
<td>Second shape parameter</td>
<td>$b > 0$</td>
</tr>
</tbody>
</table>

Probability Density Function

Definition

The probability density function (pdf) of the beta distribution is

$$y = f(x \mid a, b) = \frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{[0,1]}(x)$$

where $B(\cdot)$ is the Beta function. The indicator function $I_{(0,1)}(x)$ ensures that only values of x in the range $(0,1)$ have nonzero probability.

Plot

This plot shows how changing the value of the parameters alters the shape of the pdf. The constant pdf (the flat line) shows that the standard uniform distribution is a special case of the beta distribution, which occurs when $a = b = 1$.

```matlab
X = 0:.01:1; y1 = betapdf(X,0.75,0.75); y2 = betapdf(X,1,1); y3 = betapdf(X,4,4); figure plot(X,y1,'Color','r','LineWidth',2) hold on plot(X,y2,'LineStyle','-.','Color','b','LineWidth',2) plot(X,y3,'LineStyle',':','Color','g','LineWidth',2) legend({'a = b = 0.75','a = b = 1','a = b = 4'},'Location','NorthEast'); hold off
```
Relationship to Other Distributions

The beta distribution has a functional relationship with the t distribution. If Y is an observation from Student's t distribution with ν degrees of freedom, then the following transformation generates X, which is beta distributed.

$$X = \frac{1}{2} + \frac{1}{2} \frac{Y}{\sqrt{\nu + Y^2}}$$

If $Y \sim t(\nu)$, then $X \sim \beta\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$
This relationship is used to compute values of the t cdf and inverse function as well as generating t distributed random numbers.

Cumulative Distribution Function

The beta cdf is the same as the incomplete beta function.

Example

Suppose you are collecting data that has hard lower and upper bounds of zero and one respectively. Parameter estimation is the process of determining the parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x's) are already observed. So they are the fixed constants. The variables are the unknown parameters. Maximum likelihood estimation (MLE) involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function `betafit` returns the MLEs and confidence intervals for the parameters of the beta distribution. Here is an example using random numbers from the beta distribution with $a = 5$ and $b = 0.2$.

```plaintext
rng default  % For reproducibility
r = betarnd(5,0.2,100,1);
[phat,pci] = betafit(r)
```

```
phat = 1x2
      7.4911   0.2135

pci = 2x2
   5.0861   0.1744
   11.0334   0.2614
```

The MLE for parameter a is 7.4911, compared to the true value of 5. The 95% confidence interval for a goes from 5.0861 to 11.0334, which does not include the true value. While
this is an unlikely result, it does sometimes happen when estimating distribution parameters.

Similarly the MLE for parameter b is 0.2135, compared to the true value of 0.2. The 95% confidence interval for b goes from 0.1744 to 0.2614, which does include the true value. In this made-up example you know the “true value.” In experimentation you do not.

See Also

BetaDistribution

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Overview

The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:

- Only two outcomes are possible on each of n trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

Parameters

The binomial distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of trials</td>
<td>positive integer</td>
</tr>
<tr>
<td>p</td>
<td>Probability of success</td>
<td>$0 \leq p \leq 1$</td>
</tr>
</tbody>
</table>

Probability Density Function

The probability density function (pdf) is

$$f(x \mid N, p) = \binom{N}{x} p^x (1 - p)^{N-x} ; \quad x = 0, 1, 2, \ldots, N,$$
where \(x \) is the number of successes in \(n \) trials of a Bernoulli process with probability of success \(p \).

Mean and Variance

The mean is

\[
\text{mean} = np .
\]

The variance is

\[
\text{var} = np(1 - p) .
\]

Relationship to Other Distributions

The binomial distribution is a generalization of the Bernoulli distribution on page B-2, allowing for a number of trials \(n \) greater than 1. The binomial distribution generalizes to the multinomial distribution on page B-99 when there are more than two possible outcomes for each trial.

Example

Suppose you are collecting data from a widget manufacturing process, and you record the number of widgets within specification in each batch of 100. You might be interested in the probability that an individual widget is within specification. Parameter estimation is the process of determining the parameter, \(p \), of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the binomial pdf above. But for the pdf, the parameters (\(n \) and \(p \)) are known constants and the variable is \(x \). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x \)'s) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the value of \(p \) that give the highest likelihood given the particular set of data.

The function `binofit` returns the MLEs and confidence intervals for the parameters of the binomial distribution. Here is an example using random numbers from the binomial distribution with \(n = 100 \) and \(p = 0.9 \).
rng default; % for reproducibility
r = binornd(100,0.9)
r = 85
[phat, pci] = binofit(r,100)

phat = 0.8500
pci = 1x2

0.7647 0.9135

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The 95% confidence interval for p goes from 0.7998 to 0.9364, which includes the true value. In this made-up example you know the “true value” of p. In experimentation you do not.

The following commands generate a plot of the binomial pdf for $n = 10$ and $p = 1/2$.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+');
See Also

BinomialDistribution

More About

- “Bernoulli Distribution” on page B-2
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Birnbaum-Saunders Distribution

In this section...

“Definition” on page B-13
“Background” on page B-13
“Parameters” on page B-14

Definition

The Birnbaum-Saunders distribution has the density function

\[\frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{\left(\sqrt{\frac{x}{\beta}} - \sqrt{\frac{\beta}{x}} \right)^2}{2\gamma^2} \right\} \left(\frac{\left(\sqrt{\frac{x}{\beta}} + \sqrt{\frac{\beta}{x}} \right)}{2\gamma x} \right) \]

with scale parameter \(\beta > 0 \) and shape parameter \(\gamma > 0 \), for \(x > 0 \).

If \(x \) has a Birnbaum-Saunders distribution with parameters \(\beta \) and \(\gamma \), then

\[\left(\sqrt{\frac{x}{\beta}} - \frac{\beta}{x} \right) \]

\[\gamma \]

has a standard normal distribution.

Background

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the growth of a prominent flaw. In materials science, Miner's Rule suggests that the damage occurring after \(n \) cycles, at a stress level with an expected lifetime of \(N \) cycles, is proportional to \(n / N \). Whenever Miner's Rule applies, the Birnbaum-Saunders model is a reasonable choice for a lifetime distribution model.
Parameters

To estimate distribution parameters, use mle or the Distribution Fitter app.

See Also
BirnbaumSaundersDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Definition

The Burr type XII distribution is a three-parameter family of distributions on the positive real line. The cumulative distribution function (cdf) of the Burr distribution is

\[
F(x \mid \alpha, c, k) = 1 - \frac{1}{\left(1 + \left(\frac{x}{\alpha}\right)^c\right)^k}, \quad x > 0, \ \alpha > 0, \ c > 0, \ k > 0,
\]

where \(c\) and \(k\) are the shape parameters and \(\alpha\) is the scale parameter. The probability density function (pdf) is

\[
f(x \mid \alpha, c, k) = \frac{k c \left(\frac{x}{\alpha}\right)^{c-1}}{\alpha \left(1 + \left(\frac{x}{\alpha}\right)^c\right)^{k+1}} \left(\frac{x}{\alpha}\right), \quad x > 0, \ \alpha > 0, \ c > 0, \ k > 0.
\]

The density of the Burr type XII distribution is L-shaped if \(c \leq 1\) and unimodal, otherwise.
Background

Burr distribution was first discussed by Burr (1942) as a two-parameter family. An additional scale parameter was introduced by Tadikamalla (1980). It is a very flexible distribution family that can express a wide range of distribution shapes. The Burr distribution includes, overlaps, or has as a limiting case, many commonly used distributions such as gamma, lognormal, loglogistic, bell-shaped, and J-shaped beta distributions (but not U-shaped). Some compound distributions also correspond to the Burr distribution. For example, compounding a Weibull distribution with a gamma distribution for its scale parameter results in a Burr distribution. Similarly, compounding an exponential distribution with a gamma distribution for its rate parameter, $1/\mu$, also yields a Burr distribution. The Burr distribution also has two asymptotic limiting cases: Weibull and Pareto Type I.

The Burr distribution can fit a wide range of empirical data. Different values of its parameters cover a broad set of skewness and kurtosis. Hence, it is used in various fields such as finance, hydrology, and reliability to model a variety of data types. Examples of data modeled by the Burr distribution are household income, crop prices, insurance risk, travel time, flood levels, and failure data.

The survival and hazard functions of Burr type XII distribution are, respectively,

$$S(x \mid \alpha, c, k) = \frac{1}{1 + \left(\frac{x}{\alpha}\right)^c}^k$$

and

$$h(x \mid \alpha, c, k) = \frac{kc}{\alpha^c \left(\frac{x}{\alpha} \right)^{c-1}} \cdot \frac{1}{1 + \left(\frac{x}{\alpha}\right)^c}.$$

If $c > 1$, the hazard function $h(x)$ is non-monotonic with a mode at $x = \alpha(c - 1)^{1/c}$.
Parameters

The three-parameter Burr distribution is defined by its scale parameter α and shape parameters c and k. You can estimate the parameters using `mle` or `fitdist`. Both functions support censored data for Burr distribution.

Generate sample data from a Burr distribution with scale parameter 0.5 and shape parameters 2 and 5.

```matlab
rng('default')
R = random('burr',0.5,2,5,1000,1);
```

Estimate the parameters and the confidence intervals.

```matlab
[phat,pci] = mle(R,'distribution','burr')
phat =
    0.4154    2.1217    4.0550
pci =
    0.2985    1.9560    2.4079
    0.5782    2.3014    6.8288
```

The default 95% confidence intervals for the parameters include the true parameter values.

The three-parameter Burr distribution converges asymptotically to one of the two limiting forms as its parameters diverge:

- If $k \to 0$, $c \to \infty$, $ck = \lambda$, then the Burr distribution reduces to a two-parameter Pareto distribution with the cdf

$$F_P = 1 - \left(\frac{x}{\alpha}\right)^{-\lambda}, \quad x \geq \alpha.$$

- If $k \to \infty$, $\alpha \to \infty$, $\alpha/k^{1/c} = \theta$, then the Burr distribution reduces to a two-parameter Weibull distribution with the cdf

$$F_W(x \mid c, \theta) = 1 - \exp\left[\left(-\frac{x}{\theta}\right)^c\right].$$
If `mle` or `fitdist` detects such divergence, it returns an error message, but informs you of the limiting distribution and corresponding parameter estimates for that distribution.

Fit a Burr Distribution and Draw the cdf

This example shows how to fit a Burr distribution to data, draw the cdf, and construct a histogram with a Burr distribution fit.

1. Load the sample data.
   ```
   load arrhythmia
   ```
 The fifth column in `X` contains a measurement obtained from electrocardiograms, called QRS duration.

2. Fit a Burr distribution to the QRS duration data, and get the parameter estimates.
   ```
   PD = fitdist(X(:,5),'burr');
   ```
 `PD` has the maximum likelihood estimates of the Burr distribution parameters in the `Param` property. The estimates are $\alpha = 80.4515$, $c = 18.9251$, $k = 0.4492$.

3. Plot the cdf of the QRS duration data.
   ```
   QRScdf=cdf('burr',sortrows(X(:,5)),80.4515,18.9251,0.4492);
   plot(sortrows(X(:,5)),QRScdf)
   title('QRS duration data')
   xlabel('QRS Duration')
   ```
4. Draw the histogram of QRS duration data with 15 bins and the pdf of the Burr distribution fit.

```matlab
histfit(X(:,5),15,'burr')
title('Histogram of QRS data with a Burr distribution fit')
xlabel('QRS Duration')
```
Compare Lognormal and Burr pdfs

This example shows how to compare the lognormal pdf to the Burr pdf using income data generated from a lognormal distribution.

Generate the income data.

```matlab
rng default % for reproducibility
y = random('logn',log(25000),0.65,500,1);
```

Fit a Burr distribution.

```matlab
pd = fitdist(y,'burr');
```
Plot both the Burr and lognormal pdfs of income data on the same axis.

```matlab
p = pdf('burr',sortrows(y),26007,2.6374,1.0966);
p2 = pdf('logn',sortrows(y),log(25000),0.65);
plot(sortrows(y),p,'g',sortrows(y),p2,'r','LineWidth',2)
title('Burr and Lognormal pdfs fitted to income data')
legend('burr','lognormal')
```

Burr pdf for Various Parameters

This example shows how to create a variety of shapes for probability density functions of the Burr distribution.
\[X = 0:0.01:5; \]
\[c = [0.5 \ 0.95 \ 2 \ 5]; \]
\[k = [0.5 \ 0.75 \ 2 \ 5]; \]
\[\alpha = [0.5 \ 1 \ 2 \ 5]; \]
\[\text{colors} = ['b';'g';'r';'k']; \]

\begin{verbatim}
figure
for i = 1:1:4
 pdf1(i,:) = pdf('burr',X,1,c(i),0.5);
 pdf2(i,:) = pdf('burr',X,1,2,k(i));
 pdf3(i,:) = pdf('burr',X,alpha(i),2,0.5);
 axC = subplot(3,1,1);
 pC(i) = plot(X,pdf1(i,:),colors(i),'LineWidth',2);
 title('Effect of \(c \), \(\alpha = 1 \), \(k = 0.5 \)'),xlabel('x')
 hold on
 axK = subplot(3,1,2);
 pK(i) = plot(X,pdf2(i,:),colors(i),'LineWidth',2);
 title('Effect of \(k \), \(\alpha = 1 \), \(c = 2 \)'),xlabel('x')
 hold on
 axAlpha = subplot(3,1,3);
 pAlpha(i) = plot(X,pdf3(i,:),colors(i),'LineWidth',2);
 title('Effect of \(\alpha \), \(c = 2 \), \(k = 0.5 \)'),xlabel('x')
 hold on
end

set(axC,'XLim',[0 3],'YLim',[0 1.2]);
set(axK,'XLim',[0 3],'YLim',[0 2.1]);
set(axAlpha,'XLim',[0 5],'YLim',[0 1]);

legend(axC,'c=0.5','c=0.95','c=2','c=5');
legend(axK,'k=0.5','k=0.75','k=2','k=5');
legend(axAlpha,'\alpha=0.5','\alpha=1','\alpha=2','\alpha=5');
\end{verbatim}
This figure illustrates how the shape and scale of the Burr distribution changes for different values of its parameters.

Survival and Hazard Functions of Burr Distribution

This example shows how to find and plot the survival and hazard functions for a sample coming from a Burr distribution.

Generate the data.

```
X = 0:0.015:2.5;
```

Evaluate the pdf and cdf of data in X.
Burr Type XII Distribution

\[X_{pdf} = \text{pdf('burr',X,0.2,5,0.5)}; \]
\[X_{cdf} = \text{cdf('burr',X,0.2,5,0.5)}; \]

Evaluate and plot the survival function of data in \(X \).

\[S = 1 - X_{cdf}; \] % survival function
\[\text{plot}(X,S,'LifeWidth',2) \]
\[\text{title('Survival function')} \]
\[\text{xlabel('x')} \]

Evaluate and plot the hazard function of data in \(X \).

\[H = X_{pdf} / S; \] % hazard function
\[\text{plot}(X,H,'r','LifeWidth',2) \]
Divergence of Parameter Estimates

This example shows how to interpret the display when the parameter estimates diverge when fitting a Burr distribution to input data.

1. Generate sample data from the Weibull distribution with parameters 0.5 and 2.

```matlab
rng('default')  % for reproducibility
X = wblrnd(0.5,2,100,1);
```
2. Fit a Burr distribution.

```matlab
PD = fitdist(X,'burr');
```

Error using addburr>burrfit (line 566)
The data are not fit by a Burr distribution with finite parameters.
The maximum likelihood fit is provided by the k->Inf, alpha->Inf limiting form of the Burr distribution: a Weibull distribution with the parameters below.
 a (scale): 0.476817
 b (shape): 1.96219

Error in prob.BurrDistribution.fit (line 246)
 p = burrfit(x,0.05,cens,freq,opt);

Error in fitdist>localfit (line 238)
pd = feval(fitter,x,'cens',c,'freq',f,varargin{:});

Error in fitdist (line 185)
 pd = localfit(dist,fitter,x,cens,freq,argv{:});

The error message tells you that the Weibull family seems to fit the data better and gives you the parameter estimates from a Weibull fit. You can use those estimates directly. If you need covariance estimates for the parameters or other information about the fit, you can refit a Weibull distribution to the data.

3. Fit a Weibull distribution to the data and find the confidence intervals for the parameter estimates.

```matlab
PD = fitdist(X,'weibull');
paramci(PD)
```

ans =

```
 0.4291 1.6821
0.5298 2.2890
```

These are the 95% confidence intervals of the parameter estimates for the Weibull distribution fit.

References

See Also

BurrDistribution

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Chi-Square Distribution

Overview

The chi-square distribution is commonly used in hypothesis testing, particularly the chi-squared test for goodness of fit.

Parameters

The chi-square distribution uses the following parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Degrees of freedom</td>
<td>ν is a positive value</td>
</tr>
</tbody>
</table>

Probability Density Function

The probability density function (pdf) is

$$y = f(x | \nu) = \frac{x^{(\nu-2)/2} e^{-x/2}}{\nu^{\nu/2} 2^{\nu/2} \Gamma(\nu/2)}$$

where $\Gamma(\cdot)$ is the Gamma function, ν is the degrees of freedom, and $x \geq 0$.
Cumulative Distribution Function

The cumulative distribution function (cdf) is

\[
p = F(x \mid \nu) = \int_0^x \frac{t^{(\nu-2)/2}e^{-t/2}}{2^{\nu/2}\Gamma(\nu/2)} dt
\]

where \(\Gamma(\cdot) \) is the Gamma function, \(\nu \) is the degrees of freedom, and \(x \geq 0 \).

Descriptive Statistics

The mean is \(\nu \).

The variance is \(2\nu \).

Relationship to Other Distributions

The \(\chi^2 \) distribution is a special case of the gamma distribution where \(b = 2 \) in the equation for gamma distribution below.

\[
y = f \left(x \mid a, b \right) = \frac{1}{b^a\Gamma(a)} x^{a-1} e^{x/b}
\]

The \(\chi^2 \) distribution gets special attention because of its importance in normal sampling theory. If a set of \(n \) observations is normally distributed with variance \(\sigma^2 \), and \(s^2 \) is the sample standard deviation, then

\[
\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)
\]

This relationship is used to calculate confidence intervals for the estimate of the normal parameter \(\sigma^2 \) in the function \texttt{normfit}.
Examples

Compute Chi-Square Distribution pdf

Compute the pdf of a chi-square distribution with 4 degrees of freedom.

\[
x = 0:0.2:15;
y = \text{chi2pdf}(x, 4);
\]

Plot the pdf.

```matlab
figure;
plot(x, y)
```

The chi-square distribution is skewed to the right, especially for few degrees of freedom.
See Also
chi2cdf | chi2gof | chi2inv | chi2pdf | chi2rnd | chi2stat | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Exponential Distribution

Definition

The exponential pdf is

\[y = f(x | \mu) = \frac{1 - e^{-x}}{\mu} \]

Background

Like the chi-square distribution, the exponential distribution is a special case of the gamma distribution (obtained by setting \(a = 1 \))

\[y = f(x | a, b) = \frac{1}{b^a\Gamma(a)} x^{a-1} e^{-\frac{x}{b}} \]

where \(\Gamma(\cdot) \) is the Gamma function.

The exponential distribution is special because of its utility in modeling events that occur randomly over time. The main application area is in studies of lifetimes.

Parameters

Suppose you are stress testing light bulbs and collecting data on their lifetimes. You assume that these lifetimes follow an exponential distribution. You want to know how long you can expect the average light bulb to last. Parameter estimation is the process of determining the parameters of the exponential distribution that fit this data best in some sense.
One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the exponential pdf above. But for the pdf, the parameters are known constants and the variable is \(x \). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x \)'s) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function `expfit` returns the MLEs and confidence intervals for the parameters of the exponential distribution. Here is an example using random numbers from the exponential distribution with \(\mu = 700 \).

```matlab
lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =
    672.8207

muci =
    547.4338
    810.9437
```

The MLE for parameter \(\mu \) is 672, compared to the true value of 700. The 95% confidence interval for \(\mu \) goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of \(\mu \) so it is nice to have a confidence interval on the parameter to give a range of likely values.

Examples

Exponentially Distributed Lifetime Data

For exponentially distributed lifetimes, the probability that an item will survive an extra unit of time is independent of the current age of the item. The example shows a specific case of this special property.

```matlab
l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-expcdf(l,50))/(1-expcdf(l,50))

deltap =
    0.0020    0.0020    0.0020    0.0020    0.0020    0.0020
```
Compute the Exponential Distribution pdf

Compute the pdf of an exponential distribution with parameter $\mu = 2$.

```matlab
x = 0:0.1:10;
y = exppdf(x,2);
```

Plot the pdf.

```matlab
figure;
plot(x,y)
```
See Also
ExponentialDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Extreme Value Distribution

Definition

The probability density function for the extreme value distribution with location parameter μ and scale parameter σ is

$$y = f(x | \mu, \sigma) = \sigma^{-1} \exp\left(\frac{x - \mu}{\sigma}\right) \exp\left(-\exp\left(\frac{x - \mu}{\sigma}\right)\right)$$

This form of the probability density function is suitable for modeling the minimum value. To model the maximum value, use the negative of the original values.

If T has a Weibull distribution on page B-184 with parameters a and b, then $\log T$ has an extreme value distribution with parameters $\mu = \log a$ and $\sigma = 1/b$.

Background

Extreme value distributions are often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. The extreme value distribution is appropriate for modeling the smallest value from a distribution whose tails decay exponentially fast, for example, the normal distribution. It can also model the largest value from a distribution, such as the normal or exponential distributions, by using the negative of the original values.

For example, the following fits an extreme value distribution to minimum values taken over 1000 sets of 500 observations from a normal distribution.

```matlab
rng default;  % For reproducibility
xMinima = min(randn(1000,500), [], 2);
```
The following fits an extreme value distribution to the maximum values in each set of observations.

```matlab
rng default;  % For reproducibility
xMaxima = max(randn(1000,500), [], 2);
paramEstsMaxima = evfit(-xMaxima);
y = linspace(1.5,5,1001);
histogram(xMaxima,1.75:.25:4.75);
```

Although the extreme value distribution is most often used as a model for extreme values, you can also use it as a model for other types of continuous data. For example, extreme value distributions are closely related to the Weibull distribution. If T has a Weibull distribution, then $\log(T)$ has a type 1 extreme value distribution.

Parameters

The function `evfit` returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the extreme value distribution. The following example
shows how to fit some sample data using \texttt{evfit}, including estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 1000 from a manufacturing process. If you believe that the sizes are independent within and between each batch, you can fit an extreme value distribution to measurements of the minimum diameter from a series of eight experimental batches. The following code returns the MLEs of the distribution parameters as \texttt{parmhat} and the confidence intervals as the columns of \texttt{parmci}.

\begin{verbatim}
[parmhat, parmci] = evfit(x)
\end{verbatim}

\begin{verbatim}
parmhat =
 20.2506 0.8223

parmci =
 19.644 0.49861
 20.857 1.3562
\end{verbatim}

You can find mean and variance of the extreme value distribution with these parameters using the function \texttt{evstat}.

\begin{verbatim}
[meanfit, varfit] = evstat(parmhat(1),parmhat(2))
\end{verbatim}

\begin{verbatim}
meanfit =
 19.776

varfit =
 1.1123
\end{verbatim}

Examples

Compute the Extreme Value Distribution pdf

Compute the pdf of an extreme value distribution.

\begin{verbatim}
t = [-5:.01:2];
y = evpdf(t);

Plot the pdf.

figure;
plot(t,y)
\end{verbatim}
The extreme value distribution is skewed to the left, and its general shape remains the same for all parameter values. The location parameter, \(\mu \), shifts the distribution along the real line, and the scale parameter, \(\sigma \), expands or contracts the distribution.

The following plots the probability function for different combinations of \(\mu \) and \(\sigma \).

```matlab
x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', ...
    x,evpdf(x,0,2),':', ...
    x,evpdf(x,-2,4),'-.');
legend({'\( \mu = 2, \sigma = 1 \)', ...
        '\( \mu = 0, \sigma = 2 \)', ...
        '\( \mu = -2, \sigma = 4 \)'}, ...
        'Location','NW')
```
xlabel('x')
ylabel('f(x|\mu,\sigma)')

See Also
ExtremeValueDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
F Distribution

In this section...

“Definition” on page B-42
“Background” on page B-42
“Examples” on page B-43

Definition

The pdf for the F distribution is

$$y = f(x | \nu_1, \nu_2) = \frac{\Gamma \left(\frac{\nu_1 + \nu_2}{2} \right)}{\Gamma \left(\frac{\nu_1}{2} \right) \Gamma \left(\frac{\nu_2}{2} \right)} \left(\frac{\nu_1}{\nu_2} \right)^{\frac{\nu_1}{2}} \frac{x^{\frac{\nu_1 - 2}{2}}}{\left[1 + \left(\frac{\nu_1}{\nu_2} \right) x \right]^{\frac{\nu_1 + \nu_2}{2}}}$$

where $\Gamma(\cdot)$ is the Gamma function.

Background

The F distribution has a natural relationship with the chi-square distribution. If χ_1 and χ_2 are both chi-square with ν_1 and ν_2 degrees of freedom respectively, then the statistic F below is F-distributed.

$$F(\nu_1, \nu_2) = \frac{\chi_1 / \nu_1}{\chi_2 / \nu_2}$$

The two parameters, ν_1 and ν_2, are the numerator and denominator degrees of freedom. That is, ν_1 and ν_2 are the number of independent pieces of information used to calculate χ_1 and χ_2, respectively.
Examples

Compute the F Distribution pdf

Compute the pdf of an F distribution with 5 numerator degrees of freedom and 3 denominator degrees of freedom.

```matlab
x = 0:0.01:10;
y = fpdf(x,5,3);

Plot the pdf.

figure;
plot(x,y)
```

![Graph of F Distribution pdf with 5 numerator and 3 denominator degrees of freedom.](image)
The plot shows that the F distribution exists on positive real numbers and is skewed to the right.

See Also
fcdf | finv | fpdf | frnd | fstat | random

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Gamma Distribution

In this section...

“Definition” on page B-45
“Background” on page B-45
“Parameters” on page B-46
“Examples” on page B-47

Definition

The gamma pdf is

\[y = f(x \mid a, b) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-\frac{x}{b}} \]

where \(\Gamma(\cdot) \) is the Gamma function, \(a \) is a shape parameter, \(b \) is a scale parameter.

Background

The gamma distribution models sums of exponentially distributed random variables.

The gamma distribution family is based on two parameters. The chi-square and exponential distributions, which are children of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete Gamma function.

\[f(x \mid a, b) = \text{gammainc} \left(\frac{x}{b}, a \right) \]

When \(a \) is large, the gamma distribution closely approximates a normal distribution with the advantage that the gamma distribution has density only for positive real numbers.
Parameters

Suppose you are stress testing computer memory chips and collecting data on their lifetimes. You assume that these lifetimes follow a gamma distribution. You want to know how long you can expect the average computer memory chip to last. Parameter estimation is the process of determining the parameters of the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the gamma pdf above. But for the pdf, the parameters are known constants and the variable is \(x \). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x \)'s) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function \texttt{gamfit} returns the MLEs and confidence intervals for the parameters of the gamma distribution. Here is an example using random numbers from the gamma distribution with \(a = 10 \) and \(b = 5 \).

\[
\text{lifetimes} = \text{gamrnd}(10,5,100,1);
\text{[phat, pci]} = \text{gamfit(lifetimes)}
\]

\[
\text{phat} =
\begin{bmatrix}
 10.9821 \\
 4.7258
\end{bmatrix}
\]

\[
\text{pci} =
\begin{bmatrix}
 7.4001 & 3.1543 \\
 14.5640 & 6.2974
\end{bmatrix}
\]

Note \(\text{phat}(1) = \hat{a} \) and \(\text{phat}(2) = \hat{b} \). The MLE for parameter \(a \) is 10.98, compared to the true value of 10. The 95% confidence interval for \(a \) goes from 7.4 to 14.6, which includes the true value.

Similarly the MLE for parameter \(b \) is 4.7, compared to the true value of 5. The 95% confidence interval for \(b \) goes from 3.2 to 6.3, which also includes the true value.

In the life tests you do not know the true value of \(a \) and \(b \) so it is nice to have a confidence interval on the parameters to give a range of likely values.
Examples

Compute the Gamma Distribution pdf

Compute the pdf of a gamma distribution with parameters $A = 100$ and $B = 10$. For comparison, also compute the pdf of a normal distribution with parameters $\mu = 1000$ and $\sigma = 100$.

```matlab
x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
```

Plot the pdfs of the gamma distribution and the normal distribution on the same figure.

```matlab
figure;
plot(x,y,'-',x,y1,'-.')
```
References

See Also

GammaDistribution
More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Generalized Extreme Value Distribution

Definition

The probability density function for the generalized extreme value distribution with location parameter \(\mu \), scale parameter \(\sigma \), and shape parameter \(k \neq 0 \) is

\[
y = f(x | \kappa, \mu, \sigma) = \left(\frac{1}{\sigma} \right) \exp \left(- \left(1 + k \frac{(x-\mu)}{\sigma} \right)^{1/k} \right) \left(1 + k \frac{(x-\mu)}{\sigma} \right)^{-1 - \frac{1}{k}}
\]

for

\[
1 + k \frac{(x-\mu)}{\sigma} > 0
\]

\(k > 0 \) corresponds to the Type II case, while \(k < 0 \) corresponds to the Type III case. For \(k = 0 \), corresponding to the Type I case, the density is

\[
y = f(x | 0, \mu, \sigma) = \left(\frac{1}{\sigma} \right) \exp \left(- \exp \left(- \frac{(x-\mu)}{\sigma} \right) - \frac{(x-\mu)}{\sigma} \right)
\]

Background

Like the extreme value distribution, the generalized extreme value distribution is often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. For example, you might have batches of 1000 washers from a manufacturing process. If you record the size of the largest washer in each batch, the data are known as block maxima (or minima if...
you record the smallest). You can use the generalized extreme value distribution as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a single form, allowing a continuous range of possible shapes that includes all three of the simpler distributions. You can use any one of those distributions to model a particular dataset of block maxima. The generalized extreme value distribution allows you to “let the data decide” which distribution is appropriate.

The three cases covered by the generalized extreme value distribution are often referred to as the Types I, II, and III. Each type corresponds to the limiting distribution of block maxima from a different class of underlying distributions. Distributions whose tails decrease exponentially, such as the normal, lead to the Type I. Distributions whose tails decrease as a polynomial, such as Student's t, lead to the Type II. Distributions whose tails are finite, such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet, and Weibull types, though this terminology can be slightly confusing. The Type I (Gumbel) and Type III (Weibull) cases actually correspond to the mirror images of the usual Gumbel and Weibull distributions, for example, as computed by the functions evcdf and evfit, or wblcdf and wblfit, respectively. Finally, the Type II (Frechet) case is equivalent to taking the reciprocal of values from a standard Weibull distribution.

Parameters

If you generate 250 blocks of 1000 random values drawn from Student's t distribution with 5 degrees of freedom, and take their maxima, you can fit a generalized extreme value distribution to those maxima.

```matlab
blocksize = 1000;
nblocks = 250;
rng default  % For reproducibility
t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)
```

```
paramEsts = 1x3
     0.1185    1.4530    5.8929
```
Notice that the shape parameter estimate (the first element) is positive, which is what you would expect based on block maxima from a Student's t distribution.

\begin{verbatim}
 histogram(x,2:20,'FaceColor',[.8 .8 1]);
 xgrid = linspace(2,20,1000);
 line(xgrid,nblocks*...
 gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));
\end{verbatim}

Examples

Compute the Generalized Extreme Value Distribution pdf

Generate examples of probability density functions for the three basic forms of the generalized extreme value distribution.
Notice that for $k > 0$, the distribution has zero probability density for x such that $x < -\sigma/k + \mu$.

For $k < 0$, the distribution has zero probability density for $x > -\sigma/k + \mu$.

For $k = 0$, there is no upper or lower bound.
See Also

GeneralizedExtremeValueDistribution

More About

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Generalized Pareto Distribution

In this section...

"Definition" on page B-55
"Background" on page B-55
"Parameters" on page B-56
"Examples" on page B-58

Definition

The probability density function for the generalized Pareto distribution with shape parameter $k \neq 0$, scale parameter σ, and threshold parameter θ, is

$$y = f(x | k, \sigma, \theta) = \left(\frac{1}{\sigma} \right) \left(1 + k \frac{(x - \theta)}{\sigma} \right)^{-\frac{1}{k}}$$

for $\theta < x$, when $k > 0$, or for $\theta < x < \theta - \sigma/k$ when $k < 0$.

For $k = 0$, the density is

$$y = f(x | 0, \sigma, \theta) = \left(\frac{1}{\sigma} \right) e^{-\frac{(x-\theta)}{\sigma}}$$

for $\theta < x$.

If $k = 0$ and $\theta = 0$, the generalized Pareto distribution is equivalent to the exponential distribution. If $k > 0$ and $\theta = \sigma/k$, the generalized Pareto distribution is equivalent to the Pareto distribution with a scale parameter equal to σ/k and a shape parameter equal to $1/k$.

Background

Like the exponential distribution, the generalized Pareto distribution is often used to model the tails of another distribution. For example, you might have washers from a manufacturing process. If random influences in the process lead to differences in the sizes of the washers, a standard probability distribution, such as the normal, could be
used to model those sizes. However, while the normal distribution might be a good model near its mode, it might not be a good fit to real data in the tails and a more complex model might be needed to describe the full range of the data. On the other hand, only recording the sizes of washers larger (or smaller) than a certain threshold means you can fit a separate model to those tail data, which are known as *exceedences*. You can use the generalized Pareto distribution in this way, to provide a good fit to extremes of complicated data.

The generalized Pareto distribution allows a continuous range of possible shapes that includes both the exponential and Pareto distributions as special cases. You can use either of those distributions to model a particular dataset of exceedences. The generalized Pareto distribution allows you to “let the data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding to a limiting distribution of exceedence data from a different class of underlying distributions.

- Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto shape parameter of zero.
- Distributions whose tails decrease as a polynomial, such as Student's *t*, lead to a positive shape parameter.
- Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution is used in the tails of distribution fit objects of the `paretotails` object.

Parameters

If you generate a large number of random values from a Student's *t* distribution with 5 degrees of freedom, and then discard everything less than 2, you can fit a generalized Pareto distribution to those exceedences.

```matlab
rng default  % For reproducibility
t = trnd(5,5000,1);
y = t(t > 2) - 2;
paramEsts = gpfit(y)
```

```
paramEsts = 1x2

0.1445   0.7225
```
Notice that the shape parameter estimate (the first element) is positive, which is what you would expect based on exceedences from a Student's t distribution.

```matlab
hist(y+2,2.25:.5:11.75);
h = findobj(gca,'Type','patch');
h.FaceColor = [.8 .8 1];
xgrid = linspace(2,12,1000);
line(xgrid,.5*length(y)*...
gppdf(xgrid,paramEsts(1),paramEsts(2),2));
```
Examples

Compute Generalized Pareto Distribution pdf

Compute the pdf of three generalized Pareto distributions. The first has shape parameter \(k = -0.25 \), the second has \(k = 0 \), and the third has \(k = 1 \).

\[
x = \	ext{linspace}(0,10,1000);
y1 = \	ext{gppdf}(x,-.25,1,0);
y2 = \	ext{gppdf}(x,0,1,0);
y3 = \	ext{gppdf}(x,1,1,0);
\]

Plot the three pdfs on the same figure.

\[
\text{figure;}
\text{plot(x,y1,'-', x,y2,'--', x,y3,:')}
\text{legend({'K < 0' 'K = 0' 'K > 0'})};
\]
References

See Also

GeneralizedParetoDistribution
Related Examples

- “Fit a Nonparametric Distribution with Pareto Tails” on page 5-58

More About

- “Nonparametric and Empirical Probability Distributions” on page 5-39
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Overview

The geometric distribution models the number of failures before one success in a series of independent trials, where each trial results in either success or failure, and the probability of success in any individual trial is constant. For example, if you toss a coin, the geometric distribution models the number of tails observed before getting a heads. The geometric distribution is discrete, existing only on the nonnegative integers.

Parameters

The geometric distribution uses the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \leq p \leq 1</td>
<td>Probability of success</td>
</tr>
</tbody>
</table>

Probability Distribution Function

Definition

The probability distribution function (pdf) of the geometric distribution is

\[y = f(x \mid p) = p(1 - p)^x \quad ; \quad x = 0,1,2,\ldots , \]

where \(p \) is the probability of success, and \(x \) is the number of failures before the first success. The result \(y \) is the probability of observing exactly \(x \) trials before a success, when
the probability of success in any given trial is p. For discrete distributions, the probability distribution function is also known as the probability mass function (pmf).

Plot

This plot shows how changing the value of the probability parameter p alters the shape of the pdf. Use `geopdf` to compute the pdf for values at x equals 1 through 10, for three different values of p. Then plot all three pdfs on the same figure for a visual comparison.

```matlab
x = [1:10];
y1 = geopdf(x,0.1);  % For $p = 0.1$
y2 = geopdf(x,0.25); % For $p = 0.25$
y3 = geopdf(x,0.75); % For $p = 0.75$
figure;
plot(x,y1,'kd')
hold on
plot(x,y2,'ro')
plot(x,y3,'b+')
legend({'$p = 0.1$','$p = 0.25$','$p = 0.75$'})
hold off
```
In this plot, the value of \(y \) is the probability of observing exactly \(x \) trials before a success. When the probability of success \(p \) is large, \(y \) decreases rapidly as \(x \) increases, and the probability of observing a large number of failures before a success quickly becomes small. But when the probability of success \(p \) is small, \(y \) decreases slowly as \(x \) increases. The probability of observing a large number of failures before a success still decreases as the number of trials increases, but at a much slower rate.

Random Number Generation

A random number generated from a geometric distribution represents the number of failures observed before a success in a single experiment, given the probability of success \(p \) for each independent trial. Use `geornd` to generate random numbers from the
The geometric distribution. For example, the following generates a random number from a geometric distribution with probability of success p equal to 0.1.

```matlab
p = 0.1;
r = geornd(p)
r = 1
```

The returned random number represents the number of failures observed before a success in a series of independent trials.

Relationship to Other Distributions

The geometric distribution is a special case of the negative binomial distribution on page B-116, with the specified number of successes parameter r equal to 1.

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of the geometric distribution is

$$
y = F(x | p) = 1 - (1 - p)^{x+1}; \ x = 0,1,2,..., $$

where p is the probability of success, and x is the number of failures before the first success. The result y is the probability of observing up to x trials before a success, when the probability of success in any given trial is p.

Plot

This plot shows how changing the value of the parameter p alters the shape of the cdf. Use `geocdf` to compute the cdf values at x equals 1 through 10, for three different values of p. Then plot all three cdfs on the same figure for a visual comparison.

```matlab
x = [1:10];
y1 = geocdf(x,0.1);   % For p = 0.1
y2 = geocdf(x,0.25); % For p = 0.25
y3 = geocdf(x,0.75); % For p = 0.75

figure;
plot(x,y1,'kd')
hold on
```
In this plot, the value of y is the probability of observing up to x trials before a success. When the probability of success p is large, y increases rapidly as x increases. The probability of observing a success quickly becomes very high, even for a small number of trials. But when the probability of success p is small, y increases slowly as x increases. The probability of observing a success still increases as the number of trials increases, but at a much slower rate.
Inverse cdf

The inverse cdf of a geometric distribution determines the value of x that corresponds to a probability y of observing x successes in a row in independent trials. Use `geoinv` to compute the inverse cdf of the geometric distribution. For example, the following returns the smallest possible integer x such that the geometric cdf y evaluated at x is greater than or equal to 0.1, when the probability of success for each independent trial p is 0.03.

```matlab
y = 0.1;
p = 0.03;
x = geoinv(y,p)
```

$x = 3$

Mean and Variance

The mean of the geometric distribution is

$$\text{mean} = \frac{1-p}{p},$$

and the variance of the geometric distribution is

$$\text{var} = \frac{1-p}{p^2},$$

where p is the probability of success.

Use `geostat` to compute the mean and variance of a geometric distribution. For example, the following computes the mean m and variance v of a geometric distribution with probability parameter p equal to 0.25.

```matlab
p = 0.25;
[m,v] = geostat(p)
```

$m = 3$

$v = 12$
Example

Compute Geometric Distribution Probabilities

Suppose the probability of a five-year-old car battery not starting in cold weather is 0.03. What is the probability of the car starting for 25 consecutive days during a long cold snap?

Model the scenario using a geometric distribution, where "failure" means the car starts, and "success" means the car does not start. Determine the probability of observing 25 failures (the car starts) without observing a single success (the car does not start). The probability of success for each trial (the car not starting on any single attempt) is \(p \) equal to 0.03.

Compute the cumulative distribution function (cdf) for \(x \) equal to 25. This returns the probability of observing success (the car not starting) in up to 25 trials.

\[
x = 25;
p = 0.03;
psuccess = \text{geocdf}(x,p);
\]

To determine the probability of not observing a success in up to 25 trials - in other words, the probability that the car starts on every one of the 25 attempts - subtract this result from 1.

\[
pfail = 1 - psuccess
\]

\[
pfail = 0.4530
\]

The returned result \(pfail = 0.4530 \) is the probability that the car will start every day for 25 days in a row during a cold snap.

The cdf plot shows that, as the number of trials (\(x \)) increases, the probability of success (\(y \)) also increases. In this example, it means that the more times you attempt to start the car, the greater the probability that it does not start on at least one of those occasions.
See Also
geocdf | geoinv | geopdf | geornd | geostat | random

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Half-Normal Distribution

Overview

The half-normal distribution is a special case of the folded normal and truncated normal distributions. Some applications of the half-normal distribution include modeling measurement data and lifetime data.

Parameters

The half-normal distribution uses the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Location parameter</td>
</tr>
<tr>
<td>σ</td>
<td>Scale parameter</td>
</tr>
</tbody>
</table>

The support for the half-normal distribution is $x \geq \mu$.

Use `makedist` with specified parameter values to create a half-normal probability distribution object `HalfNormalDistribution`. Use `fitdist` to fit a half-normal probability distribution object to sample data. Use `mle` to estimate the half-normal distribution parameter values from sample data without creating a probability distribution object. For more information about working with probability distributions, see “Working with Probability Distributions” on page 5-3.

The Statistics and Machine Learning Toolbox implementation of the half-normal distribution assumes a fixed value for the location parameter μ. Therefore, neither
fitdist nor mle estimates the value of the parameter \(\mu \) when fitting a half-normal distribution to sample data. You can specify a value for the \(\mu \) parameter by using the name-value pair argument 'mu'. The default value for the 'mu' argument is 0 in both fitdist and mle.

Probability Density Function

The probability density function (pdf) of the half-normal distribution is

\[
y = f(x | \mu, \sigma) = \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}; x \geq \mu,
\]

where \(\mu \) is the location parameter and \(\sigma \) is the scale parameter. If \(x \leq \mu \), then the pdf is undefined.

To compute the pdf of the half-normal distribution, create a `HalfNormalDistribution` probability distribution object using `fitdist` or `makedist`, then use the `pdf` method to work with the object.

PDF of Half-Normal Probability Distribution

This example shows how changing the values of the mu and sigma parameters alters the shape of the pdf.

Create four probability distribution objects with different parameters.

```matlab
pd1 = makedist('HalfNormal');
pd2 = makedist('HalfNormal','mu',0,'sigma',2);
pd3 = makedist('HalfNormal','mu',0,'sigma',3);
pd4 = makedist('HalfNormal','mu',0,'sigma',5);
```

Compute the probability density functions (pdfs) of each distribution.

```matlab
x = 0:0.1:10;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);
pdf4 = pdf(pd4,x);
```

Plot the pdfs on the same figure.
As sigma increases, the curve flattens and the peak value becomes smaller.
Cumulative Distribution Function

The cumulative distribution function (cdf) of the half-normal distribution is

\[
y = F(x) = \text{erf}\left(\frac{x - \mu}{\sqrt{2\sigma}}\right) - 2\Phi\left(\frac{x - \mu}{\sigma}\right) - 1; \ x \geq \mu,
\]

where \(\mu\) is the location parameter, \(\sigma\) is the scale parameter, \(\text{erf}(\cdot)\) is the error function, and \(\Phi(\cdot)\) is the cdf of the standard normal distribution. If \(x \leq \mu\), then the cdf is undefined.

To compute the cdf of the half-normal distribution, create a HalfNormalDistribution probability distribution object using fitdist or makedist, then use the cdf method to work with the object.

CDF of Half-Normal Probability Distribution

This example shows how changing the values of the \(\mu\) and \(\sigma\) parameters alters the shape of the cdf.

Create four probability distribution objects with different parameters.

```matlab
pd1 = makedist('HalfNormal');
pd2 = makedist('HalfNormal','mu',0,'sigma',2);
pd3 = makedist('HalfNormal','mu',0,'sigma',3);
pd4 = makedist('HalfNormal','mu',0,'sigma',5);
```

Compute the cumulative distribution functions (cdfs) for each probability distribution.

```matlab
x = 0:0.1:10;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);
cdf4 = cdf(pd4,x);
```

Plot all four cdfs on the same figure.

```matlab
figure;
plot(x,cdf1,'r','LineWidth',2)
hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
plot(x,cdf4,'g--','LineWidth',2);
legend({'\(\mu = 0, \sigma = 1\)','%(mu = 0, sigma = 2)','%'});"
As \( \sigma \) increases, the curve of the cdf flattens.

**Descriptive Statistics**

The mean of the half-normal distribution is

\[
\text{mean} = \mu + \sigma \sqrt{\frac{2}{\pi}},
\]
where $\mu$ is the location parameter and $\sigma$ is the scale parameter.

The variance of the half-normal distribution is

$$\text{var} = \sigma^2 \left( 1 - \frac{2}{\pi} \right),$$

where $\sigma$ is the scale parameter.

**Relationship to Other Distributions**

If a random variable $Z$ has a standard normal distribution with a mean $\mu$ equal to zero and standard deviation $\sigma$ equal to one, then $X = \mu + \sigma|Z|$ has a half-normal distribution with parameters $\mu$ and $\sigma$.

**References**


**See Also**

HalfNormalDistribution

**More About**

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Hypergeometric Distribution

In this section...

“Definition” on page B-75
“Background” on page B-75
“Examples” on page B-76

Definition

The hypergeometric pdf is

\[ y = f(x | M, K, n) = \binom{K}{x} \binom{M-K}{n-x} \binom{M}{n} \]

Background

The hypergeometric distribution models the total number of successes in a fixed-size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or the number of possible successes, whichever is greater. The hypergeometric distribution differs from the binomial only in that the population is finite and the sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical interpretations.

• \( M \) is the size of the population.
• \( K \) is the number of items with the desired characteristic in the population.
• \( n \) is the number of samples drawn.

Sampling “without replacement” means that once a particular sample is chosen, it is removed from the relevant population for all subsequent selections.
Examples

Compute and Plot Hypergeometric Distribution CDF

This example shows how to compute and plot the cdf of a hypergeometric distribution.

Compute the cdf of a hypergeometric distribution that draws 20 samples from a group of 1000 items, when the group contains 50 items of the desired type.

```matlab
x = 0:10;
y = hygecdf(x,1000,50,20);
```

Plot the cdf.

```matlab
stairs(x,y)
```
The x-axis of the plot shows the number of items drawn that are of the desired type. The y-axis shows the corresponding cdf values.

**See Also**

hygecdf | hygeinv | hygepdf | hygernd | hygestat | random

**More About**

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Inverse Gaussian Distribution

Definition

The inverse Gaussian distribution has the density function

\[ f(x) = \frac{\lambda}{\sqrt{2\pi x^3}} \exp\left\{ -\frac{\lambda}{2\mu^2 x} (x - \mu)^2 \right\} \]

Background

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively skewed data. The distribution originated in the theory of Brownian motion, but has been used to model diverse phenomena. Inverse Gaussian distributions have many similarities to standard Gaussian (normal) distributions, which lead to applications in inferential statistics.

Parameters

To estimate distribution parameters, use \texttt{mle} or the Distribution Fitter app.

See Also

InverseGaussianDistribution

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Inverse Wishart Distribution

Definition

The probability density function of the $d$-dimensional Inverse Wishart distribution is given by

$$
y = f(X, \Sigma, \nu) = \frac{|T|^{(\nu/2)} e^{-\frac{1}{2}\text{trace}(TX^{-1})}}{2^{(vd)/2} \pi^{(d(d-1))/4} |X|^{(\nu+d+1)/2} \Gamma(\nu/2)\ldots\Gamma(\nu-(d-1))/2},$$

where $X$ and $T$ are $d$-by-$d$ symmetric positive definite matrices, and $\nu$ is a scalar greater than or equal to $d$. While it is possible to define the Inverse Wishart for singular $T$, the density cannot be written as above.

If a random matrix has a Wishart distribution with parameters $T^{-1}$ and $\nu$, then the inverse of that random matrix has an inverse Wishart distribution with parameters $T$ and $\nu$. The mean of the distribution is given by

$$\frac{1}{\nu - d - 1} T$$

where $d$ is the number of rows and columns in $T$.

Only random matrix generation is supported for the inverse Wishart, including both singular and nonsingular $T$.

Background

The inverse Wishart distribution is based on the Wishart distribution on page B-189. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

Example

Notice that the sampling variability is quite large when the degrees of freedom is small.

```plaintext
Tau = [1 .5; .5 2];
df = 10; S1 = iiwishrnd(Tau,df)*(df-2-1)
```
S1 =
   1.7959   0.64107
0.64107  1.5496

df = 1000; S2 = iwishrnd(Tau,df)*(df-2-1)

S2 =
   0.9842   0.50158
0.50158  2.1682

See Also
iwishrnd

More About
- “Wishart Distribution” on page B-189
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Overview

A kernel distribution is a nonparametric representation of the probability density function (pdf) of a random variable. You can use a kernel distribution when a parametric distribution cannot properly describe the data, or when you want to avoid making assumptions about the distribution of the data. A kernel distribution is defined by a smoothing function and a bandwidth value, which control the smoothness of the resulting density curve.

Kernel Density Estimator

The kernel density estimator is the estimated pdf of a random variable. For any real values of $x$, the kernel density estimator's formula is given by

$$
\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right),
$$

where $x_1, x_2, ..., x_n$ are random samples from an unknown distribution, $n$ is the sample size, $K(\cdot)$ is the kernel smoothing function, and $h$ is the bandwidth.

Kernel Smoothing Function

The kernel smoothing function defines the shape of the curve used to generate the pdf. Similar to a histogram, the kernel distribution builds a function to represent the probability distribution using the sample data. But unlike a histogram, which places the values into discrete bins, a kernel distribution sums the component smoothing functions for each data value to produce a smooth, continuous probability curve. The following plots...
show a visual comparison of a histogram and a kernel distribution generated from the same sample data.

A histogram represents the probability distribution by establishing bins and placing each data value in the appropriate bin.

$$\text{SixMPG} = [13;15;23;29;32;34];$$

```
figure
histogram(SixMPG)
```

Because of this bin count approach, the histogram produces a discrete probability density function. This might be unsuitable for certain applications, such as generating random numbers from a fitted distribution.
Alternatively, the kernel distribution builds the pdf by creating an individual probability density curve for each data value, then summing the smooth curves. This approach creates one smooth, continuous probability density function for the data set.

```matlab
figure
pdSix = fitdist(SixMPG,'Kernel','BandWidth',4);
x = 0:.1:45;
ySix = pdf(pdSix,x);
plot(x,ySix,'k-','LineWidth',2)

hold on
for i=1:6
 pd = makedist('Normal','mu',SixMPG(i),'sigma',4);
y = pdf(pd,x);
y = y/6;
 plot(x,y,'b:')
end
hold off
```
The smaller dashed curves are the probability distributions for each value in the sample data, scaled to fit the plot. The larger solid curve is the overall kernel distribution of the SixMPG data. The kernel smoothing function refers to the shape of those smaller component curves, which have a normal distribution in this example.

You can choose one of several options for the kernel smoothing function. This plot shows the shapes of the available smoothing functions.

Set plot specifications

```matlab
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
colors = {'r' 'b' 'g' 'm'};
lines = {'-', '--', '-', ':'};
```
% Generate a sample of each kernel smoothing function and plot
data = [0];
figure
for j=1:4
    pd = fitdist(data,'kernel','Kernel',hname{j});
    x = -3:.1:3;
    y = pdf(pd,x);
    plot(x,y,'Color',colors{j},'LineStyle',lines{j})
end
hold on
legend(hname)
hold off
To understand the effect of different kernel smoothing functions on the shape of the resulting pdf estimate, compare plots of the mileage data (MPG) from carbig.mat using each available kernel function.

```matlab
load carbig
% Set plot specifications
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
colors = {'r' 'b' 'g' 'm'};
lines = {'-','--','-.',':'};

% Generate kernel distribution objects and plot
figure
for j=1:4
 pd = fitdist(MPG,'kernel','Kernel',hname{j});
 x = -10:1:60;
 y = pdf(pd,x);
 plot(x,y,'Color',colors{j},'LineStyle',lines{j})
 hold on
end
legend(hname)
hold off
```
Each density curve uses the same input data, but applies a different kernel smoothing function to generate the pdf. The density estimates are roughly comparable, but the shape of each curve varies slightly. For example, the box kernel produces a density curve that is less smooth than the others.

**Bandwidth**

The choice of bandwidth value controls the smoothness of the resulting probability density curve. This plot shows the density estimate for the same MPG data, using a normal kernel smoothing function with three different bandwidths.

Create kernel distribution objects
pd1 = fitdist(MPG,'kernel');
pd2 = fitdist(MPG,'kernel','BandWidth',1);
pd3 = fitdist(MPG,'kernel','BandWidth',5);

% Compute each pdf
x = -10:1:60;
y1 = pdf(pd1,x);
y2 = pdf(pd2,x);
y3 = pdf(pd3,x);

% Plot each pdf
plot(x,y1,'Color','r','LineStyle','-')
hold on
plot(x,y2,'Color','k','LineStyle',':')
plot(x,y3,'Color','b','LineStyle','--')
legend({'BandWidth = Default','BandWidth = 1','BandWidth = 5'})
hold off
The default bandwidth, which is theoretically optimal for estimating densities for the normal distribution [1], produces a reasonably smooth curve. Specifying a smaller bandwidth produces a very rough curve, but reveals that there might be two major peaks in the data. Specifying a larger bandwidth produces a curve nearly identical to the kernel function, and is so smooth that it obscures potentially important features of the data.

References

See Also
KernelDistribution | ksdensity

Related Examples
• “Fit Kernel Distribution Object to Data” on page 5-48
• “Fit Kernel Distribution Using ksdensity” on page 5-53
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-55

More About
• “Nonparametric and Empirical Probability Distributions” on page 5-39
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Logistic Distribution

In this section...

“Overview” on page B-91
“Parameters” on page B-91
“Probability Density Function” on page B-91
“Relationship to Other Distributions” on page B-92

Overview

The logistic distribution is used for growth models and in logistic regression. It has longer tails and a higher kurtosis than the normal distribution.

Parameters

The logistic distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean</td>
<td>$-\infty &lt; \mu &lt; \infty$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter</td>
<td>$\sigma \geq 0$</td>
</tr>
</tbody>
</table>

Probability Density Function

The probability density function (pdf) is

$$f(x \mid \mu, \sigma) = \frac{\exp \left(\frac{x - \mu}{\sigma}\right)}{\sigma \left(1 + \exp \left(\frac{x - \mu}{\sigma}\right)\right)^2}; \quad -\infty < x < \infty.$$
Relationship to Other Distributions

The loglogistic distribution is closely related to the logistic distribution. If $x$ is distributed loglogistically with parameters $\mu$ and $\sigma$, then $\log(x)$ is distributed logistically with parameters $\mu$ and $\sigma$.

See Also

LogisticDistribution

Related Examples

- “Compare Multiple Distribution Fits” on page 5-112

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Overview

The loglogistic distribution is a probability distribution whose logarithm has a logistic distribution. This distribution is often used in survival analysis to model events that experience an initial rate increase, followed by a rate decrease. It is also known as the Fisk distribution in economics applications.

Parameters

The loglogistic distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean of logarithmic values</td>
<td>$\mu &gt; 0$</td>
</tr>
<tr>
<td>sigma</td>
<td>Scale parameter of logarithmic values</td>
<td>$\sigma &gt; 0$</td>
</tr>
</tbody>
</table>

Probability Density Function

The probability density function (pdf) is

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma x} \frac{e^z}{\left(1+e^z\right)^2} ; \quad x \geq 0,$$

where $z = \frac{\log(x) - \mu}{\sigma}$. 

Loglogistic Distribution
Relationship to Other Distributions

The loglogistic distribution is closely related to the logistic distribution. If \( x \) is distributed loglogistically with parameters \( \mu \) and \( \sigma \), then \( \log(x) \) is distributed logistically with parameters \( \mu \) and \( \sigma \). The relationship is similar to that between the lognormal on page B-95 and normal on page B-130 distribution.

See Also
LoglogisticDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Lognormal Distribution

In this section...

“Overview” on page B-95
“Parameters” on page B-95
“Probability Density Function” on page B-96
“Descriptive Statistics” on page B-96
“Relationship to Other Distributions” on page B-96
“Examples” on page B-97

Overview

The lognormal distribution is a probability distribution whose logarithm has a normal distribution. It is sometimes called the Galton distribution. The lognormal distribution is applicable when the quantity of interest must be positive, since \( \log(x) \) exists only when \( x \) is positive.

Parameters

The lognormal distribution uses these parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>Mean of logarithmic values</td>
<td>(-\infty &lt; \mu &lt; \infty)</td>
</tr>
<tr>
<td>sigma</td>
<td>Standard deviation of logarithmic values</td>
<td>(\sigma \geq 0)</td>
</tr>
</tbody>
</table>

To fit the lognormal distribution to data and find the parameter estimates, use \texttt{lognfit}, \texttt{fitdist}, or \texttt{mle}.

- For uncensored data, \texttt{lognfit} and \texttt{fitdist} find the unbiased estimates of the distribution parameters, and \texttt{mle} finds the maximum likelihood estimates.
- For censored data, \texttt{lognfit}, \texttt{fitdist}, and \texttt{mle} find the maximum likelihood estimates.
Unlike lognfit and mle, which return parameter estimates, fitdist returns the fitted probability distribution object LognormalDistribution. The object properties mu and sigma store the parameter estimates.

**Probability Density Function**

The probability density function (pdf) of the lognormal distribution is

\[
f(x | \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{\frac{-(\ln x - \mu)^2}{2\sigma^2}\right\}; \quad x > 0.
\]

**Descriptive Statistics**

The mean is

\[
\text{mean} = \exp\left(\mu + \frac{\sigma^2}{2}\right).
\]

The variance is

\[
\text{var} = \exp\left(2\mu + \sigma^2\right)\left(\exp\left(\sigma^2\right) - 1\right).
\]

You can compute these descriptive statistics using the lognstat function.

**Relationship to Other Distributions**

The lognormal distribution is closely related to the normal distribution. If \(x\) is distributed lognormally with parameters \(\mu\) and \(\sigma\), then \(\log(x)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\). The lognormal distribution is applicable when the quantity of interest must be positive, since \(\log(x)\) exists only when \(x\) is positive.
Examples

Compute the Lognormal Distribution pdf

Suppose the income of a family of four in the United States follows a lognormal distribution with \( \mu = \log(20,000) \) and \( \sigma = 1 \). Compute and plot the income density.

\[
x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
\]

figure;
plot(x,y)
h = gca;
h.XTick = [0 30000 60000 90000 120000];
h.XTickLabel = {'0','$30,000','$60,000','$90,000','$120,000'};
See Also
LognormalDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Multinomial Distribution

Overview
Multinomial distribution models the probability of each combination of successes in a series of independent trials. Use this distribution when there are more than two possible mutually exclusive outcomes for each trial, and each outcome has a fixed probability of success.

Parameter
Multinomial distribution uses the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>probabilities</td>
<td>Outcome probabilities</td>
<td>$0 \leq \text{probabilities}(i) \leq 1; \sum_{\text{all}(i)} \text{probabilities}(i) = 1$</td>
</tr>
</tbody>
</table>

Probability Density Function
The multinomial pdf is

$$f(x | n, p) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k},$$

where $k$ is the number of possible mutually exclusive outcomes for each trial, and $n$ is the total number of trials. The vector $x = (x_1 \cdots x_k)$ is the number of observations of each $k$ outcome, and contains nonnegative integer components that sum to $n$. The vector $p =$
(p₁...pₖ) is the fixed probability of each k outcome, and contains nonnegative scalar components that sum to 1.

**Descriptive Statistics**

The expected number of observations of outcome i in n trials is

\[ E\{x_i\} = np_i, \]

where \( p_i \) is the fixed probability of outcome i.

The variance is of outcome i is

\[ \text{var}(x_i) = np_i (1 - p_i). \]

The covariance of outcomes i and j is

\[ \text{cov}(x_i, x_j) = -np_ip_j, i \neq j. \]

**Relationship to Other Distributions**

The multinomial distribution is a generalization of the binomial distribution on page B-9. While the binomial distribution gives the probability of the number of “successes” in n independent trials of a two-outcome process, the multinomial distribution gives the probability of each combination of outcomes in n independent trials of a k-outcome process. The probability of each outcome in any one trial is given by the fixed probabilities \( p_1,..., p_k \).

**See Also**

MultinomialDistribution

**More About**

- “Multinomial Probability Distribution Objects” on page 5-123
- “Multinomial Probability Distribution Functions” on page 5-127
- “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Multivariate Normal Distribution

In this section...

“Definition” on page B-102
“Background” on page B-102
“Examples” on page B-103

Definition

The probability density function of the $d$-dimensional multivariate normal distribution is given by

$$ y = f(x, \mu, \Sigma) = \frac{1}{\sqrt{|\Sigma|(2\pi)^d}} \exp\left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)'\right) $$

where $x$ and $\mu$ are 1-by-$d$ vectors and $\Sigma$ is a $d$-by-$d$ symmetric positive definite matrix. While it is possible to define the multivariate normal for singular $\Sigma$, the density cannot be written as above. Only random vector generation is supported for the singular case. Note that while most textbooks define the multivariate normal with $x$ and $\mu$ oriented as column vectors, for the purposes of data analysis software, it is more convenient to orient them as row vectors, and Statistics and Machine Learning Toolbox software uses that orientation.

Background

The multivariate normal distribution is a generalization of the univariate normal to two or more variables. It is a distribution for random vectors of correlated variables, each element of which has a univariate normal distribution. In the simplest case, there is no correlation among variables, and elements of the vectors are independent univariate normal random variables.

The multivariate normal distribution is parameterized with a mean vector, $\mu$, and a covariance matrix, $\Sigma$. These are analogous to the mean $\mu$ and variance $\sigma^2$ parameters of a univariate normal distribution. The diagonal elements of $\Sigma$ contain the variances for each variable, while the off-diagonal elements of $\Sigma$ contain the covariances between variables.
The multivariate normal distribution is often used as a model for multivariate data, primarily because it is one of the few multivariate distributions that is tractable to work with.

**Examples**

**Compute the Multivariate Normal pdf**

Compute and plot the pdf of a multivariate normal distribution.

```plaintext
mu = [0 0];
Sigma = [.25 .3; .3 1];
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .4])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
```
**Compute the Multivariate Normal cdf**

Compute and plot the cdf of a multivariate normal distribution with parameters $\mu = [1\ -1]$ and $\Sigma = [.9\ .4; .4\ .3]$.

```matlab
mu = [1 -1];
SIGMA = [.9 .4; .4 .3];
figure;
[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];
p = mvncdf(X,mu,SIGMA);
surf(X1,X2,reshape(p,25,25));
```
Compute Cumulative Probabilities Over Regions

Since the bivariate normal distribution is defined on the plane, you can also compute cumulative probabilities over rectangular regions.

Compute the probability contained within the unit square, and create a contour plot of the results.

\[
\begin{align*}
\mu &= [0 \ 0]; \\
\Sigma &= [0.25 \ 0.3; \ 0.3 \ 1]; \\
x1 &= -3:.2:3; \ x2 = -3:.2:3; \\
[X1,X2] &= \text{meshgrid}(x1,x2); \\
F &= \text{mvnpdf}([X1(:) \ X2(:)],\mu,\Sigma);
\end{align*}
\]
Computing a multivariate cumulative probability requires significantly more work than computing a univariate probability. By default, the `mvncdf` function computes values to less than full machine precision, and returns an estimate of the error as an optional second output.

```
[F,err] = mvncdf([0 0],[1 1],mu,Sigma)
```
F = 0.2097
err = 1.0000e-08

See Also

mvncdf | mvnpdf | mvnrnd

More About

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Multivariate t Distribution

In this section...

“Definition” on page B-108
“Background” on page B-108
“Example” on page B-109

Definition

The probability density function of the \( d \)-dimensional multivariate Student's \( t \) distribution is given by

\[
f(x, \Sigma, \nu) = \frac{1}{|\Sigma|^{1/2}} \frac{1}{\Gamma((\nu + d)/2) \Gamma(\nu/2)} \left( 1 + \frac{x' \Sigma^{-1} x}{\nu} \right)^{-(\nu+d)/2}.
\]

where \( x \) is a 1-by-\( d \) vector, \( \Sigma \) is a \( d \)-by-\( d \) symmetric, positive definite matrix, and \( \nu \) is a positive scalar. While it is possible to define the multivariate Student's \( t \) for singular \( \Sigma \), the density cannot be written as above. For the singular case, only random number generation is supported. Note that while most textbooks define the multivariate Student's \( t \) with \( x \) oriented as a column vector, for the purposes of data analysis software, it is more convenient to orient \( x \) as a row vector, and Statistics and Machine Learning Toolbox software uses that orientation.

Background

The multivariate Student's \( t \) distribution is a generalization of the univariate Student's \( t \) to two or more variables. It is a distribution for random vectors of correlated variables, each element of which has a univariate Student's \( t \) distribution. In the same way as the univariate Student's \( t \) distribution can be constructed by dividing a standard univariate normal random variable by the square root of a univariate chi-square random variable, the multivariate Student's \( t \) distribution can be constructed by dividing a multivariate normal random vector having zero mean and unit variances by a univariate chi-square random variable.

The multivariate Student's \( t \) distribution is parameterized with a correlation matrix, \( \Sigma \), and a positive scalar degrees of freedom parameter, \( \nu \). \( \nu \) is analogous to the degrees of
freedom parameter of a univariate Student's t distribution. The off-diagonal elements of Σ contain the correlations between variables. Note that when Σ is the identity matrix, variables are uncorrelated; however, they are not independent.

The multivariate Student's t distribution is often used as a substitute for the multivariate normal distribution in situations where it is known that the marginal distributions of the individual variables have fatter tails than the normal.

**Example**

**Plot PDF and CDF of Multivariate t-Distribution**

Plot the pdf of a bivariate Student's t distribution. You can use this distribution for a higher number of dimensions as well, although visualization is not easy.

Rho = [1 .6; .6 1];
nu = 5;
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .2])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
Plot the cdf of a bivariate Student's $t$ distribution.

```matlab
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-0.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');
```
Since the bivariate Student’s t distribution is defined on the plane, you can also compute cumulative probabilities over rectangular regions. For example, this contour plot illustrates the computation that follows, of the probability contained within the unit square shown in the figure.

```matlab
contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1], 'linestyle','--','color','k');
```
Compute the value of the probability contained within the unit square.

\[ F = \text{mvtcdf}([0, 0], [1, 1], \text{Rho}, \text{nu}) \]

\[ F = 0.1401 \]

Computing a multivariate cumulative probability requires significantly more work than computing a univariate probability. By default, the \text{mvtcdf} function computes values to less than full machine precision and returns an estimate of the error, as an optional second output.

\[ [F, \text{err}] = \text{mvtcdf}([0, 0], [1, 1], \text{Rho}, \text{nu}) \]

\[ F = 0.1401 \]
err = 1.0000e-08

See Also
mvtcdf | mvtpdf | mvtrnd

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Nakagami Distribution

In this section...

“Definition” on page B-114
“Background” on page B-114
“Parameters” on page B-114

Definition

The Nakagami distribution has the density function

\[
2 \left(\frac{\mu}{\omega}\right)^\mu \frac{1}{\Gamma(\mu)} x^{(2\mu-1)} e^{-\frac{\mu}{\omega} x^2}
\]

with shape parameter \( \mu \) and scale parameter \( \omega > 0 \), for \( x > 0 \). If \( x \) has a Nakagami distribution with parameters \( \mu \) and \( \omega \), then \( x^2 \) has a gamma distribution with shape parameter \( \mu \) and scale parameter \( \omega/\mu \).

Background

In communications theory, Nakagami distributions, Rician distributions on page B-143, and Rayleigh distributions on page B-140 are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

Parameters

To estimate distribution parameters, use mle or the Distribution Fitter app.

See Also

NakagamiDistribution
More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Definition

When the \( r \) parameter is an integer, the negative binomial pdf is

\[
y = f(x \mid r, p) = \binom{r + x - 1}{x} p^r (1 - p)^x I_{(0,1,\ldots)}(x)
\]

where \( q = 1 - p \). When \( r \) is not an integer, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression

\[
\frac{\Gamma(r + x)}{\Gamma(r) \Gamma(x + 1)}
\]

Background

In its simplest form (when \( r \) is an integer), the negative binomial distribution models the number of failures \( x \) before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, \( p \), and the number of successes, \( r \). A special case of the negative binomial distribution, when \( r = 1 \), is the geometric distribution on page B-61, which models the number of failures before the first success.

More generally, \( r \) can take on non-integer values. This form of the negative binomial distribution has no interpretation in terms of repeated trials, but, like the Poisson distribution on page B-137, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as \( r \) increases to infinity, the negative binomial distribution approaches the Poisson distribution.
Parameters

Suppose you are collecting data on the number of auto accidents on a busy highway, and would like to be able to model the number of accidents per day. Because these are count data, and because there are a very large number of cars and a small probability of an accident for any specific car, you might think to use the Poisson distribution. However, the probability of having an accident is likely to vary from day to day as the weather and amount of traffic change, and so the assumptions needed for the Poisson distribution are not met. In particular, the variance of this type of count data sometimes exceeds the mean by a large amount. The data below exhibit this effect: most days have few or no accidents, and a few days have a large number:

\[
\text{accident} = [2 \ 3 \ 4 \ 2 \ 3 \ 1 \ 12 \ 8 \ 14 \ 31 \ 23 \ 1 \ 10 \ 7 \ 0];
\]

\[
m = \text{mean}(\text{accident})
\]

\[
m = 8.0667
\]

\[
v = \text{var}(\text{accident})
\]

\[
v = 79.3524
\]

The negative binominal distribution is more general than the Poisson, and is often suitable for count data when the Poisson is not. The function \text{nbinfit} returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the negative binomial distribution. Here are the results from fitting the \text{accident} data:

\[
[\text{phat},\text{pci}] = \text{nbinfit}(\text{accident})
\]

\[
\text{phat} = 1\times2
\]

\[
\begin{array}{cc}
1.0060 & 0.1109 \\
\end{array}
\]

\[
\text{pci} = 2\times2
\]

\[
\begin{array}{cc}
0.2152 & 0.0171 \\
1.7968 & 0.2046 \\
\end{array}
\]

It is difficult to give a physical interpretation in this case to the individual parameters. However, the estimated parameters can be used in a model for the number of daily accidents. For example, a plot of the estimated cumulative probability function shows that while there is an estimated 10\% chance of no accidents on a given day, there is also about a 10\% chance that there will be 20 or more accidents.
Example

Compute and Plot Negative Binomial Distribution PDF

Compute and plot the pdf using four different values for the parameter $r$, the desired number of successes: .1, 1, 3, and 6. In each case, the probability of success $p$ is .5.

```matlab
x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-');
```

```
plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')
```
The plot shows that the negative binomial distribution can take on a variety of shapes, ranging from very skewed to nearly symmetric, depending on the value of $r$. 

\begin{verbatim}
x,nbinpdf(x,1,.5), 'o-', ...
x,nbinpdf(x,3,.5), 'd-', ...
x,nbinpdf(x,6,.5), '^-' );
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'} );
xlabel('x')
ylabel('f(x|r,p)')
\end{verbatim}
See Also
NegativeBinomialDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Noncentral Chi-Square Distribution

In this section...

“Definition” on page B-121
“Background” on page B-121
“Examples” on page B-122

Definition

There are many equivalent formulas for the noncentral chi-square distribution function. One formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre polynomials. The cumulative distribution function is computed using a weighted sum of $\chi^2$ probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of the noncentral chi-square

$$F(x \mid \nu, \delta) = \sum_{j=0}^{\infty} \left( \frac{1}{2} \right)^j \frac{\delta^j}{j!} e^{-\delta} \Pr\left[ \chi_{\nu+2j}^2 \leq x \right]$$

where $\delta$ is the noncentrality parameter.

Background

The $\chi^2$ distribution is actually a simple special case of the noncentral chi-square distribution. One way to generate random numbers with a $\chi^2$ distribution (with $\nu$ degrees of freedom) is to sum the squares of $\nu$ standard normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The sum of squares of these numbers yields the noncentral chi-square distribution. The noncentral chi-square distribution requires two parameters: the degrees of freedom and the noncentrality parameter. The noncentrality parameter is the sum of the squared means of the normally distributed quantities.
The noncentral chi-square has scientific application in thermodynamics and signal processing. The literature in these areas may refer to it as the “Rician Distribution” on page B-143 or generalized “Rayleigh Distribution” on page B-140.

**Examples**

**Compute Noncentral Chi-Square Distribution pdf**

Compute the pdf of a noncentral chi-square distribution with degrees of freedom \( V = 4 \) and noncentrality parameter \( \Delta = 2 \). For comparison, also compute the pdf of a chi-square distribution with the same degrees of freedom.

```matlab
x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the chi-square distribution.
```
```
figure;
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')
```
See Also
ncx2cdf | ncx2inv | ncx2pdf | ncx2rnd | ncx2stat | random

More About
- "Working with Probability Distributions" on page 5-3
- "Supported Distributions" on page 5-16
Noncentral F Distribution

In this section...

“Definition” on page B-124
“Background” on page B-124
“Examples” on page B-125

Definition

Similar to the noncentral $\chi^2$ distribution, the toolbox calculates noncentral $F$ distribution probabilities as a weighted sum of incomplete beta functions using Poisson probabilities as the weights.

\[
F(x \mid v_1, v_2, \delta) = \sum_{j=0}^{\infty} \left( \frac{1}{2} \right)^j \frac{\delta^j}{j!} e^{-\frac{\delta}{2}} I \left( \frac{v_1 \cdot x}{v_2 + v_1 \cdot x} \left| \frac{v_1}{2} + j, \frac{v_2}{2} \right. \right)
\]

$I(x|a,b)$ is the incomplete beta function with parameters $a$ and $b$, and $\delta$ is the noncentrality parameter.

Background

As with the $\chi^2$ distribution, the $F$ distribution is a special case of the noncentral $F$ distribution. The $F$ distribution is the result of taking the ratio of $\chi^2$ random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable divided by its degrees of freedom, the resulting distribution is the noncentral $F$ distribution.

The main application of the noncentral $F$ distribution is to calculate the power of a hypothesis test relative to a particular alternative.
Examples

Compute Noncentral F Distribution pdf

Compute the pdf of a noncentral $F$ distribution with degrees of freedom $\text{NU1} = 5$ and $\text{NU2} = 20$, and noncentrality parameter $\text{DELTA} = 10$. For comparison, also compute the pdf of an $F$ distribution with the same degrees of freedom.

$x = (0.01:0.1:10.01)';$
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);

Plot the pdf of the noncentral $F$ distribution and the pdf of the $F$ distribution on the same figure.

figure;
plot(x,p1,'b-','LineWidth',2)
hold on
plot(x,p,'g--','LineWidth',2)
legend('Noncentral F','F distribution')
See Also
ncfcdf | ncfinv | ncfpdf | ncfnd | ncfstat | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
Noncentral t Distribution

In this section...

“Definition” on page B-127
“Background” on page B-127
“Examples” on page B-128

Definition

The most general representation of the noncentral $t$ distribution is quite complicated. Johnson and Kotz [66] give a formula for the probability that a noncentral $t$ variate falls in the range $[-u, u]$.

$$P(-u < x < u | \nu, \delta) = \sum_{j=0}^{\infty} \left( \frac{1}{2} \delta^2 \right)^j j! e^{-\delta^2/2} I\left( \frac{u^2}{\nu + u^2} \left| \frac{1}{2} + j, \frac{\nu}{2} \right. \right)$$

$I(x|\nu,\delta)$ is the incomplete beta function with parameters $\nu$ and $\delta$. $\delta$ is the noncentrality parameter, and $\nu$ is the number of degrees of freedom.

Background

The noncentral $t$ distribution is a generalization of Student's $t$ distribution.

Student's $t$ distribution with $n - 1$ degrees of freedom models the $t$-statistic

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

where $\bar{x}$ is the sample mean and $s$ is the sample standard deviation of a random sample of size $n$ from a normal population with mean $\mu$. If the population mean is actually $\mu_0$, then the $t$-statistic has a noncentral $t$ distribution with noncentrality parameter

$$\delta = \frac{\mu_0 - \mu}{\sigma / \sqrt{n}}$$
The noncentrality parameter is the normalized difference between $\mu_0$ and $\mu$.

The noncentral $t$ distribution gives the probability that a $t$ test will correctly reject a false null hypothesis of mean $\mu$ when the population mean is actually $\mu_0$; that is, it gives the power of the $t$ test. The power increases as the difference $\mu_0 - \mu$ increases, and also as the sample size $n$ increases.

**Examples**

**Compute Noncentral $t$ Distribution pdf**

Compute the pdf of a noncentral $t$ distribution with degrees of freedom $V = 10$ and noncentrality parameter $\Delta = 1$. For comparison, also compute the pdf of a $t$ distribution with the same degrees of freedom.

```matlab
x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);

Plot the pdf of the noncentral t distribution and the pdf of the t distribution on the same figure.

```plot(x,nct,'b-','LineWidth',2) hold on plot(x,t,'g--','LineWidth',2) legend('nct','t')```
See Also
nctcdf | nctinv | nctpdf | nctrnd | nctstat | random

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Normal Distribution

**In this section...**

| “Definition” on page B-130 |
| “Background” on page B-130 |
| “Parameters” on page B-130 |
| “Examples” on page B-132 |

**Definition**

The normal pdf is

\[ y = f(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \]

**Background**

The normal distribution is a two-parameter family of curves. The first parameter, \( \mu \), is the mean. The second, \( \sigma \), is the standard deviation. The standard normal distribution (written \( \Phi(x) \)) sets \( \mu \) to 0 and \( \sigma \) to 1.

\( \Phi(x) \) is functionally related to the error function, \( \text{erf} \).

\[ \text{erf}(x) = 2\Phi(x\sqrt{2}) - 1 \]

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

**Parameters**

To use statistical parameters such as mean and standard deviation reliably, you need to have a good estimator for them. The maximum likelihood estimates (MLEs) provide one
such estimator. However, an MLE might be biased, which means that its expected value of the parameter might not equal the parameter being estimated. For example, an MLE is biased for estimating the variance of a normal distribution. An unbiased estimator that is commonly used to estimate the parameters of the normal distribution is the minimum variance unbiased estimator (MVUE). The MVUE has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters $\mu$ and $\sigma^2$ for the normal distribution are the sample mean and variance. The sample mean is also the MLE for $\mu$. The following are two common formulas for the variance.

\[
s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]  

(B-1)

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]  

(B-2)

where

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

Equation 1 is the maximum likelihood estimator for $\sigma^2$, and equation 2 is the MVUE.

To fit the normal distribution to data and find the parameter estimates, use `normfit`, `fitdist`, or `mle`.

- For uncensored data, `normfit` and `fitdist` find the unbiased estimates of the distribution parameters, and `mle` finds the maximum likelihood estimates.
- For censored data, `normfit`, `fitdist`, and `mle` find the maximum likelihood estimates.

Unlike `normfit` and `mle`, which return parameter estimates, `fitdist` returns the fitted probability distribution object `NormalDistribution`. The object properties `mu` and `sigma` store the parameter estimates.

As an example, suppose you want to estimate the mean, $\mu$, and the variance, $\sigma^2$, of the heights of all fourth grade children in the United States. The function `normfit` returns
the MVUE for $\mu$, the square root of the MVUE for $\sigma^2$, and confidence intervals for $\mu$ and $\sigma^2$. Here is a playful example modeling the heights in inches of a randomly chosen fourth grade class.

```matlab
rng default; % For reproducibility
height = normrnd(50,2,30,1); % Simulate heights
[mu,s,muci,sci] = normfit(height)

mu = 51.1038
s = 2.6001
muci = 2×1
50.1329
52.0747

sci = 2×1
2.0707
3.4954
```

Note that $s^2$ is the MVUE of the variance.

```matlab
s^2
ans = 6.7605
```

### Examples

**Compute and Plot the Normal Distribution pdf**

Compute the pdf of a standard normal distribution, with parameters $\mu$ equal to 0 and $\sigma$ equal to 1.

```matlab
x = [-3:.1:3];
norm = normpdf(x,0,1);

Plot the pdf.
figure;
plot(x,norm)
```
See Also

NormalDistribution

Related Examples
• “Compare Multiple Distribution Fits” on page 5-112

More About
• “Working with Probability Distributions” on page 5-3
See Also

- “Supported Distributions” on page 5-16
Overview

The piecewise linear distribution creates a nonparametric representation of the cumulative distribution function (cdf) by linearly connecting the known cdf values from the sample data.

Parameters

The piecewise linear distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Vector of x values at which the cdf changes slope</td>
</tr>
<tr>
<td>Fx</td>
<td>Vector of cdf values that correspond to each value in x</td>
</tr>
</tbody>
</table>

Cumulative Distribution Function

The piecewise linear distribution constructs a continuous cumulative distribution function (cdf) by connecting the empirical cdf values such that the cdf increases linearly between \( x(j) \) and \( x(j + 1) \).

Relationship to Other Distributions

The piecewise linear distribution is a continuous version of the discrete empirical cumulative distribution function (ecdf).
See Also
PiecewiseLinearDistribution

More About
- “Nonparametric and Empirical Probability Distributions” on page 5-39
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Poisson Distribution

In this section...

“Definition” on page B-137
“Background” on page B-137
“Parameters” on page B-138
“Examples” on page B-138

Definition

The Poisson pdf is

\[ f(x | \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}; x = 0, 1, 2, \ldots, \infty. \]

Background

The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of people walking into a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one-parameter discrete distribution that takes nonnegative integer values. The parameter, \( \lambda \), is both the mean and the variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers.

The Poisson distribution is the limiting case of a binomial distribution where \( N \) approaches infinity and \( p \) goes to zero while \( Np = \lambda \).

The Poisson and exponential distributions are related. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.
Parameters

The MLE and the MVUE of the Poisson parameter, $\lambda$, is the sample mean. The sum of independent Poisson random variables is also Poisson distributed with the parameter equal to the sum of the individual parameters. This is used to calculate confidence intervals $\lambda$. As $\lambda$ gets large the Poisson distribution can be approximated by a normal distribution with $\mu = \lambda$ and $\sigma^2 = \lambda$. This approximation is used to calculate confidence intervals for values of $\lambda$ greater than 100.

Examples

Compute and Plot Poisson Distribution PDF

Compute and plot the pdf of a Poisson distribution with parameter $\lambda = 5$.

```matlab
x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+');
```
See Also
PoissonDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Rayleigh Distribution

In this section...

| “Definition” on page B-140 |
| “Background” on page B-140 |
| “Parameters” on page B-140 |
| “Examples” on page B-141 |

Definition

The Rayleigh pdf is

\[ y = f(x | b) = \frac{x}{b^2} e^{\left(-\frac{x^2}{2b^2}\right)} \]

Background

The Rayleigh distribution is a special case of the Weibull distribution on page B-184. If \( A \) and \( B \) are the parameters of the Weibull distribution, then the Rayleigh distribution with parameter \( b \) is equivalent to the Weibull distribution with parameters \( A = \sqrt{2b} \) and \( B = 2 \).

If the component velocities of a particle in the \( x \) and \( y \) directions are two independent normal random variables with zero means and equal variances, then the distance the particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions on page B-114, Rician distributions on page B-143, and Rayleigh distributions are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

Parameters

The \text{raylfit} function returns the MLE of the Rayleigh parameter. This estimate is
\[ b = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} x_i^2} \]

**Examples**

**Compute and Plot Rayleigh Distribution pdf**

Compute the pdf of a Rayleigh distribution with parameter \( B = 0.5 \).

\[
x = [0:0.01:2];
p = \text{raylpdf}(x, 0.5);
\]

Plot the pdf.

\[
\text{figure; plot}(x, p)
\]
See Also
RayleighDistribution

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Rician Distribution

In this section...

“Definition” on page B-143
“Background” on page B-143
“Parameters” on page B-143

Definition

The Rician distribution has the density function

\[ I_0 \left( \frac{xs}{\sigma^2} \right) \frac{x}{\sigma^2} e^{-\left(\frac{x^2+s^2}{2\sigma^2}\right)} \]

with noncentrality parameter \( s \geq 0 \) and scale parameter \( \sigma > 0 \), for \( x > 0 \). \( I_0 \) is the zero-order modified Bessel function of the first kind. If \( x \) has a Rician distribution with parameters \( s \) and \( \sigma \), then \( (x/\sigma)^2 \) has a noncentral chi-square distribution with two degrees of freedom and noncentrality parameter \( (s/\sigma)^2 \).

Background

In communications theory, Nakagami distributions on page B-114, Rician distributions, and Rayleigh distributions on page B-140 are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

Parameters

To estimate distribution parameters, use `mle` or the Distribution Fitter app.

See Also

RicianDistribution
More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Stable Distribution

Overview

Stable distributions are a class of probability distributions suitable for modeling heavy tails and skewness. A linear combination of two independent, identically-distributed stable-distributed random variables has the same distribution as the individual variables. In other words, if $X_1, X_2, \ldots, X_n$ are independent and identically distributed stable random variables, then for every $n$

$$X_1 + X_2 + \ldots + X_n \overset{d}{=} c_n X + d_n$$

where the constant $c_n > 0$ and $d_n \in \mathbb{R}$.

The stable distribution is an application of the Generalized Central Limit Theorem, which states that the limit of normalized sums of independent identically distributed variables is stable.

Several different parameterizations exist for the stable distribution. The implementation in Statistics and Machine Learning Toolbox uses the parameterization described in [2]. In this case, a random variable $X$ has the stable distribution $S(\alpha, \beta, \gamma, \delta_0; 0)$ if its characteristic function is given by:
The stable distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>First shape parameter</td>
<td>0 &lt; ( \alpha \leq 2 )</td>
</tr>
<tr>
<td>beta</td>
<td>Second shape parameter</td>
<td>-1 \leq \beta \leq 1</td>
</tr>
<tr>
<td>gam</td>
<td>Scale parameter</td>
<td>0 &lt; \gamma &lt; \infty</td>
</tr>
<tr>
<td>delta</td>
<td>Location parameter</td>
<td>-\infty &lt; \delta &lt; \infty</td>
</tr>
</tbody>
</table>

The first shape parameter, \( \alpha \), describes the tails of the distribution. The software computes the densities of the stable distribution using the direct integration method. As explained in [1], numerical difficulties exist with accurately computing the pdf and cdf when the \( \alpha \) parameter is close to 1 or 0. If \( \alpha \) is close to 1 (specifically, \( 0 < |\alpha - 1| < 0.02 \)), then the software rounds \( \alpha \) to 1. If \( \alpha \) is close to 0, then the densities may not be accurate.

The second shape parameter, \( \beta \), describes the skewness of the distribution. If \( \beta = 0 \), then the distribution is symmetric. If \( \beta > 0 \), then the distribution is right-skewed. If \( \beta < 0 \), then the distribution is left-skewed. When \( \alpha \) is small, the skewness of \( \beta \) is significant. As \( \alpha \) increases, the effect of \( \beta \) decreases.

**Probability Density Function**

**Definition**

Most members of the stable distribution family do not have an explicit probability density function (pdf). Instead, the pdf is described in terms of the characteristic function [2].
Some special cases of the stable distribution, such as the normal, Cauchy, and Lévy distributions, have closed-form density functions. See Relationship to Other Distributions on page B-154 for more information.

Use `pdf` to calculate the probability density function for the stable distribution. The software computes the pdf using the direct integration method. As explained in [1], numerical difficulties exist with accurately computing the pdf when the \( \alpha \) parameter is close to 1 or 0. If \( \alpha \) is close to 1 (specifically, \( 0 < |\alpha - 1| < 0.02 \)), then the software rounds \( \alpha \) to 1. If \( \alpha \) is close to 0, then the densities may not be accurate.

**Compare PDFs of Stable Distributions**

The following plot compares the probability density functions for stable distributions with different \( \alpha \) values. In each case, \( \beta = 0, \gamma = 1, \) and \( \delta = 0. \)

```matlab
pd1 = makedist('Stable','alpha',2,'beta',0,'gam',1,'delta',0); pd2 = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0); pd3 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
```

Calculate the pdf for each distribution.

```matlab
x = -5:.1:5; pdf1 = pdf(pd1,x); pdf2 = pdf(pd2,x); pdf3 = pdf(pd3,x);
```

Plot all three pdf functions on the same figure for visual comparison.

```matlab
figure
plot(x,pdf1,'b-'); hold on
plot(x,pdf2,'r-.'); plot(x,pdf3,'k--');
title('Compare Alpha Parameters in Stable Distribution PDF Plots') legend('\alpha = 2','\alpha = 1','\alpha = 0.5','Location','northwest') hold off
```
The plot illustrates the effect of the alpha parameter on the tails of the distribution.

The next plot compares the probability density functions for stable distributions with different beta values. In each case, alpha = 0.5, gam = 1, and delta = 0.

```
pd1 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',0.5,'beta',0.5,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);
```

Calculate the pdf for each distribution.

```
x = -5:.1:5;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);
```
Plot all three pdf functions on the same figure for visual comparison.

```matlab
figure
plot(x,pdf1,'b-');
hold on
plot(x,pdf2,'r-.');
plot(x,pdf3,'k--');
title('Compare Beta Parameters in Stable Distribution PDF Plots')
legend('
\beta = 0','\beta = 0.5','\beta = 1','Location','northwest')
hold off
```
Random Number Generation

Use random to generate random numbers from the stable distribution. The software generates random numbers for the stable distribution using the method proposed in [3].

Cumulative Distribution Function

Definition

Most members of the stable distribution family do not have an explicit cumulative distribution function (cdf). Instead, the cdf is described in terms of the characteristic function [2].

Use cdf to calculate the cumulative distribution function for the stable distribution. The software computes the cdf using the direct integration method. As explained in [1], numerical difficulties exist with accurately computing the cdf when the α parameter is close to 1 or 0. If α is close to 1 (specifically, 0 < |α - 1| < 0.02), then the software rounds α to 1. If α is close to 0, then the densities may not be accurate.

Compare CDFs of Stable Distributions

The following plot compares the cumulative distribution functions for stable distributions with different alpha values. In each case, beta = 0, gam = 1, and delta = 0.

```matlab
pd1 = makedist('Stable','alpha',2,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
```

Calculate the cdf for each distribution.

```matlab
x = -5:.1:5;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);
```

Plot all three cdf functions on the same figure for visual comparison.

```matlab
figure
plot(x,cdf1,'b-');
hold on
plot(x,cdf2,'r-.');
plot(x,cdf3,'k--');
```
The plot illustrates the effect of the $\alpha$ parameter on the shape of the cdf.

The next plot compares the cumulative distribution functions for stable distributions with different $\beta$ values. In all cases, $\alpha = 0.5$, $\gamma = 1$, and $\delta = 0$.

```matlab
pd1 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',0.5,'beta',0.5,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);
```

Calculate the cdf for each distribution.
x = -5:.1:5;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,cdf1,'b-');
hold on
plot(x,cdf2,'r-.');
plot(x,cdf3,'k--');
title('Compare Beta Parameters in Stable Distribution CDF Plots')
legend('\beta = 0','\beta = 0.5','\beta = 1','Location','northwest')
hold off
Descriptive Statistics

The mean of the stable distribution is undefined for values of $\alpha \leq 1$. For $\alpha > 1$, the mean of the stable distribution is

$$\text{mean} = \delta - \beta \gamma \tan\left(\frac{\pi \alpha}{2}\right).$$

Use \text{mean} to calculate the mean of the stable distribution.

The variance of the stable distribution is undefined for values of $\alpha < 2$. For $\alpha = 2$, the variance of the stable distribution is
\[ \text{var} = 2 \gamma^2. \]

Use \text{var} to calculate the variance of the stable distribution.

**Relationship to Other Distributions**

The stable distribution has three special cases: The normal distribution, the Cauchy distribution, and the Lévy distribution. These distributions are notable because they have closed-form probability density functions.

**Normal Distribution**

The normal, or Gaussian, distribution is a special case of the stable distribution with \( \alpha = 2 \) corresponds to the normal distribution. In other words,

\[
N(\mu, \sigma^2) = S\left(2, 0, \frac{\sigma}{\sqrt{2}}, \mu\right),
\]

where \( \mu \) is the mean and \( \sigma \) is the standard deviation of the normal distribution.

Although the value of \( \beta \) has no effect when \( \alpha = 2 \), the normal distribution is usually associated with \( \beta = 0 \).

The probability density function for the normal distribution is

\[
f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad -\infty < x < \infty.
\]

A plot of the density for a normal distribution is symmetric and has a bell-shaped curve.

**Cauchy Distribution**

The Cauchy distribution is a special case of the stable distribution with \( \alpha = 1 \) and \( \beta = 0 \). In other words,

\[
\text{Cauchy}(\delta, \gamma) = S(1, 0, \gamma, \delta),
\]

where \( \gamma \) is the scale parameter and \( \delta \) is location parameter of the Cauchy distribution.
The probability density function for the Cauchy distribution is

\[ f(x) = \frac{1}{\pi \gamma^2 + (x - \delta)^2}, \quad -\infty < x < \infty. \]

A plot of the density for a Cauchy distribution is symmetric and has a bell-shaped curve, but has heavier tails than the density of a normal distribution.

**Lévy Distribution**

The Lévy distribution is a special case of the stable distribution where \( \alpha = 0.5 \) and \( \beta = 1 \). In other words,

\[ L\tilde{O}y(\delta, \gamma) = S(0.5, 1, \gamma, \gamma + \delta). \]

where \( \gamma \) is the scale parameter and \( \delta \) is location parameter of the Lévy distribution.

The probability density function for the Lévy distribution is

\[ f(x) = \frac{\gamma}{\sqrt{2\pi}} \frac{1}{(x - \delta)^{3/2}} \exp \left( -\frac{\gamma}{2(x - \delta)} \right), \delta < x < \infty. \]

A plot of the density for a Lévy distribution is highly skewed and has heavy tails.

**Comparison Plot for Stable Distributions**

The following plot compares the probability density functions for the standard normal, Cauchy, and Lévy distributions.

Create a probability distribution object for the standard normal, Cauchy, and Lévy distributions.

```
pd_norm = makedist('Stable','alpha',2,'beta',0,'gam',1/sqrt(2),'delta',0);
pd_cauchy = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0);
pd_levy = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);
```

Calculate the pdf for each distribution.

```
x = -5:.1:5;
pdf_norm = pdf(pd_norm,x);
```
pdf_cauchy = pdf(pd_cauchy,x);
pdf_levy = pdf(pd_levy,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,pdf_norm,'b-');
hold on
plot(x,pdf_cauchy,'r.');
plot(x,pdf_levy,'k--');
title('Compare Stable Distributions pdf Plots')
legend('Normal','Cauchy','Levy','Location','northwest')
hold off
References


See Also

StableDistribution

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Student's t Distribution

Overview

The Student’s $t$ distribution is a family of curves depending on a single parameter $\nu$ (the degrees of freedom).

Parameters

The Student’s $t$ distribution uses the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu = 1, 2, 3, \ldots$</td>
<td>Degrees of freedom</td>
</tr>
</tbody>
</table>

Probability Density Function

Definition

The probability density function (pdf) of the Student’s $t$ distribution is

$$y = f(x | \nu) = \left( \frac{\nu + 1}{2} \right)^{\frac{1}{2}} \frac{1}{\sqrt{\nu \pi}} \Gamma\left( \frac{\nu}{2} \right) \frac{1}{\left( 1 + \frac{x^2}{\nu} \right)^{\frac{\nu+1}{2}} \Gamma\left( \frac{\nu}{2} \right)'}
where $\nu$ is the degrees of freedom and $\Gamma(\cdot)$ is the Gamma function. The result $y$ is the probability of observing a particular value of $x$ from a Student’s $t$ distribution with $\nu$ degrees of freedom.

**Plot**

This plot shows how changing the value of the degrees of freedom parameter $\nu$ alters the shape of the pdf. Use `tpdf` to compute the pdf for values $x$ equals 0 through 10, for three different values of $\nu$. Then plot all three pdfs on the same figure for a visual comparison.

```matlab
x = [0:.1:10];
y1 = tpdf(x,5); % For nu = 5
y2 = tpdf(x,25); % For nu = 25
y3 = tpdf(x,50); % For nu = 50

figure;
plot(x,y1,'Color','black','LineStyle','-')
hold on
plot(x,y2,'Color','red','LineStyle','-.')
plot(x,y3,'Color','blue','LineStyle','--')
legend({'nu = 5','nu = 25','nu = 50'})
hold off
```
Random Number Generation

Use `trnd` to generate random numbers from the Student’s $t$ distribution. For example, the following generates a random number from a Student’s $t$ distribution with degrees of freedom $\nu$ equal to 10.

```matlab
nu = 10;
r = trnd(nu)
r = 1.0585
```

Relationship to Other Distributions

As the degrees of freedom $\nu$ goes to infinity, the $t$ distribution approaches the standard normal distribution.
If $x$ is a random sample of size $n$ from a normal distribution with mean $\mu$, then the statistic

$$ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} $$

where $\bar{x}$ is the sample mean and $s$ is the sample standard deviation, has Student's $t$ distribution with $n - 1$ degrees of freedom.

The Cauchy distribution is a Student's $t$ distribution with degrees of freedom $\nu$ equal to 1. The Cauchy distribution has an undefined mean and variance.

**Cumulative Distribution Function**

**Definition**

The cumulative distribution function (cdf) of Student's $t$ distribution is

$$ p = F(x | \nu) = \frac{1}{\Gamma\left(\frac{\nu + 1}{2}\right) \sqrt{\nu \pi}} \frac{1}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} $$

where $\nu$ is the degrees of freedom and $\Gamma(\cdot)$ is the Gamma function. The result $p$ is the probability that a single observation from the $t$ distribution with $\nu$ degrees of freedom will fall in the interval $[-\infty, x]$.

**Plot**

This plot shows how changing the value of the parameter $\nu$ alters the shape of the cdf. Use `tcdf` to compute the cdf for values $x$ equals 0 through 10, for three different values of $\nu$. Then plot all three cdfs on the same figure for a visual comparison.

```matlab
x = [0:.1:10];
y1 = tcdf(x,5); % For nu = 5
y2 = tcdf(x,25); % For nu = 25
y3 = tcdf(x,50); % For nu = 50
figure;
plot(x,y1,'Color','black','LineStyle','-');
```
Inverse cdf

Use tinv to compute the inverse cdf of the Student’s t distribution.

```matlab
p = .95;
nu = 50;
x = tinv(p,nu)
x = 1.6759
```
**Mean and Variance**

The mean of the Student’s $t$ distribution is

$$\text{mean} = 0$$

for degrees of freedom $\nu$ greater than 1. If $\nu$ equals 1, then the mean is undefined.

The variance of the Student’s $t$ distribution is

$$\text{var} = \frac{\nu}{\nu - 2}$$

for degrees of freedom $\nu$ greater than 2. If $\nu$ is less than or equal to 2, then the variance is undefined.

Use `tstat` to compute the mean and variance of a Student’s $t$ distribution. For example, the following computes the mean and variance of a Student’s $t$ distribution with degrees of freedom $\nu$ equal to 10.

```matlab
nu = 10;
[m,v] = tstat(nu)
m = 0
v = 1.2500
```

**Example**

**Compare Student’s t and Normal Distribution pdfs**

Compute the pdf for a Student's $t$ distribution with parameter $\nu = 5$, and for a standard normal distribution.

```matlab
x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
```

Plot the Student's $t$ and standard normal pdfs on the same figure. The standard normal pdf (dashed line) has shorter tails than the Student's $t$ pdf (solid line).

```matlab
figure;
plot(x,y,'-',x,z,'-.')
```
See Also
random | tcdf | tinv | tpdf | trnd | tstat

Related Examples
• “Generate Cauchy Random Numbers Using Student's t” on page 5-137

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
The t location-scale distribution is useful for modeling data distributions with heavier tails (more prone to outliers) than the normal distribution. It approaches the normal distribution as \( \nu \) approaches infinity, and smaller values of \( \nu \) yield heavier tails.

The t location-scale distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \mu )</td>
<td>Location parameter</td>
<td>( -\infty &lt; \mu &lt; \infty )</td>
</tr>
<tr>
<td>( \sigma )</td>
<td>Scale parameter</td>
<td>( \sigma &gt; 0 )</td>
</tr>
<tr>
<td>( \nu )</td>
<td>Shape parameter</td>
<td>( \nu &gt; 0 )</td>
</tr>
</tbody>
</table>

To estimate distribution parameters, use \texttt{mle}. Alternatively, fit a \texttt{tLocationScaleDistribution} object to data using \texttt{fitdist} or the \texttt{Distribution Fitter} app.

The probability density function (pdf) of the t location-scale distribution is
where $\Gamma(\cdot)$ is the gamma function, $\mu$ is the location parameter, $\sigma$ is the scale parameter, and $\nu$ is the shape parameter.

To compute the probability density function, use pdf and specify 'tLocationScale'. Alternatively, you can create a tLocationScaleDistribution object using fitdist or makedist, then use the pdf to work with the object.

**Cumulative Distribution Function**

To compute the probability density function, use cdf and specify 'tLocationScale'. Alternatively, you can create a tLocationScaleDistribution object using fitdist or makedist, then use the cdf to work with the object.

**Descriptive Statistics**

The mean of the t location-scale distribution is

$$\text{mean} = \mu,$$

where $\mu$ is the location parameter. The mean is only defined for shape parameter values $\nu > 1$. For other values of $\nu$, the mean is undefined.

The variance of the t location-scale distribution is

$$\text{var} = \sigma^2 \frac{\nu}{\nu - 2},$$

where $\mu$ is the location parameter and $\nu$ is the shape parameter. The variance is only defined for values of $\nu > 2$. For other values of $\nu$, the variance is undefined.

To compute the mean and variance, create a tLocationScaleDistribution object using fitdist or makedist. You can also use the Distribution Fitter app.
Relationship to Other Distributions

If \( x \) has a \( t \) location-scale distribution, with parameters \( \mu \), \( \sigma \), and \( \nu \), then

\[
\frac{x - \mu}{\sigma}
\]

has a Student's \( t \) distribution with \( \nu \) degrees of freedom.

See Also

tLocationScaleDistribution

Related Examples

- “Represent Cauchy Distribution Using t Location-Scale” on page 5-134

More About

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Overview

The triangular distribution provides a simplistic representation of the probability distribution when limited sample data is available. Its parameters are the minimum, maximum, and peak of the data. Common applications include business and economic simulations, project management planning, natural phenomena modeling, and audio dithering.

Parameters

The triangular distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Lower limit</td>
<td>( a \leq b )</td>
</tr>
<tr>
<td>b</td>
<td>Peak location</td>
<td>( a \leq b \leq c )</td>
</tr>
<tr>
<td>c</td>
<td>Upper limit</td>
<td>( c \geq b )</td>
</tr>
</tbody>
</table>

Parameter Estimation

Typically, you estimate triangular distribution parameters using subjectively reasonable values based on the sample data. You can estimate the lower and upper limit parameters \( a \) and \( c \) using the minimum and maximum values of the sample data, respectively. You can estimate the peak location parameter \( b \) using the sample mean, median, mode, or any other subjectively reasonable estimate of the population mode.
Probability Density Function

The probability density function (pdf) of the triangular distribution is

\[
f(x \mid a, b, c) = \begin{cases} 
\frac{2(x-a)}{(c-a)(b-a)} & ; \quad a \leq x \leq b \\
\frac{2(c-x)}{(c-a)(c-b)} & ; \quad b < x \leq c \\
0 & ; \quad x < a, x > c 
\end{cases}
\]

This plot shows how changing the value of the parameters \(a\), \(b\), and \(c\) alters the shape of the pdf.

% Create four distribution objects with different parameters
pd1 = makedist('Triangular');
pd2 = makedist('Triangular','a',-1,'b',0,'c',1);
pd3 = makedist('Triangular','a',-.5,'b',0,'c',1);
pd4 = makedist('Triangular','a',0,'b',0,'c',1);

% Compute the pdfs
x = -2:.01:2;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);
pdf4 = pdf(pd4,x);

% Plot the pdfs
figure;
plot(x,pdf1,'r','LineWidth',2)
hold on;
plot(x,pdf2,'k:','LineWidth',2);
plot(x,pdf3,'b-.','LineWidth',2);
plot(x,pdf4,'g--','LineWidth',2);
legend({'a = 0, b = 0.5, c = 1','a = -1, b = 0, c = 1','a = -0.5, b = 0, c = 1','a = 0, b = 0, c = 1'},'Location','NW');
hold off;
As the distance between $a$ and $c$ increases, the density at any particular value within the distribution boundaries decreases. Because the density function integrates to 1, the height of the pdf plot decreases as its width increases. The location of the peak parameter $b$ determines whether the pdf skews right or left, or if it is symmetrical.

**Cumulative Distribution Function**

The cumulative distribution function (cdf) of the triangular distribution is
This plot shows how changing the value of the parameters $a$, $b$, and $c$ alters the shape of the cdf.

% Create four distribution objects with different parameters
pd1 = makedist('Triangular');
pd2 = makedist('Triangular', 'a', -1, 'b', 0, 'c', 1);
pd3 = makedist('Triangular', 'a', -0.5, 'b', 0, 'c', 1);
pd4 = makedist('Triangular', 'a', 0, 'b', 0, 'c', 1);

% Compute the cdfs
x = -1.2:.01:1.2;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);
cdf4 = cdf(pd4,x);

% Plot the cdfs
figure;
plot(x,cdf1,'r','LineWidth',2)
xlim([-1.2 1.2]);
ylim([0 1.1]);hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
plot(x,cdf4,'g--','LineWidth',2);
legend({'a = 0, b = 0.5, c = 1','a = -1, b = 0, c = 1','a = -0.5, b = 0, c = 1','a = 0, b = 0, c = 1'},'Location','NW');
hold off;

\[
F(x | a, b, c) = \begin{cases} 
0 , & x < a \\
\frac{(x-a)^2}{(c-a)(b-a)} , & a \leq x \leq b \\
1-\frac{(c-x)^2}{(c-a)(c-b)} , & b < x \leq c \\
1 , & x > c 
\end{cases}
\]
Descriptive Statistics

The mean and variance of the triangular distribution are related to the parameters $a$, $b$, and $c$.

The mean is

$$\text{mean} = \frac{a + b + c}{3}.$$ 

The variance is
\[ \text{var} = \left( \frac{a^2 + b^2 + c^2 - ab - ac - bc}{18} \right). \]

**See Also**

TriangularDistribution

**Related Examples**

- "Generate Random Numbers Using the Triangular Distribution" on page 5-63

**More About**

- "Nonparametric and Empirical Probability Distributions" on page 5-39
- "Working with Probability Distributions" on page 5-3
- "Supported Distributions" on page 5-16
Uniform Distribution (Continuous)

In this section...

“Overview” on page B-175
“Parameters” on page B-175
“Probability Density Function” on page B-175
“Cumulative Distribution Function” on page B-177
“Descriptive Statistics” on page B-179
“Relationship to Other Distributions” on page B-180

Overview

The uniform distribution (also called the rectangular distribution) is notable because it has a constant probability distribution function (pdf) between its two bounding parameters. It is appropriate for representing the distribution of round-off errors in values tabulated to a particular number of decimal places, and is used in random number generating techniques such as the inversion method.

Parameters

The uniform distribution uses the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>Lower limit</td>
<td>$-\infty &lt; lower &lt; upper$</td>
</tr>
<tr>
<td>upper</td>
<td>Upper limit</td>
<td>$lower &lt; upper &lt; \infty$</td>
</tr>
</tbody>
</table>

Parameter Estimation

The maximum likelihood estimator (MLE) for lower is the sample minimum. The MLE for upper is the sample maximum.

Probability Density Function

The probability density function (pdf) of the continuous uniform distribution is
The pdf is constant between \( \text{lower} \) and \( \text{upper} \).

This plot illustrates how changing the value of the parameters \( \text{lower} \) and \( \text{upper} \) affects the shape of the pdf.

\[
f(x \mid \text{lower}, \text{upper}) = \begin{cases} 
\frac{1}{\text{upper} - \text{lower}} & ; \text{lower} \leq x \leq \text{upper} \\
0 & ; \text{otherwise}
\end{cases}
\]

% Create three distribution objects with different parameters
pd1 = makedist('Uniform');
pd2 = makedist('Uniform','lower',-2,'upper',2);
pd3 = makedist('Uniform','lower',-2,'upper',1);

% Compute the pdfs
x = -3:.01:3;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);

% Plot the pdfs
figure;
stairs(x,pdf1,'r','LineWidth',2);
hold on;
stairs(x,pdf2,'k:','LineWidth',2);
stairs(x,pdf3,'b-.','LineWidth',2);
ylim([0 1.1]);
legend({'lower = 0, upper = 1','lower = -2, upper = 2','lower = -2, upper = 1'},'Location','NW');
hold off;
As the distance between lower and upper increases, the density at any particular value within the distribution boundaries decreases. Because the density function integrates to 1, the height of the pdf plot decreases as its width increases.

**Cumulative Distribution Function**

The cumulative distribution function (cdf) of the continuous uniform distribution is
This plot illustrates how changing the value of the parameters $lower$ and $upper$ affects the shape of the cdf.

% Create three distribution objects with different parameters
pd1 = makedist('Uniform');
pd2 = makedist('Uniform','lower',-2,'upper',2);
pd3 = makedist('Uniform','lower',-2,'upper',1);

% Compute the cdfs
x = -3:.01:3;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

% Plot the cdfs
figure;
plot(x,cdf1,'r','LineWidth',2);
hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
ylim([0 1.1]);
legend({'lower = 0, upper = 1','lower = -2, upper = 2','lower = -2, upper = 1'},'Location','NW');
**Descriptive Statistics**

The mean and variance of the continuous uniform distribution are related to the parameters `lower` and `upper`.

The mean is

$$\text{mean} = \frac{1}{2} (lower + upper).$$

The variance is
\[ \text{var} = \frac{1}{12} (\text{upper} - \text{lower})^2 . \]

**Relationship to Other Distributions**

The standard uniform distribution (lower = 0 and upper = 1) is a special case of the beta distribution on page B-4 obtained by setting the beta distribution parameters \( a = 1 \) and \( b = 1 \).

The inversion method uses the continuous standard uniform distribution to generate random numbers for any other continuous distribution. The inversion method relies on the principle that continuous cumulative distribution functions (cdfs) range uniformly over the open interval (0,1). If \( u \) is a uniform random number on (0,1), then \( x = F^{-1}(u) \) generates a random number \( x \) from any continuous distribution with the specified cdf \( F \).

**See Also**

*UniformDistribution*

**Related Examples**

- “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-130

**More About**

- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Uniform Distribution (Discrete)

In this section...

"Definition" on page B-181
"Background" on page B-181
"Examples" on page B-181

Definition

The discrete uniform pdf is

\[
y = f(x | N) = \frac{1}{N} I_{1,\ldots,N}(x)
\]

Background

The discrete uniform distribution is a simple distribution that puts equal weight on the integers from one to \( N \).

Examples

Plot a Discrete Uniform Distribution cdf

As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for \( N = 10 \).

\[
x = 0:10;
y = unidcdf(x,10);
figure;
stairs(x,y)
h = gca;
h.XLim = [0 11];
\]
Generate Discrete Uniform Random Numbers

Pick a random sample of 10 from a list of 553 items.

rng default;  % for reproducibility
numbers = unidrnd(553,1,10)

numbers = 1×10

451  501   71   506   350   54  155  303  530  534
See Also
random | unidcdf | unidinv | unidpdf | unidrnd | unidstat

More About
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Weibull Distribution

In this section...

"Definition" on page B-184
"Background" on page B-184
"Plot the Weibull Distribution Hazard Function" on page B-185
"Estimate Parameters of the Weibull Distribution" on page B-186
"Estimate Parameters of a Three-Parameter Weibull Distribution" on page B-186

Definition

The Weibull pdf is positive only for positive values of \( x \), and is zero otherwise. For strictly positive values of the shape parameter \( b \) and scale parameter \( a \), the density is

\[
f(x \mid a, b) = \frac{b}{a} \left( \frac{x}{a} \right)^{b-1} e^{-(x/a)^b}.
\]

Background

Waloddi Weibull offered the distribution that bears his name as an appropriate analytical tool for modeling the breaking strength of materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If \( f(t) \) and \( F(t) \) are the pdf and cdf of a distribution, then the hazard rate is

\[
h(t) = \frac{f(t)}{1 - F(t)}
\]

Substituting the pdf and cdf of the exponential distribution for \( f(t) \) and \( F(t) \) above yields a constant. The example below shows that the hazard rate for the Weibull distribution can vary.
Plot the Weibull Distribution Hazard Function

The exponential distribution has a constant hazard function, which is not generally the case for the Weibull distribution. The plot shows the hazard function for exponential (dashed line) and Weibull (solid line) distributions having the same mean life. The Weibull hazard rate here increases with age (a reasonable assumption).

\[ t = 0:0.1:4.5; \]
\[ h1 = \text{exppdf}(t,0.8862)./(1-\text{expcdf}(t,0.8862)); \]
\[ h2 = \text{wblpdf}(t,1,2)./(1-\text{wblcdf}(t,1,2)); \]
\[ \text{plot}(t,h1,`--',t,h2,`-') \]
Estimate Parameters of the Weibull Distribution

Suppose you want to model the tensile strength of a thin filament using the Weibull distribution. The function `wblfit` gives maximum likelihood estimates and confidence intervals for the Weibull parameters.

```matlab
rng('default'); % For reproducibility
strength = wblrnd(0.5,2,100,1); % Simulated strengths
[p,ci] = wblfit(strength)
p = 1×2
0.4768 1.9622

ci = 2×2
0.4291 1.6821
0.5298 2.2890
```

The default 95% confidence interval for each parameter contains the true value.

Estimate Parameters of a Three-Parameter Weibull Distribution

This example shows how to estimate parameters of a three-parameter Weibull distribution by using a custom probability density function.

Statistics and Machine Learning Toolbox™ uses a two-parameter Weibull distribution with a shape parameter $a$ and a scale parameter $b$. The Weibull distribution can take one more parameter, a location parameter $c$. The probability density function becomes

$$f(x|a,b,c) = \begin{cases} 
\frac{b}{a} \left(\frac{x-c}{a}\right)^{b-1} \exp\left(-\left(\frac{x-c}{a}\right)^b\right) & \text{if } x > c, \\
0 & \text{if } x \leq c,
\end{cases}$$

where $a$ and $b$ are positive values, and $c$ is a real value.
Generate sample data of size 1000 from a three-parameter Weibull distribution with the shape parameter 1, scale parameter 1, and location parameter 10.

```
rng('default') % For reproducibility
data = wblrnd(1,1,[1000,1])+10;
```

Define a probability density function for a three-parameter Weibull distribution.

```
custpdf = @(x,a,b,c) (x>c).*(b/a).*(((x-c)/a).^(b-1)).*exp(-(x-c)/a).^b);
```

The Weibull probability density function is positive only for \( x > c \). This constraint also implies that a location parameter \( c \) is smaller than the minimum of the sample data. Include the lower and upper bounds of parameters by using the name-value pair arguments 'LowerBound' and 'UpperBound', respectively.

```
opt = statset('MaxIter',1e5,'MaxFunEvals',1e5,'FunValCheck','off');
phat = mle(data,'pdf',custpdf,'start',[5 5 5],'Options',opt,...
 'LowerBound',[0 0 -Inf],'UpperBound',[Inf Inf min(data)])
```

The option opt includes the following:

- 'MaxIter',1e5 — Increase the maximum number of iterations to 1e5.
- 'MaxFunEvals',1e5 — Increase the maximum number of object function evaluations to 1e5.
- 'FunValCheck','off' — Turn off checking for invalid object function values.

For a distribution with a region that has zero probability density, mle might try some parameters that have zero density, and it will fail to estimate parameters. To avoid this problem, you can turn off the option that checks for invalid function values by using 'FunValCheck','off'.

If the scale parameter \( b \) is smaller than 1, the probability density of the Weibull distribution approaches infinity as \( x \) goes to \( c \), where \( c \) is the location parameter. The
maximum of the likelihood function is infinite. \texttt{mle} may find satisfactory estimates in some cases, but the global maximum is degenerate when $b < 1$.

\section*{See Also}
\begin{itemize}
  \item WeibullDistribution
\end{itemize}

\section*{Related Examples}
\begin{itemize}
  \item “Fit Probability Distribution Objects to Grouped Data” on page 5-119
  \item “Compare Multiple Distribution Fits” on page 5-112
\end{itemize}

\section*{More About}
\begin{itemize}
  \item “Working with Probability Distributions” on page 5-3
  \item “Supported Distributions” on page 5-16
Wishart Distribution

Overview

The Wishart distribution is a generalization of the univariate chi-square distribution to two or more variables. It is a distribution for symmetric positive semidefinite matrices, typically covariance matrices, the diagonal elements of which are each chi-square random variables. In the same way as the chi-square distribution can be constructed by summing the squares of independent, identically distributed, zero-mean univariate normal random variables, the Wishart distribution can be constructed by summing the inner products of independent, identically distributed, zero-mean multivariate normal random vectors. The Wishart distribution is often used as a model for the distribution of the sample covariance matrix for multivariate normal random data, after scaling by the sample size.

Only random matrix generation is supported for the Wishart distribution, including both singular and nonsingular $\Sigma$.

Parameters

The Wishart distribution is parameterized with a symmetric, positive semidefinite matrix, $\Sigma$, and a positive scalar degrees of freedom parameter, $\nu$. $\nu$ is analogous to the degrees of freedom parameter of a univariate chi-square distribution, and $\Sigma \nu$ is the mean of the distribution.

Probability Density Function

The probability density function of the $d$-dimensional Wishart distribution is given by

$$y = f(X, \Sigma, \nu) = \frac{|X|^{(\nu-d-1)/2} e^{\frac{1}{2} \text{trace}(\Sigma^{-1}X)}}{2^{(\nu d)/2} \pi^{(d(d-1))/4} |\Sigma|^{\nu/2} \Gamma(\nu/2) \ldots \Gamma(\nu-(d-1))/2}$$
where $X$ and $\Sigma$ are $d$-by-$d$ symmetric positive definite matrices, and $\nu$ is a scalar greater than $d - 1$. While it is possible to define the Wishart for singular $\Sigma$, the density cannot be written as above.

**Example**

If $x$ is a bivariate normal random vector with mean zero and covariance matrix

$$\Sigma = \begin{pmatrix} 1 & .5 \\ .5 & 2 \end{pmatrix}$$

then you can use the Wishart distribution to generate a sample covariance matrix without explicitly generating $x$ itself. Notice how the sampling variability is quite large when the degrees of freedom is small.

```matlab
Sigma = [1 .5; .5 2];
df = 10; S1 = wishrnd(Sigma,df)/df
S1 =
 1.7959 0.64107
 0.64107 1.5496

df = 1000; S2 = wishrnd(Sigma,df)/df
S2 =
 0.9842 0.50158
 0.50158 2.1682
```

**See Also**

wishrnd

**More About**

- “Inverse Wishart Distribution” on page B-79
- “Working with Probability Distributions” on page 5-3
- “Supported Distributions” on page 5-16
Bibliography
Bibliography


